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Editorial on the Research Topic
 A comprehensive look at biomarkers in neurodegenerative diseases: from early diagnosis to treatment response assessment





1 Introduction

Neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), pose an escalating global health crisis, affecting millions worldwide and placing an immense burden on healthcare systems (GBD 2021 Nervous System Disorders Collaborators, 2024). A shared hallmark of many NDs is the misfolding, aggregation, and accumulation of specific proteins in the brain, events that often precede the onset of clinical symptoms (Sweeney et al., 2017). The identification and validation of reliable biomarkers that can detect these underlying pathological processes are crucial for improving diagnosis, predicting disease progression, and monitoring the efficacy of therapeutic interventions.

This Research Topic brings together a collection of original research articles and reviews that significantly contribute to our understanding of the aging brain and the mechanisms underlying NDs. The studies encompass a range of methodologies, from molecular investigations to clinical assessments and computational analyses, offering a multifaceted perspective of the role of different biomarkers across a wide spectrum of NDs, including tauopathies, synucleinopathies, prion diseases, and other proteinopathies associated with dementia and cognitive impairment.



2 Diagnostic biomarkers of AD and cognitive impairment

Early and accurate diagnosis remains a critical goal in managing neurodegenerative conditions, particularly AD, where pathological changes such as amyloid-β accumulation and tau pathology begin many years before the onset of clinical symptoms. Detecting these molecular alterations at the preclinical or prodromal stage is essential not only for enabling timely intervention and care planning but also for the effective recruitment and stratification of participants in clinical trials of disease-modifying therapies (Hansson, 2021). Nonetheless, biomarker positivity alone, particularly isolated amyloid or tau abnormalities, may not deterministically predict clinical symptom onset or fully capture the complex and multifactorial nature of AD pathology. This underscores the necessity of continued research into other contributing mechanisms, as well as longitudinal studies to more accurately assess lifetime risk and optimize preventive strategies (Dubois et al., 2024; Villain and Planche, 2024).

In this Research Topic, Zhang et al. explored the potential of novel ocular biomarkers for the early identification of mild cognitive impairment (MCI), highlighting the promise of non-invasive methods for both patients and healthcare providers. Similarly, Ibrahim et al. delved into the relationship between retinal microvascular density and inner thickness in AD and MCI, seeking to unravel significant retina map parameters associated with cognitive decline. Complementing these efforts, Ge et al. presented an EEG-based framework for the automated discrimination of conversion to AD in patients with amnestic MCI, providing robust longitudinal evidence for early prediction. Moreover, Wang et al. further contributed to AD diagnostics by investigating rhythmic power changes and phase differences using low-density EEG. Additionally, Xu et al. explored the diagnostic potential of urinary CX3CL1 for amnestic MCI and AD, suggesting a novel non-invasive candidate biomarker. In a study of Hsieh et al., the authors conducted a longitudinal assessment of plasma biomarkers for the early detection of cognitive changes in subjective cognitive decline (SCD), finding higher plasma Aβ42 levels in individuals with SCD compared to healthy controls.

Neuroimaging techniques provide another powerful avenue for biomarker discovery, offering structural, functional, and molecular insights into NDs (Young et al., 2020). In this Research Topic, Park et al. presented a deep learning-based quantification of brain atrophy using 2D T1-weighted MRI for AD classification, demonstrating the potential of artificial intelligence in enhancing the diagnostic ability of neuroimaging. In another study, Ruan et al. used multichannel functional near-infrared spectroscopy (fNIRS) to study cortical activation in elderly patients with AD dementia during working memory tasks, providing valuable data on functional brain changes.



3 Diagnostic biomarkers of PD

Beyond AD, accurate and early clinical diagnosis of PD will be increasingly crucial especially for future disease-modifying clinical trials (Koga et al., 2021) and the development of more personalized treatments. In this Research Topic, Chen et al. investigated the associations of motor and neuropsychiatric symptoms with comorbidities in prodromal PD, shedding light on the complex early manifestations of this disorder. Additionally, Li et al. focused on the reduced maximal range of ocular movements in PD and its response to acute levodopa challenge, identifying a potential clinical marker. Furthermore, Gu et al. demonstrated that serum neurofilament light chain (NfL) levels are significantly higher in PD patients and can predict cognitive impairment within a 2-year timeframe, suggesting NfL as a feasible biomarker. Finally, Lu et al. examined the correlations of erythrocytic oligomer α-synuclein levels with age, sex, and clinical variables in PD patients, exploring a potential peripheral biomarker.



4 Biomarkers and molecular mechanisms of NDs

While the identification of diagnostic biomarkers is essential, a deeper understanding of the molecular and cellular mechanisms driving neurodegenerative diseases is equally critical for informing therapeutic development (Wareham et al., 2022). Dissecting the complex interplay between genetic regulation, immune dysregulation, and neuronal dysfunction can uncover novel targets and pathways for intervention. Several contributions in this Research Topic offer important advances in elucidating these underlying mechanisms: Lin et al. utilized single-cell RNA sequencing to identify altered immune cell types and molecular mechanisms in AD progression, providing insights into the role of the immune system; Filomena et al. employed an integrated gene co-expression network analysis of hippocampus and fusiform gyrus RNA-seq datasets to identify deregulated long non-coding RNAs in AD, potentially revealing new therapeutic targets; Amelimojarad et al. reviewed the emerging role of brain neuroinflammatory responses in AD patients, highlighting chronic inflammation's contribution to AD pathology. In a model organism approach, Xue et al. studied olfactory dysfunction as an early pathogenic indicator in C. elegans models of AD and polyglutamine diseases, providing insights into early disease mechanisms. Furthermore, Liao et al. investigated the expression of Toll-like receptors in the cerebellum during the pathogenesis of prion disease in mice, contributing to our understanding of immune responses in neurodegeneration. Finally, Liang et al. examined whether serum TRPA1 mediates the association between olfactory function and cognitive function, suggesting a link between sensory and cognitive decline.



5 Risk factors and treatment response assessment in NDs

This Research Topic also addresses broader risk factors, the identification of which is crucial for effective prevention and targeted risk mitigation (Livingston et al., 2024), alongside strategies aimed at modifying disease progression and managing clinical symptoms. In a study of Sheng et al., the authors investigated the relationship between hyperthyroidism, hypothyroidism, thyroid-stimulating hormone, and dementia risk, utilizing both observational data and Mendelian randomization analysis to explore the role of thyroid function. Furthermore, Cheng et al. explored the connection between liver fibrosis and PD, highlighting potential systemic influences on neurodegenerative processes.

Among the studies assessing treatment response, Zhao et al. used fNIRS to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) in AD patients with depression, observing that rTMS led to a reduced prefrontal activation during a verbal fluency task and that this reduction was associated with an improvement in depressive symptoms. Finally, Manap et al. provided a comprehensive review on the current trends of effective diagnosis and therapeutics for AD, offering an overview of the latest advancements.



6 Conclusions

This Research Topic provides a comprehensive overview of the current landscape of biomarker research in NDs. The contributing articles highlight the diverse approaches being employed to identify and validate biomarkers for early diagnosis, differential diagnosis, and understanding disease progression across various NDs, including AD, PD, and prion diseases. The findings presented, ranging from the investigation of novel fluid and genetic markers to the application of imaging and artificial intelligence, as well as the exploration of systemic and immunological factors, collectively advance our understanding of the complex molecular mechanisms underlying these debilitating conditions. Continued research in this critical area holds immense promise for the development of more effective diagnostic tools and ultimately, disease-modifying therapies that can improve the lives of individuals affected by NDs.
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Introduction: Although restriction of vertical ocular range of motion is known to be the hallmark of progressive supranuclear palsy (PSP), the maximal amplitude of ocular movement has not been quantitatively assessed despite of accumulating evidences of oculomotor dysfunction in Parkinson's disease (PD). Here, we evaluated the maximal oculomotor range and its response to levodopa in PD, and compare findings to atypical parkinsonism.
Methods: We recruited 159 healthy controls (HC) as well as 154 PD, 30 PSP, and 16 multiple system atrophy (MSA) patients. Oculomotor range was assessed using a kinetic perimeter-adapted device for the vertical and horizontal axes (four positions). Parameters were reassessed after levodopa challenge and compared among PD, PSP, and MSA patients.
Results: Maximum oculomotor range in PD patients was reduced as compared to HC. Levodopa improved oculomotor range in all directions; corrective effects of upward range positively correlated with improvements in Unified Parkinson's Disease Rating Scale III and bradykinesia sub-scores among PD patients. Although oculomotor range was markedly restricted among PSP and MSA patients, the beneficial effects of levodopa was less pronounced. Reduced oculomotor range of motion was more significant among PSP as compared to PD or MSA patients; MSA patients did not significantly differ from PD patients. The range of upward gaze was optimally sensitive for differentiating among PD, PSP, and MSA patients.
Conclusion: Maximum oculomotor range was reduced among PD patients significantly improved by levodopa treatment. Variations in, as well as the positively effects of levodopa on, the range of upward gaze assist diagnostic differentiation among PD, PSP, and MSA patients.

Keywords
Parkinson's disease, oculomotor range, progressive supranuclear palsy, multiple system atrophy, differential diagnosis


1 Introduction

The diagnosis of Parkinson's disease (PD)relies on clinical assessments of cardinal motor symptoms such as bradykinesia, rigidity, tremor, and postural instability. Ocular movements in this patient population, however, are often overlooked due to their subtle nature and relatively low impact on overall disease burden. Interestingly, the Movement Disorder Society-sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) does not include a specific criterion for evaluating ocular movements. Previous studies on eye movements of PD patients have primarily focused on saccades, smooth pursuit and abnormal movement patterns, with saccades being the most extensively investigated. Techniques such as video-based eye tracking, electro-oculography and videonystagmography have been utilized to study hypometric saccades, reduced saccade velocity and prolonged saccade latency in people with PD (Zhang et al., 2018; Zhou et al., 2022). These studies about saccades, however, only implied the magnitude of change overtime, limited attention are looking simply at the magnitude or gain of ocular movements at a fixed time. In clinical practice, physicians typically consider evaluation of eye movements in cases of atypical presentations, particularly when there is suspicion of progressive supranuclear palsy (PSP).

Atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and PSP, are the next most prevalent forms of neurodegenerative parkinsonism after classical PD. Despite obvious symptomatic differences, it remains challenging to distinguish classical from atypical PD, especially early in the disease course. Presence of ocular signs and eye movement deficits thus provide valuable guidance in establishing accurate diagnosis (Anderson and MacAskill, 2013). For instance, abnormal fixation and square-wave jerks are frequently observed in MSA patients (Rascol et al., 1991, 1995), with the presence of cerebellar-type oculomotor disturbances, such as gaze-evoked nystagmus, downbeat positioning nystagmus, optokinetic nystagmus, and vestibulo-ocular reflex suppression strongly supporting a diagnosis of MSA (Anderson et al., 2010). Vertical gaze dysfunction is commonly seen in clinic and considered to be highly suggestive of PSP (Höglinger et al., 2017). However, the extent to which ocular range of motion is limited in PSP patients has not been clarified, especially in relation classical and atypical PD settings. Although accumulating data have underscored the presence of oculomotor deficits in PD patients, whether maximal oculomotor range is altered among such patients remains unknown. Importantly, differences in maximum oculomotor range between classical and atypical PD syndromes, as well as the influence of levodopa on eye movement has not been explored in the context of differentiating among PD, PSP and MSA diagnoses.

To meet clinical requirements, it is essential to develop an accurate, reliable, and user-friendly method for evaluating the maximum range of ocular motion. Regrettably, there is currently no standardized approach for assessing this parameter in either research or clinical settings. Previous studies used the light reflex or perimeters to measure the range of eye movement (Chamberlain, 1971; Gerling et al., 1997; Haggerty et al., 2005). Findings obtained via these methods, however, tend to be affected by the examiner's experience and are thus difficult to standardize. Lee et al. (2019) described a method to quantify the angle of eye movement by computer-assisted analysis of photographs of eyes in different gaze positions (Lim et al., 2014). Even so, the use of this method requires specialized photographic equipment and software, which makes its widespread implementation highly impractical. The scleral search coil method and video-oculography based on pupil tracking and corneal reflection have been considered as the gold standard for accurate eye movement measurement (van der Geest and Frens, 2002). These instruments, however, are not specifically designed for measuring the maximum range of ocular movement accurately and reliably. For example, the use of search coils embedded within contact lenses has primarily focused on the detection and characterization of nystagmus, such patients should ideally avoid extreme gazes due to interference of eyelids with delicate wire connections and the risk of contact lens dislodging or artifact introduction into signal data (Frens and van der Geest, 2002; Smeets and Hooge, 2003). Furthermore, such devices are not widely available and remain laborious to utilize. There is thus a need to establish a simple and reliable method for measuring maximum ocular motion range that is applicable in routine clinical examination. Here, we describe a method for rapid evaluation of eye movement modified from perimeter testing, using indication bars and a marked scale to accurately measure maximum tracking range from the point of origin to extreme gaze positions.

The aims of this study were to: (1) quantify the maximum oculomotor range in PD patients via a simple and rapid measuring method and analyze the differences among HC, PD, PSP, and MSA patients (2) investigate the effect of acute levodopa challenge on the range of ocular motion and assess the diagnostic value of such data for different parkinsonian disorders.



2 Methods


2.1 Participants

A total of 359 participants were enrolled in this study and included 154 PD patients, 30 PSP patients, 16 MSA patients, and 159 healthy controls (HC). The PSP cohort consisted of 17 patients suffering the PSP-parkinsonism (PSP-P) subtype and 13 suffering the PSP Richardson's syndrome (PSP-RS) subtype. All MSA patients were of the Parkinson type (MSA-P). Diagnoses were established by an experienced neurologist based on established clinical standards (Hughes et al., 1992; Gilman et al., 2008; Höglinger et al., 2017). Participants with any known ocular disease, apparent deficits in vision or other neurological and psychiatric conditions were excluded from analyses. All participants confirmed that they were able to clearly see visual targets with a corrected Snellen visual acuity of 20/60 or better in the worse eye. The experimental procedure was approved by the ethical committee of the First Affiliated Hospital of Anhui Medical University; all participants provided written informed consent prior to commencement of experimentation. This study was registered in the Chinese Clinical Trial Register Center (ChiCTR2300070333).



2.2 Clinical assessments

Demographic data including age, gender and disease course were collected. All patients refrained from taking any antiparkinsonian medications overnight prior to baseline assessment. Hoehn and Yahr (H-Y) stage, levodopa equivalent daily dose (LEDD), Part II and Part III MDS-UPDRS scores (MDS-UPDRS II and MDS-UPDRS III) were recorded for each patient. Sub-scores of motor functions derived from relevant MDS-UPDRS III items were calculated respectively: rigidity (item 3); bradykinesia (items 4–8, 14), gait and posture (items 9–13), tremor (items 15–18).



2.3 Instrumentation used for oculomotor range evaluation

The instrument used for quantification of oculomotor range consisted of cruciate-shaped scale with vertical and horizontal components, a stand equipped with a head holder, and a height-adjustable chair (Figure 1A). A marked scale was fixed on the wall facing the stand. The primary visual target point (zero point) was set at the intersection of horizontal and vertical scale sections with a value of “0.” The scale extended outward from the point of zero along four axes (i.e., upward, downward, leftward and rightward), with graded values that ranged from 0 to 100 cm at a precision of 1 mm. A stand with a height-adjustable head holder was placed between the wall and the test subject. Chair and head holder was adjusted to align the scale's zero point with the middle point of the subject's eyes on a level plane. The distance between the zero point and the middle point of the subject's eyes was maintained at 30 cm (Length, L = 30 cm); the axis passing through these two points was adjusted to be perpendicular to the wall (Figure 1A).


[image: A) Diagram of a visual task setup involving a chair and a structure for a visual angle test. B) Illustration showing eye level, distance, and angle measurement (OA = Arctangent[OD/L]). C) Series of four depictions where a technician manually adjusts a participant's head position using different tools, both wearing masks.]
FIGURE 1
 An illustration of the test setup and scene. (A) Specially-designed device for measuring maximum oculomotor range. (B) Detection of the angle of upward gaze. L, the distance between the zero point and the midpoint between two eyes; OD, the oculomotor distance, which was the distance from the zero point to the position indicated by the stick at the extreme of the upward gaze on the marked scale; OA, the oculomotor angle, OA = [arctangent (OD/L)]. (C) Diagram of the test scene. The entire procedure comprised measurements of maximum ocular movements in all four directions (i.e., upward, downward, leftward and rightward).




2.4 Measurement procedure

Participants were introduced to test procedures before formal testing commenced. The test was performed in a well-lit room. Subjects were seated on a height-adjustable chair, facing the marked scale mounted on the wall. Subjects were asked to sit with their legs apart, back straight and head positioned on the chin rest with the middle point between their two eyes aligned with the scale's zero point on a level plane. Head position was examined to ensure stability during testing. The examiner held a marked indication stick (diameter 0.5 cm) with colored ends (two distinct colors at each end), moving the stick from the outermost end of the scale toward the zero point and inquiring whether the subjects could identify the color at the stick's end. We selected an appropriately-sized ball with a diameter of 1 cm based on prior experience, avoiding the situation that the ball was too small to affect patients' visibility or too large to make accurate differential measurements. Participants were asked to fixate their gaze on the scale's zero point and subsequently move their eyes upward, downward, leftward and rightward as much as possible and try to visually trace the colored end of the stick. To avoid misreporting of data, indication sticks with different colors at each end were switched randomly without informing the subject during testing. The balls were selected from 5 colors: red, yellow, blue, green, and black, which were respectively represented by the numbers 1 to 5. A two-digit number is randomly generated by the computer using the digits 1, 2, 3, 4, and 5 without repetition. Two colored balls were chosen in each test according to the randomized number. The position of the stick's end relative to the scale was recorded as soon as the subject reported the color of the stick's end correctly on binocular gaze. This marked point on the scale was then recorded as the finial oculomotor distance (OD). To ensure data homogeneity and reproducibility for inter-laboratory comparisons, OD data was converted into those for oculomotor angle (OA). For convenience, we considered the distance from the point midway between the two eyes (i.e., the nose bridge) to the zero point of the marked scale (instead of the distance from each eye to the zero-point) as the “L” for calculating binocular gaze OA. As detailed in Figure 1B, OA was calculated as follows: OA = [arctangent (OD/L)]. All tests were performed by the same examiner who remained blind to subject group and medical conditions. Testing producers were repeated twice for all four gaze directions with the average value recorded as the final measurements (Figure 1C). Prior to the experiment, test-retest reliability was assessed in a cohort of 15 healthy individuals with an interval of 1 week by the same evaluator. The test-retest reliability was satisfactory since the correlation coefficients were above 0.50 for maximal oculomotor angles in all directions. Fifteen HC were each assessed by two independent observers and the Kendall Correlation Coefficient (Kendall's W) was applied to analyze inter-rater reliability. All oculomotor range measurements were statistically significant (P < 0.05), confirming that the results had high validity.



2.5 Acute levodopa challenge

Patients underwent an acute levodopa challenge after baseline assessment. A single tablet of levodopa/benserazide (200 mg levodopa/50 mg benserazide; Shanghai Roche Pharmaceuticals Ltd, Shanghai, China) was orally administered to patients with 100 ml of water. To achieve the maximum plasma concentration within the limited time frame of the clinic visit, we encouraged patients to thoroughly chew the tablet. The MDS-UPDRS III scores and maximal range of ocular movement were reassessed 1 h after drug administration.



2.6 Statistical analysis

Statistical analyses were performed using SPSS software version 26.0 (IBM Inc, Armonk, USA). Prior to statistical testing, data were assessed for normality and homogeneity of variance using either the Kolmogorov-Smirnov test or Shapiro-Wilk, based on the sample size. Clinical assessments including disease course, H-Y stage, LEDD, MDS-UPDRS II, MDS-UPDRS III, and relevant sub-scores were also compared among PD, PSP, and MSA patient groups. Continuous variables that followed a normal distribution were analyzed using the ANOVA test. Non-normally distributed variables were analyzed using the Kruskal-Wallis test. Post-hoc comparisons were performed for the cross-sectional oculomotor range between HC and the three patient groups using Bonferroni correction (P < 0.05/4 i.e., < 0.0125). Categorical data were evaluated using the chi-squared test. Changes in scale and oculomotor range after levodopa challenge within each group were assessed using a paired t-test or Wilcoxon signed-rank test. The threshold for significance was set at P < 0.05.




3 Results


3.1 Participants characteristics

Basic demographic and clinical data are presented in Table 1. For people with PSP, mean age, LEDD, MDS-UPDRS II, and MDS-UPDRS III values were significantly higher as compared to those of PD patients. Sub-scores related to bradykinesia, posture and gait were significantly higher in PSP patients, while tremor scores were much lower. Differences in rigidity scores between PD and PSP patients were not significant. Compared to PD patients, MSA patients had a slightly higher proportion of females than males but this did not reach statistical significance. MDS-UPDRS II scores were higher in MSA as compared to PD patients. Despite similar MDS-UPDRS III scores, MSA patients exhibited higher scores for posture and gait but lower scores for tremor as compared to PD patients.


TABLE 1 Baseline demographics.

[image: Table comparing measurements between healthy controls (HC), Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) groups. Variables include age, gender, disease duration, H-Y stage, LEDD, MDS-UPDRS II and III scores, rigidity, bradykinesia, posture and gait, and tremor, with associated Z/F/χ and P-values. Statistical differences are noted with specific markers for significance level and differences between groups.]



3.2 Range of ocular movements

Among HC subjects, the maximum angles of ocular movement for each position were 53.46 ± 5.95° for upward gaze, 62.33 ± 4.77° for downward gaze, 64.56 ± 3.45° for leftward gaze, and 64.75 ± 3.73° for rightward gaze. Compared to HC data, both PD and PSP subjects exhibited reduced maximum oculomotor angles for all four directions (People with PD: upward gaze, Z = −3.752, P = 0.001 All P < 0.05; downward gaze, Z = –3.703, P = 0.001; leftward gaze, Z = –3.441, P = 0.003; rightward gaze, Z = –3.220, P = 0.008; People with PSP: upward gaze, Z = –5.174, P < 0.001; downward gaze, Z = –5.641, P < 0.001; leftward gaze, Z = –5.725, P < 0.001; rightward gaze, Z = –5.738, P < 0.001); MSA patients similarly exhibited decreased downward and horizontal gaze angles (downward gaze, Z = –3.795, P = 0.001; leftward gaze, Z = –3.744, P = 0.001; rightward gaze, Z = –3.361, P = 0.005). People with PSP exhibited more severe maximum vertical and horizontal deficits relative to PD patients (upward gaze, Z = 3.032, P = 0.015; downward gaze, Z = 3.529, P = 0.003; leftward gaze, Z = 3.761, P = 0.001; rightward gaze, Z = 3.898, P = 0.001). No significant difference between PD and MSA patients was found (Figure 2).


[image: Bar graph showing the angle of ocular movement in four gaze directions: upward, downward, leftward, and rightward. Each direction is represented by bars for IPD, PSP, MSA, and HC. Statistical significance (p < 0.05) is indicated between certain groups.]
FIGURE 2
 The maximum oculomotor angle of all four directions in PD, PSP, MSA patients as well as HC subjects. Bars represent mean value and error bars represent standard error. PD, people with Parkinson's disease; PSP, people with progressive supranuclear palsy; MSA, people with multiple system atrophy; HC, healthy controls. *P < 0.05.




3.3 Improvements after levodopa challenge

In total, 111 [including 86 PD, 15 PSP (9 PSP-P, 6 PSP-RS), and 10 MSA] patients successfully underwent acute levodopa challenge and subsequent assessments. The primary factors that contribute to patients not undergoing the levodopa challenge included outpatient visitation time constrations, compromised physical condition, and adverse drug reactions. Pre- and post-levodopa challenge within-group effects were analyzed and changes in MDS-UPDRS III scores and relevant sub-scores determined (Table 2). Levodopa challenge demonstrated significant effects on overall motor functions and each subtype motor symptoms across all three groups with the exception of tremor in individuals with MSA. Levodopa challenge was found to significantly improve the maximum angle of ocular motion on both horizontal and vertical gaze among people with PD (Figure 3). Among PSP patients, significant improvements in downward and rightward maximal gaze was noted, although not in upward and leftward gaze. Among MSA patients, only downward gaze improved significantly. We compared the post-challenge outcomes in people with PD with those of HC, it is inspiring to find that there were no statistical differences in both the upward gaze, downward gaze and rightward gaze in these two groups (upward gaze, F = 0.576, P = 0.449; downward gaze, Z = –0.083, P = 0.934; rightward gaze, Z = –1.217, P = 0.223).


TABLE 2 Motor function assessment in enrolled patients (n = 111).

[image: Table comparing motor symptoms before and after levodopa treatment in Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA). It includes MDS-UPDRS III, rigidity, bradykinesia, posture and gait, and tremor scores with significant improvements noted in most categories after treatment, indicated by p-values less than 0.05.]


[image: Bar charts comparing ocular movement angles in upward, downward, leftward, and rightward gazes among IPD, PSP, and MSA patients, pre- and post-levodopa. Significant differences marked with asterisks.]
FIGURE 3
 The angle of ocular movements at baseline and after levodopa challenge. Levodopa challenge significantly improved the maximum oculomotor angle of both horizontal and vertical gaze in people with PD (n = 86). For PSP group (n = 15), there were significant improvements for downward and rightward gaze but not for upward and leftward gaze. For MSA group (n = 10), only downward gaze significantly improved. Bars represent mean value and error bars represent standard error. PD, Parkinson's disease; PSP, progressive supranuclear palsy; MSA, multiple system atrophy. (A) Angle of ocular movement in upward gaze. (B) Angle of ocular movement in downward gaze. (C) Angle of ocular movement in leftward gaze. (D) Angle of ocular movement in rightward gaze. *P < 0.05.




3.4 Correlation analysis

At baseline, both HC and PD patients exhibited significant negative correlations between age and ocular movements for all directions (P < 0.05; PD: upward gaze, r = −0.205, P = 0.011; downward gaze, r = −0.247, P = 0.002; leftward gaze, r = –0.203, P = 0.011; rightward gaze, r = –0.320, P < 0.001; HC: upward gaze, r = –0.298, P < 0.001; downward gaze, r = –0.252, P = 0.001; leftward gaze, r = –0.200, P = 0.011; rightward gaze, r = −0.250, P < 0.001). A representative example revealed the maximal range of upward gaze to have negatively associated with age in PD patients (Figure 4A). The MDS-UPDRS III scores at baseline in people with PD were negatively correlated with the maximum oculomotor angle in downward gaze (Figure 4B). Among PD patients, there were significant positive correlations (P < 0.05) between the ratio of improvement in maximal downward range and MDS-UPDRS III as well as bradykinesia sub-scores in response to acute levodopa challenge (Figures 4C, D). Following levodopa administration, no correlations between gaze range and MDS-UPDRS III scores or sub-scores were identified among either PSP or MSA subjects.


[image: Scatter plots in four panels, labeled A to D, depict relationships between angles of gaze and different variables. Panel A plots angle of upward gaze versus age, showing a slight negative trend. Panel B charts angle of downward gaze against MDS-UPDRS III scores, showing no clear trend. Panel C plots percentage of downward gaze versus UPDRS-III scores, while Panel D relates percentage of downward gaze to percentage of bradykinesia, both showing positive trends. Each plot includes red data points and a trend line.]
FIGURE 4
 Correlation analyses of maximal oculomotor angle with age, motor symptoms and acute levodopa challenge in PD patients. (A) Correlation between maximum upward angle and age in PD. (B) Correlation between maximum downward angle and MDS-UPDRS III scores in PD before medication. (C) Correlation between the improvement ratio of maximum downward angle and MDS-UPDRS III scores in PD after acute levodopa challenge. (D) Correlation between the improvement ratio of maximum downward angle and bradykinesia sub-scores in PD after acute levodopa challenge. PD, people with Parkinson's disease; MDS-UPDRS III, Part III of the Movement Disorder Society-sponsored Revision of the Unified Parkinson's Disease Rating Scale; %, improvement ratio = (post-levodopa challenge data – pre-levodopa challenge data)/pre-levodopa challenge data × 100%. Each dot represents one patient.





4 Discussion

Here, we noted a reduced maximum range of ocular motion for both vertical and horizontal gaze in people among PD patients. This deficit could be corrected by acute levodopa challenge. Oculomotor range negatively correlated with MDS-UPDRS III scores; furthermore, the ratio of improvement in maximal oculomotor range was noted to correlate with improvement of MDS-UPDRS III scores and bradykinesia sub-scores after levodopa treatment. Although the maximum range of ocular movement was also impaired in PSP and MSA patients, PSP patients exhibited the most pronounced impairment relative to PD and MSA patients. Reduced range of upward gaze was determined to be the most sensitive indicator for distinguishing between the aforementioned three parkinsonian syndromes, gaze was most prominently impaired among PSP patients, the best corrective effect of levodopa was noted among in PD patients, and an almost normal maximal range of ocular motion noted among MSA patients. To the best of our knowledge, this is the first research that quantitatively assessed the impaired maximum range of ocular movement and explored the impact of levodopa on ocular movements in individuals with PD. Reduced maximum oculomotor range, especially along the vertical axis, has long been considered as one of the clinical hallmarks of PSP (Leigh et al., 2010). However, whether the maximum range of eye movement was altered in PD has not been previously studied. Here, we found that the maximum oculomotor range decreased for both vertical and horizontal gaze in PD patients. Importantly, the range of maximum gaze was found to negatively correlate with MDS-UPDRS III scores and improved after levodopa administration in a subgroup of PD patients, suggesting that this alteration in ocular range was associated to the underlying pathological degeneration of the dopaminergic system. Moreover, improvement in maximal downward gaze was found to associate with improvement in MDS-UPDRS III scores and bradykinesia sub-scores, further supporting our findings.

Although prior studies detailed hypometric saccades, reduced saccade velocity, and prolonged saccade latency among PD patients (Zhou et al., 2022; Li et al., 2023), our findings further confirm the pathophysiological similarity of limb bradykinesia to distinctive manifestations clinically noted in ocular muscles. However, ocular muscle rigidity or the influence of other yet-unidentified pathophysiological mechanisms cannot be excluded from influencing ocular movement in the setting of PD.

Although we noted abnormalities in ocular movement in PSP and MSA patients, they were nevertheless distinct from those noted in PD patients. While PSP patients exhibited more severe deficits relative to PD and MSA patients, no significant difference was detected between MSA and PD patients despite a trend of more pronounced impairment among MSA patients relative to those suffering PD. This finding is in agreement with prior research, suggesting that abnormal voluntary eye movements are often more severe in PSP and relatively less impacted in PD and MSA (Valls-Solé et al., 1997; Armstrong, 2021). Importantly, maximal ranges of ocular motion on downward and horizontal gazes were impaired in all three patient groups in relation to the HC group, indicating that moderate limitations in oculomotor range should be cautiously considered when establishing a differential diagnosis. In contrast to PD patients, levodopa only partially improved deficits in maximal oculomotor range among PSP and MSA patients. It is of note that, the maximal angle of upward gaze was most prominently impaired in PSP patients and less so in PD, in contrast to MSA patients. Furthermore, levodopa challenge only corrected upward gaze in PD but not PSP patients. The range of vertical ocular movement and its response to levodopa challenge may serve as a more sensitive indicator for differentiating parkinsonian disorders. Marked reduction of range in upward gaze but poor response to levodopa thus supports the diagnosis of PSP. Indeed, upward gaze palsy was reported to be more frequent than downward gaze palsy in PSP-RS patients (Leigh et al., 2010). The relatively lower efficacy of levodopa in correcting the impaired oculomotor range in PSP and MSA patients suggests that the underlying mechanism of oculomotor deficits in atypical parkinsonian disorders is distinct from that in classical PD. Notably, vertical gaze limitation in the setting of PSP was reported to be caused by supranuclear palsy, which likely associates with neurodegeneration in the tectum of the midbrain (Quattrone et al., 2016; Buch et al., 2022).

Previous research has reported a decline in the range of gaze elevation as age advances (Chamberlain, 1971; Clark and Isenberg, 2001). In the current investigation, we observed negative associations between age and eye movement ranges in all groups, thus corroborating prior findings. The mean age of PSP patients in our study was greater as compared to that of other groups; this disparity may have influenced our findings. However, other studies have reported that downward gaze is unaffected by increasing age (Lee et al., 2019); hence, the reduced maximum downward angle in PSP patients found in this study may also accurately reflect oculomotor function. Indeed, the patients included in our PSP group comprised both PSP-RS and PSP-P patients. Previously, PSP-P patients were reported to exhibit greater preservation of vertical saccadic function as compared to PSP-RS patients on quantitative evaluation (Pagonabarraga et al., 2021). Although ocular movement deficits in PSP-RS patients have been extensively characterized, there remains a lack of comprehensive data for PSP-P and other disease subtypes. The noted disparities in eye movement patterns among different PSP subtypes warrant consideration of treating each subtype as an independent patient group in future studies.

The oculomotor angles have displayed variability in previous measurements mainly ascribed to differences in methodology, measuring instruments or other confounding factors. Generally, the elevation angle ranged from 25–40°, depression from 40–60°, adduction from 40–60°, and abduction from 40–60° (Chamberlain, 1971; Gerling et al., 1997; Lim et al., 2014). The outcomes presented within this study exhibit numerically higher values when compared with earlier research due to methodological advancements employed here along with the use of binocular measurements rather than monocular ones. Here, the maximum range of ocular movement was measured using a specially-developed method. Instrumentation was modified from kinetic perimetry testing equipment and used in peripheral visual field testing. The main differences between this study's method and conventional kinetic perimetry are as follows: (1) a cross-shaped marked scale consisting of vertical and horizontal sections affixed to the wall replaces a bowl or arch-shaped visual target; (2) the subject's head is kept steady, but eye movements in evaluated directions are encouraged to be made with maximal effort rather than maintaining sustained fixation of gaze on the zero point during testing; (3) ocular movements of both eyes are checked simultaneously instead of separately; and (4) oculomotor range is evaluated only in four directions (i.e., upward and downward vertically and leftward and rightward horizontally). The maximal oculomotor distance in this study was considered as that of both eyes as a unit. We approximated the actual length between the eyes and the zero point as a fixed length of 30 cm (slightly shorter than the distance from each eye to the zero point on the marked scale), which could lead to conversion angle overestimation. Such slight systematic bias, however, was considered predictable and to not affect relative differences between various subjects; importantly, this adaptation greatly facilitated testing procedure. In summary, methodological modification was found to improve testing device usability and efficiency, making it suitable for daily clinical practice. Prior to experimentation, test-retest reliability was assessed in a cohort of 30 healthy individuals at an interval of 1 week by the same evaluator. The test-retest reliability was deemed satisfactory since the correlation coefficients were above 0.50 for maximal oculomotor angles in all directions.

Several limitations exist in this study. This study was not without limitations. Firstly, the relatively small number of subjects with PSP and MSA posed challenges in conducting a comprehensive subgroup analysis for different disease phenotypes; our findings thus warrant further study considering larger patient samples. Secondly, as the diagnoses of various parkinsonian subtypes were made based on clinical features and without pathological confirmation, potential misdiagnoses could not be excluded. Long-term follow-up is necessary to further validate clinical diagnosis among certain patients. Finally, as only relevant parameters were retested 1 hour after levodopa challenge, the effects of levodopa treatment may have been less than optimally reflected. Further studies should aim to extend the duration of levodopa challenge in both classical and atypical PD patient groups.



5 Conclusion

In conclusion, we found a reduction in both vertical and horizontal maximum range of ocular motion among PD patients. These deficits were ameliorated by levodopa treatment. The maximum range of upward gaze and the beneficial effects of levodopa may assist clinical differential diagnosis of parkinsonian subtypes. The most prominent impairment was noted in PSP patients and the best response to levodopa challenge was noted in PD patients; an almost normal vertical gaze range of motion was noted in MSA-P patients. A moderate reduction of oculomotor range should be considered with caution when differentiating between various parkinsonian subtypes.
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Prion diseases, such as scrapie, entail the accumulation of disease-specific prion protein (PrPSc) within the brain. Toll-like receptors (TLRs) are crucial components of the pattern recognition system. They recognize pathogen-associated molecular patterns (PAMPs) and play a central role in orchestrating host innate immune responses. The expression levels of Toll-like receptors (TLRs) in the central nervous system (CNS) were not well-defined. To establish a model of prion diseases in BALB/C mice, the 22L strain was employed. The features of the 22L strain were analyzed, and the cerebellum exhibited severe pathological changes. TLR1-13 levels in the cerebellum were measured using quantitative polymerase chain reaction (qPCR) at time points of 60, 90, 120, and the final end point (145 days post-infection). During the pathogenesis, the expression levels of Toll-like receptors (TLRs) 1, 2, 7, 8, and 9 increased in a time-dependent manner. This trend mirrored the expression patterns of PrPSc (the pathological isoform of the prion protein) and glial fibrillary acidic protein. Notably, at the end point, TLR1-13 levels were significantly elevated. Protein level of TLR7 and TLR9 showed increasing at the end point of the 22L-infected mice. A deeper understanding of the increased Toll-like receptors (TLRs) in prion diseases could shed light on their role in initiating immune responses at various stages during pathogenesis. This insight is particularly relevant when considering TLRs as potential therapeutic targets for prion diseases.
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1 Introduction

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of rare progressive neurodegenerative disorders that occur in both humans and animals. These diseases encompass a range of specific conditions, including: Creutzfeldt–Jakob disease (CJD) (Hermann et al., 2021), Fatal familial insomnia (FFI) (Chu et al., 2022), Gerstmann–Straussler–Scheinker (GSS) syndrome (Ahn et al., 2022), Kuru (observed in humans) (Kothekar and Chaudhary, 2024), Scrapie (affecting sheep and goats) (Acín and Bolea, 2021), Bovine spongiform encephalopathy (BSE or “mad cow disease” in cattle) (Balamuralidhara, 2023), Chronic wasting disease (CWD) in cervids (deer, elk, and related species) (Silva, 2022), Transmissible mink encephalopathy (TME) in mink (Moore et al., 2019). These conditions share common features, such as long incubation periods, spongiform changes in brain tissue, and a lack of inflammatory response. The underlying cause of TSEs is believed to be abnormal prion proteins, which induce misfolding of normal cellular proteins. Unfortunately, prion diseases are invariably fatal.

The neuropathology of prion diseases is marked by the presence and aggregation of a misfolded, insoluble, and protease-resistant form (PrPSc) of the cellular prion protein (PrPc) within the central nervous system. This accumulation of PrPSc contributes to characteristic neurological features, including spongiform degeneration, gliosis, and neuronal cell death (Ritchie and Ironside, 2017). Toll-like receptors (TLRs) are an essential family of receptors expressed by innate immune cells. They play a crucial role in activating the immune response against foreign pathogens (Duan et al., 2022). Initially discovered in Drosophila melanogaster, Toll was originally identified as a gene involved in establishing dorsal–ventral orientation during embryonic development (Nüsslein-Volhard, 2022). Subsequent research revealed its critical role in Drosophila's immunity to fungal infections (Keith, 2023).

To date, 13 TLRs have been identified in mammals (Liu et al., 2022). TLR1–9 are expressed in both mice and humans, while TLR10–13 are expressed only in mice. Notably, TLR10 is not functional in mice due to a retroviral insertion (Knez et al., 2022). Previous studies have demonstrated that TLR4 mutant mice exhibit a shorter incubation time than control mice in prion disease. However, they did not show significant differences in prion levels (Li et al., 2021). This suggests an involvement of TLR4 in the disease progression. The injection of CpG oligodeoxynucleotides (ODNs), an agonist of TLR9, has been shown to provide protection against prions when administered intraperitoneally (McWhirter and Jefferies, 2022). This finding suggests that innate immune activation interferes with prion infection. In the central nervous system (CNS), innate immunity primarily relies on the functions of glial cells, particularly astrocytes and microglia. These cells play crucial roles in early pathogen control, direct recruitment, and activation of the adaptive immune system necessary for pathogen recognition and clearance (Sanmarco et al., 2021).

In vivo studies, TLRs1–9 have been detected in the central nervous system (CNS) using quantitative real-time PCR (Kagoya et al., 2022). Notably, TLR expression levels in the CNS can be up-regulated in response to viral and bacterial infections, exposure to TLR stimuli, or during CNS autoimmunity (Jafarzadeh et al., 2019). This up-regulation provides a mechanism for amplifying inflammatory responses to pathogens that invade the CNS. Microglia, similar to other macrophage-like cells, express virtually all members of the TLR family. In a healthy CNS, TLR expression is minimally detectable in resting microglia. However, upon activation, multiple TLRs rapidly emerge, contributing to the immune response and modulation of microglial function (Fiebich et al., 2018). Primary murine astrocytes exhibit a diverse array of TLRs, albeit at lower expression levels compared to microglia. This observation implies that astrocytes could play a significant role in antiviral responses within the CNS (Telikani et al., 2022). Growing evidence implicates TLRs in neurodegenerative diseases. In both human brains and animal models of Alzheimer's disease, there is an upregulation of TLR2, TLR4, and CD14 expression (Calvo-Rodriguez et al., 2020). Additionally, plaque-associated microglia show elevated mRNA levels for TLR2, TLR4, TLR5, TLR7, and TLR9 (Tan et al., 2021). While innate immune responses have been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease and transmissible spongiform encephalopathies (Pal et al., 2022), specific reports on TLR expression in prion disease are notably absent (Kim et al., 2020).

In this study, we investigated the features of the 22L prion strain in BALB/C mice. Using qPCR, we measured the expression of TLRs1–13 in the most severely affected region of the CNS. Notably, the cerebellum emerged as the most severely affected disease region in 22L-infected mice. We observed a time-dependent increase in mRNA levels of TLR1, TLR2, TLR7, TLR8, and TLR9 in the cerebellum, mirroring the expression patterns of PrPSc (the pathological isoform of the prion protein) and glial fibrillary acidic protein (GFAP) (a marker for gliosis). Remarkably, all TLRs reached elevated levels during the final stages of prion disease. Protein level of TLR7 and TLR9 showed increasing at the end point of the 22L-infected mice. This enhanced understanding of TLR upregulation in prion disease may shed light on their role in initiating immune responses at different stages of pathogenesis, potentially identifying them as therapeutic targets.



2 Materials and methods


2.1 Murine model of infection

Forty female BALB/C mice, aged 4–6 weeks and weighing 18–22 g, were sourced from the Experimental Animal Center of Jilin University. These mice were intracerebrally inoculated with 20 μl of a 1% brain homogenate (in Sodium Chloride, w/v) derived from a 22L-infected brain obtained from a clinically-infected BALB/C mouse. As controls, mice were also inoculated with 20 μl of a 1% normal brain homogenate. All mice were housed in controlled conditions: 12-h light/dark cycles, a temperature range of 21—22°C, and humidity maintained at 60%–65%. They were individually housed in ventilated cages within a barrier facility and provided ad libitum access to food and water. Daily monitoring included observation for neurological signs such as ataxia, muscle tremors, head pressing, hindlimb weakness, paresis, or paralysis. The experimental procedures and animal care protocols were approved by the Committee on Ethical Use of Animals at Jilin University.



2.2 Tissue collection

Ten scrapie-inoculated and 10 control animals were humanely sacrificed by cervical dislocation at 60, 90, and 120 days post inoculation (dpi), as well as at the end point (145 dpi). We collected cerebellums and cerebrums from the mice. Half of each brain was frozen directly in liquid nitrogen and stored at −80°C until use. The remaining cerebellum was immediately fixed in 10% formalin for histopathological processing.



2.3 Histopathological analysis

The fixed tissues were trimmed, postfixed, and embedded following standard procedures. Tissue sections, 5 μm thick, were cut using a microtome and mounted on treated glass slides (Maixin Company, Fujian, China). Afterward, they were dried overnight at 60°C for 1 h. Finally, the sections underwent routine staining with hematoxylin and eosin.



2.4 Immunohistochemical detection of PrPSc

For the detection of PrPSc by immunohistochemistry, histological sections were deparaffinized in xylene, rehydrated in graded alcohols, and washed in distilled water. The following treatments were then carried out to unmask antigens: (1) immersion in 98% formic acid for 15 min; (2) hydrated autoclaving in citrate buffer for 30 min at 121°C. After antigen retrieval, the following steps were included, with intermittent washes using 0.01 M PBS. To inactivate endogenous peroxidase, a solution of 3% hydrogen peroxide in methanol was applied for 15 min, followed by incubation with 5% normal goat serum for 30 min. The primary monoclonal antibody 3H4 (stored in our laboratory) was applied at a dilution of 1:500 and incubated overnight at 4°C (McBride et al., 1988; Demart et al., 1999; Supattapone et al., 2001; Kostelanska and Holada, 2022). Subsequently, sections were treated with biotinylated goat anti-mouse IgG (Maixin, China) for 20 min, followed by streptavidin–horseradish peroxidase (Maixin, China) for 20 min at room temperature. Detection was achieved using diaminobenzidine (Maixin, China) in distilled water for 10 min. Finally, the sections were washed in distilled water and counterstained with Mayer's hematoxylin for 5 min.



2.5 Immunohistochemical detection of glial fibrillary acidic protein

Tissue sections were deparaffinized in xylene and rehydrated through graded alcohols. Following antigen retrieval via hydrated autoclaving in citrate buffer for 30 min at 121°C, the sections were sequentially treated as follows:

	* Incubation with 3% hydrogen peroxide in methanol at room temperature for 15 min to block endogenous peroxidase;
	* Incubation with 5% normal goat serum for 30 min;
	* Application of monoclonal mouse anti-GFAP (1:500, BD, USA) at 4°C overnight;
	* Use of biotinylated goat antimouse IgG (Maixin, China) as a link antibody for the demonstration of mouse anti-GFAP;
	* Application of the streptavidin–biotin–peroxidase (Maixin, China) complex for 20 min;
	* Detection using diaminobenzidine for 10 min;
	* Sections were then washed in distilled water and counterstained with Mayer's hematoxylin for 5 min.



2.6 Western bloting analysis

Cerebellar tissues were homogenized in a lysis buffer containing 50 mM Tris (pH 7.4), 150 mM NaCl, 10 mM EDTA, 0.5% Nonidet P-40, and 0.5% sodium deoxycholate, along with a protease inhibitor cocktail from Roche (Germany). After centrifugation at 12,000 g and 4°C for 30 min, the supernatant was collected and distributed into separate tubes. The final protein concentration was determined using the BCA kit (Beyotime, China). Proteins were mixed with 5 × SDS-PAGE loading buffer (containing 250 mM Tris-HCl, pH 6.8, 50% glycerol, 10% SDS, 0.5% bromphenol blue, and 5% β-mercaptoethanol) and boiled for 5 min. Fifty micrograms of protein were loaded into the sample wells. Protein extracts were electrophoretically separated on a 12% SDS-PAGE gel, run at 120 V for 120 min. The proteins were then transferred to 0.2 μm pore diameter polyvinylidene fluoride (PVDF) membranes (Millipore, USA) using a Semi-Dry Electrophoretic Transfer Cell (Bio-rad, USA) at 15 V for 20 min. The membranes were blocked for 1 h in 5% TBST (0.1% Tween-20 in TBS)–milk and incubated overnight at 4°C with different primary antibodies separately:the primary anti-SAF antibody (Cayman, America) at a dilution of 1:5,000; the primary antibodies of TLR1, TLR2, TLR7, TLR9 (Santa Cruz, USA) at a 1:500 dilution and TLR8 antibody (Santa Cruz, USA) at a 1:200 dilution. After four washes in 0.1% Tween-20 in TBS, the membranes were incubated with horseradish peroxidase-conjugated anti-mouse antibody (Santa Cruz, USA) at a 1:5,000 dilution for 1 h at room temperature, separately. Immune complexes were detected using an electrochemiluminescence (ECL) kit (Amersham, USA) on Hyperfilm MP (Amersham, USA). ECL Plus Western Blotting Substrate (Applygen, China) was used according to the supplier's instructions. In PrPsc detction, Cerebellar tissues were made as mentioned above. The samples in both the control group and the 22L-infected group were digested with PK (Sigma, USA) at the temperature of 37°C for 1h. Fifty micrograms of protein were loaded into the sample wells. The primary anti-SAF antibody (Cayman, America) at a dilution of 1:5,000.



2.7 RNA extraction and reverse transcription

Total RNA was extracted from the cerebellum of five 22L-infected and five mock-infected BALB/C mice at 60, 90, 120 dpi, and at the end point (145 dpi) using TRIzol (Invitrogen, USA) according to the manufacturer's instructions. Reverse transcription polymerase chain reaction (RT-PCR) was performed using Reverse Transcriptase M-MLV (RNase H−) (Takara, China). One microgram of total RNA was reverse transcribed to cDNA in a 20 μl reaction solution following the manufacturer's instructions (Takara, China). The reaction was carried out at 30°C for 5 min, 42°C for 60 min, and 70°C for 15 min. The resulting cDNA was stored at −20°C until use in downstream Quantitative PCR.



2.8 Quantitative PCR

Quantitative PCR was performed to analyze the mRNA expression levels of all mouse TLRs (TLR1-13) and GFAP using the Applied Biosystems 7300 Real-Time PCR System (Applied Biosystems, USA). To account for variations in mRNA amounts, GAPDH was included as a housekeeping gene. Each 25 μl reaction system contained 12.5 μl 2x SYBR Green PCR Master Mix (Applied Biosystems, USA), 2.5 μl cDNA (10 ng/μl), and 5 μl of each primer (2.5 μM). The primer sequences for each gene are presented in Table 1. Reactions were carried out under qPCR conditions, including denaturation at 95°C for 10 min, followed by 40 cycles of amplification (95°C for 15 s, 60°C for 1 min). Subsequently, a melting curve analysis and the ΔΔCt method were used for data processing.


TABLE 1 Primers of mouse TLRs (mTLRs), GFAP and GAPDH.

[image: Table displaying gene information, sense primers, and amplicon sizes. It lists various genes (mTLR1-13, GFAP, GAPDH) alongside their corresponding primers in 5' to 3' direction and the amplicon sizes, ranging from 87 to 197 base pairs.]



2.9 Statistical analysis

All data are expressed as the mean value ± standard deviation (SD), and each resulting value was determined by averaging three independent experiments. Western blot data and qPCR results were analyzed using one-way ANOVA, followed by Tukey's multiple range tests in SPSS 14.0. Differences were considered statistically significant at P < 0.05.




3 Results


3.1 Clinical signs, spongiform changes, gliosis and PrPSc deposition

To analyze the features of the 22L strain in BALB/C mice, we observed clinical signs, spongiform changes, and PrPSc deposition. All 22L-infected mice exhibited clear scrapie-associated clinical signs at ~120 days post-infection (dpi). These signs included rough coat, weight loss, and abnormalities in motor function such as tremors, ataxia, and late-stage recumbency. Changes in mental status were also frequently observed, with hyperexcitability at the early onset and depression at the end point. In our research, we cultivated several groups of mice. The first group was utilized to measure the duration from 22L inoculation to the natural death of the mice. At the time from inoculation to the final death was 142.6 ± 5.0 days. The incubation period defined as the time between the initial exposure to prions and the first appearance of symptoms. This experiment yielded an average incubation period of 120.7 ± 4.5 days. For subsequent groups of mice, we delineated four stages of pathogenesis based on this average incubation period: 60, 90, 120, and 145 dpi. Notably, the 145 dpi stage signifies the disease's end point.

Histological examination using HE staining revealed widespread vacuolation in both white matter and gray matter of the brain, particularly in the cerebrum, cerebellum, and spinal cord. The cerebellum exhibited a higher level of vacuolation, especially in granulosa cells and Purkinje's cells (data not shown). Immunohistochemistry was used to measure PrPSc deposition and the expression of glial fibrillary acidic protein (GFAP), an astroglial marker. The most intense deposition of PrPSc was observed within the hippocampus, cerebrum, and cerebellum. The defining characteristic of scrapie is the vacuolation of neurons, gliosis, and PrPSc deposits. Different strains of scrapie may exhibit unique features. Through immunohistochemistry, we observed that PrPSc was deposited in various parts of the CNS in 22L-infected mice, including the cortex, hippocampus, cerebrum, cerebellum, and spinal cord. However, the expression of PrPSc varied across these areas. In Table 2, we evaluated the vacuolation, gliosis, and PrPSc deposits in 22L-infected mice. Our findings revealed that the cerebellum was the most intensely affected region in 22L-infected BALB/C mice. Specifically, the 22L strain showed plaque-like PrPSc deposits in the cortex and hippocampus, while diffuse PrPSc deposits were seen in the cerebellum (Figure 1). Additionally, there was an increase in GFAP expression in the brains of scrapie-affected mice, with the cerebrum and cerebellum showing the most intense staining (Figure 2). The deposition of PrPSc and GFAP correlated with the severity of spongiosis and vacuolation. Spongiform changes, PrPSc deposition, and gliosis were scored (García-Martínez et al., 2022) (Table 2). The cerebellum, as the most intensely affected region in 22L-infected BALB/C mice, was selected for further study.


TABLE 2 Neuropathology in BALB/C mice infected with 22L strain.

[image: Table showing brain anatomy sections: cortex, hippocampus, brainstem, cerebellum, and spinal cord. Columns indicate vacuolation, gliosis, and PrP^Sc accumulation. Cortex, brainstem, and cerebellum show high levels (+++), while hippocampus and spinal cord have moderate to low levels.]


[image: Microscopic images showing brain tissue from 22L-infected and control specimens. The top row displays the hippocampus, cerebrum, and cerebellum of infected samples with more pronounced staining. The bottom row shows the corresponding control tissues with lighter staining.]
FIGURE 1
 Coronal sections of the hippocampus, cerebrum, and cerebellum from 22L-infected at the end point and the control mice reveal distinct PrPSc deposition patterns. These sections were immunoassayed with the monoclonal 3H4 antibody and photographed at a magnification of ×400. Dark brown areas indicate the positions of PrPSc accumulation. Notably, the style of PrPSc deposition differed in 22L-infected BALB/C mice. Specifically: Plaque-like PrPSc deposits were observed in the cortex and hippocampus. Diffuse PrPSc deposits were present in the cerebellum. In contrast, control sections showed an absence of PrPSc detection.



[image: Histological comparison of brain tissues in control and 22L-infected samples. The cortex, hippocampus, and cerebellum sections each show two panels: control on the left, infected on the right. Red arrows highlight specific areas of interest, indicating differences in tissue structure between control and infected samples.]
FIGURE 2
 Coronal sections of the Cortex, Hippocampus, and cerebellum from 22L-infected at the end point and control mice revealed distinct GFAP expression. These sections were immunoassayed with the monoclonal GFAP antibody and photographed at magnification of ×400. Dark brown areas indicated the positions of GFAP expression (arrow pointing). Notably, GFAP expression increased in in the brains of scrapie-affected mice, with the cerebellum showing the most intense staining.




3.2 Changed TLRs expression during the pathogenesis of prion disease

To investigate the impact of the 22L strain on Toll-like receptor (TLR) expression during pathogenesis, we measured the expression levels of mouse TLRs (TLR1-13) using qPCR, along with glial fibrillary acidic protein (GFAP). Cerebellums from 22L-infected (n = 4) and control groups (n = 4) were collected at 60, 90, 120 dpi, and the end point (145 dpi). Total RNA was extracted, and cDNA was synthesized. Our results revealed that the expressions of TLR1, 2, 7, 8, and 9 increased in a time-dependent manner during pathogenesis. To explore the relationship between TLR levels and glial cells, we also measured GFAP expression at the same time. Interestingly, GFAP expression followed similar trends to these TLRs. However, the levels of TLR3, 4, 5, 6, 11, and 12 exhibited fluctuations before clinical signs appeared (at 120 dpi). Notably, TLR1-13 reached relatively high levels at the final stage (145 dpi) (Figure 3). To detect whether these TLRs expressions increased in protein level, we verified the expression levels of TLR1, -TLR2, -TLR7, -TLR8 and -TLR9 by Western blotting. Cerebellums from 22L-infected (n = 4) at the end point, and control groups (n = 4) were collected. Total protein was extracted. The proteins were detected using anti-TLR1, -TLR2, -TLR7, -TLR8 and -TLR9 antibodies, respectively. β-actin, was used as a control. The results showed that TLR7 and TLR9 expressions increased at the end point of the 22L-infected mice in protein level (Figure 4).


[image: Bar graphs showing gene expression fold change for various TLR genes and GFAP at different days post-infection (dpi). Panel A includes TLR1, TLR2, TLR7, TLR8, TLR9, and GFAP. Panel B includes TLR3, TLR4, TLR5, TLR6, TLR11, TLR12, and TLR13. Fold change increases over time, marked at 60, 90, 120, and 145 dpi, with significant changes denoted by asterisks.]
FIGURE 3
 Changes in the expression of TLR1-13 and GFAP in the cerebellum during the pathogenesis of prion disease were investigated at different time points (60, 90, 120, and 145 days post-infection, dpi). The results are summarized as follows: Subgraph (A): Levels of TLR1, TLR2, TLR7, TLR8, TLR9, and GFAP. Subgraph (B): Expression of TLR3, TLR4, TLR5, TLR6, TLR11, TLR12, and TLR13. The mRNA expression levels were quantified using quantitative real-time PCR analysis. The values (fold change) represent the proportion of expression levels of TLRs and GFAP in 22L-infected mice compared to those in control mice (mean ± standard deviation, n = 4). An asterisk (*) indicates that the expression of a specific gene was statistically significant (P < 0.05) when compared with the expressions at any dpi.



[image: Panel A shows protein expression of TLR1, TLR2, TLR7, TLR8, TLR9, and β-actin in control and 22L-infected groups via Western blot analysis. Panel B presents a bar graph comparing the relative expression levels of these proteins, with TLR7 and TLR9 significantly upregulated in the 22L-infected group, indicated by asterisks.]
FIGURE 4
 Detection of TLR1, TLR2, TLR7, TLR8, and TLR9 expression in the cerebellum of 22L-infected mice at the end point and controls, as revealed by Western Blotting. (A) The proteins were detected using antibodies specific to TLR1, TLR2, TLR7, TLR8 and TLR9, respectively. β-actin, was used as a control and detected with a corresponding antibody. (B) The histogram shows the expression levels of TLR1, TLR2, TLR7, TLR8 and TLR9, calculated by grayscale value relative to β-actin. The values are represented as the fold change in comparison to the Control mice, with normalization to 1, *P < 0.05. The experimental data reveal statistical significance for TLR7 and TLR9.




3.3 Relationship of PrPSc accumulation, gliosis and TLRs expression

To investigate the relationship between PrPSc accumulation, gliosis, and TLR expression, we examined protein levels of GFAP and PrPSc in the cerebellum at 60, 90, 120, and 145 days post-infection (dpi). Our findings revealed the following:

	* GFAP expression: the expression of GFAP increased in a time-dependent manner, consistent with the progression of the disease (Figure 5).
	* PrPSc accumulation: similarly, the levels of PrPSc also showed a time-dependent increase, mirroring the pattern observed for GFAP and TLRs mentioned earlier (Figure 5). In both the control group and the 22L-infected group, the samples were digested with PK at a temperature of 37 °C for 1 h, and precisely 50 μg of protein was loaded into each lane.
	* Final stage: notably, at the final stage (145 dpi), both GFAP and PrPSc reached relatively high levels, suggesting their involvement in the pathogenesis of prion disease.


[image: Western blot analysis and graph related to 22L-infected vs. control samples. Panel A shows GFAP and β-actin levels at different days post-inoculation (dpi). Panel B shows PrP^Sc detection in 22L-infected samples. Panel C is a graph displaying fold change in PrP^Sc and GFAP over time, with error bars indicating variability.]
FIGURE 5
 During the pathogenesis of 22L-infected mice, the expressions of PrPSc (abnormal isoform of the prion protein) and GFAP (glial fibrillary acidic protein) in the cerebellum increased at 60, 90, 120, and 145 days post-infection (dpi). Total protein was extracted from the cerebellums, and 50 μg of protein was loaded into each lane. Here are the details: (A) GFAP Expression: We detected GFAP expression using western blot analysis with a monoclonal mouse anti-GFAP antibody. β-actin served as the housekeeping protein reference. (B) PrPSc Level: The level of PrPSc was measured by western blot using a monoclonal mouse anti-SAF antibody. (C) Fold change analysis: we analyzed the fold change of GFAP and PrPSc expression across different dpi using SigmaPlot. Notably, both GFAP and PrPSc exhibited time-dependent changes during the pathogenesis of prion disease. Please note that these findings provide valuable insights into the molecular events associated with prion infection in the cerebellum.


These results provide valuable insights into the interplay between glial activation, abnormal prion protein accumulation, and immune responses during prion infection.




4 Discussion

CNS is often considered an immune-privileged site due to its unique characteristics, including the absence of a classically defined lymphatic system (González-Hernández and Mukouyama, 2023). Despite this privilege, innate immunity likely plays a crucial role in controlling pathogen invasion within the CNS. Pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs), may contribute to altered brain homeostasis and various CNS diseases (Chen et al., 2017). These diseases encompass a wide range of causes, including experimental brain injuries resulting from stereotactic transection of axons in the entorhinal cortex, ischemic events, and autoimmune conditions.

Previous studies have demonstrated that the Toll-like receptor (TLR) family plays a critical role in host innate immunity (Sameer and Nissar, 2021). Researchers have extensively analyzed the expression of TLRs in the CNS of rodents and humans. Moreover, growing evidence suggests that TLRs are implicated in neurodegenerative diseases. Notably:

	* Alzheimer's disease (AD): increased expression of TLR2, TLR4, and CD14 has been observed in human brains and animal models of AD (Su et al., 2016). Additionally, plaque-associated microglia exhibit elevated mRNA levels for TLR2, 4, 5, 7, and 9.
	* Prion diseases: surprisingly, despite the importance of innate immune responses in neurodegenerative pathogenesis (Labzin et al., 2018), there have been no reports specifically addressing the expression patterns of TLRs during prion diseases (Zhang et al., 2020).

Understanding the interplay between TLRs and neurodegenerative processes remains an intriguing area of research, and further investigations into TLR expression dynamics during prion disease could provide valuable insights.

In this study, a mouse model of prion disease (specifically the 22L strain) was established. After identifying the distinctive features of the 22L strain, researchers selected the most severely affected region. Subsequently, they analyzed the expression levels of TLRs in this region. Notably, this report represents the first description of prion-related alterations in these innate immune receptors within the cerebellum during the pathogenesis of prion disease.

Various distinct prion strains have been identified in mice through serial passages of scrapie, BSE, or CJD originating from sheep, goats, cattle, or humans. Researchers utilized inbred mouse strains to establish prion-infected mouse models, aiming to investigate the mechanisms underlying prion diseases due to their shared clinical symptoms and associated pathological changes. The inoculation of scrapie into inbred mouse strains, along with consideration of the host's genetic background, plays a crucial role in determining the neuropathological lesions and incubation periods associated with prion diseases. In our study, we investigated the features of the 22L strain in female BALB/C background mice. Specifically, we examined the position of vacuolation and the pattern of PrPSc accumulation using HE staining and immunohistochemistry. Our data revealed widespread distribution of vacuoles throughout the brain, particularly in the cortex and cerebellum. Notably, the vacuolation score indicated severe spongiform changes in the cerebellum. Additionally, 22L strain infection in BALB/C mice was characterized by plaque-like PrPSc deposits in the cortex and hippocampus, along with diffuse PrPSc deposition in the granular layer of the cerebellum, suggesting elevated PrPSc expression in this region. Consequently, we conclude that the cerebellum represents the most severely affected disease region in BALB/C mice infected with the 22L strain. We quantified the expressions of TLR1-13 in the cerebellum during the pathogenesis of 22L strain-infected mice and control mice at various time points (60, 90, 120, and 145 days post-infection). Our findings demonstrate that mRNA for all tested TLRs was detectable in both 22L strain-infected mice and control mice. Notably, the levels of TLR1, 2, 7, 8, and 9 exhibited a time-dependent increase during the course of pathogenesis. By Western blotting, expressions of TLR7 and TLR9 in protein level showed increasing at the end point of 22L strain-infected mice to the control mice.

During the late stages of prion disease, the expressions of TLR1-13 significantly increased. However, TLR3, TLR4, TLR6, TLR12, and TLR13 exhibited less pronounced changes in expression prior to reaching the end point. Additionally, GFAP expression was also measured and demonstrated a time-dependent pattern. Expression of GFAP in cerebrum and cerebellum of 22L-affected mice, were measured by immunohistochemistry, as shown in Figure 2. By considering the similarity in amino acid composition, extracellular leucine-rich repeat (LLR) length, and phylogenetic analysis, researchers identified six subfamilies. Specifically, the TLR2 subfamily comprises TLR1, TLR2, and TLR6; the TLR9 subfamily includes TLR7, TLR8, and TLR9, and the TLR11 subfamily encompasses TLR11, TLR12, and TLR13. Furthermore, the TLR3, TLR4, and TLR5 subfamilies consist of a single member each. Our data revealed that the TLR2 and TLR9 subfamilies exhibited increased expression during the pathogenesis of prion disease. At the end point, TLR7 and TLR9 expression in protein level increased. Previous studies have reported that TLR7 increased in the thalamus in FFI (Llorens et al., 2016), and it mean inflammation might take part in pathogenesis of scrapie. A study reported an upregulation of TLR2 expression in 22L C57BL/6 infected mice. Interestingly, TLR2 knockout mice exhibited accelerated disease progression, with a median reduction of 10 days. These findings suggest that TLR2 signaling plays a partially protective role during prion infection (Carroll et al., 2018). It was reported that astrocytes express low levels of mRNA for TLR2, TLR4, TLR5, and TLR9, with further elevation upon activation by specific TLR ligands. Additionally, resting astrocytes express moderate levels of TLR1 and TLR6, along with very low levels of TLR7 and TLR8. Notably, TLR2 ligand recognition in the peripheral immune system typically involves TLR2 dimerization with either TLR1 or TLR6. The similarity in the expression patterns of TLR1 and TLR2 (but not TLR6) in the cerebellum suggests a functional association between TLR1 and TLR2 in this brain region.

During prion disease, PrPSc accumulation in the CNS leads to gliosis, primarily involving astrocytes. Remarkably, the mRNA expression of TLR1, TLR2, TLR7, TLR8, TLR9, and GFAP followed a consistent pattern, peaking at the final disease stage. Protein level of TLR7 and TLR9 showed increasing at the end point of the mice. This observation suggests that astrocytes may actively contribute to the elevated expression of TLRs, especially considering the concurrent loss of neurons and the reactive proliferation of glial cells. To further investigate, we quantified protein levels of PrPSc and GFAP in the cerebellum via western blot analysis. Our findings revealed that both PrPSc and GFAP increased progressively over time. This dynamic pattern suggests that PrPSc accumulation and glial cell proliferation escalate during the course of prion disease. Within the CNS, neurons and glial cells are the primary cell types expressing TLRs. Firstly, PrPSc accumulation may trigger neuron loss and enhance glial cell proliferation. Consequently, the expanded glial cell population likely contributes to the elevated TLR expression. Secondly, PrPSc itself could directly modulate TLR levels in the CNS as a pathogenic factor. Notably, accumulating evidence underscores the central role of TLRs in diverse inflammatory CNS pathologies. In the early stages of prion disease, the increased TLR levels and associated immune responses may assist the host in pathogen clearance. However, during the final disease stage, the sharp elevation in TLR expression could lead to severe immune responses detrimental to the CNS, particularly affecting neurons. Notably, previous studies have linked TLR9 expression to prion disease progression, as evidenced by responses to synthetic oligodeoxynucleotides. Furthermore, TLR4 mutant mice exhibited a shorter incubation time than control mice in prion disease. When considering TLRs as potential therapeutic targets for prion disease, immune responses that correlate with TLR levels during pathogenesis merit careful consideration.



5 Conclusion

In our current study, we demonstrated the expression of TLR1-13 in the cerebellum, which represents the severely affected region within the CNS. Specifically, the expression of TLR1, TLR2, TLR7, TLR8, and TLR9 exhibited significant upregulation in a time-dependent manner during the course of pathogenesis. Notably, all TLRs (TLR1-13) reached elevated levels at the final stage of prion disease. Protein level of TLR7 and TLR9 showed increasing at the end point of the 22L-infected mice. Additionally, both mRNA and protein levels of GFAP, along with protein expression of PrPSc, increased progressively over time during the pathogenesis of prion disease. A deeper understanding of the heightened TLR expression in prion disease may offer valuable insights into their involvement in initiating immune responses at various stages of pathogenesis. Importantly, this understanding could inform the exploration of TLRs as potential therapeutic targets for prion disease.
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Background: Individuals experiencing subjective cognitive decline (SCD) are at an increased risk of developing mild cognitive impairment and dementia. Early identification of SCD and neurodegenerative diseases using biomarkers may help clinical decision-making and improve prognosis. However, few cross-sectional and longitudinal studies have explored plasma biomarkers in individuals with SCD using immunomagnetic reduction.
Objective: To identify plasma biomarkers for SCD.
Methods: Fifty-two participants [38 with SCD, 14 healthy controls (HCs)] underwent baseline assessments, including measurements of plasma Aβ42, Aβ40, t-tau, p-tau, and α-synuclein using immunomagnetic reduction (IMR) assays, cognitive tests and the Mini-Mental State Examination (MMSE). Following initial cross-sectional analysis, 39 individuals (29 with SCD, 10 HCs) entered a longitudinal phase for reassessment of these biomarkers and the MMSE. Biomarker outcomes across different individual categories were primarily assessed using the area under the receiver operating characteristic (ROC) curve. The SCD subgroup with an MMSE decline over one point was compared to those without such a decline.
Results: Higher baseline plasma Aβ1-42 levels significantly discriminated participants with SCD from HCs, with an acceptable area under the ROC curve (AUC) of 67.5% [95% confidence interval (CI), 52.7–80.0%]. However, follow-up and changes in MMSE and IMR data did not significantly differ between the SCD and HC groups (p > 0.05). Furthermore, lower baseline plasma Aβ1-42 levels were able to discriminate SCD subgroups with and without cognitive decline with a satisfied performance (AUC, 75.0%; 95% CI, 55.6–89.1%). At last, the changes in t-tau and Aβ42 × t-tau could differentiate between the two SCD subgroups (p < 0.05).
Conclusion: Baseline plasma Aβ42 may help identify people with SCD and predict SCD progression. The role of plasma Aβ42 levels as well as their upward trends from baseline in cases of SCD that progress to mild cognitive impairment and Alzheimer’s disease require further investigation.
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1 Introduction

Many people seek medical advice regarding subjectively impaired cognitive function. For example, while a person may have difficulty recalling names or frequently misplace items, their performance in cognitive neuropsychological tests and daily functioning does not indicate objective cognitive impairment. Because the demand for medical guidance and support for such concerns is increasing, the term subjective cognitive decline (SCD) was introduced in 2014 (Jessen et al., 2014). The prevalence of SCD in the general adult population is 10.4–14.3% (Taylor et al., 2022). The SCD criteria comprise self-perceived persistent impairment in cognitive ability with normal performance on standardized tests to identify mild cognitive impairment (MCI), adjusted for age, sex, and education. The absence of objective cognitive impairment distinguishes SCD from MCI (Jessen et al., 2020).

SCD has attracted attention because it is associated with elevated risk of developing MCI and progression to dementia (Slot et al., 2019). A longitudinal study of 4-year follow-up data found that 27% of individuals with SCD developed MCI, and 14% of individuals with SCD developed dementia (Mitchell et al., 2014). The revised National Institute on Aging and Alzheimer’s Association research guidelines for Alzheimer’s disease (AD) classify SCD as a distinct transitional phase between asymptomatic (stage 1) and symptomatic (stage 3) MCI; thus, SCD is considered clinical stage 2 on the AD continuum (Jack et al., 2018).

SCD represents an unspecific syndrome characterized by multiple potential etiologies, including AD, minor psychiatric disorders, other comorbidities, sleep disturbances, stress, and medication use. Consequently, SCD cannot be uniformly considered synonymous with the prodromal phase of AD (Cheng et al., 2017). Individuals presenting with cognitive complaints alongside concurrent AD-associated pathological changes constitute a distinct group. This group is at an elevated risk for future cognitive decline and warrants investigative differentiation and targeted intervention. Therefore, our research is centered on the pathophysiology of AD dementia and its associated biomarkers to enhance the identification of this target group. Under normal physiological conditions, amyloid-β (Aβ) peptides are released from transmembrane amyloid precursor protein, and phosphorylated tau (p-tau) proteins maintain axonal structures. However, abnormal Aβ monomer accumulation leads to plaque formation in AD. Hyperphosphorylated tau protein causes axon degeneration, p-tau release, and subsequent neurofibrillary tangle formation (Lewczuk et al., 2020). AD is associated with reduced Aβ1-42 levels in cerebrospinal fluid (CSF) and elevated total tau (t-tau) levels in CSF determined using enzyme-linked immunosorbent and other conventional immunoassays (Formichi et al., 2006; Brier et al., 2016). A longitudinal study that measured CSF Aβ, t-tau, and p-tau found that low Aβ42 levels in CSF predict clinical progression in people with SCD (van Harten et al., 2013).

Sampling CSF is uncomfortable, invasive, and carries a minor possibility of adverse effects, especially for older adults. In contrast, blood sampling presents a less invasive option and is more feasible for widespread clinical application. However, while blood sampling allows for the detection of many serum biomarkers, the concentration of AD biomarkers in blood is typically at the picogram level, posing significant challenges for accurate measurement. To accurately detect SCD biomarkers at their low concentrations in blood, the implementation of ultrasensitive technologies like single-molecule array technology, immunomagnetic reduction (IMR), and the Meso Scale diagnostic assay is critical. These methodologies enhance the detection capabilities for AD biomarkers, making early diagnosis across the AD continuum more achievable. The principle of the IMR assay lies in eliciting a reduced response through the interaction between antibody-coated magnetic nanoparticles and target biomolecules, enabling the ultrasensitive detection of pathological plasma proteins at lower limits (Yang et al., 2008; Lue et al., 2019; Yang et al., 2020). Indeed, IMR detected higher plasma Aβ1-42 and t-tau levels in patients with AD or MCI than in healthy individuals (Chiu et al., 2012; Lue et al., 2019; Lee et al., 2022). These findings suggest that detection of plasma biomarkers could help determine an individual’s status on the AD continuum sooner, assess the severity of neurodegenerative diseases, or monitor disease progression (Tsai et al., 2019; Liang et al., 2020; Tsai et al., 2020; Wilczyńska and Waszkiewicz, 2020; Liang et al., 2021; Lee et al., 2022).

Recent studies have progressively elucidated the intricate relationship between SCD and AD through the lens of blood biomarkers, offering new insights into early detection and monitoring. The selection of blood biomarkers and the application of ultrasensitive assays for the exploration of SCD exhibit significant variability across different studies (Yu et al., 2023). Within the framework of “amyloid, tau, neurodegeneration” for AD pathology, potential blood-based biomarkers encompass amyloid and tau proteins, alongside indicators of neurodegeneration like neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) (Hardy-Sosa et al., 2022; Georgakas et al., 2023).

Regarding Aβ biomarkers, the plasma Aβ42/Aβ40 ratio was highlighted in research for its efficacy in prescreening for Alzheimer’s pathology among those with SCD (Verberk et al., 2018; Palmqvist et al., 2019; Keshavan et al., 2021; Gerards et al., 2022; Zhang et al., 2024). Additionally, plasma Aβ levels might be able to successfully discriminate amyloid-positive from amyloid-negative subjects within the SCD cohort (Pan et al., 2022; Hong et al., 2023). Furthermore, a non-linear trajectory of plasma Aβ42 across the Alzheimer’s continuum is mapped out by one study, suggesting its predictive efficacy varies through different cognitive stages (Pan et al., 2022). Concerning p-tau biomarkers, plasma p-tau181 has been shown by numerous studies to accurately distinguish between SCD patients with and without Alzheimer’s disease pathology (Karikari et al., 2020; Palmqvist et al., 2021; Thomas et al., 2021; Gerards et al., 2022; Giacomucci et al., 2023). Moreover, plasma p-tau217 accurately distinguishes AD from other neurodegenerative conditions and substantially improves Alzheimer’s disease dementia prediction (Palmqvist et al., 2020, 2021; Janelidze et al., 2021). With respect to neurodegeneration biomarkers, plasma NfL has showed promise as a biomarker for early AD neurodegeneration (Bangen et al., 2021; Gerards et al., 2022; Giacomucci et al., 2022). Additionally, plasma GFAP levels, distinguishing dementia risk from depression in non-demented individuals, also demonstrate potential as a marker for early dementia detection (Perna et al., 2023). The integration of multiple categories of biomarkers has been strategically designed to investigate SCD. For instance, a combination of plasma Aβ42/Aβ40 and GFAP has been demonstrated to effectively identify amyloid PET status in individuals with SCD (Verberk et al., 2020). Similarly, combining plasma biomarkers Aβ42/Aβ40, P-tau217, and NfL also accurately forecast cognitive decline and AD progression in cognitively unimpaired older people (Cullen et al., 2021). Overall, the literature presents inconsistent results regarding blood biomarker profiles in individuals with SCD, and there is a paucity of data concerning the longitudinal relationship between plasma biomarkers identified through IMR and SCD individuals.

Our research is primarily focused on the following biomarkers: Aβ42, Aβ40, t-tau, p-tau181, and α-synuclein. They have been chosen for their significant association with AD and are fundamental to the pathological characterization of AD and play a crucial role in the neurodegenerative processes leading to cognitive decline. Utilizing IMR technology, this study endeavored to quantify these biomarkers in individuals experiencing SCD compared with healthy controls (HCs). Additionally, through longitudinal analysis, our objective was to clarify the predictive capacity of these biomarkers in delineating the progression from SCD to MCI and ultimately, AD. The objective of this study was twofold: first, to validate the efficacy of selected plasma biomarkers in differentiating individuals with SCD from HCs in a cross-sectional and longitudinal perspective; and second, to explore the predictive value of these biomarkers in future cognitive decline within the SCD cohort.



2 Materials and methods


2.1 Participant recruitment

This cross-sectional study recruited 52 participants from the neurology outpatient clinic at the Tri-Service General Hospital of the National Defense Medical Center, Taiwan. The criteria for diagnosing and including individuals with SCD were derived from the following established findings (Jessen et al., 2014): self-reported experience of ongoing decline in memory compared with a previous state within the past 5 years validated by information, standard performance on the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (adjusted for age, sex, and education), and a score of zero in the clinical dementia rating scale. Volunteers without depression, anxiety disorders, or any conditions in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition were recruited. Participants’ scores on standard neuropsychological tests were measured, and they were matched for age, sex, and handedness.

Participants had to have not taken medications, particularly selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors and any other neurological medications, for a minimum of 3 months to eliminate potential effects of medication and hormone levels. All participants received a thorough medical examination and then were individually assessed by one clinical neuropsychologist at Tri-Service General Hospital. This assessment included a standardized clinical review of medical history, psychiatric and neurological examinations, physical assessments, laboratory tests for creatinine, fasting blood sugar, free thyroxine 4, high-sensitivity thyroid-stimulating hormone, vitamin B12, folic acid, serological tests for syphilis, blood parameters (numbers of platelets, white, and red blood cells, hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin), and neuroimaging.

Objective cognitive performance was evaluated using standard neuropsychological tests of memory, executive functioning, and processing speed. Memory function was assessed using the 15 Word Learning Test (Brand and Jolles, 1985) and the delayed recall segment of the Rey-Osterrieth Complex Figure Test (Shin et al., 2006). Working memory was evaluated using forward and backward digit spans (Wambach et al., 2011). Executive function was assessed using the Visual Elevator (Robertson et al., 1996), Brixton Spatial Anticipation (Burgess and Shallice, 1996), and verbal fluency tests (Wilkins et al., 1987). Processing speed was assessed using a digital symbol substitution test (Jaeger, 2018) and a trail-making test (Llinàs-Reglà et al., 2017).

Additional clinical data were assessed, including the demographic factors of sex and age, cognitive assessments such as the MMSE and the clinical dementia rating scale, and supplementary measures encompassing the Pittsburgh Sleep Quality Index (Buysse et al., 1989), Beck’s Depression Inventory score (Beck et al., 1961), hospital anxiety and depression subscale score (Zigmond and Snaith, 1983), and SCD duration.

Exclusion criteria were applied uniformly to HCs and participants with SCD as follows: age < 40 or > 75 years, concurrent uncontrolled medical conditions, such as sepsis or poorly managed diabetes (hemoglobin A1c > 8.5); malignancy within the past 2 years; heart failure, myocardial infarction within the past 6 months, chronic obstructive pulmonary disease, liver cirrhosis, or renal failure; history of cerebrovascular or other neurological diseases such as neurodegeneration, epilepsy, head injury, or any Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition disorder; prolonged use of psychotropic medications (serotonin-norepinephrine reuptake inhibitors, selective serotonin reuptake inhibitors, and benzodiazepines) for >6 months or substance abuse; and any structural lesion identified by brain imaging.



2.2 Study design

Our experimental design was divided into two segments: an initial cross-sectional component followed by a longitudinal phase. Initially, a total of 52 participants were enrolled, comprising 38 individuals with SCD and 14 HCs. Upon successful enrollment, all participants immediately underwent an initial blood draw, cognitive tests and the first MMSE to establish baseline data. The blood samples were analyzed by IMR assay for biomarkers including Plasma Aβ42, Aβ40, t-tau, p-tau181, and α-synuclein. These baseline data underwent cross-sectional analysis.

Subsequently, 39 participants continued into the longitudinal phase of the study, with a designated follow-up timeframe within 2 years, aiming to identify early correlations between cognitive decline and biomarkers. Among these, 29 were individuals with SCD and 10 were HCs, with average follow-up durations of 1.7 years and 1.2 years, respectively. All participants in this longitudinal cohort were subjected to a second blood draw and MMSE immediately after the follow-up period to gather longitudinal data. Similar to the baseline, the blood samples, including plasma Aβ42, Aβ40, t-tau, p-tau181, and α-synuclein, were assayed using the IMR method. These data were used for subsequent statistical analyses between the SCD and HC groups (Figure 1A).
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FIGURE 1
 (A) Study design. Flow of participants through our longitudinal analysis. Data were analyzed twice. (B) Subgroup study design. Flow of participants with SCD and longitudinal follow-up. AUC, area under the ROC curve; IMR, immunomagnetic reduction; MMSE, Mini-Mental State Examination; ROC, receiver operating characteristic; SCD, subjective cognitive decline.


Finally, among the 29 SCD participants in the longitudinal phase, individuals exhibiting an annual MMSE decline greater than one point were categorized as a group at risk of future cognitive deterioration. Conversely, those not meeting this criterion were considered unlikely to experience cognitive decline. These two subgroups underwent further analysis (Figure 1B).



2.3 Ethics approval and consent to participate

Written informed consent was obtained from each participant before starting the study. The Institutional Review Board of Tri-Service General Hospital approved the study (TSGHIRB 1–107–05-111).



2.4 Preparation of plasma samples

Non-fasting blood samples collected into 9-mL K3-EDTA tubes (455,036, Greiner Bio-one GmbH, Kremsmünster, Austria) were immediately inverted gently three times, then centrifuged at 2,300 × g for 10 min at 4°C in a swinging bucket rotor (5202R, Eppendorf AG., Hamburg, Germany). Aliquots (0.4 mL) of plasma were stored within 8 h of blood collection at −80°C in fresh 2.0 mL CryzoTraq tubes (Ziath, Cambridge, United Kingdom).



2.5 Plasma biomarker assays

We assayed plasma levels of Aβ40, Aβ42, t-tau, and p-tau181 using MF-AB0-0060, MF-AB2-0060, MF-TAU-0060, and MF-PT1-0060 IMR kits and a XacPro-S IMR analyzer (all from MagQu Co., New Taipei City, Taiwan). The protocol for these assays mandates combining 40 μL of plasma for Aβ40, t-tau, and p-tau181 tests, as opposed to 60 μL of plasma for the Aβ42 test, with their corresponding reagents, resulting in a total reaction volume of 120 μL. The discrepancy in plasma volume requirements for Aβ40 and Aβ42 assays is attributable to their differential baseline concentrations; the lower concentration of Aβ42 relative to Aβ40 necessitates the use of a larger plasma volume for Aβ42 to ensure the accuracy and precision of the assay. Results are shown as the means of duplicate measurements. The reliable ranges for detecting Aβ40, Aβ42, t-tau, and p-tau181 in the IMR assay were 0.17–1,000, 0.77–30,000, 0.026–3,000, and 0.0196–1,000 pg./mL, respectively. The intra- or inter-assay coefficients of variation for Aβ40, Aβ42, t-tau, or p-tau181 assays using IMR were 7–10% and 10–15% for high- and low-concentration quality control samples, respectively. We used two different batches of reagents per biomarker with variations in reagent properties between batches maintained at <10%. We applied rigorous quality control measures to ensure consistent particle size, concentrations, and bioactivity.



2.6 Statistical analysis

We compared demographics, cognitive test outcomes, and IMR data in paired groups (SCD vs. HCs; cognitive decline vs. maintenance) using independent sample t-tests for continuous variables or Fisher’s exact tests for categorical variables. We compared MMSE and IMR data and further adjusted age and education levels using a multivariable linear regression analysis. The ability of baseline IMR data to discriminate participants with SCD from HCs was assessed by analyzing receiver operating characteristic (ROC) curves. The ability of baseline, follow-up, and changes in IMR data to discriminate cognitive decline (annual MMSE decline ≥1) among participants with SCD was also evaluated using the area under the ROC curve (AUC). The confidence interval (CI) of the AUC was calculated using the DeLong nonparametric method. All tests were 2-tailed, and p < 0.05 was considered significant. Data were analyzed using SPSS version 26 (IBM SPSS Inc., Chicago, Illinois, United States).




3 Results


3.1 Inclusion, demographics, clinical, and study characteristics

Table 1 shows the baseline clinical and demographic information, cognitive test results, and IMR data of the 14 HCs and 38 participants with SCD. The demographic characteristics of age, sex, education level, and body mass index did not significantly differ between the groups. The results of cognitive tests and baseline MMSE scores also did not significantly differ between the groups. Both groups harbored notably similar frequencies of the APOE ε4 allele, which is the major genetic risk factor for placement on the AD continuum.



TABLE 1 Demographics, cognitive, and IMR findings at baseline for healthy controls and individuals with SCD.
[image: A table compares demographic, cognitive test, and baseline immunological marker data between control and SCD groups. It includes variables such as age, gender, education level, body mass index, cognitive test scores, and marker levels like t-tau and Aβ42. Significance levels (p-values) are presented, with some adjusted for age and education level.]

Among the plasma biomarkers, only baseline levels of Aβ42 were significantly higher in the SCD group than in HCs (17.2 ± 1.1 vs. 16.4 ± 0.9 pg./mL, p = 0.035; Table 1 and Figure 2A). This finding persisted after adjusting for age and educational level (p = 0.026). The AUC for Aβ42 to discriminate SCD from HC was 67.5% (95% CI, 52.7–80.0%; Supplementary Files S1, S4). All plasma biomarker levels were within their respective detection limits using IMR.

[image: Box plots displaying levels of Aβ42 at baseline in picograms per milliliter. Panel A compares Control and SCD groups with a statistically significant difference, p-value of 0.035. Panel B compares cognitive decline presence, Yes and No, with a statistically significant difference, p-value of 0.029.]

FIGURE 2
 (A) Distribution of Aβ42 levels at baseline in healthy controls and participants with SCD. Aβ, amyloid-β; HC, healthy control; SCD, subjective cognitive decline. (B) Distribution of Aβ42 level at baseline for participants who had SCD with and without cognitive decline as annual MMSE decline of ≥1. Aβ, amyloid-β; MMSE, Mini-Mental Status Examination; SCD, subjective cognitive decline.




3.2 Longitudinal changes in MMSE and IMR data and correlations between groups during follow-up

We assessed annual changes and follow-up data including MMSE scores and plasma biomarker levels to identify longitudinal associations between plasma biomarkers and cognitive decline. We compared these data in 10 HCs and 29 participants with SCD who had complete follow-up MMSE and IMR data for 1.2 and 1.7 years, respectively. Follow-up and changes in MMSE and IMR data did not significantly differ between the SCD and HC groups (Table 2) and were consistent after adjusting for age and educational level.



TABLE 2 Changes in MMSE and IMR data in healthy controls and individuals with SCD during follow-up.
[image: Table comparing variables between Control and Subjective Cognitive Decline (SCD) groups. Variables include duration, Follow-up MMSE, various IMR data such as t-tau, Aβ42, p-tau181, Aβ40, α-synuclein, and their changes. p-values indicate statistical significance. Data are means with standard deviations, adjusted for age and education level.]



3.3 Associations between baseline plasma biomarkers and risk of cognitive decline in individuals with SCD

We assigned the follow-up data of the 29 participants with SCD to two subgroups to determine longitudinal correlations between SCD and subsequent corresponding cognitive decline. Among the 29 individuals, 8 (27.6%) were considered to have subsequent cognitive decline. Only baseline Aβ42 significantly differed among demographics, cognitive test findings, MMSE score, and all IMR data (Table 3). The baseline Aβ42 level was significantly lower in the individuals with than without subsequent cognitive decline (16.4 ± 1.1 vs. 17.5 ± 1.2 pg./mL, p = 0.029; Figure 2B). This result remained significant after adjusting for age and educational level (p = 0.048). The AUC for Aβ42 to discriminate subsequent cognitive decline among participants with SCD was 75.0% (95% CI, 55.6–89.1%; Supplementary File S2 and Table 4).



TABLE 3 Baseline demographics, cognitive, and IMR findings of participants with SCD with/without cognitive decline.
[image: Table comparing variables between two groups: Declined (n=8) and Maintained (n=21). Categories include demographics, cognitive tests, and baseline IMR data in pg/mL. Each section lists average values with standard deviations and p-values for statistical significance. Demographic data compare age, gender, education, and BMI. Cognitive tests cover tCDR, HVLT, fDS, bDS, VFT, TMTA, and MMSE. IMR data include t-tau, Aβ42, p-tau181, Aβ40, α-synuclein, and various ratios. ApoE ε4 allele frequency is also shown. Significance adjustments are noted for age and education level.]



TABLE 4 Ability of baseline, follow-up, and changes in IMR data to discriminate annual MMSE decline ≥1 among the individuals with SCD.
[image: Table comparing IMR data at baseline, follow-up, and change phases for markers like t-tau, Aβ₁₄, and α-synuclein. It lists AUC with 95% CI and p-values. Notable changes include t-tau and Aβ₁₄ x t-tau with p-values of 0.028.]



3.4 Changes and associations in plasma biomarkers at follow-up and risk of cognitive decline in individuals with SCD

Our assessment revealed no significant differences in follow-up and changes in IMR data between the subgroups of patients with SCD (Supplementary File S5). However, the AUC indicated that changes in t-tau and Aβ42 × t-tau could differentiate between the two subgroups (Supplementary File S3 and Table 4). Changes in t-tau and Aβ42 × t-tau were higher in the subgroup with subsequent cognitive decline.




4 Discussion

This IMR-based study found that increased levels of baseline plasma Aβ42 significantly discriminated individuals with SCD from HCs. The measured concentration in this study (17.2 ± 1.1 pg./mL) was higher than the reported level in HCs and is close to the reported level in amnestic mild cognitive impairment (aMCI) measured by several groups independently (Tzen et al., 2014; Lue et al., 2017; Chen et al., 2019; Chiu et al., 2020; Jiao et al., 2020; Tsai et al., 2020; Hu et al., 2021), as shown in Table 5. This implies that amyloidosis is occurring in the brain at the stage of SCD, prior to MCI. Interventions or treatments should be given to individuals with SCD to prevent or delay the onset of MCI or AD. Although people with SCD do not show cognitive impairment as significant as that observed in aMCI, similar plasma Aβ42 levels are detected in individuals with SCD and aMCI. This indicates that abnormal levels of plasma Aβ42 are detectable prior to the onset of clinically diagnosed cognitive impairment. Plasma biomarkers are promising for use as preclinical assessments for future AD.



TABLE 5 Plasma Aβ42 concentrations measured using IMR in HC, SCD, and aMCI reported by other groups and in the current study.
[image: A table compares measurements across three groups: HC, SCD, and aMCI, with references. HC values range from 15.33 to 17.0, SCD has a single value of 17.2 ± 1.1, and aMCI ranges from 17.2 ± 0.3 to 17.6 ± 1.8. Referenced studies are from Tsai et al. (2020), Tzen et al. (2014), Lue et al. (2017), Chen et al. (2019), Chiu et al. (2020), Jiao et al. (2020), Hu et al. (2021), and the current work. Abbreviations: Aβ, aMCI, HC, IMR, SCD.]

Based on previous studies (Chiu et al., 2013, 2020), plasma Aβ42 × t-tau is suggested to be a powerful index for assessing aMCI and AD. Furthermore, plasma Aβ42 × t-tau predicts the progression to MCI in HCs. According to Lee et al. (2023), 20% of cognitively normal individuals with baseline plasma Aβ42 × t-tau levels higher than 382 (pg/mL)2 progress to MCI in 1 to 2 years. Notably, the measured plasma Aβ42 × t-tau levels in individuals with SCD in this study were 445.0 ± 148.9 (pg/mL)2. Most individuals with SCD are at risk for cognitive decline in the near future. The 1.7-year longitudinal observations of participants with SCD showed that 8 of 29 of these individuals (27.6%) experienced further cognitive decline. Consistent results obtained between these studies demonstrate the feasibility of predicting future cognitive decline in cognitively normal subjects using plasma Aβ42 × t-tau.

In Table 3, lower baseline plasma Aβ42 levels significantly discriminated participants in the SCD subgroups with real cognitive decline (16.4 ± 1.1 pg./mL) from those with maintained cognitive function (17.5 ± 1.2 pg./mL, p < 0.05). From the point of view of AD progression, the levels of plasma Aβ42 assayed with IMR continuously elevate from HC to SCD and aMCI to AD. Presumably, individuals with higher levels of plasma Aβ42 are at a relatively severe stage of AD and should have rapid progression in cognitive decline. However, the results in Table 3 show that individuals with SCD with relatively low levels of Aβ42 already display real cognitive decline. The results are opposite to the expectation. Chi et al. reported similar results in post-stroke cognitive impairment (PSCI) (Chi et al., 2019; Huang et al., 2022). Patients diagnosed with PSCI 1 year after stroke had lower Aβ42 levels (15.1 pg./mL) at 3 months than those without PSCI (17.2 pg./mL, p < 0.05). The downstream pathogenesis underlying changes in plasma Aβ42 in individuals with SCD or PSCI are unclear. Degradation of the glymphatic system or meningeal lymphatic vessels in the brain may cause poor clearance of Aβ42 from the brain to peripheral blood, thereby contributing to the relatively low plasma Aβ42 levels (Chi et al., 2019; Huang et al., 2022). Meanwhile, more Aβ42 accumulates in the brain, resulting in the rapid decline in cognition in individuals with SCD or PSCI. More investigations are needed to clarify the detailed downstream mechanism underlying changes in plasma Aβ42 levels in individuals with SCD or PSCI displaying real decline in cognition.

Changes in t-tau and Aβ42 × t-tau might discriminate subsequent cognitive decline among individuals with SCD. This means that plasma t-tau is a key biomarker reflecting the severity of disease. A negative correlation (r = −0.93, p < 0.05) between the changes in plasma t-tau levels and changes in MMSE scores in aMCI has been reported (Tsai et al., 2020). Furthermore, several studies show significant changes in plasma t-tau levels in participants at high risk of AD after intervention (Lin and Li, 2022; Su et al., 2022; Te Liu et al., 2023). All the results suggest plasma t-tau is a promising biomarker for monitoring the progression/conversion of cognitive impairment.

Changes in plasma Aβ levels throughout the progression of cognitive decline along the AD continuum are uneven and unpredictable (Pan et al., 2022). The present findings show that higher baseline plasma Aβ42 levels significantly discriminated patients with SCD from HCs. These were consistent with previous findings indicating that plasma Aβ42 could serve as a preliminary screening tool for detecting AD-related pathological changes in healthy individuals experiencing SCD (De Rojas et al., 2018; Verberk et al., 2018; Gerards et al., 2022; Pan et al., 2022). Our findings could assist clinicians in identifying individuals with SCD among healthy populations. Blood tests are less invasive and more readily accessible than CSF tests and serve as vital references and a foundation for clinicians to conduct thorough assessments and formulate medical plans.

AD may stem from increased production or compromised clearance of Aβ42, leading to the deposition of amyloid plaques (Potter et al., 2013). The involved clearance systems, namely the blood–brain barrier, glymphatic system, and meningeal lymphatic vessels, are likely to become dysfunctional, thus contributing to impaired Aβ removal from the brain to the bloodstream (Tarasoff-Conway et al., 2015). This is expressed as declining plasma and CSF Aβ42 concentrations (Lewczuk et al., 2020). A conceivable explanation for the increased plasma Aβ42 level in SCD might be that clearance systems in preclinical AD are not yet compromised, and Aβ42 transport from the brain to the bloodstream is augmented.

Plasma Aβ42 values increase from normal cognition to SCD on the AD continuum, followed by a decline in MCI and AD (Pan et al., 2022). The non-linear nature of plasma Aβ throughout the AD continuum might explain our findings. Specifically, baseline plasma Aβ42 levels were obviously lower in individuals with SCD who experienced subsequent cognitive decline compared with those who had preserved cognitive function. Nonetheless, participants with SCD were distinguished from HCs by significantly elevated baseline plasma Aβ42 levels.

Tau protein predominantly localizes in the central nervous system, where it facilitates crucial microtubule assembly and stabilization. Tau is hyperphosphorylated in people on the AD continuum, and it aggregates to form neurofibrillary tangles that have neurotoxic effects on neurons. The transmission of these pathological forms of tau among neurons might contribute to the progressive spread of AD within the brain (Guo and Lee, 2011; Medina and Avila, 2014). Our findings indicate that altered t-tau levels or product of Aβ42 × t-tau levels could differentiate persons with SCD who develop subsequent cognitive decline from those who do not. These results suggest that fluctuations in tau levels could serve as prospective biomarkers along the AD continuum, given that t-tau is a biomarker of neurodegeneration (Holper et al., 2022). Nonetheless, the significance of the data lacks reproducibility across statistical methodologies, specifically between independent sample t-tests and ROC analyses. Consequently, the strength of evidence derived from these findings is comparatively diminished compared with those pertaining to baseline plasma Aβ1-42 levels. Therefore, alterations in t-tau levels hold great promise as prognostic, rather than diagnostic biomarkers.

In our quest to refine diagnostic approaches for the earliest stages of the Alzheimer’s continuum, our study has embraced plasma biomarkers because of their less invasive collection method and greater accessibility to clinicians. This choice aims to facilitate broader clinical application in anticipation of the upcoming era of disease-modifying therapies for AD. However, a critical concern emerges during the transition of biomarker analysis from CSF to plasma. While CSF biomarkers demonstrate pronounced differences between individuals, plasma biomarkers reveal only subtle absolute variations across different patient categories. These minimal variations are susceptible to distortion by preanalytical and analytical confounders, thereby diminishing their discriminative power, as evidenced by the AUC values. Moreover, CSF biomarkers offer more of an AD pathology landscape through the A/T/N system. Incorporating CSF biomarkers enables us to better distinguish SCD patients with an underlying Alzheimer’s pathology from those without. This capability suggests a promising avenue for future research to further explore plasma biomarkers by correlating them with CSF biomarkers, potentially enhancing our understanding and identification of AD at its nascent stages.

Despite the remarkable progress in blood biomarker research facilitated by ultra-sensitive assays in recent years, their integration into clinical practice demands rigorous validation and standardization. This challenge is further compounded by factors such as individual preferences, healthcare economics, and cultural perceptions of aging (Georgakas et al., 2023). The advent of disease-modifying treatments offers compelling motivation for advancing blood biomarker research in the near future. Future research is essential not only to develop biomarkers that offer greater accuracy and reliability but also to deepen our understanding of the insights these biomarkers yield. Additionally, it is crucial to investigate the potential for testing these biomarkers directly in whole blood. Grasping this comprehensive knowledge is imperative for influencing patient healthcare decisions, clinical outcomes, and overall well-being.


4.1 Limitations

This study of correlations between biomarkers in individuals with SCD and HCs has some limitations. The sample size was relatively modest, necessitating the need for larger-scale studies in the future. Furthermore, future studies should broaden the scope beyond the examination of amyloid and tau proteins to encompass additional markers, such as neurofilament light chain and glial fibrillary acidic protein.

In conclusion, we found that elevated baseline plasma Aβ1-42 levels can discriminate individuals with SCD from HCs, which is a valuable insight for clinicians. Diminished baseline plasma Aβ1-42 levels have discriminatory potential for identifying cognitive deterioration among patients with SCD. The discriminatory roles of changes in t-tau levels or the product of Aβ42 × t-tau levels were similar. Identifying SCD with these biomarkers could facilitate the early detection of neurodegenerative diseases and thus lead to timely intervention. The mechanisms underlying the course of plasma Aβ level changes from elevation to decline during the AD continuum should also be investigated.
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Background: Olfactory dysfunction was associated with poorer cognition. However, the association between transient receptor potential cation channel subfamily A member 1 (TRPA1) and cognitive function have not been studied. This study aimed to evaluate the mediation effect of TRPA1 on the association between olfactory and cognitive function among Chinese older adults.
Methods: We recruited 121 participants with cognitive impairment (CI) and 135 participants with normal cognition (NC) from a memory clinic and the “Shanghai Aging Study.” Olfactory identification of each participant was measured by the Sniffin’ Sticks Screening Test 12 (SSST-12). Serum TRPA1 were quantified using the Enzyme-Linked Immunosorbent Assay. The mediation effects of TRPA1 on the association between olfactory function and cognitive function were explored using mediation analysis.
Results: The CI group had a significantly higher proportion of the high level of serum TRPA1 (58.7%) than the NC group (42.2%) (p = 0.0086). After adjusted for gender, age, and years of education, mediation analysis verified that TRPA1 partially mediated the association between SSST-12 and Mini Mental State Examination (MMSE). It also verified that TRPA1 partially mediated the association between the identification of peppermint and MMSE.
Conclusion: Our study emphasizes the mediation role of TRPA1 in the relationship between olfactory and cognitive function among older adults. Further research is necessary to explore the mechanism of TRPA1 on the relationship between olfactory and cognitive decline.
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 cognitive function; olfactory identification; TRPA1; mediation analysis; elderly


Introduction

Olfactory dysfunction affects 24–75% of older adults, with its prevalence substantially increasing by age (Choi et al., 2018). Olfactory dysfunction is an important clinical symptom indicating an early stage of neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal lobar degeneration, dementia with Lewy bodies, and Parkinson’s disease (Attems et al., 2014). Olfactory identification is likely to involve the most elaborate network of brain regions associated with language processing, semantic and episodic memory, as well as olfactory perception (Wilson et al., 2006). Several epidemiologic studies demonstrated that poorer olfactory function was significantly associated with poorer cognition in population-based cohorts (Stanciu et al., 2014; Devanand et al., 2015; Liang et al., 2016; Roberts et al., 2016; Yaffe et al., 2017).

Our previous cross-sectional study showed that participants with mild cognitive impairment (MCI) performed worse olfactory function, especially the ability to identify peppermint among 12 odors in the Sniffin’ Sticks Screening Test 12 (SSST-12), than those with normal cognition (NC) (Liang et al., 2016). Our cohort study showed that an inability to smell peppermint was related to a higher risk for incident dementia, and was inversely associated with the annual rate of change in the Mini Mental State Examination (MMSE) score (Liang et al., 2020).

Peppermint was found to enhance memory (Moss et al., 2009) and the sustained visual attention task (Warm et al., 1991). Peppermint was mainly composed of L-menthol, carboxyl esters, menthone, menthyl acetate (Thomson Healthcare, 2007) and other components (Leung, 1980). The main cellular receptor for L-menthol is transient receptor potential cation channel subfamily A member 1 (TRPA1), which is associated with AD (Lee et al., 2016; Bosson et al., 2017). Studies have shown that the protein expression of TRPA1 channel significantly increased in AD transgenic mice, mainly in astrocytes of the hippocampus, and TRPA1 could be involved in the pathogenesis of AD through multiple pathways (Lee et al., 2016; Bosson et al., 2017; Paumier et al., 2022).

In this pilot study, we aimed to evaluate the potential mediation effect of TRPA1 on the association between olfactory and cognitive function in Chinese older adults.



Materials and methods


Study participants

Participants with cognitive impairment (CI) were from the memory clinic of the department of neurology, Huashan Hospital, Shanghai, China from December 2020 to May 2021. Participants met the inclusion criteria if they (1) visited the memory clinic due to memory complaints from themselves or the proxy; (2) were diagnosed with AD clinical syndrome or MCI; (3) had the ability to cooperate with neuropsychological tests and physical examinations; (4) completed the olfactory assessment; (5) 60 years or older; and (6) agreed to the blood draw.

The Shanghai Aging Study (SAS) is a community-based cohort in downtown Shanghai, China. SAS aimed to explore the prevalence, incidence, and risk factors for MCI and dementia among older residents. The detailed recruitment procedure and study design have been published elsewhere (Ding et al., 2014). In the SAS, the participants were diagnosed with NC from the third wave of follow-up between June 2020 and November 2021 if they (1) completed the olfactory assessment; (2) had the ability to cooperate with neuropsychological tests and physical examinations; (3) 60 years or older; and (4) agreed to the blood draw.

We excluded participants who (1) had histories of rhinal or paranasal sinuses diseases; (2) underwent maxillofacial surgery; (3) had chronic sinusitis, asthma, chronic obstructive pulmonary disease, or acute upper respiratory tract infection within 7 days before the olfactory assessment; and (4) alcohol or drug abuse.



Demographics, lifestyles, and medical history

The lifestyle and demographic characteristics were collected from the participants and/or proxy through questionnaires, including gender, age, and years of education. Hypertension and diabetes mellitus were confirmed by the medical records (Ding et al., 2014).



Olfactory identification test

Olfactory identification was a procedure in which a participant needed to accurately identify olfactory stimuli using alternative choices. Olfactory identification test was assessed by the SSST-12, which includes 12 common odors (orange, cinnamon, leather, banana, peppermint, liquorice, lemon, cloves, coffee, rose, pineapple, and fish) presented on felt-tip sticks (Hummel et al., 2001). The SSST-12 was devised by G. Kobal in Erlangen, Germany, and it is a portable, rapid (approximately 6 min), suited for inexpensive and repetitive screening of olfactory identification. The administrator of SSST-12 was blind for the cognitive diagnosis of each participant. Before the test, participants were reminded to stay away from chewing sweets, cigarettes or gum. Testing was performed in an air-conditioned and quiet room. A brief history was recorded, including questions related to the participant’s previous diseases, olfactory experience, occupation, drug intake and smoking habits. When presenting the odors, the administrator was wearing cotton gloves. The opened odor sticks were positioned about 2 cm in front of both nostrils of each participant. Participants were then asked to sniff for no longer than 3–4 s and to choose one of four answers from a list that described the best odor. An interval of 30s was set between the different sticks. Detailed instructions of SSST-12 were reported elsewhere (Liang et al., 2016).



Neurological, neuropsychological assessments, and consensus diagnosis

Comprehensive neuropsychological tests were administered by the certified psychometrists in accordance with the education level of each participant. All tests conducted had been translated, adapted, and validated within the local Chinese population.

Each participant from the memory clinic received a battery of neuropsychological tests including (Xiao et al., 2021): (1) Montreal Cognitive Assessment-Basic (MoCA-B); (2) MMSE; (3) Auditory Verbal Learning Test; (4) Boston Naming Test; (5) Rey-Osterrieth Complex Figure test; (6) Symbol Digit Modalities Test; and (7) Trail-making test A&B. For those who were unable or refused to complete the whole battery of tests, only MoCA-B and MMSE were administered. Because the MMSE is less sensitive for MCI detection (Nasreddine et al., 2005), MMSE was used together with MoCA-B to discriminate MCI and dementia.

As for the participants from SAS, a battery of similar neuropsychological tests was administered due to the study design of SAS (Zhang et al., 1990; Ding et al., 2015): (1) MMSE; (2) Auditory Verbal Learning Test; (3) Conflicting Instructions Task (Go/No Go Task); (4) Modified Fuld Object Memory Evaluation; (5) Modified Common Objects Sorting Test; (6) RMB (Chinese currency) test; (7) Stick Test; and (8) Trail-making test A&B.

Two study neurologists, one neuroepidemiologist and one neuropsychologist reviewed the medical, functional, neuropsychological, neurological, and psychiatric data and reached a consensus regarding the absence or presence of dementia using DSM-IV criteria (American Psychiatric Association, 1994). Probable AD was diagnosed using the NINCDS-ADRDA criteria (McKhann et al., 1984). Participants who met the criterion of probable AD were regarded as having AD clinical syndrome. The diagnosis of MCI was based on Petersen’s criteria (Petersen, 2004).



Serum TRPA1 measurement

Blood was collected from the study participants. Serum and plasma samples were centrifuged, aliquoted, and stored at −80°C. Serum TRPA1 were quantified using the Enzyme-Linked Immunosorbent Assay test on the Enzyme labeling apparatus (352 Labsystems Multiskan MS), and serum samples were diluted at a 1:4 ratio following the manufacturer’s instructions. Duplicate measurements were taken for calibrators and quality controls. Sample measurements were conducted in a single run using kits with the identical lot numbers. Operators remained unaware of participants’ characteristics. The statistical median value of serum TRPA1 was used to categorize participants into low or high levels of serum TRPA1.



Statistical analysis

Continuous variables were expressed as the mean (standard deviation) or median (lower quartile[25%], upper quartile[75%]), and categorical variables were expressed as frequencies (%). The Wilcoxon rank-sum test and Pearson chi-square test were used to compare continuous and categorical variables.

Scatter plots were performed to analyze the correlations between SSST-12 and serum TRPA1, between SSST-12 and MMSE, and between serum TRPA1 and MMSE. Their correlations were assessed using the generalized linear model with the adjustment for gender, age, and years of education.

The logistic regression model was used to detect the association between serum TRPA1, the level of serum TRPA1, SSST-12, olfactory dysfunction, or the identification of peppermint and CI after adjusted for gender, age, and years of education. Risk was presented as odds ratio (OR) and 95% confidence interval (95%CI).

Mediation analysis was conducted to decompose the total effect of olfactory function on cognitive function into a natural direct effect and a natural indirect effect through TRPA1 after adjusted for gender, age, and years of education.

Two-tailed tests were used to estimate all p values and 95% confidence intervals. Statistically significant differences were identified at p < 0.05. Mediation analysis was conducted using R packages “lavaan” and “mediation.” Data analysis was conducted in SAS 9.4 (SAS Institute Inc., Cary, NC, United States) and R Software (version 4.1.2).




Results


Characteristics of the participants

We recruited 256 participants (164 females and 92 males), including 135 participants with NC and 121 participants with CI. Table 1 displayed the characteristics of the study participants. Significant differences were observed in the level of serum TRPA1 (p = 0.0086), education year (p = 0.0002), MMSE (p < 0.0001), and SSST-12 (p < 0.0001) between the two groups. The CI groups had higher proportion of the high level of serum TRPA1 (58.7%), the lower median education year (median = 11), the lower median MMSE score (median = 27), and the lower median SSST-12 score (median = 7).



TABLE 1 Characteristics of study participants.
[image: Clinical features table comparing total, normal cognition, and cognitive impairment groups with 256 participants. Key variables include TRPA1 levels, mean TRPA1 concentrations, gender distribution, median age, education years, MMSE and SSST-12 scores, and peppermint identification accuracy. Significant differences (p-values) exist in TRPA1 levels, MMSE, education, and SSST-12 scores between groups.]



Association analysis

SSST-12 were inversely correlated with serum TRPA1 in total participants (β = −8.0848, 95%CI: −12.6423, −3.5272), participants with NC (β = −7.0532, 95%CI: −13.9778, −0.1286) and participants with CI (β = −7.2309, 95%CI: −13.8897, −0.5721) after adjusted for gender, age, and years of education (Figure 1). SSST-12 were positively correlated with MMSE in total participants (β = 0.7217, 95%CI: 0.5454, 0.8980) and participants with CI (β = 0.9544, 95%CI: 0.6528, 1.2559) after adjusted for gender, age, and years of education (Figure 2). The serum TRPA1 level was inversely correlated with MMSE in total participants (β = −0.0088, 95%CI: −0.0138, −0.0037) and participants with CI (β = −0.0093, 95%CI: −0.0182, −0.0003) after adjusted for gender, age, and years of education (Figure 3).

[image: Scatter plots A, B, and C show the relationship between SSST-12 scores and serum TRPA1 levels in picograms per milliliter (pg/ml). Each plot shows a negative correlation, with a fitted line and confidence interval shaded in purple. The regression coefficients (\(\beta_1\) and \(\beta_2\)) and p-values for each panel are provided beneath the plots. Panel A shows p-values of 0.0007 and 0.0005, panel B shows 0.0350 and 0.0459, and panel C shows 0.0426 and 0.0333.]

FIGURE 1
 Scatter plots of serum SSST-12 and TRPA1. (A) total participants; (B) participants with normal cognition; (C) participants with cognitive impairment. β1 was the beta correlation coefficient. β2 was the beta correlation coefficient after adjusted for gender, age, and years of education. The purple area represented the 95% confidence interval. SSST-12, Sniffin’ Sticks Screening Test 12; TRPA1, transient receptor potential cation channel subfamily A member 1.


[image: Three scatter plots labeled A, B, and C show the relationship between SSST-12 and MMSE scores, with trend lines. Plot A has steepest trend, showing strong correlation. Plot B shows a weaker correlation, with a flatter line. Plot C also shows a strong correlation like A. Each plot includes regression coefficients and p-values.]

FIGURE 2
 Scatter plots of SSST-12 and MMSE. (A) total participants; (B) participants with normal cognition; (C) participants with cognitive impairment. β1 was the beta correlation coefficient. β2 was the beta correlation coefficient after adjusted for gender, age, and years of education. The green area represented the 95% confidence interval. MMSE, mini-mental state examination; SSST-12, Sniffin’ Sticks Screening Test 12.


[image: Scatter plots labeled A, B, and C show the relationship between Serum TRPA1 levels (pg/ml) and MMSE scores. Each plot includes a blue trend line with a shaded confidence interval. Plot A shows a slight decrease, B shows a minimal decline, and C shows a more pronounced decline. Beta coefficients and p-values are indicated below each plot, highlighting statistical significance and trends.]

FIGURE 3
 Scatter plots of serum TRPA1 and MMSE. (A) total participants; (B) participants with normal cognition; (C) participants with cognitive impairment. β1 was the beta correlation coefficient. β2 was the beta correlation coefficient after adjusted for gender, age, and years of education. The blue area represented the 95% confidence interval. MMSE, mini-mental state examination; TRPA1, transient receptor potential cation channel subfamily A member 1.


As shown in Table 2, the higher serum TRPA1 level was associated with an increased risk for participants with CI (OR = 1.889, 95%CI: 1.125, 3.172) after adjusted for gender, age, and years of education. Lower SSST-12 score (OR = 0.776, 95%CI: 0.685, 0.878) and olfactory dysfunction (OR = 3.116, 95%CI: 1.592, 6.101) were associated with an increased risk for participants with CI after adjusted for gender, age, and years of education. The correct identification of peppermint may be a protector for participants with CI (OR = 0.858, 95%CI: 0.428, 1.719), although the finding did not reach statistical significance.



TABLE 2 Odds ratios for serum TRPA1 between participants with normal cognition and cognitive impairment.
[image: Table displaying odds ratios (OR) with 95% confidence intervals (CI) for serum TRPA1, TRPA1 levels, SSST-12 scores, and olfactory dysfunction. Key findings: High TRPA1 levels have ORs of 1.943 (unadjusted) and 1.889 (adjusted). SSST-12 scores show ORs of 0.754 and 0.776. Olfactory dysfunction has higher odds of 3.537 (unadjusted) and 3.116 (adjusted). The ability to correctly identify peppermint has ORs of 0.661 and 0.858. Adjustments account for gender, age, and education.]



Mediation analysis

Figure 4 showed the total, direct and indirect effects for the mediating role of TRPA1 on the relationship between olfactory function and cognitive function in mediation models. As shown in Figure 4B, after adjusted for gender, age, and years of education, the estimated average causal mediated effect (ACME) (indirect effect estimate β = 0.0402, 95%CI: 0.0023, 0.0906), average direct effect (ADE) (direct effect estimate β = 0.6816, 95%CI: 0.3906, 0.9630), and total effects (total effect estimate β = 0.7217, 95%CI: 0.4193, 1.0015) were all statistically significant, suggesting a partial mediation effect of TRPA1 in the association between olfactory function and MMSE, and TRPA1 had the mediation effect with a proportion of mediation up to 5.57%.After adjusted for gender, age, and years of education, the estimated ADE (direct effect estimate β = −0.0513, 95%CI: −0.0741, −0.0275) and total effects (total effect estimate β = −0.0543, 95%CI: −0.0766, −0.0301) were statistically significantly different from zero, but the estimated ACME were not (Figure 4D). The results suggested that lower SSST-12 may be associated with higher serum TRPA1, which in turn made participants more likely to have worse cognitive function.

[image: Diagram A shows a mediation analysis with SSST-12 affecting MMSE through TRPA1, with significant paths. Chart B illustrates effect sizes of ACME, ADE, and total effect, centered around zero. Diagram C presents a similar model with cognitive impairment as the outcome. Chart D displays negative effects for the same elements.]

FIGURE 4
 Mediation effects of the serum TRPA1 in the relationship between olfactory function and cognitive function. (A) the mediation effect of SSST-12 on MMSE via the serum TRPA1; (B) the mediation effect of SSST-12 on MMSE via the serum TRPA1 after adjusted for gender, age, and years of education; (C) the mediation effect of SSST-12 on cognitive impairment via the serum TRPA1; (D) the mediation effect of SSST-12 on cognitive impairment via the serum TRPA1 after adjusted for gender, age, and years of education. Results for figure B and D are presented as effect sizes (95% confidence interval) for the association of SSST-12 with MMSE and cognitive impairment. ADE: the effect of the SSST-12 on MMSE or cognitive impairment, not explained by the serum TRPA1. ACME: the effect of the SSST-12 on MMSE or cognitive impairment acting through the serum TRPA1. Total effect: the effect of the SSST-12 on MMSE or cognitive impairment. ACME, Average Causal Mediated Effect; ADE, Average Direct Effect; MMSE, mini-mental state examination; SSST-12, Sniffin’ Sticks Screening Test 12; TRPA1, transient receptor potential cation channel subfamily A member 1.


Figure 5 showed the total, direct and indirect effects for the mediating role of TRPA1 on the relationship between the identification of peppermint and cognitive function in mediation models. As shown in Figure 5B, after adjusted for gender, age, and years of education, the estimated ACME (indirect effect estimate β = 0.2975, 95%CI: 0.0443, 0.6200), ADE (direct effect estimate β = 2.8716, 95%CI: 0.9727, 4.9200), and total effects (total effect estimate β = 3.1691, 95%CI: 1.2178, 5.3100) were all statistically significant, suggesting a partial mediation effect of TRPA1 in the association between the identification of peppermint and MMSE, and TRPA1 had the mediation effect with a proportion of mediation up to 9.39%. However, the estimated ACME, the estimated ADE and total effects were all not statistically significant (Figure 5D). The results suggested that the incorrect identification of peppermint may be associated with higher serum TRPA1, which in turn made participants more likely to have worse cognitive function.

[image: (A) Mediation model showing relationships between peppermint identification, TRPA1, and MMSE scores with significant path coefficients. (B) Plot showing the average causal mediation effect (ACME), average direct effect (ADE), and total effect with confidence intervals. (C) Mediation model displaying relationships between peppermint identification, TRPA1, and cognitive impairment, highlighting non-significant coefficients. (D) Plot illustrating ACME, ADE, and total effect near zero with confidence intervals.]

FIGURE 5
 Mediation effects of the serum TRPA1 in the relationship between the identification of peppermint and cognitive function. (A) The mediation effect of the identification of peppermint on MMSE via the serum TRPA1; (B) the mediation effect of the identification of peppermint on MMSE via the serum TRPA1 after adjusted for gender, age, and years of education; (C) the mediation effect of the identification of peppermint on cognitive impairment via the serum TRPA1; (D) the mediation effect of the identification of peppermint on cognitive impairment via the serum TRPA1 after adjusted for gender, age, and years of education. Results for figure (B,D) are presented as effect sizes (95% confidence interval) for the association of the identification of peppermint with MMSE and cognitive impairment. ADE, the effect of the identification of peppermint on MMSE or cognitive impairment, not explained by the serum TRPA1. ACME, the effect of the identification of peppermint on MMSE or cognitive impairment acting through the serum TRPA1. Total effect, the effect of the identification of peppermint on MMSE or cognitive impairment. ACME, Average Causal Mediated Effect; ADE, Average Direct Effect; MMSE, mini-mental state examination; TRPA1, transient receptor potential cation channel subfamily A member 1.





Discussion

This study marks the initial attempt to partition the effects of olfactory function on cognitive function into direct effects and indirect effects (mediated by serum TRPA1) among Chinese older adults. Mediation analysis of olfactory function (both SSST-12 and peppermint) with MMSE showed a partial mediation effect acting through serum TRPA1.

The association between SSST-12 and CI has been reported in a few epidemiologic studies. We previously demonstrated that lower SSST-12 score was related to MCI (OR = 1.19, 95%CI:1.11, 1.27) in the older adults by using the baseline data of SAS (Liang et al., 2016). Poor olfactory dysfunction (assessed by 16-item Sniffin’ Sticks identification test [SSST-16]) was significantly associated with an increased risk for non-amnestic MCI, amnestic MCI, and MCI (Dong et al., 2023). However, to our knowledge, the effect of TRPA1 on olfactory dysfunction or CI has not been reported in any population-based studies. TRPA1 is closely associated with inflammation, pruritus, and chronic pain, and TRPA1 is considered to be a promising treatment for them (Hu et al., 2023). Increased TRPA1 mRNA expression in whole blood cells was significantly related to decreased pain symptoms in chronic pain patients (Bell et al., 2014; Sukenaga et al., 2016). Epidemiologic studies have shown that patients with AD reported less pain (Scherder et al., 1999; Mantyselka et al., 2004; Achterberg et al., 2010; Jensen-Dahm et al., 2012), and patients with dementia were less likely to use analgesics (Horgas and Tsai, 1998; Morrison and Siu, 2000; Mantyselka et al., 2004).

Multiple pathways may implicate TRPA1 in the pathogenesis of AD mice. TRPA1 receptors mediate deteriorating effects in the decline of memory (Borbely et al., 2019). Functional ablation of the TRPA1 channel in mice improved hippocampal functions, demonstrating by reduced anxiety-like behavior, improved fear-related or spatial learning and memory, novel location recognition and social interactions (Lee et al., 2017). Astrocytic TRPA1 and GABA coordinately suppress hippocampal circuit function (Cheng et al., 2023). TRPA1 is expressed on astrocytes in the hippocampus, and the production of amyloid-β activates this channel, thereby initiated this hyperactivity and subsequently induced the hyperactivity of nearby neurons, which is a pivotal factor in the progression of AD (Bosson et al., 2017). The toxic effect of amyloid-β on astrocytes, triggered by TRPA1 channel activation, is crucial to the progression of AD, and TRPA1 blockade prevents irreversible neuronal dysfunction (Paumier et al., 2022). TRPA1-Ca2+-PP2B signaling may be crucial to regulate pathogenesis of AD and astrocyte-derived inflammation (Lee et al., 2016). Melatonin may be an effective option in the treatment and prophylaxis of AD by reducing cytosolic Ca2+ concentration, apoptosis and intracellular ROS through TRPA1 channels (Ozsimsek and Ovey, 2022). These studies showed that blocking TRPA1 could prevent irreversible neuronal dysfunction, and TRPA1 might be a potential therapeutic target for neuroprotection (Hu et al., 2023).

Several advantages existed in our study. Firstly, neuropsychological assessments and the diagnosis of CI were administered by the certified neurologists and neuropsychologists. Secondly, TRPA1 was tested among the patients with CI for the first time. Thirdly, we studied the mediating effect of serum TRPA1 on the causal pathway from olfactory function to cognitive function. Our findings warrant cautious interpretation in light of several limitations. The inherent cross-sectional design precludes establishing causal relationships, while the small sample size may have affected the detection of the mediation role of TRPA1 in the relationship between olfactory function and cognitive impairment. Future studies with larger samples are necessary to validate our findings. Moreover, as our study focused on older adults, further basic research is needed to confirm our results. Additionally, due to the absence of an established cutoff value for serum TRPA1, we utilized the statistical median to categorize participants into low or high levels of serum TRPA1, tailored specifically for this study. Despite the relative arbitrariness of this cutoff, our study still revealed a significant association.

In conclusion, our study explored the mediation role of TRPA1 in the relationship between olfactory and cognitive function among the Chinese older adults. Our findings provide preliminary evidence suggesting a mechanism linking olfactory and cognitive function, highlighting the potential significance of TRPA1 as a biomarker for cognitive impairment.
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As the most common cause of dementia, Alzheimer’s disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
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Background

Dementia is a noxious neurodegenerative disorder, and Alzheimer’s disease (AD), is the most common cause of dementia with increasing prevalence among the elderly (Aarsland, 2020). According to the World Health Organization (WHO), by 2050 the number of people with dementia will reach 132 million in the world (Porsteinsson et al., 2021; Ren et al., 2022).

AD is characterized by progressive neuropathological processes including cognitive function impairment and memory loss principally caused by increased accumulation of amyloid-β (Aβ) plaques, and hyperphosphorylated tau protein (Nakamura et al., 2018; Silva et al., 2019).

Different risk factors have been detected for AD development such as age, cardiovascular changes, metabolic disorders, increased metal ions accumulation, and brain injury (Baltes et al., 2011; Silva et al., 2019). Despite the vicious role of amyloid plaques and neurofibrillary tangles in the brain, the significant role of abnormal inflammation in inducing the inflammatory mediators release from brain cells, neurodegeneration, and loss of neuronal synapses is considered as the new hallmarks of AD pathology (Gouras et al., 2015; Newcombe et al., 2018; Muralidar et al., 2020).

Currently, nonsteroidal anti-inflammatory drugs (NSAIDs) and cholinesterase inhibitors are approved drugs to delay AD but none of them could cure the disease (Moride et al., 2003; Long and Holtzman, 2019). Therefore, identification of core pathologies mechanism responsible for AD, different proteins and genes associating with neuroinflammation and potential therapeutic targets is essential (Weggen et al., 2003; Benito-León et al., 2019).

In this review, we focused on an in-depth evaluation of the Blood–Brain Barrier (BBB), the brain cells especially the microglia modification in inducing the inflammatory responses as a new interest target of AD pathogenesis research. In addition, we highlighted all the inflammatory biomarkers with the potential to be used for targeted therapy.



Brain cells connection with AD pathology

Microglia and astrocytes are the two main neuroglial cells, playing critical functions in Homeostasis, neuron development, differentiation, survival, synaptic plasticity, and neuronal metabolism (Zhang et al., 2021; McKee et al., 2023). The activation process of microglia and astrocytes is followed by a series of morphological and biological functions leading to the release of pro-inflammatory mediators and phagocytic activity (Weggen et al., 2003; Zhou and Hu, 2013; Greten and Grivennikov, 2019).

Microglia are one of macrophagic immune cells that reside in the central nervous system (CNS) and play important roles in surveillance and phagocytosis (Sheng et al., 2019). by recruiting other innate immune cells like neutrophils, dendritic cells, monocytes, invasive macrophages, and natural killer (NK) cells, Microglia are considered as important modulators of the innate immune response in the brain.

In response to infection, the inflammatory response activates resting microglia and encourages the release of free radicals (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines (e.g., IL-1β, IL6, TNF). There are two types of activated microglia states: pro-inflammatory (M1-like; neurotoxic) and anti-inflammatory (M2-like; neuroprotective). Therefore, M1 and M2 polarization switches play the most significant role in the proper activation of microglia and release of pro-inflammatory mediators (Ransohoff, 2016; Greten and Grivennikov, 2019; Ho et al., 2020).

Although, Activation of microglia, seems to help in the clearance of Aβ during the chronic phase of neuroinflammation and early development of AD through phagocytosis (Villeda et al., 2011; Long and Holtzman, 2019). According to Newcombe et al. (2018), the pathogenesis of AD may be advanced by the microglia’s continuous brain stimulation in response to the accumulation of Aβ plaque, tau protein phosphorylation, and inflammatory responses which impairs their ability to phagocytose, produces pro-inflammatory mediators, and exacerbates tau and Aβ pathology (Leng and Edison, 2020).

Mutations in microglia-related genes have a substantial impact on the ability of microglia, causing them to become permanently activated, reducing their capacity for phagocytosis, and ultimately resulting in neuroinflammation and neurodegeneration (Zhang et al., 2021). Therefore, understanding the molecular mechanism of microglia is highly important to detect their dual roles in either Aβ plaques accumulation or degradation (Baltes et al., 2011).

Recently certain molecular regulators of microglial proliferation have been directly demonstrated to exist including triggering receptor expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) which are both among AD risk factors for Late Onset AD (LOAD) (Wolfe et al., 2018).

In the central nervous system, APOE plays multiple roles, such as maintaining lipid homeostasis, healing damaged neurons, eliminating toxins like Aβ, and immune responses modulator (Bertram et al., 2008). Among all APOE isoforms, APOE4 has been shown to exacerbate tau-mediated neurodegeneration, while the absence of APOE is protective in Patients with AD (Liu et al., 2013). Patients who carry at least one APOEε4 allele shows faster disease progression, and increased brain atrophy compared to non-APOEε4 carriers (LaDu et al., 1995; Shi et al., 2017). As previously mentioned, it inhibits the gene that produces SirT1, a molecule that has been associated with longer lifespans and has anti-Alzheimer’s properties and instead It’s linked to nuclear factor kappa B (NF-κB) activation, which encourages inflammation (Shi et al., 2017). This explains why ApoE4 is linked to an elevated inflammatory response: it suppresses multiple genes that inhibit inflammation while accelerating the NF-κB that stimulates it (Teng et al., 2017).

Aβ binding to APOE and other apolipoproteins was tested in different in vitro (Shi et al., 2017; Zhang et al., 2021). Even though the binding was consistently verified, none of those investigations suggested that variations in APOE-Aβ binding were linked to an increased risk of AD (Keren-Shaul et al., 2017). According to Yuan et al., TREM2 deficiency increased the amount of diffuse amyloid plaques that covered a greater surface area due to longer and more branched amyloid fibrils (Yuan et al., 2016a). Through TREM2 binding APOE evaluates the phagocytosis and APOE-Aβ uptake, while the TREM2 R47H variant has less affinity to bind with APOE (Tao et al., 2018; Sheng et al., 2019). Due to its dysregulation of neuroinflammation and elevation of AD risk, the missense mutation R47H of TREM2 is linked to AD risk (Ruganzu et al., 2021). A dose-dependent reduction in TREM2 inhibits the accumulation of myeloid cells surrounding Aβ plaques. In addition, plaque number and size are decreased in TREM2 deficiency (Wang et al., 2016; Yeh et al., 2016).

Microglia in plaque-loaded brain areas of AD transgenic mice expressed more TREM2, suggesting a significant role for TREM2 against AD (Yuan et al., 2016a). Growing data indicates that TREM2 deficiency support microglial phagocytosis and maintain microglial responses to Aβ deposition through inhibit the transition of microglia from a homeostatic to a disease-oriented state (Wang et al., 2016; Yuan et al., 2016b). TREM2 in blood and CSF can act as biomarker for the diagnosis of early AD since, the TREM2 levels in CSF increase in the early stages of AD, while it decreases in late stages (Wang et al., 2016).

Beside the two last popular AD hallmark genes, recent data suggests that the fractalkine ligand and its microglial receptor (CX3CL1/CX3CR1) can influence pathologies related to tau by controlling microglial migration and attracting monocytes to the brain (Lyons et al., 2009; Joaquín Merino et al., 2016).

Microglia most likely proliferate more quickly and assemble around fibrillar amyloid plaques because of dysregulated fractalkine/CX3CR1 signaling, brought on by CX3CR1 receptor deletion, indicating that CX3CR1 has been found to maintain microglia in an inactive, non-neurotoxic condition (Lyons et al., 2009; Bhaskar et al., 2010; Lee et al., 2010).

Mice deficient in CX3CR1 showed a alters the inflammatory milieu, decreased neuronal loss, and increase of the amount of Aβ phagocytosis mediated by microglia however an aggravated tau phosphorylation was also detected (Yin et al., 2017).

Similarly, colony-stimulating factor 1 receptor (CSF1R), inhibition has attenuated the neurodegeneration process caused by tau proteins (Chadarevian et al., 2023). Mutation of IFNγ receptors increases Aβ synthesis and microglial activation (Orihuela et al., 2016; Huang et al., 2018).

The CSF-1-CSF-1R pathway, which is mainly active in reactive microgliosis conditions has also been connected to microglia survival in the context of TREM2 expression (Öst et al., 2006; Spangenberg et al., 2019). This pathway affects Aβ clearance. A similar mechanism may also be involved in microglial survival, as it has been shown that TREM2 promote macrophage survival via CSF-1R pathway (Chadarevian et al., 2023). The role of CSF-1R signaling in microglia survival is detected by a study indicating that TREM2-deficient microglia to exhibit reduced survival at low CSF-1 concentrations (Mancuso et al., 2019).

The genetic deletion of the inflammatory NLR family pyrin domain containing 3 (NLRP3) facilitates the synthesis of IL-1β and improves Aβ clearance by microglia as well as cognitive function in AD mice (Wang Z. et al., 2020; Bai and Zhang, 2021). NLRP3 activation increase the AD pathogenesis by damaging the microglia mitochondrial aggregation and impairs the structural and functional integrity of mitochondria by increasing the release of proinflammatory cytokines (Liang et al., 2022). All the genes related to microglia activity are listed in Table 1.



TABLE 1 Summarizes all the genes related to microglial activity and their functions in AD.
[image: Table listing microglia genes involved in Alzheimer's disease. It includes three categories: Aβ pathogenesis, neuroinflammation, and tau pathology, with genes like SR-A, CD36, NLRP3, and CSF1R. Functions, expression changes in Alzheimer's, and references for each gene are provided.]



The blood–brain barrier and AD

The vascular blood–brain barrier (BBB), which serves as the brain’s primary interface with the outside world, is vital to maintaining brain homeostasis, it regulates the entry and exit of biological substances and is essential for shielding the brain parenchyma from blood-borne pathogens or exogenous substances into the central nervous system (Takechi et al., 2017). The BBB is composed of both molecular (the glycocalyx and basement membrane, junction complex) and cellular components (endothelial cells, pericytes, and astrocytes), The brain microvascular endothelial cells have developed a junction complex such as tight junction which sounds to be a very early feature of BBB development, separating blood from CNS by brain endothelial cells and provide the best conditions for synaptic and neural activity by certain ion channels and variety of efflux transporters (Halliday et al., 2000; Du et al., 2018; Khan et al., 2023). Under normal conditions, the BBB is relatively impermeable, the disruption of BBB and vascular dysfunction by the release of Many vasoactive substances, cytokines, and chemical mediators including glutamate, aspartate, taurine, ATP, endothelin-1, NO, TNF-α, and macrophage-inflammatory protein 2 (MIP2). Bradykinin, 5HT, histamine, thrombin, UTP, UMP, substance P, quinolinic acid, platelet-activating factor, and free radicals under pathologic circumstances such as AD have been associated with multiple molecular changes result in increased BBB permeability (Kadry et al., 2020).

Growing body of research indicates that BBB disruption is an early indicator of neurodegeneration, including AD.

Considering the major role of BBB to clear around 85% of AD-related forms of Aβ from the brain, BBB breakdown can dysregulate efflux and influx of Aβ transporters result in Aβ accumulation and decrease tight junction protein expression, which causes a greater influx of peripheral immune cells into the brain and capillary degeneration (Winkler et al., 2015).

Clinical researches have demonstrated that decrease in pericyte quantity and coverage in the cortex and hippocampus of AD patients and mouse might be a reason for breaking BBB integrity through reducing brain microcirculation (Sweeney et al., 2018). Therefore, in AD patients numerous circulating soluble inflammatory mediators may impact on BBB malfunction specially during systemic inflammation and/or infection. Which is demonstrated by the fact that serum from mice treated with lipopolysaccharide (LPS) weakened the integrity of an in vitro BBB model more than serum from mice treated with a vehicle. Also aging can cause alterations in BBB as well as the immune system’s reactions. Aging cells usually take on a senescence-associated secretory phenotype which is associated with a transcriptional program that promotes Immune cells activation, migration, and infiltration by producing growth factors, cytokines, chemokines, and extracellular matrix proteases affect the BBB integrity (Lasry and Ben-Neriah, 2015; Figure 1).

[image: Illustration depicting factors contributing to neurodegeneration. A human brain is highlighted, with text bubbles indicating "Genetics," "Lifestyle," "Metabolic disorders," and "Aging." Enlarged sections show B: β-amyloid peptide, C: hyperphosphorylation of tau proteins and neurofibrillary tangles, and D: activated astrocytes and microglia, with pro-inflammatory mediator release and blood-brain barrier leakage. Arrows and labels indicate interactions and processes leading to neurodegeneration.]

FIGURE 1
 AD hallmarks and risk factors leading to neurodegeneration. Common risk factors leading to Two AD (A). The main pathogenic hallmarks of AD are the extra-accumulation of amyloid-β plaques and Tau phosphorylation (B). Microglial phenotype modification accelerating the neuroinflammatory response (C). Inflammatory cytokines released from activated microglia causing BBB leakage and neurodegeneration (D).




Inflammation and AD

Different clinical studies indicate the role of inflammation in cognitive decline especially in AD pathogenesis. Currently, inflammation is considered the third main hallmark of AD besides the hyper-phosphorylated tau protein and amyloid-beta (Aβ) protein accumulation (Bhaskar et al., 2010; Das and Ganesh, 2023). The molecules responsible for inflammation can be generally divided into cytokines and transcription factors (Šimić et al., 2016). Although the inflammatory response can be beneficial via accelerating the Aβ clearance, at the same time they can increase the Aβ and tau production, and promote neurodegeneration and synapse loss (Šimić et al., 2016).

The balance between initiation and termination of immune response ensures the prompt removal of invasive pathogens and the cessation of excessive response within the central nervous system. This is crucial for the prevention of many diseases including the (Zheng et al., 2016). The inappropriate activation of inflammatory cytokines may lead to long-lasting alteration of regulatory neural gene expression. For instance, cytokines by interacting with different immune molecule groups such as the major histocompatibility complex class I (MHC I) can adversely affect the synaptic plasticity necessary for synapse formation and activity-dependent synaptic pruning (Ljunggren and Anderson, 1998). It is believed that these changes in synaptogenesis are fundamental to the causes of dementia. Additionally, cytokines can strongly stimulate the hypothalamic-pituitary-adrenal (HPA) axis, and increase the hormones release (Brosseron et al., 2014).Pro-inflammatory cytokines that cause chronic inflammation, like TNF-α, IL-6, and IL-1β, can influence and penetrate the blood–brain barrier (BBB), causing it to release proinflammatory mediators and increasing cell permeability, which permits leukocytes to enter the brain (Szczepanik et al., 2001; Swardfager et al., 2010). While anti-inflammatory cytokines are also produced. These include IL-1 receptor antagonist, IL-4, IL-10, and IL-11. These cytokines may be a part of a complex mechanism that prevents excessive neuroinflammation (Pousset et al., 2001; Guillot-Sestier et al., 2015). Activating the NF-κB pathway in microglia, can subsequently increase the amount of tau seeding and spreading and most AD patients are detected with considerably higher levels of NF-κB (Kaltschmidt et al., 1997). The silencing of microglial NF-κB cognitive abnormalities and homeostatic were restored. Hence, inhibiting the NF-κB pathway may offer a therapeutic approach to lessen AD pathogenesis (Sun et al., 2022). Finally, the other factor that can directly or indirectly increase inflammation and neuroinflammatory mediators is the overproduction of neutrophil extracellular traps (NETs) that induce macrophage activation and tissue damage (Brosseron et al., 2014; Swanson et al., 2018). Therefore, as shown in Figure 2, the permanent activation of astrocytes and Microglia can cause chronic inflammation. Chronic inflammation can be also caused by specific environmental factors, bacterial and viral infections, and Aging (Zhao et al., 2021). In chronic inflammation there is a major change in inflammatory pathway activation, leading to different immune responses and excessive production of inflammatory cytokines which lead to neuroinflammation (Figure 2; Neurath and Finotto, 2011).

[image: Flowchart illustrating the progression from sustained inflammatory response and blood-brain barrier (BBB) damage to chronic inflammation. It shows over-activation of microglia and astrocytes leading to increased amyloid beta (Aβ) and neurofibrillary tangles (NFT), which exacerbate inflammation, culminating in neurodegeneration. Arrows indicate a continuous cycle.]

FIGURE 2
 The role of chronic inflammation in AD pathology. Sustained inflammatory response can cause blood–brain barrier (BBB) damage, which increases the entrance and activity of other immune cells in brain. This over-activates microglia in the brain and triggers them to produce more inflammatory mediators including cytokines, which increase the extracellular plaques accumulation triggering neuroinflammation.




Inflammatory biomarkers and AD

Currently, Aβ42and phosphorylated tau proteins are the main fluid-based biomarkers of Cerebrospinal fluid (CSF) in clinical practice (Bălaşa et al., 2020). However, there are still limitations in their specific detection based on their low concentration in blood (Noble et al., 2014; Galizzi and Di Carlo, 2023). As mentioned, inflammation plays a major role in AD development and among all different neuroinflammatory biomarkers which can be considered as therapeutic targets for drug design, cytokines, chemokines and transcription factors for their precise roles in the various stages of AD, possible medical applications, and easy isolation from blood or CSF have attracted a lot of attention (Zheng et al., 2016; AmeliMojarad et al., 2022; Park et al., 2022).

Different research groups indicated the cytokine levels alternation in AD patients. For example, IL-1β, TNF-α, NF-κB and chemokines like CCL2 has found to be increasing in AD patients which can also be used as inflammatory markers (Bălaşa et al., 2020).

Fast-progressing AD is linked to IFN-γ polymorphism implies that this cytokine may actively contribute to accelerating the progression of AD specially the LOAD (O’Bryant et al., 2017).

Dysregulation of the cytokines and chemokines can cause neuroinflammatory modulation, altering the microglia phenotype, and reducing microgliosis which accelerate the AD progression (Swanson et al., 2018; Zhang et al., 2021). Nonetheless, the most recent meta-analysis revealed substantial heterogeneity in certain comparisons but no significant differences in cytokines, such as IL-1β, IL-6, IL-8, IL-10, or TNF-α, were discovered between AD patients and healthy controls (Blennow and Hampel, 2003; Newcombe et al., 2018).

Other inflammatory biomarkers in Alzheimer’s disease may include IL-33 and the soluble form of its receptor ST2 (sST2). In animal models of Alzheimer’s disease, IL-33 stimulates microglia and protects against Aβ plaques, despite its association with inflammation (Fu et al., 2016).

A 1-year follow-up study indicated that MCI and AD patients with positive IL-33 expression in serum performed better on cognitive tests, adding to the evidence for IL-33’s benefit. The explanation for the increase in IL-33 in AD and MCI patients’ plasma is surprising, given higher levels of this cytokine have been related to improved cognitive function. Recent research suggests that higher levels of sST2 in AD patients buffer the physiological effects of IL-33 and may play a role in the cognitive function impairment associated with AD (Fu et al., 2016; Liang et al., 2020). Moreover, based on the damaged blood–brain barrier (BBB), different proteins can pass through BBB therefore, the blood of AD patients can reflect the AD progression-related targets. More importantly, the large surface area of the blood–brain barrier can be considered as potential for therapeutic intervention (Sweeney et al., 2018; Niculescu et al., 2020).

Therefore, detecting the well-established inflammatory biomarkers and methods for early diagnosis and monitoring of AD patients can be considered as alternative method of AD identification. However, cytokines may not be sufficient to demonstrate that an imbalance in cytokine levels is the sole cause of AD based on their overlapping with other neurodegenerative disease and aging. Therefore, it makes more sense to combine the use of several proteins given the unpredictable results of using a single cytokine level.

But few sets of biomarkers have demonstrated consistent performance and good reproducibility since the first AD prediction model comprising 18 plasma biomarkers with multiple cytokines was proposed. Using hypersensitive methods, such as immunoprecipitation-mass spectrometry (IP-MS), and single-molecular mass analysis (SIMOA) can detect the minor changes in the Aβ plasma level in patients with AD (Wu et al., 2021; Nijakowski et al., 2024). A more sensible strategy is to use multiple proteins in combination (Ray et al., 2007; Zheng et al., 2016). However, only a small number of biomarker sets have demonstrated consistent performance and good reproducibility since the first AD prediction model comprising 18 plasma biomarkers with multiple cytokines was proposed (Ray et al., 2007). Furthermore, a combination of soluble IL-6 receptor (sIL-6R), tissue inhibitor of metalloproteinases-1 (TIMP-1), and soluble TNF-α receptor I (sTNFR-I) in CSF was found to provide the best prediction to AD among other molecules after screening 120 inflammatory molecules in CSF and serum of AD, MCI, and healthy controls using protein-array analysis (Richens et al., 2014; Delaby et al., 2015). Future research on AD should look at pathogens other than Aβ and examine how cytokines interact with other players. New genes and proteins can only be discovered through the creation of brain banks, while genome-wide association studies and online database analysis will continually update polymorphism information linked to AD (Delaby et al., 2015; Khan and Alkon, 2015). Table 2 summarized the recent neuroinflammatory biomarkers related with AD.



TABLE 2 List of neuroinflammatory biomarkers for AD.
[image: Table listing various inflammatory markers, their types, their function in inflammation, and references. Markers include IL-1α, IL-1β, ICAM-1, VCAM-1, TNF-α, IL-6, IL-12, NF-κB, CCL2, IL-8, IL-33, Progranulin, and YKL-40. Functions indicate increased levels in AD patients. References are cited for each marker.]



Therapeutic strategies for AD

Novel therapeutics are being offered by the recently made connections between inflammation and neurodegeneration (Wu et al., 2021). Currently, a major treatment strategy for AD is the reduction of toxic Aβ plaque accumulation and generation and reducing the inflammatory responses (Muralidar et al., 2020; Wang Z. et al., 2020). Even though there is still no known treatment for AD, NSAIDs are commonly used drugs for AD with the ability to decrease of Aβ plaque load, microglial activation, and proinflammatory cytokine levels. Currently the most promising drugs in reducing inflammation are COX-2 inhibitors Celecoxib and roficoxib which attenuate the neuroinflammation in AD (Moride et al., 2003; Miguel-Álvarez et al., 2015).

COX-2 inhibitors work by inhibiting the cyclooxygenase (COX-1 and COX-2 enzyme), arachidonic acid cannot be converted into prostaglandins, or prostacyclin without cyclooxygenase which have degenerative effect. And can raise Aβ levels (Moride et al., 2003; Benito-León et al., 2019).

It’s interesting to note that degenerative brain cells express high levels of COX-2; therefore, blocking COX may lessen AD. Aβ-induced microglial activation may occur directly or indirectly, leading to an increase in COX-2 which can be found during inflammation (Moride et al., 2003). Compared to control brains, AD brains exhibit higher levels of COX-1 and COX-2 (Moussa and Dayoub, 2023).

Research using animal models of AD has demonstrated the potential benefit of NSAIDs against AD. For instance, oral administration of ibuprofen, a nonspecific COX inhibitor, at the outset of amyloid plaque formation in transgenic mice overexpressing APP reduced glial activation and plaque density (Moussa and Dayoub, 2023). In a different experiment, treated rats with indomethacin, reduced microglial activation, improved the hippocampus over time, and avoided working memory problems. Furthermore, and elevated COX-2 levels were generated in mice given an intracerebroventricular injection of Aβ (Karkhah et al., 2021). In addition, pretreatment with the specific COX-2 inhibitor NS398 reduced COX-2 levels and cognitive impairment (Minter et al., 2003). Further studies have demonstrated that therapy with ibuprofen and naproxen in transgenic mice models of AD Other studies of NSAIDs in human cell cultures have raised hopes for its usage in AD treatment (Wilkinson et al., 2012; Linda and Hershey, 2019; Steven Karceski, 2019). For instance, the overexpress APP695NL, in human neuroglioma cells identified different NSAIDs that can selectively reduce Aβ42 such as sulindac, ibuprofen, and diclofenac (Weggen et al., 2003).

Activating PPARγ, a transcriptional factor that suppresses the expression of proinflammatory genes by blocking the activity of other transcription factors like NFκB, AP-1, and STAT1, is another potential neuroprotective mechanism of NSAIDs. Additionally, proinflammatory genes can be suppressed by PPARγ in the vasculature and myeloid lineage cells like macrophages and microglia (Daynes and Jones, 2002; Heneka et al., 2011).

Consequently, pioglitazone, a PPARγ agonist, has been used in clinical AD research suppressing the expression of genes that promote inflammation to regulate transcription (Geldmacher et al., 2011).

However, NSAID usage is only beneficial in the early stages of AD, because, with the start of the Aβ deposition process, NSAIDs are ineffective and even dangerous because they decrease microglial inflammation, which mediates the clearance of A despite its negative effects (Ho et al., 2006). Targeting NLRP3 inflammasome of microglia is another strategy against AD and AD-related inflammatory responses, a small molecule NLRP3 inhibitor such as JC-124, and MCC950 has been discovered which vigorously pro-inflammatory cytokines, chemokines, and ROS in AD however, along with more comprehensive evaluations of the outcomes, could produce delightfully unexpected results (Yin et al., 2018; Kelley et al., 2019; Zhang et al., 2021; Sharma et al., 2023). Minocycline is a tetracycline with anti-inflammatory qualities that can cross the blood–brain barrier (BBB) (Garcez et al., 2019). An in vivo study suggests that minocycline reduces Aβ accumulation and attenuates microglial activation because it inhibits the NLRP3 inflammasome (Li et al., 2016; Garcez et al., 2019).

Nicodipine (P2X7R antagonists), a dihydropyridine calcium channel antagonist, has also been shown to confer neuroprotective effects by reducing the levels of activated NF-κB and inhibiting the release of mature IL-1β in Aβ-stimulated microglia (whose potential target is P2X7R), which plays a permissive role in NLRP3 inflammasome activation and cytokines release (Ryu and McLarnon, 2008; Di Virgilio et al., 2017; Huang et al., 2023). The list of recent agents for treatment strategy of AD is provided in Table 3.



TABLE 3 Current agents for therapeutic strategies in AD.
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Conclusion

Chronic inflammation is the third core pathology in the progression of Alzheimer’s disease, alongside the well-known activities of Aβ and tau. Microglia play a crucial part in this process, activated microglia are thought to be the primary source of pro-inflammatory mediators released, such as cytokines, which drive inflammatory cascades in the CNS, resulting in neuroinflammatory modulation. Activated microglia can also enhance blood–brain barrier (BBB) permeability, synaptic loss, and neurodegeneration in the brain, accelerating the AD pathogenesis. Since there are still no effective therapies in terms of disease attenuation or prevention, further research is needed to unrevealing the potential reliable biomarkers for monitoring AD in early stages (Leng and Edison, 2020).

Inflammatory markers alternation in patients with AD can be considered as a new means to track AD progression. Novel biomarkers related to neuroinflammation such as proinflammatory cytokines and chemokines are mainly altered in in patients with AD. However, there are still limitation for considering proinflammatory markers as AD specific biomarkers, since many neurodegenerative diseases have similar clinical presentations, it is possible that their changes be explained by aging or other systemic disease. However, based on their easy extraction and interpretation, they can still be considered the best first-step biomarkers in the multi-step AD process. As a result, we can improve the accuracy of AD diagnosis and treatment plans in the near future by using the multiplex model, which combines various blood markers and proteins of AD patients.
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Introduction: The deregulation of lncRNAs expression has been associated with neuronal damage in Alzheimer’s disease (AD), but how or whether they can influence its onset is still unknown. We investigated 2 RNA-seq datasets consisting, respectively, of the hippocampal and fusiform gyrus transcriptomic profile of AD patients, matched with non-demented controls.
Methods: We performed a differential expression analysis, a gene correlation network analysis (WGCNA) and a pathway enrichment analysis of two RNA-seq datasets.
Results: We found deregulated lncRNAs in common between hippocampus and fusiform gyrus and deregulated gene groups associated to functional pathways related to neurotransmission and memory consolidation. lncRNAs, co-expressed with known AD-related coding genes, were identified from the prioritized modules of both brain regions.
Discussion: We found common deregulated lncRNAs in the AD hippocampus and fusiform gyrus, that could be considered common signatures of AD pathogenesis, providing an important source of information for understanding the molecular changes of AD.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder which, considering the growth of the global population coupled with the increasing life expectancy and the lack of effective therapies, is predicted to become one of the most high-impact health problems in the next few years. Two neuropathological hallmarks characterize the brain of AD patients: the accumulation of intraneuronal neurofibrillary tangles (NFTs) and the deposition of extracellular plaques, made up of beta-amyloid (Aβ) proteins, which are accompanied by synaptic loss, inflammatory and oxidative processes (Schapira et al., 2017).

Non coding RNAs (ncRNAs), as long non coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNA (miRNAs) are key regulators of many cellular processes and are known to be widely expressed in the brain where they play crucial roles in proliferation, survival, metabolism and differentiation of neuronal cells (Salta and De Strooper, 2017). Among ncRNAs, lncRNAs have received increasing attention as novel epigenetic regulators of gene expression at transcriptional and post-transcriptional levels (Nadhan et al., 2022). With the advancements in sequencing technology, transcriptomic studies progressively identify novel lncRNAs even if a comprehensive functional annotation is still lacking. It is estimated that about 40% of lncRNAs are specifically expressed in brain tissue, where they are involved in different brain physiological functions (Zimmer-Bensch, 2019; Srinivas et al., 2023). A deregulated expression of lncRNAs has been associated with neuronal injury in several neurodegenerative pathologies such as AD, Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD), but how or whether they influence the onset of these diseases is still unclear (Srinivas et al., 2023). So far, the best documented lncRNA deregulation in AD concerns lncRNAs which are antisense transcripts of mRNAs derived from known AD-related genes, as BACE1-AS, 51A, 17A and BC200, which have been found to be directly involved in Aβ deposition, Tau iper-phosphorylation and neuroinflammation (Faghihi et al., 2008; Ciarlo et al., 2012; Ahmadi et al., 2020; Bagyinszky et al., 2020). Also, transcriptome analyses on post-mortem human brains have indicated that gene expression is significantly altered in AD patients (Cain et al., 2023), although the role of lncRNAs in the onset of the disease remains elusive. This evidence, as well as the possibility of their exploitation for new therapeutic strategies for AD, has progressively demanded a deeper investigation of the role of lncRNAs in AD (Balusu et al., 2023).

The present work aims at contributing to the current knowledge about the deregulation of lncRNAs in AD. For this purpose, we investigated 2 RNA-seq datasets: one derived from the hippocampus (Annese et al., 2018) and the other derived from the fusiform gyrus (Friedman et al., 2018) of AD patients. By using state of the art bioinformatic resources, a considerable number of differentially expressed (DE) genes was identified in these brain regions of AD patients, including lncRNAs. Comparing the DE genes between the two datasets, we found a set of 225 lncRNAs and 857 protein coding genes that were differentially expressed in both the brain regions. We performed a co-expression network analysis with WGCNA (weighted correlation network analysis) in order to infer the function of the DE lncRNAs, through a guilt-by-association view of transcriptomic expression, as the co-expression of protein coding and non-coding genes may suggest their involvement in the same pathway. We found some modules associated with neurotransmission and memory related pathways, such as CREB signaling in neurons and synaptic long term depression. By comparing the lncRNAs within the hippocampal and fusiform gyrus WGCNA prioritized modules, we identified common DE lncRNAs that could be considered common signatures of AD progression.

Our results thus could contribute to better defining the deregulated expression of AD brain and to explore new deregulated lncRNAs as potential targets for further investigation on molecular changes in AD pathogenesis.



2 Materials and methods

All experimental procedures performed are described in Figure 1.
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FIGURE 1
 Flow chart of our study. AD, Alzheimer’s disease; WGCNA, weighted gene correlation network analysis; DE, differentially expressed; IPA, ingenuity pathway analysis; ddPCR, digital droplet PCR.



2.1 RNA-seq datasets

The RNA-seq datasets used in this study were: (1) the Annese et al. dataset consisting of transcriptomic data from frozen post-mortem hippocampal samples derived from 6 AD donors and 6 healthy controls (Annese et al., 2018); (2) the Friedman et al. dataset (Bioproject PRJNA377568) (Friedman et al., 2018) downloaded via the dedicated ftp links from the Sequence Read Archive (SRA) database. The original 117 fusiform gyrus RNA-seq samples were filtered according to sex, age of death, ethnicity, patient Braak stage (V-VI) and RIN (RNA integrity number) value to match the stratification of the dataset by Annese et al. The final dataset analyzed comprised 28 samples, 14 AD subjects and 14 healthy controls. The sequencing output in the form of FASTQ files consisted in 166,295,065 reads on average per sample for the hippocampus dataset and 35,081,589 reads on average per sample for the fusiform gyrus dataset.



2.2 Data processing and RNA-seq data analysis

All computations were performed on machines running GNU+Linux (3.10.0–862.14.4.el7.x86_64), by using R (version 3.6.1) and Bash [4.2.46(2)-release x86_64-redhat-linux-gnu].

Data were analyzed according to the workflow reported in Supplementary Figure S1. All steps of the analysis dependent on genomic annotation employed the version 44 of GENCODE’s GTF and FASTA files, unless stated otherwise. The quality of the RNA-seq reads was preliminarily inspected with fastQC1 and MultiQC (Ewels et al., 2016). No trimming intervention was deemed necessary for the two datasets.

Both RNA-seq datasets were analyzed using different bioinformatic tools and updated annotations with respect to the original studies. Reads were summarized to genes via FeatureCounts (Liao et al., 2013) and GENCODE annotation and were aligned onto the human genome (GRCh38.p13) by means of STAR (Dobin et al., 2012), using the following options: (1) --chimFilter banGenomicN; (2) --outFilterMultimapNmax 1; (3) --alignSJoverhangMin 8; (4) --alignSJDBoverhangMin 1; (5) --outFilterMismatchNmax 2; (6) --outFilterScoreMinOverLread 0; (7) --outFilterMatchNminOverLread 0; (8) --outFilterMatchNmin 0; (9) --outFilterMismatchNoverLmax 0.04. For the hippocampal RNA-seq dataset, the sequence alignment with the reference genome uniquely mapped 83.2% of the ~2 billion input reads, namely, ~138 million reads per sample on average. For the fusiform gyrus RNA-seq dataset, the sequence alignment process uniquely mapped 91.9% of the ~982 million input reads, namely, ~32 million reads per sample on average.

DESeq2 (version 1.26.0) (Love et al., 2014) was used to perform the normalization of sequencing counts and the differential expression analysis between AD patients and relative controls. First, the summarized gene counts were normalized with DESeq2’s own method. This approach is commonly considered well suited to compare gene expression across samples and hence, to differential expression analyses. A preliminary gene expression filter was employed and genes, whose sum of normalized counts was less than 10 in half the samples of the datasets, were discarded. MDS and PCA analyses were performed, respectively, with the R functions “cmdscale” and “prcomp” to study the clustering behavior of samples; in particular, the Aitchison distance was adopted for MDS by using the dedicated parameter of the “cmdscale” function. Samples clustered according to their tissue in the MDS performed with the Aitchison distance and the regularized log-transformed (DESeq2 rlog function) counts. Control sample 5 (Supplementary Figure S2A) and control sample 4 (Supplementary Figure S2B) resulted as outliers in plots obtained with and without the rlog transformation, respectively. In the PCA biplot, HIP samples segregated according to their experimental condition only upon removal of control samples 4 and 5, which were ultimately considered outliers and removed from downstream analyses (Supplementary Figure S3). The PCA analysis performed for the fusiform gyrus samples showed that they did not cluster according to the condition (AD/CTL), however no outliers could be identified with ordination analyses nor sample removal improved the clustering (Supplementary Figure S4). The differential expression analysis was performed, after preparing the data as required by the DESeq2 package via a custom R script. Genes were considered as differentially expressed if Benjamini-Hochberg adjusted p-value (padj) resulted inferior to 0.05.



2.3 Differentially expressed lncRNAs biotype definition

By parsing the GENCODE annotation with a custom R script, the following biotypes were used to classify the DE lncRNAs of the two datasets: (i) intergenic: the lncRNA that does not overlap any protein coding gene; (ii) antisense: the lncRNA that overlaps a protein coding locus on the opposite strand; (iii) sense overlapping: the lncRNA that has a transcript overlapping a coding gene’s exon on the same strand; (iv) sense intronic: the lncRNA that falls in introns of a coding gene and do not overlap any exon. More specifically, the genomic coordinates of the starting and ending points of annotated genes were compared to those of the DE lncRNAs. Boolean vectors (i.e., lists of TRUE and FALSE values) obtained from the comparisons were logically chained through AND/OR operators to verify the overlap events and their nature. An analogous mechanism was applied to elucidate the intronic or exonic nature of the overlap events.



2.4 Weighted gene co-expression network analysis

The WGCNA R package (Langfelder and Horvath, 2008) (version 1.69) has been employed to run a weighted gene co-expression network analysis of the coding and non-coding genes obtained in the differential expression analysis of the two RNA-seq datasets. The pickSoftThreshold function was used with the ‘networkType’ parameter set to ‘signed’ to produce the data for the plots data necessary to choose the soft thresholding power β of the correlation function necessary to build an adjacency matrix based on gene expression (Supplementary Figure S5). Raising the absolute value of the correlation between genes to the soft thresholding β power allows to underline disparity between correlations in the adjacency matrix. β should be a good compromise between the scale free topology model fit and the consequent network mean connectivity. For the hippocampal dataset, we chose soft thresholding power β = 15 (Supplementary Figures S5A,B), while for the fusiform gyrus dataset we chose β = 18 (Supplementary Figures S5C,D). The correlation function chosen was run combinatorially between the expression data of all genes of interest to generate an adjacency matrix. A topological overlap matrix (TOM) was obtained from the adjacency matrix and finally, a 1-TOM dissimilarity matrix was calculated (Langfelder and Horvath, 2008). The gene distances of the dissimilarity matrix calculated in the previous step of the workflow were used to build the dendrograms with the WGCNA function plotDendroAndColors. The hierarchical clustering analysis was performed with the flashClust R package (version 1.1.2) and with the option ‘method = average’. The dynamic tree cutting procedure was applied with the following main parameters: ‘minClusterSize = 30’ and ‘deepSplit = 2’. Close WGCNA modules were merged with the ‘cutHeight’ set to 0.12. Gene networks representations were obtained with the igraph R package (version 1.3.2). The data of the two weighted correlation networks were prepared with the “exportNetworkToCytoscape” function of the WGCNA R package, then, the network graphs were generated with the fruchterman-reingold layout and they were finally pruned with the threshold option so that only edges whose weight resulted bigger than or equal to 0.385 for the hippocampus dataset and to 0.27 for the fusiform gyrus were retained in the final representation (These thresholds were determined empirically). WGCNA modules were prioritized according to: (i) their number of differentially expressed lncRNAs; (ii) their number of differentially expressed driver lncRNAs. Driver genes were considered as such within a module when showing a Pearson’s correlation |r| > 0.8 to the module’s eigenvector and to the experimental condition of interest, namely, AD. For the fusiform gyrus, the |r| threshold for correlation of genes to the trait of interest was lowered to 0.6 as no genes passed the more stringent filter (|r| = 0.8 threshold).



2.5 Pathway enrichment analysis

The functional pathways associated with genes in WGCNA prioritized modules were investigated with Ingenuity Pathway Analysis IPA® (Ingenuity Systems, QIAGEN, Redwood City, CA). IPA parameters were kept to their standard values except for species settings (in the species tab, only the Homo sapiens checkbox was considered) and miRNA settings (the box for high confidence predicted miRNAs was checked). Possible connections with AD were sought in the ‘diseases and functions’ and ‘canonical pathways’ tabs of the analysis report produced by IPA whose content was exported through the dedicated functions. Gene modules were considered to be associated with a canonical pathway if the Fisher’s exact test performed by IPA was significant (p-value <0.05).



2.6 RNA-seq analysis validation by ddPCR

To validate RNA-seq data, primer pairs for MAP4K3-DT, MEG9, MEG8, PCA3, HAR1A, NECTIN3-AS1, STARD4-AS lncRNAs were designed by using an ad-hoc developed pipeline (Supplementary Table S1). Total RNA from frozen post-mortem hippocampus samples used in the Annese et al. work (Annese et al., 2018) was used for the lncRNAs expression validations. Samples were processed in accordance to Annese et al. study (Annese et al., 2018), which was approved by the Institutional Review Board of the Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council. 1.5 μg of RNA were used in the reverse transcription reaction, using the iScript™ Advanced cDNA Synthesis Kit (Bio-Rad Laboratories Ltd., Berkeley, California, USA), according to the manufacturer’s instructions. The droplet digital polymerase chain reaction (ddPCR) (Bio-Rad) was chosen for the quantification analysis. All ddPCR reactions were carried out in a final volume of 22 μL, using the QX200™ ddPCR™ EvaGreen Supermix, and were prepared according to the manufacturer’s instructions. The amount of the cDNA template was determined empirically for the different targets, as reported: 1 μL of diluted cDNA (1:4) for MAP4K3-DT, MEG9, MEG8, PCA3, HAR1A; 2 μL of undiluted cDNA for NECTIN3-AS1, STARD4-AS; 1 μL of diluted cDNA (1:100) for GAPDH. Primer concentration in reaction was 200 nM for all targets except for PCA3 (150 nM). Each RNA sample was analyzed in duplicate. For each experiment, a negative control (No Template Control, NTC) was used. After droplet generation with the QX200 Droplet Generator (Bio-Rad), droplets were transferred into a 96-well plate that was sealed for PCR. The thermal cycling conditions were set as recommended by the manufacturer, except for the annealing/extension temperature and the number of the cycles that were adapted to each target (Supplementary Table S2). Absolute quantification was performed using the QuantaSoft version 7.4.1 software (Bio-Rad) and the negative/positive thresholds were set manually. ddPCR reactions were considered positive if characterized by a number of events >10,000, according to the QX200™ reader automatic evaluation. For each sample, results were expressed as the means of the lncRNA copies/μL of PCR replicates, normalized by the means of corresponding GAPDH copies/μL. Statistical significance was evaluated with a two tailed Mann–Whitney U test that was performed with the wilcox.test R function.



2.7 Statistical analyses

The RNA-seq sample cohorts analyzed were homogenous in terms of sex, ethnicity, age at death, quality of the input RNA and Braak stage for the patients, therefore the differential expression analysis was performed by applying a Wald test for each dataset via the dedicated DESeq2 functions considering only the condition in the formula. For ddPCR analysis, statistical significance was assessed by using and a two tailed Mann–Whitney U test and results were expressed as the means of lncRNA copies/μL, normalized with the means of GAPDH copies/μL for each sample.




3 Results


3.1 Identification of differentially expressed genes in the hippocampus and fusiform gyrus in AD

In this study we re-analyzed the data produced in two RNA-seq experiments performed on post-mortem AD brain tissues. The first was produced by Annese et al. in 2018 and consisted of the transcriptomic profiles of the hippocampal CA1 region of six patients affected by late-onset AD and six cognitively unimpaired controls (Annese et al., 2018). The second dataset was produced by Friedman et al. in 2018 and originally consisted of 117 total RNA-seq samples from the fusiform gyrus (84 AD, 33 controls) (Friedman et al., 2018). From this dataset, we chose samples according to the same sampling criteria of the hippocampal cohort, obtaining a final cohort comprising 14 controls and 14 AD fusiform gyrus samples (Supplementary Table S3).

By using DESeq2, we identified 3,297 protein coding genes and 1,180 lncRNAs as differentially expressed (DE) genes between hippocampal AD samples and controls (padj <0.05). In particular, 567 lncRNAs were found down-regulated and 613 up-regulated; among protein coding genes, 1,416 genes were found down-regulated and 1,881 up-regulated (Table 1 and Supplementary Table S4). For the fusiform gyrus RNA-seq dataset, DESeq2 identified 3,728 DE genes (padj <0.05), of which 2,871 were protein coding genes and 857 were lncRNAs. In particular, among protein coding genes, 1,324 were down-regulated and 1,547 were found to be up-regulated while, of the DE lncRNAs, 382 were found to be down-regulated and 475 were up-regulated (Table 1 and Supplementary Table S4).



TABLE 1 Number of deregulated genes (lncRNAs and protein coding genes) identified in the hippocampus and fusiform gyrus of AD patients and in common between the two datasets.
[image: Table showing gene analysis results for the hippocampus, fusiform gyrus, and common DE genes. It compares long non-coding RNAs (lncRNAs) and protein-coding RNAs in terms of total analyzed, deregulated, downregulated, and upregulated counts. Genes with a p-adjusted value less than 0.05 were considered deregulated.]

Thanks to the progressive improvement of lncRNA annotation, for both RNA-seq datasets, we identified more DE lncRNAs than the previous analyses (1,180 significant DE lncRNAs versus 47 for the hippocampus and 857 versus 65 for the fusiform gyrus).

Comparing the DE genes between the two datasets, we found a total of 1,082 DE genes (225 lncRNAs and 857 protein coding genes) in common (Table 1), the majority of which had the same expression pattern, while 39 genes (7 lncRNAs and 32 protein coding genes) showed an opposite expression behavior in the two brain regions.



3.2 DE lncRNAs biotype characterization

As one of the aims of this work was the characterization of DE lncRNAs in AD, firstly we analyzed the genomic neighborhood of the DE lncRNAs identified in AD hippocampus and fusiform gyrus, using a custom R script to retrieve information by processing the genomic coordinates reported by GENCODE’s annotation. In Table 2, the number of the DE lncRNAs for each biotype class is reported. Although the attribution of biotype is susceptible to changes due to annotation and considering that some lncRNAs fell into multiple biotype categories according to their topology (as FLNC-AS1, which is both sense overlapping to KCP gene and antisense to FLNC gene), our analysis reported that the greatest number of DE lncRNAs belongs to the sense-overlapping biotype in both brain districts, followed to the antisense biotype for the hippocampus. For the fusiform gyrus, an almost equal number of antisense and intergenic lncRNAs was identified.



TABLE 2 Number of differentially expressed lncRNAs identified in the hippocampus and in the fusiform gyrus of AD patients, grouped according to their biotype.
[image: Table showing lncRNA biotype counts in the Hippocampus and Fusiform Gyrus. Antisense: 1,191 (Hippocampus), 1,090 (Fusiform Gyrus). Intergenic: 588, 357. Sense intronic: 112, 59. Sense overlapping: 3,393, 2,926.]



3.3 Experimental validation of the differential expressed lncRNAs in AD hippocampus

The expression of some hippocampal DE lncRNAs was validated by absolute quantitation with Digital Droplet PCR (ddPCR) on five controls (four original controls plus a new one) and six AD patients (five original AD subjects plus a new patient). The new samples were chosen to fit the selection criteria adopted for the original cohort used in the RNA-seq analysis (Supplementary Table S3). Seven downregulated lncRNAs, MAP4K3-DT, MEG9, MEG8, PCA3, HAR1A, NECTIN3-AS1 and STARD4-AS, were selected for validation, as they appeared among the most differentially expressed and their nomenclature was approved by the HUGO Gene Naming Committee (HGNC). As shown in Figure 2, for all lncRNAs analyzed, the downregulated expression was confirmed by ddPCR. In fact, for each lncRNA, the obtained values of copies/μL of reaction mix, normalized by dividing them with respect to the GAPDH copies/μL, were lower in AD samples compared to controls, although we did not observe a statistically significant difference between the two groups.
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FIGURE 2
 Analysis of lncRNAs expression from AD hippocampus RNA-seq data by ddPCR. Results are expressed as copies/μL of reaction mix values, normalized with respect to GAPDH copies/μL.




3.4 Correlation network analysis of lncRNAs in AD hippocampus and fusiform gyrus

The Weighted Gene Correlation Network Analysis (WGCNA) tool (Langfelder and Horvath, 2008) was employed to analyze the co-expression network of coding genes and lncRNAs in AD samples. By choosing the appropriate soft thresholding power β, the TOM and the 1-TOM dissimilarity matrices were obtained. The hierarchical clustering of the dissimilarity matrix data generated the dendrograms shown in Supplementary Figures S6A,B for the hippocampus and the fusiform gyrus datasets, respectively. Each branch of the dendrograms harbors one of the genes (lncRNA and protein coding genes) considered. After the dynamic module merging procedure, 56 modules were identified for the hippocampus dataset and 52 for the fusiform gyrus dataset. For both datasets, the correlation networks obtained, the hierarchical dendrograms as well as the modules before and after the dynamic merging process are represented in Supplementary Figures S6C,D. Next, modules were prioritized to perform a pathway enrichment analysis in order to identify the physiological function and/or the biological pathway common to multiple protein coding genes and to the co-expressed lncRNAs present in a module. Two criteria were adopted to prioritize the modules: (i) the number of DE lncRNAs present in the module; (ii) the number of DE “driver” lncRNAs present in the module. Driver genes are key genes that may influence the expression or function of other genes or may be causal factors for a trait of interest. The top 10 modules comprising the largest number of significant DE lncRNAs are listed in Supplementary Table S5, and the top 10 modules comprising the largest number of DE “driver” lncRNAs are listed in Supplementary Table S6, for both datasets. Comparing the two lists for each dataset and considering the number of total and driver DE lncRNAs present in the modules, the top four ranking modules resulted “purple,” “lavenderblush3,” “grey60” and “brown” for the hippocampus dataset and “lavenderblush3,” “brown,” “turquoise” and “darkturquoise” for the fusiform gyrus dataset. Although some modules have the same name (e.g., “lavenderblush3”) for both hippocampal and fusiform gyrus datasets, these modules are independent clusters of genes, as names to the modules were automatically assigned by WGCNA.



3.5 Pathway enrichment analysis of lncRNAs present in prioritized WGCNA modules

The “purple,” “lavenderblush3,” “grey60” and “brown” selected modules of the hippocampal dataset and the “brown,” “turquoise,” “lavenderblush3” and “darkturquoise” for the fusiform gyrus dataset were subjected to a pathway enrichment analysis by using Ingenuity Pathway Analysis (IPA). Gene modules were considered to be associated with a canonical pathway if the pathway enrichment test indicated a significant enrichment within the module, with a p-value <0.05.

Regarding the hippocampal modules, the “purple” and “grey60” modules were found to be associated with the “CREB signaling in neurons” and the “synaptic long-term depression” pathways, as they included genes, like GRIA1, DRD5, PRKCG, CACNA1E, CACNG4, PLCZ1, ADGRG4 and GPR83, that are neurotransmission-related (Supplementary Table S7). The first pathway is involved in the process of consolidating a new memory and the dynamic complexity of information processing within neuronal networks, which is greatly increased by activity-dependent changes in gene-expression within individual neurons (Silva et al., 1998). The “synaptic long term depression” pathway is described as a cellular model for information storage and synaptic plasticity (Ito, 2001). The brown module was found to be associated with the “synaptogenesis signaling,” “synaptic long-term potentiation,” “SNARE signaling” and “CREB signaling in neurons” pathways, as it included genes like CALM1, GRIA2, GRIN2B, EPHA4, STXBP1, PPP3R1, and WASF1. The “lavenderblush3” module was associated to GABA receptor and calcium signaling pathways although the p-value of the enrichment test was not significant; interestingly, this module was associated to the TP53 signaling pathway, since TP63 and TP73 were downregulated in our analysis (Supplementary Table S7).

Regarding the fusiform gyrus modules, the “brown” module, which included genes like CDH7, CDH18, PAK1, PPP1R14C and PRKCE, was found to be associated with “synaptogenesis signaling” and “synaptic long-term potentiation” pathways. The “lavenderblush3” module was related to the downregulation of the “CREB signaling in neurons” pathway as it included CAMK4, CAMK2D and FZD3 genes. Finally, the “darkturquoise” module was found associated with the “synaptic long term potentiation” pathway for the presence of CREBBP, EP300 and RAF1 genes, while the “turquoise” module was not found associated with AD or neurotransmission-related pathways (Supplementary Table S8).

Considering the co-expression analysis performed, it may be inferred that lncRNAs clustered in these modules could be related to AD as well.

As the prioritized modules from both brain regions correlated to common canonical pathways, we compared these modules to select the common DE coding and non-coding genes between AD hippocampus and fusiform gyrus. As shown in Table 3, all hippocampal modules share DE genes with the fusiform gyrus modules and, in particular, the “brown” and “purple” modules share a higher number of DE genes with the “brown” and “lavenderblush3” modules of the fusiform gyrus.



TABLE 3 Significant differentially expressed genes (lncRNAs and protein coding genes) in common between the hippocampus (Hip) and fusiform gyrus (Fg) prioritized modules.
[image: Comparison table listing gene modules with headings: "Hip brown module vs. Fg brown module," "Hip purple module vs. Fg brown module," "Hip grey60 module vs. Fg brown module," "Hip lavenderblush3 module vs. Fg brown module," "Hip brown module vs. Fg lavenderblush3 module," "Hip purple module vs. Fg lavenderblush3 module," "Hip grey60 module vs. Fg lavenderblush3 module," "Hip lavenderblush3 module vs. Fg lavenderblush3 module," "Hip purple module vs. Fg darkturquoise module," "Hip grey60 module vs. Fg darkturquoise module," "Hip lavenderblush3 module vs. Fg darkturquoise module," "Hip brown module vs. Fg darkturquoise module," "Hip purple module vs. Fg turquoise module," "Hip grey60 module vs. Fg turquoise module," "Hip lavenderblush3 module vs. Fg turquoise module," "Hip brown module vs. Fg turquoise module." Various genes are listed under each category with some marked with an asterisk indicating lncRNA.]

A functional enrichment analysis was performed by IPA on these common DE genes that highlighted the presence of six protein coding genes which are known to be related to AD: (i) GABRA3, encoding for a subunit of the GABA receptor, was found downregulated in the AD middle temporal gyrus (Govindpani et al., 2020); (ii) CALB1, encoding for a calcium binding protein, was found downregulated in AD hippocampal granular layer (Palop et al., 2003); (iii) SLC30A3, also called ZNT3, encodes for a synaptic vesicular Zn2+ transporter, whose loss was associated with synaptic and memory deficits of AD (Adlard et al., 2010); (iv) PLK2 encodes for a kinase found upregulated in human AD cortex (Mbefo et al., 2010); (v) NDST3, encodes for a strong regulator of the autophagy-lysosomal pathway whose dysregulation, associated with proteostatic imbalance, is a hallmark of neurodegenerative diseases (Tang et al., 2021); (vi) DRD5, encodes for the dopamine receptor 5 and an antagonist molecule of this receptor, called Olanzapine, is in phase 4 of clinical trial for the treatment of AD (Mühlbauer et al., 2023).

To characterize the lncRNAs co-expressed with these six AD related genes in hippocampus and fusiform gyrus, we considered the 1-TOM dissimilarity matrices obtained during the clustering analysis and we obtained a list of DE lncRNAs correlated to these protein coding genes because they were part of the same WGCNA module (Tables 4, 5). By comparing the results of these analyses, we identified 6 DE lncRNAs that are correlated to the same AD related genes in both hippocampus and fusiform gyrus (Table 6). Three of these lncRNAs are antisense (RFPL1S, DCTN1-AS, ATP2B1-AS), one is a sense overlapping RNA (LINC00390) and 2 lncRNAs belong to the intergenic class (ENSG00000274718 and ENSG00000278727).



TABLE 4 lncRNAs that are co-expressed with AD-related protein coding genes, according to the 1-TOM dissimilarity matrix in hippocampus (Hip) prioritized modules.
[image: Table listing genes, hip module colors, and correlated long non-coding RNAs. Genes include GABRA3, CALB1, SLC30A3, PLK2, NDST3, and DRD5. Hip modules are Brown, Purple, and Lavenderblush3. Each gene lists multiple corresponding lncRNAs.]



TABLE 5 lncRNAs that are co-expressed with AD-related protein coding genes, according to the 1-TOM dissimilarity matrix, in prioritized fusiform gyrus (Fg) modules.
[image: Table showing genes associated with Fg modules and correlated lncRNAs. It lists genes such as GABRA3, CALB1, SLC30A3, PLK2, NDST3, and DRD5 with corresponding Fg modules indicating brown and lavenderblush3 colors, followed by numerous correlated lncRNAs.]



TABLE 6 Common differentially expressed lncRNAs in hippocampus and fusiform gyrus that are co-expressed with differentially expressed AD-related protein coding genes.
[image: Table listing Ensembl IDs, DE lncRNA symbols, and co-expressed DE protein coding genes. Six entries include IDs like ENSG00000225465 and symbols such as RFPL1S, DCTN1-AS1, and ATP2B1-AS1. Co-expressed genes include GABRA3, PLK2, and NDST3.]




4 Discussion

The etiology of AD is still largely unknown and, except for the rare familiar cases (< 5% of all cases), the disease occurs sporadically with a late onset (Tanzi, 2012). Thus, there is an urgent need to strengthen efforts to understand the pathophysiological mechanisms that lead to AD development.

In this context, the present work aims at contributing to the current knowledge about the pathologic transcriptomic landscape of the human AD brain, as the definition of the changes of gene expression in the AD brain might provide insight to further research in the disease molecular processes. To date, several transcriptome profiling studies have investigated gene expression changes in the AD brain (Annese et al., 2018; Friedman et al., 2018; Srinivasan et al., 2020; Crist et al., 2021; Cain et al., 2023) but a complete set of genes and pathways deregulated in AD is far from established.

By using advanced bioinformatic approaches, we reanalyzed two RNA-seq datasets, one derived from the hippocampus and the other from the fusiform gyrus of AD individuals, matched with healthy controls. We provide here a comprehensive reanalysis of data already published. This is a common and valuable practice in bioinformatics as it optimizes data exploitation considering both new biological knowledge (i.e., new annotated pathways), the updated gene annotation, particularly relevant for lncRNAs addressed in the present study, with most recent advances in bioinformatics approaches. In addition, the combined data analysis from multiple studies (i.e., hippocampus and fusiform gyrus in the present study) can enhance statistical power leading to more reliable identification of deregulated pathways.

Regarding the choice of the selected brain regions, the hippocampus, which is relevant for memory processes, is among the first brain regions that manifest the pathological phenotype of AD. The fusiform gyrus is important for the elaboration of visual stimuli and in particular for facial recognition. While it is known that the hippocampus is a brain area vulnerable in AD (West et al., 2000), little is known about the relationship between the neurodegenerative damage sustained by fusiform gyrus and the pathologic manifestations of the disease. The fusiform gyrus is interested by the neurodegeneration in the subsequent stage of the disease, according to the Braak staging system (Macedo et al., 2023) and a correlation may be found between the inability of patients to recognize familiar faces as the disease progresses and the damage sustained by this region (Ma et al., 2020). In AD, various regions of the brain exhibit the hallmark pathological features associated with the condition that are NFTs and senile plaques. Each of these regions, characterized by their distinct histological and functional properties, appears to be uniquely susceptible to the disease’s progression (Crist et al., 2021). Consequently, the transcriptomic alterations observed in these diverse brain areas may differ, reflecting their individual responses to AD pathology. In this context, the identification of shared molecular changes across brain regions affected in different stages of the disease holds significant importance. Such common alterations could indicate the presence of underlying molecular mechanisms that contribute to the development and progression of AD. Unraveling these shared molecular signatures could provide valuable insights into the fundamental pathological processes driving AD pathogenesis.

The hippocampus RNA-seq dataset derived from patients that were accurately stratified (Annese et al., 2018) and the same criteria were applied to select samples from the original fusiform gyrus RNA-seq dataset (Friedman et al., 2018). Thus, although the two cohorts were not large, the low variability among AD patients and relative controls could contribute to the robustness of our analyses and results. We are aware that analyzing larger datasets would directly improve the statistical power of the approach adopted to give more strength to the results. Although several AD RNA-seq datasets are available, they did not offer the level of stratification we desired or they come with access restrictions as it is the case for the longstanding ROSMAP project (Bennett et al., 2018).

The continuous work in the gene annotation field, by projects as ENCODE and FANTOM (Snyder et al., 2020; Abugessaisa et al., 2021), allowed us to identify more genes in total and more DE genes with respect to the original analyses of the two datasets. Although the two brain regions are underlying different in cytologic terms, the comparative analysis of the two DE gene groups identified 1,082 DE genes in common between the two brain regions, largely with the same deregulation behavior, since only 39 genes showed an opposite deregulation. Thus, these loci may represent a common sign of deregulation, and establish a novel knowledge resource to shed light on the way different areas of the brain are engaged by the AD neurodegenerative process.

In this study we focused our attention on DE lncRNAs, because, as epigenetic regulators of brain functions, their deregulation could be directly involved in AD pathogenesis. The function of the majority of lncRNAs in the brain and their role in the disease is not yet known. So far, the best documented lncRNAs in AD are those involved in AD hallmarks, as antisense transcripts of known AD-related genes, and many more lncRNAs are likely to be operating in trans in neurodegenerative diseases (Riva et al., 2016). We characterized the biotype of the DE lncRNAs identified in the two regions and we found that most of them belong to the antisense category. Thus, the identified DE antisense lncRNAs might alter many and different cellular processes, as it is known that antisense lncRNAs interact with the sense RNA (affecting splicing, polyadenylation, stability, nuclear transport, etc.) but also they act as chromatin modifiers, by establishing complexes with DNA and proteins, such as RNA–DNA duplexes and RNA-protein complexes, that may influence gene transcription (Gagliardi et al., 2018). For example, the Dynactin Subunit 1 (DCTN1) is known to play a critical role in microtubule stability, a biological process increasingly recognized as a potential therapeutic target for tau pathology (Rayaprolu et al., 2021). DCTN1-AS is the antisense of DCTN1 gene and we found this lncRNA downregulated in both brain regions and co-expressed with the same AD-related genes. DCTN1 was cited as a hub gene within a proteomics-based interaction network module in a study aimed at unraveling the proteopathic biochemical phase of AD (Rayaprolu et al., 2021). We may speculate that DCTN1-AS could interact with the DCTN1 gene or its transcript, potentially modulating its function, within a pathway involving GABRA3. Similarly, STARD4, a gene regulating the lipid metabolism, possesses an antisense gene. It was found deregulated in AD in a differential expression analysis, comparing APP/PS1 and healthy murine models with the aim of investigating the process of spine turnover (Heiss et al., 2017). We found STARD4-AS as a downregulated lncRNA in AD hippocampus and it could be a valid candidate for investigating its role in the regulation of STARD4 expression.

To gain insights into the function of the DE lncRNAs, we used the WGCNA bioinformatic tool that is capable of building gene correlation networks and identifying modules of co-expressed genes, with the final goal of studying the system-level functionality of genes. LncRNAs that result to be correlated to better-known protein coding genes by similar expression patterns (co-expressed) may be involved in the same cellular functions and molecular pathways. For this reason, gene co-expression networks may help formulating significant predictions about the function of lncRNAs.

Several co-expression and differential co-expression network analyses have already been applied on RNA-seq data from hippocampus and fusiform gyrus, leading to the identification of co-expressed networks and genes associated with AD (Sato et al., 2019; Crist et al., 2021; Xia et al., 2022; Ribeiro-dos-Santos et al., 2023). As our aim was the identification of lncRNAs that could take part of the pathologic molecular mechanisms of AD, we prioritized modules comprising the majority of lncRNAs which could be identified as driver genes and could be postulated to influence the expression of other genes or that could be directly involved in the causal mechanisms of AD. The validity of this approach was confirmed by the pathway enrichment analysis of the prioritized modules for each brain region that highlighted that these modules were related to neurotransmission, memory consolidation and/or neurological diseases (Supplementary Tables S7, S8). Interestingly, we found several DE genes that were present in both hippocampus and fusiform gyrus prioritized modules (Table 3). These targets may result co-regulated or members of the same functional pathway and investigating their function may lead to understanding pathogenetic pathways common to the two brain regions. Several lncRNAs were identified as co-expressed with these DE coding genes related to AD in the prioritized modules for the two brain regions (Tables 4, 5). A limitation of existing co-expression analyses is that they focus on driver genes without offering any insight on their co-expression neighborhood in the modules they have been assigned to. On the contrary, our analysis identified lncRNAs that resulted closely co-expressed with DE coding genes related to AD and, although their co-expression may be casual, the possibility of discovering new interactors of yet unknown pathological mechanisms of AD is worthy of future investigation. As a result of this co-expression analysis, we found six DE lncRNAs (RFPL1S, ENSG00000274718, DCTN1-AS1, ATP2B1-AS1, LINC00390 and ENSG00000278727) that are co-expressed with the same AD related coding gene in both hippocampus and fusiform gyrus (Table 6). The function of these lncRNAs is unknown. Two of these co-expressed lncRNAs, as ENSG00000260163 and LINC01962 were reported in studies investigating the correlation between the expression of lncRNAs and drug abuse (Bannon et al., 2015; Rompala et al., 2023), while their involvement in AD has not been investigated. LINC0839 is known to enhance the expression of glioma stem cell lines (Kobayashi et al., 2024). Hence, all these lncRNAs represent a source for further molecular studies aimed at elucidating their function that could shed light on the unknown pathogenic mechanisms of AD.

Finally, having the hippocampal samples from AD patients of the Annese et al. paper (Annese et al., 2018) available, by ddPCR, we analyzed the expression of seven deregulated lncRNAs (MAP4K3-DT, MEG9, MEG8, PCA3, HAR1A, NECTIN3-AS1 and STARD4-AS), chosen as their expression is supported by the GENCODE annotation and four of them (NECTIN3-AS1, MAP4K3-DT, PCA3, and HAR1A) resulted deregulated also in the AD fusiform gyrus. The deregulated expression of these lncRNAs was confirmed as we observed the same trend of decrease of the RNA-seq analysis (Figure 2), demonstrating the consistency of the RNA-seq bioinformatic analysis and the robustness of the computational approach used to design the primer pairs. Interestingly, the expression of MAP4K3-DT has already been found to be altered in AD brains, through a multi-omic data analysis by Klein et al. (2020). MEG8 is a member of a lncRNA cluster, including MEG3 and MEG9, involved in the response to glycine stimulation in a N-methyl-d-aspartate glutamate receptors (NMDAR)-dependent manner in a murine model (Tan et al., 2017) and this is relevant because the NMDA signaling is impaired in AD (Dore et al., 2017). MEG9 has been recently reported to be downregulated in AD hippocampus (Wang et al., 2022) and involved in the pathogenesis of autoimmune and neurodegenerative diseases (Plewka and Raczynska, 2022). Regarding PCA3, it was extensively studied in cancer (Lemos et al., 2019) and was found to be differentially expressed in the exosomes of cerebrospinal fluid of AD patients (Gui et al., 2015). Finally, in a study focusing on the network of miRNA sponges for various neuropsychiatric disorders, including autism, HAR1A was identified as a candidate for this role in the autism spectrum disorder (Balasubramanian and Vinod, 2022) and was also found to be downregulated in AD (Li and De Muynck, 2021).



5 Conclusion

Our results demonstrate the existence of specific and common deregulation of the expression profile of the hippocampal region and the fusiform gyrus of AD patients. We are aware that our data require functional investigation of the involvement of deregulated lncRNAs in AD. In fact, correlation analyses are excellent tools for predicting the putative involvement of genes into functional pathways, but they cannot demonstrate it, nor can they provide evidence for causal relationships between a gene and the neurodegenerative process they are correlated with. However, the common deregulated lncRNAs in AD hippocampus and fusiform gyrus of AD patients still offer a valuable shortlist of candidates to be investigated for their involvement in the AD pathogenesis and for the design of novel therapeutic approaches based on lncRNAs.
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Introduction: Oligomeric alpha-synuclein in red blood cells (RBC-o-α-Syn) has been shown to be increased in patients with Parkinson’s disease (PD). However, factors that affect RBC-o-α-Syn levels remain to be elucidated. The aim of this study is to analyze the correlations between RBC-o-α-Syn levels and the age, sex and different clinical variables of patients with PD.
Methods: 167 patients with PD and 119 healthy controls (HC) were enrolled in this study. The patients with PD were diagnosed based on the MDS clinical diagnostic criteria for PD. All participants were evaluated for their clinical characteristics. Western blot analysis was used to examine the molecular sizes of RBC-o-α-Syn. A newly established chemiluminescent immunoassay was used to measure RBC-o-α-Syn levels.
Results: Higher RBC-o-α-Syn levels were detected in PD patients than in HC subjects. The receiver operating characteristic (ROC) curve indicated that a cut off value of 55.29 ng/mg discriminated well between PD patients and HC subjects, with a sensitivity of 67.66% (95% CI: 60.24–74.29%), a specificity of 88.24% (95% CI: 81.22–92.86%), and an area under the curve (AUC) of 0.857. The levels of RBC-o-α-Syn were higher in female than male patients (p = 0.033). For different subtypes, the levels of RBC-o-α-Syn were higher in the MIX subtype than the tremor-dominant (TD) PD. In addition, the levels of RBC-o-α-Syn were higher in patients with than without cognitive impairment (p = 0.016), and negatively correlated with Mini-Mental State Examination (MMSE) scores (r = −0.156, p = 0.044).
Conclusion: Our study demonstrates that RBC-o-α-Syn levels in patients with PD are higher than those in HC subjects and affected by the sex and the severity of cognitive impairment.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease characterized by movement disorders, which present tremor-dominant (TD), postural instability and gait difficulty (PIGD), and mixed (MIX) phenotypes (Stebbins et al., 2013). In addition to motor symptoms, PD patients also manifest various non-motor symptoms such as cognitive impairment (CI), sleep disorders, dysosmia, constipation, depression and anxiety (Jankovic, 2008; Schapira et al., 2017). So far, the diagnosis of PD is still based on the typical motor symptoms. Because the neuropathology of PD occurs much early than the motor symptoms, which are also overlapped with other parkinsonian syndromes, there is an urgent need for a diagnostic biomarker to assist PD clinical diagnosis.

The formation of Lewy bodies (LBs) with insoluble alpha-synuclein (α-Syn) fibers as the core within neurons is one of the main pathological features of Parkinson’s disease (Burre et al., 2015). Abnormal α-Syn aggregation is thought to play an important role in the onset and progression of PD. Although the α-Syn in the LBs exists in the form of insoluble fibers, a body of evidence supports that the oligomeric forms of α-Syn (o-α-Syn) is the most neurotoxic (Caughey and Lansbury, 2003; Bengoa-Vergniory et al., 2017). Therefore, detection of o-α-Syn is thought to better reflect the α-Syn pathology in PD patients.

Various methods have been established to detect o-α-Syn in cerebrospinal fluids (CSF) and blood plasma (Eusebi et al., 2016; Fayyad et al., 2019; Parnetti et al., 2019). These studies consistently demonstrate a significant increase in o-α-Syn levels in the CSF and plasma in PD patients. However, the concentrations of o-α-Syn detected vary greatly among different studies. One of the major reasons for the inconsistency is probably due to the contamination derived from hemolysis. Red blood cells (RBCs) contain abundant α-Syn that is 1,000 times higher than that in plasma (Barbour et al., 2008). A small amount of hemolysis can cause a significant increase of α-Syn in plasma and CSF (Hong et al., 2010; Youssef et al., 2021). Thus, direct detection of RBC-o-α-Syn is an option that not only can avoid hemolysis-derived contamination but also improve detection stability owing to the high α-Syn concentration in RBCs. In addition, evidence from previous studies suggests that the brain α-Syn can not only enter plasma through the blood–brain barrier but also be further transported into RBCs through a receptor-dependent endocytosis (Sui et al., 2014; Li et al., 2022), further supporting the feasibility of detecting RBC-o-α-Syn as a diagnostic biomarker for PD.

Several studies have been conducted to measure the levels of RBC-o-α-Syn (Wang et al., 2015; Daniele et al., 2018; Tian et al., 2019; Liu et al., 2022; Yu et al., 2022, 2023), which produced significantly different levels of RBC-o-α-Syn, although they were higher in PD patients than healthy controls (HC). In addition, the associations of RBC-o-α-Syn levels with the sex, age, and clinical variables remains elusive. One of the reasons may be due to the use of different standards in these studies, which were either the unpurified o-α-Syn or filamented α-Syn. Therefore, it is necessary to prepare a pure o-α-Syn standard with molecular sizes similar to those in RBCs for accurate measurement of RBC-o-α-Syn concentration.

In the present study, we established a chemiluminescent immunoassay (CLIA) for detecting RBC-o-α-Syn by using a stable purified o-α-Syn standard with molecular sizes similar to those in RBCs. With this new CLIA assay, we measured RBC-o-α-Syn levels in large cohorts of PD patients and HC subjects (HC) and analyzed the correlations of RBC-o-α-Syn with the sex, age, and various clinical variables.



2 Materials and methods


2.1 Participants

PD patients were recruited from Xuanwu Hospital of Capital Medical University. At the same time, HC participants were recruited from Community Health Service Center of Qinglonghu Town, Fangshan District, Beijing. Both PD patients and HC participants underwent evaluation by investigators, and re-evaluated by senior movement disorder specialists. All PD patients were diagnosed based on the MDS clinical diagnostic criteria for PD (Postuma et al., 2015). PD patients with the following conditions were excluded: (i) Parkinsonian syndromes caused by hypoxia, infectious, traumatic, cerebrovascular, metabolic or systemic diseases affecting the central nervous system; (ii) Parkinson’s plus syndromes, including dementia with Lewy bodies (DLB), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD); (iii) ambiguous diagnosis due to unclear clinical or imaging features; (iv) a first degree relative with PD patients. HC participants with the following conditions were excluded: (i) motor symptoms such as tremor, bradykinesia, restless legs; (ii) history and symptoms of dysosmia and rapid eye movement behavioral disorder (RBD), or more than two other non-motor symptoms, including CI, constipation, depression, anxiety, according to the cut-off values of each scale for such symptoms; (iii) history and symptoms of stroke, dementia, hypoxia-related disorders and blood diseases. PD and HC subjects were matched for age and sex. Participants with incomplete or unclear demographic and clinical information were excluded from the study.

This study was approved by the Institutional Review Board and Ethics Committees of the participating hospitals. Before being included in the study, all participants or their legal guardians signed written informed consent.



2.2 Clinical evaluation

All participants were comprehensively assessed for demographic information and clinical characteristics by investigators. H&Y stage was used to assess the pathological progression of PD. PD patients were divided into different motor subtypes, including TD, PIGD and MIX, based on Movement Disorder Society sponsored revision of the Unified Parkinson’s Disease Rating Scale Part III (MDS-UPDRS III) scores, specifically, the ratio of total tremor score/total PIGD score in MDS-UPDRS III, whose value ≥1.15 classified as TD, ≤ 0.9 classified as PIGD and 0.9–1.15 classified as MIX. Non-motor subtypes were defined by the existence of CI, RBD, dysosmia, constipation, depression and anxiety, according to cut off points on scores in scales quantifying these symptoms: a cut-off value of 26 on the Mini-mental State Examination (MMSE) for CI, a cut-off value of 19 on the Rapid Eye Movement Sleep Behavior Disorder Questionnaire-Hong Kong (RBDQ-HK) for RBD, a cut-off value of 22 on the Argentine Hyposmia Rating Scale (AHRS) for dysosmia, two terms on the Diagnostic Criteria (ROME III) for constipation, a cut-off value of 8 on the Hamilton Depression Scale (HAMD) for depression, and a cut-off value of 7 on the Hamilton Anxiety Scale (HAMA) for anxiety.



2.3 RBC samples

When participants underwent evaluation, whole blood samples (10 mL) were collected into EDTA anti-coagulant tubes. The blood was centrifuged at 4°C and 1,500 × g for 15 min. The upper and middle layers, containing plasma and white blood cells, were removed. And the lower layer, containing RBCs, was washed with 10 mM PBS (1.9 mM NaH2PO4, 8.1 mM Na2HPO4, 153.85 mM NaCl, pH 7.4) for three times. Finally, the isolated RBC samples were collected and preserved in a freezer (−80°C). 48 h later, RBC samples were taken out and thawed on ice, and stored at −80°C again. Protein concentrations were measured with a bicinchoninic acid (BCA) protein assay kit (23,225, Thermo Fisher, United States) before the assay.



2.4 Preparation of o-α-Syn standard

Recombinant human α-Syn and o-α-Syn were prepared according to the methods described already (Li et al., 2020). In brief, pET-15b-NACP plasmids were transformed into BL21 (DE3) and the expressed α-Syn proteins were purified with high performance liquid chromatography. To prepare o-α-Syn, purified human α-Syn (4 mg/mL) was dissolved in 0.01 M PBS and incubated by constant shaking at 37°C (1,000 rpm) for 4 days on an Eppendorf Thermomixer Comfort (AG2233, Eppendorf, Germany). O-α-Syn (34–170 kDa) in the mixture was separated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and recovered from the gel with electrodialysis. Purified o-α-Syn was stored at −20°C.



2.5 Western blot

Total protein concentrations of RBCs and purified o-α-Syn were measured using the BCA Protein Assay Kit. RBCs were adjusted to 10 mg/mL total protein concentrations with 0.01 M PBS, while purified o-α-Syn were adjusted to 100 μg/mL. RBCs (200 μg/sample) and purified o-α-Syn (5 μg/sample) were separated with SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes (IPVH00010, Millipore, United States). The PVDF membranes were blocked with 5% non-fat milk dissolved in triethanolamine buffered saline containing 0.1% Tween-20 (TBST) for 1 h. The membranes were probed with mouse monoclonal anti-human-α-Syn antibody (3D5, 1:20000) at 25°C for 16 h. After washed with TBST, the membranes were probed with horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (ZB-5305, ZSGB-BIO, China, 1:10000) at 25°C for 1 h. The blots were visualized by enhanced chemiluminescence (ECL) kit (20,063, Millipore, USA). β-actin in RBCs were detected as internal reference.



2.6 Chemiluminescent immunoassay

To detect o-α-Syn, alkaline phosphatase (AP)-labeled and unlabeled mouse monoclonal anti-α-Syn (3D5) antibodies were used as the detection and capture antibodies, respectively. The calibration curves were constructed using a series of concentrations of o-α-Syn. A CLIA plate was coated with 100 μL/well primary anti-α-Syn antibody (1 μg/mL) in coating buffer (0.2 M NaHCO3, pH 9.6) and incubated at 4°C for 16 h. After washing with PBS containing 0.05% Tween-20 (PBST) and blocked with 1% BSA in PBST at 37°C for 2 h, 100 μL/well RBC samples (1:100 diluted) or different concentrations of o-α-Syn standards were added and incubated at 37°C for 1 h. Then the wells were washed with PBST, 100 μL of the AP anti-α-Syn 3D5 (1 μg/mL) in 1% BSA was added to the wells, and incubated at 37°C for 1 h. After washed with PBST, 100 μL/well of AP-catalyzed chemiluminescence liquid (APCL-1, APIS, Beijing, China) was added to each well. Then, chemiluminescent intensity was measured using fluorescence analyzer (Flx800, Biotek, United States). All the samples were tested in triplicates within the same assay and on the same day.



2.7 Statistical analysis

Demographic, clinical characteristics, and o-α-syn data were divided into different types. The Chi-squared test was performed to compare the distribution of categorical variables among groups. Measurement data were expressed as means ± standard deviation (SD). For normally distributed data, Student’s t-test was used for comparisons between two groups. And for skewed data, Kruskal-Wallis test was used for comparisons among groups. Level data were expressed as Median (lower quartile, upper quartile), and for which, Kruskal-Wallis test was used for comparisons between two groups.

Receiver operating characteristic (ROC) curves were constructed and the area under the curve (AUC) was calculated to evaluate the sensitivity and specificity of o-α-syn levels in RBCs as diagnostic biomarker for PD, identifying the best cut-off value as the point with the highest Youden index. Correlations of clinical variables such as MDS-UPDRS III scores and MoCA (Montreal Cognitive Assessment) scores with RBC-o-α-Syn concentrations were examined by linear regression models and Pearson correlation analysis.

All statistical analyses were performed with GraphPad Prism 8 (GraphPad, San Diego, CA, United States). p-values <0.05 were considered as statistically significant.




3 Results

The demographic and clinical data for the participants in this study are shown in Table 1, which included 119 HC subjects and 167 PD patients recruited from July 2021 to July 2023. All participants had complete demographic data with the male/female ratios of 52/67 in HC group and 80/87 in PD group. The average age of education in PD group was higher than that in HC group. All participants were evaluated for their non-motor symptoms, which showed lower scores of MMSE and MoCA and higher scores of RBDQ-HK, AHRS, HAMD, and HAMA in PD than in HC groups. The PD patients was also evaluated for their age at onset (59.3 ± 9.4), disease duration (4.6 ± 3.9), H&Y stage [2 (1,2)], and MDS-UPDRS III scores (26.5 ± 14.5).



TABLE 1 Demographic and clinical data for participants.
[image: Table comparing variables between healthy control (HC) and Parkinson's disease (PD) groups. Categories include sex (male/female), age, education, age at onset, disease duration, H&Y stage, MDS-UPDRS III scores, MMSE, MoCA scores, RBDQ-HK scores, AHRS scores, HAMD scores, and HAMA scores. PD group has higher MDS-UPDRS III, RBDQ-HK, AHRS, HAMD, and HAMA scores. Measurement data expressed as means ± SD or median. NA indicates not applicable.]

We first analyzed the molecular sizes of RBC-o-α-Syn with Western blot using the RBC lysates of PD patients and HC subjects. In addition to monomer α-Syn, we detected different sizes of oligomer in the RBC lysates, which included dimers (34 kDa), trimers (51 kDa), tetramers (68 kDa), decamers (170 kDa), and bigger polymers (Figure 1A).

[image: Western blot images and a graph are presented. Panel A compares protein bands in healthy controls (HC) and Parkinson's disease (PD) samples, highlighting different oligomeric states of alpha-synuclein, with β-actin as a loading control. Panel B shows unpurified and purified samples, displaying different oligomeric states. Panel C is a graph depicting chemiluminescent intensity against alpha-synuclein concentration, with equations and R-squared values for monomeric (m-α-Syn) and oligomeric (o-α-Syn) forms.]

FIGURE 1
 Identification of o-α-Syn standards. (A) Western blot revealed α-Syn monomers, dimers, trimers, tetramers, decamers, and polymers in (n = 4) and PD (n = 4) RBCs. (B) The mixture containing α-Syn oligomers similar to those in RBCs were prepared, purified and used as the standard. (C) Standard curve between concentrations of α-Syn oligomers as well as monomers and chemiluminescent intensity was ploted.


Based on the above results, we prepared o-α-Syn standards with molecular sizes similar to those found in RBC lysates (Figure 1B). We used our newly established CLIA method to detect the o-α-Syn standards. We showed that the chemiluminescent intensity was linearly correlated with the o-α-Syn concentration (R2 = 0.9938) (Figure 1C).

We then used the CLIA method to measure the levels of RBC-o-α-Syn. We showed that the levels of RBC-o-α-Syn were significantly higher in PD patients than HC subjects (64.92 ± 18.81 ng/mg vs. 41.72 ± 11.87 ng/mg; p < 0.0001) (Figure 2A). ROC curve analysis showed that a cut off value of 55.29 ng/mg discriminated PD patients well from HC subjects, with a sensitivity of 67.66% (95% CI: 60.24–74.29%), a specificity of 88.24% (95% CI: 81.22–92.86%), and an AUC of 0.857 (Figure 2B).

[image: Graph A shows a scatter plot comparing RBC-α-Syn levels in healthy controls (HC) and Parkinson's disease patients (PD), with PD levels significantly higher. Graph B is an ROC curve with an AUC of 0.857, indicating a cutoff of 55.29 ng/mg, sensitivity of 67.66 percent, and specificity of 88.24 percent.]

FIGURE 2
 RBC-o-α-Syn levels measured in HC and PD groups. (A) RBC-o-α-Syn levels in PD (n = 167) vs. HC (n = 119). ****p < 0.0001. (B) ROC curve showing the sensitivity, specificity and area under the curve (AUC) for RBC-o-α-Syn in discriminating PD from HC.


Linear regression model analysis showed that the RBC-o-α-Syn levels in HC (r = 0.106, p = 0.253) and PD (r = 0.003, p = 0.974) groups were not correlated with ages (Figures 3A,B). As for sex differences, the RBC-o-α-Syn levels in the female participants in PD group were significantly higher than those in the male participants (p = 0.033). The difference was not detected in HC group (p = 0.263) (Figure 4A). In the male participants, RBC-o-α-Syn levels in PD and HC groups were 61.68 ± 16.48 ng/mg and 43.11 ± 12.58 ng/mg, respectively (p < 0.0001) (Figure 4A). The AUC of ROC curve was 0.821 under a cut off value of 55.54 ng/mg, with a sensitivity of 63.75% (95% CI: 52.81–73.43%) and a specificity of 86.54% (95% CI: 74.73–93.32%) in discriminating PD patients from HC subjects (Figure 4B). While in the female participants, RBC-o-α-Syn levels in PD and HC groups were 67.91 ± 20.27 ng/mg and 40.63 ± 11.18 ng/mg, respectively (p < 0.0001) (Figure 4A). The AUC of ROC curve was 0.884 under a cut off value of 52.38 ng/mg, with a sensitivity of 74.71% (95% CI: 64.67–82.67%) and a specificity of 88.06% (95% CI: 78.17–93.82%) in separating PD patients with HC subjects (Figure 4C).

[image: Scatter plots comparing RBC α-synuclein levels against age. Plot A for healthy controls (HC) shows a slight positive correlation with \( r = 0.106 \) and \( p = 0.253 \). Plot B for Parkinson’s disease (PD) patients shows a negligible correlation with \( r = 0.003 \) and \( p = 0.974 \). Each graph displays data clusters around the trend lines.]

FIGURE 3
 Correlations between RBC-o-α-Syn levels and ages (A) in HC (B) in PD.


[image: Graph A depicts RBC-α-Syn levels in four groups: HC male, HC female, PD male, and PD female. Asterisks indicate significant differences, with PD groups showing higher levels. Graph B shows a ROC curve with an AUC of 0.821, cutoff of 55.54 ng/mg, sensitivity of 63.75%, and specificity of 86.54%. Graph C illustrates another ROC curve with an AUC of 0.884, cutoff of 52.38 ng/mg, sensitivity of 74.71%, and specificity of 88.06%.]

FIGURE 4
 Difference of RBC-o-α-Syn levels in HC and PD participants with different sexes. (A) RBC-o-α-Syn levels in male (PD: 80, HC: 52) and female (PD: 87, HC: 67) participants. ns, no significance. *p < 0.05. ****p < 0.0001. (B,C) ROC curve showing the sensitivity, specificity and area under the curve (AUC) for RBC-o-α-Syn in discriminating PD form HC in male and female participants.


Linear regression analysis showed that RBC-o-α-syn levels in PD patients were not correlated with ages at onset (r = 0.017, p = 0.831), disease duration (r = −0.034, p = 0.660), H-Y stages (r = −0.060, p = 0.443) and MDS-UPDRS III scores (r = 0.125, p = 0.108) (Figure 5).

[image: Four scatter plots showing relationships between RBC α-Syn levels and different variables in Parkinson's disease patients: (A) Age at onset with a correlation of 0.017 and p-value 0.831, (B) Disease duration with a correlation of -0.034 and p-value 0.660, (C) H&Y stage with a correlation of -0.060 and p-value 0.443, (D) MDS-UPDRS III score with a correlation of 0.125 and p-value 0.108. Each plot includes a trend line with scattered data points.]

FIGURE 5
 Correlations between RBC-o-α-Syn and PD progression and motor symptoms. (A) Age at onset. (B) Disease duration. (C) H&Y stage. (D) MDS-UPDRS III score.


For different subtypes, RBC-o-α-Syn levels in MIX subtype (71.77 ± 17.76 ng/mg) were higher than those in TD (63.24 ± 18.46 ng/mg, p = 0.036) (Table 2). Moreover, as an exploratory analysis, we compared the differences in RBC-o-α-Syn levels among different subtypes stratified by several variables. As a result, only in patients with age at onset <60 years or disease duration between 6 and 10 years, the RBC-o-α-Syn levels in the MIX subtype were higher than those in the PIGD subtype (Table 2).



TABLE 2 Overall and clinical variable-stratified comparisons of RBC-o-α-Syn levels among subtypes of PD.
[image: Table comparing demographic and clinical data among Parkinson's disease subtypes: TD, PIGD, and MIX. It includes sex distribution, age, age at onset, disease duration, Hoehn and Yahr stage, and RBC-α-Syn levels stratified by sex, age, age at onset, disease duration, and H&Y stages. Significant p-values are bolded, indicating differences between subtypes for specific variables.]

Linear regression analysis showed that the RBC-o-α-Syn levels in PD patients were weak negatively correlated with MMSE scores (r = −0.156, p = 0.044), but not with MoCA, RBDQ-HK, AHRS, HAMA scores (p > 0.05) (Figure 6). As for non-motor subtypes, there was a significant difference in the levels of RBC-o-α-Syn between patients with cognitive impairment (CI) and those without it (Supplementary Table S1). And the RBC-o-α-Syn levels did not differ between patients with or without RBD, dysosmia, constipation, depression, and anxiety (Supplementary Tables S2–S5).

[image: Scatter plots examine the correlation between RBC α-Syn (ng/mg) levels and various cognitive and mood scores: (A) MMSE, (B) MoCA, (C) RBDQ-HK, (D) AHRS, (E) HAMD, (F) HAMA. Each plot indicates a lack of strong correlation, with correlation coefficients and p-values displayed.]

FIGURE 6
 Correlations between RBC-o-α-Syn and non-motor symptoms. (A) MMSE scores. (B) MoCA scores. (C) RBDQ-HK scores. (D) AHRS scores. (E) HAMD scores. (F) HAMA scores.




4 Discussion

In the present study, we established a new immunoassay to measure RBC-o-α-Syn levels. Similar to our previously established ELISA, we used the same anti-α-Syn monoclonal antibody as the capture and detection antibodies. However, in the present assay, the detection antibody was conjugated with AP, which catalyzed the chemiluminescence substrate (APCL-1) to emit fluorescence. This modification greatly shortened the assay time with equivalent sensitivity of the previously established ELISA method (Li et al., 2022). The assay time of CLIA was 3 h compared with 8 h of ELISA. In addition, we used the purified α-Syn oligomer mixtures with molecular sizes similar to those in RBCs as the standard. Compared with some previous studies that used α-Syn filament as the standard (Tian et al., 2019; Yu et al., 2022, 2023), the present measurement may better reflect the true concentration of RBC-o-α-Syn.

Our present results showed that RBC-o-α-Syn levels were significantly increased in PD patients compared with HC subjects and could discriminate well between PD patients and HC subjects, with a sensitivity of 67.66%, a specificity of 88.24%, and an AUC of 0.857. These results are consistent with previous findings (Wang et al., 2015; Tian et al., 2019; Yu et al., 2022), suggesting a good correlation of RBC-o-α-Syn with PD pathology. It is worth noting that the concentrations of RBC-o-α-Syn we measured were 64.92 ± 18.81 ng/mg in PD and 41.72 ± 11.87 ng/mg in HC, which were in contrast to the concentrations of 29.0 ± 19.8 ng/mg in PD and 15.4 ± 7.4 ng/mg in HC measured by ELISA as well as 218.1 ± 86.5 ng/mL in PD and 135.0 ± 42.2 ng/mL in HC measured by electrochemiluminescence assay (Wang et al., 2015; Yu et al., 2022). This may be due to the different sensitivity of the methods and the different standards used. For example, some studies used unpurified o-α-Syn or α-Syn filaments as the standard, which was not identical in molecular sizes to the o-α-Syn in RBCs (Tian et al., 2019; Yu et al., 2022, 2023).

Changes in o-α-Syn levels have been investigated in the other bodily fluids of PD patients, such as CSF, plasma, serum and saliva. For example, studies on CSF showed a significant increase in o-α-Syn levels in the CSF of PD patients compared with those in HC (Ganguly et al., 2021), with a sensitivity of 89%, a specificity of 48%, and an AUC of 0.72. Using the CSF o-α-Syn/total α-Syn ratio slightly increased the sensitivity (82%), specificity (64%), and AUC of 0.78% (Parnetti et al., 2014). Levels of o-α-Syn levels in plasma and serum have been also investigated. Although some studies showed an increase in the levels of o-α-Syn in the plasma and serum of PD patients, a meta-analysis shown that plasma and serum o-α-Syn levels were not statistically different between PD and HC groups. This is attributed to the small quantity of studies and the large heterogeneity (Zubelzu et al., 2022). The contamination derived from hemolysis may be one of the reasons for the large heterogeneity since RBCs contain 1,000 times α-Syn plasma (Barbour et al., 2008; Hong et al., 2010; Youssef et al., 2021). In addition, salivary o-α-Syn was also shown to be increased (Vivacqua et al., 2016). Because of only a few studies, its sensitivity, specificity and AUC in discriminating PD and HC remain to be determined. Taken together, the change of RBC-o-α-Syn measured in the present study are identical to the changes measured in other body fluids, with similar or even better diagnostic performance. However, detection of RBC-o-α-Syn could be more stable and reproducible due to the high concentration of RBC-o-α-Syn and the avoidance of hemolysis-derived contamination.

Because the prevalence of PD is related to sex and age, we further analyzed if RBC-o-α-Syn levels were affected by sex and age. We showed that RBC-o-α-Syn levels in female PD patients were significantly higher than those in male PD patients, and this sex difference was not detected in HC subjects. These results support the report that the female PD patients have faster disease progression and significantly shorter time from onset to severe disability compared to the male PD patients (Dahodwala et al., 2018), but contradictory to the epidemiological study results that PD affects men twice more often than women (Wooten et al., 2004; Picillo and Fasano, 2015; Cerri et al., 2019; Vaidya et al., 2021). This contradiction indicates that the factors promoting PD onset are complex and o-α-Syn aggregation is only one of the factors. Since aging is the most important risk factor for PD (Nussbaum and Ellis, 2003; de Lau and Breteler, 2006), we also analyzed the correlation between age and RBC-o-α-Syn. However, there were no correlations between RBC-o-α-Syn levels and ages in both HC and PD participants. The results are inconsistent with the observations in both mouse and non-human primate models showing that the brain o-α-Syn levels and age are positively correlated (Chen et al., 2016; Ho et al., 2020). This may be due to the lack of sufficient young participants in this study. To explore the correlation between RBC-o-α-Syn levels and ages, further study on participants in wide and strictly controlled age groups is needed.

We further analyzed the correlations between RBC-o-α-Syn levels and different clinical variables. Significant correlations of RBC-o-α-Syn levels were not detected with the ages at onset, disease duration, H&Y stages and MDS-UPDRS III scores, which is consistent with results reported in previous studies (Wang et al., 2015). These results may indicate that the change of aggregation degree of α-synuclein in PD progression is a complex process, rather than a simple linear increase or decrease.

We next compared the levels of RBC-o-α-Syn in different PD subtypes. We found that the levels of RBC-o-α-Syn were significantly higher in the MIX subtype patients than those in the TD subtype. In addition, in patients with ages <60 years or disease duration from 6 to 10 years, the RBC-o-α-Syn levels in the MIX subtype were higher than those in the PIGD subtype.

Cognitive impairment is common in PD, whose incidence rate increases with age, disease duration, and pathological progress (Litvan et al., 2012). Long term follow-up studies have shown that up to 80% of PD patients ultimately exhibit symptoms of dementia (Aarsland et al., 1996; Hely et al., 2008). Our study demonstrated that RBC-o-α-Syn levels in PD patients with Cognitive impairment were higher than those without it. In addition, we found that RBC-o-α-Syn levels in PD patients were weak negatively correlated with MMSE scores, but not with MoCA scores. It is found that MoCA exhibits better performance in the differential diagnosis of healthy controls and PD dementia, but the MMSE score presents higher correlation with the severity of PD cognitive impairment (Lessig et al., 2012). This may explain the correlation of RBC-o-α-Syn with MMSE and not MoCA.

There are some limitations in this study. One is the absence of patients with other synucleinopathies and parkinsonian syndromes such as multiple system atrophy (MSA), dementia with Lewy bodies, progressive supranuclear paralysis, corticobasal degeneration. Second is the lack of apparent correlations between RBC-o-α-Syn levels with PD progression of PD. Longitudinal cohort study from prodromal to clinical stage is needed to further determine the correlations. Third, correlations between RBC-o-α-Syn levels and age, subtype, H&Y stage need to be verified in further studies with control for multiple testing.

In conclusion, our study demonstrates that RBC-o-α-Syn levels in patients with PD patients were higher than those in HC subjects and can be a potential diagnostic biomarker for PD. RBC-o-α-Syn levels were higher in female than in male PD patients. In addition, RBC-o-α-Syn levels are positively correlated with the severity of cognitive impairment.
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The most prevalent cause of dementia is Alzheimer’s disease. Cognitive decline and accelerating memory loss characterize it. Alzheimer’s disease advances sequentially, starting with preclinical stages, followed by mild cognitive and/or behavioral impairment, and ultimately leading to Alzheimer’s disease dementia. In recent years, healthcare providers have been advised to make an earlier diagnosis of Alzheimer’s, prior to individuals developing Alzheimer’s disease dementia. Regrettably, the identification of early-stage Alzheimer’s disease in clinical settings can be arduous due to the tendency of patients and healthcare providers to disregard symptoms as typical signs of aging. Therefore, accurate and prompt diagnosis of Alzheimer’s disease is essential in order to facilitate the development of disease-modifying and secondary preventive therapies prior to the onset of symptoms. There has been a notable shift in the goal of the diagnosis process, transitioning from merely confirming the presence of symptomatic AD to recognizing the illness in its early, asymptomatic phases. Understanding the evolution of disease-modifying therapies and putting effective diagnostic and therapeutic management into practice requires an understanding of this concept. The outcomes of this study will enhance in-depth knowledge of the current status of Alzheimer’s disease’s diagnosis and treatment, justifying the necessity for the quest for potential novel biomarkers that can contribute to determining the stage of the disease, particularly in its earliest stages. Interestingly, latest clinical trial status on pharmacological agents, the nonpharmacological treatments such as behavior modification, exercise, and cognitive training as well as alternative approach on phytochemicals as neuroprotective agents have been covered in detailed.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to the deterioration of brain cells. It is the primary cause of dementia, which is marked by a decline in cognitive abilities and a loss of independence in daily tasks (Porsteinsson et al., 2021). Over 35 million individuals worldwide suffer from AD, and by 2050, the disease’s incidence is predicted to quadruple (Tiwari et al., 2019). Presently, China and the growing Western Pacific, Western Europe, and the United States are the countries or regions most affected by the situation (Li et al., 2022). The World Health Organization (WHO) has designated AD, a condition that mostly affects the elderly and is frequently linked to dementia, as a global health public priority. Because AD progresses in the latent form of the neuropathological process, it presents one of the greatest difficulties to modern neuroscience and medical diagnosis (Nasreddine et al., 2023). The accumulation of abnormal aggregates in the brain called amyloid plaques and tangles of fiber bundles called neurofibrillary (NFTs) are the hallmark of AD (Zhao, 2020). The accumulation of aggregated amyloid beta (Aβ) plaques in the brain begins around 20 years before the onset of cognitive decline in AD, and this can be attributed to either defective clearance of Aβ or excessive production (Serrano-Pozo et al., 2011). The accumulation of hyperphosphorylated tau protein leads to the formation of NFTs, which can be detected a decade to fifteen years before the onset of symptoms (Bateman et al., 2012; Jack et al., 2018; Figure 1).
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FIGURE 1
Alzheimer’s pathogenesis based on two classical hallmarks on amyloid beta and neurofibrillary tangles.


In 2018, the National Institute on Aging and Alzheimer’s Association (NIA-AA) revised their diagnostic criteria for AD and transitioned from a clinical to a biological perspective on the disease (Jack et al., 2018). AD progresses along a continuum, starting with a phase when there are no symptoms but there is evidence of AD biomarkers (preclinical AD). It then progresses to a stage where there are minor cognitive abnormalities (mild cognitive impairment [MCI]) and/or neurobehavioral alterations (mild behavioral impairment [MBI]), and eventually leads to AD dementia. Several staging approaches have been devised to classify AD along this spectrum (Dubois et al., 2010; Jack et al., 2018). Although the specific definitions of each stage may differ, all of these systems include the assessment of pathological Aβ and NFTs, as well as impairments in cognition, function, and behavior (Dubois et al., 2010; Jack et al., 2018).

The terminology used to describe each stage may differ across different clinical and research classifications. Figure 2 presents a concise overview of the many naming standards employed in the AD community, along with the corresponding symptoms at each step of the continuum. MBI refers to the development of persistent and significant neuropsychiatric symptoms in individuals aged 50 years or older, before experiencing cognitive decline and dementia (Ismail et al., 2017). Preclinical AD, which is the first stage in the AD progression, involves a prolonged period without symptoms, during which patients show signs of AD pathology but do not experience any cognitive or functional deterioration, and their everyday activities remain unchanged (Dubois et al., 2010; Figure 2). The length of preclinical AD can vary among individuals but generally spans from 6 to 10 years, contingent upon the age at which symptoms first appear (Insel et al., 2019; Vermunt et al., 2019). The likelihood of transitioning from preclinical AD to MCI caused by AD, with or without MBI, is influenced by various characteristics such as age, gender, and apolipoprotein E (ApoE) status (Insel et al., 2019; Vermunt et al., 2019). However, it is important to note that not all persons with underlying AD pathology will eventually acquire MCI or AD dementia (Knopman et al., 2003; Bennett et al., 2006). A recent meta-analysis of six longitudinal cohorts, with an average follow-up period of 3.8 years, revealed that 20% of individuals with preclinical AD developed MCI as a result of AD (Vermunt et al., 2019). In a subsequent investigation conducted by Cho et al. (2021), with an average rate of observation spanning 4 years, it was discovered that 29.1% of individuals diagnosed with preclinical AD experienced a progression to MCI as a result of AD.
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FIGURE 2
The AD continuum can be categorized into various stages, ranging from preclinical AD to severe AD dementia. The terminology used to describe each stage can vary based on the specific clinical and scientific classifications. This diagram presents an overview of the naming standards employed in the AD community, along with the symptoms associated with each stage of the continuum. Aβ, amyloid beta; AD, Alzheimer’s disease; FDA, Food and Drug Administration; IWG, International Working Group; MCI, mild cognitive impairment; NIA-AA, National Institute on Aging—Alzheimer’s Association. Adaptation and modification from Porsteinsson et al. (2021).


In individuals who develop MCI as a result of AD, the first noticeable symptoms usually involve difficulties with short-term memory. This is then followed by a gradual loss in other cognitive abilities in other areas (Kazim and Iqbal, 2016; Figure 2). Individuals with MCI caused by AD may experience difficulties in daily activities such as finding appropriate words (language), remembering recent discussions (episodic memory), completing familiar tasks (executive function), or navigating familiar environments (visuospatial function) (Kazim and Iqbal, 2016; Tolbert et al., 2019). Due to differences in coping techniques and cognitive reserve, patients have diverse experiences and symptoms. Nevertheless, patients generally maintain a reasonable level of independence during this stage, even though they may have minor impairments in function. The outlook for patients with MCI caused by AD can be unpredictable. A study that monitored individuals with MCI caused by AD for an average of 4 years discovered that 43.4% of them developed AD dementia (Cho et al., 2021). Additional research findings indicate that 32.7% and 70.0% of persons diagnosed with MCI caused by AD develop AD dementia within 3.2 and 3.6 years of observation, respectively (Roberts et al., 2018; Ye et al., 2018). Individuals who advance to AD dementia will experience significant cognitive impairments that hinder their ability to engage in social interactions and necessitate help with everyday tasks (Jack et al., 2018). As the condition advances, more pronounced behavioral symptoms will arise, imposing a substantial load on both patients and their caretakers. Ultimately, the disease leads to a profound decline in independence and necessitates constant care.

Early diagnosis of AD is essential in order to facilitate the development of disease-modifying and secondary preventive therapies prior to the onset of symptoms (Nasreddine et al., 2023). There has been a notable shift in the goal of the diagnosis process, transitioning from merely confirming the presence of symptomatic AD to recognizing the illness in its early, asymptomatic phases. Validating biomarkers as accurate indicators of AD pathology would allow them to be utilized as diagnostic tools, eliminating the need for brain samples or autopsies to confirm an accurate diagnosis (Lee et al., 2019). The NIA-AA has classified diagnostic biomarkers for AD into three categories: Aβ-Aβ deposits (A), hyperphosphorylated tau aggregates (T), and neurodegeneration or neuronal damage (N). The ATN categorization based on NIA-AA research framework is displayed in Table 1 (Jack et al., 2018). The AD continuum is associated with one of the following biomarker profiles: A + T- N-, A + T+ N-, A + T+N +, or A + T-N +, regardless of any clinical symptoms (Jack et al., 2018). Evaluation of the ATN profile is conducted using biofluids, such as cerebrospinal fluid (CSF), or imaging techniques, such as Positron Emission Tomography (PET). The objective of the present study is to provide extensive reviews on comprehensive diagnostic and therapeutic approaches grounded in a precisely defined ATN model that corresponds to the AD continuum. Additionally, the details on the most recent clinical trials involving pharmacological agents employed in therapeutic strategies have been presented. In the future, it will be crucial to investigate novel biomarkers that extend beyond the amyloid and tau pathologies, as well as the longitudinal evolution of these biomarkers throughout the course of AD.


TABLE 1 Biomarker profiles and categories.
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Diagnostic process

The process of diagnosing AD can be categorized into the subsequent stages: identification, evaluation/differentiation, diagnosis, and treatment. Clinicians must employ suitable diagnostic techniques when examining a patient who is suspected of having AD in its initial phases.



Identification

In the context of dementia, the initial step of diagnosis does not involve executing tests but rather involves developing a suspicion that a dementia syndrome may be developing (referred to as the trigger phase). An issue that arises with dementia is the hesitancy of certain patients, families, and primary care physicians to make a diagnosis. Dementia is a severe and mostly unchangeable disease that is associated with a significant amount of social disgrace. Physicians may inadvertently hesitate to diagnose a patient with a specific condition (Downs and Bowers, 2008), and family members may gradually assume the social responsibilities of the patient without being fully aware of their actions. This unintentionally shields the patient from worsening in their daily life, but also delays the conscious acknowledgment of the disorder by compensating for the impairments (De Lepeleire et al., 1998; Iliffe et al., 2009). To confirm the presence of symptoms related to AD, the healthcare provider must perform an initial examination on patients who display even minor symptoms. This assessment should utilize a validated tool for detecting early-stage AD as discussed below.



Evaluation of a memory complaint


Clinical assessment tool

Clinical assessment tools for evaluating memory complaints often include a combination of interviews, questionnaires, and cognitive tests. These tools help healthcare professionals gather information about a person’s memory concerns and assess their cognitive function. Nasreddine et al. (2023) reported a number of common and recent scales used in early diagnosis of AD include Mini-Cog, (MMSE) Mini-Mental State Examination, and MoCA. Those generally used in primary care and they are varying in sensitivity (Nasreddine et al., 2023). MMSE is used primarily for assessing overall cognitive function including memory-related questions. It assesses orientation, attention, calculation, recall, and language, providing insights into memory and other cognitive domains. Therefore, it is low sensitivity compared to MoCA high sensitivity which assesses various cognitive domains, including memory. It includes tasks related to immediate and delayed recall, as well as other memory-related exercises (Nasreddine et al., 2023). The summarization on the screening tools utilized in the early diagnosis of AD is demonstrated in Table 2.


TABLE 2 Summarisation of the screening tools utilized in the early diagnosis of AD.
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Furthermore, a variety of neuropsychological tests have been used in previous research to assess AD. Recently, the Rey Auditory Verbal Learning Test (RAVLT) is a widely used neuropsychological assessment tool designed to evaluate various aspects of verbal memory and learning in AD and other forms of dementia (Warren et al., 2023). Based on previous investigation studies, the RAVLT performance in individuals with memory complaints reflects well the underlying pathology caused by AD. As a result, RAVLT is an effective early marker for detecting AD in people who have memory problems (Moradi et al., 2017). AD is commonly diagnosed with the clinical dementia rating (CDR) scale. Recently, interventional trials have emphasized the sum of boxes of the clinical dementia rating-sum of boxes (CDR-SB) to track the progression of cognitive impairment (CI) in the early stages of AD. As the stages of predementia progress, researchers have developed practical tools for measuring the deterioration of cognition or daily function. A recent study was conducted in Taiwan by Tzeng et al. (2022) have assessed the predictive value of the CDR-SB and CDR to widely employed AD staging tools, by investigating how they contribute to the process or reversion in individuals without dementia (Tzeng et al., 2022). There were 1,827 participants observed, and during evaluation, a trained physician scored six cognitive or functional domains, including memory, orientation, judgment, community affairs, home hobbies, and personal care, following interviews with both participants and informants. Consequently, performance and function-based information are simultaneously acquired. This study’s significant results deserve special attention. Findings were found such as the CDR-SB tool has an excellent predictive value in detecting the onset of dementia in people without dementia. In addition, an increase in CDR-SB scores was associated with higher conversion rates, and the prediction power of CDR-SB levels was very good. CDR-SB is a reliable and global diagnostic tool. Additionally, it is very sensitive in detecting the disease progression among participants with different levels of disease severity (Tzeng et al., 2022). However, in clinical trials, it is not capable of consistently detecting treatment effects (Wessels et al., 2022).

Other cognitive scale used in clinical practice neuropsychological tests to detect AD is AD Assessment Scale–Cognitive (ADAS-Cog), which measures cognitive deficits, such as memory, language, and praxis. Cogo-Moreira et al. (2023) stated that the ADAS-Cog has been a prominent assessment tool and has been widely used in investigations of AD since its establishment in 1984 (Cogo-Moreira et al., 2023). Due to its wide application, many studies have been conducted to evaluate, improve, and optimize ADAS-Cog for various uses (i.e., ADAS-11 and ADAS-13), as well as to serve as indicator of AD progression (ADAS-Cog) (Kueper et al., 2018; Cogo-Moreira et al., 2023; Warren et al., 2023). Based on a study relating to ADAS-Cog, they hypothesized that different stages can be predicted of AD continuum with ADAS-13. This hypothesis was proven based on a research study that ADAS-11 could effectively distinguish between those with cognitive impairment and those with early AD (Zainal et al., 2016). Similarly, some modifications have been made to ADAS-Cog-11, including assessments of executive function, improved scoring methodology, delayed recall and/or everyday functioning in order to detect early signs of cognitive decline preceding dementia (Kueper et al., 2018). From all these findings shown, employing the ADAS-13 in clinical practice should be used to assess cognitive function when patients present with minor memory problems, as it distinguishes between the levels of cognitive function associated with different stages of AD. Basically, the scores can range from 0 to 70 for ADAS-Cog-11, with higher scores indicating greater cognitive impairment and scores are from 0 to 85 for ADAS-Cog-13, which takes approximately 30–45 min (Clarke et al., 2022).

A comprehensive study done by Warren et al. (2023) which evaluating the ability of the most commonly used neuropsychological tests to screen AD. Moreover, it focuses on its ability to differentiate and distinguish of AD disease (Warren et al., 2023) such as cognitively normal (CN), Subjective Memory Complaints (SMC), and MCI. Basically, the study included a total of 595 participants with AD. The screening tools include The Everyday Cognition Questionnaire (ECog), the Rey Auditory Verbal Learning Test (RAVLT), the Functional Abilities Questionnaire (FAQ), the AD Assessment Scale–Cognitive Subscale (ADAS-Cog), the Montreal Cognitive Assessment scale (MoCA), and the Trail Making test (TMT-B) as summarized in Table 3. Interestingly, the study’s outcomes and results point out that screening tools such as ADAS-13, RAVLT (learning), FAQ, ECog, and MoCA all predicated the progression of AD. Furthermore, TMT-B and the RAVLT were not specific for predicting AD in contrast with ECog that showed a very strong predictor tool into screen AD progression. Finally, the author recommends and suggests using ECog (both versions), RAVLT (learning), ADAS-13, and the MoCA to screen AD in all stages.


TABLE 3 Summarisation of advantages and disadvantages of screening tools employed in AD.

[image: A detailed table comparing several cognitive screening tools, including the Everyday Cognition Questionnaire, the Rey Auditory Verbal Learning Test, the Functional Abilities Questionnaire, and the Trail Making Test. Columns specify the cognitive scale, assessment details, advantages and disadvantages, and references. Each entry discusses the tool's purpose and effectiveness, with citations from studies published between 2014 and 2023.]



Structural imaging

Structural imaging techniques, such as MRI, offer valuable clinical insights when examining the underlying factors contributing to cognitive decline (Harper et al., 2013). MRI is commonly performed to rule out other potential factors contributing to cognitive decline, rather than to confirm a diagnosis of AD (Frisoni et al., 2017). Structural MRI utilizes powerful magnets and radio waves to generate detailed brain images. It enables the measurement of brain tissue volume and the identification of structural alterations associated with AD. Alzheimer’s patients often exhibit atrophy, or shrinkage, in key brain regions, particularly the hippocampus and the entorhinal cortex, both critical for memory and learning (Vogel et al., 2019). MRI can detect Alzheimer’s by measuring brain tissue volume in these regions; a reduction in volume may indicate the disease. Additionally, MRI can identify Alzheimer’s by spotting changes in brain structure indicative of the presence of amyloid plaques and NFTs, the two key Alzheimer’s biomarkers. Trained radiologists use MRI to detect Alzheimer’s by observing signs such as atrophy in the hippocampus and entorhinal cortex, enlarged ventricles, white matter hyperintensities, microbleeds, amyloid plaques and neurofibrillary tangles.

PET is an imaging method that employs radioactive tracers to gauge the activity of specific molecules in the body. PET is instrumental in measuring the levels of Aβ and tau protein in the brain, both of which form plaques in the brains of individuals with AD (Zhang et al., 2021). Fludeoxyglucose positron emission tomography (FDG-PET) is another non-invasive imaging technique that employs a radioactive tracer called fluorodeoxyglucose (FDG) to measure glucose metabolism levels in the brain (Young et al., 2020). Glucose serves as the primary energy source for the brain, and FDG-PET assesses how efficiently the brain is functioning. FDG-PET is not advisable for diagnosing preclinical AD in patients due to the inability to determine if the hypometabolism is directly linked to AD pathology (Dubois et al., 2016). However, clinicians may consider referring patients with more pronounced symptoms for an FDG-PET scan to detect areas of glucose hypometabolism and neurodegeneration that may suggest AD (Frisoni et al., 2017).




Confirming AD pathology

In the field of contemporary healthcare, there have been significant advancements in the confirmation of AD pathology (Hampel et al., 2018). AD, being a complex neurodegenerative condition, presents diagnostic challenges, underscoring the importance of early and precise detection. This multifaceted approach involves molecular investigations to identify genetic and protein markers, advanced imaging methods for observing structural and functional changes in the brain, and the examination of cerebrospinal fluid (CSF) for crucial biomarkers (Bader et al., 2020). Although it is understood that pathological changes commence prior to the manifestation of symptoms, it is challenging to ascertain if the presence of biomarkers indicating pathophysiological changes in the preclinical phase definitively indicates the development of clinical disease in an individual’s lifetime. Single biomarkers do not offer solid prognostic data. In recent times, there have been efforts to enhance the precision of diagnoses and the capability to anticipate individuals who are prone to experiencing clinical symptoms by considering a combination of biomarker discovery.

Jack and colleagues suggested that diagnosis should consider the presence and absence of the biomarkers categorized as amyloid, tau, and neurodegeneration (A/T/N) (Jack et al., 2016). This novel descriptive of ATN classification for AD has been recently developed to prioritize the pathological and physiological factors above traditional clinical measurements like cognitive test scores (Jack et al., 2016, 2018). In the ATN system, subjects are classified into three binary categories: amyloid burden, tau burden, and neurodegeneration. Each subject is assigned a rating of either normal (physiological, “−”) or abnormal (pathological, “+”). The resulting 8 groupings, each characterized by distinct combinations of biomarkers, span from A-T-N- (indicating the absence of pathology) to A+T+N+ (indicating the presence of pathology in all categories). There is a suggestion that any combination of ATN biomarkers with A+ indicates a pathogenic alteration associated with the AD continuum. Several recent research have investigated the potential of ATN to predict clinical progression and cognitive decline (Altomare et al., 2019; Jack et al., 2019; Soldan et al., 2019; van Maurik et al., 2019; Yu et al., 2019). In this subsection, diagnostic biomarker based on the ATN model, along with emerging biomarkers will be discussed.



Biomarkers Aβ and pathologic tau (AT classification)

The biomarkers in the A+ group indicate the presence of aggregated Aβ (Baldeiras et al., 2022). Aβ peptides are produced through the enzymatic cleavage of APP by β- and gamma-secretases. While there are many isoforms of Aβ, almost 90% of the Aβ peptides present in the brain are either Aβ (Aβ1-40) or Aβ (Aβ1-42). Aβ1-42 constitutes the primary constituent of senile plaques. An increased abundance of senile plaques is essential for a neuropathological diagnosis of AD. Senile plaques can be detected through the use of cortical amyloid PET ligand binding (Beach, 2022). Additionally, cerebral Aβ aggregation can be identified by measuring Aβ1-42 and Aβ1-40 levels in CSF using non-radioactive, antibody-based techniques like ELISA (Camporesi, 2021). An inherent trait of early AD is a decrease in CSF levels of Aβ1-42, likely caused by the accumulation of the peptide in senile plaques. However, certain studies have indicated that the ratio of CSF Aβ (Aβ1-42)/(Aβ1-40) may serve as a more reliable measure of Aβ production and aggregation, as opposed to solely examining Aβ1-42 levels (Niemantsverdriet et al., 2017).

The biomarkers observed in the T+ group indicate the presence of aggregated Tau (Baldeiras et al., 2022). Tau proteins are soluble microtubule-associated proteins (MAPs) that strongly stabilize axonal microtubules. Tau undergoes hyperphosphorylation in AD, resulting in its detachment from microtubules (Alonso et al., 2018). Unconstrained, excessively phosphorylated Tau is susceptible to enzymatic breakdown, as well as self-assembly into harmful clusters and ultimately forming paired helical filaments (PHFs) and NFTs. Cortical Tau PET ligand binding can detect aggregated Tau, particularly PHFs (Okamura et al., 2018). Nevertheless, research has demonstrated that the presence of phosphorylated Tau in CSF is indicative of Tau disease (Wattmo et al., 2020). Neurons that have NFTs emit phosphorylated Tau, which can be quantified in the CSF by antibody-based immunoassays. More than 40 locations on Tau have been demonstrated to undergo phosphorylation in AD; yet Tau phosphorylated at threonine 181 (pTau181) is among the most extensively studied phosphorylated Tau indicators (Suárez-Calvet et al., 2020). Studies have demonstrated that CSF levels of pTau181 are increased in persons with AD and are strongly associated with the extent of Tau pathology observed after death (Shoji, 2019; Thijssen et al., 2020). Furthermore, this biomarker has demonstrated a high level of specificity for AD since elevated levels of CSF pTau181 are not observed in other tauopathies. The investigation of phosphorylated Tau at serine 199 (pTau199) and threonine 231 (pTau231) as possible biomarkers is ongoing (Lewczuk et al., 2004). The levels of pTau199 and pTau231 in the CSF are strongly associated with pTau181 CSF levels and demonstrate comparable diagnostic accuracy (Shoji, 2019). Apart from that, cross-sectional studies covering the entire clinical AD continuum have revealed that plasma isoforms p-tau181 and p-tau217 may distinguish amyloid-PET or tau-PET positive cases from amyloid-PET or tau-PET negative cases. These cross-sectional investigations have also demonstrated that plasma p-tau levels can identify patients with AD dementia from those with frontotemporal lobar degeneration (Janelidze et al., 2020; Karikari et al., 2020; Palmqvist et al., 2020; Thijssen et al., 2020). Mattsson-Carlgren et al. (2020) enrolled 250 non-demented participants from the Swedish BioFINDER study and employed the “Meso Scale Discovery” (MSD) Eli Lilly immunoassay to quantify p-tau217 levels at baseline and during follow-up. The findings revealed that patients in the preclinical and early clinical stages of AD have higher levels of p-tau217 than cognitively healthy controls. Furthermore, higher p-tau217 levels were linked to an increased likelihood of developing AD dementia, as well as faster rates of cognitive decline and thinning of the temporal cortex and hippocampus (Mattsson-Carlgren et al., 2020).

Recently, many studies have shown that CSF p-tau along with Aβ42, and t-tau together are the key biomarkers for AD. For instance, Suárez-Calvet et al. (2020) reported CSF p-tau is major prognosis marker in AD as it distinguishes dementia associated with AD from cognitively unimpaired (CU) and MCI, also CSF p-tau is useful for disease staging (Suárez-Calvet et al., 2020). Furthermore, the biomarker’s robustness and reliability as an early diagnosis tool for AD is enhanced by the fact that Aβ plaque formation occurs years, if not decades, prior to the onset of symptoms (Bălaşa et al., 2020). The measurement of Aβ and tau proteins in CSF continued to be a focus till now. In another study done by Teunissen et al. (2018) have been included an Aβ42 as standard AD diagnostic guideline (Teunissen et al., 2018). It has been shown that a fluctuation in CSF Aβ42 level occurs 10–20 years before the beginning of visible symptoms which make it helpful tool (Teunissen et al., 2018). Moreover, in the same study showing that Aβ42 biomarker concentration differs in plasma from CSF that showed reduced levels in CSF compared to plasma high levels (Teunissen et al., 2018). This could be due to the blood-brain barrier (BBB) accessibility and transportation of all biomolecules, and high levels of Aβ42 found in plasma due to avoiding accumulating Aβ42 in in the brain (clearance system). In addition, integrating the Aβ42/Aβ40 and Aβ42/Aβ38 ratios with T-tau and P-tau levels is likely the most advantageous method to develop a diagnostic tool based on these two biomarkers. This technique offers a sensitivity and specificity of approximately 85–95% (Jin et al., 2019). Recently, blood-based biomarkers for AD, like tau and Aβ, have been incorporated by Rissman et al. (2024) into screening algorithms in an attempt to increase screening precision. They used plasma samples from the first group of participants screened for AHEAD and used immunoprecipitation liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure phosphorylated and non-phosphorylated forms of tau181 and tau217 alongside Aβ42 and Aβ40 in order to further validate plasma p-tau species as early AD biomarkers. This work aimed to predict brain amyloid PET status in cognitively unimpaired patients using MS measured plasma p-tau217, np-tau217, p-tau181, concentration ratios, and Aβ42/Aβ40 ratio data. The results show improved performance for the identification of amyloid PET positive cognitively unimpaired individuals using plasma p-tau217/np-tau217; however, the combination of plasma p-tau217 and Aβ42/Aβ40 ratios in a model that predicted cerebral amyloid PET status yielded the best performance, as indicated by AUC (Rissman et al., 2024). Figure 3 depicts the process of neurodegenerative decline in the brain and the corresponding markers that are connected with it.
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FIGURE 3
Illustration of neurodegenerative deterioration in the brain and associated indicators. As portrayed, brain damage could be caused by the deposition of amyloid beta protein in the brain, resulting in amyloid plaques, as well as the creation of neurofibrillary tangles among neurons. These alterations cause the loss of neurons in the cortex, the brain’s outer layer. The results imply that brain traumas sustained in the NfL may raise the incidence of AD.




Biomarkers of neurodegeneration or neuronal injury (N classification)

The biomarkers observed in the N+ group indicate the presence of neurodegeneration. Axonal degeneration is a prominent characteristic of AD and is more strongly associated with the beginning of cognitive impairment compared to other clinical aspects. Neurodegeneration in brains affected by AD can be identified by the use of FDG PET hypometabolism and MRI. Nevertheless, studies have demonstrated that persons with AD exhibit elevated levels of t-tau in the CSF, and these levels are strongly associated with the extent of neurodegeneration. However, neurodegeneration is not exclusive to AD and can be observed in various other illnesses affecting the neurological system. Nevertheless, when employed alongside other indicators, t-tau can offer crucial insights into an individual’s placement on the AD spectrum and the extent of their cognitive decline (Alcolea et al., 2021).



Other promising biomarkers


Blood-based approaches

Blood, in contrast to CSF, which requires lumbar puncture for accessibility, comprises less invasive body fluids and is readily accessible for the purposes of diagnosing, evaluating, and monitoring the progression of AD (Villa et al., 2020). The Alzheimer’s Association recommends that specialized memory clinics may employ blood biomarkers to aid in diagnosing patients with cognitive impairment. Several blood biomarkers, such as plasma Aβ42, Aβ42/40 ratio, p-tau, t-tau, neurofilament light polypeptide (NfL), glial fibrillary acidic protein (GFAP), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2), have been identified as potential biomarkers for AD (Tao et al., 2023). However, despite significant research activity, a complete and up-to-date summary of the key blood-based biomarker candidates remains insufficient.

Early investigations employed enzyme linked immunosorbent assays (ELISA) immunoassays to evaluate the concentration of Aβ40 and Aβ42 in plasma as predictors of conversion to AD in patients with MCI. In this investigation, the plasma samples were obtained at baseline from two independent cohorts of patients with MCI and age-matched controls (prodromal stage). The results demonstrated a negative correlation with AD and the authors concluded that the CSF biomarkers are better predictors of progression to AD than plasma Aβ isoforms (Hansson et al., 2010). Following this, a study utilizing single-molecule array (Simoa) was conducted to analyze plasma levels of Aβ42 and Aβ40 in a cohort of 719 individuals, including patients with subjective cognitive decline (SCD), MCI, AD dementia and cognitively healthy elderly. Results revealed a decrease in plasma Aβ42 concentration in individuals with AD compared to the control group. This study concluded that during the dementia stage of AD, plasma Aβ is markedly reduced, suggesting that significant alterations in Aβ metabolism take place later in the peripheral rather than in the brain (Janelidze et al., 2016). Currently, there is insufficient data to support the use of plasma Aβ42/40 as a reliable method for distinguishing between AD and other forms of dementia. Given their limited availability and somewhat high cost, both Simoa and IP/MS based assays require further optimization in several aspects before they may be effectively employed for screening AD in large populations.



Saliva

In addition to the CSF, several emerging biomarkers from tears and saliva, are being found to predict AD. The non-invasive, convenient, and cost-effective collection of saliva makes it an attractive marker for monitoring diseases. Besides that, CSF shows a relationship with saliva which proteins are secreted into saliva (Ashton et al., 2019). The diagnostic performance of AD-specific salivary biomarkers has been included Aβ1-40, Aβ1-42, p-tau, t-tau and lactoferrin in many research and studies (Pawlik and Błochowiak, 2021). Aβ levels were found and deposited in many body tissues including nasal mucosa, skin, and other gland, in addition to its main build up in the brain. Moreover, APP and Aβ are the mostly expressed in epithelia cells in saliva (Pawlik and Błochowiak, 2021). Saliva Aβ1-42 levels biomarkers are specific as they can differentiate patients with AD, but not patients with other neurological disease such as Parkinson’s disease (PD). More importantly, it can be used to diagnose early stages of the disease, cognitive difficulties, the severity and progression of AD, and not merely as an approach of identifying AD, but to distinguish it from other neurodegenerative diseases (Pawlik and Błochowiak, 2021). Other than Aβ salivary biomarkers which is abundant in salivary, lactoferrin also shown to have Aβ-binding properties and thus could play an important role in the pathophysiology of AD (Farah et al., 2018). Although saliva can serve as a valuable source of markers, its composition may be influenced by factors such as the circadian cycle, flow rate, and timing of sample collection (Farah et al., 2018). In addition, the presence of degradative enzymes leads to the instability of biomarker levels, necessitating the process of normalization.



Tears

The eyes have a close relationship with the brain, which considers tears as a potential source of biomarker for AD. And interestingly, the presence of Aβ plaques and tau deposits in the retina and lens has been recognized at the cellular level. Moreover, certain investigations have demonstrated a correlation between the accumulation of protein deposits in the eyes of individuals with AD and the formation of such deposits in the brain (Kaštelan et al., 2023). The discovery of potential AD biomarkers in tear samples could be exceptionally useful for conducting screenings among the general public (Majeed et al., 2021). Del Prete et al. (2021) conducted a study where they found increased quantities of Aβ42 protein in the tears of two healthy persons with a family history of AD (pre-clinical stage). This was determined using an immunocytochemistry technique (Del Prete et al., 2021). The study discovered a clear correlation between the presence of Aβ42 in tears and the development of retinal plaques. This correlation was not observed in the tear samples of a healthy participant without a family history of the condition. Given that the individuals being studied exhibited no apparent clinical symptoms of AD, the discovery of Aβ42 in tear samples has the potential to be utilized for early Alzheimer’s diagnosis and for screening purposes. Gharbiya et al. (2023) conducted an analysis of the amounts of Aβ peptide Aβ1-42, the C-terminal fragment of amyloid precursor protein (APP-CTF), and p-tau in the tears of individuals with MCI, mild to severe AD, and healthy volunteers (Gharbiya et al., 2023). Their investigation demonstrated that the concentration of tears Aβ1-42 could effectively distinguish both MCI and AD patients with a high degree of specificity (93%) and sensitivity (81%). Moreover, the study found no significant variations in the abundance of APP-CTF and p-tau in tear samples. As per their findings, assessing the levels of Aβ1-42 in tears could offer a minimally invasive approach for the early detection and diagnosis of AD. The presence of reduced Aβ1-42 levels in tears may represent a specific, sensitive, non-invasive, and cost-effective biomarker for the early identification of AD. More importantly, tears biomarkers hold great promise for enhancing diagnostic precision, tracking disease advancement, and assessing the effectiveness of treatments. Also, they are easily accessible, non-invasive, less costly compared with other diagnostic tools, and can be performed by healthcare practitioners without the need for specialized training (Chaitanuwong et al., 2023).



MicroRNAs (miRNAs)

Another genetic potential biomarker for AD is miRNA, a small non-coding RNA molecules that play a role in regulating gene expression (Nikolac Perkovic et al., 2021). A miRNA is a single-stranded RNA that is 19 to 24 nucleotides long and plays a major role in post-transcriptional gene silencing. Also, it is a very effective tool in early diagnosis of AD since miRNAs has been investigated as marker of AD pathogenesis (Nikolac Perkovic et al., 2021). A wide range of peripheral circulation (serum, plasma, exosomes, whole blood, peripheral blood mononuclear cells) and CSF miRNAs are commonly detected. More importantly, brain tissue has been linked to non-circulating miRNAs (Nikolac Perkovic et al., 2021). Accordingly, in a study by Zhang et al. (2019), a meta-analysis of ten different studies illustrated that miRNA as an AD diagnostic biomarker have overall and diagnostic odds ratio of 14 (95% CI: 11–19) sensitivity 0.80 (95% CI: 0.75–0.83) and specificity 0.83 (95% CI: 0.78–0.86) which represents an accurate and reliable biomarker (Zhang et al., 2019). Furthermore, miRNAs are highly promising indicators for diagnosing diseases. More recently, studies have been conducted on diagnostic efficiency and accuracy on AD patients and can be characterized healthy people from AD (Hu et al., 2016; Lusardi et al., 2017; Zhao et al., 2020).




Pharmacological approach


FDA-approved drugs

Prior to recent developments, patients with AD had access to only symptomatic treatments, such as acetylcholinesterase inhibitors. The most recent addition to this class of drugs is galantamine, which was approved by the US Food and Drug Administration (FDA) in 2001 (Cronin, 2001). Another treatment option is memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, which received FDA approval in 2003 (Zarotsky et al., 2003).

Acetylcholinesterase (AChE) inhibitors are employed for patients with mild cognitive impairment or mild dementia stage disease (stage 4 based on FDA classification) to impede ACh degradation and, in turn, boost neural cell function by increasing ACh levels (Akıncıoğlu and Gülçin, 2020). The cholinergic theory has garnered significant attention and has been the subject of much research, leading to the development of three authorized drugs for the treatment of AD. Tacrine, a type of medication known as a cholinesterase inhibitor (ChEI), was initially granted approval by the FDA as the first therapy for the treatment of AD. However, its administration was subsequently terminated due to the adverse effects it posed on liver function, known as hepatotoxicity. At present, the three ChEIs employed in the therapeutic management of people with AD are donepezil, rivastigmine and galantamine (Liu et al., 2019) Figure 4 shows current treatments involving ChEIs with mechanism. In general, ChEIs are commonly perceived to possess poor therapeutic efficacy and are primarily acknowledged for their moderate capacity in managing the symptoms associated with AD (Kepp, 2012). However, additional evidence is being uncovered that suggests a more intricate mechanism underneath the cholinergic system. This mechanism has the ability to interact with other pathological aspects of AD, such as aberrant Aβ and tau cascade, inflammation, apoptosis, and imbalances in neurotransmitter and neurohormonal systems (Wang and Zhang, 2018).
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FIGURE 4
(A) Visualization of current drugs (donepezil, galantamine, rivastigmine) (B) mechanism of action of memantine for Alzheimer’s disease (AD). Adaptation from Breijyeh and Karaman (2020).


Memantine is an uncompetitive and NMDA receptor antagonist that is approved for the treatment of moderate to severe AD (stage 5 and 6 based on FDA classification). Memantine modulates glutamate activity, preventing excessive stimulation that can lead to neuronal damage (Figure 5). This drug can help manage symptoms and slow cognitive decline in later stages of the disease (Schmidt, 2022). Even so, it should be noted that memantine exhibits restricted clinical effectiveness (Matsunaga et al., 2015). Given this perspective, there is a notable interest in exploring novel moderate-affinity NMDAR antagonists that possess similar yet distinguishable pharmacological characteristics. In the recent past, a new polycyclic amine called RL-208 has been synthesized (Companys-Alemany et al., 2020). This compound acts as a voltage-dependent, moderate-affinity, uncompetitive blocker of NMDA receptors. Its pharmacological and electrophysiological properties have been thoroughly investigated using in vitro methods (Companys-Alemany et al., 2020). However, memantine has a number of potential adverse effects. Common side effects include headaches, dizziness, elevated blood pressure, drowsiness, restlessness, and hallucinations. Less often occurring side effects include asthenia, constriction, diarrhea, nausea, anorexia, coughing, and breathing problems (Shafiei-Irannejad et al., 2021).
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FIGURE 5
Summary of pharmacological approaches for AD involving amyloid-related DMTs strategies, tau-related DMT strategies and other DMTs mechanisms.


Over the course of nearly two decades, despite multiple clinical studies, the prospects for advancing novel therapy were desolate and discouraging (Cummings et al., 2022). In June 2021, the FDA granted expedited approval to aducanumab (AduhelmTM), a monoclonal antibody (mAb) called anti-amyloid-β (Aβ) that specifically targets “protofibrils” in patients who have MCI-AD or who are in the mild dementia stage of the disease (stage 3 and stage 4 based on FDA classification). These protofibrils were first characterized in the 1990s by Walsh et al. (1997) and have since been recognized as important neurotoxins. Aducanumab has obtained the initial approval as a drug that targets the fundamental cause of AD, despite the presence of significant negative consequences. The FDA clearance sparked significant controversy due to the adverse effects such as brain swelling, small brain bleeding, headache and falls, as well as limited effectiveness data (Kuller and Lopez, 2021).

In January 2023, the FDA granted expedited approval to lecanemab (LeqembiTM), a monoclonal antibody that targets anti-Aβ protofibrils, for its similar mechanism of action and side effects (stage 3 and stage 4 based on FDA classification). However, this time, there was less controversy surrounding the approval due to the clinical trial data clearly showing a reduction in the progression of memory loss (Van Dyck et al., 2023). The FDA’s Accelerated Approval Program provides support for medications that effectively treat severe medical problems and demonstrate a predictive marker indicating clinical benefit. This approach expedites the process of bringing a medicine to market compared to the conventional approval method, however, it relies on predicting rather than demonstrating the clinical advantages. In July 2023, the FDA awarded full authorisation to lecanemab for the treatment of early-stage AD after conducting further examination. Lecanemab and aducanumab effectively eliminate toxic Aβ protofibrils from the brain affected by AD. However, their usage is associated with notable adverse effects known as amyloid-related imaging abnormalities (ARIA), which may potentially induce symptoms such as headaches, exacerbation of cognitive impairment, dizziness, visual impairment, nausea, and seizures. Furthermore, a meta-analysis of clinical studies investigating possible treatments for AD, such as aducanumab, lecanemab, and donanemab, discovered that monoclonal antibodies (mAbs) that produce ARIA may lead to an increased rate of brain shrinkage (Alves et al., 2023). Hence, the ongoing struggle against AD persists, necessitating patients and their caregivers to meticulously evaluate the advantages and disadvantages of these treatments.

Recently, the FDA has granted approval for the TRAILBLAZER-ALZ 2 Phase 3 study (donanemab-azbt, 350 mg/20 mL once-monthly injection for IV infusion) on 2 July 2024. This drug will be used to treat persons with early symptoms of Alzheimer’s disease, including those with moderate cognitive impairment (MCI) and mild dementia with confirmed amyloid plaques (Wall, 2024). Those with a reduced risk of disease progression had the best outcomes with Kisunla in the TRAILBLAZER-ALZ 2 Phase 3 trial. Over the course of 18 months, trial participants were divided into two groups for analysis: the general population, which also included individuals with high tau levels, and a group of patients who were less advanced in their disease and had low to medium amounts of tau protein. In both groups, Kisunla treatment markedly reduced clinical deterioration. Those with less advanced disease who received treatment with Kisunla had a noteworthy 35% reduction in cognitive decline when compared to placebo on the integrated Alzheimer’s Disease Rating Scale (iADRS), which evaluates thinking, memory, and day-to-day functioning. Additionally, employing statistical significance, the response to treatment was observed in the entire population (Bucci et al., 2021; Wall, 2024).




Present state of the landscape treatment

Ongoing research is primarily dedicated to the advancement of therapeutic strategies aimed at decelerating or halting the progression of the disease. This research considers the latest findings in the disease’s biology, diagnostic markers, accurate diagnosis of each individual’s disease state, and the design of clinical trials. Moreover, drug development research for AD has become increasingly complex due to the potential inclusion of preclinical and prodromal AD populations in current trials, in addition to the previously included groups representing all clinical phases of AD dementia (Dubois et al., 2016). Molecular targets for treating AD are typically involved in Aβ or p-tau synthesis, as well as Aβ plaque and NFT development. The toxic proteinopathy theory implies that Aβ plays a role in a gain-of-function process. As Aβ deposition is linked to AD degenerative changes, reducing Aβ levels could prevent neurodegeneration and cognitive loss (Ezzat et al., 2023). However, despite decades of research, the failing findings of current therapeutic studies aimed at counteracting Aβ formation or favoring Aβ clearance prompt a critical evaluation of the amyloid cascade concept (Granzotto and Sensi, 2023). The primary objection to designating the Aβ pathway as the initiator of neurodegeneration is related to data showing that Aβ deposits are not predominantly correlated with cognitive function, that Aβ deposits can be found in people with normal cognitive function, and that neuronal injury and tau pathology markers can exist independently of Aβ deposition (Perez-Nievas et al., 2013). The theory of a protein loss-of-function has been established in contrast to the gain-of-function mechanism, and it is likewise supported by translational and genetic investigations (Ezzat et al., 2023).

The development of Aβ aggregates in the brain suggests a mechanism that goes beyond protein accumulation: the depletion of proteins in fluid. Since several studies have shown that Aβ-42 low CSF levels are associated with the longitudinal development of AD symptoms and with neurodegenerative markers, and that low Aβ levels better correlate with cognitive decline than the burden of the insoluble form, it is also possible to argue that the depletion of Aβ soluble forms is a crucial mechanism in neurodegeneration (Villemagne and Chételat, 2016; McDade et al., 2018). The findings that both sporadic and hereditary types of AD are associated with normal cognition and high levels of soluble Aβ-42 in brain aberrant amyloid burden supports the loss-of-function hypothesis (Sturchio et al., 2021, 2022).

The unsatisfactory outcomes of anti-amyloid therapy strategies can be partially explained by the intricacy of the implicated pathways and the poor understanding of the amyloid cascade and its effects. There is substantial evidence to suggest that the primary toxic Aβ species in AD are oligomers (Rinauro et al., 2024). The amount of soluble Aβ is correlated with the severity of neurodegenerative alterations rather than the burden of senile plaques, and oligomers are cytotoxic and break down synapses in vitro (Kreiser et al., 2020). Targeting plaques, fibrils, protofibrils, and oligomers hence suggests more variation in the therapeutic response. Furthermore, the “amyloid cascade” is only one among numerous molecular modifications that define AD, including tau-mediated toxicity and neuroinflammation, and it starts decades before the onset of symptoms. Therefore, it’s possible that the anti-Aβ treatment strategies currently in practice will be insufficient to prevent AD (Zhang et al., 2023).

This section will provide a discussion of the drugs that are currently being explored as potential disease-modifying therapies (DMTs). Additionally, it will briefly cover the ongoing clinical trials in AD that are in phases 1, 2, and 3 that currently being presented in the official clinical trial website (clinicaltrials.gov). However, the limitation of these studies were the ambiguity and lack of the study outcomes for certain intervention presented in the website. Due to these gaps, we couldn’t specify the projection of the completed study interventions as either being approved for further investigation or merely for research purpose. Figure 5 shows the overall summary of the pharmacological approaches for AD.



Current AD DMT research

Most molecules investigated as possible targets for AD-modifying therapy are involved in the formation of Aβ plaque and NFT, as well as in the generation of Aβ or p-tau (Tondo et al., 2024).


Amyloid-related DMTs strategies

Anti-amyloid DMTs have primarily targeted three major mechanisms of action (MOAs): (i) decreasing the production of Aβ42 (through the use of γ-secretase inhibitors, β-secretase inhibitors, or α-secretase potentiation), (ii) reducing the accumulation of Aβ plaques (by employing aggregation inhibitors or drugs that interfere with metals), and (iii) enhancing the clearance of Aβ (via active or passive immunotherapy) (Livingston et al., 2019). Table 4 summarized current clinical trial status employing all DMTs strategies including Aβ, tau and other mechanisms contribute to AD (clinicaltrials.gov).


TABLE 4 Current clinical status of amyloid-related DMTs strategies, tau-related DMTs strategies and DMTs of other mechanisms.
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[image: Table listing amyloid-related strategies for Alzheimer's disease, focusing on reduction of Aβ plaque burden and enhancing Aβ clearance. It includes details such as study names, trial phases, companies, and study outcomes. Several studies are noted as completed with results, while others are not yet recruiting or terminated.]

[image: A table listing various Alzheimer’s treatments under study. Each row includes columns for treatment name, immunotherapy type, study objectives, clinical trial number, sponsor, phase, and recruitment status. Treatments include Aducanumab, Lecanemab, Donanemab, Solanezumab, and ALZ-801. Phases range from Phase 2 to Phase 3. The recruitment statuses vary, with some trials active but not recruiting and others terminated or recruiting. Completion estimations span from 2024 to 2027.]
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(i) Reduction of Aβ42 production


γ-secretase inhibitors

As per the amyloid hypothesis, the amyloidogenic pathway is facilitated following the successive cleavage of APP by BACE1 and γ-secretase. Accordingly, the suppression of these enzymes has been regarded as a significant focus for therapeutic strategies. Unfortunately, with regards to γ-secretase, apart from APP, this specific enzyme interacts with numerous other substances and cleaves various transmembrane proteins. This fact likely accounts for the recent failures in clinical trials involving γ-secretase inhibitors. Semagacestat was linked to a deterioration in daily functioning and an increased incidence of infections and skin cancer (Doody et al., 2013). Avagacestat was associated with a higher rate of cognitive decline and adverse effects that limited the dosage, such as skin cancer (Coric et al., 2015). Tarenflurbil, on the other hand, exhibited poor ability to penetrate the brain (Muntimadugu et al., 2016). The presence of significant safety issues surrounding γ-secretase inhibitors renders γ-secretase an unsuitable target for treating AD (Penninkilampi et al., 2016). Thorough investigations on this crucial enzyme are necessary to enable the development of a safe therapeutic approach to target γ-secretase (Steiner et al., 2018). There are presently no γ-secretase modulators being investigated in phase 1–3 clinical studies (Huang et al., 2023).



BACE inhibitors

Within the amyloidogenic route, β-secretase cleaves APP, resulting in the production of Aβ peptides, which ultimately leads to neurodegeneration (Das and Yan, 2017). Recently, several clinical trials have been conducted for BACE inhibitors. However, a significant number of these trials have been unsuccessful in demonstrating positive results in people with mild to moderate AD, despite using a rigorous research design that involved randomly assigning participants to either the treatment or placebo group.

The majority of BACE1 inhibitors, including LY2886721 [NCT01561430], Elenbecestat (E2609) [NCT02956486], CNP520 [NCT02565511], Verubecestat [NCT01953601], and Atabecestat [NCT02569398], have been discontinued from clinical trials (Das and Yan, 2017; Egan et al., 2019; Imbimbo and Watling, 2019).



α-secretase modulators

APP undergoes processing by the α-secretase enzyme in the non-amyloidogenic route. α-secretase enzymatically breaks the peptide link between lysine 16 and leucine 17 in APP. This process generates two products: soluble amyloid precursor protein (sAPPα) and a membrane-bound fragment called C83. C83 is then subjected to additional processing by γ-secretase, resulting in the production of p3 and AICD (Folch et al., 2018). Thus, α-secretase reduces the production of Aβ and also demonstrates neuroprotective effects (Lichtenthaler and Haass, 2004). Therefore, α-secretase enhancers offer a compelling approach for the advancement of DMTs. Various substances have been examined to activate the non-amyloidogenic pathway. However, scientists are currently anticipating the development of a drug that can activate the non-amyloidogenic pathway in order to reduce the production of Aβ. The clinical trial stage is hindered by a lack of selectivity toward α-secretase and the presence of toxicities, resulting in a reduced number of compounds being reached.

Etazolate (EHT0202) functions as a selective modulator of GABA receptors and promotes the nonamyloidogenic α-secretase pathway. A prior phase 2 trial demonstrated that the drug was safe and well tolerated in patients with mild to moderate Alzheimer’s disease. Nevertheless, the advancement of etazolate in phase 3 trials has not continued (Vellas et al., 2011).




(ii) Reduction of Aβ-plaque burden


Aggregation inhibitors

Aggregation inhibitors directly interact with the Aβ peptide to prevent the development of Aβ42 fibers. As a result, they are seen as promising treatment agents for AD. Tramiprosate has undergone preclinical and clinical investigations to assess its effectiveness in treating AD (Caltagirone et al., 2012; Hey et al., 2018). Tramiprosate is an oral medication that inhibits the aggregation of amyloid proteins. It has been studied in patients with mild to moderate AD (Abushakra et al., 2016). Regrettably, tramiprosate proved unsuccessful in the phase 3 clinical study due to its adverse effects on the gastrointestinal system, including causing nausea and vomiting (Abushakra et al., 2016). Following the unsuccessful phase 3 clinical studies, tramiprosate was subsequently marketed as a dietary supplement. In addition, a prodrug called ALZ-801, derived from tramiprosate, exhibits a unique ability to counteract amyloid oligomers. ALZ-801 is currently in phase-2 clinical trial at the moment the article is written (clinicaltrials.gov). It has been speculated that ALZ-801 be granted fast-track designation by the US FDA for the treatment of AD (Gupta and Samant, 2021).




(iii) Enhancing Aβ clearance (active or passive immunotherapy)

The two primary immunotherapeutic strategies now being investigated in clinical and preclinical trials to enhance the removal of Aβ are active and passive immunization. Active immunization involves the activation of T and B cells, which in turn stimulates the phagocytic capacity of microglia, resulting in an immunological response. Passive immunization primarily focuses on stimulating the immune response against Aβ through the use of monoclonal or polyclonal antibodies (Gupta and Samant, 2021).


Active Aβ immunotherapy

The fundamental advantage of active immunotherapy is that it stimulates the creation of endogenous antibodies without the need for repeated administration. However, no significant therapeutic benefit has been documented in AD patients, and due to the possibility of unpredictable immune response with potentially severe adverse effects, no vaccine has yet been approved for commercialization (Kwan et al., 2020). CAD106 is a proactive Aβ immunotherapeutic drug that underwent phase 2 and 3 clinical trials to assess its potential in delaying the onset and advancement of clinical symptoms related to AD in individuals who are at risk of developing such symptoms based on their age and genotype. Nevertheless, CAD106 was discontinued as a result of unforeseen alterations in cognitive performance, reduction in brain capacity, and decreased in body weight (clinicaltrials.gov).

The efficacy of ABvac40 was assessed in a phase 2 clinical trial, making it the initial active immunization targeting the C-terminal region of Aβ40. A phase 1 clinical trial was undertaken including patients diagnosed with mild to moderate AD, ranging in age from 50 to 85 years. No signs of vasogenic oedema or microhaemorrhages were found. Anti-Aβ40 antibodies were specifically produced in 92% of those who had ABvac40 injections (Lopez et al., 2019). A phase 2, double-blind, parallel-group, placebo-controlled and 6-month randomized clinical trial to evaluate the efficacy and safety of GV1001 in Alzheimer patients was completed in 2019. The findings demonstrate that 1.12 mg of GV1001 successfully achieved the primary objective of a statistically significant distinction. GV1001 demonstrated excellent tolerability without any safety issues (Koh et al., 2021). The efficacy of ACC-001 (vanutide cridificar), a vaccine targeting Aβ, was evaluated in phase 2a extension trials involving individuals diagnosed with mild to moderate AD. The administration included the use of QS-21 adjuvant. Extended treatment with this combination was highly well-tolerated and resulted in the most elevated levels of anti-Aβ IgG antibodies in comparison to alternative therapy options (Hull et al., 2017).



Passive Aβ immunotherapy

The use of monoclonal antibodies is limited by the development of dose-dependent side effects, which can be seen in one-third of individuals with “amyloid-related imaging abnormalities” (ARIAs) (Piazza and Winblad, 2016). ARIAs can lead to the onset of vasogenic edema (ARIA-E) or cerebral micro-hemorrhages (ARIA-H), which are distinguished by neuroimaging evidence of hemosiderin deposits. ARIAs were identified in clinical trials assessing the safety and efficacy of practically all monoclonal antibodies, and were generally dose dependent (Bateman et al., 2023).

Aducanumab, also known as Aduhelm, is a monoclonal antibody of the immunoglobulin gamma 1 (IgG1) class that has a strong attraction to and binds to the N-terminus of Aβ fibrils, preventing the aggregation of amyloid proteins (Arndt et al., 2018). The initiation of two phase 3 clinical trials, ENGAGE and EMERGE investigations, began in August 2015. Aducanumab (BIIB037) has demonstrated substantial improvements in cognitive and functional domains, including memory, orientation, and language. Aducanumab (BIIB037) consistently and convincingly decreased the quantity of amyloid plaques in the brain. In June 2021, the FDA granted immediate approval for Aduhelm (aducanumab-avwa) to treat AD based on its observed effects. It was declared as a newly authorized drug for people with Alzheimer’s. Following approval, pharmaceutical companies are required to conduct Phase IV confirmatory trials to assess the efficacy of their medicines. If the drug fails to perform as expected, the FDA has the authority to withdraw it from the market. The controversial approval of Aducanumab, its disputed clinical impact, and subsequent decline all contribute to the anti-amyloid therapy debate. While Aβ accumulation is important for AD pathogenesis, it does not appear to be sufficient to trigger neurodegenerative alterations and cognitive impairment. Future clinical trials should not overlook the critical connection between amyloid, tau, and neuroinflammation to raise the likelihood of clinical efficacy (Golde, 2023).

Lecanemab, also known as Leqembi, is a humanized IgG1 antibody that is generated from mAb158. It specifically attaches to soluble Aβ protofibrils (Tucker et al., 2015). The US FDA granted permission on 6 January 2023, via an expedited approval process due to the presence of evidence indicating amyloid elimination in a phase 2 trial (NCT01767311) and the potential for clinical advantages (Canady, 2023). An 856-patient double-blind, placebo-controlled phase 2 trial was conducted to study individuals with AD who had either MCI or mild dementia. The participants were confirmed to have amyloid pathology using amyloid PET or CSF Aβ1-42 testing. The findings demonstrated a notable and dosage-dependent decrease in amyloid plaques in the lecanemab group (10 mg/kg, administered through intravenous infusion every 2 weeks) from the initial measurement to week 79, in comparison to the placebo group. Currently, there are three ongoing phase 3 clinical trials for lecanemab (clinicaltrials.gov).

Donanemab is a monoclonal antibody that has been humanized from the mouse antibody mE8-IgG2a. It identifies Aβ (3–42), a clustered version of Aβ discovered in amyloid plaques (Irizarry et al., 2016). Upon examination of postmortem brain samples from people with AD or Down syndrome, it was shown that the substance was attached to almost one-third of amyloid plaques. Furthermore, it exhibited a robust reaction with the central part of the plaque (Bouter et al., 2022). Phase II TRAILBLAZER-ALZ research assessed the safety, tolerability, and effectiveness of donanemab, both as a standalone treatment and in conjunction with the Beta-Secretase 1 (BACE1) inhibitor LY3202626, which was produced by Eli Lilly and Company. The study spanned a duration of 18 months. The experiment successfully achieved its primary objective of significantly postponing the deterioration, as measured by iADRS scores, by 32% compared to the placebo. The decrease in amyloid accumulation was found to be associated solely with an improvement in iADRS scores in individuals who carry the ApoE4 gene (Shcherbinin et al., 2022). Donanemab effectively decreased the accumulation of tau in the temporal, parietal, and frontal lobes, and resulted in a significant 24% reduction in plasma pTau217 levels in the treatment group. In contrast, the placebo group had a 6% increase in plasma pTau217 levels by the end of the study (Pontecorvo et al., 2022). TRAILBLAZER-ALZ 2 Phase 3 study (donanemab-azbt, 350 mg/20 mL once-monthly injection for IV infusion) has been approved recently (2 July 2024) by FDA (Wall, 2024). This drug will become a treatment option for adults with early symptomatic Alzheimer’s disease, including people with mild cognitive impairment (MCI) and mild dementia with confirmed amyloid plaques. Lilly is currently conducting several clinical trials with donanemab. These trials include TRAILBLAZER-ALZ 3 (currently recruiting), which aims to prevent symptomatic Alzheimer’s disease in participants with preclinical AD; TRAILBLAZER-ALZ 5 (currently recruiting), a registration trial for early symptomatic AD that is currently recruiting in China and Korea; and TRAILBLAZER-ALZ 6 (currently recruiting), which focuses on advancing our understanding of ARIA through novel MRI sequences, blood-based biomarkers, and various donanemab dosage regimens (Wall, 2024). The TRAILBLAZER-ALZ 4 clinical study, which investigated the efficacy of donanemab compared to aducanumab in clearing brain amyloid plaques in individuals with early symptomatic AD, completed in 2023 (clinicaltrials.gov).

Solanezumab, a humanized monoclonal antibody, targeting the mid-domain of the Aβ peptide to enhance Aβ clearance (Honig et al., 2018). The Phase III clinical trial of solanezumab (LY2062430) ended in October 2019 [NCT02760602] due to the failure of the EXPEDITION 3 study. Other Phase III studies with the same substance, solanezumab [NCT01900665; NCT01127633], also failed as a result of the EXPEDITION 3 study. Despite the disappointing outcomes of these studies, solanezumab is still being tested in patients with a genetic mutation that may put them at risk of developing AD in a Phase 2/3 clinical trial called DIAN-TU [NCT01760005] (clinicaltrials.gov). ALZ-801 is a pharmacologically inactive derivative of tramiprosate, a tiny molecule that can counteract Aβ oligomers and prevent their aggregation (Hey et al., 2018). The APOLLOE4 (NCT04770220) phase 3 trial is assessing the safety and effectiveness of ALZ-801 in patients with early AD who have two copies of the ε4 allele on the apolipoprotein E gene (APOE4/4). A separate phase 2 clinical trial (NCT04693520) is currently examining the impact of oral ALZ-801 on individuals with early AD who possess the APOE4/4 or APOE3/4 genotype and have biomarkers indicating the presence of core AD pathology. The trial is evaluating the effectiveness, safety, and capacity to be tolerated of ALZ-801. ABBV-916 is a monoclonal antibody that targets Aβ. It identifies N-terminal truncated Aβ that has been changed with pyroglutamate at position 3 (N3), which is a variant of Aβ that forms aggregated amyloid plaques. The clinical trial for ABBV-916, consisting of two phases, is now in progress (NCT05291234) (clinicaltrials.gov).




Tau-related DMT strategies

The failure of multiple Phase II/III trials in AD that focused on reducing Aβ accumulation has led to a growing interest in alternate treatments for tau pathology (Panza et al., 2016). Tau proteins, often referred to as axonal microtubule-associated protein (MAP), play a crucial role in controlling the assembly and arrangement of microtubules, as well as the transportation of organelles within axons. Excessive tau phosphorylation has been proposed as a possible factor in the development of neurofibrillary tangles in AD (Götz et al., 2012). In individuals with AD, the process of hyperphosphorylation of tau proteins leads to the separation of tau proteins from the microtubules. This disruption of the axonal transport structure results in a lack of nutrients reaching the neurons, ultimately leading to their death (Terwel et al., 2002).


Tau phosphorylation and aggregation inhibition

Tau phosphorylation and aggregation inhibitors are employed to mitigate tauopathy and hinder tau aggregation. TRx0237 is a second-generation inhibitor of tau protein aggregation that underwent Phase III clinical trials to assess the safety and effectiveness of TRx0237 at doses of 16 mg/day and 8 mg/day in the treatment of individuals with AD. The trial was completed in May 2023 [NCT03446001]. LY3303560 is another compound that acts as a tau phosphorylation inhibitor. It completed its Phase II clinical trial in October 2023. GSK3 inhibitors are utilized as a means to decrease tau hyperphosphorylation, which is primarily caused by the enzyme responsible for turning tau into hyperphosphorylated tau protein (Hooper et al., 2008). Tideglusib, also known as NCT00948259, is a GSK3 inhibitor. It is a small-molecule medicine that can be taken orally and is designed to decrease the excessive phosphorylation of tau protein. Noscira SA is the company responsible for developing this therapy. Tideglusib commenced Phase II clinical trials and was administered to individuals with mild to moderate AD in December 2008. Nevertheless, tideglusib was determined to be safer in the trial. However, it did not meet its primary endpoint, and as a result, some of the secondary endpoints did not demonstrate any meaningful therapeutic advantages (Serenó et al., 2009).

Various techniques have been employed to lower the amounts of various forms of tau protein (including monomers, oligomers, filaments, granules, fibrils, and insoluble aggregates) in AD. Considering tau aggregation inhibitors as a primary focus could be beneficial for managing AD (Bulic et al., 2013). Tau-tau interactions play a crucial role in the development of neurofibrillary tangles (NFTs). The Phase III clinical trial evaluated the efficacy of low dose, 4 mg twice a day, Leuco-Methylthioninium Bis (Hydroxymethanesulfonate) monotherapy in treating mild AD patients. The modified primary outcome measure used in this trial was cohort analysis, which yielded favorable outcomes (Wilcock et al., 2018).



Microtubule stabilizers

Tau hyperphosphorylation in AD is linked to the disruption of microtubules. AD treatment has been the subject of preclinical and clinical experiments with various microtubule stabilizers (Brunden et al., 2011). Paclitaxel, an anti-mitotic drug, was discontinued from the trial because of its limited ability to pass through the BBB (Fellner et al., 2002; Zhang et al., 2005; Zempel et al., 2010). The recruitment of individuals for the Phase I trial of TPI287, a synthetic epothilone derivative, focusing on safety, tolerability, pharmacokinetics, and pharmacodynamics, was completed in April 2020 (Brunden et al., 2010).



Anti-tau immunotherapy

Recent evidence from multiple animal models indicates that focusing on p-tau epitopes is a viable strategy to stimulate antibody responses that can facilitate the removal of tau (Wischik et al., 2015). Therefore, several immunotherapy efforts, both active and passive, have progressed to clinical trials for the treatment of AD (Medina, 2018).



Active immunotherapy

AADvac1, which incorporates a synthetic tau peptide, underwent a phase 2 clinical trial for those with mild to severe AD. The clinical trial was completed in November 2019 (NCT02579252) (Wischik et al., 2015).



Passive immunotherapy

ABBV-8E12, a humanized anti-tau monoclonal antibody, was evaluated in a phase 2 clinical trial including patients with early AD (NCT02880956) (Budur et al., 2017). BIIB092 is a monoclonal antibody that has been humanized to target tau fragments. These fragments are obtained from the stem cells of a patient with familial AD (Wilcock et al., 2018). A phase 2 clinical trial evaluates the safety and effectiveness of the drug in individuals with amnestic moderate cognitive impairment (AD MCI) and mild AD (Cummings et al., 2022).




DMTs employing other pathways


Neuroprotection

These group of drugs refers to preservation of neural tissue from damage or degeneration. AGB101, a low-dose extended-release form of levetiracetam, is a modulator of SV2A. It completed a phase 3 clinical trial in September 2023 as a repurposed medication. Originally approved for use in a different indication, namely MCI owing to AD, rather than epilepsy. The purpose is to decrease excessive neural activity caused by Aβ (NCT03486938) (clinicaltrials.gov).

BHV4157, also known as troriluzole, is a substance that modulates glutamate and decreases the amounts of glutamate in synapses. It has undergone a phase 2 clinical trial (NCT03605667) and the trial was finished in December 2023. The clinical trial aimed to test the efficacy and safety of BHV-4157 in patients diagnosed with mild to moderate AD (clinicaltrials.gov).

Icosapent ethyl is a refined version of eicosapentaenoic acid (EPA), which is an omega-3 fatty acid. The purpose of the phase 3 clinical trial (NCT02719327) was to determine whether icosapent ethyl, a medication, can protect neurons from disease pathology and positively impact intermediate physiological measures that are associated with the onset of AD. The trial aimed to evaluate whether larger, multi-site, longer-duration trials are necessary to assess more definitive clinical outcomes related to Alzheimer’s prevention (clinicaltrials.gov).



Anti-inflammatory effects

Neuroinflammation has been implied as a potential cause of AD for over 30 years. However, only recently the research into neuroinflammation gained momentum, likely due to two significant findings. Firstly, there is evidence indicating that activated glial cells play a role in the development of brain lesions in AD. Secondly, epidemiological studies have shown that patients with rheumatoid arthritis, who have been treated with anti-inflammatory drugs for many years, are protected from developing AD (McGeer et al., 2016).

These are the anti-inflammatory drugs that have undergone completion in clinical trials:

ALZT-OP1a plus ALZT-OP1b is a combination of cromolyn, which is a mast cell stabilizer, and ibuprofen, which is an anti-inflammatory drug. The purpose of the phase 3 clinical trial (NCT02547818) was to analyze the safety and tolerability of the combination medication ALZT-OP1, as well as its effectiveness in slowing down, arresting, or reversing cognitive and functional deterioration in individuals with early-stage AD. The experiment also aimed to measure efficacy using the CDR-SB scale.

COR388 is a substance that specifically targets a type of bacteria that causes periodontal disease. The efficacy, safety, and tolerability of two dose levels of COR388 were evaluated in a Phase 2/3 clinical trial (NCT03823404). The study was conducted in a randomized, double-blind, placebo-controlled manner and included participants having a clinical diagnosis of mild to severe AD dementia.

Masitinib functions as a specific tyrosine kinase inhibitor and a regulator of neuroinflammation by targeting mast cells. The drug’s safety and efficacy in treating mild to moderate AD were evaluated in a phase 3 clinical trial (NCT01872598). The drug masitinib was given as an additional treatment to patients who had already been receiving treatment with a consistent dose of cholinesterase inhibitor (donepezil, rivastigmine, or galantamine) and/or memantine for at least 6 months.

Elderberry Juice enhances mitochondrial function by acting as a potent antioxidant, thanks to its high content of anthocyanins (NCT02414607). GRF6019, a fraction of human plasma protein, is administered through infusions with the aim of counteracting brain neuroinflammation through young blood parabiosis (NCT03520998, NCT03765762). These agents have successfully passed the phase 2 clinical trials (Cummings et al., 2019).

In phase 1, anti-inflammatory drugs investigated included mAbs AL002 and AL003 (NCT03635047, NCT03822208) (Cummings et al., 2019).



Metabolic effects

Utilizing a combination of losartan, amlodipine, atorvastatin, and exercise is a recommended treatment strategy for repurposing, aiming to significantly decrease vascular risk and preserve cognitive function. The assessment was carried out in a phase 3 clinical trial (NCT02913664) to ascertain the impact of aerobic exercise training and intense vascular risk reduction on cognitive performance in older persons who are at a high risk for AD (Cummings et al., 2019).



Stem-cell approaches

AstroStem is a therapeutic procedure that utilizes stem cells obtained from a person’s adipose tissue. The treatment involves intravenous administration of these stem cells, which is repeated 10 times. AstroStem was evaluated in a phase 1/2 clinical trial (NCT03117738), while the treatment including human mesenchymal stem cells (hMSCs) was evaluated in a phase 1 clinical trial (NCT02600130) (Cummings et al., 2019).




Phytochemical approaches

Ongoing research efforts are actively exploring the potential protective benefits of plant phytochemicals as nutraceutical agents against neuropathological conditions associated with AD. This strategy holds significant promise due to their therapeutic potential, minimal side effects, diverse molecular targets, potential for disease modification, dietary feasibility, and demonstrated neuroprotective effects in preclinical studies (Abdul Manap et al., 2019a; Ayaz et al., 2019; Rahman et al., 2021). Further research in this area may lead to the development of novel preventive and therapeutic strategies for AD. The summary of various phytochemicals undertaken by previous studies is demonstrated in the Table 5 below.


TABLE 5 An overview of the several phytochemicals employed in earlier research as neuroprotective agents against AD.

[image: A table listing various phytochemicals and their interventions for Alzheimer's disease. It includes columns for Phytochemicals, Intervention, Study Setting, Outcome Summary, and References. Each row details a different phytochemical, describing its intervention method, study setting, outcome, and reference source. The phytochemicals mentioned include Curcumin, Resveratrol, Epigallocatechin Gallate, Ginkgo Biloba Extract, Quercetin, Polyphenols, Ginsenosides, Crocus sativus, Hesperidin, Lycopene, and Olea europaea, with findings on their neuroprotective effects in various models.]



Non-pharmacological approaches


Cognitive training

Memory difficulties are a distinguishing hallmark of the early stages of AD and vascular dementia (Karantzoulis and Galvin, 2011). Interventions that target these cognitive deficiencies and the concomitant difficulty with daily activities are gaining popularity. Cognitive training and cognitive rehabilitation are non-pharmacological interventions used to improve cognitive and non-cognitive outcomes (Irazoki et al., 2020). Interventions that directly or indirectly target cognitive functioning are distinguished from those that primarily target behavioral (for example, roaming), emotional (for example, anxiety), or physical (for example, sedentary lifestyle) function (Mandolesi et al., 2018). There are various forms of cognition-based therapies that have been described that are focusing on reasoning, speed of processing information and memory (Harvey, 2019). The brain therapy and exercises can be as simple as doing thing with the non-dominant hands. This activity requires little to no cost and can be done anywhere anytime of the day which make it as an easy approach to the patient. New and challenging activity will stimulate the brain more rather than doing same thing every day (Alzheimer’s & Dementia Resource Center, 2023). Hence, learning new language at the old age is very recommended as a form of exercises that will help to decrease the rate of brain declination. If the person is a person who likes to have fun and laidback, playing boardgames and card games within the Alzheimer’ community or together with their family members are highly recommended. Activities like this will not only help delaying the brain declines but making social connection with other people despite suffering from the disease (Dementia and Alzheimer’s, 2022). Based on the research conducted by Trebbastoni et al. (2017), the data for the usefulness of cognitive training in AD is still weak. This study demonstrates that a six-month intensive cognitive training program may aid in the preservation of cognition in people with mild-to-moderate AD. Indeed, post-intervention and six-month follow-up outcome tests show that this intervention is effective in improving numerous cognitive processes, including memory (Trebbastoni et al., 2017). To corroborate findings, future randomized clinical trials should be designed as multicentre research trials with larger patient samples and longer intervention and post-intervention observation periods (Nair, 2019). Furthermore, because cognitive training has no side effects, it is clearly preferred in circumstances where drug-drug interactions, drug-related side effects, or contraindications exclude a pharmaceutical therapy to the disease (Giuli et al., 2016).



Physical exercise, ergotherapy and brain simulation

Physical exercise always been known for its benefit for human overall health. Alzheimer patient might also benefit from doing physical exercise (Better Health Channel, 2023). According to a University of Wisconsin study, those over 60 who were at high risk of AD and who engaged in moderate exercise for 30 min five days a week experienced less memory and cognitive issues as well as a decreased chance of getting the condition (Johnson et al., 2018). Study from the University of Kansas discovered that some participants with Alzheimer’s were able to improve their memory test scores and even increase the size of their brain’s hippocampus, an area of the brain important for learning and memory that is typically impacted early in the AD process, after routinely exercising (Morris et al., 2017). To recently, exercise studies have either been too small-scale to be conclusive or have yielded mixed results in terms of their impact on memory and brain function (Loprinzi et al., 2023). It is believed that the most beneficial aerobic exercise for the brain is low intensity aerobic activity, such as brisk walking or swimming. Though the precise mechanism of exercise’s benefits is unknown, many hypothesize that it stems from enhanced blood vessel health and an increase in oxygen-rich blood flow to the brain, both of which enhance brain function (A Mental Workout, 2023). Ergotherapy is an occupational therapy to help people with dementia improve their self-care, productivity, and leisure/rest (Korczak et al., 2013). This allows dementia patients to improve their functional abilities in activities of daily living, social participation, quality of life, and life happiness (Ruthirakuhan et al., 2012).

The efficacy of current symptomatic medications such as cholinesterase inhibitors and memantine for the treatment of AD is limited to delaying the progression of symptoms (Hogan, 2014). However, some studies suggest that combining behavioral method and pharmacological treatment may optimize benefit for patient and caregiver, underlying the importance to develop nonpharmacological intervention programs (Magierski et al., 2020). Physical therapy assists dementia patients with mental health issues such as anxiety and depression (Orgeta et al., 2014). Regular exercise improves mood, reduces medication requirements, and aids the patient in controlling emotional symptoms of dementia such as restlessness, anger, and hostility. Physical therapy can provide major social benefits to dementia patients in addition to physical, cognitive, and emotional benefits (Jia et al., 2019). It lessens social anxiety, promotes stronger social relationships, and aids dementia patients’ efforts to keep their independence for as long as possible (Medical News Today, 2023).




Emerging treatments


Microbiota-gut-brain axis

Emerging studies has shed light on how gut bacteria and astrocytes communicate in both health and illness. Astrocytes are the most common glial cells in the CNS, and their array of functions is expanding, making them an increasingly popular research topic. Astrocytes play an important role in maintaining CNS homeostasis, and any disturbances in their activity contribute to the development of neurological disorders. Importantly, emerging investigations have revealed that bidirectional signaling between astrocytes and microglia drives neuroinflammation and neurodegeneration (Lee et al., 2022; Patani et al., 2023).

The effects of gut microbiota alteration on astrocytes in AD were very recently discovered. Perturbation of the gut microbiota has also been demonstrated to minimize reactive astrogliosis, promote astrocyte homeostasis, and protect against amyloidosis and tau-mediated neurodegeneration. Interestingly, these effects appear to be more prevalent in male mice (Chandra et al., 2023; Seo et al., 2023).

Astrocytic responses to perturbation of the gut microbiota exhibit sexual dimorphism similar to that observed in microglia, highlighting the significance of incorporating gender effects into consideration in future studies. However, after microbiota restoration and SCFA supplementation, the neuroprotective effects of gut microbiota reduction were lessened. Specifically, in antibiotic-treated APP/PS1-21 mice, FMT from age-matched control mice recovered astrogliosis, but in GF TE4 mice, supplementation with SCFAs restored gliosis and tau pathology (Chandra et al., 2023; Seo et al., 2023). These animal studies, however, preliminary, showed that the gut microbiota plays a role in promoting the onset and advancement of AD pathology, including the regulation of astrocytic responses.




40 Hz gamma frequency brain rhythms

Tactile stimulation adds to the body of evidence demonstrating that non-invasive sensory stimulation of 40 Hz gamma frequency brain rhythms can mitigate AD pathology and symptoms. This effect has previously been demonstrated with light and sound by several research groups in both humans and animals (Peña-Ortega, 2019; Chan et al., 2021; Traikapi and Konstantinou, 2021). According to a recent study by MIT researchers, compared to untreated controls, Alzheimer’s model mice exposed to 40 Hz vibration for an hour a day for several weeks displayed better brain and motor performance (Suk et al., 2023).

The MIT group is not the first to demonstrate that gamma frequency tactile stimulation can influence brain activity and enhance motor function; however, they are the first to demonstrate that the stimulation can also prevent neurons from dying or losing their synapse circuit connections, lessen neural DNA damage, and lower levels of phosphorylated tau, a protein that is characteristic of AD. A team led by Tsai’s lab has shown in a number of papers that light flickering and/or sound clicking at 40 Hz (a technique known as GENUS for Gamma Entrainment Using Sensory stimuli) can lower tau and amyloid-beta protein levels, preserve synapses and prevent neuron death, and even maintain learning and memory in a range of AD mouse models. The team’s most recent pilot clinical trials revealed that 40 Hz light and sound stimulation was safe, effectively boosted brain connection and activity, and looked to have a major positive clinical impact on a small group of human volunteers who were suffering from early-stage AD (Suk et al., 2023).

In two widely used mouse models of Alzheimer’s neurodegeneration—the Tau P301S mouse, which mimics the disease’s tau pathology, and the CK-p25 mouse, which mimics the synapse loss and DNA damage seen in human disease—the new study examined whether whole-body 40 Hz tactile stimulation produced significant benefits. The primary motor cortex (MOp), where the brain generates movement commands for the body, and the primary somatosensory cortex (SSp), which processes touch sensations, were the focus of the team’s investigations.

The researchers vibrated mouse cages by placing them above speakers producing 40 Hz sound, which caused the cages to vibrate. The 40 Hz sound was played for all of the non-stimulated control mice since their cages were dispersed across the same space. Therefore, the addition of tactile stimulation was what caused the disparities between the stimulated and control mice to be measured. First, the scientists established that the 40 Hz vibration altered the neuronal activity in the brains of mice that were healthy—that is, animals without AD. Activity increased two-fold in the SSp and more than three-fold in the MOp, with a statistically significant increase in the latter case, as determined by the expression of the c-fos protein.

After learning that tactile stimulation at 40 Hz might raise brain activity, the researchers examined the effect on disease in the two mice models. The group employed female CK-p25 mice and male P301S mice to guarantee that both sexes were represented. When compared to unstimulated controls, P301S mice that were stimulated for three weeks demonstrated a notable preservation of neurons in both brain regions. Additionally, tau in the SSp by two measurements was significantly reduced in stimulated mice, and they also had comparable patterns in the MOp.

For six weeks, CK-p25 mice were subjected to vibration stimulation. In comparison to non-vibrated control mice, these mice exhibited increased levels of synaptic protein markers in both brain regions. Additionally, they displayed lower amounts of DNA damage. Lastly, the group evaluated the mice’s motor skills after exposing them to vibration vs. not. It was discovered that both mouse models could remain on a rotating rod for far longer. Additionally, P301S mice held onto a wire mesh for noticeably longer than control mice, but CK-p25 animals displayed a trend that was favorable but not statistically significant (Suk et al., 2023).



Strategies to optimizing management for patient with AD

AD causes brain cells to die, causing the brain to function less effectively over time. This alters how a person behaves (National Institute on Aging, 2023). Behavioral symptoms can be one of the initial signs of dementing diseases, occurring before cognitive changes (Manni et al., 2023). These symptoms can occur at any point during the progression of the illness (Leocadi et al., 2023; Manni et al., 2023) and can vary depending on the severity of the dementia (Artaso-Irigoyen et al., 2004). Behavioral and psychological symptoms of dementia (BPSD) refer to non-cognitive symptoms that are frequently observed in individuals with AD (Fernández et al., 2010). Timely identification of BPSD is highly crucial, as these symptoms not only cause significant impairment in individuals with dementia, but also contribute to heightened stress for caregivers (Teixeira et al., 2024). Indeed, BPSD exacerbate difficulties in doing everyday tasks (Bélanger-Dibblee et al., 2023), expedite the deterioration of cognitive function (Honjo et al., 2020), and deteriorate the overall quality of life for patients (Kim et al., 2021). In addition, behavioral disorders are the primary cause of and result in the early institutionalization of patients (Gimeno et al., 2021), hence escalating the overall financial burden (Boafo et al., 2023). Nevertheless, once accurately diagnosed, many illnesses can be effectively managed with pharmaceutical interventions (López-Pousa et al., 2008), hence postponing the need for nursing home placement and enhancing the quality of life for both patients and caregivers.

A collaborative approach to tackling these complicated AD challenges is both realistic and effective. The team may also comprise professionals with knowledge of neurology, geriatric psychology, social work, clinical psychology, and elder law in addition to nurses and physician assistants (Physiopedia, 2023). The neurologist provides support in managing later stage neurologic signs of AD, including seizures, as well as in the differential diagnosis of patients demonstrating with atypical dementia presentation (Neugroschl and Wang, 2011). In addition to helping with the identification and psychopharmacologic treatment of behavioral issues like anxiety, psychosis, and depression, geriatric psychiatrists also aid in the differential diagnosis of difficult cases (Targum, 2001). The social worker may offer psychotherapy to patients and caregivers in addition to helping to preserve the stability of the patient’s family and finding and utilizing community resources for care (Ong et al., 2021). Expertise in behavioral responses to disorders like depression is provided by the clinical psychologist, who also helps with the identification of early-stage or dubious dementia. The elder law attorney can help with matters including guardianship and health-care financial planning (JSTOR, 2023). Other disciplines, including as pharmacy, nutrition, physical therapy, and occupational therapy, can also contribute significantly to management. Referral to a geneticist or a genetic counselor for the entire family and the patient is recommended for patients with early-onset familial AD (Grossberg and Desai, 2003).



Conclusion and future perspectives

We represent the most sophisticated and extensive reviews on current diagnosis biomarkers and therapeutic approach achieved thus so far. It is now acknowledged that pathological alterations commence several years before the onset of clinical symptoms in diseases, and AD encompasses a range from individuals who show no clinical signs to those who are seriously impaired. Defining AD only based on its clinical symptoms is considered artificial. Therefore, attempts have been made to identify the disease by considering both clinical manifestations and biomarker evidence. The development of biomarkers has led to a change in how the disease is seen as a clinical and physiological entity. There is now a growing recognition that AD should not be seen as having distinct and well-defined stages, but rather as a complex process that progresses along a continuous continuum. Recognizing this concept is crucial for comprehending the progression of disease-modifying treatments and for implementing efficient diagnostic and illness management alternatives. The ATN classification, which focuses on biomarkers of AD, has evolved due to several factors. One key aspect is the recognition that the capacity to assess the fundamental biological elements of AD is significantly superior to that of other neurodegenerative disorders. Nevertheless, if and when biomarkers for new proteinopathies emerge, they could be incorporated. In the future, the inclusion of synaptic dysfunction as a category could be beneficial. This category could encompass many techniques such as FDG-PET, task-free functional MRI, EEG, MEG (magnetoencephalography), and the measurement of synapse-specific proteins in CSF. Nevertheless, if we define neurodegeneration as a gradual deterioration and constriction of neurons and their processes, accompanied by a commensurate decline in neuronal function, then synaptic dysfunction falls within the umbrella of neurodegeneration. In the future, it will be crucial to investigate novel biomarkers that extend beyond the amyloid and tau pathologies, as well as the longitudinal evolution of these biomarkers throughout the course of AD.

Apart from that, our review also primarily examines the present state of therapies in clinical trials and offers insight into the potential and promising targets for the development of drugs for AD. Currently, no cure or treatment can affect the progression of AD. However, drugs approved by the FDA can only provide relief from the symptoms in those with the condition. A multitude of drug candidates progressed through several stages of clinical trials, nevertheless, owing to unfavorable effects and insufficient therapeutic effectiveness, the majority of these substances failed to achieve success in Phase II/III trials. Hence, it is imperative to have a thorough comprehension of the complete pathophysiology of AD prior to directing attention toward the creation of new drugs. Furthermore, there is a shift in focus within AD drug development from treatment to prevention. Recent approaches appear to prioritize reducing the generation, aggregation, and misfolding of Aβ proteins and tau, while also increasing the removal of toxic aggregate or misfolded versions of these proteins. These tactics are based on earlier clinical and nonclinical research which warrants further investigation and exploration.
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Background: Determining brain atrophy is crucial for the diagnosis of neurodegenerative diseases. Despite detailed brain atrophy assessments using three-dimensional (3D) T1-weighted magnetic resonance imaging, their practical utility is limited by cost and time. This study introduces deep learning algorithms for quantifying brain atrophy using a more accessible two-dimensional (2D) T1, aiming to achieve cost-effective differentiation of dementia of the Alzheimer’s type (DAT) from cognitively unimpaired (CU), while maintaining or exceeding the performance obtained with T1-3D individuals and to accurately predict AD-specific atrophy similarity and atrophic changes [W-scores and Brain Age Index (BAI)].
Methods: Involving 924 participants (478 CU and 446 DAT), our deep learning models were trained on cerebrospinal fluid (CSF) volumes from 2D T1 images and compared with 3D T1 images. The performance of the models in differentiating DAT from CU was assessed using receiver operating characteristic analysis. Pearson’s correlation analyses were used to evaluate the relations between 3D T1 and 2D T1 measurements of cortical thickness and CSF volumes, AD-specific atrophy similarity, W-scores, and BAIs.
Results: Our deep learning models demonstrated strong correlations between 2D and 3D T1-derived CSF volumes, with correlation coefficients r ranging from 0.805 to 0.971. The algorithms based on 2D T1 accurately distinguished DAT from CU with high accuracy (area under the curve values of 0.873), which were comparable to those of algorithms based on 3D T1. Algorithms based on 2D T1 image-derived CSF volumes showed high correlations in AD-specific atrophy similarity (r = 0.915), W-scores for brain atrophy (0.732 ≤ r ≤ 0.976), and BAIs (r = 0.821) compared with those based on 3D T1 images.
Conclusion: Deep learning-based analysis of 2D T1 images is a feasible and accurate alternative for assessing brain atrophy, offering diagnostic precision comparable to that of 3D T1 imaging. This approach offers the advantage of the availability of T1-2D imaging, as well as reduced time and cost, while maintaining diagnostic precision comparable to T1-3D.

Keywords
 brain atrophy; deep learning; 2D and 3D T1-weighted MRI; CSF volume; dementia; Alzheimer’s disease


Introduction

Neurodegenerative processes characterized by brain atrophy represent the final common pathway observed in most types of dementia, including Alzheimer’s disease (AD), frontotemporal dementia, and dementia with Lewy bodies (Rosen et al., 2002; Whitwell et al., 2007). Brain atrophy is a crucial biomarker that displays distinct patterns specific to each type of dementia (Young et al., 2020). Furthermore, the extent of brain atrophy is highly correlated with cognitive performance and is recognized as a predictor of future cognitive decline (Sluimer et al., 2008; Ikram et al., 2010).

Traditionally, for assessing brain atrophy, cortical thickness measurement and volumetric analysis have served as research surrogates (Lemaitre et al., 2012; Pini et al., 2016). These surrogate markers can be quantified using three-dimensional (3D) T1-weighted images from magnetic resonance imaging (MRI), offering improved diagnostic performance for research purposes. Despite its high diagnostic performance, the practical application of 3D T1 imaging in clinical settings is impeded by its time-consuming and costly acquisition process, thus limiting its clinical readiness. By contrast, clinical practice predominantly utilizes two-dimensional (2D) T1-weighted images from MRI images. Within these settings, radiologists and clinicians assess brain atrophy through visual examination, focusing on indicators, such as enlargement of the lateral ventricles (LVs), sulcal widening between the gyri, and the width of the temporal horn adjacent to the hippocampus (Koedam et al., 2011; Harper et al., 2015). Cerebrospinal fluid (CSF) volume, in particular, has been shown to correlate with brain atrophy, providing a valuable biomarker for neurodegenerative diseases (De Vis et al., 2016). However, these visual assessments tend to be less accurate and less precise than quantitative analyses, underscoring the need for accessible and quantitative methods based on 2D T1 images in clinical practice.

Recent advancements in deep learning have led to a few attempts to use 2D T1 images to predict brain atrophy (Marwa et al., 2023; Zhou et al., 2023), which is traditionally quantified via 3D T1 images. The Convolutional Neural Network is designed with an architecture that drew inspiration from the human visual cortex, mirroring the interconnectedness observed among neurons (Krizhevsky et al., 2012). Fully Convolutional Networks (Long et al., 2015) have found extensive application in semantic segmentation within the domain of computer vision. Through the application of deep learning, 2D T1 images with better clinical readiness may be reconstructed to quantify brain atrophy with a level of diagnostic accuracy approaching that of 3D T1 images.

A clinical decision support system (CDSS) enhances health-related decisions by integrating pertinent clinical knowledge and patient information, thereby improving healthcare delivery (Jerry Osheroff et al., 2012). In particular, non-knowledge-based CDSS make decisions using techniques, such as artificial intelligence, machine learning, or deep learning, rather than directly adapting the knowledge of medical experts (Sutton et al., 2020). Thus, the CDSS may contribute to filling the gap in unmet needs in clinical practice. In memory clinics, clinicians often encounter complex inquiries from patients, such as comparisons of their brains to dementia or age-related brain atrophy. To answer these questions, researchers have attempted to develop algorithms predicting the AD brain similarity score (Lee et al., 2018a) or brain age index (BAI) (Kang et al., 2023) using 3D T1 images. However, considering the practical limitations of 3D T1 images, algorithms based on 2D T1 images should be introduced in clinical settings.

In this study, we developed an algorithm that quantifies brain atrophy by measuring CSF volumes in the regions of interest (ROIs) including anterior and posterior lateral ventricles (LVs), sulcal widenings between the gyri in the frontal, temporal, parietal and occipital lobes, and the width of the temporal horn adjacent to the hippocampus using 2D T1 images. We also validated the clinical utility of this algorithm in terms of the differentiating patients with dementia of the Alzheimer’s type (DAT) from cognitively unimpaired (CU) individuals, prediction of AD-specific atrophy similarity, and calculation of atrophic changes (W-score) and BAI relative to age and sex, based on CSF measurements in the ROIs. Given that 2D T1 images are more commonly used in clinical practice than 3D T1 images, our practical approach may enable earlier diagnosis, timely treatment adjustments, and effective monitoring of disease progression.



Materials and methods


Participants

To develop our algorithm, 1,120 participants aged 55–90 years were recruited from the Alzheimer’s disease convergence research center at Samsung Medical Center (SMC) in South Korea (Supplementary Figure S1). All participants underwent neuropsychological tests, brain MRI (including 3D T1 images), and APOE genotyping. CU individuals had no objective cognitive impairment observed after a comprehensive neuropsychological test on any cognitive domain (above the-1.0-standard deviation [SD] of age-and education-matched norms in memory and below-1.5 SD in other cognitive domains) (Ahn et al., 2010). Participants with DAT met the diagnostic criteria of the 2011 National Institute on Aging and Alzheimer’s Association (McKhann et al., 2011). To calculate the W-score using an independent cohort, we included an additional 109 CU participants from the SMC.

We excluded participants who had any of the following conditions: (1) white matter hyperintensities due to radiation injury, multiple sclerosis, vasculitis, leukodystrophy or metabolic disorders; (2) traumatic brain injury; (3) territorial infarction; (4) brain tumor; and (5) rapidly progressive dementia.

The study protocol received approval from the Institutional Review Board of SMC, and all procedures were conducted in accordance with the approved guidelines. Written consent was obtained from each participant prior to their involvement in the study.



Acquisition and preprocessing of 3D and 2D T1 images

A 3.0 T MRI scanner (Philips 3.0 T Achieva: Philips Healthcare, Andover, MA, United States) was used to acquire 3D T1 turbo field-echo MRI scans. Parameters were as follows: sagittal slice thickness, 1.0 mm with 50% overlap; and matrix size of 240 × 240 pixels reconstructed to 480 × 480 over a field view of 240 mm. Three-dimensional segmentation masks were obtained from the CIVET anatomical pipeline (version 2.1.0) for automated structural image analysis (Zijdenbos et al., 2002). The cortical thickness in the CIVET was computed using the Euclidean distance between the linked vertices of the inner and outer cortical surfaces (Kim et al., 2005, 2021). The thickness of the cortical regions of interest (ROIs_Cth) were the gray matter of the frontal, temporal, parietal, and occipital lobes. We also measured the extracerebral CSF (eCSF) volumes, focusing on the eCSF in the vicinity of the gray matter in the frontal, temporal, parietal, and occipital regions; the anterior and posterior LV volumes; and the volumes near the hippocampal regions of the LVs (ROIs_CSFvol).

Figure 1 illustrates the framework used in this study. For preprocessing (Figure 1A), 20 of the 480 axial slices were selected from the 3D T1 images to match the image view acquired from the 2D MRI scan. Specifically, we extracted axial view 2D T1 images from 3D T1 images by selecting one image every 15 slices, as there were not many participants who had both 3D and 2D T1 images acquired simultaneously. Sampling was conducted representatively for some subjects, and the slice numbers that appeared similar to the 2D T1 images view were identified. We ensured that the entire head was included by confirming the top and bottom slices of the head. Then, Z-score normalization was applied to minimize brightness and contrast variations among the input 2D images. Two-dimensional label images in the axial view were also extracted from the CIVET 3D label mask images, where the label slice indices were identical to the selected MRI slice indices. After verifying the 2D label mask images, an image preprocessing technique of closing, with a kernel size of 5, was applied to smooth the noisy components in the masks. Data preprocessing steps were reviewed together with physicians, and all processed image files were stored and utilized in Nifti format.

[image: Workflow diagram detailing a process for analyzing 3D T1 MRI images. A) Preprocessing involves selecting Z-axis slices to create 2D T1 images for input and ROI-annotated images for ground truth. B) ROI segmentation uses deep learning-based semantic segmentation to predict and output segmented images. C) ROI volume prediction involves using input features such as frontal, temporal, parietal, occipital eCSF, anterior and posterior LV eCSF, and demographics. Regression models predict regional eCSF volumes. D) AD biomarkers prediction uses classification/regression models to distinguish dementia types, predict atrophy similarity, W-score, and brain age index. MLP is used in modeling.]

FIGURE 1
 Framework of the study. The figure illustrates the analysis process of a system that automatically measures cortical thickness and CSF space from 2D MR images and predicts biomarkers related to Alzheimer’s disease. Panel (A) presents the preprocessing step, with 3D ROI annotations derived from 3D T1 MRI, leading to the acquisition of corresponding 2D images. Panel (B) shows the process of automatically segmenting ROIs in 2D MR images using deep learning techniques. Panel (C) represents the process of predicting the volume values for each ROI based on the segmented results from the images. Panel (D) demonstrates the use of the calculated volume values in predicting biomarkers related to Alzheimer’s disease. MRI, magnetic resonance imaging; ROIs, regions of interest; ROIs_Cth, ROIs of cortical thickness; ROIs_CSFvol, ROIs of cerebrospinal fluid space volume; eCSF, extracerebral cerebrospinal fluid space; LV, lateral ventricle; MLP, multilayer perceptron; AD, Alzheimer’s disease; DAT, dementia of Alzheimer’s type; CU, cognitively unimpaired; BAI, brain age index.




Deep learning-based segmentation for the 2D T1 images

Convolutional Neural Network-based deep learning models were developed to segment the ROIs (Figure 1B). For the image deep-learning semantic segmentation task of 2D T1 images, 980 cases with dimensions of 360, 480, and 480, corresponding to the x, y, and z axes, were selected from the 3D image format. Ultimately, a size of 480 by 360 for axial 2D images was used for the developed model. Image augmentation was applied for deep learning performance: axial MR images were randomly flipped in the horizontal direction, and brightness was adjusted in the range of-50 to 50. The physicians agreed to apply these preprocessing steps and use those as training data.

In the segmentation model, Inception-v3 based convolutional layers were employed for feature extraction (Szegedy et al., 2016), followed by the addition of deconvolutional layers. Skip connections were also implemented, linking each convolutional layer with its corresponding three deconvolutional layer to enhance detailed capture (Park et al., 2021). During training, 5-fold cross-validation was applied and the model was optimized using the Adam optimizer. The loss function employed was sparse softmax cross-entropy, and ReLU was utilized as the activation function. Additionally, L2 regularization was applied to prevent overfitting. The development of deep-learning network models was carried out using a Python 3.8 environment (Python Software Foundation), and the TensorFlow library was utilized for training the models.

The segmentation performance was evaluated by measuring the Dice Similarity Coefficient (DSC) between the ground truth and the prediction areas (model-based, automatically determined region). The DSC can be expressed in terms of True Positives (TP), False Positives (FP), and False Negatives (FN) as follows: DSC = 2 × TP / (2 × TP + FP + FN). The model was trained using a graphics processing unit (NVIDIA RTX A6000). The parameters were determined via grid search with a batch size of 2 and 4, dropout rates of 0.4, 0.5, and 0.6, learning rates of 1e-3, 1e-4, and 1e-5, and weight decays of 1e-4 and 1e-3. Batch normalization (Ioffe and Szegedy, 2015) and mean subtraction were used to prevent internal covariate shifts.



Quantification of cortical thickness and CSF volume from 2D T1 images

The sum of the annotated areas from CIVET was used as a feature for deep learning models to train the relation between the annotated areas and the corresponding cortical thickness or volume of CSF spaces (Figure 1C). The total number of segmented pixels for each ROI was summed from a stack of segmentation results for each participant. Independent regression models were trained for each ROI using each participant’s features, including the ROI summation result, age, and sex information. The model was based on a Multi-Layer Perceptron (MLP) algorithm, where the ground truth for the model was the cortical thickness (Cth_3D) or CSF volume (CSFvol_3D) of the ROIs acquired from the 3D T1 images using the CIVET pipeline.

For the development of MLP models, experiments were conducted to determine optimal hyperparameters using a grid search with batch sizes of 16, 48, 64, 68, and 96; dropout rates of 0.3, 0.4, and 0.5; learning rates of 3e-4 and 3e-3; weight decays of 1e-4 and 1e-3; first hidden layers of 16, 32, 64, and 128; and second hidden layers of 4, 8, 16, 32, and 64. The models were developed using the PyTorch framework (Paszke et al., 2019). Ten times repeated 10-fold cross-validation was performed with the development dataset (n = 924). The best model, selected based on the minimum root mean square error within the optimal hyperparameter sets, was then evaluated on the test dataset (n = 196). We applied the best model for each ROI to predict the cortical thickness or CSF volume from the deep-learning-based segmentation results.



Classifiers distinguishing DAT from CU and prediction of AD-specific atrophy similarity

Figure 1D provides a schematic overview of the development of the AD biomarker prediction model. Each model for the AD biomarkers was trained using a development dataset, applying 10-times repeated 10-fold cross-validation. After training, the best-performing model was selected and tested using an independent test set (Park et al., 2022).

Initially, classification models were developed to distinguish DAT from CU using MLP. The hyperparameter grid search was configured in the same manner as in the previous regression experiments. In the model training session, the input features included the CSF volume of the ROIs as well as age and sex. The performance was measured in terms of the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC).

The AD-specific atrophy similarity measure quantitatively indicates the degree to which the brain observed in an individual’s brain image resembles an AD. Methods based on machine learning have been proposed for calculating AD-specific atrophy similarity (Lee et al., 2018a). In this study, the ‘AD-specific atrophy similarity’ is measured using a continuous value between 0 and 1 obtained from the DAT classification model. During training, DAT was mapped to 1 and CU to 0. An optimal threshold was then applied to distinguish between DAT and CU in the final stage. The continuous values generated, which approximated 1 for DAT cases, were used as AD-specific atrophy similarity.



Prediction of W-scores and BAI using CSF volumes

Using the CSF volumes in the seven ROIs relative to the healthy control group, W-scores were computed for each participant. This metric is akin to z-scores but is modified for particular covariates. A previous investigation employed W-scores to encapsulate discrepancies in pathological characteristics between patient cohorts and control groups in neuroimaging (La Joie et al., 2012). In this study, we used age and sex as covariates in a multiple linear regression model to calculate the expected volume of the CSF space in each ROI. We recruited an isolated cohort of 109 CU individuals from the SMC. The W-score is calculated as follows:

[image: The formula for the W-score is shown as \( W\text{-score} = \frac{V_{\text{CSF}} - E_{\text{CU}}(A,S)}{\sigma_{\text{CU}}} \).]

where [image: The image shows the symbol "V" with the subscript "CSF".] is the participant’s CSF space volume, [image: Mathematical expression showing \( E_{\text{CU}}(A, S) \).] is he expected CSF space volume in the CU group for the participant’s age (A) and sex (S), and [image: Greek letter sigma with subscript "C U".] is the standard deviation of the residuals in the CU group. A positive W-score denotes a volumetric increase in the CSF in certain brain regions. In the present study, W-scores were computed from the CSF volumes at ROIs_ CSFvol based on the 3D T1 (CSFvol_3D) and 2D T1 images (CSFvol_2D). The correlation coefficients r were calculated between the W-scores of CSFvol_3D and CSFvol_2D.

In addition, individual BAIs were calculated from the seven ROIs_CSFvol. The ground truth for brain age was estimated using Statistical Parametric Mapping 12 software, and a regression model based on MLP was developed to predict BAIs. The input features for the MLP model were the CSFvol_3D as well as age and sex, and the hyperparameter grid search was set up similarly to the previous experiments. A 10-fold cross-validation was repeated 10 times using the development dataset (n = 896) and evaluated with the test datasets (n = 187). Correlation coefficients r were calculated between BAI values from CSFvol_3D and CSFvol_2D.



Statistical analyses

We used the Student’s t-test for normally distributed continuous variables and the Mann–Whitney U test for non-normally distributed variables to compare the two groups. The chi-square test was used to examine the associations between categorical variables. We considered p < 0.05 to be statistically significant. To evaluate the statistical differences between the AUCs in the classification task, we conducted the DeLong’s test (DeLong et al., 1988). We performed Pearson correlation analyses and Bland–Altman analyses to investigate the relations between 3D T1 and 2D T1 measurements of cortical thickness and CSF volume, AD-specific atrophy similarity, W-scores, and BAI. Statistical analyses were performed using the scipy package of Python 3.8.




Results


Clinical characteristics

Table 1 presents the demographic and clinical characteristics of the participants. Among the 924 participants in the development dataset, 478 (51.7%) were diagnosed with CU, and 446 (48.3%) were diagnosed with DAT. The mean age was 68.3 ± 11.6 (mean ± SD) years for the CU group and 70.3 ± 9.8 years for the DAT group. The proportions of females were 59.0 and 58.7% in the CU and DAT groups, respectively. The proportion of APOE ε4 carriers was 25.3% among the CU participants and 52.9% among those with DAT. No statistically significant differences were observed between the model development and test dataset.



TABLE 1 Demographics of participants.
[image: Comparison table showing characteristics of development and test datasets. The development dataset (N = 924) includes cognitively unimpaired (CU, N = 478) and dementia of Alzheimer’s type (DAT, N = 446) groups, with age, gender, education, APOE e4 carriers, and MMSE scores. The test dataset (N = 196) also includes CU (N = 113) and DAT (N = 83) groups. Key statistics include average age, gender percentage, average education years, APOE e4 percentage, and MMSE scores, with p-values indicating significance levels for various comparisons.]



Performances of segmentation

The segmentation results of each ROIs_Cth measured in the 5-fold averaged DSC were as follows: 0.816 (95% Confidence Interval [CI]: 0.812–0.820) for frontal Cth, 0.793 (0.790–0.797) for temporal Cth, 0.777 (0.773–0.783) for parietal Cth, and 0.720 (0.712–0.728) for occipital Cth. The average DSC values of the CSF space segmentation were 0.874 (0.870–0.878) for the anterior LV, 0.852 (0.847–0.857) for the posterior LV, and 0.637 (0.628–0.646) for the region around the hippocampal ventricle. The average DSC values for the frontal, temporal, parietal, and occipital eCSF were 0.640 (0.625–0.655), 0.524 (0.508–0.540), 0.632 (0.618–0.646), and 0.502 (0.485–0.519), respectively (95% CI for all values). The optimized hyperparameters found through experimentation are as follows: batch size of 4, dropout rate of 0.5, learning rate of 1e-4, and, weight decay of 1e-5. Supplementary Figure S2 shows the 2D T1 images (left), corresponding ground-truth images (middle), and predicted images (right).



Correlations between Cth_3D and Cth_2D, and between CSFvol_3D and CSFvol_2D

Cth_2D was highly correlated with Cth_3D (Figure 2A) with correlation coefficient r of 0.802 (0.778–0.823) for frontal gray matter, 0.810 (0.787–0.830) for temporal gray matter, 0.817 (0.795–0.837) for parietal gray matter, and 0.644 (0.606–0.680) for occipital gray matter. Moreover, CSFvol_2D was highly correlated with CSFvol_3D (Figure 2B), with correlation coefficients r of 0.850 (0.832–0.866) for frontal eCSF, 0.861 (0.844–0.876) for temporal eCSF, 0.876 (0.860–0.890) for parietal eCSF, 0.805 (0.782–0.826) for occipital eCSF, 0.971 (0.967–0.974) for anterior LV, 0.970 (0.966–0.973) for posterior LV, and 0.890 (0.877–0.903) for the region surrounding the hippocampal ventricle. The optimized hyperparameters of the lateral ventricle were as follows: first hidden layer of 128 nodes, second hidden layer of 16 nodes, a batch size of 64, a dropout rate of 0.3, a learning rate of 3e-3, and a weight decay of 1e-4. Because the correlation coefficient r values between CSFvol_3D and CSFvol_2D were higher than those between Cth_3D and Cth_2D, subsequent analyses (including distinguishing DAT from CU, AD-specific atrophy similarity, W-scores, and BAI) were conducted using CSFvol_2D but not Cth_2D.

[image: Graphs display correlations between 2D and 3D T1 MRIs. Panel A shows cortical thickness correlations for frontal (r=0.802), temporal (r=0.810), parietal (r=0.817), and occipital lobes (r=0.644). Panel B shows correlations of extracerebral cerebrospinal fluid volume for anterior lateral ventricle (r=0.971), posterior lateral ventricle (r=0.970), around the hippocampal ventricle (r=0.890), and lobes. Dashed lines indicate prediction and confidence limits.]

FIGURE 2
 Correlation of (A) cortical thickness and (B) extracerebral cerebrospinal fluid space volume between 3D T1 and 2D T1 across regions of interest. Scatter plots show correlations for (A) cortical thickness (mm) in the frontal, temporal, parietal, and occipital lobes, and (B) extracerebral cerebrospinal fluid (eCSF) space volume (mm3) in the vicinity of the gray matter in the frontal, temporal, parietal, and occipital regions, the anterior and posterior lateral ventricle volumes, and volumes nearby hippocampus regions. Regression lines and 95% confidence intervals compare measurements from 3D T1 (x-axis) to 2D T1 (y-axis). 3D, three-dimensional; 2D, two-dimensional; MR, magnetic resonance imaging; CSF, cerebrospinal fluid.


In order to compare the ‘true 2D T1 images’ and the ‘2D T1 images derived from 3D T1 images,’ we obtained an independent dataset of 364 participants (170 CU and 194 DAT) with both true 2D T1 and 3D T1 images (Supplementary Table S1). The CSFvol_2D from the 3D T1 images was highly correlated with the true 2D T1 images (Supplementary Figure S3), with correlation coefficients r of 0.815 for frontal eCSF, 0.938 for temporal eCSF, 0.878 for parietal eCSF, 0.798 for occipital eCSF, 0.998 for anterior LV, 0.997 for posterior LV, and 0.988 for the region surrounding the hippocampal ventricle.



Performances of DAT classifiers and AD-specific atrophy similarity based on CSFvol_2D

The performance of the classifier based on CSFvol_3D exhibited an AUC of 0.905 and an AUPRC of 0.891. Similarly, the classifier’s performance based on CSFvol_2D demonstrated high accuracy, comparable to that of the CSFvol_3D-based classifier, with the model inputs yielding an AUC of 0.873, an AUPRC of 0.849, a sensitivity of 0.819, and a specificity of 0.761. The DeLong et al. (1988) test was performed to compare the AUCs of CSFvol_3D and CSFvol_2D. The obtained p-value was 0.053, indicating no significant difference in the analysis results between the conventional 3D T1-based analysis and the proposed 2D T1-based deep learning analysis. The optimal hyperparameters for the classifier were as follows: 128 nodes in the first hidden layer, 16 nodes in the second hidden layer, batch size of 64, dropout rate of 0.5, learning rate of 3e-4, and weight decay of 1e-4.

We conducted an error analysis of the classification results, and the findings are as follows: For false positives, where the clinical diagnosis is CU but the model predicted DAT, the CSF volume values were generally predicted to be lower compared to the true positive cases due to the poor image segmentation, and the average age was higher (75.0 ± 5.4 vs. 64.5 ± 11.1). For false negatives, where the clinical diagnosis is DAT but the model predicted CU, the CSF volume values were generally predicted to be higher compared to the true negative cases, and the average age was also higher (73.7 ± 10.5 vs. 67.5 ± 11.3).

The correlation coefficient r between AD-specific atrophy similarity based on CSFvol_3D and that based on CSFvol_2D was 0.915 (0.889–0.935) (Figure 3), indicating a high degree of correlation. The Bland–Altman plot is presented in Supplementary Figure S4A.

[image: Scatter plot showing the relationship between AD-specific atrophy similarity from 2D T1 and 3D T1. A regression line runs diagonally with a correlation coefficient of 0.915. Dashed lines indicate the 95% prediction and confidence limits. Points are scattered around the line, indicating data variability.]

FIGURE 3
 Correlation of AD-specific atrophy similarity between 3D T1 and 2D T1. Scatter plots compare AD-specific atrophy similarity measures derived from cerebrospinal fluid space volume in 3D T1 (x-axis) and 2D T1 (y-axis) with regression lines and 95% confidence intervals.




W-scores and BAI based on CSFvol_2D

Figure 4 shows the correlation between W-scores calculated using CSFvol_3D and CSFvol_2D. The correlation coefficients r for the W-scores in the LV were the strongest at 0.976 (0.969–0.982) for the anterior LV, and 0.950 (0.935–0.962) for the posterior LV. The volume around the hippocampal ventricle also showed a strong correlation, with a correlation coefficient r of 0.894 (0.862–0.919). The eCSF volumes in the frontal, temporal, parietal, and occipital regions also exhibited high correlation coefficients r of 0.837 (0.790–0.875), 0.846 (0.801–0.882), 0.846 (0.801–0.882), and 0.732 (0.659–0.791), respectively.

[image: Scatter plots comparing W-scores from 3D T1 and 2D T1 images across different brain regions: anterior and posterior lateral ventricles, around the hippocampal ventricle, frontal, temporal, parietal, and occipital lobes. Each plot includes a regression line, 95% prediction and confidence limits, and a correlation coefficient ranging from 0.732 to 0.976.]

FIGURE 4
 Correlation of W-scores for brain regions between 3D T1 and 2D T1 images. Scatter plots and regression lines with 95% confidence intervals illustrate the correlation of W-scores, indicating brain atrophy, between 3D T1 and 2D T1 images across various brain regions, including the frontal lobe, temporal lobe, parietal lobe, occipital lobe, anterior lateral ventricle, posterior lateral ventricle, and the region around the hippocampal ventricle. 3D, three-dimensional; 2D, two-dimensional.


We assessed the correlation between the BAI calculated based on CSFvol_3D and BAI calculated based on CSFvol_2D (Figure 5). The correlation coefficient r between the two BAIs was 0.821 (0.768–0.863), and the Bland–Altman plot is presented in Supplementary Figure S4B. The optimal hyperparameters for the BAI model were: 128 nodes in the first hidden layer, 64 nodes in the second, batch size of 68, 0.5 dropout rate, learning rate of 3e-4, and weight decay of 1e-4.

[image: Scatter plot showing a positive correlation between BAI of CSFvol_2D and BAI of CSFvol_3D, with a correlation coefficient of 0.821. The plot includes a regression line, along with 95% prediction and confidence limits. Data points are scattered close to the line, indicating a strong linear relationship.]

FIGURE 5
 Correlation of brain age index between 3D T1 and 2D T1 images. Scatter plots compare brain age index derived from cerebrospinal fluid space volume in 3D T1 (x-axis) and 2D T1 (y-axis) with regression lines and 95% confidence intervals. BAI, brain age index; 3D, three-dimensional; 2D, two-dimensional.




Summary of 2D T1 analysis results in comparison with 3D T1

Segmentation results showed that larger and simpler ROI masks achieved higher performance, with the best results in LV regions. In predicting quantitative measures like cortical thickness or volume from segmented regions, CSF space models (LV, eCSF) outperformed cortical thickness models. For the model distinguishing between DAT and CU, the 2D-based analysis demonstrated high performance (AUC 0.873), showing comparable accuracy to the 3D-based standard method (AUC 0.905) for measuring brain atrophy.

In DAT-related biomarkers such as AD-specific atrophy similarity, W-score, and BAI, the 2D T1 analysis results were highly correlated with 3D T1 results. Notably, higher eCSF volume prediction performance corresponded with higher W-score prediction performance for each ROI.




Discussion

In this study, we developed deep learning-based models that utilize CSF volumes from 2D T1-weighted images. We validated the clinical utility of our algorithms by differentiating DAT from CU participants, predicting AD-specific atrophy similarities, estimating W-scores for brain atrophy, and calculating BAIs relative to age and sex. Our major findings are as follows. First, the CSF volumes based on 2D T1 images were highly correlated with those based on 3D T1 images. Second, our newly developed algorithms using 2D T1 image-derived CSF volumes showed excellent performance in differentiating DAT from CU and very high correlations in AD-specific atrophy similarity, W-scores for brain atrophy, and BAIs compared with those based on 3D T1 images. Taken together, our findings suggest that deep learning-based models based on CSF volumes from 2D T1 images may be a viable alternative to 3D T1 images for assessing brain atrophy in clinical settings. The clinical utility of our newly developed algorithms was validated in various settings with high accuracy, comparable to that achieved with 3D T1 image-based algorithms. Using accessible and cost-effective 2D T1 images for quantifying brain atrophy and AD classification enables earlier detection of neurodegenerative changes, leading to timely intervention and better management of atrophy and cognitive decline.

Our first major finding was that the CSF volumes based on 2D T1 images (CSFvol_2D) were significantly correlated with those based on 3D T1 images (CSFvol_3D). In clinical settings, the assessment of brain atrophy involves the evaluation of enlarged CSF volumes, indicative of the loss of adjacent gray matter and white matter. Traditionally, clinicians have relied on visual assessment scales from 2D T1 MR images or CT scans by utilizing the enlarged CSF regions, including the LVs, sulcal widening between the gyri, and the width of the temporal horn adjacent to the hippocampus (Koedam et al., 2011; Harper et al., 2015). However, these visual assessment scales do not show high concordance rates among clinicians, and there are no quantitative methods for 2D T1 images. Therefore, our findings underscore the reliability of CSFvol_2D as an effective surrogate for complex and time-intensive 3D T1 measurements. Furthermore, CSFvol_2D could provide a more accessible and economically viable alternative without compromising diagnostic accuracy for assessing brain atrophy.

In the present study, we applied Fully Convolutional Network-based deep learning techniques to 2D MR for automatic brain segmentation, resulting in high segmentation performance (particularly in the anterior and posterior LV, with DSCs of 0.874 and 0.852, respectively). Previous methods for quantifying brain atrophy often use 3D T1 images with CIVET or FreeSurfer software to measure cortical thickness. Recently, deep learning-based approaches have emerged (Rebsamen et al., 2020), showing a Pearson correlation of r = 0.740 with FreeSurfer across frontal, temporal, parietal, and occipital lobes using 3D T1 (Cth_3D). Our study achieved a higher correlation of r = 0.768 (Cth_2D averaged) with CIVET using 2D T1 images and a deep learning model. Furthermore, our study showed that the correlations between results based on 2D T1 images and those based on 3D T1 images were higher for CSF volume than for cortical thickness. Our findings might be explained by the fact that the differences in intensities between gray matter and CSF or between white matter and CSF (the main distinct features in our models of CSF volumes) were more pronounced than the differences in intensities between gray matter and white matter (the main distinct features in our models of cortical thickness). That is, the more distinct differences between features were more reflective of the results based on 3D T1 images into the results based on 2D T1 images in CSF volumes than in cortical thickness, which in turn resulted in higher correlation in CSF volumes.

Notably, the LV exhibited the highest Pearson correlation coefficients among the CSF volumes (anterior LV, 0.971; posterior LV, 0.970). The large area of the LV relative to other brain ROIs and its comparatively simple shape facilitate distinction from other brain structures. This high degree of correlation is noteworthy because ventricular dilatation (particularly of the frontal, occipital, and temporal horns of the LV) is a critical metric for assessing cerebral atrophy (Pasquier et al., 1996). Additionally, the volume around the hippocampal ventricle showed a strong correlation between CSFvol_2D and CSFvol_3D. The temporal horn of the LV is crucial for evaluating medial temporal lobe atrophy in probable AD (Scheltens et al., 1992; Kim et al., 2014). Sulcal widening between the gyri in each lobe was used as an indicator of lobar atrophy. Different types of dementia display unique patterns of brain atrophy. AD is typically characterized by temporoparietal atrophy, whereas frontotemporal dementia is characterized by frontotemporal atrophy. Thus, ROIs_CSFvol, including the anterior LV, posterior LV, volume around the hippocampal ventricle, and eCSFs in each lobe, might be one of the most important features for differentiating the causes of dementia. Further studies are required to determine whether our newly developed models are effective in distinguishing between the causes of various types of dementia.

Our second major finding was that our MLP model demonstrated good performance in differentiating DAT from CU participants, achieving AUC values of 0.873 for classifiers based on CSFvol_2D and 0.905 for conventional classifiers based on CSFvol_3D. Our previous classifiers, based on Cth_3D, showed an accuracy of 91.1% in differentiating DAT from CU (Lee et al., 2018a). In addition, AD-specific atrophy similarity measures derived from CSFvol_2D highly correlated with those obtained from CSFvol_3D. Our AD-specific atrophy similarity measure represents the similarity of the cortical atrophy pattern of an individual patient to that of a representative patient with AD, determined using a well-defined AD cohort. In our previous study (Lee et al., 2018a), the AD-specific atrophy similarity measure showed promising results at the individual level, not only facilitating the early prediction of AD but also distinguishing between brain and clinical trajectories in patients with DAT. Therefore, our findings underscore the potential of quantitative analyses based on CSFvol_2D, especially the LV, volumes around the hippocampal ventricle, and eCSF for the precise diagnosis of DAT and early initiation of therapeutic interventions.

Our final major finding was that the brain atrophic W-scores, after adjusting for age and sex, derived from CSFvol_2D were highly correlated with those from CSFvol_3D. As aging progresses, brain atrophy occurs at a mean volume reduction rate of 0.5% per year after the age of 40 (Fotenos et al., 2005; Lee et al., 2018b). In addition, changes in brain atrophy have been shown to occur differently depending on sex (Lee et al., 2018b; Kim et al., 2019; Suzuki et al., 2019). Thus, our age-and sex-adjusted brain atrophic W-scores may help clinicians distinguish pathological brain atrophy from physiological age-related brain atrophy. The trajectory of brain atrophy throughout aging can be captured and translated into an individual’s brain age using machine-learning algorithms. Brain age serves as an indicator of overall brain health as it allows for individual-level inferences rather than group-level assessments. Furthermore, an increased BAI is predictive of worse cognitive trajectories (Gaser et al., 2013; Wang et al., 2019). In the present study, the BAIs based on CSFvol_2D correlated strongly with those based on CSFvol_3D, suggesting that our newly developed BAI based on CSFvol_2D may assist clinicians in diagnosing and managing individuals with pathological brain atrophy.

The strength of our study lies in the innovative application of deep learning to the reconstruction of 2D T1 MR images for quantitative analysis. Several algorithms have been developed for classifying DAT, predicting AD-specific atrophy similarity, assessing brain atrophy W-scores, and estimating the BAI. However, the present study has some limitations. First, we used clinical criteria for DAT rather than AD biomarker-guided diagnosis. Further studies incorporating AD biomarker-guided diagnoses are required to develop algorithms to predict AD biomarkers. Second, the deployment of various deep learning architectures, particularly the most recent image segmentation models (Isensee et al., 2021; Ma et al., 2024), has not yet been explored. While this study utilized an MLP model for predicting AD biomarkers, it is possible to achieve higher accuracy by applying various machine learning techniques such as random forest and support vector machines, or by creating an ensemble model. Future research should consider evaluating the performance through the integration of models with iterative updates. Third, 20 axial slices selected from 3D T1 images, so there may be any information loss in this process. Additionally, the slice thickness of the ‘2D T1 images from 3D T1 images’ used in our study may differ from the typically acquired slice thickness in clinical practice, leading to lower generalizability of our results to common clinical settings. To match the difference in acquisition protocol, we extracted 20 slices with a 5 mm slice thickness from the 3D T1 images, as the ‘true 2D T1 images’ acquired at our center are obtained with 5 mm slice thickness and gaps between slices, resulting in approximately 20 slices. However, since 2D T1 images are used in clinical practice, the purpose of this study was to determine whether brain atrophy, which can only be measured with 3D T1 images, can be measured with 2D T1 images. This argument might be mitigated by our findings that brain atrophy measured with ‘2D T1 images from 3D T1 images’ is comparable to brain atrophy measured with ‘true 2D T1 images.’ Fourth, in our main analysis, we used ‘2D T1 images from 3D T1 images’ instead of the ‘true 2D T1 images.’ However, considering the high correlation between the ‘true 2D T1 images’ and the ‘2D T1 images from 3D T1 images,’ we expect the correlation for DAT/CU classification, AD-specific atrophy similarity, W-scores, and BAIs to be similarly high. Fifth, the ROIs we chose are relatively less granular than those used other methods, so they have not been fully validated to ensure they are regionally relevant to dementia. Thus, future research is needed to explore whether our methods are useful for distinguishing subtypes of dementia. Finally, the model was assessed using data from a single cohort. Incorporating larger datasets, potentially from multiple cohorts, is essential to ensure the robustness and generalizability of our findings. Thus, future studies should be conducted to see if the same results can be achieved using 2D T1 images from different vendors at different centers in different patient populations. Techniques related to image registration and domain adaptation may need to be applied during the implementation process. Nevertheless, our study provides valuable insights, demonstrating that deep learning-based quantitative analysis using 2D T1 images, a modality widely adopted in clinical practice, can be effective. Although there might be several challenges, including securing the necessary infrastructure such as the scanner settings and analysis platforms, providing adequate training for radiologists, and incorporating the approach into existing clinical workflows, addressing these challenges will be beneficial for clinical settings.

In conclusion, our study revealed that deep-learning analyses based on 2D T1 CSF volumes were highly correlated with those based on 3D T1 CSF volumes. Furthermore, our study demonstrates the feasibility of using deep-learning-based 2D T1 CSF volumes for the DAT classifier, AD-specific atrophy similarity, W-scores, and BAI, establishing 2D MR as a dependable, cost-effective, and accessible tool in clinical practice. Therefore, our findings contribute to the application of 2D MR quantitative analysis, especially for retrospective analysis of images acquired in 2D T1 and in settings with limited access to 3D imaging technology.
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Objective: This study aimed to investigate cortical activation and functional connectivity in the cortex during working memory (WM) tasks in patients with Alzheimer’s disease (AD) using functional near-infrared spectroscopy (fNIRS).
Methods: A total of 17 older adults with AD and 17 cognitively normal (CN) participants were recruited. fNIRS was utilized to monitor oxygenated hemoglobin (HbO) concentrations in the frontotemporal lobe, while participants performed WM tasks to examine WM impairments in subjects with AD. Student’s t-test for continuous variables and the chi-square test for categorical variables were used to compare the clinical and HbO variables between the AD and CN groups. Functional connectivity was analyzed using Pearson’s correlation coefficient between the time series of each channel-to-channel pair.
Results: The changes in HbO concentrations and cortical activations during the WM task showed that the HbO concentration curve of the CN group was higher than that of the AD group during the encoding and maintenance phases of the WM task. Although in the brain region scale, there were no significant differences in average HbO concentrations between the two groups, many channels located in the frontal and temporal lobes showed significant differences (p < 0.05) in the average HbO (channels 7 and 32) and slope HbO values (channels 7, 8, 9, 23, 30, 34, and 38) during the WM task. The average functional connectivity of the AD group was significantly lower than that of the CN group (p < 0.05). The functional connectivity was stronger in the frontopolar (FP) region than in other areas in both groups.
Conclusion: This study revealed there were significant differences in HbO concentration in older adult patients with AD compared to CN during the WM task. The characteristics of HbO measured by the fNIRS technique can be valuable for distinguishing between AD and CN in older adults.
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1 Introduction

AD is a prevalent neurodegenerative disorder and the primary cause of dementia (Scheltens et al., 2021). Its main symptoms include cognitive impairment and difficulties with daily tasks (Benmelouka et al., 2022). Cognitive impairment can affect functions such as visuospatial function, memory, attention, executive functioning, and learning (Dhakal and Bobrin, 2024). Memory loss is noticeable even in mild cognitive impairment (MCI), which is considered an early stage of AD (Gold and Budson, 2008; Gagliardi and Vannini, 2021). Severe cognitive decline significantly impacts the ability of older adults to live independently. Due to its high incidence and prevalence rates, AD is quickly becoming one of the most expensive and burdensome diseases worldwide (Alzheimers Dement, 2023).

β-amyloid (Aβ) plaques and neurofibrillary tangles are related to neural activation (Richter et al., 2020). At the early stage of AD or MCI, memory impairments and cognition deficits are likely caused by impaired neuronal activity rather than by cell death (Igarashi, 2023). Even in other types of dementia, brain structural changes were usually accompanied by cortical activation decline (Musaeus et al., 2021). Previous studies found that many stimulation programs, including repetitive transcranial magnetic stimulation (rTMS) and sensory stimuli, May slow down cognitive and functional decline by elevating the cortical activations (Koch et al., 2022; Chou et al., 2020; Steffener et al., 2021).

Apart from the identification of new blood-based and imaging biomarkers, the diagnosis of AD could potentially incorporate neuropsychological biomarkers, such as abnormal WM characteristics. WM is a cognitive system responsible for manipulating information storage and processing through encoding, maintenance, and retrieval (Kim, 2019). Furthermore, it is the foundation for advanced cognitive functions, such as learning, reasoning, and decision-making (Müller et al., 2021). WM is impaired in older adults across the AD continuum, including those with MCI and early AD, highlighting these neurocognitive impairments (Kirova et al., 2015; Germano and Kinsella, 2005; Huntley and Howard, 2010).

Electroencephalogram (EEG) studies on WM have been conducted in different individuals, including those with cognitive disorders (Hsieh and Ranganath, 2014; Ruimin et al., 2017). These results suggest that changes in EEG power or band can reflect the brain function in a high WM load (Wei and Zhou, 2020). Neuroimaging studies, such as functional magnetic resonance imaging (fMRI), on memory impairment in AD, have indicated that function in brain regions critical to episodic memory is altered in AD (Rémy et al., 2005). These functional changes May closely correlate with the progressive structural changes observed in the hippocampal region (de Toledo-Morrell et al., 2000). Previous fMRI studies indicated that, compared to healthy older adults, participants with MCI showed decreased activation in the bilateral prefrontal and temporoparietal cortices during the WM tasks (Lou et al., 2015; MACHULDA et al., 2009). Positron emission tomography (PET) studies also showed that Aβ deposits were associated with neural cognitive function during WM tasks (Li et al., 2023).

Although the abovementioned neuroimaging techniques had many advantages in the study of WM in AD patients, a new type of neuroimaging technology is gradually being used. In recent years, brain activation of patients with cognitive impairment can be explored using a new non-invasive detection of fNIRS (Niu et al., 2013; Yang et al., 2019). Advantages of fNIRS over EEG and fMRI included better portability, comfort, less noise, low cost, high temporal resolution, and being insensitive to motion (Hu et al., 2020; Pinti et al., 2020). It was suitable for the elderly and even superior to amyloid PET and fMRI in some aspects (Kim and Yon, 2022). Moreover, fNIRS is capable of providing comparable functional connectivity measures to fMRI (Duan et al., 2012). fNIRS can reveal resting HbO concentrations and task-related changes in HbO concentrations in patients with MCI and dementia (Yeung and Chan, 2020). fNIRS can also comprehensively investigate functional connectivity in the prefrontal cortex during a WM task (Yu and Lim, 2020).

This study aims to use the fNIRS to investigate the prefrontal, temporal, and partial parietal cortex activity in patients with AD during WM tasks and to explore the strength of functional connectivity between different brain regions during WM tasks.



2 Methods


2.1 Participants

This study enrolled 34 participants, consisting of 17 patients with AD and 17 CN subjects according to the sample size calculation and previous fNIRS studies on AD (Wang and Ji, 2020; Cicalese et al., 2020; Keles et al., 2022). Participants were recruited from the Geriatric Psychiatric Center of the Affiliated Kangning Hospital of Ningbo University between January and December 2023. The diagnosis of AD was based on the criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. All participants met the following criteria: (1) diagnosis confirmed by two research psychiatrists, (2) provided informed consent, and (3) had a disease course >6 months. Through brief face-to-face interviews, a healthy control group of cognitively unimpaired participants was confirmed to exhibit no cognitive decline. All procedures were in accordance with the ethical standards of the ethics committee of Affiliated Kangning Hospital of Ningbo University. The patients/participants [legal guardian/next of kin] provided written informed consent to participate in this study.



2.2 Neurocognitive assessments

The cognitive levels of the participants were assessed using the Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAScog) (Jia et al., 2021; Cogo-Moreira et al., 2023). MMSE scores range from 0 to 30, with higher scores indicating better cognitive function. MMSE scores <24 ~ 25 suggested dementia (Folstein et al., 1975; Cockrell and Folstein, 1988). The ADAScog cutoff value for distinguishing mild and moderate dementia is 22. Higher scores of ADAScog suggested poorer cognitive function (Rosen et al., 1984).



2.3 fNIRS detection and working memory protocol

Figure 1 illustrates the location of the detection (Figure 1A) and the protocols for the WM task (Figure 1B) used in this study. Our previous study measured HbO concentrations using a multichannel functional near-infrared brain imaging device (NirScan-6000A; Danyang Huichuang Medical Equipment Co., Ltd., China) (Liu et al., 2022). The sampling frequency was 11 Hz; 730 and 850 nm were the major wavelengths, and 808 nm was used as the isotopic wavelength for correction, as previously described (Liu et al., 2022). We used the FPz channel (10/20 International System) as the center of the middle probe and positioned 31 SD probes (comprising 15 sources and 16 detectors) with a fixed interprobe distance (3 cm) to cover the bilateral prefrontal and temporal cortices of all the participants. In this study, 48 NIRS channels were established. The brain regions and corresponding channels are shown in Figure 1A. Nine regions of interest were delineated according to the Brodmann map and fNIRS system settings (Bruner, 2022; Rorden and Brett, 2000; Wu et al., 2022). As shown in Figure 1A, the FP area contained channels 7, 8, 9, 11, 25, 26, 27, and 28; the right pars triangularis Broca’s area contained channels 22, 24, 37, and 39; the right pre-motor and supplementary motor cortex contained channels 20 and 38; the right temporal cortex (RTC) contained channels 1, 2, 3, 5, 17, 18, and 19; the right dorsolateral prefrontal cortex (RDLPFC) contained channels 4, 6, 21, 23, 40, 41, and 42; the left pars triangularis Broca’s area contained channels 31, 32, 46, and 47; the left pre-motor and supplementary motor cortex contained channels 36 and 48; the left temporal cortex (LTC) contained channels 13, 14, 15, 16, 33, 34, and 35; the left dorsolateral prefrontal cortex (LDLPFC) contained channels 10, 12, 29, 30, 43, 44, and 45.
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FIGURE 1
 Location of detection (A) and working memory protocol (B). (A) Green boxes represent the frontopolar area (channels 7, 8, 9, 11, 25, 26, 27, and 28); purple boxes represent the left and right pars triangularis Broca’s area (22, 24, 37, 39 on the right and 31, 32, 46, 47 on the left); red boxes represent the left and right pre-motor and supplementary motor cortex (20, 38 on the right and 36, 48 on the left); blue boxes represent the left and right temporal cortex (1, 2, 3, 5, 17, 18, 19 on the right and13, 14, 15, 16, 33, 34, 35 on the left); yellow boxes represent the left and right dorsolateral prefrontal cortex (4, 6, 21, 23, 40, 41, 42 on the right and 10, 12, 29, 30, 43, 44, 45 on the left). (B) The working memory task structures comprised three blocks. A block (the green dotted box) consisted of 5 s resting time, 12 s encoding time (4 pictures × 3 s), 10 s retrieval time, 10 s resting time, 15 s non-working memory (NWM) time, and 5 s resting time. The baseline was the first 5 s resting time of the block.


As described previously, the WM task was performed with participants seated comfortably in a quiet room and completing the task on a tablet (Liu et al., 2024). The subject will be required to operate on Microsoft Surface. As shown in Figure 1B, the WM task structures comprised three blocks (the green dotted box). A block consisted of two periods: the WM period and the non-working memory (NWM) period. During the WM period, four color shapes (each displayed for 3 s) will appear, and the subject is required to memorize their color, shape, and order of appearance (the encoding and maintenance phases). Subsequently, the subject will be asked to click on the integrated image in the order they remember, within 10 s (the retrieval phase). During the 15-s NWM period, the subject will be asked to click on a similar integrated image according to a shapes array shown above. The time duration of the two periods is shown in Figure 1B. Although the baseline was 5 s, there was a long resting time before the baseline. We chose 5 s as the baseline. Three blocks were set in the WM protocol to avoid the inaccuracies caused by participants’ fatigue. The WM and NWM switching can increase the cognitive load (Yanagisawa et al., 2016; Naoko Narita et al., 2012).



2.4 fNIRS data preprocessing

The NirSpark software package (V1.7.5, Hui Chuang, China) was used to analyze the fNIRS data. The data were preprocessed, and motion artifacts were corrected using the moving SD and cubic spline interpolation methods. A bandpass filter with a 0.01–0.20 Hz cutoff frequency was used to remove physiological noise. The modified Beer–Lambert law was used to calculate the relative changes in hemoglobin concentrations in the HbO and HbR. Instead of HbR, we used HbO as our primary indicator in the following analysis due to its high signal-to-noise ratio.

The mean HbO concentration was calculated using 22-s task periods of the WM phases. The slope of the HbO concentration in the WM indicated the increase in HbO within 5 s of the start of the WM task. Linear fitting was applied to the data of the two baselines. Subsequently, the mean waveform of HbO changes in each channel was derived from the waveforms of individuals in all 48 channels for all participants in the two groups. The topographic maps of HbO concentration were drawn using the NirSpark software version 1.7.5 (Danyang Huichuang Medical Equipment Co., Ltd., China). The topographic maps were created using the HbO concentration features (e.g., mean HbO concentration change during the activation period and the slope of HbO concentration change during the activation period) detected from individual probes.



2.5 Statistical analysis

The data are presented as mean ± standard deviation (SD). Demographic and clinical variables were compared between the two groups using Student’s t-test. A t-test was also used to compare HbO changes between patients and CN participants to evaluate brain activation between the two groups. Functional connectivity was analyzed by the NirSpark software package (V1.7.5, Hui Chuang, China) using Pearson’s correlation coefficient between the time series of each channel-to-channel pair. The statistical results were corrected for multiple comparisons across channels using the false discovery rate. Statistical significance was set at a p-value of <0.05. All analyses were performed using the Statistical Package for the Social Sciences software (SPSS version 19.0; IBM Corp., Armonk, NY, United States).




3 Results


3.1 Clinical characteristics

Patients were recruited for this study from November 2023 to April 2024 at the Geriatric Psychiatric Department of the Affiliated Kangning Hospital of Ningbo University. Figure 2 illustrates a flowchart depicting the participants and protocol. Five patients were unable to complete the WM task due to severe dementia. A total of 34 participants were included in this study. The demographic characteristics of the participants are presented in Table 1. The demographic variables in the AD and CN groups showed no differences in mean age, sex, or educational level (p > 0.05). With regard to the neuropsychiatric scales scores, the AD group exhibited significantly lower scores on MMSE (20.06 ± 2.90, t = −11.966, p < 0.001) and higher scores on the ADAScog (30.27 ± 13.18, t = 7.230, p < 0.001) than the CN group.

[image: Flowchart illustrating participant enrollment and screening for a study. Initially, 39 participants were enrolled. Five with severe dementia were excluded, leaving 34 screened participants. These were categorized into two groups: 17 with Alzheimer's Disease (AD) and 17 cognitively normal (CN). Both groups underwent fNIRS measurement during a working memory task, followed by data preprocessing.]

FIGURE 2
 Flowchart of the study.




TABLE 1 Demographic and clinical data.
[image: Table comparing variables between Alzheimer's disease (AD) and cognitive normal (CN) groups. Variables include age, sex, education, MMSE score, and ADAScog score. The AD group has higher age and ADAScog scores, and lower MMSE scores compared to the CN group. Statistical significance is denoted by t/Chi-square and p-values. MMSE and ADAScog scores show significant differences with p-values of 0.000, while age, sex, and education are not significantly different, with p-values of 0.099, 0.303, and 0.359 respectively. Data are presented as mean ± standard deviation.]



3.2 Changes in HbO concentrations during working memory tasks

Figure 3 illustrates the changes in HbO concentrations in the AD and CN groups during the WM task. Prior to the commencement of the WM tasks, HbO concentrations were higher in the AD group than in the CN group. This value represents a relative change of the task-state HbO concentration relative to the resting-state HbO concentration. This suggested a lower activation before the WM task in the CN group. During the WM tasks, there were two rising phases of the HbO concentration, representing the encoding and retrieval phases. The CN group demonstrated higher HbO concentrations than the AD group. Additionally, the time of responses in the two groups was nearly synchronized.

[image: Graph showing changes in HbO concentrations over time for two groups: AD group (red line) and CN group (green line). The CN group shows a higher peak in HbO concentration around frame 150 compared to the AD group. HbO is measured in millimoles per liter times millimeters, and time is in frames ranging from 0 to 250.]

FIGURE 3
 Changes in HbO concentrations during working memory tasks in AD and CN groups. Red and green lines represent AD and CN groups, respectively. Gray and orange dashed areas represent the encoding and retrieval phases during working memory tasks.


We performed the t-test for four variables, including mean HbO concentrations of the encoding phase and retrieval phase in AD and CN groups, respectively. There were significant differences in mean HbO concentrations of the encoding phase (t = 5.515, p < 0.001) and retrieval phase (t = 28.51, p < 0.001) between AD and CN groups. Meanwhile, there were significant differences in mean HbO concentrations between the encoding phase and retrieval phase both in AD (t = 21.12, p < 0.001) and CN (t = 27.90, p < 0.001) groups.



3.3 HbO concentrations in different brain regions

In Figure 4, the mean HbO concentration change during the activation period was calculated using task periods of the WM phases and represented the average HbO concentration during the WM task. The slope of the HbO concentration change during the activation period indicated the increase in HbO concentration within 5 s of the start of the WM task and reflected the ability to respond to the task. Figures 4A,B depict the HbO concentrations in different brain regions. Except for the right pars triangularis Broca’s area and the right pre-motor and supplementary motor cortices, both the average (Figure 4A) and slope (Figure 4B) values of the HbO concentration in WM tasks were higher in the CN group than the AD group. Although no significant difference was observed in the HbO concentrations across different brain regions between the two groups, the HbO concentrations across the channels showed significant differences (Figures 4C,D, Table 2, p < 0.05) in WM average (Table 2, mean HbO concentration change during activation period, channels 7 and 32) and slopes (Table 2, The slope of HbO concentration change during activation period, channels 7, 8, 9, 23, 30, 34, and 38) locating in frontal and temporal lobes. Figure 4C indicates that the location of channels 7 and 32 showed a significant difference in mean HbO concentration change during the activation period between the two groups. Channels 7 and 32 are located in the FP area and left pars triangularis Broca’s area, respectively. Figure 4D suggests that the location of channels 7, 8, 9, 23, 30, 34, and 38 showed a significant difference in the slope of HbO concentration change during the activation period between the two groups. Channels 7, 8, and 9 are located in the FP area. Channels 23 and 30 are located in the right and left dorsolateral prefrontal cortex (RDLPFC and LDLPFC), respectively. Channel 34 is located in the LTC. Channel 38 is located in the right pre-motor and supplementary motor cortex.

[image: Bar graphs labeled A and B show mean and slope changes in HbO concentration in various brain regions, comparing AD (red) and CN (green) groups. Brain images labeled C and D visually depict HbO concentration changes with a color gradient, ranging from red (high) to blue (low).]

FIGURE 4
 HbO concentrations of variable brain regions. (A,B) show the mean HbO concentration change during the activation period and slope of HbO concentration change during the activation period of nine regions in the frontal and temporal lobes, including the frontopolar area, left and right dorsolateral prefrontal cortex, left and right temporal cortex, left and right pars triangularis Broca’s area, and left and right pre-motor and supplementary motor cortex. (C,D) show the topographic maps of mean HbO concentration change during the activation period and slope of HbO concentration change during the activation period and show the significant difference in channels between the two groups in red color. The scale bars in C,D represent the p-value.




TABLE 2 Channels that showed significant differences during working memory tasks.
[image: Table showing mean and slope of HbO concentration changes during activation in AD and CN groups. Channels S3-D3 to S12-D12 are listed, with detailed statistics including mean ± standard deviation, t-values, and p-values. Notable p-values are 0.017 and 0.034 indicating statistical significance.]



3.4 Functional connectivity during working memory tasks

Figure 5 illustrates the results of functional connectivity during the WM tasks. The average functional connectivity in the AD group was significantly lower than that in the CN group (Figure 5E, T = 2.198, p < 0.05). Strong functional connectivity was observed in FP locations in both groups, as depicted in Figures 5C,D.

[image: Heatmaps and brain network diagrams compare Alzheimer’s disease (AD) and cognitively normal (CN) groups. A and B show connectivity heatmaps for AD and CN. C and D are brain diagrams with labeled regions and connections, where CN has more robust connections. E is a bar graph illustrating higher average functional connectivity during working memory tasks in the CN group compared to AD, highlighted by a significant difference marker.]

FIGURE 5
 Functional connectivity during working memory tasks. (A,B) are heatmaps of 48 channels (the x and y axes represent the channel numbers) in AD and CN groups, and (C,D) are connection diagrams of the two groups. (E) Represents the average functional connectivity, which showed a significant difference between AD (red bar) and CN (green bar) groups (p < 0.05). FC, functional connectivity; WM, working memory; *, < 0.05. In C and D, green represents the frontopolar (FP) area; purple represents the left and right pars triangularis Broca’s area (LB and RB); red represents the left and right pre-motor and supplementary motor cortex (LSMA and RSMA); blue represents the left and right temporal cortex (LTC and RTC); yellow represents the left and right dorsolateral prefrontal cortex (LDLPFC and RDLPFC).





4 Discussion

This study aimed to elucidate the activation patterns of the frontotemporal cortex in the hemodynamic response to WM tasks using fNIRS in a sample of older adult patients with AD compared to CN subjects. We observed that in the two phases of the WM tasks, changes in HbO concentrations initially increased and then plateaued in the encoding and maintenance phases and finally increased to a much higher level in the retrieval phase in both AD and CN participants. These findings suggested that reduced cortical activation in the prefrontal and temporal cortex during the WM task might reflect the fact of cognitive decline in patients with AD. Moreover, in this study, we investigated cortical activations both in brain regions and in fNIRS channels, which might reflect more detailed physiological processes in relevant brain regions.

During the WM tasks, patients with AD exhibited lower cortical activation in both the encoding and retrieval phases compared to the CN group, as shown in Figure 3. Lower cortical activation during the encoding and maintenance phases is positively associated with poor memory function in patients with MCI and preclinical AD (Pavisic et al., 2021; Liu et al., 2023). However, during memory retrieval, neuronal activity peaked in both groups. Neuroimaging studies have also shown increased neural activity in the medial and lateral frontal cortices during memory retrieval (Cabeza et al., 2001). This heightened activity May be attributed to the involvement of more complex neurocognitive processes predominantly dependent on perceptual processes related to retrieval cues or tasks, as well as the recall of information from memory and related executive functions (Straube, 2012; Tabi et al., 2021).

Compared to the CN group, the average HbO concentration and functional connectivity were significantly lower in the AD group across different subregions or channels when performing the WM tasks. Brain network functions related to WM and attention decline even in the preclinical stages of AD (Lazarou et al., 2022). Moreover, patients with AD demonstrated decreased connectivity in specific networks during the memory retrieval phase (Li et al., 2021). However, an age-related increase in prefrontal cortex integration was associated with better retrieval performance in older adults, regarded as functional compensation (Deng et al., 2021).

A number of traditional non-invasive neuroimaging techniques, mainly including EEG, PET, and fMRI, have been used to assess resting-state functional connectivity (rsFC) in patients with AD (Allen et al., 2007; Zhao et al., 2022). Regarding the fNIRS-based rsFC, previous studies successfully validated the use of fNIRS in assessing rsFC in the human brain (Duan et al., 2012; Lu et al., 2010; White et al., 2009). In our study, rsFC was also assessed using fNIRS. Decreased rsFC was found in the FP area, the pars triangularis Broca’s area, the pre-motor and supplementary motor cortices, the temporal cortex, and the dorsolateral prefrontal cortex in the AD group compared to the CN group. The findings suggested that there is a difference in interhemispheric rsFC between AD and CN groups, which was consistent with previous studies (Mızrak et al., 2024). Regarding the powerful neuroimaging technique of EEG-fNIRS, whole-head EEG and frontal/prefrontal cortex fNIRS can also be used to evaluate brain activity in early AD and CN during WM tasks (Perpetuini and Chiarelli, 2020).

Recent studies have indicated sustained neuronal activity in the prefrontal, parietal, and occipital regions during WM tasks (Leavitt et al., 2017; Curtis and Sprague, 2021; van Kerkoerle and Self, 2017). In the present study, during the WM task performance, although the average HbO concentration in the left brain in the AD group was lower than that in the CN group, there was no significant difference between the two groups in the brain region scale. In channel scale, regarding the average HbO concentrations, compared to the AD group, cortical activations were higher in channels 7 and 32, which correspond to the frontal lobe in the CN group; regarding slope HbO concentrations, cortical activations in the CN group were higher in the channels 7, 8, and 9, which correspond to the prefrontal lobe, and channels 34, 38, and 23, which correspond to the frontal and temporal lobes. These findings suggested that fNIRS can provide more information on channel scales. These cortical activations during the encoding, maintenance, and retrieval phases of WM are positively associated with memory function (Cui et al., 2021; Uemura et al., 2016).

Multiscale biomarkers, including activities in brain regions or channels in this study, can provide more information to improve the identification of AD. Furthermore, multidimensional or multimodal diagnostic methods are potential hot research topics for future AD diagnosis (Li et al., 2023; Kim et al., 2022; Moallemian et al., 2023). Machine learning for cognitive outcome prediction from multimodal neuroimaging was also used to identify multimodal imaging biomarkers (Wang et al., 2023).

This study effectively examined the characteristic patterns of brain activity in patients with AD during the WM task using the fNIRS technique. Our findings provided evidence of cognitive impairment cognition and functional deficits in the prefrontal, local parietal, and temporal cortex in patients with AD. Additionally, our study suggests that fNIRS could serve as a reliable and valuable clinical diagnostic tool for AD. However, our study had certain limitations. First, the scope of the study was constrained by the limited number of channels. Thus, the area measured by fNIRS was restricted to the prefrontal and temporal cortices. Additionally, the small sample size limited the applicability of the findings. To address this, future research should use a larger sample size to enhance the generalizability of the results.



5 Conclusion

This fNIRS study demonstrated that patients with AD exhibited lower cortical activation in the prefrontal and temporal cortices and weaker functional connectivity during memory encoding and retrieval phases in the WM task compared to older adults in the CN group. These findings suggest that reduced cortical activation and neural connections detected by fNIRS might contribute to cognitive decline associated with AD. Additionally, this study suggests that fNIRS might be a potentially reliable method for diagnosing and screening AD.



Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Ethics statement

The studies involving humans were approved by ethics committee of Affiliated Kangning Hospital of Ningbo University. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants' legal guardians/next of kin.



Author contributions

NR: Writing – original draft. XL: Data curation, Writing – review & editing. TX: Data curation, Methodology, Writing – original draft. ZZ: Data curation, Writing – original draft. XM: Writing – original draft. CZ: Writing – review & editing.



Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. The study was funded by Ningbo City Key R&D plan "Jie Bang Gua Shuai" (2023Z170), Ningbo City Public Welfare Science and Technology Plan project (2022S025), Zhejiang Medical and Health Science and Technology Project (2024KY347), Basic Public Welfare Project of Zhejiang Province (LQ21H170001), and Ningbo Medical & Health Leading Academic Discipline Project (2022-F28). The sponsor had no role in the design or conduct of this research.



Acknowledgments

We acknowledge the Affiliated Kangning Hospital of Ningbo University and all hospital staff who were involved in patient treatment.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



References
	 Allen, G., Barnard, H., McColl, R., Hester, A. L., Fields, J. A., Weiner, M. F., et al. (2007). Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64, 1482–1487. doi: 10.1001/archneur.64.10.1482
	 Alzheimers Dement (2023). 2023 Alzheimer's disease facts and figures. Alzheimers Dement. 19, 1598–1695. doi: 10.1002/alz.13016
	 Benmelouka, A. Y., Ouerdane, Y., Outani, O., Alnasser, Y. T., Alghamdi, B. S., Perveen, A., et al. (2022). Alzheimer's disease-related psychosis: an overview of clinical manifestations, pathogenesis, and current treatment. Curr. Alzheimer Res. 19, 285–301. doi: 10.2174/1567205019666220418151914 
	 Bruner, E. (2022). A network approach to the topological organization of the Brodmann map. Anat. Rec. 305, 3504–3515. doi: 10.1002/ar.24941 
	 Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., and Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc. Natl. Acad. Sci. USA 98, 4805–4810. doi: 10.1073/pnas.081082698 
	 Chou, Y. H., Ton That, V., and Sundman, M. (2020). A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging 86, 1–10. doi: 10.1016/j.neurobiolaging.2019.08.020 
	 Cicalese, P. A., Li, R., Ahmadi, M. B., Wang, C., Francis, J. T., Selvaraj, S., et al. (2020). An EEG-fNIRS hybridization technique in the four-class classification of alzheimer's disease. J. Neurosci. Methods 336:108618. doi: 10.1016/j.jneumeth.2020.108618 
	 Cockrell, J. R., and Folstein, M. F. (1988). Mini-mental state examination (MMSE). Psychopharmacol. Bull. 24, 689–692 
	 Cogo-Moreira, H., Krance, S. H., Wu, C. Y., Lanctôt, K. L., Herrmann, N., Black, S. E., et al. (2023). State, trait, and accumulated features of the Alzheimer's disease assessment scale cognitive subscale (ADAS-cog) in mild Alzheimer's disease. Alzheimers Dement. 9:e12376. doi: 10.1002/trc2.12376 
	 Cui, L., Zhang, Z., Zac Lo, C. Y., and Guo, Q. (2021). Local functional MR change pattern and its association with cognitive function in objectively-defined subtle cognitive decline. Front. Aging Neurosci. 13:684918. doi: 10.3389/fnagi.2021.684918 
	 Curtis, C. E., and Sprague, T. C. (2021). Persistent activity during working memory from front to Back. Front. Neural Circuits. 15:696060. doi: 10.3389/fncir.2021.696060 
	 de Toledo-Morrell, L., Dickerson, B., Sullivan, M. P., Spanovic, C., Wilson, R., and Bennett, D. A. (2000). Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease. Hippocampus 10, 136–142. doi: 10.1002/(SICI)1098-1063(2000)10:2<136::AID-HIPO2>3.0.CO;2-J 
	 Deng, L., Stanley, M. L., Monge, Z. A., Wing, E. A., Geib, B. R., Davis, S. W., et al. (2021). Age-related compensatory reconfiguration of PFC connections during episodic memory retrieval. Cereb. Cortex 31, 717–730. doi: 10.1093/cercor/bhaa192 
	 Dhakal, A., and Bobrin, B. D. (2024). Cognitive Deficits. Treasure Island, FL: Stat Pearls Publishing.
	 Duan, L., Zhang, Y. J., and Zhu, C. Z. (2012). Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study. NeuroImage 60, 2008–2018. doi: 10.1016/j.neuroimage.2012.02.014
	 Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. doi: 10.1016/0022-3956(75)90026-6
	 Gagliardi, G., and Vannini, P. (2021). Episodic memory impairment mediates the loss of awareness in mild cognitive impairment. Front. Aging Neurosci. 13:802501. doi: 10.3389/fnagi.2021.802501
	 Germano, C., and Kinsella, G. J. (2005). Working memory and learning in early Alzheimer's disease. Neuropsychol. Rev. 15, 1–10. doi: 10.1007/s11065-005-3583-7
	 Gold, C. A., and Budson, A. E. (2008). Memory loss in Alzheimer's disease: implications for development of therapeutics. Expert. Rev. Neurother. 8, 1879–1891. doi: 10.1586/14737175.8.12.1879 
	 Hsieh, L. T., and Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage 85, 721–729. doi: 10.1016/j.neuroimage.2013.08.003 
	 Hu, Z., Liu, G., Dong, Q., and Niu, H. (2020). Applications of resting-state fNIRS in the developing brain: a review from the connectome perspective. Front. Neurosci. 14:476. doi: 10.3389/fnins.2020.00476 
	 Huntley, J. D., and Howard, R. J. (2010). Working memory in early Alzheimer's disease: a neuropsychological review. Int. J. Geriatr. Psychiatry 25, 121–132. doi: 10.1002/gps.2314
	 Igarashi, K. M. (2023). Entorhinal cortex dysfunction in Alzheimer's disease. Trends Neurosci. 46, 124–136. doi: 10.1016/j.tins.2022.11.006 
	 Jia, X., Wang, Z., Huang, F., Su, C., du, W., Jiang, H., et al. (2021). A comparison of the Mini-mental state examination (MMSE) with the Montreal cognitive assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry 21:485. doi: 10.1186/s12888-021-03495-6 
	 Keles, H. O., Karakulak, E. Z., Hanoglu, L., and Omurtag, A. (2022). Screening for Alzheimer's disease using prefrontal resting-state functional near-infrared spectroscopy. Front. Hum. Neurosci. 16:1061668. doi: 10.3389/fnhum.2022.1061668 
	 Kim, H. (2019). Neural activity during working memory encoding, maintenance, and retrieval: a network-based model and meta-analysis. Hum. Brain Mapp. 40, 4912–4933. doi: 10.1002/hbm.24747 
	 Kim, J., Jeong, M., Stiles, W. R., and Choi, H. S. (2022). Neuroimaging modalities in Alzheimer's disease: diagnosis and clinical features. Int J Mol Sci. 23:79. doi: 10.3390/ijms23116079
	 Kim, J., and Yon, D. K. (2022). Novel diagnostic tools for identifying cognitive impairment using olfactory-stimulated functional near-infrared spectroscopy: patient-level, single-group, diagnostic trial. Alzheimers Res. Ther. 14:39. doi: 10.1186/s13195-022-00978-w
	 Kirova, A. M., Bays, R. B., and Lagalwar, S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer's disease. Biomed. Res. Int. 2015:748212, 1–9. doi: 10.1155/2015/748212
	 Koch, G., Casula, E. P., Bonnì, S., Borghi, I., Assogna, M., Minei, M., et al. (2022). Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial. Brain 145, 3776–3786. doi: 10.1093/brain/awac285 
	 Lazarou, I., Georgiadis, K., Nikolopoulos, S., Oikonomou, V. P., Stavropoulos, T. G., Tsolaki, A., et al. (2022). Exploring network properties across preclinical stages of Alzheimer's disease using a visual short-term memory and attention task with high-density electroencephalography: a brain-connectome neurophysiological study. J. Alzheimers Dis. 87, 643–664. doi: 10.3233/JAD-215421 
	 Leavitt, M. L., Pieper, F., Sachs, A. J., and Martinez-Trujillo, J. C. (2017). Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles. Proc. Natl. Acad. Sci. USA 114, E2494–e2503. doi: 10.1073/pnas.1619949114 
	 Li, J., Mountz, E. J., Mizuno, A., Shah, A. M., Weinstein, A., Cohen, A. D., et al. (2023). Functional asymmetry during working memory and its association with markers of Alzheimer's disease in cognitively Normal older adults. J. Alzheimers Dis. 95, 1077–1089. doi: 10.3233/JAD-230379 
	 Li, K., Zeng, Q., Luo, X., and Qi, S. (2023). Neuropsychiatric symptoms associated multimodal brain networks in Alzheimer's disease. Hum. Brain Mapp. 44, 119–130. doi: 10.1002/hbm.26051 
	 Li, B., Zhang, M., Jang, I., Ye, G., Zhou, L., He, G., et al. (2021). Amyloid-Beta influences memory via functional connectivity during memory retrieval in Alzheimer's disease. Front. Aging Neurosci. 13:721171. doi: 10.3389/fnagi.2021.721171 
	 Liu, X., Chen, Q., Cheng, F., Zhuang, W., Zhang, W., Tang, Y., et al. (2024). The abnormal brain activation pattern of adolescents with major depressive disorder based on working memory tasks: a fNIRS study. J. Psychiatr. Res. 169, 31–37. doi: 10.1016/j.jpsychires.2023.10.054 
	 Liu, X., Cheng, F., Hu, S., Wang, B., Hu, C., Zhu, Z., et al. (2022). Cortical activation and functional connectivity during the verbal fluency task for adolescent-onset depression: a multi-channel NIRS study. J. Psychiatr. Res. 147, 254–261. doi: 10.1016/j.jpsychires.2022.01.040 
	 Liu, Y., Zeng, Z., Huang, S., Shang, P., Lv, Z., Wang, Y., et al. (2023). Brain activation during working memory task in amnestic mild cognitive impairment patients and its association with memory and attention. J. Alzheimers Dis. 91, 863–875. doi: 10.3233/JAD-220815
	 Lou, W., Shi, L., Wang, D., Tam, C. W. C., Chu, W. C. W., Mok, V. C. T., et al. (2015). Decreased activity with increased background network efficiency in amnestic MCI during a visuospatial working memory task. Hum. Brain Mapp. 36, 3387–3403. doi: 10.1002/hbm.22851 
	 Lu, C. M., Zhang, Y. J., Biswal, B. B., Zang, Y. F., Peng, D. L., and Zhu, C. Z. (2010). Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods 186, 242–249. doi: 10.1016/j.jneumeth.2009.11.010
	 Machulda, M. M., Senjem, M. L., Weigand, S. D., Smith, G. E., Ivnik, R. J., Boeve, B. F., et al. (2009). Functional magnetic resonance imaging changes in amnestic and nonamnestic mild cognitive impairment during encoding and recognition tasks. J. Int. Neuropsychol. Soc. 15, 372–382. doi: 10.1017/S1355617709090523 
	 Mızrak, H. G., Dikmen, M., Hanoğlu, L., and Şakul, B. U. (2024). Investigation of hemispheric asymmetry in Alzheimer's disease patients during resting state revealed BY fNIRS. Sci. Rep. 14:13454. doi: 10.1038/s41598-024-62281-y 
	 Moallemian, S., Salmon, E., Bahri, M. A., Beliy, N., Delhaye, E., Balteau, E., et al. (2023). Multimodal imaging of microstructural cerebral alterations and loss of synaptic density in Alzheimer's disease. Neurobiol. Aging 132, 24–35. doi: 10.1016/j.neurobiolaging.2023.08.001 
	 Müller, S. M., Schiebener, J., Brand, M., and Liebherr, M. (2021). Decision-making, cognitive functions, impulsivity, and media multitasking expectancies in high versus low media multitaskers. Cogn. Process. 22, 593–607. doi: 10.1007/s10339-021-01029-2 
	 Musaeus, C. S., Pedersen, J. S., Kjær, T. W., Johannsen, P., Waldemar, G., Haverberg, M. J. N., et al. (2021). Cortical Frontoparietal network dysfunction in CHMP2B-frontotemporal dementia. Front. Aging Neurosci. 13:714220. doi: 10.3389/fnagi.2021.714220 
	 Naoko Narita, A. S., Higuchi, H., Narita, M., Tazoe, M., and Sakatani, K. (2012). Impaired prefrontal cortical response by switching stimuli in autism spectrum disorders. J. Pediatr. Neurol. 10, 87–94.
	 Niu, H. J., Li, X., Chen, Y. J., Ma, C., Zhang, J. Y., and Zhang, Z. J. (2013). Reduced frontal activation during a working memory task in mild cognitive impairment: a non-invasive near-infrared spectroscopy study. CNS Neurosci. Ther. 19, 125–131. doi: 10.1111/cns.12046 
	 Pavisic, I. M., Pertzov, Y., Nicholas, J. M., O’Connor, A., Lu, K., Yong, K. X. X., et al. (2021). Eye-tracking indices of impaired encoding of visual short-term memory in familial Alzheimer's disease. Sci. Rep. 11:8696. doi: 10.1038/s41598-021-88001-4 
	 Perpetuini, D., and Chiarelli, A. M. (2020). Working memory decline in Alzheimer's disease is detected by complexity analysis of multimodal EEG-fNIRS. Entropy 22:1380. doi: 10.3390/e22121380
	 Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 1464, 5–29. doi: 10.1111/nyas.13948 
	 Rémy, F., Mirrashed, F., Campbell, B., and Richter, W. (2005). Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI study. NeuroImage 25, 253–266. doi: 10.1016/j.neuroimage.2004.10.045 
	 Richter, N., Bischof, G. N., Dronse, J., Nellessen, N., Neumaier, B., Langen, K. J., et al. (2020). Entorhinal tau predicts hippocampal activation and memory deficits in Alzheimer's disease. J. Alzheimers Dis. 78, 1601–1614. doi: 10.3233/JAD-200835 
	 Rorden, C., and Brett, M. (2000). Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200. doi: 10.1155/2000/421719
	 Rosen, W. G., Mohs, R. C., and Davis, K. L. (1984). A new rating scale for Alzheimer's disease. Am. J. Psychiatry 141, 1356–1364. doi: 10.1176/ajp.141.11.1356
	 Ruimin, W., Kamezawa, R., Watanabe, A., and Iramina, K. (2017). EEG alpha power change during working memory encoding in adults with different memory performance levels. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 982–985. doi: 10.1109/EMBC.2017.8036990
	 Scheltens, P., de Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., et al. (2021). Alzheimer's disease. Lancet 397, 1577–1590. doi: 10.1016/S0140-6736(20)32205-4 
	 Steffener, J., Motter, J. N., Tabert, M. H., and Devanand, D. P. (2021). Odorant-induced brain activation as a function of normal aging and Alzheimer's disease: a preliminary study. Behav. Brain Res. 402:113078. doi: 10.1016/j.bbr.2020.113078 
	 Straube, B. (2012). An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behav. Brain Funct. 8:35. doi: 10.1186/1744-9081-8-35 
	 Tabi, Y. A., Maio, M. R., Fallon, S. J., Udale, R., Dickson, S., Idris, M. I., et al. (2021). Impact of processing demands at encoding, maintenance and retrieval in visual working memory. Cognition 214:104758. doi: 10.1016/j.cognition.2021.104758 
	 Uemura, K., Shimada, H., Doi, T., Makizako, H., Tsutsumimoto, K., Park, H., et al. (2016). Reduced prefrontal oxygenation in mild cognitive impairment during memory retrieval. Int. J. Geriatr. Psychiatry 31:583-591. doi: 10.1002/gps.4363 
	 van Kerkoerle, T., and Self, M. W. (2017). Layer-specificity in the effects of attention and working memory on activity in primary visual cortex. Nat. Commun. 8:13804. doi: 10.1038/ncomms13804 
	 Wang, X., Feng, Y., Tong, B., Bao, J., Ritchie, M. D., Saykin, A. J., et al. (2023). Exploring automated machine learning for cognitive outcome prediction from multimodal brain imaging using STREAMLINE. AMIA Jt Summits Transl Sci Proc. 2023, 544–553 
	 Wang, X., and Ji, X. (2020). Sample size estimation in clinical research: from randomized controlled trials to observational studies. Chest 158, S12–s20. doi: 10.1016/j.chest.2020.03.010
	 Wei, H., and Zhou, R. (2020). High working memory load impairs selective attention: EEG signatures. Psychophysiology 57:e13643. doi: 10.1111/psyp.13643
	 White, B. R., Snyder, A. Z., Cohen, A. L., Petersen, S. E., Raichle, M. E., Schlaggar, B. L., et al. (2009). Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. NeuroImage 47, 148–156. doi: 10.1016/j.neuroimage.2009.03.058 
	 Wu, Y. J., Hou, X., and Peng, C. (2022). Rapid learning of a phonemic discrimination in the first hours of life. Nat. Hum. Behav. 6, 1169–1179. doi: 10.1038/s41562-022-01355-1
	 Yanagisawa, K., Nakamura, N., Tsunashima, H., and Narita, N. (2016). Proposal of auxiliary diagnosis index for autism spectrum disorder using near-infrared spectroscopy. Neurophotonics 3:031413. doi: 10.1117/1.NPh.3.3.031413 
	 Yang, D., Hong, K. S., Yoo, S. H., and Kim, C. S. (2019). Evaluation of neural degeneration biomarkers in the prefrontal cortex for early identification of patients with mild cognitive impairment: an fNIRS study. Front. Hum. Neurosci. 13:317. doi: 10.3389/fnhum.2019.00317 
	 Yeung, M. K., and Chan, A. S. (2020). Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: a systematic review. J. Psychiatr. Res. 124, 58–76. doi: 10.1016/j.jpsychires.2020.02.017 
	 Yu, J. W., and Lim, S. H. (2020). Prefrontal functional connectivity analysis of cognitive decline for early diagnosis of mild cognitive impairment: a functional near-infrared spectroscopy study. Biomed. Opt. Express. 11, 1725–1741. doi: 10.1364/BOE.382197
	 Zhao, C., Huang, W. J., Feng, F., Zhou, B., Yao, H. X., Guo, Y. E., et al. (2022). Abnormal characterization of dynamic functional connectivity in Alzheimer's disease. Neural Regen. Res. 17, 2014–2021. doi: 10.4103/1673-5374.332161 


Copyright
 © 2024 Ruan, Li, Xu, Zhao, Mei and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










	
	ORIGINAL RESEARCH
published: 01 October 2024
doi: 10.3389/fnagi.2024.1462238






[image: image2]

Olfactory dysfunction as an early pathogenic indicator in C. elegans models of Alzheimer's and polyglutamine diseases

Weikang Xue1†, Ziyi Lei1†, Bin Liu1†, Hanxin Guo1†, Weiyi Yan1, Youngnam N. Jin1,2* and Yanxun V. Yu1,2*


1Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China

2Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China

Edited by
Federico Angelo Cazzaniga, IRCCS Carlo Besta Neurological Institute Foundation, Italy

Reviewed by
Subhabrata Sanyal, California Life Company (Calico), United States
 Anubhuti Dixit, Amity University, India

*Correspondence
 Youngnam N. Jin, youngnam_jin@whu.edu.cn
 Yanxun V. Yu, yanxunyu@whu.edu.cn

†These authors have contributed equally to this work and share first authorship

Received 09 July 2024
 Accepted 16 September 2024
 Published 01 October 2024

Citation
 Xue W, Lei Z, Liu B, Guo H, Yan W, Jin YN and Yu YV (2024) Olfactory dysfunction as an early pathogenic indicator in C. elegans models of Alzheimer's and polyglutamine diseases. Front. Aging Neurosci. 16:1462238. doi: 10.3389/fnagi.2024.1462238



Neurodegenerative diseases such as Alzheimer's disease and polyglutamine diseases are characterized by abnormal accumulation of misfolded proteins, leading to neuronal dysfunction and subsequent neuron death. However, there is a lack of studies that integrate molecular, morphological, and functional analyses in neurodegenerative models to fully characterize these time-dependent processes. In this study, we used C. elegans models expressing Aβ1-42 and polyglutamine to investigate early neuronal pathogenic features in olfactory neurons. Both models demonstrated significant reductions in odor sensitivity in AWB and AWC chemosensory neurons as early as day 1 of adulthood, while AWA chemosensory neurons showed no such decline, suggesting cell-type-specific early neuronal dysfunction. At the molecular level, Aβ1-42 or Q40 expression caused age-dependent protein aggregation and morphological changes in neurons. By day 6, both models displayed prominent protein aggregates in neuronal cell bodies and neurites. Notably, AWB neurons in both models showed significantly shortened cilia and increased instances of enlarged cilia as early as day 1 of adulthood. Furthermore, AWC neurons expressing Aβ1-42 displayed calcium signaling defects, with significantly reduced responses to odor stimuli on day 1, further supporting early behavioral dysfunction. In contrast, AWA neuron did not exhibit reduced calcium responses, consistent with the absence of detectable decreases in olfactory sensitivity in these neurons. These findings suggest that decreased calcium signaling and dysfunction in specific sensory neuron subtypes are early indicators of neurodegeneration in C. elegans, occurring prior to the formation of visible protein aggregates. We found that the ER unfolded protein response (UPR) is significantly activated in worms expressing Aβ1-42. Activation of the AMPK pathway alleviates olfactory defects and reduces fibrillar Aβ in these worms. This study underscores the use of C. elegans olfactory neurons as a model to elucidate mechanisms of proteostasis in neurodegenerative diseases and highlights the importance of integrated approaches.
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1 Introduction

The extended human lifespan has led to a rise in age-related neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) (Wilson et al., 2023). The growing number of patients places a significant burden on families and rising societal costs.

AD is a chronic, progressive neurological disorder and the most prevalent form of dementia, with its incidence rising with age. AD affects various brain regions, such as hippocampus and cortex, and is characterized by senile plaques primarily composed of the amyloid β-protein (Aβ) and neurofibrillary tangles made by hyperphosphorylated tau protein, resulting in memory loss and cognitive impairment (Breijyeh and Karaman, 2020; Knopman et al., 2021). Less than 5% of AD cases are familial. Familial AD is caused by mutations in amyloid precursor protein (APP) and presenilin 1/2 (PSEN-1/2) genes, while the apolipoprotein E (APOE) gene is the most significant genetic risk factor for sporadic AD. The cause of AD is a complex interplay of genetic and environmental factors (Breijyeh and Karaman, 2020; Knopman et al., 2021). Major pathogenic hypotheses include Aβ deposit, tau propagation, impaired cholinergic neurons, inflammation, and oxidative stress. Aβ forms toxic oligomers, fibrils, and plaques, leading to increased ROS, impaired cellular functions, and cell death (Liu et al., 2019). There is no cure, but current treatments focus on managing symptoms and slowing progression.

Polyglutamine (polyQ) diseases encompass a group of neurodegenerative disorders caused by expanded CAG repeats in genes, leading to elongated polyQ tracts within proteins. HD, among the most studied polyQ disorders, results from abnormal expansion of CAG repeats in the huntingtin (HTT) gene (Fan et al., 2014), typically longer than 36 in affected individuals (Bates et al., 2015; Tabrizi et al., 2020). The expanded polyQ tract disrupts protein function, causing protein misfolding and aggregation in the cytosol and nucleus, leading to disrupted proteostasis and ribotoxicity (Gidalevitz et al., 2006; Aviner et al., 2024). Despite HTT being widely expressed in most tissues, this “toxic gain of function” selectively targets medium spiny neurons in the striatum, a brain region crucial for movement control. As the disease progresses, the striatum shrinks, and neurons die. HD symptoms include progressive loss of motor control, cognitive decline, and psychiatric issues. HD exemplifies how CAG repeat expansions trigger neurodegeneration (Lieberman et al., 2019; Malik et al., 2021). Other polyQ diseases, such as spinal and bulbar muscular atrophy (SBMA) and spinocerebellar ataxias (SCAs), share a common feature of an abnormal polyQ tract leading to neuronal dysfunction and/or death.

C. elegans, a simple worm, offers a powerful and cost-effective platform for studying human diseases, particularly neurodegenerative diseases (Shen et al., 2018; Roussos et al., 2023; Wu et al., 2024; Yamamoto et al., 2024). Its short lifespan, transparent body, and well-mapped nervous system make it ideal for observing disease processes at both the cellular and whole-animal levels, as well as for precise neuronal tracking and analyses. C. elegans shares evolutionarily conserved key molecular pathways with mammals, including humans, enabling researchers to simulate disease models and dissect disease mechanisms. Additionally, its ease of genetic manipulation allows for high-throughput drug and genetic screens, accelerating the discovery of potential treatments. Overall, C. elegans serves as a versatile tool for dissecting neurodegenerative diseases at the molecular level, paving the way for new therapeutic strategies.

The first AD model in C. elegans was created by expressing human Aβ1–42 in muscle tissue (Link, 1995). While this approach did not directly mimic human AD, it provided valuable insights. The worms rapidly formed Aβ deposits, exhibited progressive paralysis, and died within 2–3 days, demonstrating Aβ's ability to form toxic structures and cause cellular damage, similar to what is observed in human disease. However, this model more closely resembled inclusion body myositis (IBM) due to its expression in muscle tissue. To better replicate the age-related behavioral dysfunctions seen in human AD, a novel strain with constitutive pan-neuronal Aβ1–42 expression (GRU102) was developed to study the early events of Aβ-mediated toxicity, with a focus on mitochondrial metabolism. GRU102, like previous models, exhibits mild phenotypes such as chemotaxis failure and age-related neuromuscular defects. Despite Aβ aggregates appearing only in older worms (day 12), young GRU102 already showed defects in energy metabolism and reduced mitochondrial energetics (Fong et al., 2016; Teo et al., 2019).

PolyQ expansions disrupt protein quality control, disturbing the delicate balance within cells and impairing the folding and proper function of many proteins (Gidalevitz et al., 2006; Aviner et al., 2024). This underscores the widespread consequences of polyQ toxicity. C. elegans worms offer a powerful tool to study these effects and disease mechanisms. Transgenic C. elegans models have been developed to express polyQ of varying lengths in different neuron types, recapitulating features of diseases like HD. The length of the polyQ repeat directly influences disease onset and severity. Notably, some models show cellular dysfunction mediated by mutant polyQ proteins even before protein aggregation occurs, suggesting that these early disruptions may be crucial in disease progression (Faber et al., 1999). For example, expressing mutant Htt in touch receptor neurons using the mec-3 promoter revealed perinuclear aggregates and axonal abnormalities without cell death (Parker et al., 2001). Pan-neuronal expression of polyQ under the rgef-1 promoter demonstrated that polyQ repeat size correlates with neuronal dysfunction, requiring more than 40 glutamines for insoluble aggregate formation (Brignull et al., 2006). Muscle-specific models expressing polyQ in body wall muscle cells showed reduced motility and lifespan, with aggregation and toxicity increasing with age. Consistently, a length of 35–40 glutamines was identified as critical for aggregation and dysfunction (Morley et al., 2002; Lee et al., 2017). These C. elegans models offer valuable insights into the broad impact of polyQ expansion and mechanisms underlying disease progression.

Olfactory dysfunction is a common and early manifestation in many neurodegenerative diseases, including AD, HD, and SCAs (Abele et al., 2003; Murphy, 2019; Laroche et al., 2020; Pacyna et al., 2023; Hawkes, 2003). Understanding how neurodegeneration disrupts sensory perception can offer crucial insights into disease progression and potential therapeutic strategies. In this study, we utilize two C. elegans neuronal models for AD (Fong et al., 2016) and polyglutamine diseases (Brignull et al., 2006) to investigate early olfactory pathogenic events and delineate disease phenotypes across different age stages, reflecting the progressive nature of these neuronal diseases. We also investigated which cellular compartments are most susceptible to pathological protein aggregation and examined the involvement of the AMPK pathway in C. elegans models of neurodegeneration.



2 Materials and methods


2.1 C. elegans and drug treatment

All C. elegans strains were cultured on nematode growth medium (NGM) plates seeded with Escherichia coli strain OP50 at 20°C according to established protocols (Brenner, 1974). For drug treatment, AICAR (Targetmol, CAS 2627-69-2) or metformin (Sangon Biotech, CAS 1115-70-41) was dissolved in Milli-Q water and added to NGM agar to achieve final concentrations of 1 μM or 10 μM (AICAR) or 2 mM or 25 mM (metformin) to pour plates. Twenty-five young adult C. elegans were placed on these plates to lay eggs for 4 h. After removing the worms, the plates were incubated at 20°C for 4 days, allowing the eggs to develop into day 1 adults for subsequent analysis.



2.2 Generation of transgenic worms

Transgenic strains were generated using standard genetic procedures (Mello et al., 1991), with plasmids injected at concentrations of 20–50 ng/μl. Well-fed, day 1 young adult worms were utilized for this procedure. These worms were placed on a dried agarose pad to immobilize them. A drop of halocarbon oil was quickly added to cover the worms from drying out. Using a microinjection setup, a mixed plasmid DNA solution was carefully injected into the gonads of the worms. Following injection, the worms were allowed to recover on NGM plates at 20°C. Transgenic animals were identified based on expression of a fluorescent co-injection marker or other selectable traits. These transgenic worms were then selected and transferred to fresh plates to establish lines, ensuring the gene of interest was transmitted to subsequent generations. At least three independent transgenic lines were maintained for further experimentation. A comprehensive list of strains is provided in Supplementary Table 1.



2.3 Chemotaxis assays

Chemotaxis assays were performed following a previously described protocol (Bargmann et al., 1993) with slight modifications. The assay plates contained 1.6% agar, 25 mM potassium phosphate (pH 6.0), 1 mM calcium chloride, and 1 mM magnesium sulfate. The solution was microwaved until the agar completely melted and was then allowed to cool to ~60°C. Subsequently, 10 ml of the solution was poured into each 9 cm Petri plate, and the plates were left uncovered to dry for 1 h at room temperature. At the onset of the assay, ~50 synchronized young adult worms were picked and placed onto the center of the freshly prepared assay plate. Two 1 μl spots of odorant and diluent ethanol were placed at opposite ends of the plate, along with 1 μl of 1 M potassium azide at each spot to immobilize the worms. The odorants used were as follows: isoamyl alcohol (Cat#M823039, Macklin), 2-butanone (Cat#80022818, Sinopharm Chemical Reagent), diacetyl (Cat#B85307, Sigma-Aldrich), pyrazine (Cat#P109613, Aladdin Scientific Corp), and 2-nonanone (Cat#N814618, Macklin), all diluted in ethanol. After 60 min, the worms anesthetized by potassium azide were counted. The chemotaxis index was calculated as: (number of animals at the odor spot—number of animals at the counter spot)/total number of animals on the plate. Chemotaxis indexes are presented as mean ± s.e.m., with individual data points shown in all figures.



2.4 Western blot

Age-synchronized worms were collected and washed with M9 buffer. The worms were homogenized in lysis buffer containing protease inhibitors. The homogenate was centrifuged at 15,000 rpm for 15 min at 4°C. The supernatant was collected, and protein concentration was measured using BCA assay. Samples were normalized to equal protein concentration, mixed with loading buffer, and boiled for 10 min at 100°C. Western blotting was performed according to standard protocols. Equal amounts of protein lysate (10 or 20 μg) were loaded onto a 12% SDS-PAGE gel and separated in electrophoresis. Proteins were then transferred to a PVDF membrane, blocked with 5% non-fat milk, and incubated overnight at 4°C with primary antibodies. The membrane was washed and incubated with HRP-conjugated secondary antibodies for 1 h at room temperature. After additional washes, the membrane was incubated with ECL solution and exposed to film. The primary antibodies used were: anti-GFP Rabbit pAb (ABclonal, AE011, 1:20,000) and anti-β-Actin Mouse mAb (ABclonal, AC004, 1:5,000).



2.5 Dot blot

Dot blot assays were performed following a similar procedure to western blotting, with the exception that 2 μl of sample containing 4 μg of protein were loaded directly onto the nitrocellulose membrane without electrophoresis and allowed to dry at room temperature for 30 min. Blots were stained with Ponceau red as a total protein level indicator. The membrane was then blocked with 5% non-fat milk, incubated overnight at 4°C with primary antibodies, and processed as in western blotting. The primary antibodies used were: anti-β-Amyloid oligomers [6E10] antibody (BioLegend, 803004, 1:20000) and anti-Amyloid fibrils [mOC22] antibody (Abcam, ab205339, 1:20000).



2.6 Fluorescence imaging

Freshly prepared 1% agarose pads were made on glass slides. Fluorescent transgenic worms cultured on NGM plates were collected for imaging. The worms were anesthetized with 10 μM levamisole, arranged on the agarose pads, and covered with a cover slip. Imaging was performed using a Nikon Ti2-E inverted microscope with a 100X oil objective to observe polyQ aggregation and cilia morphology. Z-stack images were captured with 0.5 μm step size. The maximum projection image of each worm was examined visually for exceptionally bright puncta of subcellular size, which were defined as aggregates. The total number of aggregates was then determined by counting all aggregation puncta in the maximum projection images. Neurites were categorized as having “no aggregation” if all neuronal processes appeared smooth and free of puncta.



2.7 Calcium imaging

Calcium imaging experiments were performed as described in Chalasani et al., with some modifications. Transgenic worms expressing the calcium sensor GCaMP6s in specific neuron were loaded into a custom-made microfluidic chip. The animal's nose was exposed to a stream of liquid that could be manually switched between diluted odor and buffer. The buffer consisted of 25 mM potassium phosphate (pH 6.0), 1 mM CaCl2, and 1 mM MgSO4. Odorants were freshly diluted in the buffer. Before recordings, the nose tips of worms trapped in the chip were allowed to adapt for 2 min in the buffer solution stream. One channel containing 2 nM fluorescein was used to confirm correct fluid flow. Imaging was conducted on a ZEISS inverted microscope with a 40X water objective and an sCMOS camera (PCO. Edge 4.2 bi). Time-lapse images were recorded at 1 frame per second.



2.8 Real-time qPCR

Approximately 100 day 1 worms were washed three times with M9 buffer and collected in RNAiso Plus (Takara). Total RNA was extracted following the manufacturer's protocol. cDNA libraries were synthesized using HiScript III RT SuperMix with gDNA wiper (Vazyme). Subsequently, qPCR amplification was carried out on a CFX Connect Real-Time PCR system (Bio-Rad) using 2x Taq Pro Universal SYBR qPCR Master Mix (Vazyme). The gene expression levels were quantified by the ΔΔCt method and normalized against actin (act-1). Each sample was assayed in triplicate.



2.9 Quantification and statistical analysis

Dot blot and western blot signal intensities were quantified using ImageJ software. The Neuroanatomy plugin in Fiji software was used to measure cilia length by identifying both ends of the cilia and calculating their length. Cilia enlargement was defined as a cilia width of cilia visually greater than the average width observed in wild-type animals. Calcium image processing was performed using custom scripts on MATLAB (Mathworks). Calcium image intensity was processed by custom script “calcium imaging analysis”, and the heatmaps for calcium imaging analysis were created by custom script “HotMap Create”. The fluorescence intensity during the first 15 s time window before the odorant stimulus was averaged and defined as F0. Fluorescence intensity change ΔF/F0 was calculated as (background-corrected fluorescence – F0)/F0. Calcium responses are presented as average changes, with shaded regions indicating s.e.m., and heatmaps of individual traces. All statistical analyses were performed using GraphPad Prism 8. Differences between two groups were assessed using unpaired t-tests. Multigroup data was analyzed by one-way ANOVA with Tukey's multiple comparisons test or two-way ANOVA with Sidak's multiple comparisons test. P < 0.05 was considered statistically significant. *P < 0.05; **P < 0.01; ***P < 0.001. ****P < 0.0001; n.s., not significant.




3 Results


3.1 Olfactory dysfunction in C. elegans models of neurodegenerative diseases

C. elegans has three pairs of primary olfactory neurons: AWA, AWB, and AWC (Bargmann, 2006; Ferkey et al., 2021). Among them, AWA and AWC neurons mediate attraction to attractive odors, while AWB neurons mediate avoidance of repulsive odors (Troemel et al., 1997; Bargmann, 2006). We investigated the impact of expressing neurodegenerative proteins on olfactory behavior using an array of odors primarily detected by these three pairs of olfactory neurons.

Compared to control animals, day 1 adult C. elegans expressing Aβ1-42 in all neurons, an AD model used in this study, exhibited slightly reduced olfactory sensitivity to odors detected by AWC and AWB neurons, including isoamyl alcohol (IAA), 2-butanone and 2-nonanone, but showed no difference from the control in response to odors sensed by AWA neurons including diacetyl and pyrazine (Figure 1A). To assess age-dependent decline in olfactory function, we tested day 6 adults, which have largely ceased reproduction. We found that control day 6 adults already exhibited decreased olfactory sensitivity across all tested odors. Interestingly, day 6 adults expressing Aβ1-42 displayed significantly greater defects in AWC and AWB odor responses compared to age-matched controls, while their sensitivity to AWA odors remained unaffected (Figure 1B).
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FIGURE 1
 Olfactory dysfunction in C. elegans models of neurodegenerative diseases. (A, B) Chemotaxis responses of wild-type adults and adults with pan-neuronal expression of Aβ1-42 to various odors on the first (A) and sixth (B) days of adulthood. (C, D) Chemotaxis responses of wild-type adults and adults with pan-neuronal expression of Q40 to various odors on the first (C) and sixth (D) days of adulthood. Data are from three or more independent experiments, and are presented as mean ± s.e.m. P values are derived from two-way ANOVA with Sidak's multiple comparisons test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant. 2-BU is 2-butanone, and 2-NO is 2-nonanone.


C. elegans expressing 40 polyglutamine repeats (Q40) fused with YFP in all neurons, a polyQ model used in this study, displayed significant olfactory behavior defects in detecting odors sensed by AWC and AWB neurons. Interestingly, responses to AWA-sensed odors remained intact. Furthermore, the Q40 model exhibited more severe olfactory defects than the AD model. While both models showed defects in AWC and AWB odor responses, Q40 worms displayed a near-complete loss of chemotaxis toward AWC-sensed odors even in day 1 adults (Figure 1C). While wild-type day 6 adults exhibited a decline in olfactory sensitivity compared to younger stages, day 6 adults expressing Q40 displayed significantly greater olfactory dysfunction in AWC and AWB responses compared to age-matched controls (Figure 1D). Notably, similar to the AD model, Q40 worms maintained functional AWA olfaction at both day 1 and day 6, suggesting a differential susceptibility of olfactory neurons to protein aggregation.



3.2 Age-dependent protein aggregation in C. elegans models of neurodegeneration

A hallmark feature of neurodegenerative diseases is the abnormal accumulation of misfolded proteins, which aggregate and form insoluble fibrils as the disease progresses. These aggregates disrupt normal cellular functions, leading to neuronal dysfunction and eventual cell death. The presence of these protein aggregates is a characteristic pathological feature across various neurodegenerative diseases (Wilson et al., 2023).

In the C. elegans model expressing Aβ1-42, we employed an antibody specific for the fibrillar form of Aβ protein to investigate its aggregation patterns. We observed a significant age-dependent increase in fibrillar Aβ aggregates within day 6 adult worms compared to their day 1 counterparts (Figure 2A). Interestingly, the total amount of Aβ protein remained relatively constant across these two age groups (Figure 2B), indicating that the progressive accumulation of fibrillar Aβ is not due to an increased expression level.


[image: Panel A shows a dot blot analysis with immunoreactivity for Aβ fibers on days one and six, alongside a Ponceau S staining for protein loading. A bar graph indicates a significant increase in Aβ fiber density from day one to day six. Panel B shows total Aβ immunoreactivity, with the bar graph showing no significant change in density from day one to day six. Both panels include control samples.]
FIGURE 2
 Aβ1-42 forms fibrillar aggregates in C. elegans neurons. (A, B) Fibril Aβ levels (A) and total Aβ levels (B) in worms were measured using a dot blot assay on the first or sixth day of adulthood. Total Aβ levels remained constant from day 1 to day 6, but fibril Aβ levels increased significantly. Aβ densitometry was quantified on the right. Data are presented as mean ± s.e.m. P values are derived from unpaired t-test. ****P < 0.0001; n.s., not significant.


In contrast to the Aβ1-42 model, C. elegans expressing Q40::YFP did not exhibit any detectable formation of insoluble protein aggregates at either day 1 or day 6 adulthood, as visualized by western blotting (Figure 3A). Western blot analysis showed the absence of higher molecular weight bands compared to the expected size of the monomeric Q40::YFP protein (~32 kDa) (Figure 3A), and the total amount of Q40 did not increase from day 1 to day 6 (Figure 3B).
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FIGURE 3
 Q40 forms soluble aggregates in the neuronal cell bodies and processes of C. elegans. (A, B) Q40::YFP levels were measured using either western blot (A) or dot blot (B) assays on the first or sixth day of adulthood. Quantification of Q40::YFP densitometry is shown on the right. No higher molecular weight bands than the monomer protein band (~32kD) were observed in the western blot. (C) By day 6, C. elegans expressing 40 polyglutamine (Q40) showed a significant increase in polyQ aggregates in neuronal cell bodies or processes in head neurons. (D) In contrast, C. elegans expressing 19 polyglutamine (Q19) exhibited only a few aggregates in neuronal cell bodies and none in neurites. (E, F) The percentage of neurites with no aggregation (E) and the total number of aggregates in neuron cell bodies (F) were quantified from data obtained from three or more independent experiments. Data are presented as mean ± s.e.m. (B, F). P values are derived from unpaired t-test (B) and one-way ANOVA with Tukey's multiple comparisons test (F). **P < 0.01; ****P < 0.0001; n.s.: not significant. The scale bar is 20 μm for all confocal images.


Despite the lack of detectable insoluble aggregates, C. elegans expressing Q40::YFP displayed an age-dependent accumulation of soluble protein aggregates within neurons. Aggregation was defined as the presence of puncta in neurites, while smooth neurites were classified as showing no aggregation. In day 1 worms, YFP fluorescence appeared diffusely distributed throughout most neurons (Figure 3C left). In contrast, day 6 adults exhibited visible Q40::YFP aggregates within neuronal cell bodies and along the neurites of sensory neurons (Figure 3C right). In comparison, the Q19::CFP model, which has a shorter polyglutamine repeat, exhibited minimal aggregation within neuronal cell bodies at day 6 and a near absence of aggregates along neurites (Figures 3D–F). This finding further demonstrates that the length of the polyglutamine repeat influences the severity of protein aggregation.



3.3 Ciliary abnormalities in C. elegans models of neurodegenerative diseases

Sensory dysfunction can arise from a variety of underlying mechanisms. In sensory neurons, nonmotile primary cilia, hair-like structures protruding from the dendrite tips, play a crucial role in detecting environmental stimuli. To investigate whether defects in sensory behavior observed in our neurodegenerative models stem from ciliary dysfunction, we investigated the morphology of cilia in the AWB sensory neurons. These neurons possess a characteristic fork-shaped cilium, facilitating quantification of its length and observation of potential enlargements (Perkins et al., 1986).

We found a slight but statistically significant decrease in AWB cilia length in both Aβ1-42 and Q40 expressing worms (Figures 4A, B). Notably, we also observed increased instances of enlarged cilia in these mutants (Figures 4A, C), which became more pronounced by day 6. This phenomenon could represent a cilia-specific compensatory mechanism, where the cilia undergo adaptive remodeling to increase their surface area and enhance sensory sensitivity in response to diminished sensory signaling in the neurodegenerative models (Mukhopadhyay et al., 2008). These findings suggest that ciliary morphology defects, encompassing both shortening and enlargement, may contribute to the sensory dysfunction observed in the neurodegenerative models.


[image: Panel A contains fluorescence microscopy images showing the development of cells over six days under three conditions: WT, neuron with Aβ1–42, and neuron with Q40. Panel B displays a bar graph comparing the cilia length under the same conditions on Day 1, with statistical significance indicated. Panel C features stacked bar charts showing cilia shape percentages categorized as normal or enlarged for Days 1 and 6, across all conditions, and includes statistical significance.]
FIGURE 4
 The morphology of AWB neuron cilia was altered in C. elegans models of neurodegeneration. (A) Visualization of the cilia of AWB neurons using str-1p::myr-mNeptune2.5 transgene expression in wild-type adults (left panels), adults with pan-neuronal expressing of Aβ1-42 (middle panels), and adults expressing Q40 (right panels) at day 1 and 6. (B) Quantification of cilia length in day 1 adults. Data are mean ± s.e.m. (C) Percentage of normal and enlarged cilia in day 1 and 6 adults. Data represent results from two or more independent experiments (B, C), and are presented as mean ± s.e.m. (B, C). The number of cilia assayed is indicated in parentheses below each bar (B, C). P values are derived from unpaired t-test. *P < 0.05; **P < 0.01; n.s., not significant. The scale bar is 5 μm for all confocal images.




3.4 Functional impairments of olfactory neurons of C. elegans models of neurodegeneration

Next, we investigated whether the functional consequences of these findings are attributed to impairments in calcium responses in the olfactory neurons. AWC neurons are OFF neurons. Exposure to attractive odors typically elicits a decrease in intracellular calcium concentration, followed by a rise in calcium upon odor removal (Chalasani et al., 2007, 2010). Consistent with established response patterns, control day 1 adult animals exhibited robust calcium transients in AWC neurons upon exposure to attractive odors of IAA or 2-butanone (Figures 5A, B). In contrast, worms expressing Aβ1-42 displayed disruptions in these calcium dynamics. Notably, the decrease in calcium upon odor presentation and the subsequent increase upon odor removal were largely abolished in these animals. Interestingly, in day 6 adult animals, both control and Aβ1-42 worms exhibited diminished calcium responses compared to their day 1 counterparts (Figures 5A, B). This age-dependent decline in calcium signaling suggests a general decrease in AWC olfactory neuronal function with age, independent of Aβ1-42 expression.


[image: Grouped image showing experimental data on neuronal responses over time. Rows labeled A, B, and C compare conditions with different treatments. Each row contains time-series graphs and heatmaps representing neuronal activity at different time points, alongside box plots summarizing the data. Labels include "control," "neuron-Aβ1-42," and various treatments. Box plots on the right show statistical comparisons with annotations indicating significance levels (e.g., n.s. for not significant). Color scales on heatmaps range from blue to red, indicating activity intensity.]
FIGURE 5
 Calcium responses in AWC and AWA olfactory neurons in neurodegenerative C. elegans models. (A–C) Average changes and corresponding heatmaps of GCaMP fluorescence in wild-type and neurodegenerative AWC or AWA neurons of in day 1 and day 6 adult C. elegans. The calcium responses are elicited by odor stimulation with IAA (A), 2-butanone (B) or diacetyl (C). Quantitative data are shown on the right, presented as the 25th, 50th, and 75th percentiles, as well as the minimum and maximum values. P values are derived from two-way ANOVA with Sidak's multiple comparisons test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant.


AWA is an ON neuron known to exhibit elevated calcium levels in response to stimuli (Larsch et al., 2013, 2015). Unlike AWC neurons, AWA neurons showed minimal alteration in their response to diacetyl in worms expressing of Aβ1-42. These neurons typically exhibit a robust calcium increase upon exposure to diacetyl, which tapers rapidly (Figure 5C). By day 6, worms exhibited reduced calcium increases in AWA neurons in response to diacetyl; however, this response was comparable in age-matched animals expressing Aβ1-42 (Figure 5C), consistent with the absence of olfactory behavior defects (Figure 1). Given that calcium dynamics in olfactory neurons are the initial stage of olfactory stimuli signaling, our findings suggest that reduced olfactory sensitivity may be attributed to the calcium dynamics in olfactory neurons, in addition to possible synaptic defects caused by Aβ1-42 expression in C. elegans.



3.5 ERUPR is prominently activated in in C. elegans with pan-neuronal expression of Aβ1-42

Disruption of cellular proteostasis leads to unfolded protein responses (UPR), which can occur in different cellular compartment—cytosol, ER and mitochondria—each triggering different signaling pathways (Taylor et al., 2014; Frakes and Dillin, 2017). Given that neurodegenerative diseases are characterized by the abnormal accumulation of misfolded proteins, we investigated which UPR processes—MitoUPR, ERUPR and cytosolic UPR—are activated in C. elegans models of neurodegeneration. We used quantitative PCR to measure the expression levels of reporter genes associated with each UPR type. Our results indicate that genes linked to all three UPR pathways were not significantly upregulated by Q40 expression, consistent with that Q40 does not form insoluble aggregates. However, ERUPR was notably activated in worm expressing Aβ1-42, with spliced xbp-1 increased more than three folds and hsp-4 significant upregulated (Figure 6). In contrast, the cytosolic UPR marker hsp-70 showed a slight but significant increase, while MitoUPR markers hsp-6 and hsp-60 did not did not exhibit significant changes (Figure 6).


[image: Bar graph comparing relative mRNA levels for various proteins: hsp-70, xbp-1s, hsp-4, hsp-3, hsp-60, and hsp-6. The results are shown for a control group (black), neuron:Aβ1-42 (red), and neuron:Q40 (purple). Asterisks indicate significant differences between groups.]
FIGURE 6
 The average expression levels of several UPR-related genes in neurodegenerative C. elegans models. N = 5, Data are presented as mean ± s.e.m. P values are derived from Student's t-test. *P < 0.05.




3.6 AMPK activation relieves defects in olfaction and Aβ aggregation in C. elegans models of neurodegeneration

AMPK (AMP-activated protein kinase) is a crucial intracellular energy sensor that maintains cellular homeostasis by responding to low energy levels (Steinberg and Hardie, 2023). It is activated by adenosine monophosphate (AMP), which indicates reduced intracellular energy level. It can also be activated by AMP analogs such as 5-aminoimidazole-4-carboxamide-1-b-dribofuranoside (AICAR), and low dose metformin. In neurodegenerative diseases, AMPK's function is particularly relevant due to the high energy demands of the brain. Metabolic stress caused by mitochondrial dysfunction was reported to precede a global imbalance in proteostasis in the C. elegans model expressing Aβ1-42 (Teo et al., 2019). This metabolic disturbance was rescued by the anti-diabetic drug metformin (Teo et al., 2019). Therefore, we tested whether metformin treatment could reverse the olfactory defects observed in young animals, given that metformin activates AMPK (Ma et al., 2022). Consistent with our expectations, we found that metformin significantly alleviated the olfactory defects (Figure 7A) and decreased fibrillar Aβ levels (Figures 7B, C). The involvement of AMPK activation by metformin was further supported by treatment with the specific AMPK activator, AICAR (Figure 7). These results suggest that improving metabolic stress via the AMPK signaling pathway is a potential therapeutic approach for Aβ-related neurodegenerative diseases.


[image: Chart illustrating the chemotaxis index in DAY 1 adults exposed to different conditions. Panel A displays bar graphs for varying treatments (control, 1 µM AICAR, 10 µM AICAR, 2 mM metformin, 25 mM metformin) on neuron: Aβ1-42 and neuron: Q40, with statistical significance indicated by stars. Panels B and C show dot blots for Aβ fibril and total Aβ, respectively, with corresponding densitometry bar graphs demonstrating differences in protein levels. Ponceau staining is visible below the dot blots in both panels.]
FIGURE 7
 AICAR and metformin treatments alleviate olfaction defects and reduce Aβ aggregation. (A) Chemotaxis responses of wild-type adults and adults with pan-neuronal expression of Aβ1-42 or Q40 to IAA and 2-nonanone, following treatment with AICAR or metformin. Data from three or more independent experiments are presented as mean ± s.e.m. P values are derived from two-way ANOVA with Dunnett's multiple comparisons test. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; no asterisk indicates not significant. (B, C) Fibril Aβ levels (B) and total Aβ levels (C) in worms treated with of AICAR or metformin were measured using a dot blot assay with. Total Aβ levels remained unchanged with treatments, but fibril Aβ levels decreased significantly. Aβ densitometry was quantified on the right. N = 4, Data are presented as mean ± s.e.m. P values are derived from one-way ANOVA with Dunnett's multiple comparisons test. **P < 0.01; ***P < 0.001.





4 Discussion


4.1 Characterization of neuronal dysfunction in C. elegans models of neurodegenerative diseases

C. elegans models expressing neurodegenerative disease proteins, particularly human Aβ1-42 and Q40::YFP, have been instrumental in understanding protein homeostasis mechanisms and identifying potential therapeutic drugs. These models often use muscle cell expression, leading to readily detectable phenotypes like paralysis and movement defects. Expressing Aβ1-42 in neurons causes mild movement issues and metabolic stress in the whole body. Q40 expression in the nervous system results in body bending deficits and neuronal protein aggregation. However, the specific characteristics of neural damage in terms of morphology and function remain underexplored. In this study, we examined two C. elegans models of neurodegeneration at multiple levels: protein aggregation, neuron morphology, functional calcium imaging, and olfactory behavior, hoping to provide a more complete picture of disease progression in C. elegans models.

Here, we show that both C. elegans models of neurodegeneration exhibit olfaction defects, characterized by reduced olfactory sensitivity to odors sensed by AWB and AWC neurons, but not AWA-sensed odors, even in day 6 adults. This suggests that the toxicity induced by protein aggregation in C. elegans is neuronal cell-type dependent, with AWA neurons being more resistant to the dysfunction caused by protein aggregation compared to AWC and AWB neurons.

As sensory neurons detecting food odors, AWA neurons can detect a wide range of odor concentrations spanning over 100,000-fold. Calcium imaging in AWA neurons reliably captures responses across this extensive range of odor concentrations. A unique aspect of AWA neurons is their capability to exhibit action potential-like firing, facilitated by voltage-gated calcium channels (Liu et al., 2018), unlike most neurons in C. elegans which lack voltage-gated sodium channels (Bargmann, 1998) and myelin sheaths, and are considered graded neurons. It is conceivable that AWA neurons possess distinctive signaling mechanisms that contribute to their wide-ranging responsiveness and resilience to proteostasis stress. Future studies investigating these unique properties hold promise for uncovering novel mechanisms of neuronal resilience to proteostasis stress.

At the molecular level, expressing either Aβ1-42 or Q40 in C. elegans neurons caused remarkable age-dependent protein aggregation and morphological changes. Aβ1-42 formed fibrils as early as day 1 adults. While Q40::YFP did not form insoluble aggregates, soluble aggregates began accumulating in neuron cell bodies and along neurites, becoming prominent by day 6 adults. Moreover, in both models, we observed significantly shortened cilia and a high percentage of cilia enlargement even in day 1 AWB neurons. These morphological alterations indicate early neuronal impairment and suggest that abnormal cilia may play a role in the observed olfactory deficits.

Importantly, we observed calcium signaling defects in AWC neurons expressing Aβ1-42. Day 1 adults exhibited reduced responses to both IAA and 2-butanone upon odor addition and removal. By day 6, the calcium signaling in these neurons was significantly diminished, resulting in no noticeable difference between the model worms and the controls upon odor stimulation. This finding is intriguing because human AD patients often exhibit heightened calcium signals in olfaction-related brain regions during olfaction discrimination tasks (Mormino et al., 2012; Murphy, 2019). Such heightened calcium signaling is thought to cause neuronal stress and contribute to further protein aggregation. However, in the C. elegans model, we observed a decrease in calcium levels occurring as early as the preliminary stages of protein aggregation. This suggests that decreased calcium signaling and reduced olfactory sensitivity are early indicators of neurodegenerative progression in the C. elegans AD model.

Taken together, our study underscores the importance of a multifaceted approach combining molecular, morphological, and functional analyses in neurodegenerative models to better understand the neuronal cell-type-specific effects of protein aggregation and the underlying mechanisms. We found that both calcium dynamics and olfactory behavior exhibited defects in day 1 adults expressing Aβ1-42 or Q40, even though visible protein aggregation within neurons was not yet apparent at this early stage. Our data suggest that in C. elegans models of neurodegeneration, olfactory dysfunction, a potential early contributor to AD and polyglutamine diseases pathology, may originate from diminished neuronal calcium signaling. This reduction sensory signal transduction, as evident by the observed enlargement of cilia morphology, could precede the formation of visible protein aggregates.



4.2 Insights into neurodegenerative disease pathways from C. elegans models

Since protein aggregation often causes unfolded protein responses (UPR), we assayed the occurrence of MitoUPR, ERUPR and cytosolic UPR by analyzing common reporters. Worms expressing Q40 did not show significant upregulation of any UPR markers. However, worms expressing Aβ1-42 exhibited strong activated ERUPR, evidenced by significant upregulation of spliced xbp-1 and hsp-4. There is a slight but significant increase of hsp-70, which indicates activation of cytosolic UPR. We cannot rule out MitoUPR activation as our assay was performed on whole bodies, potentially diluting neuronal-specific changes with data from unaffected tissues.

AMPK activation is known to induce autophagy, aiding in the clearance of protein aggregates (Agostini et al., 2023). As a key cellular energy sensor, AMPK also plays a critical role in maintaining homeostasis in the nervous system (Bobela et al., 2017; Muraleedharan and Dasgupta, 2022; Li et al., 2024). In this study, treatment with AMPK agonists AICAR and metformin significantly relieved olfactory defects and reduced Aβ aggregation in neurodegenerative C. elegans models. Their impact on Q40-induced olfactory defects was modest, possibly due to the severe nature of the defects in these worms. Overall, our findings suggest that AICAR and metformin may offer therapeutic potential for neurodegenerative diseases by activating AMPK.



4.3 Pros and cons of C. elegans models in studying neurodegenerative diseases

Studying neurodegenerative diseases like AD and HD using complex mouse models is expensive and time-consuming. C. elegans, a simple worm with a rapid life cycle and easily manipulated genes, offers a powerful alternative. Its well-defined nervous system and genetic tractability make it a cost-effective platform for such research. Genetic and drug screenings in C. elegans Aβ models havev identified potential treatments. For instance, a targeted RNAi screen using a transgenic C. elegans strain expressing secretory Aβ1-42 identified collagens as modifiers to enhance or to attenuate Aβ aggregation and ADM-2, a metalloprotease, as a key extracellular factor to remove Aβ (Jongsma et al., 2023). Natural products like Holothuria scabra and Radix Stellariae extracts, along with D-Pinitol, reduce Aβ aggregation and ROS levels (Azab, 2022; Kleawyothatis et al., 2022; Long et al., 2023). Ginkgo biloba extract EGb 761 has shown promise in mitigating pathological features in C. elegans models expressing Aβ1-42 (Wu et al., 2006). Similarly, a genetic screen identified polyQenhancer-1 (pqe-1) as a protective factor against HD neurotoxicity. RNAi screens have uncovered 88 genetic suppressors of polyQ aggregation and toxicity (Silva et al., 2011) and 49 modifiers of 128Q-mediated neuronal dysfunction, findings that align with observations in HD mice models (Lejeune et al., 2012). Using ethyl methanesulfonate (EMS) to induce mutations in C. elegans, van Ham and colleagues identified MOAG-4 as a positive regulator of polyQ aggregation formation (Ham et al., 2010), showing that inactivation of MOAG-4 significantly reduced aggregates. Importantly, MOAG-4 is evolutionarily conserved, and its human orthologs, SERF1A and SERF2, can enhance polyQ aggregation.

C. elegans serves as a powerful tool for exploring neurodegenerative diseases and conducting high-throughput drug screening. However, its simplicity presents limitations. The worm's nervous system lacks the complex architecture of mammals, such as structures like the caudate and putamen, which are important for understanding polyglutamine diseases such as HD. Additionally, C. elegans lacks myelin sheaths and an adaptive immune system, which are crucial for replicating aspects of human neurodegenerative disease pathology, including neuroinflammation, a significant feature in AD pathogenesis. Despite these limitations, drug candidates identified in C. elegans models show promise and are actively being evaluated for efficacy and relevance in mammalian systems. This highlights the importance and usefulness of C. elegans models for neurodegenerative diseases in advancing our understanding of the molecular, cellular, and genetic mechanisms underlying neurodegenerative diseases and guiding the development of new therapeutic strategies.
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Introduction: As the world ages, dementia places a heavy burden on society and the economy, but current methods of diagnosing dementia are still limited and there are no better therapies that target the causes of dementia. The purpose of this work is to explore the relationship between thyroid disease, thyroid stimulating hormone (TSH) concentrations, free tetraiodothyronine (FT4) concentrations and cognitive function.



Methods: This study utilized cognitive function and thyroid data from the 2011–2012 National Health and Nutrition Examination Survey (NHANES) to assess the relationship between different groups of TSH and FT4 concentrations and cognitive function using weighted logistic regression and restricted cubic spline (RCS), and then used two-sample Mendelian Randomization (MR) to assess the causal relationship between hyperthyroidism, hypothyroidism, TSH and FT4 concentrations with dementia.
Results: Our analysis of the 2011–2012 NHANES data showed that the individuals with low TSH concentrations had higher Alzheimer’s Disease Word List Registry Consortium1 (CERAD1) and CERAD.delay.recall scores than individuals with high TSH concentrations, and individuals with low FT4 concentrations had higher CERAD3 and Animal Fluency Test scores than individuals with high FT4 concentrations. Our results also showed a non-linear relationship between serum TSH and FT4 concentrations and the Animal Fluency Test. The TSH concentrations within the range of 1.703 to 3.145 mIU/L exhibit a positive correlation with Animal Fluency Test, whereas concentrations outside this range are negatively correlated with Animal Fluency Test. The FT4 concentrations exhibited a positive correlation with Animal Fluency Test to the left of the FT4 concentrations inflection point (0.849 ng/L), whereas to the right of this inflection point, correlation was negative. MR analysis results further indicate that genetic predisposition to hyperthyroidism may be associated with a reduced risk of dementia and vascular dementia(VaD). Conversely, genetic predisposition to hypothyroidism appears to be linked with an increased risk of dementia and VaD. Additionally, genetic predisposition to elevated TSH concentrations may be correlated with a heightened risk of risk of Alzheimer’s disease (AD).
Conclusion: This study provides evidence of a nonlinear relationship between TSH and FT4 concentrations and cognitive function, with hyperthyroidism decreasing the risk of dementia and VaD, hypothyroidism increasing the risk of dementia and VaD, and elevated serum TSH concentrations increasing the risk of AD. Furthermore, prioritizing early detection, diagnosis, and treatment through the assessment of thyroid function in individuals at high risk for developing dementia is of paramount importance. This strategy has the potential to significantly contribute to the prevention and deceleration of dementia progression.
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1 Introduction

Dementia is a syndrome of acquired cognitive impairment that significantly impairs patients’ ability to live, learn, work, and communicate and is a leading cause of death and disability among older adults (Lin et al., 2015). The most common type of dementia is Alzheimer’s disease(AD), which accounts for about 60–70% of cases. In contrast, others include vascular dementia(VaD), frontotemporal lobe dementia(FTD), dementia with Lewy bodies(DLB), or a combination of several types (called mixed dementia) (WHO, 2023). The prevalence of dementia is estimated to be 4.3%–6.4% in people over 60 years of age and 22.1%–30.1% in people over 85 years of age (Ferri et al., 2005; Noguchi-Shinohara et al., 2013). Dementia cases are expected to reach 152.8 million by 2050 because the world’s population is aging (GBD 2019 Dementia Forecasting Collaborators, 2022). Dementia is the leading cause of functional disability, resulting in an enormous social and economic burden that is projected to cost $2.8 trillion globally by 2030 (Thornton et al., 2023). However, our understanding of the causes and progression of dementia remains limited, and there are no improved therapies that address the causes of dementia (Salehipour et al., 2022). Therefore, through risk factor management and appropriate treatment, it is possible to intervene and slow or stop the progression of dementia.

Thyroid status has emerged as a potential independent risk factor for reversible cognitive impairment over the past two decades (Yoshimasu et al., 1991; Ganguli et al., 1996). Thyroid dysfunction, i.e., hyperthyroidism and hypothyroidism, have different clinical features; hyperthyroidism is characterized by decreased levels of thyroid stimulating hormone (TSH) and increased levels of thyroid hormone (TH) and hypothyroidism is characterized by increased levels of TSH and decreased levels of TH. Both hyperthyroidism and hypothyroidism can be classified as clinical or subclinical and are characterized by elevated or suppressed TSH concentrations without clinical changes or abnormalities in TH concentrations (Ross et al., 2016). TSH regulates thyroid growth and TH production (Shahid et al., 2023). There are two active forms of TH, triiodothyronine (T3) and tetraiodothyronine or thyroxine (T4) (Raymaekers and Darras, 2017). T4 has a longer half-life than T3 and is considered the main circulating form of TH. Of total TH production, 93% is T4 and 7% is T3 (Bárez-López and Guadaño-Ferraz, 2017). Normal thyroid function is an important factor in the maintenance of a desirable cognitive state during aging.

TH has receptors in most tissues of the body, so they are highly influential in the myriad processes of metabolism and homeostasis in the body. They influence brain metabolism, neurogenesis, myelin formation, and cellular repair throughout the lifespan (Calzà et al., 2015). TH disorders can lead to a variety of developmental, metabolic, and age-related disorders and may be associated with dementia (Cappola et al., 2015) and cognitive impairment (Pasqualetti et al., 2015). A prospective longitudinal study evaluating whether abnormal TH levels predict dementia found that higher free T4 (FT4) levels predicted new-onset dementia in older men, independent of traditional risk factors for cognitive decline (Yeap et al., 2012). Higher TSH concentrations was associated with a diagnosis of dementia in a community-based study of 194 individuals (Ganguli et al., 1996). In contrast, a cross-sectional study found that patients with AD had significantly lower TSH concentrations than controls, independent of other risk factors, and lower TSH concentrations was associated with a more than twofold increased risk of AD (Van Laere et al., 2004).

Dementia and thyroid dysfunction are both common in the elderly. Although there have been previous studies examining the relationship between thyroid disease, TSH, FT4 and dementia, the results have been inconsistent, while most studies have examined the relationship between thyroid function and AD. The inconsistency of these findings may be attributable to the limited sample sizes of extant observational studies, insufficient adjustment for critical variables, and the absence of assessments for various types of dementia. Therefore, this study proposes to investigate the association between thyroid function and dementia using genetic Mendelian randomization (MR) analysis, a tool that uses genetic variants as an instrumental variable to investigate causal relationships between clinical traits and disease phenotypes (Lawlor et al., 2008). MR is superior to observational studies that control for confounders and reverse causation because genetic alleles are randomly assigned during meiotic subtraction and are not affected by environmental factors (Verduijn et al., 2010). The MR study has been described as a “naturally occurring, randomized, double-blind study” that is complementary to randomized controlled trials (RCTs).

Therefore, this study aims to explore the relationship between different types of dementia and thyroid dysfunction, TSH, and FT4 concentrations by analyzing data from the National Health and Nutrition Examination Survey (NHANES) 2011–2012 and to assess the causality of these associations with MR analysis.



2 Materials and methods


2.1 Research data from NHANES

The NHANES is a cross-sectional survey designed to provide a representative sample of the United States (U.S.) civilian non-institutionalized population (CDC, 2016). In these analyses, we propose to study the relationship between thyroid function and cognitive function by selecting data from the NHANES database. Serum thyroid function TSH and FT4 have been measured in several NHANES cycles (1999–2002), but unfortunately, these data on cognitive function were incomplete and therefore cannot be used as additional measures of thyroid functional status. Cognitive function was also measured during several NHANES cycles (2013–2014), but unfortunately, data on thyroid function were not included in these data and therefore could not be used as an additional measure of cognitive function. Meanwhile, 2019–2020 NHANES data are available for thyroid function and cognitive function, but due to the coronavirus disease 2019 (COVID-19) pandemic, the NHANES program is suspending field operations in March 2020, and therefore any analyses based solely on the 2019-March 2020 data would not be generalizable to the U.S. civilian non-institutionalized population. Also, the cognitive function scores in the 2019–2020 NHANES data are partially different from the 2011–2012 cognitive function scores, and the two cycles cannot be fully merged. The NHANES data for the period 2021.8–2023.08 is also not available to the public at this time. Therefore, we conducted a cross-sectional analysis using data from one cycle (2011/2012) of the NHANES data with both thyroid function data and cognitive function scores, including 9756 subjects. Previous studies have found an independent association between subclinical hyperthyroidism and cognitive dysfunction in older adults (Ceresini et al., 2009) and the cognitive function scores in the NHANES database are only for older people over the age of 60. Therefore, the inclusion criteria for this study were primarily people over the age of 60. Descriptive data of various paper-based cognitive assessments of community-dwelling older adults stratified on the basis of age and education: The study categorized the older adults into three groups of 60–69, 70–79 and 80–98 years of age, and found that younger older adults and those with higher education scored higher overall and domain scores (Brigola et al., 2018). Therefore, this paper categorized the age into three groups of 60–69, 70–79, and 80+ to avoid false-negative results due to over-stratification by age. In addition, among all subjects over 60 years of age, we excluded individuals who (1) lacked an indicator of thyroid function testing. (2) Subjects without cognitive function scores. (3) Subjects missing the following data, including sex, age (chronological age), race/ethnicity, BMI, household income (poverty income ratio, PIR), education level, alcohol consumption, and smoking status. The final study sample size was 409 subjects. The specific process for this is shown in Figure 1A. Study protocols for NHANES were approved by the NCHS ethics review board. Signed informed consent was obtained from all adult participants.


[image: Flowchart diagram labeled A and B. A describes participant selection from NHANES 2011-2012 with 9,756 participants, filtered based on age and availability of thyroid and cognitive function data, ending with 409 analyzed subjects. B outlines a study framework linking genetic variants and thyroid function to dementia outcomes, with confounders considered. It details selection criteria, analysis methods, and specific dementia types with case and control numbers.]

FIGURE 1
Research flowchart for this study. Research flowchart for this study. (A) Flowchart of the selection of eligible participants in the National Health and Nutrition Examination Survey (NHANES). (B) Flowchart of Mendelian Randomization(MR) and assumptions: Assumption 1: exposure is strongly associated with genetic variants; Assumption 2: confounders are not associated with genetic variants; Assumption 3: The effect of genetic variants on outcomes should be mediated only by the exposure of interest.




2.2 Thyroid function summary

Venous blood samples for thyroid function were obtained in accordance with the standard protocol (NHANES (2011–2012) Procedure Manual). FT4 levels were measured by a two-step enzyme-linked immunosorbent assay. TSH levels were measured by the Access High Sensitivity TSH assay, a third-generation two-site immunoassay (Hollowell et al., 2002; Kim et al., 2022). Hyperthyroidism was diagnosed when TSH levels were below 0.45 mIU/L and FT4 levels were above 1.6 ng/dL. Hypothyroidism was diagnosed when TSH levels were above 4.5 mIU/L and FT4 levels were below 0.6 ng/dL. Subclinical hyperthyroidism was diagnosed when TSH levels were below 0.45 mIU/L and FT4 levels were between 0.6 and 1.6 ng/dL. Subclinical hypothyroidism was diagnosed when TSH levels were greater than 4.5 mIU/L and FT4 levels were between 0.6 and 1.6 ng/dL (Jain, 2017).



2.3 Assessment of cognitive function

In the 2011–2012 NHANES data, the cognitive tests were administered to participants who were 60 years of age or older (CDC, 2012). Assessments are conducted by trained interviewers in mobile testing centers. Three tests were administered: the Alzheimer’s Disease Word List Registry Consortium (CERAD-WL), which assesses immediate and delayed recall of new verbal information (memory subdomain); the Animal Fluency Test, which assess absolute verbal fluency (a component of executive function); and the Digit Symbol Substitution Test (DSST), which assesses processing speed, sustained attention, and working memory. The CERAD test is made up of three tests of continuous learning and a test of delayed recall. Results were therefore presented as three independent trial scores ranging from 0 to 10, total scores for all three trials ranging from 0 to 30, and delayed recall scores ranging from 0 to 10. In practice, Animal Fluency Test scores range from 3 to 39, and the scores of the DSST from 0 to 105, although there is no upper limit.



2.4 Covariate data

Covariates included several demographic characteristics: sex, age, race/ethnicity, BMI, PIR, education level, alcohol consumption, and smoking status. Participants were divided into three age groups: 60–69, 70–79, and 80 and older. This study covered Mexicans, non-Hispanic whites, non-Hispanic blacks, and other races (including other Hispanics and multiracial). The World Health Organization (WHO) divides BMI into four categories: underweight (<18.5 kg/m2), normal weight (18.5–25 kg/m2), overweight (25–30 kg/m2), and obese (>30.0 kg/m2). The PIR classifications are < 1 (below the poverty line), 1–1.99, 2–3.99, and 4 (most affluent). The level of education is categorized as less than a high school diploma, a high school diploma/general education diploma, and a college or university-level diploma. Alcohol consumption was divided into four groups: non-drinkers, drinkers of 1 to 5 servings per month, drinkers of 5 to 10 servings per month, or drinkers of more than 10 servings per month. Smoking status was categorized as current, former, or never smoked.



2.5 Genetic data on TSH, FT4, hyperthyroidism and hypothyroidism

Genetic data for TSH were obtained from a study authored and published by Williams et al. (2023); the study included 247,107 European subjects and contained a total of 575,241,162 single nucleotide polymorphisms (SNP) (Williams et al., 2023). Genetic data for FT4 were obtained from a study authored and published by Dennis et al. (2021); the study included 26,321 European subjects and contained a total of 6,240,610 single SNP (Dennis et al., 2021). We obtained Genome-Wide Association Studies (GWAS) summary data for hyperthyroidism (1991 patients and 305,175 controls) and hypothyroidism (45,321 patients and 298,847 controls) from the FinnGen study. The FinnGen study is a large-scale genomics initiative that has analyzed over 500,000 Finnish biobank samples and correlated genetic variation with health data to understand disease mechanisms and predispositions. The project is a collaboration between research organizations and biobanks within Finland and international industry partners. The genetic data in our study are summarized in Supplementary Table 1.



2.6 Different types of dementia genetic data

The FinnGen study has provided a pool-level GWAS dataset that includes 301,879 participants (16,209 patients and 285,670 controls) with any type of dementia, including AD, FTD, VaD, Senile dementia, simple type, other alcoholic dementia, and delirium superimposed on dementia, etc. Summary statistics for AD were derived from the GWAS database, which included 25,392 patients and 276,086 controls. We obtained GWAS summary data for VaD (2717 patients and 393,024 controls) from the FinnGen study. We obtained GWAS summary data for FTD from the FinnGen study (129 patients and 392,463 controls) and from the IEU database (515 patients and 2,509 controls), respectively. The GWAS data for DLB were obtained from a separate multi-center study that enrolled 2,591 patients and 4,027 controls (Chia et al., 2021)and another study that enrolled 1,180 DLB in APOE e4+ carriers and 657 controls, respectively. The genetic data in our study are summarized in Supplementary Table 1.



2.7 Statistical analysis

The R software (4.3.2) was used for all statistical analysis. We used the sample weights for the thyroid profile provided by the NHANES for the weighting. Continuous variables are expressed as the mean or percentage of the population studied. For the survey data in Supplementary Table 2, we performed multiple linear regression analysis, a model used to assess the linear relationship between TSH, FT4 concentrations, and cognitive function. We also used weighted multivariable-adjusted logistic regression to calculate odds ratios (OR) and 95% confidence intervals (95% CI) for cognitive metrics in populations with different thyroid disease groups. Restricted cubic spline (RCS) was used to fit the dose-response relationship between serum TSH and FT4 concentrations and cognitive test scores. In these analyses, we employed three nodes located at the 10th, 50th, and 90th percentiles of the TSH and FT4 distributions. A survey-weighted generalized linear model was applied using the ‘svyglm’ function in R, incorporating restricted cubic splines (RCS) to capture potential non-linear relationships between TSH, FT4, and cognitive test outcomes. The use of restricted cubic splines was selected due to their ability to enforce linearity beyond the boundary knots, thereby enhancing the stability and interpretability of the model at the extremes of the data distribution. All analyses were considered statistically significant at p < 0.05, using the NHANES complex multistage sampling design.

In our study, we performed univariate two-sample MR analysis to determine the causal relationship between genetically predicted hyperthyroidism, hypothyroidism, TSH and FT4 concentration and dementia (any dementia, AD, VD, FTD and DLB) using the TwoSampleMR R package (Emdin et al., 2017). An overview of the design of the study is shown in Figure 1B. MR analyses must meet three requirements to investigate the causal effect of exposure on outcomes: (1) genetic variants should be associated with hyperthyroidism, hypothyroidism, TSH and FT4 concentration; (2) they should not be associated with confounders; and (3) they should only affect dementia mediated by hyperthyroidism, hypothyroidism, TSH and FT4 concentration. The following procedure was used to select genetic variants prioritized to meet the three instrumental assumptions of MR analysis (Burgess et al., 2017b). First, SNPs associated with hyperthyroidism, hypothyroidism, TSH and FT4 concentration at the genome-wide significance level (p < 5e–8) were extracted as instrumental variables (IV). Second, SNPs with linkage disequilibrium (r2 threshold < 0.001 within a 10000kb window) were eliminated, and the remaining SNPs were extracted from the outcome datasets. Third, we calculated the F-statistic for each SNP to quantify the strength of the association and excluded SNPs that were weak (F-statistic < 10).

We then primarily used the Inverse Variance Weighting (IVW) method, which has the strongest analytic power but no detectable horizontal pleiotropy by itself, to assess the relationship between hyperthyroidism, hypothyroidism, TSH and FT4 concentration and dementia (any dementia, AD, VD, FTD, and DLB). The Wald ratio method was used when there was only one instrumental SNP available for analysis. We also use MR-Egger regression and weighted median (WME) for further analysis to test the robustness of the results. MR-Egger regression and WME can detect and adjust for horizontal pleiotropy, which is the simultaneous effect of a genetic variant (or instrumental variable) on multiple traits or outcomes through multiple independent pathways. However, both MR-Egger and WME are not as statistically valid as IVW. To assess potential heterogeneity and pleiotropy, sensitivity analysis is essential. In addition, heterogeneity between causal estimates of different genetic variants was assessed using Cochran’s Q test (Burgess et al., 2017a). Furthermore, leave-one-out (LOO) cross-validation was used for sensitivity analysis to verify the reliability of the IVW results, which can identify potentially unusual instrumental variables and assess the robustness of results by eliminating each instrumental variable individually and examining the change in causal estimates after each elimination. In addition, we employed Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) to further investigate the potential horizontal pleiotropic effect indicated by the leave-one-out (LOO) analysis. This test was conducted for each SNP to determine the presence of significant horizontal pleiotropic bias, with corresponding p-values provided. Additionally, the aggregate horizontal pleiotropic effect of all SNPs was evaluated, and the presence of significant pleiotropic bias was ascertained by calculating the global p-value.




3 Results


3.1 General characteristics of NHANES

In the 2011–2012 NHANES cycle, 409 individuals aged 60 years or older with complete cognitive function scores and data on TSH and FT4 concentrations and information on important covariates including gender, age, race/ethnicity, smoking status, alcohol use, and education were selected for this study. The participants in this study were relatively evenly distributed by age and gender; the majority (50%) of the population in this study were between 60 and 69 years of age, while 203 (49.6%) were female and 206 (50.4%) were male, as shown in Table 1. In this study, most of the participants were non-Hispanic white, accounting for nearly 82% of the population. The number of underweight people is very minimal, with about one-third having a normal body mass index, more than one-third being overweight, and about one-third being obese. Most participants consume very little alcohol and either have never smoked or are former smokers. One-third of the population has a university degree, and about one-third has a degree higher than a university degree. FT4 and TSH levels were at normal levels in most people, while the median FT4 level in the population was 0.85 ng/dL and the median TSH level was 1.77 mIU/L. Across the three recall trials (with a maximum score of 30), the median CERAD total score was 19. The median scores for the CERAD delayed recall, Animal Fluency Test, and DSST were 6, 17, and 52, respectively. The average cognitive scores are typical for cognitively healthy individuals (Christensen et al., 2020).


TABLE 1 NHANES 2011–2012 participant baseline characteristics and clinical data.

[image: A table displays demographic and health-related characteristics of a sample of 409 individuals, divided by gender: female (203) and male (206). It includes age groups, race, Body Mass Index (BMI), alcohol consumption, smoking status, education level, and FT4 thyroid hormone levels. Age distribution shows more females in the 60-69 years range. The majority race is Non-Hispanic White. Most individuals have normal or overweight BMI. Alcohol consumption is mostly 1-5 drinks per month. Smoking status is evenly split between former and never smokers. Education is highest at some college or AA degree level, and FT4 levels are primarily between 0.60 and 1.60 ng/dL.]
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3.2 Relationship between serum TSH and FT4 concentrations and cognitive function

As shown in Table 2, the CERAD1 score was significantly different among the groups with TSH concentration < 0.45 mIU/L, 0.45–4.5 mIU/L, and > 4.5mIU/L (P = 0.028), with median values of 6, 5, 4, respectively. The CERAD.delay.recall score was also significantly different among these three groups (P < 0.001), with median values of 7, 6, 6, respectively. Moreover, the CERAD3 score significantly differed among the groups with FT4 concentration < 0.6 ng/dL, 0.6–1.6 ng/dL and > 1.6 ng/dL (P = 0.002), with median values of 7.32, 7.22, 5.86, respectively. The Animal Fluency Test score was also significantly different among these three groups stratified by FT4 concentration (P < 0.001) with median values of 17.7, 17, and 10.6, respectively. The overall differences between the three groups may reveal broad trends or patterns that may not be apparent in a two-by-two comparison due to statistical power, adjusted significance levels, or the complexity of the data. In fact, Table 3 only suggests that CERAD1 was higher in the group with TSH concentration less than 0.45 mIU/L than in the normal group (0.45–4.5 mIU/L), which is partially consistent with the results in Table 2.


TABLE 2 Multivariable-adjusted logistic regression to compare cognitive function among groups with different serum TSH and FT4 concentrations.

[image: A table showing the median and interquartile range of cognitive test scores for groups with different TSH and FT4 levels. Statistical significance is noted for scores on CERAD1, CERAD3, CERAD.delay.recall, and Animal Fluency, with P-values less than 0.05 indicated by an asterisk. Adjustments are made for survey cycle, age, sex, alcohol intake, smoking, PIR, and education.]


TABLE 3 Adjusted odds ratios (95% Confidence Intervals) for cognitive function test scores across TSH and FT4 groups.

[image: Table showing adjusted odds ratios with 95% confidence intervals for cognitive function test scores across different TSH and FT4 groups. Tests include CERAD1, CERAD2, CERAD3, and others. Statistically significant results are bolded.]



3.3 Relationship between thyroid disorders and cognitive function

As shown in Table 4, weighted logistic regression results from the NHANES database showed no significant association between thyroid disease and cognitive function.


TABLE 4 The effects of various thyroid diseases on cognitive function.

[image: Table comparing cognitive function scores across different thyroid disease groups, including normal, hyperthyroidism, hypothyroidism, subhyperthyroidism, and subhypothyroidism. It lists characteristics like CERAD scores, delay recall, animal fluency, and DSST. Columns include exp(Beta), SE, t, and p-values, showing results for each group and highlighting reference categories. Fully adjusted models account for survey cycle, age, sex, alcohol intake, smoking, PIR, and education. The text explains exp(Beta) as a linear relationship measure and SE as uncertainty around estimates.]



3.4 Dose-response relationship analysis

There was no linear relationship between serum TSH and FT4 concentration and cognitive function, as shown in Supplementary Table 2. Therefore, restricted cubic spline (RCS) was used to analyze the relationship between serum TSH concentrations and FT4 concentrations and Animal Fluency Test scores. Based on this relationship, the nonlinear model explained the relationship better than the linear model after adjusting for all covariates (TSH: P-non-linear = 0.0096; FT4: P-non-linear = 0.0443) (Figure 2). The serum TSH concentrations within the range of 1.703 to 3.145 mIU/L exhibit a positive correlation with Animal Fluency Test, whereas concentrations outside this range are negatively correlated with Animal Fluency Test. The serum FT4 concentrations exhibited a positive correlation with Animal Fluency Test to the left of the serum FT4 concentration inflection point (0.849 ng/L), whereas to the right of this inflection point, correlation was negative. We additionally conducted RCS analyses of TSH and FT4 concentrations in relation to CERAD1, CERAD2, CERAD3, CERAD total, CERAD delayed recall, and DSST scores. The results showed a non-linear but statistically insignificant relationship between serum TSH and CERAD1, but serum FT4 concentration showed a significant non-linear relationship with CERAD1. Furthermore, both serum TSH and FT4 concentrations were nonlinearly related to CERAD2, with significant results for TSH. In contrast, the nonlinear relationship between serum FT4 concentration and CERAD2 was only weakly significant. However, the nonlinear associations between serum TSH and FT4 concentrations and the scores of CERAD3, CERAD total, CERAD delayed recall, and DSST were not statistically significant (Supplementary Figure 1).
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FIGURE 2
Restricted cubic spline plots between serum TSH and FT4 levels and the results of the Animal Fluency Test. Restricted cubic spline (RCS) regression characterized dose-response relationships between serum thyroid stimulating hormone (TSH) concentrations and FT4 concentrations and Animal Fluency Test. Fully adjusted models are adjusted for survey cycle, age, sex, alcohol intake, smoking, PIR, and education. The beta coefficient delineates the varying effects of serum TSH and FT4 concentrations on the Animal Fluency Test across different intervals. The horizontal gray line, positioned at zero on the Y-axis, represents a beta value of 0. (A) Dose-response relationships between serum TSH concentrations and Animal Fluency Test: The three vertical gray lines in the graph denotes specific key values for TSH concentrations (x = 1.703, x = 2.339, x = 3.145 mIU/L), P-non-linear = 0.0096. Serum TSH concentrations in the range of 1.703 to 3.145 mIU/L showed a positive correlation with performance on the Animal Fluency Test, with the most pronounced positive correlation observed at a TSH level of approximately 2.339 mIU/L, whereas TSH concentrations outside this range showed a negative correlation with the Animal Fluency Test. (B) Dose-response relationships between serum FT4 concentrations and Animal Fluency Tes: The vertical gray line in the graph indicates a key value for FT4 concentration (x = 0.849 ng/dL), P-non-linear = 0.0443. Animal Fluency Test scores were positively correlated with FT4 on the left side of the serum FT4 concentration inflection point (0.849 ng/L), whereas on the right side, they were positively correlated.




3.5 MR analysis of the causal effect of genetically determined thyroid disease and serum TSH concentrations on the risk of developing dementia

The results of the primary IVW analysis indicated that genetic predisposition to hyperthyroidism was associated with a 4% reduction in odds of dementia [OR = 0.96, 95% CI: 0.92–0.99, P = 0.045] (Figure 3A), and that genetic predisposition to TSH concentrations was associated with a 9% increase in odds of AD [OR = 1.09, 95% CI: 1.01–1.18, P = 0.018] (Figure 3C). For the association between hyperthyroidism and dementia, the findings of MR-Egger [OR = 0.89, 95% CI: 0.82–0.97, P = 0.035] (Figure 3A) were consistent with the IVW method. The results of MR-Egger suggest that genetic predisposition to hypothyroidism was associated with an 11% increase in odds of dementia [OR = 1.11, 95% CI: 1.03–1.19, P = 0.006] and a 20% increase in odds of VaD [OR = 1.2, 95% CI: 1.04–1.4, P = 0.015] (Figure 3B). The results of WME suggest that genetic predisposition to hyperthyroidism was associated with a 10% reduction in odds of VaD [OR = 0.9, 95% CI: 0.82–0.99, P = 0.029] (Figure 3A). And for the association between TSH concentrations and AD, the findings of WME [OR = 1.09, 95% CI: 1.01–1.18, P = 0.036] (Figure 3C) was consistent with the IVW method. No cross-sectional pleiotropy (p-intercept > 0.05) was found for most of the selected instruments in the sensitivity analysis (Supplementary Tables 3–7). However, MR analysis suggested that there was no significant causal relationship between FT4 concentration and the risk of developing each type of dementia. Heterogeneity in tools selected for hypothyroidism and VaD and for TSH and dementia and AD. The forest plot generated by the LOO analysis shows the effect value (beta value) after excluding SNPs one by one (Supplementary Figures 2–4). When we exclude SNPs one by one, the black dots represent the effect estimate (i.e., beta value) for the remaining SNPs after excluding the corresponding SNPs, and the black line indicates the confidence interval for this estimate. In the association of hyperthyroidism with dementia and VaD, the effect estimate changed significantly and became nonsignificant after removal of SNP rs1794511. This may indeed indicate horizontal pleiotropy or the potential for this SNP to serve as a null instrumental variable. The MR-Egger intercept p-values were 0.026 and 0.043, respectively, suggesting slight evidence of pleiotropy. However, the primary results of the MR-Egger analysis did not show strong horizontal pleiotropy. In addition, further analysis using MR-PRESSO yielded a global test result of p = 0.483, indicating no significant overall horizontal pleiotropy in the causal relationship between hyperthyroidism and VaD. A global test with a p-value of 0.05 for the causal relationship between hyperthyroidism and dementia suggested borderline significance, indicating a potential slight pleiotropy; however, no significant aberrant SNPs were identified (Supplementary Table 7). Despite the absence of significant pleiotropy following the exclusion of individual SNPs (e.g., rs1794511), certain effect sizes exhibited some variation. Nevertheless, the combined results of the LOO and MR-Egger analyses consistently demonstrated that the overall causal effect remained robust.
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FIGURE 3
Forest plots of Mendelian Randomization analysis investigating the effects of hyperthyroidism, hypothyroidism, TSH and FT4 concentrations on each type of dementia. Forest plots of Mendelian Randomization (MR) in our study, including Inverse Variance Weighting (IVW), MR Egger, and Weighted median. (A) Forest plots of MR analysis of the correlation of hyperthyroidism with each type of dementia; It is showed that hyperthyroidism may reduce the risk of dementia and vascular dementia. (B) Forest plots of MR analysis of the correlation of hypothyroidism with each type of dementia; It is showed that hypothyroidism may increase the risk of dementia and vascular dementia. (C) Forest plots of a MR analysis of the correlation of thyroid stimulating hormone (TSH) concentrations with each type of dementia; It is showed that elevated concentrations of TSH may increase the risk of AD. (D) Forest plots of a MR analysis of the correlation of FT4 concentrations with each type of dementia; there was no significant causal association between the FT4 concentrations and the risk of developing each type of dementia. P-value < 0.05 is statistically significant. OR, odds ratio; CI, confidence interval.





4 Discussion

To our knowledge, this is the first study based on data from a large-scale observational study and MR analysis based on large-scale genetic data to comprehensively examine the association of thyroid disorders, TSH and FT4 concentrations with cognitive function and the risk of developing dementia. We investigated the relationship of serum TSH and FT4 concentrations with cognitive function. The results of this study showed statistically significant differences in both CERAD1 (P = 0.028) and CERAD.delay.recall (P < 0.001) among groups with serum TSH concentrations < 0.45 mIU/L, 0.45–4.5 mIU/L and > 4.5 mIU/L. Meanwhile, the results showed that there was a statistically significant difference in both CERAD3 (P = 0.002) and Animal Fluency Test scores (P < 0.001) among serum FT4 concentrations < 0.6 ng/dL, 0.6–1.6 ng/dL, and > 1.6 ng/dL groups. And the results suggest that the low serum TSH concentrations and serum FT4 concentrations groups had higher cognitive function scores. Surprisingly, our analysis identified a potential nonlinear association between serum TSH and FT4 concentrations with the CERAD2 scores and Animal Fluency Test scores. Additionally, a comparable association was observed between serum FT4 concentrations and CERAD1 scores, which partially elucidates the elevated CERAD1 scores in the FT4 intermediate group (0.6–1.6 ng/dL), as indicated by Table 2. Simultaneously, MR analysis results also suggest that genetic predisposition to TSH concentrations may increase the risk of AD. In addition, this large observational study also examined the relationship between various thyroid conditions and cognitive function and the results were not statistically significant. However, MR analysis indicated that genetic predisposition to hyperthyroidism may be associated with a reduced risk of dementia and VaD, whereas genetic predisposition to hypothyroidism may be linked to an increased risk of these conditions.

Previous studies have shown that both subclinical hyperthyroidism and hypothyroidism due to abnormal serum TSH concentrations increase the risk of AD and VaD (Tan et al., 2008). Our results based on MR analysis suggest that genetic predisposition to hypothyroidism and increased levels of TSH concentrations are associated with increased risk of VaD and AD, respectively, which is in line with the study of Tan et al. In addition, our findings indicate a non-linear association between serum TSH concentrations and cognitive function. Specifically, serum TSH concentrations within the range of 1.703 to 3.145 mIU/L exhibit a positive correlation with Animal Fluency Test, whereas concentrations outside this range are negatively correlated with Animal Fluency Test. This pattern aligns with previous research suggesting that abnormal TSH concentrations may increase the risk of AD and VaD, although genetically predicted TSH concentrations that are increased within the normal range are associated with a reduced risk of AD (Li et al., 2021; Marouli et al., 2021). Several studies have identified T4 concentrations as an important cognitive and dementia risk factor in older adults (Prinz et al., 1999; Hogervorst et al., 2008). Previous studies have reported an association between high FT4 concentrations and accelerated cognitive decline and dementia progression (Hogervorst et al., 2008). The results of the present study are also consistent with previous findings, but interestingly, the relationship between serum FT4 concentrations and cognitive impairment may be nonlinear, with the negative correlation with cognitive impairment gradually flattening at higher serum FT4 concentrations. However, the MR analysis results suggest that there was no significant causal association between the FT4 concentrations and the risk of developing each type of dementia. The inconsistency between the results of MR analysis and cross-sectional studies on the relationship between FT4 concentrations and cognitive function may be due to the small number of SNPs used as instrumental variables within the MR analyses. For the diagnosis and treatment of dementia associated with thyroid dysfunction and other risk factors, serum TSH concentrations and FT4 concentrations may serve as potential research and clinical targets.

Thyroid disease is diagnosed on the basis of serum TSH and FT4 concentrations, and thus thyroid disease is affected by the complexity of the relationship between serum TSH and FT4 concentrations. The association between serum TSH concentrations and CREAD2 scores exhibited a plateau pattern, whereas the relationship between serum FT4 concentrations and CREAD2 scores demonstrated an essentially L-shaped configuration. Conversely, the correlation between serum TSH concentrations and Animal Fluency Test scores followed an inverted U-shaped, while the association between serum FT4 concentrations and Animal Fluency Test scores remained fundamentally L-shaped. This discrepancy can be ascribed to the varying cognitive domains represented by different scores, suggesting that the impacts of TSH and FT4 may differ across these distinct cognitive domains. Thus, in terms of the non-linear relationship between serum TSH and FT4 concentrations on cognitive function alone, thyroid disease is protective against dementia when serum TSH concentrations reduces the risk of dementia more than serum FT4 concentrations increases the risk of dementia, or when serum FT4 concentrations reduces the risk of dementia more than serum TSH concentrations increases the risk of dementia, but the effects of thyroid disease on cognitive function may be mediated by other, more complex influencing factors, and serum TSH and FT4 concentrations may have an interactive effect. This may partially elucidate the inconsistencies and ongoing controversies observed in current studies examining the relationship between thyroid disease and cognitive decline. Despite numerous studies indicating either an association (Kalmijn et al., 2000; van Osch et al., 2004; Quinlan et al., 2020) or a lack thereof (Yoshimasu et al., 1991; de Jong et al., 2006; Annerbo et al., 2009; Brenowitz et al., 2018) between hyperthyroidism/hypothyroidism, the precise relationship between Alzheimer’s disease (AD) and thyroid function remains inconclusive. Recent systematic reviews have demonstrated that the effects of hypothyroidism on AD can be investigated through various mechanisms, including diminished neuromodulation, altered gene expression, impaired autophagy, increased oxidative stress, and brain metabolic dysfunction. Importantly, these factors do not operate in isolation; instead, they interact synergistically to contribute to the onset and progression of AD (Li and Liu, 2024). Observational results of the study suggest no association between different types of thyroid disorders and cognitive dysfunction, but some of the results of MR analysis were statistically significant.

Both the IVW and MR-Egger methods of MR analysis indicate that genetic predisposition to hyperthyroidism is associated with a decreased risk of developing dementia. This finding implies the presence of a robust and consistent causal relationship, or alternatively, that pleiotropy is insufficient to significantly impact this association. MR analysis results using solely WME prompts, revealing that genetic predisposition to hyperthyroidism is associated with a reduced risk of developing VaD. The lack of significant findings using IVW and MR-Egger methods could be attributed to potential pleiotropy within the instrumental variables, resulting in inconsistent effects of these variables on the exposure-outcome relationship. However, the WME method, owing to its robustness and reduced sensitivity to such inconsistencies, may yield more reliable estimates. The MR analysis found that the protective effect of hyperthyroidism against dementia and VaD may be related to the fact that thyroid hormones can increase systemic metabolism, stimulate angiogenesis, and improve vascular endothelial function. The results of the study are less well established in the literature, and more studies need to be conducted to confirm the results. In the MR analysis, only the MR-Egger method indicated that genetic predisposition to hypothyroidism increases the risk of dementia and VaD, potentially reflecting the influence of multivalence or variability in the direction of the effects of instrumental variables. This observation aligns with prior results from an extensive case-control study conducted by Wieland et al., which identified an 81% elevated risk of dementia among individuals aged 65 years or older with a history of hypothyroidism (Wieland et al., 2022). In the interim, the outcomes derived from the IVW and WME methods in the MR analysis indicate that genetic predisposition to elevated TSH concentrations may elevate the risk of Alzheimer’s Disease (AD). This observation suggests that the instrumental variables demonstrate a robust causal relationship between TSH concentrations and AD, characterized by an absence of significant evidence of pleiotropy and a consistent direction of effect. However, neither genetic predisposition to hypothyroidism nor genetic predisposition to hyperthyroidism is associated with AD. This difference may be due to differences in the pathological basis of the different types of dementia, the effects of thyroid function on the cardiovascular and metabolic systems, the sensitivity and statistical power of the data, the heterogeneity of the effects of the instrumental variables, and differences in specific biological mechanisms. Furthermore, although the observed odds ratio (OR) reached statistical significance, its proximity to 1 suggests a potentially limited benefit. This observation could be attributed to the large sample size, the small effect size, random error or noise within the data, and the presence of potential confounders or biases. Consequently, additional clinical trials are warranted to corroborate our findings.

There may be several reasons for the discrepancy between MR analysis and cross-sectional results. First, although the heterogeneity of the instruments selected for hypothyroidism and VaD as well as for TSH concentrations and dementia and AD does not fully explain the inconsistency between the results of the MR analysis and the results of the cross-sectional study. The heterogeneity of the tools selected for hypothyroidism and VaD may be related to the pleiotropy of MR analysis. The heterogeneity of tools selected for TSH concentrations and AD may be related to factors such as different gene-environment interactions or differences in the effects of tool variables. The heterogeneity may influence the reliability of the findings regarding the elevated risk of VaD associated with genetic predisposition to hypothyroidism, as well as the increased risk of AD linked to genetic predisposition to TSH concentrations. However, it does not compromise the reliability of the other results. Second, the assumption of MR analysis is usually that the relationship between genetic predisposition to TSH concentrations, and each type of dementia is linear and stable over time, but the results of the present cross-sectional study suggest that the relationship between serum TSH concentrations and cognitive function is nonlinear, which explains the inconsistency between the results of the MR analysis and those of the cross-sectional study. Third, the inconsistency between the results of MR analysis and the cross-sectional study may be due more to the small sample size of the cross-sectional study. Therefore, a larger sample size is needed to confirm the results of this study.

Some strengths of this study include the large sample size, the inclusion of several types of dementia, and the use of SNPs as genetic instrumental variables. Importantly, we were able to assess the causal effect of TSH concentrations, hyperthyroidism, and hypothyroidism on the risk of developing dementia using MR analysis. However, this study has some limitations. First, we conducted the MR analysis using data from people of European descent, whereas the cross-sectional study used data from multiracial Americans. Studies of individuals of the same race are needed to eliminate potential confounders of population heterogeneity. Second, a larger population is needed for a RCT because the cross-sectional studies have relatively few complete data on both cognitive and thyroid function. Third, the incidence of FTD and DLB may be low, so the number of cases is relatively small. All the data in the database have been used in this paper, and the results suggest that there is a certain trend between thyroid disease and the risk of FTD, but there is no consistent statistical significance, so large-scale clinical RCT trials are needed to verify the results. Fourth, due to database limitations, the current study did not include real-time patient samples to explain the relationship between dementia and hormones. Fifth, Our study is limited by the absence of a mechanistic component involving wet-lab experiments on blood samples from dementia patients, relying predominantly on statistical analysis.

This study provides evidence of a nonlinear relationship between serum TSH and FT4 concentrations and cognitive function, with hyperthyroidism decreasing the risk of dementia and VaD, hypothyroidism increasing the risk of dementia and VaD, and elevated TSH concentrations increasing the risk of AD. To validate the findings of this study, it is imperative to conduct extended and larger-scale RCT. Additionally, there is a critical need for more comprehensive basic research across various levels, including molecular, cellular, and animal models, to progressively elucidate the pathomechanisms underlying the association between thyroid dysfunction and dementia. Such research endeavors will facilitate the identification of a comprehensive and compelling network of mechanisms, ultimately contributing to the development of more effective clinical treatment strategies. Furthermore, prioritizing early detection, diagnosis, and treatment through the assessment of thyroid function in individuals at high risk for developing dementia is of paramount importance. This strategy has the potential to significantly contribute to the prevention and deceleration of dementia progression.
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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by gradual loss of cognitive function. Understanding the molecular mechanisms is crucial for developing effective therapies.



Methods: Data from single-cell RNA sequencing (scRNA-seq) in the GSE181279 dataset and gene chips in the GSE63060 and GSE63061 datasets were collected and analyzed to identify immune cell types and differentially expressed genes. Cell communication, pseudotime trajectory, enrichment analysis, co- expression network, and short time-series expression miner were analyzed to identify disease-specific molecular and cellular mechanisms.
Results: We identified eight cell types (B cells, monocytes, natural killer cells, gamma-delta T cells, CD8+ T cells, Tem/Temra cytotoxic T cells, Tem/Trm cytotoxic T cells, and mucosal-associated invariant T cells) using scRNA-seq. AD samples were enriched in monocytes, CD8+ T cells, Tem/Temra cytotoxic T cells, and Tem/Trm cytotoxic T cells, whereas samples from healthy controls were enriched in natural killer and mucosal-associated invariant T cells. Five co-expression modules that were identified through weighted gene correlation network analysis were enriched in immune- inflammatory pathways. Candidate genes with higher area under the receiver operating characteristic curve values were screened, and the expression trend of Ubiquitin-Fold Modifier Conjugating Enzyme 1 (UFC1) gradually decreased from healthy controls to mild cognitive impairment and then to AD.
Conclusion: Our study suggests that peripheral immune cells may be a potential therapeutic target for AD. Candidate genes, particularly UFC1, may serve as potential biomarkers for progression of AD.
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Alzheimer’s disease, immune cells, single-cell RNA sequencing, UFC1, monocytes, tlymphocytes

[image: Flowchart illustrating the analysis of scRNA-seq data from samples labeled AD and NC. Data proceeds through processes GSE181279, GSE63060, and GSE63061, with differential expression and functional annotations displayed. Plots include t-SNE visualizations for cell types, DEG identification, Venn diagrams showing gene overlaps, bar charts for AUC values, and pathway enrichment maps. Each step transitions logically from data acquisition to detailed bioinformatics analysis, highlighting distinct cell populations and gene expression changes.]
GRAPHICAL ABSTRACT
The flowchart of this study. AD, Alzheimer’s disease; AUC, area under receiver operating characteristic curve; DEGs, differentially expressed genes; NC, normal control; scRNA-seq, single cell RNA-sequencing.


Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that typically occurs in people over the age of 60 and is characterized by a gradual decline in cognitive functions, including memory, thinking, emotion, and behavior (Eissman et al., 2022; Zou D. et al., 2019; Zou et al., 2024). It is the most common cause of dementia, accounting for more than 65% of all dementia cases in elderly individuals (Ballard et al., 2011; Lin et al., 2022). While some treatment options are available for AD, its causes and mechanisms are not fully understood, underscoring AD as a significant focus in the scientific community (Zou et al., 2022; Jian et al., 2017).

The two main pathological hallmarks of AD are the accumulation of beta-amyloid proteins in amyloid plaques and the formation of neurofibrillary tangles, which are twisted fibers of tau protein that accumulate inside neurons (Gonzalez-Ortiz et al., 2023; Zou C. et al., 2019). These pathological changes lead to inflammation, oxidative stress, and damage to brain cells, eventually resulting in AD symptoms. Currently, there is no cure for AD, and the available treatments can only temporarily alleviate some of its symptoms (Zou et al., 2023).

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying the molecular and cellular mechanisms underlying AD (Olah et al., 2020; Xu and Jia, 2021; Lu et al., 2024). AD is a complex and multifactorial disease that involves multiple cell types and molecular pathways (Xiong et al., 2021; Saura et al., 2023; Xie et al., 2024). scRNA-seq allows researchers to study individual cells, providing a more comprehensive understanding of the cellular and molecular changes associated with AD (Jian et al., 2021).

Targeting immune cells for AD as a potential therapeutic strategy has gained increasing attention in recent years (Hampel et al., 2020). The immune system plays a critical role in AD pathogenesis and the activation of immune cells, such as microglia and peripheral immune cells, contributes to disease progression (Luo et al., 2022; Ma et al., 2022). Studies have shown that peripheral immune cells are increased in AD patients and that immune cells in the periphery can influence the development and progression of AD (Bettcher et al., 2021).

Mild cognitive impairment (MCI) is often considered a transitional stage between normal aging and AD (Ritchie et al., 2014). Individuals with MCI are at increased risk of developing AD or other dementias (Davis et al., 2013). Studies have shown that the annual rate of conversion from MCI to AD is higher than that of cognitive decline in healthy older adults (Chandra et al., 2019). By analyzing and comparing the gene expression patterns from patients with MCI and AD, researchers can identify the molecular pathways that are switched towards AD and determine how these alterations contribute to AD progress.

To explore the molecular basis of peripheral immune cells and gene expression patterns, we used scRNA-seq data and transcriptomes from patients with AD and healthy controls to reveal the composition and proportions of immune cell types and identify key genes and pathways.



Materials and methods


Data collection

The GSE181279 (Xu and Jia, 2021) and GSE63063 (Sood et al., 2015) datasets were obtained from the Gene Expression Omnibus (GEO) database.1 GSE181279 includes scRNA-seq data of peripheral blood mononuclear cells (PBMCs) from three patients with AD and two cognitively normal controls (NC), based on the GPL24676 platform. GSE63063 is a superseries composed of GSE63060 and GSE63061 datasets. GSE63060 includes gene-chip datasets of blood samples from 49 patients with AD, 39 patients with mild cognitive impairment (MCI), and 67 NC based on the GPL6947 platform. GSE63061 included gene-chip datasets of blood samples from 40 patients with AD, 30 patients with MCI, and 72 NC, based on the GPL10558 platform.



scRNA-seq cell clustering and differential analysis

During preprocessing, we used the Seurat R package (v3.1.2) to filter out empty droplets (those containing only ambient RNA) based on the criteria of expressing fewer than 200 genes. We also applied stringent thresholds for unique molecular identifier (UMI) count and mitochondrial gene content to exclude low-quality cells. Cells expressing more than 30% mitochondrial genes were filtered out to avoid cells undergoing apoptosis or stress. Additionally, we applied a lower UMI threshold of 200 and an upper threshold of 8,000 genes. After normalizing the data using the Seurat R package (v3.1.2), the FindClusters function was used to identify the major clusters. Subsequently, t-distributed stochastic neighbor embedding (tSNE) (Pont et al., 2019) was used to visualize major clusters. Cell types were defined based on the reported marker genes (Supplementary Table 1) and differential expression analysis of unique markers. Intercellular communication was analyzed using the CellChat R package (Jin et al., 2021). Pseudotime trajectory analyses were performed using monocle2 R package (Qiu et al., 2017). The contribution of cells to AD was calculated using the Seurat R package.

Differences between AD and NC in cell types were analyzed using the Seurat R package. Differentially expressed genes (DEGs) were identified at P < 0.05. Differences between cell types were analyzed using the limma R package (Ritchie et al., 2015). Enrichment analysis of biological processes (BP) in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) for DEGs was performed using the ClusterProfiler R package (Yu et al., 2012).



Construction of co-expression network

The co-expression networks of the 2000 most variable genes were constructed using scRNA-seq with weighted gene correlation network analysis (WGCNA) (Langfelder and Horvath, 2008) and high-dimensional WGCNA. We constructed meta-cells for each cell and normalized their expression matrix. The soft threshold power was calculated, and the optimal β was selected to obtain a scale-free network. Then the adjacency matrix was transformed into a topological overlap matrix (TOM) and the co-expression network was constructed. Module eigengenes (MEs) were calculated to represent module expression levels. The correlation between genes and module eigengenes was calculated to obtain eigengene-based connectivity (kME) and to identify highly connected genes (hub genes) in each module. The top 25 hub genes in each module were scored using the moduleexprscor function. Correlations between the modules and cell types were calculated using Pearson’s correlation.



Gene-chip data processing

DEGs between the AD and NC groups were analyzed using the limma R package with a permutation-based P-value of < 0.05. Common DEGs were obtained by intersectional analysis of DEGs that were up - or downregulated in both the GSE63060 and GSE63061 datasets.

Enrichment analyses of the Gene Ontology and KEGG databases for common DEGs were performed using Metascape.2 Gene set enrichment analysis (GSEA) was performed using the clusterprofiler R package to detect which gene sets were significantly enriched in AD. Adjusted P < 0.05 were considered statistically significant. The area under the receiver operating characteristic curve (AUC) values were calculated using the pROC package (Robin et al., 2011) for both the GSE63060 and GSE63061 datasets. Common DEGs with the top ten AUC values were selected as candidate genes.



Short time-series expression miner (STEM)

We performed differential analyses between AD and MCI or between MCI and NC samples. The generated genes were provided as inputs to STEM (Ernst and Bar-Joseph, 2006) to observe variations in gene expression. Hierarchical clustering was used to observe activated or inhibited variation trends in the KEGG pathways.




Results


Single-cell gene expression profiles reveal major immune cell types in AD

Graphical Abstract highlights the experimental design, including the datasets used (GSE181279, GSE63060, and GSE63061) and their respective contributions to identifying immune cell types and gene expression profiles in AD and normal controls. The cell clustering based on scRNA-seq data is depicted, illustrating the differences in immune cell populations between AD patients and controls. The identification of key DEGs and the co-expression network analysis are also represented, emphasizing the role of immune cells in AD progression.

The raw GSE181279 dataset was read using the Seurat R package, and 22,776 individual cells in AD and 14,074 individual cells in normal tissue were obtained (Supplementary Figure 1). This was followed by quality control leading to 21,791 high-quality individual cells and 13,877 individual cells from normal individuals identified (Supplementary Figure 2). Using graph-based tSNE, we identified 13 clusters of major immune cells containing 35,668 total cells. Subsequently, we annotated 13 cell clusters with marker genes for major cell types and found that they were annotated as B cells, T cells, monocytes, and natural killer (NK) cells (Figures 1A, C). The distribution of T cells was clear and loose. Thus, we subdivided the T cell population and identified five T cell subtypes: gamma-delta T cells, CD8+ T cells, Tem/Temra cytotoxic T cells, Tem/Trm cytotoxic T cells, and mucosal-associated invariant T (MAIT) cells (Figures 1B–D). Different cell types were enriched in patients with AD and NC. Monocytes, CD8+ T cells, Tem/Temra cytotoxic T cells, and Tem/Trm cytotoxic T cells were enriched in patients with AD, whereas MAIT and NK cells were enriched in NCs (Figure 2E). Cell type proportions were significantly different between AD and NC, with monocytes, Tem/Temra cytotoxic T cells, and Tem/Trm cytotoxic T cells predominantly present in the AD samples, and MAIT cells, NK cells, and B cells predominantly present in the NC samples (Figure 1F).


[image: Graphs and visualizations showing cell type distributions and expressions in a study. Panels A, B, and D display t-SNE plots with various labeled immune cells. Panel C is a dot plot showing gene expression across different cell types. Panel E features a t-SNE plot distinguishing AD from Normal samples. Panel F presents bar charts depicting the proportion of cell types across samples labeled AD and Normal. The figures illustrate differences in cell composition and gene expression.]

FIGURE 1
Characterization of cell populations in AD with scRNA-seq profiling. (A) The T-distributed stochastic neighbor embedding (tSNE) plot showing major cell types. (B) The tSNE plot showing subtypes of immune cells. (C) Dot plot showing average expression of marker genes of immune cell types. The color represents the average expression level of marker genes. (D) The tSNE plot showing subtypes of T cells. (E) The tSNE plot showing all cells in the AD and normal control groups. (F) Proportion of cell types in AD and normal control samples. AD, Alzheimer’s disease.



[image: Panel A shows two network diagrams illustrating cell interactions: on the left, interaction weights/strength; on the right, the number of interactions among various cell types such as monocyte, NK, and T cells. Panel B depicts a scatter plot with cell types annotated, showing components 1 and 2, and differentiation pathways. Panel C presents a heatmap clustering cell types and states, with color coding for pre-branch, cell fate 1, and cell fate 2.]

FIGURE 2
Single cell immune landscape in ARDS and healthy controls. (A) Cellular interaction number and strength. (B) Pseudotime trajectory analysis of major immune cells. (C) Heatmap of gene expression in immune cells of branches.




CellChat and cellular trajectory based on scRNA-seq

We sought to explore the communication networks between immune cells. The interactions between Tem/Temra cytotoxic T cells, Tem/Trm cytotoxic T cells, and CD8 cells were stronger, and CD8 cells were signal recipients (Figure 2A). Three cell branches were identified in the pseudotime analysis: gamma-delta T cells and CD8+ T cells concentrated at the end of branch 1, monocytes concentrated at the end of branch 2, and Tem/Temra cytotoxic T cells and Tem/Trm cytotoxic T cells bifurcating into branch 3 (Figure 2B). The gene expression of immune cells in these branches is shown in Figure 2C. These results revealed the potential transcriptional heterogeneity between cell types.



Identification of co-expression network using WGCNA

To explore the co-expression networks of genes in immune cell types, we performed WGCNA. The power parameter range of 1–30 was filtered the power of β = 8 (scale-free R2 = 9) was used as the optimal screening soft threshold to construct a scale-free network and obtain five co-expression modules (Figures 3A, B). The modules spanned multiple cell populations by scoring the top 25 hub genes of each module, then mapping them to single cells (Figure 3C). We identified the top 10 hub genes in each module (Figure 3D). Among these modules, yellow (M3) and green (M5) modules showed significant positive correlations with CD8+ T cells and significant negative correlations with gamma-delta T cells in AD, while turquoise module (M1) showed significant positive correlations with monocytes and MAIT cells and significant negative correlations with CD8+ T cells, gamma-delta T cells, and B cells in AD (Figure 3E). Moreover, all immune cells were significantly different in the M1 group (Figure 3F).
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FIGURE 3
Co-expression modules and their association with immune cells. (A) Different soft-thresholding for screening scale-free network. (B) Hierarchical clustering tree of 5 modules of co-expression. (C) Score of each module in immune cells. The color represents the score level of top 25 hub genes. (D) Top 10 hub genes within individual modules were determined by kME values. ME, module eigengenes. (E) Correlation between modules and immune cells in different clinical traits. *P < 0.05, **P < 0.01, ***P < 0.001. (F) Differential condition of cell types in each module. *P < 0.05, **P < 0.01, ***P < 0.001.




Differentially expressed genes and biological roles

We investigated the contribution of immune cells in AD. The results indicated that MAIT cells had the highest contribution to AD, followed by B cells and NK cells (Figure 4A). By comparing gene expression changes between AD samples and normal controls, we found that MAIT cells and monocytes were primarily upregulated in AD (Figure 4B). Enrichment analysis of DEGs in various cell types revealed that the DEGs were mainly enriched in growth hormone synthesis, secretion, and action (Figure 4C). In the quantitative analysis, we found that Butanoate metabolism was significantly activated in MAIT cells (Figure 4D).
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FIGURE 4
Contribution of immune cell types, analysis of differentially expressed genes, and metabolic pathway enrichment analysis in AD. (A) Contribution of different immune cell subtypes to AD. (B) Volcano plot of differentially expressed genes in various immune cell types between AD and control samples. (C) Metabolic pathway enrichment analysis based on differentially expressed genes. (D) Quantitative analysis of metabolic pathways in different immune cell types.


In addition, to explore the disease mechanism in patients with AD from a molecular perspective, we analyzed the genes in immune cells identified by scRNA-seq for differential expression. We identified 1683 DEGs in B cells, 951 DEGs in CD8+ T cells, 1407 DEGs in gamma-delta T cells, 250 DEGs in MAIT cells, 1615 DEGs in monocytes, 644 DEGs in NK cells, 1595 DEGs in Tem/Temra cytotoxic T cells, and 1582 DEGs in Tem/Trm cytotoxic T cells (Figure 5A). Enrichment analysis revealed that these DEGs were enriched for regulation of T cell proliferation, B cell activation, and inflammatory responses (Figure 5B). In KEGG pathway analysis, we found that the DEGs were mainly enriched for ribosomes, Parkinson’s disease, and AD (Figure 5C). Of these, MAIT cells are involved in the fewest signaling pathways. However, all are implicated in the nervous system.
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FIGURE 5
Identification of differentially expressed genes and biological roles of immune cells based on scRNA-seq. (A) Differentially expressed genes in each cell type compared to others. The top 5 up- or downregulated expressed genes are labeled. (B) Biological processes of differentially expressed genes in all cell types. The size represents the count of cells. The color represents the FDR. (C) KEGG pathways of differentially expressed genes in all cell types. The size represents the count of cells. The color represents the FDR. FDR, false discovery rate.


Notably, we identified 110 DEGs from the GSE63060 dataset (Figure 6A) and 429 DEGs from the GSE63061 dataset (Figure 6B). Analyzing the upregulated and downregulated DEGs separately, we found eight DEGs that were upregulated and 89 DEGs that were downregulated in both GSE63060 and GSE63061. Both were considered common DEGs (Figure 6C). Enrichment analysis showed that common DEGs were involved in SRP-dependent co-translational proteins targeting the membrane, oxidative phosphorylation, and ribonucleoprotein complex biogenesis (Figure 6D).


[image: Four-part image showing gene expression analysis. Panels A and B are volcano plots with genes highlighted. Panel C contains Venn diagrams comparing upregulated and downregulated genes in datasets GSE63061 and GSE63060. Panel D is a network diagram illustrating gene ontology terms with a color key for different pathways.]

FIGURE 6
Identification of differentially expressed genes and biological roles of immune cells based on gene-chip data. (A) Differentially expressed genes between AD and normal controls in the GSE63060 dataset. The top 3 up- or downregulated expressed genes are labeled. (B) Differentially expressed genes between AD and normal controls in GSE63061 dataset. The top 3 up- or downregulated expressed genes are labeled. (C) Common DEGs were screened with the intersection of up-expressed genes or down expressed genes in both datasets. (D) Functional enrichment analysis of common DEGs through Metascape.




Candidate genes and pathways in AD

We further extracted candidate genes (CETN2, COX17, MRPL51, NDUFA1, NDUFS5, RPA3, RPL36AL, RPS25, SHFM1, and UFC1) with high AUC values in both GSE63060 and GSE63061 (Figure 7A). RPS25 and RPL36AL were highly expressed in the eight immune cell types identified by scRNA-seq (Figures 7B, C). Interestingly, all candidate genes exhibited decreased expression in AD patients compared to normal controls in both the GSE63060 and GSE63061 datasets (Figure 7D).
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FIGURE 7
Identification of candidate genes. (A) AUC values of common DEGs in GSE63060 and GSE63061 datasets. Red represents high expression and blue represents low expression in AD. AUC, area under receiver operating characteristic curve. (B) Expression of candidate genes in 8 immune cells. The color represents the expression levels. (C) Violin plots showing the expression of candidate genes in 8 immune cells. (D) Expression of candidate genes in AD and normal controls in GSE63060 and GSE63061 datasets. ***P < 0.001. AD, Alzheimer’s disease.


In addition, we analyzed the KEGG pathways in AD of GSE63060 (Figure 8A) and GSE63061 (Figure 8B) using GSEA. The results showed that in AD patients, osteoclast differentiation, lysosomes, TNF signaling pathway, JAK-STAT signaling pathway, growth hormone synthesis, secretion, and action were activated; while ribosomes, oxidative phosphorylation, coronavirus disease-COVID-19, Parkinson’s disease, and thermogenesis were inhibited. We found that ribosomes (hsa03010) and coronavirus disease-COVID-19 (hsa05171) were mainly enriched in the eight immune cell types identified by scRNA-seq (Figure 8C).


[image: Panel A and B display gene set enrichment analysis (GSEA) plots for various biological pathways, indicating normalized enrichment score (NES) and adjusted p-values. The pathways include osteoclast differentiation and coronavirus disease – COVID-19. Panel C shows t-SNE plots for several human gene expressions identified by pathway codes such as hsa04380 and hsa05171, with color gradients representing numerical scales.]

FIGURE 8
Analysis of pathways in AD and immune cells. Top 5 activated or inhibited intersecting KEGG signaling pathways in GSEA in GSE63060 (A) and GSE63061 (B) datasets. NES, normalized enrichment score. (C) Enrichment of pathways in 8 immune cells. The color represents the enrichment levels.




Patterns of genes and signaling pathways in AD progression

Temporal expression analysis was performed using STEM software of the differentially expressed genes between AD and MCI and between MCI and controls to further explore the expression patterns of genes in the progression of AD. We found that the expression trends of the 13 genes in the course of the normal control to MCI and AD were consistent in the GSE63060 (Figure 9A) and GSE63061 (Figure 9B) datasets. Among these 13 genes, UFC1 was identified as one of the candidate genes.


[image: Boxplots depicting the expression levels of various genes (e.g., ADAM8, ATP5J, GETN2) across different sample groups (NC, MCI, AD). The plots differentiate between original variable and predicted values, indicated by green and red respectively. Two panels labeled A and B show distinct datasets, each with identical sets of genes. Each boxplot includes the median, interquartile range, and potential outliers for each gene across the sample categories.]

FIGURE 9
Expression trends of genes in STEM analysis. Genes with the same expression trend in GSE63060 (A) and GSE63061 (B) datasets. AD, Alzheimer’s disease; NC, normal control.


Cluster heatmap analysis of common DEGs in GSE63060 (Figure 10A) and GSE63061 (Figure 10B) revealed that the genes upregulated in AD progression were mainly involved in the regulation of neuronal apoptotic processes and the actin cytoskeleton. In contrast, the genes downregulated in AD progression were mainly involved in ribosome and oxidative phosphorylation.


[image: Heatmaps titled A and B display gene expression data for NC (normal control), MCI (mild cognitive impairment), and AD (Alzheimer's disease) across multiple genes. Each map includes color-coded clusters indicating gene functions and related diseases. Z-score scales range from red (high expression) to blue (low expression). Side panels graph gene sizes against Z-score distributions.]

FIGURE 10
Clustered Heatmap of common DEGs and signaling pathways in AD, MCI, and NC groups. Expression heatmap of common DEGs and their major biological functions involved in GSE63060 (A) and GSE63061 (B) datasets. AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control.





Discussion

scRNA-seq is a powerful tool for studying the molecular and cellular mechanisms of AD. Its applications are expected to accelerate the development of new therapies and diagnostic tools for this devastating disease (Murdock and Tsai, 2023). In this study, we identified eight immune cell types with significantly different proportions between the AD and NC groups. We also explored the co-expression networks of DEGs among immune cells. This study provides insights into the molecular mechanisms underlying AD and suggests potential therapeutic targets for the disease.

Using tSNE, we identified 27 clusters of immune cells, which were subsequently annotated with marker genes for major cell types. The composition of immune cell subsets is variably altered in patients with AD compared to NCs. Interestingly, we found that the AD and NC groups were enriched in different cell types. Previous studies have found increased numbers of CD8 + T cells in the postmortem brain tissue of patients with AD, which was also validated in a murine APP/PS1 amyloidosis model (Unger et al., 2020). TEM (effector memory T cells) and TEMRA (CD45RA+ effector memory T cells) carry the greatest amounts of perforin and Fas ligand, with their numbers increasing after viral infection (Shen et al., 2010). The number and cytotoxic activity of blood NK cells were decreased in patients with AD compared to those in control subjects, which may be related to tissue transfer and neurogenic innervation of NK cells (Qi et al., 2022). Consistent with the findings of this study, MAIT cell abundance was also reduced in the AD group compared to the healthy control group (Qian et al., 2022). MAIT cells have the greatest contribution to AD, indicating that they may have important immune regulatory functions in the pathological process of AD. In quantitative analysis of metabolic pathways, we found significant activation of Butanoate metabolism in MAIT cells. Changes in metabolism may affect cell function and survival, thereby affecting the progression of AD.

CellChat can be used to identify and visualize the cell-cell communication networks involved in AD. These findings suggest that the dysregulation of immune cells may play a role in the pathogenesis of AD. Communication between Tem/Temra cytotoxic T cells, Tem/Trm cytotoxic T cells, and CD8+ cells was strong. This may be related to the fact that these three cells share common marker genes (Xiong et al., 2023; Sallusto et al., 2004). These interactions suggest that cytotoxic T cells, known for their role in immune surveillance and clearance of damaged cells, may contribute to the neurodegeneration observed in AD. Increased cytotoxicity may drive inflammation and exacerbate neuronal damage, implicating these cells in the progression of the disease. Pseudotime analysis further supported the idea that immune cells follow distinct developmental pathways during AD progression. These findings provide evidence for the temporal and functional heterogeneity of immune cells in AD. Given immune cells increased activation and altered communication in AD, modulating the activity of specific immune cell populations - particularly cytotoxic T cells and monocytes−could help reduce neuroinflammation and slow the progression of the disease.

WGCNA allows the identification of groups of genes that are highly correlated in their expression patterns across different cell types. Correlation analysis suggests that genes in yellow (M3) and green (M5) modules are highly active in CD8+ T cells but less active in gamma-delta T cells in the context of AD. Genes in turquoise (M1) are highly active in monocytes and MAIT cells, but less active in CD8+ T cells, gamma delta T cells, and B cells in the context of AD. The enriched biological functions of DEGs in different immune cell types were regulation of the immune inflammatory response, ribosomes, and AD. This suggests a potential link between these immune cell types and AD development (Zhou et al., 2021). We noted that MAIT cells, in particular, are involved in pathways implicated in the nervous system. This finding is important because it suggests that MAIT cells may play a crucial role in neuroinflammation and neurodegeneration observed in AD (Wyatt-Johnson et al., 2023; Elkjaer et al., 2022; Liang et al., 2022).

On top of that, we identified candidate genes based on the diagnostic efficacy. We performed temporal expression analysis to investigate the progression of AD using STEM software and found that the expression trends of 13 genes were consistent in both the GSE63060 and GSE63061 datasets. Among these 13 genes, UFC1 (Ubiquitin-Fold Modifier Conjugating Enzyme 1) was identified as a candidate gene, exhibiting a trend of decreasing expression from NC to MCI and then to AD. UFC1 is downregulated in AD compared to controls (Madrid et al., 2021). UFC1 is involved in ubiquitination as an E2 conjugating enzyme and interacts with neuronal cell adhesion molecules in neurological diseases (Nahorski et al., 2018; Liu et al., 2015). However, its role in AD remains poorly understood.

This study has several limitations that should be considered. Firstly, this study was primarily focused on immune cells thus, excluding other cell types that may also be significantly involved in AD pathology. Furthermore, this study used data from publicly available datasets and did not include new experimental data. The sample size was relatively small for scRNA-seq, which may also limit the generalizability of the findings. Moreover, this study did not address the causes behind the observed differences in immune cell populations between AD and NC samples. We also acknowledged that transcriptional changes do not always correlate directly with protein expression, and therefore, additional validation steps are necessary. In future studies, we plan to use techniques such as enzyme-linked immunosorbent assay or Western blotting to assess UFC1 protein levels in peripheral blood samples from AD patients, MCI patients, and normal controls. Further studies are needed to investigate the mechanisms underlying these differences. Consequently, the findings should be interpreted with caution, and further studies are needed to confirm and expand these results.



Conclusion

Overall, the present study identified eight immune cell types at the single-cell level and explored the cell communication and co-expression networks of genes in these immune cell types. Candidate genes, particularly UFC1, may serve as potential biomarkers for AD progression. This study reveals the potential transcriptional heterogeneity between immune cell types and provides insights into the molecular mechanisms underlying AD.
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Objective: To investigate the associations between comorbidities and multimorbidity patterns with motor and neuropsychiatric symptoms in patients with Parkinson’s disease (PD) in prodromal PD.



Methods: Multimorbidity is defined as the coexistence of two or more long-term conditions (LTCs) (also known as multiple comorbidities). A total of 921 participants without PD were included in the Parkinson’s Progression Markers Initiative (PPMI) database and were categorized according to the LTC count. Participants were evaluated on motor and psychiatric symptoms. Pearson correlation to examine relationship of comorbidities and target symptoms. The baseline population was analyzed using Multiple linear regression model, while mixed effects model was utilized for longitudinal analysis. Fuzzy C-means clustering analysis was conducted to identify comorbidity patterns, followed by multiple linear regression for further analysis.
Results: At baseline, a higher LTC count was significantly correlated with more severe motor (MDS-UPDRS I, II, ADL, all P < 0.05) and neuropsychiatric symptoms (QUIP, P < 0.001). Three multimorbidity patterns were identified. Among them, the cardiometabolic multimorbidity pattern (CAR) had the most significant correlation with the aforementioned symptoms. Our longitudinal analysis indicated that an increase in the LTC count was associated with the exacerbation of motor and neuropsychiatric symptoms.
Conclusion: Comorbidities were cross-sectionally and longitudinally associated with the motor and neuropsychiatric symptoms of patients with prodromal PD. Among the three multimorbidity patterns, CAR posed the highest threat to the risk of more severe motor and neuropsychiatric symptoms.
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1 Introduction

Parkinson’s disease (PD) is the most common motor disorder and the second most common neurological disease, with its incidence and prevalence steadily increasing with age (GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, 2016; Cui et al., 2021). PD is initially diagnosed according to the motor symptoms of the disease (Sveinbjornsdottir, 2016). Recently, PD has come to be understood as a systemic disease presenting not only motor symptoms but also non-motor symptoms, such as cognitive and neuropsychiatric symptoms. PD can be defined as a complex neuropsychiatric disease. More and more research evidence has shown that the incidence rate and severity of its neuropsychiatric symptoms often increase with the passage of time. These neuropsychiatric symptoms include anxiety, depression, impulse control disorders, autonomic nervous symptoms, etc. They can present in isolation but are frequently comorbid.

Up to 90% of senior people aged 60 or above suffer from two or more chronic diseases (Grande et al., 2021). Multimorbidity is defined as the coexistence of two or more long-term conditions (LTCs) (also known as multiple comorbidities). Comorbidities are common in patients with PD, and there is a high likelihood of interactions between different drugs for comorbidities, such as anticholinergics and benzodiazepines (Leelakanok and D’Cunha, 2019). In the late stage of PD, as the LTC count significantly increases and the use of concomitant medications becomes more frequent over time, comorbidities predict higher mortality rates (Santos Garcia et al., 2017). Furthermore, it is reported that several acquired comorbidities increase the risk of developing PD, such as hypertension, dyslipidemia, and diabetes mellitus (Potashkin et al., 2020). They may affect dopamine cells to disrupt the pathway between substantia nigra neurons and the putamen (Qiu et al., 2011), thus leading to an elevated risk of PD. They also can increase the risk of PD via chronic inflammation and oxidative stress. Comorbidities can increase the burden of brain pathology, leading to cerebrovascular damage or promoting neurodegeneration through interactions with neurons or synapses at the cellular level, further increasing the risk of PD (Vassilaki et al., 2016). Some chronic diseases usually do not cluster randomly. Concurrent chronic diseases might share common underlying risk factors (Fan et al., 2022). Another possibility is that one chronic disease arises out of another disease or the treatment of another disease. Identifying multimorbidity patterns will prevent and treat PD from a new point of view, which facilitates a better prognosis.

Previous studies mainly included patients with clinically diagnosed PD (Santos Garcia et al., 2017). There is a lack of studies on the associations of motor and neuropsychiatric symptoms with comorbidities in prodromal PD participants. Our study fills the gap. This study aimed to (1) investigate whether the LTC count is related to motor and neuropsychiatric symptoms of PD; (2) whether increased LTC count increases the likelihood of developing PD in the prodromal PD participants; (3) identify multimorbidity patterns in prodromal PD patients; (4) To assess the associations between different multimorbidity patterns and motor and neuropsychiatric symptoms of PD; (5) give suggestions for PD prevention from the perspective of comorbidities and multimorbidity patterns.



2 Methods


2.1 Participants

This study utilized data from the Parkinson’s Progression Markers Initiative (PPMI) database. Prodromal PD is defined as people who are at risk for Parkinson’s disease based on clinical characteristics, genetic variants, or other biomarkers but have not yet been formally diagnosed. The PPMI is an ongoing prospective, observational, international multicentered study. Our institutions were not involved in the PPMI data collection, which was downloaded from https://www.ppmi-info.org/data on 5th December 2022. The PPMI investigation was approved by the ethics review committees of all partner institutions; In addition, all subjects signed a written informed consent before enrollment.

A total of 2,121 patients who provided disease information were included in the PPMI database. After excluding PD patients (N = 866) and participants with missing data on age, gender, or educational years (N = 334), we included 921 participants who had already undergone evaluation of motor and neuropsychiatric symptoms of PD on various scales in the PPMI, consisting of prodromal PD patients (614 individuals), healthy controls (229 individuals), scan without evidence of dopaminergic deficit (SWEDD) (62 individuals), and early imaging (original study participants only, 16 individuals). None of the participants had been diagnosed with PD. The scales used in the PPMI were comprised of the Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) I, MDS-UPDRS II, MDS-UPDRS III, MDS-UPDRS IV, and the Schwab and English Activities of Daily Living (ADL) for motor symptoms, as well as the Geriatric Depression Scale (GDS), the Questionnaire for Impulsive Common Disorders in Parkinson’s Disease (QUIP), the Scale for Outputs for Parkinson’s Disease autonomous function (SCOPA-AUT), and the State Train Anxiety Inventory (STAI) for neuropsychiatric symptoms. The total numbers of our participants who underwent the evaluation without missing data for each scale were as follows: MDS-UPDRS I (N = 916); MDS-UPDRS II (N = 916); MDS-UPDRS IV (N = 148); ADL (N = 727); STAI (N = 863); GDS (N = 863); QUIP (N = 918); SCOPA-AUT (N = 857). Since only a small number of subjects underwent MDS-UPDRS IV (N = 148) (Supplementary Table 1), we did not consider this scale, with the remaining seven scales included in our study.



2.2 Clinical assessments

This study included data from 921 non-PD participants, with general information including gender, age, and education level. In addition, complete disease information was provided during the baseline and the whole 5-year follow-up period, and the arrange follow-up was conducted every year. The information provided included demographics and the type of disease in the population. All subjects were tested for motor and neuropsychiatric at the baseline and during the 5-year. MDS-UPDRS I assesses non-motor experiences of daily living, including cognitive impairment, hallucinations, depression, anxiety, apathy, etc. MDS-UPDRS II evaluates motor experiences of daily living (Goetz et al., 2007; Goetz et al., 2008), MDS-UPDRS IV is “motion complications” (Regnault et al., 2019). The ADL scale is used to assess the patients’ activities of daily living ability and the severity of disability and movement disorder (Cui et al., 2021). GDS, QUIP, SCOPA-AUT, and STAI were used to evaluate depression, impulse control disorders (ICDs), autonomous symptoms (AS), and anxiety in prodromal PD patients, respectively (Cui et al., 2021). MDS-UPDRS I was also assessed for cognitive impairment, hallucinations, depression, anxiety, apathy, and dopamine dysregulation (Goetz et al., 2007). The higher the ADL score, the stronger the independence and the smaller the dependency, which is negatively correlated with the number of comorbidities. Except for ADL, all the other scales were positively correlated with PD symptoms.



2.3 Comorbidities

We extracted comorbidities from medical records at the time of diagnosis. Comorbidities are recorded in the free text, and the existence of the following 21 chronic diseases was evaluated: hypertension, hyperlipidemia, diabetes, cardio HD, atrial fibrillation, cardiac valve diseases, obesity, sleep disorder, depression or anxiety, osteoporosis, degenerative joint disease, inflammatory arthropathy, thyroid diseases, solid neoplasms, anemia, eye disease, stomach disorder, chronic pancreas, chronic liver disease, COPD, autoimmune. The selection of these chronic diseases represents risk factors that may interfere with PD, and the aim is to explore the impact of the number of concurrent chronic diseases on motor and neuropsychiatric symptoms in participants with prodromal PD. The subjects were divided into three groups (488 patients in groups 0 to 1, 275 in groups 2 to 3, and 158 in groups ≥ 4). Patients with two or more chronic diseases are defined as multimorbidity (N = 433) (Fan et al., 2022). In the analysis of multimorbidity patterns, the population should first suffer from comorbidity, so the population with the number of comorbidity 0∼1 should be excluded, and the rest of the population should be de-extremalized.



2.4 Statistical analysis

We used Shapiro–Wilk to verify the normality test of the data are all non-normal distribution. Continuous variables were represented as means and standard deviations (SDs), and intergroup differences were evaluated using the Kruskal Wallis rank sum test. Using percentage representation for categorical variables and chi-square analysis to evaluate inter-group differences. Firstly, we studied the relationship between the number of comorbidities and physical and neuropsychiatric symptoms. Participants were divided into 0–1, 2–3, and ≥ 4 groups based on the number of comorbidities. Multiple linear regression models were used to study the number of comorbidities (independent variables) and the symptom scale scores (continuous, dependent variables) mentioned above. The covariates for all relevant analyses include gender, age, and education level. Next, the mixed effects model was used to describe the longitudinal relationship between comorbidities and behavior of daily living, anxiety, depression, ICDs, and AS in non-PD populations. We conducted a 5-year follow-up on the motor and neuropsychiatric scale of the population. Specifically, we used the number of comorbidities as the independent variable and the scores on the exercise and neuropsychiatric health scale as the dependent variable to analyze the correlation between the total population and each group. The covariates included age, gender, and education and compared the results with and without covariates. A mutually exclusive comorbidity category has been created for participants with chronic diseases of 0 or 1, 2 or 3, 4 or 4 or more. There is no or only one disease group as the reference group.

For the study of comorbidity patterns, fuzzy C-means clustering analysis in soft clustering analysis was used to generate clustering, which allows for the clustering individuals based on their underlying combinations of chronic diseases. The fuzzy c-means algorithm assigns a probability of cluster membership for all individuals within each cluster; however, participants were finally allocated a single cluster based on their highest membership probability (Aerqin et al., 2024). To explain the randomness of the clustering solution, 100 independent clustering repeats were conducted, and the average final result was generated. In the multimorbidity patterns, excluding diseases with a prevalence rate of less than 2% in the population can avoid noise and false findings in the pattern. Finally, 11 diseases were selected from the included chronic diseases. Participants are then assigned to clusters where they have the highest probability of membership, making it possible for patients in different patterns to share common diseases. By observing the expected ratio and disease exclusivity, the disease patterns of each group are examined. The former refers to the prevalence of a specific disease in a certain group divided by its prevalence in the total population, while the latter is defined as the proportion of participants in the disease included in the cluster to the total number of participants in the disease. When the observed/expected ratio is ≥ 2 or the exclusivity is ≥ 25%, the disease is considered to be associated with a given cluster, and name these patterns based on the characteristics of these standards (Guisado-Clavero et al., 2018; Aerqin et al., 2024).

A two-tailed p-value < 0.05 was considered statistically significant in all analyses. All statistical analyses were conducted using R 4.2.2 software (R Project for Statistical Computing)1 and IBM SPSS Statistics 25. Use the “lm” and “lmerTest” packages from R version 4.2.2 software for data analysis, as well as “ggplot2,” “ggsci,” “pheatmap,” “forestplot” in R version 4.2.2 software, Adobe Photoshop 2020 and Adobe Illustrator 2022 software for image production.




3 Results


3.1 Study participants

This study included 921 non-Parkinson patients, and the specific number of participants in each motor and psychiatric symptom scale is shown in the flowchart (Supplementary Figure 1). Data can be obtained from the basic information of subjects, motor and neuropsychiatric symptom scale scores, and the number of comorbidity information (Table 1). The mean age of the subjects was 63.15 ± 8.98 years old, and the average years of schooling was 16.47 ± 3.56 years. The proportion of females was 483 (52.4%), and there was no statistically significant difference in education attainment of the 3 groups (p = 0.081). Patients in the comorbidity groups (Patients with two or more chronic diseases) were older than those in the non-comorbidity group (suffering from 0 to 1 diseases) (P < 0.001), and the scores of motor symptoms (MDS-UPDRS I F = 6.488 P < 0.001; MDS-UPDRS II F = 18.120, P < 0.001; ADL F = 6.019 P = 0.007) and neuropsychiatric symptoms (QUIP F = 6.624 P < 0.001) were significantly different (Figure 1). In the multimorbidity patterns study, 488 subjects were excluded due to non-multi-disease status and 17 participants were excluded because of de-externalization. A total of 416 people met the final criteria. The basic information of patients in comorbidity mode can be seen in Supplementary Table 2.


TABLE 1 Baseline characteristics of participants by number of chronic conditions.

[image: Table comparing variables across groups with different numbers of chronic conditions: 0–1, 2–3, and 4 or more. Variables include age, sex, education, MDS-UPDRS scores, ADL, GDS, QUIP, SCOPA-AUT, and STAI. Means and standard deviations are provided, along with p-values and beta coefficients. Significant differences are indicated by superscripts. Sample sizes vary per variable.]


[image: Box and violin plots displaying medical assessments across three groups: 0-1, 2-3, and 4 or more. Assessments include MDS-UPDRS I, MDS-UPDRS II, ADL, GDS, QUIP, SCOPA-AUT, and STAI. Notable p-values indicate significance, with comparisons showing differences in MDS-UPDRS I (0.001, 0.025), II (0.001, 0.001), ADL (0.007), GDS (NS), QUIP (0.001), SCOPA-AUT (0.025, 0.007), and STAI (0.019).]

FIGURE 1
Motor and psychiatric scale stratified by the number of chronic diseases and their intergroup comparison. The level of MDS-UPDRS I, II, ADL, GDS, QUIP, and SCOPA-AUT increases along with the number of chronic diseases increases, however, ADL decreases. MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale; ADL, Activities of Daily Living; GDS, Geriatric Depression Scale; STAI, State-Trait Anxiety Inventory; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease; SCOPA-AUT, the Scale for Outcomes for Parkinson’s Disease—autonomic function.




3.2 Baseline correlation between multimorbidity and motor and psychiatric symptoms

The analysis revealed a significant correlation among the number of comorbidities and PD exercise and neuropsychiatric symptoms. Specifically, as the number of comorbidities increases, patients with MDS-UPDRS I (β = 0.108, P < 0.001), MDS-UPDRS II (β = 0.292, P < 0.001), QUIP (β = 0.112, P < 0.001) score also increased accordingly; The ADL (β = −0.342, P = 0.007) score decreased with increasing number of comorbidities. It can be considered that the number of comorbidities in prodromal Parkinson’s patients has an impact on motor and psychiatric symptoms of patients, and compared with 0∼1 comorbidity, patients in the group of ≥ 4 comorbidities had a greater impact on exercise and psychiatric symptoms of Parkinson’s disease (Table 1 and Figure 1). At baseline, the more patients had comorbidities, the more severe the ICDs in neuropsychiatric symptoms. However, contrary to expectations, STAI (β = −0.406, P = 0.016) and SCOPA-AUT (β = −1.24, P = 0.004) scores decreased in patients with a higher number of comorbidities. At baseline, GDS (β = −0.028, P = 0.097) did not correlate with the number of comorbidities. However, due to MDS-UPDRS I (β = 0.108, P < 0.001), there was a specific correlation between comorbidities and neuropsychiatric symptoms such as depression and anxiety. To verify the above results, we conducted a sensitivity analysis on the prodromal PD population in the non-PD population (Table 2). The results showed that in MDS-UPDRS I (β = 0.012, P = 0.044), MDS-UPDRS II (β = 0.021, P = 0.002), and QUIP (β = 0.016, P < 0.001), the scores also increased with the increase of comorbidities.


TABLE 2 Associations of motor and neuropsychiatric symptoms with comorbidities in prodromal Parkinson’s disease.

[image: Table displaying statistical results for six assessments: MDS-UPDRS I, MDS-UPDRS II, ADL, STAI, GDS, QUIP, and SCOPA-AUT. Columns show P values, β values, and odds ratios with 95% confidence intervals. Each assessment has a sample size and specific statistical values.]



3.3 Clinical trajectories of patients with different comorbidities

The longitudinal relationship between comorbidity status and prodromal PD motor and psychiatric symptoms was shown in Table 3. The more comorbidities the participants had, the faster the MDS-UPDRS II (β = 0.054, P < 0.001) score, SCOPA-AUT (β = 0.267, P < 0.001) score, GDS (β = 0.014, P = 0.035) score increase, and the faster the ADL (β = −0.237, P < 0.001) score decrease. After correction, the results are robust (Table 3). The above results support the impact and prediction of comorbidities on the motor and psychiatric symptoms of prodromal PD. In MDS-UPDRS I, QUIP, and STAI, this research didn’t find a longitudinal relationship between comorbidities and the symptoms reflected in the above scales. Longitudinal studies can determine that comorbidities were a dangerous factor for motor and psychiatric symptoms in participants with prodromal PD. This also confirms the baseline viewpoint. However, this does not mean that comorbidities have no longitudinal correlation with the above symptoms, and further exploration is needed.


TABLE 3 Longitudinal relationship between comorbidities and motor and neuropsychiatric symptom scale scores.

[image: A table showing the association of comorbidities with motor and neuropsychiatric symptoms in patients with pro-Parkinson's disease at a five-year follow-up. It presents β, P, and OR (95% CI) values for various measures such as MDS-UPDRS I and II, ADL, GDS, QUIP, SCOPA-AUT, and STAI, comparing covariate correction and no covariate correction. Covariate correction includes age, sex, and education level adjustments, whereas these are not used in the no covariate correction column.]



3.4 Multimorbidity patterns

Three multimorbidity patterns has been identified at baseline: (1) Cardiometabolic multimorbidity pattern (CAR) [(113/416); (hypertension, hyperlipidemia, diabetes)]; (2) Mental and arthritis multimorbidity pattern (MA) [(198/416); (sleep disorder, depression anxiety, osteoporosis, inflammatory arthropathy)]; (3) Thyroid, eye, and gastrointestinal diseases pattern (TEG) [(105/416); (thyroid disease, eye disease, stomach disorder, cardiac valve diseases)] (Supplementary Table 3). Participants in CAR were more likely to be female, participants in MA were more likely to be male, and participants in TEG are more educated (Supplementary Table 2). In the three different multimorbidity patterns, different motor and neuropsychiatric scale scores were correlated with the number of comorbidities. The influence of CAR on motor and neuropsychiatry symptoms was more significant, and patients with increased number of comorbidities MDS-UPDRS I (β = 0.41, P < 0.001), MDS-UPDRS II (β = 1.26, P < 0.001), SCOPA-AUT (β = 3.04, P < 0.001) increased and ADL (β = −1.22, P = 0.04) decreased. However, STAI (β = −1.12, P = 0.02) was contrary to expectations, and the score was negatively correlated with the number of comorbidities. SCOPA-AUT (β = 1.37, P = 0.02) score also increased in patients with an increased number of comorbidities in TEG. No correlation was found between the scores of each scale and the number of comorbidities in MA (Table 4 and Figures 2, 3).


TABLE 4 Relationship between the number of comorbidities and symptoms in three multimorbidity patterns.

[image: Table showing the relationship between the number of comorbidities and symptoms at baseline in patients with three multimorbidity patterns of non-Parkinson’s disease. It includes the cardiometabolic, mental and arthritis, and thyroid, eye, and gastrointestinal diseases patterns. Columns list p-values, beta coefficients, and odds ratios with confidence intervals for various tests and indices, such as MDS-UPDRS, ADL, STAI, GDS, QUIP, and SCOPA-AUT, highlighting statistical relationships within each pattern.]


[image: Forest plot displaying odds ratios (OR), confidence intervals (CI), p-values, and beta values for three different groups: CAR, MA, and TEG. Metrics include MDS-UPDRSI, MDS-UPDRSII, ADL, STAI, GDS, QUIP, and SCOPA-AUT. The plot highlights statistically significant results with bold values, showing differences in OR and CI across the groups. CAR shows significant changes in MDS-UPDRSII and SCOPA-AUT; TEG shows significant results in SCOPA-AUT.]

FIGURE 2
Associations between multimorbidity patterns with motor and neuropsychiatric scale scores. The correlation between the number of comorbidities and motor and neuropsychiatric symptoms in patients with prodromal Parkinson’s disease under different multimorbidity patterns. The pattern is adjusted based on age, gender, and educational level. The severity of motor and psychiatric symptoms is presented by MDS-UPDRS I, II, ADL, GDS, QUIP, and SCOPA-AUT. CAR, cardiometabolic multimorbidity pattern; MA, mental and arthritis multimorbidity pattern; TEG, Thyroid, eye, and gastrointestinal diseases pattern.



[image: Heatmap showing the significance of various assessments: MDS-UPDRSI, MDS-UPDRSII, ADL, STAI, GDS, QUIP, and SCOPA-AUT. Significance levels are represented with stars, with darker colors indicating higher significance. The color bar on the left shows the p-value scale from one (blue) to seven (red). Rows are grouped under Motor and Neurobehavioral Assessments, and the column headers are Total, CAR, MA, and TEG.]

FIGURE 3
The relationship between the number of comorbidities and motor and neuropsychiatric symptoms in multimorbidity patterns. Comparison of the correlation between the three multimorbidity patterns and the overall population in various motor and neuropsychiatric scales. All of the outcomes were -log10 transformed. *P < 0.05; **P < 0.01; ***P < 0.001.





4 Discussion

In this study on Parkinson’s prodromal phase, we used the Parkinson’s Motor and Neuropsychiatric scale to study the cross-sectional and longitudinal correlation between Parkinson’s motor and psychiatric symptoms. We found that: (1) The increasing numbers of comorbidities were related to the faster progress of their motor and neuropsychiatric symptoms, which is specifically manifested in Parkinson’s symptoms of daily life, motor function, depression, and AS. (2) Compared with the other patterns, the CAR correlated more with motor and neuropsychiatric symptoms at baseline. The above association may be driven by strong correlations observed in severe multiple diseases (i.e., ≥ 4 chronic diseases). Our study proposed new opinions on the prevention and prediction of PD from the perspectives of the number of comorbidities and specific multimorbidity patterns.


4.1 Risk of multiple diseases and PD

In recent years, myocardial infarction, hypertension, diabetes, etc., were considered to increase the risk of PD (Qiu et al., 2011; Sun et al., 2012; Liang et al., 2015; Brauer et al., 2020). Gastrointestinal symptoms and dysregulation of gut microbes may precede the onset of Parkinson’s motor symptoms, and there had been many reports that the gut-brain axis played a role in PD (Metta et al., 2022). The main findings were consistent with previous evidence, and observational studies have shown that multiple diseases are associated with the occasion of PD or neurodegenerative diseases (Leibson et al., 2006; Santos Garcia et al., 2017). To comprehensively evaluate the multimorbidity status of participants, our study not only used quantitative approaches (reflected in the counting of comorbidities) but also captured clustering in patterns of multimorbidity. Compared with the non-comorbidity group (0–1 group), participants in the comorbidity group had a significantly increased danger of PD, indicating that the exist of two or more diseases may increase the risk of developing PD in patients. Multiple illnesses can reflect a worsening in physical condition. Comorbidities can reflect the deterioration of overall health status. There are studies have shown that the long-term coexistence of diseases is associated with neurodegenerative biomarkers and exacerbates brain pathology before the onset of dementia symptoms (Vassilaki et al., 2016).

The increase in comorbidity count was related to the increased in Parkinson’s risk. One possible explanation was that comorbidity caused small vascular disease and other cerebrovascular damage or promoted neurodegenerative processes through interaction with neurons or synapses at the cellular level (Roberts et al., 2014; Vassilaki et al., 2016). Second, chronic inflammation and oxidative stress in various chronic diseases may increase the danger risk of PD (for example myocardial infarction and diabetes) (Sun et al., 2012; Liang et al., 2015). Third, pathologically, PD was characterized as the loss of dopaminergic substantia nigra Striatum neurons with Lewy bodies (Qiu et al., 2011; Sveinbjornsdottir, 2016). Some chronic diseases (such as hypertension) lead to hypertensive vascular lesions in the basal ganglia (Greenberg et al., 2009), thalamus, and brain stem, which may affect the dopaminergic cells in the compact part and destroy the connection between substantia nigra neurons and the putamen part of the striatum (Qiu et al., 2011), increase the risk of PD. Finally, an increase in the number of comorbidities is related to an increased likelihood of multi-drug treatment and an increased burden of treatment, which may affect the brain and lead to nerve damage (Hu et al., 2022).



4.2 Motor symptoms

The clinical symptoms of PD were mainly defined by motor symptoms (Sveinbjornsdottir, 2016). Cardiovascular disease interacts with neurodegenerative disease, and comorbidity and alterable cardiovascular risk factors were related to the incidence of axial dyskinesia in PD (Kotagal et al., 2014). This study found that as the number of comorbidities increased, the motor symptoms disorders of PD patients became more pronounced. One explanation was that people with multiple diseases simultaneously were affected by different diseases, which increased the burden on their daily living abilities. Patients with multiple diseases were generally accompanied by multi-drug treatment, which increased the treatment burden and affected their motor symptoms. Another explanation was that the disease affected biomarkers associated with neurodegeneration in the brain, leading to the motor symptoms of PD. It had been previously studied that the long-term co-existence of the disease was related to neurodegenerative biomarkers in the brain (Kao et al., 2021; Weintraub et al., 2022). Among the influences on motor symptoms of PD, dopaminergic nigrostriatal neuronal degeneration in Louise’s body was considered to be the main neuropathologic correlation of motor disorders in PD. Before the main motor features of PD begin to appear, up to 80% of dopaminergic cells in the nigro-striatum system had been lost. PD was usually diagnosed by initial motor symptoms (Sveinbjornsdottir, 2016). Further research is needed in the future on whether multiple diseases can affect motor symptoms by affecting the dopaminergic nigrostriatal.



4.3 Neuropsychiatry symptom

The main clinical symptoms of Parkinson’s disease also include several other neurological disorders, and these symptoms may begin 10 years or earlier before diagnosis (Sveinbjornsdottir, 2016), increasing the possibility of depression and anxiety in patients with multiple diseases (Castro-de-Araujo et al., 2022; Felez-Nobrega et al., 2022). Compared to people without multiple diseases or chronic physical illness, people with multiple diseases had twice the risk of developing depression and three times the risk of people without chronic physical disease (Read et al., 2017). Anxiety and depression exist from the pre exercise phase of prodromal PD, anxiety is particularly dominant, and it is also common to overlap between anxiety and depression (Schapira et al., 2017). In PD patients, some observed signs and symptoms have a bidirectional risk association. Early onset of neuropsychiatric symptoms such as depression or anxiety in PD patients can also lead to accelerated progression of cognitive impairment (Forbes et al., 2021). The possibility of depression increases with the development of the disease (Gustafsson et al., 2015; Kazmi et al., 2021).

High doses and prolonged exposure to dopamine agonists were risk factors associated with ICDs. However, the timing of ICDs varies, as it depends on the use of dopaminergic medications, and the increased risk of ICDs was reported only in patients receiving dopaminergic therapy (Weintraub et al., 2022). Dopamine agonist therapy was associated with an increased danger of ICDs in PD patients (Weintraub et al., 2010). The prevalence of ICDs increases with the prolongation of the PD course (Markovic et al., 2020). The incidence of ICDs was not higher in newly diagnosed or untreated patients compared to the ordinary being (Weintraub et al., 2022). All patients in this study were non-Parkinson’s patients, so fewer patients received dopaminergic therapy. Another reason was that the inclusion of a small population in this study did not meet the conditions for discovering an association between the number of comorbidities and ICDs.

Our results demonstrated the role of comorbidity in AS in prodromal PD patients. AS may precede motor symptoms, and patients with higher scores on the SCOPA-AUT scale with more severe disease, longer duration of illness, and more significant motor impairment than patients with lower scores. Early PD patients support the idea that AS may precede motor symptoms, and these viewpoints will help identify PD patients in the premotor stage (Arnao et al., 2015).



4.4 Multimorbidity patterns

Our results suggested that different comorbidities correlate differently with motor and neuropsychiatric symptoms in prodromal PD patients. Assessing multiple diseases through patterns and recognizing their tendency to coexist with certain diseases. Among the 3 patterns studied in this study, CAR characterized by hypertension, hyperlipidemia, and diabetes was associated with a higher risk of PD motor symptoms and AS. Cardiovascular metabolic diseases and dementia had a cardio-brain connection; hypertension, obesity, and Hypercholesterolemia were associated with a high risk of dementia in later life, thus strengthening the possibility of etiological links (Potashkin et al., 2020). The interaction between neurodegeneration and cardiovascular dysfunction had been confirmed in dementia, and cardiovascular comorbidities were associated with axial movement disorders in PD (Kotagal et al., 2014). Hypertension can predict the progression rate of axial, non-axial, and total motor scores by affecting frontal leukoplakia lesions (Kotagal et al., 2014). Hyperglycemia can affect motor disorders in PD by affecting dopaminergic neurons in the substantia nigra and striatum (Sveinbjornsdottir, 2016; Potashkin et al., 2020).

There was a strong relationship between comorbidities and AS in patients with prodromal PD under CAR. Newly diagnosed PD patients had more gastrointestinal and cardiovascular problems, which also supports the view that PD may start from autonomic neuropathy (Verbaan et al., 2007). It was proved that patients with prodromal PD who suffer from multiple cardiometabolic diseases can indeed increase the risk of PD-related AS. There was also a strong correlation between cardiometabolic disease and depression (She et al., 2019). The diagnosis of diabetes patients increases the risk of depression and anxiety (Semenkovich et al., 2015; Buchberger et al., 2016). Although the TEG was only related to AS, it proved that it was not just the CAR, in patterns of other diseases (such as thyroid, eye, and gastrointestinal disorders), the psychotic symptoms of patients with prodromal PD were also associated with the disease. We admitted that anxiety and depression were present in participants with “MA,” one of the multimorbidity patterns, and their co-existence may affect the interaction of this pattern with neuropsychiatric symptoms.

In non-CAR patterns, such as MA, Many of the immune alterations associated with rheumatoid arthritis are now also implicated in depressive pathology and this association might explain in part the enhanced burden of depression in people with rheumatoid arthritis compared with the general population (Nerurkar et al., 2019). In TEG, Graves’ ophthalmopathy is the most common extrathyroid manifestation of Graves’s disease, and the thyrotropin receptor on orbital fibroblasts may be an important autoimmune target in the disease (Bahn, 2010). Hyperthyroidism is associated with cardiovascular disease, including mitral valve dysfunction (Ladenson, 1990). Aortic valve stenosis can cause gastrointestinal bleeding due to intestinal vascular dysplasia (Thompson et al., 2012). In the codisease model, diseases of different systems are grouped together due to pathological mechanisms or potential combinations based on chronic diseases. The combination of precursor characteristics and risk factors can be studied.



4.5 Limitations

Limitations of the study warrant consideration. First, some important clinical indicators were not included, such as cognitive function, cerebrospinal fluid, and neuroimaging. Second, the sample size of our research is relatively small, and five years was not enough to cover the whole course of PD. These associations need to be further investigated in the future with longitudinal studies with longer follow-up periods. Finally, we did not account for the relative severity of comorbidities. Therefore, future prospective studies are needed.




5 Conclusion

In summary, comorbidity affects motor and neuropsychiatry symptoms in prodromal Parkinson’s patients, which may precede PD symptoms. At the same time, PD motor and neuropsychiatry symptoms were more likely to occur in patients with CAR. Our findings suggested that rather than comorbidities and PD having a common mechanistic effect, comorbidities need to have a more devastating impact on PD survival to influence prognosis. The study comprehensively analyzed the impact of comorbidity burden on prodromal Parkinson’s motor and psychiatric symptoms, demonstrating the preventive and predictive value of comorbidity for PD. And it provided a more targeted disease for preventing PD – cardiovascular metabolic comorbidities.
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Background: Neurofilament light chain (NfL) has recently emerged as a key indicator of neurodegeneration. In this study, our hypothesis is that the levels of blood-derived NfL and its accumulation during the Parkinson’s disease (PD) progression could serve as a potential biomarker for predicting subsequent cognitive decline. To investigate this, we conducted a study utilizing a large single-center cohort.



Methods: The study included 193 participants, consisting of 106 cognitively normal PD (PD-CN) patients and 87 normal controls (NC) individuals. Serum NfL concentrations were measured. PD patients were followed up for clinical assessment at an average of 2 ± 0.6 years.
Results: The serum NfL levels were significantly higher in PD-CN patients compared to NC. PD-CN patients and NC at follow-up time exhibited higher serum NfL levels compared to those at baseline. PD patients with high serum NfL levels were found to have a higher likelihood of transitioning from normal cognition to mild cognitive impairment (MCI) or dementia (Hazard ratio (HR) 1.107, 95% confidence intervals (CI) 1.010–1.213, p = 0.030). The area under the curve (AUC) for PD-CN conversion to MCI or dementia at follow-up time was determined to be 0.684 (95% CI 0.569–0.799).
Conclusion: In conclusion, our study found that PD patients have significantly higher levels of serum NfL compared to individuals without PD. Furthermore, serum NfL levels increase as PD progresses and can predict cognitive impairment within a 2-year timeframe. Serum NfL may serve as a feasible, non-invasive biomarker of cognitive progression in PD. However, further studies and functional experiments are needed to validate these findings.

Keywords
cognitive impairment, neurofilament light chain, Parkinson’s disease, serum, cohort


1 Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative disease worldwide, affecting 8 to 18 individuals per 100,000 each year (de Lau and Breteler, 2006). It is characterized by motor symptoms such as bradykinesia, rigidity, tremors, and postural instability, as well as non-motor symptoms including mood disorders, autonomic dysfunction, and cognitive impairment (Pagano et al., 2016). Cognitive impairment is observed in approximately one-third of newly diagnosed PD patients and becomes more prevalent over time (Broeders et al., 2013). Around 50% of PD patients show signs of mild cognitive impairment (MCI) by the fifth year after diagnosis, with approximately 26% progressing to PD-related dementia (PDD) within the subsequent 5 years (de Lau and Breteler, 2006).

Patients with MCI and PDD experience poor quality of life (Lawson et al., 2016). Therefore, it is imperative to identify accessible biomarkers that can reflect the severity of cognitive impairment in PD. One potential biomarker, neurofilament light chain (NfL), has recently emerged as a key indicator of neurodegeneration (Khalil et al., 2018). Neurofilaments are abundant proteins expressed in neurons and belong to the intermediate filament family. The subunits of neurofilaments include NfL, neurofilament medium chain, neurofilament heavy chain, alpha-internexin, and peripherin (Khalil et al., 2018). Among these subunits, NfL is the most commonly used biomarker. The release of neurofilaments into the cerebrospinal fluid (CSF) is considered a specific indicator of neuronal damage in neurodegenerative conditions (Gaiottino et al., 2013). Previous studies have demonstrated a strong correlation between CSF and blood NfL levels, making blood NfL a favorable alternative to CSF biomarkers (Rohrer et al., 2016). Blood NfL levels have shown potential for distinguishing PD from atypical parkinsonian syndromes (Bridel et al., 2019). Longitudinal studies have also associated increased NfL levels in blood before or around disease onset with the risk of developing PD and various aspects of disease progression, including declining performance on motor assessment scales and cognitive tests (Mollenhauer et al., 2020; Wilke et al., 2020).

In this study, our hypothesis is that the levels of blood-derived NfL and its accumulation during the PD progression could serve as a potential biomarker for predicting subsequent cognitive decline. To investigate this, we conducted a study utilizing a large single-center cohort. We set out to determine whether the levels of serum NfL (1) exhibit differences between patients with cognitively normal PD (PD-CN) and those without PD (normal controls, NC), (2) increase as PD advances, and (3) have the ability to predict long-term cognitive deterioration in individuals with PD.



2 Materials and methods


2.1 Participants and clinical evaluation

The study employed a prospective, longitudinal design and recruited participants from Tianjin Huanhu Hospital between September 2017 and September 2019. PD patients were included based on the following criteria: (1) aged between 40 and 85 years old, of Chinese Han ethnicity; (2) PD diagnosis independently confirmed by two neurologists using the 2015 Movement Disorder Society (MDS) Clinical Diagnosis Criteria for PD (Postuma et al., 2015). Exclusion criteria consisted of: (1) a history of other neuropsychiatric diseases; (2) an uncertain PD diagnosis; (3) major medical conditions. PD-CN was defined as a clinical diagnosis of PD with no cognitive complaints and normal cognitive performance, indicated by a Montreal Cognitive Assessment (MoCA) score of ≥26 points. Age, gender, body mass index (BMI), and education level-matched NC were included from the physical examination center of Tianjin Huanhu Hospital. The Human Participants Ethics Committee of Tianjin Huanhu Hospital approved the study (No. 2016-026), and all participants provided written informed consent. Initially, the study included 193 participants, consisting of 106 PD-CN patients and 87 NC individuals. The study adhered to the Declaration of Helsinki. Global cognitive function was assessed using the MoCA test, while memory was evaluated using the Hopkins Verbal Learning Test-Delayed Recall (HVLT-DR). Information processing speed was assessed using the Digit Symbol Substitution Test (DSST) and Trail Making Test (TMT) A. Language function was assessed using the Semantic Fluency Test (SFT), and visuospatial function was evaluated using the Clock Drawing Test (CDT). Executive function was assessed using TMT B.



2.2 Definitions of cognitive impairment

In this study, a MoCA cutoff score of <26 was used to diagnose PD-CI (Dalrymple-Alford et al., 2010; Kasten et al., 2010). PDD was defined based on the Clinical diagnostic criteria for dementia associated with Parkinson’s disease (Emre et al., 2007). A clinical diagnosis of PDD was made when deficits in at least two cognitive domains were severe enough to impact daily life and normal functioning, with a MoCA cutoff score of <21 (Dalrymple-Alford et al., 2010; Kasten et al., 2010). PD patients were followed up for clinical assessment at an average of 2 ± 0.6 years. At the follow-up time, serum NfL levels were measured in 93 PD patients (65 PD-CN patients, 25 PD-MCI patients, 3 PDD patients) and 68 NC individuals (56 NC-CN, 12 NC-MCI patients). PD-MCI and PDD patients were grouped together as PD-CI due to the low number of PDD patients in this study.



2.3 Measurement of NfL

At enrollment, 10 mL of peripheral blood was collected from each participant prior to clinical evaluation. Within 1 h of collection, the blood samples were centrifuged at 2,500 g for 15 min and then stored at −80°C for less than 3 months before testing. Serum NfL concentrations were measured by investigators who were blinded to the clinical diagnosis. The serum samples were transferred onto the single molecule array (Simoa) platform using a NfL assay kit (Quanterix; Lexington, MA), as previously described (Hansson et al., 2017). To reduce the risk of any potential bias, the analysts conducting the assays were blinded to patient status from each sample.



2.4 Statistical analysis

Statistical analysis was performed using SPSS 21.0 software. Continuous variables were presented as mean value ± standard deviation (SD). At baseline, independent samples t-tests were conducted for normally distributed data (age, BMI, education level, and baseline NfL) to compare PD-CN patients and NC individuals. Repeated-measures analysis of variance (RMANOVA) with post hoc simple main effect analysis was used to compare serum NfL levels and MoCA scores between PD-CN patients and NC individuals at baseline and follow-up time. The evaluation time point (follow-up time versus baseline) was considered the within-subject factor, while the groups (PD-CN versus NC) were considered the between-subject factor. Logistic regression analyses were performed to evaluate the correlation between serum NfL and categorical variables (PD-CI versus PD-CN). According to previous studies (Baiano et al., 2020; Miller and Cronin-Golomb, 2010; Pilotto et al., 2016; Weintraub et al., 2022), cognitive impairment in PD was associated with age, gender, history of hypertension, history of diabetes, history of atrial fibrillation, history of prior myocardial infarct, history of prior stroke, BMI, education level, disease duration, baseline Unified Parkinson’s Disease Rating Scale (UPDRS) III scores, baseline Hoehn and Yahr (H&Y), baseline MoCA scores, and levodopa-equivalent daily dose (LEDD). Hazard ratio (HR) and corresponding 95% confidence intervals (CI) were calculated for the model adjusted for age, gender, history of hypertension, history of diabetes, history of atrial fibrillation, history of prior myocardial infarct, history of prior stroke, BMI, education level, disease duration, baseline Unified Parkinson’s Disease Rating Scale (UPDRS) III scores, baseline Hoehn and Yahr (H&Y), baseline MoCA scores, and levodopa-equivalent daily dose (LEDD). Receiver operating characteristic (ROC) curve analysis and Youden’s index were used to determine the optimal cut-point for serum NfL in PD diagnosis and predicting clinical conversion to MCI or dementia in PD-CN.




3 Results


3.1 Baseline demographic data, motor and cognitive function

Table 1 presented the demographic data, motor, and cognitive function of the participants. The results indicate that there were no significant differences in age, gender, history of hypertension, history of diabetes, history of atrial fibrillation, history of prior myocardial infarct, history of prior stroke, BMI, education level, or MoCA scores between PD-CN patients and NC (all p > 0.05, Table 1). However, the serum NfL levels were significantly higher in PD-CN patients (13.01 ± 5.84 pg/mL) compared to NC (11.23 ± 5.40 pg/mL; Figure 1). The area under the curve (AUC) for distinguishing PD-CN from NC was found to be 0.538 (95% CI 0.456–0.620) (Supplementary Figure 1).


TABLE 1 Baseline demographic data and clinical assessments for all participants.

[image: Comparison table displaying various indicators and their statistical values for two groups: PD-CN (n = 106) and NC (n = 87). Indicators include age, gender ratio, hypertension, diabetes, atrial fibrillation, prior myocardial infarct, and stroke history, BMI, educational level, disease duration, UPDRS III, H&Y stage, MoCA, HVALT-DR, DSST, SFT, CDT, TMT A and B, LEDD, and Serum NfL, along with standard deviations and p-values. Notable p-value is 0.031 for Serum NfL, indicating significance. Abbreviations are explained in the footnote.]


[image: Scatter plot comparing serum NFL levels between two groups: PD-CN and NC. PD-CN is represented by red dots and NC by blue triangles. Both groups show similar distribution, with PD-CN displaying slightly higher median levels. Error bars indicate variability within each group. Asterisks denote statistical significance.]

FIGURE 1
Mean ± SD concentrations of serum NfL levels in PD-CN patients and NC. NC, normal controls; NfL, neurofilament light chain; PD-CN, cognitively normal Parkinson’s disease; SD, standard deviation. *p < 0.05.




3.2 Comparison in serum NfL level, MoCA between PD-CN patients and NC at baseline and follow-up time

Significant main effects of evaluation time point (follow-up time versus baseline) and group (PD-CN versus NC) were observed on the serum NfL levels [evaluation time point: F(1, 159) = 35.934, p < 0.001; group: F(1, 159) = 7.133, p = 0.008]. After conducting Bonferroni post-hoc analysis, it was found that both PD-CN patients and NC at follow-up time (PD-CN patients: 16.26 ± 7.92 pg/mL; NC: 13.04 ± 6.48 pg/mL) exhibited higher serum NfL levels compared to those at baseline (Figure 2). Additionally, the serum NfL levels were significantly higher in PD-CN patients than in NC at both baseline and follow-up time (Figure 2).
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FIGURE 2
Serum NfL levels in PD-CN patients and NC at baseline and follow-up time. NC, normal controls; NfL, neurofilament light chain; PD-CN, cognitively normal Parkinson’s disease. *p < 0.05, **p < 0.01, ***p < 0.001.


Significant main effects of evaluation time point (follow-up time versus baseline) and group (PD-CN versus NC) were also observed on MoCA scores [evaluation time point: F(1, 159) = 29.107, p < 0.001; group: F(1, 159) = 8.820, p = 0.003]. After conducting Bonferroni post-hoc analysis, it was found that both PD-CN patients and NC at follow-up time (PD-CN patients: 26.15 ± 3.24 points; NC: 27.44 ± 2.17 points) exhibited lower MoCA scores compared to those at baseline (Figure 3). Additionally, the MoCA scores were significantly lower in PD-CN patients than in NC at both baseline and follow-up time (Figure 3).
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FIGURE 3
MoCA scores in PD-CN patients and NC at baseline and follow-up time. MoCA, Montreal Cognitive Assessment; NC, normal controls; PD-CN, cognitively normal Parkinson’s disease. *p < 0.05, **p < 0.01, ***p < 0.001.




3.3 Prediction of conversion to MCI or dementia based on serum NfL levels in PD

Among the 93 PD-CN patients at the follow-up time, 28 PD patients exhibited cognitive impairment, while 12 patients showed cognitive impairment among the 68 NC participants at the follow-up time. There was no significant difference in the rate of cognitive impairment conversion between PD patients and NC (χ2 = 3.266, p = 0.071). However, PD patients with high serum NfL levels were found to have a higher likelihood of transitioning from normal cognition to MCI or dementia (HR 1.107, 95% CI 1.010–1.213, p = 0.030; Supplementary Table 1) in logistic regression analysis, after adjusting for various factors including age, gender, history of hypertension, history of diabetes, history of atrial fibrillation, history of prior myocardial infarct, history of prior stroke, BMI, education level, disease duration, baseline UPDRS III scores, baseline H&Y, baseline MoCA scores, and LEDD.

The AUC for PD-CN conversion to MCI or dementia at follow-up time was determined to be 0.684 (95% CI 0.569–0.799), and the optimal cut-point for serum NfL levels was identified as 12.65 pg/mL (with a sensitivity of 71.4% and specificity of 64.6%), as illustrated in Figure 4.


[image: Receiver Operating Characteristic (ROC) curve illustrating the performance of a risk model. The x-axis represents 1 minus specificity percentage, and the y-axis represents sensitivity percentage. The curve is shown in black, with a diagonal red dashed line as the reference line. The Area Under the Curve (AUC) is 0.684.]

FIGURE 4
Receiver operating characteristic curves for predicting PD-CN conversion to MCI or dementia at follow-up time using the serum NfL level. AUC, area under the curve; MCI, mild cognitive impairment; PD-CN, cognitively normal Parkinson’s disease.





4 Discussion

The present study yielded several important findings. Firstly, it was observed that serum NfL levels were higher in PD-CN patients compared to NC individuals. This finding is in line with recent studies (Chen et al., 2020; Hansson et al., 2017) that have reported similar results. However, it is worth noting that some studies have indicated no significant difference in blood NfL levels between PD patients and NC individuals (Lin et al., 2018; Marques et al., 2019). A recent study reported that there was no statistically significant difference in plasma NfL concentrations between PD and NC groups (Batzu et al., 2022). Zarkali et al. (2024) found that plasma NFL did not statistically differ between people with PD and control participants. A meta-analysis also revealed no differences in blood NfL levels in PD patients when not stratified by disease severity compared to NC individuals (Wang et al., 2019). More recent studies, which have stratified PD patients based on disease duration and stage, have shown that advanced PD patients tend to have higher blood NfL levels compared to those in early disease stages (Lin et al., 2019; Niemann et al., 2021). For instance, Lin et al. (2019) suggested a plasma NfL cutoff value of 12.34 pg/mL for distinguishing between PD patients and NC individuals in advanced stages, with a modest sensitivity of 53.2% and high specificity of 90.5%. The present study found that serum NfL levels did not have diagnostic value for PD-CN (AUC 0.538, 95% CI 0.456–0.620). This modest result may be attributed to the analysis not being stratified by disease severity. Therefore, it is crucial to conduct more large-scale studies that stratify participants based on disease severity in order to thoroughly investigate the diagnostic value of serum NfL levels for differentiating PD patients from NC individuals.

The present study observed an association between PD progression and increased serum NfL levels. This finding aligns with recent studies that have also reported significant longitudinal increases in serum NfL levels among PD patients (Urso et al., 2023; Yang et al., 2023). These consistent findings suggest that serum NfL levels may serve as a potential biomarker for PD. However, it is important to note that elevated NfL levels have also been observed in other neurodegenerative diseases (Mattsson et al., 2017). A recent meta-analysis further demonstrated increased NfL concentrations in serum and plasma among patients with Alzheimer’s disease (AD) and frontotemporal dementia (FTD), when compared to individuals without cognitive impairments (Gu et al., 2023). In addition to investigating the diagnostic value of serum NfL levels in PD, this study aimed to explore the clinical significance of serum NfL levels in predicting longitudinal cognitive impairment in individuals with PD.

The study findings revealed that serum NfL levels can serve as a predictive marker for cognitive impairment in individuals with PD over a 2-year period. The AUC for the conversion of PD-CN to MCI or dementia was determined to be 0.684 (95% CI 0.569–0.799). These results are consistent with several recent studies. For instance, Ma et al. (2021) and Niemann et al. (2021) demonstrated that higher baseline NfL levels were predictive of cognitive outcomes in PD. Similarly, Buhmann et al. (2022) confirmed that age-adjusted serum NfL levels were indicative of cognitive decline in PD. Chen et al. (2020) found that elevated plasma NfL levels were predictive of incident dementia in PD. Additionally, Lin et al. (2019) reported that higher baseline NfL levels were associated with a faster rate of cognitive decline in PD. Aamodt et al. (2021) discovered that PD participants with elevated plasma NfL levels were more likely to develop incident cognitive impairment. In addition, Batzu et al. (2022) reported that baseline plasma NfL predicted Mini-Mental State Examination (MMSE) decline over time in the PD group. Zarkali et al. (2024) found that mean plasma NfL was correlated with cognition (combined cognitive score) both at baseline (r = −0.246, p = 0.037) and after 3-year follow-up (r = −0.223, p = 0.040). Collectively, these studies provide further support for the significance of blood NfL levels in predicting cognitive decline. A serum NfL measurement may help neurologists in identifying PD at risk of cognitive impairment progression and may have the potential for early treatment of these individuals.

The specific pathophysiological mechanisms that link NfL to cognitive dysfunction in PD remain unclear. Cognitive decline in PD is caused by multiple pathological mechanisms that ultimately result in cortical-subcortical dysfunction (Aarsland et al., 2017). Previous studies have found a correlation between macro- and microstructural changes and cognitive decline in PD patients. One study observed a relationship between increased levels of NfL and damage to gray and white matter in PD (Rektor et al., 2018). In patients with PDD, the degeneration of dopaminergic neurons in the midbrain substantia nigra may be accompanied by axonal degeneration (Papuć and Rejdak, 2020). A neuroimaging study has suggested that the observed increase in NfL levels in the cerebrospinal fluid (CSF) of PDD patients may be due to axonal injury or loss (Rektor et al., 2018). NfL levels in the CSF of PD patients are correlated with cognitive indicators such as Aβ1-42, tau, phosphotau, and α-synuclein (Sampedro et al., 2020). Increased levels of plasma α-synuclein have also been associated with reduced cortical thickness in certain brain regions (Chen et al., 2020). Additionally, in a mouse model of PD, higher levels of NfL in the CSF and plasma are positively correlated with the number and size of neuronal α-synuclein inclusions (Bacioglu et al., 2016).

However, our study has some limitations. Firstly, the PD patients in our cohort had a median disease duration of 4.87 years at the time of biofluid sampling, so our findings may not be applicable to earlier stages of the disease. Secondly, our analysis using ROC demonstrated only modest predictive performance for serum NfL alone in determining the conversion from normal cognition to MCI or dementia on an individual basis. This suggests that incorporating serum NfL into a multi-marker panel may be necessary for more accurate prediction of clinical conversion. Thirdly, the diagnosis of PD-MCI in this study did not rely on assessments across various cognitive domains. Instead, a multifaceted approach was employed, utilizing the MoCA to gauge overall cognitive performance. Specific cognitive domains were also targeted with the following tests: the DSST and TMT A to assess information processing speed; the SFT to evaluate language abilities; the CDT to assess visuospatial skills; and TMT B to assess executive functions. This methodological choice was deliberate and made prior to data collection for several reasons: Relying on a single test per domain could potentially diminish the sensitivity to detect cognitive impairments; a reduced sensitivity increases the likelihood of a type II error, which occurs when a true effect is incorrectly concluded to be absent. Fourthly, the study includes a large single-center cohort. The single-center study showed the potential limitations of geographical or demographic biases. This limited the potential for external promotion of our findings in a multicenter study or with a different patient population. Lastly, the study follows patients for an average of 2 ± 0.6 years. It is unclear whether this timeframe is sufficient to draw conclusions about the predictive value of NfL for cognitive decline. Longer-term follow-up might provide more robust data.



5 Conclusion

In conclusion, our study found that PD patients have significantly higher levels of serum NfL compared to individuals without PD. Furthermore, serum NfL levels increase as PD progresses and can predict cognitive impairment within a 2-year timeframe. Serum NfL may serve as a feasible, non-invasive biomarker of cognitive progression in PD. However, further studies and functional experiments are needed to validate these findings.
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Background: As a clinical precursor to Alzheimer’s disease (AD), amnestic mild cognitive impairment (aMCI) bears a considerably heightened risk of transitioning to AD compared to cognitively normal elders. Early prediction of whether aMCI will progress to AD is of paramount importance, as it can provide pivotal guidance for subsequent clinical interventions in an early and effective manner.
Methods: A total of 107 aMCI cases were enrolled and their electroencephalogram (EEG) data were collected at the time of the initial diagnosis. During 18-month follow-up period, 42 individuals progressed to AD (PMCI), while 65 remained in the aMCI stage (SMCI). Spectral, nonlinear, and functional connectivity features were extracted from the EEG data, subjected to feature selection and dimensionality reduction, and then fed into various machine learning classifiers for discrimination. The performance of each model was assessed using 10-fold cross-validation and evaluated in terms of accuracy (ACC), area under the curve (AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and F1-score.
Results: Compared to SMCI patients, PMCI patients exhibit a trend of “high to low” frequency shift, decreased complexity, and a disconnection phenomenon in EEG signals. An epoch-based classification procedure, utilizing the extracted EEG features and k-nearest neighbor (KNN) classifier, achieved the ACC of 99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 99.93%, and F1-score of 99.96%. Meanwhile, the subject-based classification procedure also demonstrated commendable performance, achieving an ACC of 78.37%, an AUC of 83.89%, SEN of 77.68%, SPE of 76.24%, PPV of 82.55%, and F1-score of 78.47%.
Conclusion: Aiming to explore the EEG biomarkers with predictive value for AD in the early stages of aMCI, the proposed discriminant framework provided robust longitudinal evidence for the trajectory of the aMCI cases, aiding in the achievement of early diagnosis and proactive intervention.
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1 Introduction

Dementia, resulting from various brain-related disorders and injuries, is a major cause of geriatric functional decline and caregiver reliance, ranking as the seventh leading cause of death globally (WHO, 2023). Currently, more than 55 million people are affected by dementia, with an annual increment of nearly 10 million new cases (Cao et al., 2020). AD is the most prevalent form of dementia and may account for 60–70% of cases (Alzheimer's Association, 2020). AD, distinguished by irreversible memory impairment, aphasia, apraxia, agnosia, and changes in personality and behavioral patterns, onsets insidiously with a prolonged course. Regrettably, effective pharmacological treatments for AD are not yet available. This underscores the critical importance of early screening and diagnosis so as to retard the progression and alleviate its disease burden.

Mild cognitive impairment (MCI) is a stage that falls between normal age-related cognitive decline and dementia, characterized by a subtle decline in cognitive functions that is not substantial enough to be classified as dementia. MCI may either stabilize or even improve over time, or progressively deteriorate into dementia (particularly AD), thus positioning it as a prodromal stage of AD. AMCI, characterized by memory dysfunction, is a subtype of MCI with an annual progression rate to AD ranging from 10 to 15% (Cai et al., 2020) and a lifetime conversion rate ranging from 75 to 80% (Gómez-Soria et al., 2021). Therefore, early and accurate prediction of the progression in aMCI stage becomes a crucial issue in managing the continuum of the disease and alleviating its burden.

The diagnosis of aMCI requires a combination of various examinations including biomarkers, neuroimaging, and neuropsychological assessments. This process is time-consuming, labor-intensive, and cost-prohibitive. Additionally, the insidious onset can be easily mistaken for age-related cognitive decline, thus significantly diminishing the detection rate of aMCI during clinical practice. As a non-invasive examination, EEG presents the benefits of convenience, cost-effectiveness, real-time diagnosis, and wide accessibility. It has been universally applied for the diagnosis and disease progression monitoring of aMCI. Compared to task-related EEG, resting-state EEG does not require examinees to perform complex instructions and actions, making it particularly suitable for elders with cognitive decline. Several studies have explored the spectral features of EEG in aMCI patients and identified indicators such as spectral power ratio (Flores-Sandoval et al., 2023), antero-posterior localization of alpha frequency (Huang et al., 2000), and spectral powers within the theta and delta bands (Roh et al., 2011) that exhibit favorable discriminatory capabilities, with an accuracy exceeding 80%. Simultaneously, researchers have investigated the EEG functional connectivity and graph theory features in aMCI patients, confirming the conjecture that aMCI serves as an intermediate stage between normal aging and AD (Frantzidis et al., 2014; Toth et al., 2014; Miraglia et al., 2016; Smailovic et al., 2022). Specifically, certain studies have conducted functional connectivity and graph theory analyses on the subdivisions of aMCI, namely stable MCI (SMCI) and MCI progress to AD (PMCI), revealing differences between the two groups and achieving promising predictive outcomes (Vecchio et al., 2018; Miraglia et al., 2020). Serving as an intermediate stage between normal aging and AD, aMCI exhibits considerable EEG variability, reflecting the heterogeneity within the aMCI population.

Recently, there has been widespread use of machine learning methods for discriminant diagnosis through EEG data in patients with AD and MCI. However, few studies have specifically targeted the aMCI population. Li et al. (2021) combined the characteristics of brain functional network with support vector machine classifier in aMCI and healthy controls (HC), achieved an accuracy of 86.60%. The same research team (Li et al., 2022) incorporated spectral entropy features into a convolutional neural network (CNN) model, attaining an accuracy of 94.64% in aMCI and HC. Kim et al. (2022) explored different patterns of functional networks between aMCI and non-aMCI using EEG graph theoretical analysis, the naive Bayes algorithm classified aMCI and non-aMCI with 89% accuracy. Farina et al. (2020) employed penalized logistic regression models to identified the power and functional connectivity features of EEG in AD, aMCI, and HC populations, but the accuracy remained unstable across various combinations of features. The aforementioned studies all treated aMCI as a unified discrimination category, without conducting follow-up assessments of the disease progression within aMCI, which would allow for further subdivision into SMCI and PMCI and subsequently exploration of EEG differences between these two subgroups with imperative longitudinal study (Mammone et al., 2018; Ruiz-Gomez et al., 2018; Ding et al., 2022; Jiang et al., 2022; Kim et al., 2022; Lassi et al., 2023; Wijaya et al., 2023). However, early prediction of whether aMCI will progress to AD is of paramount importance, as it aids in guiding subsequent interventions involving medications, lifestyle, rehabilitation, and healthcare in an advanced and effective manner. Currently, there is a scarcity of longitudinal studies concerning aMCI cases, as well as a lack of research applying machine learning methods with constrained EEG features to disease discrimination and prediction in SMCI and PMCI subgroups.

This study recruited aMCI patients and collected the EEG data at the time of initial diagnosis. After an 18-month follow-up period, patients were categorized into SMCI and PMCI groups based on whether they progressed to AD, which was in alignment with definitions from prior research (Vecchio et al., 2018). By comprehensively extracting EEG spectral, nonlinear, and functional connectivity features, we conducted feature selection and dimensionality reduction on extracted features. Subsequently, selected features were integrated into different machine learning classifiers for discrimination, to explore EEG biomarkers with potential for early prediction. Utilizing the afore mentioned framework, we systematically extracted EEG features with excellent discriminant ability between the SMCI and PMCI populations and to discern the heterogeneity in disease progression among individuals with aMCI, enabling the early identification of progressing cases and facilitating the implementation of three levels of prevention, which conducting prospective exploration for follow-up study in the future.



2 Materials and methods

The discriminant framework of this study design was shown in Figure 1, which consisted of five main steps: EEG data acquisition, EEG preprocessing, feature extraction, classification, and evaluation.

[image: Flowchart of EEG data classification includes six main sections: Participants, Preprocessing, Feature Extraction, Feature Selection, Classification, and Performance Evaluation. Participants section notes two lost to vascular dementia, one to Lewy body dementia, and three lost to follow-up. Preprocessing involves re-referencing, filtering, and artifact rejection. Feature Extraction includes spectral, nonlinear, and connectivity features. Feature Selection applies T-test and PCA. Classification employs SVM, KNN, DT, NB, LDA, ADA, RF, and LogReg. Performance Evaluation uses metrics like ACC, SEN, PPV, and a confusion matrix for validation.]

FIGURE 1
 Study design.



2.1 Participants

Between September 1, 2021 and April 30, 2022, we recruited a total of 113 aMCI patients from the Memory Clinic Unit of the First Affiliated Hospital of Sun Yat-sen University (SYSU), and 107 patients completed the follow-up without any censored data. We collected their raw EEG data at the time of initial diagnosis and conducted an 18-month follow-up for each patient to obtain clinical outcomes after 18 months. The diagnosis of aMCI was based on the Petersen 2011 criteria (Petersen, 2004), and made in a blinded manner with respect to the EEG examination. The inclusion criteria for this study were as follows: (1) age of 50 years and above, (2) memory complaint usually corroborated by an informant, (3) objective memory impairment for age, (4) essentially preserved general cognitive function, (5) largely intact functional activities. The exclusion criteria were: other forms of dementia or accompanying Parkinson’s disease, epilepsy, psychiatric disorders, and serious organic disease. Among 107 aMCI cases, 42 individuals were diagnosed with AD after 18 months, while 65 individuals remained in the aMCI stage. Next, the 107 aMCI patients were divided into two groups: PMCI and SMCI. The diagnosis of AD was based on the criteria provided by the National Institute on Aging and the Alzheimer’s Association (NIA-AA) in 2011 (McKhann et al., 2011). All disease diagnoses in this study were accomplished by experienced neurologists. This study adhered to the Helsinki Declaration and was approved by the Ethics Committee of the School of Public Health, Sun Yat-sen University (2021-No.081). The demographic information of the patients was shown in Table 1.



TABLE 1 The demographic characteristics of participants.
[image: Table comparing characteristics of two groups: SMCIs (n=65) and PMCI (n=42). Variables include age, gender, MMSE scores, MoCA scores, type of aMCI, diabetes, hypertension, and education level. Statistical tests and p-values are provided, showing no significant differences between the groups.]



2.2 EEG data acquisition

Resting-state EEG was recorded using the Nicolet EEG machine system (Natus Medical Inc., San Carlos, CA) with a sampling rate of 500 Hz. Electrodes were placed according to the 10–20 international system, with a total of 16 channels (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6). All patients were right-handed, and sufficient sleep was ensured the night before the EEG collection. During the recording, patients were instructed to maintain a comfortable seated posture with their eyes closed for 5 min. EEG technicians continuously monitored the EEG traces and promptly alerted participants if any signs of drowsiness were detected.



2.3 EEG preprocessing

EEG signals are susceptible to various artifacts, highlighting the importance of preprocessing prior to analysis. Firstly, the raw EEG data were re-referenced using an average reference, and a finite impulse response (FIR) band-pass filter was applied to filter the EEG signals within the range of 0.1–70 Hz. Also, a notch filter was used to eliminate the 50 Hz power line interference. The EEG signals were subsequently down-sampled to 250 Hz. After joint screening by two experienced EEG examiners, bad epochs were removed and bad channels were interpolated. Then, 20-s segments of continuous EEG signals with clear background rhythms and minimal interference were selected. Following, we conducted independent component analysis (ICA) to remove common artifacts such as blinks, eye movements, and cardiac interference. Finally, the EEG signals were segmented into non-overlapping 2-s epochs for subsequent feature extraction. The above preprocessing steps were all performed using the EEGLAB toolbox (Delorme and Makeig, 2004) in MATLAB (R2023a, MathWorks).



2.4 Feature extraction

For each 2 s EEG epoch, we extracted features in three feature sets: spectral, nonlinear, and functional connectivity.


2.4.1 Spectral feature

Using Welch’s power spectral density (PSD) estimation (Alam et al., 2020), we transformed the preprocessed EEG signals from the time domain into the frequency domain and divided them into the following five subbands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

	(1) Power spectral density ratio (PSD ratio): Considering the variation in absolute PSD values among different patients, we calculated the relative PSD values within the aforementioned subbands for each patient (see Equations 1–5) resulting in the following five ratios:

[image: Equation labeled as (1) shows "Ratio1" equal to "delta" divided by "alpha".]

[image: Equation stating Ratio two equals theta divided by alpha, with the number two in parentheses to the right.]

[image: Mathematical formula: Ratio3 equals delta divided by the product of alpha plus beta and three.]

[image: Ratio four equals theta divided by the product of alpha plus beta and four.]

[image: Ratio 5 equals the sum of delta and theta divided by the sum of alpha, beta, and gamma. Equation number five.]

	(2) Power spectral density entropy (PSDE): In each subband, a sequence of PSD values can be obtained. We used the Shannon entropy method to assess the level of disorder in this sequence of PSD values (Li et al., 2023). Assuming there are PSD series with N values within the subband, the PSDE was calculated as follows:

[image: The image shows the formula for entropy: \(E = -\sum_{{i=1}}^N p_i \log p_i\), labeled as equation 6.]

where E and [image: Mathematical notation of the letter "p" with a subscript "i".] represent the PSDE of the signal and the probability of having the [image: Please upload the image or provide a URL so I can create the alt text for you.] sample in the signal, respectively (see Equation 6).

	(3) Interhemispheric asymmetry (IA): IA quantifies the disparity in PSD between the left and right channels, reflecting differences in the distribution of PSD values in symmetrical brain regions. IA is calculated as follows:

[image: Equation showing information activity (IA) equals the logarithm of PSD subscript lc minus the logarithm of PSD subscript rc, referenced as equation seven.]

where IA, [image: Text showing "PSD" with a subscript "lc" in italic font.], and [image: Mathematical notation showing "PSD" with the subscript "rc" in italic font, often used in scientific or technical contexts.] stand for the interhemispheric asymmetry, the PSD in the left hemisphere, and the PSD in the right hemisphere, respectively. We computed the IA values for a total of eight pairs (Fp1-Fp2, F3-F4, C3-C4, P3-P4, O1-O2, F7-F8, T3-T4, T5-T6) of channels across five subbands (see Equation 7).



2.4.2 Nonlinear feature

We extracted the following six nonlinear features to capture the nonlinear characteristics of the EEG signals in aMCI patients. The specific formulas can be found in Appendix A.

	(1) Multi-scale permutation entropy (PE): PE is an efficient quantitative complexity measure that explores the local order structure of a dynamic time series (Bandt and Pompe, 2002), particularly in EEG signals from MCI and AD patients (Siuly et al., 2020; Şeker et al., 2021). Multi-scale PE provides a multiscale perspective on signal complexity, facilitating the investigation of these neurological conditions (PARK et al., 2007; Wu et al., 2013; Deng et al., 2017). Our study calculated the PE for scales ranging from 1 to 10 (Busa and van Emmerik, 2016).
	(2) Multi-scale approximate entropy (AE): AE is a metric that quantifies the repetitiveness of a time series, capturing its irregular and chaotic nature by assessing the recurrence of patterns within the time series, including the EEG signals in MCI and AD cases (Abásolo et al., 2008; Nimmy John et al., 2019). In our study, AE was calculated for scales ranging from 1 to 10.
	(3) Multi-scale sample entropy (SE): The SE is proposed by Richman and Moorman (2000) as an improvement over AE, addressing the bias present in AE. Recently, SE has been extensively utilized for feature extraction in patients with MCI and AD (Tsai et al., 2012; Ruiz-Gomez et al., 2018). Also, our study calculated the SE for scales ranging from 1 to 10.
	(4) Lempel-Ziv complexity (LZ): LZ, a nonlinear feature in EEG signal analysis, exhibits distinctive characteristics in MCI and AD patients, highlighting encoding intricacies that could reveal disease-related patterns (Abásolo et al., 2006; Liu et al., 2016; Ruiz-Gomez et al., 2018). We selected the average of the EEG signal as the coarse-graining method for LZ analysis in this study.
	(5) Hurst exponent: The Hurst exponent quantifies the long-term memory or self-similarity of a time series, indicating whether it tends to exhibit persistent trends, mean reversion, or random behavior. This is valuable for distinguishing different EEG activity patterns and monitoring the temporal characteristics of EEG signals in MCI and AD patients (Nimmy John et al., 2018; Amezquita-Sanchez et al., 2019).

The aforementioned five nonlinear metrics all reflect the complexity of the EEG signals, with higher values indicating greater variability in the EEG signal, and vice versa.

(6) Median distance from the centroid of phase space reconstruction (M-DCPSR): Phase space reconstruction (PSR) is applied in EEG research to unveil the nonlinear dynamical properties and spatiotemporal relationships of brain electrical activity (Lee et al., 2014; Kaur et al., 2020). We innovatively propose M-DCPSR to unveil the nonlinear characteristics of EEG in the aMCI population. Firstly, we set the embedding dimension of PSR as m = 3 and determined the lag of the time series ([image: Greek letter tau in italics.]) using the autocorrelation function. Subsequently, the three-dimensional coordinates of the time series in the phase space were constructed based on [image: Greek lowercase letter tau, represented in italic font.]. Next, the centroid of the structure formed by all points in the phase space was computed, and the Euclidean distance between each point and the centroid was calculated. Finally, we computed the median of these Euclidean distances, resulting in the M-DCPSR for the given time series.



2.4.3 Functional connectivity feature

We extracted three functional connectivity metrics to measure the consistency of EEG signals across channels in aMCI patients. The specific formulas can be found in Appendix A.

(1) Correlation coefficient: The Pearson correlation coefficient (r) can measure linear relationships in EEG connectivity research. The equation for calculating r between two signals X and Y is:

[image: Formula for the Pearson correlation coefficient, denoted as r, equals the sum of (Xi minus X bar) times (Yi minus Y bar) divided by the square root of the sum of (Xi minus X bar) squared times the sum of (Yi minus Y bar) squared.]

where n is the number of data points, [image: Symbol representing the mathematical notation for the mean or average of a set of values, depicted as the capital letter X with a horizontal bar over it.] and [image: Symbol of the letter "Y" with a horizontal line above it, typically used to denote the mean of a set of values in statistics.] are the means of signals X and Y, respectively (see Equation 8).

	(2) Phase lag index (PLI): PLI, which is used to measure the degree of phase synchronization between two signals, can exclude the influences of volume conduction in EEG signals. It is commonly employed as a functional connectivity feature in MCI and AD patients (Núñez et al., 2019; Nobukawa et al., 2020; Kuang et al., 2022). PLI values range from 0 to 1. A PLI of zero indicates either no coupling or coupling with a phase difference centered around 0 or π. A PLI of 1 indicates perfect phase locking at a value different from 0 or π.
	(3) Magnitude squared coherence (MSC): MSC is frequently employed in EEG connectivity studies to assess the dependence between two signals. The MSC value ranges from 0 to 1. An MSC of 0 indicates no linear dependence between the two signals. A larger MSC value suggests a higher degree of statistical dependence between the two signals.

The total number of extracted features can be found in Appendix B.




2.5 Classification and validation

We employed eight commonly used machine learning classifiers for binary discrimination in AD Spectrum (Perez-Valero et al., 2021; Tzimourta et al., 2021; Rossini et al., 2022), including support vector machine (SVM), decision tree (DT), naive Bayes (NB), linear discriminant analysis (LDA), AdaBoost (ADA), k-nearest neighbor (KNN), random forest (RF), and logistic regression (LogReg). The detailed descriptions of eight classifiers can be found in Appendix C. All the parameters for machine learning models were set to the default settings in MATLAB. All 2 s EEG epochs were divided into training and testing sets using a 10-fold cross-validation approach at the subject level, ensuring that EEG epochs from the same participant were not simultaneously included in both the training and testing sets. We conducted feature selection and dimensionality reduction on the aforementioned extracted features. Firstly, we employed two-sample t-test and Wilcoxon rank-sum test to select features with statistical significance between the two groups in the training set. Then, the selected features were standardized and subjected to principal component analysis (PCA) for dimensionality reduction, extracting principal components that contribute to 95.00% cumulative variance. Next, we applied the feature selection parameters from the training set to the testing set, to prevent data leakage issues in machine learning.

Finally, we accessed the classification performance of the machine learning model using six metrics: sensitivity (SEN), specificity (SPE), positive predictive value (PPV), F1-score, accuracy (ACC), and area under the curve (AUC) for the receiver operating characteristic curve (see Equations 9–14). The formula for the previously mentioned metrics is as follows:

[image: Formula calculating accuracy (ACC) as the sum of true positives (TP) and true negatives (TN) divided by the sum of true positives, false negatives (FN), true negatives, and false positives (FP).]

[image: Sensitivity is defined by the formula: true positives (TP) divided by the sum of true positives (TP) and false negatives (FN). Equation number ten.]

[image: Formula for specificity (SPE) shown as the number of true negatives (TN) divided by the sum of false positives (FP) and true negatives (TN). Equation labeled as 11.]

[image: Formula for positive predictive value, PPV equals TP divided by TP plus FP, where TP is true positives and FP is false positives. Equation number twelve.]

[image: Formula for F1-score, represented as the expression: F1-score equals two times TP divided by the sum of two times TP, FP, and FN, with a reference number thirteen.]

[image: Formula for calculating the Area Under the Curve (AUC). It shows AUC equals the sum of ranks of instances in the positive class minus the product of M and M plus one divided by two, all over the product of M and N.]

where M, N are the number of positive sample and negative sample, separately (Hanley and McNeil, 1982; Cortes and Mohri, 2003). TP is the number of PMCI cases that are correctly predicted, FN is the number of PMCI cases that are incorrectly predicted as SMCI samples, FP is the number of SMCI cases that are incorrectly predicted as PMC cases, and TN is the number of SMCI samples that are correctly predicted.




3 Results

In this section, we firstly presented the statistical differences of three feature sets in SMCI and PMCI cases. Since the assumptions of parametric tests were not met for these feature sets, we employed two-sample Wilcoxon rank-sum tests to explore the statistical differences of aforementioned features between the two groups. Finally, we presented the discriminant performance of different classifiers.


3.1 Spectral features

As shown in Figure 2, the disparities in PSD ratio1, PSD ratio2, and PSD ratio3 between SMCI and PMCI cases were more significant compared to PSD ratio4 and PSD ratio5. The PSD ratio1 exhibited the most pronounced distinguished capability between the two groups, followed by PSD ratio3 and PSD ratio2. In the frontal, central, parietal, and occipital regions, the value of PSD ratio1 in the PMCI group was noticeably higher than that in the SMCI group.

[image: Panel A shows topographic brain maps with different ratios labeled Ratio1 through Ratio5, colored from blue to yellow, indicating varying P-values. Panel B is a box plot comparing ratios at different brain sites between PMCI and SMCI groups, with outliers marked. Panel C displays topographic maps comparing SMCI and PMCI with a color gradient from blue to yellow for Ratio1.]

FIGURE 2
 The combination chart of statistical differences for PSD ratios in SMCI and PMCI groups. (A) The EEG topoplot in terms of p-value of five PSD ratios between the SMCI and PMCI groups using the Wilcoxon Rank-Sum Test. (B) The boxplot of PSD ratio1 for the SMCI and PMCI groups. The horizontal axis represents 16 channels, and the vertical axis represents the values of PSD ratio1. (C) The EEG topoplot in terms of the mean of PSD ratio1 within the SMCI and PMCI groups.


As illustrated in Figure 3, the differences in PSDE in the alpha and beta bands were more significant than those in the delta, theta, and gamma bands between SMCI and PMCI cases. The PSDE in the alpha band exhibited the best distinguished capability between the two groups, followed by the beta band. The PSDE in the alpha band were notably lower in all brain regions in the PMCI cases compared to the SMCI cases. However, there was no significant difference between SMCI and PMCI in IA in the delta band. The same results were observed in IA with the four other frequency bands as well (see Appendix B).

[image: Panel A shows scalp maps for different brainwave frequencies: delta, theta, alpha, beta, and gamma, with varying P-value color scales. Panel B is a box plot comparing interhemispheric alpha asymmetry across various electrode pairs for PMCI and SMCI groups. Panel C shows two scalp maps illustrating alpha band entropy for SMCI and PMCI groups, with a color scale indicating entropy levels.]

FIGURE 3
 The combination chart of statistical differences for PSDE and IA in SMCI and PMCI groups. (A) The EEG topoplot in terms of p-value of five PSDE between the SMCI and PMCI groups using the Wilcoxon Rank-Sum Test. (B) The boxplot of IA in the delta band for the SMCI and PMCI groups. The horizontal axis represents 8 channel pairs, and the vertical axis represents the values of IA. (C) The EEG topoplot in terms of the mean of PSDE in the alpha band within the SMCI and PMCI groups.




3.2 Nonlinear feature

As shown in Figure 4, the differences in SE, PE, and M-DCPSR between SMCI and PMCI cases were more significant compared to AE, LZ, and the Hurst exponent. Compared to the SMCI group, the PMCI group exhibits lower values of SE, PE, and M-DCPSR in all brain regions. AE exhibited better discriminant performance in the frontal, parietal, and occipital regions; the Hurst exponent demonstrated better discriminant performance in the frontal and occipital regions. However, LZ showed limited distinguished efficacy between SMCI and PMCI patients.

[image: Six sets of brain activity heat maps show comparisons between SMCI and PMCI, each with a visualization of a corresponding p-value. Panels A to F represent different brain metrics: LZ, Hurst, M-DCSPSR, AE, SE, and PE. SMCI maps generally display more activity than PMCI maps, with significant differences highlighted in p-value maps, shown by varying color intensities.]

FIGURE 4
 The topoplot of statistical differences for nonlinear features in SMCI and PMCI groups. (A) LZ; (B) Hurst exponent; (C) M-DCPSR; (D) AE, scale = 2; (E) SE, scale = 2; (F) PE, scale = 2. The first two columns of each subplot represent the EEG topoplot in terms of the mean of various nonlinear features within the SMCI and PMCI groups, respectively. The last column shows the EEG topoplot in terms of p-value of nonlinear features between the SMCI and PMCI groups using the Wilcoxon Rank-Sum Test.




3.3 Functional connectivity feature

As shown in Figure 5, regardless of the functional connectivity features employed, the differences in the functional connectivity in the full-frequency, alpha, theta, and delta bands between SMCI and PMCI patients were more significant than those in the beta and gamma bands. The functional connectivity of full-frequency and alpha bands exhibited better discriminant performance between the two groups, followed by the theta and delta bands.

[image: A. B. C. Brain connectivity maps for different frequency bands (all band, delta, theta, alpha, beta, gamma) showing varying connectivity patterns. D. Box plots comparing SMCI and PMCI groups across different channels, with notable outliers. E. Network graphs illustrating connections for SMCI and PMCI, showing denser connections in SMCI. Color indicates p-values.]

FIGURE 5
 The combination chart of statistical differences for functional connectivity features in SMCI and PMCI groups. (A) Pearson correlation coefficient; (B) PLI; (C) MSC. In each subplot, the connections have statistically significance between the SMCI and PMCI groups, with color variations indicating the magnitude of p-values. (D) The boxplot of the 15 functional connections with the lowest p-values of PLI (full-frequency band) between the SMCI and PMCI groups. (E) The circulargraph of the functional connections with mean PLI (full-frequency band) values exceeding 0.125 within the SMCI and PMCI groups.


Also, Figure 5 exhibits the 15 functional connections that yielded the lowest p-values for PLI of the full-frequency band between the SMCI and PMCI cohorts. The connectivity strength in the SMCI group was notably higher than in the PMCI group. The SMCI group exhibited a significantly greater number of connections compared to the PMCI group when applying a threshold of 0.125.



3.4 Discriminant performance

Table 2 illustrates the discriminant performance of eight classifiers using the previously extracted features between the SMCI and PMCI groups. It can be observed that the KNN exhibited the best classification performance. It had the highest mean and the lowest standard deviation for all evaluation metrics, with an average ACC of 99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 99.93%, and F1-score of 99.96%. The SVM, LDA, and LogReg fell into the second tier, with the mean for each metric surpassing 95%. The DT, ADA, and RF exhibited slightly lower classification performance, with the mean for each metric remaining above 80%. The NB showed inferior classification performance, although its lowest metric exceeded 75%. The boxplots of discriminant results by different classifiers using 10-fold CV can be found in Appendix B.



TABLE 2 The discriminant results using 10-fold CV with 2 s epochs (mean ± standard deviation, %).
[image: Table showing classification performance metrics for different algorithms: SVM, DT, NB, LDA, ADA, RF, KNN, and LogReg. Columns are ACC, AUC, SEN, SPE, PPV, and F1-score. KNN has the highest values in all metrics, indicated in bold.]




4 Discussion

Based on EEG spectral, nonlinear, and functional connectivity features, we proposed a discriminant framework utilizing machine learning methods to diagnose SMCI and PMCI through computer-aided techniques. We achieved satisfactory classification performance by our data.

The differences in PSD ratio3 and PSD ratio1 between the two groups are pronounced, revealing a distinct “high to low” EEG frequency shift in PMCI patients compared to SMCI patients. This finding provides novel and robust longitudinal evidence for the association between the tendency of change in PSD ratio features and clinical outcomes in aMCI patients, in line with relevant research findings (Luckhaus et al., 2008; Ding et al., 2022; Sadegh-Zadeh et al., 2023). However, the differences in IA between the two groups are not pronounced, suggesting minimal disparities in the distribution of PSD values across the bilateral symmetrical regions of the brain for each frequency band, and requesting further longitudinal evidence. The extracted nonlinear features indicate that the complexity of EEG in the PMCI group is lower than that in the SMCI group. Additionally, the classification performance of SE and PE is superior to that of AE, LZ, and the Hurst exponent. This further underscores that nonlinear features that exhibit outstanding discriminant performance among the AD, MCI, and HC populations may not necessarily apply to distinguishing between the SMCI and PMCI groups (Ruiz-Gomez et al., 2018; Araujo et al., 2022; Ding et al., 2022; Lee et al., 2022). Additionally, we have introduced the innovative nonlinear feature, M-DCPSR, which exhibits significant differences between the two groups and holds promising potential for EEG studies involving aMCI patients or “HC-subjective cognitive decline (SCD)-MCI-AD” spectrum. Significant disparities in functional connectivity were noted between the two groups in both the full frequency and alpha bands, suggesting that the PMCI group exhibits early-stage reductions in intra- and inter-brain region communication during the aMCI phase (Vecchio et al., 2018; Miraglia et al., 2020). Our study showed that the collection of EEG features at the aMCI stage and their follow-up in future studies may crucial for for personalized and precise prevention and treatment strategies.

By comprehensively extracting EEG features, our discriminant framework utilizing machine learning methods has displayed exceptional performance in distinguishing between SMCI and PMCI cases. Notably, all six metrics surpassed 99% in KNN, while all eight classifiers exhibited ACC surpassing 75% and AUC exceeding 80%. These results underscore the value of EEG in automated diagnosis and AD prediction. As KNN excels in handling feature sets with significant dependent, and performs better when the class distributions exhibit distinct clustering characteristics within the feature space (Hu et al., 2022), it outperformed other methods in our research. In contrast, NB relies on the assumption of independence between features (Taheri et al., 2014), which is clearly not met in our research. The observed results may be attributed to the use of PCA for feature dimensionality reduction prior to inputting the data into the machine learning model, aiming to reduce the correlation among the original features. However, while PCA ensures linear independence among the principal components, it does not rule out the possibility of nonlinear relationships.

Given the limited prior application of machine learning methods for longitudinal classification studies involving the aMCI population, we concurrently selected machine learning studies that utilized aMCI as one of their classification labels for comparison with our results (see Table 3). It can be observed that the discriminant framework in this study achieved the highest ACC among all similar studies, indicating significant potential for its application in automated diagnosis and early prediction. Furthermore, using the same discriminant framework, we classified the whole 20-s EEG signals of 107 aMCI patients (results shown in Appendix B). Despite a slight performance decrease, most performance evaluation metrics still exceeded 75%, confirming the stability of our machine learning discriminant framework. The superior classification performance of 2-s epochs compared to 20-s signals in this study may stem from the ability of shorter segments to provide higher temporal and spectral resolution. Differences in frequency domain features between PMCI and SMCI groups likely contributed to this result. We recommend that future studies employing machine learning for EEG analysis report both epoch-based and subject-based classification results whenever possible.



TABLE 3 Comparison between our proposed framework and previous studies (resting-state EEG).
[image: Table comparing EEG signal studies, listing details such as subject numbers, EEG duration, features, classifiers, accuracy, and validation methods. The studies vary in accuracy, with the highest accuracy of 99.96% achieved by “Our study” using multiple classifiers and 2-second EEG signals.]

From the perspective of early prediction, we established a machine learning discriminant framework for SMCI and PMCI using EEG features, achieving remarkable classification performance. However, our study still has several limitations. Firstly, the sample size is relatively small, as all cases were recruited from the First Affiliated Hospital of SYSU. Despite our efforts to expand the epochs to 1,070 by segmenting the EEG data and utilizing 10-fold CVto mitigate the risk of overfitting, the small sample size may still affect the stability and generalizability of the models. With limited data, the models may fail to capture all the important patterns within the data, thereby limiting their applicability and performance in real-world settings. We conducted simulation studies of classifiers under different sample size scenarios and calculated sample size from a statistical perspective (see Appendix C). The results indicate that the sample size in our study is sufficient to infer differences in the metrics. However, we advocate that studies applying machine learning methods in the EEG field should estimate sample sizes beforehand to enhance the credibility of the results. It remains essential to further validate the generalizability of our discriminant framework by increasing the sample size. Therefore, we continue to recruit new cases to enlarge this aMCI cohort and plan to conduct a multi-center study intended for external validation. However, we utilized calibration curves for internal validation of the model, demonstrating the relationship between the predicted probabilities and the observed frequencies (see Appendix B). The results indicate outstanding model calibration, with the curves closely aligning with the ideal diagonal line, suggesting that the predicted probabilities in this study accurately reflect the actual likelihood of events. Secondly, we have overlooked the ranking of feature importance though inter-group comparisons have highlighted statistical significance in extracted features between the two groups. In our future work, we will explore the importance of certain features and the discriminant efficiency under various combinations of feature sets. Additionally, we exclusively employed EEG data obtained at the time of the initial diagnosis, although a longitudinal study on the aMCI cases was conducted. It could be crucial to collect multiple EEG recordings for the aMCI cases during follow-up, as this would aid in dynamically monitoring the trends in EEG features within the aMCI population, thus facilitating the development of an adaptive risk model for the progression from aMCI to AD. However, we proposed a computer-aided diagnostic discriminant framework based on machine learning methods, capable of early predicting AD during the aMCI stage, and achieving satisfactory classification performance.



5 Conclusion

Aiming to explore the EEG biomarkers with predictive value for AD in the early stages of aMCI, the proposed discriminant framework provided robust longitudinal evidence for the trajectory of the aMCI cases, aiding in the achievement of early diagnosis and proactive intervention.
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Background: Studies have shown the clinical effects of repetitive transcranial magnetic stimulation (rTMS) on depression in Alzheimer’s disease (AD). However, the underlying mechanisms remain poorly understood. The measurement of brain activation links neurobiological and functional aspects but is challenging in patients with dementia. This study investigated the influence of rTMS on cortical activation in patients with AD and depressive symptoms, measured using functional near-infrared spectroscopy (fNIRS) during a verbal fluency task.
Methods: In this randomized, double-blind study, patients with AD and depression received either active rTMS (n = 17) or sham-rTMS (n = 16). Patients received 4 weeks of bilateral standard rTMS (1 Hz rTMS delivered to the right dorsolateral prefrontal cortex (DLPFC) and 10-Hz rTMS delivered to the left DLPFC).
Results: No significant changes were found in the Mini-Mental State Examination (MMSE) and Modified Barthel Index (MBI); however, significant changes were found for the 17-item Hamilton Depression Rating Scale (HAMD-17) and the depression score of the Neuropsychiatric Inventory (NPI-depression; p < 0.05). The results showed a decrease in the concentration of oxygenated hemoglobin, as measured with fNIRS, from baseline to week 4 in CH41 (in right DLPFC; p = 0.0047, FDR-corrected). There was a negative correlation between the improvement in HAMD-17 severity in these patients and reduced oxygenated hemodynamic response of CH41 (r = − 0.504, p = 0.039).
Conclusion: The results indicated a positive effect of rTMS on depression in patients with AD. The underlying cortical changes were imaged using fNIRS. Prefrontal activation measured by fNIRS is a potential biomarker for monitoring the response of patients with depression in AD to rTMS treatment.
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 depression in AD; repetitive transcranial magnetic stimulation; prefrontal cortex; functional near-infrared spectroscopy; verbal fluency task; bilateral standard rTMS


1 Introduction

Alzheimer’s disease (AD) is a primary neurodegenerative disease characterized by a progressive decline in short-term memory during its early stages. As AD progresses, cognitive function and daily social skills are further impaired (Botto et al., 2022). Behavioral and psychological symptoms in dementia (BPSD) have been suggested by the International Psychiatric Association to describe the spectrum of non-cognitive and non-neurological symptoms of dementia, such as agitation, aggression, mental illness, depression, and apathy (Padovani et al., 2023). Patients with AD have a higher incidence of BPSD than do older individuals without dementia (Lee and Lyketsos, 2003). Almost all patients with AD (97%) have BPSD (Takemoto et al., 2020). Depression is one of the most common forms of BPSD, affecting approximately 30–50% of patients (Teng et al., 2008). Typical depressive symptoms in patients with AD include insomnia, social withdrawal, reduced purpose-oriented behavior, loss of interest in once-enjoyable activities and hobbies, guilt, hopelessness, and sadness (Cimadamore et al., 2021). Depression not only exacerbates cognitive impairment in patients but also significantly impairs their daily living abilities, leading to a decrease in quality of life and increased risk of hospitalization and death. Conversely, treating the symptoms of depression that appear over the course of a neurodegenerative process can help delay the progression of dementia (Aguera-Ortiz et al., 2021).

Antidepressants are the main drugs used to treat depression in patients with AD. However, the efficacy of antidepressants for treating depression in patients with AD remains controversial (Orgeta et al., 2017). Additionally, older people have a higher risk than young people of adverse events when using antidepressants (Coupland et al., 2011). Therefore, comprehensive interventions, including noninvasive physical therapy, should be performed to treat depression in AD.

Transcranial magnetic stimulation (TMS) is a painless and non-invasive treatment that acts on the central nervous system, regulating the action potential of neurons, and affecting metabolism and neurophysiological activities in the brain. According to different TMS stimulation pulses, TMS can be divided into three stimulation modes: single-pulse TMS, paired-pulse TMS, and repetitive TMS (rTMS). rTMS is one of the most commonly used TMS approaches in clinical practice. Low frequency (≤1 Hz) stimulation can reduce cortical excitability, while high frequency (>1 Hz) stimulation can increase cortical excitability. Several studies have demonstrated therapeutic effects of rTMS on senile depression (Cappon et al., 2022). Additionally, rTMS not only improves cognition (Lin et al., 2019; Chou et al., 2020; Yan et al., 2023) but also prevents BPSD, especially depression, in patients with AD (Ahmed et al., 2012; Teselink et al., 2021; Zhang et al., 2022; Yang and Zhou, 2023).

Regional cerebral blood flow can serve as a biological marker to distinguish between patients with and without depression (Li et al., 2021), suggesting that functional near-infrared spectroscopy (fNIRS), a functional neuroimaging tool that investigates cerebral hemodynamic changes in the cerebral cortex, might be useful for evaluating the efficacy of rTMS for depression in patients (Gao et al., 2019; Xiong et al., 2023). For the underlying neuropathological association, the depression score was found to be correlated with brain regional tau deposition, especially in the temporal cortex including the entorhinal cortex and middle temporal cortex (Zhou, 2020).

In summary, in the current study, fNIRS was used as a detection technique, with cortical hemodynamics of the prefrontal and temporal cortices as clinical observation indicators, to explore whether the two cortices of patients with AD and depression have a specific response to rTMS treatment.



2 Materials and methods


2.1 Participants

This pilot feasibility study was a single-site, prospective, double-blind study in which patients and assessors were blinded, randomized, parallel-arm, and sham-controlled for rTMS treatment of depression in older adults with AD.

Patients were recruited from the Hospital Department of the Affiliated Kangning Hospital of Ningbo University from November 1, 2021, to November 4, 2022. Experienced research psychiatrists recommended that potential participants receive further study. Participants were randomized in a 1:1 ratio to either the active or sham-rTMS group using a computer-generated sequence. Allocation concealment was maintained by using sealed opaque envelopes. Participants received 20 consecutive 30-min applications of active/sham TMS from Monday to Friday for 4 weeks. A participant’s allocated intervention during the trial was revealed by the principal investigator at the end of the study. The trial results were communicated by the study coordinators when requested.

Inclusion criteria were as follows: (1) Participants who meet the criteria of probable AD defined by National Institute of Neurological and Communicative Diseases and Stroke-Alzheimer’s Disease and Related Disorders Association research criteria (McKhann et al., 1984); (2) Participants who met the criteria for depression in AD defined by the National Institute of Mental Health criteria (Teng et al., 2008); (3) Adequate visual and auditory abilities to perform all aspects of the cognitive and functional assessments, and sufficient mobility to allow transportation and participation in all planned interventions.

Exclusion criteria were as follows: (1) Life-threatening somatic diseases; (2) History of other mental disorders; (3) Alcohol or other substance abuse; (4) Disturbed consciousness, central nervous system infection, stroke, brain tumor, and other neurological diseases, or a history of diseases that may limit the use of rTMS or medical treatment devices, such as placement of cardiac pacemakers, intracranial metal, and aneurysm clips; and (5) Use of drugs or substances that affect cerebral perfusion, such as caffeine, alcohol, and acetazolamide within the day fNIRS was performed (Hernandez-Garcia et al., 2019). Prior to the study, all participants provided written informed consent. This study was approved by the Ethics Committee of the Hospital Department of the Affiliated Kangning Hospital of Ningbo University (Approval no.: NBKNYY-2021-LC-40) on November 1, 2021, and registered in the Chinese Clinical Trials Registry (registration no. ChiCTR2100053538) on November 24, 2021.



2.2 rTMS procedures (bilateral standard rTMS)

Participants received 20 consecutive 30-min applications of active/sham rTMS from Monday to Friday for 4 weeks (a total of 20 sessions). A figure-eight coil (Coil-D70-air film coil, Magstim) was placed over the left and right dorsolateral prefrontal cortex (DLPFC) lobes, which were determined using the MNI coordinates (MNIx,y,z = 44, 40, 29; Fox et al., 2012) in the neuronavigation Brainsight system (Rogue Research Inc., Montreal, Canada). Referring to the standard sequence of bilateral rTMS (Blumberger et al., 2022), the parameters of our research consisted of 1-Hz stimulation (120% resting motor threshold, 900 pulses over 15 min) to the right DLPFC, followed by standard FDA-cleared 10-Hz stimulation (120% resting motor threshold, 900 pulses over 15 min) to the left DLPFC. The sham treatments used a MAGSTIM pseudo-stimulus coil placed over the left and right DLPFC that transmitted no stimulation. The rTMS machine was a MAGSTIM Rapid2 model (Magstim Ltd., Oxford, UK). Patients in both groups experienced the same sound during the rTMS treatment. Participants were unaware of their assignation to sham or treatment group.



2.3 Neuropsychological assessment

All participants received neuropsychological and clinical evaluation, and data were collected via assessments that were implemented at baseline, and 2 weeks and 4 weeks after the end of treatment.

The primary outcome measure was the assessment of depression in AD. To reduce the error associated with using a single scale to evaluate depression in AD, this experiment used two scales: the Hamilton Depression Rating Scale (HAMD-17) and the Neuropsychiatric Inventory (NPI-depression; Cummings, 1997). A HAMD-17 score < 7 indicated no depression, with depression considered present for scores ≥7. The NPI is a proxy-reported scale developed to assess 12 neuropsychiatric disturbances that are common in dementia, of which depression is an important dimension.

Secondary outcome measures included the Mini-Mental State Examination (MMSE) and the Modified Barthel Index (MBI). The MMSE (Folstein et al., 1975) was used to assess general cognitive function. The MBI (Alsubiheen et al., 2022) was used to compare the level of ADL performance, with MBI scores ranging from 0 to 23.

Neuropsychological assessment was performed face-to-face by experienced psychiatrists blinded to the group allocation. During the interviews, demographic information, body weight, and height were measured and recorded. All assessors were trained at a monthly workshop.



2.4 Activation task (verbal fluency task)

The task procedure used in the present study was a Chinese-language phonological verbal fluency task (VFT) developed by Quan et al. for Chinese participants (Quan et al., 2015). The VFT was executed during the daytime. The VFT consisted of a 30-s pre-task baseline, 60-s task period, and 60-s post-task baseline. During the pre- and post-task baseline periods, participants were asked to repeat counting from 1 to 5 following voice prompts from the fNIRS machine. During the task period, participants were required to construct as many phrases as possible using three commonly used characters, such as “蓝” (blue), “大” (big), and “天” (sky). Participants were instructed to generate as many words as possible, beginning with the same syllable. All participants were given the same syllable cues, and no changes were made to the order of presentation. We provided all participants with a practice session before formal testing to ensure that they fully understood the tasks. The three characters were changed every 20 s during the task period to reduce the time during which participants were silent (see Figure 1).

[image: Diagram showing a sequence of tests. A pre-task test lasts 30 seconds in green, a task test lasts 60 seconds in yellow, and a post-task test lasts 60 seconds in blue. The task test includes three subtasks, each lasting 20 seconds in orange.]

FIGURE 1
 The VFT protocol used for near-infrared spectroscopy. Each trial consisted of a 30 s pre-task rest period, a 60 s task period subdivided into three 20 s task s and finally, a 60 s post-task rest period.




2.5 NIRS measurement

Participants were seated comfortably in a quiet room. Hemoglobin concentrations were measured using a multichannel near-infrared optical imaging system (NirScan, Danyang Huichuang Medical Equipment Co., Ltd., China). The sampling frequency was 11 Hz, with major wavelengths of 730 and 850 nm, and 808 nm as the isotopic wavelength for correction. We used the FPz channel (10/20 International System) as the center of the middle probe; 31 SD probes (consisting of 15 sources and 16 detectors) with a fixed 3-cm inter-probe distance were placed to cover each participant’s bilateral PFC and temporal cortices, with the lowest probes positioned along the Fp1-Fp2 line (Figure 2). A total of 48 NIRS channels were established.

[image: Illustration of a brain viewed from the top, showing a highlighted green area covering the frontal regions. Orange numbered markers are positioned across the green area, suggesting electrode positions for brain activity measurement.]

FIGURE 2
 The position of channels.




2.6 Data processing and analysis


2.6.1 NIRS data analysis

The toolbox HOMER2, a MATLAB-based graphical user interface program, was used to analyze NIRS data (Huppert et al., 2009). Data were preprocessed using the following steps: motion artifacts were corrected using moving SD and cubic spline interpolation methods. A 0.01–0.20 Hz bandpass filter was used to remove physiological noise (e.g., respiration, cardiac activity, and low-frequency signal drift). The modified Beer–Lambert law was used to convert optical densities into changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) concentrations. We used oxy-Hb as our primary indicator in the following analysis because the change in oxy-Hb could better reflect cortical activity, as it is assumed to more directly respond to cognitive task-related brain activation and more strongly correlate with blood oxygenation level-dependent signals measured by fMRI (Strangman et al., 2002). We used the final 10 s of the pre-task rest period as the baseline. The VFT block waveforms were calculated using a block range set of 0–125 s, pre-baseline range set of 0–10 s, and post-baseline range set of 70–125 s. We used a 60-s task period to construct the time window to analyze the mean oxy-Hb changes. Linear fitting was applied to the data of the two baselines. According to the waveforms of individuals in all 48 channels, the average waveforms of oxy-Hb and deoxy-Hb changes in all participants in the two groups were obtained.



2.6.2 Statistics

Statistical analyses were conducted using SPSS 22.0 (IBM Corp., NY, USA). The NirSpark software package and GraphPad Prism 8 were used to generate figures and graphs, respectively. Data normality was tested using the Shapiro–Wilk test. The demographic and clinical data were analyzed using a chi-squared test, t-test, or Mann–Whitney U test to compare the rTMS and sham-rTMS groups. We used a two-way mixed ANOVA with different groups (rTMS group vs. sham-rTMS group) as the between-participants factor and time (pre vs. post) as the within-participants factor to analyze the effect of rTMS intervention on neuropsychological assessment. The sphericity of the set of variables was evaluated using the Mauchly test, and, when it was violated, the Greenhousee-Geisser correction was used. The effect size of the mixed-design ANOVA was determined using partial eta squared (η2). Pairwise multiple comparisons between follow-up time points and baseline were conducted within each group and adjusted with Bonferroni procedure. To analyze our fNIRS data, independent samples t-tests were used to compare oxy-Hb values during the VFT for each channel between the rTMS and sham-rTMS at baseline and 4 weeks. The differences in oxy-Hb values during the VFT for each channel were compared between pre- and post-treatment, using paired t-tests. In case of non-normal data, non-parametric Mann Whitney U test and Wilcoxon signed-rank test were used as appropriate. Cohen’s d effect size was used to measure the magnitude of the difference between groups. The statistical results were corrected for multiple comparision across channels by using the false discovery rate (FDR) controlling procedure. Pearson’s correlation coefficient was performed to determine the relationship between oxy-Hb change values (post-pre) and HAMD and NPI-depression change scores (post-pre). Statistical significance was defined as p < 0.05, two-tailed.





3 Results

In total, 60 patients with AD were recruited, of whom 22 were excluded (12 did not meet the inclusion criteria, 7 declined to participate and 3 had unstable medical conditions). The remaining 38 individuals were randomly divided into two groups (19 in the rTMS group and 19 in the sham-rTMS group). During the experiment, five individuals were lost (two from the rTMS group and three from the sham-rTMS group). Screening, enrollment, and participation are shown in Figure 3. The final 33 patients completed the 2-week intervention and the 4-week follow-up.

[image: Flowchart of a clinical study with 60 assessed for eligibility. After exclusions, 38 were randomized equally to two groups: rTMS and sham-rTMS. Both groups had 19 participants each. At 2-week follow-up, one discontinued in rTMS due to discharge; two in sham-rTMS due to medical instability and scheduling. At 4-week follow-up, one from each group discontinued: rTMS due to medical instability, sham-rTMS due to discharge. Final analysis included 17 in rTMS and 16 in sham-rTMS.]

FIGURE 3
 CONSORT flow diagram of participants through the trial.



3.1 Demographic and clinical characteristics

Patient baseline characteristics are detailed in Table 1. Mean patient age was 73.76 ± 3.882 and 72.63 ± 6.752 years old in the rTMS Group and Sham-rTMS Group, respectively. There were 7/10 (41.2%) and 7/9 (43.8%) males/females in the rTMS Group and Sham-rTMS Group, respectively. There were no significant differences between the two groups in terms of demographics, concomitant medications, or comorbidities.



TABLE 1 Baseline patients’ demographic and clinical characteristics.
[image: Comparison table showing demographics and concomitant medications for rTMS (n = 17) and sham-rTMS (n = 16) groups. Variables include age, gender, BMI, education, years since Alzheimer's diagnosis, and use of acetylcholinesterase inhibitors, memantine, antidepressants, and presence of complications. Statistical tests present chi-square, z-score, t-score, and p-value for each variable.]



3.2 Clinical outcomes


3.2.1 Primary outcomes

Figure 4 shows the primary results. Tables 2, 3 shows the two-way repeated-measures ANOVA results for the HAMD and NPI-depression scores in the two groups.

[image: Two line graphs show changes in depression scores over four weeks for rTMS and sham-rTMS groups. Graph A (HAMD) shows a steady decrease for both groups, with rTMS slightly lower. Graph B (NPI-depression) also shows a decrease, with rTMS consistently lower than sham-rTMS. Error bars indicate variability.]

FIGURE 4
 The HAMD score (A) and NPI-depression score (B) of patients at baseline, and weeks 2 and 4 after treatment.




TABLE 2 Primary outcomes.
[image: Table showing results from two groups, rTMS (n = 17) and Sham-rTMS (n = 16), over Baseline, 2 weeks, and 4 weeks for HAMD and NPI-depression scales. HAMD scores decreased over time in both groups, with significant time (p < 0.01) and interaction effects. NPI-depression scores also decreased significantly over time (p < 0.01) in both groups. Statistical data include p-values, F statistics, and effect sizes (η²).]



TABLE 3 Pairwise multiple comparison results related to the primary outcomes.
[image: Table displaying scores for HAMD and NPI-depression scales across TMS and Sham-rTMS groups at baseline, 2 weeks, and 4 weeks. It shows mean scores, standard deviations, mean changes from baseline, 95% confidence intervals, and p-values. All p-values are adjusted with Bonferroni procedure.]

Repeated measures analysis revealed a significant time × group interaction (F = 14.07, p < 0.01) and an effect of time (F = 141.12, p < 0.01) on HAMD scores in patients. However, there was no significant difference in HAMD scores between the two groups (F = 1.236, p = 0.275). Simple effects analyses revealed that the HAMD scores in the rTMS group were significantly lower than those in the sham-rTMS group at week 4 (p = 0.031). Multiple comparisons showed that the HAMD scores in the rTMS and sham-rTMS groups were significantly reduced at weeks 2 and 4, respectively, compared to baseline.

Repeated measures analysis revealed a significant time × group interaction (F = 7.784, p = 0.004) and an effect of time (F = 61.046, p < 0.01) on NPI-depression scores in patients. Similarly, there was no significant difference in NPI-depression scores between the two groups (F = 1.297, p = 0.264). Additionally, NPI-depression scores in the rTMS group were significantly lower than those in the sham-rTMS group at week 4 (p = 0.015). The NPI-depression scores in the rTMS and sham-rTMS groups were significantly reduced at weeks 2 and 4, respectively, compared with baseline.



3.2.2 Secondary outcomes

The secondary outcomes are presented in Table 4. Repeated-measures analysis revealed that no effects were significant (time × group, F = 0.400, p = 0.599; time, F = 2.653, p = 0.099; group, F = 0.233, p = 0.633) on MMSE scores in patients. Repeated measures analysis revealed a significant effect of time (F = 6.610, p = 0.006) on MBI scores in patients. Multiple comparisons showed that the MBI scores in the TMS and sham-TMS groups were significantly reduced at weeks 4 compared to baseline (p = 0.019). The time by group interaction (F = 0.549, p = 0.533) and the difference between the two groups (F = 0.260, p = 0.614) were not significant.



TABLE 4 Secondary outcomes.
[image: Table showing mean scores and standard deviations for MMSE and MBI across baseline, two weeks, and four weeks for rTMS and sham-rTMS groups. Time, group, and interaction effects are listed with p-values, F-values, and eta-squared values.]




3.3 Effects of rTMS on oxy-Hb signals during VFT task

The mean baseline oxy-Hb concentrations for CH 41 were not significantly different between the rTMS and sham-rTMS groups (p = 0.496, FDR-corrected). We found a lower mean oxy-Hb signal in the rTMS group than in the sham-rTMS group at week 4 (p = 0.0155, FDR-corrected; Cohen’s d = 0.228; Figure 5). The rTMS group showed a significant difference after 4 weeks of treatment (p = 0.0047, FDR-corrected), whereas no changes were found in the sham-rTMS group after 4 weeks of treatment (p = 0.583, FDR-corrected; Cohen’s d = 0.230). We simultaneously analyzed the other 47 channels and found no significant differences in the concentrations of oxy-Hb between the rTMS and sham-rTMS groups.

[image: Scatter plot showing mean Oxy-Hb levels (mmol/L·mm) for rTMS and sham-rTMS groups at baseline and four-week follow-up. Circles represent rTMS, squares represent sham-rTMS. Significant differences are marked with asterisks. Levels increase from baseline to follow-up.]

FIGURE 5
 Comparing the difference of concentration of HbO in rTMS group and the sham-rTMS group in channel 41. The statistical threshold was set at p < 0.05. *p < 0.05.




3.4 Correlation between primary outcomes change and oxy-Hb change

Figure 6 shows that there was a negative correlation between the improvement in HAMD severity in these patients and reduced oxy-Hb concentrations of CH41 (r = −0.504, p = 0.039). A non-significan correlation between the improvement in NPI-depression severity and reduced oxy-Hb concentrations was observed (r = −0.426, p = 0.0878).

[image: Scatter plot showing a negative correlation between HAMD score change and oxy-Hb change (mmol/L/mm) with a correlation coefficient of r = -0.504 and a p-value of 0.039. Data points are dispersed around the trend line, indicating a slight downward trend.]

FIGURE 6
 Correlation Between HAMD score change and oxy-Hb change.




3.5 Adverse events

The procedure was safe and well-tolerated. Five participants reported adverse events, four in the rTMS group and one in the sham-rTMS group. All events were mild and mostly resolved on the day of occurrence with either minor or no action (mild headache, n = 3; scalp/skin discomfort, n = 3; neck pain/stiffness, n = 1; fatigue, n = 1). Details of adverse events are listed in Table 5.



TABLE 5 Adverse events by relationship to study device and study group.
[image: Table comparing adverse events in rTMS and Sham-rTMS groups. Headache: rTMS-2, Sham-1; Scalp/skin discomfort: rTMS-2, Sham-1; Neck pain/stiffness: rTMS-1, Sham-0; Fatigue: rTMS-0, Sham-1. Total participants: rTMS-17, Sham-16.]




4 Discussion

This study found that patients with depression in AD who received rTMS treatment showed significant improvement in depression compared to the sham-TMS group. A small number of RCT have been performed of rTMS applied to patients with depression in AD. Ahmed et al. showed that high-frequency rTMS applied bilaterally to the DLPFC improved Geriatric Depression Scale scores in patients with AD (Ahmed et al., 2012). Lee et al. found that the Geriatric Depression Scale score did not improve significantly in a rTMS-COG (rTMS combined with cognitive training) treatment group (Lee et al., 2016). The main reason for this is likely that the treatment parameters (especially brain regions stimulated) of rTMS differ significantly from those in our trial.

Many studies have shown that the PFC affects individuals’ emotions and behaviors, and a significant relationship exists between abnormal PFC function and cognitive defects in patients with depression (Akiyama et al., 2018; Gao et al., 2022). For instance, significant connection between dorso-lateral prefrontal cortex (DLPFC) and depression score has been reported in a general clinical population including multiple sclerosis (MS) patients (Zhou, 2019). Some studies have found that significantly reduced frontotemporal activation, including the left DLPFC, is the key to the onset of depression (Akiyama et al., 2018; Tsujii et al., 2021). Others have indicated that the right PFC plays a key role in the development of depression (Cao et al., 2013; Tsujii et al., 2021). It is generally believed that high-frequency TMS of the left DLPFC or low-frequency TMS of the right DLPFC can be used to treat depression (Cao et al., 2013).

Currently, most studies have used rTMS to stimulate the left DLPFC to treat AD; however, there are relatively few reports on its therapeutic effects on depression in AD (Xue et al., 2024). Thus, a single stimulus target may not be effective for treating depression in patients with AD. Standard bilateral rTMS (high-frequency rTMS stimulation of the left DLPFC combined with low-frequency rTMS stimulation of the right DLPFC) has been shown to be efficacious in multiple clinical trials, and is one of the most effective rTMS protocols according to network meta-analyses (Mutz et al., 2019). One study found superior remission rates with bilateral stimulation (40%) compared with both left-unilateral (0%) and sham (0%) stimulation in older patients with TRD (Trevizol et al., 2019). Ahmed et al. found that high-frequency stimulation of the left and right DLPFC improved cognition and depression in patients with AD (Ahmed et al., 2012). Although that study suggests that bilateral DLPFC stimulation can improve depression in patients with AD, the patients were not treated with standard bilateral rTMS. Therefore, the current study is the first to use standard bilateral rTMS to treat depression in AD and to explore its possible cortical activation mechanism.

Our research found that the cognitive ability of patients with AD who received MMSE assessment showed little or no significant improvement after 4 weeks of rTMS treatment compared with the sham group, which is consistent with the results of a meta-analysis (Dong et al., 2018). The main reasons include the following: the MMSE is relatively less sensitive for cognitive assessment of AD, and some subtle cognitive improvements cannot be detected. The ADAS-Cog score and other scales are more precise than is the MMSE for exploring cognitive function (Dong et al., 2018). The duration of rTMS intervention was only 4 weeks; if it reaches 6 weeks or more, the improvement may be statistically significant. The purpose of this intervention was more inclined toward improving depression, and there are differences in the parameters of the TMS intervention in this experiment. Patients with severe dementia are not suitable for rTMS treatment (Sabbagh et al., 2020). Some patients in this trial had severe dementia, which may have affected the rTMS treatment outcomes.

No significant improvement in MBI was observed among patients with AD in this study after treatment, and the differences between the treatment and sham groups were not significant. This is consistent with the results of several studies (Dong et al., 2018). The most likely reason for this is that the MBI is not well-adapted to the assessment of ADL in patients with AD.

Studies have found a significant relationship between changes in hemodynamics in the right DLPFC and the severity of depressive symptoms (Noda et al., 2012). Arai et al. found lower activation of the bilateral frontal and parietal lobes in patients with AD during a VFT (Arai et al., 2006). Yap et al. observed lower and relatively delayed activation of the left PFC during a VFT in patients with AD (Yap et al., 2017). Metzger et al. showed hypoactivation of frontoparietal areas (such as the DLPFC) during the VFT in AD (Metzger et al., 2016). Herrmann et al. found reduced DLPFC and less locally specific activation during the VFT in patients with AD (Yap et al., 2017).

Compared to more well-known technologies, such as magnetic resonance imaging and positron emission tomography, fNIRS has multiple practical advantages: it is noninvasive, easy to use, low-cost, and portable. Another important advantage of fNIRS is its relatively low sensitivity to motion, which permits the adoption of more ecologically effective tasks. This is particularly important for patients with dementia who cooperate poorly with data collection. Therefore, NIRS has great potential for the diagnosis and evaluation of neurocognitive and motor dysfunctions (Pinti et al., 2020).

Many of the aforementioned studies combined the VFT paradigm with fNIRS technology and found that the activation patterns in the left DLPFC are closely related to both AD and depression (Yap et al., 2017; Akiyama et al., 2018; Tsujii et al., 2021), whereas the activation patterns in the right DLPFC are closely related to depression (Noda et al., 2012).

Interestingly, this study’s results showed that, compared with the sham-TMS group, the average hemoglobin concentration of channel 41 in the TMS group decreased significantly after 4 weeks of treatment; this channel was located in the right DLPFC (Li et al., 2024). The decrease in channel 41 activation from baseline to post treatment negatively correlated with the improvement in depressive symptoms. Compared with other studies, this study did not detect activation of the DLPFC in either hemisphere (Burke et al., 2022; Huang et al., 2022).The right DLPFC itself is related to negative emotions such as depression. Low-frequency TMS can improve depression by reducing cerebral blood flow in the right DLPFC and other brain areas (Kito et al., 2008; Kito, 2012).

The relative maintenance of cognitive function, along with greater hemodynamic responses (hyperactivation) following fNIRS, suggests the involvement of compensatory mechanisms (Clement and Belleville, 2010). However, failure of neural compensation (reduced hemodynamic responses and hypoactivation) is predominantly observed in the more severe stages of neurodegeneration (Niu et al., 2013). Patients with AD are prone to complete interruption of compensatory responses due to their inability to cope with excessive cognitive load and may have difficulty activating brain function during a VFT. Short-term, low-intensity rTMS combined with drug stimulation may cause difficulty in achieving statistically significant cognitive improvement and increased left DLPFC activation.

Our study provides the first evidence of a correlation between reduced fNIRS activation in the specific right DLPFC region and improvement in depressive symptoms in patients during rTMS treatment. fNIRS can be used to monitor the therapeutic response of rTMS treatment in patients with AD and depression. Our observations support the potential mechanism by which rTMS improves depression in AD, which is to reduce metabolic activity and blood flow perfusion in specific regions of the right DLPFC.


4.1 Limitations

The current study has some limitations. Our sample size was small, and future studies with larger sample sizes are required to confirm these preliminary findings. We did not evaluate behavioral performance on the VFT. Some patients with AD have difficulty completing the VFT owing to poor cognition, which could affect the NIRS assessment results. Additional paradigms may be required in the future to improve the results’ accuracy and reliability. Participants were all hospitalized patients and, therefore, it would have been difficult to require patients to return to the hospital for follow-up after discharge. Hence, the patients were not further followed up after the end of the study; hence, we cannot know the long-term effects of the treatment in this trial, and given the progressive course of AD, it is likely that symptoms worsened again once the interventions were stopped. Having more frequent fNIRS measurements (e.g., weekly) in longitudinal studies may permit better understanding of brain dynamics and minimize the influence of confounding factors.




5 Conclusion

In summary, an effect of TMS was observed in a small sample of patients with AD. Using fNIRS technology, we found that patients with depression in AD had significantly reduced right DLPFC-specific brain activation during the VFT period after bilateral standard rTMS. There was a correlation between the improvement in depression severity in these patients and the reduced oxy-Hb rresponse of specific brain regions in the right DLPFC. These results indicate that using fNIRS to measure the hemodynamic response in the PFC to a VFT is a potential biomarker for monitoring patients’ response to rTMS. Improving cognition, depression, and brain function in AD and predicting patient prognosis are important issues that require further exploration.
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Objectives: The future emergence of disease-modifying treatments for dementia highlights the urgent need to identify reliable and easily accessible tools for diagnosing Alzheimer’s disease (AD). Electroencephalography (EEG) is a non-invasive and cost-effective technique commonly used in the study of neurodegenerative disorders. However, the specific alterations in EEG biomarkers associated with AD remain unclear when using a limited number of electrodes.
Methods: We studied pathological characteristics of AD using low-density EEG data collected from 26 AD and 29 healthy controls (HC) during both eye closed (EC) and eye opened (EO) resting conditions. The analysis including power spectrum, phase lock value (PLV), and weighted lag phase index (wPLI) and power-to-power frequency coupling (theta/beta) analysis were applied to extract features in the delta, theta, alpha, and beta bands.
Results: During the EC condition, the AD group exhibited decreased alpha power compared to HC. Additionally, both analysis of PLV and wPLI in the theta band indicated that the alterations in the AD brain network predominantly involved in the frontal region with the opposite changes. Moreover, the AD group had increased frequency coupling in the frontal and central regions. Surprisingly, no group difference was found in the EO condition. Notably, decreased theta band functional connectivity within the fronto-central lobe and increased frequency coupling in frontal region were found in AD group from EC to EO. More importantly, the combination of EC and EO quantitative EEG features improved the inter-group classification accuracy when using support vector machine (SVM) in older adults with AD. These findings highlight the complementary nature of EC and EO conditions in assessing and differentiating AD cohorts.
Conclusion: Our results underscore the potential of utilizing low-density EEG data from resting-state paradigms, combined with machine learning techniques, to improve the identification and classification of AD.
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Introduction

Alzheimer’s disease (AD) is a neurological disorder characterized by progressive neurodegeneration and synaptic dysfunction. The degeneration leads to decline in cognitive and behavioral functions, which ultimately interferes with the individual’s daily life. The early and accurate diagnosis of AD is of utmost important as it empowers AD patients and their families to understand the disease and explore available palliative therapies (Association A.s, 2009; Livingston et al., 2020). Furthermore, the future advent of disease-modifying treatments for dementia underscores the urgent need to identify reliable and easily accessible tools for diagnosing AD (Cummings et al., 2007; Cova et al., 2017; Cruzat et al., 2023; Prado et al., 2023).

The diagnosis of AD in clinical setting indeed relies primarily on cognitive, biochemical, and neuroimaging markers. These measurements are often obtained through techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) in research setting (Dubois et al., 2007; Prado et al., 2022). However, it’s important to acknowledge that while the accuracy of AD diagnosis based on these markers ranges from 85 to 90%, it requires experienced clinicians, meticulous and exhaustive testing sessions, as well as costly and limited access to neuroimaging tools and invasive procedures (Sarazin et al., 2012). These constrains significantly hinder the widespread implementation of early AD diagnosis, particularly in low-income countries, remote and rural regions, and even in metropolitan areas with long wait times for non-emergency MRIs appointments, which can stretch to several months (Barua et al., 2014; Mukadam et al., 2024). Therefore, there is a critical need to develop alternative and more accessible diagnostic approaches, accompanied with the utilization of computerized algorithms, to enhance the early and accurate detection of AD.

Electroencephalography (EEG) is a non-invasive and cost-effective technique used to study of neurodegenerative disorders. Numerous studies employing EEG have identified characteristic features of AD, such as a shift in the power spectrum towards lower frequencies (Anaya et al., 2021), alterations in functional connectivity and phase synchronization between different brain regions (Briels et al., 2020), and reduced variability and complexity of brain activity (Takahashi, 2013). EEG has become an intriguing tool for studying and diagnosing AD. While current research often utilizes high-density electrodes setups in EEG studies, this approach may not always be feasible or optimal, particularly in clinical populations during research (Brito et al., 2019; van den Munckhof et al., 2018) and diagnostic testing (Aeby et al., 2021; Cassani et al., 2017). However, there is a growing trend towards large-scale neuroscience studies and the implementation of community-based approaches, with a focus on precision medicine using brain-based biomarkers. This emerging trend may pave the way for the integration of low-density electroencephalography (EEG) in future research endeavors. The availability of novel, portable, cost-effective, and user-friendly EEG systems within clinical settings holds promise as a valuable tool for assessing older individuals at risk of developing cognitive disorders, particularly in resource-limited regions. Previous investigations have demonstrated that these systems can reliably capture resting-state EEG activity with satisfactory signal-to-noise ratio across both young and elderly populations (McWilliams et al., 2021; Troller-Renfree et al., 2021; Rogers et al., 2016). Nevertheless, the significance of the observed differences between healthy control (HC) individuals and seniors with AD remains unclear at both the group and individual levels when using a limited number of electrodes to extract EEG biomarkers for statistical models. Additionally, EEG recordings in the eyes closed (EC) resting state are commonly used in AD studies, while the procedure of keeping the eyes open (EO) is not widely employed in dementia research, despite being routine in clinical neurophysiology. Interestingly, AD cohorts have shown significant impairment, such as reduced reactivity of posterior alpha rhythms (Babiloni et al., 2022; Babiloni et al., 2010; Babiloni et al., 2019), during EO, highlighting the need for further investigation into EO datasets and their potential contribution to understanding AD.

To this end, we utilized an 8-channel EEG acquisition system to capture resting-state EEG from individuals with AD and HC under both EC and EO conditions. We then conducted a comprehensive evaluation and comparison of various features, including power spectrum, phase-locked values, weighted lag phase index, and frequency-coupling values between the AD and HC groups. Our aim was to investigate whether any of these EEG features or combinations of features could server as clinical biomarkers using low-density EEG devices. We hypothesized that combining EEG features with eye-states would result in a more effective distinction between the AD and HC groups compared to utilized features from single eye state alone.



Methods


Participants

Sixty-two participants were recruited from the Department of Neurology, the First People’s Hospital of Qin Huang Dao. Participants were evaluated by a panel of cognitive neurologists and fulfilled clinical diagnostic criteria for AD (Mueller et al., 2005). Healthy controls were required to have a Mini-Mental State Examination (MMSE) score of 26 or above and a Clinical Dementia Rating (CDR) score of 0. We excluded individuals with a history of alcohol or drug abuse, current or known history of major depression or other neuropsychiatric conditions such as psychosis. Patients who were receiving medications known to affect brain activity, those with severe psychological distress and comorbid neurodegenerative diseases like Parkinson’s disease were also excluded. To minimize potential interference with EEG results, participants were instructed to avoid consuming caffeine and alcohol for 24–48 h prior to data collection. Additionally, participants were required to get adequate sleep and avoid staying up late before the session. The study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee of the First People’s Hospital of Qin Huang Dao. Written informed consent was obtained from each participant prior to recruitment into the study.

The neuropsychological battery was performed by trained psychologists who evaluated global cognition. Global cognition was assessed using the MMSE and Montreal Cognitive Assessment (MoCA) tool (Nasreddine et al., 2005). Out of 62 participants, we included 55 participants in the analysis (26 subjects with AD and 29 HC older adults) who passed quality control of EEG data (see EEG Acquisition and Preprocessing section). Both groups were well-matched in terms of demographics including age, gender, and handedness, education level.



EEG data acquisition and preprocessing

EEG data were collected with an active EEG-system (JL - EEG8w), developed by the State Key Laboratory of Cognition and Learning of Beijing Normal University. Data were recorded at 1 kHz sampling rate with 0.1–80 Hz. According to the 10–20 international standard electrode system, 8 electrode position was used, i.e., F3, F4, T3, T4, C3, C4, O1 and O2. The impedance of each active electrode was controlled below 100 kΩ. Resting-state EEG were recorded during two 5-min blocks (one with EC and the other one with EO) in a random order. Participants sat in a comfortable chair, kept quiet and relaxed, and kept their bodies motionless or minimized as much as possible to reduce artifacts. During the eyes-open state, participants were instructed to focus steadily on a small cross displayed on the computer screen in front of them, a common method used to mitigate eye movements (Boytsova and Danko, 2010; Barry and De Blasio, 2017). They were instructed to sit still and minimize blinks or eye movements.

EEG data were preprocessed and analyzed offline using the MATLAB 2020b (The MathWorks, Natick, MA, USA), the Harvard Automated Processing Pipeline for EEG (HAPPE), and the EEGLAB toolbox. The EEG data were first filtered from 0.1 to 45 Hz, the EEG data was resampled to a frequency of 250 Hz. The original data were referenced to the Cz electrode and the filtered EEG data were then re-referenced to the average reference. Automatic artifact detection algorithms are applied to identify and remove segments of the data that contain unwanted artifacts such as eye movement and blinks, breathing, and muscle activity. Specially, standard HAPPE processing were employed to reject artifacts, designed for the preprocessing pipeline of low-density EEG configurations (Gabard-Durnam et al., 2018). The HAPPE artifact removal steps included bad channel identification, electrical line noise removal via Cleanline multitapering approach, artifact removal through wavelet-enhanced ICA and followed by a second ICA decomposition with automated component rejection above 50% artifact probability via the Multiple Artifact Rejection Algorithm (Winkler et al., 2014). Bad channels were then interpolated and EEG data were re-referenced to the average reference and mean signal detrended. Manual inspection of the remaining data is also important to ensure the accuracy of the analysis, participants with a bad channels or with <4 - s epochs were discarded. For each subject, the time series were divided into 75 sample (4 - s) segments. During the EO condition, the mean number of segments removed due to artifacts (mean ± std) was 13.12 ± 4.83 for the AD group, and 8.53 ± 3.61 for the HC group. During EEG data collection, the EC and EO conditions were randomized for each participant, allowing for the formation of an average for each condition. To eliminate potential possible average or order effects and ensure equalization of the number of epochs for each participant and condition, we retained the 2 min of EEG data (30 epochs) from the middle of each condition for further analysis. Seven participants were excluded for excessive artifacts (fewer than 30 epochs for at least one condition).



EEG analysis


Power spectrum

As mentioned in the above preprocessing section, the EEG signal has been divided into 30 epochs of 4 s data segment. The 250 points (1.0 s) Hamming window was used to slide each data in the 100 points (0.4 s) step, the overlap rate is 0.6. Calculate the Fourier transform of 1,024 points to obtain the estimated power spectrum for each data point. Before calculating the Fourier transform of the EEG data, we applied data mirroring at the beginning and end of each 30-epoch segment, and the first and last epochs were replicated at the start and end of the segment to mitigate edge artifacts introduced by the Hamming window, respectively.

The whole brain power spectrum of all participants were calculated in both groups, perform group averaging (Cassani et al., 2017), and calculated the absolute power spectrum in the following four frequency intervals: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) (Farina et al., 2020). In this study, we did not consider gamma oscillation, as the EEG in this frequency band is easily contaminated by muscle artifacts. Furthermore, the relative power of each frequency band was calculated by dividing the absolute power of each band by the sum of the absolute power of 1-45 Hz (Kwan et al., 2018).



Phase locked value (PLV)

Phase locked value is a metric used to quantify synchronous trends in EEG signals (Krusienski et al., 2012). The advantage of PLV is that it can measure the phase and amplitude components separately for a given frequency range. In the case of repeated stimulation, the latency period of phase synchronization or slight phase change in the PLV measurement test is observed. To calculate the phase synchronization of two EEG signals, the PLV calculation program calculates the instantaneous phase difference between signals within a specified frequency band. The synchronous measurement PLV at time t is defined as shown in Equation (1):

[image: The equation shows the formula for Phase Locking Value (PLV): \( PLV = \frac{1}{N} \left| \sum_{n=1}^{N} \exp \{ j \Delta \phi(t, n) \} \right| \).]

Where N is the total number of tests, Δφ (t, n) = φ1 (t, n) - φ2 (t, n) is the instantaneous phase difference between signals.

In most EEG studies, PLV was used to measure the inter experimental variability of phase at time t. If there is no significant phase change during the test, the PLV approaches 1, otherwise it may be zero (Shan et al., 2022).

We sequentially calculated the phase-locking value (PLV) between the two electrodes by performing Hilbert transform on the respective electrode signals, extracted their imaginary parts, subtracted the phase, and subsequently computing PLV. Finally, we averaged PLV values from 30 epochs to obtain the final PLV characteristics.



Weighted phase lag index (wPLI)

The weighted phase lag index (wPLI) is an extension of the phase lag index (Šverko et al., 2022). PLI represents the asymmetry of the instantaneous phase distribution between two signals. The weighted version of PLI is defined as phase leading or lagging, weighted by the amplitude of the imaginary part of the complex cross spectrum. This limits the parasitic phase coupling around the origin caused by small disturbances (Tillem et al., 2018).

Each indicator of weighted phase lag is characterized by the distribution of phase angle difference (Xing et al., 2017). The instantaneous phase lag and amplitude can be obtained through cross power density spectra. Cross power density is defined as shown in Equation (2):

[image: The equation shows a mathematical expression for the cross-spectral density, denoted as \(S_{xy}(\omega)\). It is defined as the limit as \(T\) approaches infinity of \( \frac{1}{T} \) times the exponential of the product of the complex conjugate of \(Y_x(\omega)\) and \(Y_y(\omega)\).]

Where [image: Mathematical notation depicting the symbol S with subscript x, y.] is the cross spectral density function between the signals [image: The image shows the mathematical expression \( Y_y(t) \).]and [image: The mathematical expression is uppercase Y subscript x of t, denoted as Y sub x of t.]. Signal [image: Mathematical notation showing \( Y_x(\omega) \).] is signal [image: The expression \( Y_x(t) \).] in ω Finite Fourier Transform at Frequency, [image: Mathematical expression showing \( Y^*_x(\omega) \), where \( Y^*_x \) is the complex conjugate of \( Y_x \), with \(\omega\) representing a variable, often used to denote frequency in mathematical contexts.] is Complex conjugate of [image: Mathematical notation showing \( Y_x(\omega) \).]. Cross power density should be applied to each frequency band of interest (0.1 Hz–30 Hz).

The distribution of phase angle difference can face the positive or negative side of the composite plane (Cohen, 2015; Vinck et al., 2011). The more concentrated the phase angle difference is on the same side, whether it is positive or negative, the higher the phase lag synchronization will be (Cohen, 2015). WPLI is defined as shown in Equation (3):

[image: Formula for weighted Phase Lag Index (wPLI) across X and Y: the sum from t equals one to n of the imaginary part of S sub xy sub t times the sign of the imaginary part of S sub xy sub t, divided by the sum from t equals one to n of the absolute value of the imaginary part of S sub xy sub t.]

Where [image: Mathematical expression showing "imag" followed by an open parenthesis, "S" with subscripts "x, y, t", and a closing parenthesis.] represents the cross spectral density at time point t in the complex plane [image: It appears you're looking to describe text rather than an image. The text shown is "xy". If you meant to reference an image, please provide a URL or upload the image file.], and [image: Text showing lowercase "sgn" in a serif font.] represents a symbolic function (−1, +1 or 0).

We sequentially computed the wPLI between two electrodes by segmenting the electrode signal involved in the calculation into 10-s windows with a 50% overlap. To achieve this, we employed the multi - frequency transformation method for multi-carrier frequency decomposition of the data at intervals of 0.1 Hz, followed by wPLI computation between the respective channel pairs.



Frequency coupling

To compare the changes near the alpha frequency band of the test subjects, we derived a novel feature by calculating the ratio of relative power between the theta and beta frequency bands. This ratio operation on both frequency bands yields the coupling value (theta/beta) represent their interplay (Miao et al., 2021). The magnitude of this value indicates the relative energy distribution between the theta and beta frequency bands, with values greater than 1 suggest a higher energy concentration in the theta band, and vice versa for the beta band. Consequently, we employed this feature to quantify near the alpha frequency band alterations in our subjects.




Support vector machine (SVM)

Support vector machine (SVM) is a popular machine learning algorithm that is used for classification and regression analysis (Durongbhan et al., 2019). The algorithm works by finding the optimal boundary or hyperplane that can separate the data into different classes. The SVM algorithm can handle both linear and nonlinear classification problems (Fröhlich et al., 2021). In the case of nonlinear classification, the SVM algorithm uses a kernel function to map the data into a higher dimensional space, where the optimal boundary can be found (Cao et al., 2022). The commonly used kernel functions are linear, polynomial, and radial basis kernels. In this study, the linear kernel was found to be the optimal kernel function for the SVM model, based on its performance compared to the other kernels tested. In order to avoid possible overfitting of the model and obtain a reliable performance of the proposed model. We applied k - fold cross validation (CV) technique to all the classifiers. The entire dataset testing was randomly divided into k folds of equal size. For each fold, the k − 1 subsets were applied for training and the remaining one subset was applied for testing. This process was repeated for k − 1 more times. The overall performance of each classifier was evaluated by calculating the average result of k folds. In this study, we selected k = 10. In order to improve the performance of the classifier, a 10-fold cross-validated linear kernel SVM was selected in this study, and features were screened in two rounds, namely Mann–Whitney U test and single-feature classification accuracy of 70%.



Statistical analysis

Two-sample t test was used to compare age differences, Chi - square test was used to compare sex differences, education levels and conventional hands between AD group and HC group. To examine the differences between groups, we used a linear regression model with EEG features as effects of interest, while age, sex, and education level were used as covariates. Residuals were analyzed using the Mann–Whitney U test, and EEG features were subsequently corrected for multiple comparisons using the Bonferroni method. The difference in relative power of oscillation, PLV, wPLI, and frequency coupling value, p < 0.05, is statistically significant.




Results


Group differences in demographic and clinical characteristics

There were no significant group differences in age, gender, education levels and handedness. However, clinical test scores differed between AD and HC groups (Table 1). AD patients had significantly lower MMSE and MoCA scores than the HC group (MMSE: t = −7.372, p < 0.001; MoCA: t = −11.712, p < 0.001).



TABLE 1 Subject demographic and clinical characteristics.
[image: Table comparing Alzheimer’s disease (AD) and healthy controls (HC) across various characteristics. Age shows 69.35 years for AD and 64.17 for HC. Gender includes 11 males/15 females for AD and 12 males/17 females for HC. Handedness is 0/26 for AD and 0/29 for HC. Education (P/J/S/A/U) for AD is 4/2/13/2/5 and for HC is 5/2/15/3/4. MMSE scores are 15.45 for AD and 29.39 for HC with p-value <0.001. MoCA scores are 12.05 for AD and 28.22 for HC with p-value <0.001. Values represent means with standard deviations.]



Group differences in EEG characteristics


Whole-brain power spectrum

Figure 1 showed the distribution of EEG power across different frequency bands for both AD and HC during EC and EO. The power spectrum during EC showed a significant difference (Mann–Whitney U test, p < 0.001) between the two groups in the alpha frequency band, with AD patients showing a lower peak frequency compared to HC. Specifically, the peak frequency of AD patients was 9.76 ± 0.34 Hz, while that of HC was 10.09 ± 0.65 Hz (Mann–Whitney U test, p < 0.05). However, no significant difference was observed in the corresponding frequency band between the two groups during EO condition.

[image: Two line graphs show power residuals in microvolts versus frequency in Hertz. The left graph compares ADEC and HCEC, with a prominent peak in HCEC around 10 Hz. The right graph compares ADEO and HCEO, with similar trends. Blue lines show higher peaks than red lines.]

FIGURE 1
 The grand average of the EEG power spectrum residuals for AD and HC groups during the resting state, both in the EC (eye closed) condition (left) and EO (eye open) condition (right).




Functional connectivity

In terms of PLV, group differences were observed in the theta frequency band during EC. Compared with HC, AD patients exhibited higher left fronto-occipital (F3 - O1: Mann-Whitney U test, p < 0.001) and centro-occipital (C3 - O1: Mann-Whitney U test, p < 0.001) PLV as shown in (Figure 2). Correspondingly, no group difference was found during EO for each frequency band. The inter-electrode differences of PLV between EC and EO conditions were further analyzed, AD patients had lower values in the left fronto-right temporal region (F3 - T4: Mann–Whitney U test, p < 0.001).

In terms of wPLI, group differences were also observed in the theta frequency band during EC. Compared with HC, AD patients exhibited higher left fronto-right frontal (F3 - F4: Mann-Whitney U test, p < 0.001), left fronto-right temporal (F3 - T4: Mann-Whitney U test, p < 0.001), and right fronto-left occipital (F4 - O1: Mann-Whitney U test, p < 0.001) wPLI as shown in (Figure 3). Correspondingly, no group difference was found during EO for each frequency band. For the differences of wPLI under EC - EO conditions, AD patients had significant difference in the left fronto-right temporal (F3 - T4: Mann–Whitney U test, p < 0.001) and right center-temporal (C4-T4: Mann–Whitney U test, p < 0.001) regions (Figures 2, 3).

[image: Box plot showing PLV residuals for C3-O1 and F3-O1, comparing AD (gray) and NC (red) groups. Both comparisons show significant differences marked by double asterisks. AD group has higher median values in both cases. Outliers are indicated by diamond shapes.]

FIGURE 2
 Alterations in theta-band PLV (phase locking value) connectivity residuals of the occipital region in individuals with AD compared to HC subjects. Statistically significant group difference was indicated by * (p < 0.05, with Bonferroni correction for multiple comparison).


[image: Box plot comparing wPLI residuals for three brain region pairs: F3-F4, F3-T4, and F4-O1. Data for AD (gray) shows higher medians than NC (red), with significant differences marked by asterisks.]

FIGURE 3
 Alterations in theta-band wPLI (weighted phase lag index) connectivity residuals of the frontal region in individuals with AD compared to HC subjects. Statistically significant group difference was indicated by * (p < 0.05, with Bonferroni correction for multiple comparison).




Frequency coupling

The spatial distributions of the average frequency coupling (theta / beta) for AD patients and HC during EC and EO were shown in Figure 4. During EC, AD patients exhibited significantly higher coupling values in the frontal and central lobes compared to HC (F3: Mann–Whitney U test, p < 0.001, F4: Mann–Whitney U test, p < 0.001; C4: Mann–Whitney U test, p < 0.001). However, no significant group differences were observed during EO. In order to further reduce the impact of volume conduction, we proposed to use frequency coupling to conduct a comparative analysis of AD and HC, EC - EO condition characteristics (F4: Mann–Whitney U test, p < 0.001).

[image: Topographic maps display EEG data for two conditions: eyes closed (EC) and eyes open (EO). Alzheimer's Disease (AD) and Healthy Control (HC) groups are compared, with color gradients showing power spectral differences. AD exhibits higher power (yellow) in EC compared to HC (blue). Group differences highlight regions with significant variance. Color scales range from zero to fifteen.]

FIGURE 4
 Differential theta/beta frequency coupling residuals in individuals with AD relative to HC during both EC and EO conditions. Statistically significant group difference was indicated by * (p < 0.05, with Bonferroni correction for multiple comparison).





Classification comparison of two paradigms

After two filtering steps, the retained features were combined into a feature group. The Combined Conditional Characteristics (EC-EO) were derived by subtracting the EEG signature of the corresponding EO from that of the EC. Feature selection for the combination underwent two rounds of screening, namely Mann–Whitney U test, followed by a classification accuracy threshold of 70% for each individual feature. The final selected features included PLV for left fronto-right temporal region, wPLI for both left fronto-right temporal and right center-temporal regions, and frequency coupling (theta/beta) for the right frontal lobe. The obtained feature group was fed into a linear kernel support vector machine (SVM) and classified using 10-fold cross validation. The classification indicators obtained by the two groups of participants were compared and listed in the table below.

The classification performance based on single condition (EC) and combined conditions (EC - EO) were evaluated, with the letter showing improved performance. Under the combined conditions, the accuracy, sensitivity, and specificity were found to be 96.36, 98.10, and 97.78%, respectively. These values showed an improvement of 3.63, 5.77 and 4.45% respectively, when compared to the single normal form. In this study, a random forest (RF) classifier was also used, and the accuracy, sensitivity, specificity, and AUC of RF under the combined conditions were 94, 92.00, 96.00, and 95.5%, respectively. These results indicate that the SVM method has higher accuracy, sensitivity, specificity, and AUC than RF. Detailed RF results are provided in the Supplementary material.



ROC curves of two paradigms

In order to compare the performance of classifiers obtained using feature groups under two different paradigms, we plotted the ROC curves of the two classifiers in Figure 5. From the graph, it was observed that the blue ROC curve (EC - EO) was located above the red curve (EC), and the AUC of the blue curve was closer to 1, indicated that the classifier trained using normal form combined with features had better classification performance.

[image: ROC curve comparing two methods, EC and EC-EO, with sensitivity on the y-axis and 1-specificity on the x-axis. EC curve is red with an AUC of 0.952. EC-EO curve is blue with an AUC of 0.997. A diagonal dashed line represents random chance.]

FIGURE 5
 ROC curves and AUC values for different feature constructions extracted from the EC (eye closed) condition only and EC combined with the EO (eye open) condition.


As shown in Table 2, AUC for the single condition was 0.9520, and AUC for the combined conditions was 0.9970. Compared to the single EC conditions, the classifier obtained by combining EC and EO conditions with the feature group had better classification performance. It indicated that the features combined with EC and EO conditions had better classification potential compared to the single form, and were expected to become powerful biomarkers. These findings suggest that these combined features have the potential to serve as powerful biomarkers.



TABLE 2 Classification performance comparison between different feature construction schemes for distinguishing AD from HC.
[image: Comparison table showing performance metrics for two models, EC and EC + EO. ACC is 92.73% for EC and 96.36% for EC + EO. Sensitivity is 92.33% for EC and 98.10% for EC + EO. Specificity is 93.33% for EC and 97.78% for EC + EO. AUC is 0.952 for EC and 0.997 for EC + EO.]




Discussion

The present study employed low-density EEG to identify potential biomarkers that can effectively differentiate between two distinct populations. During the EC condition, decreased alpha power in the AD group. Both analysis of PLV and wPLI in the theta band indicated that the alterations in the AD brain network predominantly involved in the frontal region. In addition, the AD group had increased frequency coupling in the frontal and central regions. Furthermore, decreased theta band functional connectivity within the fronto-central lobe and increased frequency coupling in frontal region were found in AD group from EC to EO. More importantly, the combination of EC and EO quantitative EEG features improved the inter-group classification accuracy when using support vector machine (SVM) in older adults with AD. Our findings highlight the promise use of low-density EEG data from resting-state paradigms combined with machine learning techniques in enhancing our understanding and diagnosis of AD.

Both the AD and HC groups exhibited a noticeable peak in the alpha band during the EC condition compared to EO. This distinct peak can be attributed to activation of the visual system, which is more prominent during EC (Barry et al., 2007). Consistently, AD patients showed a decrease in average power spectrum, primarily within in alpha frequency band during EC (Blackburn et al., 2018). In patients with AD, the power of low-frequency alpha waves is significantly reduced compared with normal older adults, reflecting the gradual weakening of the function of the thalacortex and cortical systems in controlling visual attention (Arnáiz and Almkvist, 2003). This finding echoes the clinical manifestations of visuospatial deficits in AD patients (Arnáiz and Almkvist, 2003). Further studies have suggested that this significant reduction in low-frequency alpha wave power may be due to damage to the cholinergic pathway, which affects cerebral blood flow and thus affects the improvement of attention and memory function (Claassen and Jansen, 2006). In addition, the AD group demonstrated a lower peak frequency in the alpha band compared to the NC group, supporting the pathological shift of oscillatory power from higher to lower frequencies in AD patients (Meghdadi et al., 2021).

Cross-frequency coupling plays a crucial role in coordinating perception, memory, consciousness, and other cognitive processes (Palva and Palva, 2007; Wang et al., 2014). Theoretical perspectives propose four models for cross-frequency coupling: phase-to-amplitude, power-to-power, phase-to-phase, and phase-to-frequency interactions (Abubaker et al., 2021). While some studies have explored changes in phase-to-power coupling in AD (Goodman et al., 2018; Musaeus et al., 2020), our study focuses on alterations in power-to-power coupling in AD. We discovered that the increase in theta activity can be accompanied by a decrease in beta activity, resulting in an increase in theta/beta coupling during the eye closed (EC) condition. This finding aligns with previous studies on phase-to-power coupling in AD (Wang et al., 2017), indicating a disruption of coupling between frequency bands in AD patients. Moreover, the spatial distribution of theta/beta coupling revealed predominant alterations in the frontal and central regions, suggesting a potential underlying mechanism for the deficits in these brain areas. Notably, this is the first study to analyze alterations in power-to-power coupling in AD. These findings, along with our power spectrum results, provide further evidence of the pathological shift of oscillatory power from higher to lower frequencies in AD.

Both the PLV and wPLI calculated in theta band revealed functional network (FC) differences between the AD and HC groups, particularly in the frontal lobe. Although PLV and wPLI belong to the same category of methods for evaluating FC strength based on phase lag, our study observed diverse changes in FC when using these two measures, which aligns with findings from other research (Chen et al., 2024; Močilnik et al., 2024). On one hand, wPLI exhibited higher sensitivity (Šverko et al., 2022), along with a higher standard deviation across individuals. On the other hand, in the AD group, PLV revealed an increase in inter-regional FC between frontal and occipital regions, while wPLI showed an increase in intra-regional FC within frontal lobe and an increase in inter-regional FC between occipital, temporal, and frontal regions. This discrepancy is related to the different calculation methods employed by these two measures. PLV quantifies the consistency of the phase difference between two signals. When the phase difference remains relatively constant over time, the PLV value is high, indicating strong phase locking or synchronization. Conversely, wPLI is designed to measure the degree of phase delay between two EEG signals, assigning weights to each phase difference based on the amplitude of the signals, which reduces the influence of phase differences that are close to zero (Vinck et al., 2011). Although PLV is more susceptible to volume conduction effects, the combined use of both measures in EEG classification study has demonstrated a significant improvement in classification accuracy (Duan et al., 2021), indicating that the integration of different methods can provide a more comprehensive understanding of brain connectivity. Given the potential limitations associated with volume conduction, our study implemented strategies to minimize its impact. We utilized a low-density EEG configuration with a minimum inter-electrode distance of 11 centimeters. This design helps mitigate volume conduction effects, which tend to be more pronounced when inter-electrode distances are less than 10 centimeters (Srinivasan et al., 2007). Additionally, our analysis primarily focuses on group-level differences rather than direct comparison of connectivity strength between electrode pairs within individual networks. Consequently, despite these differences, it is important to recognize that abnormalities in FC were expected to locate in the frontal lobe in the theta band. However, the PLV-based calculation method must still consider the issue of volume conduction, particularly for future studies involving low spatial resolution but high-density EEG. These findings support the presence of alterations in the frontal lobe and changes in low-frequency signals in individuals with AD (Fallon et al., 2017). In our study, AD patients exhibited a significant increase in wPLI in the theta band compared to HC, which is consistent with previous studies. Furthermore, a significant negative correlation between functional connectivity in the theta band and cognitive scores was found in AD patients (Yan et al., 2021), suggesting that increased theta band connectivity may be associated with more severe cognitive impairment in this population. These finding demonstrate that altered brain network connectivity, particularly in the theta band, may play a role in the cognitive decline observed in Alzheimer’s disease.

Prior to conducting the two sets of classification, a feature screening process was applied to the extracted frequency domain features and frequency coupling. It was found that incorporating frequency coupling in the EC condition, along with the previously mentioned features in both the EC and EO conditions, significantly enhanced classification accuracy compared to using only the PLV and wPLI in the EC condition as classification features. The substantial differences observed between the EC and EO conditions highlight the importance of incorporating experimental paradigms and their associated features as classification variables. This approach not only improves the accuracy and performance of the classification, but also allows for a more effective differentiation between the two groups. By combining multiple paradigms, the early diagnosis of AD can be facilitated (Kang et al., 2020).

The current study highlights the potential of utilizing low-density EEG data from resting-state paradigms, combined with machine learning techniques, to improve the identification and classification of AD, providing a promising approach for early diagnosis. Given the small sample size of our study, we chose SVM for classification due to their advantages in such scenario. SVM, through its regularization properties, effectively prevents overfitting and can extract meaningful features even with limited data, maintaining strong generalization capabilities (Cervantes et al., 2020). In contrast, random forest, as an ensemble learning method, improves prediction accuracy by combining the outputs of multiple decision trees. It is relatively easy to adjust and is suitable for handling large data sets. However, for small sample sizes, random forests can be affected by overfitting, especially if the number and depth of trees are not optimally adjusted (Breiman, 2001), on the other hand, neural networks are adept at capturing complex nonlinear relationships and are particularly well-suited for modeling complex data patterns. However, neural networks often require large amounts of training data to perform well, and on small datasets, neural networks are highly sensitive to network architectures such as the number of layers and neurons, which makes training on small datasets easy to overfit (Schmidhuber, 2015). Therefore, considering our research objectives and the current sample size, we believe that SVM is the most appropriate choice. Compared with other models, SVM significantly improves the robustness of our classification method, effectively avoids overfitting, and provides more reliable classification results.

However, the small sample size in this study increases risk that the model may capture noise and specific patterns from the training data rather than generalizable features, which can lead to diminished performance on unseen data. Additionally, a limited number of samples may result in unstable parameter estimates, adversely affecting the model’s predictive accuracy. In terms of generalization capability, the small sample size may not adequately represent the diversity of the target population, thereby limiting the model’s applicability to broader clinical contexts. While we believe that our choice of SVM mitigates some risks associated with small sample sizes through its regularization properties (Cervantes et al., 2020), we agree that future studies should aim to utilize larger datasets to validate our findings and enhance the robustness of the results.



Limitations and future work

This study has a few limitations that should be addressed in future research. Firstly, the analysis did not include individuals with mild cognitive impairment (MCI), which is an intermediate stage between normal aging and AD. While the current study primarily aims to confirm the electrophysiological markers for identifying AD, the absence of an MCI group limits our ability to explore the transition from normal cognition to the early stages of AD. Future research is planned to include an MCI group to study the continuity of cognitive decline leading to AD and to enhance early diagnostic efforts. Secondly, we could not conduct comprehensive neuropsychological tests on the participants. While our study focused on the diagnostic potential of EEG features, this limitation prevented us from establishing correlations between the EEG features and the cognitive performance, which could have potentially improved classification accuracy. Future studies could explore whether different EEG changes associated with specific cognitive functions exhibit varying classification efficacy, or investigate the potential of combining EEG data with specific cognitive classifications. Thirdly, the small sample size of 26 AD patients and 29 healthy controls may restrict the generalizability of our findings. Future studies should utilize larger datasets to validate these results and enhance the robustness of the conclusions drawn. Additionally, incorporating advanced feature extraction methods, such as nonlinear dynamic features and network analysis, will help to further elucidate changes in EEG activity in AD patients. In summary, future studies should aim to address these limitations by including MCI individuals and conducting additional neuropsychological tests prior to EEG data collection. By implementing these measures, more biomarkers can be identified that effectively distinguish AD from healthy controls HC, ultimately leading to more accurate early diagnosis of AD.



Conclusion

In conclusion, our study identified the pathological characteristics of patients with AD using low-density EEG. The integration of multiple experimental paradigms led to improved classifier performance and enhanced classification accuracy compared to using a single paradigm alone. Future research should focus on incorporating new experimental paradigms, including EEG signals from individuals with MCI, and comprehensively investigate the progression from HC to AD for effective early diagnosis.
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Introduction: The role of the chemokine CX3CL1 in the processes of aging and Alzheimer’s disease (AD) pathogenesis is well-established. This study aims to evaluate the diagnostic potential of urinary CX3CL1 levels in distinguishing between AD patients, those experiencing amnestic mild cognitive impairment (aMCI), and cognitively normal (CN) individuals.
Methods: A cohort comprising 516 CN individuals across various age groups, 102 AD patients, and 65 subjects with aMCI was assembled, alongside 93 age- and sex-matched CN controls. Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify urinary CX3CL1 levels.
Results: Urinary CX3CL1 concentrations exhibited an age-dependent increase and demonstrated a positive correlation with age. Comparatively, AD patients exhibited significantly elevated urinary CX3CL1 levels when contrasted with both the CN controls and the aMCI cohort. Conversely, aMCI patients displayed urinary CX3CL1 levels that were notably reduced in comparison to both the AD and CN groups.
Conclusion: Urinary CX3CL1 levels correlate with the aging process and may serve as a potential diagnostic biomarker for both amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD).
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1 Introduction

With the aging of the population, the incidence of cognitive disorders is increasing, among which amnestic mild cognitive impairment (aMCI) is considered as a pre-stage of Alzheimer’s Disease (AD), and the early identification and intervention of these two diseases are crucial. In recent years, there has been a growing interest in identifying robust biomarkers to facilitate the effective tracking and treatment of cognitive decline.

Inflammation plays an integral role in AD, and chemokine CX3CL1 (C-X3-C motif ligand 1, aka Fractalkine), emerging as a key molecule linking inflammatory and neuroprotective mechanisms within the central nervous system, play a special role in the development of AD (Zhang et al., 2021; Bivona et al., 2023; Pawelec et al., 2020) and aging (Pawelec et al., 2020; Mecca et al., 2018).

Previous studies have focused on changes in CX3CL1 levels in biological samples such as blood or cerebrospinal fluid (CSF) (Kulczyńska-Przybik et al., 2020; Zhou et al., 2023; Nordengen et al., 2023). However, the value of urine, as a relatively easy-to-obtain and non-invasive biological sample, in reflecting dynamic changes in CX3CL1 in vivo remains to be comprehensively investigated. In present study, we aimed to detect the urinary CX3CL1 levels in patients with aMCI, patients with AD and normal cognitive function subjects, specifically explored the variability of urinary CX3CL1 levels among individuals of different ages.



2 Method

The research was approved by the Medical Ethics Committee of Chongqing General Hospital. Informed consent was obtained from the participants or their respective legal representatives.


2.1 Study population

A total of 776 participants, including 516 cognitively normal (CN) participants across a spectrum of ages, as well as a cohort of 102 individuals with AD, 65 with aMCl and 93 age- and sex-matched CN controls, all were recruited from Chongqing General Hospital and Daping Hospital. All urinary samples were collected between 2014 and 2024 from the two hospitals (Chongqing General Hospital and Daping Hospital in Chongqing, China).

The exclusionary criteria were defined by the presence of: (i) a familial dementia history; (ii) chronic psychiatric conditions, including bipolar disorder, schizophrenia, or substance-related disorders; (iii) a past traumatic brain injury or additional neurological comorbidities; (iv) critical medical illnesses, such as advanced pulmonary, cardiac, hepatic, or renal dysfunctions, or malignancies; and (v) current urinary tract infection.



2.2 Clinical assessment

The procedural was reported in our previous study (Xu et al., 2020). All participants underwent a comprehensive clinical assessment encompassing medical history review, physical examination, neuropsychological evaluations, and laboratory analyses. Cognitive and functional capabilities were gauged using a suite of neuropsychological instruments, including the Chinese Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment, and Activities of Daily Living (ADL) assessments. Those who exhibited abnormal findings on the MMSE or Montreal Cognitive Assessment were further evaluated using an extended neuropsychological test battery, comprising the Auditory Verbal Learning Test, Clock Drawing Test, Trail Making Test, Boston Naming Test, Digit Span Test, Clinical Dementia Rating (CDR), Pfeiffer Outpatient Disability Questionnaire, and Hachinski Ischemic Score. Subjects presenting with cognitive impairment underwent additional diagnostic procedures, including brain CT/MRI scans and blood tests to measure levels of thyroxine, vitamin B12, folic acid, and to screen for human immunodeficiency virus/syphilis infections, aiming to exclude metabolic or infectious causes of cognitive deterioration. The diagnosis of amnestic mild cognitive impairment (aMCI) was established following the Petersen criteria (Petersen, 2004). Dementia was diagnosed using criteria adapted from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, while AD was diagnosed in accordance with the guidelines set by the National Institute of Neurological and Communicative Diseases and Stroke/AD and Related Disorders Association (McKhann et al., 1984).



2.3 Sample collection

Post-collection, urine specimens were centrifuged within a 2-h. Subsequently, the resulting aliquots were promptly cryopreserved at −80°C for subsequent analytical procedures.



2.4 Urinary CX3CL1 measurement

The concentration of CX3CL1 was measured using enzyme-linked immunosorbent assay kits (R&D Systems, Minneapolis, MN, USA). To account for variations in water intake, renal function, and urinary retention that might affect CX3CL1 levels, urinary CX3CL1 concentrations were adjusted relative to creatinine levels. The adjusted levels were reported as nanograms per milligram of creatinine.



2.5 Statistical analysis

Data normality was evaluated using the Kolmogorov–Smirnov test. For continuous variables across multiple groups, one-way ANOVA was applied for normally distributed data, while the Kruskal–Wallis test was utilized for non-normally distributed data. Categorical data comparisons were conducted via Fisher’s exact test or chi-squared test. Correlations between CX3CL1 levels and cognitive scores or age were determined using Pearson or Spearman correlation analyses. The optimal sensitivity and specificity were determined using receiver operating characteristic curve analysis with a non-parametric approach. Data are presented as mean ± standard deviation (SD). Statistical significance was set at p < 0.05, and analyses were conducted using SPSS version 25.0.



2.6 Data availability

Anonymized data will be shared on request from a qualified investigator.




3 Results


3.1 CX3CL1 concentrations in the urine of CN individuals across various age groups

A total of 516 CN individuals across a spectrum of ages were recruited to examine the alterations in urinary CX3CL1 levels associated with aging (Supplementary Table S1). No significant age differences were observed between the female (n = 251) and male (n = 265) groups, with average ages of 49.74 ± 15.56 and 48.17 ± 16.08 years, respectively (p = 0.306). Urinary CX3CL1 levels were found to increase with age, exhibiting a positive correlation in the entire cohort (r = 0.393, p < 0.001) (Figure 1A), as well as in females (r = 0.436, p < 0.001) (Figure 1B) and males (r = 0.364, p < 0.001) (Figure 1C). In different age groups, young age groups (Group age 18–29 and Group age 30–39) have lower urinary CX3CL1 levels than in older age groups (Group age 60–69 and Group age 70–75) in all subjects (Supplementary Figure S1A), females (Supplementary Figure S1C), males (Supplementary Figure S1D). Urinary CX3CL1 levels were significantly elevated in females compared to males (1.602 ± 1.057 vs.1.031 ± 0.735 ng/mg creatinine, p < 0.001) (Figure 1D). In middle age group and elder age group, subjects 40 years of age and older, urinary CX3CL1 values were greater in females than in males (Supplementary Figure S1B). Nevertheless, no significant differences in urinary CX3CL1 levels were observed between female and male subjects younger than 40 years of age (Supplementary Figure S1B).
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FIGURE 1
 Urinary CX3CL1 levels across ages in cognitively normal subjects. Correlation between urinary CX3CL1 levels and age in all subjects (A), females (B), and males (C). Comparison of urinary CX3CL1 levels between females and males (D).




3.2 Urinary CX3CL1 levels in patients with AD and aMCI, and CN subjects

A cohort comprising AD patients (n = 102), aMCI patients (n = 65), and age- and sex-matched cognitively normal (CN) controls (n = 93) was assembled to assess urinary CX3CL1 level variations across the groups (Table 1). No significant differences were noted in terms of age, sex, education level, urinary creatinine levels, or prevalence of comorbidities such as diabetes mellitus, hypertension, and hypercholesterolemia among the AD, aMCI, and CN groups. AD patients exhibited the lowest Mini-Mental State Examination (MMSE) scores and the highest Clinical Dementia Rating (CDR) and Activities of Daily Living (ADL) scores compared to the other two groups. aMCI patients demonstrated lower MMSE scores and higher CDR and ADL scores when compared to CN subjects.



TABLE 1 Demographic and clinical data of the AD, aMCI and CN subjects.
[image: Table comparing clinical variables across three groups: Alzheimer's disease (AD, n=102), amnestic mild cognitive impairment (aMCI, n=65), and cognitively normal controls (CN, n=93). Variables include age, education, gender, MMSE score, CDR score, ADL score, hyperlipidaemia, hypertension, diabetes mellitus, and creatinine levels. P-values indicate statistical significance, with notable differences in education, MMSE, CDR, and ADL scores.]

Urinary CX3CL1 levels varied significantly among the groups. AD patients had elevated urinary CX3CL1 levels compared to CN controls (1.999 ± 1.248 vs. 1.486 ± 1.058 ng/mg creatinine, p = 0.005) and aMCI patients (1.999 ± 1.248 vs. 0.965 ± 0.667 ng/mg creatinine, p < 0.001). Conversely, aMCI patients showed reduced urinary CX3CL1 levels relative to CN controls (0.965 ± 0.667 vs. 1.486 ± 1.058 ng/mg creatinine, p = 0.002) (Figure 2A).

[image: Bar graphs displaying CX3CL1 levels (ng/mg creatinine) across different groups. Panel A shows overall comparison among Alzheimer's Disease (AD), amnestic Mild Cognitive Impairment (aMCI), and cognitively normal (CN) participants, with significant differences noted. Panel B compares CX3CL1 levels in females and males across the same groups. Panels C and D show similar comparisons but separated by gender: females in Panel C and males in Panel D, with statistical significance indicated.]

FIGURE 2
 Urinary CX3CL1 levels among AD, aMCI and CN subjects. (A) Comparison of urinary CX3CL1 levels among AD, aMCI and CN subjects. (B) Comparison of urinary CX3CL1 levels between females and males in AD, aMCI and CN groups. (C) Comparison of urinary CX3CL1 levels in females among AD, aMCI and CN groups. (D) Comparison of urinary CX3CL1 levels in males among AD, aMCI and CN groups. NS denotes non-statistically significant.


In the CN group, females exhibited higher urinary CX3CL1 levels compared to males (1.757 ± 1.169 vs. 1.170 ± 0.8167 ng/mg creatinine, p = 0.017) (Figure 2B). However, no significant differences in urinary CX3CL1 levels were observed between females and males in the AD and aMCI groups (Figure 2B). Among females, AD patients and CN subjects had higher urinary CX3CL1 levels than aMCI patients, with no significant difference between AD patients and CN subjects (Figure 2C). Among males, AD patients had higher urinary CX3CL1 levels than both aMCI and CN subjects, with no significant difference between aMCI and CN subjects (Figure 2D).



3.3 Associations between urinary CX3CL1 levels and cognitive assessment scores

In a cohort encompassing AD patients, aMCI patients, and CN subjects, urinary CX3CL1 levels showed no correlation with MMSE scores among all participants (Figure 3A) and in females (Supplementary Figure S2A females). However, a significant negative correlation was observed between urinary CX3CL1 levels and MMSE scores in males (r = −0.203, p = 0.022) (Figure 4A and Supplementary Figure S2A).

[image: Four correlation heatmaps display different group comparisons. Panel A represents the full cohort (n=260), Panel B the Alzheimer's disease group (n=102), Panel C the amnestic mild cognitive impairment group (n=65), and Panel D the cognitively normal group (n=93). Variables include CX3CL1, ADL, AGE, CDR, Edu, and MMSE. Correlation coefficients range from negative (blue) to positive (red), with the scale from -1.0 to 1.0. Each panel shows varying strengths and directions of correlations among variables in each group.]

FIGURE 3
 Correlation matrix showing Spearman’s correlations between urinary CX3CL1 levels, ADL scores, Age, CDR scores, Education and MMSE scores in the cohort including the AD, aMCI and CN groups (A), AD group (B), aMCI group (C), and CN group (D).


[image: Four scatter plots with trend lines showing relationships between CX3CL1 levels and different variables:  A) Negative correlation between CX3CL1 and MMSE of males (r = -0.203, p = 0.022).  B) Positive correlation between CX3CL1 and MMSE of CN subjects (r = 0.272, p = 0.008).  C) Negative correlation between CX3CL1 and age of AD patients (r = -0.264, p = 0.007).  D) Positive correlation between CX3CL1 and age of CN subjects (r = 0.430, p < 0.001).]

FIGURE 4
 Correlations between urinary CX3CL1 levels and MMSE scores or age in the cohort including the AD, aMCI and CN groups. (A) Correlation between urinary CX3CL1 levels and MMSE scores in males of the cohort including the AD, aMCI and CN groups. (B) Correlation between urinary CX3CL1 levels and MMSE scores in CN groups. (C) Correlation between urinary CX3CL1 levels and age in AD group. (D) Correlation between urinary CX3CL1 levels and age in CN group.


Urinary CX3CL1 concentrations did not correlate with MMSE scores in patients with AD (Figure 3B), the AD female subgroup, and the AD male subgroup (Supplementary Figure S2B). Urinary CX3CL1 levels did not correlated with MMSE scores in patients with aMCI (Figure 3C), the aMCI female subgroup and the aMCI male subgroup (Supplementary Figure S2C).

Urinary CX3CL1 levels were positively correlated with MMSE scores in the CN group (r = 0.272, p = 0.008) (Figures 3D, 4B). Furthermore, urinary CX3CL1 levels did not correlated with MMSE scores in the CN female subgroup and the CN male subgroup (Supplementary Figure S2D).



3.4 Association between urinary CX3CL1 levels and age by group

Within a cohort that included AD patients, aMCI patients, and CN subjects, no correlation was found between urinary CX3CL1 levels and age across all participants (Figure 3A), in females and in males (Supplementary Figure S2A). Urinary CX3CL1 levels were negatively correlated with age in AD patients (r = −0.264, p = 0.007) (Figures 3B, 4C) and in the male AD subgroup (r = −0.299, p = 0.031) (Supplementary Figure S2B), while no such correlation was observed in the female AD subgroup (Supplementary Figure S2B). Urinary CX3CL1 levels did not correlated with age in aMCI patients (Figure 3C), the male aMCI subgroup and the female aMCI subgroup (Supplementary Figure S2C). Urinary CX3CL1 levels were positively correlated with age in CN group (r = −0.430, p < 0.001) (Figures 3D, 4D), in the female CN subgroup (r = 0.523, p < 0.001) (Supplementary Figure S2D), and in the male CN subgroup (r = 0.464, p = 0.002) (Supplementary Figure S2D).



3.5 Diagnostic potential of CX3CL1 for AD and aMCI

The area under the receiver operating characteristic curve (AUC) for urinary CX3CL1 in distinguishing AD from CN was calculated at 0.6174 (95% confidence intervals [CI], 0.5384–0.6964). With the cutoff value optimized via Youden’s index, urinary CX3CL1 achieved 69.89% sensitivity and 54.90% specificity in identifying AD versus CN (refer to Figure 5A and Supplementary Table S2 for details). The diagnostic accuracy of urinary CX3CL1 for distinguishing AD from aMCI was indicated by an AUC of 0.7412, with sensitivities and specificities reaching 84.62 and 63.73%, respectively (Figure 5A and Supplementary Table S2). In contrast, the AUC for differentiating aMCI from CN subjects was 0.6452, with sensitivities and specificities of 47.31 and 81.54%, respectively (Figure 5A and Supplementary Table S2).

[image: Two ROC curve graphs labeled A and B. Both depict sensitivity versus 1-specificity. Graph A compares AD vs. aMCI, AD vs. CN, and aMCI vs. CN. Graph B compares aMCI and CN vs. AD, AD and CN vs. aMCI, and AD and aMCI vs. CN. Each comparison is represented by different colored lines: black, purple, and blue.]

FIGURE 5
 Receiver operating characteristic (ROC) curve for urinary CX3CL1. (A) The ROC curve for urinary CX3CL1 in discriminating AD from aMCI, AD from CN and aMCI from CN. (B) The ROC curve for urinary CX3CL1 in discriminating aMCI and CN from AD, AD and CN from aMCI, AD and aMCI from CN.


We conducted additional analyses to assess the capacity of urinary CX3CL1 to distinguish aMCI from both AD and CN subjects (Figure 5B and Supplementary Table S2). The AUC for this comparison was 0.6954 (95% CI, 0.6289–0.7618), with sensitivities and specificities of 84.62 and 54.36%, respectively. Similarly, we evaluated the potential of urinary CX3CL1 to differentiate AD from the combined aMCI and CN groups (Figure 5B and Supplementary Table S2). The resultant AUC was 0.6683 (95% CI, 0.5985–0.7381), accompanied by sensitivities and specificities of 73.42 and 59.80%, respectively.




4 Discussion

To the best of our knowledge, this study represents the first to explore the association between urinary CX3CL1 levels and the process of aging, as well as to compare these levels between aMCI patients and AD patients. Our findings indicate a positive association between urinary CX3CL1 levels and age in cognitively normal individuals. Notably, AD patients demonstrated markedly higher urinary CX3CL1 levels compared to both aMCI patients and CN subjects, while aMCI patients showed significantly lower levels than those observed in the AD and CN groups.

CX3CL1 is recognized for its significant role in the aging process (Eugenin et al., 2023), age has a strong influence on blood cytokine CX3CL1 concentration (Compte et al., 2024). In our study, urinary CX3CL1 levels increased with aging, urinary CX3CL1 levels also increased with aging in normally cognitive function elderly subjects, which is an important risk factor for AD (Hou et al., 2019). Females exhibited higher urinary CX3CL1 concentrations compared to males, and indeed CX3CL1 is different between females and males (Pappritz et al., 2023).

CX3CL1 is an independently associated biomarker of AD (Trares et al., 2022). Some previous studies, mostly on blood and CSF CX3CL1 in AD or MCI. Most studies found that elevated CX3CL1 levels in both CSF and blood among individuals with AD and aMCI, surpassing those found in cognitively normal subjects. These levels have been correlated with the severity of the disease and the cognitive deterioration observed in AD patients (Kulczyńska-Przybik et al., 2020; Trares et al., 2022; Bivona et al., 2022; Kulczyńska-Przybik et al., 2023). However, a few analyses have reported opposite findings (Perea et al., 2018). A meta-analysis shows that the blood CX3CL1 levels are not significant different between AD patients and control subjects, yet the large effect size in MCI compared to controls suggests its potential as a biomarker to distinguish MCI patients from healthy individuals (Zhou et al., 2023). Blood CX3CL1 levels are reportedly higher level in MCI than in controls, with MCI patients exhibiting over twice the CX3CL1 levels compared to controls and a 13% lower level of CX3CL1 in AD compared to MCI (Zhou et al., 2023).

In this study, we firstly showed that patients with aMCI exhibit reduced urinary CX3CL1 levels compared to CN subjects, whereas AD patients display elevated levels relative to CN subjects. Additionally, a positive association was observed between urinary CX3CL1 levels and MMSE scores in the cognitively normal elderly subjects. While urinary CX3CL1 levels decreased with cognitive decline, aMCI had lower urinary CX3CL1 levels than cognitively normal elderly subjects. Along with the progression of dementia, urinary CX3CL1 levels increased with the progression of AD.

Our results highlight a variable pattern in urinary CX3CL1 levels across the cognitive impairment spectrum, with a notable decrease in aMCI patients, followed by an increase in those with AD. The ROC curve analysis revealed a larger area for CX3CL1 in aMCI subjects compared to traditional AD markers, suggesting its potential in early identification of aMCI and AD. These findings suggest that urinary CX3CL1 could serve as a biomarker to distinguish between cognitively normal elderly and those with aMCI, as well as to track disease progression.

It is relatively straightforward to comprehend the changes in urinary CX3CL1 when there are alterations in cognitive function. CX3CL1 is expressed on neuronal surfaces as a membrane-bound protein (mCX3CL1), which can be processed by extracellular proteolysis into multiple soluble CX3CL1 (sCX3CL1) isoforms. These distinct CX3CL1 forms can either exert anti-inflammatory effects on microglia in some contexts or promote inflammation in others, exacerbating neurologic conditions. Shifts in the equilibrium of CX3CL1 forms may represent a mechanism that links aging and AD pathogenesis (Eugenin et al., 2023). CX3CL1, interacting with its receptor CX3CR1, is pivotal in AD pathogenesis (Finneran and Nash, 2019). This chemokine, expressed by neurons, exists as a membrane-bound form (mCX3CL1) and can be cleaved to generate soluble forms (sCX3CL1), which can have either anti-inflammatory or pro-inflammatory effects on microglia, thereby influencing neurological disorders (Finneran and Nash, 2019).

The field of neurological disease biomarker research has identified urine as an important source of biomarkers. Urine is an easily accessible biomarker source (Benatar et al., 2016). Urine is convenience and non-invasive to collect. Urinary biomarkers offer a less invasive and more straightforward alternative to CSF for diagnostic measures, with urine being easier to collect and less complex for analysis compared to blood or CSF (Shepheard et al., 2017; Jia et al., 2017). Urinary CX3CL1’s potential as an early. Urinary CX3CL1’s potential as an early biomarker holds diagnostic and prognostic significance, reflecting changes across the AD spectrum, from preclinical to prodromal and dementia stages.

A key merit of our investigation was its pioneering approach in examining the diagnostic potential of urinary CX3CL1 across two southwestern Chinese centers. However, the study is not without limitations. Notably, AD and aMCI diagnoses lacked pathological validation, such as through amyloid Positron Emission Tomography (PET) scans or CSF biomarkers. Our and others’ research suggests that a significant proportion of patients diagnosed with probable AD based solely on clinical signs may not exhibit brain amyloid plaques, thus questioning their AD status (Li et al., 2019; Ossenkoppele et al., 2015). Additionally, we did not assess CX3CL1 levels in blood or CSF, which precludes us from evaluating the comparative diagnostic efficacy of urinary CX3CL1 against these sources or exploring its correlation with established biomarkers like Amyloid-β (Aβ) and phosphorylated tau (p-tau). Lastly, the cross-sectional nature of our study limits the inference of causality; hence, longitudinal studies are therefore required to address this issue.

In conclusion, our investigation establishes that urinary CX3CL1 can effectively distinguish between aMCI and AD patients and cognitively normal individuals. This dedicates that urinary CX3CL1 may be a promising early diagnostic marker for aMCI and AD. These results could offer a simpler and more accessible approach to aMCI and AD diagnosis within the relevant research domain. Further longitudinal studies are essential to elucidate the temporal changes in CX3CL1 levels across different stages of cognitive decline and to explore its predictive value in identifying individuals at risk of developing AD.
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Baseline liver fibrosis-4 score correlates to the progression of anxiety and cognitive impairment in patients with Parkinson’s disease
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Background: Non-alcoholic fatty liver disease (NAFLD) or liver fibrosis may share similar pathophysiological features with Parkinson’s disease (PD), yet their correlation was unclear. This study aimed to explore their correlation between PD and liver fibrosis using the fibrosis-4 score (FIB-4) as a surrogate marker.
Methods: We analyzed Parkinson’s Progression Markers Initiative (PPMI) data and enrolled PD patients with comprehensive baseline and 5-year follow-up time-point clinical data. Participants were categorized based on FIB-4 levels to assess the association between FIB-4 scores and various clinical scales, controlling for potential confounders. Differences in the progression of clinical scales over five years were compared using generalized linear mixed models (GLMM).
Results: Baseline FIB-4 levels positively correlated to scores of baseline section III of the Unified-Parkinson Disease Rating Scale (UPDRS III) (r = 0.145, p = 0.017), Epworth Sleepiness Scale (EPSS) (r = 0.140, P = 0.022), Hopkins Verbal Learning Test (HVLT)-delayed recall (r = 0.128, P = 0.036) and HVLT-retention (r = 0.128, p = 0.036). GLMM analysis revealed an independent correlation between FIB-4 subgroup*time and several clinical scales including the State-trait Anxiety Inventory (STAI), Symbol Digit Modalities Test (SDMT), Semantic Fluency Test (SF), HVLT-total recall, and HVLT-delayed recall, with the high FIB-4 subgroup exhibiting a greater decline in these scores compared to the low FIB-4 subgroup (all p<0.05).
Conclusion: Elevated baseline FIB-4 correlated to more severe baseline daytime sleepiness, motor symptoms, and memory function in PD patients, along with a more rapid decline in cognitive functions such as executive function, information processing ability, and memory. Additionally, a high FIB-4 might confer a protective effect against anxiety.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, with an estimated incidence of approximately 25% in the general population (Powell et al., 2021). NAFLD a range of pathological conditions from simple steatosis to non-alcoholic steatohepatitis (NASH), with varying degrees of fibrosis and potential progression to cirrhosis (Chalasani et al., 2018). Liver fibrosis has been confirmed to be a predictor the severity, progression, and poor prognosis of NAFLD (Kaya and Yilmaz, 2022; Powell et al., 2021). Beyond its implications for liver diseases, liver fibrosis shares similar risk factors and common pathological mechanisms with cardiovascular diseases and has been shown to be closely associated with the occurrence and poor prognosis of cardiovascular events (Tang et al., 2023; Wen et al., 2022; Liu et al., 2021). The liver-brain axis theory has recently highlighted the potential association between NAFLD/liver fibrosis and neurological disorders (Lombardi et al., 2019; Vegas-Suárez et al., 2022). Although current research is inconclusive, it has been found that NAFLD and liver fibrosis might be associated with brain atrophy, cerebral hypoperfusion, reduced brain activity, cognitive impairment, and stroke severity and prognosis (Lombardi et al., 2019). A few recent studies have reported the potential association between NAFLD and PD but have drawn inconsistent conclusions (Jeong et al., 2021; van Kleef et al., 2023).

The gold standard for liver fibrosis is pathological biopsy, which is is invasive, costly, and carries risks of postoperative complications, making it unsuitable for large-scale screening. Various non-invasive surrogates for assessing liver fibrosis have been proposed based on some physical or biochemical markers (Lai et al., 2024). Fibrosis 4 score (FIB-4), converted from age, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and platelet, is recommended by the American Association for the Study of Liver Diseases (AASLD) as an effective surrogate marker for liver fibrosis (2018). Accumulating evidence has confirmed that FIB-4 could be used to predict NAFLD progression and poor prognosis as well as the occurrence, progression, and poor prognosis of cardiovascular events (Schreiner et al., 2022; Vieira Barbosa et al., 2022a; Anstee et al., 2024). However, the relationship between FIB-4 and Parkinson’s disease has been minimally explored. To the best of our knowledge, there is only one recent research that reported the potential correlation between FIB-4 and cognitive dysfunction in PD (Zolin et al., 2024). Still, it did not study the relationship between FIB-4 and other aspects of PD. Therefore, we designed this study to comprehensively investigate the potential correlation between FIB-4 and PD.



2 Materials and methods

Our study comprised both cross-sectional and retrospective cohort analyses, utilizing data from the Parkinson’s Progression Markers Initiative (PPMI).1 The PPMI is a extensive, multi-center, longitudinal study designed to collect diverse data to identify biological markers of PD progression (Marek et al., 2011). All data used in this study, details of the study design, procedures, and other protocols are freely accessible online.2 The PPMI study was approved by the local Institutional Review Boards of all participating sites, and written informed consent was obtained from each participant. All methods were performed according to the relevant guidelines and regulations. The data was obtained from the PPMI database on November 10, 2023, following the PPMI Data User Agreement rules.


2.1 Participants

The inclusion has been reported in detail previously [16]. These criteria required participants to (1) be at least 30 years old at the time of PD diagnosis; (2) exhibit symptoms of asymmetric resting tremor or asymmetric bradykinesia or two symptoms of bradykinesia, resting tremor, and rigidity with a recent diagnosis of PD; (3) have a Hoehn and Yahr (H&Y) stage of 1 or 2; (4) have not received treatment for PD; and (5) have DAT imaging revealing a deficiency in dopamine transporters. Exclusion criteria included patients with atypical PD syndromes, those suspected of having progressive supranuclear palsy, or multiple system atrophy from the follow-up. In addition to meeting the PPMI eligibility criteria, patients who were enrolled in the current study must not have dementia or chronic liver disease at baseline and no missing baseline FIB-4-related hematology data. Meanwhile, eligible participants were required to have complete data on motor and nonmotor assessments at baseline and 5-year follow-up time-point, as well as data from two or more assessments performed annually during the 5-year follow-up.



2.2 Clinical characteristics

Demographic characteristics of all subjects were collected, including sex, age, years of education, and disease duration of PD. Section III of the Unified-Parkinson Disease Rating Scale (UPDRS III) and the H&Y stages were used to assess the severity of movement disorders. The common non-motor symptoms were also evaluated. Global non-motor symptoms were assessed using section I of the UPDRS (UPDRS I), and activities of daily living were assessed using section II of the UPDRS (UPDRS II) and the Schwab & England Activities of Daily Living Scale (ADL). Depression was assessed with the Geriatric Depression Scale (GDS), anxiety with the State-Trait Anxiety Inventory (STAI), autonomic nerve function with Scales for Outcomes in Parkinson's disease-Autonomic (SCOPA-AUT), daytime sleepiness with the Epworth Sleepiness Scale (EPSS), REM sleep behavior disorder with the REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ), and impulsive-compulsive behaviors with the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP). A comprehensive assessment of cognitive function included global cognition and cognitive subdomains. Montreal Cognitive Assessment (MoCA) was used to assess global cognition, the Benton Judgment of Line Orientation Test (BJLOT) for visuospatial function, the Letter Number Sequencing Test (LNST) for working memory and executive function, the Symbol Digit Modalities Test (SDMT) for attention and speed of information processing and the Semantic Fluency Test (SFT) for semantic memory and executive function, and the Hopkins Verbal Learning Test (HVLT: including total recall, delayed recall, retention and recognition discrimination) for memory function. Olfactory dysfunction, as assessed by the University of Pennsylvania Smell Identification Test (UPSIT), was not included due to a lack of data for follow-up at a 5-year follow-up time-point. The score changes in clinical scales over 5-year follow-up were calculated as the 5-year follow-up time-point scores minus the baseline scores.



2.3 Laboratory characteristics

Blood samples were collected, stored, and handled according to the PPMI Research Biomarkers Laboratory manual.3 Baseline data collection included pre-enrollment screening or a baseline visit for hematological parameters necessary for FIB-4 calculation, including platelet count, alanine aminotransferase (ALT), and aspartate aminotransferase (AST).

The FIB-4 was calculated using the formula (Sterling et al., 2006):


[image: Formula for calculating the FIB-4 score: FIB-4 is equal to age in years times AST in units per liter, divided by platelets in ten to the power of nine per liter times the square root of ALT in units per liter.]


Prior research categorizes patients with NAFLD as either low-risk for advanced liver fibrosis with FIB-4 <1.3 or high-risk with FIB-4 ≥ 1.3 (Mcpherson et al., 2017; Zolin et al., 2024). Therefore, Participants were accordingly divided into low FIB-4 and high FIB-4 subgroups based on their baseline FIB-4 levels.



2.4 Statistics

Continuous variables are described as mean and standard deviation (SD) or median and interquartile range (IQR) depending on their distribution. Categorical variables were presented as absolute number and percentage (%). The T-test, ANOVA, or Mann-Whitney U test were used to assess differences between the low and high FIB-4 subgroups. Correlations between baseline FIB-4 and clinical scales at baseline and 5-year follow-up time-point were analyzed using Pearman and Spearman correlation analysis, with FIB-4 as a continuous variable. All correlation analyses were adjusted for age, sex, education years, and disease duration of PD. Generalized linear mixed models (GLMM) were then performed to compare the longitudinal changes of clinical variables among patients with different baseline FIB-4 levels (low FIB-4 and high FIB-4 subgroups). The models included the scores of each longitudinal clinical scale, such as UPDRS I, II, III, GDS, etc., as dependent variables. Gender, age, BMI, education years, disease duration, H&Y stages, follow-up time, low FIB-4 subgroup, high FIB-4 subgroup, and the interaction between FIB-4 subgroup and follow-up time (FIB-4 subgroup*time) were used as fixed variables. Then, we conducted a subgroup analysis according to gender and age. Two-sided P values < 0.05 were considered to indicate statistical significance. All the statistical analyses and visualization were conducted using SPSS version 23.0 (IBM, New York, NY, USA) and R version 4.2.0.




3 Results


3.1 Comparison of baseline characteristics between low and high FIB-4 subgroups

A total of 273 PD patients, with a mean age of 60.2 years, were included in the study. The median baseline FIB-4 score was 1.200 (IQR, 0,932, 1.658). Based on the baseline FIB-4 level, participants were divided into a low FIB-4 (n = 150) and a high FIB-4 (n = 123) subgroups. The baseline characteristics of all subjects, along with comparisons between different subgroups, are detailed in Table 1. In our cohort, patients had a median disease duration of PD of 3.0 (1.0, 6.0) years and a median H&Y stage of 1.0 (1.0, 2.0), with males comprising 66.3% of the study population. Compared to the low FIB-4 subgroup, high FIB-4 subgroup demonstrated a higher proportion of male (60.7% vs. 73.2%, P = 0.03) and higher levels of age (mean ± SD, 65.6 ± 7.4 vs. 55.9 ± 9.0, p < 0.001), education years (16.00 (13.75, 17.25) vs. 16.0 (15.0, 18.0), P = 0.002), H&Y stage (1.0 (1, 2) vs. 2(1, 2), P = 0.001), UPDRS III (17 (12, 23) vs. 20 (15, 26), p = 0.002) and SCOPA-AUT score (9.5 (6, 16) vs. 12 (8, 18), P = 0.019). However, the low FIB-4 subgroup scored higher on cognitive function-related scales, including MoCA (28.00 (26.75, 29.00) vs. 27.00 (26.00, 29.00), p = 0.019), LSNT (11 (9, 13) vs. 11 (9, 12), P = 0.006) and SDMT (45.5 (39, 50) vs. 39 (34, 46), p < 0.001), suggesting better cognitive function in the low FIB-4 subgroup. No significant differences in other baseline characteristics were observed between the two subgroups.



TABLE 1 Comparison of baseline characteristics of PD patients in subgroups with different baseline FIB-4 index levels
[image: A table comparing baseline characteristics between a total group of 273 individuals and subgroups with low and high FIB-4 scores. Columns display values for age, sex, BMI, education years, disease duration, and various scales such as UPDRS, H&Y stage, GDS, STAI, MoCA, and others. Significant differences between subgroups are indicated with p-values, highlighting parameters like age, H&Y stage, UPDRS scores, and MoCA scores among others. Definitions and abbreviations are provided at the bottom of the table.]



3.2 Comparison of score changes in clinical scales between low and high FIB-4 subgroups over 5-year follow-up

Table 2 presents the differences in the score changes of the clinical scales between baseline and the 5-year follow-up time-point (calculated as the 5-year follow-up time-point score minus the baseline score). Significant differences in the changes related to anxiety and cognition were observed between the subgroups. After 5 years of follow-up, the STAI scores (including state, trait, and total scores) of patients in the high FIB-4 subgroup decreased more substantially than those in the low FIB-4 subgroup (P = 0.005 for state, P = 0.023 for trait, and P = 0.002 for total). In addition, compared to the low FIB-4 subgroup, the high FIB-4 subgroup showed greater decreases in cognitive-related scales, including LSNT, SDMT, SFT, HVLT total recall, and HVLT recognition discrimination (P = 0.012, P = 0.011, P = 0.022, P = 0.015, and p = 0.023, respectively). However, no significant differences were observed in the global cognitive-related MoCA, motor-related UPDRS III, or other clinical scales between the two subgroups.



TABLE 2 Comparison of score changes in clinical scales between low FIB-4 and high FIB-4 subgroups over 5-year follow-up
[image: Table comparing clinical scales between low and high FIB-4 subgroups with p-values. Scales include UPDRS, GDS, STAI, QUIP, SCOPA, EPSS, RBDSQ, ADL, MoCA, BJOLT, LSNT, SDMT, SFT, and HVLT measures. Notable p-values indicate significant differences in STAI and HVLT scores between subgroups.]



3.3 Correlation analysis between baseline FIB-4 index and clinical scale scores at baseline and 5-year follow-up time-point

The correlation analysis results between baseline FIB-4 level and clinical scales are shown in Table 3. Baseline FIB-4 levels were positively correlated with baseline UPDRS III (r = 0.145, p = 0.017), EPSS (r = 0.140, p = 0.022), HVLT delayed recall (r = 0.128, P = 0.036) and HVLT retention scores (r = 0.128, p = 0.036). At the 5-year follow-up, baseline FIB-4 was still positively correlated with EPSS but not with other clinical scales.



TABLE 3 Correlation analysis between baseline FIB-4 index and clinical scale scores at baseline and 5-year follow-up time point
[image: Table showing clinical scales with baseline and five-year follow-up values. Includes scales like UPDRS, GDS, STAI, QUIP, SCOPA-AUT, EPSS, RBDSQ, ADL, MoCA, BJOLT, LSNT, SDMT, SFT, and HVLT. Each scale lists r and p values for both time points. A key explains abbreviations for the scales, related to Parkinson's and cognitive assessments.]



3.4 The prediction of longitudinal changes in clinical scales using baseline FIB-4

To elucidate the relationship between baseline FIB-4 levels and the progression of PD further, we examined longitudinal changes in clinical scales in patients with low and high levels of baseline FIB-4. General linear mixed-effect models (GLMM) were conducted to compare the progression of clinical symptoms between groups by testing the interaction between subgroups and time (FIB-4 subgroup*time). The results showed that FIB-4 subgroup*time was independently correlated with UPDRS I, STAI, LSNT, SDMT, SFT, HVLT-total recall, and HVLT-delayed recall scores (Table 4; Figure 1). In particular, patients in the high FIB-4 subgroup showed a significantly faster decline in cognitive subdomain scores at late follow-up, including LSNT, SDMT, SF, HVLT total recal and HVLT delayed recall. This suggests that high levels of FIB-4 may aggravate the deterioration of cognitive function with the prolongation of disease duration. Meanwhile, the anxiety-related scale scores, including the STAI-state subscore, the STAI-trait subscore, and the STAI-total scores, decreased more significantly in the high FIB-4 level subgroup over the 5-year period. It is suggested that high level of FIB-4 may have a potential protective effect on anxiety in PD patients. There were no significant differences in the longitudinal changes of other clinical scales scores during the 5-year follow-up period (Supplementary Table S1).



TABLE 4 Comparison of the longitudinal change trend of cognitive and anxiety related scale scores in different FIB-4 subgroups over 5 years using general linear mixed-effect models.
[image: Table comparing clinical scales between low and high FIB-4 subgroups. Columns include baseline scores, estimated means, standard deviations, differences within subgroups, and p-values for significance across studies like UPDRSII, STAI, and HVLT.]

[image: Nine line graphs labeled A to I illustrate estimated means of different clinical measures over a five-year follow-up period. Each graph compares low and high FIB-4 groups, with participant numbers provided. Graphs indicate varying levels of statistical significance. Error bars reflect variability.]

FIGURE 1
 Comparison of clinical scales with significant differences in longitudinal change trends between the two subgroup. (A) The UPDRS I scores of the high FIB-4 subgroup showed a faster longitudinal increase over the five-year period. (B) The STAI-State subscore of the high FIB-4 subgroup showed a faster longitudinal decline. (C) The STAI-Trate subscore of the high FIB-4 subgroup showed a faster longitudinal decline. (D) Showed a faster longitudinal decline. (E) The LSNT of the high FIB-4 subgroup showed a faster longitudinal decline. (F) The SDMT of the high FIB-4 subgroup showed a fasterlongitudinal decline. (G) The SFT of the high FIB-4 subgroup showed a faster longitudinal decline. (H) The HVLT Total Recal of the high FIB-4 subgroup showed a faster longitudinal decline. (I) The HVLT Delayed Recal of the high FIB-4 subgroup showed a faster longitudinal decline.




3.5 Subgroup analyses based on age and sex

In order to determine whether the association between baseline FIB-4 levels and progression of cognitive impairment was related to age and gender, subgroup analyses were performed according to age and gender, respectively. The results showed that the differences in longitudinal cognitive changes between different FIB-4 levels subgroups persisted in male PD patients, but not in female patients (Supplementary Tables S2, S3). Meanwhile, in PD patients older than 60 years old, the progression of cognitive impairment was also significantly different between the two high and low FIB-4 subgroups, but there was no significant difference in PD patients younger than 60 years old (Supplementary Tables S4, S5).




4 Discussion

In this study, we explored the association of baseline FIB-4 levels with clinical manifestations of PD at baseline and after 5-year follow-up, through both cross-sectional and cohort analyses. Our study discovered that patients with elevated FIB-4 levels exhibited more pronounced baseline motor and autonomic dysfunctions, as well as cognitive impairments. The baseline FIB-4 level significantly correlated with the baseline UPDRS III score, EPSS, HVLT delayed recall, and HVLT retention, even after adjusting for age, sex, disease duration, and education level. The results affirmed that a higher baseline FIB-4 was related to severe baseline PD motor deficits, daytime sleepiness, and cognitive impairment. However, at the 5-year follow-up time-point, the baseline FIB-4 levels were only correlated with the EPSS, but not with other clinical characteristics, hinting that baseline FIB-4 might predict the severity of daytime sleepiness in PD patients after five years. Moreover, our cohort analysis revealed a link between baseline FIB-4 levels and the evolution of PD-related anxiety and cognitive changes over time. Notably, there were significant differences in the changes observed in the STAI, LSNT, SDMT, SFT, HVLT total recall, and HVLT recognition discrimination scores between patients with high and low FIB-4 levels. The results of the GLMM analysis confirmed that patients with elevated FIB-4 levels experienced faster longitudinal progression in SDMT, SFT, HVLT-total recall, HVLT recognition discrimination, and a slower longitudinal progression in STAI scores. Consistent with prior research, our study also illustrated that a high baseline level of FIB-4 accelerated the deterioration of cognitive functions, including executive function, information processing ability, and memory, albeit not affecting global cognition (Zolin et al., 2024). For the first time, our findings suggest that high baseline FIB-4 levels might offer protective benefits against anxiety in PD. In addition, previous studies have shown that the sensitivity and specificity of FIB-4 in the evaluation of liver fibrosis are different in different gender and age groups. Similarly, our study also suggested that the effect of FIB-4 on the longitudinal changes of cognitive function was different in different gender and age groups. However, since this was a post hoc analysis, the differences in other indicators between the subgroups could not be controlled, and the sample sizes of the subgroups were not balanced, so further studies are needed to confirm this conclusion.

The role of liver fibrosis scores, such as FIB-4, has primarily been associated with assessing the severity and prognosis of liver diseases, as they considerably predict liver disease risk and adverse outcomes (Albhaisi et al., 2023). A prospective cohort study in the United States indicated that higher liver fibrosis index scores correlate with increased liver disease incidence and overall mortality, even in individuals without viral hepatitis (Unalp Arida and Ruhl, 2017). Another study conducted by Cholankeril et al. showed that longitudinal changes of FIB-4 were strongly associated with progression to cirrhosis and hepatocellular carcinoma in NAFLD (George et al., 2022). Subsequently, accumulating evidence has shown that NAFLD and liver fibrosis have been linked to cardiovascular diseases, with liver fibrosis indices predicting adverse cardiovascular events and all-cause mortality in several epidemiological studies. Notably, in specific cohorts of NAFLD and Non-Alcoholic Steatohepatitis (NASH) patients, FIB-4 effectively forecasted major adverse cardiovascular events (Vieira Barbosa et al., 2022b, Anstee et al., 2024, Tang et al., 2023).

In recent years, investigations have highlighted potential connections between NAFLD, liver fibrosis, and brain health, including brain volume, brain aging, cerebral perfusion and activity, ischemic and hemorrhagic strokes, cognitive impairments, and neurodegeneration (Lombardi et al., 2019). A cross-sectional study based on the Framingham Study illustrated that NAFLD significantly correlated to smaller total cerebral brain volume, equating the difference to 4.2 years of brain aging in the general populace and 7.3 years in individuals under 60 years old (Weinstein et al., 2018). Another study based on the Rotterdam Study proved that liver steatosis and fibrosis were independently associated with decreases cerebral blood flow and brain perfusion (Yilmaz et al., 2023). Furthermore, many studies demonstrated an inconsistent association of NAFLD and liver fibrosis with stroke. A cohort study involving 9088 subjects without a history of stroke demonstrated the association between liver fibrosis and the incidence of stroke among middle-aged populations in China (Shengjun et al., 2022). Another study found that liver fibrosis was an independent predictor of long-term all-cause and cardiovascular mortality in patients with ischemic stroke (Baik et al., 2019a). Nevertheless, some other studies failed to find an association between NAFLD and liver fibrosis and stroke (Lombardi et al., 2019; Wang et al., 2022). Baik et al. even found that more severe hepatic steatosis protected ischemic stroke (Baik et al., 2019b).

Due to similar pathological mechanisms such as insulin resistance (IR), oxidative stress, and inflammation, NAFLD and liver fibrosis were considered to be associated with neurodegenerative diseases, encompassing cognitive impairment, dementia, and PD (Lombardi et al., 2019). An early study by Elliott et al. was among the first to propose and confirm the potential link between cognitive impairment and NAFLD (Colognesi et al., 2020). Subsequently, several observations have validated the association. Recently, Parikh et al. investigated the association of liver fibrosis with dementia and cognitive impairment in the UK Biobank study, uncovering that liver fibrosis in midlife significantly elevated the risk of subsequent dementia (Parikh et al., 2022). Then, they further examined cognitive tests and brain imaging data and proved that liver fibrosis was associated with worse Digit Symbol Substitution Test (DSST) and executive function-related assessments but not memory (Parikh et al., 2023). Contrarily, some other studies failed to reach the same result or even completely opposite conclusions. Xiao et al. conducted a cross-sectional and longitudinal study in the Rotterdam Study. They found neither NAFLD nor liver fibrosis increased the risk of dementia and cognitive impairment, but rather a protective effect on cognition during the first 5 years of follow-up (Xiao et al., 2022). Studies on the correlation between NAFLD, liver fibrosis, and PD were relatively scarce and yielded inconsistent results. A national cohort study in Israel found that non-alcoholic steatohepatitis (NASH) could heighten the risk of PD, whereas a subsequent large cohort study in Korea indicated gender-specific differences, with NAFLD increasing PD risk in women but decreasing it in men (Goldstein et al., 2019; Jeong et al., 2021). However, a recent cohort study by Laurens et al. based on the Rotterdam study failed to find an association between fatty liver and PD in the European population, regardless of gender (van Kleef et al., 2023). The above studies on NAFLD and PD have reached inconsistent conclusions. Very recently, a cohort study reported that liver fibrosis was associated with a decline in multiple cognitive domains in patients with PD, aligning with our findings (Zolin et al., 2024). However, we explored the correlation between liver fibrosis and PD more comprehensively, and for the first time, found a correlation between baseline FIB-4 and the longitudinal changes in the anxiety scale (STAI). Additionally, we found baseline FIB-4 levels to be associated with daytime sleepiness, motor dysfunction, cognitive impairment at baseline, and daytime sleepiness at the five-year follow-up time-point. However, due to the lack of scales related to social function, the correlation between FIB-4 and social function of PD, a field that has received great attention in recent years, is not clear (Perepezko et al., 2019; Su et al., 2020)

The liver is the main organ in the human body for energy balance and metabolism of toxic compounds. Thus, hepatic disorders could lead to inhibited clearance of toxic and harmful substances, potentially connecting liver and neurodegeneration through the known brain-liver axis (Vegas-Suárez et al., 2022). However, the underlying pathophysiological mechanisms of the correlation between NAFLD or liver fibrosis and PD remain unclear. We speculate that factors such as insulin resistance (IR), neuroinflammation, gut microbiota disorder, and neurotoxin accumulation might play significant roles (Lombardi et al., 2019; Vegas-Suárez et al., 2022). IR is a hallmark of NAFLD and liver fibrosis, which can accelerate the accumulation of liver fat and promote the release of inflammatory substances (Lade et al., 2014). IR could also promote alpha-synuclein accumulation and disrupt insulin signaling in dopaminergic neurons, leading to dopaminergic dysfunction, reduced mitochondrial oxidative activity, and ultimately, the onset and progression of PD (Athauda and Foltynie, 2016). Besides, NAFLD and liver fibrosis are often characterized by a proinflammatory state, which is also involved in the pathogenesis of PD (Schuster et al., 2018). Neuroinflammation is a common feature that accompanies liver fibrosis, which leads to the reactivity of microglia and increases the synthesis of other proinflammatory cytokines, promotes the recruitment of monocytes, and even alters the blood-brain barrier (BBB) permeability, thereby promoting the degeneration of dopamine neurons and contributing to the occurrence and development of PD (Zimmermann and Brockmann, 2022). In addition, alterations in the gut microbiota and increased intestinal permeability associated with NAFLD and fibrosis may promote neuroinflammation and alpha-synuclein accumulation, exacerbating PD progression (Tilg et al., 2022; Sun and Shen, 2018). Moreover, reduced neurotoxin clearance and altered neurotransmitter activity linked to these liver conditions might also contribute to the development of PD (Vegas-Suárez et al., 2022). To further understand the mechanisms underlying the association between NFLPD or liver fibrosis and PD, further research is needed.

Our study contributed to the evidence for the association of liver fibrosis with PD, and further investigation into the underlying mechanisms is crucial as it could unveil new targets and approaches for the early treatment of PD. However, some limitations of our study should be noted. First, because of strict inclusion and exclusion criteria, we included only patients with complete data on all clinical scales at baseline and at the 5-year follow-up time-point, which might limit the generalizability and possibly introduce bias. Second, many patients had missing assessment data at various time points, which may have affected our analyses and conclusions. Third, some other confounding factors such as other underlying medical conditions, ethnicity, predispositions and genetics including GBA, microbial 16S rRNA gene, et al. were not included in the analysis. (Qian et al., 2018; Chang et al., 2024). Forth, the dynamic changes of FIB-4 were ignored because ALT and AST may change dynamically with time. At last, this study lack the histological and imaging diagnosis of NAFLD and liver fibrosis, and it must be acknowledged that the predictive value of FIB-4 for liver fibrosis may not be ideal in some age groups (Lai et al., 2024).



5 Conclusion

In conclusion, this study has conducted an extensive examination of the relationship between liver fibrosis and Parkinson's Disease (PD) through the lens of the FIB-4 marker. Our data reveals that baseline FIB-4 level was associated with daytime sleepiness, motor difficulties, and cognitive impairments at baseline. Besides, patients presenting higher baseline FIB-4 levels exhibited a more rapid progression in multiple cognitive subdomains, including executive function, information processing ability, and memory. Interestingly, a higher baseline FIB-4 also seemed to convey a potential protective effect against anxiety, hinting at a multifaceted link between liver fibrosis and the progression of PD. Further research is necessary to validate these results and to delve deeper into the underlying mechanisms.
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Background: Alzheimer’s disease (AD) is a major healthcare challenge, with existing diagnostics being costly/infeasible. This study explores retinal biomarkers from optical coherence tomography (OCT) and OCT angiography (OCTA) as a cost-effective and non-invasive solution to differentiate AD, mild cognitive impairment (MCI), and healthy controls (HCs).
Methods: Participants from the CALLIOPE Research Program were classified as “Dem” (AD and early AD), “MCI,” and “HCs” using neuropsychological tests and clinical diagnosis by a neurologist. OCT/OCTA examinations were conducted using the RTVue XR 100 Avanti SD-OCT system (VISIONIX), with retinal parameters extracted. Statistical analysis included normality and homogeneity of variance (HOV) tests to select ANOVA methods. Post-hoc analyses utilized Mann–Whitney U, Dunnett, or Tukey-HSD tests based on parameters’ normality and HOV. Correlations with age were assessed via Pearson or Spearman tests. A generalized linear model (GLM) using Tweedie regression modeled the relationship between OCT/OCTA parameters and MMSE scores, correcting for age. Another ordinal logistic GLM (OL-GLM) modeled OCT/OCTA parameters against classes, adjusting for multiple confounders.
Results: We analyzed 357 participants: 44 Dem, 139 MCI, and 174 HCs. Significant microvascular density (VD) reductions around the fovea were linked with MCI and Dem compared to HCs. Age-related analysis associated thickness parameters with HCs’ old age. Our OL-GLM demonstrated significant thickness/volume reductions in Inner_Retina and Full_Retina layers. Foveal avascular zone (FAZ) area and perimeter were initially not correlated with cognitive decline; however, OL-GLM significantly associated FAZ perimeter enlargement with Dem and MCI groups. Significant average and inferior peripapillary RNFL thinning were linked to Dem and MCI groups.
Conclusion: This is the first study to examine VD changes in G grid sections among Dem, MCI, and HCs. We found a significant association between various VD parameters and cognitive decline. Most macular thickness/volume changes did not correlate with cognitive decline initially; however, our OL-GLM succeeded, highlighting the importance of the confounders’ corrections. Our analysis excluded individual retinal layer parameters due to limitations; however, the literature suggests their value. Our study confirmed existing biomarkers’ efficacy and uncovered novel retinal parameters for cognitive decline, requiring further validation.
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1 Introduction

Dementia can be identified as a recognizable pattern of symptoms, including behavioral changes, impairments in daily activities, language and cognitive function disruptions, and memory deficiencies (Dening and Sandilyan, 2014). Structural and chemical alterations lead to neuronal loss and a reduction in brain volume for patients with dementia syndromes (Dening and Sandilyan, 2014). Alzheimer’s disease (AD) is a cause of dementia and is believed to be responsible for a majority of dementia cases (Qiu et al., 2009). An abnormal accumulation of amyloid “plaques,” an insoluble fibrous protein, and twisted fibers known as “neurofibrillary tangles” are the neuropathological changes of AD (Dening and Thomas, 2013). Mild cognitive impairment (MCI) refers to a level of cognitive decline that, while noticeable, does not significantly disrupt basic everyday activities (Gauthier et al., 2006).

There are currently over 50 million people worldwide living with dementia, a number that is expected to rise by 2030 to over 74 million people (Alzheimer’s Disease International, 2019; Prince et al., 2015). Traditional methods to identify dementia disorders include cerebrospinal fluid (CSF) analysis, brain imaging, genetic testing, and blood tests (NIA-Scientists, 2022). While these methods are valuable in assessing cognitive functions, they are significantly expensive and, thus, impractical to serve as screening methods for MCI or early-stage AD (Florek et al., 2018; Mounsey and Zeitler, 2018). Therefore, there is an unfulfilled need to discover cost-effective biomarkers to perform dementia screening.

The human retina is the only inner organ that can be directly observed non-invasively, offering a window to diagnose and manage ocular and systemic pathologies. The examination of the retina has been considered a potential biomarker for various neurodegenerative conditions in recent years (Snyder et al., 2021). Non-invasive imaging technologies include optical coherence tomography (OCT) and OCT angiography (OCTA), which are usually utilized to capture structural and vascular alterations in the retina, respectively (De Carlo et al., 2015). The retinal biomarkers used to diagnose MCI and AD can be classified into structural, vascular, and electrophysiological categories (Ge et al., 2021). Structural alterations include notable thinning of specific individual retinal layers or a few combined layers. For instance, peripapillary retinal nerve fiber layer thickness reduction was associated with MCI (Tao et al., 2019; Montorio et al., 2022) and with AD patients (Tao et al., 2019; Lemmens et al., 2020; Wang et al., 2022) compared against HCs. However, other studies (Poroy and Yücel, 2018; Almeida et al., 2019) suggested that these thickness changes were not significantly different in AD and MCI patients compared to HCs. Additionally, AD patients were linked with thinning in the macular retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, and outer nuclear layers (Garcia-Martin et al., 2016). Moreover, AD patients were correlated with thinning in full retinal layer thickness (Jáñez-Escalada et al., 2019; Marziani et al., 2013).

Vascular biomarkers, another subset of retinal biomarkers, include microvascular density (VD) and foveal avascular zone (FAZ) changes. Recent studies have associated MCI with VD reduction in superficial layers (Chua et al., 2020; Bulut et al., 2018; Zhang et al., 2019), while AD patients were linked to VD decline in only specific regions of the superficial layers (Yan et al., 2021; Wu et al., 2020). Notably, inconsistencies in the literature are evident in two aspects: the choice of retinal layers analyzed and the regions reported to exhibit significant VD reductions (Chua et al., 2020; Bulut et al., 2018; Zhang et al., 2019; Yan et al., 2021; Wu et al., 2020). Similarly, related to vascular biomarkers, cognitively impaired patients had a significant FAZ enlargement compared to healthy controls (Bulut et al., 2018; Wu et al., 2020; O’Bryhim et al., 2021; Shin et al., 2021); however, FAZ changes were not significant in other studies (Zhang et al., 2019; Peng et al., 2021; Robbins et al., 2022; Biscetti et al., 2021; Yang et al., 2022). Existing biomarkers have limitations that could lead to conflicting results. Therefore, to understand the role of retinal biomarkers in neurodegenerative conditions, this study will explore structural and vascular retinal parameters to evaluate their efficacy in distinguishing AD and MCI from HCs. Robust statistical and post-hoc analyses of OCT/OCTA parameters will be used to identify relevant biomarkers, while discrepancies between our findings and the literature will be addressed through age-related analysis and generalized linear models adjusted for multiple confounding factors. Additionally, a novel VD-related biomarker will be proposed for future exploration.



2 Materials and methods


2.1 Building the cohort dataset

The dataset was collected in the CALLIOPE Research Program “Open Data Initiative for Dementia,” Italy. The study was conducted in adherence to the Declaration of Helsinki (Williams, 2008), complying with all ethical and legal requirements. The regional local ethical committee IRCCS “Giovanni Paolo XIII” approved all the phases (retrospective and prospective data) of this study. The data management and anonymization were compliant with the European General Data Protection Regulation. RS was responsible for the ethics and data management and protection.

The inclusion criteria required participants to be aged ≥70 years, to provide written informed consent (or consent from their legal guardians), and to complete neuropsychological assessments. Given the limited availability of patients without eye pathologies, we also included participants with maculopathy, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. The cognitive assessments were based on the Mini-Mental State Examination (MMSE) score (Folstein et al., 1983), the Frontal Assessment Battery (FAB) (Appollonio et al., 2005), and the Apathy Evaluation Scale (Apathy Scale) (Guercio et al., 2015). Patients were excluded if their OCTA image quality was below a certain threshold, which was determined by an algorithm detailed in section 2.3.

The collected demographic details include gender, age, and eye pathology (if any). The participants were assessed by a neurologist according to their MMSE and FAB scores following the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for dementia (Regier et al., 2013). The Apathy Scale (Guercio et al., 2015) was considered as additional supporting evaluation criteria for the neurologist.

The neurologist classified participants into three groups: (1) HCs: maximum scores in both assessments or no more than −2 points of selective deficit; (2) MCI: cognitive impairment was confirmed by deficient scores in one or more cognitive domains of MMSE or FAB (performance between −1 and −2 standard deviations); (3) AD and early AD (eAD) denoted as “Dem”: deficit scores in all cognitive domains (performances −2 standard deviations). The scale used to rate the dementia grade was the Clinical Dementia Rating (CDR) (Morris, 1993).



2.2 OCT/OCTA image acquisition

All participants underwent OCTA examination by the RTVue XR 100 Avanti spectral domain OCT (SD-OCT) system (VISIONIX, formerly known as Optovue, Inc.), where OCT segmentation was performed using the built-in AngioVue module (version 2014.2.0.13). Patients’ eyes were not dilated prior to imaging. Figure 1A shows various scan types provided by Avanti SD-OCT, where scan patterns could be mainly grouped into raster scans around the fovea and radial scans around the optic disc.

[image: Optical coherence tomography scans show two retinal cross-sections. The left side lists scan types and timestamps. The right side displays two images: the top is a grayscale retinal scan, and the bottom is color-coded, highlighting retinal layers. A key identifies layers such as ILM (inner limiting membrane) in yellow and Choroid in blue. Annotations indicate subregions: SVC, IVC, and DVC.]

FIGURE 1
 (A) Complete 14 scans provided by Avanti SD-OCT. (B) The definition of retinal layers in a spectral domain optical coherence tomography B-scan image: Top: unlabeled, Bottom: labeled (adapted from Ibrahim et al., 2023). Defined layers: inner limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM), ellipsoid zone and interdigitation zone (EZ-IZ), retinal pigment epithelium (RPE), and Bruch’s membrane (BRM).


A scan area of 3 × 3 mm2 centered on the fovea with an image resolution of 304 × 304 pixels was exported and analyzed. The nerve head map 4-mm diameter (NHM4) RTVue protocol was used to obtain optic disc imaging and parameters (Mesiwala et al., 2012). The NHM4 protocol consists of 12 radial scans 3.4 mm in length (452 A-scans each) and six concentric ring scans ranging from 2.5 to 4.0 mm (587 to 775 A-scans each), all centered around the optic disc contour line automated by the 3D protocol (Mesiwala et al., 2012). The areas between the A-scans were interpolated, and various parameters were automatically generated to describe the optic disc (Mesiwala et al., 2012).

An example of an SD-OCT b-scan is shown in Figure 1B (top). OCT can almost resolve all the retinal cellular layers, as demonstrated in Figure 1B (bottom). The included layers from inner to outer were the inner limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), external limiting membrane (ELM), ellipsoid zone and interdigitation zone (EZ-IZ), retinal pigment epithelium (RPE), and Bruch’s membrane (BRM).

The OCTA device captured 70,000 A-scans per second, with an axial resolution of 5 μm (Hashmani et al., 2018), and utilized a light source with an 840 nm wavelength. The RTVue software was used to extract OCTA projection maps (En-Face OCTA) of the microvasculature into superficial vascular complex (SVC), deep vascular complex (DVC), and inner vascular complex or inner retina (IVC). The SVC was defined from the ILM to 10 μm above the IPL, while the DVC was defined from 10 μm above the IPL to 10 μm below the OPL (Chen et al., 2020; Zhuang et al., 2020). Finally, the IVC was considered to include both SVC and DVC (Xie et al., 2023), in our case, from ILM to 10 μm below OPL (Hanumunthadu et al., 2021). Figure 2 included SVC, DVC, and IVC examples for an HC’s eye. The FAZ was automatically segmented by the software that accompanies the OCT device after projecting IVC layers. The FAZ area (FAZ_Area), perimeter (FAZ_Perim), acircularity index (AcirIndx), foveal area density (FD_300_Area_Density), and foveal length density (FD_300_Length_Density) were extracted automatically by the software. Notably, FD_300 indicates density at a distance of 300 μm from the FAZ (Çolak et al., 2021) and ignores the FAZ yet evaluates around it in IVC layers (Çolak et al., 2021).

[image: Three retinal images labeled A) SVC, B) DVC, and C) IVC. Each panel shows varying levels of vascular detail, with prominent blood vessel patterns radiating from a central dark spot in the eye.]

FIGURE 2
 Examples of optical coherence tomography angiography (OCTA) scans: (A) superficial vascular complex (SVC) from inner limiting membrane (ILM) to 10 μm above the inner plexiform layer (IPL), (B) deep vascular complex (DVC) from 10 μm above IPL to 10 μm below outer plexiform layer (OPL), (C) inner vascular complex (IVC) from ILM to 10 μm below OPL.




2.3 Scan exclusions

The quality of the OCTA scans was inconsistent due to artifacts and noise. The signal strength index (SSI), which is a numeric grade between 0 and 100 indicating the scan quality (Yu et al., 2019), was initially used to exclude lower quality scans, specifically, SSI <40 (Ali et al., 2020; Zhang et al., 2015; Tang et al., 2017; Tanga et al., 2015). If both eyes’ OCTA images met the quality criteria, one eye was randomly chosen for analysis. Otherwise, only the eye with sufficiently high-quality OCTA images was selected for analysis.



2.4 Retinal biomarkers

The OCT/OCTA scans were grouped into optic disc (3D disc, angio disc, optic nerve head) and fovea-centered (ganglion cell complex, angio retina, retina map) categories. This study analyzed only retinal parameters automatically extracted by commercial software, grouped into ganglion cell complex (GCC), optic nerve head (ONH), Macula_3mm, Retina3DFlowDensity, and Retina Map.


2.4.1 ONH related parameters

ONH-based parameters included optic disc analysis and peripapillary retinal nerve fiber layer (pRNFL) thickness. Optic disc analysis included optic disc area/volume, cup area/volume, rim area/volume, and cup-to-disc (area, horizontal, and vertical) ratios. The pRNFL thickness was measured in hemisphere S (S-Hemi) and hemisphere I (I-Hemi) in Figure 3A and the average pRNFL thickness (González-García et al., 2009). Additionally, other pRNFL regions included quadrants-based Superior (S), Inferior (I), Temporal (T), Nasal (N), in Figure 3B, as well as supertemporal (ST), superonasal (SN), inferotemporal (IT), inferonasal (IN), nasal upper (NU), nasal lower (NL), temporal upper (TU), and temporal lower (TL) in Figure 3C.

[image: Diagram showing three concentric circle models labeled A, B, and C. Model A is divided into superior (S-Hemi) and inferior (I-Hemi) hemispheres. Model B divides into four quadrants: superior (S), temporal (T), inferior (I), and nasal (N). Model C further divides each quadrant into subsectors: superior temporal (ST), superior nasal (SN), nasal upper (NU), nasal lower (NL), inferior nasal (IN), inferior temporal (IT), temporal lower (TL), and temporal upper (TU). Each model has an optic disc in the center, with scale bars indicating 2 millimeters and 4 millimeters.]

FIGURE 3
 ONH partitioning methods. (A) Hemisphere S (S-Hemi) and hemisphere I (I-Hemi). (B) Superior (S), inferior (I), temporal (T), nasal (N) quadrants. (C) Supertemporal (ST), superonasal (SN), inferotemporal (IT), inferonasal (IN), nasal upper (NU), nasal lower (NL), temporal upper (TU), and temporal lower (TL).




2.4.2 GCC related parameters

GCC-based parameters evaluated retinal thickness (μm) in Inner_Retina [ILM to 10 μm below OPL (Hanumunthadu et al., 2021)], Full_Retina [ILM to RPE/BRM complex (Hanumunthadu et al., 2021)], and Outer_Retina [10 μm below OPL to RPE/BRM complex (Venkatesh et al., 2019; Ye et al., 2020)]. GCC-parameters, following Figure 4, included average, S, I, and S-I thicknesses for Inner_Retina, Full_Retina, and Outer_Retina layers definitions (Hanumunthadu et al., 2021; Venkatesh et al., 2019; Ye et al., 2020; Rao et al., 2010). RTVue software also provided global loss volume (GLV), focal loss volume (FLV), and root mean square (RMS) (Rao et al., 2010).

[image: A circle divided into two halves with a horizontal line. The top half is labeled "GCC S" and the bottom half "GCC I." Below the circle is a horizontal green line marked "6mm."]

FIGURE 4
 GCC partitioning methods. Superior (S) and inferior (I) partitions.




2.4.3 Retina map-related parameters

The retina map measured retinal OCT thickness (μm) and volume (mm3) around the fovea using 1 mm, 3 mm, and 5 mm circles. In Figure 5, foveal thickness/volume was denoted by Fovea, while quadrants of (S3, I3, T3, N3) and (S5, I5, T5, N5) corresponded to parafovea and perifovea, respectively. Also, in Figure 5, hemispheres S_Hemi3 and I_Hemi3 represented 3 mm rings (Para), while S_Hemi5 and I_Hemi5 indicated 5 mm rings (Peri). Additionally, parafovea was the combined S_Hemi3 and I_Hemi3, while perifovea was the combined S_Hemi5 and I_Hemi5. The retina map (μm/mm3) was calculated in Inner_Retina and Full_Retina layers, similarly to GCC parameters, as well as in RPE thickness (Elevation).

[image: Illustration showing a retinal scan alongside two diagrams of concentric circles. The scan includes labeled regions: F for fovea, surrounded by N3, T3, S3, and I3, and further divided by outer circles (N5, T5, S5, I5). Adjacent diagrams label similar regions with measurements 1 mm, 3 mm, and 5 mm marked below.]

FIGURE 5
 Retina map partition method. Left/Middle: Fovea (F), superior (S), inferior (I), temporal (T), nasal (N) quadrants in the inner ring (3 mm) and outer ring (5 mm). Right: Superior and inferior hemispheres in the inner ring (3 mm) and outer ring (5 mm).




2.4.4 Retina3DFlowDensity related parameters

Retina3DFlowDensity investigated retinal VD changes using 3 mm quadrants and hemispheres (S and I) partitioning. The analysis also included Whole_Image, differing from Early Treatment of Diabetic Retinopathy Study (ETDRS) by including the fovea region (Savastano et al., 2021). Whole_Image was further split into S_Hemi3 and I_Hemi3. Additionally, VD changes in the 3 × 3 grid G and foveal density (FD_300) were also examined as part of Retina3DFlowDensity parameters, as illustrated in Figures 6A–D. FD_300 zone was used to compute FD_300_Area_Density and FD_300_Length_Density. Other Retina3DFlowDensity parameters include Fovea, FAZ_Area, FAZ_Perim (Mo et al., 2016), and AcirIndx (Tam et al., 2011). Importantly, VD was computed for various retinal layers (SVC, DVC, IVC) defined in Figure 2.

[image: Four diagrams illustrate different anatomical segmentations of a retinal image. Panel A shows the fovea, divided into sectors labeled S, N, I, and T. Panel B divides the fovea into superior and inferior hemispheres. Panel C grids the area into nine labeled sections from G11 to G33. Panel D highlights the foveal avascular zone within a circle. Each diagram includes scale markers for 1 millimeter and 3 millimeters.]

FIGURE 6
 Various partitioning methods adopted by Optovue software around the fovea, (A) superior (S), inferior (I), temporal (T), nasal (N) quadrants; (B) superior (S-Hemi) and inferior (I-Hemi) hemispheres; (C) 3 × 3 grid sections; (D) foveal density 300 μm (FD_300) around fovea used to compute FD_300_Area_Density and FD_300_Length_Density.




2.4.5 Macula_3mm related parameters

Macula_3mm parameters evaluated retinal thickness/volume changes in various quadrants and layers (ILM to IPL, ILM to RPE, ILM to BRM, and RPE to BRM). Following Figures 6A,B, thickness/volume analyses for distinct layers definitions included Center_1 (1 mm foveal ring), quadrants (S, I, T, N) in the 3 mm ring excluding 1 mm (1minus3), S and I hemispheres in 1minus3, and combined hemispheres (All_1minus3). Additionally, following Figure 4, thickness/volume analyses for distinct layers definitions involved S and I hemispheres field, where “field” indicated the inclusiveness of Center_1 region.




2.5 Overall statistical analysis


2.5.1 Data imputation and selection

The R mice package (multivariate imputation by chained equations) was used to deal with missing values (van Buuren and Groothuis-Oudshoorn, 2011). A maximum threshold value of 50 percent was adopted as the limit for data eligibility for multiple imputations (Mishra and Khare, 2014; Mera-Gaona et al., 2021), with the number of iterations and multiple imputations set at 5. Interestingly, the number of missing values was ≤16% for certain parameters. The multiple imputation method was set as “default” using predictive mean matching for numeric data, logistic regression imputation for binary data with a factor of 2 levels, polytomous regression imputation for unordered categorical data (factor >2 levels), and a proportional odds model for (ordered, factor >2 levels) (Mishra and Khare, 2014). Once the En-Face Angio scans were selected for all classes, then these Angio scans were used to select the corresponding OCT/OCTA extracted parameters’ values. Basically, each Angio scan involves the patient’s ID and visit date/time, which were used to extract machine parameters associated with such conditions.



2.5.2 Statistical analysis

The Shapiro–Wilk test was used for normality (Shapiro and Wilk, 1965). Non-normal parameters were tested with Kruskal–Wallis (Kruskal, 1952) to find significance among AD, MCI, and HCs. Normal parameters underwent Bartlett’s test for homogeneity of variance (HOV) (Bartlett, 1937). If Bartlett’s p-value >0.05, one-way ANOVA was used, assuming equal variances (Bartlett, 1937). Both Bartlett and Shapiro–Wilk ensured HOV and normality, respectively, as conjoined conditions for the ANOVA test. If Bartlett’s p-value ≤0.05, indicating unequal variances, Welch’s ANOVA was used (Delacre et al., 2019).



2.5.3 Post-hoc analysis

After finding certain parameters to be significant (pvalue <0.05), further examination should be carried out to investigate differences between the groups (Allen, 2017). Post-hoc analysis was used to determine which two groups correlate most with significant parameters (Allen, 2017). The Mann–Whitney U test was used for non-normal parameters across group combinations (Dem vs. MCI, Dem vs. HCs, MCI vs. HCs) (Sainani, 2012; Field, 2017). For normally distributed parameters, Dunnett’s test was used for failed HOV (Ruxton and Beauchamp, 2008; Hoffman et al., 2008), while the Tukey-HSD test was used for satisfied HOV (Abdi and Williams, 2010). The Mann–Whitney test results were adjusted for multiple comparisons, consistent with the adjustments made for Dunnet and Tukey’s tests.



2.5.4 Age-related analysis

To explore correlations between parameters and age, statistical analysis was performed using the HCs group. Pearson correlation was used for parameters with normal and linear distributions (Sedgwick, 2012), while the Spearman non-parametric test was used for non-linear and non-normal parameters. Shapiro–Wilk and Kolmogorov–Smirnov were used to test for normality (Shapiro and Wilk, 1965) and linearity (Hong-Zhi and Bing, 1991), respectively. Parameters with Pearson or Spearman of pvalue ≤0.05 were considered significantly correlated with age. This method was repeated for all the parameters.



2.5.5 Generalized linear model


2.5.5.1 Target variable: MMSE

A generalized linear model (GLM) based on Tweedie regression (TW-GLM) was implemented, following Moss (2020) and IBM-Corp (2021), to model the relationship between OCT/OCTA parameters and MMSE score. Tweedie regression was chosen for its ability to handle varying variances (Bonat and Kokonendji, 2017). Then, the MMSE score served as the dependent variable, gender as a categorical factor, and the studied parameters as covariates. A Type-III analysis of a 95% confidence interval was performed (Moss, 2020) because this method is widely applied in general cases and does not involve prior assumptions about the order of predictors (IBM-Corp, 2024). Age was included as an offset variable to account for scaling effects without estimating its independent contribution (IBM-Corp, 2023). The analysis was corrected for age effects on predictors (Field, 2017). The detailed results of OL-GLM can be found in section 1 of Supplementary material D.



2.5.5.2 Target variable: classes

The original class variable was converted into numerical equivalent values “Class_Num” such that HCs, MCI, and Dem groups were given 0, 1, 2, respectively. Therefore, we implemented another ordinal logistic GLM (OL-GLM), following Moss (2020) and IBM-Corp (2021), to model OCT/OCTA parameters against Class_Num. A Type-III analysis of a 95% confidence interval was performed (Moss, 2020). Age was included as an offset variable to account for scaling effects without estimating its independent contribution (IBM-Corp, 2023), while gender and eye pathologies were added as OL-GLM confounding factors (IBM-Corp, 2021; IBM-Corp, 2023). The analysis was indeed corrected for age, gender, and eye pathology effects on predictors (Field, 2017).

While developing OL-GLM, we categorized the parameters hierarchically into primary types: ONH, GCC, Macula_3mm, Retina3DFlowDensity, and Retina Map. The parameters related to the retina map were further divided, to avoid intercorrelated parameters, into three subcategories: (a) Inner Retina Thickness parameters, (b) Inner Retina Volume parameters, and (c) Full Retina Thickness/Volume and RPE parameters. The detailed results of OL-GLM can be found in section 2 of Supplementary material D.




2.5.6 Sample size calculation

Sample size calculation for 90% power was based on the effect size (Δ or Cohen’s d) from the systematic review and meta-analysis conducted by Thomson et al. (2015), which revealed a weighted mean difference (WMD) of 12.44 μm in pRNFL thickness between AD patients and HCs. We can proceed with a sample size calculation described by Equation 1:

[image: Sample size equation: \( n = \left( \frac{Z_{\alpha/2} + Z_{\beta}}{\Delta / \sigma} \right)^2 \).]

where Zα/2 = 1.96 for a two-tailed test at a 5% significance level (α = 0.05), Δ = 12.44 μm (effect size), σ = 15 μm (assumed standard deviation). Additionally, to calculate the sample size with 90% power instead of 80%, the Z-value for 90% power (Zβ) should be 1.28 instead of 0.84 (Whitley and Ball, 2002; Flahault et al., 2005). Substituting the previous values into Equation 1, we get n = 15.28. Therefore, approximately 16 subjects per group were required to achieve 90% power to detect a weighted mean difference (WMD) of 12.44 μm in pRNFL thickness, assuming a standard deviation of 15 μm.





3 Results

Seven hundred and twenty seven OCT/OCTA scans were acquired from participants’ both eyes, including 120 (6 + 114), 304, and 303 scans from Dem (eAD + AD), MCI, and HCs, respectively. After excluding lower-quality scans and selecting one eye per participant, 357 participants’ scans remained for the analysis: Dem (eAD + AD), MCI, and HCs of 44 (3 + 41), 139, and 174, respectively. The demographic information of the cohort neuropsychological evaluation results is all shown in Table 1.



TABLE 1 Demographic information and clinical characteristics of the cohort analyzed in this study.
[image: Table comparing demographics and eye pathology among three groups: Dementia (DEM, N=44), Mild Cognitive Impairment (MCI, N=139), and Healthy Controls (HCs, N=174). Key metrics include a higher male-to-female ratio, eye pathology occurrence percentage, specific pathologies, and cognitive assessments (MMSE, FAB, Apathy Scale). Statistically significant values, indicated in bold, highlight differences across groups, particularly in demographics and cognitive scores. P-values suggest significant differences in gender distribution, age, MMSE, FAB, and Apathy Scale across groups.]

The detailed findings of initial statistical analysis, post-hoc analysis, age-related analysis, and GLM results (TW-GLM and OL-GLM) can be found in Supplementary material A–D, respectively. We shall only describe the main results in the next section.


3.1 Statistical analysis results of OCT/OCTA parameters across Dem, MCI, and HCs


3.1.1 ONH, GCC, and Macula_3mm

CupVolume and pRNFL thickness in the SN1 sector showed statistical significance (p = 0.048 each). ONH CupVolume decreased, while pRNFL thickness increased in the Dem and MCI groups compared to HCs. Other ONH, GCC, and Macula_3mm parameters were not significant (p-value >0.05) when comparing the three groups.



3.1.2 Retina map

The Inner_Retina layers in the retina map showed significant thinning in parafovea, S_Hemi3, N3, perifovea, I_Hemi5 sections for Dem and MCI, with no significant changes in other parafovea and perifovea quadrants. Moreover, significant Inner_Retina volume reduction was observed in parafovea, S_Hemi3, I_Hemi3, S3, I3, T3, perifovea, S_Hemi5, I_Hemi5, S5, and N5 partitions for Dem and MCI groups; however, other quadrants’ volume changes were not significant.

Only T3 quadrant of Full_Retina showed a significant volume reduction in Dem and MCI groups compared to HCs, with negligible volume/thickness parameters in other Full_Retina quadrants. The RPE thickness (Elevation) was significantly thinner for the Dem and MCI groups only in I3 quadrant, with negligible changes in other quadrants. Figure 7 illustrates an example of significant parameters in the inner retina, with the green-shaded areas indicating statistical significance (p < 0.05), computed following methods outlined in section 2.5.2 across the three groups.

[image: Two diagrams illustrating different ring structures around the fovea. The left diagram shows concentric green rings labeled "Fovea," "S - Hemi₅," "S - Hemi₃," "I - Hemi₃," and "I - Hemi₅." The right diagram shows partially filled green rings labeled "Fovea," "S₅," "S₃," "N₅," "N₃," "T₅," "T₃," "I₅," and "I₃."]

FIGURE 7
 Significant volume changes of retina map parameters in the inner retina for Dem and MCI compared independently against HCs, highlighted in green.




3.1.3 Retina3DFlowDensity

The significant parameters included SVC VD decline in Whole_Image, Whole Image in S_Hemi3 and I_Hemi3 for Dem and MCI groups. Significant Retina3DFlowDensity parameters within the 3 mm ETDRS grid included SVC VD decrease for Dem and MCI patients in parafovea/inner ring across all quadrants (S3, I3, T3, N3), parafovea S_Hemi3 and I_Hemi3 parts, and the full SVC parafovea. Furthermore, the SVC VD of Whole 3 mm ETDRS was significantly reduced for the Dem and MCI groups. However, SVC_L1_Fovea, representing Fovea VD, was insignificant in group comparisons.

The other significant parameters of Retina3DFlowDensity following the 3 × 3 grid were SVC VD diminution of G11 throughout G33 parts for Dem and MCI patients. Notably, most significant parameters in SVC layers were also significant in DVC layers; however, the DVC VD of Fovea, parafovea S_Hemi3, and S3 failed to reach statistical significance. Other negligible Retina3DFlowDensity parameters in DVC following the 3 × 3 grid were G12, G13, G22, and G23. Both FD_300_Area_Density and FD_300_Length_Density were significantly lowered for Dem and MCI patients against HCs, while variations in FAZ_Area, FAZ_Perim, and AcirIndx lacked statistical significance. Figure 8 illustrates significant parameters with green shades indicating statistical significance (p < 0.05)

[image: Two green grids and a circular diagram are displayed. The first grid is fully green with nine labeled sections. The second grid highlights four green sections and four white sections labeled G11, G12, G21, G22. The circular diagram, labeled "Fovea," is divided into four segments: S, N, T, I, with measurements of one millimeter and three millimeters indicated.]

FIGURE 8
 Retina3DFlowDensity significant parameters for Dem and MCI compared to HCs highlighted in green, from left to right: SVC 3 × 3 grid sections, DVC 3 × 3 grid sections, quadrants-based in DVC.





3.2 Post-hoc results


3.2.1 Post-hoc after significant parameters


3.2.1.1 All three comparisons—significant parameters

The analysis of parameters showed a significant SVC VD deterioration in G12, G21, G31, and G33 sections based on a 3 × 3 grid from Retina3DFlowDensity analysis for all group comparisons. Other significant parameters included lower SVC VD in parafovea hemispheres S and I, full parafovea, S3, I3, N3, and whole 3 mm ETDRS. Moreover, whole image analysis revealed a significant SVC VD decline in Whole_Image and its split into hemispheres S and I. Additionally, Length_Density of FD_300 was significantly lower in all comparisons.



3.2.1.2 Dem vs. HCs & Dem vs. MCI comparisons—significant parameters

For Dem vs. HCs and Dem vs. MCI comparisons, significant Retina3DFlowDensity parameters included only DVC VD decline at G31, G32, and G33 sections, I3 quadrant, Whole 3 mm ETDRS, Whole_Image in hemispheres S and I, Whole_Image, and SVC VD decline at G13 section. In conjunction with the retina map, significant correlations in Dem vs. HCs and Dem vs. MCI comparisons included volumetric reductions in S_Hemi3, I_Hemi3, parafovea, T3, S_Hemi5, and perifovea parts of Inner_Retina layers.



3.2.1.3 Dem vs. HCs & MCI vs. HCs comparisons—significant parameters

Additional Retina3DFlowDensity parameters were significant only in specific comparisons (Dem vs. HCs & MCI vs. HCs), including SVC VD decrease at G11, G23, and G32 sections, and T3 quadrant.



3.2.1.4 Only certain comparisons—significant parameters

Other significant Retina3DFlowDensity parameters for the Dem vs. HCs differentiation task included DVC VD reduction at T3 and N3 quadrants, I_Hemi3, parafovea, G11, G21 sections, and FD_300 Area_Density. Notable retina map parameters discriminating Dem vs. HCs of Inner_Retina layers included volumetric shrinkage in [image: Mathematical symbol \(S_3\), often representing the symmetric group on three elements.], [image: Mathematical notation depicting the identity matrix of size three by three, represented with the letter "I" and a subscript number "3".], [image: Text displaying "I _ Hemi₅" with an underscore between "I" and "Hemi₅".], [image: The image shows the mathematical notation \( S_5 \), representing the symmetric group on five elements.], [image: Mathematical notation representing set notation "N" with a subscript "5", indicating a specific subset or version.] parts, as well as thickness thinning in [image: Text showing "S_{Hemi3}" with the subscript "Hemi3" positioned after the letter "S".], [image: Text "I_Hemi₅" with a subscript "5" following "Hemi".], parafovea, [image: Stylized letter "N" with a subscript "3" representing a mathematical or scientific notation.], and perifovea parts. Additionally, only [image: The matrix \( I_3 \) is a three by three identity matrix with ones on the diagonal and zeros elsewhere.] quadrant of the RPE thickness (Elevation) parameter was significantly smaller for the Dem group. Compared to HCs, ONH parameters showed significant pRNFL thickening in the SN1 sector for MCI and substantial volumetric reduction in ONH Cup Volume for Dem.




3.2.2 Post-hoc of non-significant parameters

Despite the initial lack of significance, certain parameters may show notable significance in specific comparisons. Post-hoc analysis revealed significant GCC parameters, including average thickness reduction at Full_Retina in S for MCI vs. HCs, and thickness decrease at Inner_Retina in S-I quadrant for Dem vs. MCI. Other significant ONH parameters included an increase of rim area and optic disc volume for Dem vs. HCs.

Contrary to initial results, certain Macula_3mm parameters showed statistical significance, including volume reductions ([image: "mm³"]) from ILM to RPE layers at [image: Text depicting the notation "S_{Hemi_3}" with a subscript.] and N parts, both under [image: Text reading "1 minus 3" in a mathematical expression format.] definition, when comparing Dem vs. HCs. Significant Retina3DFlowDensity parameters emerged from post-hoc analysis, including DVC VD reduction at [image: Text reads "S\_Hemi₃" with a subscript "3" after "Hemi".], G13, and G23 sections for Dem vs. HCs.

The post-hoc analysis also identified significant retina map parameters such as volumetric reduction in [image: Text displaying "S\_Hemi₃" with the '3' in subscript.], [image: Text displaying "S_\text{Hemi}_5" with subscript text "Hemi" and the number "5".], and [image: Stylized letter "T" with a subscript "5", suggesting a mathematical or scientific notation.] parts of Full_Retina layers, and shrinkage in [image: Mathematical notation of the identity matrix \(I_5\), representing a \(5 \times 5\) matrix with ones on the diagonal and zeros elsewhere.] and [image: The image shows the mathematical expression T subscript 5, indicating a term in a sequence or series labeled as T with the index 5.] quadrants of Inner_Retina for Dem vs. HCs. Moreover, other retina map parameters, including notable thickness reduction of Inner_Retina layers in [image: Text depicting a chemical formula with the symbol I subscripted with an underscore and Hemi subscripted with the number three.], [image: Mathematical notation showing the symbol "S" with a subscript "3".], [image: Stylized black capital letter "I" followed by the subscript number 3, giving the appearance of a mathematical or symbolic notation.], [image: Text reading "S\(_{\text{Hemi}_5}\)".], and [image: Could you please upload the image or provide a URL, so I can assist you with creating the alt text?] parts for Dem vs. HCs. Lastly, only [image: Mathematical notation showing the symbol for natural numbers with a subscript five.] section of RPE thickness (Elevation) was significantly reduced in Dem vs. MCI.




3.3 Age-related analysis results

Data from 174 HCs were analyzed with demographic age from 56 to 94 years, and [image: Text showing "mean ± standard deviation".] of [image: Mathematical expression showing the number seventy-nine plus or minus five point nine.] years. None of the studied parameters met linearity and normality conditions for Pearson parametric testing (Sedgwick, 2012), and hence, Spearman non-parametric testing was used. Notably, age was majorly correlated with macular thickness/volume and VD-based parameters, with no correlations with FAZ area changes. To avoid a lengthy discussion, we will discuss only a few age-related parameters that we believe will help in clarifying a few discrepancies between our results and those in the literature.



3.4 GLM results


3.4.1 Target variable: MMSE

Age was heavily correlated with OCT/OCTA parameters, and hence, it was used as an offset variable to correct age effects on predictors (Field, 2017). The TW-GLM identified many parameters correlated with the MMSE score, and we shall highlight key associations only.

In terms of GCC-based parameters, a lower MMSE score was correlated with inferior thinning in [image: Text reading "(Inner, Full, Outer)_Retina" in a stylized font.], and superior thinning in [image: Text reads "(Inner, Full) _ Retina" in a stylized font.]. Other significant associations with lower MMSE included average S-I thickness in [image: Text showing "(Full, Outer)_Retina" in a stylized font.] and FLV, GLV, RMS, and average Inner_Retina thickness.

ONH-based parameters were correlated with MMSE decline, except for vertical cup-to-disc ratio as well as rim and disc volumes. The pRNFL thickness parameters were correlated with MMSE, except for these sections: T, S, NL, TL, ST2, NL1, NL2, IN2, IN1, IT2, and TL1.

Macula_3mm parameters correlated with MMSE decline, with a few exceptions described in Supplementary material D. VD, changes around the fovea were significantly associated with MMSE decline, except for FAZ area changes that will be discussed further.

Retina map age-corrected parameters that were correlated with MMSE decline included Inner_Retina thickness thinning ([image: Mathematical notation "T" with a subscript "3" in a serif font.], [image: Stylized text depicting "T" subscript "5" in a serif font.], [image: Matrix diagram showing a five-by-five identity matrix with diagonal ones from top left to bottom right and zeros elsewhere.]), Inner_Retina volume reductions ([image: The image shows a stylized letter "N" with a subscript "3".], [image: A mathematical expression showing the identity matrix \( I \) with a subscript of \( 5 \), indicating a \( 5 \times 5 \) matrix with ones on the diagonal and zeros elsewhere.]), Full_Retina thickness decrease (ParaFovea, PeriFovea, [image: Text displaying "S\_{\text{Hemi}_3}" with emphasis on subscripts and formatting.], [image: Title "T" with a subscript "3".], [image: Mathematical notation showing an uppercase "S" with a subscript "3".], [image: Text depicts "T" with a subscript "5" in a serif font.], [image: A mathematical symbol "N" with a subscript 5 indicating a set or sequence, displayed in a stylized font.], [image: Matrix \(I_5\) is a five-by-five identity matrix with ones along the main diagonal and zeros elsewhere.]), and Full_Retina volume reduction ([image: Text displaying "S underscore Hemi subscript three."], [image: Text displaying "I" followed by an underscore and "Hemi" with a subscript three.], [image: Mathematical notation showing the symbol "S" with a subscript "3".], [image: Matrix illustration displaying a three-by-three identity matrix. The matrix contains three rows and three columns. Each diagonal element is one, and all other elements are zero.], [image: The image shows the letter "T" followed by a subscript "3".], [image: The image shows a stylized mathematical symbol for natural numbers denoted as "N" with a subscript "3" indicating a specific subset or context within the natural numbers.]). These findings are interesting since the initial statistical results correlated only Full_Retina volume decrease with cognitive decline among the groups.



3.4.2 Target variable: classes

The OL-GLM demonstrated no correlation of GCC-related parameters against class variables, which aligned with our initial statistical analysis results.

Interestingly, our OL-GLM showed a significant correlation between class variables against many of ONH-based parameters, which is surprising since our initial analysis only found an association between class variable against CupVolume and SN1 pRNFL thickness. These inconsistencies will be discussed in section 4.3.

Parameters based on Macula_3mm were correlated with class variables. Some of these parameters following ILM to IPL layer definition (Tao et al., 2019; Zhang et al., 2019; Yang et al., 2022) include significant thickness reduction in the S hemisphere (1minus3 defined in section 2.4.5) and in the whole field (without partitions). Additional Macula_3mm parameters (ILM to IPL layers) include volumetric reduction of N and I-Hemi sections (1minus3) and the S and I hemispheres field (defined in Figure 4). On the contrary, the class variables studied by OL-GLM was associated with other Macula_3mm parameters (ILM to BRM layer definition) including a significant thickness thinning in [image: The text "Center_1" in a serif font, slightly blurred on the edges.], T and I (1minus3 definition), S and I hemispheres (1minus3), S and I hemispheres field (defined in Figure 4) sections, as well as in the whole field (without partitions). Moreover, following ILM to BRM layer definitions, the class variables analyzed by OL-GLM was also correlated with a notable volumetric shrinkage in [image: The text "Center_1" is displayed in a black serif font with an underscore between "Center" and "1", on a white background.], I (1minus3), S-Hemi (1minus3), S-Hemi field (defined in Figure 4), as well as in the whole field (without partitions).

In terms of parameters related to retina map with Full_Retina layers definition, the OL-GLM linked class variables with significant thickness/volume reduction in [image: The word "fovea" is displayed in a serif typeface, indicating a label or term, possibly related to anatomical or visual concepts.], [image: Text showing "I" followed by a box containing the word "Hemi" and the subscript "3".], [image: Capital letter "I" followed by a subscript "3".], and whole perifovea sections. Moreover, the class variable was also associated with a notable thinning in whole parafovea, [image: Text reads "S\textsubscript{Hemi\textsubscript{5}}" in a serif font.], [image: Text "I\textsubscript{Hemi\textsubscript{5}}" shown in a stylized font.], [image: Mathematical notation "S" with a subscript "5" indicating an element or sequence indexed by 5.], and [image: Stylized mathematical notation depicting the uppercase letter 'T' with a subscript '5' in a serif font.] sections. Additionally, the OL-GLM associated class variables with a prominent volumetric decrease in [image: Text displaying "S" with a subscript "3", likely denoting a mathematical concept or chemical notation.], [image: The image shows the capital letter "T" with a subscript number "3".], [image: The image shows a black letter "N" with a subscript "3", indicating N subscript three.], and [image: Mathematical notation showing the symbol "N" with a subscript "5".] sections. On the other hand, the OL-GLM correlated class variables with retina map parameters in Inner_Retina layers definition. Specifically, a significant thinning in [image: Text displaying the word “fovea” in a serif font.], parafovea, [image: Text reads "S\_Hemi\_3."], [image: Stylized letter "N" with a subscript "3".], [image: Mathematical notation with a bold capital T followed by a subscript 3.], and [image: White mathematical symbol "I" with subscript 3 in bold black text.] sections were linked with class variables. Moreover, class variables was associated with prominent Inner_Retina volumetric reduction observed in [image: Text displaying the word "fovea" in a serif font style.], parafovea, [image: Text displaying the mathematical term "S subscript Hemi subscript 3," indicating specific notation likely related to a mathematical or scientific concept.], [image: Text showing "I" labeled as "Hemi₃" with a small subscript numeral three.], [image: The mathematical expression shows "N subscript 3, T subscript 3" in bold font.], perifovea, [image: Text "S\_{Hemi_{5}}" with "S" followed by a subscript indicating a five-membered hemiacetal group.], [image: Text showing the phrase “I-Hemi₅” with a subscript number five.], [image: Mathematical expression showing the factorial notation "S" with a subscript "5", indicating the symmetric group on five elements.], [image: Matrix notation of an identity matrix with subscript five, indicating a five-by-five matrix.], [image: The image shows the mathematical notation "T" with a subscript "5".], and [image: Mathematical notation of the set of natural numbers, denoted as a stylized uppercase letter "N" with a subscript "5", indicating a specific subset or context.] partitions.

Following RPE thickness (Elevation) assessment, the OL-GLM related class variables with significant thinning in [image: Mathematical notation showing the identity matrix of size three, denoted as capital I with a subscript three. This represents a three-by-three matrix with ones on the diagonal and zeros elsewhere.] section, which is in line with our initial analysis. However, OL-GLM also found an association between class variables with notable thinning in [image: Mathematical notation showing the letter T with a subscript 3, typically representing a variable or element in a sequence or series designated as T sub 3.], [image: Stylized letter "T" followed by the subscript number "5", possibly representing a specific variable or concept in a mathematical or scientific context.], [image: Mathematical notation displaying the symmetric group symbol \(S_5\), representing permutations of five elements.], and [image: Matrix denoting the identity matrix \( I_5 \), a five-by-five square matrix with ones along the diagonal and zeros elsewhere.] sections.

Next, the class variables by OL-GLM was linked to most parameters based on Retina3DflowDensity. This indicates the importance of VD changes in SVC/DVC layers even after adjusting for confounding factors like age, gender, and eye pathologies. It is fair to say that the OL-GLM results are more reliable than the initial statistical results due to the necessary adjustments that were applied.

Moving our attention to Retina3DflowDensity parameters, the OL-GLM correlated these parameters with class variables. Some of these correlations agreed with our initial statistical analysis; however, OL-GLM discovered more parameters. A detailed description of the discrepancies between both methods (initial statistical analysis against OL-GLM) can be found in discussion section 4.1.3.





4 Discussion

Retinal biomarkers were analyzed to find their relationship with three groups (Dem, MCI, HCs) and with MMSE score. This section will compare our findings against similar studies in the literature, grouping parameters to facilitate a clear discussion.


4.1 Microvascular density changes against the literature


4.1.1 General VD alterations

Research conducted by Chua et al. (2020), Bulut et al. (2018), Sadda et al. (2019), and Salobrar-Garcia et al. (2020) studied VD alterations in various layers’ definitions; however, only Bulut et al. (2018) used a similar SVC layer definition to ours. Our findings demonstrated substantial VD decline of Whole_Image and parafovea in SVC layers for Dem vs. HCs, aligned with Bulut et al. (2018). However, Bulut et al. (2018) also found a significant [image: Text reads "fovea" in a serif font style.] VD decrease in SVC layers for Alzheimer’s type dementia; unlike our initial and post-hoc analyses. Bulut et al. (2018) excluded patients with macular pathologies, whereas our cohort included them due to old-aged participants, with the majority of them having eye pathologies.

Although our study followed definitions of SVC/DVC layers, it was worth discussing other works in the literature that adopted slightly different definitions of retinal layers. Importantly, Chua et al. (2020) showed a significant VD loss in superficial capillary plexus (SCP) deep capillary plexus (DCP) layers for AD against HCs. Notably, SCP and DCP layers were defined by Chua et al. (2020) and Zhang et al. (2019) from ILM to IPL and INL to OPL, respectively. The other study by Zhang et al. (2019) revealed significant VD reduction in SCP layers at parafovea, matching our results. Despite different SCP layer definitions by Chua et al. (2020) and Zhang et al. (2019), the findings emphasize parafovea VD changes in superficial layers and their correlation with cognitive decline.



4.1.2 VD changes in certain sectors

Our initial findings agreed with Yan et al. (2021) that significant VD reductions in SVC (parafovea, [image: Text appears to show a mathematical or scientific expression with "I" followed by a long dash or underscore and "Hemi" with a subscript "3".], [image: Stylized letter "T" with a subscript "3", resembling a mathematical or chemical notation.], [image: Stylized letter "N" with a subscript "3".]) and in DVC ([image: The image shows a chemical notation "I_Hemi₃" indicating a compound, with "Hemi" and the subscript "₃" next to the element symbol "I".], [image: Text showing the uppercase letter "T" with a subscript number "3".]) were associated with AD compared to HCs. Our results further highlighted a notable VD decrease in SVC layers, specifically in [image: Text displays "S\text{ }_{3} \text{Hemi} _{3}".], [image: The mathematical notation "S subscript 3" is depicted in the image, indicating a group or set labeled as S with the subscript 3.], and [image: Mathematical notation showing the identity matrix of size three, represented by the letter "I" with a subscript of three.]. Additionally, a prominent VD decline was observed in DVC layers within parafovea, [image: A stylized letter "N" with a subscript "3," often used to denote a set or sequence in mathematical contexts.], and [image: Identity matrix of size three by three with ones on the diagonal and zeros elsewhere.]. On the contrary, these significant changes in SVC and DVC layers were not significant according to Yan et al. (2021). Intriguingly, both studies (our and Yan et al., 2021) agreed on minor VD changes in [image: Text "fovea" in a serif font style.] at SVC/DVC and in S at DVC between AD and HCs. These results doubt the reliability of VD reductions around the fovea. However, VD changes in specific SVC/DVC sections were reliably correlated with AD.

Wu et al. (2020) explored VD variations in SCP (3 μm below ILM to 15 μm below IPL) and DCP (from 15–70 μm below IPL till OPL) layers, using similar Avanti SD-OCT. Our findings match Wu et al. (2020), showing VD decrease in superficial layers (only [image: Mathematical notation with an italic letter "S" followed by a subscript "3", representing a permutation group or symmetric group on three elements.]), and in deep layers (parafovea, [image: The image shows mathematical symbols \(I_3\) and \(T_3\) in a stylized serif font.], [image: The image shows a stylized symbol "N" with a subscript "3".]) linked to AD compared to HCs. Wu et al. (2020) associated VD decline in [image: Mathematical notation "S" with a subscript "3".] of superficial layers with AD; however, we observed VD decline in superficial layers (parafovea, [image: Text displaying "S\textsubscript{_Hemi\textsubscript{3}}", suggesting a subscript notation with "Hemi" and "3" below the letter "S".], [image: Text showing "I - Hemi₃" with the subscript number three.], [image: Matrix \( I_3 \) is a three-by-three identity matrix, with ones on the diagonal and zeros elsewhere. It is represented as \(\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\).], [image: Mathematical symbol "T" with a subscript "3".], and [image: Black letter "N" with the subscript "3" in a stylized mathematical or typographic format.]) and [image: Text displays "I" underscore followed by "Hemi" subscript "3".] of deep layers. Wu et al. (2020) also found VD decline in [image: Stylized letter "S" followed by a subscript number "3".] of deep layers linked to AD, contradicting our results.

Our research found noteworthy VD decline in all superficial layers’ sections, except for [image: Text image displaying the word "fovea" in a serif font.], for MCI against HCs; however, Wu et al. (2020) did not report similar significant changes. Additionally, both studies (ours and Wu et al., 2020) observed VD decline in [image: A curly symboled "I" with a subscript three, resembling a mathematical or logical notation.] and [image: Mathematical notation showing the letter "T" with a subscript "3."] sections in deep layers for MCI, unlike HCs. Moreover, both studies showed some inconsistencies: (a) prominent deep layers VD decrease in [image: Mathematical notation displaying the group symbol S with a subscript 3, representing the symmetric group of all permutations of three elements.] was linked with MCI in Wu et al. (2020) but not observed in our results; (b) significant deep layers VD decrease in [image: Black letter N with a subscript 3.] was correlated with MCI in our analysis but not significantly in Wu’s et al. (2020) study. These inconsistencies may arise from different layer definitions.

Yang et al. (2022) demonstrated a significant VD decrease in parafovea, [image: Mathematical symbol "S" with a subscript "3".], [image: Three-dimensional icon depicting a capital letter 'I' followed by the subscript number '3', suggesting a mathematical or scientific notation.], [image: Text showing a mathematical notation with the letter "T" followed by a subscript "3".], [image: Mathematical notation of a bold, uppercase "N" with a subscript "3".] sections in SCP/DCP layers for MCI compared with HCs, which is consistent with our findings in superficial layers only.

We found negligible VD changes in all deep layers’ sections between MCI and HCs. Interestingly, the findings of Yang et al. (2022) and our study reported considerable VD decline in FD_300_Length_Density for MCI. Our initial findings of subtle changes in FAZ_Area, FAZ_Perim, and AcirIndx for MCI vs. HCs were also consistent with Yang et al. (2022). Other inconsistencies comparing MCI against HCs, our study showed minor VD changes in FD_300_Length_Density in our study but notable by Yang et al. (2022). Notably, SCP and DCP layers were defined by Yang et al. (2022) from ILM to IPL and from IPL to OPL, respectively. Despite different SCP and DCP layers definitions by Yang et al. (2022) and our SVC and DVC layers definitions, VD changes in superficial layers were similar.



4.1.3 VD changes by GLM targeting class variables

The class variable studied by OL-GLM was correlated with Retina3DflowDensity parameters. Importantly, a few of these parameters were significant in our initial statistical analysis; however, they were not significant by OL-GLM. These parameters were VD changes in SVC (parafovea, [image: Text "S\_Hemi₃" shown in a stylized font, with subscript numbers following "Hemi".], [image: Text with the phrase "I Hemi" followed by a subscript number 3.]) and in DVC ([image: Text reading "Whole_ETDRS" in black font on a white background.]). We believe that these parameters were heavily influenced by confounding factors.

Interestingly, the VD of SVC and DVC following the 3 × 3 grid in all sections were significantly correlated with class variables by OL-GLM, unlike our initial statistical analysis that failed to link cognitive decline with DVC VD decrease in Fovea, parafovea [image: Text showing "S_\text{Hemi3}", indicating a subscript notation with the term "Hemi3" used in a mathematical or scientific context.], and [image: Mathematical expression with a large, stylized letter S and subscript three.] sections. This indicates that the OL-GLM model, adjusted for confounders, confirmed the association of SVC/DVC VD decline in many sections and captured insights that were missed by traditional statistical analysis methods.

Similarly, the class variables studied by OL-GLM were correlated with notable VD decline in SVC quadrants ([image: Text showing variables with subscripts: S-sub-three, I-sub-three, T-sub-three, N-sub-three.]), in DVC quadrants ([image: Text displaying the characters "S subscript 3, I subscript 3, T subscript 3, N subscript 3".]), as well as a significant decrease in FD_300_Area_Density and FD_300_Length_Density. The same parameters were correlated with MCI by Yang et al. (2022). On the contrary, another research by Yan et al. (2021) confirmed VD decline for the AD group against HCs only in [image: The image shows a mathematical symbol with the letter "T" followed by a subscript "3".] and [image: Mathematical notation of the natural number set symbol "N" with a subscript "3".] sections of SVC and in [image: The symbol "T" with a subscript "3" in a serif font, commonly used to denote a mathematical or scientific term.] section of DVC. This indicates that the reliability of SVC/DVC VD in some sections is questionable for the AD group and more consistent for the MCI group.




4.2 Macular thickness/volume changes against the literature

The initial analysis showed negligible changes in macular thickness parameters. Post-hoc analysis correlated Dem with significant retinal volume reduction for ILM to RPE layers only in the S-Hemi and N quadrants against HCs. However, there is not enough research has discussed such parameters in the literature. On the contrary, our initial findings of negligible changes in macular thickness/volume contradicted the literature. For instance, Garcia-Martin et al. (2016) found thinning in macular RNFL (mRNFL), GCL, IPL, and ONL layers in AD vs. HCs. Similarly, Jáñez-Escalada et al. (2019) indicated a prominent thinning in mRNFL, GCL, IPL, INL layers, and full retinal layers thickness (FRT) (ILM to RPE/BRM) linked with AD. This discrepancy may be due to the use of different devices: Jáñez-Escalada et al. (2019) utilized Topcon spectral domain OCT, whereas we used Avanti SD-OCT. Additionally, age-related analysis linked thickness parameters (ILM to BRM and RPE to BRM) with old age for HCs, impacting parameters’ efficacy for detecting cognitive decline. Software limitations also prevented the analysis of individual layers against Dem and MCI groups.

Parameters based on Macula_3mm were correlated with class variables studied by OL-GLM; however, the initial statistical analysis showed no significant correlation with classes. This indicates that Macula_3mm parameters were heavily affected by many confounding factors (age, gender, and eye pathologies), and using these parameters must be considered cautiously.

Many retina map parameters, especially with Full_Retina layers definition, were correlated with class variables using OL-GLM. These results slightly contradict the initial statistical analysis that correlated classes with only volumetric shrinkage in [image: A small black letter "T" with a subscript number "3" in a serif font, often representing a mathematical notation or variable.] section. Nevertheless, our results were somewhat consistent with Marziani et al. (2013) such that both studies demonstrated a correlation between AD and a prominent thinning in retina map parameters defined by Full_Retina layers, especially in [image: The image shows a graphical depiction of the fovea, highlighting its location as a small depression in the retina where visual acuity is highest.], [image: Matrix notation representing a three-by-three identity matrix, commonly used in linear algebra. It is depicted using the symbol "I" with a subscript "3", indicating its size.], [image: The text shows the letter "T" with a subscript "5" in a serif font.], and [image: The mathematical symbol \( S_5 \) represents the symmetric group of all permutations of five elements.] sections. However, Marziani et al. (2013) also associated AD with notable thinning in other sections of retina map parameters defined by Full_Retina layers. Specifically, a prominent thinning in [image: S subscript three, T subscript three, N subscript three, I subscript five, N subscript five.] sections were correlated with AD. We suspect this discrepancy was caused by slightly different tasks, such that our OL-GLM investigated three classes, while Marziani et al. (2013) investigated only AD against HCs. Notably, initial statistical analysis and OL-GLM results correlated multiple retina map parameters with class variables. However, unlike OL-GLM, the initial statistical analysis in Inner_Retina had minor thickness changes in [image: The text "fovea" in stylized font.], [image: A large uppercase letter "T" with a subscript "3" on the bottom right.], [image: Matrix notation with a bold, uppercase "I" subscripted by the number three, indicating a three-by-three identity matrix.] sections, as well as negligible volumetric alterations in [image: The word "fovea" is displayed in a serif font.], [image: Mathematical notation of the natural numbers set symbol 𝒩 with a subscript 3.], [image: Mathematical notation for the identity matrix of size five.], [image: The image shows a stylized mathematical notation "T" with a subscript "5" in a serif font, often used in academic or technical contexts.] sections. This indicates that the OL-GLM, being adjusted for multiple confounding factors (age, gender, and eye pathologies), managed to unravel more significant retina map parameters associated with cognitive decline.



4.3 Optic disc analysis and peripapillary RNFL thickness changes against the literature

Our initial and post-hoc analyses showed subtle changes in pRNFL thickness (Avg, S, I) between groups, contradicting Tao et al. (2019), Montorio et al. (2022), and Wang et al. (2022) but aligning with Poroy and Yücel (2018) and Almeida et al. (2019). AD in Poroy and Yücel (2018) and MCI in Almeida’s et al. (2019) research had negligible pRNFL (Avg, S, I) thickness changes compared to HCs. In contrast, Tao et al. (2019) found significant pRNFL (Avg, S, I) thinning in AD and MCI compared to HCs, with no differences between AD and MCI groups. Additionally, Wang et al. (2022) noticed a prominent pRNFL (Avg, S, I) thinning in AD against HCs, while the MCI group in Montorio et al. (2022) study also showed significant pRNFL (Avg, S, I) thinning compared to HCs.

Contrary to our initial analysis findings, Yan et al. (2021) reported significant pRNFL thinning (Avg, S-Hemi, I-Hemi, SN, nasal superior (NS), nasal inferior (NI), IN) for AD against HCs. Notably, the NS and NI sections by Yan et al. (2021) aligned with our NU and NL sections in Figure 3C Our initial analysis found significant changes in pRNFL thickness only in the SN1 sector, particularly for MCI, compared to HCs. This new correlation, SN1 pRNFL thickness thickening for MCI, still requires further research.

These major discrepancies between our results and findings in the literature could be explained by OL-GLM results. When applying OL-GLM against class variables, the average and inferior pRNFL thicknesses were significantly reduced against class variables, which was confirmed by Tao et al. (2019), Montorio et al. (2022), Lemmens et al. (2020), and Wang et al. (2022). However, Tao et al. (2019), Montorio et al. (2022), and Wang et al. (2022) also found a significant superior pRNFL thinning, which contradicts our analysis. Upon further investigation, the studied groups by Tao et al. (2019) were aged 71.40 ± 7.82, 71.67 ± 8.04, and 68.91 ± 5.88 for AD, MCI, and HCs, respectively, while the groups by Montorio et al. (2022) were aged 73 ± 6.6 and 72.66 ± 7.05 for MCI and HCs, respectively. Moreover, the groups by Wang et al. (2022) were examined by Cirrus HD-OCT, dissimilar to our Avanti SD-OCT device, and were aged 63.03 ± 9.06 and 61.55 ± 8.92 for AD and HCs, respectively. These groups were relatively younger than ours, with 82.2 ± 6.2, 80.7 ± 5.9, and 79.1 ± 5.9 for Dem, MCI, and HCs, respectively.

Building on previous discrepancies, our OL-GLM also associated significant thickness thinning in average, I-Hemi, NU/NS, and NL/NI pRNFL sections against class variables, which aligned with Yan et al. (2021) findings. However, Yan et al. (2021) also found other significant thickness thinning in S-Hemi, SN, and IN pRNFL sections, which contradicted our analysis. On further review, the groups by Yan et al. (2021), although examined by similar Avanti SD-OCT, were aged 63.89 ± 9.574 and 60.28 ± 7.096 for AD and HCs, respectively. In addition to the groups by Yan et al. (2021) being relatively younger than ours (82.2 ± 6.2, 80.7 ± 5.9, 79.1 ± 5.9 for Dem, MCI, and HCs), Yan et al. (2021) also excluded participants with eye diseases. However, due to our cohort’s being old and having a higher occurrence of eye pathologies, we decided to include these patients and correct these confounders in OL-GLM.

Therefore, the reliability of pRNFL parameters could be affected by using dissimilar OCT machines, comparing cohorts with different age groups, or including eye pathology.

In terms of ONH parameters based on optic disc analysis, the OL-GLM also correlated ONH CupVolume shrinkage with the class variable, similar to our initial statistical analysis. However, the OL-GLM also correlated class variables with other ONH alterations. Specifically, the optic disc area declined for MCI and increased for Dem, and the cup area/volume and cup-to-disc (area, horizontal, and vertical) ratios decreased for both groups. Conversely, the rim area/volume enlarged for Dem and MCI groups against HCs. We believed OL-GLM was able to uncover these correlations due to being corrected for age, gender, and eye pathologies.

In contrast to the literature, Tsai et al. (1991) reported an increased cup-to-disc ratio, cup volume, and decreased disc rim area for the AD group against HCs. Our results agreed with Tsai et al. (1991) only for ONH CupVolume reduction and were inconsistent with the cup-to-disc ratio and rim area change.

Additionally, Kromer et al. (2014) and Danesh-Meyer et al. (2006) demonstrated an increased cup-to-disc ratio for AD patients against HCs. Danesh-Meyer et al. (2006) also reported a reduced rim area/volume and an increased vertical cup-to-disc ratio. These results contradicted our findings and could be explained due to differently used devices. Specifically, Kromer et al. (2014) and Danesh-Meyer et al. (2006) used Heidelberg SD-OCT and laser imaging methodology dissimilar to our Avanti SD-OCT.



4.4 GCC changes against the literature

Tao et al. (2019) and Montorio et al. (2022) showed significant GCC (Avg, S, I) thinning in MCI versus HCs, with Tao et al. (2019) also noting GCC (average, S, I) thickness reduction for AD and not with MCI compared with HCs. Our study found no significant GCC differences between groups and no correlation between GCC parameters and class variables by OL-GLM adjusted for age, gender, and eye pathologies. This might have occurred due to dissimilar studied layers such that Tao et al. (2019) and Montorio et al. (2022) studied ILM to IPL layers, while we examined Inner_Retina, Full_Retina, and Outer_Retina layers. Future research may target examining GCC superficial layers.



4.5 FAZ changes against the literature

IVC FAZ area changes were not significant in initial statistical and post-hoc analyses. Our results matched Zhang et al. (2019) and Peng et al. (2021); however, they contradicted Wu et al. (2020) and O’Bryhim et al. (2021). Significant FAZ enlargement by Wu et al. (2020) for AD and MCI against HCs, while O’Bryhim et al. (2021) for amyloid positive, supported by CSF, against amyloid negative. The exclusion of high myopia patients by Wu et al. (2020) might explain this discrepancy, whereas our cohort potentially included myopic patients with infeasible corrections due to inaccessibility to axial length information (Sampson et al., 2017). Additionally, there were only nine amyloid-positive patients in O’Bryhim et al. (2021), much smaller than our 44 AD patients, suggesting a potential bias.

Bulut et al. (2018) found significant FAZ enlargement at SVC for AD patients but limited evidence in the literature. Conversely, negligible FAZ area changes at SCP, defined from ILM to IPL (Shin et al., 2021; Robbins et al., 2022), were reported by Robbins et al. (2022) between non-amnestic and amnestic MCI individually compared against HCs as well as by Shin et al. (2021) between MCI and HCs. Additionally, minor FAZ area changes at SCP, defined from ILM to GCL (Biscetti et al., 2021), between MCI and HCs were reported by Biscetti et al. (2021). Moreover, Shin et al. (2021) found a prominent DCP-FAZ area increase for MCI against HCs; however, the MCI group by Yang et al. (2022) had negligible DCP-FAZ area changes compared to HCs. This discrepancy could be explained due to the usage of distinct DCP definitions. Shin et al. (2021) defined DCP from INL to OPL, while Yang et al. (2022) defined DCP from IPL to OPL. Additionally, only 24 MCI were examined by Shin et al. (2021) compared to 268 MCI by Yang et al. (2022), further explaining this discrepancy.

Our OL-GLM failed to associate FAZ area changes with class variables; however, it demonstrated notable FAZ_Perim and AcirIndx changes linked with class variables. These minor FAZ area changes were confirmed by Yang et al. (2022); however, Yang et al. (2022) also showed negligible FAZ_Perim and AcirIndx changes for the MCI group. We believe that these parameters could be indeed correlated with a more severely impaired group such as AD; however, more future research with larger cohorts was needed to confirm this outcome.



4.6 GLM targeting MMSE and age analysis discussion


4.6.1 FAZ area findings

The TW-GLM analysis, adjusted for age, revealed a strong correlation between FAZ area changes in IVC layers and MMSE scores. The age-related analysis failed to link old age to FAZ changes; however, this analysis was applied to HCs. Based on TW-GLM, FAZ changes might help detect cognitive decline, but more extensive future studies are still needed. The findings by Zhang et al. (2019), Peng et al. (2021), Robbins et al. (2022), Biscetti et al. (2021), and Yang et al. (2022) support our conclusion of minor FAZ area changes related to cognitive decline in initial or post-hoc analyses.



4.6.2 Retinal VD findings

The age-related analysis linked some VD-based parameters with old age. This might explain inconsistencies between our cohort (Dem, MCI, HCs aged 82.20 ± 6.22, 80.70 ± 5.90, and 79.07 ± 5.90) and the cohort by Wu et al. (2020) (AD, MCI, HCs aged 69.94 ± 6.39, 67.81 ± 5.96, and 68.67 ± 5.85) and younger groups by Yang et al. (2022) (MCI, HCs aged 58.3 ± 8.3, and 51.0 ± 7.8). VD changes in deep retinal layers could be affected by age, impacting cognitive decline detectability. The TW-GLM, adjusted for age, found significant correlations between VD parameters and MMSE scores, confirming VD’s importance in detecting cognitive decline. Our findings highlighted the importance of significant VD changes in all G grid sections (G11 to G33); however, they were not linked with cognitive decline in the literature, requiring further investigation.



4.6.3 Macular thickness/volume findings

Contradicting our statistical and post-hoc analysis, the age-adjusted TW-GLM model showed a strong correlation between thickness/volume changes around the fovea with MMSE scores. Age-related analysis revealed significant correlations between many Macula_3mm parameters (thickness/volume) and old age. Hence, TW-GLM identified the potential usage of these parameters by relating them with MMSE scores.



4.6.4 GCC and ONH findings

The age-adjusted TW-GLM revealed significant correlations between many ONH-based and GCC-based parameters with MMSE scores, which is opposite to our initial statistical and post-hoc analyses. Contradicting our assumption, these predictors were not correlated with old age; however, the age analysis included only HCs without Dem/MCI groups. These results (GCC and ONH parameters) suggested that retinal structural changes (around the fovea and optic disc) might be linked to age and cognitive decline conjointly, requiring further research in larger cohorts.




4.7 Strengths

Our research work is unique because of the well-structured statistical and post-hoc analyses of OCT/OCTA machine-extracted parameters and their association with common neurodegenerative disorders. This is interesting since OCT/OCTA is a non-invasive brain study window. Moreover, our study also included age-related analysis to justify inconsistencies between our findings and the literature. Since many parameters were indeed correlated with age, we applied a TW-GLM analysis adjusted for age to find associations between predictors and MMSE scores. Additionally, we applied another OL-GLM to model class variables (Dem, MCI, and HCs) against studied parameters. This OL-GLM model, targeting class variables, was adjusted for age, gender, and various eye pathologies. To the best of our knowledge, our research is the first to find correlations between cognitive decline and VD changes based on G grid sections (G11 to G33). This finding invites further investigation into retinal VD changes as predictors for AD/MCI.



4.8 Limitations

One of the drawbacks of our study was the involvement of neurophysiological scores (MMSE, FAB) without gold standard biomarkers, i.e., CSF biomarkers ([image: A subscript in the image shows "A beta forty-two".], t-tau, and p-tau) or MRI to support group diagnosis. Therefore, the diagnosis may not be properly verified by other reliable biomarkers/tools, which may lead to dementia caused by other pathological factors or reversible causes. Moreover, our study missed participants’ education and/or social status, which might have affected the results of neuropsychological tests. Furthermore, the lack of information regarding cardiovascular risk factors (e.g., diabetes, hypertension, and so on) represented another limitation, as these factors may influence retinal vasculature findings obtained via OCTA. Our cohort was also unbalanced (44 Dem, 139 MCI, 174 HCs) due to difficulties obtaining scans from cognitively declined patients.

Additionally, due the limited number of participants with healthy eyes—primarily because most were older patients—our study included individuals with various eye pathologies. As a result, our findings may differ from those in the literature, where most studies excluded participants with eye conditions. To account for this, we introduced OL-GLM, which adjusts parameters for confounding factors, including eye pathologies.

Moreover, the extracted Macula 6 mm parameters were excluded due to insufficient patients with this specific scan, and hence, a few parameters were missed in our analysis. Worth mentioning, the ETDRS grid system required 6 mm OCT b-scans around the fovea (Early Treatment Diabetic Retinopathy Study Research Group, 1991); however, our cohort’s patients had only 3 mm OCT b-scans around the fovea, restricting the analysis and preventing the use of the ETDRS grid quadrants system. Notably, our limited understanding of RTVue software’s development and evaluation may potentially affect the parameters’ reliability. Finally, the RTVue software failed to provide any parameters from the 12-mm 3D widefield mean choroid thickness (MCT) scan, thus restricting a more comprehensive analysis.




5 Conclusion

This research analyzed parameters’ statistical effectiveness in post-hoc comparisons. We examined VD changes using G grid sections (G11 to G33) between Dem, MCI, and HCs; however, further investigations are still required to verify this new biomarker. Significant VD reduction around the fovea was found, then confirmed by similar literature findings and by OL-GLM adjusted for multiple confounders.

The initial statistical analysis indicated a thickness increase in the SN1 section of the pRNFL for MCI compared to HCs and showcased a volumetric decrease in the ONH Cup volume for Dem compared to HCs. However, not enough evidence in the literature to support these parameters. Interestingly, other ONH-based parameters were also correlated with class variables analyzed by OL-GLM.

Our study highlighted the limitations of the FAZ area as a predictor of cognitive decline, supporting similar findings from the literature. The effectiveness of retinal parameters was compared against similar studies in the literature, finding consistent and inconsistent results.

Our initial analysis failed to link many macular thickness/volume changes with cognitive decline, contradicting the literature. We hypothesized these inconsistencies occurred due to confounding factors. Hence, age-related analysis, TW-GLM, and OL-GLM clarified these discrepancies. For instance, the age-adjusted TW-GLM correlated macular thickness/volume reductions with MMSE decline. Similarly, macular thickness/volume decline was also associated with the classes’ variable analyzed by OL-GLM, adjusted for age, gender, and eye pathologies.

We conclude the need to adjust the examined parameters for confounding factors and study individual layers independently. Future validation of newly discovered parameters with larger cohorts is still highly recommended. Future researchers may benefit from advanced segmentation tools to better define retinal layers and boundaries. Artificial intelligence (AI) may provide researchers with flexible analysis to explore more possible parameters’ interactions, correlating neurodegenerative disorders with thickness/volume changes of individuals or with various combinations of retinal layers. AI may also unravel new associations between AI-extracted parameters and cognitive decline, potentially facilitating earlier neurodegenerative disorder detection.



Data availability statement

The datasets presented in this article are not readily available because the cohort study data is not publicly available due to patient privacy restrictions and consent agreements. However, researchers affiliated to educational, or research institutions are encouraged to contact the authors for further information. Requests to access the datasets should be directed to YZ, yzheng@liv.ac.uk; RS, rodolfosardone@gmail.com.



Ethics statement

The studies involving humans were approved by the local ethical committee of the province of Taranto at IRCCS Oncologico “Giovanni Paolo XXXIII.” The data was collected under CALLIOPE Research Program “Open Data Initiative for Dementia,” Italy. The study took place from October 1, 2021, to October 11, 2023, adhering to the Declaration of Helsinki (Williams, 2008). The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants’ legal guardians/next of kin.



Author contributions

YI: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing – original draft, Writing – review & editing. AM: Formal analysis, Funding acquisition, Methodology, Resources, Supervision, Validation, Writing – review & editing. RS: Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing – review & editing. YS: Formal analysis, Project administration, Supervision, Validation, Writing – review & editing. VR: Formal analysis, Funding acquisition, Methodology, Project administration, Supervision, Validation, Visualization, Writing – review & editing. YZ: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing – review & editing.



Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was funded by the UK EPSRC CDT Healthy Ageing (Grant No. EP/T517975/1). This project received funding and support from the CALLIOPE Project (CUP: E53C22002800001) through the FSC Fund of the Ministry of Enterprises and Made in Italy.



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnagi.2025.1477008/full#supplementary-material



References
	 Abdi, H., and Williams, L. J. (2010). “Tukey’s honestly significant difference (HSD) test” in Encyclopedia of research design (Thousand Oaks: SAGE), 1–5.
	 Ali, N., Sampson, D. M., Au Yong, A., Jeewa, R., Rajgopal, S., Dutt, D. D., et al. (2020). Clinical validation of the RTVue optical coherence tomography angiography image quality indicators. Clin. Experiment. Ophthalmol. 48, 192–203. doi: 10.1111/ceo.13680 
	 Allen, M. (2017). The SAGE encyclopedia of communication research methods. Los Angeles: SAGE Publications.
	 Almeida, A. L., Pires, L. A., Figueiredo, E. A., Costa-Cunha, L. V., Zacharias, L. C., Preti, R. C., et al. (2019). Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment. Alzheimers Dement. 11, 659–669. doi: 10.1016/j.dadm.2019.08.006 
	 Alzheimer’s Disease International (2019). World Alzheimer report 2019: attitudes to dementia. London: Alzheimer’s Disease International.
	 Appollonio, I., Leone, M., Isella, V., Piamarta, F., Consoli, T., Villa, M., et al. (2005). The frontal assessment battery (FAB): normative values in an Italian population sample. Neurol. Sci. 26, 108–116. doi: 10.1007/s10072-005-0443-4 
	 Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proc. R. Soc. A 160, 268–282. doi: 10.1098/rspa.1937.0109
	 Biscetti, L., Lupidi, M., Luchetti, E., Eusebi, P., Gujar, R., Vergaro, A., et al. (2021). Novel noninvasive biomarkers of prodromal Alzheimer disease: the role of optical coherence tomography and optical coherence tomography–angiography. Eur. J. Neurol. 28, 2185–2191. doi: 10.1111/ene.14871 
	 Bonat, W. H., and Kokonendji, C. C. (2017). Flexible Tweedie regression models for continuous data. J. Stat. Comput. Simul. 87, 2138–2152. doi: 10.1080/00949655.2017.1318876
	 Bulut, M., Kurtuluş, F., Gözkaya, O., Erol, M. K., Cengiz, A., Akıdan, M., et al. (2018). Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br. J. Ophthalmol. 102, 233–237. doi: 10.1136/bjophthalmol-2017-310476 
	 Chen, L., Yuan, M., Sun, L., Wang, Y., and Chen, Y. (2020). Evaluation of microvascular network with optical coherence tomography angiography (OCTA) in branch retinal vein occlusion (BRVO). BMC Ophthalmol. 20:154. doi: 10.1186/s12886-020-01405-0 
	 Chua, J., Hu, Q., Ke, M., Tan, B., Hong, J., Yao, X., et al. (2020). Retinal microvasculature dysfunction is associated with Alzheimer’s disease and mild cognitive impairment. Alzheimers Res. Ther. 12:161. doi: 10.1186/s13195-020-00724-0 
	 Çolak, M., Özek, D., Özcan, K. M., Eravcı, F. C., Karakurt, S. E., Karakuş, M. F., et al. (2021). Evaluation of retinal vessel density and foveal avascular zone measurements in patients with obstructive sleep apnea syndrome. Int. Ophthalmol. 41, 1317–1325. doi: 10.1007/s10792-020-01690-0 
	 Danesh-Meyer, H., Birch, H., Ku, J.-F., Carroll, S., and Gamble, G. (2006). Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67, 1852–1854. doi: 10.1212/01.wnl.0000244490.07925.8b 
	 De Carlo, T. E., Romano, A., Waheed, N. K., and Duker, J. S. (2015). A review of optical coherence tomography angiography (OCTA). Int. J. Retina Vitr. 1:5. doi: 10.1186/s40942-015-0005-8 
	 Delacre, M., Leys, C., Mora, Y. L., and Lakens, D. (2019). Taking parametric assumptions seriously: arguments for the use of Welch’s F-test instead of the classical F-test in one-way ANOVA. Int. Rev. Soc. Psychol. 32:13. doi: 10.5334/irsp.198
	 Dening, T., and Sandilyan, M. B. (2014). Dementia: definitions and types. Nurs. Stand. 29, 37–42. doi: 10.7748/ns.29.37.37.e9405
	 Dening, T., and Thomas, A. (2013). Oxford textbook of old age psychiatry. Oxford: Oxford University Press.
	 Early Treatment Diabetic Retinopathy Study Research Group (1991). Early treatment diabetic retinopathy study design and baseline patient characteristics: ETDRS report number 7. Ophthalmology 98, 741–756. doi: 10.1016/S0161-6420(13)38009-9
	 Field, A. (2017). Discovering statistics using IBM SPSS statistics. Los Angeles: SAGE Publications.
	 Flahault, A., Cadilhac, M., and Thomas, G. (2005). Sample size calculation should be performed for design accuracy in diagnostic test studies. J. Clin. Epidemiol. 58, 859–862. doi: 10.1016/j.jclinepi.2004.12.009
	 Florek, L., Tiepolt, S., Schroeter, M. L., Berrouschot, J., Saur, D., Hesse, S., et al. (2018). Dual time-point [18F] florbetaben PET delivers dual biomarker information in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 66, 1105–1116. doi: 10.3233/JAD-180522 
	 Folstein, M. F., Robins, L. N., and Helzer, J. E. (1983). The Mini-Mental State Examination. Arch. Gen. Psychiatry 40:812. doi: 10.1001/archpsyc.1983.01790060110016 
	 Garcia-Martin, E., Bambo, M. P., Marques, M. L., Satue, M., Otin, S., Larrosa, J. M., et al. (2016). Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer’s disease. Acta Ophthalmol. 94, e454–e459. doi: 10.1111/aos.12977 
	 Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., et al. (2006). Mild cognitive impairment. Lancet 367, 1262–1270. doi: 10.1016/S0140-6736(06)68542-5 
	 Ge, Y.-J., Xu, W., Ou, Y.-N., Qu, Y., Ma, Y.-H., Huang, Y.-Y., et al. (2021). Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res. Rev. 69:101361. doi: 10.1016/j.arr.2021.101361 
	 González-García, A. O., Vizzeri, G., Bowd, C., Medeiros, F. A., Zangwill, L. M., and Weinreb, R. N. (2009). Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with stratus optical coherence tomography measurements. Am. J. Ophthalmol. 147, 1067–1074.e1. e1. doi: 10.1016/j.ajo.2008.12.032 
	 Guercio, B. J., Donovan, N. J., Munro, C. E., Aghjayan, S. L., Wigman, S. E., Locascio, J. J., et al. (2015). The apathy evaluation scale: a comparison of subject, informant, and clinician report in cognitively normal elderly and mild cognitive impairment. J. Alzheimers Dis. 47, 421–432. doi: 10.3233/JAD-150146 
	 Hanumunthadu, D., Keane, P. A., Balaskas, K., Dubis, A. M., Kalitzeos, A., Michaelides, M., et al. (2021). Agreement between spectral-domain and swept-source optical coherence tomography retinal thickness measurements in macular and retinal disease. Ophthalmol Therapy 10, 913–922. doi: 10.1007/s40123-021-00377-8 
	 Hashmani, N., Hashmani, S., and Saad, C. M. (2018). Wide corneal epithelial mapping using an optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 59, 1652–1658. doi: 10.1167/iovs.17-23717 
	 Hoffman, W. P., Recknor, J., and Lee, C. (2008). Overall type I error rate and power of multiple Dunnett’s tests on rodent body weights in toxicology studies. J. Biopharm. Stat. 18, 883–900. doi: 10.1080/10543400802287420 
	 Hong-Zhi, A., and Bing, C. (1991). A Kolmogorov-Smirnov type statistic with application to test for nonlinearity in time series. Int. Stat. Rev. 59, 287–307. doi: 10.2307/1403689
	 IBM-Corp (2021). Generalized linear models. Available at: https://www.ibm.com/docs/en/spss-statistics/28.0.0?topic=statistics-generalized-linear-models. (Accessed February 19, 2024)
	 IBM-Corp (2023). Generalized linear models predictors. Available at: https://www.ibm.com/docs/en/spss-statistics/saas?topic=models-generalized-linear-predictors. (Accessed February 20, 2024)
	 IBM-Corp (2024). Generalized linear models statistics. Available at: https://www.ibm.com/docs/en/spss-statistics/30.0.0?topic=models-generalized-linear-statistics. (Accessed November 30, 2024)
	 Ibrahim, Y., Xie, J., Macerollo, A., Sardone, R., Shen, Y., Romano, V., et al. (2023). A systematic review on retinal biomarkers to diagnose dementia from OCT/OCTA images. J. Alzheimers Dis. Rep. 7, 1201–1235. doi: 10.3233/ADR-230042 
	 Jáñez-Escalada, L., Jáñez-García, L., Salobrar-García, E., Santos-Mayo, A., de Hoz, R., Yubero, R., et al. (2019). Spatial analysis of thickness changes in ten retinal layers of Alzheimer’s disease patients based on optical coherence tomography. Sci. Rep. 9:13000. doi: 10.1038/s41598-019-49353-0 
	 Kromer, R., Serbecic, N., Hausner, L., Froelich, L., Aboul-Enein, F., and Beutelspacher, S. C. (2014). Detection of retinal nerve fiber layer defects in Alzheimer’s disease using SD-OCT. Front. Psychiatry 5:22. doi: 10.3389/fpsyt.2014.00022 
	 Kruskal, W. H. (1952). A nonparametric test for the several sample problem. Ann. Math. Stat. 23, 525–540. doi: 10.1214/aoms/1177729332
	 Lemmens, S., Van Craenendonck, T., Van Eijgen, J., De Groef, L., Bruffaerts, R., de Jesus, D. A., et al. (2020). Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer’s disease patients. Alzheimers Res. Ther. 12, 144–113. doi: 10.1186/s13195-020-00715-1 
	 Marziani, E., Pomati, S., Ramolfo, P., Cigada, M., Giani, A., Mariani, C., et al. (2013). Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 54, 5953–5958. doi: 10.1167/iovs.13-12046 
	 Mera-Gaona, M., Neumann, U., Vargas-Canas, R., and López, D. M. (2021). Evaluating the impact of multivariate imputation by MICE in feature selection. PLoS One 16:e0254720. doi: 10.1371/journal.pone.0254720 
	 Mesiwala, N. K., Pekmezci, M., Porco, T. C., and Lin, S. C. (2012). Optic disc parameters from optovue optical coherence tomography: comparison of manual versus automated disc rim determination. J. Glaucoma 21, 367–371. doi: 10.1097/IJG.0b013e31821206e8 
	 Mishra, S., and Khare, D. (2014). On comparative performance of multiple imputation methods for moderate to large proportions of missing data in clinical trials: a simulation study. J. Med. Stat. Inform. 2:9. doi: 10.7243/2053-7662-2-9
	 Mo, S., Krawitz, B., Efstathiadis, E., Geyman, L., Weitz, R., Chui, T. Y., et al. (2016). Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest. Ophthalmol. Vis. Sci. 57:OCT130. doi: 10.1167/iovs.15-18932 
	 Montorio, D., Criscuolo, C., Breve, M. A., Lanzillo, R., Salvatore, E., Morra, V. B., et al. (2022). Radial peripapillary vessel density as early biomarker in preperimetric glaucoma and amnestic mild cognitive impairment. Graefes Arch. Clin. Exp. Ophthalmol. 260, 2321–2328. doi: 10.1007/s00417-022-05561-5 
	 Morris, J. C. (1993). The clinical dementia rating (CDR) current version and scoring rules. Neurology 43:2412. doi: 10.1212/WNL.43.11.2412-a 
	 Moss, S. (2020). Introduction to generalized linear models. Available at: https://www.cdu.edu.au/files/2020-07/Introduction%20to%20generalized%20linear%20models.docx. (Accessed February 20, 2024)
	 Mounsey, A., and Zeitler, M. R. (2018). Cerebrospinal fluid biomarkers for detection of Alzheimer disease in patients with mild cognitive impairment. Am. Fam. Physician 97, 714–715 
	 NIA-Scientists. (2022). How biomarkers help diagnose dementia. Available at: https://www.nia.nih.gov/health/how-biomarkers-help-diagnose-dementia. (Accessed April 06, 2022)
	 O’Bryhim, B. E., Lin, J. B., Van Stavern, G. P., and Apte, R. S. (2021). OCT angiography findings in preclinical Alzheimer’s disease: 3-year follow-up. Ophthalmology 128, 1489–1491. doi: 10.1016/j.ophtha.2021.02.016 
	 Peng, S.-Y., Wu, I.-W., Sun, C.-C., Lee, C.-C., Liu, C.-F., Lin, Y.-Z., et al. (2021). Investigation of possible correlation between retinal neurovascular biomarkers and early cognitive impairment in patients with chronic kidney disease. Transl. Vis. Sci. Technol. 10:9. doi: 10.1167/tvst.10.14.9 
	 Poroy, C., and Yücel, A. Â. (2018). Optical coherence tomography: is really a new biomarker for Alzheimer’s disease? Ann. Indian Acad. Neurol. 21, 119–125. doi: 10.4103/aian.AIAN_368_17 
	 Prince, M., Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, M., et al. (2015). World Alzheimer report 2015, the global impact of dementia, an analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International (ADI).
	 Qiu, C., Kivipelto, M., and von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 11, 111–128. doi: 10.31887/DCNS.2009.11.2/cqiu 
	 Rao, H. L., Zangwill, L. M., Weinreb, R. N., Sample, P. A., Alencar, L. M., and Medeiros, F. A. (2010). Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117, 1692–1699.e1. e1. doi: 10.1016/j.ophtha.2010.01.031 
	 Regier, D. A., Kuhl, E. A., and Kupfer, D. J. (2013). The DSM-5: classification and criteria changes. World Psychiatry 12, 92–98. doi: 10.1002/wps.20050 
	 Robbins, C. B., Akrobetu, D., Ma, J. P., Stinnett, S. S., Soundararajan, S., Liu, A. J., et al. (2022). Assessment of retinal microvascular alterations in individuals with amnestic and nonamnestic mild cognitive impairment using optical coherence tomography angiography. Retina 42, 1338–1346. doi: 10.1097/IAE.0000000000003458 
	 Ruxton, G. D., and Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behav. Ecol. 19, 690–693. doi: 10.1093/beheco/arn020
	 Sadda, S. R., Borrelli, E., Fan, W., Ebraheem, A., Marion, K. M., Harrington, M., et al. (2019). A pilot study of fluorescence lifetime imaging ophthalmoscopy in preclinical Alzheimer’s disease. Eye 33, 1271–1279. doi: 10.1038/s41433-019-0406-2 
	 Sainani, K. L. (2012). Dealing with non-normal data. PM R 4, 1001–1005. doi: 10.1016/j.pmrj.2012.10.013 
	 Salobrar-Garcia, E., Méndez-Hernández, C., Hoz, R., Ramírez, A. I., López-Cuenca, I., Fernández-Albarral, J. A., et al. (2020). Ocular vascular changes in mild alzheimer’s disease patients: foveal avascular zone, choroidal thickness, and onh hemoglobin analysis. Journal of. Pers. Med. 10:231. doi: 10.3390/jpm10040231 
	 Sampson, D. M., Gong, P., An, D., Menghini, M., Hansen, A., Mackey, D. A., et al. (2017). Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 58, 3065–3072. doi: 10.1167/iovs.17-21551 
	 Savastano, A., Bacherini, D., Savastano, M. C., Finocchio, L., Dragotto, F., Lenzetti, C., et al. (2021). Optical coherence tomography angiography findings before and after vitrectomy for macular holes: useful or useless? Retina 41, 1379–1388. doi: 10.1097/IAE.0000000000003059 
	 Sedgwick, P. (2012). Pearson’s correlation coefficient. BMJ 345:345. doi: 10.1136/bmj.e4483 
	 Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. doi: 10.1093/biomet/52.3-4.591
	 Shin, J. Y., Choi, E. Y., Kim, M., Lee, H. K., and Byeon, S. H. (2021). Changes in retinal microvasculature and retinal layer thickness in association with apolipoprotein E genotype in Alzheimer’s disease. Sci. Rep. 11:1847. doi: 10.1038/s41598-020-80892-z 
	 Snyder, P. J., Alber, J., Alt, C., Bain, L. J., Bouma, B. E., Bouwman, F. H., et al. (2021). Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers Dement. 17, 103–111. doi: 10.1002/alz.12179 
	 Tam, J., Dhamdhere, K. P., Tiruveedhula, P., Manzanera, S., Barez, S., Bearse, M. A., et al. (2011). Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 52, 9257–9266. doi: 10.1167/iovs.11-8481 
	 Tang, F. Y., Ng, D. S., Lam, A., Luk, F., Wong, R., Chan, C., et al. (2017). Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci. Rep. 7:2575. doi: 10.1038/s41598-017-02767-0 
	 Tanga, L., Roberti, G., Oddone, F., Quaranta, L., Ferrazza, M., Berardo, F., et al. (2015). Evaluating the effect of pupil dilation on spectral-domain optical coherence tomography measurements and their quality score. BMC Ophthalmol. 15:175. doi: 10.1186/s12886-015-0168-y 
	 Tao, R., Lu, Z., Ding, D., Fu, S., Hong, Z., Liang, X., et al. (2019). Perifovea retinal thickness as an ophthalmic biomarker for mild cognitive impairment and early Alzheimer’s disease. Alzheimers Dement. 11, 405–414. doi: 10.1016/j.dadm.2019.04.003 
	 Thomson, K. L., Yeo, J. M., Waddell, B., Cameron, J. R., and Pal, S. (2015). A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement. 1, 136–143. doi: 10.1016/j.dadm.2015.03.001 
	 Tsai, C. S., Ritch, R., Schwartz, B., Lee, S. S., Miller, N. R., Chi, T., et al. (1991). Optic nerve head and nerve fiber layer in Alzheimer's disease. Arch. Ophthalmol. 109, 199–204. doi: 10.1001/archopht.1991.01080020045040 
	 van Buuren, S., and Groothuis-Oudshoorn, K. (2011). Mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67. doi: 10.18637/jss.v045.i03
	 Venkatesh, R., Sinha, S., Gangadharaiah, D., Gadde, S. G., Mohan, A., Shetty, R., et al. (2019). Retinal structural-vascular-functional relationship using optical coherence tomography and optical coherence tomography–angiography in myopia. Eye Vis. 6:8. doi: 10.1186/s40662-019-0133-6 
	 Wang, X., Jiao, B., Liu, H., Wang, Y., Hao, X., Zhu, Y., et al. (2022). Machine learning based on optical coherence tomography images as a diagnostic tool for Alzheimer’s disease. CNS Neurosci. Ther. 28, 2206–2217. doi: 10.1111/cns.13963 
	 Whitley, E., and Ball, J. (2002). Statistics review 4: sample size calculations. Crit. Care 6, 335–341. doi: 10.1186/cc1521
	 Williams, J. R. (2008). The declaration of Helsinki and public health. Bull. World Health Organ. 86, 650–651. doi: 10.2471/BLT.08.050955
	 Wu, J., Zhang, X., Azhati, G., Li, T., Xu, G., and Liu, F. (2020). Retinal microvascular attenuation in mental cognitive impairment and Alzheimer’s disease by optical coherence tomography angiography. Acta Ophthalmol. 98, e781–e787. doi: 10.1111/aos.14381 
	 Xie, J., Yi, Q., Wu, Y., Zheng, Y., Liu, Y., Macerollo, A., et al. (2023). Deep segmentation of OCTA for evaluation and association of changes of retinal microvasculature with Alzheimer’s disease and mild cognitive impairment. Br. J. Ophthalmol. 108, 432–439. doi: 10.1136/bjo-2022-321399 
	 Yan, Y., Wu, X., Wang, X., Geng, Z., Wang, L., Xiao, G., et al. (2021). The retinal vessel density can reflect cognitive function in patients with Alzheimer’s disease: evidence from optical coherence tomography angiography. J. Alzheimers Dis. 79, 1307–1316. doi: 10.3233/JAD-200971 
	 Yang, K., Cui, L., Chen, X., Yang, C., Zheng, J., Zhu, X., et al. (2022). Decreased vessel density in retinal capillary plexus and thinner ganglion cell complex associated with cognitive impairment. Front. Aging Neurosci. 14:872466. doi: 10.3389/fnagi.2022.872466 
	 Ye, J., Wang, M., Shen, M., Huang, S., Xue, A., Lin, J., et al. (2020). Deep retinal capillary plexus decreasing correlated with the outer retinal layer alteration and visual acuity impairment in pathological myopia. Invest. Ophthalmol. Vis. Sci. 61:45. doi: 10.1167/iovs.61.4.45 
	 Yu, J., Camino, A., Liu, L., Zhang, X., Wang, J., Gao, S. S., et al. (2019). Signal strength reduction effects in OCT angiography. Ophthalmol. Retina 3, 835–842. doi: 10.1016/j.oret.2019.04.029 
	 Zhang, X., Iverson, S. M., Tan, O., and Huang, D. (2015). Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in Fourier-domain optical coherence tomography. Transl. Vis. Sci. Technol. 4:7. doi: 10.1167/tvst.4.5.7
	 Zhang, Y. S., Zhou, N., Knoll, B. M., Samra, S., Ward, M. R., Weintraub, S., et al. (2019). Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s disease on optical coherence tomography angiography. PLoS One 14:e0214685. doi: 10.1371/journal.pone.0214685 
	 Zhuang, X., Cao, D., Zeng, Y., Yang, D., Yao, J., Kuang, J., et al. (2020). Associations between retinal microvasculature/microstructure and renal function in type 2 diabetes patients with early chronic kidney disease. Diabetes Res. Clin. Pract. 168:108373. doi: 10.1016/j.diabres.2020.108373 


Copyright
 © 2025 Ibrahim, Macerollo, Sardone, Shen, Romano and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










	 
	ORIGINAL RESEARCH
published: 22 April 2025
doi: 10.3389/fnagi.2025.1492804





	[image: Icon depicting a bookmark symbol above the text "Check for updates" in a grayscale color scheme.]

Early identification of mild cognitive impairment: an innovative model using ocular biomarkers

Lingjing Zhang1,2†, Yanwei Wang3†, Yuming Liu4, Zi Ye2* and Zhaohui Li2*

1School of Medicine, Nankai University, Tianjin, China

2Department of Ophthalmology, The General Hospital of the People’s Liberation Army, Beijing, China

3Department of General Surgery, No. 926 Hospital, Joint Logistics Support Force of PLA, Kaiyuan, China

4Medical School of Chinese PLA, Beijing, China

Edited by
Riccardo Pascuzzo, IRCCS Carlo Besta Neurological Institute Foundation, Italy

Reviewed by
Kundlik Gadhave, Johns Hopkins University, United States
Jessica Alber, University of Rhode Island, United States

*Correspondence
Zi Ye, yeziclover@163.com
Zhaohui Li, lizhaohui301yanke@163.com

†These authors have contributed equally to this work and share first authorship

Received 08 September 2024
Accepted 26 March 2025
Published 22 April 2025

Citation
 Zhang L, Wang Y, Liu Y, Ye Z and Li Z (2025) Early identification of mild cognitive impairment: an innovative model using ocular biomarkers. Front. Aging Neurosci. 17:1492804. doi: 10.3389/fnagi.2025.1492804

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive, irreversible brain damage. Current diagnostic procedures for AD are both costly and highly invasive for patients. Age-related cataract (ARC), a common ocular condition in elderly populations, correlates with a 1.43-fold increased risk of developing AD. This study sought to establish a novel model for early detection of mild cognitive impairment (MCI) in patients with ARC.



Methods: The study prospectively collected 170 monocular data as training dataset and 65 monocular data from another independent medical center as test dataset. Demographic data and comprehensive ophthalmic examination results were collected. The least absolute shrinkage and selection operator (LASSO) method and multivariate logistic regression analysis were performed using R software for dimensionality reduction and variable selection. A nomogram was constructed, and its discriminative ability was evaluated using receiver operating characteristic (ROC) curve, area under the ROC curve (AUC) with 95% confidence interval (CI), as well as sensitivity and specificity. Internal validation was performed using 1,000-resample bootstrap analysis, while model calibration was assessed through calibration curves and Brier scores. Decision curve analysis (DCA) was performed to evaluate clinical utility. A baseline model incorporating demographic variables was developed for comparison with the nomogram. Additionally, an external dataset from an independent medical center was employed as a test set to further validate the nomogram’s predictive performance. An online calculator was created using the “DynNom” and “rsconnect” functions.
Results: Through LASSO regression and multivariate logistic regression analyses, six variables were identified and incorporated into the nomogram: age (OR: 1.097; 95%CI: 1.041–1.161; p < 0.001), years of education (OR: 0.333; 95%CI: 0.140–0.749; p = 0.010), diastolic blood pressure (OR: 0.949; 95%CI: 0.907–0.990; p = 0.019), short posterior ciliary artery flow rate (OR: 1.063; 95%CI: 1.008–1.132; p = 0.038), vertical cup-to-disc ratio (OR: 11.927; 95%CI: 1.059–155.308; p = 0.049), and peripapillary retinal nerve fiber layer thickness (inferior; OR: 0.979; 95%CI: 0.964–0.993; p = 0.005). The nomogram demonstrated strong discriminatory power for the diagnosis of MCI, with the area under the ROC curve reaching 0.791 (95%CI: 0.722–0.864) in the training dataset and 0.750 (95%CI: 0.627–0.858) in the external dataset. Calibration curve validation showed good agreement between predicted and ideal probabilities (p > 0.05, Brier score = 0.171). DCA indicated substantial net benefit across most threshold probabilities in both training and test datasets, supporting the nomogram’s clinical utility.
Conclusion: Through systematic analysis of clinical data, this study established and validated a novel online calculator for identifying early cognitive impairment in patients with ARC, using demographic and ocular biomarkers, thereby providing a visual representation of the prediction model.
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1 Introduction

Alzheimer’s disease (AD) is the predominant cause of dementia, accounting for approximately 60-80% of cases. Its primary pathological hallmarks are β-amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which can impair synaptic plasticity and lead to neuronal death (Begcevic et al., 2018). Clinical AD is preceded by a prolonged asymptomatic phase, termed preclinical AD, characterized by the accumulation of brain pathology, which may begin 10-20 years before cognitive symptoms emerge (Bateman et al., 2012; Ameri et al., 2020). The progression of AD includes mild cognitive impairment (MCI), characterized by cognitive decline exceeding age-appropriate and education-appropriate norms but not yet significantly affecting daily activities (Albert et al., 2011). Considering the irreversible nature of AD, early detection of MCI is crucial. Current diagnostic methods for probable AD primarily rely on neurocognitive tests, brain imaging, and cerebrospinal fluid (CSF) analysis (Veitch et al., 2022). However, these procedures are often expensive and invasive for patients. Furthermore, despite these diagnostic tools, AD diagnoses remain inaccurate in 10-15% of cases owing to limitations in sensitivity and specificity (Weller and Budson, 2018). The development of cost-effective, non-invasive biomarkers in alternative body fluids or tissues for the detection of early cognitive dysfunction remains an active research focus. Recent studies have identified blood-based biomarkers, including tau protein, neurofilament light chain (NFL), and Aβ, as potential indicators of cognitive decline in AD, although research regarding their effectiveness remains preliminary, warranting further investigation (Baiardi et al., 2022).

A comprehensive retrospective cohort study from the Taiwan National Health Insurance Program established that elderly individuals with cataracts exhibit a 1.43-fold increased risk of developing AD (Lai et al., 2014). Light deficiency caused by cataracts may influence this process by disrupting the suprachiasmatic nucleus (SCN) regulation of circadian rhythms, subsequently exacerbating age-related conditions such as depression, insomnia, and cognitive impairment (Moncaster et al., 2022). This suggests that age-related cataract (ARC), being an age-associated condition, may predispose individuals to AD. Recent research has increasingly focused on the eye, specifically the retina, as an accessible window into brain function. Anatomically and developmentally, the retina originates from pluripotent ectodermal cells of the developing diencephalon neuroectoderm and exhibits numerous structural and functional similarities with brain tissue (Lamb et al., 2007). Initial observations of ocular symptoms in patients with AD were reported by Schlotterer et al. in 1984 (Schlotterer et al., 1984). Subsequently, in 1986, Hinton et al. first documented histological evidence of retinal abnormalities in AD, including substantial loss of retinal ganglion cell neurons, decreased thickness of the retinal nerve fiber layer (RNFL), and optic nerve degeneration (Hinton et al., 1986). Given these findings, ocular biomarkers present promising opportunities for early identification of AD through non-invasive and multi-modal approaches. Therefore, this study aimed to develop and validate a prediction model to facilitate early identification of MCI in patients with ARC who demonstrate risk factors for the progression of AD.



2 Materials and methods


2.1 Patient selection

This prospective study enrolled 170 patients (60 male, 110 female; mean age 71 years) with ARC awaiting cataract surgery from the Ophthalmology Unit of the First Medical Center of Chinese PLA General Hospital between November 1, 2023, and June 30, 2024, forming the training dataset. Additionally, 65 individuals meeting the same criteria were enrolled from the Ophthalmology Unit of the Third Medical Center of Chinese PLA General Hospital between October 1, 2024, and January 20, 2025, constituting the test dataset. These medical centers operate independently in terms of patient care. One eye from each participant was randomly selected for the study.

The inclusion criteria encompassed: (1) cataract diagnosis confirmed via slit-lamp biomicroscopic lens examination; (2) complete clinical data availability; and (3) normal basic functional independence. The exclusion criteria comprised: (1) severe cataracts or uncooperative status affecting examination quality; (2) concurrent fundus pathologies, including glaucoma, age-related macular degeneration, diabetic retinopathy, optic neuropathy, high myopia, and demyelinating disease; (3) conditions potentially causing cognitive impairment apart from AD, such as Parkinson’s disease, multiple sclerosis, anxiety disorders, depressive disorders, hypothyroidism, and vitamin deficiency; and (4) personal or three-generation familial psychiatric history.

The Medical Ethics Committee of the Chinese PLA General Hospital approved the study protocol (S2024-160-01). Written informed consent was obtained from all participants prior to study enrollment.



2.2 Neuropsychological assessments

All participants underwent comprehensive neuropsychological assessments across multiple domains: (1) The Montreal Cognitive Assessment (MoCA) scale evaluated cognitive function, with an additional point allocated to participants with 12 years or less of education (MoCAadj); (2) Basic Activities of Daily Living (BADL) scale and Instrumental Activities of Daily Living (IADL) scale assessed daily activity capabilities; (3) Global Deterioration Scale (GDS) evaluated cognitive impairment symptoms and stages; and (4) Hamilton Anxiety Scale/Hamilton Depression Scale and Neuropsychiatric Inventory (NPI) assessed neuropsychiatric symptoms. MCI diagnoses adhered to Petersen’s diagnostic criteria (Petersen, 2004). The inclusion criteria comprised: (1) self-reported memory loss persisting for 3 months or longer; (2) MoCAadj score < 26; (2) intact BADL and normal or minimally impaired IADL; and (3) absence of dementia, defined as a Global Deterioration Scale score of 2 or 3. Based on these criteria, participants were classified into the MCI group and the normal cognition group. The screening procedure is illustrated in Figure 1.
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FIGURE 1
Schematic representation of the selection process of the training and test datasets.




2.3 Data collection

All baseline characteristics and medical histories were obtained from the hospital’s electronic medical records. Each patient underwent a comprehensive ophthalmic evaluation comprising slit-lamp examination, refraction assessment, visual acuity testing with best-corrected visual acuity measurement (using a standardized Snellen eye chart), intraocular pressure measurement (via non-contact tonometry), dilated fundus examination (using binocular indirect ophthalmoscopy), spectral domain-optical coherence tomography (SD-OCT), optical coherence tomography angiography (OCTA), and retrobulbar blood flow examination.


2.3.1 OCT and OCTA examinations

OCT and OCTA examinations were conducted using an SD-OCT system and the AngioVue system on the Optovue RTVue XR Avanti (Optovue-100, Fremont, CA, United States). The scanning parameters included a speed of 26,000 scans per second, optical axial resolution of 5 μm, and 6 mm × 6 mm scanning patterns. During the examination, participants were positioned at an appropriate distance from the instrument and instructed to maintain focus on a central fixation point throughout the procedure. Mydriasis was not required. All examinations were performed by an experienced physician.

The OCT acquisition protocol consisted of several measurements: (1) retinal thickness (measured from the inner limiting membrane [ILM] to the retinal pigment epithelium [RPE], ILM-RPE thickness) included macular central subfield thickness in the central circular area of 1 mm diameter (Figure 2a) and four quadrants (superior [S], inferior [I], temporal [T], and nasal [N]) in the circular area of 6 mm diameter, excluding the macular central subfield (Figure 2d); (2) macular ganglion cell-inner plexiform layer thickness (mGC-IPL thickness) divided the 6 mm diameter circular area, excluding the macular central subfield, into six quadrants (superior [S], inferior [I], superonasal [SN], inferonasal [IN], superotemporal [ST], and inferotemporal [IT]) (Figure 2e); (3) peripapillary retinal nerve fiber layer thickness (pRNFL thickness) divided the 6 mm diameter circular area into four quadrants:(superior [S], inferior [I], temporal [T], and nasal [N]) (Figure 2f); (4) optic nerve parameters included the disc area, rim area, cup volume, and cup-to-disc ratio (C/D) in both vertical and horizontal dimensions.
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FIGURE 2
(a–f) Schematic diagrams of regional division of OCT and OCTA examination.


OCTA scans were utilized to analyze vessel density (VD) and perfusion density (PD) of the superficial capillary plexus (SCP). The analysis incorporated the following distinct areas: (1) inner ring: a central circular region with 1 mm diameter (Figure 2a); (2) middle ring: a circular region of 3 mm diameter, excluding the inner ring (Figure 2b); (3) outer ring: a circular region of 6 mm diameter, excluding both the inner and middle rings (Figure 2c); (4) quadrant division: the circular region of 6 mm diameter, excluding the inner ring, divided into four quadrants (superior [S], inferior [I], temporal [T], and nasal [N]) (Figure 2d).



2.3.2 Retrobulbar blood flow examination

Retrobulbar blood flow was assessed using the Acuson Sequoia 512 diagnostic ultrasound system (SIEMENS, Germany) by a qualified ultrasound physician with ≥ 3 years of experience in retrobulbar blood flow sonography. Participants were examined in a supine position with closed eyes. The arterial flow velocity, pulsatility index, and resistance index (RI) were measured in retrobulbar vessels, including the ophthalmic artery, central retinal artery (CRA), and short posterior ciliary artery (SPCA).




2.4 Statistical analysis

The pattern of missing data was evaluated using the md.pattern() function from the “mice” package in R software to determine the missing data mechanism. Multiple imputation was implemented to address missing data, with 10 imputations performed following standard recommendations under the Missing At Random (MAR) mechanism. The Multiple Imputation by Chained Equations approach was applied using the “mice” package in R software. Clustering heat maps were generated using Origin 2021 software to standardize the dataset by rows through z-score normalization. This process involves calculating the difference between each data point and the mean of the respective row, which is then divided by the adjusted standard deviation of that row. Expressed as: z = (x-μ)/σ.

Data normality was assessed using the Shapiro–Wilk test in SPSS version 27.0. Normally distributed data were presented as mean ± standard deviation and analyzed using Student’s t-test. Non-normally distributed data were expressed as median (interquartile range; IQR) and compared using the Mann–Whitney U test. Categorical variables were presented as percentages, with between-group differences evaluated using the chi-squared test or Fischer’s exact test.

Least absolute shrinkage and selection operator (LASSO) regression analysis was employed for data dimensionality reduction and variable selection by using the “glmnet” and “MASS” packages in R software. In this process, we implemented the glm (family = binomial) function to build a binary classification model. Before applying LASSO, we standardized the continuous predictive factors (Mean = 0, SD = 1) to prevent the influence of scale differences of variables. Non-significant variables were eliminated by increasing the penalty coefficient λ, which was determined through 5-fold cross-validation based on cv.glmnet function. Subsequently, multivariable logistic regression analysis was performed to further refine variable selection based on LASSO regression results. A nomogram was constructed and visualized using the “rms” package, incorporating the identified independent risk factors.

A baseline model incorporating demographic variables was established and compared with the complete nomogram model to assess improvements in predictive capability following the inclusion of ocular indicators. The evaluation utilized three distinct metrics: receiver operating characteristic (ROC) curve, Net Reclassification Index (NRI), and Integrated Discrimination Improvement (IDI), implemented through the “rms,” “nricens,” and “PredictABEL” packages in R software. Model discrimination was assessed using ROC curves with 95% confidence intervals, calculated via the “fbroc” package. The model’s sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were computed using the “reportROC” package. The optimal diagnostic threshold was determined by maximizing Youden’s index, calculated as Youden’s index = sensitivity + specificity – 1.

Model validation included internal verification through 1,000-resample bootstrap analysis, while calibration curves and Brier scores assessed the goodness of fit in the training dataset. Clinical utility was evaluated using decision curve analysis (DCA). Additionally, an external validation dataset from an independent medical center served as a test set to further evaluate the nomogram’s predictive performance.

The online calculator was developed using the nomogram formula through the “DynNom” and “rsconnect” functions and hosted at https://www.shinyapps.io/. All statistical analyses and online calculator construction were performed using R software (version 4.4.0),1 SPSS version 27.0 (IBM Corp., Armonk, NY, United States), and Origin 2021. A two-sided P < 0.05 was considered statistically significant.




3 Results


3.1 Population characteristics

The training dataset included 170 monocular data points that met the exclusion and inclusion criteria. Based on MCI diagnostic criteria, participants were categorized into 64 (37.6%) cases of normal cognition and 106 (62.4%) cases of MCI. Table 1 presents part of the general characteristics of the training dataset. The test dataset comprised 65 monocular data points, consisting of 30 (46.2%) cases of normal cognition and 35 (53.8%) cases of MCI. (Complete data for both training and test datasets are available in Supplementary Material 1.) A clustering heat map was generated to evaluate the potential of these variables as diagnostic markers for MCI risk, illustrating the expression characteristics of variables in both the normal cognition and MCI groups of patients with ARC (Figure 3). The horizontal axis of the heatmap represents individual patient samples, with the left side corresponding to the normal group and the right side to the MCI group. The vertical axis denotes the study indicators. As illustrated in the figure, the MCI group displays a greater enrichment of darker colors, suggesting that certain indicators are more pronounced in the affected group and may serve as potential predictors of the disease.


TABLE 1 Summary of variables in the training dataset.
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FIGURE 3
Heatmap illustrating standardized variables (z-scores by row) in the normal cognition group and MCI group of ARC patients. Colors closer to red and dark green represent higher and lower z-scores, respectively.




3.2 LASSO regression analysis

Initially, 58 associated variables were entered into the LASSO regression algorithm using 5-fold cross-validation. Through the incremental adjustment of the penalty coefficient (λ), non-significant variables were systematically eliminated (Figures 4A,B). When λmin (λ = 0.014) was selected, the number of variables was up to 31. Therefore, we further increased the λ to λ_1se (λ = 0.045), where the number of variables was 12. It can not only ensure the performance of the model, but also prevent the model from becoming too cumbersome due to the inclusion of too many variables. The list of λ values considered during cross-validation is available in appendix. The analysis identified 12 potential variables with non-zero coefficients: age (β, 0.188; p < 0.001), years of education (β, −1.454; p = 0.007), diastolic blood pressure (DBP) (β, −0.082; p = 0.002), CRA flow rate (β, 0.151; p = 0.024), CRA RI (β, −1.656; p = 0.384), SPCA flow rate (β, 0.071; p = 0.036), ILM-RPE thickness (T) (β, 0.038; p = 0.002), mSCPPD (T) (β, 5.856; p = 0.002), vertical C/D (β, 3.566; p = 0.030), cup volume (β, −0.096; p = 0.723), pRNFL (I) (β, −0.036; p = 0.001), pRNFL (T) (β, 0.048; p = 0.012). Subsequently, two variable with p > 0.05 was excluded: CRA RI (p = 0.384), cup volume (p = 0.723). While previous studies indicated a negative correlation between ILM-RPE thickness (T), mSCPPD (T), and pRNFL (T) biomarkers and cognitive impairment (Ge et al., 2021), our analysis revealed positive coefficients for these variables, contradicting previous findings. Additionally, population characteristics analysis demonstrated no statistically significant differences among these three variables (p > 0.05). Considering that nomogram models operate optimally with 4–7 variables, these three variables were excluded from the final model.
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FIGURE 4
Least absolute shrinkage and selection operator (LASSO) regression analysis was used for data dimensionality reduction and variable selection. (A) LASSO coefficient profiles of the58 candidate predictors. (B) Five-fold cross validation with a minimum error criterion was performed to determine the optimal penalization estimate of λ in LASSO regression.




3.3 Multivariate logistic regression analysis

The initially screened variables were incorporated into a multivariate regression analysis to identify independent factors predictive of MCI. Table 2 presents the β coefficients, standard error (SE), odds ratios (OR), 95% confidence intervals (95% CI), and P-values of the seven variables. Subsequently, one variable with p > 0.05 was eliminated: CRA flow rate (p = 0.122). The final model identified six independent predictors of MCI: age (OR: 1.097; 95%CI: 1.041–1.161; p < 0.001), years of education (OR: 0.333; 95%CI: 0.140–0.749; p = 0.010), DBP (OR: 0.949; 95%CI: 0.907–0.990; p = 0.019), SPCA flow rate (OR: 1.063; 95%CI: 1.008–1.132; p = 0.038), pRNFL (I) (OR: 0.979; 95%CI: 0.964–0.993; p = 0.005), vertical C/D (OR: 11.927; 95%CI: 1.059–155.308; p = 0.049).


TABLE 2 Multivariate logistic regression analysis.

[image: A table presents statistical analysis results for intercept and variables including age, years of education, diastolic blood pressure (DBP), CRA flow rate, SPCA flow rate, pRNFL(I), and vertical C/D. It lists beta (β) coefficients, standard error (SE), odds ratios (OR) with 95% confidence intervals, and P-values, indicating significance marked by an asterisk. Variables such as age, years of education, DBP, SPCA flow rate, pRNFL(I), and vertical C/D have significant P-values less than 0.05.]



3.4 Construction of nomogram and online calculator

A nomogram was constructed using the “rms” package to predict the probability of MCI development in patients with ARC by incorporating six independent predictors: age, years of education, DBP, SPCA flow rate, pRNFL (I), and vertical C/D, (Figure 5). The model’s methodology involved calculating the total score (bottom ruler) by summing the individual prediction index scores (top ruler), with the corresponding probability indicating the risk of MCI diagnosis. Higher total scores correlated with an increased risk of MCI. To enhance the clinical application, a web-based calculator was developed based on the dynamic nomogram using the “DynNom” and “rsconnect” functions at https://www.shinyapps.io/. This prediction model calculator is freely accessible at https://phccalculate.shinyapps.io/dynnomapp/. The user interface of the web-based calculator is shown in Figure 6. We have included 7 cases as examples for display in the calculator. The specific data, along with the actual predictor values and prediction results, is presented in Supplementary Material 1.


[image: Bar chart titled "ADfit glm" showing variables contributing to total points, including Years of Education, DBP, Age, pRNFL, vertical C/D, and SPCA flow rate. Each variable has a yellow overlay representing data distribution, with red points indicating specific values. The chart calculates total points, highlighting a score of one hundred ninety-eight, with a probability of cognitive function shown as 0.278.]

FIGURE 5
The nomogram was constructed to predict the probability of an ARC patient developing MCI by incorporating the 5 independent predictors: age, years of education, DBP, SPCA flow rate, pRNFL (I), vertical C/D.



[image: Dynamic nomogram interface with sliders for variables: Age (51 to 91), DBP (56 to 99), Years of education, SPCA flow rate (0 to 67), vertical CD (0 to 1), and pRNFL I (17 to 166). A graph shows a 95% confidence interval for response probability with horizontal error bars for each dataset.]

FIGURE 6
Web-based calculator web page using dynamic nomogram. We entered 7 samples into the web calculator as an example. The error bars represent the 95% confidence interval for the predicted probabilities.




3.5 Evaluation and validation of the nomogram

As shown in Figure 7A, the predicted probability of all cases ranged between 0 and 1, demonstrating appropriate differentiation. Subsequently, Cook’s distance (Dennis Cook et al., 1977) was calculated for each sample (Figure 7B), and all values remained within the normal range (Di < 0.5), indicating that no outliers significantly influenced the overall effect sizes or significance levels. Variance inflation factors (vifs) were calculated for each predictor to detect multiple collinearities, with all values approximating 1: age (vif, 1.14), years of education (vif, 1.28), DBP (vif, 1.09), SPCA flow rate (vif, 1.10), pRNFL(I) (vif, 1.08), vertical C/D (vif, 1.07).


[image: Graph A shows a histogram of probability with a distribution ranging from zero to one. The highest frequency occurs at the far right. Graph B is a plot of Cook's distance, displaying several spikes, with the most significant outliers labeled at observation numbers twenty-one, twenty-seven, and forty-nine.]

FIGURE 7
(A) The predicted probability of all cases was between 0 and 1, with a bipolar distribution. (B) Cook’s distance (Dennis Cook et al., 1977) of each sample fell within the normal range (Di < 0.5).


The discrimination and calibration of the nomogram in the training and test datasets are illustrated in Figures 8A,B, respectively. Through bootstrapping validation, the area under the ROC curve values for the model were determined to be 0.791 (95%CI: 0.722–0.864) in the training dataset and 0.750 (95%CI: 0.627–0.858) in the test dataset. The 95% CIs of the calibration belt in both groups did not cross the diagonal bisector line, indicating acceptable concordance performance of the prediction model. The analysis yielded the following metrics using the “reportROC” package: sensitivity (0.877, 95%CI: 0.815–0.940), specificity (0.594, 95%CI: 0.473–0.714), PPV (0.782, 95%CI: 0.707–0.856), NPV (0.745, 95%CI: 0.625–0.865), PLR (2.16, 95%CI: 1.593–2.929), and NLR (0.207, 95%CI: 0.119–0.357). The optimal diagnostic threshold was determined using the maximum Youden’s Index, calculated as sensitivity + specificity − 1. The best cutoff value of 0.504 indicated optimal predictive performance at this decision threshold. Following 1,000 bootstrap self-sampling internal validation, the calibration curve demonstrated strong concordance between predicted and ideal probabilities in both the training dataset (P = 0.949) and test dataset (P = 0.972; Figures 9A,B). The Brier scores measuring prediction accuracy were 0.171 and 0.199, respectively, confirming the model’s strong probabilistic predictions.


[image: Two ROC curves are shown, labeled A and B, demonstrating true positive rates against false positive rates. Both graphs have red lines with shaded blue areas indicating variability. Graph A covers a wider range of false positive rates than graph B.]

FIGURE 8
ROC curves of the LASSO model in the training (A) and test (B) dataset, respectively (AUC = 0.791 vs. 0.750). A total of 1,000 bootstrap resamples used to calculate a relatively corrected AUC and 95% CI. The blue area represents the 95% CIs. ROC, receiver operator characteristics; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve.



[image: Two calibration plots comparing predicted versus actual probabilities. Plot A shows three lines: apparent (dashed), ideal (red), and bias-corrected (blue) with calibration metrics listed. Plot B displays similar lines with different calibration metrics. Each plot has axes labeled as predicted probability (x-axis) and actual probability (y-axis), and a key for line types.]

FIGURE 9
Calibration plots in the training (A) and test (B) datasets. Validation of the calibration curves exhibited good concordance between the predicted probability and ideal probability in the training dataset (P = 0.949) and test dataset (P = 0.972). P > 0.05 indicates a good calibration with no difference between the ideal probability and predicted probabilities.




3.6 Value of ocular indicators to nomogram

For baseline analysis, a model incorporating three demographic variables (years of education, DBP, and age) was constructed in training and test datasets. This model was then compared with the complete nomogram model to assess improvements in predictive capability following the inclusion of ocular indicators. Three evaluation metrics were used, implemented through the “rms,” “nricens,” and “PredictABEL” packages in R software. In training dataset, the area under the ROC curve (Figure 10A) for the baseline model was 0.746 (95%CI: 0.664–0.821), while the complete prediction model achieved an AUC of 0.791 (95%CI: 0.722–0.864), representing a statistically significant difference (z = 2.107, p = 0.035). Subsequently, threshold values of 0.35 and 0.6 were applied as the lower and upper bounds for the prediction model using the “nricens” package, as illustrated in Figures 10C,D. NRI and IDI calculations, performed using the PredictABEL package, are presented in Table 3. Both categorical and continuous NRI, along with IDI, showed statistically significant improvements (p < 0.05), indicating that the complete model demonstrated enhanced predictive capacity across risk categories, continuous risks, and overall risks compared to the baseline model. In test dataset, AUC of the baseline model (Figure 10B) was 0.694 (95% CI: 0.554–0.828), while the AUC of the complete prediction model was 0.750 (95% CI: 0.627–0.858), with no statistically significant difference between the two (p > 0.05). NRI and IDI were also calculated, and the results showed that the IDI had a statistically significant difference (p < 0.05), while the NRI did not exhibit a significant difference (p > 0.05) (Figure 10).


[image: ROC curves and scatter plots in a four-panel image. Panels A and B display ROC curves with blue shaded areas, showing true positive rate versus false positive rate. Panels C and D present scatter plots comparing different model performances, with cases and controls marked differently. Each plot highlights the distribution and accuracy of models being analyzed.]

FIGURE 10
(A) The area under the ROC curve values for baseline model were found to be 0.746 (95% CI: 0.664-0.821) in training dataset. (B) The area under the ROC curve was 0.694 (95%CI: 0.554-0.828) in test dataset. (C) Scatter diagram in training dataset. (D) Scatter diagram in test dataset. Setting the lower threshold at 0.35 and the upper threshold at 0.6 effectively differentiates between the normal group and the MCI group.



TABLE 3 Complete model compared to baseline model.

[image: Table comparing Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI) across various metrics. NRI (categorical) shows an improvement of 0.197 with a 95% confidence interval (CI) of 0.029 to 0.365 and p-values of 0.022 and 0.621. NRI (continuous) has an improvement of 0.433, with a CI of 0.130 to 0.736 and p-values of 0.005 and 0.072. IDI improvement is 0.076, with a CI of 0.036 to 0.115 and p-values of less than 0.001 and 0.029. Abbreviations include NRI, Net Reclassification Index; IDI, Integrated Discrimination Improvement.]



3.7 Clinical usefulness assessment

DCA was conducted to evaluate the clinical utility of the nomogram (Figures 11A,B). In the DCA curves, the ordinate (Y-axis) depicts the net benefit while the abscissa (X-axis) represents the threshold probability. The analysis revealed that the model yielded substantial net benefit across nearly all threshold probabilities in both the training and test datasets, indicating that the nomogram demonstrated considerable clinical value.


[image: Two line graphs, labeled A and B, compare standardized net benefit against high-risk threshold and cost-benefit ratio. Both graphs feature three lines: red for model performance (A: model_train, B: model_test), gray for including all, and black for none. The horizontal axis shows high-risk threshold (0.0 to 1.0) and cost-benefit ratio (1:100 to 100:1), while the vertical axis displays standardized net benefit (0.0 to 1.0).]

FIGURE 11
Decision curve analysis established by the training dataset (A) and test dataset (B). The DCA curve indicated that the models contributed high net benefit in almost all threshold probabilities in both datasets. “All201D curve (gray dashed line): Assume that all individuals are at high risk, which means adopting the most aggressive intervention strategy. “None” curve (black solid line): assume that all individuals are at low risk, meaning no intervention measures are taken.





4 Discussion

With demographic shifts, an increasing number of individuals with low vision or blindness are experiencing cataracts (Flaxman et al., 2017). Currently, cataract surgery remains the only effective treatment, characterized by brief operative time and rapid postoperative recovery, enabling the development of ambulatory day surgery (Lawrence et al., 2015). Consequently, cataract surgery is increasingly performed in outpatient clinics rather than inpatient departments, owing to its efficacy, safety, and cost-effectiveness. However, patients with ARC are typically older and face a higher risk of concomitant cognitive dysfunction. The limited time available for communication during day surgery requires enhanced coordination. Effective management of these patients, particularly through early identification of cognitive impairment, is crucial to predict their coordination levels during the operation.

This study introduces a novel visual and user-friendly nomogram prediction model utilizing non-invasive and readily obtainable ocular biomarkers designed for the early identification of cognitive decline risk among patients with ARC. The nomogram incorporates six independent prognostic factors: age, years of education, DBP, SPCA flow rate, pRNFL (I), and vertical C/D, demonstrating significant discriminative ability in the training dataset (AUC: 0.791, 95%CI: 0.722–0.864) and the test dataset (AUC: 0.750, 95%CI: 0.627–0.85) to differentiate between individuals with MCI and those with normal cognitive function among patients with ARC, as assessed using the bootstrap method. Further validation through DCA confirmed the nomogram’s strong consistency and clinical utility.

In the training dataset, the inclusion of ocular predictors enhanced overall prediction accuracy, proving more effective than the baseline model. In the test dataset, only the IDI demonstrated a statistically significant difference, while the area under the ROC curve (AUC) and NRI showed no significant differences compared to baseline model. On the one hand, this may be related to the insufficient sample size of the test set. On the other hand, this discrepancy may be attributed to the distinct aspects emphasized by different metrics. IDI can sensitively capture continuous improvements in individual risk prediction without relying on classification thresholds, whereas the NRI measures the reclassification ability of a model under predefined risk thresholds and depends on the setting of these thresholds. Additionally, if the number of correctly upgraded cases in the event group and incorrectly upgraded cases in the non-event group offset each other, the difference in NRI might also fail to reach significance. AUC reflects overall discriminative ability but may be insensitive to localized improvements in predicted probabilities (e.g., within intermediate risk ranges). The statistical significance of IDI indicates that the new model achieved substantive improvements in the absolute accuracy of predicted probabilities or risk gradients. However, these improvements were not translated into enhanced classification capability (as reflected by NRI) or overall discriminative performance (as measured by AUC). In clinical practice, the model incorporating ocular indicators may still hold practical value for applications such as personalized risk assessment. We have reviewed pertinent literature and found that there is currently no existing model utilizing ophthalmology-related indicators to predict the risk of MCI, which highlights the innovative nature of our work. Similar type of work includes a cross-sectional study based on machine learning algorithms to predict MCI in older adults dominated by Song et al. (2025). In their study, 6,434 older adults were enrolled based on the data of the China Health and Elderly Care Longitudinal Survey (CHARLS) in 2020. Six machine learning (ML) algorithms were employed in this study: logistic regression, K-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), LightGBM, and random forest (RF). These algorithms identified five key characteristics for predicting MCI: educational level, social engagement, gender, relationship with children, and age. Some of these findings align with those of our own study. Ultimately, the area under the ROC curve for each model ranged from 0.71 to 0.77. In a study conducted by Yuan et al. focused on the early identification and support of individuals at risk of developing cognitive impairment following traumatic brain injury, several significant independent predictive factors were identified, including age, years of education, pulmonary infection status, epilepsy status, cerebrospinal fluid leakage status, and the Helsinki score (Yuan et al., 2025). Additionally, a nomogram was developed and translated into an online risk calculator, akin to the approach taken in our study.

Aging is a complex and progressive process characterized by systematic changes occurring over decades (Yin et al., 2015). Research has established that aging leads to metabolic dysregulation, insomnia, depression, and cognitive decline (Rettberg et al., 2016). Age serves as a fundamental catalyst in the development of AD (National Institute on Aging, 2015). This condition is linked to glucose hypometabolism, disrupted cholesterol homeostasis, mitochondrial dysfunction, altered immune and inflammatory responses, Aβ processing, white matter deterioration, and reduced regenerative capacity (Cai and Jeong, 2020; Klosinski et al., 2015; Masters et al., 2015; Shaw et al., 2013). This study revealed a significant positive correlation between advanced age and increased cognitive impairment risk (OR: 1.097; 95%CI: 1.041–1.161; p < 0.001), which aligned with previous research findings. Whitley et al. (2016) examined five cognitive measures in a large, representative UK population sample of over 40,000 individuals aged 16-100 years. The results demonstrated that all measured cognitive functions showed an earlier decline beginning around age 60.

Research indicates that educational attainment may serve as a protective factor against cognitive decline, commonly termed cognitive reserve. Education can increase regional cortical thickness in healthy individuals, contributing to increased brain reserve, while also enabling patients with AD to better manage brain atrophy effects through enhanced cognitive reserve (Liu et al., 2012). However, the cognitive benefits of education may differ across demographic characteristics such as gender and ethnicity (Sortsø et al., 2017). Additionally, education’s influence on cognitive function is closely linked to vascular pathology and appears most significant during early disease phases, highlighting the intricate relationship between education, brain health, and cognitive outcomes (Zieren et al., 2013). This study demonstrated the protective role of higher education in cognitive function among patients with ARC (OR: 0.333; 95%CI: 0.140–0.749; p = 0.010).

The risk of MCI showed a negative correlation with DBP (OR: 0.949; 95%CI: 0.907–0.990; p = 0.019). Longitudinal studies have supported these findings, suggesting that a mild to moderate increase in DBP could reduce the risk of developing AD (Verghese et al., 2003; Yang et al., 2011). A potential explanation for this relationship is that lower DBP may be insufficient for maintaining adequate cerebral perfusion, potentially contributing to cerebral Aβ accumulation (Li et al., 2022). During later life stages, increased arterial stiffness manifests through decreased DBP and elevated SBP. Prolonged exposure to elevated pulse pressure may lead to cerebral white matter damage, brain atrophy, and deterioration of cortical connections, subsequently affecting cognitive function (Del Pinto et al., 2021). Alternatively, this phenomenon might suggest that dementia onset could influence the central regulation of blood pressure, resulting in lower DBP (Masoli and Delgado, 2021). Further research has emphasized the connection between DBP and hippocampal volume, indicating that elevated DBP significantly correlates with increased hippocampal volume, potentially influencing cognitive health (Ngwa et al., 2018). Additionally, blood pressure variability, including DBP fluctuations, has been linked to cognitive outcomes. Studies on visit-to-visit blood pressure variability have shown that increased DBP variability correlates with higher risks of MCI and probable dementia, emphasizing the importance of BPV monitoring in clinical practice (Guo et al., 2023).

Since the initial documentation of AD pathology in the retina of patients with AD in the 1980s (Hinton et al., 1986), substantial evidence has emerged clarifying the relationship between retinal changes and AD. Advancements in ophthalmic technologies, particularly SD-OCT, have significantly improved resolution compared to time domain OCT, enabling detailed examination of all retinal layers in patients with AD. Research has identified a gradient of retinal thickness reduction, with more pronounced thinning in the inner retinal layers compared to the outer layers (Asanad et al., 2019). Studies across diverse populations have indicated a potential correlation between inner retinal thickness and cognitive function. MRI studies in non-demented individuals have revealed a possible connection between GC-IPL thickness and temporal and occipital lobe atrophy (Ong et al., 2015). Additionally, RNFL thinning has been associated with brain alterations in visual and limbic networks (Ong et al., 2015; Méndez-Gómez et al., 2018). While most studies indicate that retinal layers change progressively with AD progression, some research reports show no statistically significant differences (Asanad et al., 2019; Chan et al., 2019; Kesler et al., 2011; Knoll et al., 2016; Tao et al., 2019). These discrepancies may result from variations in exclusion criteria, cognitive assessment methodologies, and handling of confounding factors. In our univariate analysis, neither ILM-RPE thickness nor GC-IPL thickness showed significant differences between the MCI and normal groups (p > 0.05). However, pRNFL(I) thinning emerged as a risk factor for MCI (OR: 0.979; 95%CI: 0.964–0.993; p = 0.005). The findings suggest that pRNFL thinning precedes changes in other retinal layers, potentially indicating neurodegeneration of the central nervous system. Postmortem analyses of AD retinas have demonstrated cellular shrinkage, swelling, and vacuolization (Cheung et al., 2017; Dehghani et al., 2018). Optic disk pallor was observed even in early AD stages, attributed to axonal loss and perfusion alterations (Bambo et al., 2015). A meta-analysis indicated that a higher cup-to-disc ratio, lower height variation contour, lower rim area, and lower rim volume measured by scanning laser ophthalmoscopy may facilitate the diagnosis of AD (Ge et al., 2021). Our OCT study findings confirmed an enlarged cup-to-disc ratio as a significant risk factor for MCI (OR: 11.927; 95%CI: 1.059–155.308; p = 0.049).

The retinal vasculature shares structural and functional similarities with the cerebral vasculature. Research indicates that alterations in blood flow parameters precede neuronal loss (Javaid et al., 2016). This finding suggests that changes in retinal blood vessels could reflect underlying cerebrovascular pathology. The ophthalmic artery, originating from the internal carotid artery, supplies blood to the ocular region and gives rise to the central retinal artery and posterior ciliary arteries. The short posterior ciliary artery branches within the choroid, forming a choroidal vascular network that supplies the choroid, macula, and the outer retinal layers, while the central retinal artery delivers blood to the inner retina (Baldoncini et al., 2019). In this study, patients with ARC demonstrated an increased SPCA flow rate, which correlated with a higher likelihood of developing cognitive impairment (OR: 1.063; 95%CI: 1.008–1.132; p = 0.038). Furthermore, OCTA analysis of the superficial capillary plexus revealed no significant differences in SCP-VP and SCP-DP of the macular and optic disc regions between the MCI group and the normal group (p > 0.05). A study by Yoon et al. comparing patients with MCI to those with normal cognitive function found no significant differences in VD, PD, vein diameters, and the area of the foveal avascular zone (FAZ) (Yoon et al., 2019), aligning with our findings. Diverse perspectives exist on this matter (Chua et al., 2020). Based on our findings, we hypothesize that during the progression from cognitive normality to early cognitive impairments, changes in blood flow parameters of ocular supply vessels precede alterations in the retinal capillary network and retinal structure. These modifications in ocular blood flow initially arise from feedback mechanisms, such as increased arterial flow velocity. Current research exploring the relationship between ocular arteries and cognitive function remains limited. However, as components of the systemic vasculature, ocular arteries have been implicated in optic nerve damage in glaucoma, associated with changes in ocular artery blood flow and hypertension (Waliszek-Iwanicka et al., 2010). This suggests that alterations in ocular blood flow may impair visual function through effects on the optic nerve (e.g., enlarged cup-to-disc ratio), potentially contributing to cognitive-related issues.

Although recent research strongly suggests a correlation between ocular biomarkers and cognitive impairment, no definitive diagnostic model has been established. This study introduces a new nomogram prediction model based on six indicators obtained through non-invasive, accessible, safe, and cost-effective methods. The nomogram demonstrates robust performance in internal and external verification, making it applicable to diverse patient populations. Additionally, our study provides a visual representation beneficial for clinicians, particularly in basic hospitals with limited resources. This study has several limitations that warrant consideration. First, owing to the heterogeneity of OCT/OCTA devices in clinical practice, variations in image analysis software may affect readouts. Hence, this calculator applies only in settings using the OptoVue device. Second, certain potential confounding factors (such as ApoE genotype) were not fully incorporated, potentially affecting the final results. Third, the limited sample size may affect the generalizability of the results. Furthermore, the cross-sectional study design precludes causal inferences. Future large-scale cohort studies are necessary to validate these findings and conclusions.



5 Conclusion

This research culminates in the development of an online calculator that enables the identification of early cognitive dysfunction in patients with ARC through ocular biomarkers. The validation results confirm the model’s robust discrimination ability. The identification of novel ocular biomarkers represents a significant advancement in the assessment and management of cognitive impairment for both patients and healthcare providers.
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Values represent mean (standard deviations). Group difference in age, MMSE, and MoCA
were evaluated with independent-sample t test, while those of gender, handedness and
education were evaluated with Chi-square test. N, number of subjects; HC, healthy controls;
AD, Alzheimer’ disease; P, Primary school J, Junior high school; S, Senior middle school; A,
Associate College; U, University; MMSE, Mini-Mental State Examination; MoCA, Montreal
Cognitive Assessment.
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The data were presented as mean & standard deviation (SD); AD, Alzheimer’ diseases CN,
cognitive normal; MMSE, Mini-Mental State Examination; ADAScog, Alzheimer’ Disease
Assessment Scale-cognitive subscale.
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Amyloid-related strategies

2. Reduction of Ag -plaque burden

ALZ-801

e Aggregation inhibitor

@ To evaluate the pharmacokinetics of ALZ-801,
tramiprosate, and its major metabolite, NRM5074,

in prototype drug product formulations and the

influence of food on the prototype tablet

formulation’s bioavailability.

e Aggregation in

hibitor

@ The study will examine how oral ALZ-801 affects

core AD patho

ogy biomarkers in Early AD

patients with the APOE4/4 or APOE3/4 genotype.

e Aggregation in
o To evaluate the
Early Alzheime:

APOE4/4 genof
Amyloid-related strategies
3. Enhancing AB clearance

CAD106 and
CNP520

hibitor

safety and efficacy of ALZ-801 in

r’s disease (AD) subjects with the

ype.

e Active Ap immunotherapy
@ To assess if CAD106 and CNP520, given

separately, could reduce the onset and progression

of AD clinical symptoms in people at risk due to

age and genotype.

CAD106

e Active Ap immunotherapy

@ To assess safety, tolerability, and abeta-specific

antibody response after repeated i.m., adjuvanted

CAD106 injections

ABvac40

e Active Ap immunotherapy

© To assess tolerability and safety of repeated

subcutaneous administration of ABvac40 in
patients with mild to moderate AD.

e Active AP immunotherapy

@ The goal of this

Phase II study is to demonstrate in

people with a-MCI or vin-AD the same level of

safety and tolerability found in the Phase I clinical

trial of ABvac40

in people with mm-AD. It is

also to evaluate the immune reaction that ABvac40

elicits and how it affects biomarkers for AD.

GV1001

e Active AP immunotherapy

@ To evaluate the efficacy and safety of donepezil and

combined with GV1001 in Alzheimer patients

ACC-001

e Active AP immunotherapy

e To determine safety, tolerability, and

immunogenicity of ACC-001 with gs-21 adjuvant

in subjects with

mild to moderate AD

NCT04585347

NCT04693520

NCT04770220

NCT02565511

NCT01097096

NCT03113812

NCT03461276

NCT03184467

NCT00955409

Alzheon Inc Phase 1
Alzheon Phase 2
Inc.
Alzheon Phase 3
Inc.
Novartis Phase 2

Pharmaceuticals and 3

Novartis Phase 2

Pharmaceuticals

Araclon Phase 1
Biotech S.L.

Araclon Phase 2
Biotech S.L.

GemVax & Phase 2
Kael

Pfizer Phase 2A

Study was completed in 2015. ALZ-801 was
well tolerated and there were no severe or
serious adverse events (AEs) or laboratory
findings. A clinical dose of ALZ-801

(265 mg twice daily) was established that
achieves the AUC exposure of 150 mg of
tramiprosate twice daily, which showed
positive cognitive and functional
improvements in apolipoprotein E4/4
homozygous AD patients (Hey et al., 2018).

Active, not recruiting (2024)

Active, not recruiting (2024)

Terminated (2021)

Study was completed in 2012, however, the
study results have not been submitted in
clinical trial website

Study was completed in 2015. The study
concluded that ABvac40 showed a
favorable safety and tolerability profile
while eliciting a consistent and specific

immune response (Lacosta et al., 2018).

Study was completed in 2023, however,

further outcomes of the study were not
mentioned in the clinical trial website.

Study was completed in 2019. The results
indicate that GV1001 1.12 mg met the
primary endpoint of a statistically
significant difference. GV1001 was well

tolerated without safety concerns. This

study warrants a larger clinical trial (Koh
etal., 2021).

Study was completed in 2013. In 2013 the
sponsor decided that ACC-001 would not
be further developed in mild to moderate

AD, study drug administration was

discontinued, and remaining participants

were followed for safety for up to 6 months

after last injection.
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(LY3002813)
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Donanemab
(LY3002813)
(TRAILBLAZER-
ALZ

6)

Solanezumab
(LY2062430)

Solanezumab

Solanezumab

Solanezumab
(DIAN-TU)

ALZ-801
(APOLLOE4)

@ Passive Ap immunotherapy

e To determine if aducanumab is safe and well
tolerated following 100 weeks of treatment after a
wash-out period caused by the end of feeder
studies in people who had previously received
aducanumab (i.e,, previously treated participants)
or a placebo (i.e., treatment-naive participants).

@ Passive AP immunotherapy
o To determine if lecanemab is safe, well-tolerated,
and effective in people with early AD

@ Passive AP immunotherapy

o This study examines if lecanemab is safe and well
tolerated over the long term in people with EAD
who are in the Extension Phase. It also checks to

see if the long-term benefits of lecanemab, as
measured by the CDR-SB at the end of the Core
Study, are still present in the Extension Phase.

@ Passive Ap immunotherapy
© To evaluate the safety and efficacy of donanemab
in participants with preclinical AD.

o Passive Ap immunotherapy
@ To assess the safety and efficacy of donanemab in
participants with early AD.

e Passive Ap immunotherapy
e To investigate different donanemab dosing

regimens and their effect on the frequency and
severity of ARTA-E in adults with early
symptomatic AD and explore participant
characteristics that might predict risk of ARIA.

@ Passive AP immunotherapy

o To investigate the safety and efficacy of the study
drug solanezumab in participants with prodromal
AD.

@ Passive AP immunotherapy

o To determine if solanezumab will slow down the
cognitive decline of AD compared to a placebo in
people who already have mild AD.

@ Passive AP immunotherapy

o This is an open-label extension study in
Alzheimer’s patients who have completed
participation in either solanezumab Clinical Trial
H8A-MC-LZAM (NCT00905372) or
H8A-MC-LZAN (NCT00904683).

@ Passive AP immunotherapy

© To evaluate the safety, tolerability, biomarker,
cognitive, and clinical efficacy of investigational
products in AD patients with a mutation by
examining if the drug slows cognitive/clinical
impairment or improves biomarkers.

@ Passive AP immunotherapy
@ To evaluate the safety and efficacy of ALZ-801 in
Early AD subjects with the APOE4/4 genotype

NCT04241068

NCT01767311

NCT03887455

NCT05026866

NCT05508789

NCT05738486

NCT02760602

NCT01900665

NCTO01127633

NCT01760005

NCT04770220

Biogen

Eisai Inc.

Eisai Inc.

Eli Lilly and
Company

Eli Lilly and
Company

Eli Lilly and
Company

Eli Lilly and
Company

Eli Lilly and
Company

Eli Lilly and
Company

Washington
University
School of
Medicine

Alzheon

Inc.

Phase 3

Phase 2

Phase 3

Phase 3

Phase 3

Phase 3

Phase 3

Phase 3

Phase 3

Phase 3

Phase 3

Active, not recruiting (2024)

Active, not recruiting (estimation
completed 2025)

Active, not recruiting (estimation
completed 2027)

Recruiting (estimation completed 2027)

Recruiting (estimation completed 2027)

Recruiting (estimation completed 2025)

Terminated in 2018 due to insufficient
scientific evidence that solanezumab would
likely demonstrate a meaningful benefit to
participants with prodromal AD as defined
by study protocol.

Terminated in 2018 due to Solanezumab
did not meet the study’s primary endpoint.

Terminated in 2018 due to Solanezumab
did not meet the primary endpoint in study
H8A-MC-LZAX.

Recruiting (estimation completed 2027)

Active, not recruiting (estimation
completed 2024)
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ATN profiles Category of the biomarker

A-T-N- Normal AD biomarkers
A+T-N- Alzheimer’s pathologic change Alzheimer’s
continuum
A+T+N- Alzheimer’s disease
A+T+N+ Alzheimer’s disease
A+T-N+ Alzheimer’s and concomitant
suspected non-Alzheimer’s
pathologic change
A-T+N- Non-AD pathologic change
A-T-N+ Non-AD pathologic change
A-T+N+ Non-AD pathologic change

AD, Alzheimer’s disease.
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Screening Cognitive scale Advantages and References
tools disadvantages
Duration Assessment Outcome/scoring
Mini-Cog The shortest cognitive assessments, 2-3 min Primarily assesses two cognitive domains: It is scored out of 5 points, with 2 points Quick and easy to administer, making it a Nasreddine
consisting of two parts: a three-item immediate and delayed recall and for correct recall and 3 points for a useful tool for initial screening in busy etal, 2023
recall task and a clock-drawing task. visuospatial/executive function (as correctly drawn clock. A lower score is clinical settings. however, it has low
demonstrated by the clock-drawing task) indicative of cognitive impairment sensitivity
MMSE Moderately brief cognitive 5-10 min It assesses various cognitive domains, Scored out of 30 points, with higher scores Can help differentiate between different
assessment. including orientation, registration, indicating better cognitive function. types and stages of cognitive impairment.
attention, calculation, recall, language, and A lower score suggests cognitive However, it has low sensitivity
visuospatial skills impairment
MoCA Moderately comprehensive 10 min It assesses multiple cognitive domains, Scored out of 30 points, with higher scores | The MoCA is more sensitive to mild
assessment including attention and concentration, indicating better cognitive function. cognitive deficits than the MMSE and
executive functions, memory, language, Lower scores are suggestive of cognitive provides a broader assessment of cognitive
visuospatial skills, abstract thinking, and impairment function. It is particularly useful for
orientation identifying early-stage AD and MCI
Mini-Cog Consist of clock drawing and see 7-8 min Basically, aimed to detect dementia, Maximum score 30 Simple and consists of immediate recall Riello et al., 2021
CDT besides that repetition of 3 words has no words, however, has low sensitivity
connection
MMSE The main purpose of this test is to 3-4 min Orientation in time and space, perception Maximum score 5 Effective consists of calculation, working
detect dementia in of speech, and working memory memory, and attention, however, has low
moderate-to-severe stages sensitivity
MoCA Specific to MCI 10 min It is mostly used to detect MCI (especially Maximum Score 30 It is sensitive and associated with MMSE
for those with a MMSE score above 24)
Mini-Cog Can be used by primary care and 3 min Superior to MMSE in terms of sensitivity, Scored out of 9 points It is accepted by patients and doctors. Henneges et al.,
easily preformed with short time specificity, positive predictive value, and Also, higher in sensitivity and specificity 2016; Liet al,,
negative predictive value in detecting MCI to screen patients with dementia 2018
MMSE In clinical practice and research, the 5-10 min Can provide useful information about AD A score 25 > normal The score correlates with disease
most widely used tool for assessing monitoring and progression, can provide Score < 26 possible cognitive impairment. | progression; however, it is hard for
cognitive function powerful information doctors and patients to comprehend what
lowering score in MMSE means regarding
impairment
MoCA Used for screening patients with MCI | 10 15 min It involves attention, executive function, Scored out of 30 The most frequently employed cognitive

memory, language, visuospatial skills,
abstract thinking, calculation, and
orientation as cognitive areas.

function screening scales. High sensitivity
to MCI. However, it is not appropriate to
be used by health professionals as an
outpatient.
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Screening tools

Cognitive scale

Assessment

Advantages and disadvantages

Reference

The Everyday Cognition
Questionnaire (ECog)

Primary tool used to assess everyday cognitive
function; it is very sensitive in detecting early stage of
AD and its progression. It is a self-report questionnaire
that is often administered to individuals, typically with
the help of a caregiver or family member who can
provide additional insights into the individual’s
cognitive abilities

It is very specific to Everyday Memory, Everyday
Language, Everyday Visuospatial abilities, and three
everyday executive domains including Everyday
Planning, Everyday Organization, and Everyday
Divided Attention Moreover. ECog designed as
questionnaire. ECog has good reliability as well as
concurrent, it is sensitive to very early functional
difficulties, and is associated with other disease markers

such as the presence of amyloid and tau

Farias et al., 2021

The Rey Auditory Verbal A widely used neuropsychological assessment tool RAVLT can be used to detect AD in its early stages. Parra Bautista et al,
Learning Test (RAVLT) designed to evaluate various cognitive functions, Also, RAVLT is also important in distinguishing AD 2023
including memory, learning, and recall from psychiatric disorders. widely used in dementia and
pre-dementia assessment. Sometimes RAVLT not being
able to address temporality.
The Functional Abilities The FAQ consists of a series of questions or items that FAQ has the ability to predict differences in IADL across | Warren et al,, 2023

Questionnaire (FAQ)

pertain to various everyday activities. Caregivers are
asked to rate the individual’s current level of
functioning in these activities, considering any
cognitive impairments they may have observed. The
items typically cover a range of functional areas,

including shopping, finance, communication,

the AD continuum in early-stage AD, FAQ can
distinguish between CN and SMC, and develop scales
that emphasize only complex activities of daily living

transportation.
Trail Making test The TMT-B measures several cognitive functions, the TMT-B would struggle to accurately categorize
(TMT-B) task requires the creation of an ascending pattern of individuals with SMC. More specifically, previous
alternating numbers and letters as quickly and studies have indicated that the TMT-B does not have a
accurately as possible. The final score is based on the significant ability to distinguish between individuals
time taken to complete the task, and participants are who are CN and those with MCI.
advised to correct mistakes as soon as possible.
The Everyday Cognition The ECog can provide valuable insights into an Reliable and accurate assessment of everyday functional Farias et al., 2020

Questionnaire (ECog)

individual’s perceived cognitive difficulties. can help
healthcare professionals and researchers understand
the impact of cognitive impairment on a person’s daily
life

abilities in older people. A recent study found that the
ECog can detect early signs of neurodegenerative
diseases, including Alzheimer’, and track the
progression of the disease

the Rey Auditory Verbal An effective neuropsychological method for testing RAVLT is an effective early marker for detecting AD in Moradi et al., 2017
Learning Test (RAVLT) episodic memory that is frequently employed in people who have memory problems. However, RAVLT
dementia and pre-dementia cognitive assessments. cannot be employed alone as screening tool, it is like one
piece of the puzzle in evaluating cognitive impairment.
the Functional Abilities It measures the difficulties in ADLs, including self-care, In clinical/research settings, the FAQ measures ADL Gonziélez et al., 2022

Questionnaire (FAQ)

mobility, communication, learning/applying
knowledge, domestic life, community and civic life,
and interpersonal interactions and relationships.

concerns in a reliable and valid way. This test is best

used to assess mild functional difficulties, which helps
distinguish normal cognition from mild cognitive
impairment and dementia.

It has been found to have lower sensitivity than
specificity.

Trail Making test
(TMT-B)

the TMT-B can help assess the extent of cognitive
decline and monitor changes over time. Performance
on the TMT-B is timed, and the time taken to complete
the task, along with any errors, can provide important
information about cognitive functioning. Slower
completion times or numerous errors may be indicative

of cognitive impairment or executive dysfunction.

Other findings support TMT-B scores were not a
significant predictor of AD progression. Accordingly,
the results from TMT-B as diagnostic measures in
research and as screening tools for SMC in clinical

practice.

Papp etal,, 2014;
Warren et al., 2023

Papp etal,, 2014;
Warren et al., 2023
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Therapy type and purpose

Identifier

Sponsor

Clinical
phase

Status/result outcomes

Amyloid-related DMTs strategies

1. Reduction of AB 42 production

Semagacestat ® y-secretase inhibitors NCT01035138 | EliLilly and Phase 3 Study was terminated in 2011 as
© To assess the safety of semagacestat in AD patients Company Semagacestat did not slow disease
during 24 months of open-label treatment progression and was associated with
worsening of clinical measures of cognition
and the ability to perform activities of daily
living.
Semagacestat ® y-secretase inhibitors NCT00762411 | EliLilly and Phase 3 Study was terminated in 2011 as
(LY450139) e To measure the effect of semagacestat on both Company Semagacestat did not slow disease
B-amyloid and amyloid plaques for some patients. progression and was associated with
worsening of clinical measures of cognition
and the ability to perform activities of daily
living.
Avagacestat ® y-secretase inhibitors NCT00810147 | Bristol- Phase 2 Study was completed in 2010. Avagacestat
(BMS-708163) o The purpose of this study is to determine the safety Myers dosed at 25 and 50 mg daily was relatively
and tolerability of BMS-708163 in patients with Squibb well tolerated and had low discontinuation
mild to moderate AD over a treatment period of rates. The 100-mg and 125-mg dose arms
12-weeks and the course of any potential effects were poorly tolerated with trends for
during a 12-week wash-out period cognitive worsening. This study establishes
an acceptable safety and tolerability dose
range for future avagacestat studies in AD
(Coric et al., 2015).
Tarenflurbil ® y-secretase inhibitors NCT00105547 | Myrexis Inc. Phase 3 Study was completed in 2008 and the
(MPC-7869) e To determine the efficacy, safety, and tolerability of outcome showed that Tarenflurbil did not
tarenflurbil. slow cognitive decline or the loss of
activities of daily living in patients with
mild AD (Green et al., 2009).
Tarenflurbil ® y-secretase inhibitors NCT00322036 | Myrexis Inc Phase 3 Terminated (2008)
(MPC-7869) © To evaluate the safety and efficacy of 800 mg twice
daily MPC-7869 compared to placebo and to assess
the effects of daily treatment on cognition, ADLs,
and global function in mild AD patients.
LY2886721 e BACE inhibitors NCT01561430 | Eli Lilly and Phase 1/2 Terminated in 2018 due to abnormal liver
© To assess individuals with MCI related to AD or Company biochemical tests in some participants.
mild AD and amyloid plaque-positive subjects’
drug responsiveness.
Elenbecestat e BACE inhibitors NCT02956486 | Eisai Co., Phase 3 Terminated in 2021 due to no evidence of
(E2609) o To evaluate the efficacy and safety of Elenbecestat Ltd. potential efficacy, and the adverse event
(E2609) in subjects with early AD profile of E2609 being worse than placebo
Verubecestat e BACE inhibitors NCT01953601 | Merck Phase 3 Terminated (2019)
(MK-8931) © To assess MK-8931’s safety and effectiveness in Sharp &
prodromal AD patients with amnestic MCI Dohme LLC
Atabecestat e BACE inhibitors NCT02569398 | Janssen Phase 2 Terminated in 2020 due to change in
© To assess whether atabecestat slows cognitive Research & and 3 benefit-risk profile for individuals with
decline compared to placebo, as measured by the Development, early sporadic AD owing to elevations in
Preclinical Alzheimer Cognitive Composite LLC liver enzymes in subjects receiving
(PACC), in amyloid-positive, asymptomatic atabecestat
Alzheimer’s risk participants.
Etazolate (EHT e a-secretase modulators NCT00880412 | Exonhit Phase 2 Study was completed in 2009, however, the
0202) e To compare the safety and tolerability of two doses study results have not been submitted in

of EHT 0202 (40 mg and 80 mg b.i.d) versus
placebo, as well as the exploratory efficacy of
acetylcholinesterase inhibitor on cognition,

behavior, activities of daily living, caregiver burden,

and patient global assessment over 3 months.

clinical trial website
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Amyloid-related
DMTs strategies

Reduction of AB42 production
¢ y-secretase inhibitors
o Semagacestat
o Avagacestat
o Tarenflurbil

e BACE inhibitor
o LY2886721
o Elenbecestat
o CNP520
o Verubecestat
o Atabecestat

e a-secretase modulators
o Etazolate

Reduction of AB-plaque burden
e Aggregation inhibitor
o Tramiprosate
o ALZ-801

Enhancing AP clearance
e Active AB immunotherapy
o CAD106
o ABvac40
o GV1001
o ACC-001

e Passive AB immunotherapy

o Aducanumab
o Lecanemab
o Donanemab
o Solanezumab

Tau-related DMT
strategies

Tau phosphorylation and aggregation
inhibitions
e Trx0237
o LY3303560
o Tideglusib
o Leuco-Methylthioninium Bis
(Hydromethanesulphonate)

Microtubule stabilizers
o Paclitaxel
o TPI287

Anti-tau immunotherapy
¢ Active immunotherapy
o AADvacT

e Passive immunotherapy
o ABBV-8E12
o BIIB092

Pharmacological
Approaches for AD

Other DMTs
mechanism

Neuroprotection
o AGB101
o BHV4157
o |cosapent ethyl

Anti-inflammatory effects
o ALZT-OP1a plus ALZT-OP1b
COR388
Mastinib
Elderberry juice
mAbs AL002
ALOO3

(o6} N0} () (@)

Metabolic effects
o A combination of losartan,
amlodipine, atorvastatin, and
exercise

Stem-cell approaches
o AstroStem
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Icosapent ethyl

ALZT-OPla
plus
ALZT-OP1b

COR388

Masitinib

GRF6019

mAbs AL002
and AL003

A combination
of losartan,
amlodipine,
atorvastatin, and

exercise

AstroStem

e Neuroprotection

© To assess whether icosapent ethyl beneficially
affects intermediate physiological measures
associated with onset of AD in order to evaluate
whether larger, multi-site, longer-duration
Alzheimer’s prevention trials are warranted to
assess more definitive clinical outcomes.

e Anti-inflammatory

o To determine whether ALZT-OP1 combination
treatment (ALZT-OP1a + ALZT-OP1b) will slow
down, arrests, or reverse cognitive and functional
decline, in subjects with evidence of early-stage
AD.

e Anti-inflammatory
@ To assess the efficacy, safety, and tolerability of 2
dose levels of COR388 in subjects with a clinical

diagnosis of mild to moderate AD dementia.

e Anti-inflammatory
© To assess the safety and efficacy of masitinib for the
treatment of mild to moderate AD.

e Anti-inflammatory

o To evaluate the safety, tolerability, and feasibility of
GRF6019, a plasma-derived product, administered
as an intravenous (IV) infusion, to subjects with
mild to moderate AD.

e Anti-inflammatory

o To systematically assess the safety (including
immunogenicity) and tolerability,
pharmacokinetics (PK), and pharmacodynamics
(PD) of AL002.

e Anti-inflammatory
o To systematically assess the safety (including
immunogenicity) and tolerability,

pharmacokinetics (PK), and pharmacodynamics
(PD) of AL003

e Metabolic effects

e The rrAD study will determine effects of aerobic
exercise training and intensive vascular risk
reduction on cognitive performance in older adults
who have high risk for AD.

e Metabolic effects

@ To evaluate the safety and efficacy of AstroStem,
autologous adipose tissue derived mesenchymal
stem cells, in patients with AD.

e Metabolic effects
@ To test the safety and efficacy of LMSCs
(Longeveron Mesenchymal Stem Cells) for the

treatment of subjects with clinically diagnosed AD.

NCT02719327

NCT02547818

NCT03823404

NCT01872598

NCT03520998

NCT03635047

NCT03822208

NCT02913664

NCT03117738

NCT02600130

VA Office of Phase 2
Research and 3
and

Development
AZTherapies, | Phase 3
Inc

Cortexyme Phase 2
Inc. and 3
AB Science Phase 3
Alkahest, Phase 2
Inc.

Alector Inc. Phase 1
Alector Inc. Phase 1
University Phase 2
of Texas and 3
Southwestern

Medical

Center

Nature Cell Phase 1
Co. Ltd. and 2
Longeveron Phase 1
Inc.

Study was completed in 2023, however, the

outcomes of this study were not specified.

Study was completed in 2020, however the

outcomes of this study were not specified.

Study was completed in 2023. 2.34%
mortality was reported for COR388 80 mg
BID, while 0.47% mortality was reported
for COR388 40 mg BID. 11.68% serious
adverse events were reported for COR388
80 mg BID, while 9.43% serious adverse
events were reported for COR388 40 mg
BID.

Study was completed in 2020, however, the

outcomes of this study were not specified.

Study was completed in 2019. Results
showed GRF6019 at high dose improved
MMSE, ADASCog and ADCS-ADL.

However, GRF6019 caused serious adverse

event such as infusion related reaction and

pulmonary embolism.

Study was completed in 2020, however, the
outcomes of this study were not specified.

Study was completed in 2021, however, the

outcomes of this study were not specified.

Study was completed in 2021, however, the

outcomes of this study were not specified.

Study was completed in 2021. There were
27.27% serious adverse events complicated
with the AstroStem compared to placebo,
including diarrhea, neoplasms, and

pulmonary embolism.

Study was completed in 2020, however, the

outcomes of this study were not specified.

AB, amyloid beta; AD, Alzheimer’s disease; MCI, Mild Cognitive Impairment; rrAD, risk reduction for Alzheimer’s disease; CDR-SB, clinical dementia rating-sum of boxes; Im, intramuscular;

ADAS-Cog, Alzheimer’s disease assessment scale-cognitive subscale.
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Phytochemicals| Intervention Study Outcome summary References
setting
Curcumin Investigation on curcumin and piperine against In vitro model Combination of curcumin and piperine Abdul Manap
AB-induced neurotoxicity in cell line AD model protected SH-SY5Y cells against AB-induced etal,2019b
cytotoxicity, fibrillation, and oxidative damage.
Resveratrol (RES) Investigation on the impact of RES, both In vivo Following RES treatment, alterations induced Foudah et al.,
independently and in conjunction with vitamin E by SCO in AChE, protein carbonyl, and TNF-a 2023
on rats afflicted with AD induced by scopolamine resulted in elevated antioxidant levels,
(SCO). mitigated SCO-induced lipid peroxidation, and
reversed SCO-mediated changes,
outperforming the drug donepezil.
Epigallocatechin EGCG is evaluated as a small molecule capable of In vitro EGCG molecule structure has shown to stackin | Seidler etal,
Gallate (EGCG) disaggregating tau amyloid fibrils. polar clefts between the pathologically defined 2022
paired helical protofilaments in AD.
Ginkgo Biloba Extract | To describe the study that uses EGB761 as a dual In silico According to molecular docking and network Singh et al., 2023
target for AD. docking pharmacology study, the highly active
analysis phytocompounds of EGB761, particularly
quercetin, kaempferol, and isorhamnetin,
exhibited more robust activity against AChE
and GSK3 than the reported synthesized
medication.
Quercetin To evaluate quercetin’s neuroprotective impact on In vivo animal It reduced APP expression, while increasing Elreedy et al.,
hallmark genes in rats with AICI3-induced AD. model (Wistar ADAM 17 expression in the non-amyloidosis 2023
AICI3 group, and 60 days of co-administration male rats) pathway.
with AICI3 + Q50.
Polyphenols Investigation on the various dietary polyphenols In vivo model These natural compounds have been shown to Caruso et al.,
such as rosmarinic acid, ellagic acid, and cinnamic have a number of neuroprotective and 2022

aldehyde as neuroprotective and pro-cognitive
agents via various molecular mechanisms.

cognition-enhancing effects due to their
anti-amyloidogenic and anti-aggregate activity.

Ginsenosides (Rgl) Investigation on Ginsenoside Rgl (Rgl) asa In vivo Through the regulation of the Yang et al., 2022
neuroprotective agent against animals with Wnt/GSK-3p/B-catenin signaling pathway, it
memory impairment. has been observed that Rgl administered at
moderate and high doses exhibits the potential
to mitigate oxidative stress-induced damage,
ameliorate neuroinflammation, safeguard
neurons, and ultimately enhance cognitive
impairment in the AD model of the tree shrew.
Crocus sativus To investigate the anti-inflammatory and anti- A In vivo The animal studies have provided evidence for Marzabadi et al.,
aggregation properties of saffron the anti-inflammatory and anti- Ap aggregation | 2022
properties of saffron.
Hesperidin To explore the potential neuroprotective attributes In vitro In the AD model cells, the intensity of Ap was Kusi et al,, 2023
of hesperidin and naringin via an AD model in notably diminished upon treatment with both
SK-N-AS cells that was employing AB25-35. hesperidin and naringin. Additionally, both
flavonoids exhibited a significant reduction in
the intensity of a-synuclein within the
SK-N-AS cells and AD model cells.
Lycopene To investigate the neuroprotective properties of In vivo Notably, the supplementation of Lycopene Guo etal.,, 2023
lycopene and the underlying mechanisms involved, Micelles in Olive Oil (LME) resulted in a
employing a murine model in which AB1-42 was remarkable mitigation of astrocytosis and
administered intracerebroventricularly (ICV). microgliosis, a reduction in malondialdehyde
production, and a restoration of antioxidant
capacities.
Olea europaea Investigation on olive leaf (OL), as well as its In vitro The efficacy of OL and the bioactive Romero-

(Oleuropein)

compounds Oleuropein (OLE) and
Hydroxytyrosol (HT), as a dual capacity for
diminishing of the formation of AB and
neurofibrillary tangles

compounds within this by-product of the olive
tree has been demonstrated in mitigating, and
potentially preventing, various processes
associated with AD.

Mérquez et al,,
2023
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ALZ-801 @ Passive A immunotherapy

(APOLLOE4) o To investigate the effects of oral ALZ-801, in
subjects with Early AD who have the APOE4/4 or
APOE3/4 genotype, on the biomarkers of core AD
pathology

ABBV-916 @ Passive A immunotherapy

© To assess safety of ABBV-916 and how intravenous
ABBV-916 moves through body and affects brain
amyloid plaque clearance in adult participants
(Aged 50-90 years) with early AD

Tau-related DMTs strategies

TRx0237 e Aggregation inhibitor

e To compare TRx0237 16 mg/day and 8 mg/day to
placebo in AD therapy. To prove TRx0237’s
disease-modifying efficacy, an open-label,

delayed-start phase is included.

1Y3303560 e Phosphorylation inhibitor
© To evaluate the safety, tolerability, and
pharmacokinetics in healthy subjects and patients

with MCI due to AD or mild to moderate AD.

TPI-287 e Microtubule stabilizers

@ To evaluate the highest intravenous dose of
TPI-287 that is safe and tolerable for mild to
moderate AD, measure its pharmacokinetics, and
assess its preliminary efficacy on disease

progression.

AADvacl e Active immunotherapy
@ To evaluates the safety and efficacy of AADvacl in

the treatment of patients with mild AD.

BIIB092 @ Passive immunotherapy

© To assess BIIB092’s safety and tolerability in
MCI owing to AD or mild AD. Secondary
objectives of the placebo-controlled period include

evaluating the efficacy of multiple doses of BIIB092

in slowing cognitive and functional impairment in
participants with MCI due to AD or mild AD and

its immunogenicity.
DMTs employing other pathways

AGB101 e Neuroprotection

@ To determine whether AGB101 slows cognitive
and functional impairment as measured by
changes in the CDR-SB score compared to placebo
in participants with MCI due to AD, also known as

prodromal AD.

BHV4157 e Neuroprotection
© To evaluate the efficacy and safety of BHV-4157 in

patients with mild to moderate AD

NCT04693520

NCT05291234

NCT03446001

NCT02754830

NCT01966666

NCT02579252

NCT03352557

NCT03486938

NCT03605667

Alzheon

Inc.

AbbVie

TauRx
Therapeutics
Ltd

Eli Lilly and
Company

University
of
California,

San Francisco

Axon
Neuroscience
SE

Biogen

AgeneBio

Biohaven
Pharmaceuticals,

Inc.

Phase 2

Phase 2

Phase 3

Phase 1

Phase 1

Phase 2

Phase 2

Phase 2
and 3

Phase 2

Active, not recruiting (estimation
completed 2024)

Recruiting (estimation completed 2030)

Study was completed in 2023, however, the
udy results have not been submitted in

12

inical trial website

o

Study was completed in 2023. 5% of
frequency threshold of other adverse event
(not serious) was reported including

abdominal pain, diarrhea and vomiting.

Study was completed in 2019. In this
randomized clinical trial, TPI-287 was less
tolerated in patients with AD than in those
with 4RT owing to the presence of
anaphylactoid reactions. The ability to
reveal different tau therapeutic effects in
various tauopathy syndromes suggests that
basket trials are a valuable approach to tau
therapeutic early clinical development
(Tsai et al., 2020).

Study was completed in 2019. The Phase 1
(2015) of AADvacl had a favorable safety
profile and excellent immunogenicity,
however, the phase 2 trial outcomes were
not mentioned.

Terminated in 2022 based on lack of
efficacy following the placebo-controlled
period readout.

Study was completed in 2022. Three
subjects were randomized and assigned to
receive AGB101 but were not treated,
lowering the total number of at-risk
participants treated with AGB101 to 78.
Further elaboration of the drugs
intervention was not specified.

Study was completed in 2021. Eligible
participants who completed the
double-blind treatment phase had the
opportunity to receive open-label
troriluzole for up to 48 weeks in an
open-label extension (OLE) phase.
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Group Motor symptoms Pre-levodopa Post-levodopa t/IZ P-value
PD (n = 86) MDS-UPDRS 111 3450 £ 14.16 20.81 £ 1025 —8.057 <0.001%
Rigidity 657 £3.79 3.87+2.98 —7.766 <0.001*
Bradykinesia 17.00 % 8.00 10014581 ~7.790 <0.001%
Posture and gait 2.80+2.45 205+ 191 —5.467 <0.001*
Tremor 628 £ 445 3.16+3.09 ~7.191 <0.001*
PSP (n = 15) MDS-UPDRS IIT 44.60 & 16.43 33.80 £ 14.67 7358 <0.001*
Rigidity 8.13+498 7.00 £ 4.60 2828 0.013*
Bradykinesia 22.33+£928 1653 +8.07 7.360 <0.001*
Posture and gait 820365 633£3.64 —2.988 0.003*
Tremor 3.00+3.85 147 £ 2.00 —2214 0.027*
MSA (n = 10) MDS-UPDRS 111 47.40 £ 1031 3920 £ 8.54* 5.904 <0.001%
Rigidity 9.10 +2.96 6.80 & 3.99 3851 0.004*
Bradykinesia 25.00 £ 4.97 20.80 £ 3.71 4583 0.001%
Posture and gait 7.80+3.94 6.80 £ 3.46* 2535 0.032*
Tremor 210273 140 £2.32 —1.841 0.066

PD, Parkinson’s disease; PSP, progressive supranuclear palsy; MSA, multiple system atrophy; MDS-UPDRS I11, Part III of the Movement Disorder Society-sponsored Revision of the Unified
Parkinson’s Disease Rating Scale; *significant difference between pre-challenge and post-challenge level with P value < 0.05.
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Measurements HC (n = 159) PS (n = 200)

PD (n = 154) PSP (n = 30) MSA (n = 16)

Age (years) 61.73+£9.15 62.14£9.39 69.37 £591" 62.19 £8.49 18.293 <0.001
Gender (M/F) 88/71 92/62 18/12 6/10 3.234 0.357
Disease duration (months) - 40.21£29.26 48.80 £ 34.33 32.13£18.09 3.643 0.162
H-Y stage (I/I/III/IV/V) - 34/78/40/2/0 0/6/20/4/0 0/4/8/4/0 51.668 <0.001
LEDD (mg/day) - 233.77 & 264.89 384.33 4 272.10% 375.00 & 318.86 9.442 0.009
MDS-UPDRS IT - 10.37 £5.48 19.80 £ 7.01* 20.25 +£7.23* 57.898 <0.001
MDS-UPDRS IIT - 33.93+15.30 44.80 & 15.54* 41.88 £ 15.56 7.483 0.001
Rigidity - 6.73+3.82 7.40 £4.58 7.06 +4.27 0.617 0.734
Bradykinesia - 16.56 £ 8.09 22.40 £9.16* 21.63 £8.74 14.493 0.001
Posture and gait - 3.64+320 10.83 + 4.42% 8.94 & 4.54 66.269 <0.001
Tremor N 6.23+4.57 237 £3.34% 1.56 & 2.427 34.326 <0.001

HC, healthy controls; PS, people with parkinsonism; PD, Parkinson’s discase; PSP, progressive supranuclear palsy; MSA, multiple system atrophy; H-Y stage, Hochn and Yahr stage; LEDD,
levodopa equivalent daily dose; MDS-UPDRS I1, Part IT of the Movement Disorder Society-sponsored Revision of the Unified Parkinson's Discase Rating Scale; MDS-UPDRS 111, Part 11T of
the Movement Disorder Society-sponsored Revision of the Unified Parkinson’s Discase Rating Scale. Comparisons among groups were Bonferroni adjusted. “significant difference between PSP
and all the other groups with all P values < 0.0125 (P < 0.05/4 i.e., < 0.0125); *significant difference between PD and PSP with P values < 0.017 (P < 0.05/3 i.c., <0.017); "significant difference
between PD and MSA with P values <0.017 (P < 0.05/3 i.e., <0.017).
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Gene module Correlated IncRNAs

GABRA3 Brown ENSGO0000259985, REPLIS, ENSG00000230051, ENSG00000271755, ATP2B1-AS1, LINC02144, NUP50-DT;
ENSG00000271882, CNIH3-AS2, ENSG00000261292, DHX9-AS1, PLPPRS-AS1, DLX6-AS1, RNF32-DT, LINC02023,
ENSG00000287527, TRIM7-AS2, ENSGO0000266335, ENSG00000272163, RAPGEF4-AS1, PARTICL, LINC00239,
ENSG00000284707, HAR1A, ENSG00000274718, ENSG00000254921, INKA2-AS1, ENSG00000286391, LINC00390, KIF18B-DT,
ENSGO0000283743, ENSG00000253596, UNCSC-AS1, LINC02440, SLC26A4-AS1, DCTN1-AS1, ENSG00000286736,
ENSG00000260196, ENSGO0000261135, ENSG00000286918, ENSG00000260482, ARMCXS-GPRASP2, ENSG00000260464, NA,
REPINI-AS1, LINC02283, ENSGO0000270883, ENSG00000261654, ENSGO0000286129, LINC01208

CALBL Purple ENSGO0000260328, KCNK4-TEX40, LETRI, ENSG00000251680, ENSG00000256596, ENSG00000286282, ENSGO0000261026,
STARD4-AS1, ENSG00000253121, PEN2-AS1, LINC01494, ENSG00000249150, LINC00457, ENSG00000286230, LINCO1621,
LINC00839, TMCCI-DT, ERICH6-AS1, FGGY-DT, ENSG00000272247, LINC00571, ENSG00000287867, LINCO1119,
ENSGO0000257194, ENSG00000245768, ENSG00000235450, CFAP20DC-DT, TDRKH-ASI, FL]20021, MIRI30AHG, BHLHE22-
AS1, ENSGO0000227606, LINCO1547, LINC00184, ENSG00000286111, LINC03040, MEF2C-AS2, ENSGO0000285679,
ENSG00000228151, ENSG00000269107, LINC00943, NA, ENSG00000271727, NA, ENSG00000259199, ENSGO0000236958,
ENSGO0000253355, NECTIN3-AS1, ENSGO0000287468, ENSG00000228222

SLC30A3 Lavenderblush3 ENSG00000251187, MGC4859, ENSG00000280145, ENSG00000287832, LINC01267, ENSG00000228162, LINCO1571,
ENSG00000259628, ENSGO0000288015, ENSG00000247311, CYP4A22-AS1, LINC02688, ENSG00000259222, UCHLI-DT,
ENSGO0000145075, ENSG00000236106, LINCO01765, ACBD3-AS1, LINCO1014, CNTN4-AS1, ENSG00000270265, LINC00907,
USP3-AS$1, CCNO-DT, IGFBP7-AS1, ENSGO0000285930, KIF23-AS1, ENSG00000249621, LINC02742, LINC00304,
ENSG00000258752, ENSG00000286777, LINC02525, ENSG00000283383, ENSG00000286472, EWSAT1, ENSG00000249631,
LINC03053, ENSG00000277010, FHAD1-AS1, LINC02838, ENSG00000287427, ENOX1-AS2, ENSG00000288040, LINC02133,
TSBP1-AS1, ENSG00000276842, ENSGO0000227712, ENSG00000253796, SPATA42

PLK2 Brown ENSG00000259985, RFPLIS, LINC02023, ATP2B1-AS1, CNIH3-AS2, LINC00390, ENSG00000287527, ENSGO0000271882,
ENSG00000274718, ENSG00000266335, ENSG00000254921, INKA2-AS1, ENSG00000230051, NUP50-DT, ENSG00000261292,
PLPPRS-AS1, RNF32-DT, HARIA, ENSG00000286391, RAPGEF4-AS1, DLX6-AS1, PARTICL, ENSG00000271755,
ENSG00000229976, LINC02440, LINC00239, TRIM7-AS2, DCTN1-AS1, LINC02144, DHX9-AS1, LINCO01829,
ENSG00000283743, ENSG00000253596, ENSG00000287816, MEGS, ENSG00000260482, ENSG00000270883, NA, KIF18B-DT,
ENSG00000254040, ENSG00000286736, REPIN1-AS1, ENSG00000272163, ENSG00000286675, NA, CD101-AS1,
ENSG00000278727, MACROD2-IT1, LINC02389, MKNKI1-AS1

NDST3 Brown REPLIS, LINC02023, DCTN1-AS1, ATP2B1-AS1, ENSG00000259985, ENSG00000287068, CNIH3-AS2, MEGS,
ENSGO0000286675, LINC02389, LINC02440, INKA2-AS1, ENSG00000229976, NA, ENSG00000260920, ENSG00000272121,
MKNKI-ASL, ENSG00000272944, ENSG00000278727, ENSG00000287527, ENSG00000270883, ENSG00000272420,
ADAMTS19-AS1, SNHG14, ENSG00000255910, ENSG00000261292, ENSG00000255448, ENSG00000227681,
ENSGO0000266335, SNAP25-AS1, NUP50-DT, ENSG00000287976, ENSG00000249738, RNF32-DT, CD101-AS1, MYCNOS,
ENSG00000287887, LINCO1208, ENSG00000288062, LINC02740, ENSGO0000261553, ENSGO0000286716, LINCO1123,
LINC00621, ENSGO0000260163, ZNES67-DT, MYG1-AS1, LINC01829, NA, ENSG00000268288

DRD3 Purple ACTR3-AS1, LETR1, ENSG00000229588, ST20-AS1, LINC01501, ENSG00000272106, LINC00839, ENSGO0000283445, KCNK4-
TEX40, ENSG00000287844, ENSGO0000235450, ENSG00000259560, ENSGO0000286066, LINCO1213, ENSG00000286282,
ENSG00000236823, BHLHE22-AS1, ENSG00000256596, ENSG00000260328, CORO1A-AS1, ENSG00000246308,
ENSG00000226149, ENSG00000271727, FLJ20021, LINCO1119, ENSG00000231918, ENSGO0000286867, LINC00943,
ENSGO0000287468, ENSG00000236744, LINCO1358, ENSG00000269107, TRIM36-IT1, ENSG00000228151, INHBA-ASL,
ENSG00000286389, NA, ENSG00000261411, ENSG00000286719, ENSG00000271901, ENSG00000287477, ENSGO0000253507,
ENSG00000287204, LINC02802, ENSG00000287255, STARD4-AS1, LINCO1879, ENSG00000227598, ENSGO0000285898, AFF2-
IT1
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Gene Fgmodule Correlated IncRNAs

GABRA3 Brown FLRT2-AS1, REPLIS, COPG2ITI, ENSGO0000251095, ENSGO0000258768, ENSGO0000260163, ENSGO0000274718,
ENSG00000258945, ENSG00000255202, ENSG00000267396, ENSGO0000283183, MSC-AS1, ENSGO0000258931, TSC22D1-AS1,
ENSG00000257522, ENSG00000197332, ENSG00000259678, LINCO1182, ENSG00000283538, ENSGO0000286282,
ENSG00000286971, ENSG00000272944, DCTNI-AS1, ARMCXS5-GPRASP2, ENSGO0000287241, ANKRD34C-AS 1, SPNS2-AS1,
ENSG00000281160, LINC02857, MAP4K3-DT, LIN28B-AS1, LINC01007, ENSG00000288062, ENSG00000255910, DGCRS,
RAPGEF4-AS1, ENSGO0000287315, ZIM2-AS1, ENSG00000258035, NA, ENSG00000286125, ENSG00000240086, LINC02035,
ENSG00000251680, ENSG00000248559, ENSG00000287769, LINCO1963, NA, LUARIS, ENSG00000266573

CALBI Lavenderblush3  ENSGO0000273275, LY86-AS1, SLC26A4-AS1, ENSG00000261037, ENSG00000278727, ENSGO0000236064, MAL2-AS1, LINC01332,
ENSG00000229618, ENSG00000260412, ENSG00000285634, LETRI, ENSGO0000256538, ENSGO0000287038, ENSGO0000249684,
ENSG00000223944, LINCO1331, LINCO1476, INHBA-AS1, MIR4500HG, ENSG00000255595, ATP2B1-AS1, LINC00507,
ENSG00000233928, NA, CEAP20DC-AS1, ENSG00000287018, LINC02009, LINCO1885, LINC02346, ENSG00000285582,
ENSGO0000255087, ENSGO0000253452, ENSG00000254664, CYP1B1-AS1, ENSGO0000285572, ENSG00000284428,
ENSGO0000286771, ACAP2-IT1, ENSGO0000253762, ENSGO0000286888, LINCO1250, ENSGO0000278911, ENSG00000248837,
ENSG00000240291, ENSGO0000262267, ENSG00000286198, ENSG00000249453, ENSGO0000255372, MAP3K4-AST

SLC30A3 Lavenderblush3  LY86-AS1, ENSG00000236064, SLC26A4-AS1, ENSG00000273275, LINC02885, ENSGO0000260412, LETR1, ENSG00000253762,
CFAP20DC-AS1, LINCO1476, MIR4500HG, ENSG00000251600, ENSG00000287690, LINCO1250, LINC02346, ENSGO0000253452,
ENSGO0000284703, ENSG00000255595, ATP2B1-AS1, ENSG00000285634, INHBA-AS1, LINC00343, ENSG00000255087,
LINC03026, ENSG00000223944, LINC00390, LINC01332, LINCO1616, PYDC2-AS1, ENSG00000253553, ENSG00000248837,
ENSG00000286961, LINC00642, LINCO1331, ENSG00000283403, ENSG00000278727, THSD4-AS1, CYP4F26P, ENSG00000233928,
MIRI37HG, ENSG00000229618, ENSG00000285966, ENSG00000283294, ENSG00000224404, ENSG00000286934,
ENSG00000287271, MEG3, NA, ENSG00000261037, SNAP25-AS1

PLK2 Lavenderblush3  LETRI, LY86-AS1, CEAP20DC-AS1, SLC26A4-AS1, LINC00390, LINC02346, ATP2B1-AS1, ENSG00000260412, MIRI37HG,
ENSG00000253553, MIR4500HG, ENSG00000236064, ENSG00000233928, LINCO1616, ENSGO0000285634, ENSG00000278727,
LINCO1885, ENSG00000273275, ENSG00000287900, ENSGO0000287439, ENSG00000285582, ENSG00000286720,
ENSGO0000224404, ENSG00000287690, LINC03026, LINC00642, LINC01618, LINC00488, ENSG00000286447, LINC01476, INHBA-
AS1, ENSG00000285572, SNAP25-AS1, ENSG00000253452, ENSG00000251600, NA, THSD4-AS1, MAL2-ASI, MAP3K4-ASI,
MEG3, ENSG00000284703, PYDC2-AS1, LINC02885, ENSG00000255595, ENSGO0000285966, LINC01250, ENSG00000248837,
ENSGO0000286386, ENSG00000255087, ENSGO0000287671

NDST3 Lavenderblush3  ENSG00000273275, ENSG00000255595, ENSG00000285582, LY86-AS1, LINC00507, ENSG00000287900, MIR4500HG,
ENSGO0000285634, ENSG00000229618, LETRI, LINCO1885, ENSG00000253452, LINC02346, MAL2-AS1, LINCO1331, LINC01476,
ENSGO0000278727, ENSG00000260412, ENSGO0000233928, ENSG00000223944, ENSG00000261037, SLC26A4-AS1,
ENSGO0000287018, ENSG00000255087, LINC01250, NA, INHBA-AS1, ENSGO0000253553, ENSG00000248837, ENSGO0000287038,
ENSGO0000240291, LINCO1332, ENSG00000285572, ENSGO0000286386, ACAP2-IT1, ENSGO0000286286, ENSG00000262267,
ATP2BI-AS1, ENSG00000286720, CTXN2-AS1, LINC00488, ENSGO0000287439, ENSG00000230393, MIRI37HG, THSD4-AS1,
CEAP20DC-AS1, ENSGO0000256538, ENSG00000249453, ENSGO0000258526, LINC00642

DRD3 Brown COPG2ITI, RFPLIS, FLRT2-AS1, ENSG00000251095, ENSG00000258768, ENSGO0000286125, MSC-AS1, ENSG00000257522,
MAP4K3-DT, ENSG00000255202, ENSG00000258945, LINCO1140, DCTN1-AS1, PART1, ENSG00000281160, ENSG00000260163,
ENSGO0000272944, CDH13-AS2, LINC02857, ENSG00000231863, TUBA1B-AS1, ENSG00000267396, ENSG00000283183,
ENSGO0000286353, ENSG00000286282, LINC01963, ENSG00000260920, ENSG00000288062, NA, LINCO1182, DPP10-ASL,
TSC22D1-AS1, ENSG00000286971, ENSG00000197332, ENSG00000233290, ENSGO0000260838, OIP5-AS1, ENSGO0000236377,
ENSGO0000266573, ENSG00000274718, LIN28B-AS1, ENSG00000257434, THCAT155, ENSGO0000286342, ENSG00000260966,
ENSGO0000261167, RAPGEF4-AS1, LUARIS, ENSG00000260108, ENSG00000259985
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Variables P(TDvs.  P(TDvs. P (PIGD vs.

PIGD) MIX) MIX)

Demographic and clinical data

Sex (male/female) 80187 4145 26127 1315 >0999 >0999 >0999
Age(y) 638487 634587 643588 643584 0573 0647 0999
Age at onset (y) 593294 593592 594498 588495 0970 079 0796
Discase duration

» 16£39 41532 19443 55450 0213 0089 0582
HEY stage 2,2) 20,2) 2(2,3) 22,2 0.002 0077 0.437

RBC-o--Syn in patients (ng/mg)
RBC-oa-5m (og/ 649241881 632441846 6403419.12 717741776 0810 0.036 0.083

mg)
RBC-o-a-Syn in patients with different sexes (ng/mg)

Male 61.68+16.48 59.58+16.49 6234£17.20 66971343 0521 0.156 0413

Female 67.9122027 66.57+19.50 65.67+20.68 75941987 0854 0120 0.135
RBC-0-a-Syn in patients stratified by age (ng/mg)

<65(y) 65.30+17.44 65.72+18.53 61401465 713621666 0327 0337 0.073

265(y) 64.56+20.04 60.64+18.02 66382211 721321865 0244 0.044 0.408

RBC-o-a-Syn in pati

s stratified by age at onset (ng/mg)
<60 (y) 65.75+18.15 66.62+20.41 61.25+13.88 72.46+16.02 0.245 0.360 0.033
>60(y) 641621937 603121601 6692423.00 711821912 0163 0.037 0557

RBC-o0-a-Syn in patients stratified by discase duration (ng/mg)

0-2(y) 64.88£18.61 6376+17.24 66.85£22.08 634441041 0577 0962 0.687
3-5() 674741936 65874 18.87 607241751 773741841 0482 0097 0.067
6-10(y) 623941888 60.22£19.36 600841636 796842081 0.982 0062 0055
>10(y) 650741185 52334452 7171£8.80 631551179 0,054 0364 0308

RBC-o-a-Syn in patients stratified by H&Y stages (ng/mg)

1 64.04+1662 65.70£17.26 57.25416.42 68.36+6.46 0199 0744 0.198
2 664242011 63.95£19.49 67.18421.30 717341879 0536 0170 0494
3 642741847 57.08+15.60 662841636 80.624£21.63 0.163 0.040 0.196
4-5 563141349 4335 562341398 629841050 - - 0.624

D, Tremor-dominant subtype; PIGD, postural instability and gait difficulty subtype. Bold: p<0.05.
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Variables

Sex (male/female)
Age (y)

Education (y)

Age at onset (y)
Disease duration (y)
HAY stage
MDS-UPDRS Il scores
MMSE

MoCA scores
RBDQ-HK scores
AHRS scores
HAMD scores

HAMA scores

Measurement data were expressed s means £SD, level data were expressed as Median (lower
quartile, upper quartile). HC, Healthy control; PD, Parkinson' disease; MDS-UPDRS I1l,
Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating

HC
52/67
664456
89£5.1
NA
NA
NA
NA
267425
228440
59450
24040.1
1422

37437

PD
80187
638487
96+44
59394
46239
2(1,2)
265+145
241154
19762
1614146
19557.0
62:62

81473

Scale Part IIT; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive.

Assessment; RBDQ-HK, Rapid eye movement sleep behavior disorder questionnaire-Hong

Kongs AHRS, Argentine Hyposmia Rating Scales HAMD, Hamilton Depression Scales
HAMA, Hamilton Anxiety Scale. NA, not applicable
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7

8

HC
166+0.7
15903

1533£0.66
158+0.7

1692+1.67

1571£2.13

16409

SCD

17211

aMCl Ref.

170407 | Tsaietal. (2020)

172403 | Tzenetal. (2014)
- Lue etal. (2017)

173-201 | Chenetal. (2019)

17.6+1.8 Chiu etal. (2020)

Jiao etal. (2020)
Huetal. (2021)

“This work

AP, amyloid-; aMCI, amnestic mild cognitive impairment; HC, healthy control; IMR,
ultra-sensitive immunomagnetic reduction; SCD, subjective cognitive decline.
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Variable Control

(n=14)
Demographics
Agey 67.6£89 | 683%87 0806 -
Male (%) 3(214) 14068 0341 -
Education level, y 116438 103549 0373 -
Body mass index, kg/m® 258+47 | 243535 0206 -

Cognitive tests

{CDR 0606 08£08 0437 -
Disease index 114209 10+L1 0091 -
s 105£26 109£23 0548 -
bDS. 74436 63£28 0290 -
VFT 136429 134830 0793 -
TMTA 5164340 S16:186 099 -
Baseline MMSE 284£13 27720 0249 0366

Baseline IMR data (pg/mL)

ttau 228433 255467 0.151  0.134
Ape 164109 172111 0.035 0026
p-taul8l 38+0.7 41108 0314 0328
AP 53.045.7 514445 0308 0293
a-synuclein (fg/ml) 150421353 | 12611054 0435 0453
Apoxt-tau 37561662 445041489 0101 | 0087
Apoxp-taulsl 6284129 | 7052189 0168 0169
ABolApi 0314004 | 0342004 0079 0069
APOE ed allele frequency 3(23) 60162 | 0619 -

Data are presented as means & standard deviations or as frequencies (%). *Adjusted for age
and education level. AP, amyloid-f; APOE, apolipoprotein E: bDS, backward digit span; DS,
forward digit span; HVLT, Hopkins Verbal Learning Test; IMR, ult
munomagnetic reduction; MMSE, Mini-Mental Status Examinati
phosphorylated at threonine 181; SCD, subjective cognitive decline; tCDR, total score of
Clinical Dementia Rating; TMTA, Trail Making Test Part A; t-tau, total tau; VFT, verbal
fluency test.
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Variable Control SCD P
Duration, year 12404 17407 0065 -
Follow-up MMSE 280+15 | 280£27 | 0969 0923

Follow-up IMR data (pg/mL)

ttau 21£30 | 237£37 0230 0268
Apo 165508 16909 0142 0177
p-taulsi 39+04 37607 | 0544 | 0559
AP 482576 | 491£66 | 0749 0707
synuclein (fg/mL) 8274392 | 1076£503 | 0170 0173
Apuxt-tau 3635£531 4029758 0142 0176
Apuxp-taulsl 639565 | 636%137 | 0947 0924
AulAP 0354007 | 0.35£005 | 0956 0970
Annual MMSE change ~03:14 03£17 0351 | 0432

Change in IMR data (pg/mL)

ttau 03£35 -26+85 | 0308 0355
A 0211 ~03:15 | 0394 0438
p-taulsl 02407 -04%13 | 0155 0214
Ay —44%1L1 | -18%77 | 0434 0457
asynuclein (fg/mL) -293:528  -305:1380 0978 0955
APoxttan 86+733 | -585:1864 0280 0319
Ao x p-taulsl 328143 -94:266 | 0167 0223
APol/Abi 0045009 | 001£006 | 0277 0306

Data are presented as means + standard deviations or frequency (%). *Adjusted for age and
education level. Af, amyloid-; IMR, ulra-sensitive immunomagnetic reduction; MMSE,
Mini-Mental Status Examination; p-tau181, tau phosphorylated at threonine 181; SCD,
subjective cognitive decline; t-tau, total tau,
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Variable Declined Maintained p

(n=8) (n=21)

Demographics
Agey 65,5480 69.6£8.3 0245 | -
Male 3(7.5) 6(286) 0675 | -
Education level, 11443 105450 0765 | -
Body mass index, kg/m?  24.044.1 240231 0998 | -

Cognitive tests

{CDR 0.6£04 09£0.8 0427 -
HVLT 213427 228438 0299 -
s 11626 11221 0605 -
bDS. 78433 62424 0187 -
VFT 136426 13333 0797 -
TMTA 4935175 497£152 | 0944 -
Baseline MMSE 278429 274418 0682 0739

Baseline IMR data (pg/mL)

ttau 21.9+48 268474 0.097 | 0.131
Ape 16411.1 17.5¢1.2 0029 0.048
p-taul8l 39407 42109 0511 0617
Ao 499449 Si6:44 | 035 0313
a-synuclein (fg/ml) 980£573 | 1448+1309 | 0342 0416
Apoxt-tau 363261035 475941679 | 0089 0120
Apoxp-taulsl 6165148 7364218 | 0293 0378
APalAB 0332005 0345004 | 0636 0804
ApoE 4 allele frequency | 1(12.5) 4(200) 1000 -

Data are presented as means & standard deviations or frequency (%). *Adjusted for age and
education level. A, amyloid-fj; APOE, apolipoprotein E; bDS, backward digit span; DS,
forward digit span; HVLT, Hopkins Verbal Learning Test; IMR, ult
munomagnetic reduction; MMSE, Mini-Mental Status Examinati
phosphorylated at threonine 181; SCD, subjective cognitive decline; tCDR, total score of
Clinical Dementia Rating; TMTA, Trail Making Test Part A; t-tau, total tau; VFT, verbal
fluency test.
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Baseline

Follow-up
UC (95% CI)

Change

AUC (95% CI)

IMR data AUC (95% CI)
t-tau 69.6 (49.9-85.2)
Aba 75.0 (55.6-89.1)
p-taul8l 54.2(34.8-72.7)
Abw 57.7(38.1-75.7)
a-synuclein 64.9 (45.0-81.6)
Apyxt-tan 714 (51.7-86.5)
APy p-taul8l 57.7 (38.1-75.7)
Aa/ APw 560 (36.4-74.2)

0.098

0042

0723

0523

0218

0071

0518

0.666

50.8(30.0-71.2)
67.5(46.0-84.7)
58.7(37.5-77.8)
67.5 (46.0-84.7)
54.8(33.8-74.6)
54.8(33.8-74.6)
62.7(41.3-81.0)

67.5(46.0-84.7)

0953

0.164

0527

0141

0732

0.707

0327

0174

75.4(54.2-90.2)
65.1(43.6-82.9)
51.6(30.9-71.8)
69.0(47.6-85.8)
619 (40.5-80.4)
75.4(54.2-90.2)
54.0(0.33-0.74)

56.3(35.2-75.9)

0.028

0222

0.905

0075

0.348

0.028

0.758

0618

AP, amyloid-; AUC, area under the ROC curve; Cl, confidence intervals IMR, ultra-sensitive immunomagnetic reduction; MMSE, Mini-Mental Status Examination; p-taul81, tau
phosphorylated at threonine 181; ROC, receiver operating characteristic; SCD, subjective cognitive decline; t-tau, total tau,
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Drug
Minocycline
MCC950
JC-124
Thuprofen
Edaravone
P2X7Rinhibitor
P2
Lintuzumab
4D9 antibody
AL002¢
AL002a
PLX3397
PLX5622

rgets

NLRP:

flammasome blockage
NLRP3 inflammasome blockage

flammasome blockage

flammasome blockage
NLRP3 inflammasome blockage
NLRP3 inflammasome blockage
CD33 inhibitor

CD33 inhibitor

TREM2 Modulator

TREM2 Modulator

TREM2 Modulators

CSFIR inhibitor

CSFIR inhibitor

Function

Attenuates microglial activation and reduces A accumulation
Attenuates microglial activation and reduces A accumulation
Attenuates microglial activation and reduces A accumulation
Attenuates microglial activation and reduces A accumulation
Attenuates microglial activation and reduces A accumulation
Attenuates microglial activation and reduces A accumulation
Increased AP phagocytosis

Increased AP phagocytosis

Boosting microglial phagocytosis

Neuroprotective effects via reducing AP

Neuroprotective effects via reducing AP

Suppress tau propagation

Prevent plaque formation

References
etal. 2016)

Jiao etal. (2020)

Yin etal. (2018) and O'Brien et al. (2020)
Wilkinson etal. (2012)

Yang etal. (2015)

Huang etal. (2023)

Boulanger (2009)

les et al. (2019)
Wang etal. (2016)
Wang . etal. (2020)
Cheng etal. (2018)
Sosna etal. (2018)

Spangenberg et al. (2019)
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Gene Function

glia genes in AP pathogenesis

SRA Regulation of microglia phagocytosis

CD36 Regulation of microglia phagocytosis

RAGE Regulation of microglia phagocytosis

APOE Regulation of microglia phagocytosis

CRI Modulate microglia phagocytosis of A

cp33 Modulate microglia phagocytosis of A

TREM2 Modulate A phagocytosis

ABCA7 Modulate microglia phagocytosis of A

Microglia genes in Neuroinflammation

NLRP3 Modulate microglia-mediated inflammatory response
BACEI Increasing inflammatory responses

S0Cs Regulate the balancing of inflammatory response
SHIPL Modulate microglia-mediated inflammatory response
CX3CRI Regulate tau phosphorylation

Microglia genes in tau pathology

CSFIR Modifying tau-mediated neurodegeneration

APOE Modifying tau-mediated neurodegeneration

TREM2 Regulating A plaque and tau aggregates

Expression

Increased in AD
Increased in AD
Increased in AD
Increased in AD
Increased in AD
Increased in AD
Decreased in AD

Increased in AD

Increased in AD
Increase in AD

Decreased in AD
Decreased in AD

Decreased in AD

Increased in AD
Increased in AD

Decreased in AD

References

Frenkel etal. (2013)
Kim etal. (2017)
Deane etal. (2012)
Nguyen et al. (2020)
Crehan etal. 2013)
Griciuc etal. (2013)
Ruganzu etal. (2021)

Aikawa etal. (2019)

Heneka et al. (2013)

Singh etal. (2022)

Ruganzu etal. (2021)

“Terzioglu and Young-Pearse (2023)
Choetal. (2011)

Spangenberg etal. (2019)
Shi et al. (2017) and Nguyen et al. (2020)

Cheng etal. (2018)
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Inflammatory markers
IL-laand IL-1p
ICAM-1

VCAM-1

cclL2
I8
1L-33

Progranulin

YKL-40

Type

Proinflammatory cytol
Adhesion molecule

Adhesion molecule-1

Proinflammatory cytokines
Proinflammatory cytokines
Proinflammatory cytokines

“Transeription factor

Chemokines
Pro-inflammatory
Pro-inflammatory

A growth factor

‘Mammalian chitinase-like proteins

Function in inflammation
Increased in CSF of AD patients
Increased in CSF of AD patients

Increased in CSF of AD patients

Increased in serum and CSF of AD patients
Increased in serum and CSF of AD patients
Increased in serum and CSF of AD patients

Transeri

on factor that activates genes related to

inflammation

Increased in serum and CSF of AD patients
Increased in serum and CSF of AD patients
Increased in plasma of AD patients

Increased in AD patients plasma with a potential for
early prediction of AD patients

Increased in AD patients’ plasma/serum increasing

the neuroinflammation in astrocytes

References
Forlenza et al. (2010)
Rentzos et al. (2004)

Borradaile and Pickering (2009) and
Dou etal. (2013)

Frankola etal. (2011)
Halliday et al. (2000)
Zhang et al. (2023)

Ju Hywang et al. (2019) and Liu etal.
(2021)

Westin et al. (2012)
Galimberti et al. (2003)
Fuetal. (2016) and Liang et al. (2020b)

Kanazawa et al. (2016)

Vergallo etal. (2020) and Zhang et al
(2023)
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Clinical features Total (N = 256) Normal cognition Cognitive impairment p-value

(N=135) (N=121)

Level of TRPAL, 1 (%)

Low 128 (50.0) 78 (57.8) 50 (41.3) 0.0086
High 128 (50.0) 57 (42.2) 71(58.7)
TRPAL, pg/mL, mean +SD 48284880 47262827 4941925 00626
Gender, female, n (%) 164 (64.1) 89 (65.9) 75 (62.0) 05116
Age, year, median (Q1, Q3) 74(71,80) 73(71,78) 76(71,82) 0.0553
Education, year, median (Q1, Q3) 12(9,13) 12(10,15) 119,12) 0.0002
MMSE, score, median (Q1, Q3) 28(26,29) 29 (28, 30) 27(25,28) <0.0001
SSST-12, score, median (Q1, Q3) 8(6,9) 8(7,9) 7(5,9) <0.0001
Correct identification of peppermint, 1 (%) 210(82.0) 115 (85.2) 95(78.5) 0.2083
MMSE, mini-mental state examination; Q1 lower quartile; Q3, upper quartile; SSST-12, Sniffn Sticks Screening Test 12; SD, standard deviation; TRPAL transient receptor potential cation

channel subfamily A member 1.
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OR (95%Cl)
Serum TRPAL 1.003(1.000, 1.006)

Level of TRPAL

Low 1
High 1.943(1.181,3.196)
SSST-12 0.754(0.671,0.847)
Olfactory dysfunction

No 1

Yes 3537(1.853, 6.751)
Peppermint

Wrong 1

Right 0.661(0.346,1.263)

OR (95%Cl.

1.003(1.000, 1.006)

1
1.889(1.125,3.172)

0.776(0.685, 0.878)

3.116(1.592, 6.101)

0.858(0.428, 1.719)

“The OR (95%CI) was calculated by logistic regression after adjusted for gender, age, and

years of education.

95%CI, 95% confidence intervals OR, odds ratio; SSST-12, Sniffn Sticks Screening Test 12;
TRPAL transient receptor potential cation channel subfamily A member 1
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Clinical variables aMClI p-value

(n = 65)

Age (years), mean £ SD. 72644867 7103945 7061815 04327
<75 years (%) 65(63.73) 42(64.62) 64 (68.82) 07366
>75 years (%) 37(36.27) 23(35.38) 29(31.18) 07366

Education (years) 7.186 +3.350 8.68+3.231 9,548 +3.239 <0001

Female, n (%) 50 (49.02) 32(49.23) 50 (53.76) 07710

MMSE score, mean & SD 14.17 £ 6.605 226842431 277541434 <0.001

CDR score, mean + SD 1.892 0866 0.50 0 <0001

ADL score, mean £ SD 49.34% 1536 34.14% 1170 2138 £ 1.687 <0.001

Hyperlipidaemia, n (%) 34(33.33) 16(24.62) 20 (21.51) 01577

Hypertension, 1 (%) 50 (49.02) 29(44.62) 35 (37.63) 02750

Diabetes mellitus, 1 (%) 24(23.53) 9(13.85) 11(11.83) 0.0699

Creatinine (mg/L), Mean 4 SD. 97190 45913 9774+ 669.6 938346353 08953

AD, Alzheimer’s discase; ADL Activites of Daily Living aMCI, amnestic mild cognitive impairment; CDR, Clinical Dementia Rating; CN, cognitively normal controls; MMSE, Mini-Mental
State Examination; SD, standard deviation,





OPS/images/fnagi-17-1477008/fnagi-17-1477008-e131.jpg
S Hemijy





OPS/images/fnagi-17-1501762/fnagi-17-1501762-g005.jpg
ROC Curve B ROC Curve
1.0
08
Z 0.6
s
2
g 0.4
0.2 v oncl e Z aMCl and CN vs. AD
’ —aMcl vs. CN — ADand CN vs. aMCI
0 G — AD and aMCl vs. CN

0 02 04 06 08 1.0
1-Specifil

°

02 04 06 08 1.0
ity 1-Specificity






OPS/images/fnagi-17-1477008/fnagi-17-1477008-e130.jpg
N3





OPS/images/fnagi-17-1501762/fnagi-17-1501762-g004.jpg
r=0.272, p=0.008

A r=-0.203, p=0.022

1]
© o
[

N

cxacLi
(ng/ mg Creatinine)

0
0 10 20 30 24
MMSE of Males (n=128) MMSE of CN subjects (n=93)
0.264, p=0.007 D 1=0.430, p<0.001

cxs3cL1

50 60 70 80 90
Age of AD patients (years, n=102) Age of CN subjects (years, n=93)





OPS/images/fnagi-17-1477008/fnagi-17-1477008-e129.jpg
T3





OPS/images/fnagi-17-1501762/fnagi-17-1501762-g003.jpg
w
4w ox s o
A 2 0o o 3 =
< < o w =

CX3cCL1 -0.092 -0.264 0.054 -0.135 0.048

ADL

ADL [0.092 0.144 0.472 0173 -0.270

AGE |0 . AGE (0264 0.144 -0.055 -0.076 0.013
CDR
Edu

MMSE MMSE [0.048 -0.270 0.013 -0.276 0.164

N=260 AD Group(n=102)

4w o s
C 2 o a o =
< <« < < w

0012 -0.022 -0.143 0205 0430 -0.437 0272

ADL | 0.012 n 0125 -0.024 ADL |-0.205 . 0.067 0.014 -0.209
AGE [-0.022 -0.125 . 0137 0.043 | AGE | 0.430 -0.067 . 0253 0.038
Edu |-0143 -0.024 -0.137 . 0423

MMSE (-0.004 -0.032 0.043 0.123

1.0

0.5

1.0

0.5





OPS/images/fnagi-17-1477008/fnagi-17-1477008-e128.jpg





OPS/images/fnagi-17-1501762/fnagi-17-1501762-g002.jpg
>

(ng/ mg Creatinine)

o

(ng/ mg Creatinine)

0.005

_ <0001 0.002

cx3cL1

* Female|

* Male

(n=102)  (n=65)  (n=93)
D 0.005
0.003
6 2 10003
T o - NS
£
gs*®
f{7)
2
2
ug
21
0
AD amci cN amcl
(0=50)  (n=32)  (n=50) (n=33)
Fomales Males






OPS/images/fnagi-17-1477008/fnagi-17-1477008-e127.jpg
S3





OPS/images/fnagi-17-1501762/fnagi-17-1501762-g001.jpg
As

£3

CX3CL1
(ng/ mg Creatin|
™

Cs

s

1 0.393, p<0.001

9
(years, N=516)

1 0.364, p<0.001

o

cxacLi
(ng/ mg Creatinine)

45 60
Age of Females
(vears, n=251)

p<0.001

15 30

45 60
Age of Males
(years, n=265)

Females
(n=251)






OPS/images/fnagi-17-1477008/fnagi-17-1477008-e126.jpg
N3





OPS/images/fnagi-17-1477008/fnagi-17-1477008-e125.jpg
S3





OPS/images/fnagi-17-1501319/fnagi-17-1501319-t001.jpg
Baseline characteristics Total (n = 273)  Low FIB-4 subgroup High FIB-4 P (Low VS higher

(n =150) subgroup (n = 123)  FIB-4 subgroups)

Age, mean (D) (year) 602(9.7) 559(9.0) 65.6(7.4) <0.001
Male, n (%) 181(66.3) 91(60.7) 90(73.2) 003

BMI, median (IQR) (Kg/en’) 2668 (24.06,29.55) 2699 (24.12,29.63) 2637 (24.03,29.54) 0638
Education years, median (IQR) (year) 16.(14,18) 16,00 (13.75,17.25) 16 (15, 18) 0002
disease duration, median (IQR) (year) 3(16) 3(15) 3(1.8) 0.136
HA&Y stage, median (IQR) 102 101.2) 20,2 0.001
UPDRS I, median (IQR) 102 10, 2) 10,1 0242
UPDRS IT, median (IQR) 4. 75) 42 7) 5(28) 0152
'UPDRS I11, median (IQR) 18.(14,245) 17(12.23) 20 (1526) 0.002
GDS, median (IQR) 546) 5(46) 5(46) 0082
STAIstate, median (IQR) 48 (44,50) 47 (44,50) 49 (45,50) 0.106
STAI-trate, median (IQR) 46 (435.48) 46 (4348) 46 (44,48) 0398
STAI-total, median (IQR) 93(88,97.5) 925 (87.75.97.0) 94 (90.98) 0.091
QUIP, median (IQR) 4(4.4) 4(44) 4(44) 0343
SCOPA-AUT, median (IQR) 10(6,17) 95(6,16) 12(8,18) 0019
EPSS, median (IQR) 5(375) 5(7) 6(3.8) 0.061
RBDSQ, median (IQR) 325 3(25) 3(25) 0709
ADL, median (IQR) 90(90,100) 95(90,100) 90 (90,100) 0135
MoCA score, median (IQR) 28(26,29) 2800 (2675, 29.00) 27.00 (26,00, 29.00) 0019
BJOLT, median (IQR) 14(12,15) 14(12,15) 14(12,15) 0915
LSNT, median (IQR) 119,12) 11913) 119.12) 0.006
SDMT, median (IQR) 43(37,49) 455(39,50) 39 (34,46) <0.001
SET, median (IQR) 51(44,57) 50 (43,56) 53 (46,57) 0123
HVLT Total Recall, mean (SD) 4683 (1036) 46.26 (10.04) 47.52(10.73) 0318
HVLT Delayed Recall, median (IQR) 47(38,55) 45(37,55) 48(3955) 0263
HVLT Retention, median (IQR) 48(41,55) 48 (41,55) 48 (41,56) 0504
HVLT Recognition Discrimination, median (IQR) 47(38,54) 47(37,57) 475 (38,54) 0373

FIB-4 index, median (IQR) 1.200 (0,932, 1.658) 0962 (0.789,1.109) 1.678 (1.427,1.966) <0001

PD, Parkinson’ Disease; FIB-4, Fibrosis-4; SD, standard deviation; BMI, body mass index; IQR, range interquartiles MDS-UPDRS 1, I, 111, Part I, I, Il of Unified Parkinson's Disease Rating
Scale; GDS, Geriatric Depression Scale; STAL State-Trait Aniety Inventory; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP); SCOPA-AUT, Scales.
for Outcomes in Parkinson's disease-Autonomic; EPSS, Epworth Slecpiness Scale; RBDSQ, REM sleep behavior disorder with the REM Sleep Behavior Disorder Screening Questionnai

ADL, Schwab & England Activites of Daily Living Scale; MoCA, Montreal Cognitive Assessment; BJOLT, Benton Judgment of Line Orientation Test; LNST, Letter Number Sequencing Test;
SDMT, Symbol Digit Modalities Test; SFT, Semantic Fluency Test; HVLT, Hopkins Verbal Learning Test,
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Characteristic Group exp(Beta) SE t P
CERAD1 Normal ref ref ref ref
Hyperthyroidism 1.798 0.892 2.015 0.293
Hypothyroidism 0.591 0.311 1.904 0.308
Subhyperthyroidism 0.757 0.508 1.491 0.376
Subhypothyroidism —0.062 0.556 —0.112 0.929
CERAD2 Normal ref ref ref ref
Hyperthyroidism —0.100 0.477 —0.210 0.868
Hypothyroidism 0.933 0.410 2.275 0.264
Subhyperthyroidism —0.624 0.543 1.149 0.456
Subhypothyroidism 0.178 0.558 0.319 0.803
CERAD3 Normal ref ref ref ref
Hyperthyroidism 1.006 0.306 3283 0.188
Hypothyroidism 1.042 0.285 3.650 0.170
Subhyperthyroidism —0.482 0.392 —1.229 0.435
Subhypothyroidism 0.095 0.566 0.169 0.894
CERAD.total Normal ref ref ref ref
Hyperthyroidism 2.711 1.577 1.718 0.336
Hypothyroidism 2:552, 0.887 2.876 0213
Subhyperthyroidism —0.337 1.337 —0.252 0.843
Subhypothyroidism 0.214 1.584 0.135 0.914
CERAD.delay.recall Normal ref ref ref ref
Hyperthyroidism 1.073 0.540 6.152 0.297
Hypothyroidism 3.564 0.501 7.110 0.089
Subhyperthyroidism —0.139 0.452 —0.309 0.809
Subhypothyroidism 0.161 0.648 0.248 0.845
Animal.Fluency Normal ref ref ref ref
Hyperthyroidism —0.196 1.001 —0.196 0.877
Hypothyroidism —0.748 1.392 —0.538 0.686
Subhyperthyroidism —1.650 1.815 —0.909 0.530
Subhypothyroidism —3.066 2.329 —1.316 0.414
DSST Normal ref ref ref ref
Hyperthyroidism —1.746 3.062 —0.570 0.670
Hypothyroidism —8.042 2.686 —2.994 0.205
Subhyperthyroidism 5.348 6.717 0.796 0.572
Subhypothyroidism 0.809 2.566 0.315 0.806

Fully adjusted models are adjusted for survey cycle, age, sex, alcohol intake, smoking, PIR, and education. The exp (Beta) coefficient indicates the strength and direction of the linear relationship
between different types of thyroid diseases and cognitive function. SE (Standard Error) is a measure of the uncertainty in estimating the beta coefficient. It represents the standard deviation
between the estimated beta value in the sample and its overall mean. The ¢ is a statistic used to test whether the beta coefficient is significantly different from 0.
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CERAD1 CERAD2 | CERAD3 CERAD.total CERAD.delay. | Animal.Fluency

recall
TSH(mIU/L)
<0.45 vs. 2.32 (1.06, 0.56 (0.24, 0.70 (0.37, 0.92 (0.11,7.51) 0.96 (0.47,1.97) 0.22 (0.01, 3.48) 116 (0.00, 4, 408,
0.45-4.5 5.10)* 1.32) 1.31) 641)
>4.5vs. 1.01 (0.44, 2.32) 1.30 1.22 (0.55, 1.61(0.16,16.2) 1.74 (0.69, 4.37) 0.06 (0.00, 2.16) 0.82 (0.02, 27.5)
0.45-4.5 (0.58,2.94) 2.72)
>4.5vs<0.45 0.43 (0.16, 1.18) 2.33(0.67, 1.75 (0.72, 1.75 (0.09, 33.1) 1.81 (0.64, 5.07) 0.28 (0.00, 27.9) 0.01 (0.00, 224)
8.07) 4.23)
FT4 (ng/dL)
<0.60 vs 1.63(0.47, 5.62) 1.57 0.96 (0.35, 2.44(0.08,70.5) 2.11 (0.40, 11.0) 6.76 (0.05, 967) 455
0.60-1.60 (0.43,5.66) 2.59) (0.00,71,361,943)
>1.60 vs 1.40 (0.86, 2.29) 0.74 0.74 (0.51, 0.76 (0.19, 3.11) 0.93 (0.53, 1.64) 0.13 (0.01, 1.71) 3.39 (0.00,
0.60-1.60 (0.28,1.94) 1.06) 3,393,235)
>1.60 vs<0.60 0.86 (0.21, 3.48) 0.47 (0.09, 0.77 (0.25, 0.31 (0.01, 14.5) 0.44 (0.07, 2.74) 0.02 (0.00, 12.7) 0.01 (0.00,
2.37) 2.42) 1,505,660)

Adjusted Odds Ratios (95% Confidence Intervals) for cognitive function test scores across TSH and FT4 groups. Fully adjusted models are adjusted for survey cycle, age, sex, alcohol intake,
smoking, PIR, and education. *P < 0.05. This bold values suggest P < 0.05, which is statistically significant.
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Characteristic P FT4(ng/d P

Group <045 >4.5 <0.60 0.60-1.60 >1.60

N(Unweighted) 12 380 17 4 400 4

CERADI 6.00 (5.00, 5.00 (4.00, 4.00 (4.00, 0.028* 4.64 (2.90, 5.00 (4.00, 430 (3.00, 05
6.96) 6.00) 5.00) 5.75) 6.00) 4.93)

CERAD2 7.00 (6.00, 7.00 (5.00, 6.14 (6.00, >0.9 6.64 (5.49, 7.00 (6.00, 6.30 (4.00, 04
7.00) 8.00) 7.53) 7.75) 8.00) 6.93)

CERAD3 8.00 (6.48, 7.51 (7.00, 7.00 (6.68, 02 7.32 (6.49, 7.22 (7.00, 5.86 (5.00, 0.002*
8.00) 9.00) 7.17) 7.88) 9.00) 7.46)

CERAD.total 20.2 (18.0, 19.0 (16.0, 17.1(16.8, 0.2 186 (16.0, 19.0 (16.0, 18.3 (120, 0.068
23.0) 22.0) 19.5) 21.4) 22.0) 18.9)

CERAD.delay.recall 7.00 (7.00, 6.00 (4.00, 6.00 (4.52, <0.001* 6.51 (4.05, 6.00 (4.00, 429 (3.00, 0.052
7.00) 8.00) 6.57) 7.00) 8.00) 6.00)

Animal Fluency: Score Total 20.0 (16.0, 17.0 (14.0, 152 (13.6, 0.10 17.7 (12.1, 17.0 (14.0, 10.6 (10.0, <0.001*
222) 21.1) 16.4) 24.5) 21.0) 12.4)

DSST 65 (42, 85) 52 (40, 66) 42 (40, 54) 03 59 (32, 69) 52 (40, 65) 38 (27, 49) 0.6

The table describes the median and 25th and 75th percentiles of cognitive function test scores for different serum TSH and FT4 concentrations. Multivariable-adjusted logistic regression to
compare cognitive function among groups with different serum TSH and FT4 concentrations. Fully adjusted models are adjusted for survey cycle, age, sex, alcohol intake, smoking, PIR, and
education. *P < 0.05. This bold values suggest P < 0.05, which is statistically significant.
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TSH Group(mlIU/L)

<0.45 12 (4.5%) 6 (5.6%) 6 (3.2%)
0.45-4.5 380 (91%) 192 (92%) 188 (89%)
>45 17 (4.7%) 5 (2.4%) 12 (7.4%)
Age 68.9 (64.0, 68.0 (64.0, 70.0 (64.2,
74.0) 74.2) 74.0)
FT4(ng/dL) 0.85 (0.76, 0.86 (0.76, 0.84 (0.77,
0.94) 0.95) 0.90)
TSH(mIU/L) 1.77 (1.20, 1.62 (1.15, 1.98 (1.40,
2.53) 2.47) 2.58)
PIR 3.04 (1.62, 2.75 (1.44, 3.14 (1.80,
4.76) 4.67) 4.71)
BMI 27.5 (24.1, 26.7 (24.1, 27.7 (24.6,
31.0) 32.0) 30.8)
CERAD1 5.00 (4.00, 5.00 (4.00, 4.00 (3.62,
6.00) 6.00) 6.00)
CERAD2 7.00 (6.00, 7.00 (6.00, 6.00 (5.00,
8.00) 8.00) 7.00)
CERAD3 7.20 (7.00, 8.00 (7.00, 7.00 (6.00,
9.00) 9.00) 8.00)
CERAD.total 19.0 (16.0, 20.7 (17.0, 18.0 (15.0,
22.0) 23.0) 20.0)
CERAD.delay.recall 6.00 (4.00, 7.00 (5.00, 5.00 (4.00,
8.00) 8.00) 7.00)
Animal.Fluency 17.0 (14.0, 17.0 (13.7, 18.0 (14.2,
21.0) 20.0) 22.0)
DSST 52 (40, 66) 54 (41, 70) 49 (40, 60)
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Characteristic Overall Female Male

N (Unweighted) 409 (100%) | 203 (49.6%) | 206 (50.4%)
Age.group

60-69 years 210 (50%) 113 (55%) 97 (44%)
70-79 years 115 (30%) 44 (22%) 71 (40%)
80+ years 84 (20%) 46 (24%) 38 (16%)
Sex

Female 203 (49.6%)

Male 206 (50.4%)

Race

Non-Hispanic White 183 (82%) 96 (82%) 87 (81%)
Non-Hispanic Black 113 (7.7%) 54 (8.2%) 59 (7.1%)
Other Hispanic 46 (4.1%) 23 (3.8%) 23 (4.3%)
Other/multiracial 42 (4.3%) 16 (3.4%) 26 (5.4%)
Mexican American 25 (2.3%) 14 (2.4%) 11 (2.1%)
BMI.group

Underweight (<18.5) 4(2.2%) 4 (4.1%) 0 (0%)
Normal (18.5 to<25) 119 (29%) 55 (29%) 64 (29%)
Overweight (25 to <30) 139 (37%) 62 (35%) 77 (40%)
Obese (30 or greater) 140 (31%) 79 (32%) 61 (31%)
Alg.group

1-5 drinks/month 193 (42%) 84 (40%) 109 (44%)
5-10 drinks/month 20 (7.2%) 7 (6.2%) 13 (8.5%)
10+ drinks/month 70 (24%) 20 (16%) 50 (33%)
Non-drinker 122 (27%) 89 (37%) 33 (15%)

Smoke.group

Current smoker 54 (10%) 16 (7.1%) 38 (14%)
Former smoker 168 (45%) 59 (35%) 109 (57%)
Never smoker 187 (45%) 128 (58%) 59 (29%)

Education.attainment

Less Than 9th Grade 58 (8.0%) 24 (6.7%) 34 (9.5%)
9-11th Grade 69 (12%) 35 (10%) 34 (15%)
High School Grad/GED 79 (18%) 46 (21%) 33 (14%)
Some College or AA 117 (32%) 66 (39%) 51 (24%)
degree

College Graduate or 86 (29%) 32 (23%) 54 (38%)
above

FT4 Group(ng/dL)

<0.60 5 (2.0%) 2(1.1%) 3 (3.0%)
0.60-1.60 400 (97%) 198 (96%) 202 (97%)

> 1.60 4 (1.4%) 3 (2.4%) 1(0.2%)
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A Type of dementia OR(95%CI) _ P-value
Any dementia
Inverse variance weighted HO 0.96 (0.92, 0.99) 0.045
MR Egger —— 0.89 (0.82, 0.97) 0.035
Weighted median Hor 0.98 (0.93, 1.03) 0.489
Alzheimer's disease |

Inverse variance weighted & 1.04 (099, 1.09) 0.118
Vascular dementia
Inverse variance weighted il 0.94 (0.87, 1) 0.6
MR Egger ' 0.84 (0.72, 0.97) 0.052
Weighted median ' 0.9 (0.82, 0.99) 0.029
Frontotemporal dementia ) e )
Inverse variance weighted P - " 094 (063, 1.4) 0.768
MR Egger o . ) 0.48 (0.23, 1.01) 0.096
Weighted median ) bl ) 0.75 (0.49, 1.13) 0.167
Dementia with lewy bodies
Inverse variance weighted e 1.01 (0.88, 1.15) 0.891
MR Egger — "~ 1.02 (0.76, 1.37) 0.891
Weighted median 0.97 (0.86, 1.1) 0.672
0.2 0.6 1 1.4
Hyperthyroidism
B _Type of dementia OR(95%CI) _ P-value
Any dementia
Inverse variance weighted 1.01 (097, 1.04) 0.743
MR Egger [ 1.11 (1.03, 1.19) 0.006
Weighted median 097 (0917, 1.02) 028
Alzheimer's disease
Inverse variance weighted 0.99 (095, 1.03) 0.684
MR Egger 1.03 (094, 1.13) 0.534
Weighted median 1.01 (095, 1.06) 091
Vascular dementia
Inverse variance weighted 1.04 (097, 1.11) 0.29
MR Egger —— 1.2 (1.04, 1.4) 0.015
Weighted median H&— 1.06 (095, 1.18) 027
Frontotemporal dementia
Inverse variance weighted '_'2_‘ - 1.09 (0.81, 1.46) 0.572
MR Egger ) i ) " 1.08 (0.57, 2.07) 0.804
Weighted median ' ' 097 (0.58, 1.6) 0.9
Dementia with lewy bodies
Inverse variance weighted 0.94 (0.85, 1.05) 0.312
MR Egger 1.04 (0.8, 1.36) 0.764
Weighted median 096 (0.82, 1.13) 0628
0.5 1 1.5 2
Hypothyroidism
C Type of dementia OR(95%CI) P-value

Any dementia
Inverse variance weighted o 1.02 (096, 1.09) 0.489
MR Egger —oH 095 (0.84, 1.07) 0.405
Weighted median v 0.99 (091, 1.09) 0953
Alzheimer's disease
Inverse variance weighted P 1.09 (1.01, 1.18) 0.018
MR Egger Ho 1.06 (094, 1.2) 0.333
Weighted median o~ 1.09 (1.01, 1.18) 0.036
Vascular dementia
Inverse variance weighted H®— 1.06 (093, 1.21) 0.373
MR Egger H— —— 1.19 (0.94, 1.51) 0.146
Weighted median —o— 1.08 (09, 1.3) 0418
Frontotemporal dementia
Inverse variance weighted —1— 0.86 (0.5, 1.5)  0.602
MR Egger _ - — 079 (029, 2.13) 0.643
Weighted median ! e ! 0.79 (0.32, 1.96) 0.611
Dementia with lewy bodies
Inverse variance weighted :’_'I 1.07 (0.93, 1.31) 0242
MR Egger 1.18 (0.88, 1.59) 0264

_ —

1.18 (0.89, 1.56) 0.24

0.1 0.55 1 1. 45 1.9 2.35
Thyroid stimulating hormone

Weighted median

[D Type of dementia OR(95%CI) _ P-value
Any dementia
Inverse variance weighted —p— 1.02 (0.77. 1.37) 0.864
Alzheimer's disease
Wald ratio —1— 1.05 (0.83, 1.32) 0.702
Vascular dementia . - .
Inverse variance weighted ) o 1.34 (0.73," 2.49) 0.345
Frontotemporal dementia
Inverse variance weighted 3.66 (024, 56.45) 0.352
Dementia with lewy bodieﬁ $ I
Inverse variance weighted 0.52 (0.23, 1.16) 0.111

0.2 0.6 1 1.4 1.8 2.2 2.6 3

FT4
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NHANES 2011-2012
(N =9.730)

Y

Participants older than 60 years(n =
1791)

Participants aged less than 60 years(n = 7965)

;

Participants with data on thyroid
function(n = 1970)

Participants with no data on thyroid function(n =

Y

:

Participants with no data on cognitive
function(n = 415)

Participants with no data on cognitive function(n

=:1993)

:

Data on analyses(n = 409)

. . . .

Participants with no data on covariates(n = 6)

Assumption2
............................................................... B Confounders
Genetic variants: Assumption |
. ; Exposure: o Outcomes:
SNPs associated with —— o . . B 2
W ['hyroid function Dementia
thyroid function .
A
Assumption3 :
Y Y Y

Selection criteria:
Association threshold p < e -
8)

LD(r2 <0.001, kb=10000 kb)
F-statistic > 10

Hyperthyroidism: 1,991 cases and 305,175controls
Hypothyroidism:45,321 cases and 298,847 controls
Thyroid stimulating hormone levels:247,107 samples
FT4:26,231 samples

Primary analysis:

Inverse Variance Weighting
Secondary analysis:
MR-Egger regression and
weighted median (WME)
Sensitivity analysis:
Cochran's Q test, Egger
intercepti, leave-one-out
(LOO) analysis

Any form of dementia: 16,209 cases and 285,670 controls
Alzheime's disease:25,392 cases and 276,086 controls
Vascular dementia:2.717 cases and 393,024 controls
Fontotemporal dementia: 129 cases and 392,463 controls
515 cases and 2,509 controls
Lewy body dementia:2.591 cases and 4,027 controls
1,180 cases and 657 controls
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Clinical scales  Low FIB-4 High FIB-4 Difference in Low Difference in high Difference

subgroup subgroup FIB-4 subgroup FIB-4 subgroup between
(95% CI) (95% CI) subgroups
(95% ClI)
UPDRSI, estimated 0041
‘mean (SD)
Baseline 096 (0.32) 0.81(033) - - 015 (~0.59,0.28) 0492
1 1.03(0.32) 118(033) 0,07 (-0.25,0.40) 038 (0.02,074) 030 (~0.18,079) 0216
2 110(0.32) 156 (0.33) 0.14(-0.18, 0.46) 0.75(0.39, 1.10) 0.61(0.13,1.09) 0013
3 130(0.32) 148 (0.33) 0.34(0.02,066) 0,68 (0.33,1.03) 0.34(-0.14,081) 0.162
4 135 (0.32) 195 (0.33) 0.39(0.07,0. 114 (0.79,149) 075 (0.28,122) 0.002
5 172(032) 200 (033) 076 (0.44, 1.08) 120 085, 1.54) 044 (=0.04,091) 0070
STAI-State subscore, 0018
estimated mean (SD)
Baseline 4775 (078) 4837 (0.82) - - 0.62(~0.54,1.79) 0294
1 4773 (079) 47.12(0.82) ~0.02(~0.98,094) —1.25 (=231, -0.20) ~1.23 (~266,0.19) 0.089
2 4807079 4637 (0:82) 032(-0.63,1.28) ~200(-305,-096) | -233(-374,-091) 0001
3 1834(079) 47.21(082) 059 (<035, 1.53) —L17(-221,-003) | -176(-316,-036) 0014
4 14802(079) 46.77(082) 0.27(-0.67,1.21) —160(-264,-056) | —187(-327,-047)  0.009
5 1810 078) 4670 (0.82) 035 (059, 1.28) —167(-270,-064) | —202(-341,-063)  0.004
STAI-Trait subscore, <0001
estimated mean (SD)
Baseline 45.48 (0.66) 4596 (0.68) - - 048 (~0.46,1.42) 0314
1 4478 (066) 4573 (0.69) ~0.70 (~1.44,0.04) ~0.24 (~1.05,0557) 0.46 (~0.63,1.56) 0407
2 45.65 (0.66) 4474 (0.69) 0.17(-0.56,091) —122(-203,-041) | -139(-248,-030) 0013
3 45.80 (0.66) 4483 (0.69) 0.32(-0.40,1.05) —LI3(-193,-033) | -145(-253,-037)  0.008
4 45.18(0.66) 4482(0.69) ~031(~1.03,0.42) ~114 (~195,~034) ~084 (~192,0.24) 0129
5 45.52(066) 4446 (0.68) 0.04(-0.68,0.76) —150(-230,-071) | —154(-262,-047)  0.005
STAL-Total, estimated <0001
‘mean (SD)
Baseline 93.16(1.22) 94.11(1.27) - - 0.96 (~0.79,2.70) 0.283
1 9243(123) 9261 (1.28) ~0.73 (-2.11,065) ~1.50 (~3.02,0.02) ~077 (~282,128) 0.461
2 93.65(1.23) 90.88(1.27) 0.49 (0.8, 1.87) -323(-474,-172) | -372(-576,-168) = <0.001
3 9407 (122) 9182(1.27) 092 (-0.44,2.27) -229(-379,-080) | -321(-523,-119) 0002
4 93.12(122) 9136 (1.27) ~0.04(~139,132) -275(-425,-125) | -271(-473,-069)  0.009
5 9354 (122) 9093 (1.27) 039 (~096,1.73) ~3.18(-466,-169) | -357(-557,-156)  <0.001
LSNT, estimated 0,005
‘mean (SD)
Baseline 10.96 (0.37) 1110 (0.39) - - 0.14/(-0.36,0.64) 0579
1 10.75 (0.38) 1121 (0.39) ~021(-057,0.15) 0.11(-0.30,051) 0.32/(-0.23,086) 0252
2 10.88 (0.38) 10.96 (0.39) ~0.08 (~0.44,0.29) ~0.14 (~0.54,0.26) ~0.06 (~0.60, 0.48) 0821
3 10.75 (0.38) 1055 (0.39) ~0.21(~057,0.15) ~0.55 (~0.94, ~0.15) ~0.34(~087,0.19) 0211
4 10,88 (0.37) 1050 (0.39) ~0.08 (~0.44,0.28) ~0.60 (=100, ~0.21) ~0.52 (~1.06,001) 0.054
5 10.61(0.37) 10.12(0.39) ~0.35 (~0.71,0.00) ~098(-138,-059) | 063 (-116,-0.10) 0019
SDMT, estimated 0.007
mean (SD)
Baseline 4389 (1.46) 4425 (151) - - 036 (~1.53,2.25) o7
1 4399 (147) 4378(152) 0.10 (-1.22,1.41) ~0.47 (~1.93,099) 057 (253, 1.40) 0574
2 4338 (147) 4245(151) ~051 (~1.83,081) ~1.80 (=3.25,~0.35) ~129(~3.24,0.67) 0.198
3 4305 (1.46) 4249 (151) ~0.84 (~2.14,0.46) ~176 (=319, ~0.32) ~092 (~286,1.02) 0353
4 4293 (1.46) 4080 (1:51) ~0.96 (~2.26,034) ~345(-489,-201) | -249(-443,-055) 0012
5 4346 (1.46) 4051 (1.51) ~0.43 (~1.72,0.86) -374(-516,-232) | -331(-523,-139) 0001
SET, estimated mean 0026
(SD)
Baseline 5032 (1.64) 51.22(1.70) - - 0.90 (~1.29,3.08) 0421
1 5121 (165) 5119 (1.71) 0.8 (~0.71,248) ~0.03 (~1.81,1.74) ~092(~330,1.47) 0452
2 5131 (163) 5041 (1.70) 098 (<061, 2.58) ~0.81(-2:57,094) ~180 (~4.17,0.58) 0138
3 5269 (1.64) 5073 (1.70) 237(0.79,3.95) ~0.50 (~2.23,1.24) —287(-521,-052) | 0.017
4 5215 (1.64) 50.22(1.70) 183 (0.25,3.40) —1.00 (<2.75,0.74) ~283(-518,-048) 0018
5 5297 (1.64) 50.29(1.70) 265 (1.08,4.21) —0.93 (~2:65,0.80) ~357(-590,-125) 0003
HVLT total recall, <0001
estimated mean (SD)
Baseline 4579(172) 46.23(1.78) - - 044 (~1.87,274) 0710
1 4464 (173) 4482(1.79) ~115 (~2:83,053) ~1.41 (~3.28,0.46) ~026 (~277,225) 0840
2 46.12(173) 4434(1.79) 033 (~135,202) ~1.89 (=374, ~0.04) ~222(-472,028) 0.081
3 4966 (1.73) 4597 (1.78) 387 (2.20,5.53) ~0.26 (=2.09,157) ~412(-659,-165)  0.001
4 4770 (173) 4377 (1.79) 191 (025,3.57) ~246(-430,-062) | 436 (~684,-189) 0001
5 922(172) 45.79(1.78) 343 (179, 5.08) ~0.44 (~2.26,138) ~387(-632,-142) | 0.002
HVLT delayed recall, 0033
estimated mean (SD)
Baseline 4442(175) 4533 (1.81) - - 091 (~1.48,3.30) 0455
1 4455 (175) 4440 (1.82) 0.13 (-167,1.94) ~093 (~293,1.07) ~1.06 (375, 1.64) 0441
2 4629(175) 4487 (1.82) 187 (007, 3.67) ~0.46 (~2.44,1.52) ~233(~5.01,035) 0.088
3 4721(175) 45.02(1.81) 279(101,4.57) ~031(-227, 1.65) ~310(-575,-045) | 0.022
4 4672(175) 4352(181) 230(0.52,4.08) ~181 (=3.78,0.17) ~411(-676,-145) | 0.002
5 4850 (175) 46.42(1.81) 409(232,5.85) 110 (~0.85,3.05) -299(-562,-036) | 0.026

FIB-4, Fibrosis-4; UPDRS I, IL 11, Part I, I, 111 of Unified Parkinson’s Disease Rating Scale; STAL State-Trait Anxiety Inventory; LNST, Letter Number Sequencing Test; SDMT, Symbol Digit
Modalities Test; SFT, Semantic Fluency Test; HVL, Hopkins Verbal Learning Test. P: P for Difference between subgroups; P*: P for FIB-4 subgroup*time.
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Clinical scales Baseline 5 year follow-

up time-point
7 P
UPDRS ~0028 0649 | 0014 0825
UPDRS 1T 0085 | 0166 0005 0939
UPDRS 11T o5 0017 0013 0832
GDS 0014 0815 0012 0840
STAI-state 0061 032 -0021 0728
STAI-trait 0082 0180 0068 0310
STAIL-total 0083 0174 0019 0761
Quip 0013 0827 -0.006 = 0919
SCOPA-AUT 0010 0866 0115 0060
EPSS 0140 002 0146 0016
RBDSQ 0043 0479 0044 0471
ADL -0023 0711 | 0054 0381
MoCA score 0017 | 078 -0034 0581
BJOLT 0017 | 0779 -0116 0058
LSNT ~0029 0638 009 0117
SDMT ~0016 0451 0072 | 0237
SET 0027 0661 0040 0517
HVLT Total Recall 0048 0431 -0077 0210
HVLT Delayed Recall 0128 003 0010 0870
HVLT Retention 0128 0036 0040 0509
HVLT Recognition Discrimination 0090 0143 0074 0229

FIB-4, Fibrosis-4; UPDRS I, IL 11, Part I, I, 111 of Unified Parkinson's Disease Rating Scale;
GDS, Geriatric Depression Scale; STAL, State-Trait Aniety Inventory; QUI, Questionnaire
for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP); SCOPA-AUT, Scales
for Outcomes in Parkinson's disease-Autonomic; EPSS, Epworth Sleepiness Scale; REDSQ,
REM sleep behavior disorder with the REM Sleep Behavior Disorder Screening
Questionnaire; ADL, Schwab & England Activities of Dy Living Scale; MoCA, Montreal
Cognitive Assessment; BJOLT, Benton Judgment of Line Orientation Test; LNST, Letter
Number Sequencing Test; SDMT, Symbol Digit Modalites Test; SFT, Semantic Fluency Test;
HVLT, Hopkins Verbal Learning Test.
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Clinical scale Low FIB-4 High FIB-4 P (Low VS higher FIB-4

subgroup subgroup subgroups)
'UPDRS I, median (IQR) 0(0,2) 0(-1,2) 0(0,2) 0.156
'UPDRS 11, median (IQR) 4(0.8) 4(0,7.25) 3(0.8) 0.841
'UPDRS 111, median (IQR) 8(20,17.5) 8(3,18) 8(0,17) 0.256
GDS, median (IQR) 0(-11) 0(-1,1) 011 0482
STAL-state, median (IQR) 0(-475,3.0) 0(-4) -1(-52) 0.005
STAI-trait, median (IQR) ~1(=3.20) ~1(-33) ~1(-42) 0023
STAI-total, median (IQR) ~1(-64) 1(-55) -1(-72) 0.002
QUIP, median (IQR) —4(=4,-1) ~4(=4,-1) —4(=4,-1) 0447
SCOPA, median (IQR) 5(09.5) 5(09) 5(0,10) 0593
EPSS, median (IQR) 2(-15) 2(05) 1(-14) 0322
RBDSQ, median (IQR) 0(-12) 0(-1225) 1-12) 0541
ADL, median (IQR) =10 (=10,0) =10 (~10,0) =10 (~10,0) 0.641
MoCA score, median (IQR) 0(=2,1) 0(-1251) 0(=21) 0.115
BJOLT, median (IQR) 0(-21) 0(-1,1) -1(-21) on
LSNT, median (IQR) 0(-21) 0(-21) -1(-20) 0012
SDMT, median (IQR) -2(-75) ~1(-66) -2(-83) o011
SET, median (IQR) 1(-685) 2(-69) -2(-66) 0022
HVLT Total Recall, mean (SD) 1.69 (11.84) 3.43(11.62) —0.44 (11.80) 0.015
HVLT Delayed Recall, median (IQR) 2(-3,11) 45(-3,12) 2(-4,10) 0.083
HVLT Retention, median (IQR) 2(-6,11) 2(-5,12) 2(-8,10) 0510
HVLT Recognition Discrimination, median (IQR) 0.5(=4,11) 4(=3,11.25) -15(-89) 0.023

FIB-4, Fibrosis-4; SD, standard deviation; IQR, range interquartile; UPDRS I, I, 11, Part I, I, Il of Unified Parkinson's Disease Rating Scale; GDS, Geriatric Depression Scale; STAL State-
Trait Ansiety Inventory; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP); SCOPA-AUT, Scales for Outcomes in Parkinson's disease- Autonomic
EPSS, Epworth Sleepiness Scale; RBDSQ, REM sleep behavior disorder with the REM Sleep Behavior Disorder Screening Questionnaire; ADL, Schwab & England Activities of Daily Li
Scale; MoCA, Montreal Cognitive Assessment; BJOLT, Benton Judgment of Line Orientation Test; LNST, Letter Number Sequencing Test; SDMT, Symbol Digit Modalites Test;
Fluency Test; HVLT, Hopkins Verbal Learning Test.
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Cardiometabolic multimorbidity
pattern

OR (95% CI)

Mental and arthritis
multimorbidity pattern

B

OR (95% Cl)

p

Thyroid, eye, and
gastrointestinal diseases
pattern

B

OR (95% Cl)

MDS-UPDRS I <0.001 041 1.51 (1.30,1.72) 0.97 0.004 1.00 (0.75, 1.26) 049 0.07 1.07 (0.88, 1.26)
MDS-UPDRSII | < 0.001 1.26 3.51 (2.86,4.15) 0.51 0.13 1.14(0.75, 1.54) 0.69 0.11 1.11 (0.59, 1.54)
ADL 0.04 —1.22 0.30 (—0.82, 1.41) 0.95 0.02 1.02 (0.48, 1.56) 041 0.43 1.54(0.52, 1.56)
STAI 0.02 —1.12 —1.22(=2.17,—0.26) 0.83 0.09 1.10 (0.23, 1.96) 0.98 0.01 1.01 (—0.06, 1.96)
GDS 1.00 0.00 1.00 (0.78,1.22) 0.95 —0.01 0.99(0.81, 1.18) 0.90 —0.01 0.99 (0.82, 1.18)
QUIP 0.12 0.16 1.17 (0.97,1.38) 0.88 0.01 1.01(0.84,1.19) 0.16 0.14 1.15(0.96, 1.19)
SCOPA-AUT <0.001 3.04 2081 (19.20, 22.41) 0.37 —0.62 0.54 (—0.82, 1.90) 0.02 1.37 3.94(2.78, 1.90)

Relationship between the number of comorbidities and symptoms at baseline in patients with three multimorbidity patterns of non-Parkinson’s disease.
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Covariate correction No covariate correction

P OR (95% ClI) P OR (95% Cl)
MDS- UPDRS I 0.011 0.200 1.011 (0.994, 1.02) 0.011 0.183 1.012 (0.995, 1.028)
MDS- UPDRS I 0.054 0.003 1.055 (1.020, 1.090) 0.052 0.003 1.053 (1.019, 1.088)
ADL —0.237 < 0.001 0.789 (0.669, 0.909) —0.226 < 0.001 0.798 (0.679, 0.917)
GDS 0.014 0.035 1.014 (1.001, 1.027) 0.014 0.036 1.014 (1.001, 1.027)
QUIP 0.009 0.295 1.009 (0.992, 1.026) 0.007 0.410 1.007 (0.990, 1.024)
SCOPA-AUT 0.267 < 0.001 1.305 (1.191, 1.420) 0.292 < 0.001 1.339 (1.223, 1.454)
STAI —0.006 0.861 0.994 (0.929, 1.059) 0.015 0.653 1.015 (0.951, 1.079)

Association of comorbidities with motor and neuropsychiatric symptoms in patients with pro-Parkinson’s disease at 5-year follow-up; Covariate correction: Use age, sex, and education level as

covariate correction; No Covariate correction: age, sex, education correction is not used.
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P B OR (95% Cl)

MDS-UPDRS I 0.044 0.012 1.012 (1.000, 1.024)
(N =610)

MDS-UPDRS IT 0.002 0.021 1.022 (1.008, 1.035)
(N =610)

ADL (N =611) 0.303 —2.87E-04 1.000 (0.999, 1.000)
STAI (N = 548) 0.046 —0.002 0.998 (0.997, 1.000)
GDS (N = 548) 0.040 —0.004 0.996 (0.991, 1.000)
QUIP (N =611) <0.001 0.016 1.016 (1.008, 1.023)
SCOPA-AUT 0.028 —0.016 0.984 (0.969, 0.998)

(N =591)
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Variables (Mean =+ SD)

Number of chronic conditions

0-1 >4 (N = 158)
Age 63.15 4 8.98 62.07 +9.59* 63.32 + 8.36% 66.17 4 7.18" < 0.001
Sex, n (%) 0.01
Male 438 (47.6) 217 (44.5) 129 (46.9) 92 (58.2)
Female 483 (52.4) 271 (55.5) 146 (53.1) 66 (41.8)
Education, years 16.47 + 3.56 16.27 +3.59 16.50 £ 3.67 17.01 £ 3.20 0.081
MDS-UPDRSI (N =916) 1.03 + 1.66 0.85 £ 1.482 1.13 £ 1.81* 1.43 +1.81b¢ < 0.001 0.108
MDS-UPDRSII (N = 916) 1.63 £3.15 1.27 £2.54% 1.61 £ 3.25% 2.80 + 4.24% < 0.001 0.292
ADL (N =727) 98.63 +4.38 99.15 + 3.08% 98.27 £ 5.47 97.52 + 5.63" 0.007 —0.342
GDS (N = 863) 528 £1.31 5.33:41.24 526 +1.33 515+ 1.47 0.097 —0.028
QUIP (N =918) 4.01 £1.50 3.84 £1.55% 4.09 + 1.41 4.38 & 1.40P < 0.001 0.112
SCOPA-AUT (N = 857) 16.01 + 12.62 17.26 +13.93¢ 13.75 4+ 11.27°% 16.16 £ 9.87¢ 0.004 —1.24
STAI (N =863) 93.90 & 6.74 94.37 + 6.58* 93.74 £ 6.85 92.64 + 6.93" 0.016 —0.406

Data are summarized as mean = standard deviation (SD) for continuous data and count (%) for categorical data. Data were missing for MDS-UPDRS I (N = 5, 0.5%), MDS-UPDRS II (N =5,
0.5%), ADL (N = 194, 21.1%), GDS (N = 58, 6.3%), QUIP (N = 3, 0.3%), SCOPA-AUT (N = 64, 6.9%), STAI (N = 58, 6.3%); “Significantly different from > 4 group; bSigniﬁcanﬂy different
from 0 to 1 group; “Significantly different from 2 to 3 group. N, number; MDS-UPDRS, Movement Disorders Society Unified Parkinson Disease Rating Scale; ADL, Activities of Daily Living;
GDS, Geriatric Depression Scale; STAI, State-Trait Anxiety Inventory; QUIP, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease; SCOPA-AUT, the Scale for Outcomes
for Parkinson’s Disease—autonomic function.
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Number of included participants’ eyes Dem (N = 44) MCI (N = 139) HCs (N = 174) p-value

(one eye per participant)

Number of male/female participants 15/29 77162 97115 <0.001*
Eye pathology occurrence % 59.1% 48.2% 43.1% 0.156"
Eye pathology (Maculopathyincludes & & 0 0083
Eye pathology (DR) 0 3 3 0623
Eye pathology (glaucoma) 2 7 12 0724
No eye pathology 19 72 % 0.241°
Age (mean  std) years 822%62 80.7£5.9 79.1%59 <0.01"
MMSE (mean + std) 19.4+4.5 25332 28.1£2.0 <0.001"
FAB (mean  std) 8.0+2.8 11.0£3.3 14.6+2.9 <0.001"
Apathy Scale (mean £ std) 87474 41x44 32441 <0.001"

The participants’ cognitive levels were evaluated mainly based on the Mini- Mental State Examination (MMSE) score (Folstein et al 1953), Frontal Assessment Battery (AB) (Appollonio et al.
2005), and the apathy evaluation scale (Apathy Scale) (Guercio et al,2015). The examined eye pathologies: (1) maculopathy, including age-related macular degeneration (AMD), 2) diabet
retinopathy (DR), and (3) glaucoma. Statisticall significant parameters were highlighted in bold

“The p-value was obtained by the chi-square test because these variables were categorical

“The p-value was obtained by Kruskal-Wallis because these parameters were not normally distributed.
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Indicators PD-CN (n = 106) NC (n = 87)

Age (years), mean £ SD 62.32 (8.77) 61.96 (8.67) 0.779*
Gender, male/female 74/32 53/34 0.195°
Hypertension, yes/no 32/74 29/58 0.640°
Diabetes, yes/no 17/89 17/70 0.525"
Atrial fibrillation, yes/no 14/92 9/78 0.541°
Prior myocardial infarct, yes/no 12/94 7/80 0.447°
Prior stroke, yes/no 11/95 6/81 0.396°
BMI (kg/m?), mean = SD 23.54 (3.01) 23.69 (2.57) 0.710°
Educational level (years), mean & SD 10.81 (2.28) 10.90 (2.35) 0.799*
Disease duration (years), mean =+ SD 4.87 (1.95)

UPDRS III (points), mean =+ SD 20.51 (8.63)

H&Y (stage), mean & SD 2.25(0.753)

MoCA (points), mean £ SD 27.93 (1.22) 28.26 (1.21) 0.062°
HVLT-DR (points), mean % SD 46.84 (9.31) 48.43 (8.64) 0534
DSST (points), mean & SD 41.64 (9.30) 45.74 (8.72) 0.234*
SFT (points), mean £ SD 13.32 (3.85) 13.56 (3.78) 0.435%
CDT (points), mean £ SD 9.5(1.1) 9.6 (0.6) 0.342°
TMT A (seconds), mean + SD 31.5(15.3) 30.6 (12.5) 0.2132
TMT B (seconds), mean + SD 70.5 (36.8) 67.8 (35.7) 0.3452
LEDD (mg/d), mean £ SD 212.23 (323.62)

Serum NfL level (pg/mL) 13.01 (5.84) 11.23 (5.40) pg/ml 0.031%*

BMI, body mass index; H&Y, Hoehn and Yahr; LEDD, levodopa-equivalent daily dose; MoCA, Montreal Cognitive Assessment; NC, normal controls; NfL, neurofilament light chain; PD,
Parkinson’s disease; PD-CN, cognitively normal PD; SD, standard deviation; UPDRS, Unified Parkinson’s disease. “independent samples ¢-test; hChi-square test; *p-value < 0.05.
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Improvement training test 95% Cl training test P training test

NRI (categorical) 0.197 0.071 0.029-0.365 —0.212-0.354 0.022 0.621
NRI (continuous) 0.433 0.429 0.130-0.736 —0.038-0.895 0.005 0.072
IDI 0.076 0.071 0.036-0.115 0.007-0.136 <0.001 0.029

NRI, Net Reclassification Index, IDI, Integrated Discrimination Improvement.
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Intercept and variables B SE OR (95% ClI) P

Age 0.093 0.028 1.097 (1.041-1.161) <0.001*
Years of education —1.101 0.425 0.333 (0.140-0.749) 0.010*
DBP —0.052 0.022 0.949 (0.907-0.990) 0.019%
CRA flow rate 0.088 0.057 1.092 (0.980-1.226) 0.122
SPCA flow rate 0.061 0.030 1.063 (1.008-1.132) 0.038*
PRNEL(I) —0.021 0.008 0.979 (0.964-0.993) 0.005*
Vertical C/D 2479 1.262 11.927 (1.059-155.308) 0.049*

DBP, diastolic blood pressure; CRA, central retinal artery; SPCA, short posterior ciliary artery; pRNFL(I), peripapillary retinal nerve fiber layer (inferior); C/D, cup-to-disc ratio; *P < 0.05.
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Predictive variables MCI (n = 106) ormal cognition (n = 64)

Demographic data

Age, years 73.19 £ 7.64 68.52 £+ 7.42 <0.001
Gender, n (%) 0.846
Male 38 (35.8) 22 (34.4)

Female 68 (64.2) 42 (65.6)

SBP, mmHg 140 (134.00,148.25) 140 (13225, 149.25) 0261
DBP, mmHg 79 (71.75, 83.00) 84.5 (75.75, 89.00) 0.001
Years of education, n (%) 0.186
<12 years 64 (60.4) 32 (50.0)

>12 years 42 (39.6) 32 (50.0)

Smoking, n (%) 21 (19.8) 8 (12.5) 0220
Drinking, n (%) 16 (15.1) 8(12.5) 0.638
I0OP, mmHg 13.95 (12.00, 16.00) 14.00 (12.23, 16.00) 0.700
Comorbidities

Hypertension, n (%) 52 (49.1) 30 (46.9) 0.783
Diabetes, n (%) 24 (22.6) 20 (31.3) 0214
Cardiovascular disease, n (%) 22 (20.8) 10 (15.6) 0.407
Cerebrovascular disease, n (%) 12 (11.3) 4(6.3) 0.417
Anxiety, n (%) 5(4.7) 2(3.1) 0.712
Depression, n (%) 4(3.8) 1(1.6) 0.651
Retrobulbar blood flow

SPCA flow rate, cm/s 20.40 (16.98, 26.70) 19.30 (14.03, 23.30) 0.036
SPCA PI 1.77 (1.49, 2.00) 1.66 (0.96, 1.66) 0.133
SPCA RI 0.81 (0.74, 0.86) 0.79 (0.61, 0.79) 0.162
OCT of macula

ILM-RPE thickness (T), pm 286.00 (272.38, 292.38) 280.50 (267.50, 292.88) 0.306
mGCIPL thickness (S), pm 81.00 (71.75, 85.00) 78.00 (72.00, 84.00) 0.186
OCTA of macula

mSCPVD(T), mm™! 9.63 (4.71,15.23) 9.35 (3.41, 14.51) 0.226
mSCPPD(T), mm~! 0.23 (4.71, 15.23) 0.21 (0.08, 0.34) 0.141
OCT of optic disc

vertical C/D 0.51 (00.3.44, 0.63) 0.49 (0.38, 0.57) 0.039
Cup volume, mm? 0.12 (0.04, 0.25) 0.09 (0.05,0.30) 0.988
PRNEL(I), um 105.00 (89.75, 127.00) 119.00 (105.25, 133.00) 0.001
PRNEL(T), um 70.00 (60.75, 77.25) 69.00 (58.75, 74.00) 0311
OCTA of optic disc

pSCPVD(T), mm~! 14.15 (8.49, 16.73) 15.05 (10.09, 16.89) 0.744
pSCPPD(T), mm™! 0.33 (0.18, 0.41) 0.35 (0.21, 0.40) 0.804

SBP, systolic blood pressure; DBP, diastolic blood pressure; IOP, intraocular pressure; SPCA, short posterior ciliary artery; PI, pulsatility index; RI, resistance index; ILM -RPE (T), inner
limiting membrane to the retinal pigment epithelium (temporal); mGCIPL (S), macular ganglion cell-inner plexiform layer thicknes (superior); mSCPVD (T), the vessel density of macular
superficial capillary plexus (temporal); mSCPPD (T), the perfusion density of macular superficial capillary plexus (temporal); C/D, cup-to-disc ratio; pRNFL(I/T), peripapillary retinal nerve
fiber layer (inferior/temporal); pSCPVD (T), the vessel density of peripapillary superficial capillary plexus (temporal); pSCPPD (T), the vessel density of peripapillary superficial capillary plexus
(temporal). OCT, optical coherence tomography; OCTA, optical coherence tomography angiography.
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\ Assessed for eligibility (n=60) 1

{ 38 patients met inclusion criteria ]
Excluded(n=22)

4 Not meeting inclusion criteria(n=12)
Randomized|(at a ratio 1:1) # Declined to participate(n=7)
L @ Not medically stable(n=3)

Allocated to rTMS(n=19) Allocated to sham-rTMS(n=19)
Received allocated intervention(n=19) Received allocated intervention(n=19)

Discontinued intervention(n=2)
Due to not medically stable(n=1)
Due to conflicting schedule(n=1)

Discontinued intervention(n=1)
Due to discharge(n=1)

Discontinued intervention(n=1)
Due to discharge(n=1)

Discontinued intervention(n=1)
Due to not medically stable(n=1)

Analysed(n=16)

[ Analysed(n=17)
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Studies Subjects Duration of  EEG features Classifiers Accuracy Validation

EEG signal

Vecchio etal.

i) 74 SMCI, 71 PMCI 25 SW property polynomial regression 6100 10-fold cross-validation
Lietal. (2021) 28aMCI, 21 HC Is Graph theory SVM 86.60 10-fold cross-validation
Lietal. (2022) 26aMCI, 20 HC 4 Spectral entropy CNN 94.64 10-fold cross-validation
LogReg, SVM, R, NB,
Kimetal.(2022) | 139aMCI 58 non-aMCl | 25 Graph theory P 89.00 train-test split of 3:7
Youssef et al. Leave-one-out cross
43aMCL, 51 HC 4 Graph theory DT 87.20
(2021) validation
Holler etal. (2017) | 71aMCI, 39 AD 3-min Graph theory SVM 60.00 10-fold cross-validation

Spectral, nonlinear,and | SVM, DT, NB, LDA,
Our study 65 SMCI, 42 PMCI 25 99.96 10-fold cross-validation
functional connectivity | ADA, KNN, RE, LogReg

SW, small world; CNN, convolutional neural network; WPLL, weighted phase lag index; GB, gradient boostings NN, neural network. Bold values indicates the best accuracy.





OPS/images/fnagi-17-1477008/fnagi-17-1477008-e091.jpg





OPS/images/fnagi-16-1470836/fnagi-16-1470836-t002.jpg
Classifier ACC C SEN S| PPV Fl-score
SYM 9535+ 211 99.12£0.67 9432381 95.59:+3.21 95.23+2.85 9473 +2.62
DT 84932358 84.68+4.12 83354717 85.02+6.13 82844664 82904564
NB 77.65+5.19 93384254 8584+ 14.59 7613 16.04 7525 16,82 7730 £ 568
LDA 9623+ 187 99.37£047 9538+ 381 9640+ 304 9620+ 248 95732234
ADA 90.58 2,96 96,66 + 1.48 88314544 9150 +5.07 9034422 89.20+3.80
RE 88.87+322 9813+ 111 814751385 90.97 £ 1220 9406+7.02 8613569
KNN 99.96+0.18 99.97£0.16 99.98+0.16 99.95+027 99.93 040 99.96+021
LogReg 9559184 98394122 9465326 95.94+291 95.46 + 2.89 95014232

Bold values indicates the best discriminant performance.
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Variable Statistics

Age (years) 6885876 6817808
Gender (male/female) 24/41 22120
MMSE (scores) 23584287 | 2355+247
MoCA (scores) 19314336 1852£301  t=123,p=022
:"::Z::MC' sl 2738 17125 2001,p=091
Diabetes (yes/no) 25/40 13/29 22063, p=043
Hypertension (yes/no) 424 23119 22073,p=039
Level of education 03,p=0.99
Primary education 10 6
Secondary education 9 32
Higher education 6 4
MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment
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Scales {TMS Group (n = 17) Sham-rTMS Group (n = 16) Time  Group  Tim X Group

Baseline ~ 2weeks 4 weeks Baseline 2weeks 4weeks PFn? PFn? P.F n?
MMSE, 17.65(4197) | 17.88(4196) | 17.94(4451) | 1706(3043) | 1731(3092)  17.19(3487) 0099, 0,633, 0.599,0.400,0013
mean (SD) 2653, 0233,0007
0079
MBI mean | 8235(13477) | 8294(12382) 8412(11757) | 8500(17.795)  85.94(16.147) | 86.25(15759) 0006, 0614, 0.533,0,549,0017
(D) 6610, 0.260,0.008

0176
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Groups Times, mean (SD) 2 weeks vs. Baseline

4 weeks vs. Baseline

Baseline ~ 2weeks 4 weeks Mean 95% Cl Mean 95% Cl
(2 weeks — baseline) (4 weeks — baseline)
HAMD | TMS Group 18588 14353 982401.288) —425 ~534210 <0001 8765 —10639 | <0001
s 342) -aa28 10689
Sham-rTMS 18563 16688 14000 -1875 -3016t0 000 4563 ~649410 | <0001
Group. s79) (1383 (1.328) ~0734 ~2631
NPL TMSGroup | 6941(0799) | 3882(0561) | 2235 (0:426) 3059 401610 <0.001 ~4.706 ~593310 | <0001
depression ~2102 3478
Sham-rIMS | 6625(0824) | 5438(0.578) | 3813 (0:439) ~L188 —217410 o014 ~2813 —407810 | <0001
Group. 0201 ~1547

All the p-values are adjusted wi

Bonferroni procedure
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Scales rTMS Group (n = 17) Sham-rTMS Group (n = 16) Time x Group

Baseline 2 weeks 4 weeks Baseline 2 weeks 4 weeks | P, Fn?
HAMD, 1859(6315) | 1435(5454)  982(509)  1856(6314) | 1669(5618)  14(5538) <001, 0275123,  <001,1407,0312
mean ($D) 141126, 0038
0823
NPL- 694(3288) | 388(1799)  224(1251) | 663(3304) | 544(2756)  381(2167) <001,  0264,1297,  0.004,7.784,0202
depression, 61,046, 0.04

mean (SD) 0803
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Variables 17)  Sham-rTMS Group (n = 16)  X?/z/t  p-value
Age, years, mean (SD) 73.76 (3.882) 72.63 (6.752) 1.140 0.267
Gender, male/female 70 719 0.036 0.849
BMI, kg/m’, mean (SD) 23.565 (4.5958) 21.737 (2.4309) 1439 0.163
Education, years, median (interquartile range, IQR) 966 903) -0379 0705
Years since diagnosis of Alzheimer’s disease, median (IQR) 20(20) 20(3.0) =0.391 0.695

Concomitant medications

Acetylcholinesterase Inhibitors, 7 (%) 13(76.5%) 12(75%) 0010 0922
Memantine, 1 (%) 12(70.6%) 11(68.8%) 0013 0.909
Antidepressants, 7 (%) 11(64.7%) 11(68.8%) 0061 0805

Complications (diabetes, hypertension, or both), 1 (%) 10(58.8%) 11(68.8%) 0351 0554
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