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Editorial on the Research Topic

Disorders of Circadian Rhythms

Circadian rhythms are biological oscillations with a period of about 24 h, which allow the
organisms to anticipate changes in the environment. These rhythms are maintained by an innate
genetically determined time-keeping system called “the molecular circadian clockwork,” of which
the suprachiasmatic nucleus (SCN) of the hypothalamus is themaster biological clock and is mainly
synchronized by light. The circadian system also includes peripheral clocks located in multiple cell
types and tissues; these are entrained by both SCN (neural and humoral signaling) as well as other
SCN-independent cues (food and temperature), resulting in a synchronized organism.

As has been established, circadian rhythmicity has a profound effect on the physiological
and behavioral organization of vertebrates, so disruption of these rhythms is associated with
the development of multiple clinical conditions, such as mental and metabolic diseases, cancer,
addiction, and pain. In the past years it has become evident that important etiological and
therapeutic connections exist between clock-based features of an organism and its pathologies.
However, the functional links between disturbances of the circadian rhythms and overall health
in animal models and humans are yet to be characterized.

This E-Book comprises state-of the-art Reviews, Original Research and Perspective
contributions that feature current advancements in the molecular mechanisms and the impact of
gene-environment interactions of circadian rhythms in diverse pathologies.

A perspective article by Nunez et al. analyzes the serious consequences of nocturnal activity in
humans. In addition, the advantages and limitations of some animal models used to study these
effects are discussed. Loss of circadian homeostasis is associated with pathogenesis of cancer as can
be clearly understood after the critical reading of the review paper by Lin and Farkas, which is a
remarkable synthesis of our current knowledge of the potential role of altered circadian rhythms in
breast cancer. Discrepancies present among different studies that consider or not the rhythmicity
of core clock, as well as the advantages to the use of small molecules for studying the links between
circadian rhythms and cancer are also critically reviewed.

Méndez and Muñoz analyze the possible role of NADPH as a circadian and cancer-promoting
metabolite. In this context, the authors focus particularly on the relationship between circadian
rhythms and metabolic reprogramming (Warburg effect).

Several neurodegenerative diseases are linked with alterations in glutamate transport.
Chi-Castañeda and Ortega provide a thorough review on the mechanisms of circadian
regulation of glutamate transporters, including transcriptional, translational, post-translational and
post-transcriptional regulation, both in neuronal and glial cells.

Light is the main synchronizer of the master clock. This oscillator encodes seasonal changes
based on the amount of daylight hours (day length) and adjusts numerous biological processes.
Seasonality has been documented in sleep duration, appetite, mood, social activity, among others.
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Garbazza and Benedetti recapitulate the current information
on the relationship between biological clock and behavior,
particularly mood disorders. The effects of seasonal changes of
the light-dark cycle and gene polymorphisms of the core clock
machinery on the behavior of patients affected bymood disorders
are discussed in depth.

Disruption of circadian rhythms is also associated with
reproductive problems. Caba et al. recapitulate on the essential
role that the circadian clock plays in reproduction, exploiting
the rabbit model that offers an extraordinary opportunity to
studying this issue. In addition, they emphasize the translational
importance of circadian rhythms in reproduction.

The mammalian retina contains an autonomous circadian
clock that regulates diverse biochemical, cellular, and
physiological processes within the eye. However, the discovery
of a self-sustained oscillator in retinal pigment epithelial (RPE)
cells is relatively recent, and their regulatory mechanisms are
currently unknown. Therefore, using a human retinal pigment
epithelium cell line, Morioka et al. studied the role that histamine
signaling plays in these cells. The authors propose that the
RPE oscillator is entrained by histamine via H1 receptors. In
addition, the authors call the attention to the indiscriminate
use of antihistaminic drugs that eventually lead to circadian
rhythm disorders.

Peripheral circadian oscillators probably perform an essential
role in metabolic homeostasis. Several studies have provided
evidence that high sugar and/or high fat diets modify rhythmic
expression of clock genes in peripheral tissues. In their article,
Blancas-Velazquez et al. examined the impact of a high-energy
diet on clock gene expression in different reward-related brain
areas. They demonstrate that a high fat/high sugar diet affects
Per2mRNA expression pattern in areas involved in food reward.

The pineal hormone melatonin is one of the major humoral
signals from the SCN and regulates main physiological processes,
such as the sleep-wake cycle, glucose, and lipid metabolism. The
SCN controls melatonin synthesis and release by multisynaptic
projections relaying in the superior cervical ganglia (SCG). In
this sense, Mul Fedele et al. assessed the effects of SCG surgical
removal on rat metabolism and diurnal rhythms of locomotor
activity and feeding. Increased adipose tissue, increased body

weight/food intake ratio, decreased glycemia, and increased
daytime activity was found in the SCGx rats, suggesting that SCG
could be altering metabolism by shifting the feeding pattern.

Circadian timing system interacts with metabolic and thermal
mechanisms directly involved in the maintenance of body
temperature. Accordingly, Machado et al. report cold-induced
metabolic response and core clock gene expression variations
in skeletal muscle (CLOCK, PER2, CRY1-2, and REV-ERBα)
and brown adipose tissue (DBP and REV-ERBα) fluctuation
according to the time of the day of the exposure to low
temperature. Furthermore, chronic cold exposure also influences
expression of genes associated in thermogenesis and substrate
oxidation in a time of day and tissue-specific manner.

van der Spek et al. extensively compare clock and metabolic
gene expression rhythms in mesenteric-, perirenal-, epididymal-,
and subcutaneous white adipose tissue (WAT) depots.
Nevertheless, no clear differences in gene expression rhythms
between subcutaneous and different intra-abdominal WAT
depots were found. Consequently, different WAT depots are not
involved with variations in clock gene rhythmicity.

Last but not least, the review by Caba andMendoza highlights
the role of clock genes in meal anticipation. The authors
present conclusive evidences demonstrating that rabbit pups are
an excellent natural model to study the molecular and brain
mechanism of food-anticipatory circadian behavior.
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alterations in Metabolism and 
Diurnal rhythms following Bilateral 
surgical removal of the superior 
cervical ganglia in rats
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and Santiago A. Plano1,3*
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Biomedical Research (BIOMED—CONICET), UCA Pontificia Universidad Católica Argentina, Buenos Aires, Argentina

Mammalian circadian rhythms are controlled by a master pacemaker located in the 
suprachiasmatic nuclei (SCN), which is synchronized to the environment by photic and 
nonphotic stimuli. One of the main functions of the SCN is to regulate peripheral oscilla-
tors to set temporal variations in the homeostatic control of physiology and metabolism. 
In this sense, the SCN coordinate the activity/rest and feeding/fasting rhythms setting 
the timing of food intake, energy expenditure, thermogenesis, and active and basal 
metabolism. One of the major time cues to the periphery is the nocturnal melatonin, 
which is synthesized and secreted by the pineal gland. Under SCN control, arylalkyl-
amine N-acetyltransferase (AA-NAT)—the main enzyme regulating melatonin synthesis 
in vertebrates—is activated at night by sympathetic innervation that includes the superior 
cervical ganglia (SCG). Bilateral surgical removal of the superior cervical ganglia (SCGx) 
is considered a reliable procedure to completely prevent the nocturnal AA-NAT acti-
vation, irreversibly suppressing melatonin rhythmicity. In the present work, we studied 
the effects of SCGx on rat metabolic parameters and diurnal rhythms of feeding and 
locomotor activity. We found a significant difference between SCGx and sham-operated 
rats in metabolic variables such as an increased body weight/food intake ratio, increased 
adipose tissue, and decreased glycemia with a normal glucose tolerance. An analysis of 
locomotor activity and feeding rhythms showed an increased daytime (lights on) activity 
(including food consumption) in the SCGx group. These alterations suggest that superior 
cervical ganglia-related feedback mechanisms play a role in SCN-periphery phase coor-
dination and that SCGx is a valid model without brain-invasive surgery to explore how 
sympathetic innervation affects daily (24 h) patterns of activity, food consumption and, 
ultimately, its role in metabolism homeostasis.

Keywords: superior cervical ganglion, scgx, circadian rhythm, metabolism, melatonin

inTrODUcTiOn

The circadian system, a set of biological clocks that regulate almost all physiological and behavioral 
processes, has evolved to adapt the organism’s physiology to cyclic environmental changes (1–4). 
In mammals, the master clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus 
and is mainly synchronized by the light–dark (LD) cycle (5). The circadian system also includes 
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peripheral clocks, entrained by the SCN via neural and humoral 
cues, such as rhythmically secreted hormones (6–8), and other 
SCN-independent cues like food (9).

One of the major physiological processes controlled by the  
SCN is metabolism, including metabolic rate and circadian 
rhythms of food intake (3). Food consumption is normally 
confined to the wake/active phase, while fasting periods occur 
during the rest/sleep phase, correlating to the anabolic, and 
catabolic phases of metabolism, respectively (10). Alterations of 
the circadian pacemaker can lead to metabolic pathologies, such 
as obesity or metabolic syndrome (11). For example, shift work, 
chronic forced circadian desynchronization or mutations of clock 
genes can affect the pattern of food intake and lead to increased 
levels of circulating triglycerides, and adipose tissue masses 
resulting in an augmented body weight (12–15).

Melatonin is a hormone produced by the pineal gland dur-
ing the dark phase and is considered one of the most important 
circadian outputs (16). It regulates major physiological processes, 
including the sleep–wake cycle, and lipid and glucose metabolism 
(17–22). The SCN interact with the pineal gland through the sym-
pathetic neurons of the superior cervical ganglia (SCG) (23). This 
interaction modulates the arylalkylamine N-acetyltransferase 
(AA-NAT) activity, the main enzyme responsible for melatonin 
rhythm generation in vertebrates (24). The elimination of the 
pineal melatonin rhythm, or a reduction of its amplitude, renders 
the circadian pacemaker a less self-sustained, often damped, 
oscillatory system (25). On the other hand, forced circadian 
desynchronization induced by an LD cycle of 22 h in rats (26) 
or by shift work in humans (27) disrupts rhythmic melatonin 
secretion.

The SCG are the uppermost ganglia of the paraventral sym-
pathetic chain and innervate the pineal gland, among others 
structures (28). Superior cervical ganglionectomy (SCGx) is a 
reliable model to study the role of sympathetic innervation on 
neuroendocrine interactions (29–31). Moreover, SCGx has been 
used to determine the influences of the circadian clock (i.e., the 
SCN) on neuroendocrine functions. In this sense, SCGx disrupts 
the circadian system by depressing melatonin secretion and 
suppressing its rhythm (32, 33), presumably by the inhibition 
of pineal AA-NAT activity (34). This also results in an abolition 
of the rhythmic excretion of urinary 6-sulphatoxymelatonin, a 
melatonin metabolite (35). In addition, the SCG also cover other 
territories such as other glands, brain areas, and the cardiovascu-
lar system, which might also be implied in metabolic regulation 
(36–41).

Taking into account that the lack of melatonin can produce 
circadian alterations, and that sympathetic innervation from 
the SCG covers diverse neuroendocrine effectors, the aim of our 
work was to study if SCGx can affect rat metabolism and whether 
this is related to an impairment of the circadian clock.

MaTerials anD MeThODs

ethics statement
All animal procedures were approved by the Institutional Animal 
Care and Use Committee at the School of Medicine, National 

University of Cuyo, Mendoza, Argentina (Protocol ID 9/2012) 
and were conducted in accordance with the National Institutes 
of Health’s Guide for Care and Use of Laboratory Animals and 
the Animal Research: Reporting In Vivo Experiments (ARRIVE) 
Guidelines.

animals
Young (3 months old) male Wistar rats were raised in our colony 
and maintained in a 12:12 h LD cycle (with zeitgeber time 12—ZT 
12—defined as the time of lights off; light intensity averaging 
300 lux at the cage level), in a controlled environment with food 
and water ad libitum.

locomotor activity rhythms
Animals were transferred to individual cages equipped with 
infrared motion sensors. Locomotor activity was assessed by 
the interruption of the infrared beam and recorded every 5 min 
(Archron, Argentina). The locomotor activity rhythm analysis was 
performed using the “el Temps” program (http://www.el-temps.
com). Locomotor activity onset was defined as the 10-min bin 
that contained at least 50% of the maximum activity/bin followed 
by another bin of at least another 50% of the maximum activity 
bin within 40 min. Entrainment to the LD cycle was confirmed 
by periodogram analysis (χ2 test). Phase angle was measured as 
the difference (in minutes) between activity onset and lights off. 
Total daytime activity was assessed by the area under the curve 
(AUC) of the waveform of each animal. Activity was expressed as 
a percentage of the total activity or relative activity by comparing 
post-surgery activity to the activity counts of the 3 weeks previous 
to the surgery (pre-surgery) as the post-/pre-ratio.

surgery
Bilateral superior cervical ganglionectomy (SCGx) was per-
formed as described by Savastano et  al. (31). Briefly, under 
ketamine (50  mg/kg of body weight)/xylazine (5  mg/kg of 
body weight) anesthesia, the ventral neck region was shaved 
and disinfected. The salivary glands were exposed through a 
2.5 cm vertical incision and retracted to uncover the underlying 
muscles. The carotid bifurcations were identified through the 
carotid triangles and the SCG were removed after sectioning the 
sympathetic trunks, the external carotid nerves, and the internal 
carotid nerves. For sham-operated animals, the same procedure 
was performed but the ganglia were not removed.

animal Weight and Food intake 
Measurements
Body weight and food consumption were monitored weekly at 
ZT10. After a 3-week pre-surgery baseline, animals were sub-
jected to bilateral SCGx or a sham procedure (n = 9 per group), 
and body weight and food intake were measured for another 
10 weeks. Food efficiency (FE) was analyzed by the body weight/
food intake ratio.

The food intake rhythm was analyzed in both groups at week 
11. Daytime (i.e., during lights on) and nighttime (during lights 
off) food intakes were measured daily at the end of the light and 
dark phases for 10 days (n = 5 per group). Daytime and nighttime 
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feedings were expressed as a percentage of total food consumed 
per day.

glycemia and glucose Tolerance  
Test (gTT)
At week 10, glycemia was measured at ZT10 using PTS PanelsTM 
test strips for CardioChekTM Brand Analyzer (Hannover, 
Germany) (n = 9 per group).

At week 13, a GTT was performed after 18 h fast (n = 5 per 
group). Glycemia was measured as mentioned above before and 
15, 30, 60, and 120 min after glucose administration (orogastric, 
3  g/kg of body weight from a 30% solution of d-glucose), at 
ZT10. The AUC of glycemia vs. time was calculated above each 
individual baseline (basal glycemia).

Fat Weight Measurements
At the end of week 13, animals were decapitated under anesthe-
sia, and epididymal, retroperitoneal, mesenteric, and inguinal 
adipose tissues were collected and weighed (n = 5 per group). Fat 
weight was expressed as relative to body weight.

statistical analysis
Data were expressed as mean ± SEM and analyzed using PRISM5 
(GraphPad Software Inc., La Jolla, CA, USA). Statistical differ-
ence between means was determined by Student’s t-test. For 
the grouped statistical analysis, two-way ANOVA or repeated 
measures two-way ANOVA was used with Bonferroni as post-
test. p  <  0.05 was considered significant and p  <  0.01 highly 
significant.

resUlTs

global Metabolism is affected by Bilateral 
superior cervical ganglionectomy
To study the effect of SCGx on rat metabolism, animals were 
subjected to ganglionectomy or a sham procedure at the middle 
of week 3 (n = 9 per group). Body weight and food consump-
tion were measured, and FE (body weight/food intake ratio) was 
calculated. Rats subjected to SCGx did not exhibit differences in 
body weight (Figure 1A) but had significant lower food intake 
when compared with sham animals (Figure 1B), throughout the 
10  weeks after surgery. An FE analysis (42) showed metabolic 
differences between the two groups. FE was higher in gangli-
onectomized animals, revealing that these rats gained more body  
mass per gram of consumed food than controls (Figure 1C).

ganglionectomy increases Daytime 
locomotor activity
Rats subjected to SCGx or sham surgeries (n = 9 per group) were 
placed individually in cages with infrared sensors to study their 
activity distribution during the day. An activity rhythm analysis 
demonstrated that entrainment to the LD cycle and activity phase 
angle were not affected by ganglionectomy (Table 1; Figure 2A). 
Moreover, SCGx animals did not show differences in the levels of 
total activity as post-/pre-surgery ratio (Table 1; Figure 2B; SCGx 
group: 1.08  ±  0.083; sham-operated group: 0.99  ±  0.042; data 

expressed as mean of post-/pre-surgery ± SEM). However, loco-
motor activity of ganglionectomized animals during the lights-on 
phase increased after surgery and remained higher throughout  
the 10-week post-surgery interval (Figure 2C). Moreover, the rela-
tion between the AUC of daytime activity after and before surgery 
was significantly higher in the SCGx animals (Table 1; Figure 2D; 
SCGx group: 5.492 ± 0.4126; sham group: 1.992 ± 0.2212; data 
expressed as mean of post-/pre-surgery ±  SEM). This increase 
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FigUre 2 | Ganglionectomy affects locomotor activity rhythm. (a) Representative actograms for animals subjected to SCGx or sham procedure (n = 9 per group). 
Red lines indicate the moments that the system did not record activity. (B) A locomotor activity analysis showed no differences in the levels of total activity, as 
post-surgery/previous-to surgery ratio (SCGx group, 1.08 ± 0.083; sham group, 0.99 ± 0.042; values are given as mean ± SEM; t-test: p < 0.353; n = 9 per 
group), but the activity of SCGx animals during daytime (i.e., during lights on) increased after surgery and remained higher throughout the 10-week post-surgery 
interval [(c); repeated measures two-way ANOVA: p < 0.0001, F = 16.55 for interaction, p < 0.0001, F = 11.50 for time, p < 0.0001, F = 43.69 for surgery, 
followed by Bonferroni post-tests: ***p < 0.001; n = 9 per group]. This increased daytime activity is evidenced in the area under the curve (AUC) from post-surgery/
pre-surgery ratio, that was significantly higher in the SCGx animals when compared with the sham group [(D); SCGx group: 5.492 ± 0.4126; sham group: 
1.992 ± 0.2212; values are given as mean ± SEM; t-test: ***p < 0.0001, t = 7.475; n = 9 per group]. Repeated measures two-way ANOVA results are expressed  
at the bottom right of the figure. Asterisks above the curve indicate significant p-values of the Bonferroni post-test. The arrows correspond to the day of surgery.

TaBle 1 | Effects of SCGx on the diurnal rhythm of locomotor activity.

 sham scgx p-Value

Period (min) 1,441 ± 0.645 1,442 ± 1.323 0.522
Phase angle (min) 6.50 ± 1.190 7.00 ± 1.080 0.766
Total activity (post-/pre-surgery) 0.99 ± 0.042 1.08 ± 0.083 0.351
Daytime activity (post-/
pre-surgery)

1.99 ± 0.221 5.49 ± 0.412 <0.0001

Nighttime activity (post-/
pre-surgery)

1.01 ± 0.003 0.91 ± 0.005 <0.0001

FigUre 1 | Bilateral superior cervical ganglionectomy affects metabolic 
variables. Rats subjected to SCGx at week 3.5 did not exhibit differences in 
body weight [(a); repeated measures two-way ANOVA: p = 0.0002, 
F = 3.229 for interaction, p < 0.0001, F = 1,588 for time, p > 0.05, 
F = 0.008 for surgery; n = 9 per group], but had significant lower food intake 
throughout the 10 weeks after surgery [(B); repeated measures two-way 
ANOVA: p < 0.0001, F = 35.51 for interaction, p < 0.0001, F = 222.8 for 
time, p = 0.0015, F = 14.92 for surgery, followed by Bonferroni post-tests: 
***p < 0.001, **p < 0.01; n = 9 per group]. A food efficiency (body weight/
food intake ratio) analysis demonstrated metabolic differences between the 
two groups with higher levels in ganglionectomized animals [(c); repeated 
measures two-way ANOVA: p < 0.0001, F = 42.75 for interaction, 
p < 0.0001, F = 374.7 for time, p < 0.0001, F = 76.49 for surgery, followed 
by Bonferroni post-tests: ***p < 0.001, *p < 0.05; n = 9 per group]. The rats 
used in this work were still growing from young-to-adulthood and therefore 
increasing their body mass and food consumption over time. Arrows indicate 
the day of surgery. Repeated measures two-way ANOVA results are depicted 
at the bottom right of each figure. Values are given as mean ± SEM.
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occurs at the expense of a reduced nighttime activity (Table 1, 
SCGx group: 0.91 ± 0.005; sham-operated group: 1.01 ± 0.003; 
data expressed as mean of post-/pre-surgery ± SEM).

ganglionectomy increases Food intake 
during Daytime
We next studied the daily pattern of food consumption, which 
can be affected by circadian alterations (13). Ganglionectomized 
animals had a lower level of food intake per day (Figure  3A; 
19.06  ±  0.5960  g for SCGx group; 22.80  ±  0.8027  g for sham 
group, n = 5 per group).

As it was observed with the activity rhythm, a food intake rhythm 
analysis revealed increased food consumption during daytime 
(Figure 3B; 16.68 ± 0.9030 g for SCGx group; 6.160 ± 0.2015 g 
for sham group), and a slightly but significantly lower feeding 
activity during the night (Figure 3C; 83.48 ± 0.8864 g for SCGx 
group; 93.63 ± 0.7122 g for sham group).

scgx animals exhibit lower Basal levels 
of Blood glucose but higher adipose 
Tissue
Six weeks after surgery, a glycemia analysis at ZT10 showed lower 
levels of blood glucose in SCGx rats (Figure 4A; 48.89 ± 4.464 mg/dl  
for SCGx group; 78.50 ± 4.392 mg/dl for sham group; n = 9 per 
group).
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FigUre 3 | Daytime feeding is increased in SCGx animals. 
Ganglionectomized animals had a lower level of food intake [(a); SCGx 
group: 19.06 ± 0.5960 g; sham group: 22.80 ± 0.8027 g; values are given 
as: mean ± SEM; t-test: **p = 0.0057, t = 3.738; n = 5 per group]. Feeding 
rhythm was also affected: daytime (i.e., during lights on) food consumption 
was higher in SCGx rats [(B); SCGx group: 16.68 ± 0.9030 g; sham group: 
6.160 ± 0.2015 g; t-test: ***p < 0.0001, t = 11.37; n = 5 per group], and 
lower during the nighttime (i.e., during lights off) [(c); SCGx group: 
83.48 ± 0.8864 g; sham group: 93.63 ± 0.7122 g; t-test: ***p = 0.0001, 
t = 8.926; n = 5 per group], compared with sham animals. Values are given 
as mean ± SEM.
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At week 13, a GTT was performed (n = 5 per group). Surprisingly, 
there were no differences in glycemia kinetics (Figure 4B) or in 
the AUC of the GTT (Figure 4C; 935 ± 57.04 mg/dl for SCGx; 
1,008 ± 65.66 mg/dl for sham) between ganglionectomized and 
sham animals.

Finally, to better understand the increased body mass in 
SCGx animals, we studied the fraction of the body weight that 
is represented by adipose tissue. For this, we measured the 
levels of mesenteric, epididymal, retroperitoneal, and total 
fat at the end of week 13 (Figure 5), and found adipose tissue 
significantly increased in SCGx when compared with sham 
animals (epididymal fat: SCGx group, 0.0186  ±  0.0005; sham 
group, 0.0162  ±  0.0004; retroperitoneal fat: SCGx group, 
0.0154 ± 0.0002; sham group, 0.0130 ± 0.0007; mesenteric fat: 
SCGx group, 0.002 ± 0.0003; sham group, 0.002 ± 0.0003; total 
fat: SCGx group, 0.0362 ± 0.0007; sham group, 0.0318 ± 0.0011; 
n = 5 per group).

DiscUssiOn

The impact of the superior cervical ganglionectomy (SCGx) on 
hormone secretion, and blood glucose and insulin release has been 
reported before (40, 43–46) but its role on body weight homeo-
stasis remains to be fully established. In this work, we assessed 
the impact of SCGx on rat metabolism and diurnal rhythms. Rats 
subjected to SCGx showed: (1) increased FE (i.e., gained more 
weight per gram of food consumed); (2) increased activity dur-
ing the lights-on phase of the photoperiod; (3) increased feeding 
during daytime; (4) reduced glucose levels, without changes in 
glucose tolerance, at ZT10; and (5) increased adipose tissue mass.

The SCG provide sympathetic innervation to diverse areas 
including the hypothalamus, the pineal gland, cephalic blood 
vessels, the choroid plexus, the eye, the myocardium, the salivary 
and thyroid glands, and the carotid body (12, 40, 41). Removal 
of the superior cervical ganglia can cause loss of vasoconstric-
tion control of brain and pituitary blood vessels (47), changes 
in cerebrospinal fluid production from the choroid plexus (48), 
and other central effects in response to partial sympathetic den-
ervation (49). Moreover, abolition of the peripheral sympathetic 
innervation of the brain by SCGx is associated with several neu-
roendocrine changes in mammals, which include the disruption 
of water balance (37), and the alteration of normal photoperiodic 
control of reproduction (50, 51).

As previously mentioned, the mammalian circadian system 
is held in synchrony by the SCN through endocrine and auto-
nomic outputs (52, 53). One of the mayor endocrine cues is the 
pineal hormone melatonin. Its synthesis and release is driven by 
the SCN through a multisynaptic pathway relaying in the SCG  
(54, 55). This interaction determines the rhythmic production of 
the hormone, whose day–night profile is modulated by daylength 
(23), encoding photoperiodic changes in the metabolic state (56).

Previous evidences have shown that SCGx decreases the 
secretion of melatonin and suppresses its rhythm (32, 33). The 
relationship between melatonin and the circadian control of 
metabolism has been demonstrated before. Pinealectomy and 
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FigUre 4 | SCGx animals exhibit lower basal levels of blood glucose, with normal glucose tolerance. Basal glucose levels at ZT10 were measured at week 10. We 
found lower levels in SCGx rats when compared with the sham ones [(a); SCGx group: 48.89 ± 4.464 mg/dl; sham group: 78.50 ± 4.392 mg/dl; t-test: 
***p = 0.0003, t = 4.706; n = 9 per group]. At week 13, a glucose tolerance test (GTT) was performed (n = 5 per group). Glycemia was measured before and 15, 
30, 60, and 120 min after glucose administration. There were no differences in glycemia kinetics (B) or in the area under the curve of the GTT [(c); SCGx group: 
935 ± 57.04 mg/dl; sham group: 1,008 ± 65.66 mg/dl; t-test: p = 0.214, t = 0.834; n = 5 per group] between ganglionectomized and sham animals. Values are 
given as: mean ± SEM. Repeated measures two-way ANOVA results are shown at the right of the figure.
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melatonin administration or replacement (57, 58) significantly 
changes body weight, as well as glucose levels and its utilization 
in different tissues (59). In our model, we found decreased levels 
of glucose at ZT10, but a GTT showed no differences between 
SCGx and sham-operated animals. In contrast, pineal ablation in 
rats was shown to increase glucose levels (57).

Furthermore, leptin secretion is strongly associated with glu-
cose and lipid metabolism, and has been shown to be modulated 
by melatonin (60). Moreover, the administration of melatonin in 
experiments conducted in rats and rabbits induced a reduction in 
body weight, serum lipids, adiposity, blood glucose, and insulin 
levels associated with the intake of a high-fat diet, suggesting a 
protective role of melatonin (20, 61, 62).

Taking into account our results, SCGx mimics the effect of 
pinealectomy on the neuroendocrine system only in some  
aspects, affecting several areas that include, but are not restricted 
to, the pineal gland. Although we cannot state that all SCGx-
induced changes presented here are exerted via a suppressed pin-
eal function, it is tempting to speculate that the diurnal timing of 
locomotion and feeding might be related to the lack of melatonin 
feedback to the circadian clock.

The importance of timed feeding and circadian physiology of 
metabolism has been extensively studied (63, 64). In this sense, an 
increased fat anabolism during daytime (i.e., the rest phase) due 
to food consumption at this time, may explain the lower levels of 

FigUre 5 | Ganglionectomized rats exhibit higher levels of adipose tissue. 
Epididymal + inguinal (Epi + Inguinal), retroperitoneal, and mesenteric fat 
were collected at the end of week 13, and their weights were relativized to 
body weight for each animal. Fat tissue was significantly increased in SCGx 
compared with sham animals (for epididymal + inguinal fat, SCGx group: 
0.0186 ± 0.0005; sham group: 0.0162 ± 0.0004; t-test: **p = 0.0053, 
t = 3.795; for retroperitoneal fat, SCGx group: 0.0154 ± 0.0002; sham 
group: 0.0130 ± 0.0007071; t-test: *p = 0.0125, t = 3.207, for mesenteric 
fat, SCGx group: 0.002 ± 0.0003; sham group: 0.002 ± 0.0003; t-test: 
p = 1, t = 0; and for total fat, as the collective weight of 
epididymal + inguinal, retroperitoneal, and mesenteric fat, SCGx group: 
0.0362 ± 0.0007; sham group: 0.0318 ± 0.0011; t-test: **p = 0.0032, 
t = 4.14; values are given as: mean ± SEM; n = 5 per group).
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blood glucose, and lead to increased adiposity in the SCGx group. 
Previous studies showed that animals fed during the light phase 
exhibit an increased body weight and food consumption, altera-
tions in leptin, insulin, corticosterone, glucose, and free fatty acid 
levels in plasma, fat accumulation, liver steatosis, and metabolic 
syndrome (65–69). These alterations arise from a completely 
reversed clock-gene expression in the liver, kidney, heart, and 
pancreas, without affecting SCN function (9).

On the other hand, SCGx rats exhibit significantly augmented 
serum corticosterone and adreno-corticotropin hormone levels, 
and a suppression of their rhythm (35, 70). Glucocorticoids 
(GCs) can stimulate the de novo synthesis of lipids (71). It has 
been reported that rats exposed to long-term treatment with 
GCs show a slower body weight gain, reduced food intake, and 
increased epididymal fat mass (72). Some of the effects reported 
here might be related to alterations in GC turnover that, in turn, 
could lead to the increase in FE and lipid accumulation. Indeed, 
the role of the sympathetic neuro-adipose connections in the 
regulation of lipolysis and body weight has been studied before 
(73). Sympathetic denervation leads to an increase in adipose 
tissue, while nerve stimulation results in fatty acid release, and 
sympathetic or ganglionic blockade inhibits the mobilization of 
lipids (74–76). Leptin production is also under the control of the 
sympathetic system (77), with participation of the SCG (78).

Regarding light synchronization, it has been demonstrated 
that pinealectomy accelerates the re-entrainment of rats to the 
new LD schedule (79–82). Moreover, in rodents, melatonin 
administration synchronizes free-running rhythm and acceler-
ates re-entrainment after phase shifts of the LD cycles (83–85), 
and reinforces entrainment to shortened 22 h LD cycles in both 
SCGx and pinealectomized rats (86). We studied the effect of 
SCGx on the entrainment to the LD cycle and found no significant 
differences on period, phase angle, or total locomotor activity 
between SCGx and sham-operated animals. However, SCGx rats 
showed significant differences in activity during daytime (lights 
on). In addition, food intake analysis evidenced augmented food 
consumption during daytime, which may correlate with the activ-
ity bouts under the light phase.

Also, it was previously observed that bilateral removal of the 
SCG delays the synchronization of feeding rhythms with a newly 
imposed diurnal lighting regimen, but, again, the response to 
pinealectomy was different (87). In fact, the elimination of pineal 
rhythmicity cannot account for all of the effects of SCGx on 
photic entrainment of feeding and locomotor activity rhythms. 
It can be suggested that SCGx alters the sympathetic innervation 
of hypothalamic structures implicated in the neural control of 
feeding, affecting the diurnal rhythm of food intake.

Rhythms in metabolism are orchestrated by the SCN and 
other inputs from different areas of the hypothalamus, like the 

mediobasal region, which plays a significant role in metabolic 
homeostasis (88–93). Other areas, like the dorsomedial hypo-
thalamus, have an important role as a component of the SCN-
independent food-entrainable oscillator (94–97). The circadian 
regulation of body weight depends on the integration of multiple 
signals of several hypothalamic areas, including the SCN, the 
arcuate nucleus, the ventromedial hypothalamic nucleus, and the 
paraventricular nucleus, that control appetite and food intake, 
deposition of fat, and energy expenditure (11, 53, 98). Melatonin 
not only couples circadian cues to many body functions but might 
also be a key player in the regulation of basal metabolic rate (99), 
independently of other SCG-innervated territories, such as the 
hypothalamus. In this sense, the results shown in this work pro-
vide evidence suggesting that SCGx may be affecting metabolism 
by changing the feeding pattern (i.e., increasing feeding during 
daytime), acting over peripheral clocks without affecting the SCN.

In conclusion, these findings provide insights into the meta-
bolic and diurnal rhythms of ganglionectomized rats. SCGx is 
not only a good model to study the circadian clock influence on 
neuroendocrine functions, but a reliable approach to investigate 
the relationship between the circadian system and metabolism, as 
well as the role of the SCG innervation in the synchronization of 
the master circadian clock with the peripheral clocks, especially 
the ones that drive metabolic variables.
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For humans, activity during the night is correlated with multiple pathologies that may 
reflect a lack of harmony among components of the circadian system; however, it remains 
difficult to identify causal links between nocturnal activity and different pathologies based 
on the data available from epidemiological studies. Animal models that use forced activity 
or timed sleep deprivation provide evidence of circadian disruptions that may be at the 
core of the health risks faced by human night and shift workers. One valuable insight from 
that work is the importance of changes in the distribution of food intake as a cause of 
metabolic imbalances associated with activity during the natural rest phase. Limitations 
of those models stem from the use of only nocturnal laboratory rodents and the fact 
that they do not replicate situations in which humans engage in work with high cognitive 
demands or engage voluntarily in nocturnal activity (i.e., human eveningness). Temporal 
niche switches by rodents have been observed in the wild and interpreted as adaptive 
responses to energetic challenges, but possible negative outcomes, similar to those 
associated with human eveningness, have not been systematically studied. Species in 
which a proportion of animals shows a switch from a day-active to a night-active (e.g., 
grass rats) when given access to running wheels provide a unique opportunity to model 
human eveningness in a diurnal rodent. In particular, the mosaic of phases of brain 
oscillators in night-active grass rats may provide clues about the circadian challenges 
faced by humans who show voluntary nocturnal wakefulness.

Keywords: shift work, circadian rhythms, temporal niche, eveningness, grass rats

HUMAN NiGHt WOrK

Our contemporary global society has created demands that require many of us to be active during the 
natural rest phase of our species, the night. This is exemplified by increasing number of individuals 
who work nights and thus are awake and engaged with the environment at least for part of the time 
normally dominated by human sleep. There is a rich, albeit mostly correlational, literature linking 
night and shift work to a multitude of pathologies including higher risk of cancer (1), metabolic 
syndrome (2), hypertension (3), cognitive deficits (4), and female infertility (5), among other health 
and behavioral problems. Many of these negative outcomes may stem from a lack of harmony among 
different components of the circadian system (6).

The circadian system consists of a principal oscillator located in the hypothalamic suprachi-
asmatic nucleus (SCN) (7, 8) that entrains to the light–dark cycle via direct retinal projections 
from melanopsin-containing retinal ganglion cells (9). Outputs of the SCN serve to synchronize 
a multitude of extra-SCN oscillators in the brain and in the peripheral organs (10). Night or shift 
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work is associated with exposure to environmental influences 
that challenge the temporal regulation of many behavioral and 
physiological functions. When undisturbed, the resulting daily 
rhythms are kept at optimal phase relations among themselves 
and synchronized (entrained) to the 24-h day–night cycle by the 
circadian system. Some of the challenges faced by the circadian 
system of night workers include exposure to nocturnal light, 
activity during the natural sleep period, and food consumption 
during the rest phase of the cycle. It is very likely that many of the 
health and behavioral problems of night or shift workers stem 
from circadian disruptions resulting from external (light) and 
internal (metabolic signals; release of neurotransmitters) stimuli 
that interfere with, or override, circadian signals emanating from 
the SCN (6, 11). However, it is difficult to draw conclusions about 
causality from epidemiological studies with humans. A number 
of animal models have been developed to circumvent those 
limitations.

ANiMAL MODeLs OF NiGHt WOrK: 
iNsiGHts AND cHALLeNGes

Animal models of shift work have used almost exclusively labora-
tory rodents (see Ref. (12) for a review) that are forced to be active 
during their rest phase by placing them in rotating wheels for 
several hours every day (13–15) or alternatively, by keeping them 
awake during the rest phase using gentle stimulation whenever 
the animal gives signs of falling sleep (16). Forced activity for  
8 h/day during the normal rest phase of laboratory rats, sustained 
for five consecutive days per week, results in increased abdominal 
fat accumulation and the display of several indicators of meta-
bolic syndrome, including impaired glucose tolerance (13). These 
animals also shift their food intake to the light period (13, 14) 
and show reduced general activity as well as a reduced activity-
rhythm amplitude on days off from the forced activity regime 
(17). Interestingly, providing food only during the normal active 
(dark) phase prevents many of the effects of forced activity during 
the light phase (15), and at least in studies using rats, restrict-
ing feeding to the light phase in otherwise undisturbed animals 
mimics the effects of the forced activity manipulation (15).  
A different study that used a forced activity paradigm similar 
to that of experiments reporting increases in body weight and 
adiposity, surprisingly found a reduced body weight in the shift-
working rats (18). Differences in housing conditions or stress level 
of the animals could be responsible for the different outcomes, 
but of note is the observation that in these shift-work animals that 
lost weight, the amount and distribution of activity on days off did 
not differ from those of control animals not exposed to the forced 
activity regime. Thus, both changes in energy expenditure and 
the emergence of day-time feeding appear to contribute to the 
metabolic effects of forced activity during the normal rest phase 
of nocturnal laboratory rats.

There is ample evidence that sleep deprivation per se can nega-
tively affect metabolism and energy balance (19, 20). Experiments 
in which chronic timed sleep restriction, with opportunity for 
sleep recovery within the 24-h period, are most relevant as 
animal models of shift work. Several studies using mice have 
reported metabolic deficits including abnormal glucose and lipid 

metabolism when the animals are deprived of sleep during the 
first 6 h of the night for two blocks of 5 days separated by 2 days 
of ad lib sleep (16, 21). Restricting feeding to the night prevented 
these metabolic effects (16); however, different from what was 
reported for rats, restricting feeding to the light phase without 
sleep restriction did not result in metabolic anomalies (16). Also 
different from most of the forced activity work with rats, sleep 
restriction did not affect body weight in mice (16).

Although studies using forced timed activity or timed sleep 
restriction provide causal links between the human experience of 
night shift work and circadian, metabolic, and energy disruptions 
reported for these workers, they have some clear limitations. First, 
the use of nocturnal laboratory rodents poses questions about 
how generalizable the findings are to diurnal species such as 
ours. Also, even within nocturnal rodents, the limited data hint at 
possible differences between laboratory rats and mice (12), some 
of which likely stem from differences in body size and how that 
affects responses to metabolic challenges. Using a wider range of 
species, including day-active (DA) ones, would add significantly 
to the value of animal models of human shift work that use forced 
activity or timed sleep restriction.

HUMAN eveNiNGNess

Although humans are clearly diurnal, many of us become active 
during our normal rest phase, the night. This change in phase 
preference is not limited to those engaged in shift or night work. 
For example, many young adults shift their activity phase and 
display what is known as “eveningness,” which involves being 
active during a large proportion of the night. There is compelling 
evidence that in humans, voluntary shifts to a nocturnal activity 
profile result in substantial negative outcomes, including eating 
disorders (22), diabetes, and metabolic syndrome (23). Further, 
eating at the inappropriate phase has been linked to obesity in 
humans and animals (24, 25). These problems have clear negative 
impacts on the human capital of society. The animal models that 
simulate human shift work using forced activity or timed sleep 
deprivation (see above) are not ideal to study the consequences of 
the apparent voluntary temporal niche switch of human evening-
ness. For example, the expression of Fos protein in the brain of 
grass rats (Arvicanthis niloticus) is remarkably different if the 
animals are forcibly kept awake at night compared to when they 
show unconstrained night wakefulness (26, 27) (more about this 
animal model below). Interestingly, shifts in the balance between 
day/night activity, like those seen when eveningness emerges 
in teenagers, have been reported for other mammalian species, 
both in the field and in the laboratory (28–30) and thus represent 
potential models for understanding the causal links between 
human voluntary nocturnal activity and the negative outcomes 
associated with it.

MAMMALiAN teMPOrAL NicHe 
sWitcHes

Mice, which are strictly nocturnal in standard laboratory condi-
tions, can switch to diurnality when observed under more natural 
conditions for extended periods of time (31). An influential 
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FiGUre 1 | Mosaic of phases of the PERIOD 1 rhythm in hypothalamic 
extra-suprachiasmatic nucleus (SCN) regions: The phase of the rhythm is 
similar between day- and night-active (DA and NA, respectively) grass rats for 
the ventral subparaventricular zone (vZPVz) and the dorsal tuberomammillary 
nucleus (dTMN). In contrast and similar to most extra-SCN oscillators outside 
the hypothalamus, the rhythm is 180° out of phase between DA and NA 
grass rats in the paraventricular nucleus (PVN) and in the ventral 
tuberomammillary nucleus (vTMN). See text for references.
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hypothesis to account for these switches by mice postulates that 
they occur in response to energy challenges (32). Specifically, this 
perspective suggests that situations in which animals experience 
negative energy balance favor the display of a diurnal phenotype 
(33). Laboratory work testing this hypothesis has used a “work 
for food” paradigm in which mice get food only if they run in a 
wheel, thus emulating the foraging demands of the wild (34). The 
workload to obtain a particular amount of food is manipulated 
to resemble environments with different densities of resources. 
Under those conditions, increasing the workload induces a phase 
advance of the activity (or work) rhythm, such that normally noc-
turnal mice show predominantly diurnal activity (32). Reduced 
ambient temperature, while kept with ad lib food availability, also 
induces a shift to diurnal activity, and enhanced workload and low 
ambient temperature challenges have additive effects with respect 
to this temporal niche switching in mice (35). The change in the 
phase preference for the display of activity when mice experience 
a negative energy balance is not accompanied by a shift in the 
phase of the SCN oscillator, but peripheral oscillators in the liver 
and adrenal gland show a phase that more closely resembles that 
of diurnal mammals (35).

The thermoenergetic hypothesis advanced by Hut and cow-
orkers (30, 32) suggests that diurnality emerges in rodents to 
reduce energy needs, since days are warmer than nights. While 
this hypothesis promotes the adaptive value (32) of the temporal 
niche switch (31), there may also be costs, as activity during the 
natural rest phase of the mice was accompanied by changes in 
synchrony of internal rhythms. Specifically, peripheral oscillators 
shifted their phase angles with respect to the SCN and likely with 
respect to the melatonin rhythm, which remains nocturnal in 
other models of temporal niche switching (29, 36).

teMPOrAL NicHe sWitcHes iN 
DiUrNAL sPecies: tHe GrAss rAt  
As A MODeL

There are examples of species that are diurnal in the field, but that 
switch to a nocturnal activity profile in the laboratory (37). Based 
on the thermoenergetic hypothesis, these observations suggests 
that these animals may be exposed to energetic challenges in the 
wild that favor diurnality and that do not exist in the laboratory. 
More interesting from the perspective of developing a model 
for human eveningness are species, e.g., Nile grass rats (28) and 
Octodon degus (29), sometimes referred to as dual-phasing ani-
mals (29), which are diurnal in the field, and also under standard 
laboratory conditions, but can show either diurnal or nocturnal 
phenotype when given access to running wheels (28).

For over 20  years, our group has been developing the grass 
rat as a diurnal mammalian animal model to study the circadian 
system (38). To go with their diurnal life style, grass rats feature an 
abundance of retinal cones (39) and an optic tectum that, relative 
to body size, is four times the volume of that of laboratory rats 
(40). Although the phase of the SCN oscillator with respect to the 
light–dark cycle is similar to that of nocturnal rodents (41), brain 
and peripheral extra-SCN oscillators, monitored using the pat-
tern of expression of clock gene products, are 180° out of phase in 

reference to those of nocturnal rodents (41, 42). Interestingly, and 
pertinent to the discussion of human eveningness, with access 
to running wheels, some grass rats switch to a predominantly 
nocturnal display of wheel-running activity. There is evidence of 
a “compromise” in night-active (NA) grass rats between diurnal 
tendencies and the display of activity during the normal rest 
phase of the species. Thus, NA grass rats keep several features 
of their diurnal profile including the display of frequent sleep 
episodes and low body temperatures late in the night (28, 43) like 
those seen in DA animals. This interval of sleep is followed by 
a pre-dawn peak of activity common to both chronotypes (28). 
Moreover, even though the NA animals sleep more during the day 
to recover from the sleep debt created by their nocturnal activity, 
their day-time sleep is fragmented with relatively short sleep-bout 
lengths (43).

The retention of some diurnal tendencies in NA grass rats may 
be due to the diverse responses of extra-SCN brain oscillators 
to the switch to nocturnal activity. Perhaps not surprisingly, the 
adoption of a NA profile does not affect the phase of clock gene 
[PERIOD 1 and 2 (PER1/2)] rhythms in the SCN (41) or the noc-
turnal production of melatonin (36). However, most extra-SCN 
brain regions that express rhythms in PER 1/2 display a complete 
reversal of the time of peak expression when grass rats become 
NA, thus making the circadian profile of NA grass rats similar to 
that of nocturnal rodents (41). But, the reversal is not universal, 
again revealing features that are retained by NA grass rats from 
their antecedent diurnal profile. Outside the hypothalamus, the 
central amygdala shows a very similar pattern in NA and DA grass 
rats that contrasts with what is seen in the rest of the extrahypo-
thalamic brain (41). In the extra-SCN hypothalamus (Figure 1), 
the paraventricular nucleus (PVN) shows a phase reversal in NA 
grass rats (36), but the ventral subparaventricular zone remains 
fixed and similar in phase to that of DA animals (41). Most rel-
evant for understanding the sleep fragmentation of NA grass rats 
during the day is the response of the hypothalamic histaminergic 
nuclei [i.e., the dorsal and ventral tuberomammillary nuclei 
(dTMN and vTMN), respectively] to the switch to nocturnality 
in these animals. Like the PVN, the oscillator of the vTMN of 
NA grass rats shows a phase reversal, but in sharp contrast that of 
the dTMN, it retains the phase typical of DA animals (44). These 
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results suggest that the fragmented recovery sleep of NA grass 
rats results from a mismatch between rhythms in components 
of the histaminergic arousal system of the tuberomammillary  
nuclei (45) and the rest/activity cycle. The work with NA and DA 
grass rats suggests that although temporal phenotypes are flexible 
and may change in service of energy homeostasis, those changes 
are not likely to be complete. The compromises between diurnal 
and nocturnal features of NA grass rats most likely reflect an 
internal circadian desynchrony that may be an additional cost 
paid by humans who voluntarily adopt a nocturnal profile. It 
would be instructive to determine if temporal niche switches in 
the wild (31) are also associated with similar circadian costs to 
accompany risks due to exposure to different competitors and/or 
predators for whom they lack preparation (32).

FUtUre cONsiDerAtiONs

Available models using constrained (forced activity and timed 
sleep deprivation) or unconstrained (wheel running availability) 
activity during the natural rest phase of a species do not incor-
porate the effect of the type of engagement with the environment 
that goes on during the new active phase. In particular, these 
models do not replicate instances of human nocturnal activity 
with significant attentional and cognitive demands, e.g., nurses in 
hospitals or technicians working at nuclear plants. Experiments 
in which nocturnal laboratory rats are trained and tested during 
the day on tasks that demand enhanced attentional performance 
provide evidence of clear circadian effects that include a shift to 
a predominantly diurnal chronotype with salient anticipatory 
activity that persists for days after the training is discontinued 
(46, 47). Activities with low cognitive demands, such as spatial 
learning or training using operant tasks with low attentional 
requirements, do not substantially affect circadian activity; 
neither do daily handling or restriction of water availability to 
the light phase. (46, 47). The circadian effects of high cognitive-
demand tasks are likely mediated by cholinergic inputs to the 
SCN (11), which may affect the nucleus in ways different from 
other forms of temporal niche switches. Determining the effects 
on metabolism and energy balance of different activities during 

the rest phase, with varied cognitive demands, would add sig-
nificantly to the value of animal models of human night work or 
eveningness. Also important to consider when assessing the cost 
of constrained or unconstrained switches in temporal niche is 
the influence of circadian phase on cognitive competence. Thus, 
just like cognitive effort can affect the temporal distribution of 
activity, time of day can affect the acquisition (46) or retention of 
learned tasks (46, 48). How cognitive functions may be affected 
by changes in the preferred phase for the display of activity in 
different animal models represents an important area to explore 
with respect to the cost of activity during the night, both in night 
work and in human eveningness.
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Physiological activity in healthy conditions requires a coordinated interaction between the 
molecular circadian clock and the network of biochemical pathways. An important meta-
bolic parameter in the interface between these two entities is the redox state. Among the 
redox coenzymes that regulate the fluxes of enzymatic reactions is the NADP+/NADPH 
pair. Indeed, the main biosynthetic pathways need NADPH to serve as an electron donor 
for cellular anabolic transformations. The existence of a metabolic circadian clock is well 
established, and it was first identified in mammalian red blood cells. The metabolic cir-
cadian clock is independent of transcriptional activity and is sustained by the enzymatic 
complex peroxiredoxin/thioredoxin/NADPH. This complex shows 24-h redox fluctua-
tions metabolizing H2O2 in various tissues and species (fungi, insects, and mammals). 
Although this NADPH-sensitive metabolic clock is autonomous in erythrocytes that lack 
a nucleus, it functions in concert with the transcriptional circadian clock in other cell 
types to accomplish the task of timing cellular physiology. During carcinogenesis, circa-
dian alterations influence cell cycle onset and promote tumoral growth. These alterations 
also deregulate cellular energetics through a process known as aerobic glycolysis, or 
the Warburg effect. The Warburg effect is a typical response of cancer cells in which the 
metabolism turns into glycolysis even in the presence of functional mitochondria. This 
alteration has been interpreted as a cellular strategy to increase biomass during cancer, 
and one of its main factors is the availability of NADPH. This minireview explores the 
potential role of NADPH as a circadian and cancer-promoting metabolite.

Keywords: circadian, redox, nADPH, cancer, metabolism, warburg effect

MeTABOLiC AnD TRAnSCRiPTiOnAL CLOCKS: ReDOX 
HOMeOSTASiS AnD CiRCADiAn RHYTHMS

The notion of divergent evolution in various timing systems in several model organisms is well 
established. For instance, cyanophytes, fungi, insects, and mammals show a set of clock genes that 
fluctuate daily but without a relationship between their DNA sequences. However, it was rapidly 
accepted that clock genes control circadian physiology through a network of positive and nega-
tive transcriptional loops [(1) and reference within]. Briefly, the positive elements in the primary 
feedback loop include CLOCK and BMAL1. CLOCK and BMAL1 heterodimerize and initiate tran-
scription of target genes containing E-box cis-regulatory enhancer sequences, including PER and 
CRY. Negative feedback is achieved by PER:CRY heterodimers that translocate back to the nucleus to 
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repress their own transcription by acting on the CLOCK:BMAL1 
complex. Another regulatory loop is induced by CLOCK:BMAL1 
heterodimers activating the transcription of retinoic acid-related 
orphan nuclear receptors, such as Rev-erbα and Rorα.

Nevertheless, many reports in the past 20 years question the 
robustness of the transcriptional circadian network as a unique 
form to sustain the biological measurement of time. It is known 
now that circadian oscillators are a complex system of tran-
scriptional, posttranscriptional (phosphorylation, sumoylation, 
and acetylation), and metabolic integrated networks. Moreover, 
clock gene transcription is sensitive to the metabolic environ-
ment, which closely depends on the redox state. Interestingly, 
both nucleated and anucleated cells display self-sustained redox 
cycles that influence cellular physiology (2). Such is the case of 
suprachiasmatic neurons, whose excitability is guided by redox 
oscillation in a transcriptionally independent manner (2). In this 
regard, the existence of non-transcriptional rhythms was conclu-
sively demonstrated by Dr. Akhilesh B. Reddy’s laboratory while 
studying human red blood cells (without nuclei in their mature 
form) (3). They reported the presence of a metabolic circadian 
oscillator based on the redox cycle of peroxiredoxin enzymes 
(4). Peroxiredoxins belong to a family of antioxidant enzymes 
whose main function is the catabolic degradation of hydrogen 
peroxide by controlling its levels and the associated signaling 
events (5). Peroxiredoxins are localized in several subcellular 
organelles. The catalytic mechanisms of peroxiredoxins involve 
the oxidation of a “reactive” cysteine residue in the active site to 
sulfenic acid (Cys-SOH), which then forms a disulfide bond with 
another non-catalytic cysteine residue. In some isoforms, such as 
2-Cys peroxiredoxins, there is further oxidation to sulfonic and 
sulfonic acid forms. Eventually, the thioredoxin system reduces 
the disulfide bond using NADPH as a cofactor. These redox 
transformations have rapid turnover, resulting in low levels of 
intracellular hydrogen peroxide.

O’Neill and Reddy (3) reported circadian fluctuations of per-
oxiredoxin redox forms in erythrocytes, accompanied by daily 
variations of NADPH and NADH, and oxidized hemoglobin. 
Similar NADPH-dependent peroxiredoxin oscillatory systems 
have been detected in various organisms, including archaeal 
bacteria. Interestingly, such circadian rhythms are independent 
of canonical clock genes (6). At present, chronobiologists sustain 
that the metabolic/redox clock evolved following the Great 
Oxidation Event, when the Earth’s atmosphere became rich in 
oxygen. According to further evolutionary research, timing 
systems incorporated diverse circadian genes to reach the cur-
rent timekeeping mechanism, which exhibits a dual modulation 
between the transcriptional circadian clock and the redox clock. 
The redox clock is represented by the NADPH-dependent perox-
iredoxin oscillator and by the metabolic reactions mentioned in 
the first section of this review.

nADPH AS An AnABOLiC COenZYMe

Redox reactions involve a transfer of electrons (even naked or 
protonated electrons) between molecules. Thus, redox regulation 
of metabolism is carried out by conjugated redox pairs, with some 
molecules acting as donors (reducers) and others as acceptors 

(oxidizers). Thiols, such as glutathione (GSH, reduced form; 
GSSG, oxidized form), and coenzymes, such as flavin and nico-
tinamide adenine dinucleotides (FADH2/FAD+, FMNH2/FMN+, 
NADH/NAD+, and NADPH/NADP+), are key participants in 
metabolic regulation, as they modulate proteins that contain 
active sulfhydryl groups (enzymes, receptors, cytoskeletal 
proteins, among others), and the enzymatic activity of various 
dehydrogenases (7) and NAD+-dependent enzymes (8). Redox 
couples in an oxidation–reduction reaction are characterized by a 
standard redox potential (Eo

′ , units in volts). Eo
′  is a measure of the 

affinity of a redox pair for electrons; negative values mean suit-
able electron donors, whereas positive values indicate adequate 
electron acceptors. The Eo

′  for redox coenzymes and glutathione 
is in the range of −0.32  V for NADH/NAD+ and NADPH/
NADP+, −0.23 V for GSH/GSSG, and −0.22 V for FADH2/FAD+ 
and FMNH2/FMN+. The difference between the redox potentials 
of two redox pairs is a measure of the driving force for the net 
electron transfer and is related to the change in Gibbs free energy 
(ΔG). For example, ΔG under physiological conditions for the 
electron transfer from NAD(P)H to O2 is −52.6  kcal/mol (9). 
Under physiological conditions, the actual oxidation-reduction 
potential depends on the levels and ratio of the concentrations 
of the individual members of the redox couple, as well as on the 
prevalent pH. Each redox pair shows a defined ratio between its 
elements (reduced/oxidized) according to their subcellular com-
partments. The complete set of redox pairs makes up the global 
cellular redox state, a parameter that dictates the unique pattern 
of electron flux for any cell system.

In particular, the concentrations of NADP+ and NADPH within 
the cell are lower than those of NAD+ and NADH (submillimolar 
range), and under normal metabolic conditions the NADP pool 
is predominantly in its reduced form. NADPH primarily acts 
as an electron donor in anabolic or synthetic reactions (10). 
To accomplish this task, the pool is maintained in its reduced 
form (the NADPH/NADP+ ratio is kept high) (11). NADPH 
plays several biological roles [(12) and references within]. It is 
a coenzyme for glutathione reductase and transferase reactions, 
and it reactivates thioredoxin reductase and catalase as part of 
the antioxidant defense system. In addition, NADPH acts as an 
electron donor for the reductive formation of lipid molecules 
(cholesterol and fatty acids) and nucleic acids. It is a cofactor for 
O2

−  generation during NADPH oxidase activity and a protector 
of mitochondrial DNA integrity. NADPH also acts as a nuclear 
modulator of gene expression by promoting redox signaling 
within the nucleus. Finally, it has been shown that NADPH, as 
a product of the pentose phosphate pathway (PPP), is able to 
modulate circadian rhythms by extending or shortening the 24-h 
fluctuations in human cells, mouse tissues, and fruit flies (13).

CiRCADiAn DiSRUPTiOn AnD CAnCeR

Misalignment of the circadian clock with the environment seems 
to lead to various health alterations such as metabolic diseases and 
some types of cancer (14). In humans, epidemiological evidence 
of the adverse association between shift work and disrupted sleep/
wake schedules in healthy conditions supports that knowledge 
(15). In animal models, disruption of circadian cycles by exposure 
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to light at night dramatically accelerates tumorigenesis and tumor 
growth (16, 17). In fact, entrainment by restricted feeding inhibits 
tumor growth in mice with pancreatic adenocarcinoma, with no 
alteration of the arrhythmic clock gene expression in the tumor 
in contrast to the synchronization effect in the liver, irrespec-
tive to calorie intake. However, genes involved in cell cycle and 
metabolism were upregulated or downregulated, depending on 
the circadian time (18). This evidence supports the fact that, aside 
from the transcriptional regulation of circadian time, other levels 
of regulation are implicated in the alteration of healthy homeo-
stasis. The fact that resynchronization by restricted feeding delays 
tumor development highlights the role of metabolism and redox 
status in tumor growth and progression (19).

Recent studies have shown that peroxiredoxins contribute sig-
nificantly to the promotion and progression of cancer. Members 
of the peroxiredoxin family are seemingly overexpressed in 
several tumor tissues (20–22), and they promote cell proliferation 
and tumorigenesis through epithelial–mesenchymal transition 
(23, 24). Hyperoxidation of peroxiredoxins by hydrogen peroxide 
induces their inactivation, and the sulfiredoxin reductive action 
reactivates them. In fact, a hyperoxidized form of peroxiredoxin 
III and sulfiredoxin is in antiphase circadian oscillation in healthy 
cells (25). Overexpression of peroxiredoxins with a decrease in 
sulfiredoxin in some neoplasias correlates with poor prognosis 
(26). However, it is not known if overexpression of peroxiredoxins 
is due to changes in a rhythmic profile of activation by NADPH 
that contribute to tumor development in a protective redox role 
of peroxiredoxins.

On the other hand, Myc family oncoproteins (c-Myc, N-Myc, 
and L-Myc) regulate the transcription of several genes, some of 
them implicated in the shuttling of glucose to activate the PPP, 
resulting in the generation of large amounts of NADPH and the 
biosynthesis of various macromolecules (27). In addition, it has 
been demonstrated that Myc disrupts the circadian molecular 
clock. Specifically, it activates the Bmal1–Clock heterodimer, 
thus disrupting circadian metabolic oscillation (28). This effect 
occurs through constitutive activation of Rev-erbα, the expres-
sion of which could be related to poor clinical outcome in human 
neuroblastoma (28). These observations highlight the interplay 
between redox state and circadian clock in cancerous processes.

TOwARD A CiRCADiAn 
CHARACTeRiZATiOn OF  
THe wARBURG eFFeCT?

The onset and development of carcinogenic growth involves a 
multistep process characterized by a set of biological features 
known as hallmarks of cancer. The initial list of hallmarks 
encompassed characteristics such as replicative immortality, 
angiogenesis, and metastasis (29). Recently, new cellular and 
biochemical parameters were incorporated into the list of hall-
marks (30). One of them, the cancer-associated reprogramming 
of energy metabolism, also known as the Warburg effect, is 
characterized by predominant glycolytic activity despite aerobic 
conditions and functional mitochondria. In cancer, the Warburg 
effect is related to an upregulation of WNT/β-catenin signaling 

and a concomitant downregulation of the PPARγ-associated 
actions (31). The rationale of the Warburg effect in oncology 
is that cancerous cells are programmed for high cellular prolif-
eration; hence, the continuous entry into the cell cycle involves 
a constant input of new molecules for the synthesis of biological 
membranes, genetic material, and all the cellular elements needed 
for the newly formed tumoral cells (32). This anabolic commit-
ment is fulfilled by an upgraded availability of NADPH during 
neoplastic growth, since this coenzyme is required by the reduc-
tive biosynthetic reactions of a duplicating cell (33). NADPH 
can be generated by the activities of (1) glucose-6-phosphate 
dehydrogenase and 6-gluconate phosphate dehydrogenase (redox 
and decarboxylating steps in the PPP); (2) NADP+-dependent 
isocitrate dehydrogenase (mitochondrial isozyme that provides 
NADPH for antioxidant activity); (3) NADP+-dependent malic 
enzymes (important cytosolic enzymes during the β-reduction 
reactions); and (4) transhydrogenase (mitochondrial enzyme that 
is also part of the antioxidant defense mechanisms). Along with 
higher NADPH formation, the anabolic response associated with 
the Warburg effect requires the enzymatic activity of citrate lyase, 
which provides carbon skeletons for fatty acid synthesis (12).

The relationship between circadian rhythms and the Warburg 
effect has been scarcely explored (from 1,911 entries in PubMed 
in December 2017 with the keyword “Warburg effect,” only 9 are 
related to circadian rhythms). For example, in 2017, Cao and 
Wang reported on the potential connection between circadian 
responses, providing examples of metabolic reprogramming and 
offering interesting insights into the onset and development of 
tumors (34). Four other reports specifically explored the effect 
of light exposure and the concomitant increase in melatonin as 
cancer suppressors by disrupting the Warburg effect in human 
breast and prostate cancer xenografts, as well as in leiomyosar-
coma (35–37). Dr. Vallee’s group has made interesting thermo-
dynamic considerations regarding the equilibrium between 
WNT/β-catenin and PPARγ signaling in fibrosis and glioma; the 
first favors the Warburg effect by reprogramming cellular energy 
metabolism, and the second promotes a reduction in circadian 
physiology upon its inactivation (31, 38, 39).

A more formal approach to analyze the importance of 24-h 
fluctuations in the Warburg effect and the availability of NADPH 
in cancer needs to consider that redox influence of NADPH and 
NADH is completely dissimilar (40). Given that the former is a 
coenzyme for anabolic reactions and the latter for catabolic reac-
tions, the metabolic context for the action of each one is necessarily 
different; hence, reports that refer to both coenzymes as NAD(P)
H and claim a regulatory redox event are conceptually mistaken. 
Another common mistake is to consider that the cellular redox 
state can be inferred from the synthesis, presence, or activity of 
nicotinamide phosphoribosyltransferase. This enzyme allows the 
formation of nicotinamide adenine dinucleotides; however, the 
redox state is necessarily defined by the ratio of the redox couple 
(reduced/oxidized) (40).

Indirectly, the reduced role of PPARγ in cancerous cells (31) 
could be associated with the damped circadian rhythms men-
tioned in the previous section. Specifically, there are few reports 
on circadian regulation of the enzymes responsible for NADPH 
availability during the Warburg effect, and almost none regarding 
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FiGURe 1 | Comparison between healthy (A) and cancer (B) cells: circadian and metabolic differences in NADPH cellular handling. In both entities, there is a dual 
interaction between the transcriptional and the redox circadian clocks. However, in cancerous cells, the daily variations in biochemical and molecular phenomena 
are disrupted. A major difference between a normal and a transformed cancer cell is the bioenergetic adaptation in which the main mitochondrial activity is no longer 
ATP production (glycolysis/oxidative phosphorylation en healthy cells) but the constant input of metabolic intermediaries (Warburg effect, or aerobic glycolysis, in 
cancerous cells) that are needed for cellular duplication. A distinctive biochemical characteristic in carcinogenesis is the increased availability of the anabolic 
coenzyme, NADPH; NADPH can be potentially be formed by various enzymatic reactions. Regarding the higher levels of NADPH, the production of acetyl-CoA 
(AcCoA) is also increased by the activity of the cytoplasmic enzyme citrate lyase. In the figure, events or enzymatic reactions that show circadian rhythmicity are 
depicted by the symbol ~; for example, circadian rhythmicity of the pentose phosphate pathway (PPP) in normal cells. Question marks (?) indicate events or 
enzymatic reactions that have not been characterized as showing putative daily rhythmicity in either healthy or cancer cells.
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their daily rhythms in cancerous cells or tumors. As an exception, 
the activity of the PPP, one of the major generators of NADPH, 
has been recognized as an element of circadian physiology in 
various cell systems (13).

SUMMARY

The conceptual message of this minireview is outlined in 
Figure 1. (1) Carcinogenesis involves altered circadian physiol-
ogy and a modified relation between transcriptional and redox 
clocks; (2) the main role of mitochondria is no longer ATP syn-
thesis; (3) bioenergetic is transformed from glycolysis/oxidative 
phosphorylation into aerobic glycolysis (Warburg effect); (4) the 
metabolic networks are oriented toward anabolic reactions; (5) 
NADPH is more available to ensure biosynthetic reactions; (6) 
cellular replicative function is enhanced.

Although daily variations in redox mechanisms are well estab-
lished in healthy cells, some reactions associated with NADPH 
metabolism have not been well characterized in terms of 24-h 
rhythmicity (question marks in Figure 1). The situation is even 
more accentuated in cancerous cells, since few reports have 
approached the onset and development of NADPH availability 

and the Warburg effect from a circadian perspective. Undoubtedly, 
the characterization of circadian rhythmicity of NADPH forma-
tion in healthy and neoplastic cells, as well as the Warburg effect 
in cancer, will be promising fields of opportunity for laboratories 
interested in studying redox adaptations in the physiopathology 
of the circadian timing system.
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Clock gene oscillations are necessary for a successful pregnancy and parturition, 
but little is known about their function during lactation, a period demanding from the 
mother multiple physiological and behavioral adaptations to fulfill the requirements of 
the offspring. First, we will focus on circadian rhythms and clock genes in reproductive 
tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations 
of clock genes provoke reproductive problems, as found in clock gene knockout mice. 
Then, we will focus mainly on the rabbit doe as this mammal nurses the young just 
once a day with circadian periodicity. This daily event synchronizes the behavior and 
the activity of specific brain regions critical for reproductive neuroendocrinology and 
maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 
protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, 
neuroendocrine cells related to milk production and ejections are also synchronized to 
daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this 
process is independent of milk output as even virgin does (behaving maternally following 
anosmia) can display circadian nursing behavior. A timing motivational mechanism may 
regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nurs-
ing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, 
women in chronic shift-work schedules show problems in their menstrual cycles and 
pregnancies and also have a high risk of preterm delivery, making this an important field 
of translational research.

Keywords: maternal behavior, lactation, PeR1 protein, suckling, pregnancy, parturition, preoptic area, oxytocin

inTRODUCTiOn

Few studies have explored the relation between circadian rhythms and reproduction. Most of the 
early works focused on lactation and maternal behavior (MB), largely in rodents. However, the 
discovery of functional molecular clock machinery in reproductive tissues, and the use of clock 
gene mutant models have revealed that such genes play a main role in orchestrating reproductive 
processes in mammals. First, we will focus on circadian rhythms and clock genes in reproductive 
tissues, from implantation through lactation, mainly in rodents. Then, we will focus on the rabbit, 
a lagomorph with a striking circadian rhythm of lactation, unique to this class of mammals. Our 
studies in this animal are revealing, entraining of behaviors and neuroendocrine processes in specific 
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FiGURe 1 | Behavioral, physiological, and neural changes throughout circadian lactation in the rabbit doe. Abbreviations: A10vr, A10 ventral rostral; A10m,  
A10 medial; A10p, A10 posterior; FOS, c-Fos protein; mPFC, medial prefrontal cortex; NA, nucleus accumbens; OT, oxytocin; PHDA, periventricular hypophysial 
dopaminergic cells; POA, preoptic area; PVN, paraventricular nucleus of the hypothalamus; SON, supraoptic nucleus; TIDA, tuberoinfundibular dopaminergic cells; 
VTA, ventral tegmental area. In non-pregnant, non-lactating females FOS protein rhythms reach a peak at different hours in different structures, but in lactating does  
all of these rhythms shift to the hour of nursing. Figure derived from data previously published in Ref. (44, 49, 62–64, 66, 79, 80).
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brain structures as a consequence of suckling by pups (Figure 1). 
Finally, we will explore the translational importance of a “healthy” 
circadian clock for proper rhythms in reproduction.

CiRCADiAn RHYTHMS AnD CLOCK 
GeneS in RePRODUCTive PROCeSSeS

Many physiological processes and behaviors in mammals are 
rhythmic. The most evident daily change is the sleep/wake cycle, 
but there are clear changes in the blood concentration of several 
hormones and specific metabolites throughout the day (1). 
These changes allow organisms to adapt to the environmental 
light/dark cycle and consequently to the resources available at 
specific times of day or night. These rhythms are controlled by an 
endogenous molecular clock within the suprachiasmatic nucleus 
(SCN), located in the forebrain of mammals, which is entrained 
by the light/dark cycle. The molecular clockwork is composed of 
a group of core clock genes, Per, Cry, Clock, and Bmal1, organ-
ized in a transcription–translation feedback loop that oscillates 
every 24 h. Their oscillations are associated with self-sustaining 
redox rhythms, known as nontranscriptional clocks as well as 
metabolic rhythms in an organ-specific manner [Reviewed in 
Ref. (1)]. Reproductive tissues have also functional molecular 
clocks and, although at the top of the hierarchy are the SCN oscil-
lations, it is now recognized that the circadian system is organ-
ized along several axes of a redundant network that exchanges 
bidirectional timing information among the components (2, 3).  
An early study found that lesions to the SCN completely elimi-
nated phasic LH release (4), and in recent years much informa-
tion has accumulated to support the importance of the clockwork 
mechanism in reproduction by using mutant mouse models with 
various disruptions of the molecular clockwork. Recently, in 

Clock/Clock mutant mice it was demonstrated that few of these 
animals became pregnant, they had a high rate of fetal reabsorp-
tion and severe dystocia and the fetuses showed morphological 
abnormalities (5, 6). However, it is possible that this is an effect 
not only of the Clock/Clock mutation as Per1, Per2, and Bmal1 
knockout mice, but also shows several abnormalities during 
pregnancy and parturition (7, 8). Very little is known about the 
possible mechanisms involved. In Clock/Clock mutants, serum 
progesterone levels are twofold lower and estradiol is significantly 
lower in mid-pregnancy compared to wild-type females, differ-
ences that have been associated with a high incidence of pup 
reabsorption (5). Indeed, impaired steroidogenesis appears to be 
a common problem in clock gene mutants as pregnant Bmal1 
(−/−) mice also have lower progesterone serum levels than 
Bmal1 (+/±) and reduced embryo implantation (9). Moreover, 
in rats, deletion of ovarian Bmal1 gene affected genes critical for 
progesterone production, leading to implantation failure; these 
effects were reversed by the implantation of a single wild-type 
ovary (10). Regarding Per1 and Per2 mutants, although fertile, 
they exhibit lower reproductive success than the control group, 
as occurs in aged wild-type mice (7). Together, the above infor-
mation indicates that proper oscillations of the core clock genes 
in reproductive tissues are necessary for successful ovulation, 
embryo implantation, and steroidogenesis (11). In Table 1, we 
summarize some effects on reproduction provoked by altera-
tions in specific clock genes. These reproductive disorders are 
observed in clock gene-deficient animals. Thus, it remains to be 
determined at which specific levels of control clock genes act, 
as the functions described in Table  1 are complex and have a 
multifactorial regulation. Moreover, as clock genes control 
transcription in a tissue-specific manner and recently nontran-
scriptional metabolic clocks have been discovered [Reviewed in 
Ref. (1)], the possibility exists that endocrine factors (i.e., specific 
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TABLe 1 | Some effects in reproductive success by changes in clock genes genotype in mammals.

Clock gene Species effect Reference

Gonads
Bmal 1−/− Mouse Ovarian size reduced (8)

Bmal 1−/− Mouse Low testosterone and high luteinizing hormone in serum; reduction in esteroidogenic  
genes in testes, reduced sperm count. Infertility

(12, 13)

Clock Human polymorphism Semen volume reduction, low sperm motility, and idiopathic infertility. Alteration  
in serum levels of testosterone and FSH

(14, 15)

Cry1 Mouse KD Reduction of meiotic process and maturation in oocytes (16)

Bmal1flx/flx Mouse Changes in phasic LH sensitivity of theca cells in ovary (17)

Bmal1flx/flx Mouse Failure to mate with receptive females. Low secretion of FSH and GnRH.  
Tyrosine hydroxylase in brain decreased

(18)

estrous and menstrual cycles
ClockΔ19 Mouse Higher proportion of irregular estrous cycles (19–21)

Clock Mouseclock/clock Irregular estrous cyclicity and failure to have a coordinated LH surge on proestrus (22)

Bmal 1−/− Mouse KO Changes in daily pattern of estrogen receptor β in tissues implicated in female reproductive functions (23, 24)

Clock Human polymorphism Irregular menstrual cycles (25)

Gestational/parturition
Per 1−/− and Per 2−/− Mouse Successful parturition reduced (7)

Bmal 1−/− Mouse Lack of implantation and embryonic development. Impaired steroidogenesis,  
low progesterone levels and embryo implantation reduced. Alterations in delivery times

(8–10, 26)

Clock Mouseclock/clock Elevated rates of fetal reabsorption (5)

Bmal 1 Human polymorphism Miscarriages increased (27)

Postpartum success
Per 1−/− and Per 2−/− Mouse KO Number of pups weaned reduced (7)

ClockΔ19 Mouse Postnatal mortality increased and low prolactin levels and reduced milk production (19, 28)
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hormones) could play a main role in the expression of reprod-
uctive disorders related to clock gene disruption.

In rats, delivery occurs at daytime, i.e., during the rest period 
[Reviewed in Ref. (29)], and destruction of the SCN disrupts 
the timing of birth (30). Takayama et al. (31) explored the role 
of the pineal gland hormone melatonin (MEL) and found that 
pinealectomized rats gave birth at either day or night and that 
MEL replacement at night (but not during the day), across 
pregnancy, restored the timing of parturition during the day in 
most subjects. Interestingly, in rodents, the placenta expresses 
functional clock genes and also glucocorticoid receptors (32) 
and MEL receptor MT1 (33), which are rhythmically expressed. 
Thus, it is possible that maternal central hormonal secretions also 
drive the activity of the placenta in pregnancy and parturition 
(34). By contrast, in primiparous rabbits kept under laboratory 
conditions (14 h light:10 h dark) parturition occurs throughout 
the day, regardless of litter size delivered (35).

Regarding lactation, mother rats nurse more often during 
the resting phase, i.e., across daytime (36, 37). In mice, maternal 
crouching (nursing posture) peaks during the day and is less 
frequent during the night and, concomitantly, prolactin serum 
levels are higher during the day (28). By contrast, Clock mutant 
mice do not have a significant peak of either crouching or 
prolactin, and the amount of milk secreted from mutant mice is 
lower (as calculated by a significant lower body weight of pups) 
when compared to wild-type dams (28). Additionally, pups from 
homozygous Bmal1 null mice are 30% lighter at weaning (8), 
supporting the importance of a circadian molecular clock in 
timing MB and lactation. In cows, the mammary gland’s demand 
for nutrients in early lactation is several-fold increased over 

that seen during pregnancy and this demand is not met just by 
increasing food intake (38), a finding from which a compensatory 
circadian mechanism was proposed. During the transition from 
pregnancy to lactation, there is an upregulation of the positive 
limb of the core clockwork as well as of clock regulatory genes 
in specific metabolic pathways of the rat’s mammary gland, liver, 
and adipose tissues to support the increased nutritional demands 
of lactation [Reviewed in Ref. (39)]. Accordingly, in mice Per1 
and Bmal1, mRNA levels are elevated in late pregnant and lactat-
ing mammary tissues supporting their role in mammary gland 
development and differentiation (40).

nURSinG wiTHin A CiRCADiAn 
COnTeXT: THe RABBiT MODeL

Doe rabbits nurse the young once a day, for approximately 3 min, 
inside a nest constructed by the mother across pregnancy (41). 
This invariability in the nursing pattern is observed throughout 
lactation (ca. 30 days), despite a marked increase in milk output 
across the first 20  days and a gradual decline thereafter (42). 
Nursing occurs at night, under light:dark or continuous light 
conditions, with circadian periodicity (43, 44). A threshold of 
suckling stimulation is essential for this regulation as reducing 
litter size below six kits disrupts the circadian expression of 
nursing (35). Although deliveries occur throughout the day,  
a population of parturient rabbits becomes synchronized to initi-
ate and maintain nursing at around the same time from lactation 
day 1 onward. A Rayleigh analysis of the hour of nursing in the 
population of studied does indicated that, despite the hour of 
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delivery most nursing episodes occurred during the night, at 
03:51 h, from postnatal days 1–15 (35). This adjustment is possi-
ble because a negative correlation exists between time of delivery 
and time of nursing on lactation day 1, i.e., mothers giving birth 
in the early morning show longer “parturition-nursing” intervals 
than does delivering at later hours.

A normal duration of nursing bouts also depends on a thresh-
old of suckling as mothers given four kits or less spend longer 
times inside the nest box (45). Yet, milk output per se is not essen-
tial to display a normal nursing behavior as virgins induced to 
behave maternally (by lesioning the main olfactory system) can 
enter the nest box, crouch over the litter, allow suckling, and exit 
ca. 3 min later. This behavioral pattern is observed with circadian 
periodicity in 55% of maternal virgins (46).

PeR1 PROTein RHYTHMS SHiFT BY THe 
TiMinG OF nURSinG

Suckling induces oxytocin (OT) secretion in all mammals 
and, in rabbits, the amount secreted is directly related with the 
number of suckling kits (47). Does OT participate in translating 
the suckling stimulus received at the nipple to the brain regions 
regulating nursing periodicity and duration? The number and 
size of OT-immunoreactive (IR) neurons increases in the para-
ventricular hypothalamic nucleus (PVN) from estrus, through 
pregnancy, and into lactation (48). Following suckling, the total 
number of c-FOS-IR cells increases significantly in this structure 
(49). Bilateral lesions to the PVN of lactating rabbits abolish or 
disrupt the circadian display of nursing, but do not modify dura-
tion of suckling bouts (50). Although in rabbits no OT receptors 
are evident in the PVN, they are abundant in the prefrontal cortex, 
preoptic area (POA), and lateral septum [LS (51)], regions that 
participate in regulating specific aspects of the doe’s MB (52, 53).

The doe’s circadian nursing pattern is, in turn, a timing signal 
for the kits (54). By scheduling the hour of nursing we have 
shown that this predictable event entrains rhythms of locomo-
tor behavior, metabolic parameters, plasma corticosterone 
hormones, and also several brain structures in 7–9-day-old kits 
(55–57). From these findings, we proposed that rabbit kits are 
a natural model of food entrainment (57, 58). The synchroni-
zation of brain structures was determined by quantifying the 
expression of the PER1 protein, product of the Per1 clock gene. 
The rhythm of this protein can be synchronized to a particular 
stimulus, e.g., food cues, in specific brain regions (59). Thus, 
while the clockwork oscillations of the SCN are synchronized 
to the light/dark cycle, the rhythm of clock genes in peripheral 
tissues and in the brain can be entrained by stimuli other than 
light, like food (60, 61). From the findings that: (a) single or 
multiple entrances to the nest depend on the number of suckling 
kits (35, 45); (b) preventing suckling by kits on lactation days 
7–9 significantly decreased the amount of PER1 protein at peak 
time in both PVN and supraoptic nucleus (62, 63), we consider 
that suckling can be an entraining signal for PER1 protein 
rhythms on particular neuroendocrine populations, specifically 
oxytocinergic and also in dopaminergic (DAergic) cells. Thus, 
in estrous does maintained under light:dark conditions [12:12; 

lights on at 07:00  =  time (ZT) 0], PER1 protein in the PVN 
peaks at ZT15, as occurs in tyrosine hydroxylase (TH)-IR cells 
that co-express PER1. By contrast, in lactating rabbits the peak 
of PER1 and PER1/TH appears 4 h after the timing of scheduled 
nursing. DAergic populations from the tuberoinfundibular and 
periventricular hypophysial regions, related to the control of 
prolactin release in the hypophysis, also shift their rhythm of 
co-expression with PER1 protein according to the timing of 
suckling. In contrast, no change was observed in incertohy-
pothalamic DAergic cells, which are not related to the control 
of prolactin secretion (63). Therefore, our results suggest that 
periodic suckling is a time signal for the synthesis and/or secre-
tion of OT and prolactin at a predictable time.

The daily spontaneous return of the mother to the nest coin-
cides with an increase in locomotor behavior (62), suggesting that 
she is in a state of high arousal to access the kits. Indeed, DAergic 
cells of the A10 mesolimbic system increase their cellular activity, 
anticipating daily nursing, supporting the assumption that she 
is in a high motivational state to visit the kits for nursing (64). 
Moreover, timing the suckling stimulus also synchronizes the 
POA and LS, essential for the expression of MB (65), as indicated 
by rhythms of PER1 (66). These results, together with those of the 
mesolimbic system (64), suggest the establishment of a “maternal 
entrainable circuit” where suckling seems to be the entraining 
signal. Taken together, the entraining of PER1 oscillations points 
to the importance of the Per1 gene in specific brain regions for 
uncoupling their oscillations from the master clock to fulfill a 
specific reproductive demand, the care, and nourishment of the 
litter.

TRAnSLATiOnAL iMPORTAnCe OF 
CiRCADiAn RHYTHMS AnD CLOCK 
GeneS DiSRUPTiOn

Disruption of circadian rhythms has profound consequences 
in humans. Light during the day is the main synchronizer 
for our circadian rhythms and controls the timing of our 
neuroendocrine system. For example, the hormone melatonin 
is secreted only during the night and seems to be a humoral 
entraining signal for peripheral organs to show proper circadian 
rhythms (1). Epidemiological studies were the first to indicate 
that the exposure to artificial light during the night, which 
disrupts the normal secretion of melatonin (67), is associated 
with circadian disruptions and to breast cancer [Reviewed in 
Ref. (68)]. Regarding reproduction, women shift-workers (in 
which the master clock is exposed to artificial light at night) 
have an increased risk of endometriosis, irregular menstrual 
cycles (with pain and unusual menstrual bleeding), delayed 
ovulation, increased miscarriage rate, preterm delivery, and 
infant low birth weight (69, 70). It has also been proposed that 
MEL can be a zeitgeber for the timing of parturition in women 
(29). The above evidence highlights the importance of central 
signals from the master clock and pineal MEL to peripheral 
reproductive organs for proper fetus development, as shown in 
rats (71). Besides, other organs (e.g., placenta) may play a direct 
role. Full-term placenta expresses circadian rhythms of Clock 
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and Bmal1 (72), and clock gene polymorphisms are associated 
with placental abruption (73) and even a single polymorphism 
of Bmal1 is associated with an increase in miscarriages (27). 
Finally, RNA microarray analysis of human milk fat globules 
indicates differential daily expression of 7% of transcripts (74). 
Moreover, there are daily changes in the concentration of anti-
bodies and complement proteins of the immune system among 
several other cellular and soluble components of human milk 
(75). Interestingly, baby milk formula and food enriched with 
tryptophan (a precursor of MEL) helps to improve infant sleep 
when consumed at night (76, 77). This is an emerging area of 
research known as “chrononutrition” (78).

COnCLUSiOn

Clock genes in reproductive tissues, together with those in the 
SCN and other brain structures, play a central role in orches-
trating circadian rhythms in all reproductive processes from 
implantation to lactation. Lesion studies of the SCN as well as 
alterations of the molecular clockwork using mutant mice models 
have revealed multiple disruptions in all reproductive processes. 
In contrast, very little is known about circadian rhythms and 
reproduction in wild-type animals, except in the rabbit. This 

species offers an extraordinary opportunity for exploring this 
issue, particularly during lactation as, in lagomorphs, nursing 
usually occurs once a day with circadian periodicity, a unique 
characteristic among mammals. Consequently, it is possible to 
explore in neuroendocrine cells of this species the relevance of 
particular components of the circadian clockwork with minimal 
manipulations to the animals, as opposed to rodents, that nurse 
several times a day. The translational importance of circadian 
rhythms in reproduction was first recognized through studies of 
women in shift-work and recently through the finding of differ-
ences in the components of breast milk across the circadian cycle, 
results that could improve the health and well-being of infants.
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Vertebrate eyes are known to contain circadian clocks, but their regulatory mechanisms 
remain largely unknown. To address this, we used a cell line from human retinal pigment 
epithelium (hRPE-YC) with stable coexpression of reporters for molecular clock oscil-
lations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). We observed 
concentration-dependent increases in cytosolic Ca2+ concentrations after treatment with 
histamine (1–100 µM) and complete suppression of histamine-induced Ca2+ mobiliza-
tions by H1 histamine receptor (H1R) antagonist d-chlorpheniramine (d-CPA) in hRPE-YC 
cells. Consistently, real-time RT-PCR assays revealed that H1R showed the highest 
expression among the four subtypes (H1–H4) of histamine receptors in hRPE-YC cells. 
Stimulation of hRPE-YC cells with histamine transiently increased nuclear localization of 
phosphorylated Ca2+/cAMP-response element-binding protein that regulates clock gene 
transcriptions. Administration of histamine also shifted the Bmal1-luciferase rhythms with 
a type-1 phase-response curve, similar to previous results with carbachol stimulations. 
Treatment of hRPE-YC cells with d-CPA or with more specific H1R antagonist, ketotifen, 
blocked the histamine-induced phase shifts. Furthermore, an H2 histamine receptor 
agonist, amthamine, had little effect on the Bmal1-luciferase rhythms. Although the 
function of the in vivo histaminergic system within the eye remains obscure, the present 
results suggest histaminergic control of the molecular clock via H1R in retinal pigment 
epithelial cells. Also, since d-CPA and ketotifen have been widely used (e.g., to treat 
allergy and inflammation) in our daily life and thus raise a possible cause for circadian 
rhythm disorders by improper use of antihistamines.

Keywords: antihistamine, cytosolic calcium, human, molecular clock, retina, transcriptional regulation

inTrODUcTiOn

The histaminergic system in the central nervous system controls diverse physiological functions 
including sleeping–waking, thermoregulation, and feeding (1). To achieve these functions, hista-
minergic neurons in the tuberomammillary nucleus (TMN) of the posterior hypothalamus send 
long-distance axons into diverse brain areas (2). Interestingly, histaminergic projections from the 
brain to the retina have been shown to exist in rodents and primates (3–6), but knowledge on 

Abbreviations: ANOVA, analysis of variance; CPA, chlorpheniramine; CREB, Ca2+/cAMP-response element-binding 
protein; CT, circadian time; H1R, H1 histamine receptor; H2R, H2 histamine receptor; HDC, histidine decarboxylase; DAPI, 
4′,6-diamidino-2-phenylindole; pCREB, phosphorylated CREB; PRC, phase-response curve; RPE, retinal pigment epithelial; 
SCN, suprachiasmatic nucleus; TMN, tuberomammillary nucleus.
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FigUre 1 | A schematic illustration of interactive signaling underlying  
photic and histaminergic regulation of the circadian clock. (a) The circadian 
pacemaker neurons located within the hypothalamic suprachiasmatic 
nucleus (SCN) are directly controlled by retinal projections (solid green  
arrow). The retina contains independent circadian oscillators controlling 
photic sensitivity. Clock gene oscillations are observed in many other cells in 
the brain, although system-level oscillations are strongly dependent on core 
SCN oscillations. These peripheral clock oscillations are controlled by indirect 
neural connections (dashed blue arrows) or humoral factors from the SCN. 
The tuberomammillary nucleus (TMN) of the posterior hypothalamus, which 
contains histamine neurons, may also be under the control of the SCN via 
hypothalamic neural networks. (B) The TMN sends long-distance axons 
directly to diverse brain areas and to the retina (solid red arrows). SCN 
neurons and retinal cells also receive histaminergic fibers and may be  
under the control of the TMN. Taken together, these features suggest  
that histaminergic signaling may function as a feedback signal to  
stabilize or boost system-wide circadian oscillations.
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their physiological functions remains limited. In baboon eyes, 
histamine reduced flash sensitivity in ON ganglion cells (7).  
In macaque eyes, H1 histamine receptor (H1R) was expressed in 
horizontal cells, and H2 histamine receptor (H2R) was expressed 
in cone photoreceptors (8). Histamine significantly reduced 
hyperpolarization-activated currents recorded from cones in 
monkeys (8) and modulated retinal ganglion cell firings in rats 
and monkeys (9). Furthermore, dopaminergic amacrine cells in 
mice expressed H1R and displayed histamine-induced cytosolic 
calcium mobilizations (10). Source of histamine within the retina 
may not be only from the TMN projections but also from local 
synthesis because genes encoding histamine synthetic enzyme, 
histidine decarboxylase (HDC), were expressed in the outer 
nuclear layer of mice retina (11). Meanwhile, no apparent changes 
in retinal structures and functions were identified in HDC 
knockout (HDC−/−) mice (11), and thus retinal histaminergic 
regulations remain controversial.

Histamine release from histaminergic neurons is generally 
coupled with vigilance states, being active during wakefulness and 
inactive during sleep (1, 12). Daily rhythms of sleep and wakeful-
ness are strongly regulated by the central circadian pacemaker 
located within the hypothalamic suprachiasmatic nucleus (SCN; 
Figure 1A) (13). Meanwhile, SCN neuronal activity rhythms are 
directly regulated by histaminergic projections (1, 14). This sug-
gests the presence of a histaminergic feedback system between 
the SCN clock and histaminergic sleep–wake mechanisms 
(Figure 1B). In addition, it is well known that the mammalian 
retina contains a circadian clock, because rhythmic clock gene 
expressions have been reported in various retinal cells (15–18).  
It has also been shown that photoreceptor disk shedding (19–21), 
dopamine synthesis (22), melatonin release (23), and retinal elec-
trical responses to light (24) are all under circadian clock control. 
SCN neurons were reported to receive axons from intrinsically 
photosensitive retinal ganglion cells for photoentrainment of 
circadian rhythms (25). Thus, it is reasonable to hypothesize 
that the histaminergic system within the eye may function as 
an additional feedback system that intermediates between the 
retinal and central circadian clocks (Figure 1B). However, sub-
stantial evidence is lacking to prove this hypothesis. In the earlier 
works, circadian rhythms in clock gene transcriptional levels 
and adenylyl cyclase activities were identified in retinal pigment 
epithelial (RPE) cells (26–28). Based on these findings, a cell line 
was recently generated from human retinal pigment epithelium, 
hRPE-YC (29), that stably coexpresses reporters for clock gene 
transcriptions (Bmal1-luciferase) and intracellular Ca2+ concen-
trations (YC3.6). Using this model cell line, this study provides 
evidence for functional expression of H1R and histaminergic 
control of the molecular clock within the eye.

MaTerials anD MeThODs

cell cultures
hRPE-YC cells (less than five passages) were cultured in 
Dulbecco’s modified Eagle’s medium/F12 supplemented with 
10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA), sodium 
bicarbonate (1.2 g/L), and 1% penicillin/streptomycin antibiotics 
(Invitrogen) under constant temperature (37°C) and 5% CO2.

ca2+ imaging
The Ca2+ imaging protocols were described previously (30). 
Briefly, cells were seeded onto 35-mm glass-bottom dishes. The 
culture medium was gently rinsed from the dishes using buffered 
salt solution. Fluorescence images were obtained under perfusion 
of buffered salt solution using an upright microscope (Axioplan 2; 
Carl Zeiss, Thornwood, NY, USA) with a water-immersion objec-
tive (Achroplan ×20 NA0.5w; Carl Zeiss). Pairs of fluorescent 
images (535 ± 15/480 ± 15 nm) were produced with a light pulse 
of 440 ± 5 nm generated by a dual filter wheel system (Lambda 
10-3; Sutter Instruments, Novato, CA, USA) and acquired 
using a cooled charge-coupled device camera (CoolSnap Fx; 
Photometrics, Tucson, AZ, USA). The timings of shutter gating 
and image acquisitions at 6-s intervals were regulated by digital 
imaging software (MetaFluor ver. 6.0; Japan Molecular Devices, 
Tokyo, Japan). Histamine and d-chlorpheniramine (d-CPA) 
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(both from Sigma-Aldrich, St. Louis, MO, USA) were perfused 
onto the cells by switching the perfusate.

Bmal1-Luciferase assay
The Bmal1-luciferase rhythms were analyzed as described (29) 
using culture medium supplemented with 50 µM beetle luciferin 
(Promega, Madison, WI, USA) and a multichannel chemilu-
minescence analyzer (Kronos-Dio, Model AB-2550; ATTO 
Co. Ltd., Tokyo, Japan) set at 37°C. The time point with the 
peak chemiluminescence level in the Bmal1-luciferase rhythms  
was regarded as circadian time (CT) 20. To analyze phase-
response curves (PRCs) against pharmacological stimulations, 
Kronos recordings were paused for 5  min. During the pause, 
10% of culture medium (100 µL) was collected from each dish. 
Histamine, amthamine dihydrobromide, ketotifen fumarate 
(Sigma-Aldrich), or d-CPA was added to the collected culture 
medium and gently returned to the culture dish (final diluted 
concentration: 50  µM for histamine, 50  µM for amthamine 
dihydrobromide, 10 µM for d-CPA, and 10 µM for ketotifen). 
Although hRPE-YC cells represented little sensitivity to light 
(29), above medium exchanges were carefully conducted under 
dim red light (<3 lx). The PRCs were eye fitted by three experi-
enced investigators.

immunofluorescence confocal imaging
To examine the effects of histamine on the phosphorylation  
levels of Ca2+/cAMP response element-binding protein (CREB), 
hRPE-YC cells plated on 35-mm glass-bottom dishes were 
stimulated with histamine (100 µM) for 10 min during subjec-
tive night-time. Immediately after the stimulations, hRPE-YC 
cells were fixed in 4% phosphate-buffered paraformaldehyde 
for 15  min and washed three times with phosphate-buffered 
saline. The samples were immunostained with 1:100 diluted 
affinity-purified rabbit anti-P-CREB (pSer133) (Sigma-Aldrich) 
and embedded in Vectashield (Vector Laboratories, Burlingame, 
CA, USA) containing 4′,6-diamidino-2-phenylindole (DAPI) 
as described (29). Images were acquired using a confocal laser-
scanning microscope (A1MP plus; Nikon, Tokyo, Japan).

real-Time rT-Pcr assay
The mRNAs for the four histamine receptor subtypes (H1–H4) 
and HDC were quantified by referring a housekeeping gene 
(human β-actin) in hRPE-YC cells using a real-time RT-PCR 
system (Roter-Gene Ver. 6.0 software, Corbett Research, Sydney, 
NSW, Australia). The cell cultures and RNA extraction proce-
dures were described previously (29). The PCR primers for his-
tamine receptors (31) and HDC (32) were designed elsewhere. 
Each primer (100 µM) was used with Rotor-Gene SYBR Green 
RT-PCR Master Mix (Qiagen, Germantown, MD, USA) in the 
72-well rotor of the PCR system (Rotor Gene 3000A; Corbett 
Research) as described (29). mRNA levels were expressed as 2−ΔCt 
using β-actin mRNA level as internal standard.

statistical analysis
Data are presented as mean ± SEM. One-way analysis of variance 
followed by Duncan’s multiple range test and four-parameter 
Hill function were used to analyze concentration–response 

curve for histamine. Kruskal–Wallis test followed by Steel–
Dwass test was used to compare gene expression profiles.  
A two-tailed Student’s t-test was used for pairwise comparisons. 
A 95% confidence level was considered to indicate statistical 
significance.

resUlTs

Histamine mobilized intracellular Ca2+ in hRPE-YC cells in a 
concentration-dependent manner with an EC50 value of 10.4 µM 
(Figures  2A–C). At 100  µM, histamine consistently evoked a 
Ca2+ response in nearly all cells tested (97 ±  1.4%; 397 of 410 
cells in 18 dishes). The histamine-induced Ca2+ response was 
significantly inhibited by pretreatment with 10  µM d-CPA 
(Figure 2B), suggesting that the response was primarily medi-
ated by H1R. Intracellular Ca2+ mobilizations after continuous 
bath application of 50  µM histamine were also examined, 
because this application was used for the Bmal1-luciferase assays. 
Bath application of 50 µM histamine produced a transient Ca2+ 
response that almost recovered to the baseline during a 30-min 
exposure period (Figure 2D).

To characterize the histamine receptor subtypes (H1–H4) 
expressed in hRPE-YC cells, cells were collected for real-time 
RT-PCR assays at early subjective daytime (CT1–CT3; number 
of dishes  =  7) and early subjective night-time (CT13–CT15; 
number of dishes  =  4) following on-line monitoring of the 
Bmal1-luciferase rhythms. The results revealed that H1R showed 
the highest expression among the four histamine receptor sub-
types with no difference in the levels between subjective daytime 
and subjective night-time. The expression levels of H3 and H4 
histamine receptors were near to the detection limits. Therefore, 
the gene expression levels were further analyzed regardless 
of sampling time using a non-parametric test (Figure  3). The 
expression levels of H1R (P  <  0.01) and H2R (P  <  0.05) were 
significantly larger than those of H3 and H4 histamine receptors 
(Kruskal–Wallis test followed by Steel–Dwass test). In addition to 
these analyses, capability of histamine synthesis in hRPE-YC cells 
was analyzed by monitoring HDC expression. However, HDC 
expression was negligible in these cells (Figure 3).

To estimate the gene transcriptional regulations by hista-
mine, immunofluorescence staining of phosphorylated CREB 
(pCREB) in hRPE-YC cells after histamine stimulation was 
examined. Compared with unstimulated controls (optical den-
sity = 31 ± 0.2, number of cells = 328, number of dishes = 3), 
treatment with 50 µM histamine for 10 min doubled the pCREB 
staining levels in the nucleus (optical density = 65.5 ± 1.9, num-
ber of cells = 312, number of dishes = 3; Figure 4). Consistent 
with the nuclear pCREB inductions, the same histamine 
stimulation produced circadian phase-delays or advances in the 
Bmal1-luciferase rhythms (Figure 5A). Accordingly, the type-1 
PRC was eye fitted on the phase-shifting profiles dependent on 
the CT (Figure 5B). The histamine-induced phase shifts at CT14 
(−2.8  ±  0.6  h, number of dishes  =  5 in histamine-stimulated 
group) and CT20 (+5.4  ±  0.5  h, number of dishes  =  6 in 
histamine-stimulated group) were almost completely inhibited 
by d-CPA or ketotifen treatment (Figure 5B). Compared with 
the phase responses to histamine stimulations, the H2R-specific 
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FigUre 2 | Histamine-induced calcium mobilizations in hRPE-YC cells. (a) Histamine (3–100 µM) evoked dose-dependent increases in cytosolic Ca2+ 
concentrations in hRPE-YC cells. Two representative cell responses are shown. Arrows denote the onsets of 1-min histamine stimulations. (B) Repeated 100-µM 
histamine stimulations with 15-min intervals consistently elevated cytosolic Ca2+ in hRPE-YC cells (gray traces). In this experiment, the second histamine stimulation 
was also examined under perfusion of 10 µM d-chlorpheniramine (d-CPA) (black traces). Note that complete inhibition of Ca2+ responses by d-CPA and recovery  
of Ca2+ responses after rinsing out of d-CPA were observed. All of the above experiments were reproducible in at least three independent trials in separate culture 
dishes. (c) Concentration-response curves for histamine. **P < 0.01 by one-way analysis of variance. (D) Continuous perfusion of histamine (50 µM, black bar) 
mobilized Ca2+ depending on the onset of stimulations without further amplification of Ca2+ responses during stimulations. The gray dashed line denotes the mean 
baseline Ca2+ level in the three representative cells.
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agonist amthamine (50  µM) produced smaller phase delays 
(18.6% of histamine responses, P  <  0.01 by Student’s t-test, 
number of dishes = 3 at CT16) and phase advances (10.3% of 
histamine responses, P  <  0.01 by Student’s t-test, number of 
dishes = 3 at CT20; Figure 5B).

DiscUssiOn

In this study, we explored the functions of histamine signal-
ing in RPE cells using a human cell line. The results for Ca2+ 
imaging and real-time RT-PCR clearly demonstrated functional 
expression of H1R in hRPE-YC cells. As H1R couples with Gq 
proteins and links with the phosphatidylinositol signaling 
pathway to mobilize cytosolic Ca2+, the conventional intracel-
lular signaling pathway reported for RPE cells (33, 34) could be 
the trigger for phase shifts of Bmal1 transcriptional rhythms. 
Indeed, nuclear pCREB expression was observed following 
the histamine stimulations. These results are consistent with a 
previous finding that stimulation of Gq-coupled M3 muscarinic 
acetylcholine receptors in hRPE-YC cells resulted in transient 
Ca2+ increases, nuclear pCREB expressions, and phase shifts of 

Bmal1-luciferase rhythms with a type-1 PRC (29). Meanwhile, 
this study indicated gene expression of Gs-coupled H2R in 
hRPE-YC cells but failed to demonstrate apparent phase shifts 
of Bmal1-luciferase rhythms by amthamine. In the previous 
study, forskolin, a pharmacological activator of adenylate 
cyclase, produced apparent phase shifts in hRPE-YC cells (29). 
Taken together, it is suggested that functional H2R expression 
and activation of the downstream adenylate cyclase pathway 
could be limited in hRPE-YC cells. Histamine-induced circa-
dian phase shifts have been studied in SCN slice preparations by 
reference to action potential firing rhythms (14), and this study 
indicates that similar histaminergic regulations may be present 
in the retinal circadian clock.

Retinal pigment epithelial cells have multiple functions within 
the retina. Among these, it should be emphasized that RPE cells 
are involved in the daily photoreceptor disk shedding critical for 
circadian rhythms in photic sensitivities. Phagocytosis of the 
photoreceptor outer segment by RPE cells is directly triggered 
by light or by intrinsic circadian clock mechanisms given that 
the rhythm is sustained under constant darkness (21). Although 
innervations from central histaminergic neurons have been 
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FigUre 5 | Circadian phase shifts in Bmal1 transcriptional rhythms following 
histamine exposure. (a) The mean Bmal1-luciferase intensities in 35-mm 
dishes were quantified using a multichannel chemiluminescence analyzer. 
The arrows indicate onset of 50 µM histamine exposures at CT20 and CT16. 
Subsequent troughs or peaks of circadian waves were compared with 
groups of non-treated control cells. (B) Based on the histamine-induced 
phase shifts at various time points, a type-1 phase-response curve was  
eye fitted (red circles with dotted line). Similar stimulation of cells by  
the H2 histamine receptor agonist amthamine at CT20 or CT16 produced 
significantly smaller phase shifts (blue circles). Treatment with 10 µM 
d-chlorpheniramine (d-CPA) or ketotifen almost completely abolished  
the histamine-induced phase-advances at CT20 and delays at CT14  
(gray circles for d-CPA treatment and green circles for ketotifen treatment). 
Data represent mean ± SEM from three to six dishes.

FigUre 4 | Ca2+/cAMP-response element-binding protein phosphorylation 
following histamine exposure. Immunofluorescence staining of 
phosphorylated CREB (pCREB) in unstimulated control hRPE-YC cells  
(left two images) and hRPE-YC cells after exposure to 50 µM histamine  
for 10 min (right two images). Counter-staining with 4′,6-diamidino-2-
phenylindole (blue color in merged picture) demonstrated the nuclear 
localization of pCREB signals in hRPE-YC cells following the histamine 
stimulation.

FigUre 3 | Transcriptional profiles of histamine receptor subtypes and 
histamine synthetic enzyme. H1–H4Rs and histidine decarboxylase (HDC) 
mRNAs were quantified in hRPE-YC cells by quantitative RT-PCR with 2−ΔCt 
using β-actin as internal control. H1 histamine receptor (H1R) exhibited the 
highest expression among the four subtypes. There were also detectable 
levels of H2 histamine receptor (H2R) expression in these cells. HDC was not 
expressed in hRPE-YC cells. **P < 0.01 and *P < 0.05 by Kruskal–Wallis test 
followed by Steel–Dwass test. Data represent mean ± SEM from 11 dishes.
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identified primarily in the ganglion cell layer and inner plexiform 
layer in the retina (4–9), histamine could be a paracrine modula-
tor for various retinal cells. In addition, it has shown that the 
outer nuclear layer of mice retina express HDC genes using a 
laser microdissection technique (11), although the type of retinal 
cells synthesizing histamine has not yet been characterized. 

Thus, it is possible that histaminergic control of RPE cells, if any 
in in vivo, could be involved in the regulation of photoreceptor 
disk shedding rhythms. It was also shown that HDC−/− mice with 
recovery of the Crb1 mutation exhibit normal retinal structures 
and functions, including the outer segment (11). However, these 
analyses were conducted under 12-h/12-h light/dark cycles and 
paid no particular attention to the tissue sampling time. Under 

38

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


6

Morioka et al. Histamine Receptors Regulate Retinal Clocks

Frontiers in Endocrinology | www.frontiersin.org March 2018 | Volume 9 | Article 108

these circumstances, the direct light information was presumably 
sufficient to determine the phenotypes. Histamine release from 
histaminergic neurons is coupled with sleep–wake states (1, 12). 
Importantly, significant reductions in clock gene (Per1 and Per2) 
transcriptional rhythms have been shown in many brain regions 
outside the SCN in HDC−/− mice (35). This suggests remote con-
trol of peripheral clock gene transcriptional rhythms by the brain 
histaminergic system (Figure 1). Thus, it is of particular interest 
whether changes in histaminergic tones and sleep–wake status 
can exert feedback on retinal clock regulations and ultimately 
on circadian clock systems. Further studies are needed to clarify 
these possibilities.

In relation to the effect of the H1R antagonist observed in 
this study, we would like to emphasize the possible influence 
on human circadian clock regulations because H1R antagonists 
are widely used in daily life. First-generation H1R antagonists, 
such as d-CPA, are permeable to the brain and induce sedation 
and/or slow-wave sleep following systemic administration in rats 
(36, 37). Based on these effects, one of the first-generation H1R 
antagonists, diphenhydramine, is currently sold as a sleeping 
aid in Japan. In addition, doxepin, another first-generation H1R 
antagonist known to induce sleep, has been approved by the FDA 
for treatment of insomnia in the United States (38). Furthermore, 
numerous H1R antagonists are currently sold as eye drops to 
treat ocular allergies (39). Despite the widespread use of H1R 
antagonists, their influence on circadian clock regulations has not 
been analyzed in detail. The effects of daily systemic injections of 
ketotifen (an early phase second-generation H1R antagonist) were 
recently evaluated in rats, with significant effects observed on 
their circadian locomotor activity rhythms (40). In addition, we 
preliminary observed reduction in Per2 transcriptional rhythms 
in the SCN and hippocampus by daily systemic injections of 
ketotifen in rats (unpublished data). Numerous antihistamines, 

including d-CPA and ketotifen, represent affinity to muscarinic 
receptors to block acetylcholine signaling (41, 42) and thus use 
of antihistamines especially at high doses may also exert their 
influence on cholinergic clock regulations (29, 43). Together with 
the present results showing complete suppression of histamine-
induced circadian phase shifts in hRPE-YC cells by d-CPA or 
ketotifen, we suggest that further clinical studies to analyze the 
influence of antihistamines on human circadian rhythms, with a 
special focus on circadian visual functions, are warranted.

In conclusion, the present results suggest histaminergic con-
trol of the molecular clock via H1R in a model cell line for human 
RPE cells and thus raise a possible cause for circadian rhythm 
disorders by daily use of antihistamines.
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Brain areas in rats
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Under normal light–dark conditions, nocturnal rodents consume most of their food 
during the dark period. Diets high in fat and sugar, however, may affect the day–night 
feeding rhythm resulting in a higher light phase intake. In vitro and in  vivo studies 
showed that nutrients affect clock-gene expression. We therefore hypothesized that 
overconsuming fat and sugar alters clock-gene expression in brain structures important 
for feeding behavior. We determined the effects of a free-choice high-fat high-sugar 
(fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward 
and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks dis-
rupted day–night differences in Per2 mRNA expression in the nucleus accumbens (NAc) 
and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral 
tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates 
Per2 mRNA expression in the NAc. The disruptions in day–night differences in NAc 
Per2 gene expression were not accompanied by altered day–night differences in the 
mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet 
and acute sugar drinking affect Per2 gene expression in areas involved in food reward; 
however, this is not sufficient to alter the day–night pattern of food intake.

Keywords: Per2, fat and sugar, clock-genes, obesity, reward, nucleus accumbens

inTrODUcTiOn

The suprachiasmatic nucleus (SCN) controls the circadian (24-h period) rhythms in behavior and 
physiology (1, 2). In the SCN and in all cells of the body, a feedback loop of genes (known as clock 
genes) are expressed and repressed with a 24-h period. The positive limb of the loop consists of the 
genes Clock and Bmal1 of which the protein dimer promotes Per and Cry expression, and genes 
from the negative limb which protein products repress Clock and Bmal1 activity (3). Environmental 
light is the main synchronizer for the SCN (4), whereas other brain circadian clocks are more 
sensitive to internal hormonal and metabolic signals. Thus, feeding cues are also able to modify 
the day/night physiological variation. Circadian eating patterns can be altered by high-energy diets 
(5–7) such as the free-choice high-fat high-sugar (fcHFHS) diet, consisting of the choice between 
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tap water, chow-food, fat, and sugar (8). Rodents exposed to a 
fcHFHS diet show smaller day–night differences in food intake. 
Especially intake of fat and sugar components of the diet does not 
show day–night variations, whereas the intake of the nutrition-
ally balanced chow diet remains rhythmic with a higher intake 
in the dark period when animals are active (8, 9). Moreover, we 
previously reported changes in the molecular clock properties of 
the lateral habenula (LHb) in fcHFHS diet-exposed mice, an area 
involved in reward-related behavior, whereas clock proteins in the 
arcuate nucleus, an important area for homeostatic feeding, were 
unchanged (9). It remains, however, to be determined whether 
molecular clock-gene expression in food-related reward circuitry, 
such as striatum and lateral hypothalamus (LH), are affected by 
a diet high in fat and sugar and if these effects are involved in 
disruption of the day/night feeding rhythm. We hypothesize that 
the obesogenic diet-induced disruption of day–night palatable 
intake is linked to nutrients (such as fat and sugar) affecting the 
brain oscillators within the food reward circuitry. In this study, 
we exposed rats to a fcHFHS diet for 6  weeks and measured 
clock-genes and food-related peptide gene expression in different 
reward-related brain areas. Subsequently, we evaluated the acute 
effects of sugar intake on Per2 gene expression in the nucleus 
accumbens (NAc) of rats.

MaTerials anD MeThODs

Male Wistar rats weighing ~250 g were single-housed in Plexiglas 
cages in a temperature and light-controlled room with 21–23°C 
and a 12:12 h light:dark-cycle ZT0 at 7:00 a.m. (Zeitgeber Time: 
ZT0 onset of light and ZT12 when lights are off). Animals were 
fed with regular chow and water ad libitum during baseline. All 
experiments were approved by the Animal Ethics Committee of the 
Royal Netherlands Academy of Arts and Sciences (Amsterdam).

fchFhs-Diet effects on clock-gene and 
Output-genes expression in Feeding-
related areas
Rats were either fed chow (n = 14) or the fcHFHS diet (n = 14): 
tap water, chow-food, 30% sucrose-water bottle, and a dish with 
fat (beef tallow, Vandemoortele, Belgium). Food intake was meas-
ured 3 times/week and 1 time/week at the beginning and the end 
of the day and night phases to assess the day–night food intake. 
Body weight was measured at least twice/week. After 6 weeks, rats 
from both groups were divided and euthanized at two different 
time points: ZT4 (day point) and ZT16 (night point) by sedation 
in a CO2-chamber and immediately decapitated. Brains were 
quickly removed, frozen, and stored at −80°C. Epididymal and 
perirenal white adipose tissue (WAT) was dissected and weighted.

sugar intake effect on Per2 mrna 
expression in nac
Rats were divided into two groups. During 7 days at ZT 10 (2 h 
before lights off), one group received an extra bottle of water 
(n  =  8) and the other group a bottle with 30% sugared water 
(n = 9) during 2.5 min to consume ~5 kcal of sugar. To deter-
mine exact sugar intake, the bottle was weighted before and after 

drinking. Rats were sacrificed 30  min after last water or sugar 
intake. Animals were sedated and decapitated and brains were 
harvested as described above.

mrna extraction and Quantitative  
real-Time Pcr
Punches from frozen brains were taken using a small needle 
dissecting NAc, SCN, LH, habenula (Hb, containing both the 
medial and lateral parts), and ventral tegmental area (VTA) 
according to the Paxinos Altlas (10). Tissue was placed in TRIzol  
(QIAGEN) and homogenized using an ULTRA THURRAX 
homogenizer (IKA, Germany). RNA extraction and RT-PCR 
was performed for Per2, Bmal1, Vglut2, Orexin (11), Cry1 (F 
primer: AAGTCATCGTGCGCATTTCA; R primer TCATCA 
TGGTCGTCGGACAGA), and pre-pro-enkephalin(F primer:  
CTTGTCAGAGACAGAACGGGT; R primer CCTTGCAGGT 
CTCCCAGATTT) as described previously (12).Reference genes:  
Cyclophilin (F primer ATGTGGTCTTTGGGAAGGTG; R primer  
GAAGGAATGGTTTGATGGGT), β-Actin (F primer ACAACC 
TTCTTGCAGCTCCTC; R primer CTGACCCATACCCACCAT 
CAC).

statistics
All results are expressed as mean  ±  SEM. Statistical analysis 
was performed using Graphpad Prism. T-tests were performed 
for two group measures. Two-way ANOVA was performed to 
detect effects of diet, time or diet, and time interaction on gene 
expression. When detecting an interaction effect, a Tukey’s HSD 
post hoc test was performed. Results were considered statistically 
significant at p < 0.05.

resUlTs

During all 6 weeks of the experiment, fcHFHS-fed rats were hyper-
phagic, cumulatively consuming 3,884 ±  56.23  kcal, compared 
with 3,041 ± 50.39 kcal ingested by the chow group [t(26) = 11.16, 
p < 0.001]. Chow intake in the control group, and chow, fat, and 
sugar intake in the fcHFHS diet group were significantly higher at 
night compared with day (Table 1). At the end of the experiment, 
fcHFHS-fed rats were heavier and more obese than chow-fed rats 
[BW: 411.3 ± 4.2 vs. 429.7 ± 4.9 g; t(26) = 2.38, p < 0.001; WAT: 
5.6 ± 0.2 vs. 9.9 ± 0.5 g; t(26) = 8.34, p < 0.001].

In all brain areas from the chow-fed group, Per2 mRNA was 
higher at ZT16 (night) than at ZT4 (day). In fcHFHS-fed rats, 
however, this day–night difference was absent in the NAc and LH; 
i.e., no significant difference between day and night in animals 
fed the fcHFHS diet (Figure  1A). Cry1 and Bmal1 expression 
also showed significant day/night differences in most brain areas 
investigated (Table  1). Interestingly, the loss of day–night dif-
ferences in the fcHFHS group was restricted to Per2 (Table 1). 
We also measured day–night expression of Vglut2 in all areas, 
orexin in the LH and pre-pro-enkephalin in NAc to investigate 
whether the observed changes in Per2 were reflected in feeding-
regulating genes. No significant changes were observed for 
Orexin [ANOVA: diet F(1,22) = 2.83, p = 0.1; time F(1,22) = 0.008, 
p = 0.9; Int. F(1,22) = 0.04, p = 0.8], but Vglut2 was altered in the 
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TaBle 1 | Eating patterns from chow-fed and free-choice high-fat high-sugar (fcHFHS) diet fed groups and mRNA expression from clock-genes Cry1, Bmal1, Per2, 
and the Vglut2 gene.

eating patterns

chow fchFhs

chow chow Fat sugar

% 100 44.4 ± 1.4 13.5 ± 1.2 41.9 ± 2.2

Day/
night 
feeding

Day night Day night Day night Day night

16.2 ± 1.1 83.8 ± 1.1 15.7 ± 1.0 84.3 ± 1.0 8.4 ± 1.2 91.5 ± 1.2 22.1 ± 1.0 77.9 ± 1.1

Two-
way 
ANOVA

Time F(1,78) = 5,894, p < 0.001, diet component F(2,78) = 0, p > 0.99, interaction F(2,78) = 76.6, p < 0.001

T-test 
day vs. 
night

t(26) = 44.9, p < 0.001 t(26) = 49.3, p < 0.001 t(26) = 48.1, p < 0.001 t(26) = 36.2, p < 0.001

gene expression

gene group Brain area: suprachiasmatic nucleus nucleus accumbens lateral hypothalamus habenula Ventral tegmental 
area

Cry1 Chow Day 4.6 ± 0.3 1.9 ± 0.2 9.3 ± 0.5 5.8 ± 1.5 2.6 ± 0.3
Night 6.0 ± 0.5 2.4 ± 0.2 11.5 ± 1.4 9.4 ± 2.2 3.2 ± 0.1

fcHFHS Day 4.8 ± 0.5 2.2 ± 0.2 8.4 ± 0.5 5.7 ± 0.9 2.6 ± 0.4
Night 6.5 ± 0.4 2.5 ± 0.2 10.9 ± 0.6 9.9 ± 1.9 2.9 ± 0.2

Two-way 
ANOVA

Interaction
Diet
Time

F(1,23) = 0.11; p = 0.7
F(1,23) = 0.65; p = 0.4

F(1,23) = 14.2; p < 0.01

F(1,24) = 0.4; p = 0.5
F(1,24) = 1.0; p = 0.3

F(1,24) = 4.4; p < 0.05

F(1,21) = 0.06; p = 0.7
F(1,21) = 0.8; p = 0.3

F(1,21) = 9.5; p < 0.01

F(1,23) = 0.03; p = 0.8
F(1,23) = 0.007; p = 0.9
F(1,23) = 5.5; p < 0.05

F(1,24) = 0.1; p = 0.7
F(1,24) = 0.3; p = 0.6

F(1,24) = 3.4; p = 0.07

Bmal1 Chow Day 3.7 ± 0.1 1.9 ± 0.1 9.0 ± 0.6 1.8 ± 0.2 1.5 ± 0.1
Night 4.2 ± 0.4 1.6 ± 0.1 7.0 ± 0.5 1.7 ± 0.3 1.1 ± 0.1

fcHFHS Day 4.4 ± 0.2 1.5 ± 0.3 8.9 ± 0.6 1.9 ± 0.2 1.3 ± 0.2
Night 3.9 ± 0.2 1.7 ± 0.1 6.6 ± 0.4 1.8 ± 0.3 1.1 ± 0.04

Two-way 
ANOVA

Interaction
Diet
Time

F(1,24) = 2.53; p = 0.1
F(1,24) = 0.7; p = 0.4

F(1,24) = 0.006; p = 0.9

F(1,22) = 2.47; p = 0.1
F(1,22) = 1.4; p = 0.2
F(1,22) = 0.4; p = 0.4

F(1,22) = 0.08; p = 0.7
F(1,22) = 0.3; p = 0.5

F(1,22) = 16.5; p < 0.01

F(1,23) = 0.001; p = 0.9
F(1,23) = 0.19; p = 0.6
F(1,23) = 0.03; p = 0.8

F(1,24) = 0.7; p = 0.3
F(1,24) = 1.1; p = 0.2

F(1,24) = 9.1; p < 0.01

Per2 Chow Day 2.3 ± 0.2 0.7 ± 0.05 2.4 ± 0.1 0.5 ± 0.1 0.6 ± 0.07
Night 3.3 ± 0.4 1.2 ± 0.1 4.0 ± 0.4 1.2 ± 0.1 0.9 ± 0.1

fcHFHS Day 3.0 ± 0.2 0.7 ± 0.06 2.6 ± 0.2 0.4 ± 0.06 0.6 ± 0.07
Night 3.3 ± 0.3 0.8 ± 0.05 3.1 ± 0.2 1.2 ± 0.2 1.0 ± 0.08

Two-way 
ANOVA

Interaction
Diet
Time

F(1,24) = 1.1; p = 0.29
F(1,24) = 1.0; p = 0.3
F(1,24) = 3.4; p = 0.07

F(1,22) = 5.0; p < 0.03
F(1,22) = 2.6; p = 0.12

F(1,22) = 11.7; p < 0.01

F(1,22) = 4.3; p < 0.04
F(1,22) = 1.1; p = 0.2

F(1,22) = 14.2; p < 0.01

F(1,23) = 0.08; p = 0.7
F(1,23) = 0.05; p = 0.8

F(1,23) = 14.9; p < 0.01

F(1,24) = 0.9; p = 0.3
F(1,24) = 0.1; p = 0.6

F(1,24) = 12.5; p < 0.01

Vglut2 Chow Day 2.2 ± 0.5 0.1 ± 0.02 21.6 ± 1.1 14.7 ± 2.5 11.6 ± 1.4
Night 2.9 ± 0.6 0.1 ± 0.03 26.8 ± 1.5 22.3 ± 3.7 10.5 ± 0.8

fcHFHS Day 1.9 ± 0.2 0.06 ± 0.01 26.9 ± 2.7 16.6 ± 1.6 10.6 ± 1.6
Night 2.1 ± 0.4 0.07 ± 0.01 24.2 ± 1.4 19.0 ± 3.7 11.7 ± 0.6

Two-way 
ANOVA

Interaction
Diet
Time

F(1,24) = 0.31; p = 0.5
F(1,24) = 0.9; p = 0.3
F(1,24) = 0.8; p = 0.3

F(1,23) = 0.22; p = 0.6
F(1,23) = 7.16; p < 0.05
F(1,23) = 0.005; p = 0.9

F(1,22) = 4.38; p < 0.05
F(1,22) = 0.56; p = 0.4
F(1,22) = 0.45; p = 0.5

F(1,23) = 0.76; p = 0.3
F(1,23) = 0.06; p = 0.8
F(1,23) = 2.7; p = 0.1

F(1,22) = 0.83; p = 0.3
F(1,22) = 0.0; p = 0.9
F(1,22) = 0.0; p = 0.9

The upper part of the table shows feeding day–night patterns of chow and fcHFHS rats. Results of the two-way ANOVA comparing daytime (day, nigh) vs. diet component (chow, 
sugar, fat) on the percentage of caloric intake are shown for the fcHFHS group. Results from the t-test analysis of day–night intake are shown under every diet component for chow 
and fcHFHS groups. In the lower part of the table, the different brain areas are shown in columns. In rows are presented: the studied gene; the diet condition: chow/fcHFHS and; 
and daytime: day/night. Results from the two-way ANOVA analysis (diet condition vs. daytime) per brain area are shown under every gene description. Significant statistical effects 
are highlighted in bold letters. Data are presented as mean ± SEM.

3

Blancas-Velazquez et al. fcHFHS-diet Alters Central Per2 Expression

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 154

LH and NAc of the fcHFHS-fed group (Table 1). In the LH, we 
observed an interaction effect; however, the post hoc analysis did 
not detect differences between night and day in the chow or in 
the fcHFHS group. In the NAc, Vglut mRNA was significantly 
lower at both day and night in fcHFHS diet-fed rats compared 

with chow-fed rats (Table 1). Pre-pro-enkephalin expression was 
higher during the light period in both chow-fed (0.052 ± 0.002) 
and fcHFHS-fed (0.057  ±  0.002) groups compared with the 
dark period [chow 0.044 ± 0.003; fcHFHS 0.042 ± 0.002; time 
F(1,22)  =  27.0, p  <  0.001], but no significant diet or interaction 
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FigUre 1 | Per2 mRNA expression in nucleus accumbens (NAc) and lateral hypothalamus, but not habenula or ventral tegmental area, is altered by free-choice 
high-fat high-sugar (fcHFHS) diet exposure. (a) Day (white bars) night (black bars; time factor) expression of Per2 in chow diet vs. fcHFHS diet groups (diet factor). 
All the structures showed significant day–night variations, and when an interaction was observed. * indicates a significant day–night difference of Per2 expression; 
and # indicates a significant effect of diet (chow vs. fcHFHS) on Per2 expression at night. (B) Per2 mRNA expression in the NAc is significantly higher after sugar 
drinking compared with water drinking in chow-fed rats. * indicates a significant difference in Per2 expression after water intake vs. sugar intake. Data are presented 
as mean ± SEM.
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effects were observed [diet F(1,22)  =  0.25, p  =  0.61; interaction 
F(1,22) = 1.6, p = 0.2].

Next, we determined the direct effect of sugar intake on Per2 
mRNA expression in the NAc and observed that Per2 mRNA 
was significantly increased by sugar ingestion (4.7  ±  0.1  kcal) 
compared with drinking water (Figure 1B).

DiscUssiOn

We show that the fcHFHS diet produced a specific disruption in 
day–night Per2 expression in the NAc and LH, which was not 
observed for Cry1 and Bmal1 mRNA expression. In the LH and 
NAc, Per2 mRNA disruption caused by the fcHFHS diet exposure 
coincided with alterations of Vglut2 mRNA (Table 1), a marker 
of glutamatergic activity and excitatory neuronal functions (13), 
suggesting a relation between the loss of daily Per2 variation 
when consuming a fcHFHS diet and changes in neuronal activ-
ity. In none of the brain areas studied, we observed a day–night 
difference in Vglut2 expression. This could be due to the timing 
of sampling, missing the trough or peak, or to the neuronal het-
erogeneity in the studied areas. However, we did observe a clear 
overall diet effect on Vglut2 mRNA in the NAc at both time points 
measured. Given the importance of glutamate in the NAc for 
dopamine signaling and the previously reported effects of high 
energy diets on dopamine receptor binding (14), it might be that 

this reflects a dampening of neuronal activity of NAc dopamine 
neurons.

The changes in Per2 mRNA expression, without changes in 
Bmal1 and Cry mRNA in the NAc and LH of rats fed fcHFHS 
diet in this study are similar to previous results described in mice 
where the fcHFHS diet produced changes only in PER2 but not 
in BMAL1 protein expression in the LHb (9). Also, after chronic 
alcohol intake in mice, a specific Per2 mRNA acrophase shift was 
observed in the liver while Cry and clock remained unaffected 
(15). In vitro, the period length and acrophase of Per2 mRNA 
expression in cultured hypothalamic neuronal cells are altered 
after glucose enrichment to the media, whereas Bmal1 rhythmic-
ity remained unaffected (16). The specific alteration of Per2 could 
indicate that this gene is more sensitive than other clock genes to 
changes in the physiological state (e.g., hypercaloric feeding or 
chronic alcohol intake), as for instance, the ablation of dopamin-
ergic cells of the VTA decrease Per2 mRNA expression as well as 
its protein product (17) which could reflect a direct response to 
the microenvironment independent of a clock mechanism. On 
the other hand, it remains to be determined whether this specific 
Per2 alteration might be due to an intra-cellular clock-gene de- 
synchronization that could be reflecting an aberrant clock 
function.

We also showed that acute sugar consumption when given 
at the end of the light period increased Per2 mRNA expression 
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in the NAc. Interestingly, mice with ad  libitum access to a 5 
and 10% sugared water solution consume it mainly during the 
night phase and this did not disturb Per2 gene expression in the 
NAc (18). Taken together, these data suggest that time of sugar 
intake is an important factor to produce Per2 alterations in the 
NAc and that intake at the “wrong” time disturbs the day–night 
expression of this clock gene. Furthermore, we observed in this 
study that rats with chronic access to the fcHFHS diet exhibited 
reduced Per2 expression in the NAc and LH at night compared 
with the chow-fed rats. This could indicate that sugar ingestion, 
in behaviorally rhythmic animals, has to be accompanied with 
fat ingestion to produce the Per2 reduction in NAc at night since 
in the experiment of Bainier et al. (18), where mice ingested only 
sugar (mainly during the night) Per2 mRNA expression was 
similar compared with animals ingesting water. When chroni-
cally exposed to the fcHFHS diet which combines sugar and 
fat, also metabolic changes appear, including high basal blood 
glucose (19), thus it might be that this prolonged hyperglycemia 
impacts cell functioning and consequently, produces a clock-gene 
disruption in the NAc and LH, two areas with no self-sustained 
oscillations, in which normal rhythmicity could be overridden 
by abnormal physiological factors such as hyperglycemia. In 
line with such direct effects of glucose, the NAc and LH contain 
glucose-sensitive cells (20, 21).

Although we clearly show effects of the fcHFHS diet on Per2 
mRNA in NAc and LH, these changes were not accompanied 
by changes in feeding rhythm or expression of genes involved 
in feeding behavior. For example, pre-pro-enkephalin mRNA 
in chow-fed animals showed a clear difference between ZT4 
and ZT16, but this was not affected by fcHFHS-diet feeding. 
Apparently, the changes in Per2 alone in these areas are not suf-
ficient to induce changes in the daily feeding pattern. Of note, 
an overall Per2 mutation in mice does result in loss of the daily 
rhythm in sucrose drinking (18), pointing to a role for Per2 in 
other areas of the brain (or body), or to developmental effects of 
Per2 in feeding behavior.

The LH has direct glutamatergic projections to the LHb (22), 
which could have predicted changes in the Hb as well. We did 
not find, however, an effect of the fcHFHS diet on rhythmic Per2 
gene expression in the Hb. Possibly light is a stronger zeitgeber 
than food in the Hb, as there are clear light inputs to Hb (23) 
like is known for the SCN (which also still showed a day/night 
difference for clock genes). Earlier we showed, in mice, that PER2 
protein in the LHb was affected by the fcHFHS diet (9); however, 
these mice showed clear changes in the daily feeding rhythm of fat 
and sugar. These results highlight the hierarchical organization 
of the circadian system; when disturbances are in “weak” brain 
oscillators (NAc and LH) this does not affect behavior. It remains 
to be confirmed when a spontaneous change of feeding patterns 
toward day time does occur in rats, whether this would be accom-
panied by the same Per2 disruptions in the LHb as shown for 

day-snacking mice. We cannot discard that disruptions of Per2  
in NAc and LH could reflect a progressive alteration of the circa-
dian system and with more profound obese state, other areas like 
LHb would also be compromised.

In this study, the fcHFHS diet did not result in high-fat and/
or sugar intake during the light period, as we had previously 
observed in mice and rats (8, 9). This discrepancy might be due 
to the amounts of sugar and fat consumed. In previous studies, 
mice and rats consumed more fat (>30%) than sugar (25%) when 
fed a fcHFHS diet. In the current experiment, rats consumed only 
10% of their total caloric intake as fat, whereas sugar intake was 
higher than shown before. It is unclear what caused this difference 
in intake; however, it does point to a role for dietary intake in 
feeding patterns. Previously we observed that rats, consuming 
more than 30% fat on the fcHFHS diet, consumed 40% of their 
sugar intake during the light period (8). Nonetheless, when rats 
were exposed to only sugar ad libitum in addition to chow (fcHS 
diet), sugar intake was mainly restricted to the dark period (8). 
The animals in the current experiment drank similar amounts of 
sugar as animals on the fcHS diet (8), thus, it could well be that 
although sugar can influence Per2 in the reward circuitry, this 
is not sufficient to induce behavioral effects. This points to an 
additional factor linked to fat feeding that together with altered 
Per2 expression mediates disruptions in palatable intake patterns, 
but only when the total fat intake exceeds a minimum amount. 
It is clear that sugar intake or fat intake alone does not disrupt 
behavioral rhythms in rats (8).

Taken together, we show that the fcHFHS diet and acute sugar 
drinking affect Per2 gene expression in areas involved in food 
reward. These Per2 expression changes, however, were not suf-
ficient to alter feeding-related peptides or feeding behavior.
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Background: Daily cyclic changes in environmental conditions are key signals for antici­
patory and adaptive adjustments of most living species, including mammals. Lower 
ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) 
and skeletal muscle. Given that the molecular components of the endogenous biological 
clock interact with thermal and metabolic mechanisms directly involved in the defense of 
body temperature, the present study evaluated the differential homeostatic responses to 
a cold stimulus at distinct time­windows of the light/dark­cycle.

Methods: Male Wistar rats were subjected to a single episode of 3  h cold ambient 
temperature (4°C) at one of 6 time­points starting at Zeitgeber Times 3, 7, 11, 15, 19, 
and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and 
drinking behaviors were recorded during control and cold conditions at each time­point. 
Immediately after the stimulus, rats were euthanized and both the soleus and BAT were 
collected for real­time PCR.

results: During the light phase (i.e., inactive phase), cold exposure resulted in a slight 
hyperthermia (p < 0.001). Light phase cold exposure also increased metabolic rate and 
LA (p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated 
during the inactive phase (p  <  0.001). These metabolic changes were accompanied 
by time­of­day and tissue­specific changes in core clock gene expression, such as 
DBP (p < 0.0001) and REV­ERBα (p < 0.01) in the BAT and CLOCK (p < 0.05), PER2 
(p < 0.05), CRY1 (p < 0.05), CRY2 (p < 0.01), and REV­ERBα (p < 0.05) in the soleus 
skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis 
were affected in a time­of­day and tissue­specific manner by cold exposure.

conclusion: The time­of­day modulation of substrate mobilization and oxidation during 
cold exposure provides a clear example of the circadian modulation of physiological and 
metabolic responses. Interestingly, after cold exposure, time­of­day mostly affected circa­
dian clock gene expression in the soleus muscle, despite comparable changes in LA over 
the light–dark­cycle. The current findings add further evidence for tissue­specific actions 
of the internal clock in different peripheral organs such as skeletal muscle and BAT.

Keywords: circadian, locomotor activity, thermoregulation, thermogenesis, gene expression, skeletal muscle, 
brown adipose tissue
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inTrODUcTiOn

Daily cyclic changes in environmental conditions are key signals 
for the adaptive and anticipatory activity of most living species, 
including mammals. The mammalian thermoregulatory system 
is fairly adapted to periodic changes in ambient temperatures 
that may reach high amplitudes depending on the geographic 
location (1–3). Intriguingly, in mammals, a role for daily body 
temperature cycles in the internal synchronization has been 
demonstrated, in vivo, ex vivo, as well as in vitro (1, 4, 5), indicat-
ing that the circadian timing system and the thermoregulatory 
system reciprocally influence each other.

In general, during the dark phase, ambient temperature 
decreases to its lowest daily levels. Lower ambient temperatures 
induce metabolic changes aimed to defend internal body tempera-
ture. Considering this, it is well known that a cold environment 
induces autonomic, cardiovascular, metabolic, and behavioral 
adjustments that depend on the synchronized activation of mul-
tiple independent pathways resulting in thermal adaptation/accli-
mation (6). These adjustments include physiological changes such 
as vasoconstriction (heat retention or storage) and thermogenesis 
from both the activation of brown adipose tissue (BAT) (non-
shivering) and skeletal muscle involuntary contraction (shivering) 
(6). Synchronized activation of the autonomic innervation to BAT 
and white adipose tissue (WAT), liver, adrenal, and skeletal muscle 
is necessary to produce the necessary amount of energy and heat to 
keep body temperature within safe levels during cold exposure (7).

Contractile skeletal muscle activity acts as an important heat 
source during environmental cold exposure in rodents (6, 8)  
and humans (9, 10). Increased ADP/ATP ratio, 5′adenosine 
monophosphate-activated protein kinase (AMPK) activity, 
peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC1-α) activity, and consequently, free-fatty acid 
(FFA) uptake and oxidation, increases intracellular substrate 
availability for heat production (11). Notably, in BAT, the require-
ment of a functional molecular clock has been demonstrated, as a 
deficiency in the expression of the BMAL-1 and PER2 clock gene 
leads to activation of compensatory heat production mechanisms 
(12, 13). In humans, it has recently been demonstrated that BAT 
glucose uptake might be associated with the heat production 
rhythm (14). The latter data indicate that the central body clock 
has an important role in the tuning of the cold-evoked response, 
probably by setting the basal metabolic rate to a new reference 
level or balancing the autonomic tonus.

Metabolic rate increases in response to cold through shivering 
and non-shivering thermogenesis. Both processes are centrally 
regulated (6) and result in increased lipid and carbohydrate 
oxidation in involved tissues (mainly skeletal muscle and BAT)  
(8, 15). Therefore, lipid mobilization (from WAT lipolysis and liver 
de novo lipogenesis) increases to provide the main substrate used 
for the thermogenic activity. Interestingly, the molecular clock 
influences substrate oxidation (16, 17). Therefore, modulation of 
the central thermoregulatory pathways by the biological clock in 
the suprachiasmatic nuclei (SCN) might result in changes in cold 
exposure adjustments depending on the time-of-day. In line with 
this hypothesis, the master clock projects to the major brain areas 
involved in metabolic/thermal balance (18, 19).

Core components of the molecular circadian clock are 
expressed throughout the body, both centrally and peripher-
ally and interact with intracellular pathways directly related to 
metabolism and heat production (12–14, 16, 17, 20). In view of 
the above, the present study aimed to investigate how time-of-day 
modulates the peripheral adjustments induced by cold exposure 
at a physiological and a molecular level.

MaTerials anD MeThODs

animals
All experiments were performed in adult male Wistar rats 
(Charles River Breeding Laboratories, Sulzfeld, Germany). After 
arrival at the animal facility, animals were housed in individual 
cages (25 cm × 25 cm × 35 cm), with a 12/12-h light–dark (L/D) 
schedule [lights on at 0700  h, defined as Zeitgeber Time 0 
(ZT0)]. Animals were allowed to adapt to the new environment 
for 1.5  weeks before the first experiments. All rats were kept 
under constant temperature (22 ± 2°C) and humidity (50 ± 5%) 
conditions. Food and water were available ad libitum. The animal 
care committee of the Royal Netherlands Academy of Arts and 
Sciences (DEC/KNAW) approved all experiments.

experimental Procedures
To verify where would be a good site to monitor internal body 
temperature, a pilot study group was completed before the 
described experiments. In this preliminary group, each animal 
was implanted with two data loggers: one in the dorsal subcutane-
ous area, caudal to the BAT and the other one inside the perito-
neal cavity, stitched to the abdominal wall. Since these loggers 
are not radio-telemetry based, interference between them was 
not observed, as it would be expected for other available models. 
After recovery from surgery, animals were exposed to episodes 
of lowered ambient temperatures during light and dark phases of 
the L/D cycle. With this initial study, we were able to identify that 
the intraperitoneal loggers produced the most stable and reliable 
results.

Experimental animals were anesthetized with isoflurane, 
which guaranteed a rapid recovery from the small surgery neces-
sary to insert the temperature sensors. A ventral incision at the 
linea alba was made to introduce a data-logger probe (DST nano-
T, StarOddi, Iceland) into the peritoneal cavity. Each logger was 
sutured to the inner musculature before the incision was closed. 
This procedure allowed continuous monitoring of core body tem-
perature (Tcore) with a decreased risk of internal displacement of 
the sensor, which could cause misleading readings due to its posi-
tion. These probes recorded internal Tcore with 5-min intervals.

For the main study (presented in Figure  1), on the fourth 
day after surgery, the basal 24-h locomotor activity (LA), energy 
expenditure (EE), and food and water intake were continuously 
recorded for each animal with an indirect calorimetry system 
(PhenoMaster/LabMaster, TSE Systems, Bad Homburg, Germany). 
LA was assessed as beam-breaks recorded during 15 min inter-
vals. Oxygen consumption (VO2) and carbon dioxide produc-
tion (VCO2) were assessed every 15 min for 100  s. Respiratory 
exchange ratio (RER) was calculated according to the formula: 
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FigUre 1 | Graphical representation of experimental paradigm.
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VCO2/VO2. EE was calculated with the formula: (CVO2 × VO2 +  
CVCO2  ×  VCO2)/1,000, considering CVO2 and CVCO2 preset 
reference values given by the manufacturer (CVO2 = 3.941 and 
CVCO2 = 1.106). Carbohydrate (CHO) and lipid oxidation were 
calculated with the adapted formulae (21, 22) previously used (23): 
(4.585 × VCO2 − 3.226 × VO2)/60,000 for CHO oxidation and  
(1.695 × VO2 − 1.701 × VCO2)/60,000 for lipid oxidation. After the 
basal recordings, the ambient temperature was lowered to 0–5°C 
at different times of the day: ZT23–2, ZT3–6, ZT7–10, ZT11–14, 
ZT15–18, and ZT19–22. The average rate of ambient cooling was 
−0.8°C/10 min during the period of 3 h of cooling activity. Peak 
rates of −2.3°C/10 min were observed during the first 45 min of 
the experimental protocol, while rates lower than −0.5°C/10 min 
were observed and maintained after 90 min of cooling. By the end 
of each episode of lowered ambient temperature, animals were 
rapidly anesthetized with 80% CO2 and immediately sacrificed by 
decapitation. For room temperature controls, animals were kept 
in the same experimental room, but outside the temperature con-
trolled TSE chamber without any previous manipulation and were 
sacrificed at the same time points. After decapitation, the brain 
was removed, snap frozen on dry ice, and stored at −80°C. Soleus 
skeletal muscle and interscapular BAT were collected, frozen in 
liquid nitrogen, and then stored at −80°C.

Tissue Processing
RNA Extraction and cDNA Synthesis
Total RNA was extracted and purified with the TRIzol reagent 
protocol (Macherey-Nagel, Oensingen, Switzerland). The quality 
of RNA was examined by Agilent 2100 Bioanalyzer equipped 
with Nano chips (Agilent Technologies, Palo Alto, CA, USA) 
and concentrations were determined by Nanodrop spectro-
photometer (ThermoScientific Technologies, Wilmington, DE, 
USA). A fixed amount of total RNA was reverse-transcribed with 
SensiFAST cDNA Synthesis Kit (Bioline, Taunton, MA, USA). 
For the control of genomic DNA contamination, we employed a 
minus reverse transcriptase sample (−RT).

Real-Time PCR (RT-PCR)
The expression of clock, metabolic, and thermogenesis-related 
genes was evaluated by RT-PCR (LightCycler ® 480, Roche) with 
the following reaction system: 2 µl of cDNA was incubated with 
50 ng of both reverse and forward primer from gene of interest 
(see Table 1 for primer sequences) and SensiFAST no-ROX Mix 
(Bioline, Taunton, MA, USA) for a final volume of 10 µl. The rela-
tive amount of each gene was normalized against the geometric 
mean of three housekeeping genes: hypoxanthine-guanine 

phosphoribosyl transferase (HPRT), ribosomal protein S18 (S18), 
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 
the BAT; GAPDH, S18, and cyclophilin for the soleus muscle. 
The reference genes mentioned (HPRT, GAPDH, S18, and cyclo-
philin) were selected based on their constant expression under 
the various experimental conditions (i.e., time of the day and/or 
ambient temperature). The relative expression level of clock genes 
and other genes of interest in each sample was obtained by divid-
ing the absolute amount of the target gene by the average of the 
reference genes values. Each gene/tissue RT-PCR was performed 
in a single plate.

statistical analysis
The effects of cold exposure and duration in Tcore, LA, VO2, RER, 
EE, CHO, and lipid oxidation, as well as food and water intake, 
were assessed with a repeated measures ANOVA two-way fol-
lowed by an appropriate post  hoc test. The net area under the 
curve (AUC) for each condition and parameter was calculated, 
i.e., the absolute change of the physiological variable during the 
analyzed experimental period compared to t = 0. “Net” AUC in 
this case means that the area of the negative peaks (i.e., decrease 
compared to t = 0) was subtracted from that of the positive peaks 
(i.e., increases compared to t  =  0). To analyze the combined 
effect of cold exposure and time-of-day an ANOVA two-way was 
applied to the AUC data. The time-of-day effect was assessed with 
an independent ANOVA one-way for control and cold-exposed 
situations followed by post  hoc analysis when appropriate. The 
effects of cold exposure and time-of-day on mRNA expression 
were assessed with ANOVA two-way followed by an appropriate 
post hoc test. Data are expressed as mean ± SEM. Differences were 
considered statistically significant at p < 0.05.

resUlTs

Daily Oscillations of Body Temperature, 
la, and energy Metabolism
During the basal data collection, 24 h before the actual experi-
ment, ambient temperature inside the calorimetric chamber 
was kept close to the typical animal facility temperature of 
22.18 ± 0.21°C (Figure 2A), although a time-of-day effect was 
apparent (Table  2). Animals exhibited a clear day/night oscil-
lation in all the studied variables, despite the high variability 
observed for both food and water intake (Table 2; Figure 2). Core 
body temperature (Figure 2B) and spontaneous LA (Figure 2C) 
peaked during the active phase. The increased activity was 
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TaBle 1 | Information about gene primers.

genes reference no. reverse Forward

clock genes
PER1 NM_001034125.1 TGGCCAGGATCTTGAACACTGCTA ATGCAGAAACAACAGCCACGGTTC
PER2 NM_031678.1 CAACGCCAAGGAGCTCAAGT CACCCTGAAAAGAAAGTGCGA
CRY1 NM_198750.2 TCATCATGGTCGTCGGACAGA AAGTCATCGTGCGCATTTCA
CRY2 NM_133405.2 TGTACAAGTCCCACAGGCGGTA TGGATAAGCACTTGGAACGGAA
ARNLT/BMAL­1 NM_024362.2 TGCAGTGTCCGAGGAAGATAGC CCGATGACGAACTGAAACACCT
CLOCK NM_021856.2 TTGCAGCTTGAGACATCGCT CGATCACAGCCCAACTCCTT
DBP NM_012543.3 TGCCTTCTTCATGATTGGCTG CCTTTGAACCTGATCCGGCT
REV­ERBα NM_001113422.1 CATGGGCATAGGTGAAGATTTCT ACAGCTGACACCACCCAGATC

Metabolic genes
CREB1 NM_031017.1 ACTCTGCTGGTTGTCTGCTC GCAGTGACTGAGGAGCTTGT
PGC1­α NM_031347.1 GGTCATTTGGTGACTCTGG TGCCATTGTTAAGACCGAG
PGC1­β NM_176075.2 AGGAGGGCTCATTGCGTTTT AAAAGGCCATCGGTGAAGGT
PPAR­α NM_013196.1 GGCCTTGACCTTGTTCATGT TCACACAATGCAATCCGTTT
PPAR­γ NM_013124.3 GGGGGTGATATGTTTGAACTTG CAGGAAAGACAACAGACAAATCA
HSP90 NM_001004082.3 ACCGAATCTTGTCCAGGGCATCA CGGGCCCACCCTGCTCTGTA
UCP1 NM_012682.2 GCTTTGTGCTTGCATTCTGA AATCAGCTTTGCTTCCCTCA
UCP2 NM_019354.3 GGGCACCTGTGGTGCTAC GACTCTGTAAAGCAGTTCTACACCAA
UCP3 NM_013167.2 ATAGTCAGGATGGTACCGAGCA GCACTGCAGCCTGTTTTGCTGA
CIRBP NM_031147.2 TAACCACCACCCCTCCAGAA GCGTTAGGAAGCTTGGGTGT
CPT1­α NM_031559.2 AAAGACTGGCGCTGCTCA ACAATGGGACATTCCAGGAG
CPT1­β NM_013200.1 TGCTTGACGGATGTGGTTCC GTGCTGGAGGTGGCTTTGGT­
AMPK NM_019142.2 TAGAGAATGACCCCGCTGCT TGTCACAGGCATATGGTGGTC
NAMPT NM_177928.3 TCGACACTATCAGGTGTCTCAG ACAGATACTGTGGCGGGAATTGCT
FAT/CD36 NM_001109218.1 CCTTGGCTAAATAACGAACTCTG ACAGTTTTGGATCTTTGACGTG
GLUT4 NM_012751.1 CAGCGAGGCAAGGCTAGA GGGCTGTGAGTGAGTGCTTTC
HSL NM_012859.1 CCACCCGTAAAGAGGGAACT TCACGCTACATAAAGGCTGCT
LPL NM_012598.2 AGCAATTCCCCGATGTCCA CAAAACAACCAGGCCTTCGA
ADR­β2 NM_012739.3 CGACCGCTATGAGCGTGTAG CGCTTCACGTTCGTGCTGGC
ADR­β3 NM_013108.2 CCTTGCTAGATCTCCATGG CTTCCCAGCTAGCCCTGTT
GR NM_012576 GGAGCAAAGCAGAGCAGGTTT ACCTGGATGACCAAATGACCC
FOXO­1 NM_001191846.2 GTAGGGACAGATTGTGGCGAA ACGAGTGGATGGTGAAGAGTG
ACC1 NM_022193.1 CAGGCTACCATGCCAATCTC GATGATCAAGGCCAGCTTGT
ACC2 NM_053922.1 GCTTCCGCTCCAGGGTAGAGT GCACGAGATTGCTTTCCTAG
mTOR NM_019906.1 CCCGAGGAATCATACAGGTG AGCAGCATGGGGTTTAGGT
CamK2a NM_012920.1 AAGGCTGTCATTCCAGGGTC TGGCGTGAAGGAATCCTCTG

housekeeping genes
S18 NM_213557.1 TGGCCAGAACCTGGCTATACTTCC CTCTTCCACAGGAGGCCTACACG
HPRT1 NM_012583.2 AACAAAGTCTGGCCTGTATCCAA GCAGTACAGCCCCAAAATGG
GAPDH NM_017008.4 TCCACCACCCTGTTGCTGTA TGAACGGGAAGCTCACTGG
Cyclophilin NM_017101.1 GAAGGAATGGTTTGATGGGT ATGTGGTCTTTGGGAAGGTG
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associated with increased food and water intake (Figures 2D,E) 
and resulted in augmented oxygen consumption (Figure 2F) and 
heat production (Figure 2G). During the active phase, substrate 
utilization was shifted toward carbohydrate oxidation, while dur-
ing the rest phase, lipid metabolism was predominant as observed 
through RER (Figure  2H). The baseline levels of thermal, 
behavioral, and metabolic parameters at the onset of our cooling 
paradigm were similar to those observed during the previous day 
and both exhibited time of the day related changes (Table S1 in 
Supplementary Material).

effect of Time-of-Day on Body 
Temperature and ee During acute 
environmental cooling
Average ambient temperature after 2  h of cooling was 
4.01 ± 0.07°C, regardless of time of the day. Body temperature 

was affected by cold exposure in a time-of-day-dependent fashion 
(Figures 3A,B). When experimental cooling started during the 
light phase (ZT3, 7, and 11), a slight and transient hyperthermia 
was observed (p  <  0.001). Interestingly, during the ZT15–18 
protocol, core body temperature stayed elevated during the 
final 120 min of cold exposure (p < 0.001), despite the normal 
decrease in this parameter observed in the control animals. Cold 
exposure during the ZT19–22 and ZT23–2 protocols did not 
affect core body temperature as compared to baseline values. 
The time-of-day-dependent body temperature responses were 
confirmed by the AUC analysis (Figure 3B; Table 3; Table S2 in 
Supplementary Material), showing a significant effect of both ZT 
and cold exposure.

Body temperature is the result of heat production and heat 
dissipation. Therefore, understanding heat production dynam-
ics during cold exposure at different phases of the light/dark 
daily cycle would be of value for the present analysis. A good 
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FigUre 2 | Daily rhythms of thermal, behavioral, and metabolic parameters under regular animal facility conditions. Light phase begins at Zeitgeber Time 0 (ZT0) 
and dark phase (shaded areas) begins at ZT12. Regular daily oscillatory levels of the ambient temperature (a), body temperature (B), locomotor activity (c), food 
intake (D), water intake (e), oxygen consumption (F), heat production (g), and respiratory quotient (h) were monitored approximately 24 h before the cold episodes. 
Results are presented as mean ± SEM (n = 34–50).

5

Machado et al. Time-of-Day Effects of Cold Exposure

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 19951

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


FigUre 3 | Effect of time­of­day on body temperature (a,B), VO2 (c,D), and energy expenditure (e,F) changes induced by environmental cooling. Results are 
presented as averages of 15 min bins during 2 h of environmental cooling (a,c,e) and as the area under the curve (AUC) (B,D,F) calculated as the net change from 
the basal levels before cold exposure. Light phase began at Zeitgeber Time 0 (ZT0) and dark phase (shaded areas) began on ZT12. Results are presented as 
mean ± SEM. * indicates differences between the first and the other time­points within the control or the cold­exposed group, p < 0.05. # indicates differences 
between control and cold conditions, p < 0.05. n = 5–11/group/ZT.

TaBle 2 | Mean basal 24­h and light/dark levels of thermal, behavioral, and metabolic parameters under control conditions (24 h before environmental cooling).

Mean24-h ± sD Meanlight phase ± sD Meandark phase ± sD n Time-of-day effect p Value

Ambient temperature (°C) 22.18 ± 0.21 21.99 ± 0.07 22.39 ± 0.06 50 F(96, 4.753) = 7.059 <0.0001
Core body temperature (°C) 37.20 ± 0.25 37.00 ± 0.14 37.40 ± 0.14 34 F(96, 3.201) = 2.695 <0.0001
Locomotor activity (Cnts) 337.1 ± 194.8 175.5 ± 81.1 502.1 ± 125.6 50 F(96, 4.753) = 12.54 <0.0001
Oxygen consumption (ml/h/kg) 1,500 ± 196.1 1,327 ± 86.65 1,677 ± 86.64 50 F(96, 4.753) = 14.44 <0.0001
Respiratory exchange ratio (VO2/CO2) 1.02 ± 0.02 1.03 ± 0.01 1.01 ± 0.01 50 F(96, 4.753) = 8.036 <0.0001
Heat Expenditure (kcal/h/kg) 7.56 ± 1.00 6.67 ± 0.44 8.47 ± 0.42 50 F(96, 4.753) = 15.51 <0.0001
Food intake (g/15 min) 0.24 ± 0.17 0.12 ± 0.10 0.36 ± 0.12 50 F(96, 4.749) = 4.241 <0.0001
Water intake (ml/15 min) 0.21 = 0.19 0.05 ± 0.05 0.37 ± 0.15 49 F(96, 4.749) = 5.263 <0.0001
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proxy for heat production is oxygen consumption. Oxygen 
consumption showed a strong increase during cold exposure 
(p  <  0.0001; Figures  3C,D), however, despite the observed 

effect of ZT, there was no interaction between the two factors 
(Table 3). As soon as the ambient temperature dropped, VO2 
rose until reaching a steady state, usually about 60 min after 
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TaBle 3 | ANOVA two­way table (ZT × ambient temperature) demonstrating the effect of cold exposure and time of the day on net area under the curve (in arbitrary 
units for each parameter) for thermal, behavioral, and metabolic parameters.

effect of ZT effect of cold interaction

F(DFn, DFd) p Value F(DFn, DFd) p Value F(DFn, DFd) p Value

Body temperature F(5, 56) = 3.734 0.0055 F(1, 56) = 4.487 0.0386 F(5, 56) = 2.183 0.0689
Locomotor activity F(5, 74) = 0.372 0.8665 F(1, 74) = 42.21 <0.0001 F(5, 74) = 0.839 0.5265
VO2 F(5, 88) = 3.743 0.0040 F(1, 88) = 201.2 <0.0001 F(5, 88) = 0.3105 0.9055
Respiratory exchange ratio F(5, 88) = 3.404 0.0074 F(1, 88) = 107.6 <0.0001 F(5, 88) = 5.558 0.0002
CHO oxidation F(5, 88) = 3.314 0.0087 F(1, 88) = 1.619 0.2067 F(5, 88) = 4.435 0.0012
Lipid oxidation F(5, 88) = 1.051 0.3931 F(1, 88) = 72.19 <0.0001 F(5, 88) = 2.017 0.0839
Energy expenditure F(5, 88) = 3.889 0.0031 F(1, 88) = 230.2 <0.0001 F(5, 88) = 2.405 0.0430
Food intake F(5, 86) = 0.074 0.9960 F(1, 86) = 2.434 0.1224 F(5, 86) = 1.018 0.4123
Water intake F(5, 88) = 1.065 0.3851 F(1, 88) = 0.037 0.8470 F(5, 88) = 1.433 0.2203
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the start of the protocol (p < 0.0001). Together with the rise 
in metabolic rate (VO2), EE significantly increased with cold 
exposure (Figures  3E,F), independent of the time-of-day 
(Figure 3F; Table 3).

effect of Time-of-Day on la and Food/
Water intake During acute environmental 
cooling
In view of the observed effects of time-of-day on the changes 
in body temperature and heat production in response to a 
cold environment, it was necessary to investigate whether 
cold-induced changes in LA or food and/or water intake could 
play a role. Despite their intrinsic relationship, the changes 
in Tcore were not strictly accompanied by changes in LA in a 
time-of-day-dependent manner (Figures  4A,B; Table  3). 
Cold exposure induced an increase in LA (Figures  4A,B) 
that was independent of Zeitgeber time (Table 3; Table S2 in 
Supplementary Material). Regarding food and water intake, 
regardless of time-of-day cold exposure did not affect these 
parameters (Figures 4C–F; Table 3).

effect of Time-of-Day on respiratory 
Quotient and substrate Oxidation During 
acute environmental cooling
The respiratory quotient, an index of substrate oxidation preva-
lence, decreased during every cold exposure, an effect that was 
modulated by time-of-day (Figures 5A,B; Table 3). In line with 
a decrease in RER, cold exposure evoked a consistent increase 
in lipid oxidation (Figures 5E,F). Interestingly, the higher lipid 
oxidation’s AUC was apparent only at ZT7–9, 11–13, 15–17, 
and 19–21, indicating that this rise was accentuated during the 
dark phase (Figure 5F). Although carbohydrate (CHO) oxida-
tion was not significantly affected by cold exposure, it showed 
a time-of-day association (Figures  5C,D; Table  3). Increased 
CHO oxidation was observed only during the ZT3–6 protocol 
and the first hour of the ZT11–14 protocol (p  <  0.001). On 
the other hand, CHO oxidation decreased when animals were 
exposed to cold during the dark phase, especially at ZT15–18 
and 19–22 (p < 0.05), when also the largest decreases in RER 
were observed.

effect of Time-of-Day on clock genes 
mrna expression in skeletal Muscle and 
BaT after acute environmental cooling
The mRNA expression of eight clock genes was investigated in 
both soleus muscle and BAT (Tables 4 and 5; Figure 5). Time-
of-day affected the expression of five of eight and six of eight 
clock genes in soleus muscle and BAT, respectively. Expression 
of CRY2 and CLOCK genes was not significantly affected by 
time-of-day in either tissue, although CLOCK gene expression 
showed a tendency in the BAT (p = 0.054). Cold exposure caused 
a significant change in most (seven of eight) of the clock genes 
studied in BAT and half of the clock genes studied in the soleus 
muscle. In the BAT, time-of-day interacted with cold exposure 
only for DBP and REV-ERBα expression. In soleus muscle, time-
of-day interacted with cold exposure for clock gene expression of 
five of eight of the genes studied (CLOCK, PER2, CRY1, CRY2, 
and REV-ERBα). BMAL-1 and DBP were significantly affected 
by cold exposure in the BAT (p < 0.001 and p < 0.0001), but not 
in soleus muscle (p = 0.479 and p = 0.313). While BMAL-1 was 
increased by cold exposure especially during the light phase, DBP 
decreased after the ZT7–10 and ZT11–14 protocols. The negative 
repressor loop of the core clock (PER1, PER2, CRY1, and CRY2) 
was upregulated in both BAT and soleus muscle. Interestingly, 
time-of-day interacted with the increased mRNA expression in 
three of four of the genes in soleus muscle, but with none of the 
genes in BAT. Finally, REV-ERBα mRNA expression showed a 
strong interaction effect of time-of-day and cold exposure in 
both tissues. In fact, except for ZT3–6, REV-ERBα expression was 
significantly decreased by cold exposure, with a steep reduction 
after ZT7–10 in both tissues.

effect of Time-of-Day on Metabolic genes 
mrna expression in BaT after acute 
environmental cooling
We studied 18 genes directly or indirectly related to metabolism 
or thermogenesis in the BAT (Table 4; Figure 6). Time-of-day 
affected the mRNA expression of 6 of 18 of the genes studied 
(PGC1-α, PPAR-α, UCP1, CIRBP, AMPK, and HSL) and just 
missed significance in 3/18 (PGC1-β, LPL, and ADR-β3). Cold 
exposure affected most of the BAT genes studied (13 of 18 genes) 
and just missed significance for GR mRNA expression (p = 0.051). 
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FigUre 4 | Effect of time­of­day on locomotor activity (a,B), food intake (c,D), and water intake (e,F) changes induced by environmental cooling. Results are 
presented as averages of 15 min bins during 2 h of environmental cooling (a,c,e) and area under the curve (AUC) (B,D,F) calculated as the net change from the 
basal levels before cold exposure. Light phase began at ZT and dark phase (shaded areas) began on ZT12. Results are presented as mean ± SEM. * indicates 
differences between the first and the other time­points within the control or the cold­exposed group, p < 0.05. # indicates differences between control and cold 
conditions, p < 0.05. n = 7–11/group/ZT.
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Only 4 of 18 of the investigated genes showed a significant 
interaction between time-of-day and cold exposure (PGC1-α, 
HSP90, CIRBP, and ACC2), while PGC1-β and PPAR-α almost 
reached significance. The genes that were most clearly affected 
by cold exposure were PGC1-α, HSP90, UCP1, CIRBP, and LPL 
(p < 0.0001).

effect of Time-of-Day on Metabolic genes 
mrna expression in skeletal Muscle after 
acute environmental cooling
We studied 23 genes directly or indirectly related to metabolism 
or thermogenesis in the soleus muscle (Table 5; Figure 7). Time-
of-day affected the mRNA expression of 7 of 23 genes (PGC1-α, 

PPAR-α, HSP90, UCP3, CPT1-α, GLUT4, and ADR-β2) and 
just missed significance for NAMPT-1 expression (p  =  0.066). 
Cold exposure affected mRNA expression of 17 of 23 of the 
studied genes and almost reached significance for FAT/CD36 
levels (p = 0.083). The interaction between time-of-day and cold 
exposure was significant for 11 of 23 of the studied genes and just 
missed significance for 4 of 23 genes (CREB, PGC1-β, GR, and 
ACC2). The genes that were most clearly affected by cold expo-
sure were PGC1-α, GLUT4, HSL, ADRβ2, and GR (p < 0.0001).

DiscUssiOn

The main finding of the present study is that the cold-induced 
metabolic response and changes in gene expression in BAT and 
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FigUre 5 | Effect of time­of­day on respiratory quotient (a,B), carbohydrate (c,D), and lipid oxidation (e,F) changes induced by environmental cooling. Results are 
presented as averages of 15 min bins during 2 h of environmental cooling (a,c,e) and area under the curve (AUC) (B,D,F) calculated as the net change from the 
basal levels before cold exposure. Light phase began at Zeitgeber Time 0 (ZT0) and dark phase (shaded areas) began on ZT12. Results are presented as 
mean ± SEM * indicates differences between the first and the other time­points within the control or the cold­exposed group, p < 0.05. # indicates differences 
between control and cold conditions, p < 0.05. n = 7–11/group/ZT.
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muscle differ depending on the time-of-day of the cold expo-
sure. For instance, the cold-induced increase in lipid oxidation 
was mainly observed during the dark phase (Figures  5E,F), 
indicating a daily modulation of the cold-induced metabolic 
adaptations. In the soleus skeletal muscle, particularly active 
during shivering thermogenesis, cold exposure increased the 
expression of clock genes in both the negative and positive loop 
of the core clock mechanism, PER/CRY and BMAL-1/CLOCK, 
respectively (Figure 6). In addition, besides upregulating clock 
gene expression in both regulatory loops of the BAT molecular 
clock as well, cold exposure inhibited the expression of DBP and 
REV-ERBα in BAT (Figure 6). The current findings add further 
evidence for a tissue-specific action of the internal clock in 
peripheral tissues such as the skeletal muscle and BAT. Whether 
this differential modulation in response to environmental stimuli 
relies on the activity of the central clock, extra-SCN sites within 

the central nervous system or peripheral inputs remains to be 
further elucidated.

effects of cold exposure During Different 
Times-of-Day on Thermogenesis and 
substrate Oxidation
The thermal and metabolic adjustments induced by an acute 
exposure to a cold environment are well known for mice (24–29), 
rats (6, 8, 30–32), and humans (9, 33–35). Our experiments 
confirmed the effects of cold on the induction of increased heat 
production mostly through the concerted modulation of behav-
ioral (LA, food, and water intake) and metabolic (Tcore, VO2, RER, 
EE, CHO, and lipid oxidation) processes. In accordance with our 
hypothesis, we found that time-of-day modulated the thermal, 
behavioral, and metabolic responses.
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TaBle 5 | Significance levels observed for the two­way ANOVA analysis of the 
gene expression in the soleus muscle.

n Time-of-day cold exposure interaction

BMAL­1 80 <0.0001**** 0.4785 0.6391
CLOCK 83 0.1868 0.0817 0.0488*
PER1 80 0.0010** <0.0001**** 0.2543
PER2 78 <0.0001**** <0.0001**** 0.0183*
CRY1 81 <0.0001**** <0.0001**** 0.0199*
CRY2 82 0.3535 0.0002*** 0.0016**
DBP 81 <0.0001**** 0.3126 0.1582
REV­ERBα 76 <0.0001**** 0.7068 0.0308*
CREB 83 0.7026 0.0229* 0.0521
PGC1­α 80 <0.0001**** <0.0001**** 0.0006***
PGC1­β 79 0.3707 0.0297* 0.0984
PPAR­α 82 0.0340* 0.0169* 0.0136*
PPAR­γ 80 0.7800 0.0023** 0.3825
HSP90 78 0.0401* 0.1641 0.0015**
UCP2 65 0.5029 0.0189* 0.5634
UCP3 77 <0.0001**** 0.9447 0.0009***
CIRP 83 0.7462 0.4239 0.2013
CPT1­α 79 0.0084** 0.0009*** 0.0285*
CPT1­β 82 0.1321 0.3225 0.0004***
AMPK 83 0.4686 0.0008*** 0.0219*
NAMPT­1 82 0.0655 0.0071** 0.0234*
FAS/CD36 81 0.5285 0.0830 0.0067**
GLUT4 81 0.0071** <0.0001**** 0.0062**
HSL 80 0.3865 <0.0001**** 0.1707
LPL 83 0.4184 0.0200* 0.0125*
ADR­β2 82 0.0170* <0.0001**** 0.2198
GR 83 0.3263 <0.0001**** 0.0642
FOXO­1 80 0.3576 0.0005*** 0.3377
ACC2 13 0.3244 0.0300* 0.0919
mTOR 74 0.5338 0.3857 0.2628
CamK2a 79 0.7143 0.0104* 0.3953

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

TaBle 4 | Significance levels observed for the two­way ANOVA analysis of gene 
expression in the brown adipose tissue.

n Time-of-day cold exposure interaction

BMAL­1 80 <0.0001**** 0.0002*** 0.4584
CLOCK 79 0.0542 0.0018** 0.4676
PER1 82 0.0657 <0.0001**** 0.4003
PER2 80 <0.0001**** <0.0001**** 0.1492
CRY1 82 0.0003*** <0.0001**** 0.0580
CRY2 83 0.2550 <0.0001**** 0.3824
DBP 82 <0.0001*** <0.0001**** <0.0001****
REV­ERBα 8C <0.0001*** 0.3983 0.0018**
CREB 83 0.3688 0.0010** 0.2376
PGCl­α 83 0.0022** <0.0001**** 0.0024**
PGC1­β 81 0.0673 0.8981 0.0568
PPAR­α 82 0.0196* 0.3069 0.0592
PPAR­γ 83 0.1241 0.1606 0.1145
HSP90 83 0.5366 <0.0001**** 0.0321*
UCP1 82 0.0043** <0.0001**** 0.3767
CIRP 81 <0.0001**** <0.0001**** <0.0001****
CPT1­β 81 0.2195 0.0011** 0.2755
AMPK 82 0.0402* 0.0053** 0.2437
FAT/CD36 81 0.2195 0.0038** 0.3579
GLUT4 83 0.4685 0.0310* 0.4725
HSL 81 0.0203* 0.0390* 0.2161
LPL 80 0.0756 0.0001**** 0.4909
ADR­β3 79 0.0572 0.0412* 0.2272
GR 82 0.2009 0.0506 0.2960
ACC1 73 0.4955 0.0272* 0.5446
ACC2 79 0.4957 0.3617 0.0221*

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Significant decrements of ambient temperature pose a primi-
tive threat to body temperature regulation. In order to keep body 
temperature within physiological levels, the central nervous 
system modulates a number of physiological processes involved 
in heat conservation and production. In the present experiment, 
we observed that rat Tcore is resilient to a temporally limited 
exposure to a reduced ambient temperature. In fact, after 120 min 
of environmental cooling, normal Tcore was preserved for each 
time-of-day exposure (Figure 3A). Curiously, we even detected 
a small rise in Tcore when the animals were challenged with a cold 
environment presented during the light phase, an effect that is not 
observed in smaller rodents, such as mice (24–29). This mismatch 
of heat production and heat dissipation (leading to body heating) 
might be due to a heat defensive state potentiated by the sudden 
decrease in ambient temperature during the sleep period.

Indeed, a lower Tcore during the light phase is maintained 
through tail vasoconstriction and decreased EE (36–39). In such 
a condition, the Tcore regulatory system likely presents a higher 
sensitivity to changes in locomotor and metabolic activity (40), 
resulting in increased Tcore during the first hour of cold exposure in 
the light phase, when heat production was increased (Figure 3A). 
Conversely, during the dark phase, basal Tcore is slightly raised as 
a function of the increased LA, EE, and circadian rhythm (39), 
making the immediate impact of the increased metabolic rate on 
Tcore less perceptible.

Indeed, the well-described circadian-dependent decrease in 
Tcore during the second half of dark phase seems to be counterbal-
anced by heat production induced by cold exposure (Figure 3A, 
ZT15–17). This cold-induced hyperthermia was also reported 

by others (6, 31, 41–43). Initially, heat dissipation is reduced 
to minimize heat loss to the colder environment (6). As cold 
exposure is maintained, heat production is increased and heat 
loss and production reach a steady state in which Tcore can be suc-
cessfully preserved. Therefore, as previously observed with other 
stressors (40, 44–47), it seems that the time-of-day-dependent 
effects of cold exposure on body temperature reflect the transi-
tory disturbance in heat loss and heat production mechanisms 
elicited by mixed signals from the internal circadian time and the 
thermoregulatory pathways that participate in the homeostatic 
responses.

In line with this perspective, the increased metabolic rate 
(Figures  3C,D) and LA (Figures  4A,B) in response to cold 
exposure might also reflect environmental temperature gradient 
(intensity of the stimulus) rather than a time-of-day-dependent 
modulation. Interestingly, LA spiked during the first hour of the 
cooling protocol but decreased thereafter (Figure  4A). Similar 
results were described by others (43, 48, 49), suggesting that this 
probably reflects coupled mechanisms of heat conservation (cold 
avoidance behavior reflecting increased LA) and heat production 
(shivering thermogenesis reflecting the decreased LA). In fact, as 
the environment gets colder, the animals lessen their LA without 
dampening metabolic rate and EE (Figures 3C,E), which points 
toward increased shivering activity of thermogenic pathways. 
Moreover, both oxygen consumption and calculated EE reached 
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FigUre 6 | Effect of time­of­day on clock gene expression in both soleus muscle and brown adipose tissue (BAT) after exposure to environmental cooling. Light 
phase began at Zeitgeber Time 0 (ZT0) and dark phase (shaded areas) began at ZT12. Results are presented as mean ± SEM. p < 0.05. # indicates differences 
between control and cold conditions, p < 0.05. n = 5–7/group/ZT.

11

Machado et al. Time-of-Day Effects of Cold Exposure

Frontiers in Endocrinology | www.frontiersin.org April 2018 | Volume 9 | Article 199

steady states of increased activity regardless of time-of-day. This is  
in accordance with previous experiments in mice showing that the 
relative changes in metabolic rate were similar when the cool-
ing protocol started at the beginning of the light or dark phase  
(27, 29). Interestingly, Tokizawa and colleagues (29) observed that 
the threshold for increased heat production was elevated during 
the dark phase, while behavioral curling was elicited earlier dur-
ing the light phase. In rats, a similar effect of time-of-day on ther-
moregulatory thresholds was also observed during exercise (47). 
To our knowledge, this is the first time that a time-of-day effect 
on the cold defensive response is reported for the rat model. With 
the present results, it seems that the circadian system regulates the 
basal settings of body temperature, thereby indirectly establishing 
the level of the homeostatic response required to minimize or 

even neutralize the physical challenge on thermal homeostasis 
posed by the reduced ambient temperature.

Even though thermal balance was successfully defended dur-
ing cold exposure regardless of time-of-day, lipid and CHO utili-
zation were affected by both environmental time and temperature 
(Figure  5). It has been previously shown that environmental 
cooling provides a key signal to substrate utilization for shivering 
(involuntary muscle contractions) and non-shivering (generated 
by proton gradient within mitochondrial oxidative activity and 
controlled by uncoupling proteins) thermogenesis from skeletal 
muscle and BAT, respectively (6, 8, 30, 50–52). Environmental 
conditions and the intensity of cold exposure determine the 
metabolic rate and the prevalence of the thermogenic pathway 
activated to generate heat (6, 8, 51). Vaillancourt and colleagues 
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FigUre 7 | Effect of time­of­day on metabolic gene expression in brown adipose tissue (BAT) after exposure to environmental cooling. Light phase began 
at Zeitgeber Time 0 (ZT0) and dark phase (shaded areas) began at ZT12. Results are presented as mean ± SEM. # indicates differences between control 
and cold conditions, p < 0.05. n = 5–7/group/ZT. Data for CREB, PGC1­β, PPAR­α, PPAR­γ, ACC1, and ACC2 are not shown (refer to Table 4 for 
results).
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(8) have previously shown that although affecting total EE; below 
a certain threshold (~15°C), the higher rates of CHO, lipid, and 
protein oxidations are not intensified by even lower environmen-
tal temperatures (10 and 5°C). To our knowledge, we are the first 
to report a clear time-of-day effect on substrate utilization during 
cold exposure.

Interestingly, we observed that during the active period, cold 
exposure caused a major switch by increasing lipid oxidation 
(Figures  5E,F) and lessening CHO oxidation (Figures  5C,D), 
whereas during the light phase both lipid and CHO oxidation 
rates were increased, although only transitory for CHO. This 
might reflect the first stage of cold defensive mechanisms in 
which in skeletal muscle shivering first consumes carbohydrates 
stocks in the glycolytic pathway to promptly generate ATP for 
muscular contraction and heat production (51, 52). As cold 
exposure persists, the participation of shivering in the thermal 
balance decreases and a primary role is appropriated by BAT 
non-shivering thermogenesis, with increased lipid uptake and 
oxidation (35, 52). Therefore, time-of-day influences the balance 
between CHO and lipids utilization during cold exposure, provid-
ing further evidence that the daily rhythms expressed through an 
internal clock in different body tissues might influence metabolic 
adjustments in heat-generating tissues.

Differences in the Metabolic and Thermal 
adjustments to cold Were related to 
Distinct changes in mrna expression of 
clock and clock-controlled genes
To increase metabolic heat production during exposure to a lower 
environmental temperature, activity in skeletal muscle and BAT 
is intensified through different pathways within the central nerv-
ous system (6). In the present study, we observed that after 3 h of 
cold exposure 13 of 18 and 17 of 23 of the chosen genes thought 
to be involved in cold-induced metabolic heat production were 
affected by our cold protocol in the BAT (Figure 7) and skeletal 
muscle (Figure 8), respectively.

In addition to the metabolic effects, cold exposure also 
affected clock and clock-controlled gene expression in BAT and 
soleus muscle, although to a different extent (Figure  6). In the 
BAT, seven of eight core clock genes studied were altered by the 
lower environmental temperature. Specifically, five of those genes 
were upregulated after cold exposure, without an interaction 
with time-of-day on this response. Others have already impli-
cated PER1, PER2, CRY1, and CRY2 in BAT in cold exposure  
(12, 13). In fact, a functional clock is necessary to mediate molecu-
lar adjustments in the mitochondrial activity program (13, 17,  
53, 54). However, the present study is the first to show this upregu-
lation of BAT activity during cold exposure at different moments of 
the day, reinforcing the hypothesis that the thermogenic program, 
although it is intermingled with the core clock machinery (55), 
relies on the intensity of the stimulus rather than on time-of-day.

Interestingly, in BAT two of the clock genes, DBP and REV-
ERBα, were downregulated by cold exposure with a time-of-day 
interaction. REV-ERBα is also downregulated after increased 
energetic demands and is acknowledged as an important repres-
sor of mitochondrial activity and seems to be regulated by the 

positive loop of the core clock (16, 17, 53). In fact, we observed 
that the reduced REV-ERBα expression is accompanied by an 
augmented expression of BMAL-1 and PGC1-α, especially dur-
ing the light phase (Figures 6 and 7), which points toward a pro-
nounced shift in BAT mitochondrial activity in response to the 
light-to-dark transition (54) and change in ambient temperature, 
probably through a temperature compensation mechanism.

Regarding the soleus skeletal muscle, we observed that only 
the genes from the negative loop of the canonical core clock 
machinery were affected by cold exposure (Figure 6; Table 5),  
i.e., PER1, PER2, CRY1, and CRY2, that is half of the studied clock 
genes (four of eight). In line with this, resetting of the peripheral 
clock by cold exposure (13) and exercise (56) seems to be depend-
ent of Per1/2 (57), as is resetting by glucocorticoids fluctuations 
(58). These findings reinforce the idea that cold exposure can 
reset the peripheral clock by changes in metabolic activity, since 
genes encoding for mitochondrial activity, such as CPT1, PGC1α, 
PPAR, and FOXO1 were affected. In addition, genes that regulate 
substrate uptake (LPL and GLUT4), cellular energetic state 
(AMPK), and mitochondrial activity (CPT1, NAMPT, PGC1α 
and PPARs) showed an interaction with time-of-day, suggest-
ing that key components of the cellular energetic balance are 
dependent on temporal input to establish the necessary shifts in 
molecular programs required to survive in a colder environment. 
On the other hand, cold exposure also changed GR and ADRβ 
receptor expression in both soleus muscle and BAT, indicating 
that also hormonal and autonomic, i.e., non-metabolic, factors 
might be involved in this shifting process.

In the skeletal muscle (Figure 8), the increased expression of 
LPL, HSL, and FAT/CD36 points toward boosted lipid uptake, 
which is supported by previous physiological and molecular 
expression data (59). Glucose uptake was also elevated by cold 
exposure as suggested by increased GLUT4 expression in the 
present experiment and those performed by others (10, 11). 
Taken together, increased lipid and glucose uptake suggests an 
augmented substrate oxidative state within the soleus muscle. 
Reinforcing this assumption, the expression of key metabolic 
regulators such as AMPK, CamK2a, and NAMPT-1 was also 
increased after cold exposure (Table 5). It is thought that AMPK 
activation due to increased energetic demand regulates the key 
mitochondrial transporter for β-oxidation, CPT1-α/β, as well 
as key transcription factors for mitochondrial activity, such as 
PPARs, PGC1-α, and FOXO1 (60–65). In fact, all these genes 
associated with mitochondrial activity were upregulated in the 
skeletal muscle. The present gene expression results thus support 
a role for the skeletal muscle in metabolic heat production. This 
idea is also supported by increased HSP90 mRNA expression, 
which might be related to higher oxidative activity demanding 
more chaperone protein content for protein stabilization (66).

Interestingly, despite the higher energetic demand, we did 
not observe a clear effect of cold exposure on UCP3 activity 
(Figure  8). It is thought that UCP3 could be directly involved 
in muscular heat production independent of shivering (35, 67). 
In line with our results, others (68) have shown that muscular 
UCP3 activity might not be involved in cold-induced metabolic 
heat production. Instead, uncoupling seems to constitute an 
intramuscular FFA buffering system during cold exposure, at 

59

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


FigUre 8 | Effect of time­of­day on metabolic gene expression in soleus muscle after exposure to environmental cooling. Light phase began at Zeitgeber Time 0 
(ZT0) and dark phase (shaded areas) began at ZT12. Results are presented as mean ± SEM. # indicates differences between control and cold conditions, p < 0.05. 
n = 5–7/group/ZT. Data for CREB, PGC1­β, PPAR­γ, UCP2, CIRBP, CPT-β, NAMPT­1, FOXO­1, ACC2, CamK2a, and mTOR are not shown (refer to Table 5 for 
results).
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least in murine models (12, 69). In addition, we also observed 
a possible influence of neuronal and hormonal stimulation on 
these molecular adjustments since expression of ADRβ2 and GR 
was upregulated after cold exposure, pointing to a direct modula-
tion of the cold-induced adjustments by the sympatho-cortico-
adrenal system (12, 70–72).

In the BAT, cold exposure also upregulated the substrate 
uptake and mobilization program, as can be concluded from the 
increased mRNA expression of LPL, FAT/CD36, and GLUT4 
(Figure 7; Table 4). Transcription of key enzymes for β-oxidation, 
such as CPT1-β and ACC1 was also upregulated by cold exposure. 
Aligned with this finding, mitochondrial activity, and biogenesis, 
expressed by the function of the key transcription factor PGC1α 
was increased by cold exposure. This increased mitochondrial 
activity state is reinforced by improved UCP1, increased HSP90 
(66) and decreased CIRPB (73) expression after cold exposure. 
AMPK activity, which is thought to play a key role in mediating 
cellular metabolic flux, was further stimulated by cold exposure. 
Increased BAT activity is well supported by previous studies and 
accumulating evidence implicates both glucose and lipid oxida-
tion in BAT non-shivering thermogenesis (14, 74–77).

It is clear that the initial metabolic state, as defined by the 
circadian system, is crucial for the physiological response to envi-
ronmental stimuli and therefore should be taken into account to 
understand the intrinsic capacity to adapt to changes in ambient 
temperature. In the current experiment, the cold-induced meta-
bolic shift toward lipid oxidation provided a clear example of such 
a time-dependency and further proof that the internal clock plays 
an important role in shaping such physiological responses. In the 
soleus skeletal muscle, cold exposure upregulated specifically 
the negative loop of the canonical clock (PER/CRY), whereas in 
the BAT both the negative and positive loop (BMAL-1/CLOCK) 
were upregulated. Thereby, the present study for the first time 
showed a tissue-specific effect of cold exposure on clock and 
clock-controlled genes and thus demonstrated the existence of 

an interaction between time-of-day and homeostatic adjustments 
elicited by acute cold exposure.
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Daily gene expression rhythms in 
rat White adipose Tissue Do not 
Differ Between subcutaneous and 
intra-abdominal Depots
Rianne van der Spek1*, Eric Fliers1, Susanne E. la Fleur1† and Andries Kalsbeek1,2†

1 Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 
Netherlands, 2 Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, Netherlands

White adipose tissue (WAT) is present in different depots throughout the body. Although 
all depots are exposed to systemic humoral signals, they are not functionally identical. 
Studies in clock gene knockout animals and in shift workers suggest that daily rhyth-
micity may play an important role in lipid metabolism. Differences in rhythmicity between 
fat depots might explain differences in depot function; therefore, we measured mRNA 
expression of clock genes and metabolic genes on a 3-h interval over a 24-h period in 
the subcutaneous inguinal depot and in the intra-abdominal perirenal, epididymal, and 
mesenteric depots of male Wistar rats. We analyzed rhythmicity using CircWave software. 
Additionally, we measured plasma concentrations of glucose, insulin, corticosterone, 
and leptin. The clock genes (Bmal1/Per2/Cry1/Cry2/RevErbα/DBP) showed robust 
daily gene expression rhythms, which did not vary between WAT depots. Metabolic 
gene expression rhythms (SREBP1c/PPARα/PPARγ/FAS/LPL/Glut4/HSL/CPT1b/leptin/
visfatin/resistin) were more variable between depots. However, no distinct differences 
between intra-abdominal and subcutaneous rhythms were found. Concluding, specific 
fat depots are not associated with differences in clock gene expression rhythms and, 
therefore, do not provide a likely explanation for the differences in metabolic function 
between different fat depots.

Keywords: circwave, visceral WaT, retroperitoneal WaT, lipid metabolism, circadian

inTrODUcTiOn

Sustained disturbances in daily rhythmicity (e.g., shift work, jet lag) increase the risk to develop 
obesity and related metabolic disease (1). Storage in and release of lipids from white adipose tissue 
(WAT) are regulated processes that anticipate rest-activity and feeding cycles. WAT is abundantly 
present throughout the body in different fat depots. In male rats, the main depots are located 
underneath the skin in the inguinal area [subcutaneous white adipose tissue (sWAT)], and in the 
abdominal cavity (intra-abdominal depots): perirenal- (pWAT, retroperitoneal, next to the kidney), 
epididymal- (eWAT, connected to and lining the epididymis), and mesenteric WAT (mWAT, intra-
peritoneal, lining the gastrointestinal tract).

Abbreviations: ANS, autonomic nervous system; COG, centre of gravity (see method section); WAT, white adipose tissue; 
ZT, zeitgeber time.
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Interestingly, although all depots are exposed to systemic 
humoral signals, such as circulating hormones and nutrients, 
subcutaneous and intra-abdominal WAT depots are not func-
tionally identical (2, 3). For example, retroperitoneal WAT is 
more responsive to metabolic challenges (fasting/refeeding) 
compared to subcutaneous WAT (4). Additionally, in various 
lipodystrophy syndromes subcutaneous fat stores are depleted, 
while simultaneously intra-abdominal WAT accumulates (5), 
pointing to differential differentiation and proliferation of 
adipose depots. Moreover, excess storage of intra-abdominal 
WAT is associated with adverse health effects, whereas subcuta-
neous WAT accumulation might be beneficial (6–9). Moreover, 
effects of sex hormones (10) and glucocorticoid treatment 
differ between WAT depots (11). To date, it is unexplained 
where these differences originate and how they are integrated 
to ensure that the net effect of the WAT depots results in energy 
homeostasis.

Like most peripheral tissues, WAT depots encompass an 
intrinsic molecular clockwork based on a transcriptional–trans-
lational feedback loop. Since clock proteins regulate the expres-
sion of genes involved in many (metabolic) processes within a 
cell, clock rhythms play an important role in tissue function. The 
core loop of the molecular clock is formed by the Clock:Bmal1 
heterodimer that upregulates expression of the Period 1–3 (Per 
1–3) and Cryptochrome 1–2 (Cry1–2) proteins. Per’s and Cry’s 
subsequently heterodimerize, translocate to the nucleus, and 
inhibit Clock:Bmal1 activity. As a consequence, Clock:Bmal1 
transcriptional activity drops, which reduces the transcription 
of Per and Cry genes, thereby activating Clock:Bmal1 again. The 
retinoic acid-related orphan nuclear receptors, RevErb and ROR, 
represent additional regulatory loops that enhance the robustness 
of the core loop, by binding to retinoic acid-related orphan recep-
tor response elements on the Bmal1 promotor (12).

Studies in clock gene knockout animals and studies in shift 
workers suggest daily rhythms play an important role in lipid 
metabolism. For example, the arrhythmic CLOCKΔ19 C57BL/6J 
mouse is hyperglycemic, hyperlipidaemic, hyperleptinaemic, 
and hypoinsulinaemic, with increased body weight and visceral 
adiposity (13, 14). Moreover, disruption of the adipocyte clock 
by adipose tissue specific deletion of Bmal1, results in obesity, 
temporal changes in plasma concentration of fatty acids, and 
altered hypothalamic appetite regulation (15). In CLOCKΔ19 
C57BL/6J mice, the impaired adipose tissue clock may directly 
affect diurnal transcriptional regulation of lipid homeostasis, 
reducing FFA/glycerol mobilization from WAT stores (16).

To determine whether differences in daily rhythmicity 
between WAT depots could explain differences in depot function, 
we analyzed rhythmicity of clock gene (Bmal1, Per2, Cry1, Cry2, 
RevErbα, and DBP) and metabolic gene expression (SREBP1c, 
PPARα, PPARγ, FAS, LPL, Glut4, HSL, CPT1b, leptin, visfatin, 
and resistin) in different intra-abdominal and subcutaneous WAT 
depots. We conclude that differences in the molecular clock or 
clock-controlled genes do not provide a major explanation for the 
differences in metabolic function between the different fat depots. 
Furthermore, our results suggest that in ad libitum feeding condi-
tions the timing of subcutaneous WAT clock gene rhythms can be 
extrapolated to those of intra-abdominal WAT depots.

resUlTs

Overall rhythmicity of gene expression in 
adipose Tissue
To describe rhythmicity, we considered the following factors to 
be important; peak time [expressed as center of gravity; COG 
(see Materials and Methods)], robustness, and amplitude. 
Therefore, we analyzed variation between depots for these 
factors. We defined “robustness” of a rhythm as: uniformity 
between cycles and/or animals measured by three character-
istics; period, phase, and shape of wave. R2 values indicate 
goodness of fit on a scale from 0 to 1, i.e., how well the Circwave 
curve describes the data. Thus, r2 values close to 1 indicate 
that individual samples deviate very little from the curve and, 
therefore, show little inter-animal variation in period, phase 
and shape of wave, and can be called robust. Clock gene and 
metabolic gene expression per WAT depot, r2 (inter-individual 
variability) and amplitude are plotted for each gene in Figures 1 
and 2. For all WAT depots, clock gene expression was highly 
rhythmic, with large amplitudes (range 125–272) and low vari-
ability (r2 range 0.61–0.92) between animals. A clear exception 
was Cry 2, which showed much lower amplitude (range 37–61) 
and r2 values (range 0.21–0.46) than the other five clock genes 
investigated. Metabolic genes on the other hand exhibited 
weak rhythmicity with lower amplitude (range 0–97) and high 
variability (r2 range 0.21–0.71) between animals (Figures  2 
and 3), similar to or lower than the values for Cry 2. Individual 
expression curves for each gene and WAT depot can be found 
in Figure S1 in Supplementary Material.

clock gene expression comparison 
Between WaT Depots
Clock gene expression showed pronounced daily rhythms 
in all WAT depots. R2 values showed little variation between 
depots, and limited variation between genes (Figure 1). Cry2 
showed the most pronounced variation between WAT depots; 
r2 values for pWAT (0.26) and eWAT (0.21) were about 50% 
smaller than for sWAT (0.46) and mWAT (0.44). Amplitude 
variations were limited between WAT depots (Figures 1 and 
3). Of note, for most clock genes the lowest amplitude was 
found in pWAT. For Per2 mRNA the amplitude in sWAT was 
clearly higher compared to the other depots. Peak time for 
the different clock gene curves (depicted as COG) was very 
similar between WAT depots (Figure  1, one-way ANOVA: 
ns). Bmal1 peaked in the beginning of the light phase (ZT24) 
and as expected, Per and Cry rhythms were in antiphase, to 
Bmal1. Per2 (ZT15–16), and Cry2 (ZT14–17) peaked in the 
early dark period, whereas Cry 1 (ZT19–20) mRNA peaked in 
the middle of the dark period. RevERBα (ZT9–10) and DBP 
(ZT11–12) mRNA were high at the end of the light phase 
(Figure 1).

Metabolic Gene Expression Comparison Between 
WAT Depots
Daily rhythms in metabolic gene expression were present; 
however, rhythmicity was not as robust (higher variability 
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FigUre 1 | Clock genes show high amplitude, high r2 (low inter-individual variability) and low variability in center of gravity (COG) in subcutaneous and intra-
abdominal white adipose tissue (WAT) depots. sWAT, subcutaneous; mWAT, mesenteric; eWAT, epididymal; pWAT, perirenal. Gray bars indicate the dark phase (ZT 
12–24). Individual expression curves for each gene and WAT depot can be found in Figure S1 in Supplementary Material.
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and lower amplitudes) as it was for clock genes (Figure  2). 
Rhythmicity was not apparent for every gene and for some 
genes not in every WAT depot. Absence of amplitude, R2, 
and COG values in Figure 2 indicates absence of significant 
rhythmicity, not absence of gene expression (see Figure S1 
in Supplementary Material for individual gene expression 
curves). R2 values were modest overall; r2 was highest for visfatin 
in eWAT and sWAT (Figures 2 and 3). Similarly, amplitudes 
in metabolic genes were modest overall, i.e., <100%. Peak 
time (COG) for most metabolic genes did not differ between 
WAT depots. However, for LPL significant differences were 
detected (Figure 2). LPL peaked significantly earlier in pWAT 
compared to sWAT (two-tailed t-test F = 1,133; p = 0.0342; 
difference = 3.2 ± 1.5 h).

Daily rhythms in Plasma hormone and 
substrate levels
Plasma levels and COGs of glucose, insulin, corticosterone, 
and leptin are shown in Figure 4. Plasma glucose concentra-
tions were modestly rhythmic and peaked at the transition 
from light to dark phase (~ZT14, amplitude 21%, ANOVA: 
F = 4.78; p < 0.001, CIRCWAVE: r2 = 0.35; p < 0.001). Plasma 
insulin concentrations were not rhythmic, but showed a greater 
variation at the end of the light phase (ANOVA: F  =  1,867; 
p = 0.0923). Plasma corticosterone concentrations were highly 
rhythmic and peaked slightly before the glucose peak (~ZT13, 
amplitude 237%, ANOVA: F = 8,852; p < 0.001, CIRCWAVE: 
r2 = 0.53; p < 0.001). Plasma leptin concentrations were modestly 
rhythmic and peaked in the middle of the dark phase (~ZT17, 
amplitude 32%, ANOVA: F =  4,073; p <  0.005, CIRCWAVE: 
r2 = 0.22; p < 0.001).

DiscUssiOn

Different WAT depots have different functions, and increase and 
reduce their mass differentially, as illustrated by several metabolic 
disorders that result in loss of mainly subcutaneous or gain of 
mainly intra-abdominal (visceral) fat mass. Rhythmicity plays 
an important role in lipid metabolism, and clock gene rhythms 
have been described for some but not all WAT depots in rodents 
(17–20) and in humans (21, 22). We, therefore, hypothesized 
that differences in rhythmicity might explain differences in 
depot function and analyzed rhythmicity of gene expression 
in subcutaneous and different intra-abdominal WAT depots. 
However, in contrast to our hypothesis, we did not observe clear 
differences in clock gene rhythms between different WAT depots 
(Figures  1–3). Moreover, most metabolic genes only showed 
modest or non-significant rhythmicity. Therefore, differences 
in the molecular clock or clock-controlled genes do not provide 
a major explanation for the differences in metabolic function 
between the different fat depots.

We observed robust rhythms in clock gene expression in all 
four fat depots studied (Bmal1, Per2, Cry1, Cry2, RevErbα, DBP), 
with a peak time that was similar to what has been described 
previously for Wistar rats (20, 23, 24) and other rodent species 
(17–19). Only few studies have measured clock gene expression 
rhythms in both epididymal WAT and subcutaneous (inguinal) 
WAT; one found lower amplitudes in subcutaneous WAT com-
pared to epididymal (19), whereas in the other study, amplitudes 
were marginally smaller in epididymal WAT compared to 
subcutaneous WAT (18). In our data set, amplitude, robust-
ness, or timing (COG) were not significantly different between 
mesenteric-, perirenal-, epididymal-, and subcutaneous WAT 
depots. This is the first study to extensively compare clock gene 
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FigUre 2 | Metabolic genes show modest amplitude, modest r2 (inter-individual variability) and higher variability in center of gravity (COG) in subcutaneous and 
intra-abdominal white adipose tissue (WAT) depots. LPL peaked significantly earlier in pWAT compared to sWAT (two-tailed t-test F = 1,133; p = 0.0342; 
difference = 3.2 ± 1.5 h) sWAT; subcutaneous, mWAT; mesenteric, eWAT; epididymal, pWAT; perirenal. Gray bars indicate the dark phase (ZT 12–24). Absence of 
amplitude, R2, and COG values indicates absence of significant rhythmicity, not absence of gene expression. Individual expression curves for each gene and WAT 
depot can be found in Figure S1 in Supplementary Material.
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rhythms in subcutaneous and different abdominal WAT depots 
simultaneously. Because we did not observe pronounced differ-
ences between depots under these untreated, ad libitum feeding 
conditions, this suggests that with regard to clock gene expression 
rhythms the results from subcutaneous inguinal WAT—which in 
humans is far less invasive to biopsy compared to internal WAT 
depots—may be extrapolated to other depots.

In contrast to the overt day/night rhythms in clock gene 
expression, expression of metabolic genes showed no profound 
rhythmicity. Metabolic genes that did show significant rhythmic-
ity mostly showed peak expression in the active (dark) phase. 
These findings are in line with data from mice (25). Metabolic 
genes are influenced by multiple circulating factors, such as 
corticosterone, insulin and nutrients, either directly (e.g., via 
a glucocorticoid response element) or via transcription factors 
(e.g., SREBP1c, PPARs) (26–28).

The daily rhythms in plasma corticosterone and glucose are 
independent of the daily rhythm in feeding behavior, whereas 
plasma levels of insulin and glucagon are mainly regulated by 

food intake (29, 30). Corresponding with previous data, we found 
that plasma concentrations of corticosterone and glucose peaked 
at the onset of the active phase. PPARα and -γ are glucocorticoid 
sensitive transcription factors (31), and indeed for PPARs we 
observed an expression peak with a similar timing as that of 
plasma corticosterone. Plasma insulin concentrations did not 
show a significant day/night rhythm, but rather followed feeding 
activity with three spikes during the dark phase. Several genes 
encoding for proteins involved with energy storage in the fed 
state (SREBP1c, PPARγ, LPL, FAS, Glut4, leptin, resistin) showed 
a spiky expression pattern similar to the insulin curve (Figure S1 
in Supplementary Material). These genes are likely influenced by 
feeding-induced insulin release, or by nutrients directly (e.g., via 
PPRE) (28).

LPL serves as a gatekeeper that controls local fatty acid uptake 
into cells by catalyzing the hydrolysis of circulating triglycerides. 
Transcription of LPL is upregulated by fatty acids, SREBP1c and 
PPARγ and downregulated and inactivated in the fasted state by 
glucocorticoids, catecholamines, and decreased levels of PPARγ 
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FigUre 3 | Clock genes show high amplitude together with high r2, whereas for metabolic genes modest amplitudes go along with low r2 values. A clear exception 
is Cry2, which showed much lower amplitude and r2 values than the other clock genes. We found no distinct differences between subcutaneous and intra-
abdominal white adipose tissue (WAT) depots. sWAT, subcutaneous; mWAT, mesenteric; eWAT, epididymal; pWAT, perirenal. Individual expression curves for each 
gene and WAT depot can be found in Figure S1 in Supplementary Material.
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and SREBP1c. In our data, LPL showed a 3-h delayed expression 
in sWAT compared to pWAT. In line with upregulation during 
the feeding period, we observed peak expression in eWAT when 
animals are eating. The delayed peak in LPL expression in sWAT 
fits with the hypothesis that intra-abdominal WAT is primarily 
functional in short term metabolic regulation, and sWAT takes up 
the lipid overflow for long term energy storage (2). LPL protein 
concentration also peaks in the active period, but it remains to be 
determined how the rhythms in mRNA and protein content cor-
respond to activity levels, as most physiological variation in LPL 
activity appears to be driven by posttranslational mechanisms by 
extracellular proteins (32).

Leptin concentrations peaked in the middle of the active 
(dark) phase (Figure 4), in line with previous experiments (33). 
This peak in plasma corresponds with the rhythm in leptin 
mRNA in fat tissue (Figure S1 in Supplementary Material Leptin). 
We observed the clearest correlation between plasma leptin con-
centrations and leptin mRNA expression in mWAT (Figure S2 in 
Supplementary Material Leptin correlation). Although we can-
not compare absolute mRNA expression levels between depots 
(due to the number of samples we had to analyze each depot as 
a separate batch), others have shown that leptin mRNA levels 

are generally much higher in intra-abdominal depots, compared 
to subcutaneous depots (34). Furthermore, they found plasma 
leptin levels correlated only with leptin expression in mWAT, 
but not any of the other WAT depots (34), which is in line with 
the correlations we observed between leptin mRNA and plasma 
leptin concentrations. Another study comparing leptin mRNA 
expression rhythms between WAT depots in rats found expres-
sion curves quite similar to our data in mesenteric and perirenal 
(retroperitoneal) WAT. However, they found epididymal WAT to 
be rhythmic, in contrast to our dataset. These different observa-
tions accentuate the modest amplitude of the leptin expression 
rhythms; hence conclusions should be drawn with caution. In 
contrast to rodents, in humans subcutaneous fat tissue is the 
primary source of circulating leptin levels (35, 36). Therefore, 
the contribution from subcutaneous leptin mRNA to both 
plasma leptin levels and their rhythm would be expected to be 
more important in humans. Indeed leptin mRNA is rhythmic in 
human subcutaneous tissue as well (21). One explanation for this 
discrepancy between rodents and humans could be a different 
ratio of subcutaneous versus intra-abdominal fat mass.

A number of other factors in our study may have contributed 
to variation in gene expression, of both clock and metabolic 
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FigUre 4 | Plasma concentrations of glucose, insulin, corticosterone, and leptin. Left panel shows the mean (±SEM) plasma concentrations. The middle panel 
shows the individual data points and Circwave curves, the dotted line indicates the Center of Gravity (COG). The right panel shows the COG (±SD). Absence of the 
Circwave curve and the COG line indicates absence of significant rhythmicity as analyzed by Circwave. Gray bars indicate the dark phase (ZT 12–24).
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genes. First, our animals had ad  libitum access to food, which 
could have induced small variations in timing of food intake 
between animals which might have led to less robust rhythms. 
Second, we have used Circwave to analyze rhythmicity in our 
data. Circwave recognizes wave forms using Fourier transforma-
tion whereby harmonics are added in a step-wise regression like 
fashion (using F-testing). This method is based on the assumption 
that the rhythms consist of one or more sine waves, and that noise 

variance is Gaussian (normally) distributed and independent of 
measurement magnitude. Therefore, it limits the recognition 
of spiky and saw tooth-shaped wave forms (37). Although the 
choice for this method might influence the sensitivity with which 
we were able to recognize rhythms, it will only affect our main 
conclusion (no rhythmic differences between depots) if there 
would be major differences in shape of wave between the WAT 
depots. Looking at the raw data sets (Figure S1 in Supplementary 
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Material), we may underestimate spiky rhythmicity of insulin or 
nutrient regulated genes. Nevertheless, alternative methods do 
not allow for estimation of amplitudes and phases (37), which 
were our main outcome measures.

We found no evidence that differences in rhythmicity in 
clock or metabolic genes underlie the functional differences 
described for the different WAT depots. Alternative explanations 
for functional differences are differences in pre-adipocyte lineage 
(2), differences in innervation, or differences in local regulation. 
Typically, the hypothalamus integrates peripheral signals and 
ensures energy homeostasis by regulating peripheral energy 
metabolism via humoral pathways and the autonomic nervous 
system (ANS). Indeed, intra-abdominal and subcutaneous WAT 
are innervated by separate sets of neurons (38), all the way up to the 
pre-autonomic neurons in the hypothalamus (39). Subcutaneous 
(inguinal) WAT gains more adipose cells after denervation com-
pared to intra-abdominal (retroperitoneal) WAT (40). These data 
indicate that differential innervation can contribute to functional 
differences between WAT depots, but apparently do not result in 
differences in rhythmicity. Whether differences in functionality 
are indeed depending on differences in autonomic activity at the 
level of WAT still needs to be proven. Moreover, it could well be 
that ANS mediated differences in WAT functionality only surface 
during positive or negative energy balance.

Concluding, in contrast to our hypothesis, we did not observe 
clear differences in (clock) gene expression rhythms between dif-
ferent WAT depots. Moreover, we found only modest rhythmicity 
in metabolic gene expression rhythms, and no results that could 
explain differences in metabolic function between the different 
WAT depots. Therefore, functional differences between WAT 
depots likely stem from other regulatory levels (i.e., translational) 
or pathways.

MaTerials anD MeThODs

animals
Sixty-four male Wistar rats (Harlan, Horst, Netherlands) were 
kept on a 12/12-h light/dark cycle (lights on at 0700 hours), at a 
room temperature (20 ± 2°C), with four to six animals per cage. 
Thirty-two animals were housed in a room with a reversed light/
dark cycle. The experiment was carried out in October. After 
arrival, animals were allowed to adapt to their new environment 
and the lighting schedule for 3 weeks before the experiment. Food 
and water were provided ad  libitum. The experiment was con-
ducted under approval of the Local Animal Welfare Committee.

experiment
To obtain WAT tissues and plasma, animals were anesthetized 
with isoflurane and killed by decapitation at a 3-h interval starting 
at ZT2 (ZT14 for reversed light–dark cycle) and ending at ZT11 
(ZT23 for reversed light–dark cycle). At every time point, four 
animals were obtained from both rooms, thereby spreading the 
total sampling period over a 48-h period.

Intra-abdominal perirenal (pWAT), epididymal (eWAT), 
and subcutaneous inguinal (sWAT) white adipose tissues were 
dissected and snap frozen in liquid nitrogen. Intra-abdominal 

mesenteric (m)WAT was separated from the gastrointestinal 
tract and pancreas and snap frozen in liquid nitrogen. Blood was 
collected in heparinized tubes.

Plasma analyses
Following decapitation trunk blood was collected and kept on ice 
in heparinized tubes until centrifugation for 15 min at 3,000 rpm 
at 4°C. Plasma was transferred to a clean tube and stored at −20°C 
until use. Plasma glucose was measured using a Biosen apparatus 
(EKF diagnostics, Cardiff, UK). Plasma insulin, leptin, and cor-
ticosterone were measured using a radio immuno assay (Merck 
Millipore, Billerica, MA, USA).

gene expression analysis
RNA Extraction
Total RNA (tRNA) was extracted from approximately 100 mg of 
adipose tissue, using the RNeasy lipid kit (Qiagen Benelux, Venlo, 
Netherlands), with on-column DNAse treatment using RNAse-
free DNAse (Qiagen Benelux, Venlo, Netherlands), according to 
the manufacturer’s protocol. tRNA was measured on a Nanodrop 
1000 (Thermo Fisher Scientific, Waltham, MA, USA) and diluted 
to equal concentrations.

cDNA Synthesis
cDNA was synthesized with the Transcriptor First Strand cDNA 
synthesis kit from Roche (Roche, Almere, Netherlands) using 
anchored oligo (dT)18 primers and 18 ng tRNA per microliter 
cDNA. To check for genomic DNA contamination in the extracted 
RNA, we included several samples for which we replaced reverse 
transcriptase with PCR grade water (−RT controls). If the fluo-
rescence curve of one of the −RT controls lay within 10 cycles of 
the cDNA sample with the lowest expression, the PCR assay was 
rejected because of potential genomic DNA contamination.

RT-qPCR
Gene expression was analyzed by real-time RT-qPCR on a 
LightCycler 480 system (Roche, Almere, Netherlands), using 
SybrGreen I Master, primer pairs, PCR grade water and cDNA. 
All primer pairs were designed intron-spanning if possible, and 
amplicon size and specificity was checked on electrophoresis gel. 
If the amplicon size matched and a single band was found, the 
PCR product was purified using a QIAquick PCR purification kit 
(Qiagen Benelux, Venlo, Netherlands). The purified PCR product 
was diluted and used in subsequent PCRs as a positive control 
combined with melting peak analysis.

LinRegPCR
For each PCR assay, PCR efficiency was checked for all samples 
individually using LinRegPCR. LinRegPCR software determines 
baseline fluorescence sets a Window-of-Linearity to calculate 
PCR efficiency. The starting RNA concentration expressed in 
arbitrary fluorescence units, is calculated using the mean PCR 
efficiency per sample, the Cq value per sample and the fluores-
cence threshold used to determine the Cq (41, 42). Samples that 
differed more than 0.05 from the efficiency median value were 
excluded from further analysis.
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Normalization
To control for variation in the amount of mRNA input, gene 
expression levels of the target sequence were normalized to the 
expression of an endogenous control, hypoxanthine phosphori-
bosyl transferase (HPRT) gene expression (43).

Several commonly used reference genes show a circadian 
rhythm in their expression profile (44), and these rhythms may 
vary between tissues, species, and strains (45). HPRT was chosen 
as a reference gene because it expressed no, or only very low 
amplitude rhythms in our samples (data not shown). Additionally, 
all PCR data are expressed relative to ZT2, to allow comparison 
between WAT depots.

Genes of Interest
Primer sequences of clock genes Bmal1, Per2, Cry1, and Cry2, 
RevErbα and DBP, and metabolic genes SREBP1c, PPARα, 
PPARγ, FAS, LPL, HSL, CPT1b, Glut4, leptin, visfatin, and resistin 
have been published previously (27).

Data analysis and statistics
For identification of outliers, we used Dixon’s Q test with two-
tailed Q-values (46). Samples that were determined outliers 
were excluded from further analysis (Table S1 in Supplementary 
Material).

All data (plasma and PCR) are presented as mean  ±  SEM 
unless otherwise stated. p Values below 0.05 were considered 
statistically significant.

Variations between time points within one gene in one depot 
were evaluated by one-way ANOVA and rhythmicity was assessed 
using Circwave v1.4 (www.hutlab.nl). Circwave software fits one 
or more fundamental sinusoidal curves through the individual 
data points and compares this with a horizontal line through the 
data mean (a constant). If the fitted curve differs significantly from 
the horizontal line, the data set is considered rhythmic. Circwave 
provides the following information: number of sines in the fitted 
curve; data mean, the average of all data points with SD; Centre of 
Gravity (CoG), representing the general phase of the curve with 
SD; ANOVA F stat, p-value and r2; Circwave F stat, p-value and r2. 
Centre of Gravity (COG) SDs were calculated without assuming 
the data was circular, as rhythmicity of gene expression was one 
of the outcome measures.

Centre of gravity data per gene were compared between WAT 
depots using unpaired two-tailed t-test with F test. Variances did 
not differ between WAT depots.

Amplitudes of Circwave curves were calculated as percent-
ages of data mean to enable comparison of amplitudes between 
data sets [difference between the zenith (highest point) and 
nadir (lowest point) and divided by the data mean (max − min/
mean * 100%)].
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FigUre s1 | Individual expression curves for each gene and white adipose 
tissue depot.

FigUre s2 | Correlation between plasma leptin concentrations and leptin 
mRNA expression in mesenteric WAT.

TaBle s1 | The number of samples after exclusion of outliers for the PCR 
results at each time point and for each gene investigated.
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Circadian clocks are fundamental, time-tracking systems that allow organisms to adapt 
to the appropriate time of day and drive many physiological and cellular processes. 
Altered circadian rhythms can result from night-shift work, chronic jet lag, exposure 
to bright lights at night, or other conditioning, and have been shown to lead to 
increased likelihood of cancer, metabolic and cardiovascular diseases, and immune 
dysregulation. In cases of cancer, worse patient prognoses and drug resistance during 
treatment have also been observed. Breast, colon, prostate, lung, and ovarian cancers 
and hepatocellular carcinoma have all been linked in one way or another with altered 
circadian rhythms. Critical elements at the molecular level of the circadian system have 
been associated with cancer, but there have been fairly few studies in this regard.  
In this mini-review, we specifically focus on the role of altered circadian rhythms in 
breast cancer, providing an overview of studies performed at the epidemiological level 
through assessments made in animal and cellular models of the disease. We also 
address the disparities present among studies that take into account the rhythmicity of 
core clock and other proteins, and those which do not, and offer insights to the use of 
small molecules for studying the connections between circadian rhythms and cancer. 
This article will provide the reader with a concise, but thorough account of the research 
landscape as it pertains to altered circadian rhythms and breast cancer.

Keywords: altered circadian rhythms, shift work, breast cancer, molecular mechanism, hormone pathways, small 
molecule modulators

inTRODUCTiOn

It was first reported in the 1960s that circadian rhythm disruptions can lead to an increased likeli-
hood of mammary tumor development, and that circadian genes may act as tumor suppressors (1). 
In previous decades, studies have suggested that alterations to circadian rhythms also accelerate 
breast epithelial stem-cell proliferation, induce mammary-gland development, and increase the 
formation of spontaneous breast tumors in mammals (2, 3). Disruptions to circadian rhythms 
in humans have also been associated with the development of several other cancer types, includ-
ing prostate (4), endometrial (5), colon (6), lung (7), and ovarian cancers (8) and hepatocellular 
carcinoma (9). In addition, the rhythmic control of cell fate is believed to affect cancer therapies: 
the efficacy and/or toxicity of radiotherapy and antitumor therapeutics have been shown to be 
dependent on the timing of dose administration (10, 11). Thus, understanding the link between 
biological rhythms and cancers can both assist in the development of new treatments, and in 
optimization of current therapies.
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In mammals, the molecular circadian clock can be divided 
into three components: input pathways, the central pacemaker, 
and output pathways. The input pathways transmit information 
from environmental cues (e.g., light) to the central pacemaker, 
which is located in the suprachiasmatic nucleus (SCN) of the 
hypothalamus (12). Within the SCN, multiple single-cell cir-
cadian oscillators are synchronized to generate daily circadian 
outputs (13). Output pathways convert the commands from the 
central pacemaker into circadian oscillations, which regulate 
physiological and behavioral functions in peripheral organs and 
tissues (14).

Circadian oscillations are mainly generated through two 
transcriptional/translational feedback loops (TTFLs) (15). The 
core loop involves four core clock genes: Circadian Locomotor 
Output Cycles Kaput (CLOCK) (16) and brain and muscle 
Arnt-like protein 1 (BMAL1) (17), which are the activators; and 
Period (PER1, PER2, and PER3) (18) and Cryptochrome (CRY1 
and CRY2) (19), which are the repressors. In the morning, the 
CLOCK:BMAL1 heterodimer binds to an E-box DNA promoter, 
activating the transcription of PER, CRY, and other clock con-
trolled genes. Late in the day, PER and CRY proteins dimerize 
and translocate from the cytoplasm to the nucleus, where they 
associate with the CLOCK:BMAL1 complex and suppress its 
transcriptional activity at the E-box site (20). The suppression 
of CLOCK:BMAL1 is released through the degradation of PER 
and CRY by ubiquitin-dependent pathways (21, 22) and casein 
kinases (CKIδ and CKIε) (23), which also control the timing of 
PER and CRY’s entrance to the nucleus. After PER and CRY are 
degraded, the cycle begins again with ~24 h periodicity.

The secondary TTFL is mainly driven by transcriptional 
acti vation of the retinoid-related orphan receptors (RORs a, b, c)  
and repression of REV-ERBα/REV-ERBβ (24). To drive the 
rhythmic oscillation of BMAL1, REV-ERBα binds to the ROR 
elements in the BMAL1 promoter, suppressing BMAL1 transcrip-
tion. Conversely, RORa and RORb activate BMAL1 expression  
(25, 26). The cooperation between the two TTFLs and other 
kinases and phosphatases, which are critical for regulating 
period, phase, and amplitude of oscillations, provides robustness 
against environmental perturbations. This network also helps to 
maintain accurate circadian timing and adjust phase delays to 
align with local physiology (27).

ePiDeMiOLOGiCAL eviDenCe OF 
ALTeReD CLOCKS’ eFFeCTS On 
CAnCeR

Lifestyles have dramatically changed since the invention of the 
light bulb in 1879. Since then, the daily activities of humans have 
expanded into the night, including “night-shift” occupations 
(28). According to the U.S. Bureau of Labor Statistics, in 2016, 
the majority of the employed population worked in the service 
industry (80.3%), including health care, social assistance, and 
transportation, followed by manufacturing (7.9%) (29)—areas 
with high proportions of shift work. Another report published in 
2015 found that about 17–24% of the workforce in United States 
was assigned to irregular or on-call work schedules, including 

night and rotating shifts (30). These types of schedules can lead 
to disruption of the sleep–wake cycle and circadian time organi-
zation, in addition to exposure to light at night (LAN) for long 
periods of time (31, 32). Perturbations to sleep and circadian 
rhythms can cause metabolic changes (33) and immune suppres-
sion (34), which can lead to various health problems, including 
diabetes (35), obesity (36), and cardiovascular disease (37), in 
addition to cancer (38). As a result, the International Agency 
for Research on Cancer has classified “shift-work that involves 
circadian disruption” as a “potential carcinogenic to humans 
(Group 2A)” (39).

While debated in some instances, epidemiological studies 
have provided evidence to support the association between shift 
work and cancer risk (40, 41). Independent cohort studies of 
night workers and shift workers have observed increased inci-
dence of breast (42), prostate (4), colon (43), and endometrial 
epithelial malignancies (44) and non-Hodgkin’s lymphoma 
(45), with risk further increased among individuals who have 
spent more hours and years working at night (42, 46). A case 
control study in Western Australia found that there was a 22% 
increase in breast cancer incidence among those who worked 
between midnight and 5:00 a.m. (47). Another study in France 
showed that there was a significant association (OR  =  1.95) 
between breast cancer and women who worked night shifts for 
more than 4 years before their first full-term pregnancy. At that 
time their mammary-gland cells were found to be incomple tely  
differentiated, making them more susceptible to circadian dis-
ruption effects (48). While it is difficult to eliminate shift work 
from society, there are some aspects that can be modified, which 
may decrease the risk of developing adverse health effects.  
To further understand the contributions of shift work to patho-
logical development, extensive animal and cellular experiments 
have yielded proposed molecular mechanisms, which will be 
discussed in Section “Molecular Studies of Circadian Clocks and 
Breast Cancer.”

Jet lag is another environmental factor associated with altered 
circadian rhythms and higher incidence of cancers (49). Jet lag 
(or circadian desynchrony) is a sleep disorder arising from the 
mismatch between internal body clocks and the environmental 
light/dark cycle. This condition is typically the result of travel 
through multiple time zones over a short period of time (50). 
An early study in Finland showed that flight attendants have 
significantly higher incidence of breast cancer (81.2/100,000) 
compared with the general female population (57.4/100,000) 
(51). A later, follow-up assessment strongly suggested that the 
increased cancer incidence was related to disruption of sleep 
rhythms, caused by excess exposure of light during normal 
sleeping hours, resulting in melatonin dysregulation (52). In 
addition, a recent study published in 2017, which focused on 
the effect of exposure to LAN in the United States, showed that 
there was a 14% increased risk of breast cancer in the highest 
LAN compared with the lowest LAN (53). Similar results were 
reported in Israel, where there was a 73% higher incidence of 
breast cancer in communities with the highest LAN than lowest 
LAN, across 147 communities (54). All of these epidemiological 
studies have strongly indicated that the disruption of circadian 
rhythms contributes to cancer risk.
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MOLeCULAR STUDieS OF CiRCADiAn 
CLOCKS AnD BReAST CAnCeR

The functions of clock genes in each tissue are unique and show 
specific oscillation patterns (55). Their expression and regulation 
play important roles in breast biology. It has been shown that 
the core clock genes exhibit different mRNA expression pat-
terns during mammary-gland development and differentiation 
in mice (56). Among 14,070 tested genes in human epithelial 
cells, 1,029 genes showed rhythmic oscillations during lactation. 
The expression patterns of these genes can be clustered into two 
groups, one high in the morning and another in the evening, 
indicating that the expressions change with a period of 24  h 
(57). Not only are the expression levels of clock genes variable, 
but they are affected by different developmental stages of breast 
tissue, and the extracellular microenvironment (58). Thus, it is 
posited that disruption of clock genes can affect normal breast 
biology and induce or affect cancerous development.

Breast cancer is heterogeneous and can be classified into 
subtypes based on histology, tumor grade, lymph node status, 
and the presence of specific biomarkers (59). The three markers 
generally used in characterization are estrogen receptor (ER), 
human epidermal growth factor receptor 2 (HER2), and pro-
gesterone receptor (PR) (60, 61). Based on marker status, breast 
cancer can be grouped into at least four subtypes: luminal A (ER+, 
PR+/−, HER2−), luminal B (ER+, PR+/−, HER2+), HER2 (ER−, PR−, 
HER2+), and Basal (ER−, PR−, HER2−) (62, 63). Basal tumors 
are typically difficult to treat and have poor prognoses. Because 
they lack ER, PR, and HER2, they are sometimes referred to as 
“triple-negative.”

The disruption of nuclear hormone levels and signaling has 
also been posited to alter circadian rhythms, drawing another 
connection between rhythms and breast cancer (64). The estro-
gen receptor-α (ERα) signaling pathway (65) has been linked to 
the disruption of PER2 in breast cancer (Figure 1) (66, 67). It is 
known that PER2 is a direct transcriptional target of ERα and its 
expression is inducible by 17 β-estradiol (E2) simulation (64, 68).  
In normal human breast epithelial cells, both ERα and PER2 
show rhythmic oscillations. The ubiquitous presence or absence 
of clock proteins has been predominantly used to investigate 
the relationship between circadian rhythms and breast cancer 
development (Table  1) (69–71). Knockdown of either PER2 
or ERα results in aberrant circadian oscillations of ERα, PER2, 
BMAL1, and RARA (another direct ERα target gene) and affects 
breast acinus structures (66). It was first reported in 2007 that 
suppression of PER2 leads to ERα stabilization, and conversely, 
overexpression of PER2 in breast cancer cells significantly 
inhibited cell growth and promoted apoptosis (64, 72). This 
work was corroborated by showing that complete loss of PER2 
mRNA oscillations occurred only in ERα-positive breast cancer 
cells, while ERα-negative breast cancer cells retained partially 
rhythmic oscillations (66, 67). In mice, downregulation of PER2 
enhanced breast tumor growth, leading to further enhancement 
of amplitude and phase delay (70). All of these studies have sug-
gested that the expression of clock genes may be disrupted by 
hormone levels and their signaling circuits (Figure 1) (73, 74). 
In addition, genome-wide DNA methylation profiling has shown 

that PER1 is significantly hypomethylated in ER+/PR+ breast 
cancer tissues (75). A separate study also showed that PER1, 2,  
and 3 exhibited deviant protein expressions in 55 resected 
breast cancer tissue sections, when compared with adjacent  
non-cancerous tissue samples. These fluctuations may be the 
result of methylation of the PER promoter (76). However, the 
detailed mechanisms of how hormone signaling affects circa-
dian clocks and vice versa are still unclear.

BMAL1 has also been proposed to act as a tumor sup-
pressor. In separate studies performed in lung cancer and 
glioma cells, knockdown of BMAL1 promoted cancer cell 
proliferation, invasion, and tumor growth, while its overexpres-
sion reduced cellular invasiveness (71, 79). Effects occurred in a 
p53-independent manner (p53 expression was decreased in all 
BMAL1 knockdowns) and were accompanied by activation of 
the phosphoinositide 3-kinase (PI3K)–Akt–MMP-2 signaling 
pathway (79). While these studies used other cancer models to 
study the role of BMAL1, the findings are likely relevant to breast 
cancer. p53 mutations in breast cancer are relatively frequent 
(~20%) (85, 87), and the PI3K/Akt pathway is commonly affected 
(~70%) (88). However, the same study found that p21 (a p53 tar-
get protein) and c-myc exhibited different expression levels in 
various BMAL1-knockdown colon cancer cells, indicating that 
the relationships among BMAL1, p21, and c-myc are probably 
cell-type specific (71).

By contrast, CLOCK has been indicated as a tumor driver. 
Healthy breast patient tissues showed lower CLOCK expres-
sion than breast tumor tissues (77, 78). Knockdown of CLOCK 
resulted in attenuation of breast cancer proliferation (77) and 
downregulation of several cancer-associated genes, including 
ones related to breast tumor progression and metastasis initiation, 
such as CCL5, BDKRB2, and SP100 (78). Furthermore, increased 
methylation in the promoter region of CLOCK has been associ-
ated with decreased breast cancer risk (78). While these studies 
provide valuable insight to the involvement of clock proteins in 
breast cancer development, most of these experiments do not 
account for the dynamic nature of circadian rhythms, and the fact 
that they may be altered but not abolished with human behavior 
and disease.

More recently, a number of in vitro studies have investigated 
clock gene expression profiles in a time-dependent manner in 
various breast cancer cell lines, including: MCF7 and T47D 
(luminal A subtype); HCC-1954 (HER2 positive subtype); 
MCF10A and MDA-MB-231 (basal-like subtype), and others 
(67, 80–83). Intrinsic circadian oscillations in cultured cells 
can be entrained through treatment with high concentrations 
of serum to serum starved cells (89), or by chemical induction 
of signaling pathways, such as protein kinase A (via forskolin) 
(90) or the glucocorticoid receptor (via dexamethasone) (91). 
After entrainment, the expression patterns of clock genes, 
including BMAL1, CLOCK, PER1, PER2, CRY1, and CRY2, have 
largely been analyzed through quantitative real-time PCR, with 
conflicting results. While some studies revealed rhythmic gene 
expression in all breast cancer cell lines (67, 82), others did not  
(80, 83). Major factors contributing to the discrepancies were 
likely non-uniform cell culture and synchronization methods 
(i.e., varied serum depletion times before serum shock), which 
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FiGURe 1 | Cross talk between E2–estrogen receptor-α (ERα) signaling pathways and circadian rhythms in breast cancer. Two of the four estrogen signaling 
pathways involve E2 stimulation and are shown here (65). In the classical genomic pathway, E2-bound estrogen receptor (ER) (either ERα or ERβ) dimerizes, 
changes conformation, translocates to the nucleus, and binds to the estrogen response elements (EREs). After binding to the EREs, the E2–ER complex recruits 
other co-activators, including Circadian Locomotor Output Cycles Kaput (CLOCK) and possibly brain and muscle Arnt-like protein 1 (BMAL1) (74), to initiate the 
transcription of target genes. CLOCK overexpression in breast tumors and promotion of tumor cell proliferation may be caused by co-activation with E2–ER 
complexes (77, 78). In the non-genomic pathway, E2–ERα complexes accumulate near the membrane and then recruit protein kinases [Src and phosphoinositide 
3-kinase (PI3K)] to activate signaling cascades (Akt and Ras/MAPK). BMAL1 has been shown to suppress the Akt/MMP2 pathway and further inhibit cancer cell 
invasion (79). BMAL1 can suppress cancers, and its expression is downregulated or disrupted in various breast cancer cell lines (67, 80–83). By contrast, REV-ERBβ 
(a repressor in the secondary transcriptional/translational feedback loop) is generally overexpressed in breast tumor samples; its protective function can allow cancer 
cells to develop chemotherapy resistance (84). PER2 is a direct ERα target gene and can bind to ERα and cause its degradation. In ERα-positive breast cancer cells, 
both PER2 and ERα lose their circadian oscillations, the underlying mechanism of which is not well understood. The cancer suppressor p53 can directly bind to the 
PER2 promoter and inhibit its transcriptional activity (85). E2–ER complexes can block the induction of proapoptotic p53 target genes by binding to p53 protein in 
ER-positive breast cancer cells, thus helping cancer cells avoid apoptosis (73). Re-introduction of PER2 into the ER-positive breast cancer cells can induce p53 
expression (72). Abbreviations: TF, transcriptional factor; RE, response element; E2, 17 β-estradiol.
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may affect dampening rates over time, due to loss of synchronicity.  
In addition, the short-term data collection (typically ≤48 h) and 
insufficient numbers of data points (generally ≥4  h intervals) 
utilized in these studies are generally insufficient to yield good 
statistical curve fittings (92, 93), contributing to inaccurate 
analysis of rhythmic oscillations. However, within each study, it 
is apparent that oscillations of clock proteins vary across different 
breast cancer cell models. Application of luciferase reporters and 

fluorescent proteins (e.g., GFP) can provide better resolution 
for long-term tracking of circadian oscillations in synchronized 
cells (14). However, cancer cells can be heterogeneous even in 
culture conditions (94). Future work should focus on real-time 
analysis at the single-cell level to reveal how circadian rhythms 
are involved, disrupted, and deviate from one another in breast 
cancer. Furthermore, posttranscriptional and -translational 
modifications to core circadian clock components should also 
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TABLe 1 | Roles of clock genes in breast cancer development.

Circadian 
genes

experimental approaches Phenotype Possible mechanism Reference

CLOCK Immunohistochemical  
assay(s) and qRT-PCR

Overexpressed in breast cancer cells;  
low expression in healthy breast tissue

Increased methylation in CLOCK promoter  
decreases breast cancer risk

(77, 78)

Knockdown(s) Reduced cell proliferation; downregulation  
of cancer-associated genes (CCL5,  
BDKRB2, and SP100)

E2–estrogen receptor (ER) pathway may couple  
to the circadian machinery due to presence of  
estrogen response element in the CLOCK promoter

(77, 78)

BMAL1 qRT-PCR Disrupted mRNA expressions in breast  
cancer cells

Not clear (67, 80–83)

Knockdown(s) Promoted cancer cell proliferation and  
invasion in vitro and tumor growth in vivo

Antagonized Bcl-w oncogene, which can activate 
phosphoinositide 3-kinase (PI3K)/Akt/MMP2 pathway; 
effects on p53 and c-myc are cell-type specific

(71, 79)

PER1, 2, 
and 3

Immunohistochemical  
assay(s) and qRT-PCR

Downregulated in ER-positive breast  
cancer cells

Methylation in PER promoter in ER+/PR+ breast  
cancer tissues

(70, 75, 76)

Knockdown(s) Aberrant circadian oscillation of other clock 
genes; enhanced tumor growth in vivo; 
changed the structure of breast acinus

Coupling with E2–ER pathway and p53 pathway (66)

Overexpression Significantly inhibited cell growth and  
promoted apoptosis

Inhibit the activation of ER and p53 target genes (64, 72)

CRY1 and 2 qRT-PCR Disrupted mRNA expressions in breast  
cancer cells

Not clear (67, 80)

REV-ERBα RNAi screen Co-expression in ERBB2-positive  
breast tumors (HER2+ subtype)

Upregulating several genes that are involved in  
de novo fatty acid synthesis, which further  
enhance the energy production for survival

(86)

REV-ERBβ Overexpression Protect tumor cells against chemotherapy Not clear (84)
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in immutable modifications, small molecules can be used in 
reversible, time- and dose-dependent manners (102, 103). One 
common example is the amelioration of jet lag via use of the 
hormone melatonin (104, 105). A double-blind trial showed that 
melatonin can significantly reduce jet lag and sleep disturbance 
in an international cabin crew (106). Small molecules can also be 
used to modify circadian rhythm periods to minimize chrono-
disruption resulting from shift work. Since the entrained phase 
is associated with circadian period, the period modification 
should change the preferred phase of behavior (107). Amplitude 
enhancement has also been shown to combat metabolic syn-
dromes (108), reverse age-related effects (109), and protect 
against psychiatric diseases (110).

Small molecules have been used to elucidate the connections 
between circadian rhythms and breast cancer, for example the 
role of REV-ERBs in the HER2+ subtype (111). The NR1D1 
(REV-ERBα coding gene) is connected to ERBB2 (HER2 coding 
gene) in the 17q12 amplicon, resulting in their co-expression in 
ERBB2-positive breast tumors (86). The same study suggested 
that REV-ERBα serves as a survival factor for HER2+ breast 
cancer cells. However, more recent work has shown disagree-
ments. By activating REV-ERBs via the synthetic agonist SR9011, 
decreased cell proliferation was observed in various breast 
cancer cells, independent of their ER or HER2 status (112). 
Another study found that dual inhibition of REV-ERBβ and 
autophagy by ARN5187, a novel REV-ERBβ ligand, can induce 
cytotoxicity in breast cancer cells (84). It was also shown that 
REV-ERBβ was dominantly expressed in breast tumor samples, 
while REV-ERBα was the predominant form in normal tissues. 

be taken into consideration (95), since many malignant transfor-
mations occur posttranscriptionally.

CiRCADiAn CHROnOTHeRAPY AnD 
CAnCeR TReATMenT

Nearly, all metabolic functions are regulated in a circadian man-
ner: food intake, digestion, detoxification, breakdown, and storage  
of sugars and fats (96–98). When organs are exposed to xeno-
biotics (e.g., drugs or environmental toxicants), they undergo 
classical absorption, distribution, metabolism, and elimination 
processes, which are all regulated by circadian clocks (11). 
Hence, accounting for circadian rhythms in the development 
of treatments and dosing regimens has the potential to improve 
disease outcomes. Two recent studies reported the effects of 
chemotherapy on circadian rhythms in patients with metastatic 
colorectal cancer (99, 100). It was found that chemotherapy-
induced disruption was observed in approximately 50% of the 
patients and was correlated with shortened overall survival rate. 
Eliminating this perturbation has been suggested to reduce 
toxicity and enhance efficacy of chemotherapy.

Recently, compounds that specifically target clock compo-
nents and/or modulate its oscillations have received a great 
deal of attention (101). There are many advantages to the usage 
of small molecules in studies of circadian-related diseases: (1) 
they can help us to better understand the molecular circadian 
network; (2) they can serve as lead structures for developing 
drugs; and (3) unlike genetic approaches, which can result 
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Overexpressed REV-ERBβ appeared to result in protection that 
made tumor cells resistant to chloroquine, a clinically relevant 
lysosomotropic agent suppressing autophagy. With ARN5187 
treatment, REV-ERB-mediated transcription was inhibited. 
Grimaldi et al. suggested that this compound has the potential 
to serve as an anticancer agent (84). Although clock modulators 
alone may not be sufficient to induce anticancer effects, com-
bined treatment with well-established anticancer drugs should 
enhance their potency and efficacy, and reduce toxicity of the 
drugs. Characterization of disrupted circadian patterns in vari-
ous types of cancer can provide clues for the application of clock 
modulators in combination with anticancer drugs to achieve the 
best possible therapeutic results.

COnCLUSiOn

Circadian rhythms are essential to the regulation of many 
physiological and behavioral functions in mammals. Their 
disruption has been linked to development of many health 
problems, including breast cancer. This is supported by 
epidemiological evidence, assessing both shift workers and 
people exposed to chronic jet lag. The status of core circadian 
clock components has also been evaluated in cancerous versus 
healthy tissues, and the significance of these components has 
been investigated via overexpression or deletions. While more 
recent studies have addressed changes in oscillations across 
cancer types, investigations at higher resolutions are required 
to facilitate more thorough analysis. From the work reviewed 
here, it is clear that circadian rhythms and proto-oncogenes/

signaling pathways (e.g., PI3KCA, p53, or E2–ER) can both 
affect one another. However, the molecular mechanisms behind 
these associations are not well understood, and currently very 
few studies exist that examine the effects of altered rhythms on 
oncogenic pathways. Future work should also take advantage 
of existing technologies (including high-resolution confocal 
microscopy) (113) to track and analyze dynamic circadian 
oscillations at the single-cell level. While posttranscriptional 
and -translational modifications are also critical elements of 
the puzzle, real-time monitoring of these processes remains 
difficult to achieve. By increasing knowledge of the molecular 
mechanisms associated with disrupted clocks in cancer, new 
therapeutics and adjuvants can be developed with enhanced 
efficacy against the disease.
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In mammals, the suprachiasmatic nucleus (SCN), the master circadian clock, is mainly 
synchronized to the environmental light/dark cycle. SCN oscillations are maintained by a 
molecular clockwork in which certain genes, Period 1–2, Cry1–2, Bmal1, and Clock, are 
rhythmically expressed. Disruption of these genes leads to a malfunctioning clockwork 
and behavioral and physiological rhythms are altered. In addition to synchronization of 
circadian rhythms by light, when subjects are exposed to food for a few hours daily, 
behavioral and physiological rhythms are entrained to anticipate mealtime, even in the 
absence of the SCN. The presence of anticipatory rhythms synchronized by food sug-
gests the existence of an SCN-independent circadian pacemaker that might be depend-
ent on clock genes. Interestingly, rabbit pups, unable to perceive light, suckle milk once 
a day, which entrains behavioral rhythms to anticipate nursing time. Mutations of clock 
genes, singly or in combination, affect diverse rhythms in brain activity and physiological 
processes, but anticipatory behavior and physiology to feeding time remains attenuated 
or unaffected. It had been suggested that compensatory upregulation of paralogs or 
subtypes genes, or even non-transcriptional mechanisms, are able to maintain circadian 
oscillations entrained to mealtime. In the present mini-review, we evaluate the current 
state of the role played by clock genes in meal anticipation and provide evidence for 
rabbit pups as a natural model of food-anticipatory circadian behavior.

Keywords: circadian rhythms, clock gene mutant, restricted feeding, food entrainment, corticosterone, PeR1 
protein

inTRODUCTiOn

The suprachiasmatic nucleus (SCN), located in the ventral forebrain lateral to the third ventricle, is 
the master circadian pacemaker necessary for the control of endogenous physiological and beha­
vioral rhythms in mammals (1). At the cellular level, a group of genes, known as clock genes, are 
necessary to generate and sustain circadian rhythms controlled by the SCN. This clock mechanism 
is a transcription–translation autoregulatory feedback loop with the positive arm comprised of 
Clock and Bmal1 genes and their proteins. CLOCK and BMAL1 proteins form heterodimers that 
bind to E­box enhancer elements in the promoter region of the Period (Per1–2) and Cryptochrome 
(Cry1–2) genes to activate their transcription. In turn, PER and CRY proteins constitute the negative 
arm of the loop. CLOCK and Bmal1 also activate the transcription of retinoic orphan receptor α, 
β, and REV­ERBα,β,γ, which form an auxiliary loop driving rhythmic Bmal1 transcription with 
activating and repressing actions, respectively.
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TABle 1 | Summary of the effects of clock genes mutations in circadian 
locomotor activity rhythms and food-anticipatory activity (FAA).

Clock gene Circadian 
alteration 
(locomotion)

FAA 
(locomotion, 
wheel-running)

Reference

ClockΔ19 Arrhythmic in DD Normal Pitts et al. (8)
Npas2 Normal Delayed Dudley et al. (9)
Bmal1 Arrhythmic in DD Normal Bunger et al. (10) and 

Pendergast et al. (11)
Bmal1 
(brain-
specific)

Shortened period 
in DD

Attenuated Mieda and Sakurai (12)

Per1 Shortened period 
in DD

Normal Zheng et al. (13) and  
Feillet et al. (14)

Per2Brdm1 Arrhythmic in DD Absent/normal Zheng et al. (15),  
Feillet et al. (14), and 
Pendergast et al. (16)

Per2 
(liver-specific)

Normal in DD Absent Chavan et al. (17)

Cry1–2 Arrhythmic in DD Attenuated van der Horst et al. (18) 
and Iijima et al. (19)

Rev-erbα Shortened period 
in DD

Attenuated Preitner et al. (20) and 
Delezie et al. (21)
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In mammals, light is the main entraining signal for circadian 
rhythms. However, food also can be a synchronizer. When rats 
are fed one meal per day, within a few days they display “food­
anticipatory activity” [FAA (2–4)], with arousal and an increase 
in locomotor behavior occurring some hours before mealtime. 
August Forel was the first to describe this phenomenon around 
one century ago, showing that bees anticipate the time of morning 
meals (4). In rats, in addition to increase in locomotor behavior, 
there is also an increase in serum levels of corticosterone and core 
body temperature before mealtime (5).

Food­anticipatory activity exhibits circadian properties such 
as limits of entrainment close to 24 h, transient cycles following 
phase shifts and persistence during fasting conditions [Rev (3)]. 
Following the discovery of the SCN as the locus of the master cir­
cadian clock, whether the SCN also served as the neural substrate 
of FAA was explored. Surprisingly, the anticipatory increase in 
locomotor activity, core body temperature, and corticosterone in 
food­entrained rats was not abolished by lesions of the SCN (5). 
This and subsequent experiments led to a search for the exist­
ence of a food­entrainable oscillator (3) distinct from the SCN 
light­entrainable oscillator. Many neural loci and glands were 
examined as potential sites regulating FAA, including the adrenal 
gland, several brain regions in the hypothalamus (i.e., ventrome­
dial, dorsomedial and paraventricular nuclei, lateral preoptic 
area), the parabrachial nuclei, olfactory bulb (OB), hippocampal 
formation, cerebellum, amygdala and nucleus accumbens, among 
others [Rev (6, 7)]. In all cases, lesions or excision failed to abolish 
FAA. These studies suggested that FAA lies in a specific, unknown 
locus or, perhaps more likely, consists of an organized, distributed 
system of interacting structures both at the central and peripheral 
levels (7). In the present overview, we provide evidence for a role 
of clock genes in FAA, providing a new strategy to explore this 
phenomenon.

CiRCADiAn GeneS RelevAnT TO FOOD 
AnTiCiPATiOn

Clock genes serve as key elements for the generation of circadian 
oscillations in the SCN. When one of these elements is rendered 
non­functional, alterations in behavioral and physiological 
rhythms appear. Because FAA is under the control of a circadian 
mechanism, it is logical to hypothesize that clock gene mutations 
might also affect FAA (Table 1).

One of the first studies pointing to a role for clock genes in 
FAA comes from studies of ClockΔ19 gene mutant mice (8). The 
circadian locomotor behavior of these mice is arrhythmic when 
animals are exposed to constant darkness (DD) conditions (22, 23).  
When exposed to restricted­feeding schedules, ClockΔ19 mice 
show strong FAA and its persistence during food deprivation 
indicates that the Clock gene is not necessary for FAA. While this 
study suggested that Clock is not essential for FAA, it was later 
shown that the Npas2 gene can compensate for the loss of Clock, 
acting as a positive transcription factor in the SCN to maintain cir­
cadian oscillations (24). This finding suggested that Npas2 might 
be implicated in the regulation of FAA. Indeed, Npas2 mutant 
mice exposed to temporally restricted feeding show altered FAA, 

requiring two or three more days to develop FAA relative to WT 
animals (9). Thus, Npas2 appears to be an important gene in the 
regulation of FAA. However, FAA does not disappear entirely in 
Npas2 mutant mice, indicating that other genes contribute to the 
maintenance of FAA.

As mentioned previously, the positive loop of the clockwork 
also includes Bmal1, a gene that is rhythmically expressed in the 
SCN and other peripheral oscillators (25). Global mutations of 
Bmal1 lead to arrhythmic behavior when animals are in DD con­
ditions (10), while FAA is normal in these animals (11). However, 
in one study, Bmal1 deletions confined to the dorsomedial hypo­
thalamus eliminated FAA (26). The reason for this discrepancy 
is not readily clear; because methods and protocols to measure 
locomotor activity differ between studies, this conclusion remains 
to be confirmed (26, 27). Importantly, in another study using 
mice with a nervous system­specific deletion of Bmal1, excluding 
the SCN clock, it was demonstrated that FAA is strongly affected, 
suggesting the necessity of Bmal1 in an extra­SCN brain locus 
for FAA (12). Further confirming a role for Bmal1 in FAA, in 
Rev-erbα­mutant mice exposed to restricted­feeding schedules, 
FAA was negatively affected (21). Rev-erbα is a transcription fac­
tor with a repressor activity on Bmal1 (20).

With regard to the negative arm of the clockwork, double Cry 
gene mutations (Cry1–2) lead to arrhythmic behavior in mice held 
under DD (18) and FAA is markedly reduced (19). Per genes (1–2), 
also important components of the negative loop, are essential in 
the control of circadian rhythmicity. These genes are expressed 
rhythmically in diverse brain structures and peripheral organs 
[liver, heart, and lung (13, 15, 28)]. Whereas Per1−/− mutants 
show normal FAA, FAA is absent in Per2Brdm1­mutant mice 
(14). However, in a more recent examination of the same Per2 
mutant mice, FAA was not altered (16). Thus, the effects of global 
mutations of Per2 on FAA remain to be clarified. Interestingly, 
when Per2 is knock down specifically in the liver, FAA is totally 
eliminated and can be rescued by viral overexpression of liver 
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Per2 (17). This study indicates that FAA is not only dependent 
upon the brain but that it also requires normal Per2 expression 
in the liver for its manifestation, confirming that Per2 is likely 
an important component of the molecular mechanisms of FAA 
(Table 1).

Most studies of FAA examine rodents under a schedule of 
food restriction. However, most animals in their natural environ­
ments do no experience food restriction on a circadian schedule. 
In contrast, rabbit pups are fed for brief periods on a circadian 
schedule in nature and the lab. Thus, in the present contribution, 
we present evidence that supports notion that the rabbit pup 
constitutes a natural model of food entrainment.

FAA in THe RABBiT

Rabbit pups are born altricial, they have no fur, their eyelids and 
outer ears are sealed, and they remain in the maternal burrow in 
darkness for the first 2 weeks of their life (29). Behavioral studies 
(29, 30) confirm that shortly after parturition the mother leaves 
the nest and returns every day with a circadian periodicity to 
nurse pups whether they are maintained in continuous light or 
in light–dark conditions (31, 32). Although parturition occurs 
throughout the day, the time of nursing is rapidly established on 
lactation day 1 and then nursing occurs every 24 h at around the 
same hour every night, 03:52 h across lactation days 1–15 (33, 34).

lOCOMOTOR BeHAviOR

Although pups are not entrained by the light–dark cycle (their 
eyes do not open until postnatal day 10) (35), they receive peri­
odic time cues through feeding. Every day at around the same 
time they ingest up to 35% of their body weight in milk (36) in 
around 5 min (31, 32). Hence food, in this case milk, seems to 
be a potent zeitgeber for rabbit pups. To explore in detail behav­
ioral, physiological, and neural consequences of timed feeding, 
we scheduled nursing at two different hours, at 10:00 a.m. and 
at 02:00 a.m. (i.e., during the day and during the night, respec­
tively) from postnatal (PD) 1. At PD3 (02:00 a.m. group) and PD4 
(10:00 a.m. group), despite their altricial condition, pups show a 
significant increase in locomotor behavior 2 h before the mother’s 
arrival. Immediately after suckling, locomotor behavior decreases 
and pups remain inactive and huddled in the nest. Moreover, this 
locomotor increase persists for 2 days in nurse­deprived pups at 
the same hour of the last nursing (37).

CORTiCOSTeROne

In contrast to neonatal rodents which are in a stress hyporespon­
sive period (38), we found that 7­ to 9­day­old rabbits exhibit 
rhythmic secretion of corticosterone with higher plasma levels 
at the time of nursing, reaching a nadir 12 h later and increasing 
again in advance of the next nursing bout (39). Peak levels of 
corticosterone shift in parallel with the nursing schedule either 
during the day or the night and persist during fasting conditions 
(40, 41), indicating entrainment by time of nursing. In adult 
rodents this hormone reaches a peak at the time of food presenta­
tion (5, 42). See Figure 1.

CORe BODY TeMPeRATURe

Rabbit pups maintained in constant dim light exhibit a 24­h 
rhythm of core body temperature with a significant anticipatory 
rise of 0.4–0.6°C around 3 h before daily nursing. This increase is 
followed by a secondary postprandial rise, followed within 1–3 h 
by a temperature drop. Moreover, during a 48­h fast, the anticipa­
tory rise in temperature persists, while the postprandial increase 
in temperature does not (45, 47). These results indicate that the 
anticipatory increase is endogenous and entrained by the timing 
of nursing, whereas the postprandial increase is induced by food 
ingestion. In Figure 1, we present a comparison of daily rhythms 
of locomotor activity, corticosterone release and body tempera­
ture in relation to FAA in adult rodents and rabbit pups. In these 
species, there are changes in FOS protein, clock genes, and PER1 
protein in some brain structures described further below.

ClOCK GeneS AnD FAA in THe  
RABBiT PUP

Olfactory Bulb
Postnatal day 7 pups receive temporal time cues through the brief 
daily visit by their mother and ingestion of a meal once a day. To 
successfully ingest milk, pups depend on their OB to detect the 
emission of a mammary pheromone (48) and to grasp the nipple; 
anosmic pups are unable to suckle milk and will die of starvation 
(49). At PD7, rhythms of the clock genes Per1, Bmal1, and Cry1 
are already established in the OB, whereas a clear rhythm is not 
detected until PD45 in the SCN (50). The earlier maturation of 
the clockwork in the OB is consistent with the dependence on 
suckling at this age. Analysis of PER1 protein in the OB has been 
explored to determine the pattern of rhythms in this protein rela­
tive to the timing of suckling. At PD7, neonatal rabbits express 
robust rhythms of PER1 in layers of both main and accessory OBs 
that shift in parallel to the timing of suckling (i.e., either during 
the day or during the night). Moreover, PER1 expression persists 
during fasting conditions. Additionally, significant increases 
in FOS protein were detected at the time of suckling (i.e., dur­
ing FAA), suggesting that the OB has a clock mechanism that 
anticipates nursing (51). This finding is consistent with previous 
work showing that the OB has an SCN­independent circadian 
pacemaker (52).

A milk/nipple stimulus appears to be important for OB oscilla­
tions. In this regard, the role of a mammary pheromone has been 
explored as an entraining signal (50); however, its importance 
remains unclear as the pheromone was applied at concentrations 
far beyond the effective concentration to elicit the oral nipple 
grasping response (53). Additionally, food has been explored as 
the entraining signal. In neonatal rabbits, the intragastric infusion 
of milk formula at PD7 once during the day or during the night 
without any maternal contact entrained rhythms of locomotor 
behavior and CORT, with peak values at the time of FAA. The 
milk stimulus also entrained rhythms of PER1 in hypothalamic 
nuclei (see below). These rhythms shift in parallel to the timing 
of milk formula infusion, demonstrating that food, in this case 
milk, is sufficient to entrain behavioral, physiological, and neural 
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FiGURe 1 | Physiological, behavioral, and neural changes associated with food-anticipatory activity and the molecular clockwork. Daily rhythms of locomotor 
activity ( ), corticosterone ( ), and body temperature ( ) increase in anticipation of the time of feeding in both species. The molecular 
clock is comprised of two principal feedback loops for the expression of clock genes. In the positive loop (green) the proteins CLOCK/NPAS2 and BMAL1 act on the 
transcription sites of Per, Cry, and Rev-erbα genes to induce their mRNA expression. Once the final proteins of PER and CRY (negative loop; red) are produced, 
these have the ability to repress their own transcription via an inhibitory action on the Clock-Npas2/Bmal1 dimer. The REV-ERBα protein is a transcriptional repressor 
for the Bmal1 gene driving rhythmic Bmal1. FOS protein expression and rhythms of clock genes and proteins in several brain nuclei synchronize to mealtime. DMH, 
dorsomedial hypothalamic nucleus; LH, lateral hypothalamus; MnPO, median preoptic nucleus; OB, olfactory bulb; OVLT, organum vasculosum of lamina terminalis; 
PeF, perifornical nucleus; paraventricular nucleus; SON, supraoptic nucleus; TM, tuberomammillary nucleus. Vertical bar and big arrow, feeding time. Figure derived 
from data previously published by: Angeles-Castellanos et al. (43), Caba et al. (37), Escobar et al. (44), Honma et al. (42), Jilge et al. (45), Mistlberger (7), Morgado 
et al. (40, 41, 46), and Rovirosa et al. (39).

4

Caba and Mendoza FAA in Rodents and Rabbit

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 266

parameters in the neonatal rabbit (46), similar to what is seen 
in nursed pups. In contrast, the mammary pheromone is likely 
necessary for nipple detection, but not FAA.

Suprachiasmatic nucleus
In the SCN, there is a rhythm of PER1 in nursed and fasted pups 
fed either during the day or the night from PD1 (37). More impor­
tantly, there is a shift in PER1 peak expression of 2.5 h between 
day and night nursed pups, suggesting an entraining effect of 
timed nursing on the pup’s SCN. A larger shift of Per1, Per2, and 
Bmal1 rhythms was demonstrated by shifting the time of nursing 
from PD4–PD7 (54). However, in this same study, there was a 
spontaneous advance in Per1 of around 7 h from PD3 to PD9 in 
pups nursed at the same time since birth. Therefore, it is not clear 
if the influence of ontogenetic development of the SCN on the 
shift in clock genes is mediated by the timing of nursing. Although 
retinal projections are present in the SCN at birth, the nucleus is 
immature in its response to a light pulse until PD12 (55). Despite 
methodological differences, it is possible that the pups’ SCN is 
sensitive to non­photic cues. The effect of food restriction on the 

SCN has been reported in adult rats and may be involved in the 
neural mechanism of food entraining (56), although, as already 
mentioned, this nucleus is not essential for FAA.

Other Brain Structures
In the dorsomedial hypothalamic nucleus (DMH) there is a 
complete phase shift of PER1 in parallel to a change in the time 
of nursing that persists in fasted pups (37). These results agree 
with publications in rodents (57, 58), indicating that the DMH 
might play an important role in food entrainment, although not 
as the unique brain structure regulating FAA (17). PER1 has been 
also analyzed in the median preoptic nucleus (MnPO), organum 
vasculosum of lamina terminalis, and medial preoptic area (59). 
However, a robust rhythm of PER1 is only detected in the MnPO 
at the time of FAA, a rhythm that persists during fasting. To our 
knowledge, there are no reports regarding a role of the MnPO 
in FAA in rodents, pointing to a need for further exploration. In 
the brainstem the dorsal vagal complex (DVC) and parabrachial 
nucleus (PBN) express PER1 in neonatal rabbits. Whereas the 
DVC shows rhythms related to food ingestion, the PER1 rhythm 
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was entrained by milk intake in the PBN, a rhythm that persists 
during fasting (60). It is possible that changes in PER1 are due 
to food ingestion as the paraventricular, supraoptic, and tubero­
mammillar nuclei shows PER1 rhythms that shift in parallel to 
the timing of intragastric milk formula infusion (46).

MeTABOliC AnD HORMOnAl SiGnAlS 
AnD THe RewARD SYSTeM

Metabolic fuels such as glycogen and free fatty acids follow a 
rhythm associated with the full and empty stomach to maintain 
stable glucose levels; those levels are maintained even in fast­
ing conditions (40, 41). Interestingly, the orexigenic hormone, 
ghrelin, which acts on the arcuate nucleus, also follows a rhythm 
with peak levels 12 h after the last nursing, likely participating in 
triggering the next FAA episode (40, 46). Indeed, in rats under 
restricted feeding, plasma ghrelin levels peak before mealtime (61) 
and, in combination with leptin, modulates the reward circuitry 
by acting on dopaminergic neurons in the ventral tegmental area 
to reinforce FAA (62, 63).

COnClUSiOn

Food­anticipatory activity is the expression of a circadian phe­
nomenon in different species, usually studied in adult subjects. 
Here, we demonstrate that the neonatal rabbit circadian system 

is an ideal natural model to study the brain and molecular 
mechanism of FAA. FAA depends, in part, on some clock genes 
expressed in a circadian network of brain structures, oscillating in 
synchrony, and coordinated by the SCN. Combining information 
on brain clock gene expression in rabbit pups with mouse models 
of clock gene mutations for the study of FAA will help increase 
understanding of the molecular mechanisms implicated in food 
anticipation in the wild.

AUTHOR COnTRiBUTiOnS

MC and JM contributed to the writing of the manuscript and 
approved the final version.

ACKnOwleDGMenTS

The authors gratefully acknowledge Manuel Hernandez Pérez 
for their invaluable help in preparing Figure and table and to Dr. 
Antonio N Nunez, Dr. Alison Fleming, and Dr. Lance Kriegsfeld 
for corrections.

FUnDinG

JM is supported by Agence Nationale de la Recherche (grant ANR­
14­CE13­0002­01 ADDiCLOCK JCJC) and the Institut Danone 
France­Fondation pour la Recherche Médicale Consortium.

ReFeRenCeS

1. Moore RY. The suprachiasmatic nucleus and the circadian timing system. 
In: Guillette MU editor. Progress in Molecular Biology and Translational 
Science. (Vol. 119), Elsevier (2013). p. 1–28.

2. Mistlberger RE. Circadian food­anticipatory activity: formal models and phy­
siological mechanisms. Neurosci Biobehav Rev (1994) 18:171–95. doi:10.1016/ 
0149­7634(94)90023­X 

3. Stephan FK. The “other” circadian system: food as a zeitgeber. J Biol Rhythms 
(2002) 17:284–92. doi:10.1177/074873002129002591 

4. Antle MC, Silver R. Neural basis of timing and anticipatory behaviors. Eur 
J Neurosci (2009) 30:1643–9. doi:10.1111/j.1460­9568.2009.06959.x 

5. Krieger DT, Hauser LC. Suprachiasmatic nuclear lesions do not abolish 
food­shifted circadian adrenal and temperature rhythmicity. Science (1977) 
197:398–9. doi:10.1126/science.877566 

6. Davidson AJ. Lesion studies targeting food­anticipatory activity. Eur J Neur-
osci (2009) 30:1658–64. doi:10.1111/j.1460­9568.2009.06961.x 

7. Mistlberger RE. Neurobiology of food anticipatory circadian rhythms. Physiol 
Behav (2011) 104:535–45. doi:10.1016/j.physbeh.2011.04.015 

8. Pitts S, Perone E, Silver R. Food­entrained circadian rhythms are sustained 
in arrhythmic Clk/Clk mutant mice. Am J Physiol Regul Integr Comp Physiol 
(2003) 285:R57–67. doi:10.1152/ajpregu.00023.2003 

9. Dudley CA, Erbel­Sieler C, Estill SJ, Reick M, Franken P, Pitts S, et al. Altered 
patterns of sleep and behavioral adaptability in NPAS2­deficient mice. Science 
(2003) 301(5631):379–83. doi:10.1126/science.1082795 

10. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB,  
et al. Mop3 is an essential component of the master circadian pacemaker in 
mammals. Cell (2000) 103(7):1009–17. doi:10.1016/S0092­8674(00)00205­1 

11. Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T, Yamazaki S. 
Robust food anticipatory activity in BMAL1­deficient mice. PLoS One (2009) 
4(3):e4860. doi:10.1371/journal.pone.0004860 

12. Mieda M, Sakurai T. Bmal1 in the nervous system is essential for normal 
adaptation of circadian locomotor activity and food intake to periodic 

feeding. J Neurosci (2011) 31(43):15391–6. doi:10.1523/JNEUROSCI.2801­ 
11.2011 

13. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, et al. Nonredundant 
roles of the mPer1 and mPer2 genes in the mammalian circadian clock.  
Cell (2001) 105(5):683–94. doi:10.1016/S0092­8674(01)00380­4 

14. Feillet CA, Ripperger J, Magnone MC, Dulloo A, Albrecht U, Challet E. 
Lack of food anticipation in Per2 mutant mice. Curr Biol (2006) 16:2016–22. 
doi:10.1016/j.cub.2006.08.053 

15. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, et al. The mPer2 
gene encodes a functional component of the mammalian circadian clock. 
Nature (1999) 400(6740):169–73. doi:10.1038/22118 

16. Pendergast JS, Wendroth RH, Stenner RC, Keil CD, Yamazaki S. mPeriod2 
(Brdm1) and other single Period mutant mice have normal food anticipatory 
activity. Sci Rep (2017) 7(1):15510. doi:10.1038/s41598­017­15332­6 

17. Chavan R, Feillet C, Costa SS, Delorme JE, Okabe T, Ripperger JA, et al. Liver­
derived ketone bodies are necessary for food anticipation. Nat Commun 
(2016) 7:10580. doi:10.1038/ncomms10580 

18. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, 
et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian 
rhythms. Nature (1999) 398(6728):627–30. doi:10.1038/19323 

19. Iijima M, Yamaguchi S, van der Horst GT, Bonnefont X, Okamura H, Shibata S.  
Altered food­anticipatory activity rhythm in Cryptochrome­deficient mice. 
Neurosci Res (2005) 52:166–73. doi:10.1016/j.neures.2005.03.003 

20. Preitner N, Damiola F, Lopez­Molina L, Zakany J, Duboule D, Albrecht U, 
et  al. The orphan nuclear receptor REV­ERBalpha controls circadian tran­
scription within the positive limb of the mammalian circadian oscillator.  
Cell (2002) 110(2):251–60. doi:10.1016/S0092­8674(02)00825­5 

21. Delezie J, Dumont S, Sandu C, Reibel S, Pevet P, Challet E. Rev­erbalpha in 
the brain is essential for circadian food entrainment. Sci Rep (2016) 6:29386. 
doi:10.1038/srep29386 

22. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD,  
et al. Mutagenesis and mapping of a mouse gene, clock, essential for circadian 
behavior. Science (1994) 264(5159):719–25. doi:10.1126/science.8171325 

86

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/
0149-7634(94)90023-X
https://doi.org/10.1016/
0149-7634(94)90023-X
https://doi.org/10.1177/074873002129002591
https://doi.org/10.1111/j.1460-9568.2009.06959.x
https://doi.org/10.1126/science.877566
https://doi.org/10.1111/j.1460-9568.2009.06961.x
https://doi.org/10.1016/j.physbeh.2011.04.015
https://doi.org/10.1152/ajpregu.00023.2003
https://doi.org/10.1126/science.1082795
https://doi.org/10.1016/S0092-8674(00)00205-1
https://doi.org/10.1371/journal.pone.0004860
https://doi.org/10.1523/JNEUROSCI.2801-11.2011
https://doi.org/10.1523/JNEUROSCI.2801-11.2011
https://doi.org/10.1016/S0092-8674(01)00380-4
https://doi.org/10.1016/j.cub.2006.08.053
https://doi.org/10.1038/22118
https://doi.org/10.1038/s41598-017-15332-6
https://doi.org/10.1038/ncomms10580
https://doi.org/10.1038/19323
https://doi.org/10.1016/j.neures.2005.03.003
https://doi.org/10.1016/S0092-8674(02)00825-5
https://doi.org/10.1038/srep29386
https://doi.org/10.1126/science.8171325


6

Caba and Mendoza FAA in Rodents and Rabbit

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 266

23. McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC,  
et  al. Regulation of dopaminergic transmission and cocaine reward by the 
Clock gene. Proc Natl Acad Sci U S A (2005) 102(26):9377–81. doi:10.1073/
pnas.0503584102 

24. Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. 
A clock shock: mouse CLOCK is not required for circadian oscillator function. 
Neuron (2006) 50(3):465–77. doi:10.1016/j.neuron.2006.03.041 

25. Takahashi JS. Molecular components of the circadian clock in mammals. 
Diabetes Obes Metab (2015) 17(Suppl 1):6–11. doi:10.1111/dom.12514 

26. Fuller PM, Lu J, Saper CB. Differential rescue of light­ and food­entrainable 
circadian rhythms. Science (2008) 320(5879):1074–7. doi:10.1126/science. 
1153277 

27. Mistlberger RE, Kent BA, Landry GJ. Phenotyping food entrainment: motion 
sensors and telemetry are equivalent. J Biol Rhythms (2009) 24(1):95–8. 
doi:10.1177/0748730408329573 

28. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. 
Interacting molecular loops in the mammalian circadian clock. Science (2000) 
288(5468):1013–9. doi:10.1126/science.288.5468.1013 

29. Broekhuizen S, Mulder JL. Differences and similarities in nursing behaviour 
of hares and rabbits. Acta Zool Fenn (1983) 174:61–3. 

30. Caba M, Gonzalez­Mariscal G. The rabbit pup, a natural model of nursing­ 
anticipatory activity. Eur J Neurosci (2009) 30:167–1706. doi:10.1111/j.1460­ 
9568.2009.06964.x 

31. Jilge B. The ontogeny of circadian rhythms in the rabbit. J Biol Rhythms (1993) 
8:247–60. doi:10.1177/074873049300800307 

32. Jilge B. Ontogeny of the rabbit’s circadian rhythms without an external zeit­
geber. Physiol Behav (1995) 58:131–40. doi:10.1016/0031­9384(95)00006­5 

33. González­Mariscal G, Lemus AC, Vega­Gonzalez A, Aguilar­Roblero R. Litter 
size determines circadian periodicity of nursing in rabbits. Chronobiol Int 
(2013) 30:711–8. doi:10.3109/07420528.2013.784769 

34. González­Mariscal G, Caba M, Martínez­Gómez M, Bautista A, Hudson R. 
Mothers and offspring: the rabbit as a model system in the study of mamma­
lian maternal behavior and sibling interactions. Horm Behav (2016) 77:30–41. 
doi:10.1016/j.yhbeh.2015.05.011 

35. Rapisardi SC, Chow KL, Mathers LH. Ontogenesis of receptive field charac­
teristics in the dorsal lateral geniculate nucleus of the rabbit. Exp Brain Res 
(1975) 22:295–305. doi:10.1007/BF00234771 

36. Caba M, Rovirosa MJ, Silver R. Suckling and genital stroking induces Fos 
expression in hypothalamic oxytocinergic neurons of rabbit pups. Brain Res 
Dev Brain Res (2003) 143:119–28. doi:10.1016/S0165­3806(03)00064­6 

37. Caba M, Tovar A, Silver R, Morgado E, Meza E, Zavaleta Y, et al. Nature’s 
food anticipatory experiment: entrainment of locomotor behavior, supra­
chiasmatic and dorsomedial hypothalamic nuclei by suckling in rabbit pups.  
Eur J Neurosc (2008) 27:432–43. doi:10.1111/j.1460­9568.2008.06017.x 

38. Levine S. The ontogeny of the hypothalamic­pituitary­adrenal axis. The influ­
ence of maternal factors. Ann NY Acad Sci (1994) 746:275–88. doi:10.1111/ 
j.1749­6632.1994.tb39245.x 

39. Rovirosa MJ, Levine S, Gordon MK, Caba M. Circadian rhythm of corticoste­
rone secretion in the neonatal rabbit. Brain Res Dev Brain Res (2005) 8:92–6. 
doi:10.1016/j.devbrainres.2005.06.007 

40. Morgado E, Gordon MK, Miñana­Solis MC, Meza E, Levine S, Escobar C, et al. 
Hormonal and metabolic rhythms associated with the daily scheduled nursing 
in rabbit pups. Am J Physiol Regul Integr Comp Physiol (2008) 295(2):R690–5. 
doi:10.1152/ajpregu.00162.2008 

41. Morgado E, Meza E, Gordon MK, Pau FKY, Juárea C, Caba M. Persistence 
of hormonal and metabolic rhythms during fasting in 7­ to 9­day old rab­
bits entrained by nursing during the night. Horm Behav (2010) 58:465–72. 
doi:10.1016/j.yhbeh.2010.05.003 

42. Honma K­I, Noe Y, Noe Y, Honma S, Katsuno Y, Hiroshige T. Roles of 
paraventricular catecholamines in feeding­associated corticosterone rhythm 
in rats. Am J Physiol Endocrinol Metab (1992) 25:E948–55. doi:10.1152/
ajpendo.1992.262.6.E948 

43. Angeles­Castellanos M, Aguilar­Roblero R, Escobar C. c­Fos expression in 
hypothalamic nuclei of food­entrained rats. Am J Physiol Regul Integr Comp 
Physiol (2004) 286:R158–65. doi:10.1152/ajpregu.00216.2003 

44. Escobar C, Martínez­Merlos MT, Angeles­Castellanos M, Miñana MC, Buijs 
R. Unpredictable feeding schedules unmask a system for daily resetting of 

behavioural and metabolic food entrainment. Eur J Neurosci (2007) 26:2804–
14. doi:10.1111/j.1460­9568.2007.05893.x 

45. Jilge B, Kuhnt B, Landerer W, Rest S. Circadian thermoregulation in suckling rab­
bit pups. J Biol Rhythms (2000) 15:329–35. doi:10.1177/074873000129001431 

46. Morgado E, Juárez C, Melo AI, Domínguez B, Lehman MN, Escobar C, et al. 
Artificial feeding synchronizes behavioral, hormonal, metabolic and neural 
parameters in mother­deprived neonatal rabbit pups. Eur J Neurosci (2011) 
34:1807–16. doi:10.1111/j.1460­9568.2011.07898.x 

47. Trejo­Muñoz L, Navarrete E, Montúfar­Chaveznava R, Caldelas I. 
Determining the period, phase and anticipatory component of activity and 
temperature patterns in newborn rabbits that were maintained under a daily 
nursing schedule and fasting conditions. Physiol Behav (2012) 106:587–96. 
doi:10.1016/j.physbeh.2012.04.005 

48. Schaal B, Coureaud G, Langlois D, Giniès C, Sémon E, Perrier G. Chemical 
and behavioural characterization of the rabbit mammary pheromone. 
Nature (2003) 424:68–72. doi:10.1038/nature01739 

49. Distel H, Hudson R. The contribution of the olfactory and tactile modalities 
to the nipple­search behaviour of newborn rabbits. J Comp Physiol A (1985) 
157:599–605. doi:10.1007/BF01351354

50. Montúfar­Chaveznava R, Trejo­Muñoz L, Hernández­Campos O, Navarrete E,  
Caldelas I. Maternal olfactory cues synchronize the circadian system of arti­
ficially raised newborn rabbits. PLoS One (2013) 8(9):e74048. doi:10.1371/
journal.pone.0074048 

51. Nolasco N, Juárez C, Morgado E, Meza E, Caba M. A circadian clock in the 
olfactory bulb anticipates feeding during food anticipatory activity. PLoS 
One (2011) 7(10):e47779. doi:10.1371/journal.pone.0047779 

52. Granados­Fuentes D, Prolo LM, Abraham U, Herzog ED. The suprachiasmatic 
nucleus entrains but does not sustain, circadian rhythmicity in the olfactory 
bulb. J Neurosci (2004) 24:615–9. doi:10.1523/JNEUROSCI.4002­03.2004 

53. Coureaud G, Langlois D, Sicard G, Schaal B. Newborn rabbit responsiveness 
to the mammary pheromone is concentration­dependent. Chem Senses 
(2004) 29:341–50. doi:10.1093/chemse/bjh037 

54. Caldelas I, González B, Montúfar­Chaveznava R, Hudson R. Endogenous 
clock gene expression in the suprachiasmatic nuclei of previsual newborn 
rabbits is entrained by nursing. Dev Neurobiol (2009) 69:47–59. doi:10.1002/
dneu.20687 

55. Juárez C, Morgado E, Meza E, Waliszewski SM, Aguilar­Rbolero R, Caba M. 
Development of retinal projections and response to photic input in the supra­
chiasmatic nucleus of New Zealand white rabbits. Brain Res (2013) 1499:21–8. 
doi:10.1016/j.brainres.2013.01.010 

56. Acosta­Galvan G, CX Y, van der Vliet J, Jhamandas JH, Panula P, Angeles­
Castellanos M, et al. Interaction between hypothalamic dorsomedial nucleus 
and the suprachiasmatic nucleus determines intensity of food anticipatory 
behavior. Proc Natl Acad Sci U S A (2011) 108:5813–8. doi:10.1073/
pnas.1015551108 

57. Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is 
critical for the expression of food­entrainable circadian rhythms. Nat Neurosci 
(2006) 9:398–407. doi:10.1038/nn1651 

58. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The 
dorsomedial hypothalamic nucleus as a putative food­entrainable circadian 
pacemaker. Proc Natl Acad Sci U S A (2006) 103:12150–5. doi:10.1073/
pnas.0604189103 

59. Moreno ML, Meza E, Ortega A, Caba M. The median preoptic nucleus 
exhibits circadian regulation and is involved in food anticipatory activity in 
rabbit pups. Chronobiol Int (2014) 31:515–22. doi:10.3109/07420528.2013. 
874354 

60. Juárez C, Morgado E, Waliszewski SM, Martínez AJ, Meza E, Caba M. 
Synchronization of PER1 protein in parabrachial nucleus in a natural 
model of food anticipatory activity. Eur J Neurosci (2012) 35:1458–65. 
doi:10.1111/j.1460­9568.2012.08051.x 

61. Patton DF, Katsuyama AM, Pavlovski I, Michalik M, Patterson Z, Parfyonov 
M, et  al. Circadian mechanisms of food anticipatory rhythms in rats fed 
once or twice daily: clock gene and endocrine correlates. PLoS One (2014) 
9(12):e112451. doi:10.1371/journal.pone.0112451

62. van Zessen R, van der Plasse G, Adan RA. Contribution of the mesolimbic 
dopamine system in mediating the effects of leptin and ghrelin on feeding. 
Proc Nutr Soc (2012) 71:435–45. doi:10.1017/S0029665112000614 

87

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1073/pnas.0503584102
https://doi.org/10.1073/pnas.0503584102
https://doi.org/10.1016/j.neuron.2006.03.041
https://doi.org/10.1111/dom.12514
https://doi.org/10.1126/science.1153277
https://doi.org/10.1126/science.1153277
https://doi.org/10.1177/0748730408329573
https://doi.org/10.1126/science.288.5468.1013
https://doi.org/10.1111/j.1460-
9568.2009.06964.x
https://doi.org/10.1111/j.1460-
9568.2009.06964.x
https://doi.org/10.1177/074873049300800307
https://doi.org/10.1016/0031-9384(95)00006-5
https://doi.org/10.3109/07420528.2013.784769
https://doi.org/10.1016/j.yhbeh.2015.05.011
https://doi.org/10.1007/BF00234771
https://doi.org/10.1016/S0165-3806(03)00064-6
https://doi.org/10.1111/j.1460-9568.2008.06017.x
https://doi.org/10.1111/j.1749-6632.1994.tb39245.x
https://doi.org/10.1111/j.1749-6632.1994.tb39245.x
https://doi.org/10.1016/j.devbrainres.2005.06.007
https://doi.org/10.1152/ajpregu.00162.2008
https://doi.org/10.1016/j.yhbeh.2010.05.003
https://doi.org/10.1152/ajpendo.1992.262.6.E948
https://doi.org/10.1152/ajpendo.1992.262.6.E948
https://doi.org/10.1152/ajpregu.00216.2003
https://doi.org/10.1111/j.1460-9568.2007.05893.x
https://doi.org/10.1177/074873000129001431
https://doi.org/10.1111/j.1460-9568.2011.07898.x
https://doi.org/10.1016/j.physbeh.2012.04.005
https://doi.org/10.1038/nature01739
https://doi.org/10.1007/BF01351354
https://doi.org/10.1371/journal.pone.0074048
https://doi.org/10.1371/journal.pone.0074048
https://doi.org/10.1371/journal.pone.0047779
https://doi.org/10.1523/JNEUROSCI.4002-03.2004
https://doi.org/10.1093/chemse/bjh037
https://doi.org/10.1002/dneu.20687
https://doi.org/10.1002/dneu.20687
https://doi.org/10.1016/j.brainres.2013.01.010
https://doi.org/10.1073/pnas.1015551108
https://doi.org/10.1073/pnas.1015551108
https://doi.org/10.1038/nn1651
https://doi.org/10.1073/pnas.0604189103
https://doi.org/10.1073/pnas.0604189103
https://doi.org/10.3109/07420528.2013.874354
https://doi.org/10.3109/07420528.2013.874354
https://doi.org/10.1111/j.1460-9568.2012.08051.x
https://doi.org/10.1371/journal.pone.0112451
https://doi.org/10.1017/S0029665112000614


7

Caba and Mendoza FAA in Rodents and Rabbit

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 266

63. van der Plasse G, van Zessen R, Luijendijk MCM, Erkan H, Stuber GD, 
Ramakers GMJ, et al. Modulation of cue­induced firing of ventral tegmental 
area dopamine neurons by leptin and ghrelin. Int J Obes (2015) 39:1742–9. 
doi:10.1038/ijo.2015.131 

Conflict of Interest Statement: The authors declare that the research was con­
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer OV and handling Editor declared their shared affiliation.

Copyright © 2018 Caba and Mendoza. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribution 
or reproduction in other forums is permitted, provided the original author(s) and the 
copyright owner are credited and that the original publication in this journal is cited, 
in accordance with accepted academic practice. No use, distribution or reproduction 
is permitted which does not comply with these terms.

88

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1038/ijo.2015.131
https://creativecommons.org/licenses/by/4.0/


MINI REVIEW
published: 21 June 2018

doi: 10.3389/fendo.2018.00340

Frontiers in Endocrinology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 340

Edited by:

Pierrette Gaudreau,

Université de Montréal, Canada

Reviewed by:

Fiorenzo Conti,

Università Politecnica delle Marche,

Italy

Alexander A. Mongin,

Albany Medical College, United States

*Correspondence:

Arturo Ortega

arortega@cinvestav.mx

Specialty section:

This article was submitted to

Neuroendocrine Science,

a section of the journal

Frontiers in Endocrinology

Received: 09 February 2018

Accepted: 05 June 2018

Published: 21 June 2018

Citation:

Chi-Castañeda D and Ortega A (2018)

Circadian Regulation of Glutamate

Transporters.

Front. Endocrinol. 9:340.

doi: 10.3389/fendo.2018.00340

Circadian Regulation of Glutamate
Transporters

Donají Chi-Castañeda and Arturo Ortega*

Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del

Instituto Politécnico Nacional, Mexico City, Mexico

L-glutamate is the major excitatory amino acid in the mammalian central nervous system

(CNS). This neurotransmitter is essential for higher brain functions such as learning,

cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed

to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried

out by a family of sodium-dependent high-affinity transporters, collectively known as

excitatory amino acid transporters. Dysfunction of glutamate transporters is generally

involved in acute neuronal injury and neurodegenerative diseases, so characterizing

and understanding the mechanisms that lead to the development of these disorders

is an important goal in the design of novel treatments for the neurodegenerative

diseases. Increasing evidence indicates glutamate transporters are controlled by the

circadian system in direct and indirect manners, so in this contribution we focus on the

mechanisms of circadian regulation (transcriptional, translational, post-translational and

post-transcriptional regulation) of glutamate transport in neuronal and glial cells, and their

consequence in brain function.

Keywords: circadian rhythms, clock genes, EAATs, glutamate transporters, neurodegenerative disorders

CIRCADIAN BIOLOGICAL CLOCK

Life has adapted to 24-h rhythms, better known as circadian rhythms (1). Consequently, a large
number of organisms have circadian clocks that anticipate daytime and establish endogenous 24-
h rhythms, which organize their physiology and behavior (2, 3). These endogenous rhythms are
synchronized with the environment through external signals, the so-called zeitgebers (“time giver”
in German), being the light the principal time cue (4).

Intracellularly, the mechanisms involved in circadian regulation are transcription-translation
feedback loops of a group of genes denominated clock genes (5–7). In mammals, Brain muscle
arnt-like 1 (BMAL1) and Circadian locomotor output cycles kaput (CLOCK) complexes control
the periodic expression of Cryptochrome 1 and 2 (Cry1 and 2), and Period 1 and 2 (Per1 and
2), whose protein products inhibit BMAL1 and CLOCK, as well as their own transcription (5–
8). These circadian transcription factors regulate thousands of clock-controlled genes, which
orchestrate diverse physiological, metabolic and behavioral functions, resulting in a synchronized
organism (3). Most tissues and cell types in the body possess a molecular clock (peripheral clocks)
synchronized by the principal pacemaker located in the suprachiasmatic nucleus (SCN) of the
anterior hypothalamus (2, 3, 9). Approximately, around 2–30% of each tissue’s transcriptome is
rhythmically synthesized (10, 11).

In mammals, the SCN receives direct photic input from photosensitive retinal ganglion cells
via the retinohypothalamic tract (RTH) (12, 13). This tract mainly uses glutamate (Glu) as its
neurotransmitter; however, pituitary adenylate cyclase-activating peptide (PACAP) and substance
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P are two peptide co-transmitters that also participate in
retino-hypothalamic transmission (14–16). Interestingly, it has
been shown that both of these co-transmitters regulate Glu
neurotransmission, although the mechanism by which it is
carried out remains unknown (15, 17–19). In vivo and in vitro
studies have identified both metabotropic and ionotropic Glu
receptors in the SCN (20–22), although it has been demonstrated
that specific distribution and abundance of each Glu receptor
subunit differs in this structure resulting in different effects of Glu
on SCN neurons (21).

GLUTAMATE

Glutamate (Glu), the main excitatory neurotransmitter in
the mammalian central nervous system (CNS), activates
two subtypes of Glu receptors: ionotropic (iGluRs) and
metabotropic (mGluRs) (23–25). The first group refers
to a family of ligand-gated ion channels that have been
classified by means of their pharmacological properties into:
N-methyl-D-aspartate (NMDA), and α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate (AMPA) and kainate (KA)
receptors (24). The second subtype of Glu receptors belongs to
class C of G-protein-coupled receptors, and its classification is
based on the homology of their sequences, pharmacology, and
signal transduction mechanisms (23, 25). It includes group I
(mGluR1 and mGluR5), group II (mGluR2 and mGluR3) and
group III (mGluR4, mGluR6, mGluR7, and mGluR8) (23, 25).
Both subtypes of Glu receptors are widely expressed on pre- and
post-synaptic terminals as well as on astrocytes that surround
synapses (23, 26, 27).

Glu concentration in the synaptic cleft is in the lowmillimolar
range (28, 29). However, after periods of intense glutamatergic
activity, an excessive extracellular Glu concentration leads to an
overstimulation of Glu receptors resulting in neuronal death,
a phenomenon known as excitotoxicity, which is involved
in neurodegenerative diseases (26, 30). In this context, Glu
uptake from the extracellular space plays an essential role in
the prevention of excitotoxic insults (28). A family of Na+-
dependent high affinity Glu transporters carries out the Glu
removal from the synaptic space. The excitatory amino acid
transporters (EAATs) comprise five different Glu transporters:
Glu/aspartate transporter (GLAST), Glu transporter 1 (GLT1),
excitatory amino acid carrier 1 (EAAC1), excitatory amino acid
transporter 4 (EAAT4), and excitatory amino acid transporter
5 (EAAT5) or EAAT 1-5 according to rodent and human
nomenclature, respectively (28, 31–36). These transporters
display a 50–60% amino acid sequence similarity, although
different pharmacological and molecular properties, structure,
and expression patterns are present for each subtype (28, 37).
Within the CNS, Glu transporters have differential cell expression
(glial or neuronal) (31, 36, 38–40). GLAST and GLT1 are
found predominantly in the astrocytic plasma membrane (38–
40), whereas EAAC1/EAAT4/EAAT5 are neuronal transporters
mainly localized in hippocampal neurons, Purkinje cells, and rod
photoreceptor and bipolar cells of the retina, respectively (31, 35,
36, 38, 41). However, GLT1 expression in neurons (28, 42–44),

as well as EAAC1 and EAAT4 immunoreactivity in cortical and
spinal cord astrocytes have also been reported (45, 46). GLAST
and GLT1 carry out ∼80–90% of the Glu uptake in the brain
(28), and decreased expression and/or malfunction of these Glu
transporters are related to several neurodegenerative disorders
like Parkinson’s, Huntington’s and Alzheimer’s diseases (47–49).

GENERAL CHARACTERISTICS OF

GLUTAMATE TRANSPORTERS IN

NEURODEGENERATIVE DISEASES

Through an antisense approach, it has been demonstrated that
Glu transporters malfunction is involved in neurodegeneration
in normal animals (47). Subsequently, Tanaka and colleagues
reported, in mice lacking GLT1, a decrease of transport activity,
lethal seizures and increased susceptibility to neurotoxicity (48).
Years later, several research groups have demonstrated the
role of Glu transporters in various neurodegenerative diseases.
For example, Alzheimer’s disease (AD) patients and animal
models display a dramatic decrease in Glu transporters protein
expression and in Glu uptake that is not correlated to its mRNA
levels, demonstrating that other levels of regulation are present
(50–54). In addition, Scott and coworkers described that GLT1
mRNA alternative splicing controls Glu uptake both in disease
and in normal conditions (55). Moreover, glial Glu transporters
have aberrant expression in distinct types of neurons (56, 57).

In the case of Parkinson’s disease (PD), as with AD, there is
also a decrease in Glu uptake; in PD, Glu transporters have an
unusual trafficking between membrane and cytoplasm leading
a decrease in Glu transporters at the plasma membrane (58).
This phenomena relies in Glu transporters’ ubiquitination by the
E3 ubiquitin ligase Nedd4-2 (neuronal precursor cell expressed
developmentally down-regulated 4–2) (58).

Likewise, Glu transporters have a critical role in Huntington’s
disease (HD), in which the expression of these transporters is
diminished, the symptoms of HD worsen (59). In this sense, it
has been demonstrated that aberrant huntingtin reduces GLT1
activity, either by dysfunction of the transporter itself or a
transcriptional down-regulation, aggravating excitotoxicity (59,
60).

It is well-known that Glu transporters are regulated at
different levels, at the transcriptional translational and post
translational levels through modifications of transporter protein,
as well as by the transporter targeting and trafficking (61–64).
Nevertheless, there is compelling evidence demonstrating that
Glu transporters are regulated in a circadian fashion.

CIRCADIAN REGULATION OF GLUTAMATE

TRANSPORTERS

Transcriptional, Translational, and

Post-translational Regulation
Until today, it has been demonstrated that in SCN both Glast
mRNA and protein levels present a diurnal rhythm in 12/12 h
light-dark conditions (65). According to these results, it has
been proven that in the Per2 mutant mice, GLAST protein is
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arrhythmic, highlighting the presence of a circadian regulation
(65). Subsequently, using a cortical astrocytes culture fromNpas2
andClockmutantmice, it was reported a decrease inGlastmRNA
and protein levels, implying that glial Glu uptake is modulated
via clock genes expression: Per2, Clock, and Npas2 (66, 67).
CLOCK and NPAS2 proteins are involved in Glast transcription
or in Glast mRNA translation and/or stability (28), while PER2
modulates GLAST and by these means Glu uptake. In this sense,
modifications in NPAS2 and/or CLOCK diminish PER2 levels
and Glu uptake (66). More recently, it has been reported that
glial Glu uptake within the SCN is modulated in a diurnal fashion
(high levels of uptake during the light phase) but it does not
exhibit circadian fluctuations (68). Leone and colleagues also
report that Glu uptake activity does not change in constant
darkness (68). It is important to mention that the possibility
that Glu uptake is regulated by circadian clock in vivo cannot be
ruled out. In line with these results, another research group also
reported that Glu uptake in SCN is increased during the circadian
day (22). Brancaccio and coworkers demonstrated that astrocytes
modulate circadian timekeeping in SCN through glutamatergic
signaling, and identified the presence of self-sustained circadian
oscillations of Glu extracellular levels (22). The authors suggest
that, in the light phase, Glu uptake is mediated by EAATs,
including GLAST, GLT-1, and EAAC1 (22). These results could
indicate that both Glu release and uptake are regulated in a
circadian fashion.

It is reasonable to suggest that when there is a lack of
GLAST transporter, compensation via upregulation of GLT1
is favored (65). For instance, in the Per2 mutant mice it has
been determined a shift in GLT1 protein maximal expression,
from zeitgeber time 6 (ZT6, in control mice) to ZT18 (65),
indicating that GLT1 protein is regulated by circadian clock.
It is important to mention that shift in maximal expression of
the GLT1 transporter correlates with ZT in which there is a
downregulation of GLAST (65), suggesting that total uptake of
Glu could be modulated by clock.

Through the use of in situ hybridization techniques in SCN,
supraoptic nuclei, cingulate cortex and reticular thalamus of rats
in constant darkness, it was found that Eaac1 mRNA expression
was rhythmic only in the SCN (69). Circadian expression of
this transporter is associated with GABAergic activity regulation
in the SCN, due an increased demand of GABA synthesis and
release, immediately preceded by an increase in Eaac1 mRNA
expression (69). Increase in the expression of this transporter
contributes to the neuronal clearance of Glu, which in fact is
a precursor of GABA. Within the SCN, 95% of neurons are
GABAergic (70), and together with astrocytes regulate circadian
timekeeping through glutamatergic signaling (22), suggesting an
important role of Glu transporters in the internal timekeeping
system. In contrast, Kinoshita and colleagues could not find any
a circadian-mediated Eaac1mRNA expression neither in serum-
shocked SH-SY5Y cells and mouse mesencephalon by qRT-
PCR (71). Taking together, these results suggest that temporal
changes in Eaac1 mRNA might be controlled by circadian
clock in a tissue-dependent fashion. In addition, Kinoshita and
collaborators also described that EAAC1 protein expression
exhibits a diurnal variation in a 12/12 h light/dark cycle in mouse
mesencephalon (71).

Post-transcriptional Regulation (Circadian

MicroRNAs)
In recent years, the proposal for a novel circadian regulatory
system has been gaining ground. MicroRNAs (miRNAs) are a
good example of a system that can rapidly respond to external
stimuli since it is activated without changes in transcription
and/or translation (71). In this context, miRNAs have revealed to
be a key factor in the regulation of several circadian components
(72–75). It has also been proved that peripheral oscillators exert
circadian regulation overmiRNAs expression (73–78). Increasing
evidence indicates that miRNAs controlled by the circadian
clock, regulate Glu transporters. Thus, miRNA-124 increases
GLAST expression (79), while miRNA-142-3p and miRNA-155-
5p decrease it (80, 81). Moreover, it has been demonstrated
that miRNA-124 and miRNA-181a positively regulate GLT1
(82, 83), while miRNA-107 inhibits GLT1 expression (84).
Specifically, EAAC1 rhythm is negatively controlled by miRNA-
96-5p (71), miRNA-26a-5p (85) and miRNA-101b (86). This
former miRNA also negatively regulates to EAAC1 protein (86).
However, no evidence shows that miRNAs can target EAAT4 and
EAAT5.

FUTURE DIRECTIONS

In the last two decades, several research groups have examined
the different signaling pathways that modulate glial Glu
transporters expression (GLAST and GLT1). Scarce information
about EAAC1, EAAT4, and EAAT5 transporters is available.
Particularly, EAAC1 has a much less evolutionarily conserved

sequence in the 5
′

noncoding region compared to GLAST
and GLT-1, hindering the identification of cis- and trans-
elements involved in its transcriptional regulation. Specifically,
the circadian regulation of Glu transporters is an emerging
theme that promises to be an indispensable tool in the
preventing and/or treatment of diseases related to alterations in
glutamatergic system. Future research should be directed to study
of molecular mechanisms involved in circadian modulation of
these transporters.

CONCLUSION

Optimal functioning and precise regulation of Glu removal
from the synaptic cleft is critical to prevent an excitotoxic
insult and thus avoid several neurodegenerative pathologies.
To date, compelling evidence suggests that Glu transporters
could be regulated in a circadian fashion (Figure 1). It
is clear that desynchronization or aberrant functioning of
circadian system results in significant health consequences.
In this sense, disruptions in the circadian regulation of
Glu transporters is likely to be involved in neurological
disorders like Parkinson, Huntington and Alzheimer diseases.
Therefore, a better understanding of the molecular mechanisms
that participate in the circadian regulation of EAATs might
prove important for the proper development of therapeutic
strategies aimed to prevent and/or treat pathologies related to
excitotoxicity.
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FIGURE 1 | Direct and indirect circadian regulation of EAATs. Glutamatergic synapse which is composed of presynaptic neuron, postsynaptic neuron and glial cell

compartment are represented. Some clock genes indirectly up-regulate GLAST; while several miRNAs directly down- or up-regulate GLAST, GLT-1, and EAAC1.

Green arrows represent up-regulation, red arrows indicate down-regulation, and orange arrow denotes inhibition. The illustration of day/night indicates that transporter

present a circadian rhythm in 12/12 h light/dark conditions. Numbers in parentheses refer to cited publications. CLOCK, circadian locomotor output cycles kaput;

EAAC1, excitatory amino acid carrier 1; GLAST, glutamate aspartate transporter; Gln, glutamine; GLT-1, glutamate transporter 1; Glu, glutamate; NPAS2, neuronal

PAS domain-containing protein 2; PER2, period 2; SNATs, sodium-coupled neutral amino acid transporters; VGluT, vesicular glutamate transporter.
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In healthy humans, seasonality has been documented in psychological variables,

chronotype, sleep, feeding, metabolic and autonomic function, thermoregulation,

neurotransmission, and hormonal response to stimulation, thus representing a relevant

factor to account for, especially when considering the individual susceptibility to disease.

Mood is largely recognized as one of the central aspects of human behavior influenced

by seasonal variations. This historical notion, already mentioned in ancient medical

reports, has been recently confirmed by fMRI findings, which showed that seasonality

in human cognitive brain functions may influence affective control with annual variations.

Thus, seasonality plays a major role in mood disorders, affecting psychopathology, and

representing the behavioral correlate of a heightened sensitivity to factors influencing

circannual rhythms in patients. Although the genetic basis of seasonality and seasonal

affective disorder (SAD) has not been established so far, there is growing evidence that

factors affecting the biological clock, such as gene polymorphisms of the core clock

machinery and seasonal changes of the light-dark cycle, exert a marked influence on the

behavior of patients affected by mood disorders. Here we review recent findings about

the effects of individual gene variants on seasonality, mood, and psychopathological

characteristics.

Keywords: seasonality, mood disorders, clock genes, circadian rhythm, seasonal affective disorder

INTRODUCTION

Seasonality is a central aspect of environmental variability, which has strongly influenced life on
Earth by driving the development of biodiversity among living organisms and the evolution of
extreme physiological adaptations and behaviors, such as migration and hibernation. In most
species, periodic variations of environmental conditions, particularly those related to the light-dark
cycle and depending on latitude, season, and time of day, require that internal timing mechanisms
induce the adaption of behavioral or physiological functions to such changes (1).

Biological rhythms with an approximate 24-h period, close to the daily light-dark cycle, are
known as circadian rhythms and defined by three fundamental properties: persistence of an∼24-h
rhythm, entrainability, and temperature compensation (2). The observation that these endogenous
processes are also present among organisms such as cyanobacteria, which represent one of the
earliest and most primitive species, suggests that circadian rhythms implicated a clear evolutionary
advantage (1).
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CLOCK GENES AND MOOD REGULATION

At the cellular level, circadian rhythms are generated
by a core molecular clock consisting of multiple
transcriptional/translational feedback loops (3). The
transcription factors circadian locomotor output cycles kaput
(CLOCK) and brain and muscle Arnt-like (ARNTL), or neuronal
pas domain protein 2 (NPAS2) proteins, dimerize and initiate
the expression of the clock proteins PERIOD (PER1, PER2,
PER3), and CRYPTOCHROME (CRY1, CRY2). With rising
accumulation, PER1-3 and CRY1/2 inhibit CLOCK:ARNTL
(or CLOCK:NPAS2) activity and therefore block their own
expression (3). An additional feedback loop is generated by
CLOCK:ARNTL (or CLOCK:NPAS2) mediated transcription
of REV-ERB and RORs, which in turn also regulate ARNTL
transcription (see Figure 1).

As recently reviewed by Albrecht, there is already solid
scientific evidence showing that the above-mentioned proteins
“not only self-promote their own temporally fluctuating
transcription, but also regulate the transcription of a large
number of clock-controlled genes (CCGs) and/or modulate key
molecular pathways via protein–protein interactions, such as the
monoaminergic system, the HPA axis or neurogenic pathways”
[(4), p. 1]. Several cellular processes in the brain are under the
control of the circadian clock, including “differentiation,
growth, motility and apoptosis, immune functions and
neuroinflammation, neurogenesis, and neuroplasticity” [(5),
p. 236]. A desynchronization of the circadian gene network
and disruption of its downstream mechanisms has therefore
widespread potential implications for a vast array of physiological
processes.

Hampp et al. demonstrated that the functional triade of PER2,
ARNTL, andNPAS2 and their encoded proteins, directly regulate
the activation of the monoamine oxidase A gene (Maoa). In
fact, the transcription and activity of the MAOA enzyme in
the mesolimbic neurons is decreased in mice carrying a genetic
deletion of the Per2 gene, causing an increase of the dopamine
levels and an altered neuronal activity in the striatum, as well as
behavioral changes (6, 7).

Dopamine is an important neurotransmitter in the reward

system, and its levels in the nucleus accumbens show a circadian
rhythmicity (6, 8). Considering that many other brain areas of the
reward system, including the ventral tegmental area, prefrontal
cortex, and amygdala, are also involved in both mood regulation
and clock genes expression, this suggests that the entire reward
circuit may be under the influence of the circadian clock, via
dopamine metabolism (5).

Cryptochromes (CRY2 and CRY1) are key components of
the molecular clock, which drive several functions of the
circadian pacemaker (9) and are necessary for the development
of intercellular networks in the suprachiasmatic nucleus (10).
CRY2 and CRY1 proteins are functionally repressors of the
transcription-translation loops, and inhibitors of the cyclic
adenosine monophosphate signal pathway (11–14). Due to these
important molecular properties at the circadian clock level, it has
been suggested that CRY2 and CRY1 may play a major role in the
metabolism of glucose and lipids (15, 16) and contribute to mood

regulation on daily basis, as well as to seasonal variations inmood
and behavior (17).

Finally, PER3 is one of the most robustly rhythmic genes
in humans and animals, playing a significant role in the
temporal organization of peripheral tissues and being associated
with diurnal preference, mental disorders, non-visual responses
to light, as well as brain and cognitive responses to sleep
loss/circadian misalignment (18). Some genetic variants are
supposed to interfere with the stabilizing effect of PER3 on
PERIOD1/2 proteins, which play critical roles in circadian
timing. These findings suggest that PER3 may represent an
important element of the missing molecular linkage between
sleep and mood regulation by adapting these processes to
seasonal changes (19).

CLOCK GENES IN MOOD DISORDERS

Several human population genetic studies have identified specific
single nucleotide polymorphisms (SNPs) or variable number of
tandem repeats (VNTR, see Supplementary Table 1) of different
circadian clock genes that are associated with mood disorders
(20, 21). These associations remain controversial, since most
findings could either not be replicated or hold up to correction
for multiple testing (22). From a pathophysiological point
of view, recent experimental work, and mathematical models
suggest that changes in period length and/or decreased amplitude
of the circadian oscillation may depend on the impact of
specific polymorphisms on the overall function in terms of
structure and stability of a given clock protein (23). By as
of yet poorly understood processes, the resulting functional
changes of the clock-machinery and misalignment between
clock-regulated functions and the environment can influence
core psychopathological features of mood disorders, including
the timing of onset and recurrence of illness episodes, individual
symptomatology, and response to treatments (5).

Depressive Disorder
In depressive disorder (DD) (7), two TIMELESS polymorphisms
have been found to be associated with excessive daytime fatigue

among women, as well as a two-way interaction of TIMELESS
and ARNTL (rs1868049) with early-morning awakening among
men (24). Lavebratt et al. demonstrated that RORA, PER2, and
NPAS2 are associated with DD and the onset of depression
within 3 years independently from financial strain (25). Both
an increased or decreased PER3 transcriptional activity may
implicate a higher risk for MDD. In particular, Shi and colleagues
identified a missense mutation in hPER3 (hPER3-P856A), which
slightly lengthens the circadian period and is related to MDD
in females, by likely driving changes in clock-controlled genes
as opposed to SCN timing. Moreover, the authors describe
other sex-dependent associations of common polymorphisms
with a CLOCK variant protective of MDD in males and NPAS2
polymorphisms with association of MDD especially in females
(26). NPAS2 and CRY1 were also linked with DD in a study
by Soria et al. (27), with the latter finding replicated by Hua
et al. (28), who, instead, did not find any association of CRY2
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FIGURE 1 | Molecular mechanisms of the circadian clockwork. Following the dimerization of the transcription factors circadian locomotor output cycles kaput

(CLOCK) and brain and muscle Arnt-like (ARNTL) or neuronal pas domain protein 2 (NPAS2) proteins, the expression of the clock proteins period (PER1, PER2, PER3)

and cryptochrome (CRY1, CRY2) is initiated. The PER and CRY proteins interact with the serine/threonine kinases casein kinase 1 δ/ε, (CK1 δ/ε) and form a complex

allowing nuclear translocation. In the nucleus they act as inhibitors of CLOCK:ARNTL (or CLOCK:NPAS2) activity and therefore block their own expression. An

additional feedback loop is generated by CLOCK:ARNTL (or CLOCK:NPAS2) mediated transcription of REV-ERB and rar-related orphan receptor A/B (RORA/B),

which in turn also regulate ARNTL transcription. Up to 10% of the human genome is under the influence of the molecular clock (clock-controlled genes, CCG). RORE:

ROR response element.

(rs10838524) with major depressive disorder (MDD). However,
Kovanen et al. suggested that CRY2 and the protein kinase C delta
binding protein (PRKCDBP, or CAVIN3) variants may represent
risk factors for MDD (29). Finally, the best association between
a SNP and MDD based on genome-wide association studies has
been found for NR1D1 (30).

Bipolar Disorder
The observation that patients with bipolar disorder (BD) show
alterations in circadian rhythms, and recurrent fluctuations of

mood and sleep disturbances (31) has suggested a possible
dysfunction of the biological clock in the pathogenesis of BD (32).
Moreover, since heritability in BD is estimated to be as high as
85% (33), an increasing interest in identifying genetic risk factors
has supported different association studies looking at the link
between BD and some core clock genes (7).

Significant SNPs associations with bipolar 1 disorder were
found for TIMELESS and ARNTL (34), as well as for NPAS2,
RORB 9, and CRY2 (35). Gonzalez et al. performed a family-
based association study of circadian genes and BD in a Latino
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population, reporting nominal associations between SNPs of
CSNK1E, ARNTL, CSNK1D, CLOCK, as well as statistically
significant associations between CSNK1E andARNTL haplotypes
and BD, with either increased susceptibility or protective effect
against the development of the disorder respectively (36). Shi
et al. demonstrated the three-way interaction of BHLHE40,
TMEM165 (transmembrane protein 165), and CSNK1E with
bipolar disorder (37), while McGrath et al. focusing their analysis
on the RORA and RORB genes, found that 4 RORB SNPs were
associated with bipolar 1 disorder (38). Etain et al. indicated a
significant association of TIMELESS and of RORA with BD (39),
while Lee et al. found CLOCK 3111T/C to have significant allelic
and genotypic associations with the disease (40). GSK3beta was
associated with bipolar type 2 disorder in women (41). General
associations of NR1D1 (42) and of VIP (27) with BD were also
reported. In genome-wide association studies, the associations of
ARNTL, GSK3beta, RORB, andCRY 2 gene variants with BD have
gained further support (30, 43).

Circadian Genes and Phenotypic
Characteristics in Bipolar Disorder
Genetic polymorphisms influencing clock genes functions have
shown major effects on the phenotypic clinical features of disease
(44). A SNP in CLOCK gene, which is known to influence diurnal
preference in healthy subjects (45), also impacts on bipolar
patients, leading to worsening of insomnia, higher evening
activity and delayed sleep onset. Carriers of the allelic C variant
also showed a higher episode recurrence rate and different
neuropsychological performance (46–48), while the G allele of
the same polymorphism has been linked with symptoms of
appetite disturbances in females (49). A correlation with violent
suicide attempts was shown for other SNPs in CLOCK and
TIMELESS, while the latter is also associated with the lifetime
number of suicide attempts and a positive family history of
suicide (50). A VNTR of PER3 gene was shown to influence the
general age of onset, as well as a postpartum depressive onset
of the disorder (51, 52). PER3 was also linked to an increased
preference for the evening hours in daily activity among BD
patients (42). Maciukiewicz et al. observed further associations
between SNPs of ARNTL variants with sleep, appetite and
depressive dimensions in BD (49).

A functional SNP in the promoter region of the GSK3beta
gene (nt−171 to+29), which also shows a general association to
impulsivity and suicide risk among patients with bipolar disease,
was found to influence the age at onset of BD, as well as the
response to treatment with antidepressant, lithium salts and
chronotherapeutics (53–55). This polymorphism was recently
shown to also influence white matter microstructure of bipolar
patients under ongoing lithium treatment (56) and gray matter
volumes in areas critical for the generation and control of affect
implicated in BD pathophysiology (57).

Other polymorphisms influencing treatment response, such as
the mood stabilizer effect of lithium salts (variant in the promoter
of NR1D1) and a general association with positive treatment
response (CRY1) have been described (58). Finally, Sjöholm et al.
identified two risk haplotypes and one protective haplotype in

the CRY2 gene associated with rapid cycling in BD (59) (see
Supplementary Table 1).

GENETICS OF SEASONALITY AND
SEASONAL AFFECTIVE DISORDER

The interplay between mood variations and seasonal rhythms
in humans has received renewed interest since the diagnosis of
Seasonal Affective Disorder (SAD) was proposed by Rosenthal
in 1984, as “a condition characterized by recurrent depressive
episodes that occur annually at the same time each year”
[(60), p. 72]. The observation that many adults experience a
“subsyndromal SAD”, with milder vegetative symptoms in the
fall/winter months (61, 62), suggested that “seasonality may be
a dimensional process rather than a discrete syndrome” [(63),
p. 315].

Serotonergic Genes
Although the genetic basis of seasonality and SAD has not
yet been completely identified, several studies suggest that
both conditions have an inherited component (64–66). From
a pathophysiological point of view, the typical symptoms of
SAD, such as overeating, carbohydrate craving, weight gain, and
oversleeping, point to a dysfunction of the serotonergic system
(66). Moreover, the serotonin level in the human hypothalamus
shows seasonal variations, with a general decrease during the
winter season (67). The serotonin hypothesis is also supported by
the large therapeutic evidence that selective serotonin reuptake
inhibitors (SSRIs) and bright light therapy are effective in winter
SAD (68–71), with reversion of this effect by rapid tryptophan
depletion (70, 72).

Therefore, the first pioneer genetic studies focused on the
molecular components of the serotonergic system (73). Rosenthal
et al. showed that the short (s), as opposed to the long (l),
allele of the 5-HT transporter linked polymorphism (5-HTTLPR)
contributes to the trait of seasonality and is a risk factor for SAD
(74). First reports showing an association of this variant with
general susceptibility and several features of the clinical course
among patients with SAD (75–77) could not be corroborated by
a meta-analysis by Johansson et al., but the authors concluded
that the polymorphismmay have an effect on seasonal behavioral
traits (78, 79).

Recent Positron Emission Tomography (PET) studies showed
a significantly higher activity of serotonin transporter binding
potential in several brain regions, during fall and winter,
compared to spring and summer, in healthy volunteers (80,
81). Furthermore, “the first [11C]DASB PET longitudinal study
investigating whole-brain seasonal 5-HTT fluctuations in both
patients with SAD and in healthy individuals reported that
a whole-brain seasonal change in 5-HTT predicted symptom
severity in patients with SAD, an effect primarily driven by
females with the short 5-HTTLPR genotype (S’ carriers)” [(82),
p. 2], (83). These findings were later confirmed by other groups
(83, 84).

The serotonin 5-HT2A receptor gene has also been proposed
as major candidate gene in association studies of seasonality

Frontiers in Endocrinology | www.frontiersin.org 4 August 2018 | Volume 9 | Article 48198

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Garbazza and Benedetti Genetics of Seasonality and Mood Disorders

and SAD (85, 86). In particular, it has been suggested
that “downregulation of 5-HT2A receptors may underlie the
therapeutic effects of SSRIs” [(64), p. 656], (87) and the
effectiveness of light therapy in the treatment of SAD has
also been linked to an alteration of the sensitivity of 5-HT2A
receptors (76). Moreover, specific sequence polymorphisms in
the coding region of the serotonin 5-HT2A receptor gene have
been found to be associated with the clinical features and
course of depressive disorder or directly with seasonality and
SAD (64, 86, 88–90).

Circadian Genes
Apart from an extensive connection between SAD and the
serotoninergic system, genes of the core clock family have also
been implicated in the disease. After a first report of a SNP
in NPAS2 being linked to SAD (91), Partonen et al. found
further SNPs of PER2, ARNTL, and NPAS2 to be associated with
seasonality and SAD (92, 93).

Kim et al. also reported an association of NPAS2 and ARNTL,
especially with the metabolic components of seasonality (body
weight and appetite). In addition, they found increased seasonal
variations of mood and behavior among individuals carrying a
CLOCK polymorphism previously implicated in bipolar disorder
(40, 46–48, 94). These recent findings are in contrast with a
previous work from the same group, showing that the same SNP
ofCLOCK is not associated with seasonal fluctuations in a sample
of Korean college students (95).

Furthermore, another recent investigation highlighted the
impact of two rare genetic variants of the PERIOD3 gene (PER3)
on a circadian phenotype and a seasonal mood trait, which may
be especially critical under conditions of short photoperiod (e.g.,
during the winter season) (19).

Other Genetic Findings
Environmental light detection in humans is mediated by
melanopsin containing intrinsically photosensitive retinal
ganglion cells (ipRGCs), which are located in the inner retina
(96–98). Some polymorphisms of the melanopsin gene may
be linked to a greater sensitivity to light, thus determining
functional variations in ipRGC activity. During shortened
photoperiods (e.g., during the winter months) this may
contribute to inter-individual differences in sleep and alertness
(99, 100). A missense variant (P10L) in the melanopsin (OPN4)
gene, which has also been found in SAD patients, has been
proposed to contribute to changes in melanopsin sensitivity (99).
Reduced retinal light sensitivity, especially during the winter
months, as a pathophysiological hypothesis of SAD (101–103)
recently gained first supporting evidence. A study by Roecklein
et al. found a reduced post-illumination pupil response (PIPR)
in SAD patients, compared with controls, in winter but not in
summer (104).

A study by Delavest et al. investigating the rs2072621
polymorphism of the X-linked GPR50 gene, a member of the
G protein-coupled melatonin receptor subfamily, found an
association with SAD in females, thus providing the first potential
gender-specific molecular link between the hormone melatonin
and SAD (105).

Yang et al. studied the relationship between ST8SIA2 and
NCAM1, two genes forming the polysialic acid neural cell
adhesion molecule (NCAM) complex in the SCN, and circadian
preferences, as well as seasonality, in healthy adult Korean
subjects. The association of 8 SNPs of ST8SIA2 and 2 SNPs of
NCAM1with seasonality remained significant after correction for
multiple testing (106).

Another study by Nam et al. found that the GNB3 (G-protein
β3 subunit) C825T polymorphism, which is associated with
various medical conditions (107, 108) and psychiatric disorders,
including recurrent winter depression or SAD (109, 110), also
plays a role in seasonal variations in mood, body weight, energy
level, and appetite, particularly in females.

CONCLUSIONS

Gene polymorphisms of the core clock machinery and seasonal
changes of the light-dark cycle substantially impact on the
behavior of patients with mood disorders. The relationship
between biological clock and behavior suggests a specific
sensibility of these patients to psychobiological factors
that can modify the circadian timing system, such as
environmental synchronizers (light phase and seasonal
photoperiod changes), and conditions directly perturbing
the clock (sleep deprivation, or phase advance/delay). These
factors can trigger or worsen the severity of mood disorders,
but also be successfully exploited to treat manic and depressive
episodes (111).

Current models of circadian homeostasis suggest that
the hierarchical control exerted by the SCN on circadian
rhythms of behavior, physiological functions, and on peripheral
clocks (112), interacts with homeostatic mechanisms that
also contribute to these phenomena. In rodents, a similar
dependence of behavior on clock gene mutations occurs in
the absence of other regulators of circadian rhythmicity,
such as melatonin, and is abolished when these homeostatic
components are restored (113). Therefore, we suggest that
the high sensitivity of mood-disordered patients to clock
gene variants is underpinned by a deficit in homeostatic
mechanisms regulating the circadian timing system. Recent
discoveries in humans of yet unknown circulating substances
affecting the circadian phenotype and overcoming the timing
of the clock gene machinery (114, 115), lead to hypothesize
that a systematic investigation of these mechanisms will shed
new light on the nature of circadian disruption in mood
disorders.
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