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Editorial on the Research Topic 
Novel nuclear reactors and research reactors


The advancement of nuclear energy technology has brought significant attention to next-generation reactor systems, including Generation IV reactors, small modular reactors (SMRs), and fusion reactors. Generation IV designs—such as ultra-high temperature reactors, liquid metal-cooled fast reactors, and molten salt reactors—demonstrate marked improvements in sustainability, safety, cost efficiency, and proliferation resistance (Li et al., 2025; Mochizuki, 2025; Liu et al., 2018). Meanwhile, SMRs offer distinct advantages, including versatility in application, deployment flexibility, enhanced safety, and reduced environmental impact. Research reactors also play a pivotal role in nuclear innovation, serving critical functions such as material irradiation testing, isotope production, and theoretical/experimental studies in nuclear technology (Colvin and Palmer, 2025; Jin et al., 2025). Compared to conventional nuclear power plants, these advanced and research reactors exhibit unique design and operational characteristics, making their simulation and engineering processes notably more complex and multidisciplinary.
In recent years, with the continuous innovation of Generation IV nuclear systems, small modular reactors, and research reactors, nuclear reactor modeling and simulation have been evolving toward higher accuracy, multi-scale, and multi-physics coupling approaches (Weng et al., 2021; Fiorina et al., 2022). The design and application of novel reactors exhibit greater complexity and diversity, placing higher demands on thermal-hydraulic characteristics and safety, while also introducing new challenges in fuel behavior and material evolution. To address these needs, researchers are actively advancing the use of sophisticated numerical methods, coupled simulation tools, and high-performance computing, while also strengthening model validation and uncertainty analysis.
Meanwhile, neural network methods are increasingly being integrated into the analysis and optimization of reactor systems, providing strong support for the design and safe operation of next-generation nuclear technologies (Zou et al., 2023; Elhareef and Wu, 2023; Wang et al., 2025). Consequently, the nuclear engineering field continues to advance modeling and simulation technologies to address the complex and diverse challenges posed by novel reactor development, driving nuclear technology toward higher levels of performance and innovation.
We have collected four papers on reactor thermal-hydraulics and safety analysis for novel nuclear reactors and research reactors by Geng et al., Cui and Cai, Wu et al., and Lu et al. Geng et al. model transient behavior in the NHR-200-II passive residual heat removal system using RELAP5, identifying flow oscillations during valve failures and proposing design mitigations. Cui and Cai develop a novel degassing system for the HPR1000 pressurizer, improving shutdown performance via steady-state and transient simulations. Wu et al. couple ARSAC and ATHROC codes to simulate CPR1000 containment dynamics under TMLB’ accidents, resolving pressure evolution and hydrogen distribution. Lu et al. employ Eulerian–Lagrangian CFD to analyze spray-induced depressurization in multicompartment containments, validating against OECD SETH-2 experiments.
We have collected three papers on nuclear fuel and materials, as well as the nuclear fuel cycle for novel nuclear reactors and research reactors, by Wan et al., Changbin et al., and Jiang et al. Wan et al. use cluster dynamics to model defect evolution in proton-irradiated RPV steels, linking solute clustering to embrittlement. Changbin et al. simulate blister formation in UMo/Zr monolithic fuel under annealing, revealing cladding creep’s role in bubble growth. Jiang et al. investigate radioactive particle migration in liquid effluents, informing post-operation fuel treatment and environmental monitoring.
We have collected two papers on the conceptual design of novel nuclear reactors and research reactors by Qi et al. and Yang et al. Qi et al. propose a graphene-enhanced nanofluid heat exchanger for lead-bismuth reactors, optimized via genetic algorithms for thermal efficiency and compactness. Yang et al. analyze fuel rod vibration to enhance core integrity under dynamic loads.
We have collected two papers on uncertainty quantification, sensitivity analysis, and optimization by Cacuci. Cacuci introduces the nth-order adjoint sensitivity methodology (nth-FASAM-L) for exact high-order sensitivity computation in linear systems, later applying it to neutron slowing-down problems to demonstrate optimization efficacy.
This Research Topic focuses on the key aspects of design, simulation, and analysis for novel nuclear reactors and research reactors. The collected studies span thermal-hydraulic behavior, fuel and material evolution, conceptual innovations, and high-order sensitivity analyses. By employing multiphysics coupling, high-fidelity modeling, and advanced numerical techniques, these works demonstrate recent progress in enhancing the safety, efficiency, and engineering viability of next-generation nuclear energy systems.
Looking ahead, balancing computational accuracy with practical applicability remains a central challenge for advanced modeling and simulation technologies. Continued efforts in model validation, algorithm optimization, and integration with artificial intelligence will provide essential support for the industrial application of novel nuclear reactor systems.
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Radionuclides emitted by nuclear power plants may have effects on the environment and public health. At present, research on radioactive material effluent in the industry mainly focuses on the treatment of radioactive effluent and the particle size distribution of the primary circuit. There is little research on the particle size of radioactive material during the migration process outside the primary circuit system, as well as the flocculation precipitation and other enrichment phenomena during the collection process of effluent. Therefore, this study relies on the sampling of effluent from an in-service nuclear power plant to measure its radioactivity level by particle size range. At the same time, the mixing process of effluent is simulated in the laboratory to simulate the adsorption behavior of effluent during the migration process. It was found that in the activity concentration of detectable radioactive nuclides in the effluent samples, more than 95% of radioactive nuclides exist in the liquid with particle sizes less than 0.1μm, while particle sizes greater than 0.45 μm account for less than 5%. After the sample was filtered by the demineralizer, the radioactive activity decreased. The flocculation precipitation in the waste liquid of the waste water recovery system has a certain contribution to the enrichment of nuclides. With the extension of time, the enrichment of transition elements such as cobalt and manganese is particularly obvious, so that it is distributed in the liquid again with a large particle size. In addition, large particle size substances such as colloids in seawater have a certain adsorption effect on radionuclides, which will lead to its aggregation effect again.
Keywords: pressurized water reactor, radioactive effluent, γ measurement, particle size, adsorption effect

1 INTRODUCTION
The study of the safety of nuclear reactor facilities is of great significance (Qi et al., 2023; Cao et al., 2024). The radioactive nuclides produced by nuclear power plants mainly come from the fission of nuclear fuel and the activation corrosion of Primary circuit structural materials. In terms of effluent, the liquid radioactive nuclides emitted during conventional operation of nuclear power plants include 137Cs, 51Cr, 54Mn, 110mAg, 124Sb, 134Cs, 131I, 90Sr, 103mRh, 58Co, 58Co (Kong et al., 2017). The discharge of liquid effluents from nuclear power plants into the environment under national regulations and standards means that the effluents are safe from a legal perspective (National Nuclear Energy Agency, 2011; Ministry of Environmental and Forestry, 2016; Yuniarto et al., 2016).
However, companies around nuclear power plants hold a questioning attitude towards the safety of effluent, especially those involved in the large-scale use of seawater technology. During the process of seawater reuse in the ocean, radioactivity is trapped and enriched again on the filtering equipment, causing radiation effects on workers. According to theoretical estimation, if the source term of the effluent is measured at a radioactive concentration of 1,000 Bq/L, under extremely conservative assumptions (radioactive nuclides in the effluent are all trapped by the filters of the enterprise’s seawater extraction facilities), the contact dose rate of the filter can reach approximately the level of 10 μSv/h, which corresponds to the dose rate level in the control area (green area) of the nuclear power plant, and is indeed unacceptable for civil enterprises.
It should be pointed out that due to overly conservative assumptions, the possibility of the aforementioned conclusion occurring is unlikely. However, the crux still lies in the lack of understanding of the actual particle size distribution of radioactive substances in the effluent, and the assessment can only conservatively assume that all radioactive substances have been trapped on the filter core. On the other hand, according to feedback from the operation of in-service nuclear power plants, sampling and testing before effluent discharge can indeed detect radioactive hot particles. It should be pointed out that the liquid effluent of nuclear power plants is treated by multiple purification methods such as filtration and desalination of radioactive waste liquid from nuclear power plants. Therefore, it is believed that the effluent is basically non-radioactive. The actual phenomenon of measuring radioactive hot particles indicates that radioactive enrichment may have occurred during the collection process of the effluent, which may have resulted in the regeneration of particles.
Therefore, combining the monitoring methods of effluent (Kang and Cheong, 2022; Wang et al., 2023) and the treatment methods of radioactive nuclides in effluent (Attallah et al., 2019; Bashir et al., 2019; Ahmed et al., 2020; Ma et al., 2020; Tofighy et al., 2020; Gul et al., 2021; Thakur et al., 2022; Nivetha et al., 2023; Oh et al., 2023), mastering the particle size of radioactive substances in effluent, and studying whether the collection process of effluent will produce particulate thermal particles, is the key to more accurate evaluation and reducing the impact of effluent on environmental radiation. The relationship route is shown in Figure 1.
[image: Flowchart illustrating liquid effluent phases and nuclear phases. Key sections include characteristics, detecting, treatment, and characteristics. Features common nuclides, measurement methods, study of radioactive behavior, and the impact of radioactive waste. Emphasizes radiometric analysis and impact on the primary system.]FIGURE 1 | Characteristics, hazards, monitoring and treatment of liquid effluents from nuclear power plants, and study on particle size behavior.
This study relied on the sampling of effluent from an in-service nuclear power plant to measure its radioactive levels in particle size intervals. However, it is also necessary to consider the migration process of effluent into the ocean. At present, research on the particle size distribution and adsorption behavior of radioactive nuclides in seawater has focused on seawater measurement. For example, Yuki Kamidaira et al. established an ocean diffusion model for radioactive nuclides, considering the interaction between dissolved radioactive nuclides and suspended particles and multi-scale seabed sediments (Kamidaira et al., 2021). P. G. Appleby et al. believed that radioactive nuclides are soluble in water and adhere to colloidal sized particles (<0.4 μm) The upper part is basically transported with the water phase. The deposition or outflow of particulate matter largely depends on factors that control the transportation of suspended sediment through water bodies, including particle size distribution, residence time, etc. (Appleby et al., 2019). Therefore, this study also utilized laboratory simulations of the mixing process of effluent to simulate the adsorption behavior of effluent during migration.
It should be pointed out that the research on the particle size of radioactive substances in the industry mainly focuses on the primary circuit (Geraldo et al., 2019; Li et al., 2019; Tessaro et al., 2020; Guo et al., 2022), while there is very little research on the particle size of radioactive substances during the migration process outside the primary circuit system. Studying and analyzing the changes in particle size morphology of radioactive materials throughout the entire life cycle of nuclear power plants is a prerequisite for constructing a full life cycle source term evaluation and radiation protection. It helps to further improve the level of source term management in nuclear power plants, reduce collective doses, and select more favorable and suitable environmental conditions to cope with radiation effects. Therefore, research has long-term significance.
2 MATERIAL DESIGN AND MANUFACTURE
2.1 The object of study
Effluent from the nuclear Island building of a pressurized water reactor nuclear power plant is collected in the liquid waste storage tank of the Nuclear Island Liquid Waste Discharge System (TER) before discharge. The effluent to be discharged is received in the TER system effluent temporary tank from the Radioactive Effluent Treatment System (TEU), the Boron Recovery System (TEP), and the radioactive effluent Recovery System (SRE). In this study, the effluent from a nuclear power unit during the shutdown overhaul in March 2023 was selected for sampling and measurement. Before sampling, the TER waste liquid temporary storage tank was decontaminated to avoid radioactive mixing. Then each strand of waste liquid discharged from TEU, TEP and SRE systems into TER waste liquid temporary storage tank was sampled, and a total of two groups of waste liquid samples were collected. The sampling information is in Table 1.
TABLE 1 | Sampling information of waste liquid discharged into the TER waste liquid temporary storage tank by TEU, TEP, and SRE systems.
[image: A table displaying sample numbers and sampling times for two groups. Group 1 includes TEU samples A1TEU003 and A1TEU004 with corresponding TEP and TER samples, along with their sampling times. Group 2 includes TEU samples A2TEU001 and A2TEU002 with corresponding TEP and TER samples, and their sampling times. Dates are listed for each sample type and group.]The sample size of each sample is about 5L, and the sample container is taken from a 1L glass bottle. The inner wall of the bottle is soaked with dilute hydrochloric acid with pH = 1 in advance to reduce the adsorption loss of radionuclides. Seven kinds of radionuclides were measured, including 58Co、60Co、134Cs、137Cs、110mAg、54Mn、124Sb, etc. For particle size, five intervals were separated, respectively: d < 0.1 μm, 0.1 μm ≤ d < 0.45 μm, 0.45 μm ≤ d < 1 μm, 1 μm ≤ d < 5 μm and d ≥ 5 μm.
2.2 Equipment material
The nuclide in the sample was analyzed by using the high-purity germanium gamma spectrometer system produced by ORTEC and CANBERRA. There are 3 sets of measuring instruments (the equipment models are GEM40P4-76, GC4019 and BE3830 respectively), and the drying oven produced by Nabertherm (the model is TR240) was used for sample pretreatment. The sample particle size was separated by microporous filter membrane produced by Hangzhou Anuo Filtration Equipment Co., LTD. (Material was polypropylene, diameter was 75 mm, pore size was 0.1, 0.45, 1.0, and 5.0 μm, respectively). All the devices are used within the verification validity period and can be traced to the national standard.
2.3 Sample particle size separation and measurement methods
The colloids or clusters that may exist in different particle size ranges in the sample are separated by microporous filtration membrane combined with the extraction filtration device, as shown in Figure 2. The process is as follows:
	(1) The filter membrane is dried in a drying oven at 110°C to constant weight, and the quality of the filter membrane is numbered and recorded;
	(2) According to the filter membrane aperture from large to small in the order of separation, the filter membrane with the corresponding aperture is fixed on the G1 sand core funnel with a clamp, the sample is pumped with a constant pressure filtration device, the pressure is set at 0.7 MPa, and the filter membrane is replaced once every 500 mL sample pumped;
	(3) The beaker containing the sample is cleaned more than 3 times with distilled water, and the cleaning liquid is also pumped and filtered, and the volume of distilled water used is recorded;
	(4) After the filtration is completed, the same group of filter membranes with the same particle size are placed on the surface dish and numbered, dried at 110°C in the oven to constant weight, and four groups of filter membranes with the particle size of 0.1–0.45 μm, 0.45∼1 μm, 1–5 μm and >5 μm are obtained. After weighing the filter membranes, they are pressed into the sample box of φ75 × 10 and sealed. Put into the specified high purity germanium gamma spectrometer for measurement;
	(5) The filtrate after pumping and filtering is shaken and measured 200 mL, weighed and put into the sample bottle and put into the specified high purity germanium gamma spectrometer for measurement;
	(6) After filtration, nuclide activity concentrations with particle size distribution less than 0.1 μm can be measured in the filtrate. On microporous filter membranes with pore sizes of 0.1, 0.45, 1.0, and 5.0 μm, four sets of nuclide activity concentrations with particle sizes of 0.1–0.45 μm, 0.45–1 μm, 1–5 μm, and >5 μm can be measured, respectively;
	(7) After the separation of each sample was completed, the filtration device was cleaned with dilute hydrochloric acid solution with pH = 1, and washed with distilled water before it could be used for the separation of subsequent samples.

[image: Laboratory filtration setup with multiple glass funnels held by metal clamps on a rack. Each funnel is equipped with a blue-capped filter connected to a tube, positioned on a black surface against a white wall.]FIGURE 2 | Photo of the filter extraction unit.
2.4 Measurement and treatment of radionuclides adsorbed on the inner wall of the sample container
Although the inner wall of the sample container was treated with anti-adsorption treatment, there were still a small number of nuclides adsorbed on the inner wall of the container. In order to determine the activity of the nuclides adsorbed on the inner wall of the container, the measurement efficiency of the sample container and the corresponding nuclides was established by using LABSOCS software in this experiment, and the results were verified by using Monte-Carlo simulation and different γ spectrometer. The sample container is fully rinsed with distilled water and drained after being placed in the instrument for measurement. The common desorption methods can be roughly divided into physical methods and chemical methods, among which the common physical method is ultrasonic vibration, but the effect is not very good. In chemical methods, acid washing can be used for desorption, and its desorption effect is better than ultrasonic vibration.
After the measurement, 1L of 2 mol/L dilute nitric acid solution was added to each sample container and soaked for about 150 h. The acid solution after soaking was taken for measurement to determine the nuclide activity of the desorbed container wall. After the pH of the acid solution was adjusted to 7∼8 with sodium hydroxide, the particle size was separated and measured. The average desorption efficiency of each nuclide ranged from 80.8% to 90.2%, as shown in Figure 3.
[image: Line graph showing desorption efficiency of container walls in percentage versus different systems: TEU, TEP, SRE, TER. Various isotopes, such as Co-58, Co-60, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124, are represented by different colored lines. The graph shows fluctuating efficiencies across systems, with lines crossing multiple times.]FIGURE 3 | Desorption efficiency of each nuclide container wall in each system.
2.5 Experimental simulation
In order to observe the behavior of radioactive particles adsorbed by colloid in seawater during the migration and mixing process of liquid effluent after discharge, the laboratory used SRE waste liquid with low radioactivity to mix with TEP and TEU waste liquid respectively to simulate the mixing process of waste liquid of different systems in TER waste liquid temporary storage tank. Because the SRE waste liquid contains a certain number of surfactants, the colloidal composition inside the solution is more complex than the natural seawater, and this simulation process also simply represents the mixing process of the effluent and seawater.
A total of six groups of simulated samples were prepared in this experiment, including three groups of SRE and A1TEP001 simulated samples and three groups of SRE and A2TEU001 simulated samples, each group was composed of 500 mL SRE waste liquid and 500 mL TEP and TEU waste liquid. Each group of simulated samples was stirred for 1 min in the morning and evening every day. The simulation duration was 5, 10 and 20 days, respectively. After reaching the simulation time, use the above method to separate and measure the particle size of the sample.
3 RESULT AND DISCUSSION
3.1 Measurement results of each nuclide in the effluent sample
The measurement results of each nuclide in the initial state of the sample are shown in Table 2. The extracted information is plotted as a column chart, as shown in Figure 4. The activity concentration of radioactive nuclides in TEU and TEP wastewater is reduced to varying degrees after being filtered by a desalination device. The measurement results of all nuclides in TER and SRE wastewater, except for 60Co, are below the detection limit.
TABLE 2 | Initial activity concentrations of nuclides in each sample unit: Bq/kg.
[image: A table shows the activity concentration of various nuclides for different sample numbers. Columns list nuclides: \(^{58}\)Co, \(^{60}\)Co, \(^{134}\)Cs, \(^{137}\)Cs, \(^{110m}\)Ag, \(^{54}\)Mn, and \(^{124}\)Sb. Rows include sample numbers A1TEU003, A1TEU004, A2TEU001, A2TEU002, A1TEP001, A1TEP005, A1TEP003, A1TEP006, A1TEP002, A1TEP004, A1TER001, A1TER002, and SRE, with corresponding measurements provided. A note at the bottom clarifies that values beginning with "<" indicate detection limits.][image: Bar chart depicting nuclide activity concentration for various samples labeled A1TEU003 to SRE. Concentrations are measured in becquerels per kilogram for nuclides Co-58, Co-60, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124. Bars vary in height, with Co-58 and Co-60 showing notably higher concentrations. Legend on the top right indicates color coding for each sample.]FIGURE 4 | Histogram of initial activity concentration of radionuclides in each sample.
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3.2 Measurement results of activity concentration distribution of various nuclides with different particle sizes in each sample
The activity concentration distribution results of various nuclides with different particle sizes in each sample are shown in Table 3, and plotted as a column chart as shown in Figures 5–8. Except for the SRE system, the measurement results of all other systems with d ≥ 0.45 μm are less than the detection limit. In order to better express the relationship between the main particle size and activity concentration, samples below the detection value in the sample results are omitted from the bar graph.
TABLE 3 | Activity concentrations of different nuclides with different particle sizes in each system.
[image: Table showing size distribution and nuclide activity concentration for various samples. The table lists eight columns: sample number, size distribution (in micrometers), and concentrations of several isotopes, each in becquerels per kilogram. Specific measurements are provided for some isotopes in given size ranges, while slashes indicate results below the detection limit. The note specifies that slashes indicate results below the detection limit.][image: Bar chart showing the nuclide activity concentration (Bq/kg) for different species of nuclides, including Co-58, Co-60, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124. Bars are color-coded by particle size and sample ID, with Co-60 showing the highest concentration, especially for the 0.1 μm particle size.]FIGURE 5 | Column diagram of activity concentration of different particle sizes of each nuclide.
[image: Bar chart showing nuclide activity concentration (Bq/kg) for different species: Co-58, Co-60, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124. Co-60 shows the highest concentration. Different colored bars represent particle size distributions: d<0.1µm, 0.1µm<d<0.45µm, and d<0.4µm for various sample IDs (A1TEP001 to A1TEP004).]FIGURE 6 | Histogram of activity concentration of different particle sizes of each nuclide in TEU.
[image: Bar chart showing nuclide activity concentrations for two samples, AITER001 and AITER002. Both have concentrations of Co-58 and Co-60, with AITER002 (green) having significantly higher values. Other nuclides show negligible activity.]FIGURE 7 | Histogram of activity concentration of different particle sizes of each nuclide in TER.
[image: Bar chart showing the nuclide activity concentration in becquerels per kilogram for different species of nuclides. Co-60 has the highest concentration, with two bars representing particle sizes: less than 0.1 micrometers (orange) and greater than 5 micrometers (green). Other nuclides include Co-58, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124, with varying concentrations.]FIGURE 8 | Histogram of activity concentration of different particle sizes of each nuclide in SRE.
According to Table 3, The proportion of nuclide activity concentrations with particle size distribution less than 0.1 μm in sample A1TEU003 is:
[image: The equation shows \( p = \frac{\text{Particle size distribution less than 0.1}\mu\text{m}}{\text{The total activity concentration of all detectable nuclides in the sample}} = 0.95 \).]
The calculation process for other samples is the same as above, and the calculation results are as follows: pA1TEU004 = 0.956, pA2TEU001 = 0.971, pA1TEP001 = 0.978, pA1TEP005 = 1 pA1TEP003 = 1, pA1TEP006 = 1, pA1TEP002 = 1, pA1TEP004 = 1, pA1TER001 = 1, pA1TER002 = 1, pSRE = 0.387. Obviously, for most samples, the proportion of nuclide activity concentrations with particle size distribution less than 0.1 μm is over 95%.
The reason for the distribution of nuclides within the d ≥ 5.0 μm in the SRE system is that the surfactant in the liquid produces a small amount of flocculent precipitation, which adsorbs a small number of nuclides. The flocculent precipitation at the bottom of the SRE system sample is shown in Figure 9.
[image: A clear plastic bottle with a blue cap contains a transparent liquid with a pinkish tint. It has a label displaying handwritten notes including sample name, sample date, and other details.]FIGURE 9 | Flocculent precipitation at the bottom of the SRE system sample.
In addition, all nuclides in other systems are concentrated within the particle size range of d < 0.45 μm, mainly within the particle size range of d < 0.1 μm. It is worth noting that the sum of activity concentrations for each particle size is not the same as the activity concentration in the initial state of the sample, and each nuclide has a certain loss, possibly due to:
	(1) There are a small amount of radioactive nuclides present in the interval d > 0.45 μm, but the activity concentration is lower than the judgment limit measured by the instrument;
	(2) During the separation and measurement process, a small number of nuclides are adsorbed on the container wall, causing losses.

3.3 Simulate the measurement results of each nuclide in the sample
The activity concentration distribution of various nuclides with different particle sizes in the simulated sample is shown in Table 4, and the column plots are shown in Figure 10 and Figure 11. With the extension of mixing time, the simulated samples of TEU and TEP showed different degrees of radioactive enrichment in the range of d ≥ 5.0 μm, indicating that the flocculent precipitates and colloids in the SRE waste liquid have a certain degree of enrichment effect on Co and Mn. However, the overall activity of radioactive nuclides in the sample shows a decreasing trend, mainly due to a certain amount of wall adsorption during the mixed enrichment process, resulting in a small amount of nuclide loss.
TABLE 4 | Activity concentrations of different nuclides with different particle sizes in simulated samples.
[image: Table displaying nuclide activity concentration (Bq/kg) for different enrichment durations and size distributions. Categories include \(^{58}\text{Co}\), \(^{60}\text{Co}\), \(^{134}\text{Cs}\), \(^{137}\text{Cs}\), \(^{110m}\text{Ag}\), \(^{54}\text{Mn}\), and \(^{124}\text{Sb}\). Measured in TEU or TEP with durations of 5, 10, or 20 days, and various size ranges. Slash marks indicate values below detection limits.][image: Bar chart showing nuclide activity concentration in becquerels per kilogram for various species of nuclides, including Co-58, Co-60, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124. The chart compares different particle sizes and exposure durations, color-coded in the legend. Co-60 shows the highest concentration across most conditions.]FIGURE 10 | Histogram of activity concentration of TEU samples at different enrichment times with different particle sizes of nuclides.
[image: Bar chart showing nuclide activity concentrations in becquerels per kilogram for species of nuclides: Co-58, Co-60, Cs-134, Cs-137, Ag-110m, Mn-54, and Sb-124. Concentrations are measured across different particle sizes and time durations, detailed in the legend. Co-60 has the highest activity concentration, particularly in the smallest particle size over five days.]FIGURE 11 | Histogram of activity concentration of each nuclide with different particle sizes at different enrichment times of TEP samples.
4 CONCLUSION
The radioactive nuclides in the effluent samples mostly exist in the liquid with a particle size of d < 0.1 μm, and are almost not distributed in the form of d > 0.45 μm particle size. After the sample is filtered by a desalination device, the radioactive activity is greatly reduced, and the filtering effect of the desalination device on radioactive nuclides cannot be ignored.
The flocculent precipitation in the waste liquid of the SRE system has a certain contribution to the enrichment of nuclides. With the extension of time, its enrichment of transition elements such as cobalt and manganese is particularly significant, causing nuclides to be distributed again in larger particle size forms in the liquid. It can be inferred that after the liquid effluent is discharged into the receiving water body, large particle sized substances such as colloids in the seawater have a certain adsorption effect on radioactive nuclides, which will lead to their aggregation effect again.
Although the liquid effluents from pressurized water reactor nuclear power plants are mainly dispersed in small particle sizes in the TEP and TEU systems, after they merge with SRE liquids containing complex colloids and particles in the TER tank and are stirred by external forces, transition metals such as cobalt and manganese will undergo a small amount of aggregation effect again within a certain period of time. With the extension of time and environmental conditions, after the effluent is discharged into the sea, A small amount of radioactive nuclides will inevitably accumulate in seawater, but the ocean is an extremely complex medium, and nuclides will undergo complex particle size changes as seawater migrates and exchanges with sediment and marine organisms.
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The intricate internal structure of fuel rods results in a non-uniform mass distribution, making it imperative to employ analytical methods for accurate assessment. The study utilizes Euler beam theory to derive the transverse vibration equation for beams with varying mass distribution. The approach involves transforming the non-uniform mass beam into a multi-segment beam with concentrated mass points. Modal function relationships between adjacent uniform segments are established based on continuous conditions at connection points. This transformation leads to the conversion of the variable coefficient differential equation into a nonlinear matrix equation. The Newton-Raphson method is then applied to calculate the characteristic equation and mode shapes, essential for determining natural frequencies. To validate precision, the results obtained are compared with those derived from the finite element method. Furthermore, the developed method is employed to assess the impact of gas plenum location and length on the natural frequency of fuel rods. The proposed methodology serves as a rapid design tool, particularly beneficial during the design phase of fuel rods with non-uniform mass distribution, aiding in configuring structural aspects effectively.
Keywords: lead-based fast reactor, fuel rod, free vibration, non-uniform mass, Newton-Raphson iteration method

1 INTRODUCTION
Small modular reactor (SMR) has aroused extensive attention because of the low-cost and high fitness (Hussein, 2020). Among various Gen IV reactors, the Lead-based Fast Reactor (LFR) is known for its favorable neutron properties, superior heat transfer capability (Bandini et al., 2011), excellent fuel breeding performance, and inherent safety. These characteristics make LFR particularly promising for miniaturized applications (Takahashi and Sekimoto, 2007; OECD Nuclear Energy Agency, 2014). Recent years have seen the proposal of various Lead-based Fast Reactor (LFR) concepts worldwide. These include the SVBR-100 (Grape et al., 2014) and BREST-OD-300 projects (Zrodnikov et al., 2011) in Russia, the MYRRHA project (Orlov et al., 2005) in Belgium, the ELFR and ALFRED projects (Hamid et al., 2001) in the European Union, and the CLEAR-I project in China (Roberto et al., 2014; Wang et al., 2015; Wu, 2016a; Wu, 2016b; Wu et al., 2016).
The fuel rod is a crucial component in a nuclear reactor, primarily serving to contain nuclear fuel, regulate neutron flux, induce nuclear fission reactions, and generate heat energy. Within fuel rods, Fission Gases (FG) are continuously generated during burn-up, escaping to the fuel-to-cladding gap and eventually reaching the gas plenum. The release of FG increases the internal pressure, potentially accelerating the degradation of the mechanical properties of the cladding that surrounds the fuel. The gas plenum serves as a crucial component in the fuel rod design, intended to mitigate pressure changes and minimize their impact. The mass of the gas plenum section is significantly lighter than the other parts of the fuel rod, resulting in an uneven axial distribution of mass in the fuel rod. The fuel rod is a typical beam model with variable cross-sectional parameters.
Numerous scholars have extensively delved into theoretical and numerical investigations concerning beams with arbitrary variable cross-sectional parameters. Early researchers predominantly explored diverse methodologies to address the natural frequencies of specific configurations of such beams. Heidebrecht (Ramesh and Rao, 2013), for instance, extended the vibration equation of variable cross-sectional parameters beams into a Fourier series, thereby deriving approximate natural frequencies and modes for simply supported instances. Bailey (Bailey, 1978), by integrating the Hamiltonian principle with numerical methods, resolved the frequency equation and determined the natural frequencies of cantilevered variable cross-sectional parameters beams. Gupta (Gupta, 1985) employed the finite element method to obtain numerical solutions for the natural frequencies and modes of circular beams with linearly varying diameters. Olver (Olver, 1974), utilizing the WKB (Wentzel, Kramers, Brillouin (Avdoshka and Mikhasev, 2001)) method, addressed the natural frequencies and modes of free vibrations in variable cross-sectional parameters Euler beams. Given that the WKB method fundamentally relies on a small parameter, introducing a parameter representing the reciprocal of the natural frequency, its limitations become apparent when dealing with beams of low natural frequencies, leading to inaccuracies in frequency solutions. Consequently, the WKB method is best suited for variable cross-sectional parameters Euler beams characterized by substantial stiffness; however, for beams with low stiffness, significant errors arise in the computations. Moreover, numerous studies have scrutinized circular cone beams with linearly varying cross-sectional radii, employing methodologies such as orthogonal analysis (Spigler and Vianello, 2007), Bessel equations (Caruntu, 1996; Auciello and Nolè, 1998), infinite series (Rosa and Auciello, 1996), Frobenius power exponent method (Ö and Kaya, 2006), and Differential Transform Method (DTM) (BanerjeeSuJackson, 2006).
Upon analyzing the current research landscape regarding the calculation of vibration characteristics in beams with variable cross-sectional parameters, it becomes evident that diverse methods are employed. The utilization of these mathematical approaches for calculating the vibration characteristics of such beams entails a cumbersome and intricate solving process, making it less conducive to engineering applications. Additionally, the establishment and computation process of finite element models require a considerable amount of time.
This paper investigates the calculation method for the transverse vibration characteristics of Euler beams with non-uniform mass. Based on Euler beam theory, non-uniform mass is equivalently represented as a uniform mass beam with multiple concentrated mass points. The transverse vibration equations for beams with concentrated masses are derived, and the resulting equations are validated through comparisons with results obtained using the finite element software ANSYS in various instances. The accuracy of the method is confirmed through these comparisons. Additionally, the study explores the impact of mass distribution on the natural frequencies of fuel rods.
2 GENERAL THEORETICAL FORMULATIONS FOR NON-UNIFORM BEAM
Assuming the length of the beam is L, the mass per unit length is ρ, and the bending stiffness is a constant EI. Consider the beam as a Bernoulli-Euler beam. The Euler-Bernoulli beam theory satisfies some fundamental assumptions, including a length-to-thickness ratio greater than 10, neglecting shear deformation of the beam, as well as ignoring the influence of the rotational inertia of the cross-section about the neutral axis.
The bending equation of the beam can be used to describe the behavior of lateral bending. For free vibration, neglecting external loads, the bending equation is given by Eq. 1.
[image: Partial differential equation describing beam deflection is shown:   \(\frac{\partial^2 y}{\partial x^2} \left(EI \frac{\partial^2 y(x,t)}{\partial x^2}\right) + \rho \frac{\partial^2 y(x,t)}{\partial t^2} = 0.\)]
Where y(x, t) represents the lateral displacement at point x of the beam at time t.
The free vibration of the curved beam is a fourth-order partial differential equation. To solve the differential equation, the separation variable method can be employed resulting in Eq. 2:
[image: The image shows a mathematical equation: \( y(x, y) = Y(x) T(t) \) labeled as equation (2).]
In Eq. 2, [image: It seems there is no image uploaded. Please try uploading the image again, and I can help generate the alt text for it.] is a sinusoidal function, which can be expressed as given in Eq. 3.
[image: Mathematical expression showing T(t) equals sine of open parenthesis omega t minus phi close parenthesis, labeled as equation 3.]
In Eq. 3, ω represents the natural frequency of the system. ω signifies the natural circular frequency of lateral vibrations, and φ represents the phase angle determined by the initial conditions of the vibration.
Y(x) is the mode function of the transverse vibration of the beam, which can be expressed in Eq. 4.
[image: Y(x) equals A subscript one times hyperbolic sine of lambda x plus A subscript two times cosine of lambda x plus A subscript three times hyperbolic sine of lambda x plus A subscript four times hyperbolic cosine of lambda x, equation four.]
In Eq. 5, λ is the eigenvalue, typically represented as a solution to the modal equation and can be obtained through Eq. 5.
[image: Equation labeled as 5 shows \( \lambda^4 = \frac{\rho}{EI} \omega^2 \), where \(\lambda^4\) is a function of \(\rho\), \(E\), \(I\), and \(\omega^2\).]
[image: Mathematical notation of capital letter "A" with a subscript one.], [image: Please upload the image or provide a URL so I can help you generate accurate alt text.], [image: Stylized letter "A" with a subscript "3".], and [image: Mathematical expression showing the letter "A" with the subscript "4".] are undetermined coefficients determined by the boundary conditions at the left and right ends of the beam. For an equal cross-section beam under specified boundary conditions. The analytical solution of its mode functions can be obtained from Eq. 4, and the characteristic equation for calculating its natural frequencies can be derived from Eq. 4.
The fuel rod contains internal fillers with non-uniform mass distribution, making it impractical to calculate using the above-mentioned methods. By simplifying the internal fillers into concentrated mass points, the fuel rod is then modeled as a beam with concentrated mass points.
2.1 Theory formula for beam with single concentrated mass point
The beam is divided into two parts at a concentrated mass point, as shown in Figure 1. The lengths of the two beam segments are denoted as a and b. Both beams have consistent density ρ, bending stiffness EI, and a concentrated mass M.
[image: Diagram showing a horizontal line along the x-axis from O to L, with a point M marked between segments a and b. A vertical y-axis intersects at O.]FIGURE 1 | Single concentrated mass point model.
Assume that the two beams have different vibration mode functions, denoted as Y1x) and Y2x), as shown in Eq. 6 and Eq. 7).
[image: Mathematical equation: \( Y_1(x) = C_1 \cosh(\lambda x) + C_2 \sinh(\lambda x) + C_3 \cos(\lambda x) + C_4 \sin(\lambda x) \). There's a reference number (6) at the end.]
[image: The equation shown is \( Y_1(x) = D_1 \cosh \lambda x + D_2 \sinh \lambda x + D_3 \cos \lambda x + D_4 \sin \lambda x \), labeled as equation \( 7 \).]
Each mode function involves four parameters to be determined. The presence of concentrated mass points influences the boundary conditions of the two equations. Taking a cantilever beam as an example (as shown in Figure 2), the boundary conditions are expressed as Eqs 8–15:
	1) At the clamped support, both the deflection and the rotation of the beam are zero. The boundary conditions for the fixed end are written as Eq. 8 and Eq. 9:

[image: I can't see or analyze images directly. Please upload the image or provide a URL for me to help with the alt text.]
[image: Rotation: \( \dot{Y}_1(0) = 0 \). Equation (9).]
	2) At the concentrated mass point, both beams exhibit the same deflection, rotation, bending moment. The sum of the generated shear forces is zero. The boundary conditions of the concentrated mass point are written as Eqs 10–13:

[image: The text reads "Deflection: \( Y_1(a) - Y_1(0) = 0 \)".]
[image: Equation showing rotation condition with \( Y_l'(a) - Y_l'(0) = 0 \), labeled as equation (11).]
[image: Equation showing the bending moment condition: Y subscript 1 prime of a minus Y subscript 2 prime of zero equals zero, followed by the number twelve in parentheses.]
[image: Equation for shear force: \( EI \left[ Y_1''(a) - Y_2''(0) \right] - MY_1'(a) = 0 \).]
	3) At the free end, both the bending moment and shear force of the beam are zero. The boundary conditions of the free end are written as Eq. 14, Eq. 15:

[image: Mathematical expression stating that the bending moment at point \( b \) is zero, represented as \( Y^{\prime}_{1}(b) = 0 \), labeled as equation 14.]
[image: Mathematical expression stating that the shear force at point \( b \) is zero, represented as \( Y_1^{''}(b) = 0 \), equation numbered as (15).]
[image: Diagram of a cantilever beam showing a clamped supported end at point A and a free end labeled B. The beam's length is divided into sections, a and b, along the x-axis, with a red point marked on the beam. The y-axis is perpendicular to the beam.]FIGURE 2 | Cantilever beam model with a single concentrated mass point.
Bring the boundary conditions into Eq. 6 and Eq. 7 to get Eq. 16, and the final coefficient matrix is given as shown in Eq. 17.
[image: Mathematical equations relating coefficients \(C_1\) to \(C_4\), and \(D_1\) to \(D_4\), with parameters involving trigonometric and hyperbolic functions. The equations involve variables \(\lambda\), \(\alpha\), \(\beta\), and \(M\). Equation numbers range up to (16).]
[image: Matrix \( A \) is a \( 7 \times 10 \) matrix composed of mostly zeros and symbols, including trigonometric hyperbolic functions like \(\cosh\), \(\sinh\), as well as terms including \(\lambda a\), \(EI \lambda^2\), and \(-M\lambda^3\sinh\), among others.]
The coefficient matrix Eq. (17) in row-column form must be zero, resulting in the characteristic equation of a simply supported beam with non-uniform mass.
[image: It seems there may have been an error as no image was uploaded. Please upload the image you want me to describe, or provide a link to it.]
Organize the determinant and get Eq. 19
[image: Mathematical equation showing \( \frac{M}{4EI} = \frac{\lambda (1 + \cosh \lambda \cos \lambda)}{(\sinh \lambda a + \sin \lambda a)((\sinh \lambda l - \cosh \lambda)(\cos \lambda b + \sin \lambda b) + (\sin \lambda l - \cos \lambda l)(\cosh \lambda b + \sinh \lambda b))} \). Equation number 19.]
The same method can be used to derive the eigenvalue matrix equations for simply supported beams and clamped supported beams with a concentrated mass point.
In the simply supported beam model depicted in Figure 3, the boundary conditions at the clamped end and the positions of the concentrated mass point are consistent with those of the cantilever beam. The distinction lies in the boundary conditions at the simply supported end, where deflection and bending moment are both zero, as illustrated in Eq. 20 and 21.
[image: Mathematical expression showing "Deflection: Y sub two of b equals zero".]
[image: Equation displaying "Bending moment: Y subscript 1 prime (b) equals zero", followed by equation number (21) in parentheses.]
[image: A diagram of a beam supported at two points. The left end is clamped and fixed against a vertical surface, labeled "Clamped supported," and the right end is resting on a triangular support, labeled "Simply supported." The coordinate system indicates x and y axes.]FIGURE 3 | Simply supported beam model with a single concentrated mass point.
By introducing the boundary conditions into Eq. 6 and 7 is obtained, and the final coefficient matrix is given as shown in Eq. 22.
[image: A matrix A with six rows and six columns. The elements involve variables, trigonometric functions, and constants: hyperbolic sine and cosine functions, trigonometric sine and cosine functions, and multipliers like λ squared, E I λ cubed, minus M λ squared, and minus one. The matrix includes structural parameters such as E I, M, λ, and k.]
The coefficient matrix Eq. 22 in row-column form must be zero, resulting in the characteristic equation of a simply supported beam with non-uniform mass.
[image: It seems you intended to upload an image but provided a mathematical expression instead. Please upload the image or give a URL, and I can help create the alt text for you.]
In the clamped supported beam model depicted in Figure 4, the boundary conditions at the clamped end and the positions of the concentrated mass point are consistent with those of the cantilever beam. The distinction lies in the boundary conditions at the another clamped supported end. These conditions entail the deflection of 0 and the Rotation of 0, as illustrated in Eq. 24 and 25.
[image: Mathematical expression showing "Deflection: Y subscript 2 (b) equals 0" with the equation number (24) on the right.]
[image: Equation indicating a bending moment, represented as Y subscript 1 prime of b equals 0, followed by the reference number 25.]
[image: Diagram of a beam supported at both ends with clamps, illustrating a clamped beam scenario. The beam is labeled with points O, A, and B, and includes a coordinate axis with x and y directions.]FIGURE 4 | Clamped supported beam model with a single concentrated mass point.
By introducing the boundary conditions into Eq. 6 and 7 is obtained, and the final coefficient matrix is given as shown in Eq. 26.
[image: Matrix labeled A with dimensions 7x7. The elements include trigonometric functions such as hyperbolic cosine and sine with variables \( a \), \( b \), and \( c \). Additional elements contain expressions \( EI \), \( Mx^2 \), and \( EI^2 \). The matrix shows patterns of zeros in its upper and lower entries, with non-zero elements mainly in the middle rows.]
The coefficient matrix Eq. 26 in row-column form must be zero, resulting in the characteristic equation of a simply supported beam with non-uniform mass.
[image: It seems like you've included some LaTeX code directly in your message. If there is an image you want me to describe, please upload it or provide a URL.]
The characteristic Eq. 19 and (23 and Eq. 27 is a nonlinear function of the λ. The Newton-Raphson iteration method can be employed to solve for λ.
Firstly, while ensuring that the total mass and geometric dimensions remain unchanged, the non-uniform mass Bernoulli-Euler beam is equivalently transformed into a uniform mass Bernoulli-Euler beam. Subsequently, the natural frequency of the uniform mass Bernoulli-Euler beam is calculated to obtain an analytical solution. This analytical solution serves as the initial approximate solution (x0) to initiate the iterative process.
Updating the initial guess using the Newton-Raphson iteration formula Eq. 28.
[image: The image shows the iterative formula for Newton's method as: \( x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} \), labeled equation (28).]
Check whether the new guessed value satisfies the predetermined convergence criteria. If satisfied, consider the root of the equation found; if not, go back to the previous step and repeat the iteration process.
2.2 Theoretical formulations for beam with multiple centralized mass points
The internal filling of the fuel element is complex, and the fuel rod is divided into multiple sections. As shown in Figure 5, the beam model is segmented into N sections with concentrated mass points as endpoints. It is simplified into a Bernoulli-Euler beam with N-1 concentrated mass points, each with a concentrated mass value of [image: The image depicts a mathematical expression with the lowercase letter "m" followed by a subscript "a".].
[image: Diagram illustrating masses \( m_1, m_2, \ldots, m_N \) arranged along the x-axis as discrete units. Each mass is represented by a grey box connected in sequence. The y-axis is perpendicular to the x-axis at the origin.]FIGURE 5 | Skech of Bernoulli–Euler cantilever beam.
As shown in Eq. (29), it is simplified to the free vibration equation of a Bernoulli-Euler beam with N-1 concentrated masses [image: Italic lowercase letter "m" with subscript "a".].
[image: A differential equation labeled equation twenty-nine. It involves the second partial derivative with respect to x of a product of EI and the fourth partial derivative of y with respect to x and t, plus a summation from n equals one to N minus one of m sub n times the delta function and the second partial derivative of y with respect to t, plus rho A times the fourth partial derivative of y with respect to t. The equation equals zero.]
where, EI is the bending stiffness of the beam section; A is the beam section area; [image: Please upload the image or provide the URL so I can create the alt text for you.] is density; [image: It seems there's no image attached. Please try uploading the image again or provide a URL if it's hosted online.] is the Dirac function; [image: Mathematical expression showing \( x \) with subscript \( a \) and superscript \( n \).] is the horizontal coordinate of a concentrated mass point;
The free vibration of the curved beam is a fourth-order partial differential equation. To solve the differential equation, the separation variable method can be employed resulting in Eq. (30):
[image: The equation depicts a function \( y(x, t) = \hat{\varphi}(x) T(t) \), suggesting a relationship between variables \( x \) and \( t \) expressed through a product of \(\hat{\varphi}(x)\), a function of position, and \( T(t) \), a function of time, referenced as equation (30).]
In the equation, [image: The image shows the mathematical expression "phi bar of x," where a bar is placed over the Greek letter phi and is followed by the variable x in parentheses.] represents the shape of the vibration; [image: Mathematical expression showing the letter T with an overline, followed by the function of time, t, in parentheses.] represents the amplitude that varies with time. By substituting Eqs 16 into Eq. 15 and rearranging, Eq. 31 is obtained:
[image: Equation showing: \( EI \frac{\partial^4 \phi(x)}{\partial x^4} + \lambda_1 \sum_{n=1}^{N-1} m_n \delta(x-x^n_t) \bar{\phi}(x) + \lambda_0 \bar{\rho} A \bar{\phi}(x) = 0 \).]
In this equation, [image: Mathematical expression showing lambda bar equals omega squared.] represents the eigenvalues of the Bernoulli-Euler beam with concentrated mass. Obtaining an analytical solution for the variable coefficient differential equation is relatively challenging.
Consider the Euler beam with concentrated mass as a new system obtained by adding concentrated mass to a uniform mass Euler beam through system modification. The primary mode functions and eigenvalues of this new system can be obtained by perturbation calculations using the mode functions of a uniform mass beam.
[image: Equation showing \(\bar{\varphi} (x) = \varphi_1 (x) + \Delta \varphi_1 (x)\), followed by the number thirty-two in parentheses.]
[image: The mathematical equation displays \(\bar{\lambda}_i = \lambda_i + \Delta \lambda_i\), labeled as equation thirty-three.]
[image: A mathematical expression showing phi sub i of x with a bar above the phi symbol, indicating a mean or average.] and [image: Mathematical notation depicting a variable labeled as lambda with a bar on top, subscripted by the letter "i".] represent the i order mode function and eigenvalue of the new system beam with concentrated mass; [image: Mathematical expression showing phi sub i of x, written as φᵢ(x).] and [image: Greek letter lambda subscript i, often used in mathematical expressions to denote eigenvalues or a specific component in a series.] represent the i order mode function and eigenvalue of the uniform mass beam; [image: The image contains a mathematical symbol representing the change in wavelength, denoted by a delta symbol followed by lambda subscript i (Δλᵢ).] is the ith order eigenvalue correction of the new system with a concentrated mass point relative to the uniform mass beam. [image: Delta phi sub i of x in parentheses.] is the correction of the primary mode function of the new system with a concentrated mass point relative to the uniform mass beam, and it is a linear combination of the other retained primary mode functions of the uniform mass beams, excluding [image: Mathematical expression with phi subscript i of x, in parentheses.].
[image: Mathematical expression showing Delta phi sub p of x equals the sum from mu not equal to i and j of phi sub gamma of x times q sub gamma, with equation number thirty-four in parentheses.]
In the equation, [image: A mathematical formula with the letter "q" as the base and "j" as the subscript.] are coefficients of the modal linear combination. As long as [image: Greek letter delta followed by the Greek letter lambda subscript i in italic font.] and is [image: Sure, please upload the image you want me to describe.] obtained, there are η unknowns, and by using Eqs 32 and 33, the i order main modal function [image: Formula showing a function with a notation: phi subscript i of x, with a bar over phi.] and eigenvalue [image: Mathematical expression showing a variable \(\bar{\lambda}_{i}\), with a bar over lambda and subscript i.] of the beam with concentrated masses can be obtained. According to the theory of dynamics, the equivalent beam in Eq. (34) has an infinite number of main modes. However, in practical calculations, taking a finite number of low-order modes for approximation in perturbation solution can achieve results with sufficient accuracy.
Substituting Eqs 32 and 33 into Eq. 29, and simplifying using Eq. 31, yields the expression for Eq. 35:
[image: Partial differential equation with variables and parameters: EI ∂^4(Δϕ(x))/∂x^4 = [λ_ρ ρ A Δϕ_q(x) + Δλ_ρ ρ A ϕ_q(x) + Δλ_ρ A ϕ_ρ(x)] - Σ_(n = 1)^N-1 m_n δ(x-x_a^n) × [λ_a ϕ_a(x) + λ_a Δϕ_q(x) + Δλ_a ϕ_q(x)] = 0. Equation number 35.]
Substitute Eq. 34 into Eq. 35, then multiply both sides by [image: The mathematical notation \(\varphi_k(x)\) is depicted, representing the function \(\varphi\) indexed by \(k\) and dependent on the variable \(x\).] (k = 1,2, … , η), integrate along the length L of the beam, and simplify using the modal orthogonality of the equivalent beam, resulting in Eq. (36):
[image: Mathematical equation expressed in terms of summations and variables. The equation includes lambda subscript l, m subscript k, delta k, and other terms with indices and summations. Equation ends with minus lambda subscript l delta m subscript kl. Numbered as equation thirty-six.]
Where
[image: The equation shows \( m_k = \int_{0}^{l} \rho A \phi_k^2(x) \, dx \), labeled as equation 37.]
[image: The image shows a mathematical equation: the integral from zero to one of the sum from a equals one to N minus one of m sub a delta of x minus x super a phi sub k of x phi of x with respect to dx equals zero. This is labeled as equation thirty-eight.]
Eq. 37 and Eq. 38 can be directly obtained using numerical integration. Letting k = 1, 2, … , η in Eq. 36 yields η nonlinear algebraic equations involving unknowns [image: Delta lambda sub i represents a change in wavelength indexed by i, where delta is a symbol for change, lambda is the Greek letter for wavelength, and i indicates a specific index.]​ and [image: Please upload the image you'd like me to describe.]​. After organization and simplification, these equations can be expressed in matrix form as Eq. (39):
[image: Mathematical equation representing a linear combination of matrices and vectors: [A plus lambda subscript 1 B plus lambda subscript 2 C plus g subscript l q] times q equals p.]
Where
[image: Matrix representation of \( A \) showing a block diagonal form. Each block on the diagonal is represented by \( m_i(\lambda - \lambda_i) \), surrounded by zeros and ellipses indicating continuation. The dimensions are \( n \times n \).]
[image: Matrix B is shown as a p by q matrix with elements denoted by delta m subscript i, j. Elements are represented in a typical matrix structure with rows and columns of placeholders, ranging from delta m one, one to delta m p, q.]
[image: Matrix equation labeled (42a) defining matrix C. The matrix is n by n with elements including δm₁₁, δm₂₁, and m₁ arranged diagonally and off-diagonally, following a pattern of zeros and δm variables.]
[image: Matrix equation with vector \( p \) equals a column matrix: \([- \lambda_1 \delta m_{1t}, - \lambda_1 \delta m_{2t}, \ldots, - \lambda_1 \delta m_{pt}]\) transposed, dimension \( p \times 1 \). Labeled as equation (43a).]
[image: Equation showing \( q = [q_1 \, q_2 \, \cdots \, q_n]_{1 \times n} \) labeled as (44a).]
Where the i of [image: Please upload the image so I can help create the appropriate alt text for you.] is [image: \( q_i = \Delta \lambda_i / \lambda_i \)].This transforms the variable coefficient differential Eq. (29) into a nonlinear matrix Eq. 39. [image: Greek letter lambda with a subscript i.] represents the eigenvalues of the free vibration of a uniform mass beam. The study of the free vibration characteristics of uniform mass beams under different boundary conditions is well-established, with standard analytical solutions available.
The nonlinear matrix Eq. (39) can be solved using the Newton-Raphson method or intelligent algorithms. The Newton-Raphson method is highly dependent on the choice of initial values. Providing reasonable initial values can not only reduce the number of iterations but also achieve more accurate convergence results. Given the meaning of the various combination coefficients within the vector [image: It seems like there is no image uploaded. Please try uploading the image again or provide a URL. You can also add a caption for additional context.], initial values for [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL to the image. Optionally, you can add a caption for additional context.] are specified.
[image: Please upload the image or provide the URL so I can help create the alt text for it.]
The termination criteria for iteration can be adopted as follows:
[image: Equation showing the condition for convergence: the absolute value of the difference between \( q_i^{(c)} \) and \( q_i^{(c-1)} \) divided by the absolute value of \( q_i^{(c)} \) is less than or equal to \( \xi \), labeled as equation (43b).]
In Eq. 43b: the superscript [image: Please upload the image or provide a link to it so that I can create the appropriate alt text.] denotes the number of equation iterations; [image: Greek lowercase letter xi (ξ), resembling a squiggly horizontal line with three distinct strokes.] is the convergence error, [image: The mathematical expression shows the Greek letter xi, ξ, is equal to one times ten to the power of negative eight.]. After obtaining the unknown vector [image: Please upload the image or provide a URL for me to generate the alt text.], substitute it into Eq. 32 and 33 to obtain the i natural frequency and mode shape of the beam with concentrated masses.
3 BENCHMARK VERIFICATION OF THE PROPOSED ANALYTICAL METHOD
3.1 Single concentrated mass point
By comparing with the natural frequency of the non-uniform mass fuel rod obtained through finite element analysis (FEA) in ANSYS, the correctness of the rapid method is verified.
The finite element model is modeled using beam3 elements. The Beam3 element is a uniaxial element capable of withstanding tension, compression, and bending. Each node of this element has three degrees of freedom: linear displacements along the x and y directions, as well as angular displacement about the Z-axis.
As shown in Figure 6, the finite element model is divided into 17 elements, featuring a concentrated mass point with a mass of M. The lengths of the beams on either side of the concentrated mass are a and b. The key parameters governing the behavior of the system are detailed in Table 1, providing essential insights into the structural dynamics.
[image: A geometric diagram showing a line segment divided into two parts, labeled \( a \) and \( b \), with a midpoint \( M \) marked in red. The upper line is dotted and the lower line is solid.]FIGURE 6 | Skech of Bernoulli–Euler cantilever beam.
TABLE 1 | Main parameters of cantilever beam.
[image: Table showing various physical properties with their values: Length (L) is 2 meters, Moment of Inertia (I) is one-twelfth times ten to the power of negative eight meters to the fourth, Section (S) is 0.0001 square meters, Density (ρ) is 7,850 kilograms per cubic meter, Young's Modulus (E) is two times ten to the power of eleven Pascals, and Mass (m) is 1.57 kilograms.]There is a concentrated mass in the middle of the beam (x = 1) with a concentrated mass of 1.57 kg. Under this condition, the relevant parameters in Eq. (19) can be expressed as a = 1, b = 1, M = 1.57kg, EI = 1/6 × 103, and solved Eq. 19 to obtain λn. The calculation results were shown in Table 2.
TABLE 2 | The value of the first five characteristic roots λ
[image: A table with two rows and six columns. The first row is labeled "n" with values from one to five. The second row is labeled "Λn" with values: 0.69, 1.72, 4.09, 4.94, and 7.37.]The natural frequency is calculated by Eq.44b and 45.
[image: Equation displaying \(\omega_n = \lambda_n^2 \sqrt{\frac{EI}{\rho S l^4}}\), labeled as equation \(44b\).]
[image: The formula displays the natural frequency \( f_n = \frac{\lambda_n^2}{2\pi} \sqrt{\frac{EI}{\rho S l^4}} \), labeled as equation \( (45) \).]
The first four natural frequencies were determined using Eq. 44b and 44and the results are presented in Table 3. The theoretical calculations closely align with the simulation results, confirming the accuracy of the formula.
TABLE 3 | First 5 natural frequency of beam with single concentrated mass.
[image: Comparison table showing numerical and theoretical calculations in Hertz for four values of n, with corresponding errors. For n=1: numerical 1.08, theoretical 1.10, error 1.9%; n=2: numerical 6.74, theoretical 6.86, error 1.7%; n=3: numerical 38.18, theoretical 38.79, error 1.5%; n=4: numerical 55.780, theoretical 56.59, error 1.4%.]To evaluate the sensitivity of the formula to variations in the weight and position of the concentrated mass point, an additional analysis was performed. This involved altering both the location and weight of the concentrated mass point, and the corresponding results are provided in Table 4.
TABLE 4 | Natural frequency of single-mass cantilever beam with different mass position.
[image: Table comparing frequencies and error percentages for concentrated masses of one point five seven kilograms and fifteen point seven kilograms at various positions. Methods include FEA and analytical or theoretical calculations. Frequencies and errors are detailed for four corresponding values.]Eq. 19 is applicable to a cantilever Bernoulli–Euler beam with a single concentrated mass of varying weight. Across different parameter settings, the deviation between the theoretical formula and simulation results is consistently below 3%.
3.2 Multiple concentrated mass points
The parameters of the beam model remain consistent with Section 3.1. Three concentrated mass points are introduced onto the beam, dividing the beam model into four segments. Each concentrated mass has a mass of M, and each segment has a length of 0.25, as shown in Figure 7.
[image: Diagram of a cantilever beam clamped at the left end, with length marked as \( L \). Three red points are indicated on the beam: one at 0.25 times the length \( L \), one at midpoint, and one near the free end labeled as \( M \). An origin is marked as \( O \) with coordinate axes \( X \) and \( Y \) originating from the clamped end.]FIGURE 7 | The Bernoulli-Euler beam model with three Concentrated mass.
Table 5 presents the first four natural frequency values of the cantilever beam with concentrated mass points calculated using the finite element method and the proposed method. The study investigates the influence of the concentrated mass values on the computational accuracy. From Table 5, it can be observed that the number of concentrated mass points has a limited impact on the calculation error. However, as the weight of the concentrated mass increases, the calculation error also rises. Under various parameter settings, the deviation between the results obtained using Eq. 29 and the ANSYS simulation results is consistently below 3%.
TABLE 5 | First 4 natural frequencies of the beam with different concentrated mass points.
[image: Table comparing FEA and analytical solution frequencies for two concentrated mass scenarios (1.57/4 kg and 15.7/4 kg) over four modes. It includes error percentages for each mode, showing small variations between the methods.]To validate the impact of fixation methods on computational accuracy, three different fixation methods are considered (as shown in Figure 8): simply supported beam (CS), cantilever beam (CA) and clamped-supported beam (CC). The mass of concentrated mass point is 1.57/4 kg, and the length is L/4. The parameters of the beam model remain consistent with Section 3.1.
[image: Diagram showing three types of beam supports: A) Simply supported on the left and clamped on the right, labeled "Clamped-Simply supported (CS)". B) Cantilever on the left and clamped on the right, labeled "Cantilever supported (CA)". C) Clamped on both ends, labeled "Clamped-Clamped supported", with mid-span point M and distance 0.25L marked. Coordinate axes O, X, Y are shown.]FIGURE 8 | The Bernoulli-Euler beam model under different boundary conditions.
Table 6 lists the natural frequencies of non-uniform mass fuel rods under different boundary conditions. After segmenting the fuel rod based on internal filling, the analytical solutions obtained are generally similar to the results obtained through finite element calculations, with errors less than 3%. Among them, the fixed-supported beam has the smallest calculation error, while the cantilever beam has the largest. The stronger the constraint, the smaller the error in the analytical solution. First 4natural frequencies of segmented beams with different fixing methods.
TABLE 6 | First 4 natural frequencies of the beam with concentrated mass points under different constraints.
[image: Table comparing three fixation methods (CS, CA, CC) using FEA and analytical solutions in Hertz across four frequencies. It includes error percentages. Values for CS: 1.92, 5.88, 15.97, 28.30; CA: 3.04, 7.08, 16.18, 29.76; CC: 4.84, 9.83, 22.35, 36.38.]Under various parameter settings, the deviation between the results obtained using the fast method and ANSYS simulation results consistently remains below 3%.
In summary, the model demonstrates accuracy in analyzing both single concentrated mass points and multi-concentrated mass points in the beam.
4 VALIDATION OF FAST METHODS IN MODAL ANALYSIS OF FUEL ROD
4.1 Structural characteristics of fuel rod
The fuel rod is one of the most important components in a nuclear reactor core. Typically, a fuel rod comprises enriched cylindrical ceramic pellets, gas plenums, and a reflector located at both ends of the fuel rod. These components are sealed within a stainless-steel cladding through the upper and lower end plugs. The length of the internal structure is tailored based on the specific service environment of the fuel rod in different reactors. Figure 9 illustrates the typical structure of fuel rods in a small lead-based reactor. The fuel rod has a length of 850 mm and a diameter of 9.3 mm. The fuel element includes upper and down end plugs, upper and down reflectors, the active zone, and a gas plenum, all enclosed by cladding. The materials, lengths, and masses of each section are detailed in Table 7.
[image: Diagram of a reactor fuel rod assembly with labeled sections: starting from the left with a down end plug, followed by a reflective, cladding, and active zone. The section continues with another reflective part, a gas plenum, and ends with an upper end plug. Arrows point to each labeled component.]FIGURE 9 | Typeical conpostion of fuel rod.
TABLE 7 | Type size and mass distribution of fuel rod.
[image: Table listing components with their materials, lengths, and masses. Components include upper end plug, upper reflective, active zoom, lower reflective, gas plenum, lower end plug, and cladding. Materials are 316L and UO₂. Lengths range from 50 to 800 millimeters, and masses vary from 0 to 0.036 kilograms.]As shown in Figure 10, finite element models for two different constraint methods are established. The finite element model is divided into 17 elements, and the linear density of each element is set based on the distribution of the filling material inside the fuel rod.
[image: Diagram showing two types of beams. A: Cantilever beam fixed to a wall on the left with no support at the free end. B: Simply supported beam with supports at both ends, one being a triangle shape. Both illustrations include arrows indicating loads.]FIGURE 10 | Finite element model of fuel rod.
The natural frequency of the fuel rod is determined using the finite rod software ANSYS. In the model analysis, filler is introduced to the beam model in the form of attached mass. The first four natural frequencies of the fuel rod are then calculated using ANSYS, and the results are presented in Table 8.
TABLE 8 | First fourth natural frequency of non-uniform fuel rod using FEA method.
[image: Table showing numerical calculations in hertz for different values of n. For n equals one, the value is 5.5653. For n equals two, 35.514. For n equals three, 106.89. For n equals four, 223.91.]4.2 Calculation results and analysis
To simplify the internal structure, the contents of the fuel rod are represented as concentrated mass points. This representation allows the fuel rod to be treated as a Bernoulli-Euler cantilever beam, with the concentrated mass points illustrated in Figure 11. The distribution of these concentrated mass points is based on the center-of-gravity of the internal fill.
[image: Diagram of two beam models labeled A and B. Model A has three concentrated mass points, while model B has five. Both beams show sections in different colors, with dashed lines indicating mass point locations.]FIGURE 11 | Concentrated mass model for analytical method.
Uniform mass distribution (Simplified Model 1): This assumes an even distribution of the filler’s mass within the fuel rod in the beam model. The natural frequency is then calculated using the vibration motion of a uniform mass cantilever beam.
Three concentrated mass points (Simplified Model 2): The internal filling of the fuel rod is organized into three concentrated mass points. The upper-end plug and the gas plenum are considered one concentrated mass point, the active zoom and the reflection are another concentrated mass point, and the lower end plug and the lower reflection form the third concentrated mass point. These mass points are distributed based on the center of gravity.
Five concentrated mass points (Simplified Model 3): Organize the internal filling of the fuel rod into 5 concentrated mass points, considering the upper plug, upper reflective, active zoom, lower end plug, and lower reflective as individual concentrated mass points. These mass points are distributed based on the center of gravity.
The natural frequencies of the three simplified models are presented in Table 9. In comparison with the simplified method using a uniform mass model (Simplified Model 1), the natural frequencies calculated using the new method (Simplified Model 2 and Simplified Model 3) exhibit increased accuracy. As depicted in Figure 12, the number of mass points influences the calculation accuracy with the new method. Setting a greater number of concentrated mass points results in more accurate calculations. For a model with five concentrated mass points, the error is less than 3% when compared with the calculation results obtained using ANSYS.
TABLE 9 | First fourth natural frequency of fuel rod by FEA method and analytical method.
[image: Table comparing Frequency Analysis (FEA) results in hertz for cantilever and simply supported beams against three simplified models with corresponding error percentages for modes one to four. Each model’s accuracy varies slightly by mode, with error percentages generally reducing in higher modes.][image: Four graphs comparing frequency (Hertz) against modal order for cantilever and simply supported beams. Graph A shows cantilever beam frequency trends for different simplified models. Graph B shows similarly for simply supported beams. Finite element analysis (FEA) and three simplified models are plotted with distinct markers, showing increasing frequency trends with higher modal orders. Notable frequency deviations are marked with red circles in the lower modal orders for both beam types.]FIGURE 12 | First 4 natural frequency using different calculation model.
Moreover, this method demonstrates a faster calculation speed than ANSYS. By utilizing five concentrated mass points, the calculations equivalent to 17 nodes in ANSYS can be efficiently performed. In addition, when there are changes in the structure of the fuel rod, this method eliminates the need for remodeling; instead, it only requires the modification of relevant parameters to complete the modal analysis.
5 THE IMPACT OF FUEL ROD STRUCTURAL ON NATURAL FREQUENCIES
The traditional fixing method for lead-based reactor fuel rods often adopts a configuration where one end is clamped while the other end is simply supported. To minimize the reactor core volume, the fuel rods of small LFR are short and arranged densely. Consequently, the mounting space is small. For ease of installation in a small vessel, the fuel rod is designed with a cantilevered structure, fixed only at the upper end plug rather than employing two-end fixation. In contrast to the traditional fixing method, the natural frequency of the cantilevered structural fuel rod exhibits higher sensitivity to mass distribution.
Lead-based reactor fuel rods have high fuel consumption, requiring longer gas plenums to accommodate fission gas pressure. The gas plenum can result in non-uniform axial distribution of fuel rod mass. The length of the gas plenum is a crucial parameter in the design of fuel rods.
Four fuel rods with different structures are designed (as shown in Figure 13). Figure 13A is a traditional fuel element fixing method with one end clamped and one end simply supported, and the gas chamber is close to the clamped end. Figure 13B is a fixed method for fuel elements with one end clamped and one end simply supported, with the gas chamber located near the simply supported end. Figure 13C is a cantilever fuel rod with one end clamped and one end free, and the gas chamber is close to the clamped end. Figure 13D is a cantilever fuel rod with one end clamped and one end free, and the gas chamber is close to the free end.
[image: Diagram showing four different configurations of beams with varying support types: A) Beam with simple support on one end and a clamp on the other. B) Similar beam with opposite placement of simple support and clamp. C) Beam with a cantilever on one end and a clamp on the other. D) Reverse configuration of C with clamp first and cantilever last.Each beam has marked sections labeled \( t_1 \), \( t_2 \), \( t_3 \), \( t_4 \), \( t_5 \).]FIGURE 13 | Different structural models of fuel rods.
5.1 Effect of the gas plenum position on natural frequency
In general, the design lifespan for a fuel rod is typically set at 30 years. The fuel rod has a length of 850 mm and an uneven mass distribution. The weight of the gas pressurization chamber is significantly lighter than the other sections. By analyzing the position of the gas pressurization chamber and considering different constraint methods, the study investigates the impact of mass distribution on the natural frequencies of the fuel rod.
From Table 10 and Figure 14, In the case of fuel rods clamped at one end and simply supported at the other, this is the most commonly used fixing method in current reactors. Due to the asymmetric fixing method, when the gas chamber is near the simply supported end, there is a slight increase in the natural frequency of the fuel rod, with an increase of approximately 7%. This adjustment is made to reduce installation difficulty. In the case of fuel rods clamped at one end and free at the other, forming a cantilever beam structure, the sensitivity of the fuel rod to the position of the gas chamber is significant. When the gas chamber is close to the free end, there is a substantial increase in the natural frequency of the fuel rod, with a maximum increase of up to 17%.
TABLE 10 | First fourth natural frequency for differential fuel rods.
[image: Table showing frequency measurements in Hertz (Hz) for positions near and away from the fixed end, labeled as CS and CA. For CS, readings are 15.57, 57.92, 132.59, 244.55 near, and 16.19, 61.97, 139.25, 253.10 away. For CA, readings are 6.08, 36.53, 102.17, 199.88 near, and 6.75, 35.02, 101.06, 213.99 away. Columns are numbered one to four.][image: Bar chart comparing the first natural frequency in hertz for two fixing methods: CS and CA. CS shows higher values with orange and green bars at approximately 25 hertz. CA has lower values with orange and green bars at around 10 hertz. Legend indicates orange for "Near the fixed end" and green for "Away from fixed end."]FIGURE 14 | Comparison of first frequencies for different structural fuel rod models.
5.2 Effect of the gas plenum length on natural frequency
As the lifespan of the fuel rod increases, it is necessary to increase the length of the gas plenum, to reduce the internal pressure of the fuel rod.
The effect of length on the natural frequency of the fuel rod is determined by varying the length of the gas plenum. The length of the gas plenum is 100mm, 150mm, 200mm, and 250 mm.Four cases with different length were established (In Table 11).
TABLE 11 | Structural parameters of different fuel rods.
[image: Table showing parameters and cases. For Case 1, fuel rod length is 800 mm, gas plenum length is 100 mm, and the ratio is 12.5%. For Case 2, fuel rod length is 850 mm, gas plenum length is 150 mm, and the ratio is 17.6%. For Case 3, fuel rod length is 900 mm, gas plenum length is 200 mm, and the ratio is 22.2%. For Case 4, fuel rod length is 950 mm, gas plenum length is 250 mm, and the ratio is 26.3%.]The first 4 natural frequencies for four scenarios were calculated using the fast computation model. The results are presented in Table 12 and Figure 15.
TABLE 12 | First fifth natural frequency of differential length fuel rods.
[image: A data table shows frequencies in hertz (Hz) for two conditions, CS and CA, each measured near and away from a fixed end. Frequencies are listed for four cases across four columns. Examples include: CS near the fixed end - Case 1: 17.57 Hz in column 1, 65.38 Hz in column 2; CA away from the fixed end - Case 1: 7.24 Hz in column 1, 39.55 Hz in column 2. Data continues similarly for each case.][image: Two line graphs labeled A and B. Graph A shows "CS" with x-axis labeled "The length of fired rod (mm)" and y-axis labeled "The 1st natural frequency (Hz)." Two lines represent "Near the fixed end" (black) and "Away from fixed end" (red). Graph B shows "CA" with similar axes and lines. Both graphs indicate decreasing frequencies with increasing rod length.]FIGURE 15 | First natural frequency of different length fuel rods with fixed and free end.
The research findings indicate a negative correlation between the natural frequency of the fuel rod and the length of the gas chamber. From Figure 15, in the case of clamped one end of the fuel rod and simply supporting the other, as the gas chamber length increases, the influence of the gas chamber position on the natural frequency gradually becomes more pronounced, especially when the gas chamber is close to the clamped end. The rate at which the natural frequency decreases with an increase in length becomes significantly more pronounced. In the scenario where one end of the fuel rod is clamped while the other end is free, this trend is even more noticeable. When the gas chamber length is near the clamped end, the decrease in the natural frequency of the fuel rod becomes more significant with an increase in the gas chamber length.
Therefore, if there is a need to increase the length of the plenum, it is recommended to place the plenum at the free end to enhance the first-order n*/atural frequency.
Compared to traditional fixing methods, the cantilever beam structure of the fuel rod exhibits a significantly lower natural frequency and higher sensitivity to mass, posing certain safety risks. However, the establishment of this fuel rod structure is designed to facilitate in-depth research for optimization.
6 CONCLUSION
This paper explores the vibration issues of fuel rods with non-uniform mass distribution. We introduce a simplified analytical model to solve the free vibration problem of an Euler-Bernoulli beam with non-uniform mass distribution. The results obtained from this model align well with those computed using ANSYS. Additionally, we analyze the impact of the position and length of the gas plenum on the natural frequency of the fuel rod.
The non-uniform mass distribution in the beam is treated by dividing it into several parts, with concentrated mass points serving as demarcation points. Employing Euler beam theory, the transverse vibration equation is derived for beams with varying mass distribution. Through equivalent means, the non-uniform mass beam is transformed into a multi-segment beam with concentrated mass points, establishing modal function relationships between adjacent uniform segments based on continuous conditions at connection points. The variable coefficient differential equation is then transformed into a nonlinear matrix equation.
The analytical method is validated against a benchmark beam problem, and when compared to fine Finite Element Method (FEM) calculations, it demonstrates high accuracy, approximately 5%. The natural frequency of the fuel rod calculated using the proposed method aligns well with fine FEM results. By simplifying the internal filling of the fuel rod into 5 concentrated mass points, the model’s calculation differs from the finite element model by only 2%, showcasing a significant acceleration in computation speed.
The natural frequency of the fuel rod proves to be highly sensitive to the position of the gas plenum. Specifically, the fuel rod’s natural frequency is higher when the gas plenum is closer to the free end compared to when it is closer to the fixed end, with a notable 17.6% difference in natural frequencies between the two configurations. As the length of the gas plenum increases, the structural stability of the fuel rod with the gas plenum close to the free end becomes more apparent.
The method proposed in this paper has been preliminarily applied to the design analysis of fuel rods and has proven to be highly useful in evaluating the vibration characteristics of fuel rods with non-uniform structural configurations.
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Double-layer heat tubes have been designed to effectively reduce the occurrence of heat pipe rupture accidents. However, inter-tube thermal contact resistance can decrease heat transfer efficiency, thus hampering the heat dissipation in the primary loop system of lead-bismuth reactors. Therefore, optimizing the design of double-layer heat tubes is necessary. This work focuses on the double-layer heat exchanger of a lead-bismuth reactor and utilizes gallium-based graphene nanofluids as a thermal interface material to fill the gap between the heat tubes. Furthermore, the impact of the length, wall thickness, outer diameter, and spacing of heat tubes on the heat transfer performance of the double-layer heat exchanger with and without the nanofluids has been analyzed. The study aims to optimize the JF factor and cost-effectiveness ratio (CER). Genetic algorithms are employed to optimize and evaluate the heat transfer performance of the main heat exchanger based on the four aforementioned parameters. Consequently, a new design scheme is obtained for the double-layer heat exchanger, which increases the optimized overall heat transfer coefficient of the main heat exchanger by 5.79%, pressure drop in the primary loop by 2.32%, JF factor by 5%, and CER by 24.62%. These results demonstrate that the gallium-based graphene nanofluids can effectively enhance the heat transfer performance of the double-layer heat exchanger while reducing the likelihood of steam generator tube rupture accidents.
Keywords: gallium-based graphene nanofluids, thermal interface material, double-layer heat exchanger tube, lead-bismuth reactor, optimized design

1 INTRODUCTION
Lead-bismuth reactors have garnered considerable attention due to their favorable neutron kinetics, thermal-hydraulics, and safety characteristics. According to the Generation IV International Forum (GIF), these reactors are poised to be the first commercially viable Generation IV reactors (Alemberti et al., 2014). The main heat exchanger plays a critical role in heat transport within lead-bismuth reactors, thus significantly impacting their economic viability and safety. However, their operating environment is harsh and characterized by high temperatures, substantial pressure differentials, high density, and rapid corrosion rates. Consequently, the heat exchange tubes in the main heat exchanger tend to be the weakest point in the primary loop system of lead-bismuth reactors. Thus, developing new heat exchange tubes that can exhibit superior heat transfer performance and exceptional reliability is necessary to mitigate the relatively high probability of failures, such as heat exchanger tube rupture and corrosion-induced flow blockage (Iskhakov et al., 2018). Closely bonded double-layer heat tube structures offer distinct advantages when applied to lead-bismuth reactors; for example, they prevent continuous crack propagation in the event of a rupture. Unlike single-layer tubes, cracks in double-layer heat tubes terminate at the interface between the two layers. Consequently, double-layer heat tubes can significantly reduce the likelihood of heat tube failure accidents (Jeltsov et al., 2018), making them an appealing design choice. However, the inter-tube thermal contact resistance decreases heat transfer efficiency, which is detrimental to the smooth dissipation of heat within the primary loop system of lead-bismuth reactors. Therefore, there is an imperative need to optimize heat tube design, mitigate inter-tube thermal contact resistance, and enhance heat transfer efficiency.
To effectively enhance the heat transfer performance of double-layer heat exchangers in lead-bismuth reactors, researchers from different countries have performed extensive exploratory studies and provided valuable insights. Guimei (WANG, 2014) investigated the impact of inter-tube thermal contact resistance on the heat transfer performance of a heat exchanger based on factors such as wall temperature difference, materials, tolerance fit, and surface roughness while proposing optimized fabrication schemes for double-layer tubes. Rozzia et al. (Rozzia et al., 2015) performed experimental research to investigate the impact of filling the gap between double-layer tubes with the AISI-316 powder on the heat transfer performance of the main heat exchanger. Meanwhile, Liu et al. (Liu et al., 2018) discovered that adding diamond powder inside double-layer tubes yielded superior heat transfer performance compared to that obtained by adding the 316L powder. The existing research has primarily concentrated on enhancing the heat transfer performance of heat exchangers in double-layer tubes by utilizing solid metal powders as fillers between the layers. However, the increase in heat transfer efficiency has been limited, thus significantly restricting the widespread application of double-layer heat exchangers in lead-bismuth reactors. Xiaohong et al. (Wang et al., 2021) proposed that by blending high-thermal-conductivity nanoparticles with ambient liquid metals such as gallium, rubidium, cesium, and mercury, high-performance metal thermal interface materials can be obtained, which tend to significantly reduce the thermal conductivity resistance between adjacent contacting objects and have broad application prospects in the design of double-layer tube-type heat exchangers for lead-bismuth reactors.
Gallium has stable chemical properties and can remain in liquid form under atmospheric pressure within the temperature range of 29.8°C–2,403°C. It also boasts high thermal conductivity, electrical conductivity, good fluidity, and a certain level of corrosion resistance. Importantly, it is non-toxic, making its use safer and more reliable. Therefore, it is considered an ideal liquid metal matrix material (Zhang et al., 2023). Nanoparticles are key to achieving excellent thermomechanical performance in nanofluids. Compared to other added nanoparticles, graphene is a two-dimensional layered structure material with high thermal conductivity, consisting of a single layer of carbon atoms arranged in a hexagonal lattice. As one of the best-known thermal conductive materials, it exhibits outstanding electrical, thermal, and mechanical properties (Kuang and Hu, 2013). Combining nanoscale graphene sheets with gallium particles results in nanofluids with a larger specific surface area, increasing the heat transfer interface, and thereby enhancing heat transfer efficiency. The stable properties of metallic gallium, along with its corrosion resistance, endow gallium-based graphene nanofluids with good stability, making them less prone to sedimentation or aggregation, which is beneficial for long-term stable thermal management.
This work focuses on improving the heat transfer performance associated with the main heat exchanger of a double-layer heat tube used in a lead-bismuth reactor. The gap between the double-layer heat tubes is filled with gallium-based graphene nanofluids, which serve as a thermal interface material. To assess the impact of this modification, the influence of heat tube length, wall thickness, outer diameter, and spacing on the heat transfer performance of the double-layer heat exchanger with and without the gallium-based graphene nanofluids filling is analyzed. This study aims to optimize the JF factor and cost-effectiveness ratio (CER). By utilizing a genetic algorithm, the four aforementioned parameters have been considered as optimization variables to evaluate and optimize the heat transfer performance of the main heat exchanger. Consequently, a new design scheme is obtained for the double-layer heat exchanger used in lead-bismuth reactors.
2 THEORETICAL MODEL OF THE MAIN HEAT EXCHANGER
Currently, lead-bismuth reactors in several countries have entered the engineering and construction phase. The secondary loop of these reactors utilizes water and employs either flow boiling heat transfer or high-pressure single-phase heat transfer. This work primarily aims to explore the use of gallium-based graphene nanofluids as a thermal interface material, which can fill the gap between double-layer heat tubes. The study also involves the design and optimization of the proposed double-layer heat exchanger. To simplify the computational process, it is considered that the secondary loop in the main heat exchanger implements high-pressure single-phase heat transfer.
2.1 Heat transfer calculation of the double-layer heat exchange tube
Based on the heat balance, the coolant flow on both sides of the heat exchange tube is countercurrent; thus, the heat transfer relationship is as follows:
[image: The formula depicts heat transfer, denoted as \(Q\), is equal to the product of thermal conductivity \(K\), surface area \(A\), and temperature difference \(\Delta t_m\).]
Where [image: A magnified letter "Q" in serif font. The letter is bold and occupies most of the space, showing its curved tail and prominent structure.] is the heat exchange power of the main heat exchanger [[image: Please upload the image or provide a URL so I can help create the alt text for it.]], [image: It seems like there is an issue with the image link or it was not uploaded correctly. Please try uploading the image again or provide a valid URL. If you have a specific caption for context, feel free to include it.] is the total heat transfer coefficient for the outer surface of the heat exchange tube [[image: W per meter squared Kelvin, representing a unit of thermal conductivity.]], [image: Please upload the image or provide a URL so I can help create the alt text for it.] is the total heat transfer area for the outer surface of the heat exchange tube [[image: Sure, please upload the image or provide a URL so I can help with the alt text.]], and [image: Delta t sub m, a mathematical notation.] is the countercurrent logarithmic mean temperature difference [°C].
The total heat transfer coefficient [image: Please upload the image or provide a URL for me to create the alt text.] is calculated as follows:
[image: Equation labeled (2) showing thermal conductivity formula: K equals one over a complex denominator. The denominator includes multiple terms involving inverse h1, the ratio of d2 to d1, natural log functions of diameter ratios, and resistance Rf.]
[image: Equation labeled as three shows \( h_1 \) equals \( \frac{{q'(t_1)}}{{\pi d_1 (T_{d_1} - T_{l(t_1)})}} \).]
[image: Equation showing \( h_2 = \frac{q'_z}{\pi d_1 (T_{d1} - T_{2(f)})} \), labeled as equation (4).]
Where [image: Sure, please upload the image or provide the URL so I can generate the alt text for you.] and [image: Lowercase letter "h" followed by the subscript number "2".] are the convective heat transfer coefficients on the lead-bismuth alloy and pressurized water side, respectively [[image: "Watts per square meter Kelvin."]]; [image: Please upload the image or provide a URL to it, and optionally add a caption for additional context.], [image: Please upload the image or provide a URL so I can help you generate the alt text.], [image: It seems there is an issue with displaying the image. Please try uploading the image again or provide a URL. If you have a specific caption or context, feel free to include that as well.], and [image: Mathematical notation displaying the letter "d" followed by a subscript "4".] represent the inner diameter of the inner tube, the outer diameter of the inner tube, the inner diameter of the outer tube, and outer diameter of the outer tube, respectively [[image: Please upload the image or provide a URL so I can help create an appropriate alt text for it.]]; [image: Greek letter lambda with a subscript zero.] and [image: Greek letter lambda with subscript one.] are the inter-tube thermal conductivity and tube-wall thermal conductivity, respectively, [[image: The text shows "W/(m·K)", indicating watts per meter-kelvin, a unit of thermal conductivity.]]; [image: It seems like there was an error in the image upload. Please try uploading the image file again or provide a URL.] is the fouling resistance [[image: Unit of thermal resistance or insulation, represented as square meters Kelvin per Watt, denoting how well a material resists heat flow.]]; [image: Mathematical notation showing q prime of one, denoted as q prime with a superscript one in parentheses.] and [image: Mathematical expression showing the derivative of q with respect to time, evaluated at t equals two.] are the linear power density of the outer wall of the outer tube [image: Mathematical notation of the letter "d" with a subscript 4.] and the inner wall of the inner tube [image: It seems like there is an issue with the image upload or description. Please ensure you have uploaded an image or provided a clear URL or description so I can generate the alt text for you.] [[image: Please upload the image you want me to describe.]]; [image: Italicized uppercase letter T followed by a subscript consisting of the letters d and script l.], [image: The image contains the mathematical expression "T subscript d comma 1" with italicized letters.], [image: Mathematical expression displaying \( T_1(f) \), where \( T \) and \( f \) are variables, and \( 1 \) is a subscript.] and [image: Mathematical expression depicting the function \( T_2(f) \).] represent the temperature of the outer wall of the outer tube, the inner wall of the inner tube, the lead-bismuth alloy and pressurized water [°C].
The heat flow transfer within the heat tube bundle, which contains liquid lead-bismuth, bears similarities to the flow heat transfer occurring within the fuel rods of the reactor core. Consequently, the heat transfer occurring on the shell side of the heat tube is computed using the flow heat transfer correlation proposed by Cheng et al. (Cheng and Tak, 2006) from the Karlsruhe Institute of Technology (KIT) in Germany; this correlation considers the heat transfer between the liquid heavy metal and the fuel rods.
For calculating the heat transfer coefficient in the fluid flow inside a circular channel under forced convection, the Dittus-Boelter correlation is employed.
2.2 Pressure drop calculation of the double-layer heat exchange tube
Since liquid coolants are considered incompressible fluids, their density can be considered to be the same at each point in the flow field. Since the coolant on both sides of the heat exchange tubes in the main heat exchanger does not undergo phase change during the flow process, the Darcy formula has been used to calculate the pressure drop along the single-phase flow:
[image: Equation showing fluid flow pressure drop: ΔP sub f equals f times L over d times rho times v squared over 2, labeled equation five.]
[image: The equation depicts the formula for calculating the inverse square root of the friction factor \( f \), expressed as \(-2\log \left( \frac{\varepsilon}{3.7d} + \frac{2.51}{\text{Re}\sqrt{f}} \right)\). The Reynolds number \( \text{Re} \) is constrained between \( 2300 \) and \( 10^5 \).]
Where [image: The symbol shows a delta (Δ) followed by \( P \) with a subscript \( f \).] is the frictional pressure drop [[image: Please upload the image or provide a URL for me to generate the alt text.]], [image: It seems there was an error with the image upload. Could you please try uploading the image again or provide a URL if available?] is the length of the flow channel [[image: It seems there was an error in your request or the image didn't upload. Please try uploading the image again or providing a URL.]], [image: It seems there is an issue with your request. Please upload the image or provide a URL for me to generate the alternate text.] is the fluid density [[image: "kg/m³" written in italicized font represents a unit of density, kilograms per cubic meter.]], [image: Please upload the image or provide the URL so I can help create the alt text for it.] is the hydraulic diameter of the flow channel [[image: Please provide an image by either uploading it or sharing a link, and I will assist you with alternative text.]], [image: Please upload the image or provide a URL for me to generate the alt text.] is the cross-sectional area of the fluid [[image: A mathematical expression displaying the letter "m" followed by a superscript "2", representing "m squared".]], [image: It appears there's no image attached. Please upload the image or provide a URL for me to help you with the alt text.] is the fluid velocity [[image: Please upload the image or provide a URL so I can assist you in generating the alt text.]], the calculation of frictional resistance coefficient [image: Please upload the image, and I will provide the alternate text for it.] is based on the Colebrook equation, [image: I'm sorry, I can't provide alt text for the image as no specific image has been uploaded. Could you please try uploading the image again or provide a URL?] is Reynolds number of the fluid, [image: Please upload the image you would like me to describe.] is the absolute roughness of the tube.
Owing to the sudden change in the cross-section of the flow channel at the inlet and outlet of the heat exchanger tube as well as at the inlet and outlet windows of the lead-bismuth reactor, a local pressure drop occurs, which can be calculated as follows:
[image: Equation showing the pressure difference due to form drag: ΔP_sub form equals k times ρ times v squared over two. Labeled as equation seven.]
Where [image: Delta P subscript form, written as "ΔP" with "form" in subscript.] is the form-resistance pressure drop [[image: It seems there was an error in your request. Please upload the image or provide a URL, and I would be happy to help you with the alt text.]], and [image: Please upload the image you'd like me to describe, and I will provide the alt text for it.] is the form-resistance pressure drop coefficient, taking 0.7 (Yu et al., 2002).
2.3 JF factor
To optimize the design of the main heat exchanger, it is desirable to obtain the best results at the least cost and ensure that the heat exchanger tube does not undergo breakage; this can be achieved by designing a main heat exchanger with the highest possible heat transfer efficiency and the lowest possible shell process pressure drop. The JF factor compares the heat transfer performance of the main heat exchanger with 1/3rd power of the pressure drop; the larger the JF factor, the better the overall performance of the main heat exchanger. Therefore, this study utilizes the JF factor as the evaluation index:
[image: JF equals \(\frac{K/K_o}{(\Delta P/\Delta P_o)^{1/3}}\). Equation eight.]
[image: ΔP equals ΔP_outer minus ΔP_inner, equation nine.]
Where [image: Please upload the image for which you need alternate text.] is the overall heat transfer coefficient [[image: Watt per square meter Kelvin.]] and [image: The image shows the Greek letter delta, represented as a triangle, followed by the letter "P." This symbol typically denotes a change in pressure in scientific contexts.] is the pressure loss [[image: Please upload the image or provide a URL, and I will create the alt text for you.]]; the subscript o indicates the calculation reference value; [image: ΔP subscript inlet, representing the pressure difference at the inlet in a formula or equation.] and [image: ΔP with a subscript labeled "outlet" in italics, representing the change in pressure at the outlet.] are the inlet and outlet of the shell-side pressure drop [[image: It seems you provided a symbol or a fragment of an equation, rather than an image. Could you please upload the image file or provide more context for what you need described?]].
2.4 Cost-effectiveness ratio
The JF factor is used as an evaluation criterion only for the performance of the main heat exchanger; however, it does not consider the actual engineering construction costs. Therefore, CER has been used to practically optimize the structural parameters of the main heat exchanger:
[image: CER equals JF divided by C, with equation number ten indicated in parentheses.]
[image: The image shows a mathematical equation: \( C = \frac{M_r P_r + M_s P_s}{M_s P_s} = \frac{V_r + V_s}{V_s} \), labeled as equation (11).]
Where [image: Please provide the image or a link to it, and I can help you with the alternate text.] is the average cost ratio per unit heat exchange area for the main heat exchanger; [image: Please upload an image or provide a URL so I can create the alt text for it.] and [image: Please upload the image or provide a URL so I can help create the alternate text for it.] represent the mass [[image: Stylized letters "k" and "g" in an italic font, depicted with a serif style.]] and material costs, respectively; [image: Please upload the image or provide a URL so I can generate the alt text for you.] denotes the volume [[image: Mathematical expression of cubic meters, denoted by "m" followed by a superscripted "3".]]; and subscripts [image: If you have an image you want me to describe, please upload it or provide a URL.] and [image: Please upload the image you'd like to have alt text for, and I'll be happy to help!] denote the heat exchanger tube and shell, respectively. Since the main heat exchanger structure used in this study is all made of 316L stainless steel, [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL if it is hosted online.] can be expressed as the volume ratio.
2.5 Physical property model
The physical property models used in this work include the liquid lead-bismuth alloy, pressurized water, heat exchange tubes, and gallium-based graphene nanofluids. The main physical parameters of the liquid lead-bismuth alloy and pressurized water have been sourced from Fazio et al. (Fazio et al., 2015) and Wagner et al. (Wagner and Kretzschmar, 2008), respectively. Since the heat exchange tube is made of 316L stainless steel, the physical parameters of stainless steel data are used (Kim, 1975). Meanwhile, the physical properties of gallium-based graphene nanofluids are sourced from Xuan et al. (Xuan et al., 2003).
3 RESEARCH ON THE FACTORS AFFECTING THE PERFORMANCE OF THE MAIN HEAT EXCHANGER
This study focuses on the main heat exchanger of China LEAd-based Reactor (CLEAR-I) (Wu et al., 2015). The flow direction of the coolant on the primary and secondary sides of the main heat exchanger is shown in Figure 1. The main heat exchanger has a tube-shell structure and comprises straight double-layered heat tubes arranged in a triangular pattern. The gap between the tubes is filled with the gallium-based graphene nanofluids.
[image: Diagram illustrating a primary heat exchanger with labeled water and lead-bismuth eutectic (LBE) inlets and outlets on the left. On the right, a diagram of a coaxial thermal couple as a double-layered tube is shown. Descriptions include "water inlet," "water outlet," "LBE inlet," and "LBE outlet."]FIGURE 1 | Schematic of the heat exchanger.
The parameters of the main heat exchanger during steady-state operation are shown in Table 1.
TABLE 1 | Parameters of the main heat exchanger during steady-state operation.
[image: A table titled "Thermal hydraulic parameters" lists parameters and their values. Design thermal power is 3 megawatts. Pressurized water mass flow is 40.21 kilograms per second. Lead-bismuth mass flow is 158.844 kilograms per second. Pressurized water inlet and outlet temperatures are 215 and 230 degrees Celsius, respectively. Liquid lead-bismuth inlet and outlet temperatures are 390 and 260 degrees Celsius, respectively. A note mentions that these parameters determine preliminary design parameters for the main heat exchanger shown in Table 2.]The arithmetic mean deviation [image: It seems there is no image attached. Please upload the image or provide a URL to it, and I can help create the alternate text.] of the heat exchanger tube surface profile is taken as 6.3 [image: Certainly! Please upload the image you want an alt text for.] and the double-layer tube gap is considered as 3 [image: It seems there was a formatting issue with your request. Could you please upload the image again or provide more context so I can assist you better?]. The gallium-based graphene nanofluids exhibit a graphene nanoparticle volume fraction of 20% and a particle radius of 20 nm. The average contact thermal resistance of the double-layer tube without nanofluids filling is 0.00003 [image: Mathematical expression showing the unit of thermal resistance, square meters times kelvin per watt.] (WANG, 2014). The effect that the length [image: Please upload the image or provide a URL for me to generate the alt text.], outer diameter [image: It seems you included a LaTeX code or mathematical expression instead of an image. If you intended to describe an image, please upload the image file or provide a URL.], wall thickness [image: Please upload the image or provide a URL so I can help create the alt text for it.], and tube spacing [image: Please upload the image or provide a URL for me to create the alternate text.] of the heat exchanger have on the total heat transfer coefficient [image: Please upload the image you would like me to generate alt text for.] and the pressure drop loss [image: A mathematical symbol for delta P, which represents a change or difference in pressure.] is determined for the main heat exchanger with and without the addition of the gallium-based graphene nanofluids.
3.1 Length of the heat exchange tube
The length of the heat exchanger tube [image: It seems there was an error in providing the image. Please try again by uploading the image or providing a correct URL. If there is a caption or specific context, you can include that as well.] is based on the initial value shown in Table 2 and several typical lengths are selected: 1, 1.5, 2, 2.5, 3, 3.5, and 4 m. The remaining parameters shown in Table 2 are used to investigate the effect of the heat exchanger tube length on the performance of the two main heat exchangers.
TABLE 2 | Preliminary design parameters of the main heat exchanger.
[image: Table displaying parameters with initial values: L/m is 2.985, d4/mm is 26, c/mm is 4, and P/mm is 32.]Figure 2 shows that as the length [image: It seems there was an error in your request. Please try uploading the image again or provide a URL.] increases, the heat transfer area of a single heat exchanger tube also increases; however, the total heat transfer remains the same. Thus, the number of heat exchanger tubes [image: It appears there is no image attached. Please upload the image or provide a URL so I can assist you with creating the alt text.] decreases non-linearly for both the main heat exchangers. Nevertheless, since the gallium-based graphene nanofluids have high thermal conductivity, the main heat exchanger with gallium-based graphene nanofluids requires fewer heat exchanger tubes [image: Please upload the image or provide the URL so I can help create the alt text for it.] for total heat transfer and is more economical.
[image: Graph showing the relationship between \( Z \) and \( L' (\text{m}) \). Two lines compare gallium-based nanofluids and contact thermal resistance. Both lines decrease as \( L' \) increases from 1 to 4 meters, indicating a decline in \( Z \). The gallium-based nanofluids line is black, while the contact thermal resistance line is red.]FIGURE 2 | Variation in the number of heat exchange tubes with the length.
Figure 3 shows that the total heat transfer coefficient [image: Please upload the image you would like me to create alt text for.] increases with a rise in the heat exchanger tube length [image: Please upload the image you would like me to describe and provide alternate text for.]. When [image: It seems there was an error in your request. Could you please upload the image or provide more details?] increases, the number of heat exchanger tubes decreases along with the coolant flow cross section. This increases flow velocity, turbulence intensity, and thermal conductivity; hence, [image: Please upload the image you would like me to describe.] increases. However, as the nanofluids have higher thermal conductivity, the total heat transfer coefficient [image: It seems there was an error when uploading the image. Please try uploading the image again or provide a URL, and I will be happy to help with the alt text.] of the double-layer heat exchanger tube with the nanofluids tends to be greater, which leads to a better heat transfer performance. Figures 4, 5 show that increasing the length [image: Please upload the image or provide a URL so I can help create the alt text for it.] of the heat exchanger tube increases the frictional pressure drop as well as the pressure drop observed in both the shell and tube coolant, thereby increasing the operating cost. For the same case, the pressure drop in the shell and tube coolant of the main heat exchanger with gallium-based graphene nanofluids is greater and the required operating cost is higher.
[image: Line graph comparing the performance of gallium-based nanofluids and contact thermal resistance. The y-axis represents K in watts per square meter-Kelvin ranging from one thousand to eighteen hundred, and the x-axis represents L in meters from one to four. Both lines show an upward trend, with gallium-based nanofluids consistently higher than contact thermal resistance.]FIGURE 3 | Variation in the total heat transfer coefficient with the length.
[image: Line graph showing the relationship between pressure difference (ΔP in pascals) and length (L in meters) for gallium-based nanofluids and contact thermal resistance. Both datasets show a similar increasing trend, with values ranging from 400 to 1300 pascals as length increases from 1 to 4 meters.]FIGURE 4 | Effect of heat exchange tube length on shell-side pressure drop.
[image: A graph comparing gallium-based nanofluids and contact thermal resistance. The x-axis represents \(L\) in meters, and the y-axis shows \(\Delta P\) in pascals. Both lines display a positive correlation, with values increasing from approximately 12,000 Pa to 24,000 Pa as \(L\) increases from 1 to 4 meters. The gallium-based nanofluids are denoted by black squares and contact thermal resistance by red circles.]FIGURE 5 | Effect of heat exchange tube length on tube-side pressure drop.
Figure 6 shows that when the secondary coolant flow rate remains the same, the JF factor decreases with increasing [image: It seems you've tried to include an image, but it did not come through. Please try uploading the image again or provide a URL if it is hosted online. Let me know if there's additional context needed for the image.]. Under the same conditions, the JF factor of the double-layer heat exchanger tube with the nanofluids always exceeds that of the double-layer heat exchanger tube without the nanofluids. This result is mainly observed because [image: Please upload the image or provide a URL, and I can help create the alternate text for it.] and shell pressure drop rise as [image: It seems like there might have been an issue with uploading the image. Please try uploading the image again, and I would be happy to help you with the alternate text.] increases; however, the increase in shell pressure drop in the main heat exchanger is less than the increase in [image: It seems there is no image here. Please try uploading the image again or provide a URL.]. The total heat transfer coefficient of the double-layer heat exchanger tube with the nanofluids undergoes a larger increase when compared to that of the unmodified heat exchanger tube.
[image: Two line graphs compare the thermal resistance and performance of gallium-based nanofluids. Both graphs plot JF factor against mass flow (kilograms per second) for various lengths, showing decreasing trends with increased flow. Different colored lines represent lengths ranging from 1.0 meters to 4.5 meters, with a legend indicating each length.]FIGURE 6 | Effect of heat exchange tube length on JF factor.
3.2 Outer diameter and inner/outer diameter ratio of the heat exchange tube
The inner diameter [image: The expression shows a lowercase "d" followed by a subscript "1".] and the outer diameter [image: Mathematical expression showing the variable \(d\) with a subscript of 4.] are based on the initial value in Table 2 and several typical heat exchanger tube outer diameters have been selected: 15, 20, 25, 30, and 35 mm, and the increase of the outer diameter leads to the increase of the inner/outer diameter ratio. The remaining parameters shown in Table 2 are used to investigate the effect of the outer diameter and the inner/outer diameter ratio of the heat exchanger tube on the exchanger performance.
Figures 7, 8 show that when the rest of the structural parameters of the heat exchanger bundle remain unchanged, increasing the outer diameter [image: The image shows a lowercase letter "d" followed by the subscript number "4".] and the inner/outer diameter ratio [image: A mathematical expression showing the ratio of \(d_1\) to \(d_4\), represented as \(d_1/d_4\).] reduce the heat transfer capacity due to a rise in the heat exchanger tube cross-section, a decrease in the flow velocity of the tube course coolant, and a decrease in the turbulence intensity. A reduction in the circulation cross-section and an increase in the flow velocity of the first circuit increases the heat transfer capacity; however, this effect is more pronounced in the second circuit. Thus, [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL.] decreases almost linearly. The total heat transfer coefficient of the heat exchanger tube comprising the interstitially filled gallium-based graphene nanofluids is consistently higher than that of the unmodified heat exchanger tube, owing to the better thermal conductivity of the nano-liquid metal.
[image: Line graph showing the relationship between \(d' \) in nanometers and \(K\) in watts per square meter-kelvin. Two lines represent data for gallium-based nanofluids and contact thermal resistance, both showing a decreasing trend as \(d' \) increases from 0 to 40 nanometers.]FIGURE 7 | Variation in the total heat transfer coefficient with outer diameter.
[image: Line graph showing thermal conductivity (K in W/m²K) versus \(d_i/d_{i(max)}\). The black line represents gallium-based nanofluids, and the red line indicates contact thermal resistance. Both lines decrease, with gallium-based nanofluids maintaining higher values.]FIGURE 8 | Variation in the total heat transfer coefficient with inner/outer diameter ratio.
Figures 9–12 show that augmenting the outer diameter [image: Mathematical expression showing the variable d with a subscript 4.] and the inner/outer diameter ratio [image: The equation "d subscript 1 divided by d subscript 4" is presented, indicating a mathematical expression involving the variables d1 and d4, possibly representing a ratio or fraction.] can increase the shell pressure drop and decrease the tube pressure drop; this is because when all other parameters are held constant and [image: The image shows a three-dimensional letter "d" with the subscript "4" in a serif font.] and [image: Mathematical expression displaying the ratio \(d_1/d_4\), with \(d_1\) and \(d_4\) representing variables or specific values.] increase, the flow cross-section in the first and second circuit decreases and increases, respectively, while the flow velocity decreases. Thus, the shell pressure drop increases, and the tube pressure drop decreases. However, the shell pressure drop in the heat exchanger tube filled with nanofluids tends to be higher than that in the unfilled heat exchanger tube under the same circumstances, and the same result is observed for the tube pressure drop. The heat exchanger tube comprising the nanofluids is less likely to exhibit natural circulation in its first circuit while being more costly to operate than a normal double-layer heat exchanger tube.
[image: Graph showing the relationship between \(\Delta P\) (Pa) and \(d_t\) (mm). Two lines are plotted: one for gallium-based nanofluids (black) and another for contact thermal resistance (red). Both lines display a positive correlation, with the black line generally higher than the red line.]FIGURE 9 | Effect of the outer diameter of the heat exchange tube on shell-side pressure drop.
[image: A line graph showing the relationship between pressure drop (ΔP, in pascals) and film thickness (d, in millimeters) for gallium-based nanofluids and contact thermal resistance. The y-axis ranges from 1400 to 2000 pascals, and the x-axis ranges from 10 to 40 millimeters. Both curves show a decreasing trend, with gallium-based nanofluids in black and contact thermal resistance in red.]FIGURE 10 | Effect of the outer diameter of the heat exchange tube on tube-side pressure drop.
[image: Graph displaying the pressure drop (ΔP) in pascals against the diameter ratio (d\*/d) in centimeters. Two lines represent gallium-based nanofluids (black) and contact thermal resistance (red). Both lines show an upward trend as the diameter ratio increases.]FIGURE 11 | Effect of the inner/outer diameter ratio of the heat exchange tube on shell-side pressure drop.
[image: Graph showing the relationship between diameter ratio \(d_1/d_2\) and pressure drop \(\Delta P\) in Pascals. The black line with square markers represents gallium-based nanofluids and the red line with circle markers represents contact thermal resistance. Both lines show a decreasing trend as the diameter ratio increases from 0.72 to 0.90.]FIGURE 12 | Effect of the inner/outer diameter ratio of the heat exchange tube on tube-side pressure drop.
Figure 13 shows that at a constant secondary coolant flow rate, the JF factor decreases with increasing [image: The mathematical notation \( d_4 \) is displayed, where the letter "d" is followed by the subscript "4".]. However, the JF factor of the heat exchanger tube comprising the gallium-based graphene nanofluids is always greater than that of the heat exchanger tube with no nanofluids under the same circumstances. This is mainly because as [image: The image shows the lowercase letter "d" with the number four as a subscript, often used in mathematical notation to represent specific variables or dimensions.] increases, the shell pressure drop increases, [image: Please upload the image or provide the URL so I can help create the alternate text for it.] decreases, and the JF factor decreases. The shell pressure drop and [image: Please upload the image or provide a URL, and I will help you create the alt text.] of the tube filled with the nanofluids are both greater than those of the double-layer heat exchanger tube; however, the increase in [image: Please upload the image and I'll help you create alternate text for it.] is greater than one-third of the increased shell pressure drop.
[image: Two line graphs compare the impact of mass flow rates on contact thermal resistance and gallium-based nanofluids. Both graphs plot \( jF \) on the vertical axis against mass flow (kg/s) on the horizontal axis. Various lines representing different diameters (d=15mm, 20mm, 25mm, 30mm, 35mm) demonstrate how these variables interact, with overall slight downward trends observed across various diameters for increasing mass flow.]FIGURE 13 | Effect of the outer diameter of heat exchanger tube on JF factor.
3.3 Wall thickness of the heat exchange tube
Several typical heat exchanger tubes with wall thicknesses of 3, 3.5, 4, 4.5, and 5 mm are used in this study, and the remaining parameters are shown in Table 2. As the outer diameter and tube spacing of the heat exchanger remain the same, the coolant flow cross section in a single circuit also remains constant; therefore, the shell pressure drop does not change much. These conditions allowed us to effectively study the influence of the wall thickness of the heat exchanger tube on the total heat transfer coefficient and the pressure drop in the tube for both main heat exchangers.
Figures 14, 15 show the variations in the total heat transfer coefficient and the pressure drop that occur across the tube due to a change in the wall thickness of the main heat exchanger. Figures 14, 15 show that as [image: It seems there's an issue with the image link or upload. Please try uploading the image again, and I will help create the alt text for you.] increases, [image: Please upload the image or provide a URL, and I can help create the alt text for it.] decreases and the pressure drop across the tube increases; however, the [image: Please upload the image or provide a URL so I can help create the alt text for you.] and pressure drop for the tube filled with the nanofluids tends to be higher than that observed for a normal double-layer heat exchanger under the same conditions. Overall, although the proposed double-layer heat exchanger tube is costlier than its conventional counterparts, its heat transfer performance is better.
[image: A line graph compares the thermal conductivity of gallium-based nanofluids and contact thermal resistance. The x-axis represents thickness in millimeters from 3.0 to 5.0, while the y-axis shows thermal conductivity in watts per square meter-kelvin from 1300 to 1650. Two lines are plotted: a black line for gallium-based nanofluids, which decreases slightly, and a red line for contact thermal resistance, which decreases more steeply.]FIGURE 14 | Variation in total heat transfer coefficient with wall thickness.
[image: Graph showing the relationship between pressure difference (ΔP in pascals) and c (in millimeters) for gallium-based nanofluids and contact thermal resistance. The black line for nanofluids and red line for thermal resistance both increase with c, with nanofluids consistently higher.]FIGURE 15 | Effect of heat exchanger tube wall thickness on tube-side pressure drop.
Figure 16 shows the effect that the heat exchanger tube wall thickness has on the JF factor: when the outer diameter of the heat exchanger tube remains constant, [image: Please upload the image or provide a URL so I can help create the alt text for it.] increases and JF factor decreases; this is mainly because [image: Please upload the image or provide a link to it so I can generate the alt text for you.] increases, [image: Please upload the image you would like to have alt text for.] decreases, and the shell pressure drop remains constant, which decreases the JF factor.
[image: Two line graphs compare the contact thermal resistance and gallium-based nanofluids. Both graphs plot enhancement factor \(F\) against mass flow in kilograms per second, with lines for various particle sizes (\(\varphi\)). The left graph's lines mostly decrease as mass flow increases, while the right graph shows a similar trend. Each line represents a different particle size: 0.1 mm, 0.3 mm, 0.4 mm, 0.5 mm.]FIGURE 16 | Effect of the heat exchanger tube wall thickness on the JF factor.
3.4 Spacing of the heat exchanger tubes
Tube spacing has a greater impact on the shell pressure drop than on the tube pressure drop; thus, this work studies the effect of tube spacing on the shell pressure drop of the two heat exchangers. The following heat exchanger tube spacings have been used in this study: 32, 34, 36, 38, 40, 42, 44, and 50 mm; the remaining parameters are shown in Table 2.
The effect of heat exchanger tube spacing on shell pressure drop and JF factor is shown in Figures 17, 18, respectively. Figure 17 shows that the shell pressure drop decreases non-linearly with increasing heat exchanger tube spacing [image: Please upload the image or provide a URL so I can create the alternate text for it.]. However, the shell pressure drop in the heat exchanger tube filled with the nanofluids tends to be higher than that in the double-layer heat exchanger tube without any nanofluids under the same circumstances, which is not conducive to natural circulation in one circuit. Figure 18 shows that the JF factor decreases with an increase in the tube spacing [image: It seems there was an error in your message, and I am unable to view or interpret any images directly from your text. Please upload the image file, and I will assist you by providing the alternate text for it.], which shows that [image: Please upload the image you would like me to describe.] has a relatively small effect on the heat exchanger performance.
[image: Graph showing the relationship between Pf (mm) and ΔP (Pa) for gallium-based nanofluids and contact thermal resistance. Both lines decrease, with nanofluids starting higher and dropping from about 1000 Pa to 400 Pa, while thermal resistance decreases from 500 Pa to 300 Pa.]FIGURE 17 | Effect of heat exchanger tube spacing on shell-side pressure drop.
[image: Two line graphs compare friction factor (JF) versus mass flow (kg/s). The left graph shows contact thermal resistance, and the right shows gallium-based nanofluids. Both graphs have similar horizontal trends for different pipe diameters: 22 millimeters, 28 millimeters, 32 millimeters, 36 millimeters, and 54 millimeters, with friction factor values around 0.94 to 0.98.]FIGURE 18 | Effect of heat exchanger tube spacing on the JF factor.
In summary, for the same structural parameters, the JF factor of the heat exchanger tube with the nanofluids tends to be greater than that of the tube without any nanofluids, thereby ensuring that the main heat exchanger exhibits the best results at lower costs without causing any tube ruptures. Therefore, the geometry of the heat exchanger tube interstitially filled with the gallium-based graphene nanofluids has been optimized in the next section.
4 OPTIMIZATION OF THE MAIN HEAT EXCHANGER SIZE
4.1 Genetic algorithm
A genetic algorithm is an adaptive global optimization probabilistic search algorithm that simulates the evolutionary process of living organisms in nature and performs objective optimization based on size adaptation to find the optimal solution (Gen and Cheng, 1999). The genetic algorithm is based on the natural selection principle of “survival of the fittest and elimination of the unfit”, where genes are passed and varied among a group of individuals through genetic manipulation (e.g., selection, crossover, and mutation) to produce better-performing offspring. The algorithm repeats this process until a termination condition is met, such as reaching the maximum number of iterations or obtaining a sufficiently good solution. The genetic algorithm is widely used because it starts searching from multiple initial points, converges faster, covers a large area, and provides a globally optimal solution. Yang et al. (Yang et al., 2014) optimized the structural parameters in a shell and tube heat exchanger based on the genetic algorithm, such as tube diameter, wall thickness, and number of tubes, which significantly reduced the total heat exchanger cost. Mirzaei et al. (Mirzaei et al., 2017) used a multi-objective genetic algorithm to optimize the structural parameters of a heat exchanger, thereby improving its thermal efficiency by more than 28%.
In this work, the heat exchanger tube length, wall thickness, outer diameter, and spacing are coded as individuals, while the JF factor and CER are used as fitness functions. The maximum values are used as the target to continuously select, cross, and mutate, remove some individuals with low fitness, and generate the same number of individuals to maintain the total number of individuals; the iteration is stopped when the individual with the highest fitness is generated.
4.2 Variable scope
To more effectively select the variation range of parameters and speed up the convergence of optimal design, this work uses contribution ratio (CR) to evaluate the influence of each parameter on the comprehensive performance, which provides the optimization range of each structural parameter design according to its contribution level (Yun and Lee, 2000); CR is calculated as follows:
[image: Equation showing constraint ratio \(CR_i\) as the ratio of \(SN_{max,i} - SN_{min,i}\) to the sum from \(j=1\) to \(n\) of \(SN_{max,j} - SN_{min,j}\), labeled as equation twelve.]
[image: Mathematical expression showing a signal-to-noise ratio formula: \( SN = 10 \log \left( \frac{1}{r} \times \frac{(S_m - V_e)}{V_e} \right) \). Variables are defined as follows: \( r = \sum_{j=1}^{n} u_j^2 \), \( S_m = \left( \frac{\sum_{j=1}^{n} (u_j \cdot \text{IF}_j)}{r} \right)^2 \), \( V_e = \frac{S_e}{n-1} \), \( S_e = S_T - S_m \), \( S_T = \sum_{j=1}^{n} \text{IF}_j^2 \). The equation is labeled (13).]
Where [image: Mathematical expression showing "SN" with a subscript "max, i".] and [image: \( SN_{\text{min},i} \) in a serif font, likely represents a mathematical or scientific expression where "SNmin" indicates the minimum signal or similar variable and "i" is an index or subscript.] are the maximum and minimum signal-to-noise ratios for the [image: It seems there's a technical issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online.] th parameter, respectively; [image: Please upload the image or provide its URL so I can help you create an alt text.] is the [image: Please upload the image or provide a URL for it, and I can help create the alt text for you.] th coolant flow; and [image: Mathematical expression with italicized "JF" followed by a subscript "j".] is the [image: It looks like you tried to reference an image, but it did not upload correctly. Please try uploading the image again or provide a URL so I can assist you with the alt text.] th JF factor.
The calculated CR of each parameter is shown in Figure 19, which reveals that spacing [image: Please upload the image or provide a URL for me to generate the alternate text.] has a negligible contribution when compared to the other three factors that influence the heat exchanger performance. This indicates that the tube length [image: Please upload the image or provide a URL for me to create the alternate text.], outer diameter [image: Mathematical notation showing the letter "d" with a subscript "4".], and wall thickness [image: Sure, please upload the image or provide a URL to it, and I will help you with the alternate text.] significantly impact the heat exchanger’s performance. Since [image: Please upload the image, and I'll provide the alternate text for you.] has the greatest impact, it is imperative to choose a reasonable heat exchanger tube length when designing the heat exchanger. According to the CR and the processing technology of the heat exchange tube, based on the preliminary design parameters in Table 2, the parameter range is shown in Table 3.
[image: Bar chart displaying CR percentages for different categories. L is at 59.13 percent, d4 at 25.8 percent, c at 13.3 percent, and P at 1.77 percent. Each bar decreases in height sequentially.]FIGURE 19 | Contribution ratio (CR) of each parameter.
TABLE 3 | Design parameter ranges of the heat exchange tube.
[image: Table showing design parameters and their ranges. Parameters: d4 in millimeters ranges from nineteen to thirty-three, c in millimeters ranges from three point five to four point five, L in meters ranges from one point two to four point eight, and P in millimeters ranges from forty-one to forty-three.]4.3 Optimization results
By using the maximum values of the JF factor and CER as objective functions, the outer diameter, wall thickness, length, and tube spacing of heat exchange tubes have been optimized using the genetic algorithm. The convergence process of the objective function value is depicted in Figures 20, 21 based on the number of iterations. The comparison of optimization results is shown in Table 4.
[image: Line graph depicting the relationship between the number of iterations and the JF value. The x-axis represents iterations ranging from 0 to 150, while the y-axis shows JF values from 0.9 to 1.3. The graph shows a steep rise initially, leveling off around iteration 25, indicating convergence.]FIGURE 20 | Variation curve of the JF factor with the number of iterations.
[image: Line graph showing CER (Character Error Rate) against the number of iterations. The CER starts at 0.180, rises steeply and stabilizes around 0.195 after approximately 50 iterations.]FIGURE 21 | Variation curve of CER with the number of iterations.
TABLE 4 | Comparison of heat exchanger performance before and after optimization.
[image: Comparison table showing parameters for heat exchangers under initial conditions and two schemes. Parameters include tube outer diameter, wall thickness, length, spacing, heat transfer coefficient, pressure drop, JF, and CER. Scheme 1 and Scheme 2 have varying values compared to initial parameters.]This table provides valuable insights into the optimization results for Scheme 1 and Scheme 2 of the main heat exchanger.
In Scheme 1, optimization was performed to maximize the JF factor. Compared to the pre-optimization values, the overall heat transfer coefficient increased by 4.04%. Additionally, the pressure drop in the primary loop decreased by 23.01%, while the JF factor increased by 14%. This optimization approach aimed to improve the overall performance of the main heat exchanger by maximizing the heat transfer capacity while minimizing the pressure drop.
In Scheme 2, optimization was conducted to maximize CER. The overall heat transfer coefficient increased by 5.79% when compared to the pre-optimization value. However, the pressure drop in the primary loop increased slightly (by 2.32%). Nevertheless, CER significantly improved by 24.62%, which indicates that the heat transfer performance per unit cost is enhanced.
Compared with the double-tube heat exchanger with the same bundle structure optimization parameters but without using gallium-based graphene nanofluids, there is no significant change in the primary circuit pressure drop. For Scheme 1 and Scheme 2, the overall heat transfer coefficients are reduced by 42.32 W/(m2·K) and 59.67 W/(m2·K), respectively. Comparatively, the heat transfer capacity of the double-tube heat exchanger without gallium-based graphene nanofluid added in the gap decreases by approximately 2.70% and 3.56%. It can be seen that adding gallium-based graphene nanofluids in the gap between the double-layer heat exchange tubes can improve the heat transfer capability of the reactor, thereby reducing the temperature difference between different components of the reactor, and enhancing its safety and operational efficiency.
A comprehensive comparative analysis reveals that Scheme 2 strikes an optimal balance between heat transfer performance and cost-effectiveness. Although the pressure drop only slightly increases in Scheme 2, a greater improvement in heat transfer performance is achieved and the average cost ratio is minimized. This balanced optimization approach enhances the overall economic feasibility of the heat exchanger.
Based on the heat transfer performance and average cost, it can be established that Scheme 2 is the preferred design for the main heat exchanger. This design choice ensures a significant enhancement in heat transfer performance while exhibiting the best cost-effectiveness.
5 CONCLUSION
In this work, we propose to fill the gap between the double-layer heat exchanger tubes in a lead-bismuth reactor with a thermal interface material (gallium-based graphene nanofluids). Furthermore, the influence of the heat exchanger tube length, wall thickness, outer diameter, and spacing on the heat transfer performance is analyzed, and the results are compared to those obtained for the double-layer heat exchanger tube without the thermal interface material. Based on the optimization objectives of the genetic algorithm and the above-mentioned parameters, the heat transfer performance of the main heat exchanger is optimized and comprehensively evaluated; consequently, a new double-layer heat exchanger design scheme is obtained. The main research findings are as follows.
	(1) For heat exchanger tubes with the same outer diameter, wall thickness, length, and spacing, adding the gallium-based graphene nanofluids leads to a better total heat transfer coefficient and higher heat transfer capacity; however, this addition increases the shell pressure drop, which is not conducive to achieving a natural circulation in the reactor. Nevertheless, the nanofluids increase the JF factor and lead to a better overall heat transfer performance.
	(2) When other parameters are kept constant, increasing the heat exchanger tube length tends to increase the total heat transfer coefficient and the pressure drop in a single circuit, thereby strengthening the heat transfer capacity and weakening the natural circulation capacity. Furthermore, reducing the outer diameter of the heat exchanger tube can improve the total heat transfer coefficient and reduce the pressure drop in a single circuit, thus improving the heat transfer capacity and natural circulation capacity. Increasing the wall thickness of the heat exchanger tube tends to decrease the heat transfer capacity, while increasing the distance between tubes reduces the pressure drop in a single circuit, improves the natural circulation capacity, and reduces operation costs.
	(3) The JF factor and CER are used as fitness functions and optimized using a genetic algorithm to obtain two solutions, which represent the maximum possible performance and the best overall performance of the main heat exchanger. The two solutions have been compared and the solution with the maximum CER value is selected as the optimal solution, which increased the total heat transfer coefficient by 5.79%, pressure drop in the first circuit by 2.32%, JF factor by 5%, and CER factor by 24.62%.
	(4) The key technologies for optimizing the design of the double-layer heat exchanger include thermal performance optimization, improvement of bundle structure, and multi-objective optimization design. The aim is to enhance the overall heat transfer coefficient, reduce the pressure drop in the primary circuit, and improve economic feasibility while meeting optimization objectives.
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NHR-200-II is a small integrated pressurized water reactor with 200 MW core thermal power. The core heat is transferred to two independent intermediate circuits via fourteen in-vessel primary heat exchangers (PHE), and the heat in the intermediate circuits is transferred to feedwater by two steam generators (SG) in the two intermediate circuits respectively. A passive residual heat removal (PRHR) branch is connected to each intermediate circuit to remove core decay heat under postulated accidents. During normal operation, PRHR branches are isolated by valves while SG branches in intermediate circuits are open. The valves in PRHR branches will be opened and the isolation valves of SG branches will be closed during decay heat removal scenarios. The decay heat removal capacity of NHR-200-II PRHRS could be seriously deteriorated once the isolation valves for SG branches fail to close, which was confirmed in a scaled integral test loop previously. Current understanding of PRHRS’s thermal-hydraulic characteristics with possible isolation failure in SG branches is limited. In this paper, the NHR-200-II PRHRS is modeled with RELAP5 considering the case of success and fail to isolate SG branches. A series of numerical simulations are carried out to study the impact of various parameters, such as the initial temperature, the size of the intermediate circuits’ header, and the initial flow direction in the intermediate circuits. Oscillatory flow is found when SG branches fail to be isolated under certain parameters combinations. An improved PRHRS design is purposed to eliminate possible flow oscillations, and the purposed improved design are tested by numerical simulations.
Keywords: NHR-200-II, passive residual heat removal system (PRHRS), RELAP5, intermediate circuits, numerical simulation

1 INTRODUCTION
An integrated pressurized water reactor (IPWR) integrates major primary components inside the pressure vessel. IPWR is generally more compact than traditional PWR, and has higher safety level since it eliminates possible failures of the main primary pipes (Liu et al., 2023). Research and design of integrated pressurized water reactors is quite active in many countries, as shown in Figure 1. Korea’s system-integrated modular advanced reactor (SMART) has a power rating 330 MW, and the system design of SMART includes both inherent and passive safety systems. In the United States, there are many IPWR designs such as mPower, NuScale, Westinghouse SMR, et al. In addition, CAREM-25 reactor in Argentina, Flexblue reactor by DCNS group in France and ABV-6M, RITM-200 reactors designed by Russia are integrated pressurized water reactor designs (IAEA, 2012).
[image: Five schematic diagrams of different small modular reactor designs: mPower, NuScale, W-SMR, IRIS, and SMART. Each design is labeled with numbers indicating key components, such as the reactor core, steam generators, and coolant systems.]FIGURE 1 | Small integrated pressurized water reactor under development in the worldwide. (Copyright permission has been obtained before use).
NHR-200-II nuclear heating reactor is a multi-purpose small integrated pressurized water reactor developed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University (Wang et al., 1993). The NHR-200-II design characteristics include a tri-circuits design, hydraulic control rod driving systems, in-vessel pressurizer with vapor and nitrogen, and passive residual heat removal systems (PRHRS). The NHR-200-II design has many advantages like higher safety, compact size, and controllable investment, make the reactor widely-deployable in many areas, like urban heating, seawater desalination, nuclear powered icebreakers, etc.
The PRHRS is an important safety system for NHR-200-II nuclear heating reactor. The PRHRS relies on three coupling natural circulations to remove core residual heat, namely the natural circulation of primary side in the reactor pressure vessel (RPV), the single-phase natural circulation in RHE branches of the intermediate circuits, and the natural circulation of air in the cooling tower (Zhang et al., 1993). However, flow instability in PRHRS was unexpectedly observed in a scaled integral test facility built for nuclear heating reactors, and the flow instability occurred when the isolation valves of SGs in the intermediate circuits failed to close (INET, 2018). Current understanding of the transient characteristics of NHR-200-II PRHRS with isolation failure in SG branch is quite limited.
The earliest studies on the instability of single-phase natural circulation loop (NCL) were focused on the oscillation mechanism in several typical simplified loops. Keller (Keller and Joseph, 1966) predicted the one-way oscillation without flow reversal by studying the rectangular loop with heat source and radiator in the center of the horizontal pipes at the bottom and top, and predicted the one-way instability flow in rectangular NCL with point-type heat source/sink. Keller first found that simplified rectangular loop flow have cyclic periodic motion theoretically. Welander (Welander, 1967) pointed out that a loop with two vertical branches, a point heat source at the bottom and a point heat sink at the top, may have unstable behavior at certain heat power inputs. Welander also provided a physical explanation for the instability by the motion of “warm and cold pockets of fluids.” Welander’s conclusion was validated by Creveling (Creveling et al., 1975), who first observed the instability in an annular water loop.
The initial flow direction in a closed NCL may have significant impact on the steady-state behavior of the NCL. Sen and Trevino (Sen and Trevino, 1982) proved that an NCL can have both positive and negative steady-state flow rates, depending on the initial NCL conditions. The heat input history and initial thermal condition will also affect the flow distribution in a NCL with multiple parallel branches. Takeda (Takeda et al., 1987) studied a parallel-channel NCL with different heat inputs experimentally and theoretically, and found that flow direction and flow rate of each channel depend on the historical effect of heat input in each channel. Gartia et al. (Gartia et al., 2006) studied a NCL with three non-uniformly heated parallel channels and a common cold leg by a RELAP5 model, the existence of a metastable state of the parallel-channel NCL was confirmed, and the influence of different parameters on the metastable state was studied theoretically and numerically.
In our related series research on NHR-200-II, it was found that the cold and hot ring header of PRHR system would have obvious flow thermal stratification phenomenon (Geng et al., 2023), which would affect the flow stability and distribution. Thermal stratification effect in the headers of the PRHR system played an important role in the phenomenon of uneven outlet temperature distributions. In the previous study (Geng et al., 2023), the research focusses on reproducing the three-dimensional flow field effect of the cold and hot ring pipe. In this paper, the perspective of numerical model verification related research work also carried out, analyzes the influence of hot and cold ring pipe and Y-junction on the PRHR system, and an improved design was proposed.
In this paper, a RELAP5 model is built to study the transient characteristics of the PRHRS in a scaled integral test facility for nuclear heating reactors. The steady-state simulations under different core temperatures are performed first. Both the case of success and fail to isolate the SGs branches are investigated. Impact of various design parameters, such as header size of the intermediate circuits, initial flow direction of intermediate circuits, are studied numerically with the RELAP5 model. An improved PRHR design for the NHR-200-II reactor is proposed to suppress possible oscillatory flow in the original PRHR design.
2 MATERIALS AND METHODS
2.1 Design of PRHRS of NHR-200-II
The NHR-200-II PRHRS has two identical heat removal columns, and a simplified schematic diagram of PRHRS is shown in Figure 2. Each PRHR column consists of: (1) seven in-vessel primary heat exchanger (PHE) branches, (2) a residual heat exchanger (RHE) branch with the RHE placed in an air-cooling tower, (3) a pressurizer (PRZ), (4) a SG branch, (5) a hot ring header and a cold ring header above the pressure vessel, and (6) two isolation valves in the SG branch and another two isolation valves in the RHE branch.
[image: Diagram of a nuclear reactor cooling system showing three natural circulation loops. The first loop circulates through the core in the pressure vessel. The second loop is linked to a steam generator (SG) and involves valves one, two, and three. The third loop connects to an air cooling tower. The hot and cold ring headers distribute flow, with a relief heat exchanger (RHE) aiding heat removal. Arrows indicate flow direction.]FIGURE 2 | Schematic diagram of one column of PRHRS.
The RHE is a finned-tube air cooler located in the air-cooling tower of NHR-200-II. The cold ring header and hot ring header are coaxially arranged above the reactor pressure vessel. PHEs are connected to the headers by T-shaped tees asymmetrically, and the RHE is connected to the headers by low resistance Y-shaped tees. The PRZ is placed at the highest location of the loop.
The PRHRS utilizes three coupled natural circulations loops to remove core residual heat passively. The first loop is natural circulation of the primary fluid within the reactor pressure vessel. The second loop is the fluid circulation in the residual heat removal loop (Figure 2), and the third loop is natural circulation of air in the air-cooling tower.
Under normal operating conditions, valves in the RHE branch (Valve1 and Valve2 in Figure 2) are closed, and core heat is transferred from the seven in-vessel PHEs to the SG. Under reactor shutdown or postulated accidents, valves in the RHE branch (Valve3 and Valve4 in Figure 2) are opened, and decay heat is transferred from the PHEs to the RHE. However, the Valve1 and Valve2 may fail to close during PRHRS operation. In such scenarios, the RHE branch and SG branch will operate simultaneously to remove the core decay heat. The PRHRS should maintain the heat removal capacity upon isolation failure of Valve1 or Valve2 according to the single failure criteria.
2.2 The RELAP5 model
A RELAP5 model is developed for the PRHRS of the integral test facility. The model consists of six PHE branches (components number starting with 1–6 in the model), a cold ring header (components number starting with 7), a hot ring header (components number starting with 8), an RHE branch and a SG branch (components number starting with 9). The six PHE branches are evenly connected between the cold and hot ring headers in the circumferential direction. The RHE branch is connected to the cold ring header between PHE-1# and PHE- 2#. The RHE branch as well as SG branch is connected to the hot ring header between PHE-1# and PHE-6#, as shown in Figure 3. Four valves labeled as V1, V2, V3, and V4 are placed in the system, which can be switched on/off upon RELAP5 input cards.
[image: Diagram of a rail yard layout showing various tracks and switches. Tracks are labeled with codes such as 923P, 905P, and 813P. Lines indicate train routes and connections. There are marked sections with designations like V1 and V2. The bottom left includes a detailed section labeled 976TJ, indicating more complex track and switch configurations. The diagram uses different colors and styles to distinguish different paths and connections.]FIGURE 3 | RELAP5 model of the PRHRS in integral test facility for NHR-200-II.
RELAP5 input deck involves a variety of hydraulic components, including the initial calculation value, such as temperature, pressure, mass flow rate, and other thermal hydraulic parameters and calculation model. The facility design value was used as the initial state calculation value, and adjusted the input deck to the steady state before the calculation.
The PHE used in the NHR-200-II facility adopts a ring tube bundle structure with double casing. Simplified pipes are used in the Relap5 model to simulate the flow channel in the ring gap space of the tube bundle. The secondary side fluid flows in the middle gap of the ring tube, and the primary side fluid flows in the outsides and inside of the ring gap. Different constant temperatures are set as the thermal boundary in the heat structure, and different temperature values ranging from 533.15 to 327.15 K are used in different cases.
The U-shaped heat transfer tube bundle in SG is modeled by section, the secondary side is simulated by heat structure, and the thermal boundary is set as 453.15 K constant temperature.
The RHE heat transfer tube also uses a single pipe to simulate the heat transfer bundle, the heat structure simulates the secondary side, and the constant temperature thermal boundary 298.15 K is calculated.
3 RESULTS
3.1 Impact of primary fluid temperature on the PRHRS transient characteristics
The transient characteristics of PRHRS is simulated with the primary fluid temperature varying from 327.15 K to 533.15 K. The RHE heat sink temperature is kept at 298.15 K and SG boundary temperature is kept at 453.15 K in all cases.
In this study, the operation curve of the PRHRS is divided into three stages. The first stage is the normal operation mode with all the PHE branches and the SG branch connected, where the valves of V1 and V2 are closed and the valves of V3 and V4 are opened. The SG branch is driven by the pump 976TJ, where the mass flow rate of pump is increased from zero to a maximum of approximately 31.95 kg/s and remained at the maximum for a period.
In the second stage, the RHE branch is put into operation by opening V1 and V2 while the V3 and V4 are kept open, the purpose of second stage is to simulate the transient characteristics of PRHRS in case of fail to isolate the SG branch.
In the third stage, the SG valves named V3 and V4 are closed and the SG branch is isolated successfully, and core decay heat is transferred from the PHEs to the RHE. The third stage is set to simulate the standard PRHRS operation mode.
A series of numerical simulations with different primary fluid temperature are conducted to simulate the impact of primary fluid temperature on the PRHRS transient characteristics. Figure 4 shows the transient mass flow rate of each branch at different primary fluid temperatures.
[image: Fourteen graphs display temperature-dependent data labeled by Kelvin units ranging from 327.15K to 533.15K. Each graph shows a curve with distinct legend entries, indicating different samples or conditions. The x-axis represents time in minutes, and the y-axis represents the measured property, with scale adjustments across the graphs, suggesting a focus on the stability or transition behavior of a material under varying thermal conditions.]FIGURE 4 | Transient mass flow rate of each branch at different primary fluid temperature.
When the core temperature is range between 327.15 K and 413.15 K, a steady-state flow distribution is achieved in the second stage. In this stage, the steady-state flow rates of each branch with the primary fluid temperature are shown in Figure 5, where the mass flow rate of SG branch is denoted as M1, the totally mass flow rate of six PHE branches is denoted as M2, and the mass flow rate of RHE branch is denoted as M3. With the increase of primary fluid temperature from 327.15 K to 413.15 K, the mass flow rate of RHE branch increases monotonically, while the mass flow rate of PHE branches and the SG branch first increase and then decrease.
[image: Line graph showing the mass flow rate in grams per second versus PHE boundary temperature in Kelvin. Three lines represent M1, M2, and M3. M1 (black) increases slightly, M2 (red) increases moderately, and M3 (blue) decreases as temperature rises from 320 to 420 Kelvin.]FIGURE 5 | Mass flow rate with different PHE temperature in second stage Stable conditions.
For the middle temperature range of 413.15 K–458.15 K, the transient flow characteristics is different, where the flow in RHE branch is suppressed in the second stage completely.
For the core temperature range of 458.15 K–533.15 K, it can be seen from Figure 4 that unstable oscillating flow will occur in the second stage, which means the heat removal capacity of the PRHRS may be significantly deteriorated when the SG branch is failed to be isolated. In contrast, the PRHRS reaches a steady state in the third stage where the SG branch is isolated.
3.2 Effect of hot and cold ring header on the transient characteristics of PRHRS
The hot and cold ring header are important to the PRHRS hydraulic characteristics. In order to investigate the effect of ring headers on the oscillatory flow during the second stage, the ring headers in the original model (Figure 2) are replaced with small control volumes represented by the 714B and 814B (Figure 6). For the RELAP5 model of Figure 6, the transient flow rates of each branch at different primary fluid temperature are shown in Figure 7.
[image: Flowchart diagram showing a network of labeled pipes and connections. The main sections include pipes labeled with various codes, such as 9053P, 813P, and 707P, connecting through valves V1 to V4 and a section labeled 961P. A circuit labeled RHE and PRHE## appears alongside a marked area labeled 976TJ and 5G, interconnected through red and blue lines depicting flow directions.]FIGURE 6 | RELAP5 node diagram of the PRHRS of removing ring header.
[image: Fourteen charts display gas composition versus elapsed time at temperatures ranging from 327.15K to 533.15K. Each chart shows multiple labeled lines indicating different gas components. The gas compositions vary with time, depicted in colored lines. Each chart features a legend for gas types and axes labeled appropriately.]FIGURE 7 | Mass flow rate of each branch changing with Time at different PHE boundary temperature (removing the ring header).
For the primary fluid temperature range of 327.15 K–413.15 K, steady-state flow distribution is also achieved in the second stage. The flow rate distribution without ring headers is compared to the flow rates of the original model in Figure 8. It can be seen from Figure 8 that the steady-state flow rate of each branch has the same trend for the two models with and without ring headers, the flow rate of SG branch and PHE branches of the model without ring headers is slightly higher than that of the original model, while the mass flow rate of RHE branch is not significantly changed.
[image: Line graph showing mass flow rate (kg/s) versus PHE boundary temperature (K). Five lines represent different configurations: M1 to M4, with and without ring baffles. The mass flow rate generally increases with temperature for all configurations except M4 without ring baffles, where it decreases.]FIGURE 8 | Mass flow rate at different primary fluid temperature under second stage (with the ring headers removed).
For the temperature range of 413.15 K–458.15 K, the transient flow characteristics of the system model without ring headers is generally the same to the original RELAP5 model. However, in temperature range of 458.15 K–533.15 K, steady-state flow distributions are achieved instead of the oscillatory flow of the original model in the second stage, which indicates that removing ring headers can suppress the oscillatory flow when isolation valves of the SG branch fail to close. In the third phase, with the absence of ring header, the flow distribution of six PHE branches are uniform, and the reverse flow phenomena in the six PHE branches caused by the existence of ring headers is eliminated.
3.3 Effect of initial flow rates to the transient characteristics of PRHRS
In order to study the influence of the initial flow rates to the steady-state flow rate distribution of all PRHR branches, the flow direction of pump 976 TJ is set to the opposite direction in the first stage. The transient flow rate of each branch is shown in Figure 9.
[image: Fourteen graphs display the relationship between time and thermal conductivity at various temperatures, ranging from 327.15 Kelvin to 533.15 Kelvin. Each graph shows different color-coded data series representing multiple experimental conditions or materials. Trends generally stabilize over time with some variations specific to each temperature setting. Graphs at higher temperatures display more fluctuations in conductivity.]FIGURE 9 | Transient flow rate of each branch at different primary fluid temperature (with reversed initial flow direction of SG pump).
For the primary fluid temperature range of 327.15 K–443.15 K, the steady-state flow rates of the second stage of the current model (Figure 9) are opposite to that of the original model (Figure 4). The absolute value of steady state flow rates of PRHR branches for the current model and the original model are plotted on Figure 10, where the flow rate of SG branch (M1) and all PHE branches (M2) are significantly higher than the flow rates of the original PRHRS model or the PRHRS model without ring headers, while the flow rate of RHE branch (M3) is almost unchanged.
[image: Line graph showing the relationship between PHE boundary temperature (K) and mass flow rate (g/s). Multiple colored lines represent different data sets, each labeled: M1, M2, M3 in original and reversed loop configurations. Mass flow rates generally decrease as temperature increases from 320K to 440K.]FIGURE 10 | Steady-state flow rate at different primary fluid temperature in the second stage (with reversed initial flow direction of SG pump).
For higher primary fluid temperature ranges from 473.15 K to 533.15 K, oscillating flow also occurs in the second stage of PRHRS operation for the current model with initial SG pump flow direction reversed. However, it can be seen from Figure 10 that the pattern of oscillatory flow is very different compared to the transient flow rate of the original model (Figure 4). Therefore, the initial flow direction of PRHRS has a significant influence on the transient flow characteristics of PRHRS.
3.4 A preliminary PRHRS design improvement to suppress oscillatory flow
The flow oscillation phenomena, which may occur in PRHRS when the isolation valves of SG branch fail to close in certain temperature ranges, could significantly deteriorate the heat removal capacity of the PRHRS. A preliminary PRHRS design improvement to suppress the oscillatory flow is proposed and shown in Figure 11, where the tees of the SG branch are moved from the RHE branch (Figure 3) to the ring headers (Figure 11). The general consideration behind this design improvement is to reduce the flow resistance from the six PHE branches to the SG branch, and to avoid early mixing of fluid with different temperatures from both the RHE branch and the SG branch.
[image: Flowchart diagram showing a series of interconnected pipes and valves labeled with numbers and letter codes, such as 905P, 903P, and 961P. Red and black lines indicate different pathways, with directional arrows suggesting flow direction. Components like V1, V2, V3, and V4 appear to represent valves or checkpoints. The structure appears to depict a complex network, possibly related to a mechanical or industrial process.]FIGURE 11 | RELAP5 node figure of an improved PRHRS design.
The transient flow rate of the improved design is shown in Figure 12 with primary fluid temperature of 533.15 K. The operation curve of PRHRS used in this section is the same as previous sections, i.e., the first stage (0–50 s) with pump-driven circulation between SG and the six PHEs, and the second stage (50–550 s) with valves of RHE branch opened and valves of SG branch kept open (isolation failure), and for the third stage (550–1000 s), the SG branch is isolated.
[image: Graph showing mass flow rate (kg/s) over time (seconds) from 0 to 1000. The legend indicates lines for 1φPHE, 2φPHE, 3φPHE, 4φPHE, 5φPHE, 6φPHE, RHE, and SG. Initially, fluctuations occur, stabilizing near zero.]FIGURE 12 | Transient flow rate of the improved design with primary fluid temperature of 533.15 K.
As can be seen from Figure 12, the steady-state flow rate of all branches in the second stage (50–550 s) is the same as the third stage (550–1,000 s), which indicates that the improved PRHRS design can effectively suppress the flow oscillations during the period of isolation failure of SG valves. However, study of the purposed design improvement is preliminary and further numerical simulations and experiments are needed to confirm the effectiveness of the improved PRHRS design.
4 DISCUSSION
In this paper, a RELAP5 model is established for the NHR-200-II nuclear heating reactor PRHRS integral test facility. The impact of various parameters on PRHRS transient flow characteristics are studied, the parameters include the primary fluid temperature, the existence of ring headers and the initial flow directions. Both the case of fail and success to isolate SG branch are considered. The main conclusions include:
	(1) The flow rates in PRHR branches are always steady when success to isolate SG branch, and the flow in PRHRS is oscillatory when fail to isolate SG branch if the primary fluid temperature is larger than 458.15 K.
	(2) The flow oscillation can be suppressed by replacing the ring headers with a small control volume in the RELAP5 model. This means that the design of ring headers is an important cause on flow instability. In the RELAP5 model without ring headers, the steady-state flow rates of the SG branch and the six PHE branches are larger than that of the original model.
	(3) The initial flow direction of PRHRS has a significant influence on the transient PRHRS flow characteristics. In a lower primary fluid temperature range of 327.15 K–443.15 K, the steady-state flow rates are opposite to the original model once the initial flow direction of SG branch is reversed. The SG branch and all PHE branches absolute value steady state flow rates increase when the initial flow direction of SG branch reversed, while the flow rate of RHE branch is almost unchanged.
	(4) A preliminary improvement of PRHRS design is purposed, where the tees of SG branch are moved from the RHE branch to the ring headers. Preliminary numerical results show that the flow oscillations are effectively suppressed when fail to isolate SG branch. Further numerical simulations and experiments are planned to confirm the effectiveness of the improved PRHRS design.
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In the Hualong-1 Unit (HPR1000), the hydrogen (H2) concentration should be reduced to 15 mL (STP)/kg 24 h before reactor shutdown when the reactor vessel is scheduled to be opened. The traditional degassing method, i.e., letting down the reactor coolant through a chemical and volume control system, will take longer, and its operation is more complicated. To shorten the degassing time and simplify the operation, this paper proposes a pressurizer degassing system design for HPR1000 by applying the pressurizer as thermal degassing equipment. Then, the degassing system optimization analysis is carried out under a full range of steady operating conditions during shutdown, and the optimal size of the flow-limiting orifice plate is obtained. Meanwhile, in order to verify the transient characteristic during the degassing process to ensure operating safety, a dedicated transient degassing program based on an improved non-equilibrium multi-region pressurizer model and a transient degassing model is used to carry out a transient simulation analysis of this process. The transient simulation results show that, under bounding conditions of hot–zero-power operation, during the degassing process, the pressure of the pressurizer decreases by a maximum of 0.038 MPa and the water level increases by 0.016 m above the normal level. As can be seen, both the pressure and water level are within the normal operation band and shall not initiate any safety signal. Meanwhile, the entire transient process lasts approximately 24 min and then enters a stable degassing period. It takes approximately 5.2 h to remove the gas dissolved in the reactor coolant from 35 mL (STP)/kg to 15 mL (STP)/kg. The analysis shows that the pressurizer degassing system designed for HPR1000 is safe, effective, and reliable.
Keywords: pressurizer degassing, Hualong-1 Unit, non-equilibrium multi-region model, degassing transient, degassing optimizer, system design

1 INTRODUCTION
The Hualong-1 Unit (HPR1000) is a third-generation nuclear power plant that is completely self-developed and designed by China using the highest international safety standards. It innovatively puts forward the safety concept of “active and passive safety,” provides comprehensive measures for serious accident prevention and mitigation, and fully absorbs the experience feedback from the Fukushima accident. It has a core damage frequency (CDF) ≤10−6/reactor·year and a large release frequency (LRF) ≤10−7/reactor⋅year.
The HPR1000 reactor cooling system (RCS) consists of three parallel heat transfer loops, each with a reactor coolant pump, a steam generator, and associated pipes and valves. In addition, the RCS includes a pressurizer, a corresponding pressurizer spray subsystem, and an electric heating subsystem to control the pressure of the pressurizer. A 3D diagram of the HPR1000 RCS is shown in Figure 1.
[image: Diagram showing a phosgene production plant layout with six cylindrical distillation columns arranged around a central red reactor. Green and purple pipes connect the components.]FIGURE 1 | Three-dimensional (3D) diagram of the HPR1000 RCS.
The traditional degassing method is used to let down the reactor coolant through the chemical and volume control system under water–solid conditions. Engineering experience has shown that this traditional method is very complex and time-consuming.
To shorten the degassing time and simplify the operation, this paper proposes a pressurizer degassing system design for HPR1000 by applying the pressurizer as thermal degassing equipment. The pressurizer degassing system flow diagram is shown in Figure 2. The degassing pipeline of the pressurizer degassing system is connected to the pressurizer safety valve impulse pipeline, and a flow-limiting orifice plate is installed at the entrance of the degassing pipeline to limit the degassing flow. The degassing valve is selected as a remotely controlled, air-operated valve. During shutdown operation, when RCS degassing is required, the operator can manually open the degassing valve and modulate the spray-valve opening to adjust the charge/let-down flow rate according to the specific degassing procedure to degas the RCS continuously. The radioactive waste gas discharged from the RCS is then led into the radioactive gas treating system.
[image: Diagram of a pressurizer system connected to a reactor coolant system. The pressurizer features electric heaters, a spray valve, and surge line. It includes an orifice and depressurizing valve on the impulse pipeline, demonstrating flow direction and connections.]FIGURE 2 | Schematic diagram of the HPR1000 regulator degassing system.
The principle for the degassing process is as follows.
First, the reactor coolant is pumped into the pressurizer vapor space through a pressurizer spray system by the reactor coolant pump (RCP). Since the concentration of non-condensing gas in the spray liquid is much higher than the equilibrium concentration of steam in the pressurizer vapor space, the non-condensing gas will then migrate from the spray liquid into the pressurizer vapor space. Therefore, the gas partial pressure of the pressurizer vapor space will increase. At the same time, mass exchange and gas migration occur continuously between the pressurizer vapor space and liquid space until the two-phase system achieves a new equilibrium. Then, the degassing valve is opened to discharge the pressurizer steam, whose gas partial pressure is increased, and the electric heater is put on to supplement the discharged gas and the lost heat, by which the pressure of the pressurizer and the corresponding saturation temperature are maintained within the allowed range. Repeating the above process can achieve the purpose of reducing the concentration of non-condensing gas in the primary coolant.
The pressurizer degassing system design can maximize the use of the pressurizer and is consistent with the principles of simplicity and economy for a small module reactor. At the same time, a reasonable system design can make degassing more efficient, the degassing time shorter, and operation safer. In this paper, the optimal system design of HPR1000 is first obtained by using the verified steady-state pressurizer degassing model and optimization algorithm. Then, to verify the safety of the optimized system design, a transient analysis of the process when opening the degassing valve is simulated based on the verified transient pressurizer model to ensure that the pressure and water level in the pressurizer do not fluctuate significantly to activate the safety protection device. The paper is structured as follows: Section 1 is the introduction; Section 2 provides the mathematical models for the steady-state and transient analysis of HPR1000; Section 3 describes the degassing system of HPR1000; and Section 4 provides the results and discussion.
2 PRELIMINARIES
2.1 Steady degassing model
The degassing process is based on solution and mitigation theory, which can be described by Henry’s Law (Henry, 1803). A typical pressurizer degassing model is shown in Figure 3.
[image: Diagram of a reactor coolant system showing a vertical tank with a spray inlet at the top and a degassing outlet at the side. The tank contains a liquid labeled \(C_2\) and a gas phase labeled \(G_2\). Arrows indicate gas and liquid flow, with \(G_1\) and \(C_1\) entering and leaving at the bottom.]FIGURE 3 | Degassing flow diagram.
In the figure, C1, C2, C3, C′, and C″ are the concentrations of non-condensable gas in the spray flow, discharging flow, coolant return from the surge line to the reactor loop, and evaporative gas in the pressurizer, respectively; G1, G2, G3, Gcs, and Gvap are the corresponding mass flows.
Caldwell (1956) proposes a calculation model for steady-state hydrogen (H2) removal efficiency for the pressurizer. Zhong et al. (2018) proposed a more accurate steady-state degassing model for the pressurizer, which can be used as the basis for theoretical research on degassing.
Based on the study by Zhong et al. (2018), the equation for the concentration of non-condensable gas in the pressurizer vs time is
[image: Equation for \( C_1(t) \): \( C_1(t) = C_1(0) \exp\left(\frac{G_1 \varepsilon + G_2 (1-\varepsilon)}{W} t\right) \), labeled as equation (1).]
where ε is the degassing efficiency.
Using this formula, the degassing time to reach a certain degassing concentration and the degassing concentration change curve in the coolant can be calculated under a given degassing efficiency.
2.2 Degassing optimization algorithm
The degassing efficiency can be influenced by different inherent characteristics of the pressurizer, degassing operating conditions, degassing flow rate, and degassing type. To obtain the optimal system design, a verified steady-state degassing optimization algorithm (Zhong et al., 2018) is adopted in this paper, and its main ideas are as follows.
2.2.1 Objective function
The degassing period Td (Zhong et al., 2018) is defined as
[image: Equation labeled as two. T subscript d equals C subscript one of t divided by the absolute value of the derivative of C subscript one with respect to t.]
where Td represents the time taken for the concentration of the non-condensable gas in the reactor coolant to decrease to 1/e of the initial concentration, reflecting the length of degassing time, and, therefore, serves as an objective function.
2.2.2 Constraints
To ensure the smooth operation of the degassing process, there are two constraints (Zhong et al., 2018):
	1) The discharging flow rate must be less than the spray flow.
	2) The electric heater cannot be overloaded and has a maximum limit value.

2.2.3 Optimization algorithm
Based on the constraints, the feasible region of the optimization objective is a linear constraint set, as shown in Figure 4 (Zhong et al., 2018). Since Td (G1, G2) is a nonlinear function of G1 and G2, the optimization problem is a convex optimization problem.
[image: Graph showing two panels labeled (a) and (b) with intersecting lines and shaded regions. Both panels display dashed and solid lines marked with equations like L₁(q₁)=L₂ and L₃(q₁)=L₂. The shaded regions represent feasible areas.]FIGURE 4 | Optimization algorithm diagram (Zhong et al., 2018).
The feasible region boundary in the figure above consists of four constraint lines, namely, L1: G1 = G10, representing the maximum spray flow constraint line; L2: G2 = G20, indicating the maximum discharging flow constraint line; L3: G2 = S0G1, which is the spray flow constraint line; and L4: G1 (hsf-hin)+G2 (hsg-hsf) = P0, representing the electric heating power constraint line. Here, hsf is the enthalpy of saturated water, hsg is the enthalpy of saturated steam, and hin is the enthalpy of spray flow.
2.3 Improved non-equilibrium multi-region pressurizer model
Typical pressure-level response models for pressurizer simulation include the non-equilibrium two-region model, the non-equilibrium tri-region model, and the non-equilibrium multi-region model. The two-region model was first proposed by Redfield and Margolis (Gunther and Kreith, 1950; Redfield et al., 1968; Nahavandi and Makkenchery, 1970; Baron, 1973; Kim et al., 2006). In this model, thermal stratification will be induced when cold water enters the pressurizer, which will affect its accuracy. The tri-region model was proposed first by Baggoura, Martin, and Baek (Abdallah et al., 1982), which divides the entire pressurizer into three regions, namely, vapor region, water region, and surge region. Since this model does not clearly define the surge region, the initial volume is uncertain, and the dividing coefficient is also hard to determine, which is critical to the simulation accuracy.
The non-equilibrium multi-region model divides the entire pressurizer into three main regions (vapor region, liquid region, and saturated region), and each region is further subdivided into a number of control volumes, as shown in Figure 5. The mass and energy-exchanging processes can be more precisely simulated through this model, and it can overcome the problems that exist in two-region and tri-region models. Based on the multi-region model, an improved non-equilibrium multi-region model was proposed by Zhong et al. (2019), which is more applicable to the pressurizer degassing transient simulation analysis.
[image: Diagram of a vapor-liquid separator showing vapor and liquid regions. The top section is labeled "Vapor Region" with volumes vapor one to vapor n. The bottom section is labeled "Liquid Region" with volumes liquid one to liquid n. Arrows denote flow directions with labels such as "Spray Line," "Degassing Line," and "Surge Line." The separator shows saturation between the vapor and liquid regions.]FIGURE 5 | Multi-region non-equilibrium model.
2.3.1 Control equations
From mass conservation and energy conservation, for liquid region i (i = 1,2, … ,m-1),
[image: The formula is: \( \frac{d(\rho_{i,j} \nu_m)}{d\tau} = W_{i+1} - W_{i,j} - W_{k_{c},l_{i,j}} \), equation number (3).]
[image: Equation depicting thermodynamics or fluid dynamics. It involves differentiation and several terms representing various parameters like \( W_{lv} \), \( \tilde{h}_{lg-1} \), \( P_{lv} \), and \( Q_{cl,lv} \). Equation is labeled as (4).]
where p is the RCS pressure, Pa; VL is the pressurizer volume, m3; Wx,i(x = 1,v) represents the mass flow rate between control volume i and i+1, kg/s; [image: Mathematical expression showing a tilde over the letter h subscript x comma i.] is the enthalpy between i and i+1, J/kg; Wbe,l,i is the flashing flow rate of volume i, kg/s; Pl,i represents the heat power of liquid region volume i, W; and Qtc,x,i is the thermal conductivity of volume i, W.
For vapor region i (i = 1,2, … ,n-1),
[image: Differential equation showing the derivative of density with respect to time, related to production and consumption rates.]
[image: Equation showing a rate of change formula involving variables for density, enthalpy, velocity, and time. It includes terms for specific work and heat transfer, labeled as \(W\) and \(Q\), respectively.]
where VT is the pressurizer volume, m3; Wbc,v,i is the condensate flow rate of volume i, kg/s; and Wsc,v,i is the spray flow rate of volume i, kg/s. For the saturated region, 
[image: Equation showing a derivative with respect to time \( d_t \) of a fraction involving densities \(\rho_{sf}\) and \(\rho_{sg}\) and volumes \( V_{sf} \) and \( V_{sg} \) equated to a sum of terms \( W_{ks, sum} \), \( W_{kc, sum} \), \( W_{jm-1} \), \( W_{jp+1} \), \( W_{sp} \), and \( W_{ks, sum} \). This is labeled as equation (7).]
[image: Equation illustrating a fractional expression where variables related to density, height, and volume are subtracted and multiplied, all divided by \(d_t\), equaling weighted sums \(W_{bc, sum}\) of height \(h\) for indices \(g\) and \(f\). Equation is labeled as (8).]
[image: Mathematical expression showing a sum of two terms: W sub L, m minus 1 times h tilde sub L, m minus 1, plus W sub v, m minus 1 times h tilde sub v, m minus 1.]
[image: Equation with terms in parentheses: \((W_{sp} + W_{cs,sum})h_{ef}\), followed by \(Q_{c,l,m}\) plus \(Q_{c,v,m}\).]
where Wbe,sum represents the total flashing flow rate entering the vapor region from the liquid region, kg/s. Wbe,sum represents the total condensate flow rate entering the saturated region from the vapor region, kg/s, volume i and i+1, kg/s; Wsp is the pressurizer spray flow rate; and Wsc,sum is the total spray droplet flow rate, kg/s.
2.3.2 Physical models
During the pressurizer degassing process, two physical phenomena occur. One is flashing and steam condensation, while the other is spray condensation.
The flashing process occurring in the liquid region can be described as the process in which bubbles form and rise from the liquid region; the steam condensation process occurs when the droplets in the vapor region fall into the liquid region. Then, the flashing flow rate for volume i (i = 1, 2, … , m-1) in the liquid region is
[image: Equation depicting \(W_{\text{eLJ}}\) equals \(\rho_{\text{avg}} q_{\text{eLJ}} A V_{\text{tr, LJ}}\). It is equation number nine.]
where Vbr is the bubble rising speed, m/s, which can be obtained by the Gunther–Kreith correlation (Gunther and Kreith, 1950).
Furthermore, the steam condensation flow rate for volume i (i = 1, 2, … , n-1) in the vapor region is
[image: Mathematical equation displaying variables and constants. The equation is \( W_{c,w,j} = \rho_{f} (1 - \alpha_{w,j}) A V_{c,f,w,j} \), followed by the number ten in parentheses.]
where Vcf is an experienced constant.
The homogeneous flow model is applied to both vapor and liquid regions; then,
[image: The equation shows the variable alpha equals the fraction one over one plus rho sub y over rho sub x times open parenthesis l minus one close parenthesis, followed by equation number eleven in parentheses.]
The spray condensation process occurs when the spray droplets condense the surrounding steam as they fall, and then the condensates enter the saturated region. From energy conservation, the total condensation flow rate is
[image: Equation labeled 12 shows the formula for \( W_{\text{sc,sum}} = W_{\text{sp}} \frac{h_{sf} - h_{sp}}{h_{sg} - h_{sf}} \).]
where hsp is the enthalpy of the entrance spray liquid, J/kg.
2.4 Transient degassing model
During the degassing process, the pressure and water level in the pressurizer will fluctuate as the degassing valve opens, which can, in turn, affect the degassing efficiency. Thus, a pressurizer degassing transient model is required to simulate this process.
A lumped parameter method is applied in establishing the transient degassing model (Zhong et al., 2021), as shown in Figure 6.
[image: Diagram of a multi-degree-of-freedom mechanical system showing three masses, denoted as \(m_g, m_f,\) and \(m_{cb}\), each associated with a damping coefficient (\(C_g, C_f, C_{cb}\)) and stiffness (\(G_2, G_{vap}, G_{map}\)). Forces and additional coefficients (\(C_l, C_d, C_3\)) are indicated at each junction, suggesting interactions and energy transfer between the components. Arrows indicate the direction of interactions.]FIGURE 6 | Degassing transient model diagram.
From mass conservation,
[image: Equation showing the rate of change of a product, represented as the derivative of the product of "m" and "G" with respect to time "t". It equals the sum and difference of products of various constants, specifically \( G_C \), \( G_{fr} \), and \( G_{wp} \) with different coefficients \( C_1 \), \( C_2 \), \( C_{dr} \), and \( C_{wp} \). The equation is annotated with number thirteen.]
[image: The equation shows the derivative of \(mC_f\) with respect to \(t\) equals \(G_{dr}C_{dr} - G_{wp}C_{wp} - G_sC_s\). It is labeled as equation (14).]
[image: The equation depicts the derivative of \( m_{aC_{d1}} \) with respect to \( t \), equal to \( G_3 C_3 - G_1 C_1 \), labeled as equation 15.]
[image: The equation shown is:   \[ \frac{d (m_{t})}{d t} = G_{sup} + G_{3} - G_{1}, \]  indicated as equation (16).]
where mcl is the total mass of the RCS coolant, kg; Ccl is the gas concentration dissolved in the RCS coolant, kg/kg (H2O); and Gsup is the makeup flow rate, kg/s.
For the gas concentration of the interface between the vapor and liquid regions,
[image: Formula for \( C_{dr} \) equals the product of \( K \) times \(\left( \frac{M_{H_2O}}{M_i} p_{H_2O} \right)\) times \( C_v \). Equation number seventeen.]
[image: The image shows a mathematical equation: \( C_{\text{exp}} = \left( \frac{M_i}{K_b M_{\text{H}_2\text{O}}} \right) C_f \), labeled as equation (18).]
where Ki is the Henry coefficient, which is the function of the saturated pressure p.
Before this model can be used to calculate the transient of the gas concentration of the pressurizer and the primary coolant, it is necessary to obtain the values of the thermal–hydraulic physical quantities of the pressurizer, such as pressure, mass, and mass flow rate. In this paper, the thermal–hydrodynamic calculations are given to the model proposed in Section 2.3, and then the calculated values are passed to this model to calculate the gas concentration. Zhong et al. (2021) provides the specific computational framework.
3 DEGASSING SYSTEM ANALYSIS
3.1 Optimal size of the flow-restricting orifice
The optimal size of the flow-restricting office is calculated using the degassing optimization algorithm presented in Section 2.2. Seven pressure plateaus during plant shutdown operation are selected for the optimization calculation of pressurizer degassing (15.5 MPa–2.6 MPa [pressure of the steam bubble collapsed]), and the corresponding spray inlet temperature is the highest temperature allowed for each operating condition to maximize the degassing efficiency (Zhong et al., 2018). The available power of pressurizer electric heaters is 0–100%, and the maximum ratio of gas discharging flow to spray flow is set to be 1.0.
Based on the boundaries and conditions described above, the calculated results are shown in Table 1:
TABLE 1 | Optimization calculation results.
[image: Table displaying data on different parameters of a system, including pressure in MPa, spray inlet temperature in degrees Celsius, electric heater power percentage, ratio of discharging flow to spray flow, degassing period in hours, degassing efficiency percentage, and size of the orifice in millimeters. Each row corresponds to a different pressure level, showing changes in other parameters accordingly.]As shown in the optimization calculation results, the size of the flow-limiting orifice plate is in the range of 1.701 mm–2.343 mm. The larger the size of the flow-limiting orifice plate, the greater the system pressure fluctuations when the degassing valve is opened, especially under the high-pressure plateau. At the same time, for the low-pressure plateau, a larger flow-limiting orifice plate means more heat loss and a lower ratio of discharging and spray flow.
After comparative analysis, the size of the flow-limiting orifice plate is selected to be 1.7 mm. This selection not only ensures the stability of the system pressure fluctuations but also takes into account the degassing efficiency of the low-pressure plateau.
After using the 1.7-mm flow-limiting orifice plate. the hydrogen concentration vs. time curves when degassing at different pressure and temperature plateaus can be calculated using Equation 1, and the results are shown in Figure 7.
[image: Line graph showing hydrogen concentration in kilograms decreasing over time in seconds. Multiple lines represent different pressures ranging from two megapascals to fifteen megapascals, all showing a similar downward trend.]FIGURE 7 | Hydrogen concentration vs. time curves.
As shown in the figure, the lower the degassing pressure, the higher the degassing efficiency, and the shorter the degassing time required. The degassing time is shortest at the 2.6-MPa plateau, and it takes approximately 5.2 h to remove the gas dissolved in the reactor coolant from 35 mL (STP)/kg to 15 mL (STP)/kg.
3.2 Degassing transient simulation analysis
3.2.1 Initial condition
Although the RCS can be degassed at any shutdown plateau, the bounding condition is the hot–zero-power operation. Prior to opening the degassing valve, the operator energizes all the pressurizer heaters and places the spray valve in automatic control mode, according to the operating procedure. When the plant enters a stable condition approximately 200 s later, the operator opens the degassing valve. Therefore, the initial condition parameters can be easily calculated through heat balance (see Table 2).
TABLE 2 | Degassing transient initial condition.
[image: Table displaying various measurements: RCS pressure is 15.5 MPa, RCS temperature is 291.7 °C, spray flow is 3.582 kg/s, water level is 3.591 m, and H₂ concentration is 35 cc/kg.]3.2.2 Boundary conditions
Boundary conditions are as follows:
	i. Spray valve

The spray valve is placed into automatic control mode, whose opening is a function of the pressure difference between the measured pressure and the set pressure (see Figure 8).
	ii. Surge line

[image: Graph illustrating spray valve opening, showing valve percentage opening on the vertical axis and pressure difference in bars on the horizontal axis. Graph starts at 0% at 1.7 bar, rises to 100% by 5.2 bar.]FIGURE 8 | Opening of the spray valve vs. pressure difference.
The in-surge or out-surge flow rate in the surge line will vary with the spray flow and the thermal expansion of the RCS automatically.
	iii. Electrical heaters

All the electrical heaters are energized according to the operating procedure and the optimized calculation result.
	iv. Degassing valve

The degassing valve will be fully open at 200 s, and the flow will be limited by the downstream orifice plate with a size of 1.7 mm.
3.2.3 Transient simulation analysis
Transient simulation analysis is conducted using the improved non-equilibrium multi-region pressurizer model described in Section 2.3. The total simulation time is set at 3,000 s, and the time step is set to 0.1 s. By repeated trial calculation, when the grid number of the liquid region and vapor region reaches 300, a grid-independent solution can be obtained.
The degassing valve is opened 200 s later, and then the RCS begins to degas the hydrogen. In the degassing transient, the pressure and the spray flow versus time curves are given in Figure 9 and Figure 10, respectively.
[image: Graph showing pressure in megapascals (MPa) over time in seconds (s). Pressure decreases sharply, reaching a minimum of 15.462 MPa at 691 seconds, then gradually increases.]FIGURE 9 | Pressure transient curve.
[image: Graph showing spray flow in kilograms per second over time in seconds. The curve decreases sharply, reaching a minimum of 3.269 kg/s at 691 seconds, then gradually increases.]FIGURE 10 | Spray flow-rate transient curve.
From these two transient curves, at the moment of the degassing valve being opened, the pressure decreases rapidly, which will cause the control system to reduce the spray valve opening automatically; thus, the spray flow rate decreases quickly. However, at 263 s, since the spray flow, heater power, and degassing flow reach a heat-balance state gradually, the pressure and spray flow begin to decrease more slowly and eventually arrive at the lowest point at 691 s, with a pressure of 15.462 MPa and a spray flow rate of 3.269 kg/s. Then, the pressure begins to increase, and the spray flow starts to increase. After 1,230 s, the pressure reaches a stable value, which means that the degassing process enters the steady degassing condition.
The water level in the pressurizer is shown in Figure 11. In order to show more details, the section from 100 s to 300 s of the curve is partially enlarged (see Figure 12). As shown in Figure 11, the water level does not change a lot due to opening the degassing valve. The eventual stable level is 3.421 m. From Figure 12, the partially enlarged water-level curve shows that, at the moment of opening the degassing valve, the water level increases to 3.607 m, which is because the condensation droplets in the vapor region increase quickly due to the pressure decreasing rapidly at this moment.
[image: Line graph showing the level in meters over time in seconds. The level starts at 3.6 meters, peaks slightly, then steadily decreases to about 3.42 meters from 200 to 800 seconds, remaining steady thereafter until 1400 seconds.]FIGURE 11 | Water-level transient curve.
[image: Line graph showing water level in meters over time in seconds. The level rises sharply at 200 seconds, peaking at 3.607 meters at 211 seconds, then declines rapidly.]FIGURE 12 | Partially enlarged water-level transient curve.
It can be seen that the HPR1000 regulator degassing system designed in this paper is stable and controllable in the transient process of degassing when opening the exhaust valve, and degassing is safe and effective and meets the safety design requirements.
4 CONCLUSION
To reduce the time taken to reduce the H2 concentration from 35 mL (STP)/kg to 15 mL (STP)/kg, this paper designs a pressurizer degassing system by applying the pressurizer as thermal degassing equipment. Then, an optimization analysis is carried out under a full range of shutdown conditions, and the optimal size of the flow-limiting orifice plate is obtained.
Based on the optimal system design, the degassing steady analysis is performed for different degassing pressure plateaus. The analysis results show that the entire degassing process can be completed in as quickly as approximately 5.2 h, which shows a big advantage over the traditional degassing method, which removes non-condensable gas by letting down the reactor coolant to the chemical and volume control system.
To verify the safety features of the pressurizer degassing system designed for HPR1000, this paper performs an analysis of the transient when the degassing valve is opened with a dedicated computer application, which is developed based on the non-equilibrium multi-region model and pressurizer degassing transient model. Simulation results show that the pressure and water level in the pressurizer are within the normal operation band and will not initiate any safeguard signal and also have no effect on the degassing efficiency.
In conclusion, the pressurizer degassing system designed in HPR1000 is reasonable, feasible, safe, effective, and reliable.
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Irradiation-induced defects such as dislocation loops, cavities or solute clusters and chemical composition segregation of reactor pressure vessel (RPV) steel are the root causes of irradiation embrittlement. Combining two nucleation mechanisms, namely, the uniform nucleation and non-uniform nucleation of solute clusters (such as Cu-rich phase), a cluster kinetic simulation was established based on the reaction rate theory, and the co-evolution of matrix damage and Cu-rich phase in low-copper RPV steel was simulated under irradiation. And the average size and number density of defective clusters and solute clusters were established with irradiation dose. Compared with the average size and number density of dislocation loops observed by transmission electron microscopy (TEM) of proton irradiated RPV steel at 290°C, the verification results show that the cluster dynamics model considering both the nucleation mechanism of interstitial dislocation loops and vacancy clusters can well simulate the irradiation damage behavior of materials.
Keywords: reactor pressure vessels, cluster dynamics, proton irradiation, dislocation loops, solute clusters

INTRODUCTION
Nuclear power is an important part of China’s modern energy system to achieve cleanliness, efficiency, safety, and sustainability. The reactor pressure vessel (RPV) is a primary safety component of a pressurized water reactor (PWR) nuclear power plant, which loads the core and supports all components inside the reactor. It serves as a safety boundary for primary coolant pressure and radioactive material shielding. RPV is the only non replaceable component. Neutron irradiation can reduce the toughness of RPV materials and increase the risk of brittle failure. The lifespan of nuclear power plants is determined by the operation life of RPV.
The neutron irradiation damage problem of RPV steel is a key issue for the long-term and safe operation of nuclear power plants. Neutron irradiation of RPV steel involves two principal effects. Firstly, nuclear transmutation reaction, and the deexcitation process may also trigger γ, β radiation. Secondly, The collision of neutrons with lattice atoms could form primary collision atoms (PKA), which triggers a cascade of collision processes, including displacement damage and ionization damage. Displacement damage is the most important role, which induce excess interstitial atoms and vacancies. The migration, aggregation, and annihilation of interstitial atoms and vacancies, as well as their interactions with solute atoms and existing defects such as defects of line, surface, and body, or irradiation products such as H and He, ultimately form nanoscale point defect clusters (such as dislocation loops and voids), complexes of point defects and solute yards, solute atom clusters (such as Cu rich clusters or Ni-Mn-Si rich clusters), or interface weakening element segregation (such as P). These nano-structure features hinder dislocation movement or weaken the interface, which cause hardening and embrittlement of RPV materials. Under high dose irradiation conditions, the embrittlement process of RPV steel may be accelerated beyond expectations, ultimately leading to a reduction in the safety window of RPV operation parameters, endangering its structural integrity and restricting its long-term economic and safe operation (Qingmao Wan, 2013; Wang et al., 2020; Ke and Spencer, 2022).
The performance data of RPV materials under high dose irradiation is scarce or scattered in various countries. So it is not possible to reliably extrapolate the prediction model of RPV performance in regulations to new service conditions (Wan et al., 2010). Conducting high dose irradiation testing and evaluating RPV materials directly in experimental or commercial reactors is costly, time-consuming, difficult to control parameters. And neutron irradiation materials and specimens are radioactive and must be operated in hot rooms. Therefore, only a few key parameters can be selectively implemented, so it difficult to conduct comprehensive and systematic neutron irradiation experimental research. Ion irradiation of RPV materials causes displacement damage, ionization damage, and minimal doping. When selecting the appropriate ion energy for irradiation, the collision between the incident ion and the lattice atoms generates cascade collisions induced by PKA, resulting in displacement damage, which plays a major role. Because of the similar mass between protons and neutrons, proton irradiation is commonly used to simulate neutron irradiation to study radiation damage issues.
The experimental method of high flux proton irradiation is used to simulate the irradiation process of materials in nuclear reactors. Combined with theoretical analysis, the performance and related laws of nuclear power materials can be studied (Chitra and and Kotliar, 2000; Huibin et al., 2017; Cui et al., 2020). However, there are also drawbacks such as time consumption and harsh environment for experiment. In contrast, computer simulation methods (He et al., 2012; Mathew et al., 2018; Shimodaira et al., 2018) can not only save a lot of manpower and material resources, reduce development costs, but also provide “experimental data” under extreme conditions (ultra-high radiation, ultra-high pressure, and ultra-high temperature), so as to overcome experimental difficulties. They can also obtain microscopic details of material changes under irradiation conditions and obtain information that cannot be obtained in macroscopic experiments. It has very important theoretical significance for the prediction and evaluation of high dose radiation damage in RPV steel.
The cluster dynamics model based on mean field approximation has high computational efficiency and can quickly describe defect reaction events that occur at different time scales within the same framework. It simulates the diffusion reaction process of defects (clusters) to study the changes of single or small defects with time, space, and size (Wan et al., 2011; Wan Q. M et al., 2012; Yoshiie et al., 2015). It can achieve the same spatial resolution as transmission electron microscopy (TEM). Therefore, cluster dynamics can simulate the kinetic evolution process of defects under reactor irradiation dose across time scales (ps to year) and spatial scales (nm to m).
This study focuses on low copper RPV steel as the research object, establishes a model based on the average rate field theory, and develops a cluster dynamics program for radiation damage. It simulates the micro evolution process of various defects such as migration, aggregation, and nucleation during the radiation damage process, studies the generation and evolution of dislocation loops, voids, and solute clusters, the results of which were compared and verified by the experimental results. The study will provide reference for the prediction and evaluation radiation embrittlement of RPV.
2 CLUSTER DYNAMICS MODEL AND METHOD
2.1 Assumption
Radiation generates displacement cascades and isolated point defects between cascades, which include endogenous vacancy clusters, endogenous interstitial clusters, and endogenous isolated point defects. Most vacancy and interstitial atoms recombine and annihilate. The ratio of endogenous vacancy clusters and interstitial atomic clusters in displacement cascades to the total number of surviving point defects will decay with increasing irradiation dose. The three-dimensional cavity changes include (1) endogenous vacancy clusters of displacement cascades; (2) Two vacancies aggregate to form nuclei; (3) Vacancy clusters capture Cu atoms and transform into Cu rich clusters. The variation of two-dimensional planar interstitial clusters (or dislocation loops) includes (1) endogenous interstitial clusters of displacement cascades; (2) Two interstitial atoms aggregate to form nuclei; (3) Interstitial clusters capture Cu atoms and transform into Cu rich clusters. Three dimensional Cu rich clusters can also nucleate through the aggregation of two Cu atoms, which belongs to uniform nucleation, namely, homogeneous nucleation. Vacancy clusters or interstitial clusters capture Cu atoms and transform into Cu rich clusters, which belongs to heterogeneous nucleation.
2.2 Basic equations
2.2.1 Changes in monomer concentration
Isolated vacancies, interstitial atoms, and Cu atoms can be collectively referred to as monomers. During the irradiation process, the concentrations of vacancies, interstitial atoms, and Cu atoms will evolve over time, and their evolution equations can be expressed as Eqs 1–3:
[image: A mathematical equation is displayed:   \[dC_i/dt = P(1 - \epsilon_t )(1 - k_{exe} a_c) - Z_{iv}(D_t + D_i)C_{ac} - Z_{ij}D_iC_i - Z_{id}D_iC_i \rho - Z_{iu}D_iC_iS_k - Z_{ivc}D_iC_iS_{vc}\]   This is labeled as equation (1).]
[image: The image shows a mathematical equation labeled as equation (2), which represents the differential change of a variable \( C_v \) over time \( t \). The equation includes various terms with parameters \( P \), \( \varepsilon_t \), \( k_{ev,Cdc} \), \( Z \), \( D \), \( C \), \( S \), \( \rho \), each with different subscripts and combinations indicating complex dependencies and interactions.]
[image: The image shows a differential equation:   dC_a/dt = -Z_Ca,a D_Ca C_a - Z_Ca,v D_Ca S_v - Z_Ca,w D_Ca S_w - Z_Ca,s D_Ca S_ic - Z_Ca,rp D_Ca (C_Ca - C_Ca,mit) S_rp   followed by the equation number (3).]
In the formula: [image: Please upload the image or provide a URL so I can help you with the alt text.], [image: Please upload the image or provide a URL for me to generate the alt text.] and [image: Mathematical expression showing the symbol "C" with a subscript "Cu" and superscript "4", indicating a specific notation or variable related to a subject, possibly chemistry or physics.] represents the concentrations of interstitial atoms, vacancies, and Cu atoms, respectively; [image: Mathematical expression with the variable \( C_{v, \text{emit}} \).] and [image: Mathematical expression showing the symbol \( C \) with the subscript \( \text{Cu, emit} \).] represents the concentration of vacancies on the surface of voids and the concentration of Cu atoms at the interface of Cu rich phases, respectively; [image: Please upload the image so I can generate the alternate text for it.] is the damage rate, i.e., the injection rate, in units of dpa/s; The recombination probability [image: Please upload the image file or provide a URL, and I will create the alt text for you.] of Frenkel point defects during the displacement cascade cooling process and [image: Mathematical expression showing "1 minus epsilon subscript t" with epsilon represented by the lowercase Greek letter.] is represented by the damage efficiency. [image: Mathematical expression depicting the Greek letter epsilon with subscripts "ic, dc" indicating specific parameters or variables.] is the percentage of interstitial atoms in the endogenous interstitial clusters of the displacement cascades; While [image: Mathematical expression displaying the Greek letter epsilon with subscripts "v c" and "d c".] is the percentage of vacancies in the endogenous vacancy clusters of the displacement cascades; [image: It seems there might be a technical issue, as I cannot see images directly. Please try uploading the image again or provide a URL so I can assist you with creating an alt text description.] is the combination constants or capture reaction constants, the lower corners of [image: Please upload the image or provide a URL so I can help create the alt text for it.], [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: It looks like the image wasn't uploaded properly. Please try uploading the image again, and I’ll be happy to help with the alt text!], [image: Please upload an image or provide a URL for me to create the alt text.], [image: Text in a stylized serif font displaying the lowercase letters "v" and "c" close together.], [image: Please upload the image you would like me to describe, and I will create alternate text for it.] and[image: It seems there was an issue with the image upload. Could you try uploading the image again or provide more context?] respectively represent interstitial atoms, vacancies, Cu atoms, dislocation loops, voids, Cu rich phases, and dislocation lines density in the matrix; And [image: Please upload the image or provide a URL to the image for which you need the alternate text.], [image: It seems like the image did not load properly. Please upload the image or provide a URL, and include any additional context if needed.] and[image: It seems like you are trying to describe a mathematical variable or formula, specifically "D" with a subscript "Cu". If you meant to provide an image, please upload it so I can assist you with the alternate text.] is the diffusion coefficients of interstitial atoms, vacancies and Cu atoms, respectively; And [image: It seems there was a mistake in your message. Please upload the image or provide the URL so I can help with the alternate text.], [image: Please upload the image or provide a URL to the image you'd like described.] and [image: Mathematical expression with italicized lowercase "s" subscript "crp".] represents the sink strength of dislocation loops, voids and Cu rich phase for absorption point defects, respectively.
2.2.2 Concentration evolution of clusters
Dislocation loops, vacancies, and Cu rich phases can be collectively referred to as clusters. During the irradiation process, the concentration and size of dislocation loops, vacancies, and Cu rich phases will evolve over time, and their evolution equation can be expressed as Eqs 4–6:
[image: Equation for the rate of change of \(C_{\text{loop}}\) over time \(t\) is given as \(\frac{1}{2} Z_{\text{in}} D C_{\text{C}} C_{\text{I}} + C_{\text{influx}} - Z_{\text{clump}} D_{\text{c}} C_{\text{c}} C_{\text{clump}} S_{\text{c}}\) labeled as equation (4).]
[image: Equation showing the rate of change of a variable, \(dC_{\text{vac}}/dt = \frac{1}{2}Z_{\text{inv}}D_{\text{C}}C_{\text{I}v} + C_{\text{revac}} - Z_{\text{Cinv}}D_{\text{C}v}S_{\text{vac}}\), labeled as equation 5.]
[image: The image shows an equation: \( \frac{dC_{\text{rep}}}{dt} = \frac{1}{2} Z_{C_{flk}} D_{ca} C_{ca} C_{ca} + Z_{C_{flk}} D_{ca} C_{ca} S_{k} + Z_{C_{hmc}} D_{ca} C_{ca} S_{vc} \) with the equation number (6).]
In the formula: [image: The text shows the mathematical symbol "C" with the subscript "loop," typically representing a loop gain in control systems or electronics.]、 [image: It seems like there was an issue with displaying the image. Please upload the image file or provide a URL so I can help you create the alt text.] and[image: Mathematical notation showing the variable C with subscript c, r, and p.] represents the concentration of dislocation loops, voids, and Cu rich phases, respectively; [image: Mathematical expression showing "C" with subscripts "ic, dc".] and [image: I'm unable to view images directly. Please describe the image, or share the image through a file upload, and I'll help you create alt text for it.] represents the concentrations of endogenous interstitial clusters and endogenous vacancy clusters in the displacement cascades, respectively.
2.2.3 Cluster size evolution
During the irradiation process, the size of dislocation loops, voids, and Cu rich phases will evolve over time, and their evolution equation can be expressed as Eqs 7–9:
[image: Equation showing the rate of change of \(N_{\text{loop}}\) over time. It equals \((Z_{\text{ijk}}D_{\text{C}_i} - Z_{\text{m}}D_{\text{C}_m})S_{\text{c}}/C_{\text{loop}}\) plus \(N_{\text{lock}}C_{\text{lock}}/C_{\text{loop}} - Z_{\text{Cink}}D_{\text{ca}}C_{\text{ca}}S_{\text{c}}/C_{\text{loop}}\). Equation labeled (7).]
[image: Equation showing the rate of change of voids with time. It includes terms for diffusion coefficients, concentrations, nucleation rate, and void radii. Labeled as equation eight.]
[image: Mathematical equation showing a rate of change. The equation is: \(dN_{Cr_p}/dt = \left[ Z_{Cu,Cr_p}D_{Cu}(C_{Cu} - C_{Cu,emit}) \right] S_{Cr_p}/C_{Cr_p} + Z_{Cu,nw} D_{Cu,nw}C_{Cu,Se}/C_{Cr_p} + Z_{Cu,nk}D_{Cu,nk}C_{Cu,Se}/C_{Cr_p} + 4\pi R_{Cr_p} \left[ Z_{Cu,Cr_p}D_{Cu}(C_{Cu} - C_{Cu,emit}) \right] \). Equation number nine.]
In the formula, [image: Italicized capital letter N with a subscript reading "loop."], [image: The image shows the mathematical notation "N" with the subscript "void" in italics, likely representing a specific variable or concept in a mathematical or scientific context.] and[image: Mathematical expression showing "N" with subscript "crp".] represents the number of monomers contained in each dislocation loop, void, and Cu rich phase, respectively; And [image: The text reads "N" with subscript "ic, dc" in italic font.] and [image: The image shows a mathematical expression: \( N_{vc,dc} \).] is the number of interstitial atoms contained in each endogenous interstitial atomic cluster and the number of vacancies contained in the endogenous vacancy cluster of displace cascades, respectively; And [image: The image shows the variable "R" with the subscript "loop" in italicized text, representing a specific measurement or parameter related to a loop, commonly used in scientific or mathematical contexts.], [image: It appears there is no image uploaded or visible. Please provide the image by uploading it or sharing a URL, and I will be happy to help create alt text for it.] and[image: Mathematical notation shows the symbol \( R_{crp} \).] is the radii of each dislocation loop, void, and Cu rich phase, in units of the number of monomers.
The radius of dislocation loops, vacancies, and Cu rich phases can be expressed as Eqs 10–12:
[image: Equation showing the loop radius, \( R_{\text{loop}} = \left(\frac{N_{\text{loop}}}{\pi}\right)^{\frac{1}{2}} \), numbered as equation 10.]
[image: Equation labeled with number eleven. It shows \( R_{\text{void}} = \left(\frac{3N_{\text{void}}}{4\pi}\right)^{\frac{1}{3}} \).]
[image: The mathematical expression shows \( R_{\text{crp}} = \left(\frac{3N_{\text{crp}}}{4\pi}\right)^{\frac{1}{3}} \), labeled as equation (12).]
2.2.4 Cluster hardening
The increase in yield strength caused by irradiation-induced dislocation loops, voids, and Cu rich phases can be expressed as Eq. 13:
[image: Equation representing stress change: Δσ equals αMGb multiplied by two expressions. The first is the square root of ρ minus the square root of ρ sub 0 for dislocation lines. The second is 1 over the square root of 2RN for dislocation loops, voids, or copper-rich phase. Equation numbered as 13.]
In the formula: [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will help you create the alt text.] is the strengthening factor, with a value of 0.1 for dislocation lines; For dislocation loops, the value is 0.267; For voids, the value is 0.05; For the rich Cu phase, the value is 0.15. And [image: Please upload the image or provide a URL so I can generate the alternate text for you.] are [image: Please upload the image for which you would like me to create alternate text.] the dislocation line density after irradiation and the initial dislocation line surface density, respectively.
Based on the research results of Garner and Wolfer, the following equation for the evolution of dislocation lines can be proposed (Eq. 14):
[image: The equation shown is: \( \frac{d\varphi}{dt} = B\varphi^{\frac{3}{2}} - A\varphi^{\frac{1}{2}} \) followed by the reference number (14).]
The superposition method of various cluster hardening contributions adopts the sum of squares square root method. It can be expressed as Eq. 15.
[image: The formula displays the total variance, denoted as sigma sub total, which equals the square root of the sum of squared sigma sub i values. It is labeled as equation 15.]
2.3 Main parameters
When solving the partial differential equation of the average rate field, it is important to choose material parameters as accurately as possible, which is beneficial for obtaining reliable prediction results. Table 1 lists the main input parameters for proton irradiated RPV steel at 290°C. Most of the parameters come from literature data (Gan et al., 1999; Kwon et al., 2003; Dubinko et al., 2009; Qingmao Wan, 2013).
TABLE 1 | Main input parameters of proton-irradiated RPV steel at 290°C.
[image: Table with columns labeled Parameter Name, Parametric Symbol, Unit, and Proton Irradiation. Parameters include flux, combination probability, point defect percentages, cluster sizes, reaction constants, energy values, diffusion coefficients, dislocation density, and lattice constant. Symbols and units vary; values are given for proton irradiation, such as \(P\) as \(1 \times 10^{-5}\) dpa/s and lattice constant \(a\) as \(0.29064\) nm.]2.4 Algorithm for multi-dimensional pathological differential equations
This model belongs to multidimensional ill conditioned rigid differential equations. If we consider the size distribution of various clusters, the number of equations will reach approximately 109. This study does not currently consider the size distribution of clusters and only calculates the average size of clusters. The algorithm used is the Runge Kutta method, and a simulation program for nano-structure damage has been developed.
3 CALCULATION RESULTS
3.1 Cluster evolution
Figure 1 shows the dynamic simulation results of A508-3 steel under proton irradiation at 290°C, including a 3 × 5 array diagram. The first line shows the interstitial defects and the hardening components of dislocation loops with the variation of irradiation dose. While the second line shows the vacancy type defects and the hardening components of voids with the variation of irradiation dose. The third line shows the Cu atomic related cluster and the hardening component of Cu rich phases with the variation of irradiation dose. The columns a-e represents monomer concentration, number of monomers contained in the cluster, cluster concentration, cluster size, and cluster hardening component, respectively.
[image: There are three rows of graphs representing different properties of P-irradiated OGCR RPV steel at 1e-5 dpa/s, 288°C. Columns A to E show different parameters: A depicts solute clustering, B illustrates loop number density, C shows loop size distribution, D represents loop diameter, and E displays loop stress redistribution. Each row (1, 2, 3) indicates varying phosphorus concentrations. Graphs reveal trends such as decreasing clustering and increasing loop density and diameter with phosphorus content, highlighting its impact on material properties.]FIGURE 1 | Dynamic simulation results of A508-3 steel irradiation at 290°C, the variation of clusters, i.e., (1) interstitial dislocation loops, (2) microvoids, and (3) Cu-rich phases with irradiation flux, including (A) monomer concentration; (B) the number of monomers in the cluster, (C) the concentration of the cluster; (D) cluster diameter; (E) The amount of hardening caused by clusters.
Within the irradiation dose range of 0.01–0.4 dpa, (a) the concentration range of interstitial atoms is 3.4 × 10−16−1.3 × 10−15, which gradually decreases with increasing irradiation dose and tends towards equilibrium concentration, with an order of magnitude of 10−16; (b) The number of interstitial atoms contained in every dislocation loop is approximately 100–500; (c) The density range of dislocation loops is 1.3 × 1021–1.3 × 1022 m−3, which gradually increases with the increase of irradiation dose, fast firstly and then slow, with an order of magnitude of 1022 m−3; (d) The diameter is about 2–8 nm, and the diameter shows an increasing trend with increasing dose, and the growth rate shares the same “fast followed by slow” type; (e) The hardening component of dislocation loops shows a similar increasing trend with the irradiation dose, first fast and then slow, increasing from less than 50–160 MPa up to 0.4 dpa.
Within the irradiation dose range of 0.01 to 0.4 dpa, (a) the vacancy concentration range is 4 × 10−8–1.6 × 10−7, which gradually decreases with increasing irradiation dose and tends towards equilibrium concentration, with an order of magnitude of 10−8; (b) The number of vacancies contained in a void is approximately 50–150; (c) The density range of voids is 6.0 × 1021–1.3 × 1023 m−3, which gradually increases with the increase of irradiation dose, fast firstly and then slow, with an order of 1023m−3; (d) The diameter is about 1–1.5 nm, and the diameter shows an increasing trend with increasing dose, and the growth rate shares the same “fast followed by slow” type; (e) The hardening component of voids shows a similar increasing trend with the irradiation dose, first fast and then slow, increasing from less than 25–50 MPa up to 0.4 dpa.
Within the irradiation dose range of 0.01 to 0.4 dpa, (a) the concentration range of Cu atoms is 9.6 × 10−6–5.9 × 10−4, which decreases continuously with increasing irradiation dose; (b) The number of Cu atoms in the Cu-rich phase is approximately 100–800; (c) The density range of Cu rich phases is 4.0 × 1020–3.1 × 1022 m−3, which gradually increases with the increase of irradiation dose, fast firstly and then slow, with an order of magnitude of 1022 m−3; (d) The diameter is about 1–2.5 nm, and the diameter shows an increasing trend with increasing dose, and the growth rate shares the same “fast followed by slow” type; (d) The hardening component of the Cu-rich phases shows a similar increasing trend with the irradiation dose, first fast and then slow, increasing from less than 20–80 MPa up to 0.4 dpa, which is close to the saturation hardening amount of Cu rich phase. The supersaturated solid solution Cu atoms basically precipitate.
3.2 Relationship between cluster hardening component and total hardening amount
Figure 2 shows the variation of various hardening amounts of A508-3 steel under proton irradiation at 290°C with the irradiation dose. Below 0.05 dpa, the hardening components of dislocation loops, voids, and Cu rich phases are comparable for the contribution of the total hardening amount; After 0.05 dpa, the hardening components of dislocation loops, Cu rich phases, voids, and dislocation line networks are ranked in descending order, with hardening component of dislocation loops dominating the total hardening amount. This indicates that the evolution of dislocation loops is the dominant factor for the irradiation embrittlement of A508-3 steel under high dose proton irradiation conditions at 290°C.
[image: Graph showing the enhanced stress contributions of various factors in P-irradiated 0.06Cu RPV steel at 288 degrees Celsius. The x-axis represents the depth in micrometers, and the y-axis shows stress in megapascals. Four curves represent different factors: loops (red), grain boundaries (pink), dislocation line (blue), and CEV-total matrix (green). The CEV-total matrix curve is the highest, showing a greater increase in stress compared to other factors.]FIGURE 2 | Dynamic simulation results of A508-3 steel irradiated by protons at 290°C, the contribution of clusters, i.e., (1) interstitial dislocation loops, (2) microvoids, (3) Cu-rich phases, and (4) dislocation lines, to irradiation hardening.
4 EXPERIMENTAL VERIFICATION
The high-temperature proton irradiation test utilizes the 320 kV high charge ion experimental research platform of the National Laboratory of Heavy Ion Accelerator at Lanzhou Institute of Modern Physics. Using an incident beam perpendicular to the surface of the sample, with a scanning area of approximately 1.5 cm2 × 1.5 cm2, the total current intensity of the proton beam reaching the sample stage is approximately 25 μ A. The vacuum degree is better than 1 × 10−4 Pa, and the temperature control accuracy is ±5°C. Under the proton irradiation at 290°C, the proton beam density is approximately 6.8 × 1013 ion/cm2-s, equivalent to 11 μ A/cm2. This irradiation was conducted to 5.57 ion/cm2 × 1017 ion/cm2, equivalent to 0.163 dpa. The measured size and number density values were obtained by quantifying the dislocation loops of proton irradiated Chinese A508-3 RPV steel using TEM (Wan Q et al., 2012; Lei et al., 2014). The comparison between the experimental measured values of dislocation loops and the simulated values of cluster dynamics is shown in Table 2. The verification results show that for the dislocation loops in RPV steel irradiated with 290°C proton, the calculated values of cluster dynamics are on the same order of magnitude as the TEM measured values in proton irradiation experiments, with a size deviation of 50%, a number density of 10%, and a hardening deviation of 20%. This indicates that cluster dynamics can effectively simulate the proton irradiation of RPV steel at 290°C.
TABLE 2 | Experimental measurements and simulated values of cluster dynamics of dislocation loops in proton-irradiated Chinese A508-3 RPV steel at 290°C.
[image: Table comparing measured and calculated values of various parameters. For temperature (T_i) in degrees Celsius and dose in displacements per atom (dpa), both are 290 and 0.163 respectively. Measured value for diameter (d) is 10.1 nanometers, calculated is approximately 5, with a 50% relative deviation. Measured value for N is 0.88 x 10^22 per cubic meter, calculated is 0.8, with a 10% deviation. Measured stress difference (Δσ_loop) is 150 MPa, calculated is approximately 120 MPa, with a 20% deviation.]5 CONCLUSION
Considered both the homogeneous nucleation mechanisms and the heterogeneous nucleation mechanisms of solute clusters, the study developed a simulation program based on cluster dynamics model for the nano-structure evolution of RPV steel during irradiation. The average size and number density evolution of interstitial dislocation loops, voids, and solute clusters generated by proton irradiation at 290°C were calculated, which were compared and verified with TEM measurements of specific proton irradiation experiment for Chinese A508-3 RPV steels at 0.163 dpa. The research results indicate that the simulation results are roughly consistent with the experimental results. Subsequent research can consider developing more universal cluster dynamics simulation methods with much more defects, conducting parameter sensitivity analysis and comprehensive experimental data validation.
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With the development of advanced pressurized water reactor technology, the thermal-hydraulic coupling effect between the containment and the primary system becomes increasingly tight. In order to meet the demand for integrated safety analysis between the containment and the primary system, this paper investigates a direct coupling method between the best-estimate system code Advanced Reactor Safety Analysis Code and the containment analysis program ATHROC (Analysis of Thermal Hydraulic Response Of Containment). The feasibility of this direct coupling method and the applicability of the coupled program for overall safety analysis are demonstrated using Marviken two-phase flow release experiments. The ATHROC/ARSAC coupled program is employed to analyze the impact of the pressure relief function of the CPR1000 nuclear power plant pressurizer on the behavior of the primary system and containment during the TMLB’ accident. The calculation results indicate that these measures can reduce the pressure of the primary system to the level acceptable by the low-pressure injection system, but at the same time, they cause the pressure in the containment to rise to nearly 0.4 MPa. Therefore, to ensure the structural integrity of the containment, it is necessary for the non-passive hydrogen recombiner to effectively reduce the hydrogen concentration, thereby avoiding additional pressure increase in the containment due to hydrogen deflagration, which could lead to overpressure failure. The findings of this study are of significant reference value for improving the safety performance of thermal-hydraulic systems in operational Gen-II and advanced Gen-III pressurized water reactor nuclear power plants.
Keywords: best-estimate code, containment, code coupling, active depressurization measure4, TMLB’ accident

1 INTRODUCTION
As nuclear technology advances, the thermal-hydraulic coupling between the containment and the primary system becomes even tighter. As large pressurized water reactors, both the Hualong One (Xing et al., 2016) and AP1000 (Schulz, 2006) incorporate the In-Containment Refueling Water Storage Tank (IRWST) as a crucial heat trap. During the prolonged recirculation cooling phase following a loss-of-coolant accident, there’s no need for switching water withdrawal points as required in Generation II PWRs, thus reducing the number of penetrations through the containment. The Automatic Depressurization System (ADS) of the AP1000 directly connects the primary system to the IRWST. In accident conditions, high-temperature, high-pressure steam from the primary system is discharged to both the IRWST and the containment compartment via the ADS Sparger and the fourth-stage sparger, respectively, reducing the pressure in the primary system while causing an increase in the pressure within the containment. The water level in the IRWST is influenced by the flow rate driven by the gravity head pressure. The water level and temperature in the IRWST also affect the natural circulation capability of the Passive Residual Heat Removal System (PRHRS). In Small Modular Reactors (SMRs), such as the structure is highly compact, the mutual influence between the containment and the primary system is even more evident. For Generation II nuclear power plant technology, such as the CPR1000, the containment cavity is crucial, as the water level in the sump determines whether long-term safety injection to reactor core and containment spray cooling functions can be achieved during accidents. The pressure relief tank of the CPR1000 primarily receives steam discharged from safety valves and, when the pressure in the relief tank is too high, discharges coolant to the containment. In summary, coupling safety analyses of the primary system and the containment play a crucial role in enhancing the safety of advanced reactors.
In order to analyze the complex physical phenomena within the containment during accident conditions, specialized containment analysis programs such as CONTEMPT (Wheat et al., 1975), GOTHIC (Gavrilas et al., 1996), CONTAIN (Murata et al., 1989), ATHROC (Chen et al., 2018) etc., as well as integrated programs with full-scope accident analysis capabilities such as MAAP (Williams et al., 2008), MELCOR (Gauntt et al., 2000) etc., are available in the literature, capable of simultaneously analyzing both the primary system and the containment. Currently, integrated programs are predominantly utilized in understanding containment behavior. Taking the MAAP program as an example, it encompasses models for both the reactor coolant system and the containment, with the containment model capable of describing most physical phenomena, including mass and energy exchange between containment compartments, condensation and evaporation, containment spray, molten material-concrete interaction, gas combustion, steam explosions, and direct containment heating, among others. For the primary system model, MAAP employs thermal-hydraulic governing equations based on quasi-equilibrium assumptions, yielding conservative results. Due to computational efficiency considerations, the nodalization schemes of these integrated programs are fixed and rather coarse within the code, resulting in much less refined calculation results. In contrast, system codes typically solve more mechanistically based two-phase flow thermal-hydraulic governing equation sets (such as the commonly used one-dimensional two-fluid model), which also include neutron kinetics models, widely used for best-estimate safety analysis of PWRs. However, these best-estimate system codes solve one-dimensional Euler equations and are not suitable for describing natural circulation phenomena within the large spaces of the containment. Moreover, when simulating dedicated safety features, best-estimate system codes such as RELAP5 (Fletcher and Schultz, 1992) and ASRAC (Deng et al., 2021) can only use simple time-dependent volumes and time-dependent junctions to represent injection water sources and injection rates, respectively, unable to quantitatively analyze changes in IRWST water level, injection flow rates, and pressure head variations. Therefore, applying best-estimate system codes and containment analysis programs separately for primary system and containment analysis, considering their coupling, is more advantageous compared to using integrated analysis programs alone, providing important guidance for conducting comprehensive safety analyses of nuclear power plants.
Smith (Smith, 1993; Smith et al., 1994; Smith et al., 1995) developed a coupling program for RELAP5/MOD3 and CONTAIN 1.12 using PVM technology on workstations. RELAP5 models the primary system, analyzing its thermal-hydraulic behavior, while CONTAIN models the containment, analyzing thermal-hydraulic phenomena within it. Calculations for ATWS accidents caused by the closure of the main steam isolation valve in pressurized water reactors showed that the results obtained from the coupled program were more accurate. Similarly, Martin et al. (Martin, 1995) developed a coupling program for RELAP5/MOD3 and CONTAIN based on PVM technology. By modifying RELAP5 and inputting coupling information into RELAP5’s input cards to initiate the calculation of the coupling program, they demonstrated the feasibility of the coupling method through calculations of pressurized water reactor pressure vessel discharge problems and main steam pipe rupture accidents, showing that the results obtained were more accurate than those from independent CONTAIN calculations. Park et al. (Park and Lee, 1994) developed a coupling program for RELAP5/MOD3 and CONTEMPT 4 based on UNIX process control technology. CONTEMPT is primarily used for calculating thermal-hydraulic phenomena within the containment and limited severe accident phenomena such as gas combustion. Calculations on a simplified nuclear power plant model using the coupling program demonstrated the feasibility of the coupling technique. The coupling program, utilizing specialized safety feature models within the containment and best-estimate models of the primary system, helped provide a realistic assessment model of the Emergency Core Cooling System (ECCS) in LOCA scenarios. Kwon et al. (Kwon et al., 1998) conducted realistic estimation analyses of large-break LOCA scenarios for Units 3 and 4 of the Yonggwang nuclear power plant using the coupling program and compared the results with conservative design analysis. The coupling program demonstrated that peak containment pressure occurred during the discharge phase, while the conservative design analysis showed peak containment pressure occurring later in the discharge phase. Based on the analysis, the authors concluded that the results from the coupling program were more reasonable. Chung et al. (Chung et al., 1998) studied the coupling of the system code MARS 1.3 with CONTEMPT using DLL technology and the coupling of RELAP5/MOD3 with CONTAIN 2 (Chung et al., 2001). The authors suggested that DLL technology could be more convenient than UNIX process control technology for coupling multiple programs. Rodríguez et al. (Rodriguez, 2002) coupled MELCOR with RELAP5 using PVM technology, demonstrating the feasibility of coupling technology. MELCOR is used to calculate severe accident phenomena within the containment, while RELAP5 calculates the thermal-hydraulic behavior of the primary system. If SCDAP/RELAP5 is used, it can also simulate severe accident phenomena within the primary system. The authors argued that multi-physics coupling programs can handle complex system analyses and achieve best-estimate capabilities for each system.
Based on the thermal-hydraulic system interface between the primary system and the containment, this study investigates a direct coupling method between the containment analysis program ATHROC and the system code ARSAC. ATHROC is a lumped parameter code developed for the analysis of flow and heat transfer phenomena under accident conditions in a PWR containment which is nodalized into a network of interconnected compartments (Chen et al., 2018). Critical models include buoyant plume, spray heat removal, flow between compartments etc. ARSAC is a system safety analysis code based on the well-known one-dimensional two-fluid two-phase model, and particularly designed for PWRs (Deng et al., 2021). ARSAC and ATHROC are respectively utilized to analyze the complex thermal-hydraulic phenomena in the primary system and containment. Data exchange between the two programs is conducted to account for the mutual influence between the primary system and containment through breach or valve flow rates, as well as specialized safety features. Finally, based on this coupling program, focusing on the CPR1000, the impact of active depressurization via the pressurizer safety valves during a TMLB’ accident on the thermal-hydraulic response of the primary system and containment is analyzed. This has important reference value for re-evaluating the pressurizer’s depressurization function as a severe accident mitigation measure.
2 DESCRIPTION OF THE COUPLING METHOD
In accident conditions, the containment receives high-temperature and high-pressure gas-liquid mixtures from the primary system, thus the coupling interface between the two programs is the breach or valve of the primary system pressure boundary. When the emergency core cooling system (ECCS) in the specialized safety features is activated, the primary system receives fluid from the containment (e.g., IRWST, containment sump), and the coupling interface between the two programs is the interface of the ECCS within the primary system. In coupling ARSAC with ATHROC, for both best-estimate and realistic analyses, the situations of both coupling interfaces must be considered simultaneously. Below, we’ll introduce the coupling of the programs under each interface separately.
2.1 The breakage or valve in the primary system pressure boundary as the coupling interface
The breaches in the primary system pressure boundary mainly include large, medium, and small breaches in the cold and hot legs, leakage through the pressurizer relief valves, leakage in the main pump shaft seals, failed rupture disks on the pressure relief tank, failed pressure vessel lower head during severe accidents, breaches of the secondary side main steam pipes inside the containment, and so on. As shown in Figure 1, after ARSAC successfully completes a time step, it transfers breach flow rates, temperatures, and other parameters to ATHROC. Upon receiving this information, ATHROC calculates the containment pressure and gas temperature for the same time step and transfers them back to ARSAC, completing one computational cycle.
[image: Flowchart showing interaction between ARSAC code for a primary system and ATHROC code for containment compartments. It includes flow junctions and time-dependent volume. Outputs are gas-liquid phase flow rate, temperatures, vapor quality, and noncondensible quality.]FIGURE 1 | Schematic Diagram of the Coupling Interface between ATHROC and ARSAC when the Breach is on the Primary System Pressure Boundary.
2.2 The interface between the safety injection system and the primary system as the coupling interface
The water sources for the Emergency Core Cooling System (ECCS) include the Reactor Water Storage Tank (RWST) or IRWST, containment sump, and non-passive injection tank. Taking the CPR1000 as an example, in the event of a loss-of-coolant accident causing depressurization of the primary system, the high-pressure injection pump is first activated to inject water from the RWST into the main pipeline. If necessary, water is injected into the main pipeline from the non-passive medium-pressure injection tank. Finally, the low-pressure injection pump is activated to inject water from the RWST into the main pipeline. When the water level in the RWST is too low, the low-pressure injection pump switches to draw water from the containment sump for long-term recirculation cooling. When coupling ARSAC with ATHROC, ATHROC is responsible for modeling the ECCS, and the coupling approach is illustrated in Figure 2. After ARSAC successfully completes a time step, when the ECCS subsystem reaches activation conditions, ARSAC transfers the thermal-hydraulic information of the primary system required by the ECCS (such as pressure and temperature) to ATHROC. ATHROC then performs calculations for the same time step, updating the thermal-hydraulic information of the RWST, containment sump, and injection tank, and transfers the injection flow rate to ARSAC, thus completing one computational cycle. It is worth noting that the non-passive injection tank model still utilizes ARSAC’s built-in ACCUM component for detailed simulation because ATHROC’s injection tank model injects flow directly into the pressure vessel downcomer rather than the main pipeline, and ARSAC’s injection tank model is more mechanistic.
[image: Diagram showing the interaction between ARSAC and ATHROC codes. ARSAC code is linked to the ATHROC code through time-dependent junctions and thermal/hydraulic volumes. Yellow ovals highlight details: "Pressure and temperature of the safety injection system downstream volume" and "High-pressure safety injection flow rate and coolant temperature, low-pressure safety injection flow rate and coolant temperature."]FIGURE 2 | Schematic Diagram of the Coupling Interface between ATHROC and ARSAC when the Interface is between the ECCS and the Primary System.
To couple ATHROC with ARSAC, ATHROC was modified into a subroutine and called within the control loop of ARSAC’s computational subroutine. Data exchange between the programs was achieved through global variables.
3 DEMONSTRATION OF THE COUPLING METHOD
Based on ARSAC modeling of the Marviken CFT 24 experiment (USNRC, 1982) and utilizing the containment calculation model commonly used for testing in the ATHROC series programs at the Zion Nuclear Power Plant, the coupling of the ARSAC code and ATHROC code was setup for validation and demonstration. The Marviken CFT experiment was conducted at Marviken Power Station which employs a boiling heavy water reactor, while the Zion Nuclear Power plant adopted PWR. The critical flow data of water and steam water mixtures collected in the Marviken CFT experiment can be readily used to assess the two-phase critical flow model of a system code like ARSAC during LOCA analysis, because the input model of the experiment was simple to build (mainly consisting of a large vessel and a pipe) and the experimental data is publicly available (Kim and Kim, 1992). On the other side, the containment model of Zion Nuclear Power Plant was also a frequently used example to demonstrate the modeling capability of integrated safety analysis codes for PWR large dry containment under accident conditions (Brunett, 2014). Therefore, the two models are combined in this paper for validation and demonstration of analyzing highly transient discharge of water-steam mixture into the containment compartments, although it is noted that they were physically unrelated.
3.1 Description of the Marviken experiment
The ARSAC calculation model for the Marviken CFT 24 experiment is shown in Figure 3. The ATHROC calculation model for the large dry containment (with a free volume of 78,927 m3) includes containment compartments and atmospheric surroundings: the cavity, lower compartment, upper compartment, annular compartment, and environment. The Zion Nuclear Power Plant is a Generation II four-loop pressurized water reactor designed by Westinghouse. When the containment pressure exceeds 0.25 MPa, the containment spray pump begins operation 30 s after receiving a high-pressure signal, drawing water from the external Reactor Water Storage Tank (RWST) to spray onto the containment dome. In this test scenario, a significant amount of gas-liquid two-phase mixture released vertically downward from the Marviken CFT 24 pressure vessel located in the upper compartment is discharged into the cavity of the containment (with a free volume of 217 m3). As the Marviken CFT 24 experiment lasts less than 80 s and there is a 30-s delay in the operation of the containment spray pump, the calculation time is extended to 200 s to facilitate a clearer analysis of the containment spray effect and RWST water level changes.
[image: Diagram showing a flow system with components labeled. At the top is a pressure vessel containing numbered sections. Below is an outlet pipe with numbered pipe components, followed by a ball valve labeled as a valve component. A nozzle, marked as a pipe component, connects to a containment area labeled as a time-dependent volume.]FIGURE 3 | Nodalization of the Marviken CFT 24 experiment in ARSAC.
3.2 Demonstration results
As shown in Figure 4, the release immediately caused pressure to rise in the cavity, reaching a maximum of 0.31 MPa. Due to its large free volume, pressure in the upper compartment increased slowly. As the pressure in the upper compartment of the containment exceeded 0.25 MPa, the containment spray system would be initiated. Figure 5 indicates a rapid increase in gas temperature within the containment, with steam temperature reaching 418 K in the upper compartment by the end of the release. Figure 6 illustrates the cavity rapidly reaching its full water level. Figure 7 compares the integrated flow rate through the breach with the increase in containment fluid mass. Before the containment spray system was activated, the integrated flow rate through the breach matched the increase in containment fluid mass perfectly, indicating reasonable data transfer during the coupled calculations, i.e., the fluid mass from the breach matched the increase in fluid mass within the containment. After the containment spray system was activated, it caused continued increase in fluid mass within the containment, exceeding the integrated flow rate through the breach. This case study demonstrates the successful and reasonable coupling between ATHROC and ARSAC, laying the foundation for comprehensive analysis of both the containment and the primary system.
[image: Graph showing pressure in megapascals (MPa) over time in seconds. A solid black line represents the reactor cavity, initially spiking near 0.32 MPa, then fluctuating before stabilizing. A red dashed line represents the upper compartment, gradually rising to stabilize around 0.25 MPa. Time ranges from -10 to 80 seconds.]FIGURE 4 | Variation of pressure in the upper compartment and cavity of the containment over time.
[image: Graph showing temperature changes over time with three lines: a black line for reactor cavity gas, a red dashed line for the upper compartment, and a blue dotted line for reactor cavity water. The x-axis represents time in seconds, ranging from -10 to 80, and the y-axis represents temperature in Kelvin, ranging from 300 to 500. The reactor cavity gas shows fluctuations, while the upper compartment and water lines rise steadily.]FIGURE 5 | Variation of fluid temperature in the upper compartment and cavity of the containment over time.
[image: Line graph showing cavity water level in meters over time in seconds. The level rises steeply from 0 to 10 meters between 0 and 40 seconds, then fluctuates slightly, stabilizing around 70 seconds.]FIGURE 6 | Variation of water level in the containment cavity the over time.
[image: Graph showing mass in kilograms versus time in seconds. Two lines represent different scenarios: solid black for containment and dashed red for rupture. Both lines increase sharply at the start and plateau around 350,000 kilograms at 75 seconds.]FIGURE 7 | Comparison of the increase in fluid mass within the containment with the integrated flow rate through the rupture.
4 ANALYSIS OF THE ACTIVE DEPRESSURIZATION MEASURE FOR CPR1000 IN TMLB'
Under accident conditions, maintaining a high-pressure level in the primary system can adversely affect the successful implementation of accident mitigation measures, even leading to severe accidents such as High Pressure Melt Ejection (HPME), threatening the structural integrity of the containment. In situations where the Emergency Core Cooling System (ECCS) is available, prompt depressurization of the primary system allows for effective core cooling to be restored by external cooling water. In scenarios where the ECCS is unavailable, even if core melting is inevitable, depressurization of the primary system can prevent a large amount of molten core material from entering the containment in a jet-like manner, thereby avoiding severe issues such as Direct Containment Heating (DCH) and preserving the structural integrity of the containment. Manual opening of the relief valves of the pressurizer to directly depressurize the primary system when the core outlet temperature exceeds 650°C is a severe accident mitigation measure implemented in CPR1000 nuclear power plants, known as “pressurizer relief extension function”. Primary system fluid is directed through the relief valves of the pressurizer into the relief tank and eventually enters the containment due to the limited capacity of the relief tank. This measure carries some risks in situations where the active low-pressure injection system fails to restore promptly, as it leads to rapid pressurization of the containment alongside depressurization of the primary system. Under such circumstances, it is essential to avoid introducing additional uncertain factors into the containment that could cause further pressure increase, such as hydrogen combustion.
The TMLB’ accident is a type of Station Blackout (SBO) accident sequence in pressurized water reactors, where the auxiliary feedwater pumps also fail. In this accident scenario, the secondary side quickly boils dry after losing auxiliary feedwater. When the core outlet temperature exceeds 650°C, it is assumed that the operators manually open the relief valves of the three pressurizers for active depressurization. The failure of the main pump shaft seals, the creep failure of the heat pipe sections and the pressurizer surge line, as well as the rupture of the steam generator heat transfer tubes, are not considered. The computational model is illustrated in Figure 8, where the blue portion is modeled using ARSAC and the gray portion is modeled using ATHROC.
[image: Cross-sectional diagram of a containment structure showing modeled components with ARESAC and ATHROC. It includes containment spray systems, pumps, and reactor cooling mechanisms. The layout demonstrates connections for high and low-pressure injection pumps, and a pressure relief tank.]FIGURE 8 | Input model of ATHROC/ARSAC coupled analysis for CPR1000 primary system/containment.
4.1 The effect of active depressurization on the primary system
The variation of pressurizer pressure is shown in Figure 9. Due to the unavailability of the auxiliary feedwater system, the water level on the secondary side of the steam generators continues to decrease, causing the pressure in the primary system to start rising. As the pressure increases, the pressurizer relief valves perform overpressure protection, automatically cycling open and closed to maintain the pressurizer pressure between 16.0 and 17.2 MPa. Subsequently, the operators manually open the relief valves of the three pressurizers, releasing a large amount of steam from the safety valves. As a result, the pressurizer pressure rapidly decreases, and the passive containment cooling system automatically injects water into the primary system.
[image: Graph showing pressurizer pressure in megapascals (MPa) over time in seconds. Pressure remains around 16 MPa until approximately 6250 seconds, then sharply drops to below 2 MPa, with fluctuations afterward until 12000 seconds.]FIGURE 9 | Variation of pressurizer pressure over time.
As shown in Figure 10, the collapsed water level in the core experienced four decreases before complete uncovering. Approximately 820 s after the secondary side of the steam generators dried up, significant boiling occurred in the core region, marking the first decrease. The pressurizer overflowed during the automatic opening of all relief valves for overpressure protection, causing partial high-temperature single-phase water to discharge from the safety valves and resulting in the second decrease in core collapse water level. Subsequently, steam became the predominant fluid discharged from the safety valves, leading to the third decrease in core collapse water level. When all relief valves of the pressurizer were manually opened, the core collapse water level rapidly decreased for the fourth time until complete exposure. By the time the proactive depressurization measures were taken, the core was nearly completely exposed. About 500 s later, with the injection from the passive containment cooling system, the core water level rapidly increased. Under the influence of injection from the containment cooling system, the core water level exhibited significant fluctuations but did not reach complete exposure. Nonetheless, the possibility of a zirconium-water reaction releasing hydrogen during the accident process is still high.
[image: Graph showing the collapsed water level in a core over time. Time is measured in seconds on the x-axis, from 0 to 12000, and water level on the y-axis, from 0 to 4. The graph shows a fluctuating pattern with sharp drops and rises, indicating significant variations in water levels.]FIGURE 10 | Variation of collapsed water level in the core over time.
4.2 The effect of active depressurization on the containment
After active depressurization, the pressurizer safety valves forcibly open, leading to the rupture of the depressurization tank due to its limited volume, and the flow discharged through the rupture disk into the containment is shown in Figure 11. The variation of fluid energy entering the containment over time is depicted in Figure 12, which is beneficial for the active depressurization of the primary system but leads to an increase in pressure and temperature within the containment. The variation of pressure at the containment dome after the accident is shown in Figure 13. Prior to the implementation of active depressurization measures, the pressure at the containment dome increases due to the automatic opening of safety valves, reaching a maximum pressure of 0.216 MPa. The active depressurization measures result in a significant amount of high-temperature steam entering the containment through the rupture disk of the depressurization tank, causing a rapid increase in pressure at the containment dome. After 12,000 s post-accident, the pressure in the containment rises to 0.39 MPa, with only 0.12 MPa margin from the containment’s design pressure of 0.52 MPa, and it continues to rise. Lacking the containment spray, the containment is filled with steam with temperatures as high as 130°C, as seen in Figure 14. Due to the inability of the containment spray system to operate, as shown in Figure 15, the water level in the sump is low, and the water temperature exceeds 100°C.
[image: Graph showing mass flow rate through a pressurizer relief tank rupture disk over time in seconds. The black line represents liquid, and the red line represents vapor. Peaks and fluctuations occur between 4000 and 8000 seconds, with the vapor line initially spiking higher than the liquid.]FIGURE 11 | Variation of mass flow rate through the pressurizer relief tank rupture disk over time.
[image: Graph showing integrated fluid energy over time. The x-axis represents time in seconds, ranging from zero to twelve thousand. The y-axis represents energy in joules (divided by ten). A black line represents liquid energy, remaining mostly flat. A red line represents vapor energy, increasing sharply after forty-five hundred seconds.]FIGURE 12 | Variation of integrated fluid energy into the containment over time.
[image: Line graph showing containment dome pressure in megapascals over time in seconds. The pressure starts at 0.10 MPa, gradually increases, and sharply rises after 5,000 seconds, reaching 0.37 MPa by 11,000 seconds.]FIGURE 13 | Variation of containment dome pressure over time.
[image: Line graph showing containment compartment temperature in Kelvin over time in seconds, with multiple labeled sections: Cavity, Comp. #2, Comp. #3, Dome, Comp. #5, Sump. Adjacent is a diagram of a containment structure with numbered compartments.]FIGURE 14 | Variation of gas temperature in the containment compartments.
[image: Line graph showing sump water temperature in Kelvin and water level in meters over time in seconds. Both temperature and water level increase steadily with time. Temperature rises from around 310 to 380 Kelvin, and water level goes from 0 to approximately 0.375 meters.]FIGURE 15 | Variation of water temperature and water level in the containment sump.
5 CONCLUSION
The study investigated the direct coupling method between ATHROC and ARSAC. Apart from the common data transfer of containment pressure and break flow rates, it also enables the transfer of injection flow rates to facilitate the use of ATHROC’s realistic dedicated models of safety systems. By modeling Marviken CFT 24 with ARSAC and simulating the containment compartments with ATHROC, this case was utilized to validate and test the ATHROC/ARSAC coupling program, demonstrating its rationality and showcasing its comprehensive analysis capabilities.
Using the ATHROC/ARSAC coupling program, the impact of extending the function of the pressurizer safety valve on mitigating TMLB’ high-pressure accidents was analyzed. The purpose of this measure is to actively release the heat from the primary system through the pressure safety valves, triggering injection from the accumulator, but the fluid goes directly into the containment compartments. While the proactive opening of the pressurizer safety valve played a positive role in delaying core meltdown, the pressure in the primary system remains relatively high, around 1.8 MPa, making it unfavorable for sustained stable injection from the low-pressure safety injection pump. Hence, it is essential to promptly restore the auxiliary injection system (electric or pneumatic) to further relieve pressure from the primary system.
The extension of the pressurizer’s pressure relief function had adverse effects on the containment, as a large quantity of high-temperature fluid entered the containment compartment through the pressure relief tank. Assuming no hydrogen combustion occurred, the containment pressure had risen to nearly 0.4 MPa. Therefore, to prevent containment overpressure, it is crucial to ensure the proper functioning of the passive hydrogen recombiner.
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This work presents the mathematical/theoretical framework of the “nth-Order Feature Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems” (abbreviated as “nth-FASAM-L”), which enables the most efficient computation of exactly obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters (including boundary and initial conditions) underlying the respective forward/adjoint systems. Responses of linear models can depend simultaneously on both the forward and the adjoint state functions. This is in contradistinction to responses for nonlinear systems, which can depend only on the forward state functions since nonlinear operators do not admit bona-fide adjoint operators. Among the best-known model responses that depend simultaneously on both the forward and adjoint state functions are Lagrangians used for system optimization, the Schwinger and Roussopoulos functionals for analyzing reaction rates and ratios thereof, and the Rayleigh quotient for analyzing eigenvalues and/or separation constants. The sensitivity analysis of such responses makes it necessary to treat linear models/systems in their own right, rather than treating them just as particular cases of nonlinear systems. The unparalleled efficiency and accuracy of the nth-FASAM-L methodology stems from the maximal reduction of the number of adjoint computations (which are “large-scale” computations) for computing high-order sensitivities, since the number of large-scale computations when applying the nth-FASAM-N methodology is proportional to the number of model features as opposed to the number of model parameters (which are considerably more than the number of features). The mathematical framework underlying the nth-FASAM-L is developed in linearly increasing higher-dimensional Hilbert spaces, as opposed to the exponentially increasing “parameter-dimensional” spaces in which response sensitivities are computed by other methods (statistical, finite differences, etc.), thus providing the basis for overcoming the curse of dimensionality in sensitivity analysis and all other fields (uncertainty quantification, predictive modeling, etc.) which need such sensitivities.
Keywords: response-coupled forward/adjoint model, features of model parameters, adjoint operators in Hilbert spaces, exact sensitivities of arbitrarily high order, most efficient computation of high order response sensitivities

1 INTRODUCTION
The analysis of computational models fundamentally relies on the use of functional derivatives (called “sensitivities”) of the results (called “model responses”) with respect to the imprecisely known parameters underlying the computational model. Sensitivities are used for many purposes, including: (a) ranking the importance of the various parameters and performing “reduced-order modeling” by eliminating unimportant parameters and/or processes; (b) quantifying the uncertainties induced in a model response due to uncertainties in the model’s parameters; (c) performing “model validation” by comparing computational and experimental results to address the question “does the model represent reality?”; (d) performing data assimilation and model calibration as part of forward and inverse “predictive modeling” to obtain best-estimate predicted results with reduced predicted uncertainties; (e) prioritizing improvements while optimizing the model.
Response sensitivities are computed by using either deterministic or statistical methods. The simplest deterministic method for computing response sensitivities is to use finite-difference schemes in conjunction with re-computations using the model with “judiciously chosen” altered parameter values. Evidently, such methods can at best compute approximate values of a very limited number of sensitivities. Deterministic methods that can compute more exactly the values of first-order sensitivities include the “Green’s function method” (Kramer et al., 1981), the “forward sensitivity analysis methodology” (Cacuci, 1981), and the “direct method” (Dunker, 1984), which rely on analytical or numerical differentiation of the computational model under investigation to compute local response sensitivities exactly. On the other hand, “statistical methods” construct an approximate response distribution (often called “response surface”) in the parameters space, and subsequently use scatter plots, regression, rank transformation, correlations, and so-called “partial correlation analysis,” in order to identify approximate expectation values, variances and covariances for the responses. These statistical quantities are subsequently used to construct quantities that play the role of approximate first-order response sensitivities. Thus, statistical methods commence with “uncertainty analysis” and subsequently attempt an approximate “sensitivity analysis” of the approximately computed model response (called a “response surface”) in the phase-space of the parameters under consideration. The currently popular statistical methods for uncertainty and sensitivity analysis are broadly categorized as sampling-based methods (Iman et al., 1981a; Iman et al., 1981b), variance-based methods (Cukier et al., 1978; Hora and Iman, 1986), and Bayesian methods (Rios Insua, 1990). Various variants of the statistical methods for uncertainty and sensitivity analysis are reviewed in the book edited by Saltarelli et al. (2000).
For a computational model comprising many parameters, the conventional deterministic and statistical methods become impractical for computing sensitivities higher than first-order because they are subject to the “curse of dimensionality,” a term coined by Bellman (1957) to describe phenomena in which the number of computations increases exponentially in the respective phase-space. It is known that the “adjoint method of sensitivity analysis” has been the most efficient method for computing exactly first-order sensitivities, since it requires a single large-scale (adjoint) computation for computing all of the first-order sensitivities, regardless of the number of model parameters. The idea underlying the computation of response sensitivities with respect to model parameters using adjoint operators was first used by Wigner (1945) to analyze first-order perturbations in nuclear reactor physics and shielding models based on the linear neutron transport (or diffusion) equation, as subsequently described in textbooks on these subjects (Weiberg and Wigner, 1958; Weisbin et al., 1978; Williams, 1986; Shultis and Faw, 2000; Stacey, 2001). Cacuci (1981) is credited (see, e.g., Práger and Kelemen, 2014; Luo et al., 2020) for having conceived the rigorous “1st-order adjoint sensitivity analysis methodology” for generic large-scale nonlinear (as opposed to linearized) systems involving generic operator responses and having introduced these principles to the earth, atmospheric and other sciences.
Cacuci (2015), Cacuci (2016) has extended his 1st-order adjoint sensitivity analysis methodology to enable the comprehensive and exact computation of 2nd-order sensitivities of model responses to model parameters (including imprecisely known domain boundaries and interfaces) for large-scale linear and nonlinear systems. The unparalleled efficiency of the 2nd-order adjoint sensitivity analysis methodology for linear systems (Cacuci, 2015) was demonstrated (see Cacuci and Fang, 2023, and references therein) by applying this methodology to compute exactly the 21,976 first-order sensitivities and 482,944,576 second-order sensitivities (of which 241,483,276 are distinct from each other) for an OECD/NEA reactor physics benchmark (Valentine, 2006). This benchmark is modeled by the neutron transport equation involving 21,976 uncertain parameters, the solving of which is representative of “large-scale computations.” The neutron transport equation was solved using the software package PARTISN (Alcouffe et al., 2008) in conjunction with the MENDF71X cross section library (Conlin et al., 2013), which comprises 618-group cross sections based on ENDF/B-VII.1 nuclear data (Chadwick et al., 2011). The spontaneous fission source was computed using the code SOURCES4C (Wilson et al., 2002). Contrary to the widely held belief that second- and higher-order sensitivities are negligeable for reactor physics systems, it was found (see Cacuci and Fang, 2023, and references therein) that many 2nd-order sensitivities of this OECD/NEA benchmark’s leakage response to the benchmark’s uncertain parameters were much larger than the largest 1st-order ones, which motivated the investigation of the largest 3rd-order sensitivities, many of which were found to be even larger than the 2nd-order ones. This finding has motivated the development of the mathematical framework for determining and computing the 4th-order sensitivities, many of which were found to be larger than the 3rd-order ones. This sequence of findings has motivated the development by Cacuci (2022) of the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems” (which is abbreviated as “nth-CASAM-L”). The “nth-CASAM-L” mathematical framework was developed specifically for linear systems because the most important model responses produced by such systems can depend simultaneously on both the forward and adjoint state functions governing the respective linear system. Among the most important responses of linear systems that involve both the forward and adjoint functions are various Lagrangian functionals, the Raleigh quotient for computing eigenvalues and/or separation constants when solving partial differential equations, and the Schwinger functional for first-order “normalization-free” solutions (see, e.g., Lewins, 1965; Williams and Engle, 1977; Stacey, 2001). These functionals play fundamental roles in optimization and control procedures, derivation of numerical methods for solving equations (differential, integral, integro-differential), etc. Nonlinear operators do not admit adjoint operators, so responses in nonlinear systems can only depend on the system’s forward state functions. Therefore, the sensitivity analysis of responses that simultaneously involve both forward and adjoint state functions makes it necessary to treat linear models/systems in their own right, rather than treating them as particular cases of nonlinear systems.
The traditional methods of sensitivity analysis aim at computing sensitivities of responses directly to the primary parameters (i.e., microscopic cross sections, isotopic number densities, etc.) involved in the computational model of the physical system under consideration. Although the sensitivities to the primary model parameters are ultimately of interest for subsequent use in predictive modeling activities (which includes the quantification of the uncertainties induced in responses by uncertainties in the primary model parameters, assimilation of experimental data for calibrating the model’s parameters and improving the model’s predictions), the primary parameters seldom appear explicitly in the equations underlying the model. For example, the primary model parameters (e.g., microscopic cross sections, atomic number densities) do not appear explicitly in the forward and adjoint transport equations modeling (Cacuci and Fang, 2023) the above-mentioned OECD/NEA reactor physics benchmark. What appear explicitly in these equations are the macroscopic cross sections, which are functions of the primary model parameters, and which can be considered to be features of the transport equation. This fact has motivated the development by Cacuci (2024a), Cacuci (2024b) of the “nth-Order Features Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N),” which significantly reduces the computational effort computing efficiently and exactly sensitivities of model responses to model features (i.e., functions of the primary model responses), and subsequently compute the sensitivities to responses to the primary model parameters by using the sensitivities to the model features.
Paralleling the mathematical framework of the nth-FASAM-N, it is the purpose of this work to develop a methodology which will enable the efficient and exact computation of sensitivities of model responses to model features for response-coupled forward and adjoint linear systems; this new methodology will be abbreviated as the “nth-FASAM-L” methodology. The mathematical framework of this methodology is established in Section 2 of this work by using the proof by “mathematical induction” as follows: (i) establish the mathematical framework underlying the nth-CASAM-L for n = 1; (ii) assume that the mathematical framework is valid for an arbitrarily high-order, n; (iii) prove that the mathematical framework proposed for n is also valid for n+1. Section 3 presents a concluding discussion that prepares the ground for an illustrative application of the nth-FASAM-L methodology to a representative energy-dependent neutron slowing down model of fundamental importance to reactor physics, which will be presented in an accompanying manuscript (because of word limitations per article), designated as “Part II (Cacuci, 2024c).”
2 THE NTH-ORDER FUNCTION/FEATURE ADJOINT SENSITIVITY ANALYSIS METHODOLOGY FOR RESPONSE-COUPLED FORWARD AND ADJOINT LINEAR SYSTEMS (NTH-FASAM-L)
The mathematical framework of the nth-FASAM-L methodology, to be presented in this Section, was established while striving to maximize the computational efficiency of the mathematical framework of the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Coupled Forward/Adjoint Linear Systems” (abbreviated as: nth-CASAM-L)” conceived by Cacuci (2022). The starting point for both the nth-CASAM-L and the nth-FASAM-L is the generic mathematical modeling of a response-coupled forward/adjoint linear system, which is presented in Section 2.1, for convenient referencing.
The validity of mathematical framework underlying the nth-FASAM-L methodology will be established in this Section by using the “proof by mathematical induction” comprising the usual steps, as follows:
	1. Conjecture the pattern underlying the nth-FASAM-L, for arbitrary n, based on prior experience.
	2. Prove that the conjectured pattern for arbitrary n, is valid for the lowest value of [image: Please upload the image or provide a URL so I can help create the alt text for it.], i.e., for [image: Please upload the image or provide a URL so I can help create the alternate text for it.].
	3. Assuming that that the pattern underlying the nth-FASAM-L is valid for an arbitrarily high-order [image: Please upload the image or provide a link to it, so I can help you create the appropriate alt text.], prove that this pattern is also valid for [image: It looks like you provided a mathematical expression instead of an image. If you want to upload an image or clarify the context, please do so, and I will help you with the alt text.], i.e., for the (n + 1)th-FASAM-L.

2.1 Mathematical modeling of response-coupled linear forward and adjoint systems establishing the mathematical framework of the nth-FASAM-L methodology
The mathematical model of a process and/or state of a physical system comprises equations that relate the system’s independent variables and parameters to the system’s state/dependent variables. A linear physical system can generally be modeled by a system of coupled equations written generically in operator form as follows:
[image: Mathematical equation showing \( \mathbb{E}[X; g(\alpha)] / \varphi(x) = \mathbb{Q}[X; g(\alpha)] \), where \( x \) is an element of \( \Omega(\alpha) \). Equation labeled as (1).]
The quantities that appear in Eq. 1 are defined as follows:
	1. The vector [image: Mathematical expression defining phi of x as a vector of functions, phi subscript 1 of x to phi subscript T capital D of x, with a dagger symbol indicating a Hermitian transpose.] is a [image: It seems there is an issue with displaying the image. Please try uploading the image file directly or provide a URL to the image.]-dimensional column vector of dependent variables and where the sub/superscript “[image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help with the alt text.]” denotes the “Total (number of) Dependent variables.” The functions [image: Mathematical expression displaying phi sub i of x, where i ranges from one to TD.], denote the system’s “dependent variables” (also called “state functions”). The symbol “[image: Triangle with an exclamation mark inside, placed above two horizontal lines.]” denotes “is defined as” or “is by definition equal to.” Transposition is indicated by a dagger [image: A small cross symbol inside parentheses, often used to denote a dagger mark in academic writing or to indicate a footnote or reference.] superscript.
	2. The components of the vector [image: Mathematical notation depicting a vector \(\alpha\) defined as \((\alpha_1, \ldots, \alpha_{TP})^T\), belonging to the space of real numbers \(\mathbb{R}^{TP}\).] denote the primary model parameters, where the subscript/superscript “TP” indicates “Total number of Primary Parameters” and where [image: Mathematical expression showing the symbol "R" raised to the power of "T" and "P" as superscripts, often used in algebraic or calculus contexts.] denotes the TP-dimensional subset of the set of real scalars. Without loss of generality, the model parameters can be considered to be real scalar quantities, having known nominal (or mean) values and, possibly, known higher-order moments or cumulants (i.e., variance/covariances, skewness, kurtosis), which are usually determined from experimental data and/or processes external to the physical system under consideration. These imprecisely known model parameters are considered to include imprecisely known geometrical parameters that characterize the physical system’s boundaries in the phase-space of the model’s independent variables. The nominal parameter values will be denoted as [image: Mathematical expression showing a bold alpha superscript zero, equated to a transpose of a vector containing elements alpha sub one superscript zero through alpha sub T sub P superscript zero.]; the superscript “0” will be used throughout this work to denote “nominal” or “mean” values.
	3. The components of the [image: It looks like there was an issue displaying the image. Please try uploading the image again, and I can help with the alt text.]-dimensional column vector [image: Mathematical expression defining a vector **x** as a column vector comprising elements \(x_1\) through \(x_{T_I}\), belonging to the real number space \( \mathbb{R}^{T_I} \).] denote the model’s independent variables [image: The phrase "x subscript j, i equals one, comma, dot, dot, dot, comma T I" is displayed, indicating a mathematical expression involving indices and a range from one to the variable T I.], where the sub/superscript “[image: If you upload the image or provide a URL, I can help create alt text for it. Let me know if you need guidance on how to do this!]” denotes the “Total number of Independent variables.” The vector [image: Mathematical notation showing "x" is an element of the real numbers raised to the power of "T" and "I".] of independent variables is considered to be defined on a phase-space domain [image: Mathematical expression showing a set definition: \(\Omega(a) = \left\{ -\infty \leq \lambda_{i}(a) \leq x_{i} \leq \omega_{i}(a) \leq \infty ; \, i = 1, \ldots, TI \right\}\).], the boundaries of which may depend on some of the model parameters [image: Please upload the image or provide a URL for me to give an alternate text description.]. The lower boundary-point of an independent variable is denoted as [image: Mathematical expression showing a function \(\lambda_i(\alpha)\) involving a Greek letter lambda with a subscript i and a parameter alpha in parentheses.], while the corresponding upper boundary-point is denoted as [image: The image shows the mathematical notation \( \omega_i(\alpha) \), which typically represents a function or variable, where \( \omega \) is indexed by \( i \) and depends on the parameter \( \alpha \).]. The boundary of [image: Mathematical expression showing the symbol Omega with alpha in parentheses.], which will be denoted as [image: Mathematical expression showing the partial derivative of Omega with respect to the functions lambda of alpha and omega of alpha.], comprises the set of all of the endpoints [image: The image contains the mathematical expression: \( \lambda_i(\alpha), \omega_i(\alpha), i = 1, \ldots, T! \).] of the respective intervals on which the components of [image: Please upload the image so I can help create the alt text for it.] are defined, i.e., [image: Mathematical expression showing a delta function with delta omega in lambda, omega of alpha is approximately equal to the union of lambda sub i of alpha and omega sub i of alpha, where i ranges from 1 to T.].
	4. The components [image: Mathematical notation representing \( L_{ij}(\mathbf{x}; \boldsymbol{\alpha}) \), where \( i \) and \( j \) are subscripts, \(\mathbf{x}\) is a vector, and \(\boldsymbol{\alpha}\) is a parameter.] of the [image: I'm unable to view the image. Please upload the image or provide a URL so I can assist you with the alternate text.]-dimensional matrix [image: Mathematical expression showing \( \mathbf{L}(\mathbf{x}; \boldsymbol{\alpha}) \triangleq [L_{ij}(\mathbf{x}; \boldsymbol{\alpha})] \), indicating a matrix defined in terms of variables \(\mathbf{x}\) and parameters \(\boldsymbol{\alpha}\).] [image: It seems like there's a misunderstanding. The text you provided looks like a mathematical notation involving indices \( i, j \) ranging from \( 1 \) to \( TD \). If you intended to share an image, please upload it or provide a link. If this is part of a diagram or chart, please describe the rest of the content for more accurate assistance.], are operators that act linearly on the dependent variables [image: Mathematical notation showing phi subscript j of x.] and also depend on the uncertain model parameters [image: Please upload the image or provide the URL for me to generate the alt text.].
	5. The vector [image: Mathematical expression representing a vector function \( \mathbf{g}(\mathbf{\alpha}) \) defined as a sequence of functions \([g_{1}(\mathbf{\alpha}), \ldots, g_{TG}(\mathbf{\alpha})]\).] is a [image: Please provide the image by uploading it or sharing the URL, then I can help create the alt text.]-dimensional vector having components [image: Mathematical expression displaying \( g_i(\alpha), i = 1, \ldots, TG \).], which are real-valued functions of (some of) the primary model parameters [image: Greek letter alpha is an element of the Euclidean space R raised to the power of T times P.]. The quantity [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL. You can also add a caption for context if you like.] denotes the total number of such functions which appear exclusively in the definition of the model’s underlying equations. Such functions customarily appear in models in the form of correlations that describe “features” of the system under consideration, such as material properties, flow regimes. etc. Usually, the number of functions [image: Certainly! To create alt text for your image, please upload the image or provide a detailed description.] is considerably smaller than the total number of model parameters, i.e., [image: The mathematical expression "T sub G much less than T sub P" is displayed.]. For example, the numerical model (Cacuci and Fang, 2023) of the OECD/NEA “Polyethylene-Reflected Plutonium” reactor physics benchmark (Valentine, 2006) comprises 21,976 uncertain primary model parameters (including microscopic cross sections and isotopic number densities) but the neutron transport equation, which is solved numerically to determine the neutron flux distribution within the benchmark, does not use these primary parameters directly but instead uses just several hundreds of “group-averaged macroscopic cross sections” which are functions/features of the microscopic cross sections and isotopic number densities (which in turn are uncertain quantities that would be components of the vector of primary model parameters). In particular, a component [image: Mathematical expression with the function \( g_j(\alpha) \), where \( g \) is indexed by \( j \) and is a function of the variable \( \alpha \).] may simply be one of the primary model parameters [image: It seems there's a misunderstanding. You haven't uploaded an image. Please upload the image or provide a URL, and I'll help create the alt text.], i.e., [image: Mathematical expression showing \(g_j(\alpha) \equiv \alpha_j\).].
	6. The [image: It seems like there is no image visible. Please upload the image or provide a URL, and I would be happy to help with the alt text.]-dimensional column vector [image: Mathematical expression showing Q of x and g of alpha is defined as the transpose of the vector q one to q sub TD.], having components [image: Equation showing \( q_i[x; g(\alpha)], i = 1, \ldots, TD \).], denotes inhomogeneous source terms, which usually depend nonlinearly on the uncertain parameters [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you want, you can also add a caption for context.]. Since the right-side of Eq. 1 may contain distributions, the equality in this equation is considered to hold in the weak (i.e., “distributional”) sense. Similarly, all of the equalities that involve differential equations in this work will be considered to hold in the distributional sense.
	7. When [image: Math equation depicting a function, L, with variables x and g(alpha) inside brackets.] contains differential operators, corresponding boundary and initial conditions which define the domain of [image: Mathematical expression showing the function \( L[x; g(\alpha)] \).] must also be given. Since the complete mathematical model is considered to be linear in [image: The Greek letter phi followed by an opening parenthesis, a lowercase x, and a closing parenthesis.], the boundary and/or initial conditions needed to define the domain of [image: Mathematical expression representing a function \(L[x; g(\alpha)]\).] must also be linear in [image: The expression "phi of x" is shown, with the Greek letter phi followed by the variable x in parentheses.]. Such linear boundary and initial conditions are represented in the following operator form:

[image: Mathematical equation showing B applied to K, g of alpha; lambda of alpha; omega of alpha and phi of x equals C applied to K, g of alpha; lambda of alpha; omega of alpha, where x is an element of the boundary of lambda of alpha; omega of alpha, labeled as equation two.]
In Eq. 2, the quantity [image: Mathematical expression featuring B with x; g of alpha; lambda of alpha; and omega of alpha, all enclosed in brackets.] denotes a matrix of dimensions [image: The image shows a mathematical expression: \(N_B \times TD\).] having components denoted as [image: Mathematical notation depicting a function \( B_{ij}(x; \mathbf{a}) \) where \( i = 1, \ldots, N_B \) and \( j = 1, \ldots, TD \).], which are operators that act linearly on [image: The image shows the mathematical expression phi of x, represented by the Greek letter phi followed by x in parentheses, suggesting a function or transformation applied to x.] and nonlinearly on the components of [image: The text "g(α)" is shown, with the letter 'g' followed by the Greek letter alpha in parentheses.]; the quantity [image: Please upload the image so I can provide the alt text for it.] denotes the total number of boundary and initial conditions. The [image: It seems there is no image provided. Please upload the image or provide a URL, and optionally add a caption for additional context.]-dimensional column vector [image: Mathematical expression depicting C[x; g(a); λ(a); ω(a)], featuring variables and functions within square brackets.] comprises components that are operators which, in general, act nonlinearly on the components of [image: Mathematical expression featuring the function \( g(\alpha) \), with \(\alpha\) in Greek lowercase.].
Physical problems modeled by linear systems and/or operators are naturally defined in Hilbert spaces. The dependent variables [image: Mathematical expression showing phi sub i of x, with i ranging from one to TD.], for the physical system represented by Eqs 1, 2 are considered to be square-integrable functions of the independent variables and are considered to belong to a Hilbert space which will be denoted as [image: Mathematical expression showing \( \mathbb{H}_0(\Omega) \), representing a homology group or similar conceptual notation.], where the subscript “zero” denotes “zeroth-level” or “original.” Higher-level Hilbert spaces, which will be denoted as [image: Mathematical expressions, H subscript 1 of Omega and H subscript 2 of Omega, where Omega is denoted by the Greek letter.] etc., will also be introduced and used in this work. The Hilbert space [image: Mathematical notation showing \( H_0(\Omega) \), where \( H_0 \) typically denotes a space of functions or a specific hypothesis, and \( \Omega \) represents a domain or parameter.] is considered to be endowed with the following inner product, denoted as [image: Inner product notation for functions phi of x and psi of x, represented as angle brackets around phi of x and psi of x subscript zero.], between two elements [image: ϕ(x) is an element of H subscript 0 of omega.] and [image: Mathematical expression showing Psi of x belongs to H subscript zero of Omega.]:
[image: Mathematical expression of an equation involving integrals and products. The left side shows φ(x) and ψ(x) with a subscript 0, defined as a product of integrals from λ1(a) to ω1(a) of φ(x) and ψ(x) dx. The right side equals a sum from j=1 to TD, with multiple integrals from λ1(a) to ωTI(a) of φj(x)ψj(x) dx, followed by a sequence of dx terms.   ]
The “dot” in Eq. 3 indicates the “scalar product of two vectors,” which is defined in Eq. 4, below, as follows:
[image: The equation shows that the dot product of phi of x and psi of x is defined as the sum from i equals 1 to TD of phi_sub_i of x times psi_sub_i of x.]
The product-notation [image: Product and integral notation involving variables and parameters. Product from \(i=1\) to \(T\), with function \(\omega_i(a)\) divided by \(\lambda_i(a)\). Integral with respect to \(dx_i\).] in Eq. 3 denotes the respective multiple integrals.
The linear operator [image: Mathematical notation displaying a function or operation L with variables x and g of alpha, formatted as L[x; g(α)].] admits an adjoint operator, which will be denoted as [image: Mathematical expression showing "L star left square bracket x semicolon g of alpha right square bracket".] and which is defined through the following relation for a vector [image: The mathematical expression shows Psi of x is an element of H subscript zero.]:
[image: Equation showing a mathematical expression and its equivalents:  Psi of x, L bracket x; g of alpha, phi of x within angle brackets subscript zero equals angle bracket L of x; g of alpha, psi of x, phi of x, subscript zero. Equals angle bracket psi of x, Q bracket x; g of alpha, subscript zero. Equals Q prime bracket x; g of alpha, phi of x within angle brackets subscript zero. Equation number five.]
In Eq. 5, the formal adjoint operator [image: The expression "L star of x semi-colon g of alpha" represents a mathematical function or operation involving the variables x, alpha, and functions L and g.] is the [image: It seems like you mentioned an image but did not provide one. Please upload the image or provide a link to it, and I will create the alt text for you.] matrix comprising elements [image: Mathematical expression featuring \( L_{ji}^{\star}[\mathbf{x}; \mathbf{g}(\alpha)] \).] which are obtained by transposing the formal adjoints of the forward operators [image: Mathematical notation showing \( L_{ij} [\mathbf{x}; \mathbf{g}(\alpha)] \).]. Hence, the system adjoint to the linear system represented by Eqs 1, 2 can generally be represented as follows:
[image: Mathematical expression depicting an expectation equation. E operators act on functions of x and a, with x belonging to the set Omega of a. It relates involved terms through the equation indexed as six.]
[image: Equation labeled as (7) featuring mathematical expressions involving functions B, C, and Ψ with variables x, a, λ(a), and ω(a). The expression is framed within a domain x ∈ ∂Ω[λ(a); ω(a)].]
When the forward operator [image: Mathematical expression representing a function \(L\) applied to variables \(\mathbf{x}\) and \(g(\alpha)\).] comprises differential operators, the operations (e.g., integration by parts) that implement the transition from the left-side to the right side of Eq. 5 give rise to boundary terms which are collectively called the “bilinear concomitant.” The domain of [image: Formula with notation: L-star bracket x semicolon g of alpha close bracket.] is determined by selecting adjoint boundary and/or initial conditions so as to ensure that the bilinear concomitant vanishes when the selected adjoint boundary conditions are implemented together with the forward boundary conditions given in Eq. 2. The adjoint boundary conditions thus selected are represented in operator form by Eq. 7.
The results computed using a mathematical model are customarily called “model responses” (or “system responses” or “objective functions” or “indices of performance”). For linear physical systems, the system’s response may depend not only on the model’s state-functions and on the system parameters but may simultaneously also depend on the adjoint state function. As has been discussed by Cacuci (2022, 2023a), Cacuci D. G. (2023), any response of a linear system can be formally represented (using expansions or interpolation, if necessary) and fundamentally analyzed in terms of the following generic integral representation:
[image: Integral equation representing \( R(\phi(x), \psi(x); f(\alpha)) \) as a multi-dimensional integral from \( \lambda_{1}(\alpha) \) to \( \omega_{1}(\alpha) \) and \( \lambda_{T_{1}}(\alpha) \) to \( \omega_{T_{1}}(\alpha) \) of \( S(\phi(x), \psi(x); g(\alpha); h(\alpha); x) \), with differential elements \( dx_{1} \) through \( dx_{T_{1}} \). Equation number \( (8) \).]
where [image: \( S[\phi(x), \psi(x); g(\alpha); h(\alpha); x] \)] is a suitably differentiable nonlinear function of [image: Mathematical notation displaying two functions: phi of x and psi of x, represented as φ(x) and ψ(x).], and [image: Please upload the image or provide a URL so I can help create the alternate text for it.]. The integral representation of the response provided in Eq. 8 can represent “averaged” and/or “point-valued” quantities in the phase-space of independent variables. For example, if [image: Mathematical expression: R of phi of x, psi of x; f of alpha.] represents the computation or the measurement (which would be a “detector-response”) of a quantity of interest at a point [image: If you can provide the image by uploading it or sharing a URL, I can help create the alt text for it.] in the phase-space of independent variables, then [image: S[φ(x), ψ(x); g(α); h(α); x]] would contain a Dirac-delta functional of the form [image: Dirac delta function represented as δ(x - x_d).]. Responses that represent “differentials/derivatives of quantities” would contain derivatives of Dirac-delta functionals in the definition of [image: Text representation of a mathematical expression: S[φ(x), ψ(x); g(α); h(α); x].]. The vector [image: Mathematical notation showing a vector function \(\mathbf{h}(\boldsymbol{\alpha})\) defined as \([\mathbf{h}_1(\boldsymbol{\alpha}), \ldots, \mathbf{h}_{TH}(\boldsymbol{\alpha})]\).], having components [image: The image contains a mathematical expression: \( h_i(\alpha), i = 1, \ldots, TH \).], which appears among the arguments of the function [image: Mathematical expression displaying: S[φ(x), ψ(x); g(α); h(α); x].], represents functions of primary parameters that often appear solely in the definition of the response but do not appear in the mathematical definition of the model, i.e., in Eqs 1, 2, 6, 7. The quantity [image: If you upload an image, I can assist in creating the alt text for it. Please provide the image or its URL.] denotes the total number of such functions which appear exclusively in the definition of the model’s response. Evidently, the response will depend directly and/or indirectly (through the “feature”-functions) on all of the primary model parameters. This fact has been indicated in Eq. 8 by using the vector-valued function [image: Please provide an image or a URL for me to create alternate text.] as an argument in the definition of the response [image: The expression shows R of phi of x, psi of x, semicolon, f of alpha.] to represent the concatenation of all of the “features” of the model and response under consideration. The vector [image: Text consists of the function notation "f(α)", where "f" is a function applied to the Greek letter alpha "α".] of “model features” is thus defined as follows:
[image: Mathematical expression showing a function \( f(\alpha) \) defined as a combination of functions \( g(\alpha) \), \( h(\alpha) \), \( \lambda(\alpha) \), and \( \omega(\alpha) \). It is equivalent to a vector of functions \( f_{1}(\alpha), \ldots, f_{TF}(\alpha) \). Additionally, \( TF \) is defined in terms of \( TG \), \( TH \), and \( 2TI \). Equation labeled as (9).]
As defined in Eq. 9, the quantity [image: Please provide the image by uploading it or sharing a URL, and I will be happy to help with the alt text.] denotes the total number of “feature functions of the model’s parameters” which appear in the definition of the nonlinear model’s underlying equations and response.
Solving Eqs 1, 2, at the nominal (or mean) values, denoted as [image: Mathematical expression showing a vector \(\boldsymbol{\alpha}^0\) defined as \([\alpha_1^0, \ldots, \alpha_i^0, \ldots, \alpha_{T_P}^0]^\dagger\).], of the model parameters, yields the nominal forward solution, which will be denoted as [image: Mathematical expression showing the Greek letter phi with a superscript zero, followed by x in parentheses.]. Solving Eqs 6, 7 at the nominal values, [image: I'm sorry, but it looks like the image did not upload successfully. Please try uploading the image again, and I'll be happy to help with the alt text.], of the model parameters yields the nominal adjoint solution, which will be denoted as [image: The expression \(\Psi^0(\mathbf{x})\), representing a mathematical or scientific notation, possibly for a function or variable dependent on the vector \(\mathbf{x}\).]. The nominal value of the response, [image: R bracket phi super zero of x, comma, psi super zero of x, semicolon, f of alpha super zero, close bracket.], is determined by using the nominal parameter values [image: Please upload the image or provide a URL so I can generate the alternate text for it.], the nominal value [image: φ superscript zero of x, in parentheses.] of the forward state function, and the nominal value [image: Mathematical notation depicting a wave function symbol, psi zero, followed by a function of x, enclosed in parentheses.] of the adjoint state function.
The definition provided by Eq. 8 implies that the model response [image: R followed by brackets containing phi of x, comma, psi of x, semicolon, f of alpha.] depends on the components of the feature function [image: Stylized lowercase letter "f" followed by a lowercase Greek letter "alpha" in parentheses, resembling a mathematical function notation.], and would therefore admit a Taylor-series expansion around the nominal value [image: Mathematical expression showing \( \mathbf{f}^0 \triangleq \mathbf{f}(\alpha^0) \).], having the following form:
[image: Mathematical equation with expression: R[f(α)] equals R(f*) plus the summation from j equals 1 to T sub F of the partial derivative of R(f) with respect to ∂f sub j at f equals f* times δf sub j plus one-half times another summation from j equals 1 to T sub F. Multiplication with another summation from h equals 1 to T sub F of the second partial derivative of R(f) with respect to ∂f sub j and ∂f sub h at f equals f* times δf sub j times δf sub h, followed by additional terms. Equation is labeled as (10).]
where [image: Mathematical equation defining the change in \( f_j \) as \(\delta f_j \equiv [f_j(\alpha) - f_j^0]\), where \( f_j^0 \equiv f_j(\alpha^0) \), for \( j = 1, \ldots, TF \).]. The “sensitivities of the model response with respect to the (feature) functions” are naturally defined as being the functional derivatives of [image: Mathematical expression showing the real part of a function evaluated at alpha, denoted as "Re" followed by "f" of alpha within brackets.] with respect to the components (“features”) [image: It looks like you've shared a mathematical expression rather than an image. The expression reads as "f sub j of alpha," indicating a function f with subscript j, evaluated at alpha. If you need alt text for an actual image, please upload the image or provide a link.] of [image: It appears that there is no image provided. Please upload the image or provide a URL, and I can create the alternate text for you.]. The notation [image: A pair of curly braces enclosing a small black circle, followed by a subscript lowercase "r" and the number zero.] indicates that the quantity enclosed within the braces is to be evaluated at the nominal values [image: Mathematical expression showing \( \mathbf{f}^{0} \triangleq \mathbf{f}(\alpha^{0}) \).]. Since [image: Mathematical expression showing "TF is much less than TP".], there will be fewer derivatives of the response with respect to the feature functions than there are response derivatives with respect to the primary model parameters. Hence, the computations of the functional derivatives of [image: Mathematical expression showing \( R[f(\alpha)] \), where R is a function or operator applied to the function \( f \) of the variable \( \alpha \).] with respect to the functions [image: It appears that you uploaded a mathematical expression rather than an image. The expression is "f sub j of alpha," where "f" is a function, "j" is a subscript, and "alpha" is a Greek letter. If you meant to upload an image, please try again.], which appear in Eq. 10, will be considerably less expensive computationally than the computation of the functional derivatives involved in the Taylor-series of the response with respect to the model parameters. The functional derivatives of the response with respect to the primary parameters can be obtained from the functional derivatives of the response with respect to the “feature” functions [image: Mathematical expression showing \( f_j(\alpha) \), where \( f \) is a function with subscript \( j \) and the argument is the Greek letter alpha, \( \alpha \).] by simply using the chain rule, i.e.,:
[image: Partial derivative equation showing summation of terms related to \(\mathcal{R}(\alpha)\) and \(\mathcal{R}(f)\) with respect to \(\alpha_i\). The equation includes partial derivatives and summations indexed from \(i = 1\) to \(TF\), alongside terms \(\partial f_i(\alpha)/\partial\alpha_j\) and \(\partial \mathcal{R}(\alpha) / \partial\alpha\). Equation is marked as (11).]
and so on. The evaluation/computation of the functional derivatives [image: Partial derivative notation for the function \( f_{i_1}(\alpha) \) with respect to \( \alpha_{j_1} \).], [image: Second partial derivative of the function \( f_i(\alpha) \) with respect to \(\alpha_{j_1}\) and \(\alpha_{j_2}\).], etc., does not require computations involving the model, and is therefore trivial (computationally) by comparison to the evaluation of the functional derivatives (“sensitivities”) of the response with respect to either the functions (“features”) [image: Mathematical expression \( f_j(\alpha) \) showing a function \( f \) with subscript \( j \) and argument \( \alpha \).] or the model parameters [image: The text shows a mathematical expression: \(\alpha_i, i = 1, \ldots, TP\).].
The range of validity of the Taylor-series shown in Eq. 10 is defined by its radius of convergence. The accuracy −as opposed to the “validity”− of the Taylor-series in predicting the value of the response at an arbitrary point in the phase-space of model parameters depends on the order of sensitivities retained in the Taylor-expansion: the higher the respective order, the more accurate the respective response value predicted by the Taylor-series. In the particular cases when the response happens to be a polynomial function of the “feature” functions [image: It seems there is an image placeholder or reference but no actual image provided. Please upload the image or provide a URL for me to create the alt text.], the Taylor series is actually exact.
In turn, the functions [image: Mathematical expression showing the function \( f_i(\alpha) \).] can also be formally expanded in a multivariate Taylor-series around the nominal (mean) parameter values [image: It seems like there might have been an issue with uploading the image. Please try uploading the image again or provide more context, and I can help generate the alt text for you.], namely,:
[image: A mathematical expression detailing a series expansion for a function \( f_i(\alpha) \). It starts with \( f_i(\alpha^0) \) and incorporates sums over various derivatives: first-order derivative terms \(\frac{\partial f_i(\alpha)}{\partial \alpha_{j_1}} \), second-order derivative terms \(\frac{\partial^2 f_i(\alpha)}{\partial \alpha_{j_1} \partial \alpha_{j_2}} \), and third-order derivatives \(\frac{\partial^3 f_i(\alpha)}{\partial \alpha_{j_1} \partial \alpha_{j_2} \partial \alpha_{j_3}} \), including delta terms \(\delta \alpha_{j}\).]
The domain of validity of the Taylor-series in Eq. 12 is defined by its own radius of convergence.
The choice of feature functions [image: The image shows the mathematical notation \( f_i(\alpha) \), which represents a function \( f \) indexed by \( i \) with the variable \( \alpha \).] is not unique but can be tailored by the user to the problem at hand. The two most important guiding principles for constructing the feature functions [image: Please provide an image or a link to an image for which you need alternate text.] based on the primary parameters are as follows:
	(i) As shown in Section 2.2 while establishing the mathematical framework underlying the nth-FASAM-L, the number of large-scale computations needed to determine the numerical value of the second- and higher-order sensitivities is proportional to the number of first-order sensitivities of the model’s response with respect to the feature functions [image: It appears there is a mathematical expression in your request, but there is no image to describe. Please upload the image or provide a URL for me to generate the alternate text.]. Consequently, it is important to minimize the number of feature functions [image: Mathematical expression showing the function \( f_i(\alpha) \), indicating a function \( f \) with a subscript \( i \) and parameter \( \alpha \).], while ensuring that all of the primary model parameters are encompassed within the expressions constructed for the feature functions [image: The image contains a mathematical expression in latex format representing a function notation: \( f_i(\alpha) \).]. In the extreme case when some primary parameters, [image: Mathematical symbol showing the Greek letter alpha with subscript j.], cannot be grouped into the expressions of the feature functions [image: Mathematical expression showing \( f_i(\alpha) \), with \( f \) as a function, \( i \) as a subscript, and \( \alpha \) as the variable within parentheses.], then each of the respective primary model parameters [image: It seems there was an error in your request. Could you please provide the image or a clear description so I can help create the alt text? You can upload the image or provide a URL with additional context if needed.] becomes a feature function [image: It seems like there's a misunderstanding. The provided text is a mathematical expression, not an image. The expression is \( f_j(\alpha) \), which typically represents a function \( f \) with a subscript \( j \), evaluated at \( \alpha \). If you have an image to describe, please upload it, and I will assist you with the alt text.].
	(ii) The expressions of the features functions [image: Mathematical notation showing a function \( f_i(\alpha) \), where \( i \) is a subscript index and \( \alpha \) is the variable.] must be independent of the model’s state functions; they must be exact, closed-form, scalar-valued functions of the primary model parameters [image: It seems like you've included a mathematical symbol rather than uploading an image. If you intended to share an image, please upload it, and I can help create the alt text for it.], so the exact expressions of the derivatives of [image: Mathematical expression in italic font representing a function: \( f_i(\alpha) \).] with respect to the primary model parameters [image: Mathematical expression featuring the Greek letter alpha followed by the subscript j.] can be obtained analytically (with “pencil and paper”). The motivation for this requirement is to ensure that the numerical determination of the subsequent derivatives of the features functions [image: Mathematical notation showing a function \( f_i(\alpha) \), where \( f_i \) represents a function parameterized by the subscript \( i \) and the argument \( \alpha \).] with respect to the primary model parameters [image: Mathematical symbol showing a stylized lowercase letter alpha followed by the subscript lowercase letter j.] becomes trivial computationally. In the extreme case when no feature function can be constructed, the feature functions are the primary parameters themselves, in which case the nth-FASAM-L methodology becomes identical to the previously established nth-CASAM-L methodology (Cacuci, 2022)

2.2 Establishing the mathematical framework of the nth-FASAM-L methodology
Cacuci D. G. (2023), Cacuci (2024a), Cacuci (2024b) has recently developed the “nth-Order Features Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N)” which enables the computation of arbitrarily-high-order sensitivities of responses to features/functions of parameters for nonlinear models/systems. Together, the nth-CASAM-L and the nth-FASAM-N provide the basis for the development of the “nth-Order Features Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward and Adjoint Linear Systems (Nth-FASAM-L)” to be presented in this Section. In particular, comparing the mathematical framework of the 1st-FASAM-L to the framework of the 1st-CASAM-L (Cacuci and Fang, 2023) suggests that the components [image: Mathematical expression: \( f_i(\alpha), i = 1, \ldots, TF \).], of the “feature function” [image: Vector function \( \mathbf{f}(\mathbf{a}) \) is defined as the transpose of the vector containing functions \( f_1(\mathbf{a}), \ldots, f_{TF}(\mathbf{a}) \).] will play within the 1st-FASAM-L the same role as played by the components [image: Mathematical expression showing alpha sub j, where j equals one to T raised to the power of p.], of the “vector of primary model parameters” [image: The equation shows a vector \(\mathbf{\alpha}\) defined as \((\alpha_1, \ldots, \alpha_{TP})^{\dagger}\), where \(\dagger\) indicates the conjugate transpose.] within the framework of the 1st-CASAM-L. It can therefore be conjectured that the same correspondence would be expected to hold in general, between the general frameworks of the nth-FASAM-L and the nth-CASAM-L methodologies. As will be demonstrated in this Section, this conjecture is indeed correct.
Considering the analogy to the framework of the nth-CASAM-L methodology (Cacuci, 2022), it is conjectured that that the G-differential of the (n-1)th-order sensitivity of the model’s response [image: Mathematical expression showing R with a function applied to u of x and f of alpha.] with respect to the components [image: Mathematical notation showing a sequence of functions labeled f sub 1 through f sub TF.] of the “feature” function [image: Mathematical expression defining a function \( \mathbf{f}(\boldsymbol{\alpha}) \) as a column vector containing elements \( f_1(\boldsymbol{\alpha}), \ldots, f_{TF}(\boldsymbol{\alpha}) \), with the notation for transposition indicated by the superscript dagger symbol.] will have the following form:
[image: Mathematical expression with multiple sums, integrals, and partial derivatives. It includes variables such as \( R^{(n-1)} \), \( a^{(n)} \), \( u^{(n)} \), \( f \), and \(\alpha\). Notation includes \( \delta \), \( \lambda \), and \( \eta \), with nested integrals and summations up to \( TF \). The equation is labeled as (13).]
such that the nth-order sensitivity of the model’s response [image: R of open bracket u of x semicolon f of alpha close bracket.] with respect to the components [image: It seems there was an error displaying the image. Please upload the image file or provide a URL for it.] of the “feature” function [image: Mathematical expression defining a function \( f(\alpha) \) as a vector comprising components \( [f_{j_1}(\alpha), \ldots, f_{j_n}(\alpha)] \), with the vector transposed, denoted by the dagger symbol.] is expected to have the following functional form:
[image: Equation with mathematical notation for \( R^{(n)} \), involving multiple indices, variables \( j_i, j_p, x, \) and functions \( a^{(n)}, f(a) \), and \( u^{(n)} \). It includes differential terms \( dx \), \( dx_T \), and derivatives \( \partial^\sigma R \). Variables and functions are defined with indices \( j = 1, \ldots, TF \) and \( n = 2, 3, \ldots \) Equation numbered (14).]
where [image: It seems there is an issue with the input you provided. Please upload the image file or provide a link to the image you want described. If you have any additional context or a caption, feel free to include that as well.] denotes the “total number of features,” i.e., functions of the primary model parameters.
It is also conjectured that the nth-level adjoint functions [image: Mathematical expression depicting a function: bold u superscript n, parameterized by the sequence two superscript n; j subscript n minus two, ellipsis, j subscript one; and bold x.] and [image: Mathematical expression showing a superscripted "a" with an index "n", followed by a function denoted as j with indices "n-1" through "j1", separated by semicolons and including "2 to the power n" and a vector "x".], which are needed to compute the nth-order sensitivities shown in Eq. 14, are obtained as follows:
	(i) [image: Mathematical expression showing a function \( u^{(n)} \) of variables \( 2^n, j_{n-2}, \ldots, j_1, \mathbf{x} \), defined as a matrix containing components \( \mathbf{u}^{(n-1)} \) and \( \mathbf{a}^{(n-1)} \), with variables \( 2^{n-1}, j_{n-3}, \ldots, j_1, \mathbf{x} \) in the vector.] are the solutions of the following nth-Level Forward/Adjoint System (nth-LFAS) for [image: I'm sorry, I cannot see any images you mentioned. Please upload the image or provide a URL, and I will create the alternate text for it.]:

[image: Mathematical expression showing a function \( \mathbf{F}^{(n)} \) involving terms like \( 2^{n} \times 2^{i} \), \( \mathbf{u}^{(n)} \), and \( f(\alpha) \), followed by an equation equating it to \( \mathbf{q}^{(n)} \) with similar terms, including a summation over \( j \) and a constraint \( x \in \Omega \). The equation is labeled as (15).]
[image: Mathematical equation showing: b subscript n superscript (2n)(2ⁿ; u superscript (n); f) equals zero for x belonging to the boundary of region omega subscript i. Equation is numbered sixteen.]

	(ii) [image: Mathematical expression: a superscript n with a function of variables j sub n-1 through j sub 1, 2 to the power of n, and x.] are the solutions of the following nth-Level Adjoint Sensitivity System (nth-LASS) for [image: It seems there was an error in uploading an image. Please upload the image or provide a URL, and I will help you with the alt text.]:

[image: Equation involving logic operators and functions. It shows \( A^{(n)} [2^t \times 2^r; f_t(a)] a^{(n)}(2^t; j_t, j_{t-1}, \ldots, j_1; x) = s^{(n)}(2^t; u^{(n)}, f) \), with \( x \in \Omega \).]
[image: Equation labeled 18 involves a product of terms. \( b_{\lambda}^n \) is multiplied by the product of \( u^{(n)} \) depending on various parameters \( 2^n, j_n, \ldots, j_1, x \), raised to an unspecified power. It is set to zero for \( x \) within the boundary \(\partial \Omega\).]
Through their implicit dependence on lower-level forward and adjoint functions, the block-matrix valued operators [image: Mathematical expression depicting F superscript n of a two to the power of n by two to the power of n matrix, semi-colon, f of alpha.] and [image: Mathematical notation showing a matrix \( \mathbf{A}^{(n)} \) with dimensions \( 2^n \times 2^n \) and a function \( f(\alpha) \).], as well as the source terms [image: Mathematical expression showing \(\mathbf{q}_{\mathbb{F}}^{(n)}[2^n; \mathbf{u}^{(n-1)}; \mathbf{f}(\alpha)]\).] and [image: Mathematical expression showing \( s^{(n)}(2^n; \mathbf{u}^{(n)}; \mathbf{f}) \).], also depend on lower-level indices [image: The image shows a mathematical expression: j subscript k, where k is less than n.], but this dependence is not material to establishing the general framework of the nth-FASAM-L and has therefore been omitted, to keep the notation as simple as possible.
2.3 Proving that the conjectured mathematical framework of the nth-FASAM-L methodology is correct for [image: It seems there was an issue with uploading the image. Please try again, ensuring the image is properly attached, or provide a URL. Optionally, you can add a caption for context.]
The proof that the framework conjectured in Section 2.2 for the nth-FASAM-L methodology is indeed correct/valid when [image: It seems like there's an error or missing image upload. Please try uploading the image again or provide a URL. If you have additional context or a caption, feel free to include that as well.] (for the 1st-FASAM-L methodology) parallels the proof used in (Cacuci, 2022) to show that the framework of the nth-CASAM-L methodology reduces to the corresponding 1st-CASAM-L methodology when [image: Please upload the image or provide a URL so I can generate the alternate text for it.]. In preparation for subsequent generalizations towards establishing the generic pattern for computing sensitivities of arbitrarily high-order, the function [image: Vector \(\mathbf{u}^{(1)}(2; \mathbf{x})\) is defined as a column matrix containing \(\phi(\mathbf{x})\) and \(\psi(\mathbf{x})\), denoted by \([\phi(\mathbf{x}), \psi(\mathbf{x})]^{\dagger}\).] will be called the “1st-level forward/adjoint function” and the system of equations satisfied by this function (which is obtained by concatenating the original forward and adjoint equations together with their respective boundary/initial conditions) will be called “the 1st-Level Forward/Adjoint System (1st-LFAS)” and will be re-written in the following concatenated matrix-form:
[image: The expression shows a mathematical equation: \( F^{(1)}[2 \times 2; x; f^{(1)}(2; x)] = q_1^{(1)}(2; x; \mathcal{F}) \), where \( x \) is an element of \( \Omega(\alpha) \). The equation is labeled as equation 19.]
[image: Equation with derivative notation: the nth order derivative of u, denoted by D^n sub f, at (2, x) equals zero. x belongs to the boundary of the region Λ(ω); ω(a). Equation is labeled (20).]
where the following definitions were used:
[image: Mathematical equations are shown. Equation F superscript (1) [2 times 2; x; f] equals a matrix with L(x; f) and zero in the first row, zero and L*(x; f) in the second row. Below, equation u superscript (1) (2; x) equals a vector with components φ(x) and ψ(x) dagger.]
[image: Mathematical expressions showing equations labeled with equation number twenty-two. The first expression defines vector \(\mathbf{q}^{(1)}_{\mathcal{F}}\) as functions \( \mathbf{Q}(\mathbf{x}; \mathbf{g}) \) and \( \mathbf{Q'}(\mathbf{x}; \mathbf{g}) \). The second expression defines vector \( \mathbf{b}^{(1)}_{\mathcal{F}} \) using functions \( \mathbf{B}(\mathbf{x}; \mathbf{f})\phi(\mathbf{x}) - \mathbf{C}(\mathbf{f}) \) and \( \mathbf{B'}(\mathbf{x}; \mathbf{f})\psi(\mathbf{x}) - \mathbf{C'}(\mathbf{f}) \).]
In the list of arguments of the matrix [image: Mathematical notation displaying a function \( F^{(1)} \) with arguments \( [2 \times 2; \mathbf{x}; \mathbf{f}] \).], the argument “[image: Please upload the image or provide a URL, and I will help create the alternate text for it.]” indicates that this square matrix comprises four component sub-matrices, as indicated in Eq. 21. Similarly, the argument “2” that appears in the block-vectors [image: The mathematical expression shows a function \( \mathbf{u}^{(1)}(2; \mathbf{x}) \), where \( \mathbf{u} \) is bold, indicating a vector or matrix, with a superscript \( (1) \) and dependent variables \( 2 \) and \( \mathbf{x} \).], [image: Mathematical expression featuring bold lowercase "q" with superscript "(1)," subscript "F," followed by parameters in parentheses: 2, semicolon, x, semicolon, f.], and [image: Mathematical expression featuring a bold lowercase letter b with a superscript one in parentheses and subscript F. It is followed by a bracket containing numbers and variables: two, semicolon, bold lowercase u with a superscript one in parentheses, bracketed two, semicolon, lowercase x, semicolon, bold lowercase f.] defined in Eq. 22 indicates that each of these column block-vectors comprises two sub-vectors as components. Also, throughout this work, the quantity “[image: It seems there was an issue with displaying the image. Please try uploading the image again or provide a URL, and I will help create the alt text for it.]” will be used to denote either as a vector with zero-valued components or a matrix zero-valued components, depending on the context. For example, the vector “[image: It seems there might be an issue with the image upload. Please try uploading the image again, and I will help you create the alternate text for it.]” in Eq. 20 is considered to have as many components as the vector [image: Mathematical expression with bold lowercase 'b' subscript 'F' and superscript one, followed by a square bracket containing bold lowercase 'u' superscript one, with arguments '2' and 'x', and another parameter 'f'.]. On the other hand, the quantity “[image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if possible.]” which appears in Eq. 21 may represent either a (sub) matrix or a vector of the requisite dimensions.
The primary parameters [image: Please upload the image or provide a URL, and I can help create the alternate text for it.] are subject to uncertainties; their nominal (or mean) values, denoted as [image: Please upload the image or provide a URL so that I can assist you in creating alt text.], are considered to be known, but these values will differ from the true values [image: Please upload the image or provide a URL to the image. If you have a specific caption or context, feel free to include it as well.], which are unknown, by variations [image: Equation showing delta bold alpha is defined as the transpose of the vector containing delta alpha subscript one through delta alpha subscript T subscript P.], where [image: \(\delta \alpha_i \triangleq \alpha_i - \alpha_i^0\)]. The parameter variations [image: Please upload the image or provide a URL to it so I can create the appropriate alt text for you.] will induce variations [image: Mathematical expression depicting a vector \(\delta f(\alpha)\) defined as the transpose of the column matrix \([\delta f_1(\alpha), \ldots, \delta f_{T_F}(\alpha)]\).] in the vector-valued “feature” function [image: Please upload the image or provide a URL so I can create the alt text for you.], around the nominal value [image: Mathematical equation showing "f superscript zero is defined as f of alpha superscript zero."], and will also induce variations [image: Mathematical expression depicting a variation of the function phi at the point x, shown as delta phi of x in parentheses.] and [image: Mathematical expression showing a variation of a function, represented as delta psi of x.], respectively, around the nominal solutions [image: Greek letters phi and psi, both with a superscript zero.], through the equations underlying the model. All of these variations will induce variations in the model response [image: Mathematical expression defining the function \( R \) of \(\mathbf{u}^{(1)}(2; \mathbf{x}); \mathbf{f} \) as equivalent to the function \( R \) of \(\varphi(\mathbf{x}), \psi(\mathbf{x}); \mathbf{f}(\mathbf{\alpha})\).].
Formally, the first-order sensitivities of the response [image: Mathematical expression showing the function \( R[\mathbf{u}^{(1)}(2; \mathbf{x}); \mathbf{f}] \).] with respect to the components of the feature function [image: Sure, please upload the image or provide a URL for me to view it.] are provided by the first-order Gateaux (G-)variation of [image: The formula displays a mathematical function or expression represented by \( R(\phi, \psi, \mathbf{f}) \), which incorporates variables or parameters phi (\(\phi\)), psi (\(\psi\)), and a vector f (\(\mathbf{f}\)).] at the phase-space point [image: Mathematical notation showing a tuple with three elements: phi superscript zero, psi superscript zero, and boldface f superscript zero, likely representing initial conditions or parameters.], which is defined as follows:
[image: Mathematical expression defining the variation of \( \delta R \) with respect to variables \( \phi^0, \psi^0, f^0; \delta \phi, \delta \psi, \delta f \). The expression involves derivatives with detailed dependencies on functions \( \phi(x), \psi(x), \) and \( f(x) \), evaluated at \( \epsilon = 0 \). The final expression simplifies to relate \( \delta R \) to functions \( u^{(1)}, v^{(1)} \) and their variations. This is equation number 23.]
The definitions provided in Eq. 24, below, were used in Eq. 23:
[image: Mathematical equations define functions \(u^{(1,0)}(2, x)\) and \(v^{(1)}(2, x)\). \(u^{(1,0)}(2, x)\) involves the product of \(\phi^p(x)\) and \(\psi^p(x)\). \(v^{(1)}(2, x)\) involves \(\delta \phi(x)\) and \(\delta y\). The equation is labeled (24).]
The numerical methods (e.g., Newton’s method and variants thereof) for solving large-scale systems require the existence of the first-order G-derivatives of the original model equations and of the model’s response; these will be assumed to exist. When the 1st-order G-derivatives exists, the variation [image: The equation shows the expression 𝛿R[u^(1,0)(2;x); f^0; v^(1)(2;x), 𝛿f].] can be written as follows:
[image: Mathematical equation showing a variation of a functional \( \delta R \) dependent on variables and functions at initial and final times, expressed as a sum involving \( \delta R [\mathbf{u}^{(1)}(2, x); f; \delta f] \) and other related terms. Numbered as equation (25).]
In Eq. 25, the “direct-effect” term [image: Mathematical expression showing a function or operator with variables and parameters: delta R of u superscript one, in parentheses two, semicolon x, semicolon f, semicolon delta f, enclosed in braces, subscript dir.] comprises only dependencies on [image: Mathematical expression showing lowercase delta followed by function f of alpha in parentheses.] and is defined as follows:
[image: Mathematical expression showing the variation of R as a function of variables and parameters. It features partial derivatives, denoted by the fraction involving \(\partial R\), parameters such as \(u^{(1)}\) and \(f\), and the term \(\delta f\). Equation is labeled as equation twenty-six.]
The following convention/definition was used in Eq. 26:
[image: Partial derivative equation involving sums of derivatives with respect to various variables including \( f_i \), \( g_i \), \( h_i \), and \( \omega_i \), with index ranges specified from 1 to \( TF \), \( TG \), \( TH \), and \( TI \). Equation number is 27.]
The notation on the left-side of Eq. 27 represents the inner product between two vectors, but the “dagger” symbol “([image: Silhouette of a scarecrow with outstretched arms and hay protruding beneath a wide-brimmed hat.])” which indicates “transposition” has been omitted in order to keep the notation as simple as possible. “Daggers” indicating transposition will also be omitted in other inner products, whenever possible, while avoiding ambiguities.
In Eq. 25, the “indirect-effect” term [image: Mathematical expression showing the partial derivative of a function R with respect to variables u, f, and v. The expression includes notation for differentiation and subscript 'ind'.] depends only on the variations [image: Mathematical expression showing a vector v superscript (1) of (2; x) defined as the transpose of the column vector containing delta phi of x and delta psi.] in the state functions, and is defined as follows:
[image: Mathematical expression involving integrals and partial derivatives with various variables and functions. The equation includes the integral symbols with lower and upper limits λ₁ and ωₜ₁, a differentiation of function S with respect to φ, ψ, and u¹, and variables such as x and ᶿ. The equation is labeled with equation number 28 on the right side.]
In Eqs 26, 28, the notation [image: Please upload the image or provide a URL, and if needed, include a caption for additional context.] has been used to indicate that the quantity within the brackets is to be evaluated at the nominal values of the parameters and state functions. This simplified notation is justified by the fact that when the parameters take on their nominal values, it implicitly means that the corresponding state functions also take on their corresponding nominal values. This simplified notation will be used throughout this work.
The direct-effect term can be computed after having solved the forward system modeled by Eqs 1, 2, as well as the adjoint system modeled by Eqs 6, 7, using the nominal parameter values to obtain the nominal values [image: Greek letters phi and psi, both raised to the power of zero.] of the forward and adjoint dependent variables.
On the other hand, the indirect-effect term [image: Mathematical expression involving a function δR with arguments u superscript (1) of (2; x), f, and v superscript (1) of (2; x), indexed by subscript ind.] defined in Eq. 28 can be quantified only after having determined the variations [image: Mathematical expression of a vector \( \mathbf{v}^{(1)}(2; \mathbf{x}) \) defined as \([ \delta \phi(\mathbf{x}), \delta \psi]^\dagger \), where \(\delta \phi\) and \(\delta \psi\) appear to be functions involving perturbations.] in the state functions of the 1st-Level Forward/Adjoint System (1st-LFAS). The variations [image: Mathematical expression displaying vector \( \mathbf{v}^{(1)}(2; \mathbf{x}) \).] are obtained as the solutions of the system of equations obtained by taking the first-order G-differentials of the 1st-LFAS defined by Eqs 19, 20, which are obtained by definition as follows:
[image: Mathematical equation with derivative notation: the derivative with respect to ε of F superscript (1) evaluated at 2 times 2; x; r0 plus εδf, multiplied by the expression u superscript (1,0) of 2 and x, plus εv superscript (1) of 2 and x is evaluated at ε equals zero. This equals the derivative with respect to ε of q subscript F superscript (1) evaluated at 2; x; r0 plus εδf, also evaluated at ε equals zero. Equation is labeled as equation twenty-nine.]
[image: Differential expression showing the derivative of \( b^{(1)}_{\epsilon} \) with respect to \(\epsilon\), evaluated at \(\epsilon = 0\), equals zero. The expression includes \( z^{\star} \), \( u^{(1)}(z, x) \), \(\epsilon v^{(1)}(z, x)\), and \( r^{\star} + \epsilon \delta f \), equated to \( 0[2] \), labeled as equation 30.]
Carrying out the differentiations with respect to [image: Please upload the image or provide the URL so I can generate the alternate text for you.] in Eqs 29, 30 and setting [image: It seems like there was supposed to be an image uploaded. Please upload the image again and I will help create the alternate text for it.] in the resulting expressions yields the following matrix-vector equations:
[image: Mathematical expression involving variables and functions: \( V^{(1)}[2 \times 2; x; f^{(1)}(2, x)]_{\alpha^0} \) equals \( \{q^{(1)}[2, u^{(1)}(2, x); f; \delta f]\}_{\alpha_i^0} \), followed by equation number 31. The condition \( x \in \Omega(\alpha^0) \) is specified.]
[image: Mathematical expression showing a boundary condition for a differential equation: \( \mathcal{B}^{(1)}(u^{(1)}, v^{(1)}; f; \delta f)|_{x = x_0} = 0 \), where \( x \) belongs to the boundary \( \partial \Omega [\Lambda (\alpha^o); \omega(\alpha^o)] \).]
where:
[image: Matrix equation with the function Psi V superscript 1, brackets 2 by 2, semicolon x, semicolon f, equals matrix with L parentheses x semicolon f in top left, L prime parentheses x semicolon f in bottom right, and zeros elsewhere, equals function F superscript 1, brackets 2 by 2, semicolon x, semicolon f, semicolon 33.]
[image: Mathematical expressions showing equations for \( \mathbf{q}_{\nu}^{(1)} \) and \( \mathbf{b}_{\nu}^{(1)} \). The first expression defines \( \mathbf{q}_{\nu}^{(1)} \) in terms of functions \( \mathbf{q}_1^{(1)} \) and \( \mathbf{q}_2^{(1)} \) with variables \(\phi\), \(\psi\), \(f\), and \(\delta f\). The second equation relates \( \mathbf{b}_{\nu}^{(1)} \) to functions \( \mathbf{b}_1^{(1)} \) and \( \mathbf{b}_2^{(1)}\) with similar variables. Equation number (34) is included.]
[image: Mathematical equation showing a relationship for \(\gamma^{(1)}(\varphi; f; \delta f)\), which is defined as the partial derivative of \(Q - L \varphi(x)\) with respect to \(\delta f\). It is approximately equal to a summation from \(j = 1\) to \(T_{\mathcal{F}}\) of \(s_1^{(1)}(j; \varphi; f) \delta f_j\). Equation number (35).]
[image: Equation depicting a mathematical expression involving partial derivatives and summation. The left side shows the partial derivative of a function with respect to a frequency variable. The right side is a summation, indicating an iterative process for j equals one to uppercase T. The expression includes variables such as Q, L, and ψ, with subscripts and superscripts.]
[image: Mathematical equation showing b_superscript {1} _subscript {l} left parenthesis phi, delta phi_subscript {l}; f; delta f right parenthesis approximately equal to B multiplied by phi_subscript {l} plus partial derivative with respect to f of the product of B and phi minus C, all multiplied by delta f. Equation number 37.]
[image: Mathematical expression: B sub two superscript psi of parentheses psi, delta psi, f, delta f, end parentheses is approximately equal to B times delta psi plus the partial derivative with respect to f of parentheses B times psi minus C, end parentheses, times delta f. Equation thirty-eight.]
In order to keep the notation as simple as possible in Eqs 31‒38, the differentials with respect to the various components of the feature function [image: It looks like you're referencing a mathematical expression rather than an image. If you meant to upload an image, please try again. If you need an explanation or description of the mathematical expression, let me know!] have all been written in the form [image: Mathematical expression showing the partial derivative of an unknown function in square brackets with respect to the function f, followed by the term delta f.], keeping in mind the convention/notation introduced in Eq. 27. The system of equations comprising Eqs 31, 32 will be called the “1st-Level Variational Sensitivity System (1st-LVSS)” and its solution, [image: Mathematical expression displaying vector \( \mathbf{v}^{(1)} \) with function notation \( (2; \mathbf{x}) \).], will be called the “1st-level variational sensitivity function,” which is indicated by the superscript “(1)”. The solution, [image: Mathematical notation showing a vector \( \mathbf{v}^{(1)} \) as a function of 2 and \( \mathbf{x} \).], of the 1st-LVSS will be a function of the components of the vector of variations [image: Please upload the image you would like me to describe, and I will provide the alt text for it.]. In principle, therefore, if the response sensitivities with respect to the components of the feature function [image: It seems like you mentioned a mathematical expression, not an image. If you have an image you'd like me to provide alt text for, please upload it or provide the URL.] are of interest, then the 1st-LVSS would need to be solved as many times as there are components in the variational features-function [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL, and I will be happy to help with the alt text.]. On the other hand, if the response sensitivities with respect to the primary parameters are of interest, then the 1st-LVSS would need to be solved as many times as there are primary parameters. Solving the 1st-LVSS involves “large-scale computations.”
Solving the 1st-LVSS can be avoided altogether by using the ideas underlying the “adjoint sensitivity analysis methodology” originally conceived by Cacuci (1981), and subsequently generalized by Cacuci (2022), Cacuci D. G. (2023) to enable the computation of arbitrarily high-order response sensitivities to primary model parameters for both linear and nonlinear models. Thus, the need for solving repeatedly the 1st-LVSS for every variation in the components of the feature function (or for every variation in the model’s parameters) is eliminated by expressing the indirect-effect term [image: Mathematical expression showing delta R as a function of u superscript one, evaluated at two; x, f, and v superscript one, evaluated at two; x, subscript i n d.] defined in Eq. 28 in terms of the solutions of the “1st-Level Adjoint Sensitivity System” (1st-LASS), which will be constructed by implementing the following sequence of steps:
	1. Introduce a Hilbert space, denoted as [image: It seems there was a problem with the image upload. Please try uploading the image again or check the format.], comprising vector-valued elements of the form [image: Mathematical expression showing Greek letter chi superscript one of two and x is defined as the vector containing chi subscript one and chi subscript two, both functions of x, with a dagger symbol indicating Hermitian transpose.], where the components [image: The formula shows a vector definition: \( \mathbf{X}_i^{(1)}(\mathbf{x}) \) is defined as a column vector with elements \(\chi_{i,1}^{(1)}(\mathbf{x}), \ldots, \chi_{i,j}^{(1)}(\mathbf{x}), \ldots, \chi_{i,TD}^{(1)}(\mathbf{x})\).], [image: It seems there was a formatting issue with your request, and no image was provided. Please upload the image or provide a URL, along with any additional context you'd like to include.], are square-integrable functions. Consider further that this Hilbert space is endowed with an inner product denoted as [image: Mathematical notation depicting two functions, chi and theta, both with superscript one, followed by arguments in parentheses: two and x. The functions are enclosed in angle brackets with a subscript one.] between two elements, [image: Mathematical expression showing: chi superscript one, open parenthesis, two semicolon x, close parenthesis, belongs to H subscript one.], [image: Mathematical expression showing theta superscript one, in parentheses two semicolon x, belongs to set H subscript one.], which is defined as follows:

[image: Equation showing a summation identity: X superscript one in parentheses, 2 semicolon x, zero superscript one in parentheses, 2 semicolon x, is equal to the sum from u equals one to two of X superscript one in parentheses, u semicolon x, zero superscript u in parentheses, x, subscript zero. Equation number thirty-nine.]

	2. In the Hilbert [image: It seems like there might be a problem with the image upload. Please try uploading the image again, and I will help you create the alt text.], use Eq. 39 to form the inner product of Eq. 31 with a yet undefined vector-valued function [image: Mathematical expression defining a two-element vector \( \mathbf{a}^{(1)}(2; \mathbf{x}) \) as the concatenation of \( \mathbf{a}_1^{(1)}(\mathbf{x}) \) and \( \mathbf{a}_2^{(1)}(\mathbf{x}) \), complex conjugate transposed, belonging to a Hilbert space \( \mathcal{H}_1 \).] to obtain the following relation:

[image: Mathematical expressions involving vectors and functions, including terms like \( \langle a^{(1)}(2, x), V^{(1)}[2 \times 2; x; f] \gamma^{(1)}(2, x) \rangle_{1, \mathfrak{a}^w} \) and \( = \{ a^{(1)}(2, x), \varphi_w^{(1)}[2; u^{(1)}(2, x); f; \delta f] \}_{1, \mathfrak{a}_e^w} \). Labeled as equation (40).]

	3. Using the definition of the adjoint operator in the Hilbert space [image: Please upload an image or provide a URL for me to generate the alt text.], recast the left-side of Eq. 40 as follows:

[image: Mathematical equation showing several functions and operators with variables \(a^{(1)}\), \(\nu^{(1)}\), and \(A^{(1)}\) related to a two-dimensional vector \(x\) and expressions involving operators such as \([2 \times 2; x; f]\) and derivatives, denoted by subscripts \(\omega\). Equation number is 41.]
where [image: A mathematical expression includes components: \( P^{(1)} \), \( \mathbf{v}^{(1)}(2; \mathbf{x}) \), \( \mathbf{a}^{(1)}(2; \mathbf{x}) \), function \( f \), and \( \delta f \), with a subscript reference \( \alpha_0 \).] denotes the bilinear concomitant defined on the phase-space boundary [image: Mathematical expression showing "x is an element of the boundary of Omega with superscript zero in parentheses".], and where [image: Matrix notation with the letter A raised to the power of one in parentheses, followed by the expression: two by two semicolon x semicolon f.] is the operator formally adjoint to [image: Mathematical notation displaying a vector labeled as V with a superscript one. The vector is defined as a matrix with dimensions two by two, followed by variables x and f in a bracketed format.], as defined in Eq. 42 below: 
[image: Matrix equation defining \( A^{(1)}[2 \times 2; x; f] \) as equivalent to \( \{V^{(1)}[2 \times 2; x; f]\}^* \), represented as a block diagonal matrix with \( L^\ast(x; f) \) and \( L(x; f) \) on the diagonal. Equation number (42).]

	4. Require the first term on right-side of Eq. 41 to represent the indirect-effect term defined in Eq. 28, to obtain the following relation:

[image: Equation displaying \( \lambda^{(1)} [2 \times 2; x; f^{(1)}(2, x)] = a_1^{(0)}[2; u^{(1)}(2, x); f] \) with \( x \in \Omega(\alpha^0) \).]
where the source term on the right-side of Eq. 43 is defined in Eq. 44, below: 
[image: Equation 44 shows a mathematical expression involving derivatives and variables. It features a function \(\Omega_A^{(1)}\) depending on variables \(u^{(1)}(2;x)\) and \(f\), equated to a derivative \(\frac{\partial S(u^{(1)};f)}{\partial u^{(1)}(2;x)}\), which equals a matrix with elements \(\left(\frac{\partial S(u^{(1)};f)}{\partial \phi}, \frac{\partial S(u^{(1)};f)}{\partial \psi}\right)\).]

	5. Implement the boundary conditions represented by Eq. 32 into Eq. 41 and eliminate the remaining unknown boundary-values of the function [image: Mathematical expression showing vector notation: \( \mathbf{v}^{(1)}(2; \mathbf{x}) \).] from the expression of the bilinear concomitant [image: Mathematical expression featuring notation for a function \( P^{(1)} \) with parameters including vectors \( \mathbf{v}^{(1)}(2;\mathbf{x}) \) and \( \mathbf{a}^{(1)}(2;\mathbf{x}) \), and variables \( f \) and \( \delta f \), all evaluated at \( \alpha_0 \).] by selecting appropriate boundary conditions for the function [image: Mathematical expression showing a bold lowercase vector a superscript one with arguments two and lowercase x is defined as the column vector consisting of a sub one superscript one of x and a sub two superscript one of x with a Hermitian transpose symbol.], to ensure that Eq. 43 is well-posed while being independent of unknown values of [image: Mathematical expression displaying vector \( \mathbf{v}^{(1)} \) with parameters two and \( \mathbf{x} \) in parentheses.] and of [image: It seems there was an error in uploading the image. Please try uploading it again or provide a URL for me to view and describe it.]. The boundary conditions thus chosen for the function [image: Mathematical notation showing \( \mathbf{a}^{(1)}(2; \mathbf{x}) \triangleq [\mathbf{a}_1^{(1)}(\mathbf{x}), \mathbf{a}_2^{(1)}(\mathbf{x})]^{\dagger} \).] can be represented in operator form as follows:

[image: Mathematical expression involving the derivative of function \( u^{(1)}(2, x) \) with addition operation \( a^{(1)}(2, x) \), over a specified condition \(\Lambda\), equaling zero at boundary conditions \( \partial\Omega \) for a specific set involving \( \alpha^{q} \) and \(\omega(\alpha^{q})\), equation labeled as (45).]
The selection of the boundary conditions for [image: The formula displays a superscript and subscript notation. It defines \( \mathbf{a}^{(1)}(2; \mathbf{x}) \) as the concatenation of \( \mathbf{a}_1^{(1)}(\mathbf{x}) \) and the transpose of \( \mathbf{a}_2^{(1)}(\mathbf{x}) \).] represented by Eq. 45 eliminates the appearance of the unknown values of [image: Mathematical notation displaying vector \( \mathbf{v}^{(1)}(2; \mathbf{x}) \).] in [image: Mathematical expression featuring a set notation: \( \{ P^{(1)}[\mathbf{v}^{(1)}(2;\mathbf{x}); \mathbf{a}^{(1)}(2;\mathbf{x}); \mathbf{f}; \delta \mathbf{f}] \}_{\alpha_{c}^0} \).] and reduces this bilinear concomitant to a residual quantity containing boundary terms which involve only known values of [image: Mathematical expression with bold lowercase u, superscript (1), parenthesis with number 2 and variable x.], [image: Mathematical notation showing vector a with a superscript one, denoted as a^(1), followed by parentheses enclosing the number two and a bold x, written as (2; **x**).], [image: Please upload the image or provide a URL for me to create the alt text.], and [image: Please upload the image or provide a URL, and I can help you create the alt text for it.]. This residual quantity will be denoted as [image: Mathematical expression: P-hat superscript (1) of u superscript (1) of (2; x), a superscript (1) of (2; x), f, δf, with subscript αβ.]. In general, this residual quantity does not automatically vanish, although it may do so occasionally.
	6. The system of equations comprising Eq. 43 together with the boundary conditions represented Eq. 45 will be called the 1st-Level Adjoint Sensitivity System (1st-LASS). The solution [image: Mathematical notation defining the vector \( \mathbf{a}^{(1)}(2; \mathbf{x}) \) as the conjugate transpose of the column vector consisting of \( \mathbf{a}_1^{(1)}(\mathbf{x}) \) and \( \mathbf{a}_2^{(1)}(\mathbf{x}) \).] of the 1st-LASS will be called the 1st-level adjoint sensitivity function. The 1st-LASS is called “first-level” (as opposed to “first-order”) because it does not contain any differential or functional-derivatives, but its solution, [image: Mathematical notation depicting a superscripted expression: lowercase "a" with superscript one within parentheses, followed by parentheses enclosing "2; x".], will be used below to compute the first-order sensitivities of the response with respect to the components of the feature function [image: It looks like you've included a text snippet rather than an actual image. To provide alternate text, please upload the image or provide a URL.].
	7. Using Eq. 40 together with the forward and adjoint boundary conditions represented by Eqs 32, 45 in Eq. 41 reduces the latter to the following relation:

[image: Mathematical equation involving multiple functions and variables. It includes terms with a superscript (1), vectors and matrices denoted as \( \mathbf{q} \), \( \mathbf{u} \), and \( \mathbf{a} \), and operations like products and sums. The equation uses symbols such as \( \left\langle \cdot \right\rangle \) and \( \left\{ \cdot \right\} \) with parameters like \( \mathbf{x} \), \( \mathbf{f} \), \( \delta f \), and is labeled as equation (46).]

	8. In view of Eqs 28, 43, the first term on the right-side of Eq. 46 represents the indirect-effect term [image: Mathematical expression showing the partial derivative of \( R \) with respect to the first variation of \( \mathbf{u} \) at position two semicolon \( \mathbf{x}; \mathbf{f}; \mathbf{v} \), subscripted as \( \text{ind} \).]. It therefore follows from Eq. 46 that the indirect-effect term can be expressed in terms of the 1st-level adjoint sensitivity function [image: Mathematical expression defining the vector \(\mathbf{a}^{(1)}(2;\mathbf{x})\) as the transpose of the vector \([\mathbf{a}_1^{(1)}(\mathbf{x}), \mathbf{a}_2^{(1)}(\mathbf{x})]\).] as follows:

[image: Mathematical equation involving variations and functions: δR of u^(1) (2; x), f; v^(1) (2; x), with subscript ind, equals expression in brackets of a^(1) (2; x) and q_v^(1) (2; u^(1) (2; x); f; δf), with subscript a, a subscript zero. Minus expression with P_1 hat of variations with subscript a and a subscript infinity. Equivalent to δR of variations with function parameters, subscript mf, equation number forty-seven.]
As indicated by the identity shown in Eq. 47, the variations [image: Mathematical expression showing a lowercase delta symbol followed by a lowercase phi.] and [image: Mathematical expression showing the Greek letter delta followed by the Greek letter psi, often used in scientific or mathematical contexts to represent change in a variable or function.] have been eliminated from the original expression of the indirect-effect term, which now depends on the 1st-level adjoint sensitivity function [image: Mathematical notation showing a vector representation: \( \mathbf{a}^{(1)}(2; \mathbf{x}) \triangleq [\mathbf{a}_1^{(1)}(\mathbf{x}), \mathbf{a}_2^{(1)}(\mathbf{x})]^{\dagger} \).]. Adding the expression obtained in Eq. 47 with the expression for the direct-effect term defined in Eq. 26 yields, according to Eq. 25 the following expression for the total 1st-order sensitivity [image: Mathematical expression showing the set notation of delta R as a function of phi, psi, and f, alongside delta phi, delta psi, and delta f, indexed by alpha, with a superscript asterisk denoting a specific condition or transformation.] of the response [image: Mathematical expression depicting a function: R of phi of x and psi of x, with parameter f.] with respect to the components of the feature function [image: It appears that the input provided does not include an image. To generate alt text, please upload an image or provide a URL to the image. If you have any additional context or a caption, feel free to include it.]:
[image: Equation involving variation and derivatives of a function \( R \) with respect to a set of variables \((\phi, \psi, f; \delta \phi, \delta \psi, \delta f)\). It includes partial derivatives, integrals over variable domains, and a summation notation, all indexed by various parameters such as \( a_0 \) and \( a_e \).]
The identity which appears in Eq. 48 emphasizes the fact that the variations [image: The image shows the Greek small letters delta and phi, represented together as δφ.] and [image: It seems like you've provided a mathematical expression rather than an image. If you intended to share an image, please upload the file or provide a URL. Otherwise, if you need assistance with the expression "δψ," let me know how I can help!], which are expensive to compute, have been eliminated from the final expressions of the 1st-order sensitivities [image: Mathematical expression displaying R superscript 1, with parameters j subscript i, u superscript 1 of 2, x, a superscript 1 of 2, x, and function f of alpha.] of the response with respect to the components [image: Mathematical notation showing a function \( f_{j_1}(\alpha) \) with the variable \( j_1 \) ranging from 1 to \( TF \).] of the “features function” [image: Mathematical expression featuring lowercase italic "f" followed by the Greek letter "alpha" in parentheses, denoting a function of alpha.]. The dependence on the variations [image: Mathematical notation featuring the Greek letters delta and phi. Delta is represented as a small variation symbol followed by the symbol for phi, signifying a change in phi.] and [image: Greek letters delta (δ) and psi (ψ), often used in scientific and mathematical contexts.] has been replaced in the expression of [image: Mathematical notation showing a function or expression \( R^{(1)}[j_i; u^{(1)}(2, x); a^{(1)}(2, x); f(\alpha)] \).] by the dependence on the 1st-level adjoint sensitivity function [image: Mathematical equation displaying vector notation: \( \mathbf{a}^{(1)}(2; \mathbf{x}) \triangleq \left[ \mathbf{a}_1^{(1)}(\mathbf{x}), \mathbf{a}_2^{(1)}(\mathbf{x}) \right]^\dagger \).]. It is very important to note that the 1st-LASS is independent of variations [image: Mathematical expression showing delta, function f, and alpha enclosed in parentheses, indicating a variation of the function f with respect to alpha.] in the components of the feature function and is consequently also independent of any variations [image: It seems like there's an issue with the image upload or description. Please try uploading the image file again or provide a URL. If you want, you can also add a caption for additional context.] in the primary model parameters. Hence, the 1st-LASS needs to be solved only once to obtain the 1st-level adjoint sensitivity function [image: Mathematical expression defining vector \(\mathbf{a}^{(1)}(2; \mathbf{x})\) as the transpose of a matrix with elements \([a_1^{(1)}(\mathbf{x}), a_2^{(1)}(\mathbf{x})]\).]. Subsequently, the “indirect-effect term” is computed efficiently and exactly by simply performing the integrations required to compute the inner product over the adjoint function [image: Mathematical notation showing the equation for a vector \(\mathbf{a}^{(1)}(2; \mathbf{x})\), defined as the transpose of a vector comprising \([a_1^{(1)}(\mathbf{x}), a_2^{(1)}(\mathbf{x})]\).], as indicated on the right-side of Eq. 48. Solving the 1st-Level Adjoint Sensitivity System (1st-LASS) requires the same computational effort as solving the original coupled linear system, entailing the following operations: (i) inverting (i.e., solving): the left-side of the original adjoint equation with the source [image: Partial derivative notation \(\left[\frac{\partial S(\mathbf{u}^{(1)}; \boldsymbol{\alpha})}{\partial \boldsymbol{\varphi}}\right]^{+}\).] to obtain the 1st-level adjoint sensitivity function [image: Mathematical expression showing the vector \(\mathbf{a}_1^{(1)}(\mathbf{x})\).]; and (ii) inverting the left-side of the original forward equation with the source [image: Partial derivative of S with respect to psi, denoted as ∂S of u superscript one and alpha, divided by ∂ψ, highlighted with a plus superscript.] to obtain the 1st-level adjoint sensitivity function [image: Mathematical expression displaying "a sub 2 superscript 1 of x".].
The 1st-order sensitivities [image: Mathematical expression denoting R superscript one, followed by j subscript i, semicolon, u superscript one with arguments two and x, semicolon, a superscript one with arguments two and x, semicolon, f of alpha, enclosed in square brackets.], [image: The equation depicts a sequence where \( j_1 \) ranges from 1 to \( TF \), indicating a loop or an iteration variable over time frames or total frames.], can be expressed as an integral over the independent variables as follows:
[image: Mathematical expression involving R superscript (0) with variables j, j sub i, u superscript (1) of 2 and x, a superscript (1) of 2 and x, and f of alpha, set equal to an integral over variables x sub i to x sub T with respect to T using variables u, a, and f of alpha. Equation is labeled as 49.]
In particular, if the residual bilinear concomitant is non-zero, the functions [image: Mathematical expression: S superscript (1) with arguments j subscript i, u superscript (1) of (2, x), a superscript (1) of (2, x), and function f of alpha.] would contain suitably defined Dirac delta-functionals for expressing the respective non-zero boundary terms as volume-integrals over the phase-space of the independent variables. Dirac-delta functionals would also be used in the expression of [image: Mathematical formula containing variables and functions: \( S^{(1)} \left[ j_i; u^{(1)}(2; x); a^{(1)}(2; x); f(\alpha) \right] \).] to represent terms containing the derivatives of the boundary end-points with respect to the model and/or response parameters.
The response sensitivities with respect to the primary model parameters would be obtained by using the expression obtained in Eq. 49 in conjunction with the “chain rule” of differentiation provided in Eq. 11.
It is important to compare the results produced by the 1st-FASAM-L (for obtaining the sensitivities of the model response with respect to the model’s features) with the results produced by the 1st-CASAM methodology (the 1st-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems), which provides the expressions of the responses sensitivities directly with respect to the model’s primary parameters. Recall that the 1st-CASAM-L (Cacuci, 2022) yields the following expression for the 1st-order sensitivities of the response with respect to the primary model parameters:
[image: A complex mathematical expression involving partial derivatives and integrals. It includes variables such as \(a^{(1)}\), \(u^{(1)}\), \(\lambda\), and multiple summations and product symbols. The equation is indexed by \(j\), and the final line specifies the indices range from 1 to TP, denoted by equation (50).]
The same 1st-level adjoint function [image: Mathematical expression showing a subscript one, in parentheses two, semicolon, bold x, denoting a function or sequence element.] appears in Eq. 50 as well as in Eq. 49. Therefore, a single “large-scale computation” (needed to solve the 1st-LASS to determine the 1st-level adjoint function) is required for obtaining either the response sensitivities with respect to the components, [image: It looks like you've provided a mathematical expression rather than an image. The expression is "f sub j of alpha," which typically represents a function f indexed by j and evaluated at alpha. Let me know if there's an image you want to describe!], [image: It appears there is no image to describe. Please upload the image or provide a URL for me to generate the alternate text.], of the feature function [image: Please upload an image or provide a URL so I can help create the alt text for it.] using the 1st-FASAM-L, or for obtaining the response sensitivities directly with respect to the primary model parameters [image: Certainly! Please upload the image or provide a URL so I can help create the alt text for it.], [image: Mathematical expression showing "j equals 1 comma ellipsis comma TP".], using the 1st-CASAM-L. On the other hand, the use of the 1st-CASAM-L would require performing a number of [image: Please upload the image or provide a URL so I can create the alt text for you.] integrations to compute all of the response sensitivities with respect to the primary parameters, but the 1st-FASAM-L would require only [image: Please upload the image or provide a URL, and I will be happy to help with the alt text.] integrations ([image: TF much less than TP.]) to compute all of the response sensitivities with respect to the components [image: It looks like you have pasted some text that represents a mathematical expression. It appears to be the function \( f_j(\alpha) \). If you have an image you’d like me to describe, please upload it directly.] of the feature function. Hence, the 1st-FASAM-L is more efficient than the 1st-CASAM-L, so the 1st-FASAM-L is the most efficient method for computing the exact expressions of the first-order sensitivities of a generic model response of the form [image: Mathematical expression: R[φ(x), ψ(x); α].] with respect to the components of the “features” function [image: Mathematical expression f of alpha in bold letters inside parentheses.], and subsequently with respect to the primary model parameters. As will be shown in the sequel, the computational savings provided by the nth-FASAM-L increase massively by comparison to the nth-CASAM-L (or any other method) as the order “n” of the computed sensitivities increases.
The expression obtained in Eq. 48 is the same as the particular form taken on by general expression provided in Eq. 13 for [image: Please upload the image or provide a URL so I can generate the alt text for you.], where:
	(i) the 1st-level forward/adjoint function [image: Vector notation \( \mathbf{u}^{(1)}(2; \mathbf{x}) \equiv [\varphi(\mathbf{x}), \psi(\mathbf{x})]^T \) representing a transformation with function components \(\varphi(\mathbf{x})\) and \(\psi(\mathbf{x})\).] is the solution of the 1st-LFAS defined by Eqs 19, 20, which has the same expression as the particular form taken on by the nth-LFAS, cf. Eqs 15, 16, for [image: Please upload the image or provide a URL so I can generate the alt text for you.];
	(ii) the 1st-level adjoint sensitivity function [image: Mathematical expression showing a vector function \( \mathbf{a}^{(1)}(2; \mathbf{x}) \), defined as the transpose of a vector with components \( a_1^{(1)}(\mathbf{x}) \) and \( a_2^{(1)}(\mathbf{x}) \).] is the solution of the 1st-LASS defined by Eqs 43, 45, which has the same expression as the particular form taken on by the nth-LFAS, cf. Eqs 17, 18, for [image: It looks like you're mentioning an equation or text rather than an actual image. Could you please upload the image you want me to describe?].

Thus, the first step in the “proof by mathematical induction” of the pattern underlying the nth-FASAM-L has been completed, having shown that this pattern holds for [image: Please upload the image or provide a URL so I can create the alternate text for it.].
2.4 Proving that the conjectured mathematical framework of the nth-FASAM-L methodology also holds for [image: It seems there is an error in the message format. Please upload the image file or provide a URL to the image so that I can generate the appropriate alt text for it.], i.e., for the (n + 1)th-FASAM-L framework
The last step of the “proof by mathematical induction” to establish the validity the nth-FASAM-L framework is to show that the formalism assumed to be correct for the computation of the nth-order sensitivities also holds true for the computation of the (n + 1)th-order sensitivities. This proof entails showing that the formulas obtained by computing the (n + 1)th-order sensitivities using Eqs 14‒18 as the starting point will be the same as would be obtained by replacing “n” with “(n + 1)” in Eqs 14‒18.
The nth-order response sensitivity defined in Eq. 14 can be considered to be a function of the (n + 1)th-level function [image: Mathematical expression showing bold u superscript n plus one of 2 to the power of n plus one and x. It is defined as the matrix of bold u superscript n at 2 to the power of n and x, and a superscript n at 2 to the power of n and x, transposed.], which is the solution of the (n + 1)th-Level Forward/Adjoint System, abbreviated as “(n + 1)th-LFAS”, which is obtained by concatenating Eqs 15‒18 and is written in the following form:
[image: Mathematical equation featuring functions F and q, with variables raised to various powers. It includes terms like \(\mathbf{F}^{(n+1)}\), \(2^{n+1}\), \(f(\alpha)\), \( \mathbf{u}^{(n+1)}\), and vectors \(\mathbf{x}\). The context involves a domain \(\Omega\).]
[image: Mathematical equation showing a boundary condition: \( \mathbf{b}_{F}^{(n+1)}(2u^{(n)}, u^{(n)}, f) = (\mathbf{b}_{F}^{0, n}, \mathbf{b}_{A}^{0, n})^T = \mathbf{0} \), with \( \mathbf{x} \in \partial \Omega \). Equation labeled as (52).]
The following definitions were used in Eqs 51, 52, where the explicit dependence on the indices [image: Sorry, I cannot provide alt text for the image since it was not uploaded. Please upload the image or provide a URL for me to view it.], has been omitted, for simplicity:
[image: Mathematical equations with matrix and vector functions. The first equation shows a function \( f(a) \) defined as the diagonal of matrices \( \mathbf{F}^{(n)} \) and \( \mathbf{A}^{(n)} \). The second describes a vector \( \mathbf{u}^{(n+1)}(2^{n+1}; x) \), composed of sub-vectors \( \mathbf{u}^{(n)}(2^n; x) \) and \( \mathbf{a}^{(n)}(2^n; x) \), transposed. Equation number fifty-three is on the right side.]
[image: Mathematical equation involving variables and functions: \( q_F^{(n+1)}\left[2^{n+1}, u^{(n+1)}\right](2^{n+1} x); f(a) \) is defined as \( q_F^{(n)}\left(2^n x; f\right), q_A^{(n)}\left(2^n; u^{(n)}; f\right) \), followed by equation number (54).]
Next, it will be assumed that, for each index [image: Please upload the image or provide a URL for me to analyze.], the 1st-order total G-differential of the nth-order sensitivities [image: Mathematical expression displaying a function: R superscript n, applied to a sequence from j sub n sub i to j sub 1, followed by u superscript n plus 1 with arguments 2n plus 1 and vector x; applied to function f of alpha.] exists and is linear in the variational functions [image: Mathematical expression showing \( v^{(n+1)}(2^{n+1}; j_{n-1}, \ldots, j_1, \mathbf{x}) \triangleq [v^{(n)}(2^n; \mathbf{x}), \delta a^{(n)}(2^n; \mathbf{x})]^i \).] and [image: Please upload the image or provide a URL so I can help create the alt text for it.] in a neighborhood around the nominal values of the respective state functions and components of the feature function. In this case, the 1st-order total G-differential of [image: The expression shows a mathematical function: \( R^{(n)}[j_{n}, \ldots, j_{1}; \mathbf{u}^{(n+1)}; \mathbf{f}] \).] is by definition obtained as follows:
[image: Mathematical expression involving variations and derivatives. The left side shows the variation of \( \delta R^{(n)} \) with respect to several parameters. The right side involves derivatives, summation over \( j_{m+1} \), and additional variations. Equations are defined over multiple lines, ending with reference \( (55) \).]
where the quantity [image: Mathematical notation depicting a function: delta R superscript n, with variables j subscript i, through j subscript 1, u superscript n plus 1, v superscript n plus 1, semicolon, and f, enclosed in curly braces with subscript ind.] denotes the “indirect-effect term” and is defined as follows:
[image: Mathematical equation showing a variational derivative \(\delta \mathcal{R}^{(n)}\) with indices \(j_{1}, \ldots, j_{i}\) and variables \(\mathbf{u}^{(n+1)}\), \(\mathbf{v}^{(n+1)}\), \(\mathbf{f}\). It is defined as integrals over \(x_1\) to \(x_{T1}\) involving \(\frac{\delta \mathcal{S}^{(n)}}{\delta u^{(n+1)}} \mathbf{v}^{(n+1)}(x)\) raised to \(a_{j}\), equated to Equation 56.]
The vector [image: Mathematical notation of a vector function. It includes a vector v with superscript n plus one, and arguments within parentheses: 2 raised to the power of n plus one, semicolon, indices j subscript n minus one through j subscript 1, semicolon, and vector x.], which is needed to evaluate the indirect-effect term [image: Mathematical expression showing a function \( \delta R^{(n)} \) with inputs \( j_n, \ldots, j_1, \mathbf{u}^{(n+1)}, \mathbf{v}^{(n+1)}, \mathbf{f} \) enclosed by subscript \(\text{ind}\).], is the solution of the (n + 1)th-Level Variational Sensitivity System, abbreviated as (n + 1)th-LVSS, which is obtained by taking the (first-order) G-differential of the (n + 1)th-LFAS defined by Eqs 53, 54. Performing this G-differentiation yields the following relations which define the (n + 1)th-LVSS:
[image: Mathematical expression featuring a derivative with respect to epsilon. The equation involves exponential and polynomial terms, including two functions u and v with superscripts indicating order, and a vector x. Variables r, epsilon, and specific powers are present. Equation is labeled as 57.]
[image: Mathematical expression showing a derivative related to deformation in solid mechanics. It involves terms such as \( \frac{d}{d\epsilon}b_{\epsilon}^{(n+1)}[2^{n+1}, \mathbf{u}^{(n+1,0)}(2^{n+1}; \mathbf{x}) + \epsilon\mathbf{v}^{(n+1)}(2^{n+1}; \mathbf{x}); r^{0} + \epsilon\delta r] \big|_{\epsilon=0} = 0 \), where \(\mathbf{x} \in \partial \Omega\), labeled as equation (58).]
Carrying out the differentiation with respect to [image: Please upload the image or provide a URL so I can create the alt text for you.] in Eqs 57, 58, and setting [image: It seems like there was an error in your request with the image format. Could you please upload the image file or provide a link to it? If there's text in the image, you can also describe it or indicate if there's a caption for context.] in the resulting expressions yields the following (n+1)th-LVSS for the (n + 1)th-level variational function [image: Mathematical expression showing a vector function with superscript n plus 1, followed by parentheses containing 2 raised to n plus 1, semicolon, indices j subscript n minus 1 to j subscript 1, and bold x.]:
[image: Mathematical expression showing a function \( V^{(n+1)} \) with variables and operators involving \( 2^{n+1} \), \( x \), \( q \), \( u \), and \( \delta f \), evaluated over domain \( \Omega \). Equation number (59) is on the right.]
[image: Mathematical equation displaying a boundary condition: \( b_{\nu}^{(n+1)}((u^{(n+1)}, v^{(n+1)}); f, \delta f) \rvert_{\Gamma} = 0 \), where \( x \) is an element of the boundary \( \partial \Omega \). Labeled as equation 60.]
Solving the (n + 1)th-LVSS is prohibitive computationally. Therefore, the need for solving the (n + 1)th-LVSS will be avoided by expressing the indirect-effect term [image: Mathematical expression showing delta R raised to the n-th power with indices j sub n to j sub 1 and vectors u and v both raised to the n plus first power, followed by vector f, enclosed in braces. The term is indexed by "ind".] in an alternative way, which eliminates the appearance of the variational function [image: Mathematical expression depicting a vector function as V superscript n plus one with parameters two raised to the power of n plus one, j sub n minus one to j sub one, and vector x.] by replacing it with the solution of the “(n + 1)th-Level Adjoint Sensitivity System,” abbreviated as (n + 1)th-LASS). This (n + 1)th-LASS will be constructed below by implementing the same sequence of logical steps as were followed when constructing the first- (and lower-) level adjoint sensitivity systems, namely,:
	(i) The (n + 1)th-LASS is constructed in a Hilbert space, denoted as [image: It seems like you're referencing a mathematical expression, \( H_{n+1} \). This notation typically represents a harmonic number, specifically the \((n+1)\)-th harmonic number, which is the sum of the reciprocals of the first \( n+1 \) natural numbers. If there is an associated image or graphic you need alt text for, please upload it or provide a description.], comprising block-vectors of the form [image: The mathematical expression shows a function notation: chi to the power of n plus one, with argument two to the power of n plus one, semicolon, x, is an element of script capital H sub n plus one.], [image: Mathematical expression showing an equation, where bold chi superscript n plus one of x is defined as a vector containing elements chi sub k superscript n plus one of x. The vector is flanked by ellipses and ends with a dagger symbol, indicating a Hermitian conjugate or transpose.], for [image: Mathematical expression showing \( k = 1, \ldots, 2^{n+1} \).], each of these comprising elements having the following structure: [image: Mathematical expression showing vector \(\mathbf{X}^{(n+1)}_k(\mathbf{x})\) defined as the transpose of the vector \([\mathbf{X}^{(n+1)}_{k,k_1}(\mathbf{x}), \ldots, \mathbf{X}^{(n+1)}_{k,TD}(\mathbf{x})]\).]. The inner product between two elements, [image: Mathematical expression showing chi superscript n plus one of x belongs to script H subscript n plus one.] and [image: Mathematical expression showing a function \(\theta^{(n+1)}(x)\) belonging to space \(H_{n+1}\).], of the Hilbert space [image: It seems there might be a misunderstanding. The text "H_{n+1}" appears to be a mathematical expression, not an image. If you have an image file you'd like described, please upload it or provide a URL. If you meant something else, please clarify.], will be denoted as [image: Mathematical notation showing two functions, χ superscript n plus one of x and θ superscript n plus one of x, enclosed in angle brackets, with subscript n plus one.] and is defined as follows:

[image: Mathematical expression showing estimated value of a function: x raised to the power of n plus one, at point 2 raised to the power of n plus 1, multiplied by x. Theta, raised to the power of b, at point 2 raised to the power of n plus 1, multiplied by x, is estimated by the sum from n equals one to m minus one, of x raised to the power of n plus one, at point 2 raised to the power of n plus one, multiplied by x, multiplied by theta, raised to the power of n plus one, at point 2 raised to the power of n plus one, multiplied by x, where n is a constant.]

	(ii) Using the definition provided in Eq. 61, form the inner product in [image: Certainly! Please upload the image you would like described.] of Eq. 59 with a yet undefined vector-valued function [image: Mathematical equation showing a set of vectors: bold a superscript n plus one, with indices j sub n to j sub 1 and variable x, is defined as vector entries a sub k superscript n plus one with the same indices, belonging to space H sub n plus one, for k equals one to two raised to the power of n plus one.], [image: The image shows a mathematical expression: \( j_{1} = 1, \ldots, TF \).], [image: I'm unable to view or interpret images directly. If you can provide a description of the image, I can help create alt text based on that description.]; [image: Sorry, I can't help describe this image.], to obtain the following relation:

[image: Mathematical equation involving several expressions. The equation includes variables like \(a\), \(j\), \(i\), \(n\), \(x\), \(V\), \(q\), \(u\), \(f\), and \(\delta\). Operations include multiplication, summation, and indexing with exponents. Reference to equation number \(62\) appears at the end.]
where [image: Mathematical expression showing a function with parameters \( P^{(n+1)} \), \( \mathbf{v}^{(n+1)} \), \( \mathbf{a}^{(n+1)} \), \( f \), \( \delta f \), and subscript \( \alpha_{\mathbf{0}} \).] denotes the bilinear concomitant defined on the phase-space boundary [image: Mathematical expression showing "x is an element of the boundary of omega".], evaluated at the nominal values of the model parameter and respective functions, and where [image: Mathematical expression: \(\mathbf{A}^{(n+1)} \left[ 2^{n+1} \times 2^{n+1}; \mathbf{x}; \mathbf{f} \right]\).] is the formal adjoint of the matrix-valued operator [image: Mathematical expression showing a vector function V with a superscript n plus one, and an input of two raised to the power of n plus one, multiplied by two raised to the power of n plus one, semicolon x and f.] as defined in Eq. 63, below:
[image: The mathematical expression shows  \( A^{(n+1)}[2^{n+1} \times 2^{n+1}, x; f] \equiv (V^{(n+1)}[2^{n+1} \times 2^{n+1}, x; f])^{\ast} \). This is equation number sixty-three.]

	(iii) The first term on right-side of the second equality in Eq. 62 is now required to represent the indirect-effect term [image: Mathematical expression containing a delta function with superscript \( (n) \). It involves variables \( j_{n}, \ldots, j_{1} \), vectors \( \mathbf{u}^{(n+1)} \) and \( \mathbf{v}^{(n+1)} \), and a function \( \mathbf{f} \), subscripted with "ind".]. This is achieved by requiring that the (n+1)th-level adjoint sensitivity function [image: Equation shows vector notation for \( \mathbf{a}_k^{(n+1)}(j_n, \ldots, j_1; \mathbf{x}) \) being equal to a complex conjugate transpose vector. The index \( k \) ranges from 1 to \( 2^{n+1} \).], be the solution of the following (n+1)th-LASS defined in Eqs. 64, 65, below, for [image: It seems like you've provided a snippet of text rather than an image. If you have an image for which you need alt text, please upload it or provide a URL.]; [image: I'm unable to see the image you're referring to. Please upload the image or provide a URL, and I can help create the alternate text for you.];… [image: It looks like you've entered some text rather than uploaded an image. Please upload the image file, and I'll help you generate the alt text for it.]:

[image: Mathematical expression depicting a transformation involving operators and functions: \( A^{(n+1)}[2^{n+1} \times 2^{n+1}; x, f] a^{(n+1)}(j_m, \ldots, j_1; x) = s^{(n+1)}_{\Lambda}(j_m, \ldots, j_1; f), \) labeled as equation 64.]
[image: Mathematical expression involving functions and parameters: \( b_{\lambda}^{(n+1)} \left[a^{(n+1)}(j_{n\ldots j}; x)\cdot u^{(n+1)}(j_{n-1 \ldots j}; x) \cdot f\right]_{\text{a}_{q}} = 0 \), for \( x \in \partial \Omega \), equation number \( (65) \).]
where the vector [image: Mathematical expression showing an equation with superscripts and subscripts. \( s^{(n+1)}_A(j_n, \ldots, j_1; \mathfrak{f}) \) is defined as the transpose of a sequence including \( s_k^{(n+1)}(j_n, \ldots, j_1; \mathfrak{f}) \).], [image: Mathematical expression: \( k = 1, \ldots, 2^{n+1} \).], comprises [image: Mathematical expression showing "2 raised to the power of n plus 1".] components defined in Eq. 66, below, for each [image: Mathematical expression showing \( j_1 = 1, \ldots, TP \).]; [image: I'm sorry, but I can't view the image you mentioned. Could you please provide the image by uploading it, or describe it in more detail so I can assist you in writing the alt text?];…; [image: It appears the input is not an image but a mathematical notation. If you would like to provide alt text for an image, please upload the image or provide its URL. If you need help with the notation, let me know how I can assist.]:
[image: Equation showing generalized force component: \( S^{(m+1)}_{\lambda} (j_m, \ldots, j_1; f) \equiv \partial S^{(n)}/\partial w^{(m+1)}(x) \). It is labeled as equation (66).]

	(iv) The (n + 1)th-level adjoint boundary conditions represented by Eq. 65 are selected so as to eliminate, in conjunction with the boundary conditions represented by Eq. 60, all of the unknown values of the functions [image: Mathematical expression showing a vector notation. It includes a superscript (n plus one) and is a function of parameters: two raised to the power of n plus one, j indices from n minus one to j subscript one, and vector x.] in the expression of the bilinear concomitant [image: Mathematical expression displaying a set containing terms \( P^{(n+1)} \), \( \mathbf{v}^{(n+1)} \), \( \mathbf{a}^{(n+1)} \), functions \( f \), \( \delta f \), indexed by \( \alpha \) and time step \( t_c \).]. This bilinear concomitant may vanish after implementing the boundary conditions represented by Eqs 60, 65. However, if it does not vanish, this bilinear concomitant will be reduced to a residual quantity which will comprise only known values of [image: Mathematical expression showing "a" raised to the power of "n plus 1," with arguments "j sub n, ..., j sub 1," and "x" in parentheses.], [image: Mathematical expression showing a vector function \( \mathbf{u}^{(n+1)}(j_{n-1} \ldots j_1; \mathbf{x}) \), which likely represents a specific value or transformation involving indices and a variable vector \( \mathbf{x} \).], [image: Certainly! Please upload the image you'd like me to provide alternate text for.] and [image: Mathematical expression showing the variation of a function, denoted as delta f, with respect to alpha, represented as \( \delta f(\alpha) \).], and which will be denoted as [image: The mathematical expression features a function with notation: P-hat superscript (n+1) of variables a superscript (n+1), u superscript (n+1), f, and delta f, all raised to the power alpha subscript zero.].
	(v) Using in Eq. 56 the equations underlying the (n + 1)th-LASS together with the relation provided in Eq. 62 yields the following expression for the indirect-effect term [image: Mathematical expression showing a function: \(\{\delta R^{(n)}[j_{i}, \ldots, j_{1}; \mathbf{u}^{(n+1)}, \mathbf{v}^{(n+1)}; \mathbf{f}]\}_{\text{ind}}\), indicating a modification \(\delta R^{(n)}\) with indices and vectors \(\mathbf{u}^{(n+1)}, \mathbf{v}^{(n+1)}\) and function \(\mathbf{f}\) applied in context indexed by "ind".] in terms of the (n + 1)th-level adjoint sensitivity functions [image: Mathematical expression: lowercase bold letter "a" with superscript "(n+1)" followed by parentheses enclosing indices "j_n, ..., j_1" and semicolon "x" in bold.], for each [image: Mathematical expression showing \( j_1 = 1, \ldots, T_p \).]; [image: I can't view images directly. Please upload the image or provide a URL so I can help create the alt text.];…; [image: It appears there was an issue with displaying the image. Please try uploading it again or provide a URL. You can also add a caption for additional context.]:

[image: A mathematical equation featuring operators and functions: δR indexed by j₀ₙ relates to functions j_i, u^(m+1), v^(m+1), and f, including terms with P^(m+1), a^(m+1), q_v^(m+1), 2^(m+1), and x. Equation (67) is noted.]
Adding the result obtained in Eq. 67 for the indirect effect term to the result provided in Eq. 55 for the direct effect term yields the following expression for the total nth-order G-variation of the response:
[image: A complex mathematical equation involving summation, partial derivatives, and various mathematical notations such as delta functions and integrals. It includes multiple variables and subscripts.]
where [image: Mathematical expression showing a function \( R^{(n+1)}(j_{n+1}, \ldots, j_1; \mathbf{u}^{(n+1)}, \mathbf{a}^{(n+1)}; \mathbf{f}) \).] denotes the (n + 1)th-order partial sensitivity of the response [image: Mathematical expression featuring a function \( R[\mathbf{u}^{(1)}(\mathbf{x}); \alpha] \), indicating a function \( R \) applied to a vector function \( \mathbf{u}^{(1)} \) of \( \mathbf{x} \), with parameter \( \alpha \).] with respect to the components of the feature function [image: It seems like there was an error in uploading the image. Please try uploading it again or provide a URL if it's hosted online. Additionally, you can include a caption for more context if you like.], evaluated at the nominal parameter values [image: Please upload the image or provide a URL for me to generate the alt text.].
The result obtained in Eq. 68 for the expression of the (n + 1)th-order sensitivity, which was obtained by determining the first-order differential of the nth-order sensitivity, is identical to the expression that would be obtained by advancing the index, from n to (n + 1), in the expression of the nth-order sensitivity that was conjectured in Eq. 13. Thus, the proof by mathematical induction of the general mathematical framework underlying the nth-CASAM-L is thereby completed.
The essential characteristics of the nth-FASAM-L methodology are tabularized in Tables 1‒4, below, to underscore the conceptual parallelism between the nth-FASAM-L and the nth-CASAM-L (Cacuci, 2022) methodologies.
TABLE 1 | 1st-FASAM-L: 1st-order (n = 1) sensitivities of response to model features.
[image: A table presents complex mathematical formulas related to first-order systems. It includes headings and equations labeled 1st-LFAS, 1st-LVSS, 1st-Level Hilbert Space, 1st-LASS, and 1st-Order Response Sensitivities to Model Features. Each section contains intricate mathematical expressions with variables and operators, denoting advanced mathematical concepts and models.]TABLE 2 | 2nd-FASAM-L: 2nd-order (n = 2) sensitivities of response to model features.
[image: A table displaying mathematical formulas and notations for various concepts, including 2nd-LFAS, 2nd-LVSS, 2nd-Level Hilbert space, 2nd-LASS, and 2nd-order response sensitivities to model features. Each concept features complex expressions with variables, equations, and definitions.]TABLE 3 | nth-FASAM-L: nth-order sensitivities of response to model features.
[image: Mathematical equations related to nth-order functions and sensitivities are organized in a table. The categories include LFAS, LVSS, Level Hilbert space, LASS, and Resp. Sensitivities to Model Features. Each category contains complex mathematical notations and equations with variables such as \( F \), \( V \), \( H \), \( A \), and \( R \), along with their detailed expressions. The table appears to demonstrate relationships between these mathematical concepts using various subscripted and superscripted expressions.]TABLE 4 | (n + 1)th-FASAM-L: (n + 1)th-order sensitivities of response to model features.
[image: A mathematical flowchart displaying processes related to LASS (Linear Algebraic System Solver). It outlines equations for \( (n+1)^{th} \)-LASS, LVSS, Level Hilbert space, and sensitivities to model features. Functions include variables, matrices, and operators like \( \nabla \), \( \theta \), \( \xi \), as well as distinct sensitivities indicated by factorial expressions.]An overview, in tabular form, of the computational frameworks of the nth-CASAM-L, nth-CASAM-N, nth-FASAM-L, and nth-FASAM-N methodologies, highlighting their objectives, characteristics, and interrelationships is presented in Table 5, below.
TABLE 5 | The nth-CASAM-L, nth-CASAM-N, nth-FASAM-L, nth-FASAM-N methodologies: main features.
[image: Table comparing four methodologies: nth-FASAM-L, nth-CASAM-L, nth-FASAM-N, and nth-CASAM-N. Each is described by its objective, characteristics, and inter-relationships.   - nth-FASAM-L and nth-CASAM-L: Focus on linear Hilbert spaces for efficient computation of sensitivities. nth-CASAM-L directly considers model parameters.  - nth-FASAM-N and nth-CASAM-N: Address nonlinear models with the same objectives as their linear counterparts but utilize forward state functions.   Inter-relationships note that nth methodologies become identical in the absence of "feature functions" related to primary parameters.]Formally, the results produced by the nth-FASAM-L can be written in the same mathematical forms as those produced by the nth-CASAM-L, with the fundamental difference that the number of large-scale computations needed within the nth-FASAM-L is dictated by the number [image: If you have an image you would like me to describe, please upload it or provide more context.] of “feature function components” whereas the number of large-scale computations needed within the nth-CASAM-L is dictated by the number [image: Please upload the image or provide a URL for me to generate the alt text.] of primary model parameters. In particular, a single large-scale adjoint computation is needed to solve the 1st-LASS (which is the same for both the 1st-FASAM-L and the 1st-CASAM-L) to obtain the first-order sensitivities with respect to the model parameters. Obtaining the second-order sensitivities of the response with respect to the primary model parameters requires at most [image: Sure, please upload the image you want the alternate text for.] large-scale computations (to solve the 2nd-LASS) within the 2nd-CASAM-L. Obtaining the same second-order sensitivities using the 2nd-FASAM-L requires at most [image: It seems there was an error, as this appears to be a mathematical expression rather than an image. If you have an image to describe, please upload it or provide a URL.] large-scale computations (to solve the 2nd-LASS) followed by analytical derivations to obtain the second-order sensitivities with respect to the model parameters from the second-order sensitivities with respect to the components of the feature function produced by the 2nd-FASAM-L. The same parallel holds for the computation of all of the higher-order sensitivities: the computation of the 3rd-order sensitivities with respect to the primary model parameters requires at most [image: I'm unable to view the image you mentioned. Please provide a link or upload the image for me to generate the alt text.] computations if using the 3rd-CASAM-L, as opposed to at most [image: Mathematical expression showing the formula: \(TF \times (TF + 1) \times (TF + 2) / 3!\).] large-scale computations plus analytical derivations if using the 3rd-CASAM-L. The computation of the 4th-order sensitivities with respect to the primary model parameters requires at most [image: Mathematical formula displaying the expression \( TP(TP + 1)(TP + 2)(TP + 3) / 4! \).] computations if using the 4th-CASAM-L, as opposed to at most [image: Mathematical expression showing TF multiplied by TF plus 1, TF plus 2, and TF plus 3, divided by four factorial.] large-scale computations plus analytical derivations if using the 4th-CASAM-L; and so on. Since [image: The image contains a mathematical expression, "TF much less than TP".], it is evident that the nth-FASAM-L methodology becomes increasingly more efficient than the nth-CASAM-L as the order of computed sensitivities increases.
3 CONCLUDING DISCUSSION
This work has presented the “nth-Order Feature Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems” (abbreviated as “nth-FASAM-L”), which is the most efficient methodology for computing exact expressions of sensitivities of model responses to features of model parameters and, subsequently, to the model parameters themselves for such linear systems. This efficiency stems from the maximal reduction of the number of adjoint computations (which are “large-scale” computations), by comparison to the extant high-order adjoint sensitivity analysis methodology nth-CASAM-N (the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”). Specific details are as follows:
	(i) Comparing the mathematical framework of the nth-FASAM-N methodology to the framework of the nth-CASAM-N methodology indicates that the components [image: Mathematical expression: \( f_i(\alpha), i = 1, \ldots, TF \).], of the “feature function” [image: Mathematical expression showing bold f of a is defined as the column vector of functions f sub one of a through f sub T F of a, with a superscript dagger indicating a Hermitian conjugate or transpose.] play within the nth-FASAM-N the same role as played by the components [image: The expression "α sub j, j equals one, to TP" likely represents a mathematical notation for a sequence or set of variables indexed by j, ranging from 1 to TP.], of the “vector of primary model parameters” [image: Vector alpha, denoted as bold alpha, is defined to be the transpose of the vector containing elements alpha subscript one to alpha subscript T subscript P.] within the framework of the nth-CASAM-N. It is important to note that the total number of model parameters is always larger (usually by wide margin) than the total number of components of the feature function [image: It appears there is no image provided. Please upload the image or provide a URL, and I will help you create the alternate text.], i.e., [image: The image shows the mathematical expression "TP greater than greater than TF".].
	(ii) The 1st-FASAM-N and the 1st-CASAM-N methodologies require a single large-scale “adjoint” computations for solving the 1st-LASS (1st-Level Adjoint Sensitivity System), so they are comparably efficient for computing the exact expressions of the first-order sensitivities of a model response to the model’s uncertain parameters, boundaries, and internal interfaces.
	(iii) For computing the exact expressions of the second-order response sensitivities with respect to the primary model’s parameters, the 2nd-FASAM-N methodology requires, at most, as many large-scale “adjoint” computations as there are “feature functions of parameters” [image: Mathematical notation showing a function \( f_i(\alpha) \) where \( i \) ranges from 1 to \( TF \).] (where [image: It seems there was an issue with the image upload. Please try uploading the image again, and I can help create the alt text for it.] denotes the total number of feature functions) for solving the left-side of the 2nd-LASS with [image: It seems there's no image attached. Please upload the image or provide a URL so I can assist you with creating alt text.] distinct sources on its right-side. By comparison, the 2nd-CASAM-N methodology requires at most [image: Please upload the image or provide a URL for me to create the alternate text. If you have additional context or a caption, feel free to include that as well.] (where [image: Black and white block letters "TP" with a high-gloss finish, casting a subtle shadow for a three-dimensional effect.] denotes the total number of model parameters) large-scale computations for solving the same left-side of the 2nd-LASS but with [image: I'm unable to view images directly. To help you generate accurate alt text, please upload the image or provide a URL. If you wish, you can also add a brief description.] distinct sources. Since [image: Mathematical expression stating TF is much smaller than TP, represented by TF followed by a double less-than sign and TP.], the 2nd-FASAM-N methodology is considerably more efficient than the 2nd-CASAM-N methodology for computing the exact expressions of the second-order sensitivities of a model response to the model’s uncertain parameters, boundaries, and internal interfaces.
	(iv) For computing the exact expressions of the third-order response sensitivities with respect to the primary model’s parameters, the 3rd-FASAM-N requires at most [image: Mathematical expression showing "TF" multiplied by the sum of "TF" and one, all divided by two.] large-scale “adjoint” computations for solving the 3rd-LASS with [image: Mathematical formula depicting the triangular number formula, expressed as \( TF(TF + 1)/2 \), where TF is the term number.] distinct sources, while the 3rd-CASAM-N methodology requires at most [image: To provide alt text, please upload the image or share a URL link.] large-scale computations for solving the 3rd-LASS with [image: Mathematical expression showing TP multiplied by the quantity TP plus one, divided by two.] distinct sources. The same computational-count of ”large-scale computations” caries over when computing the higher-order sensitivities, i.e., the formula for calculating the “number of large-scale adjoint computations” is formally the same for both the nth-FASAM-N and the nth-CASAM-N methodologies, but the “variable” in the formula for determining the number of adjoint computations for the nth-FASAM-N methodology is [image: It seems like there's no image attached or the image link might not be working. Please try uploading the image again or provide a URL.] (i.e., total number of feature functions) while the counterpart for the formula for determining the number of adjoint computations for the nth-CASAM-N is methodology is [image: The text "TP" is presented in italicized serif font.] (i.e., total number of model parameters). Since [image: The image shows the mathematical expression "T subscript F is much less than T subscript P".], it follows that the higher the order of computed sensitivities, the mode efficient the nth-FASAM-N methodology becomes by comparison to the nth-CASAM-N methodology.
	(v) When a model has no “feature” functions of parameters, but only comprises primary parameters, the nth-FASAM-N methodology becomes identical to the nth-CASAM-N methodology.
	(vi) Both the nth-FASAM-N and the nth-CASAM-N methodologies are formulated in linearly increasing higher-dimensional Hilbert spaces −as opposed to exponentially increasing parameter-dimensional spaces− thus overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems. Both the nth-FASAM-N and the nth-CASAM-N methodologies are incomparably more efficient and more accurate than any other methods (statistical, finite differences, etc.) for computing exact expressions of response sensitivities (of any order) with respect to the model’s uncertain parameters, boundaries, and internal interfaces.

The question of “when to stop computing progressively higher-order sensitivities ?” has been addressed by Cacuci (2022), Cacuci D. G. (2023) in conjunction with the question of convergence of the Taylor-series expansion of the response in terms of the uncertain model parameters, cf; Eqs 10, 12. These Taylor-series expansions provide the fundamental premise, even if not explicitly recognized, for obtaining the expressions provided by the “propagation of errors” methodology (as originally proposed by Tukey, 1957; and generalized by Cacuci, 2022) for the cumulants of the model response distribution in the phase-space of model parameters. The convergence of these Taylor-series, which depend on both the response sensitivities with respect to parameters and the uncertainties associated with the parameter distribution, must be ensured. This can be done by ensuring that the combination of parameter uncertainties and response sensitivities are sufficiently small to fall inside the respective radius of convergence of each of these Taylor-series expansions. The application of the nth-FASAM-N to a representative response-coupled forward/adjoint linear model stemming from the field of energy-dependent particle transport in a mixture of materials will be presented in the accompanying work designated as “Part II” (Cacuci, 2024c).
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This work presents a representative application of the newly developed “nth-order feature adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems” (abbreviated as “nth-FASAM-L”), which enables the most efficient computation of exactly obtained mathematical expressions of arbitrarily high-order (nth-order) sensitivities of a generic system response with respect to all of the parameters (including boundary and initial conditions) underlying the respective forward/adjoint systems. The nth-FASAM-L has been developed to treat responses of linear systems that simultaneously depend on both the forward and adjoint state functions. Such systems cannot be considered particular cases of nonlinear systems, as illustrated in this work by analyzing an analytically solvable model of the energy distribution of the “contributon flux” of neutrons in a mixture of materials. The unparalleled efficiency and accuracy of the nth-FASAM-L stem from the maximal reduction in the number of adjoint computations (which are “large-scale” computations) for determining the exact expressions of arbitrarily high-order sensitivities since the number of large-scale computations when applying the nth-FASAM-N is proportional to the number of model features as opposed to the number of model parameters (which are considerably more than the number of features). Hence, the higher the order of computed sensitivities, the more efficient the nth-FASAM-N becomes compared to any other methodology. Furthermore, as illustrated in this work, the probability of encountering identically vanishing sensitivities is much higher when using the nth-FASAM-L than other methods.
Keywords: arbitrarily high-order adjoint sensitivity analysis, nth-order feature adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems, response-coupled forward/adjoint systems, neutron-slowing down, sensitivity of responses to model features

1 INTRODUCTION
The accompanying work (“part I”) has presented the newly developed mathematical framework, the “nth-order feature adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems” (abbreviated as “nth-FASAM-L”), conceived by Cacuci (2024c). This work illustrates the application of the nth-FASAM-L to a representative energy-dependent neutron-slowing down model of fundamental importance to reactor physics. The physical considerations underlying this model are presented in Section 2, which briefly reviews the concept of “contributon-flux density response” and particularizes this concept within the modeling of neutron slowing down in a mixture of materials. This physical model is of fundamental importance in nuclear reactor physics and enables the derivation of exact closed-form results for the application of the nth-FASAM-L. Section 2 also defines the “features” inherent to this model, which enable the advantageous application of the nth-FASAM-L. By definition, there are considerably fewer “feature functions” of the primary model parameters than there are primary model parameters.
Section 3 presents the first-order adjoint sensitivity analysis of the contributon flux with respect to the features and primary model parameters of the slowing-down model, comparing the application of the 1st-FASAM-L versus the first-order comprehensive adjoint sensitivity analysis methodology for response-coupled forward/adjoint linear systems (1st-CASAM-L). Using either the 1st-FASAM-L or 1st-CASAM-L involves solving the same operator equations and boundary conditions within the respective 1st-LASS but with differing source terms. For the computation of the first-order sensitivities, the 1st-FASAM-L enjoys only a slight computational advantage since it requires only one quadrature per component of the feature function, whereas the 1st-CASAM-L requires one quadrature per primary model parameter.
Section 4 presents the second-order adjoint sensitivity analysis of the contributon flux with respect to the features and primary model parameters of the slowing-down model, comparing the application of the 2nd-FASAM-L versus the 2nd-CASAM-L. It is shown that the 2nd-FASAM-L requires as many large-scale “adjoint” computations as there are non-vanishing first-order response sensitivities with respect to the components of the feature functions, whereas the 2nd-CASAM-L requires as many large-scale computations as there are non-vanishing first-order response sensitivities with respect to the primary model parameters. Hence, the 2nd-FASAM-L is inherently more efficient than the 2nd-CASAM-L. In particular, one of the three distinct second-order sensitivities with respect to the model’s features vanishes identically within the 2nd-FASAM-L but none of the ca. 100 second-order sensitivities with respect to the primary model parameters vanish within the 2nd-CASAM-L.
Section 5 presents the third-order adjoint sensitivity analysis of the contributon flux with respect to the features and primary model parameters of the slowing-down model, comparing the application of the 3rd-FASAM-L versus the 3rd-CASAM-L. For computing the exact expressions of the third-order contributon-response sensitivities, the 3rd-FASAM-L requires only two large-scale computations, whereas the 3rd-CASAM-L would require hundreds of large-scale computations.
The concluding discussion presented in Section 6 emphasizes the fact that the unparalleled efficiency of the nth-FASAM-N increases as the order of computed sensitivities increases, and the probability of encountering vanishing sensitivities is much higher when using the nth-FASAM-L rather than any other methodology. Both the nth-FASAM-L and nth-CASAM-L overcome the limitation of dimensionality in the sensitivity analysis of linear systems, being incomparably more efficient and more accurate than any other method (statistical, finite differences, etc.) for computing exact expressions of response sensitivities (of any order) with respect to the uncertain parameters, boundaries, and internal interfaces of the model.
2 MODELING THE CONTRIBUTON FLUX IN A PARADIGM NEUTRON SLOWING-DOWN MODEL
Fundamentally important responses of linear models depend simultaneously on both the forward and adjoint state functions governing the respective linear model, which makes it necessary to treat linear models/systems in their own right since such responses cannot be treated as particular cases of responses of nonlinear models. Typical examples of such responses arise in the modeling of self-diffusion processes in which the interaction mean free path is independent of the phase-space density. Such processes are modeled by linear equations of the Lorentz–Boltzmann type, and they occur in neutron, electron, and photon transport through media, as well as in certain types of transport processes in gas or plasma dynamics. Numerically solving such time-dependent integro-differential equations, albeit linear, is representative of “large-scale” computations and will be used in the sequel for illustrating the application of the nth-FASAM-L. In particular, the distribution of neutrons in a medium is modeled by the following standard form of the linear Boltzmann equation:
[image: Equation showing radiative transfer: \( L(r, E, \Omega, t) \phi(r, E, \Omega, t) = Q(r, E, \Omega, t) \), labeled as equation (1).]
where the linear integro-differential operator [image: The image contains the mathematical expression \( L(r, E, \Omega, t) \), which represents a function dependent on variables \( r \), \( E \), \( \Omega \), and \( t \).] is defined below:
[image: A mathematical equation representing a transport problem. It includes terms like \(L(r,E,\Omega,t)\), \(\frac{1}{v}\frac{\partial \phi(r,E,\Omega,t)}{\partial t}\), \(\Omega \cdot \nabla \phi(r,E,\Omega,t)\), and integrals involving \(\Sigma_s\), \(\chi\), and \(\Sigma(r,E')\). The variables and parameters involve spatial, energy, and angle dependencies.]
The quantities that appear in the standard notation used in Equation 2 are defined as follows:
	(i) [image: It looks like there was no image attached. Please upload the image you want me to describe.] denotes the three-dimensional position vector in space; [image: To provide alt text, please upload the image or provide a URL to it.] denotes the energy-independent variable; the directional vector [image: Greek letter Omega symbol, in black, resembling an inverted horseshoe with outward-curving ends.] denotes the scattering solid angle; [image: It seems there was an error with your image upload. Please try uploading the image again, and I will help you create the alt text.] denotes the time-independent variable; and [image: It seems like there might have been an issue with the image upload. Please try uploading the image again, and I will be happy to assist you with the alt text.] denotes the neutron particle speed.
	(ii) [image: The mathematical notation represents a function ϕ dependent on variables r, E, Ω, and t, where r is position, E is energy, Ω is solid angle, and t is time.] denotes the flux of particles (i.e., particle number density multiplied by the particle speed) in the energy range [image: It seems like you've entered some text rather than providing an image. Please upload the image or provide a URL, and I'll be happy to help with the alternate text.] about [image: Please upload the image so I can provide the appropriate alt text for it.] and volume element [image: It seems like there was an error with the image upload. Please try uploading the image again, and I will be happy to help with the alt text.] about [image: It seems like you've tried to reference an image, but it didn't come through. Please upload the image or provide a URL. If you have any context to add, feel free to include it.], with directions of motion in the solid angle element [image: Mathematical notation showing the expression "dΩ", typically representing an infinitesimal element of solid angle in physics and mathematics contexts.] about [image: The Greek letter Omega, denoted by the symbol resembling a horseshoe or an inverted U, often used in mathematics and science to represent ohms in electricity or as a variable.].
	(iii) [image: Mathematical expression depicting a function \( Q \) dependent on variables \( r \), \( E \), \( \Omega \), and \( t \).] denotes the rate at which particles are produced in the same element of phase space from sources that are independent of the flux.
	(iv) [image: The image shows a mathematical expression with the Greek capital letter Sigma, representing a sum. It includes variables in parentheses: lowercase r and uppercase E, indicating that the sum is a function of these variables.] denotes the macroscopic total cross section.
	(v) [image: Scattering cross-section notation: Sigma sub s with variables r, E prime to E, and Omega prime to Omega in parentheses.] denotes the macroscopic scattering transfer cross section from energy [image: Please upload the image or provide a URL to it so I can assist you with creating the alternate text.] to energy [image: It seems there was an error or the image didn't upload correctly. Please try uploading the image again or provide a URL. If you have any additional context or description, feel free to include that as well.] and from a scattering angle through angle [image: It seems like you've entered a mathematical expression rather than an image. The expression "Ω' · Ω" likely refers to the dot product of two vectors or mathematical entities labeled Omega prime and Omega. If you have an image you'd like me to describe, please upload it or provide a link.].
	(vi) [image: If you can provide an image or a URL, I can help create the alt text for it. If you have a caption or context, feel free to add that as well.] denotes the number of particles emitted isotropically [image: A mathematical expression showing the fraction one divided by four times pi, enclosed in parentheses.] per fission.
	(vii) [image: Mathematical expression showing the symbol for the summation of a function, denoted as Sigma (Σ), with subscripts "f" and arguments "r" and "E" in parentheses.] denotes the macroscopic fission cross section.
	(viii) [image: Mathematical notation representing a function \( \chi(\mathbf{r}, E' \rightarrow E) \), indicating a transition or transformation from \( E' \) to \( E \) depending on position \( \mathbf{r} \).] denotes the fraction of fission particles appearing in energy [image: Please upload the image or provide a URL, and I will help you create the alt text for it.] about [image: It seems there was an error in uploading the image. Please try uploading it again, or provide a description or context if available.] from fissions in [image: A mathematical expression represented as "dE prime" with the letters "d" and "E" followed by a prime symbol. It appears in a serif font.] about [image: It seems like there is no image uploaded. Please upload the image or provide a URL so I can help create the alt text.].

The adjoint Boltzmann transport equation is formulated in the Hilbert space denoted as [image: It seems there was an issue with displaying the image. Please ensure the image is correctly uploaded or provide a URL so I can assist with the alternate text.] and is endowed with the following inner product, denoted as [image: Mathematical expression showing a bra-ket notation: ⟨φ(r, E, Ω, t), ψ(r, E, Ω, t)⟩_B.], between two elements [image: Mathematical expression: \(\varphi(\mathbf{r}, E, \Omega, t) \in \mathcal{H}_B\).] and [image: ψ(r, E, Ω, t) is an element of script H sub B.]:
[image: Mathematical equation consisting of an inner product \(\langle \phi, \psi \rangle_B\) equal to the integral from zero to \(t_f\) over time, from zero to infinity over energy \(E\), over solid angle \(\Omega\), and over the volume \(V\), of a function \(\phi(x, E, \Omega, t) \psi(x, E, \Omega, t)\).]
In the Hilbert space [image: It appears there is no image for me to analyze. Please upload the image or provide a URL so I can assist you.], the generic adjoint Boltzmann transport equation is as follows:
[image: Equation showing \( L(r, E, \Omega, t) \psi(r, E, \Omega, t) = Q^*(r, E, \Omega, t) \).]
where the (adjoint) linear integro-differential operator [image: Mathematical expression representing a function \(L^*(r, E, \Omega, t)\) involving variables \(r\), \(E\), \(\Omega\), and \(t\).] is defined below:
[image: Mathematical expression representing a complex equation with integrals involving functions of variables related to energy, position, direction, and time. It includes differentials, summations, and terms with functions \(\psi\) and \(\chi\), along with differential operators and parameters like \(\nu\), \(\Omega\), \(E\), and \(t\).]
By construction, the forward and adjoint transport equations satisfy the following relation:
[image: Mathematical equation showing an expression involving inner products and operators: \(\langle \varphi, L \psi \rangle - \langle \psi, L \varphi \rangle = P(\varphi, \psi) = \langle \varphi, Q \psi \rangle - \langle \psi, Q \varphi \rangle\). Marked as equation (6).]
where [image: Mathematical notation showing the expression \( P[\phi, \psi] \), where \( P \) is likely a function or operator applied to the variables \( \phi \) and \( \psi \).] denotes the bilinear concomitant evaluated on the boundary of the phase-space domain under consideration. The “generalized reciprocity relation” expressed by Equation 6 relates the bilinear concomitant, which is a functional of the forward and adjoint fluxes at the initial and final times along the incoming and outgoing directions at the surface of the medium, to the fluxes in the interior of the medium comprising fixed sources. This reciprocity relation provides a physical interpretation of the adjoint flux as an “importance function,” which quantifies the contribution of a source to a detector and enables transport problems to be posed either in the forward or adjoint descriptions. These reciprocity relations also restrict the combination of forward and adjoint boundary conditions to those that ensure both the forward and adjoint formulations are mathematically “well posed.” The reciprocity relation expressed by Equation 6 is extensively used in the so-called “source-detector” problems in steady-state subcritical systems, where [image: The mathematical expression depicted is \( \mathbf{Q}^*(\mathbf{r}, E, \Omega) \).] models the detector properties (cross section) in the sub-region occupied by the respective detector.
When the boundary conditions for Equation 1 are homogeneous and there is no external source, i.e., when [image: The mathematical expression shows \( Q(r, E, \Omega, t) = 0 \).], the stationary neutron transport problem becomes an eigenvalue problem. The largest (i.e., fundamental) eigenvalue in such a case is called the “effective multiplication factor” and, depending on its value, corresponds to a critical, subcritical, or supercritical physical system (e.g., nuclear reactor). This eigenvalue (multiplication factor) is an important system (model) response, and its mathematical expression is a functional (“Raleigh quotient”) of the forward and the adjoint fluxes. Additional important model responses that are functionals of both the forward and adjoint fluxes include the reactivity, generation time, and lifetime of the system, along with several other Lagrangian functionals used in variational principles for developing efficient Raleigh–Ritz type numerical methods (see, e.g., Lewins, 1965; Stacey, 1974; Stacey, 2001). Perhaps the simplest quantity that depends on both the forward and adjoint fluxes—and has important applications in particle transport (particularly in particle shielding)—is the so-called “contributon flux” (Williams and Engle, 1977), which arises as follows:
	(i) Multiplying the stationary form of Equation 1 by [image: Mathematical notation for the wave function denoted as psi, \(\psi\), depending on variables \(r\), \(E\), and \(\Omega\).], multiplying the stationary form of Equation 4 by [image: The formula \(\phi(r, E, \Omega)\) represents a function or expression involving the variables \(r\), \(E\), and \(\Omega\).], subtracting the resulting equations from each other, and integrating the resulting equation over only the energy- and solid angle-independent variables yield the following relation:

[image: Divergence of vector field R of r equals function S of r minus function S star of r, labeled as equation seven.]
where
[image: Equation showing \( R_{t}(r) = \frac{1}{\nu} \int_{0}^{E_{f}} \text{d}E \int_{4\pi} \text{d}\Omega \, \phi(r,E,\Omega) \psi(r,E,\Omega) \), labeled as equation (8).]
[image: The equation displays the expression for \( \nu_c \), which is defined as the ratio of two integrals. The numerator is the integral from zero to \( E_f \) of \( dE \) and the integral over \( 4\pi \) of \( d\Omega \) of \( \Omega \phi(r, E, \Omega) \psi(r, E, \Omega) \). The denominator includes the expression \( \frac{1}{v} \) and a similar integral structure, from zero to \( E_f \), involving \( dE \) and \( d\Omega \) of \( \phi(r, E, \Omega) \psi(r, E, \Omega) \). Equation labeled as (9).]
[image: Mathematical equation showing \( S_{\alpha}(r) \) defined as a double integral over energy \( E \) and solid angle \( \Omega \) of the product \( Q(r, E, \Omega) \psi (r, E, \Omega) \), with integration limits from zero to \( E_{f} \). The equation is labeled as equation ten.]
[image: Equation showing \( S_c(\mathbf{r}) \) defined as a double integral from zero to \( E_f \) over the variables \( E \) and \( \Omega \), involving the functions \( Q^r(\mathbf{r}, E, \Omega) \) and \( \phi(\mathbf{r}, E, \Omega) \). The equation is labeled as equation (11).]

	(ii) The form of Equation 7 is the same as the mass continuity balance/equation for compressible flow, indicating that the “contributon response density” [image: It seems like you've referenced an image related to mathematical notation or a function, possibly labeled as \( R_c(\mathbf{r}) \), involving vectors or functions of vectors. If there is a specific image to describe, please upload it or provide further details.] is conserved as it flows from the “contributon response source” [image: It seems there's a formula in your message, but I can't see the image. Please upload the image or provide a URL, and I'll help with the alt text!] toward the “contributon response sink” [image: Mathematical expression showing a starred superscript, "S", with a subscript "c", followed by a function of "r" enclosed in parentheses.], with a “contributon response mean velocity” [image: It seems there was an error in uploading the image. Please try uploading the image again, ensuring the file is attached properly. If you need any assistance, feel free to ask!] corresponding to the neutron speed [image: Please upload the image or provide a URL so I can help create the alt text for it.].

The application of the nth-FASAM-L is illustrated in this section by considering the simplified model of the distribution in the asymptotic energy range of neutrons produced by a source of neutrons placed in an isotropic medium comprising a homogeneous mixture of “M” non-fissionable materials having constant (i.e., energy-independent) properties. For simplicity, but without diminishing the applicability of the nth-FASAM-L, this medium is considered to be infinitely large. The simplified form of the Boltzmann neutron transport equation, as shown in Equation 1, that models the energy distributions of neutrons within a mixture of materials is called the “neutron slowing-down equation.” This equation is written using neutron lethargy (rather than the neutron energy) as the independent variable. Neutron lethargy is customarily denoted using the variable/letter “u” and is defined as [image: Mathematical notation showing the equation: \( u \triangleq \ln(E_0/E) \), where \( u \) is defined as the natural logarithm of the ratio of \( E_0 \) to \( E \).], where [image: It seems there was an error in providing the image. Please try uploading the image again, and I will create the alt text for you.] denotes the energy variable and [image: It seems like there might be an error in your request or a missing image upload. Please try uploading the image again or provide more context for the image you are referring to.] denotes the highest energy in the system. Thus, the neutron slowing-down model (see, e.g., Meghreblian and Holmes, 1960; Lamarsh, 1966) for the energy distribution of the neutron flux in a homogeneous mixture of non-fissionable materials of infinite extent takes the following simplified form of Equation 1:
[image: Equation showing the derivative of phi with respect to u, plus sigma_a over xi sigma_t times phi, equals S of u over xi sigma_t for the range zero less than u less than or equal u_hi. Equation 12.]
[image: Equation displaying \( \varphi(0) = 0 \) at \( u = 0 \), labeled as equation (13).]
The quantities that appear in Equation 12 are defined as follows.
	(i) The lethargy-dependent neutron flux is denoted as [image: The image displays the mathematical notation for a function, represented as phi of u, written as \(\varphi(u)\).]; [image: The graphic shows the mathematical notation "u subscript th".] denotes a cut-off lethargy, usually corresponding to the thermal neutron energy (ca. 0.0024 electron volts).
	(ii) The macroscopic elastic scattering cross section for the homogeneous mixture of “M” materials is denoted as [image: Symbol of a Greek capital letter Sigma with a subscript "s". Sigma is often used to denote summation in mathematics.] and is defined as follows:

[image: Summation equation for sigma sub s equals sum from i equals 1 to M of N sub m super i times sigma sub s super i. This is equation fourteen.]
where [image: Mathematical expression showing the symbol sigma subscript s with superscript i, followed by comma, i equals one to M.] denotes the elastic scattering cross section of material “i,” and the atomic or molecular number density of material “i” is denoted as [image: Mathematical expression showing \(N_m^{(i)}\), where \(i\) ranges from 1 to \(M\).] and is defined as [image: Equation showing the number of moles \(N_m^{(i)}\) equals the density \(\rho_i\) times Avogadro's number \(N_A\) divided by the atomic mass \(A_i\).], where [image: Could you please upload the image or provide a URL so I can generate the alt text for you?] is Avogadro’s number [image: Mathematical expression showing \(0.602 \times 10^{24}\) nuclei per mole.], while [image: Please upload the image or provide a URL so I can create an appropriate alt text for it.] and [image: It seems like there might be an error or placeholder text for an image upload. To provide alternate text, please upload an image or provide a URL. If there's specific content within the image you want described, you can also include that in the caption.] denote the mass number and density of the material, respectively.
	(iii) The average gain in lethargy of a neutron per collision is denoted as [image: A Greek lowercase letter xi with a bar over it, often used in mathematical and scientific contexts.] and is defined as follows for the homogeneous mixture:

[image: Mathematical equations are shown. The first equation represents \(\bar{\xi} = \frac{1}{\sum_{\nu}} \sum_{\nu = 1}^{M} \xi_{\nu} N_{m}^{(0)} \sigma_{\nu}^{(0)}\). The second and third equations are \(\xi_{l} = 1 + \frac{a_{l} \ln a_{l}}{1 - a_{l}}\) and \(a_{l} \equiv \left(\frac{A_{l} - 1}{A_{l} + 1}\right)^{2}\). Equation number 15 is indicated.]

	(iv) The macroscopic absorption cross section is denoted as [image: Uppercase Sigma with a subscript "a", often used in mathematical notation to denote the summation of a sequence indexed by "a".] and is defined as follows for the homogeneous mixture:

[image: Summation formula of sigma sub u equals the sum from i equals one to M of N sub m superscript (i) times sigma sub y superscript (i), equation sixteen.]
where [image: Mathematical notation showing the symbol \(\sigma_y^{(i)}\) with the index \(i\) ranging from \(1\) to \(M\).] denotes the microscopic radiative-capture cross section of material “i.”
	(v) The macroscopic total cross section is denoted as [image: Greek letter Sigma with a subscript 't'.] and is defined as follows for the homogeneous mixture:

[image: Mathematical equation depicting the summation symbol raised to the power of n, equal to the sum of two individual sigma terms. The equation is labeled with the number seventeen in parentheses.]

	(vi) The source [image: Mathematical expression representing the function \( S(u) \).] is considered to be a simplified “spontaneous fission” source stemming from fissionable actinides, such as 239Pu and 240Pu, emitting monoenergetic neutrons at the highest energy (i.e., zero lethargy). Such a source is comprised within the OECD/NEA polyethylene-reflected plutonium (PERP) OECD/NEA reactor physics benchmark (Valentine, 2006; Cacuci and Fang, 2023), which can be modeled using the following simplified expression:

[image: The formula shows \( S(u) = S_0 \delta(u) \) with \( S_0 \) defined as \( S_0 = \sum_{k=1}^{2} \lambda_k N_k^s F_k^s \gamma_k^s W_k^s \). Equation (18).]
where the superscript “S” indicates the “source; ” the subscript index k = 1 indicates material properties pertaining to the isotope 239Pu; the subscript index k = 2 indicates material properties pertaining to the isotope 240Pu; [image: A mathematical expression featuring the Greek letter lambda with subscript k and superscript s.] denotes the decay constant; [image: Mathematical notation showing an uppercase letter "N" with subscripts "k" and superscripts "S".] denotes the atomic density of the respective actinide; [image: It appears there's no image attached. Please upload the image or provide a URL so I can help you create the alternate text.] denotes the spontaneous fission branching ratio; [image: Graph showing a curve representing the relationship between  \( v_s \) and \( k \). The curve likely indicates how \( v_s \) changes with varying values of \( k \), but specific details and axes labels are not provided.] denotes the average number of neutrons per spontaneous fission; and [image: Equation showing the symbol "W" with a superscript "S" and a subscript "k".] denotes a function of parameters used in Watt’s fission spectrum to approximate the spontaneous fission neutron spectrum of the respective actinide. The detailed forms of the parameters [image: Sorry, I cannot see or analyze images directly. Please provide a description or a link to the image, and I can help you create alt text for it.] are unimportant for illustrating the application of the nth-FASAM-L. The nominal values for these imprecisely known parameters are available from a library file contained in SOURCES 4C (Wilson et al., 2002).
Mirroring the considerations for the Boltzmann transport equation presented in Equations 1‒6, the “adjoint slowing-down model” is constructed in the Hilbert space [image: It looks like there was an issue with uploading the image. Please try again, ensuring the file is attached correctly, or provide a URL if that's more convenient.] of square-integrable functions [image: The expression shows the function phi of u, symbolized as φ(u), belonging to the Hilbert space H sub B.] and [image: The mathematical expression shows the function psi of u (ψ(u)) as an element of the Hilbert space H subscript B.] endowed with the following inner product, denoted as [image: Inner product notation showing \(\langle \varphi(u), \psi(u) \rangle_B\), where \(\varphi(u)\) and \(\psi(u)\) are functions, and \(B\) denotes the basis.]:
[image: Inner product of functions phi(u) and psi(u) in space B is defined as the integral from 0 to u sub 0 of phi(u) times psi(u) du, labeled as equation 19.]
Using the inner product [image: Inner product notation featuring variables phi of u and psi of u, enclosed in angle brackets with a subscript B.] defined in Equation 19, the adjoint slowing-down model is constructed by the usual procedure, i.e., by (i) constructing the inner product of Equation 12 with a function [image: Mathematical expression of psi of u belongs to script capital H subscript capital B.]; (ii) integrating by parts the resulting relation so as to transfer the differential operation from the forward function [image: Mathematical expression showing the Greek letter phi, denoted as \( \phi \), followed by \( (u) \).] onto the adjoint function [image: Greek letter psi followed by a variable u in parentheses.]; (iii) using the initial condition provided in Equation 13 and eliminating the unknown function [image: Mathematical notation showing the function phi applied to the variable \( u_{th} \).] by choosing the final-value condition [image: The image shows the equation: psi of u sub th equals zero.]; and (iv) choosing the source for the resulting adjoint slowing-down model so as to satisfy the generalized reciprocity relation shown in Equation 6. The result of these operations is the following adjoint slowing-down model for the adjoint slowing-down function [image: The mathematical expression psi of u in parentheses.]:
[image: Equation showing the derivative of psi with respect to u, plus f sub one of alpha times psi of u, equals delta of u minus u sub d, enclosed in parentheses and labeled as equation twenty.]
[image: The mathematical expression shows \( \psi(u_n) = 0 \), at \( u = u_n \), labeled as equation (21).]
The “contributon-flux response density” [image: Mathematical expression displaying \( R_c(\phi, \psi) \), where \( R_c \) is a function of variables \( \phi \) and \( \psi \).], as generally defined in Equation 8, specialized for the neutron slowing-down model, coincides with the inner product used in this context, i.e.,
[image: Mathematical expression defining an operator \( R_c(\varphi, \psi) \) as the integral from zero to infinity of \( \varphi(u)\psi(u) \, du \), equal to the inner product \( \langle \varphi(u), \psi(u) \rangle_B \). It is labeled as equation 22.]
It is important to note that [image: Mathematical expression for \( R_c(\phi, \psi) \) written in italic script.] does not depend explicitly on either the feature function [image: Please upload the image or provide a URL for me to generate the alt text.] or any primary model parameter. Therefore, the G-differential of [image: Mathematical expression displaying \( R_c(\phi, \psi) \).] will not comprise a direct-effect term but will consist entirely of the indirect-effect term.
For this “contributon-flux response density” model, the following primary model parameters are subject to experimental uncertainties.
	(i) For each material “i,” [image: It seems there's a mistake in your request. You might have tried to upload an image or copy some text. Please upload the image file directly, and I can generate alt text for it.], included in the homogeneous mixture, the following are primary model parameters: the atomic number densities [image: Mathematical notation showing \( N_{m}^{(i)} \).]; the microscopic radiative-capture cross section [image: Mathematical expression featuring the Greek letter sigma with a subscript gamma and an exponent i in parentheses.]; and the scattering cross section [image: Mathematical notation displaying the Greek letter sigma with a subscript "s" and a superscript "(i)".];
	(ii) The source parameters [image: A mathematical expression displaying the Greek letter lambda with subscript k and superscript s.], [image: Mathematical notation showing an uppercase "N" with superscript "S" and subscript "k".], [image: It seems like there may have been an error when attempting to upload an image. Please try uploading the image again, and I will be happy to help with the alternate text.], [image: It seems like the input provided is not an image but rather a mathematical expression, possibly referring to a variable or notation related to a particular context. Please provide more information or upload an image for a detailed description.], and [image: Mathematical expression showing "W" with subscript "k" and superscript "s".], for k = 1,2.

The above primary parameters are considered to constitute the components of a “vector of primary model parameters” defined as follows:
[image: Mathematical equations representing a set of variables: \( \hat{a} = (N_{m}^{(i)}, o_{y}^{(i)}, ..., N_{dM}^{(iM)}, o_{dM}^{(iM)}, \Lambda^{1}, \Lambda^{2}, N_{5}^{2}, F_{5}^{1}, F_{5}^{2}, v_{1}^{1}, v_{5}^{2}, W_{5}^{1}, W_{5}^{2}) \) and \( \hat{a} = (a_1, \ldots, a_{TP}) \); with \( TP \pm 3M + 10 \). Identified as equation 23.]
The first-level forward/adjoint system (1st-LFAS) for the “first-level forward/adjoint function” [image: Mathematical expression showing a vector \(\mathbf{u}^{(1)}(2;u)\) defined as \([\varphi(u), \psi(u)]^\dagger\).] comprises Equations 12, 13, 20, and 21. The structure of the 1st-LFAS suggests that the components [image: The text represents a mathematical expression: \( f_i(\alpha) \), where \( f_i \) is a function of the variable \( \alpha \).] of the feature function [image: It appears you may be trying to provide an equation or formula, as there is no image uploaded. Please upload the image or provide a URL so I can generate alt text for it.] can be defined as follows:
[image: Mathematical expression defining functions \( f(\alpha) \), \( f_1(\alpha) \), and \( f_2(\alpha) \). The function \( f(\alpha) \) is a vector consisting of \( f_1(\alpha) \) and \( f_2(\alpha) \). The function \( f_1(\alpha) \) is expressed as \(\frac{\Sigma_{\alpha}(a)}{\xi(\alpha)\Sigma_I(\alpha)}\). The function \( f_2(\alpha) \) is expressed as \(\frac{S_0(\alpha)}{\xi(\alpha)\Sigma_I(\alpha)}\). Equation reference is \( (24) \).]
Solving Equations 12, 13 while using the definitions introduced in Equation 24 yields the following expression for the flux [image: It appears you're referencing a mathematical notation: phi of u, represented by the Greek letter phi followed by the variable u in parentheses. If this was meant to describe an image, please upload it for a more detailed description.] in terms of the components [image: Mathematical expression of the function \( f_i(\alpha) \).] of the feature function [image: Mathematical expression showing "f" followed by the variable in parentheses, alpha (α).]:
[image: The mathematical expression shows φ(u) equals H(u) times f₂(α) times the exponential of negative u times f₁(α). It specifies H(0) equals 0, and H(u) equals 1 if u is greater than 0. Equation number 25.]
Solving the above adjoint slowing-down model yields the following closed-form expression for the adjoint slowing-down function [image: The mathematical expression shows the Greek letter psi followed by the variable u in parentheses.]:
[image: The equation shows ψ(u) equals H times (u₀ minus u) times the exponential of (u minus u₀)f₁(α). Equation number 26.]
In terms of the components [image: Mathematical expression showing \( f_i(\alpha) \).] of the feature function [image: It seems like you've referenced a mathematical expression rather than an image. If you have an image you want me to describe, please upload it or provide a URL.], the closed-form expression of the “contributon response density” is obtained by substituting the expressions provided in Equations 25, 26 into Equation 22 and performing the integration over lethargy, which yields
[image: Mathematical expression showing an integral with respect to \( u \) from zero to \( u_d \) of \( H(u) f_s(\alpha) \exp[-u f_i(\alpha)] H(u_d - u) \exp[(u - u_d)f_i(\alpha)] \, du \), equating to \( u_d f_s(\alpha) \exp[-u_d f_i(\alpha)] \). It is labeled as equation (27).]
In terms of the primary model parameters, the closed-form expression of the “contributon response density” is
[image: Mathematical equation for \( R_e(\varphi, \psi) \) is given as \( R_e(\varphi, \psi) = \frac{S_0(a)}{\xi(a)\Sigma(a)} \exp \left[ -\frac{u_a\Sigma_a(a)}{\xi(a)\Sigma(a)} \right] \). Equation number 28.]
As Equation 28 indicates, the model response can be considered to depend directly on [image: Equation showing TP is defined as 3M plus 10.] primary model parameters. In view of Equation 27, however, the model response can alternatively be considered to depend directly on two feature functions and only indirectly (through the two feature functions) on the primary model parameters. In the former consideration/interpretation, the response sensitivities to the primary model parameters will be obtained by applying the nth-CASAM-L. In the later consideration/interpretation, the response sensitivities to the primary model parameters will be obtained by applying the nth-FASAM-L, which will involve two stages: (a) the response sensitivities with respect to the feature functions will be obtained in the first stage; (b) the subsequent computation of the response sensitivities to the primary model parameters will be performed in the second stage by using the response sensitivities with respect to the feature functions obtained in the first stage. The computational distinctions that stem from these differing considerations/interpretations underlying the nth-CASAM-L versus the nth-FASAM-L will become evident in the next section by using a paradigm neutron slowing-down model, which is representative of the general situation for any linear system.
3 FIRST-ORDER ADJOINT SENSITIVITY ANALYSIS OF THE CONTRIBUTON FLUX TO THE SLOWING-DOWN MODEL’S FEATURES AND PARAMETERS
The first-order sensitivities of the response [image: Mathematical expression featuring \( R_c \) followed by a bracket containing \( \mathbf{u}^{(1)} \), with arguments \( 2 \) and \( u \) separated by a semicolon.], where [image: Expression for a vector function \( \mathbf{u}^{(1)}(2; u) \) is defined as the vector \([ \varphi(u), \psi(u) ]^{\dagger}\), indicating possibly a mathematical or quantum mechanical context.], are obtained by determining the first-order Gateaux (G-)- differential, denoted as [image: Mathematical expression with a delta operator applied to a function R_c involving vectors u and v, both depending on a parameter 2 and u, with a subscript a_0.], of this response for variations [image: Mathematical expression showing v superscript (1), dependent on variables 2 and u, equals the transpose of the vector containing delta phi of u and delta psi of u.] around the phase-space point [image: Mathematical notation depicting an ordered pair with elements phi superscript zero and psi superscript zero, enclosed in parentheses.]. By definition, the first-order G-differential [image: Mathematical expression featuring a variation operator applied to two functions, u superscript 1 and v superscript 1, both depending on two variables. The expression is raised to the power of alpha subscript zero.] is obtained as follows:
[image: Mathematical expression showing a functional derivative and integrals. It includes symbols and functions: δ with subscript R, v superscript (1), and v subscript φ within multiple integrals from zero to u subscript i n, involving variables u and ε, and a partial derivative with respect to ε.]
The sensitivities of [image: Mathematical expression with variables: \( R_c \left[ \mathbf{u}^{(1)}(2; u) \right] \).] with respect to the feature functions (and subsequently to the primary model parameters) will be determined in Section 3.1 by applying the 1st-FASAM-L. Alternatively, the sensitivities of [image: Mathematical expression: \( R_c[\mathbf{u}^{(1)}(2; u)] \).] directly with respect to the primary model parameters will be determined in Section 3.2 by applying the 1st-CASAM-L.
3.1 Application of the 1st-FASAM-L
The first-level variational sensitivity function [image: Mathematical notation showing vector \( \mathbf{v}^{(1)}(2; u) \) defined as the transpose of the concatenated vector \([ \mathbf{v}^{(1)}(u), \delta \psi(u) ]\).] is the solution of the first-level variational sensitivity system (1st-LVSS) obtained by differentiating the 1st-LFAS. The function [image: Mathematical expression showing a function \( v^{(1)}(u) \).] is obtained by taking the first-order G-differentials of Equations 12, 13 to obtain
[image: Mathematical expression involving partial derivatives and functions. Derivative with respect to epsilon of an expression containing phi superscript zero plus epsilon times phi superscript one, and functions f sub one and f sub two. Equation equals delta of u times the derivative with respect to epsilon of f sub two plus epsilon delta f sub two, evaluated at epsilon equals zero. Equation is labeled as equation thirty.]
[image: Differential equation with respect to epsilon at epsilon equals zero of phi zero of u plus epsilon times phi superscript one of u equals zero at u equals zero, equation thirty-one.]
Carrying out the differentiations with respect to [image: Please upload the image or provide a URL so I can create the alternate text for you.] in the above equations and setting [image: Please upload the image or provide a URL for me to generate the alt text.] in the resulting expressions yields the following relations:
[image: Equation showing the derivative of v superscript one with respect to u, plus f subscript one times alpha superscript zero prime of u, equals delta f subscript one delta of u, minus delta f subscript one g zero prime of u. Equation number thirty-two.]
[image: Mathematical equation depicting \( v^{(1)}(u) = 0 \), at \( u = 0 \), followed by the number thirty-three in parentheses.]
The equations satisfied by the variational function [image: A mathematical expression showing the Greek letter delta (δ) followed by the Greek letter psi (ψ), and the variable u in parentheses, representing a function or change in psi with respect to u.] are obtained by G-differentiating Equations 20, 21 to obtain the equations below:
[image: The equation shows a derivative with respect to \( u \) of the function \(\delta \psi (u)\) plus the function \( f_1(\alpha^0)[\delta \psi (u)]\). This equals the negative product of \((\delta f_1)\) and \(\psi(u)\), labeled as equation 34.]
[image: Equation shows Φ sub ψ (u sub h) equals zero, at u equals u sub h n. Equation number 35.]
Concatenating Equations 32‒35 yields the following 1st-LVSS for the first-level variational sensitivity function [image: Equation depicting a vector function denoted as v superscript (1) of 2 and u, defined as the conjugate transpose of a column vector containing two elements: delta phi of u, delta psi of u.]:
[image: Mathematical expression showing a transformation equation: \( V^{(1)}[2 \times 2; u; f^{(1)}(2; u)]_{w} = \{q^{(1)}[2; u^{(1)}(2; u); f; \delta f]_{q} \}_{w} \).]
[image: Mathematical expression depicting a function: \(\Phi_{a}^{(1)}(v^{(1)}; f; \delta f) \mid_{x} = 0\). There is a reference number, 37, at the end.]
where
[image: Matrix equation showing \( V^{(1)} \) as a \( 2 \times 2 \) matrix equation with parameters \( u; f_1 \). The matrix is composed of terms \((d/du + f_1, 0, 0, -d/du + f_1)\) multiplied by vector \( b_v^{(1)}(v^{(1)}; f; \delta f)\), which equals a vector with elements \( v^{(1)}(0) \) and \( \delta \psi(u_{1h}) \), labeled as equation (38).]
[image: Equation twenty-nine displays a mathematical expression defining the transformation \( \mathcal{Q}_{\mathbf{v}}^{(1)} \) with variables \( \delta f_{1} \), \( \delta f_{2} \), \( \phi(u) \), and \( \psi(u) \), organized in a two-by-two matrix within parentheses.]
Rather than repeatedly solving the 1st-LVSS for every possible variations [image: It seems like you might be describing a mathematical term. If you have an actual image to upload, please do so, and I can help create alt text for it.], [image: It seems like there's a misunderstanding. Please upload an image or provide a URL so I can create the alt text for you.], the appearance of the first-level variational sensitivity function [image: Mathematical expression defining vector \( \mathbf{v}^{(1)}(2; u) \) as the transpose of the array \([\delta \varphi(u), \delta \psi(u)]\).] will be eliminated from the expression of the G-differential of the response [image: Mathematical expression involving a functional derivative of \( R_c \), with arguments \( \mathbf{u}^{(1)}(2; u) \) and \( \mathbf{v}^{(1)}(2; u) \), presented with subscript \( \alpha_0 \).], defined in Equation 29), by applying the principles of the 1st-FASAM-L outlined in the accompanying “Part I” by Cacuci (2024c). The specific steps are as follows:
	1. A Hilbert space, denoted as [image: Please upload the image or provide a URL for me to generate the alt text.], is introduced endowed with the following inner product denoted as [image: LaTeX expression displaying a mathematical notation: angle bracket containing two functions, \(\chi^{(1)}(2; u), \boldsymbol{\theta}^{(1)}(2; u)\), with subscript \(1\).], between two elements, [image: Mathematical expression showing \( \chi^{(1)}(2; u) \) is defined as a vector \([ \chi_1^{(1)}(u), \chi_2^{(1)}(u) ]^\dagger\), belonging to the space \(\mathbb{H}_L\).] and [image: Mathematical expression showing \(\theta^{(1)}(z; u) \triangleq [\theta_1^{(1)}(u), \theta_2^{(1)}(u)]^\dagger \in \mathcal{H}_l\).]:

[image: Mathematical equation showing a function \( X^{(1)}(z; u, \theta^{(1)}(z; u)) \) as defined by a sum, where the sum is from \( p = 1 \) to \( \bar{\nu}_n \) of integrals from 0 to \(\infty\), involving the product of \( \chi_p^{(1)}(u) \) and \( \theta^{(1)}(u) \) with respect to \( du \). Equation is labeled (40).]
	2. In the Hilbert [image: It seems there is an issue with displaying the image you mentioned. Please upload the image file or provide a URL so I can help create the alt text for it.], the inner product of Equation 36 is formed with a yet undefined vector-valued function [image: Mathematical expression showing vector \(\mathbf{a}^{(1)}(2; u)\) defined as \([a_1^{(1)}(u), a_2^{(1)}(u)]^\dagger\) belonging to the Hilbert space \(\mathcal{H}_t\).] to obtain the following relation:

[image: Mathematical expression involving nested functions and variables: \(\{a^{(1)}(2,u), V^{(1)}[2 \times 2; u; \mathbb{R}^1; Y^{(1)}(2,u)]\}_{L_{1, \infty}}\) equals \(\{a^{(1)}(2,u), \Phi^{(1)}_{q_{W}}[2; u^{(1)}(2,u); f; \delta f]\}_{Y_{1, \bar{\sigma}}}\), labeled as equation (41).]
	3. The left-side of Equation 41 is integrated by parts to obtain the following relation, where the specification [image: Curly brackets with the expression "a to the power of zero" written in subscript outside the brackets.] is omitted to simplify the notation:

[image: Mathematical equation consisting of integrals, derivatives, and functions, representing a complex expression in calculus. It features integration from \(0\) to \(u_h\), derivatives with respect to \(u\), functions \(a_1^{(1)}(u)\), \(a_2^{(1)}(u)\), and variables \(v^{(1)}(u)\), \(\psi(u)\), and \(\delta v\). The equation is marked as number (42).]
	4. The first two terms on the right side of Equation 42 are required to represent the G-differentiated response defined in Equation 29, and the unknown boundary values of the function [image: Vector notation showing \( \mathbf{v}^{(1)} (2; u) \), with superscript one next to vector \( \mathbf{v} \) and variables two and \( u \) inside parentheses.] are eliminated from the bilinear concomitant on the right side of Equation 42 to obtain the following 1st-LASS for the first-level adjoint sensitivity function [image: Mathematical expression showing a vector \( \mathbf{a}^{(1)}(2; u) \), defined as the conjugate transpose of the vector \([a_1^{(1)}(u), a_2^{(1)}(u)]\).]:

[image: Mathematical equation displaying: \(\Lambda^{(1)}(2 \times 2; x; f) a^{(1)}(2; x) = \mathfrak{a}_{1}^{(1)}[2; u^{(1)}(2; x); f]\), labeled as equation (43).]
[image: Mathematical equation with variables and operators: \( b_{\lambda}^{(0)} \left[ u^{(0)}(2, u) ; a^{(0)} (2, u) ; f \right] = \left( \frac{a_{1}^{(1)}(u_{h})}{a_{2}^{(1)}(0)} \right) = 0 \).]
where
[image: Matrix equation defining \(\mathbf{A}^{(1)}[2 \times 2; u; f_1]\) as a two-by-two matrix with elements \(-d/du + f_1\) and \(d/du + f_1\) along the diagonal and zeros elsewhere. The matrix is equal to \(\{\mathbf{V}^{(1)}[2 \times 2; u; f_1]\}^*\). (Equation 45).]
[image: Mathematical equation showing an expression \( \Psi^{(1)}_A[2; u^{(1)}(2; x); f] \) defined as the fraction \(\frac{\psi(u)}{\phi(u)}\), with the equation labeled as (46).]
	5. It follows from Equations 29, 41‒44 that G-differentiated response defined in Equation 29 takes the following expression in terms of the first-level adjoint sensitivity function [image: Mathematical expression showing a bold italic vector \( \mathbf{a}^{(1)}(2; u) \) defined as \([[a_1^{(1)}(u), a_2^{(1)}(u)]^\dagger\), where each term is a function of \( u \).]:

[image: Mathematical expression involving integrals and functions. It shows a perturbation equation with boundary conditions for a certain range, expressing the variation \(\delta R_c\) in terms of integrals of functions \(a_1^{(1)}(u)\) and \(a_2^{(1)}(u)\) over the domain \(u_0\) to \(u_{\text{in}}\). The equation includes terms related to \(\delta f_z\), \(\delta f_t\), and auxiliary functions \(\varphi(u)\), \(\psi(u)\), and \(\gamma(u)\), with a reference to equation number 47.]
The expressions of the sensitivities of the response [image: Mathematical expression with \( R_c(\phi, \psi) \), representing a function or relationship between the variables \(\phi\) and \(\psi\).] with respect to the components of the feature function [image: It seems you didn't upload an image. Please upload the image or provide a URL for me to help with the alternate text.] are given by the expressions that multiply the respective components of [image: It seems like you've provided a mathematical expression instead of an image. Please upload an image or provide a URL so I can help create the alternate text for it.] in Equation 47, i.e.,
[image: Partial derivative of script R with respect to function f sub 1 equals negative integral from zero to infinity. The integrand is alpha sub 1 superscript (1) of u times phi of u plus alpha sub 2 superscript (1) of u times psi of u. Equation number 48.]
[image: Partial derivative of script R with respect to f sub 2, of functions phi and psi, equals integral from zero to n sub u of a sub one superscript one of u times delta of u, with respect to du. Equation number forty-nine.]
The above expressions are to be evaluated at the nominal parameter values [image: Greek letter alpha raised to the power of zero, represented as \(\alpha^0\).], but the indication [image: Empty set symbol with a superscript of Greek letter alpha raised to the power of zero.] has been omitted for simplicity.
The first-order sensitivities of the response [image: Mathematical expression showing \( R_c(\varphi, \psi) \), where \( R_c \) is a function of the variables \(\varphi\) and \(\psi\).] with respect to the primary model parameters are obtained by using the results obtained in Equations 48, 49, respectively, in conjunction with the “chain rule” of differentiating the components of the feature function [image: It seems there is an error in displaying the image. Please upload the image file directly or provide a URL for me to access it.] with respect to the primary model parameters defined in Equation 29 to obtain the following expressions:
[image: Mathematical equation showing the derivative of an expression \(\mathcal{R}(\varphi, \psi)\) with respect to \(\alpha_i\). It involves partial derivatives of functions \(f_1\) and \(f_2\) and iterated integrals over functions \(a_1^{(1)}(u)\), \(\varphi(u)\), \(a_2^{(1)}(u)\), and \(\psi(u)\), with integration limits from zero to \(u_{\text{fin}}\).]
Solving the 1st-LASS defined by Equations 43, 44 yields the following closed-form expressions for the components of the first-level adjoint sensitivity function [image: Mathematical notation displaying a vector \(\mathbf{a}^{(1)}(2; u)\) defined as \([a_1^{(1)}(u), a_2^{(1)}(u)]^\dagger\), where brackets indicate a vector and the dagger symbol denotes a conjugate transpose.]:
[image: The image contains a mathematical equation: \( a_{1}^{(0)}(u) = (u_{4} - u)H(u_{4} - u) \exp{(u - u_{4})} f_{1}(\alpha) \).]
[image: The formula depicts a mathematical expression: \( a_{4}^{(0)} (u) = u f_{2}(\alpha) \exp[-u f_{1}(\alpha)] \), labeled as equation 52.]
Using the above expressions in Equations 48, 49 yields the following closed-form expressions for the respective sensitivities:
[image: The mathematical expression shows the partial derivative of \( R_{\epsilon}(\phi, \psi) \) with respect to \( f_1 \). It is equal to negative \( (u_4)^2 \) multiplied by \( f_2(\alpha) \) and the exponential of \(-u_4 f_1(\alpha)\). The expression is labeled equation 53.]
[image: Partial derivative of R subscript k with respect to f subscript 2 equals u subscript d times exponential of negative u subscript d f subscript 1 of a. Equation 54.]
The correctness of the expressions obtained in Equations 53, 54 can be verified by differentiating accordingly the closed-form expression given in Equation 27.
3.2 Application of the 1st-CASAM-L
The 1st-CASAM-L delivers the first-order sensitivities of the response directly with respect to the primary model parameters. The expression of the G-differentiated response is as shown in Equation 29, but the source term on the right side of the 1st-LVSS takes the following form:
[image: Mathematical notation displaying a vector equation. The left side shows q superscript (1) of v in terms of vectors z, u superscript (1), functions f and delta f. The right side comprises a matrix with two expressions: the top involves delta of u and summations of partial derivatives of f sub 2 and f sub 1, and the bottom includes psi of u and a summation of a partial derivative of f sub 1. The equation is labeled as equation fifty-five.]
If one were to actually solve the 1st-LVSS to obtain the first-level variational function and subsequently use the respective variational function to compute each sensitivity, one would need to solve the 1st-LVSS TP-times, using each time a source that would correspond to the ith-primary parameter, of the form [image: Mathematical expression showing a complex equation involving functions and derivatives: \( q_W^{(1)} \) with variables including \( i \), \( 2 \), \( u^{(1)} \), \( f \), and \( \delta f \). The equation involves operations such as multiplication and subtraction of derivatives \(\partial f_2 / \partial \alpha_i\), \(\partial f_1 / \partial \alpha_i\), and functions \(\delta(u)\), \(\phi(u)\), \(\psi(u)\), ending with a transpose symbol.], for each primary parameter [image: It appears there is a formatting issue in your text. To provide alt text, please upload the image or describe it in detail.]
Since the left side of the 1st-LVSS remains the same as in Equation 36 and the boundary conditions also remain the same as obtained in Equation 37, it follows that the 1st-LASS and its solution [image: Mathematical expression showing a superscript one in bold, open parenthesis two semicolon u close parenthesis, defined as a column vector with elements a subscript one and a subscript two, both with superscript one in parentheses, depending on u. The vector is transposed.] remain unchanged. It therefore follows that the counterpart of the expression of the G-differential obtained in Equation 47 takes the following form:
[image: Mathematical equation involving summation and integration, detailing a variation expression with variables \(u\), \(z\), and functions \(a^{(1)}\), \(a^{(2)}\), \(\delta_i\), \(\psi\), and \(\phi\). The equation emphasizes differentiation with respect to \(\alpha_i\) and includes limits such as 0 and \(T^P\). Marked as equation (56).]
The first-order sensitivities of the response [image: Mathematical notation showing \( R_c (\varphi, \psi) \).] with respect to the primary model parameters [image: Mathematical expression showing alpha sub i, where i ranges from 1 to a variable TP.] are obtained by identifying the expressions that multiply the respective variations [image: Greek letter delta followed by lowercase alpha subscript i.] in Equation 47, which yields the following result:
[image: Equation depicting a derivative in the functional space. The partial derivative of \( R (\phi, \psi) \) with respect to \( \alpha_i \) equals the integral of expression \(-(\partial f_1 / \partial \alpha_i) \times \int_0^{t_{\alpha_i}} [a_1^{(1)}(u)\phi(u) + a_2^{(1)}(u)\psi(u)] \, du + (\partial f_2 / \partial \alpha_i) \times \int_0^{t_{\alpha_i}} a_1^{(1)}(u) \delta(u) \, du\), labeled as equation (57).]
As expected, the result obtained from Equation 57 is identical to the result produced from Equation 50 by using the 1st-FASAM-L. Both the 1st-FASAM-L and 1st-CASAM-L require “one large-scale computation” for solving the 1st-LASS represented by Equations 43, 44.
4 SECOND-ORDER ADJOINT SENSITIVITY ANALYSIS OF THE CONTRIBUTON FLUX TO THE SLOWING-DOWN MODEL’S FEATURES AND PARAMETERS
In practice, closed-form expressions such as those shown in Equations 53, 54 are unavailable. The 1st-FASAM-L yields the expressions provided in Equations 48, 49, while the 1st-CASAM-L yields the expressions provided in Equation 57. Hence, these expressions will provide the starting points for obtaining the second-order sensitivities that stem from the respective first-order sensitivities. As outlined within the general frameworks of both the nth-FASAM-L and nth-CASAM-L methodologies, the second-order sensitivities are obtained by conceptually considering them to arise as the “first-order sensitivities of the first-order sensitivities.”
4.1 Application of the 2nd-FASAM-L
The 2nd-FASAM-L uses the first-order sensitivities obtained from the 1st-CASAM-L, as provided in Equations 48, 49, to obtain the respective second-order sensitivities, as presented in Sections 4.1.1 and 4.1.2.
4.1.1 Second-order sensitivities stemming from the first-order sensitivity [image: Mathematical expression showing the partial derivative of \( R_c \) with respect to \( f_1 \).]
The second-order sensitivities that stem from the first-order sensitivity [image: Partial derivative of capital R sub c with respect to f sub one.] are obtained by determining the G-differential of [image: Partial derivative of \( R_c \) with respect to \( f_1 \).]. For subsequent “bookkeeping” purposes, this first-order sensitivity will be denoted as [image: Mathematical equation: \( R^{(1)} [1; u^{(2)} (2^{2}; u); f(\alpha)] \triangleq \partial R_{c} / \partial f_{1} \).], where the superscript “(1)” denotes “first-order” (sensitivity) and the argument “1” indicates that this sensitivity is with respect to the first component, i.e., [image: It seems there is no image attached. Please upload the image, and I will provide the alternate text for it.], of the feature function [image: An expression for a mathematical function, denoted as f of alpha with alpha represented by the Greek letter α in parentheses.]. This sensitivity also depends on the function [image: Mathematical equation showing a vector \( \mathbf{u}^{(2)}(2; u) \) defined as a combination of vectors \( \mathbf{u}^{(1)}(2; u) \) and \( \mathbf{a}^{(1)}(2; u) \), represented as a transpose.], which is the solution of the “second-level forward/adjoint system (2nd-LFAS)” obtained by concatenating the 1st-LFAS with the 1st-LASS, comprising Equations 12, 13, 20, 21, 43, and 44.
Applying the definition of the G-differential to Equation 48 yields the following expression for the G-differential [image: Mathematical expression containing partial derivatives and vector functions. The components include the derivative of R with respect to parameters such as u, v, and a function f of alpha. Variables and exponents are notated, with contextual relationships indicated by brackets and semicolons.]:
[image: Mathematical expression involving calculus with several integrals and derivative terms. It discusses variations and differential operators applied to functions and introduces variables indexed with superscripts and parentheses. Equation number (58) is noted at the end.]
The components [image: Mathematical expression depicting the notation "v superscript 1 of u," representing a function or notation commonly used in mathematics.], [image: Mathematical expression displaying the Greek letter delta, followed by the Greek letter psi in parentheses with the variable u.], [image: Mathematical expression depicting the function \( \delta a_1^{(1)}(u) \), where \(\delta\) is a variable, \(a_1^{(1)}\) is a term raised to the first power, and \(u\) is a function argument.], and [image: The expression shows the mathematical notation \(\delta a_2^{(1)} (u)\).] of the second-level variational sensitivity function [image: Mathematical notation showing a vector \( \mathbf{v}^{(2)}(2^2; u) \) defined as a column vector with elements \(\nu^{(1)}(u)\), \( \delta \psi(u) \), \( \delta \alpha_1^{(1)}(u) \), \( \delta \alpha_2^{(1)}(u) \), transposed.] are the solutions of the 2nd-LVSS, which is obtained by G-differentiating the 2nd-LFAS. Thus, performing the G-differentiation of Equations 12, 13, 20, 21, 43, and 44 yields the following 2nd-LVSS for the second-level variational sensitivity function [image: Mathematical expression defining a vector \( v^{(2)}(2^2; u) \) as a row vector consisting of \( v^{(1)}(u) \), \( \delta \psi(u) \), \( \delta \alpha_1^{(1)}(u) \), and \( \delta \alpha_2^{(1)}(u) \), all conjugated.]:
[image: Mathematical equation depicting a transformation or condition involving variables and functions. It includes expressions with V, q, u, f, z, and δ, along with subscripts and superscripts. The equation is labeled as (59).]
[image: Equation showing \( b_{\nu}^{(2)}(u; f; \delta f) \big|_{u=u_c} = 0 \). The equation is labeled as (60).]
where
[image: Matrix equation labeled as v two, two squared by two squared, with variables u and f. The matrix has elements: first row, dN/du plus f one, zero, zero, zero; second row, zero, d/du plus f, zero, zero; third row, zero, negative one, negative d/du plus f one, zero; fourth row, negative one, zero, zero, d/du plus f one. Equation number sixty-one.]
[image: Mathematical expressions labeled as equations sixty-two. The first expression defines \(\mathbf{q}_{v}^{(2)}[2; u; f; \delta f]\) comprising five components involving delta functions, differentials, and functions \(\phi(u)\), \(\psi(u)\), \(a_{1}^{(1)}(u)\), and \(a_{2}^{(1)}(u)\). The second expression defines \(\mathbf{b}_{v}^{(2)}(u; f; \delta f)\) as a vector with three elements expressed using functions \(\psi(u_{th})\), \(a_{1}^{(1)}(u_{th})\), and \(a_{2}^{(1)}(0)\).]
The second-level variational sensitivity function [image: Mathematical expression displaying bold lowercase "v" with superscript "(2)", followed by parentheses enclosing "2 squared" and a semicolon, then "u".] will be eliminated from the expression of [image: Mathematical expression of a variation operation, showing delta R superscript one, followed by a list of functions involving u squared, v squared, and f of alpha, with an evaluation point at alpha subscript zero.] by constructing the 2nd-LASS corresponding to the above 2nd-LVSS. The solution of the 2nd-LASS will be used in Equation 58 to construct [image: Mathematical notation depicting a function or set of operations involving variables and parameters: delta R superscript one, in brackets one and u superscript two times two squared times u, semicolon v superscript two times two squared times u, semicolon f of alpha, subscript alpha zero.], an alternative expression that will not depend on [image: The expression shows a mathematical notation: bold v to the power of two, followed by parentheses containing the numbers two squared and a variable u, separated by a semicolon.]. This 2nd-LASS will be constructed in a Hilbert space denoted as [image: I need an image or a URL to provide alternate text. Please upload the image or link to it, and I will be happy to help.], comprising four-component vector-valued functions of the form [image: Mathematical expression denoting a vector \( \mathbf{X}^{(2)}(2^2; 1; u) \), defined as a column vector with components \( \chi_1^{(2)}(1; u), \chi_2^{(2)}(1; u), \chi_3^{(2)}(1; u), \chi_4^{(2)}(1; u) \), belonging to the space \( \mathcal{H}_2 \).] as elements, and is endowed with the following inner product between two vectors [image: The image shows a mathematical expression: chi superscript two, open parenthesis, two squared, semicolon, one, semicolon, u, close parenthesis.] and [image: Mathematical expression with theta superscript two and arguments two squared, one, and u in parentheses.]:
[image: Equation depicting a mathematical expression involving chi squared, theta, and integral notations. The expression features chi squared of two terms, theta and union, greater than or equal to a summation from one to N sub theta, integrating chi squared of theta and union with respect to u from zero to u theta. Equation number sixty-three.]
The inner product defined in Equation 63 will be used to construct the inner product of Equation 59 with a function denoted as [image: Mathematical notation shows a vector \( a^{(2)}(2^{2}; 1; u) \), defined as the column vector \([a^{(2)}_1(1; u), a^{(2)}_2(1; u), a^{(2)}_3(1; u), a^{(2)}_4(1; u)]^T\), belonging to the set \(\mathcal{H}_2\).], where the argument “1” of the function [image: Mathematical expression with vector notation: "a superscript 2 in parentheses," followed by "(2 squared; 1; u)".] indicates that this (adjoint) function corresponds to the first-order sensitivity of the response with respect to the “first” component, [image: Mathematical expression showing the function \( f_1(\alpha) \).], of the feature function [image: It seems there is no image provided. Please upload the image or provide a URL, and I would be happy to create alt text for it.]. Constructing this inner product yields the following relation, where the specification [image: Empty set symbol with a subscript alpha and a superscript zero.] has been omitted to simplify the notation:
[image: Mathematical equations involving integrals with variables and functions denoted by \(a^{(2)}\), \(v\), \(f\), and other expressions. The equations include integration limits and terms with derivatives, focusing on complex mathematical relationships.]
Integrating by parts the left side of Equation 64 yields the following relation:
[image: Mathematical equation involving multiple integrals and derivatives, with terms including functions \(a^{(2)}\), \(f_1\), and \(\delta\), involving variables \(u\) and \(v\). Complex expressions are presented with integrals over the variable \(u\), showing interactions of derivatives \(\frac{d}{du}\) and summations. The equation is numbered \(65\).]
The right side of Equation 65 is now tailored to represent the G-differential [image: Mathematical expression containing a delta function with multiple variables and parameters, including R1, u2, v2, and f of alpha, evaluated at alpha zero.] expressed by Equation 58 by requiring the second-level adjoint sensitivity function [image: Mathematical expression showing a superscripted "a" with exponent two, followed by parentheses containing terms: two raised to the power of two, semicolon, one, semicolon, and the variable "u".] to be the solution of the following 2nd-LASS:
[image: Mathematical expression in the image: \(j \hat{A}^{(2)} [2 \times 2{:} u{:} f[a^{(2)}(2{:} 1{:}u)]_{n=1}^{S^{(2)} (2{:} 1{:} u{:} f)} ]_{e_{n}}\), followed by equation number (66).]
[image: Mathematical notation showing an equation: \([b_{\lambda}^{(x)}(u; f)]_{\alpha} = 0\), with the reference number (67).]
where
[image: Matrix equation labeled as equation sixty-eight. It defines a four-by-four matrix \(A^{(2)}[2 \times 2; u; f_1]\) with elements involving variables \(d/du\) and \(f_1\). The diagonal consists of \(-d/du + f_1\), and the matrix includes zeros in off-diagonal positions with entries \(-1\) present in specific positions.]
[image: Matrix equation involving vectors and matrices: \( \mathbf{s}^{(2)}(2^+;1;u;\mathbf{f}) \) equals a column vector containing functions \( a_1^{(1)}(u) \), \( a_2^{(1)}(u) \), \( -\varphi(u) \), and \( -\psi(u) \), multiplied by the matrix \( \mathbf{b}^{(2)}_A(u;\mathbf{f}) \), which itself equals a column vector with elements \( a_1^{(2)}(1;u_{\text{th}}) \), \( a_2^{(2)}(1;0) \), \( a_3^{(2)}(1;0) \), \( a_4^{(2)}(1;u_{\text{th}}) \). Equation labeled by (69).]
Implementing the equations underlying the 2nd-LVSS and the 2nd-LASS and substituting Equation 58 into Equation 64 provide the following alternative expression for the G-differential [image: Mathematical expression showing a function: δR superscript (1) with variables l semicolon u superscript (2), 2 squared and u, v superscript (2), 2 squared and u, and f of α, all enclosed in braces and subscripted with α subscript zero.]:
[image: Mathematical expression detailing a complex equation involving integrals and functions. The equation describes \(\delta R^{(1)}\) in terms of variables \(v^{(2)}\), \(u^{(2)}\), and \(f(\alpha)\), with integrals involving functions \(a^{(2)}\), \(a_1^{(2)}\), \(a_3^{(2)}\), \(a_4^{(2)}\), \(\phi(u)\), \(\psi(u)\), and \(\delta f\). Equation number (70) is at the bottom right.]
The expressions that multiply the respective components of [image: Please upload the image you want described, or provide a URL if it is available online.] in Equation 70 are the expressions of the second-order sensitivities [image: Second partial derivative of \( R_c(\phi, \psi) \) with respect to \( f_1 \) and \( f_j \).] (stemming from the first-order sensitivity [image: Partial derivative notation showing ∂Rₑ/∂f₁.]) of the response [image: Mathematical expression of \( R_c(\phi, \psi) \).], with respect to the components of the feature function [image: Mathematical expression displaying the function \( f(\alpha) \).]. Thus, identifying in Equation 70 the expressions that multiply the respective variations in the components of the feature function [image: A mathematical expression showing the function \( f(\alpha) \).] yields the following relations:
[image: Partial derivative expression showing \(\frac{\partial^2 R_{\epsilon}(\varphi, \psi)}{\partial f_{1} \partial f_{1}}\), involving integrals from zero to \(u_{th}\). It includes terms with \(a_1^{(2)}(1; u), \phi(u), a_2^{(2)}(1; u), \psi(u)\) and similar terms with integrals for \(a_3^{(2)}(1; u)\) and \(a_4^{(2)}(1; u)\). Equation number is 71.]
[image: The image shows a mathematical expression: the partial derivative of \(\mathcal{R}(\varphi, \psi)\) with respect to \(f_2f_1\). It equals the integral from 0 to \(u_0\) of \(a_1^{(2)}(1; u)\delta(u)\) with respect to \(du\). The equation is labeled as (72).]
Solving the 2nd-LASS represented by Equations 66, 67 yields the following closed-form expressions for the components of the second-level adjoint sensitivity function [image: Mathematical expression showing a raised to the power of two, with a parenthesis containing the numbers two squared, one, and the variable \( u \).]:
[image: Equation showing \(x^{(1)}_{dd}\) as a function of \(u\). It includes terms: \(-(u_d - u)^2\), Heaviside function \(H(u_d - u)\), exponential function \(\exp\left((u - u_d)/\omega\right)\), and \(f_1(\alpha)\), with equation number \(73\).]
[image: Mathematical expression illustrating a function \( A_{2}^{(0)}(1; u) \) defined as \(-f_{1}(a) u^{2} \exp[-u f_{1}(a)]\), labeled as equation 74.]
[image: Mathematical equation showing \( 4_{\nu}^{(0)}(1; u) = -f_1(a) u \exp[-u f_1(a)] \). It is labeled as equation \( (75) \).]
[image: Mathematical equation displaying \(\chi^{(2)}(1;u) = -(u-u_d)H(u-u_d)\exp[(u-u_d)/(\alpha)]f_1 (\alpha)\). It is equation number seventy-six.]
Using the explicit closed-form expressions obtained in Equations 73‒76 and substituting them in Equations 71, 72 yield the following closed-form explicit expressions for the respective second-order sensitivities:
[image: The equation shown involves a partial derivative of a function \( R_c(\phi, \psi) \) with respect to the functions \( f_1 \) and \( f_1 \). It equals \( (u_d)^2 f_2(a) \exp[-u_d f_1(a)] \), denoted as equation 77.]
[image: Partial derivative of R with respect to f sub phi and f sub psi equals negative u sub d squared times exp of negative u sub d times f sub psi of alpha. Equation seventy-eight.]
The correctness of the expressions obtained in Equations 77, 78 can be verified by differentiating accordingly the closed-form expression given in Equation 53.
4.1.2 Second-order sensitivities stemming from the first-order sensitivity [image: Partial derivative equation showing the derivative of \( R_c \) with respect to \( f_2 \).]
The second-order sensitivities that stem from the first-order sensitivity [image: Mathematical expression showing the partial derivative of \(R_c\) with respect to \(f_2\).] are obtained by determining the G-differential of [image: Partial derivative notation with respect to \( f_2 \) of \( R_c \).]. For subsequent “bookkeeping” purposes, this first-order sensitivity will be denoted as [image: Mathematical expression featuring various components: \( R^{(1)} \), a function of \([ 2; \mathbf{u}^{(2)} (2^{2}; u); \mathbf{f}(\alpha) ]\), equated to \(\frac{\partial R_c}{\partial f_2}\).], where the superscript “(1)” denotes “first-order” (sensitivity) and the argument “2” indicates that this sensitivity is with respect to the second component, i.e., [image: Mathematical expression displaying \( f_2(\alpha) \).], of the feature function [image: It seems like you've mentioned part of a formula or mathematical expression, not an image. If you have an image to upload, please do so, and I can provide the alternate text for it.]. This sensitivity also depends on the function [image: Mathematical expression showing \( \mathbf{u}^{(2)}(2; u) \triangleq [\mathbf{u}^{(1)}(2; u), \mathbf{a}^{(1)}(2; u)]^\dagger \), representing a vector or matrix notation with indexed terms and parameters.]. Applying the definition of the G-differential to the expression provided in Equation 49 yields the result below for the G-differential [image: Mathematical expression with a delta operator acting on a function involving R, u, v, and f. The expression includes notation 2 superscript u, subscript indices, and function arguments with α and zero.]:
[image: Mathematical equation showing a variation of \( \delta R^{(1)} \) with various parameters and functions. It is equated to an integral from zero to \( u_{k_0} \) involving \( \delta \alpha_1^{(1)}(u)\delta(u) \, du \), and a summation from one to two of the partial derivative of \( \delta^2 R \) with respect to \( \delta f_j \) and \( \delta f_2 \) applied to \( \delta f \). Equation is numbered (79).]
The function [image: The image shows the mathematical expression: delta a subscript one superscript parenthesis one, within parentheses u.], as shown in Equation 79, is the component of the second-level variational sensitivity function [image: Mathematical equation depicting a vector \( v^{(2)}(2^2; u) \), consisting of components \( v^{(1)}(u) \), \( \delta \psi(u) \), \( \delta_{\alpha_1}^{(1)}(u) \), and \( \delta_{\alpha_2}^{(1)}(u) \), with a dagger symbol indicating a Hermitian conjugate.], which is the solution of the 2nd-LVSS comprising Equations 59, 60. The component [image: Mathematical expression depicting delta a subscript 1 superscript parenthesis 1 end parenthesis, u.] will be eliminated from the expression of [image: Mathematical expression involving a derivative with respect to \( a_0 \), represented by \( \delta R^{(1)}[2; u^{(2)}(2^2; u); v^{(2)}(2^2; u); f(\alpha)] \).] by following the same procedure as described in Section 4.1.1 to construct a 2nd-LASS, the solution of which will be denoted as [image: The equation displays a superscript notation expression: \(a^{(2)}(2; 2; u) \triangleq \left[a_1^{(2)}(2; u), a_2^{(2)}(2; u), a_3^{(2)}(2; u), a_4^{(2)}(2; u)\right]^\intercal \in \mathcal{H}_2\).] and will be used in Equation 79 to eliminate [image: Mathematical expression showing the symbol delta, followed by lowercase a subscript one, with superscript one in parentheses, and the variable u enclosed in parentheses.]. The argument “2” in [image: Mathematical expression displaying "a" with a superscript of two in parentheses, followed by values in parentheses: two squared, two, and "u".] indicates that this second-level adjoint sensitivity function corresponds to the first-order sensitivity of the response with respect to the “second” component, [image: Mathematical expression showing the function \( f_2(\alpha) \).], of the feature function [image: Mathematical expression showing a function \( f(\alpha) \).]. The 2nd-LASS for the function [image: Mathematical expression featuring a superscript: a with superscript two, open parenthesis, two squared, semicolon, two, semicolon, u, close parenthesis.] will have the same left side and boundary conditions as obtained in Equations 66, 67, but the right-side of this 2nd-LASS will correspond to the G-differential obtained in Equation 79, which leads to the following 2nd-LASS:
[image: Mathematical equation involving functions and expressions. It shows a relationship between A superscript a with variables and functions: 2, u, f, and a function l subscript e. On the right, it equals another expression with ss superscript b involving 2, u, and f subscript e.]
[image: Mathematical expression showing \([b_{\lambda}^{(2)}(u;f)]_{\alpha}^{\operatorname{ac}} = 0\), followed by equation number 81 in parentheses.]
where
[image: Mathematical expression showing \( S^{\Psi}(2;1;u;f) \) is defined as the vector \([0, 0, \delta(u), 0]'\) with reference number (82).]
The alternative expression for the G-differential [image: Mathematical expression showing a set containing several functions and variables: delta R superscript one with an index zero, applied to arguments two, u superscript two, two squared, u, v superscript two, two squared, u, and f of alpha, within curly braces.] in terms of the components of [image: Mathematical expression showing a subscripted letter "a" with a superscript of two in parentheses, followed by an ordered triplet of values in parentheses: two squared, two, and "u".] has the same formal expression as shown in Equation 70 but with the components of the function [image: Mathematical expression showing bold lowercase a, superscript two, followed by parentheses containing two squared, semicolon, one, semicolon, lowercase italic u.] being replaced by the components of [image: Mathematical expression showing a superscript number two in parentheses followed by a vector with three components: two squared, two, and the variable \( u \).], i.e.,:
[image: Mathematical expression involving integrals. The equation is \(\delta(\partial \mathcal{R} / \partial f_2) = \int_{0}^{u_{2h}} a_1^{(2)}(2; u) [( \delta f_2) \delta(u) - (\delta f_1) \varphi(u)] \, du + \int_{0}^{u_{1h}} a_2^{(2)}(2; u) [-( \delta f_1) \psi(u)] \, du + \int_{0}^{u_{1h}} a_3^{(2)}(2; u) [-( \delta f_1) a_1^{(1)}(u)] \, du + \int_{0}^{u_{1h}} a_4^{(2)}(2; u) [-( \delta f_1) a_2^{(1)}(u)] \, du\).]
Solving the 2nd-LASS represented by Equations 80, 81 yields the following expressions:
[image: \( a_k^{(j)}(2, u) = 0, \quad (84) \)]
[image: The image contains a mathematical equation: \( q_{1}^{(0)}(2, u) = u \exp[-u f_{1}(\alpha)] \), labeled as equation 85.]
[image: Mathematical equation: G sub s squared of (z semicolon u) equals H of u multiplied by the exponential of negative u times f sub 1 of alpha, equation 86.]
[image: The mathematical expression shows \( \alpha_4^{(0)}(z, u) = 0 \), labeled as equation \( (87) \).]
Identifying in Equation 83 the expressions that multiply the respective variations [image: It seems there is no image uploaded. Please try uploading the image again, and I would be happy to help with the alt text.], [image: It looks like there was an issue with image upload. Please try uploading the image again, and you can also add a caption if you want to provide additional context.] in the components of the feature function [image: It seems there is no image provided. Please upload the image or provide a URL. You can also add a caption for additional context.] and using the closed-form expressions obtained in Equations 84‒87, 26, 51 yield the following closed-form explicit expressions for the respective second-order sensitivities:
[image: Mathematical equation describing the second partial derivative of \( R_{c}(\phi, \psi) \) with respect to \( f_{1} \) and \( f_{2} \). It consists of two integral expressions over the variable \( u \) with various functions \( a^{(2)}, \psi(u), a^{(3)}, a^{(1)} \), followed by an expression involving \( (u_{d})^{2} \), exponential function, and \( f_{1}(\alpha) \). Equation is numbered (88).]
[image: Partial derivative of function \( \mathcal{R}_\xi(\varphi, \psi) \) with respect to \( \partial f_1 \partial f_2 \) equals zero, with equation number eighty-nine.]
The correctness of the expressions obtained in Equations 88, 89 can be verified by differentiating accordingly the closed-form expression given in Equation 54.
Notably, due to the symmetry of the mixed second-order sensitivities, the expressions obtained in Equations 88, 72 provide an intrinsic mutual verification mechanism of the accuracy of the computations of the second-level adjoint sensitivity functions [image: Mathematical notation depicting \( \mathbf{a}^{(2)} \left( 2^2; 1; u \right) \).] and [image: Mathematical notation showing "a" with superscript "(2)" followed by an expression in parentheses: "2 raised to the power of 2, semicolon, 2, semicolon, u".].
4.2 Application of the 2nd-CASAM-L
The starting point for the application of the 2nd-CASAM-L is to determine the G-differential of the TP first-order sensitivities represented by Equation 57. For “bookkeeping” purposes, it is convenient to designate these TP first-order sensitivities as follows:
[image: An equation showing \( R^{(1)}_{\epsilon} [i; \mathbf{u}^{(2)}(2^{i}; u); \mathbf{a}] \overset{\Delta}{=} \partial R_{\epsilon}(\varphi, \psi) / \partial a_{i} \). It equals the negative integral from zero to \( u_{h} \) of \( a^{(1)}_{1}(u)\varphi(u) + a^{(1)}_{2}(u)\psi(u) \, du \) plus the integral from zero to \( u_{h} \) involving \( g_{2}(i; a_{i}) \) and \( a^{(1)}_{1}(u)\delta(u) \, du \), labeled equation 90.]
where
[image: Mathematical notation showing the equations: \( g_1(i, a) \overset{\Delta}{=} \partial f_1 / \partial x_i \); \( g_2(i, a) \overset{\Delta}{=} \partial f_2 / \partial x_i \); with \( i = 1, \ldots, TP \). Equations are labeled 90 and 91.]
The G-differential of the expression in Equation 90 is obtained, by definition, as follows:
[image: Mathematical expression showing a complex differential equation involving variables such as \( \delta R^{(1)} \), integrals, and functions of \( u \) denoted by \( \varphi(u) \), \( \psi(u) \), and others. Includes symbols like \( \alpha \), \( \delta \alpha \), \( g_1 \), \( g_2 \), \( \epsilon \), and expressions in brackets and parentheses. Concludes with equation number 92.]
where the direct-effect and indirect-effect terms are defined, respectively, as follows:
[image: Mathematical equation involving multiple integrals and summations. It describes a transformation relation, denoted by a double-lined arrow, between two expressions with summations from 1 to \(T_P\). Each summation includes partial derivatives \(\frac{\partial g}{\partial \alpha_j}\) and integration from 0 to \(u_0^{(1)}\). The integrals include functions \(\delta(u)\), \(\phi(u)\), and \(\psi(u)\), with variables \(a^{(1)}\), \(a^{(2)}\). Equation number (93) is at the end.]
[image: Mathematical expression involving integrals, functions, and variables. The expression includes delta functions, phi and psi functions, and composite functions of \(a_1^2\), \(a_2^2\), \(g_1\), and \(g_2\). The equation involves a relationship defined by \(\delta R\) with subscript notation indicating various indices and conditions as shown in the equation labeled (94).]
The direct-effect term can be evaluated/computed already at this stage. On the other hand, the indirect-effect depends on the second-level variational function [image: Equation showing \( v^{(2)}(2^2; u) \) defined as the vector \([v^{(1)}(u), \delta \psi(u), \delta \alpha_1^{(1)}(u), \delta \alpha_2^{(1)}(u)]^{\dagger}\).], which is the solution of the counterpart of 2nd-LVSS defined by Equations 59, 60, with the same boundary conditions and right-side but with distinct source terms, each source term involving the quantities [image: Partial derivative of \( g_1(i; \boldsymbol{\alpha}) \) with respect to \( \alpha_j \).] and [image: Partial derivative of function \(g_2\) with respect to the variable \(\alpha_j\), expressed as \(\partial g_2(i; \alpha)/\partial \alpha_j\).] for [image: It seems there might be an error in your request as it appears to be a text fragment or equation rather than an image. Please upload the image or provide a link to it for assistance with creating alternate text.]. If this path were chosen to compute the second-order sensitivities, the 2nd-LVSS would need to be solved TP2 times, with TP2 different sources on the respective right sides, albeit with the same left side and boundary conditions.
The components [image: Mathematical notation displaying a sequence of functions and variables: \(v^{(1)}(u)\), \(\delta \psi(u)\), \(\delta a_1^{(1)}(u)\), \(\delta a_2^{(1)}(u)\).] are eliminated from the expression of the indirect-effect term [image: Mathematical expression showing a function: delta R sub c superscript one of i, u superscript two of two squared comma u, v superscript two of two squared comma u, alpha sub ind.] defined in Equation 94 by constructing a corresponding 2nd-LASS in the Hilbert space [image: If you have an image you'd like me to describe, please upload it or provide a URL.] by following the same sequence of steps as described in Section 4.1. The formal expression of the 2nd-LASS thus obtained will have the same left side and boundary conditions as those described in Section 4.1, but the right side of this formal 2nd-LASS will have a source term that will correspond to the indirect-effect term defined in Equation 94 and, hence, will be different for each [image: It seems like there was an issue with your image upload, as I received a text string instead. Please try uploading the image again so I can help you with the alt text.], i.e.,
[image: Mathematical expression stating: \( A^{(b)} [2^{*} \times 2^{*}; u; \alpha] a^{(b)} (2^{*}; i; 2; u)_{a_{2}} = \{ s^{(b)} (2^{*}; i; u; \alpha) \}_{a_{1} + j} \), for \( i = 1, \ldots, TP_{i} \). Equation number 95.]
[image: Mathematical expression displaying \( b^{(p)}_k(u;\alpha_i) = 0 \), where \( i = 1, \ldots, TP \), followed by equation number 96.]
where
[image: Equation depicting a vector \( s^{(2)}(2; i; u; \alpha) \) defined by a set of expressions within brackets. It includes terms involving functions \( g_1 \) and \( g_2 \) with variables \( i \) and \( \alpha \), and other variables \( a^{(1)} \), \( \delta(u) \), \( \phi \), and \( \psi \). Equation number 97.]
In terms of the solution [image: Mathematical expression with a superscript two on a, followed by parentheses containing two squared, i, two, and u, all separated by semicolons.] of the 2nd-LASS represented by Equations 95, 96, the indirect-effect term [image: A mathematical expression involving a variation of a function \(\delta R_c^{(1)}\) with variables and parameters: \(i\), \(u^{(2)}(2^2, u)\), \(v^{(2)}(2^2, u)\), and \(\mathbf{a}\), with the subscript \(ind\).] defined in Equation 94 will have a representation that will formally resemble the expressions provided in Section 4.1, e.g., Equation 83, but with the second-level adjoint function(s) from Section 4.1 being replaced by the second-level adjoint sensitivity function [image: Mathematical expression showing vector notation: bold lowercase 'a' raised to the power of 2, followed by a vector with elements 2 squared, i, 2, and u in parentheses.]. Finally, the total G-differential [image: Mathematical expression containing delta, script R, superscripts and subscripts, brackets, semicolons, and variables including i, u, v, alpha, delta, with several parentheses and a subscript c.] will be obtained, as shown in Equation 92, by adding the expression of the indirect-effect term obtained in terms of the second-level adjoint sensitivity function [image: Mathematical notation showing a vector, labeled bold lowercase "a" with a superscript two in parentheses, followed by elements in parentheses: two squared, i, two, and lowercase u.] and the expression of the direct-effect term provided in Equation 93. The expression of the individual second-order sensitivities [image: Partial derivative notation \(\partial^2 R_c (\varphi, \psi)/\partial \alpha_i \partial \alpha_j\), representing the second derivative of function \(R_c\) with respect to variables \(\alpha_i\) and \(\alpha_j\), dependent on parameters \(\varphi\) and \(\psi\).] [image: It seems like you've included a snippet of text rather than an image. If you have an image you'd like me to provide alt text for, please upload the image or provide a URL.] will subsequently be obtained by identifying in the final expression of the total G-differential [image: Mathematical expression showing a delta variation of a functional \(\delta R_{c}^{(1)}[i; u^{(2)}(2^2; u); v^{(2)}(2^2; u); \alpha; \delta \alpha]_{c_{0}}\).] those terms that multiply the parameter variations [image: Partial derivative symbol followed by the Greek letter alpha with a subscript j and a dot above.], [image: Mathematical expression showing "j equals 1, comma, ellipsis, comma, T, P".].
4.2.1 Comparing the 2nd-FASAM-L versus the 2nd-CASAM-L
The computational savings provided by using, whenever possible, the 2nd-FASAM-L rather than the 2nd-CASAM-L are evident by comparing the results obtained in Section 4.1 versus the results obtained in Section 4.2. The feature function [image: Certainly! Please upload the image or provide a URL so I can create the alt text for you.] comprises two components [image: It seems like you are referring to a mathematical expression rather than an image. The expression \( f_i(\alpha) \) likely represents a function \( f \) with a subscript \( i \) and \( \alpha \) as the argument. If you have an image to describe, please provide it or share a URL.], [image: Please upload the image you want me to provide the alternate text for. If you have a URL, you can also share that.]; consequently, the 2nd-FASAM-L requires two large-scale computations (to solve the corresponding 2nd-LASS) to obtain the second-order response sensitivities with respect to the components of the feature function. Subsequently, the second-order response sensitivities with respect to the primary model parameters are obtained analytically using the chain-rule of differentiation.
In contradistinction, there is [image: The mathematical expression shows "TP is defined as 3M plus 10".], where the number (M) of materials in the medium can easily exceed two dozen primary model parameters. Consequently, the 2nd-CASAM-L requires TP large-scale computations (to solve the corresponding 2nd-LASS) to obtain the second-order response sensitivities with respect to the primary model parameters. The boundary conditions and the operators on the left sides for all of the 2nd-LASS, for both the 2nd-FASAM-L and 2nd-CASAM-L, are the same; only the source terms on the left sides of these 2nd-LASS differ from each other. It is therefore computationally advantageous if the inverse operators of the left sides of these 2nd-LASS could be computed just once and stored for subsequent use, in which case the computational advantage of using the 2nd-FASAM-L would not be massive. Such a procedure could be feasible for relatively small models but would be impractical for large-scale problems, for which the advantage of using the 2nd-FASAM-L rather than the 2nd-CASAM-L increases as the number of model parameters increases.
5 THIRD-ORDER ADJOINT SENSITIVITY ANALYSIS OF THE CONTRIBUTON FLUX TO THE SLOWING-DOWN MODEL’S FEATURES AND PARAMETERS
The 3rd-FASAM-L determines the third-order sensitivities by applying the principles of the 1st-FASAM to the second-order sensitivities, i.e., considering that the third-order sensitivities are “the first-order sensitivities of the second-order sensitivities.” The unmixed second-order sensitivity [image: Second partial derivative of \(R_c(\varphi, \psi)\) with respect to \(f_2\), denoted as \(\partial^2 R_c(\varphi, \psi)/\partial f_2 \partial f_2\).] is identically zero. The two non-zero second-order sensitivities of the model response with respect to the components of the feature function [image: It seems like you're referencing a mathematical function, \( f(\alpha) \). If you have an image to describe, please upload it or provide a link.] are as follows: (i) the unmixed second-order sensitivity [image: Second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \), denoted as \( \partial^2 R_c(\varphi, \psi)/\partial f_1 \partial f_1 \).], expressed in Equation 71, and (ii) the mixed second-order sensitivity [image: Mathematical equation showing partial derivatives: the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \) and \( f_2 \) is equal to the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_2 \) and \( f_1 \).], expressed in either Equation 72 or Equation 88, which are equivalent, in view of the symmetry property of the mixed second-order sensitivities. Therefore, either the expression obtained in Equation 88 or Equation 72 can be used as the starting point for obtaining the third-order sensitivities stemming from this mixed second-order sensitivity. It appears that the expression provided in Equation 72 is the simpler of the two, so it will be used as the starting point for obtaining the corresponding third-order sensitivities.
The second-order sensitivity [image: Second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \).] expressed in Equation 71 depends on the components of the third-level forward/adjoint function, denoted as [image: The formula shows a vector \( \mathbf{u}^{(3)}(2^3; 1; 1; u) \) expressed as a two-element column matrix: \( \left[ \mathbf{u}^{(2)}(2^2; u), \mathbf{a}^{(2)}(2^2; 1; u) \right]^T \).], which is the solution of the third-level forward/adjoint system (3rd-LFAS) obtained by concatenating the 2nd-LFAS with the 2nd-LASS, thus comprising Equations 12, 13, 20, 21, 43, 44, 66 and 67. The argument “1;1” of [image: Vector notation showing a vector \(\mathbf{u}^{(3)}\) with components \((2^3; 1; 1; u)\).] indicates that this third-level function corresponds to the (unmixed) second-order sensitivity [image: The image shows the partial derivative of the function \( R_c(\varphi, \psi) \) with respect to \( f_1 \), taken twice: \(\frac{\partial^2 R_c(\varphi, \psi)}{\partial f_1 \partial f_1}\).] of the response with respect to the “first” feature function, [image: Please upload the image or provide a URL so I can create the alt text for you.]. Therefore, the second-order sensitivity [image: Partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \) twice, denoted as \(\frac{\partial^2 R_c(\varphi, \psi)}{\partial f_1 \partial f_1}\).] is denoted as follows: [image: Mathematical expression showing R superscript (2) with arguments [1; 1; u superscript (3); f(alpha)], which is defined as partial squared R subscript C(φ,ψ) over partial derivatives of f subscript 1 and f subscript f.], where the argument “1;1” indicates that this third-level function corresponds to the (unmixed) second-order sensitivity [image: Second partial derivative of \( R_c(\phi, \psi) \) with respect to \( f_1 \) and \( f_1 \).] and the arguments of the function [image: Mathematical expression with bold lowercase letter u in parenthesis raised to the power of 3, followed by another parenthesis with 2 raised to the power of 3, the number 1, another 1, and the italicized lowercase letter u.] were omitted, for simplicity. Similarly, the mixed second-order sensitivity [image: Second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \) and \( f_2 \).] depends on the components of the same function [image: Mathematical expression displaying a vector function \( \mathbf{u}^{(3)}(2^3; 1; 1; u) \).] and will, therefore, be denoted as [image: Mathematical expression showing \( R^{(2)}[2; 1; \mathbf{u}^{(3)}; f(\alpha)] \) is defined as the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_2 \) and \( f_1 \).], where the argument “2;1” indicates that this second-order sensitivity is with respect to the components [image: It seems like there was a misunderstanding. The text provided appears to be mathematical notation rather than an image. If you have an image that you would like to describe, please upload it or provide a URL.] of [image: It seems like there was an error in uploading the image or you provided a text-based representation instead. Please upload the image or provide a URL, and I will assist with creating alt text.].
5.1 Application of the 3rd-FASAM-L to compute the third-order sensitivities stemming from [image: Second partial derivative of \(R_c(\varphi, \psi)\) with respect to \(f_1\) twice.]
The third-order sensitivities stemming from [image: Mathematical expression showing R superscript 2 with indices 1, 1, and u superscript 3; f of alpha equals partial squared R sub c of phi and psi divided by partial f sub 1 partial f sub j.] are obtained from the G-differential of Equation 71, which will be denoted as [image: Mathematical expression involving a set of terms with derivatives, functions, and variables. Includes operators and indices.], and they are, by definition, determined as follows:
[image: Mathematical expression showing a complex equation with integrals and derivatives. It includes terms with variables \( a_1^{(2)} \), \( a_2^{(2)} \), \( \phi(u) \), \( \psi(u) \), and various subscript and superscript notations. The equation is differentiated with respect to \( \epsilon \) and includes limits \( u_0 \) and \( \alpha_0 = 0 \). The equation number is 98.]
Performing the differentiation with respect to [image: Please upload the image or provide a URL so I can help create the alt text for it.] in Equation 98 and setting [image: Please upload the image or provide a URL so I can create the alt text for you.] in the resulting expression yield
[image: Mathematical equation with multiple integrals. Involves functions \( a^{(2)} \), \( \delta a^{(2)} \), \( v^{(1)} \), \( \phi(u) \), and \( \psi(u) \) with variables \( u \), \( \alpha \), and limits \( 0 \) to \( u^{\alpha} \). Equation numbered as 99.]
The third-level variational function [image: Mathematical expression depicting vector calculations involving v superscript (3), delta a superscript (2), and associated with values 2 superscript colon 1, 1, and u.], where [image: Mathematical expression showing \(\delta a^{(2)} (2^2; 1; u)\) defined as the Hermitian conjugate of a vector consisting of \(\delta a_1^{(2)}(1; u)\), \(\delta a_2^{(2)}(1; u)\), \(\delta a_3^{(2)}(1; u)\), and \(\delta a_4^{(2)}(1; u)\).], is the solution of the 3rd-LVSS obtained by concatenating the 2nd-LVSS (i.e., Equations 59, 60), with the equations obtained by G-differentiating the 2nd-LASS, represented by Equations 66, 67, for the function [image: Mathematical expression consisting of "a" raised to the power of two in parentheses, followed by a second set of parentheses with the sequence: two squared, semicolon, one, semicolon, "u".]. The resulting 3rd-LVSS for the third-level variational function [image: Vector notation showing **v** with a superscript of three, followed by a column matrix with elements: two cubed, one, one, and *u*.] comprises the following matrix equation, where the dots are used to denote zero-elements for better visibility of the structure:
[image: Mathematical matrix and equation with several variables including \( L \), \( M \), and \(\delta\). It includes multiple lines of expressions involving derivatives, functions \(\nu^{(1)}(u)\), \(\delta \psi(u)\), and various \(\delta a\) terms. The matrix on the left consists of placeholders \( L \) and \( M \), while the right displays functions and interactions. Definitions clarify functions \( L(u) \) and \( M(u) \), alongside equation (100).]
[image: Mathematical equations related to control variables with constraints. Variables include \(v^{(1)}(0) = 0\), \(\delta y(u_{lh}) = 0\), \(\delta a_1^{(1)}(u_{lh}) = 0\), and other similar terms up to \(\delta a_3^{(2)}(1; u_{lh}) = 0\), ending with equation number 101.]
The 3rd-LVSS comprising Equations 100, 101 can be formally expressed in the following [image: I can't view the image directly. Please upload the image or provide a URL, and I can help create alt text for you.]-matrix form:
[image: Mathematical equation showing transformations: \( V^{(0)} [2 \times 2, u; f] \nu^{(3)}(2^3, 1; 1; u) = q^{(0)}[2^3, u^{(3)}(2; u); f; \delta f], \) labeled as equation (102).]
[image: The expression shows a mathematical equation: \( b_2^{(1)} \left[ v^{(1)}(2; 1; 1; u) \right] = 0 \), followed by the number (103) in parentheses.]
The above matrix form of the 3rd-LVSS will be used as a “condensed notation” to construct the 3rd-LASS, the solution of which will be used to derive the alternative expression for the G-differential [image: Mathematical expression showing delta functions and operations on vectors in set notation with variables and functions, including delta subscripted with indices, R to the power of two, and function f of alpha.]. This 3rd-LASS will be constructed in a Hilbert space denoted as [image: A capital letter "H" with a subscript "3" to the right, resembling a chemical formula notation.], comprising as elements eight-component vector-valued functions of the form [image: Mathematical expression showing a function \( \chi^{(3)}(2^3; 1; 1; u) \) defined as a vector with components \( \chi_1^{(2)}(1; 1; u) \) to \( \chi_8^{(2)}(1; 1; u) \), belonging to the set \( \mathbb{H}_8 \).], and endowed with the following inner product between two vectors [image: Mathematical expression showing chi superscript three as a function of variables two cubed, one, one, and u.] and [image: Theta function notation, represented as theta with superscript three, followed by arguments two cubed, one, one, and variable u in parentheses.]:
[image: Equation showing a relationship involving Greek letters and summation notation. The left side has a product of functions \(X^{(3)}(2; 1; 1; u)\) and \(\theta^{(3)}(2; 1; 1; u)\). The right side features a summation from \(j=1\) to \(3\) involving an integral from \(0\) to \(\infty\) of \(X^{(3)}(1; 1; u) \theta^{(3)}(1; 1; u)\) with respect to \(du\), equal to or approximately equal. Marked as equation (104).]
The inner product defined in Equation 104 will be used to construct the inner product of Equation 102 with a function denoted as [image: Mathematical expression showing a superscript with parameters expressed as vectors or tuples, followed by a complex vector function with indexed notation in a Hilbert space.], where the argument “1,1” of the function indicates that this (third-level adjoint) function corresponds to the unmixed second-order sensitivity of the response with respect to the “first” component, [image: Mathematical expression showing \( f_1(\alpha) \).], of the feature function [image: It looks like there is some text or mathematical notation, but there is no actual image provided. Please upload the image or provide a URL for me to generate the alt text.]. Constructing this inner product yields the following relation, where the specification [image: Braces symbol followed by a subscript alpha and a superscript zero.] has been omitted to simplify the notation:
[image: A complex mathematical expression involving multiple integrals with limits from zero to infinity. It includes variables such as \(a^{(2)}\), \(d/du\), \(f_i\), \(\delta\), and several nested functions and derivatives. The formula features numerous summations and brackets, indicating a sophisticated calculation, possibly from a higher-level mathematical or physics context.]
The component for Equation 105 can be written as follows:
[image: Mathematical notation showing an equation involving multiple variables and functions. The equation starts with \(a^{(3)}(2; 1; 1; u)\) and is followed by several functions and operations, including \(V^{(5)}\), \(\psi^{(4)}\), and \(f^{(5)}(2; 1; 1; u)\), ultimately leading to a complex expression. The equation is labeled with the number 106.]
The left side of Equation 106 is integrated by parts to obtain the relation given below, in which the argument “1;1” has been omitted when writing the components [image: Mathematical notation showing \( a_i^{(3)}(1; 1; u) \), where \( i \) ranges from 1 to 8.] to simplify the notation:
[image: A mathematical expression featuring multiple integrals, derivatives, and delta functions. It includes terms with various indices, such as \(a_5^{(2)}\), \(f_5^{(11)}\), and \(\delta^2\). Several integrals range from zero to infinity, and numerous terms involve derivatives with respect to \(u\). The notation and arrangement suggest a complex mathematical derivation or formula.]
The boundary terms that appear in Equation 107 will vanish by using Equation 101 and imposing the following boundary conditions on the components [image: Mathematical notation showing \( a_i^{(3)}(1;1;u) \), where \( i = 1, \ldots, 8 \).] of the third-level adjoint sensitivity function [image: Mathematical expression showing a superscript notation: a to the power of three, followed by values in parentheses: two to the power of three, one, one, and variable u.]:
[image: Mathematical expressions showing multiple equations: \( a_1^{(3)}(1;1;u_h) = 0 \), \( a_2^{(3)}(1;1;0) = 0 \), \( a_3^{(3)}(1;1;0) = 0 \); \( a_4^{(3)}(1;1;u_h) = 0 \), \( a_5^{(3)}(1;1;0) = 0 \), \( a_6^{(3)}(1;1;u_h) = 0 \); \( a_7^{(3)}(1;1;u_h) = 0 \), \( a_8^{(3)}(1;1;0) = 0 \). Number 108 at the end.]
Equation 107 can be written in matrix form as follows:
[image: Mathematical equation with variables and functions: \( a^{(3)}(2; 1; 1; u), V^{(3)}[2 \times 2^{2; u}; f] y^{(3)}(2; 1; 1; u) \) subscript 3 equals \( (v^{(3)}(2; 1; 1; u), A^{(3)}) [2^{2; u}; f] a^{(3)}(2; 1; 1; u) \) subscript 3, equation 109.]
where [image: Mathematical expression featuring a matrix operation. A superscript three is applied to A, followed by square brackets containing \(2^3 \times 2^3; u; f\). This is equal by definition to a matrix operation V, also with a superscript three, followed by the same contents in brackets and an asterisk superscript.] denotes the formal adjoint of [image: Mathematical notation showing bold V superscript three, followed by a bracket containing two cubed times two cubed, semicolon, lowercase u, semicolon, lowercase f, and a closing bracket.]. The right side of Equation 109 is now required to represent the G-differential [image: Mathematical expression featuring a delta function acting on a function of variables 1, 1, and u with two vectors \( \mathbf{u}^{(3)} \) and \( \mathbf{v}^{(3)} \) having components \( (2^3, 1, 1; u) \) and a function \( f(\alpha) \). The notation suggests multi-dimensional or vector calculus context.] by imposing the following relation:
[image: Mathematical equation showing an expression involving \( A^{(3)} \), \( f \), and \( s_{K}^{(0)} \) with variables and parameters \(2 \times 2^{2} \cdot u\), \( f |_{A^{(0)}} (2; 1; 1; u) \), and an equality to \( s_{K}^{(0)} (2^{3}; 1; 1; f) \), followed by the number 110 in parentheses.]
where
[image: Mathematical expression showing a set defined as \({\mathcal{S}_{\lambda}^{(3)}}(2^3;1;1;f)\). Elements of the set include functions \(a_i^{(2)}(1;u)\), \(\alpha_i^{(2)}(1;u)\), \(\phi(u)\), \(\psi(u)\), \(\alpha_i^{(1)}(u)\), \(\alpha_i^{(0)}(u)\) with parameter \(u\) and a reference to equation (111).]
The relations provided in Equations 108, 110 constitute the 3rd-LASS for the third-level adjoint sensitivity function [image: Mathematical expression showing a superscripted lowercase 'a' with a superscript of three, and variables in parentheses: two raised to the power of three, semicolon, one, semicolon, one, semicolon, and 'u'.]. In component form, Equation 110 has the following expression, where the dots are used to denote zero-elements for better visibility of the structure:
[image: A mathematical equation matrix representation is shown, involving a large square matrix on the left with elements M, L, and minus one among others, multiplied by a column vector of a terms. This is equal to another column vector of terms including minus a, phi, psi, and other expressions involving functions of u. The equation is labeled as equation 112.]
Using the relations in Equations 99, 102, 103, 108, 110 yields the following alternative expression for [image: Mathematical expression with a function denoted by variables and parameters. Variables include R, u, v, each with superscript indices, followed by numerical indices in parentheses. The expression ends with a function f applied to alpha.]:
[image: A complex mathematical expression is shown, featuring multiple integral symbols and functions with subscripts and superscripts. It involves terms such as \( a_3^{(1)} \), \( a_2^{(1)} \), \( \delta(f_1) \), and \( \delta(f_2) \). The equation includes variable limits and differentiable functions \( \psi(u) \) and \( \varphi(u) \) within the integrals. The notation suggests advanced mathematical operations, possibly related to calculus or mathematical physics. The equation number is (113).]
The third-order sensitivities stemming from the relation obtained in Equation 113 are the expressions that multiply the respective variations [image: Please upload the image or provide a URL to enable me to create the alt text.] and [image: It seems there was no image uploaded. Please upload the image or provide a URL, and I will help create the alternate text for it.] and are as follows:
[image: Mathematical equation involving integrals and functions. It displays the expression for the second derivative of a function \( R_c(\varphi, \psi) \) with respect to variables \( f_1 \) and \( f_1 \), equated to a series of integrals from zero to infinity involving terms \( a^{(3)}, \varphi(u), \psi(u), \) and derivatives of function \( a \). Each integral has a decreasing order of function \( a \) terms. The equation is labeled (114).]
[image: Partial derivative equation involving the function \(\mathbb{R}(\varphi, \psi)\) with respect to multiple variables, represented as integrals and summations involving functions \(a^{(3)}\) and \(\delta(u)\), and variables \(u\) and \(\omega\), indicated by equation number \(115\).]
The expressions obtained in Equations 114, 115 are to be evaluated at the nominal values of parameters and state functions, but the notation [image: Curly brackets containing the Greek letter alpha raised to the power of zero.] has been omitted for simplicity.
Solving Equations 112, 108 yields the following expressions for the components of the third-level adjoint sensitivity function [image: Mathematical expression consisting of a bold lowercase "a" with a superscript of three, followed by a parenthesis enclosing the sequence: two cubed, semicolon, one, semicolon, one, semicolon, lowercase italicized "u".]:
[image: Mathematical expression involving function \( G^{(0)} \) with variables \( t \), \( u \), and \( \alpha \). The equation is \( G^{(0)}(1;1;u) = (u_4 - u)^2 H(u_4 - u) \exp[(u-u_4) f_1(\alpha)] \), followed by number 116 in parentheses.]
[image: Mathematical expression showing \( a_{4}^{(0)}(1;1;u) = f_{2}(\alpha)u^{2} \exp[-uf_{1}(\alpha)] \), labeled as equation (117).]
[image: Mathematical expression showing \( g^{(0)}(1:1;u) = f_2(\alpha) u^2 \exp[-u f_1(\alpha)] \). Equation labeled as 118.]
[image: The image shows a mathematical equation. It is written as follows: \( x^{(0)}_{a}(1;1;u) = (u_{a} - u)^{2}H(u_{a} - u) \exp[(u - u_{a})f_{1}(\alpha)] \). It is labeled as equation (119).]
[image: Mathematical expression of a function G with subscript 4 superscript 0, evaluated at (1; 1; u), is given as negative f subscript 2 of alpha, times u, times the exponential of negative u over f subscript 1 of alpha, with reference number 120.]
[image: Mathematical equation showing \( a_{6}^{(0)}(1;1;u) = - (u_4 - u) H(u_4 - u) \exp[(u - u_4) f_1(\alpha)] \), labeled as equation 121.]
[image: Mathematical equation displayed, showing a complex expression with variables and functions: \( G^{(1)}(1;1;u) = -(u_d - u)^{\theta} H(u_d - u) \exp[(u - u_d)/f_1(\alpha)] \), numbered as equation (122).]
[image: Mathematical expression showing a formula with multiple variables and functions, including \( g_{s}^{(1)} \), \( f_1(\alpha) \), \( u \), and \( f_2(\alpha) \).]
Using the expressions obtained in in Equations 132, 133 and performing the respective operations yield the following results:
[image: Mathematical equation displaying a partial derivative of function \( R_c(\phi, \psi) \) with respect to variable \( f_1 \), equated to a negative exponential expression involving parameters \( u_d, f_1(\alpha), f_2(\alpha) \). Labeled as equation (124).]
[image: Mathematical expression representing a partial derivative with respect to phi and psi, containing terms f of 1 over f of 2, equal to u subscript 4 squared times the exponential of negative u subscript 4 f of 1 of alpha. Labeled as equation 125.]
5.2 Application of the 3rd-FASAM-L to compute the 3rd-order sensitivities stemming from [image: Partial derivative equation showing symmetry: the second partial derivative of R sub C with respect to f sub 1 and f sub 2 equals the second partial derivative of R sub C with respect to f sub 2 and f sub 1.]
The third-order sensitivities stemming from [image: Mathematical expression showing \( R^{(2)}[2; 1; \mathbf{u}^{(3)}; f(\alpha)] \doteq \partial^2 R_c(\varphi, \psi)/\partial f_2 \partial f_1 \). It involves second-order partial derivatives.] will be obtained from the G-differential of (Equation 72), which will be denoted as [image: Mathematical equation with various variables and functions. The left-hand side includes expressions with subscripts and superscripts, such as \( \delta R^{(2)} \), \( u^{(3)} \), \( v^{(3)} \), and \( f(\alpha) \). The right-hand side includes expressions like \( \delta^{\delta^2} \), \( R_c(\varphi, \psi) \), and partial derivatives \( \partial_2 f_1 \).], and which is by definition determined as follows:
[image: Mathematical expression showing the expansion of a functional involving delta functions and integrals. It begins with a variation of \( \delta R^{(2)} \) regarding several variables, equated to an expression involving derivatives and integrals with respect to \( u \), delta functions, and terms \( a_{1}^{(2)}(1; u) \) and \( \delta a_{1}^{(2)}(1; u) \). Equation number (126) is noted.]
The function [image: Mathematical notation displaying delta a subscript 1 superscript 2, with an argument of one semicolon u.] is one of the components of the third-level variational function [image: Vector notation depicting bold lowercase v with superscript three, followed by a four-component tuple in parentheses: two cubed, one, one, and lowercase u.], which is the solution of the 3rd-LVSS represented by Equations 101, 102. To avoid the need for solving the 3rd-LVSS, the appearance of this function will be eliminated from Equation 126 by deriving an alternative expression for the G-differential [image: Mathematical expression showing delta times R to the power of (2), with a sequence: two, one, u to the power of (3), v to the power of (3), and f of alpha, all enclosed in curly braces and subscripted R-alpha zero.] in terms of a third-level adjoint sensitivity function, denoted as [image: Mathematical expression showing a function definition with variables and parameters, indicating a sequence of elements within a specified set.]. The argument “2,1” of the function [image: Mathematical expression with vector \( \mathbf{a}^{(3)} \) followed by a tuple \( (2^3, 2, 1, u) \).] indicates that this (third-level adjoint) function corresponds to the mixed second-order sensitivity of the response with respect to the “second and first” components, [image: Please upload the image or provide a URL so I can generate the alt text for you.], of the feature function [image: Mathematical notation depicting the function \( f(\alpha) \), where \( \alpha \) is a variable or parameter.].
The third-level adjoint sensitivity function [image: Superscript notation and mathematical expression showing "a" raised to the power of three, followed by a parenthesis containing numbers two cubed, two, one, and variable "u".] will be the solution of 3rd-LASS to be constructed in the Hilbert space [image: Calligraphic capital letter "H" followed by the subscript number "3".] using Equation 104 to construct the inner product of [image: Mathematical expression showing a raised to the power of three in parentheses with elements two cubed, two, one, and variable \( u \).] with Equation 102. Constructing this inner product yields the following relation, where the specification [image: Curly braces enclosing the letter alpha raised to the power of zero.] has been omitted to simplify the notation:
[image: Mathematical expression showing the equivalence between two quantum states: \(|a^{(3)}(2^{2};2;1;u), v^{(5)}[2 \times 2^{2};u;f]v^{(3)}(2;1;1;u)\rangle_{3}\) and \(|a^{(3)}(2^{2};2;1;u), q^{(5)}[2;u^{(3)}(2;u);f;6f]\rangle_{3}\). The equation is labeled (127).]
The left side of Equation 127 is integrated by parts to obtain the following relation:
[image: Mathematical expression showing a transformation: \( a^{(3)}(2; 2; 1; u), v^{(3)} [2 \times 2; x; f(y^{(3)}(2; 1; 1; u)) ]_3 = ( v^{(3)} (2; 1; 1; u), A^{(3)} [2 \times 2; u; f(a^{(3)} (2; 2; 1; u) ) ]_3 \).]
where the following boundary conditions were imposed on the components [image: Mathematical expression featuring "a sub i superscript 3" followed by parentheses containing "2 semicolon 1 semicolon u".], [image: It seems there was a mistake in your submission. Please upload an image or provide a URL, and I can help create alt text for it.] of the third-level adjoint sensitivity function [image: Mathematical expression showing a raised to the power of three, followed by a vector with elements 2 raised to the third power, 2, 1, and a variable u.]:
[image: Mathematical expressions showing various equalities involving functions \(a^j_i(2; 1; u_{\widehat{\imath}}) = 0\) and \(a^{(j)}_i(2; 1; 0) = 0\) for \(j = 4\) to \(8\) and \(i = 1\) to \(6\). The equation is labeled with number 129.]
The right side of Equation 109 is now required to represent the G-differential [image: Mathematical expression featuring a set notation with function and variables: \(\delta R^{(2)}\) followed by a sequence \([2;1;u^{(3)}(2^3;1;1;u);v^{(3)}(2^3;1;1;u);f(\alpha)]_{\alpha t}\).] by imposing the following relation:
[image: Mathematical equation involving a superscripted variable with expressions, including A superscripted with a form in brackets, and vectors with coordinates. The equation has variables and coefficients organized in a sequence with a final vector composed of zeros and delta functions, denoted by δ, and ending in an equation number in parentheses.]
The relations provided in Equations 108, 110 constitute the 3rd-LASS for the third-level adjoint sensitivity function [image: Mathematical expression showing a to the power of three times the quantity two to the power of three, semicolon, one, semicolon, one, semicolon, u, in parentheses.]. Using the relations in Equations 99, 102, 103, 108, and 110 yields the following alternative expression for [image: Mathematical expression showing a complex equation with variables and functions: δR to the power of (2) [2; 1; u to the power of (3) (2 cubed; 1; 1; u); a to the power of (3) (2 cubed; 2; 1; u); f(α)], evaluated from α to the power of f.], in which the function [image: Vector notation with v raised to the power of three, followed by a column matrix containing values two cubed, one, one, and u.] has been replaced by the function [image: Mathematical expression showing a superscript three next to the letter 'a', followed by an ordered set with elements: two cubed, two, one, and 'u'.]:
[image: Mathematical expression featuring multiple integrals and functions. It involves a sequence of integrals with variables \( a^{(3)} \), \( a^{(1)} \), and \( a^{(2)} \), alongside functions \( \delta(f_2) \) and \( \delta(f_1) \) with limits \( 0 \) to \( a^0 \). The expression also includes variables \( u \) and \( du \), and functions \( \phi(u) \), \( \psi(u) \), and differential notations like \( \partial^{(2)} \), \( \partial^{(1)} \). Ending with equation number 131.]
The third-order sensitivities stemming from the relation obtained in Equation 131 are the expressions that multiply the respective variations [image: It seems like you're referencing an equation rather than an image. To help with alt text creation, please upload the image or provide the URL. If you have any additional context or description about the image, feel free to include it.] and [image: Mathematical notation representing the symbol delta followed by the function f with a subscript two.] and are as follows:
[image: Mathematical expression involving integrals and derivative terms with respect to variables \( \varphi \) and \( \psi \). It shows a series of integrals from \(-\infty\) to \(+\infty\), each with different functions \(a^{(3)}_i\), \(\varphi(u)\), \(\psi(u)\), and \(a^{(1)}_j\). The expression is labeled equation \(132\).]
[image: Partial derivative expression showing the third derivative of \(\mathcal{R}(\varphi, \psi)\) with respect to \(f\), \(f_2\), and \(f_1\) equal to the integral from \(0\) to \(\infty\) of \(a^{(3)}(2;1;u)\delta(u)\, du\), labeled equation (133).]
The expressions obtained in Equations 132, 133 are to be evaluated at the nominal values of parameters and state functions, but the notation [image: Empty set symbol with a subscript alpha and a superscript zero.] has been omitted for simplicity.
In component form, the 3rd-LASS for the third-level adjoint sensitivity function [image: Mathematical notation displaying a superscript three function applied to the vector with components two cubed, two, one, and the variable \( u \).] has the following expression, where dots are used to denote zero-elements for better visibility of the structure:
[image: Matrix equation with a 7x7 matrix on the left and a column matrix of eight elements on the right. Each entry includes algebraic expressions involving parameters \(M\), \(L\), \(\delta(u)\), and indexed functions \(a_n^{(3)}(2; 1; u)\). The result equals a column matrix with a \(\delta(u)\) element amid zeros.]
Solving Equation 134 yields the following expressions for the components of the third-level adjoint sensitivity function [image: Mathematical notation showing a raised to the power of three, followed by a vector or tuple consisting of two cubed, two, one, and the variable u in parentheses.]:
[image: Mathematical expressions with functions, variables, and parameters are shown. The first line sets certain functions \(a_4^{(3)}(2; 1; u) = a_3^{(3)}(2; 1; u) = a_6^{(3)}(2; 1; u) = a_7^{(3)}(2; 1; u) = 0\). The second and third lines relate \(a_5^{(3)}(2; 1; u)\) to a function \(H(u)\) and an exponential function involving \(u f_1(\alpha)\). The fourth line sets \(a_2^{(3)}(2; 1; u)\) equal to \(-u\) times an exponential function, which equals \(-a_5^{(3)}(2; 1; u)\). Equation number \(135\) is noted.]
Using the expressions obtained in Equation 135, substituting them into Equations 132, 133 and performing the respective operations yield the following results:
[image: Mathematical expression depicting the integration of various functions. The equation features nested integrals with the integration variable \( u \), coefficients \( a \) with indices, and exponential terms. It starts with \( \partial^3 \mathcal{R}(\varphi, \psi)/\partial f_1 \partial f_2 \partial f_1 = - \int_0^{u_{\text{f}_1}} a_2^{(3)}(2;1;u)\psi(u) \, du \). Subsequent terms involve coefficients \( a_3^{(3)} \), \( a_4^{(1)} \), \( a_5^{(3)} \), and other nested integrals. The expression simplifies to \( =u_{\text{f}_1}^3 \exp[-u_{\text{f}_1} f_1(\alpha)] \).]
[image: Partial derivative of \(\mathcal{R}(\phi, \psi)\) with respect to \(f_{2}\), \(f_{2}\), and \(f_{1}\) is equal to zero, equation 137.]
6 CONCLUDING DISCUSSION
This work has presented illustrative applications of the “nth-FASAM-L,” which has been specifically developed to be the most efficient methodology for computing exact expressions of sensitivities of responses (of such unique linear models) to features of model parameters and, subsequently, to the model parameters themselves. The efficiency of the nth-FASAM-L stems from the maximal reduction of the number of adjoint computations (which are “large-scale” computations) compared to the extant conventional high-order adjoint sensitivity analysis methodology nth-CASAM-L (Cacuci, 2022). The unique characteristics of the nth-FASAM-L have been illustrated in this work using a paradigm model of a “contributon-flux density response” that occurs in the energy distribution of neutrons stemming from a fission source in a homogeneous mixture of materials. This analytically solvable illustrative paradigm model has been used to demonstrate the following general conclusions regarding the characteristics and applicability of the nth-FASAM-L.
	(i) Comparing the mathematical framework of the nth-FASAM-L to that of the nth-CASAM-L indicates that the components [image: The formula depicts a function \( f_i(\alpha) \), where \( i \) ranges from 1 to \( TF \).] of the “feature function” [image: Mathematical expression showing a vector function \( \mathbf{f}(\alpha) \) defined as a transpose of a vector containing functions \( f_1(\alpha) \) through \( f_{TF}(\alpha) \).] play within the nth-FASAM-L the same role as played by the components [image: Mathematical notation showing alpha subscript j, where j equals 1 through TP, likely referring to a sequence or set of elements indexed by j.] of the “vector of primary model parameters” [image: Mathematical expression showing alpha is defined as a column vector consisting of elements alpha sub one through alpha sub T P, transposed.] within the framework of the nth-CASAM-L. It is paramount to underscore, at the outset, that the total number of model parameters is always larger (usually by a wide margin) than the total number of components of the feature function [image: It seems like you've mentioned a partial mathematical expression. If you're referencing an image with this content or need assistance with something related, please provide more details or upload the image.], i.e., [image: "TP is much greater than TF."]. The illustrative paradigm model of “neutron slowing down in a homogeneous mixture of materials” presented in this work comprised a feature function with two components (i.e., [image: Text displaying the mathematical expression "TF equals 2."]) denoted as [image: It seems like there was an error with the image upload. Please try uploading the image again, and I will help you create the alt text for it.] and [image: The text "f subscript 2 of alpha" written in a mathematical style.], which were, in turn, functions of [image: An equation showing "TP" is congruent to "3M plus 10".] imprecisely known model parameters (where M denotes the number of materials and/or isotopes in the mixture, which is of the order of 20–50 in a nuclear reactor, depending on its service in operation).
	(ii) For computing the exact expressions of the first-order sensitivities of a model response to the uncertain parameters, boundaries, and internal interfaces of the model, both the 1st-FASAM-L and 1st-CASAM-L require a single large-scale “adjoint” computation. This “large-scale” computation using either the 1st-FASAM-L or 1st-CASAM-L involves solving the same operator equations and boundary conditions within the respective 1st-LASS; only the sources for the respective 1st-LASS differ from each other. The 1st-FASAM-L enjoys a slight computational advantage since it requires only TF quadratures (one quadrature per component of the feature function), while the 1st-CASAM-L requires TP quadratures (one quadrature per model parameter). For the illustrative “contributon response of the neutron slowing-down” paradigm model, the computation of the first-order response sensitivities with respect to the model parameters required two quadratures using the 1st-FASAM-L, while the 1st-CASAM-L required TP-quadratures. Within the 1st-FASAM-L, the sensitivities with respect to the primary model parameters are obtained by using the first-order sensitivities [image: Partial derivative of R sub c with respect to f sub 1.] and [image: Partial derivative symbol followed by \( R_c \) over \( f_2 \).] (with respect to the components of the feature function) in conjunction with the chain rule of differentiation of the exactly known expressions of the components [image: It seems that there is no image provided. Please upload the image or provide a URL for it, and I will be happy to help with the alternate text.] and [image: It seems there was a mix-up in your message. If you intended to provide or describe an image, please upload the image file or provide a URL link, and I can assist you in generating the alt text.] in terms of the primary model parameters.
	(iii) Both the 2nd-FASAM-L and 2nd-CASAM-L conceptually determine the second-order sensitivities by using the fundamental concept that “the second-order sensitivities are the first-order sensitivities of the first-order sensitivities.” For computing the exact expressions of the second-order response sensitivities with respect to the primary model’s parameters, the fundamental difference between the 2nd-FASAM-L and 2nd-CASAM-L is obtained as follows: the 2nd-FASAM-L requires as many large-scale “adjoint” computations as there are “feature functions of parameters” [image: Mathematical expression showing \( f_i(\alpha), i = 1, \ldots, TF \).] (where [image: It seems there might have been an issue with uploading the image. Could you please try uploading the image again or provide a URL? Additionally, you can add a caption for context if needed.] denotes the total number of feature functions) for solving the left side of the 2nd-LASS with [image: It seems there is no image uploaded. Please upload the image or provide a URL so I can create the alt text for you.] distinct sources on its right side. In contradistinction, the 2nd-CASAM-L requires [image: Please upload the image or provide a URL, and I will be happy to help you with the alt text.] (where [image: It seems there's an error with the image upload or description. Please try uploading the image again or provide a detailed description for assistance.] denotes the total number of model parameters or non-zero first-order sensitivities) large-scale computations for solving the same left side of the 2nd-LASS but with [image: Please upload the image or provide a URL, and I will help create the alternate text for it.] distinct sources. Remarkably, the types of “large-scale” computations are the same in both the 2nd-FASAM-L and 2nd-CASAM-L since they both solve the same operator equations and boundary conditions within the respective 2nd-LASS systems; only the sources for these adjoint systems differ from each other. Since [image: The text "TF ≪ TP" indicates that TF (some time or value) is much less than TP.], the 2nd-FASAM-L is considerably more efficient than the 2nd-CASAM-L for computing the exact expressions of the second-order sensitivities of a model response to the uncertain parameters, boundaries, and internal interfaces of the model. For the illustrative contributon-response paradigm model, the computation of the second-order response sensitivities with respect to the model parameters using the 2nd-FASAM-L requires just two large-scale computations, for solving the two 2nd-LASS that correspond to the first-order sensitivities, [image: Partial derivative notation \(\partial R_c / \partial f_1\).] and [image: Partial derivative of R sub c with respect to f sub 2.], of the contributon response with respect to the respective components, [image: It looks like you've entered a mathematical expression rather than an image. Please upload the image or provide a URL for the image you want described.] and [image: It seems you've provided a mathematical expression instead of an image. If you have an image you'd like me to describe, please upload it or provide a URL.], of the model’s “feature function” [image: The mathematical expression shows the function notation \( f(\alpha) \), with the Greek letter alpha as the argument of the function \( f \).]. In contradistinction, computing the second-order sensitivities to the model parameters using the 2nd-CASAM-L requires TP large-scale computations, one for solving each of the 2nd-LASS that corresponds to each one of the distinct first-order sensitivities [image: Partial derivative symbol followed by a capital R subscript c, over partial derivative symbol followed by a lowercase alpha subscript i.], [image: It seems there was an error with the image upload. Please try again by providing the image file. If needed, you can also add a caption for additional context.], of the response with respect to the TP model parameters. Remarkably, only the unmixed second-order sensitivity [image: Second derivative of \( R_c(\phi, \psi) \) with respect to \( f_1 \) twice.] and the mixed second-order sensitivity [image: Partial derivative equation shown: the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \) and then \( f_2 \) is equal to the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_2 \) and then \( f_1 \).] are non-zero. The unmixed second-order sensitivity is identically zero, i.e., [image: The formula shows the second partial derivative of R sub c with respect to f sub 2, evaluated with respect to two variables phi and psi, set to be identically zero.]. In contradistinction, computing the second-order sensitivities to the model parameters using the 2nd-CASAM-L requires TP large-scale computations, one for solving each of the 2nd-LASS that corresponds to one of the distinct TP model parameters. None of the second-order sensitivities with respect to the primary model parameters vanish.
	(iv) For computing the exact expressions of the third-order response sensitivities with respect to the primary model’s parameters, the 3rd-FASAM-L requires at most [image: Sure! Please upload the image or provide a link to it, and I will help create the alt text for you.] large-scale “adjoint” computations for solving the 3rd-LASS with [image: Certainly! Please provide the image by uploading it, and I will create the alt text for you.] distinct sources, while the 3rd-CASAM-L requires at most [image: Mathematical formula rendering the expression TP times the quantity TP plus one divided by two.] large-scale computations for solving the 3rd-LASS with [image: Mathematical formula displaying \( \text{TP}(\text{TP} + 1)/2 \).] distinct sources. For the illustrative “contributon response of the neutron slowing-down” paradigm model, the computation of the third-order response sensitivities with respect to the model parameters using the 3rd-FASAM-L requires only two large-scale computations for solving the two 3rd-LASS that correspond to the respective non-zero second-order sensitivities [image: Second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \).] and [image: Equation showing partial derivatives: the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \) and \( f_2 \) equals the second partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_2 \) and \( f_1 \).]. Only the unmixed third-order sensitivity [image: The expression shows the third partial derivative of \( R_c(\varphi, \psi) \) with respect to \( f_1 \), taken three times.] and the mixed third-order sensitivity [image: Partial derivative cubed of R sub c with respect to functions phi and psi, divided by the partial derivatives with respect to f sub one, f sub one, and f sub two.] are non-zero; all other third-order sensitivities vanish identically. In contradistinction, the 3rd-CASAM-L requires all [image: A mathematical expression showing TP multiplied by the sum of TP and 1, divided by 2.] large-scale computations for solving the 3rd-LASS since all of the second-order sensitivities with respect to the primary model parameters are non-zero. Furthermore, all of the third-order response sensitivities with respect to the primary model parameters are non-zero.
	(v) The same computational count of “large-scale computations” caries over when computing the fourth- and higher-order sensitivities, i.e., the formula for calculating the “number of large-scale adjoint computations” is formally the same for both the nth-FASAM-N (Cacuci, 2024a, 2024b) and nth-CASAM-N (Cacuci, 2023a), but the “variable” in the formula for determining the number of adjoint computations for the nth-FASAM-N is [image: It seems there might be a mistake in your request as there's no image provided. Please upload the image, and I'll be happy to help with the alt text.] (i.e., total number of feature functions), while the counterpart for the formula for determining the number of adjoint computations for the nth-CASAM-N is [image: Please upload the image or provide the URL so I can generate the alternate text for you.] (i.e., total number of model parameters). Since [image: The text "TF much less than TP" is displayed with mathematical symbols indicating an inequality relationship.], it follows that the higher the order of computed sensitivities, the more efficient the nth-FASAM-N (Cacuci, 2024a, 2024b) becomes compared to the nth-CASAM-N (Cacuci, 2023a).
	(vi) The probability of encountering vanishing sensitivities is much higher when using the nth-FASAM-L than when using the nth-CASAM-L. For the illustrative “contributon response of the neutron slowing-down” paradigm model, it is evident that the only a few of the response sensitivities of fourth order (and higher order) with respect to the components of the feature function [image: It seems like you're referring to a mathematical expression, not an image. However, if you still need assistance with an image, please provide it by uploading or giving a URL, and I can help with alternate text.] will not vanish, and the non-vanishing sensitivities will all involve the component [image: It appears you are referring to a mathematical expression: \( f_1(\alpha) \). To provide alternate text for an image, please upload the image or provide a URL. You can also add a caption for more context.] of the feature function since this component appears in an exponential, whereas the other component appears just as a multiplicative factor. In contradistinction, none of the higher-order response sensitivities with respect to the primary model parameters will vanish using the 2nd-CASAM-L.
	(vii) When a model has no “feature” functions of parameters, but only comprises primary parameters, the nth-FASAM-L becomes identical to the nth-CASAM-L.
	(viii) Both the nth-FASAM-L and nth-CASAM-L are formulated in linearly increasing higher-dimensional Hilbert spaces—as opposed to exponentially increasing parameter-dimensional spaces—thus overcoming the limitation of dimensionality in the sensitivity analysis of linear systems. Both the nth-FASAM-L and nth-CASAM-L are incomparably more efficient and more accurate than any other method (statistical, finite differences, etc.) for computing the exact expressions of response sensitivities (of any order) with respect to the uncertain parameters, boundaries, and internal interfaces of the model.
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This paper is an investigation of the gas mixing and depressurization effects of containment spray on hydrogen risk during a typical severe accident in a light water reactor (LWR). Two spray tests (ST3_0 and ST3_1) were simulated using the OECD/SETH-2 project frame; the tests were performed with different preconditions in two interconnected vessels of the PANDA facility by focusing on the breaking-up of the stratified helium-rich layer and helium transport between the interconnected vessels with and without heat and mass transfer. The computational fluid dynamics simulations were performed using an Eulerian–Lagrangian approach, in which the dispersed droplets were tracked with a Lagrangian framework and the heat and mass transfer model between the droplets and gas were developed through user-defined functions. The simulation results are in reasonable agreement with the test data and reproduce the main phenomena of the spray tests. Although the proposed approach is adequate for addressing similar problems, some discrepancies still exist in the simulations. Based on these discrepancies, some recommendations are suggested to improve the accuracy of the proposed approach.
Keywords: containment spray, depressurization, mixing, Eulerian–Lagrangian approach, computational fluid dynamics simulation

1 INTRODUCTION
During a typical severe accident in a light water reactor (LWR), oxidation of the reactor fuel cladding produces a large amount of hydrogen due to long-term coolant loss. In such cases, hydrogen is released through the cladding break and spreads to the entire containment space, mixing with air and steam. This gas mixture is locally flammable or even explosive and may threaten the containment integrity. Thus, multiple phenomena occur within the containment in the event of a severe accident, including the transport of gases (air, steam, and hydrogen), stratification of gases, and condensation of steam.
The containment spray system is an important safety mechanism used in hypothetical severe accidents and has two main functions: preventing containment overpressure and removing radioactive aerosols. Moreover, sprayed water injection can enhance gas mixing; hence, spray activation causes steam condensation (depressurization), spray droplet evaporation, and gas stratification breakup. This makes the post-accident phenomena more complex; the depressurization induced by the spray reduces the partial pressure of steam and enhances the risk of a hydrogen explosion, while the gas stratification break-up suppresses hydrogen accumulation in the head space to reduce the flammability of the gas mixture. Prediction of steam and hydrogen distribution during spray activation is essential for ensuring containment integrity and optimizing the severity of accident mitigation. Numerical analyses of these phenomena caused by the spray require sophisticated analytical tools, such as advanced lumped parameter (LP) and computational fluid dynamics (CFD) codes. Therefore, spray experimental investigations conducted in large-scale facilities are necessary to study these phenomena and provide detailed data for code validation.
In the past, some experimental investigations have been conducted in several test facilities, e.g., TOSQAN (IRSN, France), MISTRA (CEA, France), PANDA (PSI, Switzerland), and SPOT (JSC, Russia). These facilities were characterized by large enclosures (TOSQAN: 7 m3, MISTRA: 100 m3, PANDA: 180 m3, SPOT: 59 m3) to simulate the typical thermal–hydraulic conditions during an accident in the containment. Furthermore, helium was used to simulate hydrogen in these experiments.
The Severe Accident Research Network (SARNET) spray benchmark (2004–2007) (Wilkening et al., 2008; Babic et al., 2009; Malet et al., 2011) was developed to understand the influences of containment sprays on atmospheric behaviors by using the TOSQAN and MISTRA facilities. The benchmark was divided into two parts as follows: the thermal–hydraulic part concerned with depressurization by the spray (TOSQAN 101 and MISTRA MASPn tests); the dynamic part concerned with light gas stratification break-up by the spray (TOSQAN 113 and MISTRA MARC2b tests) (Malet and Huang, 2015). The spray tests included in the SARNET spray benchmark have been simulated using LP and CFD codes. Comparisons between the simulations and experiments revealed discrepancies in some local domains, such as the spray region and dome above the spray nozzle, despite the good global agreement in terms of pressure, gas temperature, and gas concentration (Malet et al., 2011; Malet et al., 2014). Thus, further investigations are needed to improve the predictability of the spray-related phenomena.
SARNET-2 that was launched in 2009 (Malet et al., 2015a) was the successor to SARNET; under the SARNET-2 framework, more detailed investigations have been conducted continually to improve the predictability of the spray-related phenomena. Three benchmarks were included in this framework: 1) heat and mass transfer of a single water droplet; 2) gas entrainment by a real pressurized water reactor spray nozzle; 3) gas entrainment by two real nozzles. CFD simulations accurately predicted the droplet size and velocity below the nozzle but had significant disparities in the gas-phase velocity compared to the corresponding experimental data (Malet et al., 2015a; Malet et al., 2014). In addition, sensitivity analysis showed that the input conditions at the spray boundary, such as the size and velocity distribution of the droplets as well as gas-phase velocity distribution, significantly affected the accuracy of the simulation results.
The OECD/SETH-2 project was launched by OECD/NEA during 2007–2010 (NEA/CSNI/R, 2012); in this project, tests were performed in enclosed facilities involving various conditions like handling light gas stratification as well as erosion of stratification and spray. A series of spray tests were carried out in the MISTRA and PANDA facilities; the MISTRA facility was a multicompartment vessel, and the PANDA facility was composed of two vessels (90 m3) connected by a pipe. These spray tests differed in their initial conditions for the temperature, pressure, and gas components, and an additional spray test was performed at normal temperature for reference. Mimouni et al. (2013) used the NEPTUNE_CFD code to simulate the reference test and another spray test in which the spray was injected in a typical post-accident condition. For the reference test, the simulation results of helium concentration matched the experimental data very well; for the spray test, the simulated pressure reduction rate was too high while the light gas concentration matched the test data.
The ERCOSAM-SAMARA project was a 4-year research (2010–2014) (Dabbene et al., 2015; Malet et al., 2015b) conducted by the European Union and Russia’s nuclear energy agencies; this project investigated the formation of gas stratification under the assumed typical severe accident scenarios and the accident mitigation system steps (sprays, condensers, heaters, etc.) for breaking such gas stratification. Four different volume facilities were utilized (TOSQAN, SPOT, MISTRA, and PANDA) along with the virtual facility HYMIX (3,180 + 3,010 m3). Tests were performed at these facilities with different volumes and structures to study the impacts of mitigation system activation on gas stratification at various spatial scales to draw general conclusions as well as provide references and inspiration for corresponding research expansion to containment. The tests indicated that the facilities of different scales showed similar phenomena when activating the same mitigation system (Dabbene et al., 2015), with spray being the most effective means of depressurization and atmospheric mixing compared to other mitigation measures. Numerical studies on these tests indicated that the currently available codes have the potential to simulate the thermal–hydraulic conditions of the containment (Malet et al., 2015b); however, optimization approaches are still needed for these simulation methods.
Based on the background and research status, the process of spray-breaking gas stratification in a multicompartment enclosed space is studied, and two tests (ST3_0 and ST3_1) conducted in the framework of the OECD/SETH-2 project using the PANDA facility are analyzed in this paper. Here, ST3_0 is the reference test and ST3_1 is the spray test performed under pure hot steam conditions. ANSYS FLUENT v18.0 was chosen as the tool to implement the CFD simulations, and an Eulerian–Lagrangian method was used to simulate the spray droplets by adding models using user-defined functions (UDFs) for some key phenomena during spraying. The following sections describe the spray tests and numerical calculations; then, the simulations are compared with the experiments for the characteristics of the spray phenomena. Finally, some recommendations are provided for more accurate calculations.
2 DESCRIPTION OF THE SPRAY TESTS
2.1 Experimental facility
PANDA is a large-scale facility with an overall height of 25 m and a total volume of 515 m3. It is characterized by multicompartment construction and is equipped with CFD-grade instruments that can be used to investigate various thermal–hydraulic conditions in the LWRs (NEA/CSNI/R, 2012). The spray tests were performed in the drywell compartment of the PANDA facility (Figure 1A); the drywell compartment consists of two vessels (Vessel-1 and Vessel-2), each having a height of 8 m and diameter of 4 m, which are interconnected horizontally by a bent pipe (IP) of 1 m diameter. The spray nozzle is installed in Vessel-1, and its outlet is located 1.1 m from the top of the vessel. The nozzle has an outlet diameter of 6.4 mm, which is oriented vertically downward to produce a conical solid spray with an opening angle of 30°.
[image: Illustration of a drywell compartment showing two connected vessels labeled Vessel-1 and Vessel-2. Vessel-1 has a He-injection point and spray nozzle. Below, diagrams detail gas concentration measurement locations within each vessel, with various points marked at specific elevations.]FIGURE 1 | PANDA facility: (A) drywell compartment and (B) gas concentration measurement locations.
There are 261 and 87 K-type thermocouples installed in Vessel-1 and Vessel-2, respectively, for measuring the fluid and wall temperatures. The gas molar fractions are measured using mass spectrometer capillaries located at 59 positions in Vessel-1, 34 positions in Vessel-2, and 15 positions in the IP, as shown in Figure 1B (Erkan et al., 2011).
2.2 Information on the spray tests
Two tests (ST3_0 and ST3_1) were selected for the simulations, and both of them were focused on the spray-erosion of the stratified helium-rich layer at the top of Vessel-1 under different initial conditions. The experimental layout and parameters of the two tests are shown in Figure 2 (Mimouni et al., 2013; Erkan et al., 2011). The test sequence is divided into the preconditioning and spray phases. During the preconditioning phase, a helium-rich layer is formed at the top of Vessel-1; the remaining part of Vessel-1 together with the IP and Vessel-2 was preconditioned with air or steam before being pressurized. Then, in the spray phase, the spraying proceeded at a constant spray flow rate until the end of the test.
[image: Diagram showing two scenarios of connected vessels labeled ST3_0 and ST3_1. In ST3_0, Vessel 1 contains 100% air topped with a layer of 30% helium. Vessel 2 has 100% air at ambient temperature and -1.3 bar. A spray nozzle is positioned at the helium layer interface. In ST3_1, Vessel 1 contains 100% steam and a layer of 30% helium. Vessel 2 also contains 100% steam at 2.6 bar and 129°C. Both vessels have layers with decreasing helium concentration at the top, and the vertical measurements of key dimensions are provided.]FIGURE 2 | Schematic view of the experimental layout and parameters of the (A) ST3_0 and (B) ST3_1 tests.
For the reference test ST3_0, a helium-rich layer was produced at the top of Vessel-1 while the remaining space was filled with air at room temperature to consider only the hydrodynamic interactions between the droplets and ambient gas. The hot spray test ST3_1 was performed with steam and helium to investigate heat transfer between the spray droplets and steam during stratification breakup. Table 1 lists the parameters used for the initial conditions.
TABLE 1 | Test parameters for ST3_0 and ST3_1.
[image: Table showing conditions and test results for ST3_0 and ST3_1. Helium molar fraction is 30 percent for both. Ambient gas is 100 percent air in ST3_0, 100 percent steam in ST3_1. Pressure is 1.3 bar for ST3_0 and 2.6 bar for ST3_1. Temperature is 25 degrees Celsius for ST3_0, 129 degrees Celsius for ST3_1. Spray flow rate is 840 grams per second for both. Spray temperature is 20 degrees Celsius for ST3_0 and 40 degrees Celsius for ST3_1.]3 NUMERICAL CALCULATIONS
Since the spray droplets occupy a much lower volume fraction than gas during the spray tests, an Eulerian–Lagrangian approach is suitable for simulating the spray process; here, the continuous gas is solved using an Eulerian approach while the dispersed droplets are tracked in a Lagrangian framework. The droplets can exchange mass, momentum, and energy with the gas.
ANSYS Fluent was used for the numerical computations in this paper, and its discrete phase model (DPM) is appropriate for the discrete droplets existing in the fluid field. In particular, the mass and heat transfer models were developed using UDFs, but the interactions between the droplets were neglected.
3.1 Governing equations and physical models
In the DPM, the gas phase was treated as a continuum and solved using the Navier–Stokes equation. Since large numbers of droplets are injected by the spray, these droplets were divided into a finite number of groups containing droplets of the same sizes, temperatures, and initial velocities to reduce the calculation cost. Then, each group was tracked as a single entity for representation. Equations 2–9 are governing equations of the physical model, which describe mass, momentum and energy conservation.
(1) Momentum equation
[image: The equation describes the change in particle velocity over time. It includes terms for drag force, buoyancy force, and an external force vector.]
where [image: It seems like the input provided is not an image. Please upload the image or provide a URL, and I can help create the alt text for it.] is the droplet velocity, [image: The symbol "U subscript g" with an arrow above the "U," indicating a vector quantity related to gravitational potential energy or similar contexts.] is the gas velocity, [image: Sure, please upload the image you want described.] is the droplet density, [image: It seems like there might have been an issue with displaying the image. Please upload the image or provide a URL so I can help create the alternate text for it.] is the gas density, [image: I'm unable to view images directly. Please provide the image by uploading it or giving a description so I can help create the alternate text for it.] is the gravitational acceleration, [image: It seems like there's an issue with the image upload. Please try uploading the image again or provide a URL if that's more convenient.] is an additional acceleration term, and [image: Vector U sub g minus i times U sub p divided by tau.] is the drag force per unit droplet mass. The droplet relaxation time is 
[image: The equation displayed is: tau equals (rho sub p times d sub p squared over eighteen mu sub g) times (twenty-four over C sub D Re sub p), labeled as equation 2.]
where [image: It seems there is a misunderstanding. Please provide an actual image or a URL to the image you want described. If you have a specific image in mind, you can upload it or provide additional context.] is the droplet diameter, [image: The image displays the Greek letter "mu" followed by the letter "g," a common abbreviation for microgram, often used to denote a measurement unit in scientific contexts.] is the molecular viscosity of the gas, and [image: It looks like you might be trying to provide a mathematical expression or symbol rather than an image. If you have an image to upload or describe, please try again by uploading it or providing more context.] is the drag coefficient. [image: Mathematical expression showing the real part of a complex number, denoted as "Re" with a subscript "p".] is the relative Reynolds number defined as
[image: The formula for the Reynolds number for particles, \( \text{Re}_p \), is given as: \( \text{Re}_p = \frac{\rho_g d_p |\mathbf{U}_g - \mathbf{u}_p|}{\mu_g} \), labeled as equation (3).]
For the drag coefficient [image: It seems there was an issue with displaying the image. Please upload the image file directly or provide a URL to the image, and I will create the alternate text for you.], the spherical drag provided by ANSYS Fluent (ANSYS FLUENT 18, 2016) was used as the drag force acting on the droplets:
[image: Drag coefficient \( C_D = a_1 + \frac{a_2}{Re_p} + \frac{a_3}{Re_p^2} \), equation number \( (4) \).]
where [image: To provide alternate text, please upload the image or provide a URL. If there is additional context or a caption, you can include that as well.], [image: Please upload the image you want an alt text for, and I can help create a description for it.], and [image: Please upload the image you would like me to describe.] are constants dependent on the Reynolds number; these were defined by Morsi and Alexander (1972) as follows:
[image: Equation displaying coefficients \(a_1, a_2, a_3\) as functions of Reynolds number \(Re_p\). The values change based on ranges of \(Re_p\), with corresponding coefficients: \(Re_p < 0.1\), \(0.1 \leq Re_p < 1\), \(1 \leq Re_p < 10\), \(10 \leq Re_p < 100\), \(100 \leq Re_p < 1000\), \(1000 \leq Re_p < 5000\), \(5000 \leq Re_p < 10000\), \(Re_p \geq 10000\).]
In the Lagrangian framework, the droplet position and velocity are updated by integrating the momentum equation (Equation 1) and equation predicting the droplet trajectory:
[image: The equation shown is the derivative of position vector \(\vec{r}_p\) with respect to time \(t\) equals velocity vector \(\vec{u}_p\), labeled as equation (5).]
where [image: It seems like there might be an issue showing the image. Please try uploading the image again or provide a URL. You can also add a caption for additional context if needed.] is the position of the droplet.
(2) Energy equation
[image: The equation shows the rate of change in temperature for a particle with time, considering heat transfer and phase change. It is represented as \( m_p c_p \frac{dT_p}{dt} = h_i A_p(T_\infty - T_p) - \frac{dm_p}{dt} L_{fg} \).]
where [image: It appears that there might be an issue with the image upload. Please try uploading the image again or provide a URL so I can help create the alternate text.] is the heat capacity of the droplet, [image: Please upload the image so I can provide the alternate text for it.] is the droplet temperature, [image: Please upload the image or provide a URL for me to create the alt text.] is the convective heat transfer coefficient between the droplet and gas, [image: I'm unable to view images directly. Please upload the image or provide a URL, and I can help generate alt text for it.] is the temperature of the bulk gas, and [image: It seems there might be a misunderstanding—I don't have access to a specific image. If you have an image you'd like me to help with, please upload it or provide a URL.] is the latent heat.
The convective heat transfer coefficient [image: Please upload the image or provide a URL for me to give the alternate text.] is related to the Nusselt number as
[image: Equation for Nusselt number: Nu equals h sub f times d sub p divided by k sub g. The equation is labeled as equation seven.]
where [image: The image contains the mathematical symbol "k" with a subscript "g".] is the thermal conductivity of the gas phase.
(3) Mass equation
[image: The equation shows the rate of change of mass (\( \frac{dm_2}{dt} \)) as \( h_{m} A_{p} (C_{s} - C_{\infty}) M_{k2o} \), labeled as equation (8).]
where [image: The image shows the mathematical expression "h" with a subscript "m".] is the mass transfer coefficient between the droplet and gas, [image: Stylized letter "A" with a subscript "p" in a serif font. The characters are black against a white background.] is the surface area of the droplet ([image: The formula \( A_p = \pi d_p^2 \) represents the area \( A_p \) of a circle using the diameter \( d_p \), where \(\pi\) is the mathematical constant pi.]), [image: Please upload the image for me to provide the alternate text.] is the vapor concentration at the droplet surface, [image: It seems you mentioned "C infinity" but did not upload an image. To provide alternate text, please upload the image or provide a URL. If you have additional context, feel free to include that as well.] is the vapor concentration of the bulk gas, and [image: I'm sorry, but I can't view the image. Please upload the image directly here, and I'll help create the alt text for you.] is the molar mass of water. The mass transfer coefficient [image: Mathematical notation depicting a lowercase italicized "h" with a subscript "m".] is related to the Sherwood number as
[image: Equation showing Sherwood number \(Sh\) as \( \frac{h_m d_p}{D_{b,atm}} \) labeled as equation (9).]
where [image: The image shows a mathematical expression with the variable \( D_{h2o, m} \), featuring a subscript "h2o, m" indicating specific parameters or conditions related to water.] is the diffusion coefficient of vapor in the bulk.
Given the similarity between heat and mass transfer, the Nusselt number [image: Please provide the image or a URL for the image you would like me to describe. You can also add a caption for additional context if necessary.] and Sherwood number [image: Please upload the image or provide a URL so I can help create the alt text for it.] were calculated using the Ranz and Marshall correlations (Sazhin, 2006; Ranz and Marshall, 1952a; Ranz and Marshall, 1952b):
[image: Equation showing the Nusselt number formula: \( Nu = 2 + 0.6 Re_p^{1/2} Pr_g^{1/3} \), labeled as equation (10).]
[image: Equation for Sherwood number: \( Sh = 2 + 0.6 \times Re_p^{1/2} \times Sc^{1/3} \), labeled as equation 11.]
Here, [image: The image shows the mathematical notation for probability, represented as "Pr" with a subscript "g".] is the Prandtl number for the gas phase given by [image: Prandtl number for gas, Pr subscript g, equals the specific heat at constant pressure, c subscript p comma g, times the dynamic viscosity, mu subscript g, divided by the thermal conductivity, k subscript g.], and [image: It seems there was an issue with the image upload. Please try uploading the image again, and I can help you create the alternate text.] is the Schmidt number for the gas phase given by [image: Equation depicting the Schmidt number for a gas, \( \text{Sc}_g = \frac{\mu_g}{\rho_g D_{\text{h2o,m}}} \), where \( \mu_g \) is the dynamic viscosity, \( \rho_g \) is the density, and \( D_{\text{h2o,m}} \) is the diffusion coefficient in a medium.].
3.2 Computational domain
The fluid domain is the drywell space of the PANDA facility that ignores the internal structures such as the spray nozzle. Figure 3A shows the 3D computational domain; structural meshes were generated using ICEM CFD (Figure 3B) with different numbers of cells. The mesh quality is detailed in Table 2.
[image: Two 3D diagrams of connected cylindrical shapes. Panel (a) shows a computational domain with one green and one purple cylinder connected by a multicolored bridge. Panel (b) shows a computational mesh with the same layout but with a grid overlay, emphasizing structure.]FIGURE 3 | (A) Computational domain and (B) computational mesh of the two-vessel facility.
TABLE 2 | Mesh quality comparisons.
[image: Comparison table of coarse and fine mesh attributes. Coarse mesh has 228,715 cells and 234,896 nodes, with a minimum orthogonal quality of 0.5835 and a maximum aspect ratio of 30.20. Fine mesh has 546,738 cells and 557,060 nodes, with a minimum orthogonal quality of 0.5605 and a maximum aspect ratio of 36.08.]3.3 Physical modeling
Using ANSYS Fluent, the turbulence was calculated by the standard k-ε model, and the buoyancy term was included for the transport equation of the rate of dissipation ε. The species transport model describes the mixing and transport of gas components by solving the standard scalar transport equations based on mass fractions. The properties of the gas mixture (steam and helium) were determined using the ideal gas mixing law, while the specific heat and thermal conductivity of each component were calculated using different polynomial laws depending on the gas temperature with the other properties set as constants. The drag force and gravity are considered in (Equation 1). In the DPM, an inert particle was chosen to simulate a droplet, and the mass and heat transfer models for the droplet were embedded in Fluent via UDFs using the Ranz and Marshall correlations in Equations (10, 11). To ensure two-way coupling between the droplets and gas, the corresponding source terms for the gas phase were added separately to the mass, momentum, and energy equations. The droplets were considered to be extracted from the domain as soon as they touched a wall. Neither droplet breakup nor collision was considered in the simulation. Moreover, for the preliminary simulations, collection and evaporation of the spray water in the lower head of Vessel-1 were neglected. For the initial conditions (Table 1), the helium-rich layer was simply set as the region that was 6 m above the bottom of Vessel-1, and the remaining space was considered to be filled with 100% air or steam. The wall condition was set to have a constant temperature that was the same as the initial atmospheric temperature.
4 SIMULATION RESULTS AND DISCUSSION
4.1 Validation of mesh independence
Based on the ST3_0 test, two meshes (Table 2) were validated for mesh independence. At the C14 measurement point in Vessel-1 (z = 6.926 m, r = 1.430 m), the molar fraction time evolutions of helium calculated from the two meshes are as shown in Figure 4. There was no significant improvement with the mesh containing 546,738 cells; thus, the following results are all based on the mesh comprising 228,715 cells.
[image: Line graph showing helium molar fraction over time in seconds. Two data sets are depicted: one with 228,715 cells (red line) and another with 546,738 cells (blue line). Both lines start high, drop sharply around 50 seconds, and stabilize near 0.05.]FIGURE 4 | Mesh independence test results.
4.2 Results for the ST3_0 test
Three measurement points were selected for comparisons with the calculated results and experiment data. These positions are as noted in Table 3. Figure 5 shows the comparison for the time evolution of helium concentration; there is a difference in the comparison at point B18 in Vessel-1, while the simulation results agree well with the test data for the other two measurement points. The reason for this may be the lack of detailed initial data when simulating the ST3_0 test, especially for helium concentration distribution, as its initial conditions were simplified as stepwise changes along the height for calculations (Section 3.3). For the simulation, the initial simplified gas layer has a significant effect on the change in helium concentration.
TABLE 3 | Positions of the concentration measurement points in the PANDA drywell.
[image: Table displaying measurement data with three columns: "Measurement point," "Height (m)," and "Radial position (m)." Points include Vessel-1 B18 with 7.478 meters height and 0.65 meters radial position, Vessel-1 L26 with 3.676 meters height and 1.430 meters radial position, and Vessel-2 B20 with 7.478 meters height and 0 meters radial position.][image: Two graphs display helium molar fraction over time for different vessels. Graph (a) for Vessel-1 shows experimental and calculated data with a declining red curve for B18_calc and steady lines for I26_exp. Graph (b) for Vessel-2 shows an increasing red curve for B20_calc and scattered blue points for B20_exp. Both plots share x-axes labeled as time in seconds and y-axes labeled as helium molar fraction with distinct markers and colors representing various data sets.]FIGURE 5 | Helium volume fraction time evolutions (PANDA ST3_0 test) in (A) Vessel-1 and (B) Vessel-2.
Figure 6 displays the helium molar fraction distribution over time in the computational domain. As the spray activates, the helium concentration decreases at the top of Vessel-1 because of convection caused by the spray. This process thins the helium-rich layer, resulting in a more homogeneous mixture. Moreover, the difference in concentration causes helium to diffuse into Vessel-2 through the IP. The velocity vector field in Vessel-1 at different moments is shown in Figure 7. It is seen that approximately 40 s after the spray starts, the gas entrainment by the spray becomes strong and develops the flow in Vessel-1. Once the flow develops, stable global circulation is established around the spray zone but the gas is almost stagnant in the space above the nozzle.
[image: Simulated images depict helium mole fraction volume rendering over time. Six panels show a cylindrical shape with color gradients from red to blue indicating helium concentration. Time progresses from 4.5 seconds to 699.5 seconds, with visible changes in distribution.]FIGURE 6 | Helium molar fractions over time after spray activation (PANDA ST3_0 test, left: Vessel-2; right: Vessel-1).
[image: Velocity vector simulation showing fluid flow over time at intervals of 0.5, 1.5, 39.5, and 399.5 seconds. Colors from blue to red represent increasing velocity magnitude, with blue indicating the lowest and red the highest.]FIGURE 7 | Velocity vector field in the vertical section of Vessel-1 (PANDA ST3_0 test).
4.3 Results for the ST3_1 test
During the ST3_1 test, the spray was injected into hot and pressurized 100% steam. This section discusses the test results for two effects of the spray injection: depressurization and gas mixing.
4.3.1 Depressurization
To analyze the spray effects on the evolutions of the global pressure and average temperature in Vessel-1, these two parameters were normalized using their initial values p0 and T0. As shown in Figures 8, 9, both the normalized pressure and temperature decayed with time. Compared with the test data, the simulation results were generally in agreement with the real evolutions; however, the simulations underestimated pressure and overestimated temperature. This is probably because the evaporation of the spray water collected in the lower head of Vessel-1 was neglected.
[image: Graph showing the relationship between pressure (p/p₀) and time in seconds. A red line represents calculated values, and blue diamonds depict experimental data. Both decrease gradually over time from 1.0 to around 0.8 with a slight variation in experimental points.]FIGURE 8 | Pressure evolution in the vessels (PANDA ST3_1 test).
[image: Line graph showing the ratio \(T/T_0\) over time in seconds. The x-axis represents time from 0 to 500 seconds, and the y-axis shows the ratio from 0.6 to 1.1. A red line labeled "calc." remains nearly constant at 1, while blue diamonds labeled "exp." slightly fluctuate around 1.]FIGURE 9 | Temperature evolution in Vessel-1 (PANDA ST3_1 test).
Figure 10 presents the variations of the calculated temperature contours at the vertical sections of Vessel-1 and Vessel-2. During the ST3_1 test, the hottest point is located at the outlet of the spray nozzle because the droplet density is highest in this domain and steam condensation on the water droplet surface, which is a heat-loss process, heats the surrounding gas. According to temperature contours, in the region away from the spray nozzle in Vessel-1, water droplet evaporation is dominant along with heat absorption, leading to lower temperature. The temperature difference in Vessel-2 causes the cooler gas to settle at the bottom, while the warmer gas collects at the top. With time, the temperature stratification becomes clear in Vessel-2, and the average temperature of Vessel-2 is lower than that of Vessel-1.
[image: Simulation sequence showing fluid flow inside a cylinder from 5 seconds to 90 seconds. The images illustrate temperature distribution, with colors ranging from yellow at the top to blue at the bottom, indicating cooling over time. Each row represents a different time step, with decreasing temperatures as time progresses.]FIGURE 10 | Temperature fields in the vertical sections of Vessel-1 and Vessel-2 (PANDA ST3_0 test, left: Vessel-2; right: Vessel-1).
4.3.2 Gas mixing
Similar to pressure and temperature, the helium concentration and gas mixture density were normalized with the initial values. Figure 11 demonstrates the time-dependent variations of the helium concentrations at some of the measurement points in Figure 1B. For Vessel-1, the numerical results are almost in agreement with the test data, except for the concentration at Point B. Similar to the simulation and experimental comparison for the ST3_0 test, a significant discrepancy is noted in the region above the spray nozzle, possibly owing to the lack of initial helium distribution. For Vessel-2, the simulation roughly follows the real trend but has differences with the test data.
[image: Two line graphs illustrate vessel responses over time. Graph (a) shows various calculations and experimental data for Vessel-1, with a general downward trend. Graph (b) displays calculations and experiments for Vessel-2, indicating an upward trend. Each legend distinguishes between calculated and experimental lines using different colors and symbols for clarity.]FIGURE 11 | Time-dependent helium molar fractions (PANDA ST3_1 test) in (A) Vessel-1 and (B) Vessel-2.
Figure 12 shows the changes in the gas mixture densities in Vessel-1 and Vessel-2 over time; it can be seen that the simulation results agree with the test data. Figure 13 shows the distribution of helium molar fraction in the computational domain at different moments. Similar to the findings of the ST3_0 test, helium gas collected at the top of Vessel-1 upon spray injection is transported downward by spray entrainment, so the helium-rich layer becomes thin. Then, helium enters Vessel-2 through the IP from top to bottom and fills the entire Vessel-2.
[image: Two line graphs compare experimental and calculated values of ρ/ρ₀ over time for two vessels. In (a) Vessel-1, the graph shows a slow decline from 1.0 to 0.8 over 500 seconds. In (b) Vessel-2, the graph shows a similar decline. Different symbols and lines represent various experimental and calculated datasets.]FIGURE 12 | Gas mixture density versus time for the PANDA ST3_1 test in (A) Vessel-1 and (B) Vessel-2.
[image: Simulation showing fluid dynamics within a cylinder at various time intervals, ranging from ten seconds to ninety seconds. The images use a color scale from red to blue to indicate pressure or velocity changes over time, with red representing the highest values and blue the lowest. The progression demonstrates the fluid's motion and interaction with the container over time.]FIGURE 13 | Helium molar fractions over time after spray activation (PANDA ST3_1 test, left: Vessel-2; right: Vessel-1).
5 CONCLUSION
Two spray tests were performed in the multicompartment PANDA facility with different preconditions and were also simulated; the focus here was on the effects of a spray on the atmosphere of a containment after a typical severe accident. Using an Eulerian–Lagrangian approach in ANSYS Fluent, the dispersed droplets were tracked in a Lagrangian framework for continuous gas solved using an Eulerian approach by considering two-way coupling between the droplets and gas. In particular, the mass and heat transfer models of the droplets were developed using UDFs, but the interactions between the droplets were neglected.
For the reference test ST3_0, comparisons between the simulations and experiments show that the simulation results almost agree with the test data, except for the measurement point above the spray nozzle, possibly because of the simplified initial condition for gas concentration. The simulation reproduces the gas stratification breakup processes upon spray injection and light gas transport in a multicompartment facility; helium penetrates the neighboring compartment upon spray activation.
In the simulation of the ST3_1 test, pressure is underestimated and temperature is overestimated, which is attributable to the neglect of sump re-evaporation. From the mass and heat transfer of the droplets, the calculated results show that the spray cools the entire region except for the outlet zone of the spray nozzle as heat absorption due to droplet evaporation plays a key role. Moreover, in the neighboring compartment, there is temperature stratification with spray activation. The time-dependent variations of the helium concentration calculated using the CFD code are similar to the results of the ST3_0 test. Although the simulation reproduces the real evolution of gas concentration, deviations still exist for the region above the spray nozzle.
Despite some discrepancies, there is general agreement between the simulation results and test data, showing that the proposed approach is adequately applicable to similar problems. However, further efforts are needed to improve the accuracy of the simulation, such as consideration of the detailed initial gas concentration distribution, by taking into account the sump re-evaporation.
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Blister behavior is one of the main failure modes of UMo/Zr monolithic fuel elements during irradiation. The temperature of fuel elements may increase greatly so that the fuel elements may be destroyed. Post-irradiation annealing tests are used to study the blister behaviors of fuel elements under high temperature. In this study, a simulation method is developed based on the finite element method to study the evolution of blister behaviors of UMo/Zr monolithic fuel elements in the blister tests, taken into considering that the evolution of bubble pressure should be coupled with the deformation of cladding. The influence of creep rate of the cladding on the evolution of blister height is analyzed. The study shows that the unrecoverable creep deformation of the cladding, which occurs under high temperature, is the major factor in the increment of bubble height. The increase of bubble height mainly occurs during the heat preservation process and the initial stage of cooling process. The creep rate of cladding is positively related to the evolution of bubble height.
Keywords: UMo/Zr monolithic fuel element, annealing test, creep rate, blister height, finite element method

1 INTRODUCTION
To prevent nuclear proliferation, the Reduced Enrichment for Research and Test Reactors (RERTR) program proposes the use of low-enrichment uranium fuel in research reactors (Burkes et al., 2016; Burkes et al., 2014; Burkes et al., 2015). In this situation, UMo fuel has emerged as one of the most promising candidate fuels for research reactors due to its high equivalent uranium density and stable irradiation performance (Kim et al., 2013). Compared to dispersion-type UMo fuel, monolithic UMo fuel offers a higher equivalent uranium density, meeting the neutron flux requirements of high-performance research reactors (Ozaltun et al., 2015), and is generally clad with Al or Zr alloys (López et al., 2017).
During irradiation, UMo/Zr monolithic fuel elements experience complex thermo-mechanical coupling behaviors (Yan et al., 2019; Zhao et al., 2015; Kong et al., 2018). The fission of UMo fuel generates fission heat and products, leading to intense thermodynamic interactions between the UMo fuel and Zr alloy cladding under irradiation-induced swelling (Zhao et al., 2015). Under transient conditions such as rapid reactor heating, the fuel core near the cladding interface is prone to cracking, releasing fission gases into the cracks, generating pressure, and forming macroscopic blisters on the cladding surface (Wachs et al., 2012; Beeston et al., 1980; Rice et al., 2010). The formation of blisters can obstruct coolant flow channels, affecting the heat dissipation performance of the fuel assemblies and the safety of the reactor (Hongsheng et al., 2020; Lijun et al., 2012). In severe cases, it can lead to the burnout of the fuel elements. Therefore, blister behavior is a critical consideration in the design of fuel elements.
To investigate the formation and evolution of blisters, annealing tests are currently employed, wherein irradiated fuel elements are heated to observe the formation of blisters on their surface (Rice et al., 2010; Ozaltun et al., 2012; Zhouzhi et al., 2024). Annealing tests help identify the temperature and location of blister formation but do not allow continuous observation of the evolution of blisters. Gao et al. analyzed the mechanism of blister formation in plate-type fuel element (Lijun et al., 2012). Long et al. developed a method to predict the crack behaviors of nuclear materials (Chongsheng et al., 2014; Hongsheng et al., 2020). However, the mechanism of blister formation is still unclear and worthy studying. For monolithic fuel elements, considering the main thermo-mechanical behaviors during annealing tests and the coupling between gas pressure and crack volume, a numerical simulation method for the evolution of blisters is established. This helps identify the contributions of various mechanical behaviors to the growth of blister height and explore the key factors influencing blister evolution.
This study focuses on UMo/Zr monolithic fuel elements with localized cracking, establishing a 2D finite element geometric model with a pre-cracked zone. Considering the coupling relationship between gas pressure, the number of gas atoms, and the volume of the crack zone, a corresponding simulation method is developed, achieving numerical simulation of gas pressure evolution behavior. For the cladding material, the main thermo-mechanical behaviors during the annealing process are considered, combining cladding deformation with the evolution of gas pressure to achieve numerical simulation of the evolution behavior of blisters during annealing tests. The evolution law of blister height with temperature is obtained, and the influence of creep rate on blister behavior is investigated.
2 MATERIAL MODELS
2.1 Thermal conductivity model
The thermal conductivity of zirconium alloy from room temperature to its melting point is given by (MacDonald and Thompson, 1976):
[image: Equation showing the relationship \( k = 7.51 + 2.09 \times 10^{-2} T - 1.45 \times 10^{-5} T^2 + 7.67 \times 10^{-9} T^3 \), labeled as equation (1).]
where k is the thermal conductivity in W/m·K shown as Equation 1 and T is the temperature in K.
2.2 Thermal expansion coefficient
The thermal expansion coefficient of zirconium alloy is 5.58 × 10−6/K (MacDonald and Thompson, 1976).
2.3 Elastic constants
The elastic modulus and Poisson’s ratio of zirconium alloy are given by the Fisher model (Fisher and Renken, 1964):
[image: Equation showing \( E = \left(9.9 \times 10^5 - 566.9 \times (T - 273.15)\right) \times 9.8067 \times 10^4 \).]
[image: Equation showing nu equals zero point three zero three three plus eight point three seven six times ten to the power of negative three times the difference of T minus two hundred seventy-three point fifteen, labeled as equation three.]
where E is the elastic modulus in Pa shown as Equation 2; T is the temperature in K; and ν is the Poisson’s ratio shown as Equation 3.
Under irradiation conditions, the elastic modulus of zirconium alloy increases. The elastic modulus under irradiation can be expressed as (Hagrman and Reymann, 1979):
[image: Equation depicting energy, \(E\), calculated using the formula: \([9.9 \times 10^5 - 566.9 \times (T - 273.15)] \times 9.8067 \times 10^4/\text{K}_1\).]
[image: Equation for \( k_i \) is \( 0.88 + 0.12 \times \exp\left(\frac{\phi \times t}{10^{25}}\right) \), labeled as equation (5).]
in Equations 4, 5 [image: The image shows the mathematical symbol \( k_1 \), which typically represents a constant or variable in equations or formulas.] is a dimensionless correction factor considering the effect of fast neutrons on the elastic modulus; and [image: Greek letter phi multiplied by the letter t.] is the fast neutron flux in n/m2.
2.4 Plasticity model
The stress-strain curve for non-irradiated zirconium alloy is given by (Hagrman and Reymann, 1979):
[image: Equation showing the stress, denoted by sigma, calculated using the formula \( \sigma = K \cdot \left(\frac{\dot{\varepsilon}}{10^{-3}}\right)^n \). Constants are provided: \( K = 1.17628 \times 10^9 + T[4.54859 \times 10^5 + T(-3.28185 \times 10^3 + 1.72752T)] \) and \( n = -9.49 \times 10^{-2} + T[1.165 \times 10^{-3} + T(-1.992 \times 10^{-6} + 9.588 \times 10^{-10}T)] \). Equation number is six.]
in Equation 6 [image: It seems there might have been an error in displaying the image. Please upload the image file or provide a URL so I can assist you with the alternate text.] is the true stress in Pa; [image: It seems there is no image provided. Please upload the image or provide a URL, and I will help create the alt text for it.] is the true strain; K is the strength coefficient; n is the strain hardening exponent; [image: It seems there was an error in your request, and no image was uploaded. Please try uploading the image again or provide a URL if it is hosted online. If you have additional context, feel free to include that as well.] is the true plastic strain rate, which is given as [image: It seems like you're referring to a mathematical expression rather than an image. The expression is "dot epsilon equals ten to the power of negative five per second," representing a strain rate in scientific notation.], if [image: I'm unable to view or interpret LaTeX or math expressions embedded like this. If you provide an image, I can help create alt text for it. Please upload the image file directly.]; m is the strain rate sensitivity index, which is 0.02; T is the temperature in K.
To account for the irradiation effects of fast neutrons, the strength coefficient K is modified by a correction factor k2 shown as Equation 7:
[image: The formula displayed is \( k_s = 5.54 \times 10^{-18} \times \phi \cdot t \) with equation number \( (7) \) on the right.]
Similarly, the strain hardening exponent n is adjusted by a dimensionless correction factor [image: Please upload the image or provide a URL so I can help create the alt text for it.] shown as Equation 8:
[image: The formula shown is \( k_s = 1.369 + 0.032 \times 10^{-3} \times \phi \times t \), labeled as equation (8).]
where [image: Mathematical expression featuring the Greek letter phi, a multiplication sign, and the variable t.] is the fast neutron flux in n/m2.
2.5 Creep model
During the annealing process, the high-temperature creep behavior of zirconium alloy is modeled by (Suzuki and Saitou, 2006):
[image: Equation showing \( \xi^{gr} = 2000 \alpha^{0.52} \cdot \exp\left(\frac{-34220}{T}\right) \), labeled as equation \(9\).]
where [image: The expression shows a mathematical symbol with a superscript. It represents "epsilon dot" with "cr" as the superscript.] is the creep rate in s-1; σ is the Mises stress in MPa shown as Equation 9 T is the temperature in K; Q is the activation energy for creep; [image: The Greek letter alpha (α) is shown, represented in a serif style font, often used in mathematics and science to denote a variety of constants and variables.] is the creep amplification factor, typically set to 1.
3 NUMERICAL SIMULATION METHODS
3.1 Finite element geometric model
Results from annealing tests indicate that the core section near the interface is most prone to cracking, forming crack cavities. The fission gas products generated during irradiation are released into these crack cavities, generating pressure that causes the cladding above the crack cavities to deform, forming macroscopic blisters on the surface of the fuel elements, as shown in Figure 1. The size of these blisters ranges from approximately 3–5 mm (Meyer et al., 2012).
[image: Illustration of a small circle labeled "1" on a textured yellow and green gradient background, creating a sense of shadow and depth.]FIGURE 1 | Blister formed on the surface of fuel plates (Meyer et al., 2012).
To simulate the blistering behavior of fuel elements during annealing tests, a finite element geometric model, as shown in Figure 2, was established. This model is axisymmetric, with the axis of symmetry indicated by the red line in the figure. The cladding part of the finite element geometric model has a thickness of 0.35 mm (Yan et al., 2018), a crack cavity radius of 2.5 mm, and an initial height of 0.005 mm. The finite element model is discretized into 4,820 elements using the axisymmetric element CAX4T in ABAQUS. The outer surface of the cladding is subjected to atmospheric pressure, applying a pressure load of 0.1 MPa. The thickness of the fuel meat is 0.20 mm, the fission density of fuel meat is [image: Text reads: "4.0 × 10¹⁸ fissions per cubic millimeter."], and the number of fission gas atoms produced per fission is 0.3. Assuming that 80% of the fission gas atoms produced by the fuel particles beneath the crack are released into the crack cavity, the number of gas atoms in the crack cavity is [image: It seems there's an error with the image upload. Please try uploading the image again, and I'll be happy to help with the alternate text.]. The initial gas pressure in the crack cavity is determined to be 80 MPa. The fast neutron flux of the fuel plate is 2.0 × 1019 n/mm2.
[image: Cross-sectional diagram of a cladded structure. The axis of symmetry is marked, with a measurement of 0.35 millimeters for the core section and 2.5 millimeters for the overall radius. Arrows indicate pressure in a vacancy.]FIGURE 2 | Finite element model for simulating blistering behavior.
3.2 Temperature variation during the annealing process
The annealing test consists of 24-h cycles. Each cycle starts from room temperature, heats up to the target temperature, holds for 1 hour at the target temperature (Miller et al., 2012), and then returns to room temperature. The target temperature for the first annealing cycle is 400°C. Each subsequent cycle increases the target temperature by 10°C, up to a maximum of 600°C.
The temperature variation during the annealing tests is illustrated in Figure 3. It is important to note that Figure 3 only shows the temperature changes for the first three annealing cycles, while the actual numerical simulation considers a total of 21 annealing cycles.
[image: Line graph showing temperature fluctuations over 72 hours, with spikes reaching 450 degrees Celsius and drops to near zero. At around 49 hours, a red box zooms in on the detailed drop.]FIGURE 3 | Schematic diagram of temperature evolution during annealing tests.
3.3 Simulation method for blistering behavior
Due to the relatively large volume of the crack cavities formed by cracking, the gas pressure within these cavities is relatively low. The behavior of the gas within the crack cavities can be described using the ideal gas law:
[image: Equation representing the ideal gas law, indicating that pressure multiplied by volume equals the number of molecules times Boltzmann's constant times temperature.]
where P is the gas pressure in Pa; V is the volume of the crack cavity in m³; N is the number of gas atoms; [image: Equation representing Boltzmann's constant: \( k = 1.38 \times 10^{-23} \) joules per kelvin.] is the Boltzmann constant; T is the temperature in K.
During the bubble evolution process of fuel elements, the cladding continuously deforms under the pressure within the crack cavity, causing changes in the volume of the crack cavity. According to the ideal gas law, shown as Equation 10, the volume change of the cavity affects the pressure, indicating a coupled relationship between the two. To study the bubble evolution behavior of the fuel element, an iterative calculation method was employed, as shown in Figure 4. For a typical increment step [image: Mathematical expression displaying an interval notation, representing a closed interval from \( t \) to \( t + \Delta t \).], the gas cavity volume [image: Mathematical notation showing an uppercase letter V with a subscript lowercase letter t.] at the beginning of the step and the temperature [image: Mathematical notation of "T" with a subscript "t plus delta t" representing a variable at a future time increment.] at the end of the step are used to calculate the initial iteration value of pressure [image: Equation showing the pressure \( P^0_{t+\Delta t} \) equals \( \frac{N k T_{t+\Delta t}}{V_t} \), where \( N \) is the number of particles, \( k \) is Boltzmann's constant, \( T_{t+\Delta t} \) is the temperature at time \( t+\Delta t \), and \( V_t \) is the volume at time \( t \).]. The iterative value of pressure [image: Mathematical expression: \( P_t^i_{t+\Delta t} \).] (i = 0,1,2,3 … ) applied to the cladding causes further deformation of the cladding. Using analytical geometry methods, the gas cavity volume [image: Mathematical notation showing \( V^i_{t+\Delta t} \), representing a variable \( V \) with a superscript \( i \), indexed by time \( t \) plus a time increment \(\Delta t\).] can be calculated, and the theoretical value of pressure [image: The formula shows the theoretical pressure at time \( t+\Delta t \), expressed as \( p_{t+\Delta t}^{\text{theore}} = \frac{NkT_{t+\Delta t}}{V_{t+\Delta t}^t} \), where \( N \) is the number of particles, \( k \) is the Boltzmann constant, \( T_{t+\Delta t} \) is the temperature, and \( V_{t+\Delta t}^t \) is the volume.] can be obtained by substituting it into the gas law equation. If the error between the theoretical value and the iterative value of pressure is less than 0.1%, the real gas pressure [image: Mathematical expression showing "p" with a superscript "real" and a subscript "t plus delta t".] at the end of the increment step is considered to be obtained; otherwise, the iterative pressure value is updated to [image: Equation showing \( P^{i+1}_{t+\Delta t} = \frac{P^{i}_{t+\Delta t} + P^{i \, \text{pred}}_{t+\Delta t}}{2} \).], and the cladding deformation is recalculated until the pressure converges.
[image: Flowchart detailing the calculation of bubble pressure during a current increment. It starts with the bubble volume and initial pressure, considers deformation, and analyzes configuration for stability. The theoretical bubble pressure is calculated. It checks if this matches the real pressure; if not, iterations continue until stability is achieved.]FIGURE 4 | Schematic diagram of temperature evolution during annealing tests.
3.4 Stress update algorithm
To simulate the bubble evolution process of the cladding material during the annealing test, the primary thermo-mechanical behavior of the cladding material must be considered. This involves establishing a three-dimensional large deformation incremental constitutive relation in a rotating coordinate system, deriving the stress update algorithm, and consistent stiffness matrix, and writing a UMAT subroutine for implementation on the commercial finite element platform ABAQUS.
During the annealing test, the contributions of elastic strain, thermal expansion strain, plastic strain, and creep strain of the cladding material are primarily considered:
[image: Δε₁ⱼᶠ = Δε₁ⱼᵗᵒᵗᵃˡ - Δε₁ⱼᵖʰ - Δε₁ⱼʳ - Δε₁ⱼᶜʳᵉᵉᵖ (11).]
where [image: Mathematical notation showing "Delta epsilon subscript ij superscript total".] is the total strain increment; [image: Delta epsilon subscript ij superscript e.] is the elastic strain increment; [image: Delta epsilon superscript i, h, subscript i, j.] is the thermal expansion strain increment; [image: Mathematical expression showing the symbol for a change in plastic strain, represented by a Delta followed by epsilon subscript i j with a superscript p l.] is the plastic strain increment; and [image: The image shows the mathematical notation Δε_ij^creep, indicating the change in the creep strain tensor component for indices i and j.] is the creep strain increment. The specific stress update algorithm is referenced from the literature (Zhao et al., 2014).
4 RESULTS AND DISCUSSION
4.1 Study on the mechanism of bubble height evolution
Figure 5 shows the displacement contour plot of the cladding at the end of the annealing cycle at a target temperature of 500°C. It can be observed that, at this temperature, the bubble height on the cladding reaches approximately 0.294 mm, forming a notable bubble. As the annealing test progresses, the bubble height on the cladding will continue to increase, which can significantly obstruct coolant flow if severe.
[image: Displacement analysis of an object is shown with a gradient color scale ranging from red for the highest displacement at +2.946e-01 mm to dark blue for the lowest at -1.761e-03 mm. The object appears to be a 3D model with visible displacement primarily in the central region. Axes labeled X, Y, and Z are present.]FIGURE 5 | Contour plot of displacement in cladding at the end of the annealing cycle at 500°C.
The annealing test consists of multiple annealing cycles. To investigate the mechanism of bubble height evolution within a single annealing cycle, a cycle with a target temperature of 500°C was selected. It is the eleventh cycle during the annealing process, which starts at 264 h and ends at 288 h. The bubble height variation process is shown in Figure 6A. The bubble height could be calculated by the displacement of the cladding, as shown in Figure 6B. At the beginning of this annealing cycle, the bubble height is approximately 0.257 mm. During the heating and holding processes, the bubble height gradually increases with the progression of the annealing test. In the early stage of the cooling process, the bubble height continues to increase due to the high temperature of the fuel plate. About 2 hours after the cooling process starts, the bubble height reaches a maximum of approximately 0.287 mm and then slowly decreases to around 0.281 mm. Compared to the initial stage, the bubble height in this annealing cycle increases by about 0.024 mm.
[image: Graph (a) shows two lines: a red line for temperature in degrees Celsius, peaking at approximately 370 hours before sharply dropping, and a blue line for blister height in millimeters, rising gradually. Graph (b) is a simple line diagram illustrating blister height measurement, with a vertical arrow indicating the height.]FIGURE 6 | (A) Evolution of Temperature and Bubble Height during the Annealing Cycle at 500°C; (B) The sketch of blister height.
The variation of bubble height during the annealing cycle is influenced not only by temperature but also by the coupled gas pressure inside the bubble. Figure 7A shows the gas pressure variation during the 500°C annealing cycle. During the heating process, the temperature rise rate is high, and according to Equation 1, the gas pressure inside the bubble increases rapidly, causing continuous deformation of the cladding under the gas pressure, manifested macroscopically as a continuous increase in bubble height. During the holding and initial cooling processes, as the temperature stops rising and starts to decrease slowly, the gas pressure decreases accordingly. However, the gas pressure still remains around 6–7 MPa, higher than the external environmental pressure, leading to continued creep deformation of the cladding under pressure, which macroscopically appears as a continuous increase in bubble height. According to Equation 1, the increase in bubble volume will result in a decrease in gas pressure. After about 2 hours of cooling, the gas pressure drops to a level insufficient to drive further outward deformation of the cladding, leading to a reduction in bubble height and gas pressure as the temperature decreases. Figure 7B shows the evolution of gas cavity volume. During the 500°C annealing cycle, the evolution pattern of the gas cavity volume is similar to that of the bubble height, indicating that the bubble height variation reflects the changes in gas cavity volume.
[image: Graph (a) shows temperature and pressure over time. Temperature decreases rapidly, while pressure slightly drops over 264 to 288 hours. Graph (b) shows temperature and bubble volume over time. Temperature sharply declines, and bubble volume increases over the same period.]FIGURE 7 | Evolution of (A) bubble pressure and (B) bubble volume during the annealing cycle at 500°C.
Within the temperature range of the annealing test, the elastic and thermal expansion strains of the cladding material are relatively small and insufficient to cause significant bubbling in the fuel element. Therefore, the distribution and evolution of equivalent creep strain and equivalent plastic strain in the cladding during the annealing test are the focus. Figure 8 shows the contour plots of equivalent creep strain and equivalent plastic strain at the end of the 500°C annealing cycle. Significant creep strain and plastic strain occur in the cladding, with maximum values located at the base of the bubble.
[image: Two side-by-side contour plots compare equivalent creep strain and equivalent plastic strain in a material section, using coordinates X, Y, and Z. Each plot includes color bars from red (highest strain) to blue (lowest strain). The first plot (a) shows creep strain, with values ranging from 9.010e-02 to 2.967e-08. The second plot (b) shows plastic strain, with values from 7.510e-02 to 0.000e+00.]FIGURE 8 | Contour plot of (A) Equivalent creep strain and (B) Equivalent plastic strain at the end of the annealing cycle at 500°C.
Figure 9 illustrates the variation of maximum equivalent creep strain and equivalent plastic strain in the cladding during the 500°C annealing cycle. During the heating process, the accumulated creep strain remains largely unchanged, with bubble height variations mainly caused by elastic deformation and thermal expansion due to temperature increase. During the holding process, equivalent creep strain in the cladding rises rapidly, while during the cooling process, equivalent creep strain initially increases and then stabilizes. Comparing Figures 6, 9, the period of increased equivalent creep strain aligns with the period of increased bubble height, indicating that the bubble height increase primarily results from creep strain during the holding and initial cooling stages, with a minor contribution from elastic strain and thermal expansion. According to Equation 7, the cladding material exhibits high creep rates at elevated temperatures. Prolonging the holding period would result in continuous creep strain increase in the cladding, further increasing bubble height until cladding rupture or gas pressure reduction halts further deformation.
[image: Graph showing temperature and strain versus time. The temperature (red line) rises sharply to 500°C around 270 hours, then decreases. Equivalent creep strain (black line) increases quickly and stabilizes, while equivalent plastic strain (blue line) remains low and constant. Time is in hours on the x-axis; temperature and strain are on the y-axes.]FIGURE 9 | Evolution of equivalent creep strain and equivalent plastic strain of cladding during the annealing cycle at 500°C.
After more than 2 hours of cooling, the cladding creep rate approaches zero due to lower temperatures, as per Equation 7, resulting in stable creep strain. During this period, thermal expansion strain decreases with temperature, leading to a reduction in bubble height due to combined thermal expansion and elastic strain effects. However, since creep strain remains unchanged, the bubble height at the end of the annealing cycle remains higher than at the initial stage.
Figure 9 also shows that equivalent plastic strain in the cladding remains unchanged throughout the annealing cycle. This indicates that creep strain predominates over plastic strain in the bubble evolution process, with plastic deformation mainly occurring in the initial stage of bubble evolution. The next section will examine the evolution patterns of creep and plastic strains in the cladding throughout the entire annealing test.
4.2 Effect of creep rate on bubble evolution
The previous analysis indicates that bubble growth is mainly influenced by creep, and the creep behavior of the cladding material significantly impacts its growth. To further investigate the effect of creep rate on bubble growth, the original cladding creep model, shown as Equation 7, was modified to examine bubble evolution under different creep magnification factors: 0.1, 1.0, 5.0, and 10.0.
Figure 10 shows the variation in bubble height of the fuel element under different creep rates. As seen in Figure 10, higher creep rates result in faster bubble height growth during the heating process. Ultimately, models with higher creep rates exhibit greater final bubble heights after undergoing the same bubble test temperature profile.
[image: Line chart showing bubble height in millimeters over time in hours. Four lines represent different alpha values: 0.1 (black), 1.0 (red), 5.0 (green), and 10.0 (blue). Bubble height increases in steps for all values across 600 hours.]FIGURE 10 | Effects of creep rate on the evolution of bubble height.
Figure 11A shows the variation in maximum equivalent creep strain of the cladding over time for different creep rates. As shown in Figure 11A, the trend of creep strain variation is similar to that of bubble height, with higher creep rates corresponding to greater creep strain. However, the differences in creep strain do not scale linearly with creep rate. This is because higher creep rates lead to greater bubble heights, which in turn reduce gas pressure inside the bubble. Consequently, although bubbles with higher creep rates reach greater heights, their internal pressures are lower, leading to non-linear relationships between creep rate and the resulting creep strain and bubble height.
[image: Graph A shows equivalent creep strain over time, with curves for different stress levels (\( \sigma = 0.1, 1.0, 5.0, 10.0 \)), displaying increasing strain. Graph B illustrates equivalent plastic strain over time, showing rapid stabilization at various stress levels. Both graphs share a time axis from zero to six hundred hours.]FIGURE 11 | Effects of creep rate on the evolution of (A) maximum equivalent creep strain and (B) maximum equivalent plastic strain of cladding.
Figure 11B illustrates the evolution of maximum equivalent plastic strain of the cladding under different creep rates. At the initial stage of the annealing test, significant equivalent plastic strain is observed in the cladding. This is due to the low temperature and low creep rate at the beginning of the annealing test, making significant creep deformation difficult. During this stage, bubble height growth mainly results from plastic deformation of the cladding. After a certain period of the annealing test, equivalent plastic strain in the cladding stabilizes, while equivalent creep strain continues to increase. After more than 400 h of the annealing test, equivalent creep strain in the cladding significantly exceeds equivalent plastic strain, indicating that creep deformation primarily contributes to bubble height growth.
5 CONCLUSION
This study establishes a simulation method for bubble evolution in the annealing test of UMo/Zr monolithic fuel elements that exhibit local cracking, considering the primary thermo-mechanical behavior of the cladding material, and the evolution of crack cavity pressure and volume. The following key conclusions are drawn regarding the influence of cladding creep rate on bubble height:
	(1) Cladding plastic deformation mainly affects the initial slight bubbling, while the subsequent increase in bubble height is primarily due to creep, with plastic deformation having a relatively limited impact.
	(2) The duration of the holding period significantly affects bubble height. Longer high-temperature stages result in greater bubble height increments. In a specific annealing cycle, the accumulation of bubble height mainly arises from the holding period, with a minor contribution from the initial stage of the cooling period.
	(3) Reducing the creep rate of the cladding material helps to suppress the growth of bubble height, but the effect is relatively small. Improving the creep properties of the material to slow down the growth of bubbles during the process has a relatively limited impact.
	(4) The evolution of bubble height is driven by bubble pressure. It is supposed that the coolant pressure has an negative effect on bubble height, which should be considered in engineering practices.
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Combination probability & | - 098
Point defect percentage in cascaded endogenous clusters Eicdes v | = 25x 107
Point defect percentage attenuation factor in cascaded endogenous clusters K - 07
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Parameter

Initial parameters

Heat exchanger tube outer diameter/mm 2 3248 3208
Heat exchanger tube wall thickness/mm 4 35 35
Heat exchanger tube length/m 2985 1573 1768
Heat exchanger tube spacing/mm 32 4151 4132
Overall heat transfer coefficient/W/(m2-K) 1,505 156575 1,592.12
Primary circuit pressure drop/Pa 586.7 4517 6003
JE 1 114 105
CER 01576 01929 0.1964
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Design parameters Ranges

dd4/mm 19,33]

c/mm [3545]

Lim (1248]

I P/mm [41,43]
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Thermal hydraulic parametel Values

Design thermal power/MW 3
Pressurized water mass flow/kgs-1 4021
Lead-bismuth mass flow/kg:s-1 158.844
Pressurized water inlet and outlet temperature/'C 215/230
Liquid lead-bismuth inlet and outlet temperature/"C 3901260
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d=50 086 008 | 3.12%016 ! ! / 091 + 008 /
TEP 5 days d<o1 46720 | 573+20  130£0.10 | 1L17£009 | L12£010 12710 094027
0.1<d<045 189 £ 0.11 | 327 £022 ! 1 ! I | /
045<d < 10 ! ! ! 1 1 ! §
10<d<50 ! / / 1 + ! !
dz50 / | 1265010 / ! ! / /
TEP 10 days d<o1 0820 | 22520 1274011 1282010 | 104+020 | 113 %09 | <092
0.1<d<045 194 011 | 345022 / ! ) / /
045<d < 10 ! ! ! & ¥ ! !
10sd<50 !  § ! ¥ / ! ¢
d=50 / 311024 / / / / /
TEP 20 days d<o1 377419 | 461£19 1392012 | L10£019 | 115£022 988+ 087 <092
0.1<d<045 175010 | 3.04 £ 021 / i / i [ /
045<d <10 / / / ! 1 / /
10<d<50 / / / 1 1 / &
d=50 / 458 + 026 / 1 7 / /

Note: “/” in the table indicates that the sample measurement result is below the detection limit.
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Group Sample number Sampling time  Sample number  Sampling time  Sample number  Sampling time

of TEU of TEU for TEP of TEP of TER of TER

Group 1 AITEU003 8/03/23 AITEPOO1 7103/23 AITER001 22/03/23
AITEU004 3/03/23 | AITEP005 | 7/03/23
AITEP003 7/03/23

Group 2 | A2TEU001 19/04/23 | AITEP006 | 23/05/23 AITER002 [ 30/05/23
A2TEU002 19/04/23 AITEP002 23/05/23

AITEP004 23/05/23






OPS/images/fenrg-12-1352706/fenrg-12-1352706-t002.jpg
Sample number Activity concentration of nuclides

134Cg 137Cg s10mAg
AITEU003 136 £ 06 337+16 319 £017 356 +0.16 7.04 £ 032 881 £027 162 £0.13
AITEU004 117 £06 389+ 17 361 £0.17 317 £015 9.10 £ 0.34 613 £025 201 £0.14
A2TEU001 | 946 £22 1n1+4 | 7.88 £ 030 6.87 £ 027 313+12 245+ 11 [ 509 £0.18
A2TEU002 5.05.044 £ 0.15 6.88 £ 0.21 266 + 030 290 + 061 362016 1255008 | 217£010
AITEPOO1 967 +3.1 10+4 | 378 £017 4,01 £ 0.19 316 +0.14 295+ 14 235£0.10
AITEPOOS | s2:026 | 292:07 | 230£028 251+ 056 145 042 135034 L42+046
AITEPO03 343 £029 301 £ 0.6 <056 258 £ 026 257 +034 144 £ 026 ‘ <076
AITEP006 88.988.9 % 1.1 104 £2 207 024 294 £022 278 +024 314 £ 080 316 £ 020
’ AITEPO02 1.65 % 024 52506 | 1374050 174024 1.55 £ 037 107 +0.32 117 £0.12
AITEPOO4 207 £028 146 £ 0.6 149 £ 0.52 174024 1.55 % 037 107 £ 032 117 £0.12
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AITER002 <038 269 £0.17 | <041 <068 I <0.66 <0.50 <071
SRE <047 356 +0.37 <052 <066 <080 <0.57 <091

Note: After “<” in the table, it represents the actual detection limit of the sample, indicating that the measurement result of the sample is below the detection limit.
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Note: “/” in the table indicates that the sample measurement result is below the detection limit.
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N 2

Near the fixed end (Hz) Casel 17.57 65.38 149.68 276.07
Case2 1557 57.92 13259 24455

Case3 1ass 64.93 st 274.16

Cased 1246 46.36 106.14 19577

Away from fixed end (Hz) Casel 18.38 70.38 158.15 287.46
Case2 16.19 61.97 13925 253.10

Case3 1461 5591 125.64 22835

Cased 1370 5245 11785 21421

Near the fixed end (Hz) Casel 629 39.47 115.08 237.08
Case2 556 3551 106.89 22391

Case3 476 3231 10037 21165

Cased [ 377 29.68 94.869 198.96

Away from fixed end (Hz) Casel 724 39.55 108.68 233.03
Case2 [ 675 | 3502 101.06 213.99

Case3 630 31.64 92816 204

Cased 587 2877 87.235 187.10
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Cantilever Beam FEA (Hz) 556 3551 106.89 22391
Simplified model 1 (Hz) 628 3538 98.14 193.54
error % 55 52 62 57
Simplified model 2 (Hz) 614 36.14 98.47 197.57
error % [ 32 | 32 31 38
Simplified model 3 (Hz) 608 3653 102,17 199.88
error % 1 22 | 22 | 24 27
Simply Supported Beam FEA (Hz) [ 1531 56.99 13034 | 240.15
Simplified model 1 (Hz) 1602 5955 136.59 25071
error % 47 45 48 44
Simplified model 2 (Hz) 1574 [ 5876 134.50 24735
error % 29 31 32 30
Simplified model 3 (Hz) 1557 | 57.92 ' 132.59 1 24455
error % 17 16 17 18
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CS | Near the fixed end (Hz) 1557 ‘ 5792 | 13259 | 24455

Away from fixed end (Hz) | 16.19 ‘ 6197 | 13925 | 253.10

CA | Near the fixed end (Hz) 6.08 ‘ 3653 | 10217 | 199.88

Away from fixed end (Hz) | 6.75 ‘ 3502 | 10106 | 21399
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Parameter mm Casel Case2 Case3 Cased

Fuel rod length 800 850 900 950
Gas Plenum length 100 150 200 250

ratio 12.5% 17.6% 222% 26.3% ‘
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cc

Methods Ist 2nd 3rd

FEA (Hz) 192 588 1597 2830
analytical solution (Hz) 195 598 1626 2885
error % 203 181 184 196
FEA (Hz) 304 708 1618 2976
analytical solution (Hz) 3.09 717 1645 3020
error % 153 i 169 146
FEA (Hz) 484 Lo 2235 3638
analytical solution (Hz) 489 992 255 37.09
error % 103 091 Los 196
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\ Upper end plug 316L 50 00207
‘ Upper reflective 3161 50 00186
‘ Active zoom U0, 500 mm 000523
‘ Lower reflective st 50 00186
‘ Gas plenum 3161 150 0
Lower end plug 3161 50 00207
cladding 3161 800 0036
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C

ted mass (kg) Methods st

en

M1 = M2 = M3 = M4 = 1.57/4 ‘ FEA (Hz) 192 5.88 ‘ 1597
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