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Editorial on the Research Topic

Application of emerging technologies in the diagnosis and treatment of
patients with brain tumors: new frontiers in imaging for neuro-oncology
Accurate prognostication across brain tumor types — particularly those with the

poorest outcomes, such as high-grade gliomas and especially glioblastoma multiforme

(GBM) — remains a central challenge in neuro-oncology. Although advances in surgical

techniques, radiotherapy, and systemic therapies have extended survival for some patients,

outcomes still vary widely and are difficult to predict based on clinical and molecular data

alone. Conventional prognostic models typically incorporate factors such as age,

performance status, tumor location, histopathological grade, and molecular alterations

(e.g., MGMT promoter methylation, IDH mutation). However, these measures often fail to

capture the full extent of biological complexity and spatial heterogeneity within tumors that

underlie treatment resistance and progression. Consequently, there is a pressing need for

reliable, noninvasive biomarkers that more comprehensively reflect tumor biology,

facilitate risk stratification, guide individualized treatment planning, and ultimately

improve patient outcomes.

In this context, quantitative neuro-imaging has emerged as a valuable adjunct to

traditional assessment, with research concentrating principally on brain tumors with a

worse prognosis. Multiparametric MRI — including contrast-enhanced T1-weighted, T2-

weighted, FLAIR, diffusion-weighted, and perfusion sequences— provides complementary

information on tumor morphology, cellularity, and vascular characteristics. Radiomic

analysis further enhances this approach by extracting high-dimensional quantitative

features (intensity, shape, texture, and wavelet-based metrics) from defined regions of

interest, transforming images into data-rich profiles and underscoring the potential of

imaging-derived biomarkers to improve prognostic accuracy and tailor therapy across
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diverse brain tumor entities. Notably, Kickingereder et al. used

radiomic analysis to identify imaging phenotypes in high grade

gliomas associated with patient prognosis; by extracting high-

dimensional imaging features, they demonstrated that certain

radiomic profiles correlate with overall survival, independent of

established clinical variables, with a prognostic accuracy superior

when compared with clinical and conventional imaging models (1).

Similarly, the integration of quantitative perfusion MRI parameters

with genetic profiling and molecular insights has proven to enhance

tumor characterization, more accurate prognostication, and allow

for more tailored therapeutic strategies. Such synergy paves the way

for a more refined and individualized model of care in neuro-

oncology, moving beyond traditional one-size-fits-all paradigm and

toward a future of truly personalized medicine (2). Thus, there are

several studies that illustrate how combining radiomic features with

molecular and clinical data yields composite models that capture

complementary dimensions of tumor biology, offering refined

prognostic insights and potential predictive value for targeted

therapies. Clinical applications of diffusion-MRI, which include

among others diffusion-weighted imaging (DWI) with apparent

diffusion coefficient (ADC) maps, diffusion tensor imaging (DTI)

and diffusion kurtosis imaging (DKI), have further illuminated the

prognostic significance of cellular density and extracellular matrix

composition in gliomas. For instance, Li et al. investigated the

prognostic value of DKI in GBM, demonstrating how higher mean

kurtosis values (reflecting microstructural tissue complexity) were

significantly associated with longer overall survival (3). In parallel,

Chen et al. assessed how ADC histogram analysis is able to provide

innovative insights into the MGMT and TERT molecular

characterization in patients newly diagnosed with GBM, enhancing

prognostic stratification (4). These findings support the notion

that ADC-derived imaging biomarkers reflect underlying

histopathological and molecular traits, enabling noninvasive in vivo

phenotyping of tumor aggressiveness. Advanced perfusion imaging

metrics also have prognostic and predictive implications. Dynamic

susceptibility contrast MRI–derived cerebral blood volume maps

correlate with microvascular density and angiogenic activity. In the

context of antiangiogenic therapy, Kickingereder et al. identified

pre-treatment radiomic features that predicted progression-free and

overall survival in recurrent GBM patients treated with bevacizumab

(5). The integration of perfusion radiomics and treatment response

modeling highlights how imaging biomarkers can guide therapeutic

decision-making, identifying patients most likely to benefit from

targeted agents. Machine learning and deep learning techniques

have accelerated the discovery of prognostic imaging signatures by

automating tumor segmentation, feature extraction, and pattern

recognition. Deep learning has significantly transformed the

automated segmentation and classification of intracranial tumors,

showing particularly promising performance in the context of

gliomas, and offering notable advantages in terms of time efficiency

and resource optimization; in particular, deep-learning–based

segmentation algorithms improve the reproducibility of region of

interest delineation, a critical factor for multicenter studies (6). Lao

et al. employed transfer learning to derive deep radiomic features
Frontiers in Oncology 026
from pre-trained convolutional neural networks, constructing a

nomogram that outperformed traditional clinical risk factors and

handcrafted radiomic features for survival prediction (7). These deep

features capture complex, hierarchical image representations that may

elude conventional radiomic pipelines. Radiogenomic approaches

integrate imaging phenotypes with genomic and transcriptomic

landscapes, providing mechanistic insights and enhancing

prognostic models. Radiomics has been applied to various areas of

neuro-oncology, with particular success in the differential diagnosis

and classification of brain tumors (8). Kickingereder et al. used

radiomic subtyping to classify GBM tumors into phenotypic

clusters associated with differential survival, revealing that specific

subtypes—characterized by heterogeneous texture and angiogenic

features—portend poorer outcomes (9). A study by Qi et al.

demonstrated that specific imaging features correlated with

molecular subtypes of GBM, such as proneural and mesenchymal

profiles; this spatial distinction, combined with differences in imaging

characteristics, allows for the noninvasive prediction of molecular

subtypes using MRI data (10). Integrative models that combine

radiomics, genomics, and clinical variables have shown superior

prognostic performance compared with single-modality models,

underscoring the value of multimodal data fusion in precision

neuro-oncology. Despite these advances, several challenges impede

the clinical translation of prognostic neuro-imaging biomarkers.

Variability in MRI acquisition protocols, scanner manufacturers,

and imaging parameters introduces heterogeneity that can

compromise feature stability. Initiatives to standardize imaging

protocols and develop digital reference objects for quality assurance

are critical to ensure reproducibility. Segmentation remains labor-

intensive and subject to interobserver variability; robust, validated

automated or semi-automated segmentation tools are needed

to enable widespread adoption. Retrospective study designs and

small sample sizes limit generalizability; large-scale, multicenter,

prospective studies with standardized imaging and outcome metrics

are required for validation. Finally, regulatory pathways for imaging

biomarkers demand clear demonstration of clinical utility and cost-

effectiveness. In summary, quantitative neuro-imaging and radiomics

have reshaped the landscape of prognostication in brain tumors,

offering noninvasive insights into tumor heterogeneity, vascularity,

and molecular composition. From handcrafted texture features and

ADC histogram metrics to deep-learning–derived signatures and

radiogenomic mappings, imaging biomarkers hold promise for risk

stratification and treatment personalization. As the field advances

toward standardized, validated, and interpretable models, neuro-

imaging will become integral to precision management of brain

tumors, enabling clinicians to tailor therapeutic strategies to

individual tumor biology and ultimately improve patient outcomes.

The articles published in this Research Topic exemplify the strong and

sustained interest in emerging technologies applied to the initial

assessment, differential diagnosis, and biological characterization of

brain tumors— particularly gliomas— and reflect the ongoing efforts

of the scientific community to advance neuroimaging tools that

enhance prognostication and therapeutic outcomes for patients

with brain neoplasms.
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peritumoral radiomics for
preoperative prediction
of glioma grade: a
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Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital),
Shandong, China
Background: Accurate preoperative prediction of glioma is crucial for

developing individualized treatment decisions and assessing prognosis. In this

study, we aimed to establish and evaluate the value of integrated models by

incorporating the intratumoral and peritumoral features from conventional MRI

and clinical characteristics in the prediction of glioma grade.

Methods: A total of 213 glioma patients from two centers were included in the

retrospective analysis, among which, 132 patients were classified as the training

cohort and internal validation set, and the remaining 81 patients were zoned as

the independent external testing cohort. A total of 7728 features were extracted

from MRI sequences and various volumes of interest (VOIs). After feature

selection, 30 radiomic models depended on five sets of machine learning

classifiers, different MRI sequences, and four different combinations of

predictive feature sources, including features from the intratumoral region

only, features from the peritumoral edema region only, features from the

fusion area including intratumoral and peritumoral edema region (VOI-fusion),

and features from the intratumoral region with the addition of features from

peritumoral edema region (feature-fusion), were established to select the

optimal model. A nomogram based on the clinical parameter and optimal

radiomic model was constructed for predicting glioma grade in clinical practice.

Results: The intratumoral radiomic models based on contrast-enhanced T1-

weighted and T2-flair sequences outperformed those based on a single MRI

sequence. Moreover, the internal validation and independent external test

underscored that the XGBoost machine learning classifier, incorporating

features extracted from VOI-fusion, showed superior predictive efficiency in

differentiating between low-grade gliomas (LGG) and high-grade gliomas (HGG),

with an AUC of 0.805 in the external test. The radiomic models of VOI-fusion

yielded higher prediction efficiency than those of feature-fusion. Additionally, the

developed nomogram presented an optimal predictive efficacy with an AUC of

0.825 in the testing cohort.
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Conclusion: This study systematically investigated the effect of intratumoral and

peritumoral radiomics to predict glioma grading with conventional MRI. The

optimal model was the XGBoost classifier coupled radiomic model based on

VOI-fusion. The radiomic models that depended on VOI-fusion outperformed

those that depended on feature-fusion, suggesting that peritumoral features

should be rationally utilized in radiomic studies.
KEYWORDS

MRI, glioma grade, radiomics, peritumoral features, nomogram
1 Introduction

Glioma is a highly fatal disease that represents the most

frequent form of primary cancer in the central nervous system

(CNS), accounting for about 80% of all malignant tumors in the

brain (1–3). Due to the same standardized treatment that can result

in varying prognoses for different patients, it may be necessary to

make specialized treatment decisions based on the tumor grade in

clinical practice (4–6). Gliomas are categorized into grades I-IV in

the Central Nervous System Midstream Classification of the World

Health Organization (WHO) of 2021, with grades I-II being low-

grade gliomas (LGG) and grades III-IV being high-grade gliomas

(HGG) (7, 8). Accurate preoperative grading of gliomas is essential

for assessing prognosis and developing individualized treatment

plans, such as the extent of surgical resection, and the decision of

postoperative chemoradiotherapy (9).

In contemporary clinical practice, gliomas are graded based on

surgical or puncture histopathologic investigation (10). This

diagnostic method is intrusive and slow, though. Furthermore,

tissue biopsies from one area of the tumor might not be

indicative of the histology of the entire tumor due to the

recognized heterogeneity of gliomas and sampling error (11–13).

High-precision noninvasive solutions that can offer preoperative

grading information are therefore gaining popularity. Over the past

decades, magnetic resonance imaging (MRI) has emerged as a

crucial non-invasive diagnostic and assistant therapeutic

technique for brain tumors, which is used to aid in differential

diagnosis, guide treatment planning, and monitor therapy response

(14–17). Nevertheless, competent radiologists may easily spot

tumors from MRI sequences with the naked eye, gliomas are

difficult to discriminate based on grade because of the variability

and diversity of the tumors, which is undoubtedly a great challenge

for imaging technology (18–20).

Radiomics, a burgeoning discipline, employing automated data

mining algorithms to extract characteristics frommedical images in a

high-throughput manner, has been demonstrated notable

advancements in the realm of medical imaging applications (21–

24). These extracted features are then utilized by the machine to train

itself and generate the anticipated desired output (25–27). Notably,
029
recent progress has been achieved in the prediction of grading

gliomas through the utilization of preoperative MRI scans and

various machine learning methods. Gemini et al. evaluated the

capacity of the Visually AcceSAble Rembrandt Images (VASARI)

scoring system in predicting glioma grades and Isocitrate

Dehydrogenase (IDH) status, with a possible application in

machine learning (28). You et al. utilized traditional radiomics and

the VASARI standard to construct a model determining glioma

grade with an Area Under the Curve (AUC) of 0.966 (29). Wang

et al. created and assessed a multiparametric MRI-based radiomics

nomogram for predicting glioma grading (30). In recent years,

deep learning has exhibited excellent performance with broader

application prospects and deeper development in clinical

applications. Voort et al. developed a single multi-task

convolutional neural network that used preoperative MRI scans to

predict the molecular subtype and grade of glioma, and the

independent dataset evaluated that the approach achieved good

performance and generalized well (31). Li et al. compared

predictive models established by traditional radiomics and deep

learning based on multiparametric MRI for grading gliomas and

demonstrated that the latter performed better in most circumstances

(32). While deep learning-based models have very respectable

efficacy, it is commonly recognized as a black box that lacks

satisfactory explanatory power. However, these machine learning

approaches have focused mainly on the intratumoral region and

neglected the role of the peritumoral environment in glioma grade.

The peritumoral environment holds great potential and may

provide insightful information for clinical evaluation of the

aggressive biological behavior of the tumor (33–35). Regarding

intratumoral and peritumoral radiomic analysis, two main research

approaches emerged. The first involved feature-fusion, where features

from both intratumoral and peritumoral volumes of interest (VOIs)

were separately extracted and then integrated. The second method was

VOI-fusion, wherein the tumor region was expanded outward by a

specific range to create a new VOI combining intra- and peri-tumoral

areas. Radiomic features from this newly generated VOI were then

extracted for subsequent analysis. For instance, Li et al. independently

delineated the gross-tumor region and the peritumor region which was

defined as the parenchyma that fell within a 2-cm distance to the tumor
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boundary (35). The radiomic features extracted from the two regions

were merged and screened to build the radiomic model. Differently, Shi

et al. expanded the originally segmented masks of VOIs by five radial

distances outside the tumor at 1 mm intervals, creating five new VOIs

(34). The findings indicated that the radiomic signature derived from

peritumoral regions, specifically at dilated distances of 1 mm and

3 mm, demonstrated the most effective prediction performance in

different MRI sequences, respectively. To date, although numerous

studies have explored the radiomics of the peritumoral region, there

has been a lack of a definitive study that has determined which among

them is more persuasive and authoritative. The growth and infiltration

of gliomas lead to the disruption of the blood-brain barrier.

Consequently, there is a leakage of water, electrolytes, and proteins

from peritumoral blood vessels, resulting in increased water content

within the brain parenchyma, which contributes to the formation of

peripheral edema (32, 36). Given that the tumor and the surrounding

edematous area were closely interconnected, forming the

microenvironment crucial for tumor cell growth and infiltration, it

would be more reasonable to explore them as an integrated whole.

Drawing on the current state of research, the two methods

were performed and compared in our study. We conducted an

investigation focusing on the intratumor region and its surrounding

peritumoral edema region of preoperative MRI scans to predict the

grade of glioma. A total of 30 radiomic models, which depended on

four different combinations of predictive features source

(intratumoral VOI, peritumoral VOI, VOI-fusion, and feature-

fusion), five different machine learning classifiers, and different

MRI sequences, were established to select the optimal model, which

was used for the construction of the nomogram for accurately

predicting glioma grade, thereby assisting in the development of
Frontiers in Oncology 0310
personalized treatment strategies for patients, ensuring they receive

optimal benefits.
2 Materials and methods

2.1 Study population

All procedures involving human participants in this study

adhered to the ethical guidelines outlined in the 1964 Declaration

of Helsinki and its subsequent revisions, as well as other applicable

ethical standards. The study was approved by the Ethics Committee

of Tianjin Medical University General Hospital and Qilu Hospital

of Shandong University Dezhou Hospital. Written informed

consent was waived due to the retrospective nature of the study.

This study retrospectively analyzed 213 patients with cerebral

gliomas from January 2019 to June 2023, who underwent

preoperative MRI followed by surgery. Among them, 132 patients

with glioma were from the Tianjin Medical University General

Hospital (center 1), which was classified as the training cohort and

internal validation set, and the remaining 81 patients were from the

Qilu Hospital of Shandong University Dezhou Hospital (center 2),

zoned as the independent external testing cohort. The inclusion and

exclusion criteria are shown in Figure 1.
2.2 Pathological assessment

Pathologists with more than 10 years of experience graded the

postoperative specimens, based on the 2021 WHO classification of
FIGURE 1

Flowchart of the incorporation and expulsion of glioma patients from two centers.
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CNS tumors, classifying gliomas into grades I-IV, with grades I-II

being LGG and grades III-IV being HGG (19).
2.3 MRI protocol and image preprocessing

Every patient underwent MRI scans within two weeks before

the surgery. All MRI studies were performed on the same type of

scanners of the two centers, which were acquired using a 3.0 T

scanner Discovery MR750 (GE Healthcare) with a 32-channel head

coil. MRI acquisition parameters are summarized in Supplementary

Table S1. The same MRI protocol was used for training and external

testing sets. Patients were told not to move their heads during the

scan to reduce the possible impact of head motion. The most useful

anatomical multi-contrast MRI sequences included contrast-

enhanced T1-weighted images and T2-weighted fluid-attenuated

inversion recovery (Flair) images that were analyzed for

further study.

For image preprocessing, the preoperative contrast-enhanced

T1 images and T2 flair images were spatially aligned by using the

rigid registration function of the well-validated Ants software from

3D Slicer (version: 5.2.2) software. Moreover, the quality of the

registration was carefully inspected for alignment of the ventricular

structures by a radiation oncologist. Then, the spacing of contrast-

enhanced T1 and T2 flair images was resampled to 1×1×1 mm³.
2.4 Image segmentation and
feature extraction

Manual segmentation of the contrast-enhanced T1 and T2 flair

images of target lesions was performed using 3D Slicer (version:

5.2.2) software by two radiologists who possessed over five years of

experience in a blinded manner to the study outcome, to eliminate

unstable radiomic features and minimize inter-individual

variability. Following clinical studies (8, 33), three VOIs have

been delineated, the intratumoral VOI based on the contrast-

enhanced T1 images, the peritumoral edema VOI including the

intratumor VOI based on the T2 flair images, and the peritumoral

edema VOI only. Given the spatial alignment between the contrast-

enhanced T1 and T2 flair images, the delineated VOIs were shared

across the two sequences.

In this study, the feature extraction was performed utilizing the

Pyradiomics module in Python 3.7.0. A comprehensive set of 1288

quantitative radiomic features was extracted individually from each

VOI for every sequence, obtaining a total of 7728 features. The

available features were categorized as follows: the three-dimensional

shape characteristics (n=14), the first-order statistical distribution

of voxel intensities (n=252), and the texture features, which

comprised gray-level co-occurrence matrix (GLCM) (n=308),

gray-level dependence matrix (GLDM) (n=196), gray-level run

length matrix (GLRLM) (n=224), gray level size zone matrix

(GLSZM) (n=224), and neighborhood gray-tone difference matrix

(NGTDM) (n=70).
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2.5 Feature selection

Six distinct radiomic models were developed independently by

employing extracted conventionally intratumoral radiomic features

from two sequences and three kinds of VOIs. Firstly, the TRT1

model was a radiomic model based on contrast-enhanced T1-

derived radiomic features from the intratumoral VOI. The TRT2

model was constructed by utilizing T2 flair-derived radiomic

features from the intratumoral VOI. The TR model was

established by integrating radiomic features originating from the

intratumoral VOI of both sequences. Then, the PR model was based

on the combined radiomic features from the peritumoral VOI of

both sequences. The TPRVOI-fusion model was constructed by

utilizing the radiomic features from the combining VOI of

intratumoral and peritumoral VOIs of both sequences. The

TPRfeature-fusion model was established by integrating radiomic

features from the intratumoral VOI and peritumoral VOI of both

sequences, separately.

Subsequently, Z-score normalization was applied to standardize

the intensity range of each radiomic feature across various models,

preventing the undue assignment of lower or higher weights to

specific features. In the feature selection process, three steps were

implemented for the training cohort. The ICC test was conducted

between the datasets obtained by the two radiologists. The value

exceeding 0.75 was deemed indicative of robust reproducibility and

reliability, leading to the exclusion of features with ICC<0.75 from

subsequent analysis (37, 38). Furthermore, Pearson’s rank

correlation coefficient was employed to evaluate the correlation

between feature pairs, with one feature randomly excluded from

each pair exhibiting a correlation coefficient > 0.9. Lastly, the least

absolute shrinkage and selection operator (LASSO) regression,

coupled with 10-fold cross-validation, was utilized to identify

informative features with non-zero coefficients and calculate the

corresponding feature weights.

In addition to radiomic features, machine learning models

based on predictive clinical parameters were also constructed,

which was referred to as the Clinical model in the study. For the

feature selection of clinical features, a two-step procedure was

performed. First, univariate analysis was used to identify

significant features with a p-value < 0.05. Then, the stepwise

multivariate analysis was employed to determine the independent

indicator with a p-value < 0.05, which was utilized as the predictive

clinical parameters for the prediction of glioma grade.
2.6 Model construction

Then, classifiers including Logistic Regression (LR), Support

Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost),

Decision Tree (DT), and Multilayer Perceptron (MLP), employed

the features filtrated by Lasso feature screening. In total, 30 machine

learning models were formulated by integrating the six distinct

radiomic models derived from various sequences and VOIs with the

five machine learning classifiers for predicting glioma grade.
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To ensure the stability of the prediction models, we randomly

divided 30% of the training cohort as an internal validation set, then

repeated the steps 100 times and averaged the results as the final

prediction result under the model. The performance of the model

was then evaluated on the independent external testing cohort,

which was not used during the development of the model.

To evaluate the effectiveness of these models, several

indicators, such as the AUC, accuracy, sensitivity, specificity,

Positive Predictive Value (PPV), and Negative Predictive Value

(NPV), were computed to evaluate the performance of the models.

Additionally, to demonstrate the precision and net benefit, both the

calibration curve and the decision curve analysis were employed.

Additionally, a nomogram using a logistic regression

algorithm involving the optimal radiomic model and significant

clinical features was developed to provide a straightforward visual

representation in clinical practice. The receiver operating

characteristic (ROC) curve, calibration curve, and decision curve

analysis were employed correspondingly.
2.7 Statistical analysis

Software version 3.7.0 of Python was used for statistical analysis.

The p-value for statistical significance was fixed at 0.05, and all

statistical tests were two-sided. For continuous variables, mean ± SD

was applied to communicate data that followed a normal distribution;
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and counts and percentages (n, %) were utilized to convey data for

categorical variables. To compare continuous and categorical variables,

t-tests and Chi-square were wielded. The prediction result of each

model was displayed on an ROC curve, and the prediction

performance was evaluated by calculating the AUC, accuracy,

sensitivity, specificity, PPV, and NPV. The Delong test was utilized

to verify the significance of the AUC from different ROC curves. The

Hosmer-Lemeshow test was employed to evaluate the fitting ability of

the model. The entire workflow of this study is illustrated in Figure 2.
3 Results

3.1 Patient characteristics

A total of 213 glioma patients fulfilled the requirements for

admission from the two centers, 132 patients from center 1 were

classified as the training cohort and internal validation set (84HGGs,

48LGGs, mean age 52 years), and the remaining 81 patients from

center 2 were zoned as the independent external testing cohort

(50HGGs, 31LGGs, mean age 52 years). Table 1 displays the

variations in the clinical features of the two groups from different

centers. It can be shown that the only factor that significantly

distinguished HGG from LGG was age (p<0.001). The gender and

tumor location were not proposed as potential predictors of

glioma grade.
FIGURE 2

The workflow of intratumoral and peritumoral radiomics and clinical analysis for image acquisition, segmentation, feature extraction and selection,
model comparison, and nomogram construction in our study.
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3.2 Machine learning models based on
intratumoral radiomics

For intratumoral radiomics, a total of 2576 (1288 contrast-

enhanced T1-based and 1288 T2 flair-based radiomic features)

features were extracted from each tumor region, containing

shape, first-order, and texture features. Hence the TRT1, TRT2,

and TR models included 1288, 1288, and 2576 radiomic features

respectively. The feature statistics of categories and distribution are

presented in Supplementary Figure S1. After feature filtration of the

ICC test and Pearson’s rank correlation coefficient, the LASSO with
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10-fold cross-validation was employed to select significant features

for building radiomic signatures. At last, 7 features were selected for

the TRT1 model (Supplementary Figure S2A), 7 features were

selected for the TRT2 model (Supplementary Figure S2B), and 6

features were selected for the TR model (Supplementary Figure

S2C), with weighting coefficient severally. The coefficients and mean

standard error (MSE) of the 10-fold validation are also exhibited in

Supplementary Figure S2.

Then, 15 machine learning models were constructed based on

the various radiomic models above-mentioned and machine

learning classifiers (LR, SVM, XGBoost, DT, and MLP) to
A B
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FIGURE 3

The performance of intratumoral radiomic models based on the different MRI sequences. The performance of the internal validation employed 30%
of the training cohort randomly, and repeated the steps 100 times of TRT1 (A), TRT2 (B), and TR (C) models respectively. Comparison of ROC curves
for the external test of TRT1 (D), TRT2 (E), and TR (F) models of five machine learning models. The models that the mean AUC of the internal
validation throughout the 100 repetitions reached more than 0.7, were considered to be relatively stable and efficient. Comprehensively, the MLP-
based TR model (AUC = 0.734 in external test) based on the two MRI sequences was considered the optimal model and selected for further analysis.
TABLE 1 Demographic information and clinical characteristics of glioma patients.

Characteristics Center 1
LGG (n=48)

Center 1
HGG (n=84)

P value Center 2
LGG (n=31)

Center 2
HGG (n=50)

P value

Gender 0.493 0.21

Male 26 (54.17%) 52 (61.90%) 14 (45.16%) 31 (62.00%)

Female 22 (45.83%) 32 (38.10%) 17 (54.84%) 19 (38.00%)

Age 44.81±14.73 56.31±14.24 <0.001* 44.00±11.57 56.26±13.11 <0.001*

Tumor location 0.755 0.876

Right brain 25 (52.08%) 40 (47.62%) 16 (51.61%) 28 (56.00%)

Left brain 23 (47.92%) 44 (52.38%) 15 (48.39%) 22 (44.00%)
A t-test was used for age. A c2 test was used for the rest. *p<0.05
LGG, low-grade glioma; HGG, high-grade glioma.
Significant p values (p< 0.05) are indicated in bold.
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determine which model was optimal for glioma grade prediction.

The results of internal validation with randomized division repeated

100 times are shown in Figures 3A–C for the TRT1, TRT2, and TR

models in sequence. Among these five categories of machine

learning models, the MLP-based TRT1 model, LR-based TRT2

model, and MLP-based TR model, which had the highest mean

values of 0.76, 0.73, and 0.77, respectively, were considered the most

stable models. In the external testing set, the performance of each

category classifier on the TRT1 and TR model outperformed that of

the TRT2 model respectively (Figure 3E, Supplementary Table S2).

Ultimately, the MLP-based TR model (Figure 3F) with an AUC of

0.734 and MLP-based TRT1 model (Figure 3D) with an AUC of

0.733, were considered the optimal model in intratumoral

radiomics. Although the Delong test showed a non-significantly

statistic (p = 0.966) between these two models, the accuracy,

sensitivity, and specificity of the MLP-based TR model were

higher than the MLP-based TRT1 model. Hence, the TR model

based on double-sequence MRI was chosen for further research and

evaluation. The decision curves and calibration curves are also

depicted in Supplementary Figure S4.
3.3 Machine learning models based on
peritumoral radiomics

For peritumoral radiomics, the PR models contained 2576

radiomic features (Supplementary Figure S1). After feature

selection, 8 features were finally selected for the PR model
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(Supplementary Figure S3A). Figure 4A shows the performance of

100-repetition randomized division internal validation. In the

external testing cohort, only the AUC of the MLP-based PR

model exceeded 0.7, indicating a lower predictive performance

compared to the intratumoral radiomics (Figure 4D).
3.4 Machine learning models based on
intra- and peri-tumoral fusion radiomics

For intra- and peri-tumoral fusion radiomics, the TPRVOI-fusion

models contained 2576 radiomic features, while the TPRfeature-fusion

model included 5152 (Supplementary Figure S1), due to the

different combinations of feature sources. After radiomic features

dimensionality reduction, the LASSO regression finally selected 6

features for the TPRVOI-fusion model (Supplementary Figure S3B),

and 9 features for the TPRfeature-fusion model (Supplementary Figure

S3C). Analogically, the two radiomic models were combined with 5

kinds of classifiers previously mentioned to develop machine-

learning models for predicting glioma grade. The 100-repetition

randomized division internal validation was conducted to evaluate

the model’s performance stability. Except for the DT model, the

mean AUC of the other four machine learning models reached

more than 0.7 in internal validation, which were considered to be

relatively stable and efficient predicting models (Figures 4B, C). In

the external testing, each categorical classifier on the TPRVOI-fusion

model outperformed that of the TPRfeature-fusion model respectively

(Table 2, Figures 4E, F). The XGBoost-based TPRVOI-fusion model
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FIGURE 4

The performance of intratumoral and peritumoral radiomic models based on the two MRI sequences. The performance of the internal validation
employed 30% of the training cohort randomly, and repeated the steps 100 times of PR (A), TPRVOI-fusion (B), and TPRfeature-fusion (C) models
respectively. Comparison of ROC curves for the external test of PR (D), TPRVOI-fusion (E), and TPRfeature-fusion (F) models of five machine learning
models. Ultimately, the XGBoost-based TPRVOI-fusion model (AUC = 0.805 in the external test) was identified as the best model to develop
a nomogram.
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with an AUC of 0.805 was considered the optimal model

(Figure 4E) in all intratumoral and/or peritumoral radiomic

models. Supplementary Figure S5 exhibits the decision curves and

calibration curves of corresponding models.
3.5 Nomogram construction

The predictive clinical parameters were chosen based on

univariate and multivariate analyses. As shown in Table 3, age

was found to be an independent predictor (OR 1.013; 95% CI 1.009-

1.016; p<0.001) for glioma grade prediction. Then, the Clinical

models were built based on the selected independent predictor and

5 kinds of classifiers.

Subsequently, in exploring the potential utility of the developed

MRI-based intratumoral and peritumoral radiomic models for

preoperative prediction of glioma grade, a nomogram was

constructed by combining the clinical independent predictor with

the optimal TPRVOI-fusion machine learning model (Figure 5A).
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The individual risk of being predicted as an HGG glioma was

derived from the cumulative total points obtained, which allowed

for the representation of the prediction model in a more simplified

and comprehensive manner. Figure 5B illustrates the superior

performance of the nomogram with an AUC of 0.825 (testing

cohort), in comparison to both the Clinical model and TPRVOI-fusion

radiomic model. After the Delong test, the nomogram was proved

to significantly outperform both of the models (Figure 5C), and the

net benefit in the DCA curve of the nomogram was higher than that

of the two models at threshold probabilities in the testing cohort

(Figure 5D). The Hosmer-Lemeshow test revealed favorable

calibration of the nomogram (p = 0.089), suggesting alignment

with an ideal fit without significant deviation (Figure 5E).
4 Discussion

In this study, we developed variously dependable models to

preoperatively predict grade glioma by using MRI images, which
TABLE 3 Univariate analysis and multivariate analysis of clinical characteristics in all patients.

Characteristics Univariate analysis multivariate analysis

OR 95%CI P value OR 95%CI P value

Gender 1.114 0.998-1.245 0.108

Age 1.013 1.009-1.016 <0.001* 1.013 1.009-1.016 <0.001*

Tumor location 1.011 0.906-1.129 0.872
OR, odds ratio; CI, confidence interval.
*p<0.05.
Significant p values (p< 0.05) are indicated in bold.
TABLE 2 Each evaluation index of PR, TPRVOI-fusion, and TPRfeature-fusion models of five machine learning classifiers in the external test.

Model Classifier AUC 95%CI Accuracy Sensitivity Specificity PPV NPV

PR LR 0.687 0.5689-0.8053 0.667 0.760 0.516 0.717 0.571

SVM 0.677 0.5570-0.7978 0.654 0.820 0.387 0.683 0.571

DT 0.541 0.4037-0.6776 0.556 0.540 0.581 0.675 0.439

XGBoost 0.628 0.5038-0.7529 0.630 0.680 0.548 0.708 0.515

MLP 0.703 0.5867-0.8197 0.667 0.840 0.387 0.689 0.600

TPR

VOI-fusion

LR 0.695 0.5718-0.8178 0.654 0.820 0.387 0.683 0.571

SVM 0.726 0.6147-0.8370 0.654 0.840 0.355 0.677 0.579

DT 0.741 0.6352-0.8474 0.704 0.800 0.548 0.741 0.630

XGBoost 0.805 0.7069-0.9034 0.691 0.820 0.484 0.719 0.625

MLP 0.719 0.6002-0.8385 0.667 0.840 0.387 0.689 0.600

TPR

feature-fusion

LR 0.675 0.5516-0.7993 0.704 0.800 0.548 0.741 0.630

SVM 0.684 0.5634-0.8044 0.691 0.800 0.516 0.727 0.615

DT 0.636 0.5181-0.7536 0.654 0.780 0.452 0.696 0.560

XGBoost 0.658 0.5293-0.7868 0.667 0.800 0.452 0.702 0.583

MLP 0.705 0.5880-0.8224 0.667 0.840 0.387 0.689 0.600
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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were constructed by radiomic features extracted from the

intratumoral region and peritumoral edema region. The XGBoost

machine learning classifier, incorporating features extracted from

the combination of intratumoral and peritumoral VOIs of MRI,

exhibited superior performance in distinguishing between LGG and

HGG. The internal validation and independent external test

underscored the robustness and generalizability of the model.

Additionally, the radiomic models derived from VOI-fusion

outperformed those derived from feature-fusion in our study,

suggesting more extensive investigations into peritumoral

radiomics were necessary to determine a more standardized

research method and provide more theoretical support for

radiomic studies. Finally, a nomogram based on the optimal

machine learning model and clinical parameter was established to

detect potential applications for predicting glioma grade in

clinical practice.

MRI serves as a routine tool for preliminary diagnosing,

treatment planning, and monitoring the treatment response of

patients with glioma (39, 40). Recent studies have consistently

demonstrated a robust association between radiomic features

extracted from multiparametric MRI scans and various

applications related to gliomas (2, 41). Kim et al. distinguished

between glioblastoma and primary CNS lymphoma using

multiparametric MRI sequences that included contrast-enhanced

T1-weighted, T2-weighted, and diffusion-weighted imaging (42).

Fifteen features were chosen from all imaging modalities, and the

model rendered an AUC of 0.979, demonstrating the potent

prediction potential of multi-parameter MRI. Nevertheless, the
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prediction of models based on a single MRI sequence was not

performed and compared. In our study, we constructed and

compared various radiomic models based on the intratumoral

region of the single contrast-enhanced T1 sequence, the single T2

flair sequence, and the combination of two sequences. As expected,

the radiomic models derived from dual-sequence MR imaging

outperformed those solely based on single contrast-enhanced T1

or single T2 flair sequence. Hence, multicontrast MRI-based

radiomics was poised to enhance the predictive capability for

glioma grading compared to that of single MRI sequence.

Previous studies have demonstrated that the heterogeneity of

gliomas extended beyond the tumor interior to include the

peritumoral region, where approximately 90% of gliomas recurred

(43, 44). Glioma cells interacted with molecules in the peritumoral

area to cause hypoxia, angiogenesis, and tumor infiltration, which

would ultimately accelerate the growth of gliomas (45).

Consequently, the significant potential existed in the peritumoral

environment, which could provide important information for

evaluating the aggressive biological behavior of the tumor

clinically (46, 47). In studies of other cancers, Ding et al.

investigated the effect of peritumoral features for predicting

sentinel lymph node metastasis in breast cancer (48). They

created peritumoral regions by expanding tumor regions of

interest at thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm. By

incorporating peritumoral features, the accuracy in the validation

set increased from 0.704 to 0.796. Shan et al. developed a prediction

model using peritumoral radiomic signatures extracted from a 2 cm

peritumoral area, assessing its effectiveness in predicting the early
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FIGURE 5

Clinical application of the nomogram constructed by radiomic model and clinical parameter in predicting the probability of being HGG for glioma
patients (A). The total point was obtained by adding the scores located on the TPRVOI-fusion and age coordinate axis together, and the vertically
corresponding value on the bottom line was the probability of being HGG. (B) Comparison of ROC curves of the Clinical model, TPRVOI-fusion

radiomic model, and nomogram. (C) The Delong test among the three models. The nomogram with an AUC of 0.825 in the test cohort, significantly
outperformed the other two models. The DCA (D) and calibration curves (E) of the three models. The nomogram had a higher net benefit in
predicting glioma grade and represented an ideal fit.
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recurrence of hepatocellular carcinoma post-curative treatment

(49). In the validation cohort, ROC curves and decision curves

revealed superior prediction efficiency and greater clinical benefits

with the peritumoral model. Consequently, the extraction and

integration of peritumoral and intratumoral features present a

promising avenue. However, existing radiomic-based techniques

for grading gliomas focused primarily on the interior of the tumor

and less on the peritumoral environment.

Peripheral edema and peritumor in gliomas are two distinct

concepts, the peritumor is typically an area within a specified radius

around the tumor, whereas the peripheral edema around a glioma is

irregular and frequently dispersed along the cerebral gyrus.

Previous research has shown that the degree of peritumoral

edema increases with the pathological grade and aggressiveness of

glioma (14). It was demonstrated that individuals with severe edema

(>10 mm) had mean or overall survival rates that were more than

50% lower than those with mild edema (8, 9, 44). Cheng et al.

compared the predictive power of the peritumor and peripheral

edema region for grading gliomas and found the most predictive

features were extracted from the peritumor region within an

immediate distance of 1 mm from the tumor core based on MRI

scans (8). Notably, the study did not explore a predictive model

based on the peripheral edema region in combination with the

intratumoral region. Considering that the prognosis of gliomas was

strongly correlated with the occurrence of peritumoral edema, we

attempted to investigate the radiomic models based on peripheral

edema for glioma grade.

Concerning the two main research approaches in intratumoral

and peritumoral radiomic analysis, which was simplified as feature-

fusion and VOI-fusion, definitive studies remained absent

establishing a persuasive conclusion about which approach made

more sense and produced more predictive features. Our study filled

this gap by conducting a comparative analysis of the two

methodologies for the first time. In the internal validation, the

AUC of models based on both two methods showed no obvious

differences, the difference in AUC was consistent across classifiers.

In the external test, each categorical classifier on the VOI-fusion

model outperformed that of the feature-fusion model respectively,

which indicated that the model constructed by extracting

features from the intratumoral and peritumoral regions as a

whole yielded higher prediction efficiency. Regarding VOI fusion,

the radiomic features, such as shape, first-order, and texture,

extracted comprehensive information taking into account both

intratumoral and peripheral edema region. Regarding feature

fusion, individual peritumoral features exhibited minimal

statistical variance in effectively distinguishing HGG from LGG,

rendering them prone to elimination during screening. In our

study, the constructed model just by feature fusion performed

poorly in external tests, indicating unstable performance. This

highlighted the need for further studies to unravel the intricacies

of intratumoral and peritumoral radiomics.

We assessed 1288 radiomics features for every MRI sequence,

and 7728 features in total, which was distinctly more than most

recent findings and included all significant variables for radiomic

analysis (30, 45). To identify the most optimal model for our

dataset, we applied the six previously discussed categories of
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radiomic models across five classifiers: LR, SVM, XGBoost, DT,

and MLP. This meticulous process ensured the exploration of fully

optimized models best suited for our data. Meanwhile, previous

studies have identified several clinical parameters crucial in

distinguishing between LGG and HGG. Wang et al. selected

clinical factors including age and sex as well as radiomic signature

to develop a nomogram to predict glioma grading (30). It is well-

recognized that HGG tends to be diagnosed in the elderly (31, 50).

Consistently, we found that only the age parameter was statistically

significant in predicting glioma grading, using the uni-multivariate

analyses. Despite the lower predictive capacity of clinical model

based solely on age feature compared to radiomic models, the

nomogram amalgamating clinical parameter and radiomic models

surpassed the predictive efficacy of either model in isolation. In

terms of the predictive efficiency of various machine learning

methods, Voort et al. utilized a deep learning model to predict

the grade of glioma, achieving an AUC of 0.81 in the external testing

cohort of 240 patients from 13 different institutes (31). Similarly, Li

et al. distinguished LGG from HGG by developing deep

convolutional neural network models, achieving an AUC of 0.89.

In comparison, the nomogram in our study showed great

performance with an AUC of 0.825 in the independent external

testing cohort, which was equivalent to the state-of-the-art

research aforementioned.

For all this, there were limitations in this study. First, our study

required a larger sample size from more centers to make the

findings more convincing. Second, only two MRI sequences were

employed in this study. Some advanced parametric MRI scans, such

as DWI and DTI, have shown powerful potential in tumor research,

and new scanning techniques should be explored (7, 18, 36). Third,

the VOIs in our study were manually annotated, which was time-

consuming and laborious, and even prone to inaccurate annotation.

Deep learning-based tumor segmentation methods are expected to

be employed to improve the accuracy and reliability of image

segmentation. Finally, our study lacked molecular subtyping of

the samples, which was critical for the prognosis of gliomas, and

planned to integrate such information in future studies.
5 Conclusion

In this work, we assessed the function of radiomic models of

intratumoral and peripheral edema regions in MRI scans for

predicting glioma grade and validated the methodology on an

independent external test dataset, which provided a fresh

viewpoint on the disease. The nomogram combined clinical

parameter and the optimal radiomic model was efficient in

glioma grade, and this non-invasive approach was expected to

promote clinical research and guide the management of

individualized glioma treatment.
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Objectives: To assess the diagnostic accuracy of machine learning (ML)-based

radiomics for predicting isocitrate dehydrogenase (IDH) mutations in patients

with glioma.

Methods: A systematic search of PubMed, Web of Science, Embase, and the

Cochrane Library from inception to 1 September 2023, was conducted to collect

all articles investigating the diagnostic performance of ML for the prediction of

IDH mutations in gliomas. Two reviewers independently screened all papers for

eligibility. Methodological quality and risk of bias were assessed using the

METhodological RadiomICs Score and Quality Assessment of Diagnostic

Accuracy Studies-2, respectively. The pooled sensitivity, specificity, and 95%

confidence intervals were calculated, and the area under the receiver operating

characteristic curve (AUC) was obtained.

Results: In total, 14 original articles assessing 1740 patients with gliomas were

included. The AUC of ML for predicting IDH mutation was 0.90 (0.87–0.92). The

pooled sensitivity, specificity, and diagnostic odds ratio were 0.83 (0.71–0.90),

0.84 (0.74–0.90), and 25 (12,50) respectively. In subgroup analyses, modeling

methods, glioma grade, and the combination of magnetic resonance imaging

and clinical features affected the diagnostic performance in predicting IDH

mutations in gliomas.
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Conclusion: ML-based radiomics demonstrated excellent diagnostic

performance in predicting IDH mutations in gliomas. Factors influencing the

diagnosis included the modeling methods employed, glioma grade, and whether

the model incorporated clinical features.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

#myprospero, PROSPERO registry (CRD 42023395444).
KEYWORDS

gl ioma, isocitrate dehydrogenase (IDH), MRI, machine learning, deep
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Introduction

The 2016 World Health Organization (WHO) classification of

central nervous system tumors incorporated molecular markers (1).

The 2021 WHO classification emphasizes the role of molecular

markers in both the classification and grading of gliomas (2). The

primary markers for gliomas include isocitrate dehydrogenase

(IDH), classified as IDH-mutant, 1p/19q-non-codeleted

(IDHmut-Noncodel), and IDH wild-type (IDHwt). Patient

outcomes and therapeutic options in glioma vary across subtypes

(3, 4). Patients with an IDH-mutated glioma have a better prognosis

than those with an IDH wild-type tumor. Recent studies have

demonstrated that IDH may be a potential therapeutic target for

IDH-mutant gliomas (5). Therefore, preoperative prediction of

IDH mutation status is important for prognosis and therapeutic

decision-making. Although histopathology is the current diagnostic

gold standard, it has some limitations such as sampling errors,

complications, and invasiveness. Thus, noninvasive assessment of

IDH mutation status is an urgent requirement.

Radiomics can transform images into mineable data for

quantitative analysis through high-throughput extraction and

analysis, providing support for decision-making (6). Machine

learning and deep learning combined with radiomics have excellent

potential for preoperative diagnosis, staging, and therapeutic effect

evaluation of gliomas (7, 8), as well as for predicting IDH mutation

status. A previous systematic review (9) dealing with this subject was

published, but it was not quantitative enough to evaluate the

predictive performance. In addition, because radiomics research is

a complicated process that includes multiple stages, it is critical to

evaluate the quality of the method to ensure the reliability and

reproducibility of the model before use in clinical work.

The aim of this systematic review and meta-analysis was to

evaluate the accuracy of radiomics models in predicting the IDH

status of gliomas and to evaluate the methodological quality and

risk of bias in radiomics workflows.
0221
Materials and methods

This meta-analysis was performed according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (10)

guidelines and registered to the PROSPERO registry (registration

number, CRD 42023395444).
Literature search and study selection

The PubMed, EMBASE, Cochrane Library, and Web of

Science databases were searched up to 1 September 2023 by

two reviewers, C.X.L and Z.J. To identify the relevant

articles, only English articles were considered. The following

keywords were used to identify relevant studies: (“Glioma” OR

“Gliomas”) AND (“Isocitrate Dehydrogenase” OR “ IDH”) AND

(“MRI” OR “magnetic resonance imaging”) AND (“machine

learning” OR “radiomics” OR “deep learning” OR “Artificial

Intelligence”) The details of search strategies are provided in the

Supplementary Materials.

The included articles fulfilled all the following criteria: 1)

pa t i en t s w i th pa tho log i c a l l y confi rmed g l i oma ; 2 )

histopathological examination with the IDH mutation as a

reference standard; 3) sufficient data for the reconstruction of 2×2

tables in terms of the diagnostic performance of MR-based

radiomics in predicting the IDH of glioma; and 4) original

research articles. The exclusion criteria were as follows: 1) each

study had at least 10 patients; 2) reviews, case reports, letters, and

editorials; 3) studies not focusing on the diagnostic performance of

MR-based radiomics in predicting IDH mutations; and 4)

insufficient data for the reconstruction of 2×2 table studies with

overlapping cohorts. Two authors, C. X.L and Z.J, independently

evaluated the eligibility of the included articles, and any

disagreements were resolved via discussion with a third author

(W.S.W, with 10 years of experience in neuroimaging).
frontiersin.org
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Quality assessment and data extraction

The included articles’ methodological quality and the risk of

bias at the study level were assessed using the Quality Assessment

Tool for Diagnostic Accuracy Studies (QUADAS)-2 (11) and

METhodological RadiomICs Score (12), respectively. The

QUADAS-2 tool included four parts: (a) patient selection, (b)

index test, (c) reference standard, and (d) flow and timing. The

METhodological RadiomICs Score (METRICS tool included 30

items within 9 categories for evaluating the quality of the radiomics

workflow. Two reviewers, C.X.L and G.L.B, assessed the quality of

the articles separately and resolved any disagreements through

discussion with a third author (W.S.W).

The following data were extracted from the included articles: 1)

study characteristics (authors, year of publication, country of origin,

study design (prospective vs. retrospective)); 2) patient and clinical

characteristics (number of patients, age, WHO grade, reference

standard); 3) technical characteristics of magnetic resonance

imaging (MRI) (magnetic field strength (T), scanner, scan

sequence) and machine learning details (classifier, method of

segmentation, VOI or ROI, and external or internal validation).
Statistical analysis

This meta-analysis was performed using Stata 16 Review

Manager 5.3 software and Meta-disc 1.4. Pooled sensitivity,

specificity, diagnostic odds ratio (DOR), positive likelihood ratio

(PLR), and negative likelihood ratio (NLR) with 95% confidence

intervals (CIs) were calculated using bivariate random effects, and a

summary receiver operating characteristic (SROC) curve and area

under the curve (AUC) were generated to illustrate the

diagnostic performance.

The heterogeneity of the included studies was calculated using

the Q-test (p value ≤ 0.05) and I2 statistic (>50%) (13). A Spearman

coefficient >0.6 indicated the threshold effect (14). Subgroup

analysis was performed to further investigate the potential cause

of heterogeneity, and the following four covariates were included: 1)

machine learning (ML) vs. deep learning (DL), 2) only radiomics vs.

combination of radiomics and clinical information, 3) low-grade

glioma (LGG) vs. high-grade glioma (HGG), and 4) external

validation vs. internal validation.
Results

Characteristics of included studies

The flowchart of the literature search and selection process is

displayed in Figure 1, which yielded 161 studies from PubMed, 279

from Embase, four from the Cochrane Library, and 198 from the

Web of Science. After removing 253 duplicate articles, the

remaining 389 articles were screened for their title and abstract.

The full text of 66 eligible articles was reviewed, and 14 articles (15–

28) were included in this meta-analysis.
Frontiers in Oncology 0322
The characteristics of the included studies are shown in Tables 1

and 2. One study was prospective, and the remaining studies were

retrospective. Eight (15–17, 20–22, 26, 27) of the 14 studies used 3-

TMRI, four (18, 23, 25, 28) used 1.5-T or 3-TMR, and two (19, 24)

used 1.5T. Among these, 14 included studies, 12 (16–23, 25–28)

used radiomics combined with ML, while two (15, 24) used DL

assessment. The most commonly used ML classifiers were SVM and

RFC. In addition, five (15, 16, 23, 24, 26) of the 14 studies employed

external validation, three (17, 25, 28) had no validation set, and the

remaining six studies (18–21, 25, 27) used internal validation. In

terms of glioma grade, three studies (15, 16, 18) were low-grade

gliomas, and three studies (19, 20, 25) were high-grade gliomas,

whereas the remaining studies included both low- and high-grade

gliomas. For the ML analysis, eleven (15–23, 25, 26, 28) studies

included only radiomics information, and three (22, 24, 27) used

radiomics and clinical information.
Quality assessment

The risk of bias and applicability assessment of the included

studies, performed using the QUADAS-2 tool, are shown in

Figure 2. In terms of the patient selection, two (17, 28) studies

were deemed to have a low risk of bias, six (15, 18, 23, 25–27)

exhibited a high risk of bias owing to unclear information regarding

the time range and consecution of patients, and six (16, 19–22, 24)

were considered to have an unclear risk because of uncertainties in

the consecution of patients. Regarding the index test, 13 studies had

an unclear risk of bias owing to ambiguity regarding the use of a

threshold. All the studies indicated a low risk of bias in the reference

standards. Regarding flow and timing, 13 studies had an unclear

risk of bias because there was no mention of the time interval

between imaging and molecular testing.

The mean METRICS score of the included studies was 60.3%

(range, 50%-75%), the quality of six (15–17, 22, 25, 28) studies was

moderate (40≤score<60%),and eight studies (17–21, 23, 24, 26)

were good (60≤score<80%). The highest score of 75% was obtained
FIGURE 1

Flow chart of study selection.
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TABLE 1 Basic characteristics and details of the 14 included studies (1).

Study Country
Study
design

No.
of patients

Mean age
MRI
field
intensity

Vendor
Scanner

Sequences

Li 2017 (15) China Retrospective 151 40.7 ± 10.8 3T Siemens Trio T1CE,T2 flair

Yu 2016 (16) China Retrospective 110
40.3 ±
11.3 (years)

3T Siemens Trio T2 flair

Bisdas 2018 (17) UK Prospective 37 63.2 ± 7.6 3T Siemens Skyra T1,T1CE T2 flair,DKI

Zhang 2018 (18) China Retrospective 103 43.5 ± 12.9 1.5T(37),3T(66) NA T1,T2, T1CE T2 flair

Deniz Alis 2019 (19) Turkey Retrospective 142 40.87 ± 12.25 1.5T Siemens Avanto T1CE,T2 flair,DWI

Niu 2020 (20) China Retrospective 182 44 ± 11 3T GE SIGNA T1CE

Cao 2020 (21) China Retrospective 102 44.6 ± 14.9 3T GE SIGNA
T1,T2, T1CE T2
flair,DWI

Huang 2021 (22) China Retrospective 59 46 ± 15 3T
Siemens
MAGNETOM

T1,T2, T1CE T2 flair

Manikis 2021 (23) Greece Retrospective 160 58.4 ± 15.9 1.5T,3T
GE,
Siemens,Philip

T1,T2, T1CE T2 flair,
DCE-MR

Hraps ̧a 2022 (24) Romania Retrospective 21 48.6 ± 15.6 1.5T
GE,
Siemens,
TOSHIBA

T2, T1CE T2 flair

Kandalgaonkar
2022 (25)

United States Retrospective 100 52 1.5T,3T GE,Philip T2, T1CE

Wang 2022 (26) China Retrospective 140 40 3T Siemens
T1,T2,T1CE,T2
FLAIR, DWI

Wang, J 2022 (27) China Retrospective 100 48 ± 13 3T GE
T1,T2, T1CE T2 flair,
DWI,DCE-MR

CaroleH 2020 (28) UK Retrospective 333 NA 1.5T,3T GE, Siemens DSC-MR
F
rontiers in Oncology
 0423
NA, not available.
TABLE 2 Basic characteristics and details of the 14 included studies (2).

Study
WHO
Grade

reference
standard

Machine
learning
classifier

Validation Segmentation
Region/volume
of interest

Li 2017 (15) grade 2 Sanger sequencing CNN External validation Automatic VOI

Yu 2016 (16) grade 2 Sanger sequencing SVM and AdaBoost External validation Automatic VOI

Bisdas 2018 (17) grade 2,3 Sanger sequencing SVM No validation Manual VOI

Zhang 2018 (18) grade 2,3 NA SVM Internal validation Manual VOI

Deniz Alis
2019 (19)

grade 3,4 Histopathological RFC Internal validation Manual VOI

Niu 2020 (20) grade 3,4 Immunohistochemistry biclassification mode Internal validation Manual ROI

Cao 2020 (21) grade 2,3 Histopathological RFC Internal validation Manual VOI

Huang 2021 (22) grade 2,3 DNAsingle-step assay
Multivariate
logistic regression

No validation Manual VOI

Manikis
2021 (23)

grade 2,3,4 histologically
SVM,RF,KNN,
LR,AdaBoost

External validation Automatic VOI

Hraps ̧a 2022 (24) grade 2,3,4
MLPA-Multiplex PCR)
or
immunohistochemistry

CNN External validation Automatic VOI

(Continued)
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TABLE 2 Continued

Study
WHO
Grade

reference
standard

Machine
learning
classifier

Validation Segmentation
Region/volume
of interest

Kandalgaonkar
2022 (25)

grade 4
Immunohistochemistry,
Sanger sequencing

SVM,10-fold
cross-validation

No validation Manual ROI

Wang 2022 (26) grade 2,3,4 Histologically ANN External validation
Segmentation
and manual

ROI

Wang, J
2022 (27)

NA
IDH1 R132H
mutation-
specific antibody

Liner SVM Internal validation Automatic ROI

CaroleH
2020 (28)

grade 2,3,4 Histopathology
Random-
forest algorithm

No validation Manual VOI
F
rontiers in Oncolo
gy
 0524
NA, not available.
FIGURE 2

Summary of the risk of bias and applicability assessments: the authors’ judgements for each domain of each included study were reviewed. The
proportion of included studies that indicated low, unclear, or high risk and applicability concerns are shown in green, yellow, and red, respectively.
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in one study (26) and the lowest score of 50% was observed in two

studies (22, 25), primarily attributed to a lack of a validation cohort.

The item of “Model availability” was assigned zero points as none of

the included studies addressed it. Only one study (24) publicly

shared the code. A detailed description of the METRICS scores is

provided in Table 3.
Data analysis

Summaries of the ML models predicting IDH mutations in

patients with glioma were analyzed using the random-effects

method because of significant statistical heterogeneity (I2 = 92%).

For all 14 studies, the pooled sensitivity, specificity, PLR, NLR, and

DOR were 0.83 (0.71,0.90), 0.84 (0.74, 0.90), 5.0 (3.2, 7.8), 0.21

(0.12, 0.35), and 25 (12,50), respectively. The overall pooled AUC

was 0.90 (0.87, 0.92), indicating a high diagnostic performance.

Forest plots for sensitivity and specificity are illustrated in Figure 3,

and the SROC curve is presented in Figure 4.

Cochran’s Q test showed significant heterogeneity (Q=25.320,

p=0.00) across the studies, with a Higgins’s I2 statistic of 79% for

sensitivity and 74.1% for specificity. The Spearman correlation

coefficient between the sensitivity and false-positive rate was 0.525

(p=0.054), which indicated no threshold effect among the

included studies.
Subgroup analysis

Subgroup analysis was performed by comparing studies with

different variables. Supplementary Table 4 shows the results of the

subgroup analysis. Studies using DL had a higher specificity and a

lower sensitivity (0.91 [0.76, 0.98], 0.77 [0.55, 0.92]) than those

using ML (0.78 [0.72, 0.83], 0.86 [0.82, 0.90]). Compared with the

studies that only used radiomics features, studies combining the use

of radiomics and clinical information showed higher sensitivity and

lower specificity (0.89 [0.72, 0.98] vs 0.73 [0.68, 0.78], 0.79 [0.66,

0.88] vs. 0.83 [0.79, 0.86]). In addition, the sensitivity of diagnosing

LGG was higher (0.93 [0.85, 0.98]) than that of diagnosing HGG

(0.71 [0.58, 0.83]), but the specificity of diagnosing LGG was lower

than that of diagnosing HGG (0.71 [0.48, 0.89] vs. 0.91 [0.85, 0.95]).

Studies that performed external validation showed lower sensitivity

and specificity than those that used internal validation (0.78 [0.70,

0 .85] vs . 0 .81 [0.74 , 0 .87] ; 0 .83 [0 .72,0 .91] vs . 0 .87

[0.82,0.91], respectively).
Discussion

This systematic review and meta-analysis evaluated the

diagnostic performance of radiomics in predicting IDH

mutations. The pooled sensitivity, specificity, and AUC were 83%

(95% CI, 0.71–0.90), 84% (95% CI, 0.74–0.90), and 0.90 (95% CI,

0.87–0.92), respectively. This indicates that radiomics combined

with ML and DL could be an effective and accurate diagnostic tool

for predicting IDH mutations in gliomas.
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Obviously, heterogeneity was noted in the specificity (I²=79.6%)

and sensitivity (I²=74.1%), Thus, we performed subgroup analysis

to explore the source of the heterogeneity which included the

modeling methods (ML vs. DL), glioma grade, whether the model

incorporated clinical features, and validation methods (external and

internal validation).The results of the present meta-analysis showed

that studies using ML had a better diagnostic performance than

those using DL. This could be attributed to the small sample sizes of

the included studies. DL is capable of training multi-layer deep

neural networks, which show significant potential in handling very

large datasets with thousands or even millions of instances;

however, in scenarios where the size of the dataset is small, DL

tends to exhibit lower performance compared to ML. Similar

findings have been previously reported for ML in other studies

(29, 30). However, only two studies included in our study used DL;

thus, future work should incorporate a greater number of studies

with sufficient datasets to explore its true diagnostic capabilities. A

previous study (31) demonstrated that the combined model of

magnetic resonance (MR) and clinical features with ML exhibits

better diagnostic performance than that using only MR features.

Clinical features such as age, sex, and exposure to ionizing radiation

were closely related to the pathological process of glioma (32, 33).

For example, age is a risk factor for the development of high-grade

glioma; young patients are more likely to suffer from IDH1-mutant

glioma, and their postoperative survival and clinical prognosis may
FIGURE 3

Coupled forest plots of the pooled sensitivity and specificity for the diagnostic performance of machine learning-based radiomics for the prediction
of IDH mutation glioma.
FIGURE 4

Hierarchical summary receiver operating characteristic (SROC) curve
of the diagnostic performance of machine learning-based radiomics
for the prediction of IDH mutation glioma.
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be more optimistic (20). Our findings are consistent with the

previous study; therefore, we recommend the combined use of

MR and clinical features with ML in future radiomics studies to

verify their true diagnostic capabilities in predicting IDH mutation

status in gliomas. The diagnostic performance in predicting the

IDH mutation of HGG was better than that of LGG in the present

study, which is consistent with that of a previous meta-analysis (31);

however, it is essential to note that more studies are required to

validate this conclusion, given the limited number of included

studies. Additionally, we found that studies using external

verification models had a diagnostic performance similar to that

of studies using internal verification models, demonstrating the

stability of the model. Internal validation tends to overestimate the

diagnostic value owing to the model’s lack of generalizability (34);

thus, external validation prediction models are required to reliably

estimate the diagnostic capabilities of other datasets.

METRICS is a new quality assessment tool which includes 30

items within 9 categories to evaluate the key steps in the radiomics

research workflow. It was developed by a large group of

international experts in the field recently and is easy to use,

specifically aimed at improving the methodological quality of

radiomics research. The METRICS score of the included studies

ranged from 50% to 75% and the mean score was 60.3%. The quality

of 6 studies was moderate (40≤score<60%) and 8 studies were good

(60≤score<80%). For the items with the highest weights, such as

high-quality reference standards with a clear definition and

eligibility criteria that describe a representative study population,

all the included studies received a full score. Only one study (24)

publicly shared the code and two studies (25, 26) publicly shared the

data, however, these two items which belong to the “open science”

category had the lowest weight. Although METRICS is a valuable

tool for evaluating the quality of radiomics research, it is not

without limitations. Further revision of METRICS may enhance

its comprehensiveness in assessing the quality of radiomics studies.

QUADAS-2 quality assessment revealed other issues in the

included studies that can be avoided in future investigations. For

example, the majority of the studies did not mention the

consecution of patients and the time interval between imaging

and molecular testing, which led to a high or unclear bias risk. In 13

studies, it remained unclear whether thresholds were pre-specified

or not, potentially resulting in an overestimation of the diagnostic

performance of the models.

This study had several limitations. First, most of the included

studies had a retrospective design, and only one had a prospective

design; thus, selection bias was inevitable. Therefore, prospective

multicenter studies with larger scales are required to validate our

findings. Second, the sample size of the included studies was not

large enough for training and validation, which limited the

statistical power of the study and may affect the generalizability of

the results. Third, significant heterogeneity was observed, which is

observed in other meta-analyses of diagnostic accuracy using ML

based on radiomics. Finally, the mean METRICS score of the

included studies was 60.3%, indicating moderate overall quality.

Therefore, further high-quality radiomics studies are required to

verify our results. Despite these limitations, our review provided
Frontiers in Oncology 0928
new insights into the accuracy of ML-based radiomics models for

predicting IDH mutations in gliomas.

In conclusion, ML-based radiomics demonstrated excellent

diagnostic performance for predicting IDH mutations in gliomas.

Nevertheless, owing to the limitations in the quality and quantity of

the included studies, caution should be exercised when applying the

results, and more standardized and prospective studies are

warranted to improve the application and reliability of radiomics.
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Super-resolution reconstruction
improves multishell diffusion:
using radiomics to predict adult-
type diffuse glioma IDH
and grade
Chi Zhang1†, Peng Wang1†, Jinlong He1, Qiong Wu1,
Shenghui Xie1, Bo Li1, Xiangcheng Hao1, Shaoyu Wang2,
Huapeng Zhang2, Zhiyue Hao1, Weilin Gao1, Yanhao Liu1,
Jiahui Guo1, Mingxue Hu1 and Yang Gao1*

1Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China,
2MR Research Collaboration, Siemens Healthineers, Shanghai, China
Objectives: Multishell diffusion scanning is limited by low spatial resolution. We

sought to improve the resolution of multishell diffusion images through deep

learning-based super-resolution reconstruction (SR) and subsequently develop

and validate a prediction model for adult-type diffuse glioma, isocitrate

dehydrogenase status and grade 2/3 tumors.

Materials and methods: A simple diffusion model (DTI) and three advanced

diffusion models (DKI, MAP, and NODDI) were constructed based on multishell

diffusion scanning. Migration was performed with a generative adversarial

network based on deep residual channel attention networks, after which

images with 2x and 4x resolution improvements were generated. Radiomic

features were used as inputs, and diagnostic models were subsequently

constructed via multiple pipelines.

Results: This prospective study included 90 instances (median age, 54.5 years; 39

men) diagnosed with adult-type diffuse glioma. Images with both 2x- and 4x-

improved resolution were visually superior to the original images, and the 2x-

improved images allowed better predictions than did the 4x-improved images

(P<.001). A comparison of the areas under the curve among the multiple pipeline-

constructed models revealed that the advanced diffusion models did not have

greater diagnostic performance than the simple diffusion model (P>.05). The

NODDI model constructed with 2x-improved images had the best performance

in predicting isocitrate dehydrogenase status (AUC_validation=0.877; Brier

score=0.132). The MAP model constructed with the original images performed

best in classifying grade 2 and grade 3 tumors (AUC_validation=0.806;

Brier score=0.168).
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Conclusion: SR improves the resolution of multishell diffusion images and has

different advantages in achieving different goals and creating different target

diffusion models.
KEYWORDS

glioma, diffusion magnetic resonance imaging, deep learning, radiomics, diagnosis
1 Introduction

Following the identification and clarification of brain tumor

pathogenesis and diagnostic and therapeutic processes, the World

Health Organization released criteria for classifying tumors of the

central nervous system in 2021 (1), which has further increased the

clinical value of the convergence of tumor grade and molecular

genotype. According to this classification system, most individuals

diagnosed with adult-type diffuse glioma (approximately 80%) have

poorer outcomes than patients with other types of glioma (2). The

formulation of clinical decisions and prognosis prediction are

dependent on the mutation status of isocitrate dehydrogenase

(IDH), while an increase in tumor grade implies, to a certain

extent that patients will require frequent radiotherapy and

chemotherapy treatments, accompanied by a greater possibility of

recurrence. MRI, the gold standard for preoperatively diagnosing

glioma (3), may have potential as part of the development of an

accurate method of predicting tumor pathology through imaging

alone; such an approach could potentially optimize surgical

decisions and improve clinical treatment strategies.

Previous studies have shown that, compared with conventional

imaging, diffusion imaging can be used to capture additional brain

tissue microstructural alterations and pathological changes caused by

nuclear heterogeneity (4–6). Theoretically, advanced diffusion

models, such as those based on neurite orientation dispersion and

density imaging (NODDI) (7), itself based on the three-compartment

model, and the mean apparent propagator (MAP) (8), which does

not rely on a priori assumptions, should allow clinicians to better

characterize the complexity and nonuniformity of the tissue

microenvironment (9) and further improve the diffusion

description of brain tissue over simple Gaussian diffusion models

(such as diffusor tensor imaging [DTI]-based models). However, the

findings of some clinical studies do not support these theoretical

advantages (10, 11), reporting that these techniques may be limited by

the spatial resolution of the acquired diffusion images (12). A high

spatial resolutionmitigates the partial volume effect, the phenomenon

by which signal mixing occurs at the interfaces between different

tissues. This enhancement facilitates more precise identification of

boundaries between lesion areas and normal tissues, thereby

improving diagnostic accuracy and reliability.

Super-resolution reconstruction (SR) is a technology through

which the physical limitations of imaging systems can be overcome
0231
by generating high-resolution maps from one or more

corresponding low-resolution images (13). SR methods are

currently used in a variety of computer vision applications

ranging from security and surveillance imaging (14) to object

recognition (15). SR systems have also shown good applicability

in the medical field. For example, they have been employed in the

development of high angular resolution diffusion imaging brain

templates from low angular resolution diffusion data from a single

subject (16). Unlike Varentsova et al., Iglesias et al. (17) used

SynthSR (a type of convolutional neural network) to synthesize

higher spatial resolution images from portable low-field-strength

MR images; notably, the high morphological correlation of different

regions of interest in the brain demonstrated that SR was able to

suitably improve the enhancement in the original image. In another

study, a generative adversarial network (GAN)-based network

architecture was used for quantitative analysis after migration

(18), and the results suggested that the use of SR improved the

diagnostic efficacy of radiomic models (which provide biological

transformations of multiple feature matrices with more varied

attempts for identifying imaging markers). Some scholars have

also overcome the issue of inaccurate automatic glioma

segmentation due to missing sequences or poor image quality

through the combined application of U-Net and transfer learning

(19). The use of SR is likely to increase the potential clinical

applicability of multishell diffusion images through resolution

improvement and facilitate the exploration of imaging markers

for adult-type diffuse gliomas (Supplementary Data Sheet 1).

In this study, we attempted to use a GAN-based SR technique to

improve the resolution of multishell diffusion images. We used a GAN

for the following reasons: 1) Compared with other deep learning models,

GANs perform adversarial training between the generator and

discriminator to generate high-resolution images with richer details

and more realistic textures than the original-resolution images. 2) The

combination of content loss and adversarial loss enables GANs to

consider both pixel-level accuracy and visual realism in performing

super-resolution tasks. 3) The adversarial training mechanism of GANs

easily adapts to highly complex image distributions and reduces the risk

of overfitting. Two tasks (i.e., predicting the IDH status of adult-type

diffuse glioma and predicting whether gliomas would be classified as

grade 2 or 3) were subsequently performed with the constructed models

to determine whether SR could be beneficial to clinical processes and to

determine the practical applications of the diffusion models.
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2 Materials and methods

We conducted a prospective study in accordance with the

Declaration of Helsinki. The study was approved by our ethics

committee (KY2023064), and all instances signed an informed

consent form before enrollment.

We used the CLEAR checklist in the conduction of this study

(20); it is included in this submission as Supplementary Data.
2.1 Instances and clinical data

In this study, we prospectively recruited consecutive instances

who visited our institution between June 2018 and June 2023. Data

from ninety instances (median age, 54.5 years; range, 21-77 years;

39 [43%] males) with a pathological diagnosis of adult-type diffuse

glioma (in accordance with the 2021 WHO Classification of

Tumors of the Central Nervous System) were used for image

reconstruction and model building. Instances who were treated by

methods including radiotherapy, chemotherapy, or concurrent

radiotherapy and chemotherapy prior to pathology sampling and

who had poor image quality were excluded. Previous studies (10)

analyzed cohorts with overlapping data, in contrast to the present

study, in which the scan-to-pathology time (median time of 4.5 days

in this study) and the inclusion of new instances (n=13) were

controlled and SR was employed more frequently.
2.2 Magnetic resonance scanning

All study instances underwent preoperative conventional MRI

and diffusion imaging with a 3T scanner (MAGNETOM Skyra;

Siemens Healthcare, Erlangen, Germany) equipped with a 32-

channel head/neck coil.

The conventional MRI (cMRI) sequences included axial T1-

weighted, axial T2-weighted, axial T2-weighted fluid-attenuated

inversion-recovery (FLAIR), and 3D contrast-enhanced T1-

weighted imaging, the last of which was performed after

intravenous administration of 0.1 mmol/kg gadobutrol (Gadovist,

Bayer AG, Berlin, Germany). The diffusion imaging sequences

included axial diffusion-weighted imaging (DWI) and diffusion

spectrum magnetic resonance imaging. The diffusion spectrum

imaging scheme included the acquisition of a total of 128 diffusion

samples, consisting of 16 b-values (200, 350, 400, 550, 750, 950, 1150,

1500, 1700, 1850, 1900, 2050, 2250, 2450, 2650 and 3000 s/mm2). The

in-plane resolution was 2.65 mm. Detailed information on the

parameters is provided in Supplementary Table S1.
2.3 Preprocessing

The diffusion parameters were calculated with Neuro-Diffusion

Lab (NeuDiLab, Chengdu ZhongYing Medical Technology Co.,

Ltd., Chengdu, China), software developed in-house with Python
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based on the open-source tool DIPY (Diffusion Imaging in Python,

https://dipy.org). The software is equipped with FSL-based brain

extraction, eddy current and head motion correction, and

smoothing functions and allowed acquisition of the final

quantitative parametric maps for 25 features from the 4 diffusion

models (listed below) and B0 maps. Three advanced models

(diffusional kurtosis imaging (DKI), NODDI and MAP-MRI) and

1 simple model (DTI)) were constructed. The cMRI data were bias

corrected with the N4ITK MRT bias correction module in 3D-

Slicer. Coregistration of the cMRI data and diffusion parameter

maps was performed with ANTs in 3D-Slicer. Default parameters

were used for bias field correction and image registration.
2.4 Image SR and effect assessment

We performed SR on the original images with a pretrained

GAN (https://github.com/OnekeyAI-Platform/onekey). The core of

the migration model is a deep residual channel attention network

(21) (https://github.com/XPixelGroup/BasicSR/blob/master/

README_CN.md and https://github.com/yulunzhang/RCAN).

Before training the GAN model, the input images underwent

preprocessing to remove noise and artifacts, followed by

normalization of the intensity values. The depth of the network is

increased by the residual, which consists of several residual clusters

with long jump connections. Each residual cluster contains several

channel residual blocks with short jump connections. Each channel

attention residual block consists of a simple residual block and a

channel attention mechanism. Moreover, residual information

allows rich low-frequency information to be bypassed via multiple

jump connections so that the main network focuses on learning

high-frequency information. The channel attention mechanism

performs adaptive rescaling of channel features by accounting for

the interdependence between channels to change the influence

weights of different channel features on the reconstructed image.

Finally, diffusion parameter maps with 2-fold and 4-fold spatial

resolution enhancements are obtained. The flowchart of this study

is shown in Figure 1.

The effect of SR was analyzed with visual characterization and

image loss quantification. A physician (JL.H.) with 13 years of

experience in neuroradiology and blinded to the clinical and

pathological details of the instance but otherwise aware of the

tumor diagnosis evaluated the SR-enhanced images by eye.

Forced-choice pairwise comparisons were used to evaluate all

samples, in which the sharpness, contrast, and both noise and

artifacts were compared among the original, 2x resolution, and 4x

resolution images. The images were quantitatively evaluated in

three steps. First, we downsampled the original images 2x and 4x.

Gaussian noise was subsequently introduced into the images.

Finally, the image resolution was increased with a GAN-based

transfer model, after which the loss between the original image

and the newly generated images was calculated. We measured both

structural similarity (SSIM) and the normalized root-mean-square

error (NRMSE) for the whole brain and the tumor level (i.e., the

solid tumor and peritumor edema regions).
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2.5 Region of interest segmentation and
feature extraction

Two physicians (P.W. and C.Z., with 4 and 3 years of

neuroimaging experience, respectively) independently delineated

regions of interest (ROIs) from the original images via a

semiautomatic process in 3D-Slicer. Both radiologists were aware

of the tumor diagnosis of the instance but were blinded to the

clinical and pathological details. The ROIs were outlined on the B0

map while referring to the cMRI images. The solid tumor and

peritumoral edema regions at all levels were selected as the ROIs;

these regions are typically depicted radiologically as areas

surrounded by T2-FLAIR abnormalities/high signals. For

multicentric lesions, all regions were included in the ROIs. The

ROIs for the 2x and 4x resolution images were obtained by

upsampling the ROIs of the original images with the

corresponding multiples, and then all the samples were examined

to ensure that the extracted features corresponded to the same

region as that in the original image. The Dice coefficient between the

two physicians was 0.804; then the ROIs delineated by the more

experienced physician was used for further feature extraction after

review by another physician (Y.G.) with 28 years of experience

in neuroradiology.

FeAture Explorer (FAE v0.5.8, https://github.com/salan668/

FAE) (22) was used to extract radiomic parameters from the 3D-

ROIs. Feature extraction was performed via PyRadiomics (version

3.0). In total, 107 features were extracted from the original images

(Supplementary Table S2), including first-order features [n=18],

shape-based features [n=14], gray level co-occurrence matrix

features [n=24], gray level dependence matrix features [n=14],
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gray level run-length matrix features [n=16], gray level size-zone

matrix features [n=16], and neighboring gray-tone difference

matrix features [n=5]. The features were discretized by fixing the

bin count (16 gray levels), and the remaining parameters were

assigned the default configurations. Twenty-five sets of diffusion

parameters were used for feature extraction; thus, 2675 features

were extracted from the images at each resolution, for a total of

8025 features.
2.6 Model construction

Data were included in the training and internal test sets

according to the instances’ enrollment time (23). Multiple

pipeline combinations were then considered during model

development, including 1 data balancing method (random

upsampling), 3 feature normalization methods (mean, min–max

and Z score normalization), 2 data dimensionality reduction

methods (principal component analysis and Pearson correlation

coefficients (cutoff = 0.85)), 4 feature selection methods (analysis of

variance, recursive feature elimination, Kruskal-Wallis, and Relief),

and 10 classifier methods (linear [logistic regression, logistic

regression via least absolute shrinkage and selection operator,

linear discriminant analysis, and support vector machine] and

nonlinear [autoencoder, decision tree, random forest, AdaBoost,

Gaussian process, and naïve Bayes]) (Scikit-Learn (version 0.24.2))

for a total of 240 basic pipelines. For pipelining, data balancing was

used only for the training set, and feature scaling was independently

applied to the validation and test sets. Ultimately, the number of

features included in the model was restricted according to a rule of
FIGURE 1

Workflow of the study. A GAN-based migration model was used for SR 25 parameter maps of the 4 diffusion models at two magnifications. After the
reconstruction effect was evaluated, the actual clinical significance of the SR was judged via machine learning models constructed through multiple
pipelines. ROC curve, decision curve and calibration curve analyses were used to evaluate and compare the performance of the models. DTI,
diffusion tensor imaging; DKI, diffusion kurtosis imaging; NODDI, neurite orientation dispersion and density imaging; MAP, mean apparent
propagation diffusion; GAN, generative adversarial network; SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; SSIM,
structural similarity; NRMSE, normalized root-mean-square error; ROI, region of interest; IDH-w, isocitrate dehydrogenase wild-type; IDH-m,
isocitrate dehydrogenase mutant.
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thumb; specifically, the maximum number of features was the

number of instances in the training set divided by 10). The

selection of the number of model features and hyperparameter

tuning were performed via leave-one-out cross-validation. A time-

independent internal test set that was not involved in the model

selection was then used for model testing. Note that the division of

the dataset was fixed, even for different pipelines.

For each imaging resolution for each task, 5 diagnostic models

were selected from among the multiple pipelines, including 4 single-

modal prediction models based on a single diffusion technique

(DTI, DKI, MAP, and NODDI) and 1 fusion prediction model

incorporating all the diffusion techniques; in this way, a total of 30

models (2 tasks × 3 image resolutions × 5 models) were selected

for assessment.
2.7 Statistical analysis

Model performance was evaluated with receiver operating

characteristic curve analysis. The output of the prediction models

corresponds to the predicted probability of the task (ranging from 0

to 1). The results were then converted into binary predictions,

where the threshold depends on the maximum Youden index.

Model performance was compared in the cross-validation set

through the integrated discrimination improvement metric; small

sample sizes and an overreliance on the choice of p value and cutoff

points limited the use of the DeLong test and net reclassification

index (24). Calibration curves and Brier scores were used to assess

deviations between the model results in the training set and the

actual results. Decision curve analysis was used to assess the net

clinical benefits of the different models under different threshold

probabilities. The sample size calculations are presented in

Supplementary Data Sheet 1.

Quantitative data are expressed as the means ± standard

deviations. Student’s t test was used to compare instance ages,

and the c2 test, Fisher’s exact test or Mann-Whitney U test was used

to compare categorical variables between groups. Comparisons

between multiple groups were performed with one-way ANOVA,

and the Bonferroni correction was used for p value adjustment for

multiple comparisons. All the statistical analyses were two-sided,

and P<.05 was used to indicate statistical significance. All the

statistical analyses were performed with SPSS (version 24.0), R

(version 4.3.1), and Python (version 3.9.18).
3 Results

3.1 Instance characteristics

In Task 1, seventy-two instances diagnosed between June 2018

and November 2021 were assigned to the training set; 28 had IDH-

mutant glioma, and 44 had IDH-wild type glioma. Eighteen

instances diagnosed between December 2021 and June 2023 were

assigned to the internal test set, which included 6 with IDH-mutant

glioma and 12 with IDH-wild type glioma (Table 1; Supplementary

Table S4). Note that owing to sample size limitations, the dataset for
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Task 2 did not include the internal test set; rather, the data for all

Grade 2 (n=12) and 3 (n=21) instances were used as the training set

(Supplementary Table S4).

Nine morphologic features (necrosis, cysticity, calcification,

hemorrhage, tumor enhancement pattern, location, side, solid

tumor border clarity, and edema) (10) were extracted from the

imaging reports to be used as baseline features for within-set

description and comparison. For the IDH predictions, only age

(P=.001), necrosis (<.001), tumor location (<.001), and mode of

enhancement (<.001) within the training set differed between the

groups. For classifying grade 2 and grade 3 tumors, only tumor

laterality (P=.032) within the training set differed between the

groups. Because only a small number of baseline and

morphological characteristics differed between the groups, no

additional confounders were considered.
3.2 Image visualization and
loss assessment

SR4 had the highest sharpness and contrast, followed by SR2

and the original image. SR4 also had the most amount of noise and

highest number of artifacts; however, the patterns of noise and

artifacts were not identical among the three sets of images.

The effects of image reconstruction were determined for both

positive and negative SSIMs and NRMSEs. At both the whole-brain

and the tumor region levels, the image loss in the 4 diffusion models

constructed from the 2x-resolution images was less than that of the

models constructed from the 4x-resolution images (P<.001)

(Figure 2; Supplementary Figure S1). At the whole-brain level,

SR2 corresponded to mean SSIM and NRMSE values of 0.827
TABLE 1 Instance characteristics.

Variable Full set

Total number of instances 90

2021 WHO Integrated Diagnosis (CNS WHO grade)

Astrocytoma, IDH-mutant (2) 7

Astrocytoma, IDH-mutant (3) 7

Astrocytoma, IDH-mutant (4) 1

Oligodendroglioma, IDH-mutant and 1p/19q-
codeleted (2)

5

Oligodendroglioma, IDH-mutant and 1p/19q-
codeleted (3)

14

Glioblastoma, IDH-wild type (4) 56

Age (years)

Median 54.5

Range 21-77

Sex

Male 39

Female 51
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and 0.278, respectively, whereas those of SR4 were 0.678 and 0.388,

respectively. At the tumor region level, the mean SSIM and NRMSE

for SR2 were 0.946 and 0.137, respectively, and those for SR4 were

0.778 and 0.291, respectively. In addition, the 4 diffusion models

based on SR2 and the DKI and MAP models based on SR4 had

greater image loss at the whole-brain level than at the tumor region

(P<.001). The mean SSIM and NRMSE at the whole-brain level

were 0.753 and 0.333, respectively, and those at the tumor region

level were 0.862 and 0.214, respectively.

At the whole-brain level, the DTI achieved a smaller loss than

did the other 3 diffusion models (P<.001). At the tumor region level,

the loss with the NODDI was greater than that with the remaining 3

diffusion models (P<.001). At both the whole-brain and tumor-

region levels, the fractional anisotropy (FA) loss was greater than

that of the other 3 parameters in the DTI model (P<.001). No
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differences in parameter losses were observed for the other 3

diffusion models (P>.05).
3.3 Features correlated within
different resolutions

According to Pearson correlation analysis, the correlation

coefficient between the original images and the SR2 images

ranged from -0.984 to 0.999 (Supplementary Figure S2), whereas

that between the original image and SR4 ranged from -0.578 to

0.585. Radiomic features extracted from the original images were

more highly correlated with the radiomic features extracted from

the SR2 images than from those extracted from the SR4 images.
FIGURE 2

Mean loss for the multiple diffusion parameters corresponding to SR at different magnifications at the whole-brain (A) and tumor levels (B). SSIM, structural
similarity; NRMSE, normalized root-mean-square error; SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; DTI, diffusion
tensor imaging; DKI, diffusion kurtosis imaging; MAP, mean apparent propagation diffusion; NODDI, neurite orientation dispersion and density imaging.
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3.4 Comparisons of multiple pipelines and
model selection

We considered a subgroup and a selected model to have high or

low diagnostic efficacy when they exhibited the same trend within

all the sets. The results showed that when predicting IDH, the SR4-

based DTI prediction model had the lowest diagnostic performance

across all sets (Figure 3; Supplementary Figure S3); when classifying

Grade 2 and Grade 3 tumor classification, the performance did not

seem to differ among the SR image sets.

For each of the 15 predictive models, the areas under the ROC

curve (AUCs) in the cross-validation set ranged from 0.593-0.877 and

0.607-0.861 separately for the two tasks. We then further selected the

models with the highest diagnostic performance (P>.05) from the 30

models by comparing the integrated discrimination improvement

metric in the cross-validation sets and identified three predictive IDH

status models and eight models for classifying grade 2 and grade
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3 tumors (Table 2; Figure 4). Models whose outputs were closer to the

true results were then further selected according to the Brier scores

(Supplementary Table S5). Finally, we found that the SR2-based

NODDI model best predicted IDH status, while the original image-

based MAP model performed best in classifying grade 2 and grade

3 tumors.

The NODDI model of SR2 was constructed via logistic

regression and consisted of six features chosen after principal

component analysis (Supplementary Figure S4), including

principal components 13, 11, 5, 31, 24, and 75, the first and last

of which had the highest and lowest mean absolute feature

contribution values, respectively (Supplementary Figure S5). In

addition, we determined the local SHapley Additive exPlanation

(SHAP) values for individual samples. The AUCs of the model in

the training and validation sets were 0.903 (0.832-0.975) and 0.877

(0.789-0.966), respectively (Table 3). In the internal test set, with

pathological confirmation as the reference standard, 4 (66.7%) of 6
FIGURE 3

Comparison of the AUCs in the cross-validation sets of models constructed through different pipelines. **P <.01, ***P <.001. AUC, area under the
curve; SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; DTI, diffusion tensor imaging; DKI, diffusion kurtosis
imaging; MAP, mean apparent propagation diffusion; NODDI, neurite orientation dispersion and density imaging. NS, No significance.
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instances were correctly predicted as having the IDH-mutant type,

and 6 (50%) of 12 instances were correctly predicted as having the

IDH-wild type (Supplementary Figure S6). Overall, the model

achieved a favorable AUC of 0.819 (0.576-1) in the internal test
Frontiers in Oncology 0837
set. When the threshold probability was greater than 20%, the SR2-

based NODDI provided greater net clinical benefits than did the

other 2 models in predicting IDH status compared with the case

where no predictive model was used (Figure 4).
TABLE 2 Selected features for model construction.

Task
Feature
origin
(N)a

Pipelinec (normalization/
dimension reduction/feature

selector/classifier)
Feature name

IDH-m vs. IDH-w SR2-
NODDIb

(N = 6)

Mean/PCA/KW/LR PCA_feature_5

PCA_feature_11

PCA_feature_13

PCA_feature_24

PCA_feature_31

PCA_feature_75

IDH-m vs. IDH-w Orig-MAPb

(N = 6)
Minmax/PCC/Rel/NB MSD_gldm_LargeDependenceLowGrayLevelEmphasis

QIV_glrlm_LongRunHighGrayLevelEmphasis

MSD_firstorder_Kurtosis

QIV_gldm_SmallDependenceLowGrayLevelEmphasis

RTOP_firstorder_Variance

NG_glszm_LargeAreaLowGrayLevelEmphasis

IDH-m vs. IDH-w Orig-
NODDIb

(N = 4)

Z score/PCC/RFE/SVM ICVF_firstorder_Energy

ODI_firstorder_Skewness

ODI_glcm_Correlation

ODI_glszm_SmallAreaHighGrayLevelEmphasis

Grade 2 vs. grade 3 Orig-MAPb

(N = 2)
Minmax/PCC/Rel/NB NG_gldm_LargeDependenceLowGrayLevelEmphasis

QIV_firstorder_Kurtosis

Grade 2 vs. grade 3 Orig-DKIb

(N = 1)
Minmax/PCC/RFE/LR

MK_glszm_LargeAreaHighGrayLevelEmphasis

Grade 2 vs. grade 3 Orig-DTIb

(N = 2)
Minmax/PCA/ANOVA/LR PCA_feature_1

PCA_feature_40

Grade 2 vs. grade 3 SR2-
Combineb

(N = 1)

Minmax/PCC/RFE/LDA
MK_glrlm_LongRunHighGrayLevelEmphasis

Grade 2 vs. grade 3 SR2-MAPb

(N = 2)
Mean/PCA/ANOVA/LR-Lasso PCA_feature_2

PCA_feature_41

Grade 2 vs. grade 3 SR2-
NODDIb

(N = 2)

Zscore/PCA/KW/AE PCA_feature_1

PCA_feature_34

Grade 2 vs. grade 3 SR4-MAPb

(N = 2)
Minmax/PCA/KW/LDA PCA_feature_6

PCA_feature_36

Grade 2 vs. grade 3 SR4-
NODDIb

(N = 2)

Zscore/PCA/RFE/LR PCA_feature_18

PCA_feature_36
aThe total number of features in the group.
bWe included 11 different modeling approaches for identifying IDH type and predicting grade 2 and 3 glioma.
cPipeline for processing valid data features for modeling.
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The original image-based MAP model was constructed with the

naïve Bayes algorithm and consisted of 1 texture feature (non-

Gaussianity), which had the highest mean absolute feature

contribution value (0.35), and 1 first-order feature (q-space

inverse variance). The AUCs of the model were 0.814 (0.642-

0.985) and 0.806 (0.639-0.972) in the training and validation

sets, respectively.
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4 Discussion

In this study, we used an SR technique (GAN-based model

migration) to improve the resolution of 25 quantitative parameter

maps with 4 diffusion models at different magnifications and then

constructed a multiparametric radiomic model to predict adult-type

diffuse glioma IDH status and classify tumors into grades 2 and 3.
FIGURE 4

Model selection and clinical benefits. (A) ROC curves for the two tasks in the cross-validation set. The third and eight models had the highest
diagnostic efficacy according to the integrated discrimination improvement index. (B, C) Calibration curve and decision curve analysis results in the
training set in predicting IDH status and classifying tumors as grade 2/3. The models corresponding to the solid purple lines had the lowest Brier
scores, 0.132 and 0.168, and their predictive ability was subsequently visualized via calibration curves (full Brier scores are provided in Supplementary
Table S5). Additionally, these two models had the greatest net clinical benefits according to the decision curve analysis. AUC, area under the curve;
SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; DTI, diffusion tensor imaging; DKI, diffusion kurtosis imaging; MAP,
mean apparent propagation diffusion; NODDI, neurite orientation dispersion and density imaging.
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Our study demonstrated that the diffusion MRI radiomic models

noninvasively predicted IDH mutation status and tumor grade. The

NODDI model based on SR2 images had the highest diagnostic

efficacy (validation_AUC = 0.877) and stability (Brier value =

0.132) in predicting IDH mutation status; furthermore, the use of

higher-resolution reconstructed images resulted in greater loss and

a decrease in diagnostic performance. In addition, comparisons of

the diffusion models indicated that advanced diffusion techniques

were not always advantageous over DTI.

SR methods can be broadly divided into two categories:

interpolation-based and learning-based techniques. Interpolation-

based super-resolution reconstruction relies primarily on

mathematical interpolation algorithms, such as nearest neighbor

interpolation, bilinear interpolation, and bicubic interpolation.

These algorithms estimate the values of newly added pixels by

calculating the mathematical relationships among existing pixels.

However, the primary limitation of this kind of approach is that it

cannot introduce new high-frequency information, leading to a

certain degree of image smoothing and, consequently, image

blurriness, particularly around image edges and in regions with

complex textures. Furthermore, the enhancement in spatial

resolution is relatively limited, making it difficult to meet the

demands of high-precision applications. In contrast, learning-

based techniques employ deep learning models to learn the

mapping between low-resolution and high-resolution images (19).

Compared with interpolation-based methods, learning-based

techniques offer superior reconstruction quality, stronger

generalization capabilities, and the ability to support arbitrary
Frontiers in Oncology 1039
magnification factors. The 3D super-resolution reconstruction

technology presented in this study has achieved reliable results in

enhancing the spatial resolution of CT images, which has improved

clinical predictions for atherosclerotic plaques (25) and lung

tumors (26).

Traditional morphologic visual evaluation, radiomics, and deep

learning approaches for assessing tumor heterogeneity through

imaging involve qualitative and quantitative analyses within

limited regions of the image, regardless of the image source (e.g.,

radiological, pathological, and so on). Images with high quality

actually make this task easier, whereas those with low quality can

lead to ‘incorrect’ outcomes, especially when the lesion area is small

and noise is present. Many medical image studies (16–18) have

demonstrated the clinical benefits of deep learning-based SR both

qualitatively and quantitatively. However, as the resolution

increases, the number of image artifacts and the amount of noise

also increases. At this point, effective estimation and integration of

blur models may be more important than the utilization of image

priors (27), i.e., models that use high- and low-resolution images.

Images generated with default fixed blur models may be too unclear

or contain oversharpened artifacts. In our study, higher

magnification resulted in more artifacts and greater noise, which

we believe is one of the main reasons for the decrease in diagnostic

model performance. Various methods, such as mean filtering, have

been developed for removing noise from different sources during

(28) and after image generation. We did not apply additional

denoising in our study because the tumor region image losses

remained low, and excessive image smoothing could reduce the

ability to visualize tumor heterogeneity in the images. Additionally,

the residual channel attention network used in the present study is

effective at both denoising and enhancing the resolution of medical

images (29).

In terms of diffusion model theory, non-Gaussian diffusion

models can better describe pathophysiological states in the brain

than Gaussian models can. This means that the results derived from

DKI, NODDI, and MAP data should be better than those derived

from DTI data. However, the theoretical specificity of diffusion

models leads to different practical strengths for each model. For

example, NODDI better captures microstructural changes resulting

from white matter diseases by quantifying changes in neurite

direction (30), whereas non-Gaussianity provides a more detailed

assessment of diffusion characteristics than fiber bundle imaging

does (9).

In this study, we did not obtain sufficient evidence to support

the hypothesis that advanced diffusion models offer greater clinical

benefits than simple diffusion models. Studies by Gao et al. (11),

Guo et al. (31), and Wang et al. (10) produced results similar to our

results. However, some scholars (32–34) believe that the MAP and

NODDI approaches can be used to better predict glioma

heterogeneity or differentiate gliomas from metastatic tumors.

Studies that drew the latter conclusion, however, used simple

inferential statistics based on histogram averages of tumor entities

or peritumoral edema without involving the extraction of additional

features or the establishment of comprehensive models, and these

limited attempts may not facilitate accurate conclusions. Notably,

other factors, such as variations in the selection of regions of
TABLE 3 Optimal model performance for the two tasks.

Task
Training
set

Cross-valida-
tion set

Internal
test set

IDH-m vs. IDH-w

AUC*
0.903
(0.832–0.975)

0.877 (0.789–0.966) 0.819 (0.576–1)

Sensitivity 0.932 (41/44) 0.886 (39/44) 0.5 (6/12)

Specificity 0.786 (22/28) 0.821 (23/28) 0.667 (4/6)

PPV 0.872 (41/47) 0.886 (39/44) 0.75 (6/8)

NPV 0.88 (22/25) 0.821 (23/28) 0.4 (4/10)

ACC 0.875 (63/72) 0.861 (62/72) 0.556 (40/72)

Grade 2 vs. grade 3

AUC*
0.814
(0.642–0.985)

0.806 (0.639–0.972) –

Sensitivity 0.81 (17/21) 0.857 (18/21) –

Specificity 0.75 (9/12) 0.75 (9/12) –

PPV 0.85 (17/20) 0.857 (18/21) –

NPV 0.692 (9/13) 0.75 (9/12) –

ACC 0.788 (26/33) 0.818 (27/33) –
Data in parentheses are the numerator/denominator of participants included for each
parameter, unless otherwise indicated. The values correspond to the optimal threshold
according to the maximum Youden index.
*Data are the means (95% CI).
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interest, may have contributed to the differences in the results (35).

FA has been included in various prediction models in previous

studies; however, in the present study, DTI exhibited high

losses when FA achieved the best SR effect, which may be one

of the reasons why the clinical benefits of DTI were not

significantly improved.

The results of this study indicate that the combined application

of super-resolution reconstruction and magnetic resonance

diffusion imaging may provide a more comprehensive

understanding of the pathological features of gliomas, including

cell density, invasiveness, and vascular distribution, thereby

providing strong support for an accurate diagnosis. Additionally,

clearer preoperative visualization translates to more precise

preoperative planning, especially with the current high reliance

on intraoperative fiber tracking navigation. However, issues such as

technical complexity and generalizability, data processing and

storage, standardization and normalization, and patient safety and

privacy protection limit the implementation of this technology in

clinical practice. The establishment of proprietary deep learning

models on the basis of specific data and theoretical improvements in

diffusion models are necessary.

This study has several limitations. First, the prospective nature

of the study limited the number of subjects that could be analyzed,

and diagnostic model building was relatively limited due to possible

overfitting issues with the integrated model. Instead, clinical

features and imaging morphological features were used for

assessing the effects of potential confounding factors. Further

large-scale, multicenter studies are needed to validate the

discriminative performance of these diffusion-based indicators,

reducing potential prospective biases and issues related to

insufficient statistical power. Second, the study lacked true high-

resolution multishell diffusion images for evaluating the

reconstruction effect of GAN-based super-resolution; instead, a

downsampling method followed by the addition of noise was

adopted. Although this is a commonly used analysis method,

additional data augmentation or optimization of the model

structure can improve the model’s generalization ability and

reconstruction quality. Third, the number of diffusion models

analyzed in the study was limited, and certain commonly used or

higher-order diffusion models, such as the diffusion-weighted

model and the continuous-time random walk model, were not

included. Future studies should incorporate these common models

when assessing the effects of SR. Fourth, the test-retest procedure

for diffusion MRI was not attempted in the same instances, and the

ROIs created by a small number of physicians may not be

representative of all situations. However, in practice, retest

procedures are limited in terms of time, cost, and instance tolerance.

In conclusion, we used GAN-based SR to improve the

resolution of four diffusion models (DTI, DKI, NODDI, and

MAP), allowing better visualization on multishell diffusion images

and the possibility of quantitatively predicting IDH status and

tumor grades 2 and 3 in adult-type diffuse glioma patients. Future

work should include proprietary GAN model training and

applications for specific diffusion models to further determine

whether parameters fitted by multishell diffusion models can
Frontiers in Oncology 1140
serve as imaging markers for adult-type diffuse glioma or other

types of tumor.
Data availability statement

The datasets presented in this article are not readily available

because data sharing that may reveal personally identifiable

information about persons shall be done so carefully and in

accordance with applicable laws and regulatory agencies. Requests

to access the datasets should be directed to Yang Gao,

1390903990@qq.com.
Ethics statement

The studies involving humans were approved by Ethics

Committee of Affiliated Hospital of Inner Mongolia Medical

University. The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

CZ: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Validation, Writing – original draft.

PW: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Visualization, Writing –

review & editing. JH: Formal analysis, Methodology, Visualization,

Writing – review & editing. QW: Formal analysis, Methodology,

Supervision, Writing – review & editing. SX: Formal analysis,

Methodology, Writing – review & editing. BL: Data curation,

Investigation, Writing – review & editing. XH: Data curation,

Investigation, Writing – review & editing. SW: Methodology,

Software, Writing – review & editing. HZ: Resources, Writing –

review & editing. ZH: Formal analysis, Investigation,

Writing – review & editing. WG: Formal analysis, Investigation,

Wr i t ing – r ev i ew & ed i t ing . YL : Forma l ana ly s i s ,

Investigation, Writing – review & editing. JG: Formal analysis,

Investigation, Writing – review & editing. MH: Formal

analysis, Investigation, Writing – review & editing. YG: Funding

acquisition, Project administration, Resources, Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Science and Technology Planning Project of

Inner Mongolia Autonomous Region (2019GG047); the research

project of Inner Mongolia Medical University Affiliated Hospital,

Inner Mongolia Autonomous Region Clinical Medicine Research

Center of Nervous System Diseases, Hohhot Religion High-quality
frontiersin.org

mailto:1390903990@qq.com
https://doi.org/10.3389/fonc.2024.1435204
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1435204
Developmental and Advantageous Key Clinical Project of

Neurological System Disease (2023NYFY LHYB008) and Natural

Sc ience Foundat ion of Inner Mongol ia Autonomous

Region (2024MS08015).
Acknowledgments

The authors gratefully acknowledge the essential contributions

of the research staff of Affiliated Hospital of Inner Mongolia

Medical University. Meanwhile, we are grateful to OnekeyAI and

its developers for their invaluable assistance in this scientific

research endeavor.
Conflict of interest

Authors SW and HZ were employed by the company

Siemens Healthineers.
Frontiers in Oncology 1241
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1435204/

full#supplementary-material
References
1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The
2021 WHO classification of tumors of the central nervous system: a summary. Neuro
Oncol. (2021) 23:1231–51. doi: 10.1093/neuonc/noab106

2. Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain Malignancies in
adults: A review. Jama. (2023) 329:574–87. doi: 10.1001/jama.2023.0023

3. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al.
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat
Rev Clin Oncol. (2021) 18:170–86. doi: 10.1038/s41571-020-00447-z

4. Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol. (2021) 17:486–500.
doi: 10.1038/s41582-021-00510-y

5. de Godoy LL, Chawla S, Brem S, Mohan S. Taming glioblastoma in “Real time”:
integrating multimodal advanced neuroimaging/AI tools towards creating a robust and
therapy agnostic model for response assessment in neuro-oncology. Clin Cancer Res.
(2023) 29:2588–92. doi: 10.1158/1078-0432.Ccr-23-0009

6. Zhang H, Liu K, Ba R, Zhang Z, Zhang Y, Chen Y, et al. Histological and
molecular classifications of pediatric glioma with time-dependent diffusion MRI-based
microstructural mapping. Neuro Oncol. (2023) 25:1146–56. doi: 10.1093/neuonc/
noad003

7. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical
in vivo neurite orientation dispersion and density imaging of the human brain.
Neuroimage. (2012) 61:1000–16. doi: 10.1016/j.neuroimage.2012.03.072

8. Özarslan E, Koay CG, Shepherd TM, Komlosh ME, Iṙfanoğlu MO, Pierpaoli C,
et al. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for
mapping tissue microstructure. Neuroimage. (2013) 78:16–32. doi: 10.1016/
j.neuroimage.2013.04.016

9. Ning L, Laun F, Gur Y, DiBella EV, Deslauriers-Gauthier S, Megherbi T, et al.
Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom
to determine which acquisition scheme and analysis method to use? Med Image Anal.
(2015) 26:316–31. doi: 10.1016/j.media.2015.10.012

10. Wang P, Xie S, Wu Q, Weng L, Hao Z, Yuan P, et al. Model incorporating
multiple diffusion MRI features: development and validation of a radiomics-based
model to predict adult-type diffuse gliomas grade. Eur Radiol. (2023) 33:8809–20.
doi: 10.1007/s00330-023-09861-0

11. Gao A, Zhang H, Yan X, Wang S, Chen Q, Gao E, et al. Whole-tumor histogram
analysis of multiple diffusion metrics for glioma genotyping. Radiology. (2022)
302:652–61. doi: 10.1148/radiol.210820

12. Hirschler L, Sollmann N, Schmitz-Abecassis B, Pinto J, Arzanforoosh F, Barkhof
F, et al. Advanced MR techniques for preoperative glioma characterization: part 1. J
Magn Reson Imaging. (2023) 57:1655–75. doi: 10.1002/jmri.28662

13. Gendy G, He G, Sabor N. Lightweight image super-resolution based on deep
learning: State-of-the-art and future directions. Inf Fusion. (2023) 94:284–310.
doi: 10.1016/j.inffus.2023.01.024

14. Zou WW, Yuen PC. Very low resolution face recognition problem. IEEE Trans
Image Process. (2012) 21:327–40. doi: 10.1109/tip.2011.2162423
15. Sajjadi MSM, Schölkopf B, Hirsch M. (2017). EnhanceNet: Single Image Super-
Resolution Through Automated Texture Synthesis. 2017 IEEE International Conference
on Computer Vision (ICCV), Venice, Italy. (2017) pp. 4501–10. doi: 10.1109/
ICCV.2017.481

16. Varentsova A, Zhang S, Arfanakis K. Development of a high angular resolution
diffusion imaging human brain template. Neuroimage. (2014) 91:177–86. doi: 10.1016/
j.neuroimage.2014.01.009

17. Iglesias JE, Schleicher R, Laguna S, Billot B, Schaefer P, McKaig B, et al.
Quantitative brain morphometry of portable low-field-strength MRI using super-
resolution machine learning. Radiology. (2023) 306:e220522. doi: 10.1148/
radiol.220522

18. Hou M, Zhou L, Sun J. Deep-learning-based 3D super-resolution MRI radiomics
model: superior predictive performance in preoperative T-staging of rectal cancer. Eur
Radiol. (2023) 33:1–10. doi: 10.1007/s00330-022-08952-8

19. Bianconi A, Rossi LF, Bonada M, Zeppa P, Nico E, De Marco R, et al. Deep
learning-based algorithm for postoperative glioblastoma MRI segmentation: a
promising new tool for tumor burden assessment. Brain Inform. (2023) 10:26.
doi: 10.1186/s40708-023-00207-6

20. Kocak B, Baessler B, Bakas S, Cuocolo R, Fedorov A, Maier-Hein L, et al.
CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting
guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging.
(2023) 14:75. doi: 10.1186/s13244-023-01415-8

21. Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image Super-Resolution Using
Very Deep Residual Channel Attention Networks. 2018 European Conference on
Computer Vision, Munich, Germany. (2018) pp. 294–310. doi: 10.1007/978-3-030-
01234-2_18

22. Song Y, Zhang J, Zhang YD, Hou Y, Yan X, Wang Y, et al. FeAture Explorer
(FAE): A tool for developing and comparing radiomics models. PloS One. (2020) 15:
e0237587. doi: 10.1371/journal.pone.0237587

23. Halligan S, Menu Y, Mallett S. Why did European Radiology reject my radiomic
biomarker paper? How to correctly evaluate imaging biomarkers in a clinical setting.
Eur Radiol. (2021) 31:9361–8. doi: 10.1007/s00330-021-07971-1

24. Kerr KF. Net reclassification index statistics do not help assess new risk models.
Radiology. (2023) 306:e222343. doi: 10.1148/radiol.222343

25. Wang L, Guo T, Wang L, Yang W, Wang J, Nie J, et al. Improving radiomic
modeling for the identification of symptomatic carotid atherosclerotic plaques using
deep learning-based 3D super-resolution CT angiography. Heliyon. (2024) 10:e29331.
doi: 10.1016/j.heliyon.2024.e29331

26. Xing X, Li L, Sun M, Yang J, Zhu X, Peng F, et al. Deep-learning-based 3D super-
resolution CT radiomics model: Predict the possibility of the micropapillary/solid
component of lung adenocarcinoma. Heliyon. (2024) 10:e34163. doi: 10.1016/
j.heliyon.2024.e34163

27. Efrat N, Glasner D, Apartsin A, Nadler B, Levin A. (2013). Accurate Blur Models
vs. Image Priors in Single Image Super-resolution. 2013 IEEE International Conference
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1435204/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1435204/full#supplementary-material
https://doi.org/10.1093/neuonc/noab106
https://doi.org/10.1001/jama.2023.0023
https://doi.org/10.1038/s41571-020-00447-z
https://doi.org/10.1038/s41582-021-00510-y
https://doi.org/10.1158/1078-0432.Ccr-23-0009
https://doi.org/10.1093/neuonc/noad003
https://doi.org/10.1093/neuonc/noad003
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2013.04.016
https://doi.org/10.1016/j.neuroimage.2013.04.016
https://doi.org/10.1016/j.media.2015.10.012
https://doi.org/10.1007/s00330-023-09861-0
https://doi.org/10.1148/radiol.210820
https://doi.org/10.1002/jmri.28662
https://doi.org/10.1016/j.inffus.2023.01.024
https://doi.org/10.1109/tip.2011.2162423
https://doi.org/10.1109/ICCV.2017.481
https://doi.org/10.1109/ICCV.2017.481
https://doi.org/10.1016/j.neuroimage.2014.01.009
https://doi.org/10.1016/j.neuroimage.2014.01.009
https://doi.org/10.1148/radiol.220522
https://doi.org/10.1148/radiol.220522
https://doi.org/10.1007/s00330-022-08952-8
https://doi.org/10.1186/s40708-023-00207-6
https://doi.org/10.1186/s13244-023-01415-8
https://doi.org/10.1007/978-3-030-01234-2_18
https://doi.org/10.1007/978-3-030-01234-2_18
https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1007/s00330-021-07971-1
https://doi.org/10.1148/radiol.222343
https://doi.org/10.1016/j.heliyon.2024.e29331
https://doi.org/10.1016/j.heliyon.2024.e34163
https://doi.org/10.1016/j.heliyon.2024.e34163
https://doi.org/10.3389/fonc.2024.1435204
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1435204
on Computer Vision, Sydney, NSW, Australia. (2013) pp. 2832–2839. doi: 10.1109/
ICCV.2013.352

28. HashemizadehKolowri SK, Chen RR, Adluru G, Dean DC, Wilde EA, Alexander
AL, et al. Simultaneous multi-slice image reconstruction using regularized image
domain split slice-GRAPPA for diffusion MRI. Med Image Anal. (2021) 70:102000.
doi: 10.1016/j.media.2021.102000

29. Chen J, Sasaki H, Lai H, Su Y, Liu J, Wu Y, et al. Three-dimensional residual
channel attention networks denoise and sharpen fluorescence microscopy image
volumes. Nat Methods. (2021) 18:678–87. doi: 10.1038/s41592-021-01155-x

30. Lawrence KE, Nabulsi L, Santhalingam V, Abaryan Z, Villalon-Reina JE, Nir
TM, et al. Age and sex effects on advanced white matter microstructure measures in
15,628 older adults: A UK biobank study. Brain Imaging Behav. (2021) 15:2813–23.
doi: 10.1007/s11682-021-00548-y

31. Guo H, Liu J, Hu J, Zhang H, Zhao W, Gao M, et al. Diagnostic performance of
gliomas grading and IDH status decoding A comparison between 3D amide proton
Frontiers in Oncology 1342
transfer APT and four diffusion-weighted MRI models. J Magn Reson Imaging. (2022)
56:1834–44. doi: 10.1002/jmri.28211

32. Sun Y, Su C, Deng K, Hu X, Xue Y, Jiang R. Mean apparent propagator-MRI in
evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status. Eur
Radiol. (2022) 32:3744–54. doi: 10.1007/s00330-021-08522-4

33. Zeng S, Ma H, Xie D, Huang Y, Yang J, Lin F, et al. Tumor multiregional mean
apparent propagator (MAP) features in evaluating gliomas-A comparative study with
diffusion kurtosis imaging (DKI). J Magn Reson Imaging. (2023). doi: 10.1002/jmri.29202

34. Mao J, Zeng W, Zhang Q, Yang Z, Yan X, Zhang H, et al. Differentiation between
high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted
MRI models. BMC Med Imaging. (2020) 20:124. doi: 10.1186/s12880-020-00524-w

35. Chu JP, Song YK, Tian YS, Qiu HS, Huang XH, Wang YL, et al. Diffusion
kurtosis imaging in evaluating gliomas: different region of interest selection methods on
time efficiency, measurement repeatability, and diagnostic ability. Eur Radiol. (2021)
31:729–39. doi: 10.1007/s00330-020-07204-x
frontiersin.org

https://doi.org/10.1109/ICCV.2013.352
https://doi.org/10.1109/ICCV.2013.352
https://doi.org/10.1016/j.media.2021.102000
https://doi.org/10.1038/s41592-021-01155-x
https://doi.org/10.1007/s11682-021-00548-y
https://doi.org/10.1002/jmri.28211
https://doi.org/10.1007/s00330-021-08522-4
https://doi.org/10.1002/jmri.29202
https://doi.org/10.1186/s12880-020-00524-w
https://doi.org/10.1007/s00330-020-07204-x
https://doi.org/10.3389/fonc.2024.1435204
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TYPE Case Report

PUBLISHED 11 October 2024

DOI 10.3389/fneur.2024.1471668

OPEN ACCESS

EDITED BY

Vincenzo Di Nunno,

AUSL Bologna, Italy

REVIEWED BY

Reza Assadsangabi,

University of Southern California,

United States

Hernan Chaves,

Fundación Para la Lucha Contra las

Enfermedades Neurológicas de la Infancia

(FLENI), Argentina

*CORRESPONDENCE

Ryota Amano

d10sm003@yahoo.co.jp

RECEIVED 28 July 2024

ACCEPTED 23 September 2024

PUBLISHED 11 October 2024

CITATION

Amano R, Sunouchi A, Yokota Y and

Mochizuki K (2024) Case report: An autopsy

report of patient with metastatic brain tumor

and carcinomatous meningitis mimicking

paraneoplastic neurological syndrome.

Front. Neurol. 15:1471668.

doi: 10.3389/fneur.2024.1471668

COPYRIGHT

© 2024 Amano, Sunouchi, Yokota and

Mochizuki. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Case report: An autopsy report of
patient with metastatic brain
tumor and carcinomatous
meningitis mimicking
paraneoplastic neurological
syndrome

Ryota Amano1*, Azusa Sunouchi1, Yuka Yokota2 and

Kunio Mochizuki2

1Department of Neurology, Fujiyoshida Municipal Medical Center, Yamanashi, Japan, 2Department of

Pathology, University of Yamanashi, Yamanashi, Japan

Di�erential diagnosis of metastatic brain tumor, carcinomatous meningitis, and

paraneoplastic neurological syndrome (PNS) can be challenging in atypical cases.

When examining patient with increased T2 fluid-attenuated inversion recovery

(FLAIR) hyperintensities in the temporal polar white matter, autoimmune

encephalitis, including PNS, should be considered. Herein, we report the case

of an 85-year-old man with carcinomatous meningitis due to lung large

cell carcinoma. He showed disturbance of consciousness, abnormal behavior,

incomprehensible speech, and apathy, which suggested brain dysfunction.

Magnetic resonance imaging revealed high intensities on the whole cerebellum

on a di�usion-weighted image and bilateral T2 FLAIR hyperintensities in

the temporal polar white matter. Cerebrospinal fluid analysis and cytology

showed elevated total protein levels, pleocytosis, and atypical cells with nuclear

enlargement, hyperchromasia, and irregular shape. Autopsy revealed lung

large cell carcinoma and its brain metastasis. Tumor cells were disseminated

to the central nervous system along the subarachnoid space. Furthermore,

plenty of carcinoma cells and peritumoral enlarged perivascular space were

observed in the temporal poles. To our knowledge, this is the first report of

bilateral T2 FLAIR hyperintensities in the temporal polar white matter caused

by carcinomatous meningitis with pathological confirmation. In patient with

carcinomatous meningitis, abnormal T2 FLAIR hyperintensities may not be

derived from ischemia or tumor invasion to parenchyma.

KEYWORDS

T2 FLAIR hyperintensity on bilateral temporal polar white matter, paraneoplastic

neurological syndrome, lung large cell carcinoma, metastatic brain tumor,

carcinomatous meningitis

1 Introduction

Metastatic brain tumors and carcinomatous meningitis are two forms of secondary

brain involvement that occur when cancer cells spread from a primary tumor located

elsewhere in the body to the brain and its surrounding structures. Patients with metastatic

brain tumors or carcinomatous meningitis generally have a poor prognosis despite
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the treatment (1). When examining patients with malignant

tumors who present with neurologic symptoms, neurologists

should consider paraneoplastic neurological syndrome (PNS) as

a differential diagnosis. PNS is an immune-mediated neurological

disorder caused by antibodies against intracellular, neuronal

surface, or synaptic proteins expressed by cancer cells. Patients

with PNS exhibit various neurological symptoms and frequent

abnormal intensities on magnetic resonance imaging (MRI) in

regions of central nervous systems (2, 3). Although detecting anti-

neuronal antibodies can aid in diagnosing PNS, their sensitivities

and specificities are not necessarily high. Therefore, the possibility

of PNS cannot be ruled out, even if anti-neuronal antibodies are not

detected (4).

Generally, carcinomatous meningitis presents with abnormal

enhancement of the meninges or cranial nerve on T1-weighted

gadolinium imaging, as well as hyperintensities on T2 fluid-

attenuated inversion recovery (FLAIR), and hydrocephalus can

be observed in carcinomatous meningitis (5). Detecting T2

FLAIR hyperintensities in cerebral white matter by carcinomatous

meningitis was exceptional, and, in that case, metastatic brain

tumors and its surrounding edema should be considered. The

representative disease that shows T2 FLAIR hyperintensities in

cerebral white matter in cancer patients is PNS, except for

metastatic brain tumors. Differential diagnosis of metastatic tumor,

carcinomatous meningitis, and PNS is not difficult in typical cases;

however, it is challenging in atypical cases.

Herein, we reported a case of metastatic brain tumor and

carcinomatous meningitis in a patient with lung large cell

carcinoma. MRI revealed high intensities on the whole cerebellum

on diffusion-weighted imaging (DWI) and hyperintensities in the

bilateral temporal polar white matters on T2 FLAIR. At autopsy,

lung large cell carcinoma and its metastasis were found. Tumor

cells had disseminated throughout the central nervous system

along the subarachnoid space. However, no inflammatory cell

infiltration into the brain parenchymawas observed in the temporal

poles, suggesting a tumor immunity to cancer cells rather than

autoimmune encephalitis, including PNS. This is the first report

demonstrating bilateral T2 FLAIR hyperintensities in the temporal

polar white matters caused by carcinomatous meningitis with

pathological confirmation.

2 Case description

An 85-year-old man presented to our hospital with an altered

consciousness and an abnormal shadow on the right hilar region.

He exhibited abnormal behavior, incomprehensible speech, and

apathy, for at least 7 days before admission, which suggested brain

dysfunction. Upon admission, neurological examination confirmed

altered consciousness [Glasgow Coma Scale of 9 (E4V1M4)], with

nuchal rigidity and slightly decreased deep tendon reflexes in the

lower limbs.

Initial laboratory examinations revealed slightly high serum

levels of C-reactive protein (CRP: 0.91 mg/dL) and indicated

dehydration and renal failure (blood urea nitrogen: 56.6 mg/dL,

creatinine: 1.54 mg/dL). Tumor-specific laboratory tests revealed

high serum levels of neuron-specific enolase (NSE: 59.6 ng/mL).

Cerebrospinal fluid (CSF) analysis revealed pleocytosis

with mononuclear cell predominance (40 leucocytes/µL with

80% of mononuclear leucocytes) and increased total protein

levels (TP; 244 mg/dL) with decreased glucose levels (glucose;

24 mg/dL). CSF cytology showed atypical cells with nuclear

enlargement, hyperchromasia, and irregular shape, which

suggested carcinomatous meningitis.

Chest radiography and computed tomography (CT) revealed

a right hilar tumorous lesion (Figures 1A, B). Brain MRI

revealed T2 FLAIR hyperintensities in the bilateral temporal

polar white matter and left-predominant edematous cerebellar

lesions (Figures 1E–G). DWI showed high intensities on the whole

cerebellum but no apparent abnormalities in bilateral temporal

poles (Figures 1H–J). No tumorous lesions were apparent, and

contrast-enhanced MRI could not be performed because of

renal failure.

According to the MRI findings, we considered the possibility

of PNS; however, paraneoplastic screening by a fixed tissue-

based assay using rat hippocampus and cerebellum (Euroimmune)

showed no significance. Moreover, EUROLINE PNS12 Ag

(Euroimmune) only showed a weak positive between 6 and 10,

suggesting a low titer of anti-recoverin antibodies, an autoantibody

typically associated with autoimmune retinopathy.

He received two courses of high-dose methylprednisolone over

2 weeks (1,000 mg/day × 3 days intravenously as one course

per week); however, increased pleural effusion and cryptogenic

acute subdural hematoma were observed 10 days after admission

(Figures 1C, D). Despite the palliative care, he died 15 days

after admission.

3 Postmortem pathological findings

An autopsy was performed 23 h and 40min after his death. A

tumor measuring 6.0 cm diameter was identified in the pulmonary

hilum of the right upper lobe of the lung (Figure 2A). Histological

examination revealed cells with a high nucleocytoplasmic ratio

and large polygonal cells, proliferating in a solid or a trabecular

pattern, with a mixture of cells with well-defined nucleoli

(Figure 2B). Extensive necrosis was observed within the tumor

area. Immunohistochemical analysis of tumor cells revealed the

following results: AE1/AE3(+), TTF-1(–), p40(–), chromogranin

A(–), synaptophysin(–), CD56(–), INSM1(–). Mitotic counts

reached up to 15 mitoses/high-power field (HPF), with an overall

Ki67 labeling index of ∼5% and up to 40% for hot spots. Based on

these findings, we diagnosed the case as large cell carcinoma (null

immunophenotype) (6). Additionally, lymph node metastasis and

bilateral adrenal metastasis were present.

The brain weighed 1,270 g and showed a subdural hematoma

(Figure 2C). There was a 6mm diameter nodule in the left

cerebellum and a 4mm diameter nodule in the right globus

pallidus, which were histologically identified as brain metastases

of lung cancer (Figures 2D, E). Additionally, tumor cells were

found infiltrating the subarachnoid space, indicating meningeal

dissemination. The meningeal dissemination extended over the

surface of the entire central nervous system, including the

cerebrum, brainstem, cerebellum, pituitary gland, and spinal cord.

Frontiers inNeurology 02 frontiersin.org44

https://doi.org/10.3389/fneur.2024.1471668
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Amano et al. 10.3389/fneur.2024.1471668

FIGURE 1

Chest radiograph (A) and computed tomography (CT) scan (B) on admission. A right hilar tumorous lesion was observed. Brain CT (C) and chest CT

(D) on 10 days after admission. Cryptogenic acute subdural hematoma and increased pleural e�usion were apparent. Fluid-attenuated inversion

recovery (FLAIR) (E–G) and Di�usion-weighted image (DWI) (H–J) on admission. FLAIR showed T2 hyperintensities in the bilateral temporal polar

white matter and light-predominant edematous cerebellar lesions. DWI showed high intensities in the whole cerebellum but no apparent

abnormalities in the bilateral temporal poles. No tumorous lesions were apparent.

The cause of the subdural hematoma was considered to be vascular

rupture on the brain surface due to tumor cell infiltration.

In the cerebellum, the tumor extended into the perivascular

space (PVS) (Figure 3A) and invaded arteries (Figures 3A’, A”).

CD3-immunopositive lymphocytes were limited to the tumoral

area (Figure 3A”’). Moreover, the tumor extended the brain

parenchyma through the PVS (Figure 3B) and invaded arteries

(Figures 3B’, B”). CD3-immunopositive lymphocytes were limited

to the tumoral area (Figure 3B”’).

In the temporal pole, the tumor infiltrated along the

subarachnoid space and PVS (Figures 4A, C). The PVS was

edematous and enlarged (Figure 4B). The tumor also invaded

arteries (Figures 4C’, C”). CD3-immunopositive lymphocytes were

limited to the tumoral area, with no inflammatory cell infiltration
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FIGURE 2

A 6.0 cm diameter tumor was found in the pulmonary hilum of the right upper lobe of the lung (A). Histologically, cells with a high nucleocytoplasmic

ratio and large polygonal cells proliferated in a solid or a trabecular pattern (B). Macroscopic features of the brain (C). There was a 6mm diameter

nodule in the left cerebellum (D) and a 4mm diameter nodule in the right globus pallidus (E).

FIGURE 3

Microscopic appearance of the cerebellum. Hematoxylin-eosin staining (A, B), Elastica van Gieson stain (A’, B’), immunohistochemical staining for

CD31 (A”, B”), and CD3 (A”’, B”’) were performed respectively. In the cerebellum, the tumor extended into the perivascular space (A). The vessels the

tumor invades are arteries (A’, A”). CD3-immunopositive lymphocytes were limited to the tumoral area (A”’, B”’). The tumor extended the brain

parenchyma through the perivascular space (B) and invalid arteries (B’, B”). The scale bar length is 50µm.

into the brain parenchyma, suggesting tumor immunity to

cancer cells rather than autoimmune encephalitis including PNS

(Figures 4B”’, C”’) (7). There was no evidence of neuronal cell loss

or gliosis. The infiltrating tumor cells were larger than other sites,

and the PVS was edematous and enlarged around the tumor lesion.

However, there were no apparent differences between the PVS area

of the temporal pole and those of the other regions, except for

peritumoral PVS.
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FIGURE 4

Microscopic appearance of the temporal pole. Hematoxylin-eosin staining (A, B, C), Elastica van Gieson stain (C’), and immunohistochemical staining

for CD31 (C”) and CD3 (B”’, C”’), were performed respectively. In the temporal pole, the tumor infiltrated along the subarachnoid and perivascular

spaces (A, C), and the perivascular spaces were edematous and enlarged (B). The vessels the tumor invades are arteries (C’, C”).

CD3-immunopositive lymphocytes were limited to the tumoral area (B”’, C”’).

4 Discussion

In this case, the presence of carcinomatous meningitis was

confirmed through CSF cytology, which revealed malignant

cells, and paraneoplastic screening using a fixed tissue-based

assay in rat hippocampus and cerebellum (Euroimmune) showed

no considerable changes. Moreover, EUROLINE PNS12 Ag

(Euroimmune) did not detect any antibody that could explain

the patient’s symptoms. Furthermore, postmortem pathological

findings did not support autoimmunemechanisms. Despite this, we

considered the possibility of co-existing PNS before patient’s death,

because T2 FLAIR hyperintensities spread to anatomically distant

regions (bilateral temporal polar white matter and cerebellum).

This pattern is atypical for carcinomatous meningitis. Contrast

enhanced T1 weighted image is useful for differentiating brain

metastasis, carcinomatous meningitis, and PNS; however, some

patients with carcinomatous meningitis have been reported

to show brain stem or cerebral cortical or white matter T2

FLAIR hyperintensities without gadolinium enhancement (8, 9).

Therefore, it was difficult to rule out overlapping conditions, even

if our patient had received a contrast-enhanced T1 weighted image.

Although T2 FLAIR hyperintensities in temporal polar white

matter are especially suggested to be diagnostic for cerebral

autosomal dominant arteriopathy or myotonic dystrophy type

1 (10), dilated PVS, which mimic cystic neoplasm on brain

MRI, are also known to cause T2 FLAIR hyperintensities in

temporal polar white matter (11). In conditions such as cerebral

autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy (CADASIL) and dilated PVS, T2 FLAIR

hyperintensities are believed to result from the inhibition of

fluid drainage (11, 12). While these can occur through various

mechanisms, their occurrence in other conditions, apart from

autoimmune encephalitis and PNS, is rarely reported. Moreover,

although T2 FLAIR hyperintensities in the cerebral white

matter which are caused by carcinomatous meningitis without

pathological confirmation are sometimes observed in daily clinical

practice, to our knowledge, they have rarely been reported.

The possible factors that contribute to developing edema (T2

FLAIR hyperintensity) in bilateral temporal polar white matter

are as follows: physical blood-brain barrier disruption by tumor

infiltration, secretion of cytokines that increase the permeability

of blood vessels, inhibition of interstitial and CSF drainage system

(glymphatic system), and inflammatory response against tumor

cells. In this case, the number of malignant cells was higher in

the temporal poles than in other sites. Additionally, PVS, which

are potential spaces where layers of connective tissue surround the

blood vessels and facilitate the passage of interstitial and CSF of the

brain acting as a drainage system, known as the glymphatic system

(13, 14), were enlarged around the metastatic regions. Thus, the

inhibition of the glymphatic system and the inflammatory response

against tumor cells may have contributed to the development

of edema.

Ayzenberg et al. reported a case of carcinomatous meningitis

with diffuse cortical and white matter hyperintensities on DWI

and T2 FLAIR imaging (8). They also reported histopathological

findings and considered that perivascular and intravascular

infiltration by tumor cells resulted in ischemic cortical and

white matter stroke; however, in our case, DWI did not show

abnormalities in the temporal polar white matter, suggesting that

the mechanism behind T2 FLAIR hyperintensities in the temporal

polar white matter may not be due to ischemic stroke. It is difficult

to explain the mechanisms of edema developing in the bilateral

temporal polar white matter since multiple factors may be involved

however, we suspect that the disruption of glymphatic system by

tumor cell is at least one contributing factor.

In conclusion, we reported a case of metastatic brain tumor

and carcinomatous meningitis mimicking PNS in a patient with

lung large cell carcinoma. Although brain MRI, especially in the
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temporal polar white matter, suggested PNS rather than metastatic

brain tumor and carcinomatous meningitis, pathological findings

revealed the presence of tumor cells and enlarged PVS, with no

evidence of autoimmune mechanisms. This is the first report of

bilateral T2 FLAIR hyperintensities in the temporal polar white

matter caused by carcinomatous meningitis. Physicians should

consider carcinomatous meningitis as a differential diagnosis in

patients with cancer who show bilateral T2 FLAIR hyperintensities

in the temporal polar white matter.
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early recurrence
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Miran Skrap3, Houng Elena Tran6, Giuseppe Varcasia4,
Simona Gaudino2,4‡ and Giovanni Sabatino1,2,8‡

1Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy, 2Institute of Neurosurgery,
Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy, 3Neurosurgery
Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy, 4Advanced
Radiodiagnostics Centre, Unità Operativa Semplice Dipartimentale (UOSD) Neuroradiology,
Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy, 5Department of
Neuroradiology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) “Santa Maria Della
Misericordia”, Udine, Italy, 6Department of Radiology, Radiation Oncology and Hematology,
Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy, 7Medical Physics Unit, Mater
Olbia Hospital, Olbia, Italy, 8Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino
Gemelli IRCSS, Rome, Italy
Purpose: Patients diagnosed with High Grade Gliomas (HGG) generally tend to

have a relatively negative prognosis with a high risk of early tumor recurrence (TR)

after post-operative radio-chemotherapy. The assessment of the pre-operative

risk of early versus delayed TR can be crucial to develop a personalized surgical

approach. The purpose of this article is to predict TR using MRI radiomic analysis.

Methods: Data were retrospectively collected from a database. A total of 248

patients were included based on the availability of 6-month TR results: 188 were

used to train the model, the others to externally validate it. After manual

segmentation of the tumor, Radiomic features were extracted and different

machine learning models were implemented considering a combination of T1

and T2 weighted MR sequences. Receiver Operating Characteristic (ROC) curve

was calculated with relative model performance metrics (accuracy, sensitivity,

specificity, positive predictive value (PPV) and negative predictive value (NPV)) at

the best threshold based on the Youden Index.

Results: Models performance were evaluated based on test set results. The best

model resulted to be the XGBoost, with an area under ROC curve of 0.72 (95% CI:

0.56 - 0.87). At the best threshold, the model exhibits 0.75 (95% CI: 0.63 - 0.75) as

accuracy, 0.62 (95% CI: 0.38 - 0.83) as sensitivity 0.80 (95% CI: 0.66 - 0.89 as

specificity, 0.53 (95% CI: 0.31 - 0.73) as PPV, 0.88 (95% CI: 0.72 - 0.94) as NPV.
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Conclusion: MRI radiomic analysis represents a powerful tool to predict late

HGG recurrence, which can be useful to plan personalized surgical treatments

and to offer pertinent patient pre-operative counseling.
KEYWORDS

machine learning, recurrence, high grade glioma, radiomics, prognosis
Introduction

Despite recent advances in surgical technology and genetic

discoveries, patients diagnosed with High Grade Gliomas (HGG),

which is considered as grade 4, generally have a dismal prognosis

with high risk of early tumor recurrence (TR) after post-operative

radio-chemotherapy (1–4).

Compelling evidence, based on objective tumoral volume

analysis, supports the role of the extent of resection (EOR) in

HGG patients as the first step of patients management (5, 6).

Recent technological innovations have increased the safety of

surgical resection, while expanding surgical options and indications

for HGG surgical treatment (7, 8): several techniques can be

currently used during the surgical procedure, such as

intraoperative ultrasound (iUS), cortical mapping, sodium

fluorescein (9) and 5-ALA fluorescence, with the aim of fostering

higher rates of total resection and so increasing the survival chance

(10–19).

Surgical treatment, however, can be rarely considered as radical,

due to the infiltrating tumor nature, its multifocal presentation, and

ill-defined tumor margins.

Although the Stupp protocol was introduced as post-operative

standard treatment more than 15 years ago, alternative recent

approaches have not been developed so far, and the 5-year

survival has not significantly changed in these last decades (20).

Unfortunately, the infiltrative growth, the rapid proliferative

rate of malignant cells and the appearance of treatment-resistant

cell clones shortly after initial therapy tend to recur within 2 cm of

resection margins, independently by the initial EOR exhibited by

the patient (21). In this challenging setting, assessment of pre-

operative risk of early versus delayed TR assumes a crucial role to

develop a personalized surgical approach (with respect to surgery

versus biopsy).

A presurgical identification of HGG patients with high risk of

recurrence after 6 months from surgery may have several

advantages (22): first of all, a more aggressive surgical resection

may be pursued in patients with low risk of TR, planning the use of

all intra-operative tools and strategies that allow a maximal safe

resection. Furthermore, deep genetic sequences may be considered

to assist clinicians during postsurgical decision-making involving

patients with high risk of TR.
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In addition, detection of early TR risk should encourage efforts

to better understand the role of early intensified bridging therapies

for HGG between surgery and postsurgical treatments (23).

Radiomics is a field of medical imaging that focuses on the

extraction and advanced analysis of large amounts of quantitative

features frommedical images called “radiomic features”. The goal of

radiomics is to convert medical images into high-dimensional data

that can be analyzed to uncover underlying patterns related to

disease characteristics, prognosis, and treatment response (24).

The aim of this study is to develop a Machine Learning (ML)

model based on radiomics features extracted from MRI images able

to stratify the risk of TR (within 6 months) in newly diagnosed

HGG and support clinicians in the decision-making process.
Materials and methods

Patient population and image data

This retrospective study was focused on patients affected by

high grade glioma, which is defined as grade 4, enrolled in two

Institutions: Fondazione Policlinico Universitario Agostino Gemelli

IRCCS in Rome (FPG) and Santa Maria della Misericordia in

Udine (SMM).

The experimental protocol adopted in this study was approved

by the Ethical Committee of Policlinico Universitario Agostino

Gemelli IRCCS.

The informed consent was obtained for all the patients included

in the study.

Patients from FPG were treated from January 2016 to December

2019, patients from SMM from November 2014 to June 2020. Tumor

grading was defined considering the 2021 WHO staging (25).

Inclusion criteria were: age >/= 18 years; no previous surgery; no

preoperative chemo- or radiotherapy; at least 6 months of follow up;

objective evaluation of preoperative tumor volume on MRI images in

DICOM format based on post-contrast T1-weighted MRI sequences

and T2-weighted MRI sequences; objective estimation of EOR on

post-contrast T1-weighted MRI sequences; revision of

histopathological specimens by using the new 2021 WHO

Classification of Tumors of the Central Nervous System; MGMT

promoter methylation and IDH1/IDH2 mutation status assessment.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1449235
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pignotti et al. 10.3389/fonc.2024.1449235
All the patients were subjected to the following therapeutic

approach: one month before the surgical procedure, all the patients

were scanned with an MR acquisition, which was carried out using

the GE and Philips scanners 1.5 T in Rome and the Siemens scanner

1.5 T in Udine.

Patients with the following criteria were excluded from the

study: diagnostic images blurred or some of required

sequences missing.

As for surgery, all the patients underwent the following

procedure: the surgical technique was carried out with an

intraoperative protocol that involved the use of contrast

enhancement ultrasounds (CEUS) and the fluorescence of 5-

aminolevulinic acid (5-ALA). Neuro-navigation system was used

in all cases, while the intra-operative neurophysiological monitoring

was performed in all cases of proximity of the tumor to the cortico-

spinal tract. Awake surgery was selected for patients that presented

HGG in the dominant hemisphere, close to the inferior front-

occipital fasciculus (IFOF) or the superior longitudinal fasciculus

(SLF). In a subgroup of selected patient (young age, tumor not close

to ventricular system) Carmustine Wafers (CWs) were implanted

after surgical tumor removal and intra-operative pathological

confirmation of HGG. CWs were not utilized when tumor

removal required the creation of a large opening of ventricle and/

or the basal cistern.

All methods were performed in accordance with the national

guidelines and regulations and in accordance with the Declaration

of Helsinki.
Image acquisition

All examinations were performed using a 1.5 T MR scanner

(Siemens Aera in Udine and GE—Optima mr450 and Philips-

Ingenia in Rome) with an eight-channel head coil. All study

protocols included axial T2-weighted TSE/FSE images with a slice

thickness between 4 and 5 mm and post-contrast volumetric T1-

weighted images MPRAGE/FSPGR/WATS with a slice thickness

between 1 and 1.2 mm. Imaging parameters are described

in Table 1.
Image pre-processing and radiomic
features extraction

Presurgical MRI performed on 1.5T scanners in FPG and SMM

of HGG were analyzed by three neuroradiologists who assessed

image quality, excluding patients with images degraded by artifacts

or who did not present axial 3D T1 weighted post contrast and axial

2D T2 weighted. Manual segmentation of the tumoral areas was

performed by one Neuroradiologist with the software “3D Slicer

image computing platform” with ROIs drawn separately on T1 and

T2W images as follows: on axial 3D T1 weighted contrast images

post-contrast, the ROI on the “enhancing” component of the tumor

was delineated, while on axial 2D T2 ROIs were outlined on the
Frontiers in Oncology 0351
TABLE 1 Technical details of MR sequences.

SIEMENS AERA 1,5 T

Sequence T1-MPRAGE T2-TSE

Echo time 2,74 ms 95 ms

NEX 1 2

Repetition time 2200 ms 2380 ms

No. of sections 256 23

Receiver bandwidth 190 Hz/Px 163 Hz/Px

Echo train length – 28

FOV 250 mm 230mm

Section thickness 1 mm 5 mm

Section spacing 0 1,3 mm

Matrix size 256x232 208x320

Phase direction RL RL

PHILIPS Ingenia 1,5T

Sequence T1 WATS T2 TSE

Echo time 6.2ms 100 ms

NEX 1 3

Repetition time 13 ms 3651 ms

No. of sections 155 36

WFS 216.6 Hz/Px 212.3 Hz/Px

TFE factor 195 23

FOV 250mm 240mm

Section thickness 1 mm 4 mm

Section spacing 0 0.4 mm

Matrix size 252x200 513x331

Phase direction RL RL

GE Optima 1,5 T

Sequence T1 FSPGR T2 FSE

Echo time 2.2ms 130 ms

NEX 1 2

Repetition time 7.7 ms 3867 ms

No. of sections 150 34

Receiver bandwidth 22.73 Hz/Px 31.25 Hz/Px

Echo train length – 21

FOV 250mm 240mm

Section thickness 1.2 mm 4 mm

Section spacing 0 0.4 mm

Matrix size 288x288 356x288

Phase direction RL RL
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solid component of the tumor and the infiltrative one, excluding the

frankly edematous areas (with higher signal in T2) (Figure 1).

Before any analysis, the program anonymizes any DICOM.

Image pre-processing and radiomic analyses were performed

using Python 3.7.

Image pre-processing was performed via N4 bias field

correction to correct low frequency intensity non uniformity and

subject-specific Z-score normalization to normalize MR intensity

scales and allow inter-patients comparison.

For each patient, a total of 100 radiomic features (26)were extracted

from the specific ROI defined in each pre-processed MR sequence.

Features were extracted in their 3D version using PyRadiomics (27).

Extracted features belonged to three families: morphology-

based (14), first order (18) and second order (68). For the second

order features we used a bin width discretization strategy with a bin

width value of 25. Morphology-based features capture geometric
Frontiers in Oncology 0452
characteristics of the ROI. First order features describe statistical

properties of the grey level histogram, offering global metrics for the

distribution of the grey levels within the ROI. Second order features

provide localized measures of grey level distribution within the ROI.
Radiomic features selection and modeling

The training set included the patients enrolled in Rome, while

the test set included the patients enrolled in Udine. We decided to

follow this approach to develop a prediction model using data from

one hospital and test its generalizability on data from a different

hospital, for external testing to pursue a TRIPOD 3 approach (36).

Each radiomic feature was normalized using the z-score in the

training set, and the z-score parameters of the training set were used

to normalize the features in the test set.
FIGURE 1

Segmentation of the tumoral areas: in image (A), delineation of the ROI on 3D T1 W post contrast images on the “enhancing” component of the
tumor. In image (B), the ROI on axial 2D T2w images is delineated for the solid and infiltrative components of the tumor.
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After features extraction, feature selection and radiomics

modeling was performed on the training set only. The

reproducibility of radiomic features was evaluated with respect to

the MRI scanner manufacturer using the t-test. Features that

resulted not reproducible (p-value < 0.05) were excluded from the

following analysis.

Further feature selection methods were applied to prevent

overfitting, reduce linear correlations among variables and obtain

a minimal and stable set of radiomic features. These methods

included the univariate analysis with the Wilcoxon-Mann-

Whitney statistical test (WMW, significance level of 0.05) and the

computation of the Pearson correlation coefficient (PCC) with the

exclusion of features that were highly correlated with any other

feature (PCC > 0.9).

Different machine learning models, namely regularized logistic

regression, random forest, XGBoost and Support Vector Machine

(SVM) were trained on the selected radiomic features extracted

from axial 3D T1w and axial 2D T2w.

The predictive models aimed to address a binary classification

problem for the prediction of the 6-months progression free

survival: class 0 denoted patients without 6-months TR, class 1

denoted patients with 6-months TR.

For each machine learning model, hyper-parameters tuning was

performed with a grid search strategy using 3-fold cross-

validation (28).

The developed models were externally evaluated on the testing

set in terms of discriminative ability and predictive performance. In

particular, the area under the curve (AUC) of the receiver operating

characteristics (ROC) curve was calculated, and the model

performance metrics based on the classification matrix were

computed at the best cut-off threshold, identified by maximizing

the Youden Index calculated on the training set. The metrics

investigated were accurancy, sensitvity, specificity, positive and

negative predictive values (PPV and NPV). 95% confidence

intervals (CI) of AUC and classification metrics were computed

according to bootstrap (29) and Jeffreys (30) methods, respectively.
Results

Patients population

When performing radiomic analysis and modeling, the initial

dataset consisting in 273 patients affected by HGG of first diagnosis

and undergone respective surgery followed by Stupp protocol, was

shrunk to 248 patients on the basis of the availability of the 6-month

TR outcome.

Data were split into train (approx. 75%) and test (approx. 25%)

sets resulting in 188 patients from Rome and 60 patients from

Udine, respectively.

Demographic and clinicopathological characteristics of the

included patients are reported in Table 2.

In the training set 109 patients were classified as class 0 and 79

patients as class 1. In the test set, 44 patients belonged to class 0 and

16 to class 1 (Figure 2).
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Radiomic features selection

Features selection was applied to features extracted from T1w

and T2w sequences.

As for T1w sequence, the t-test evaluating features stability with

respect to the manufacturer shrank the number of features from 100

to 58, further reduced by the WMW test and PCC which led to four

stable relevant features, reported in Table 3 with their

corresponding WMW test p-values.

As for T2w sequence, 85 features out of 100 showed stability

with respect to the manufacturer but only one of them was

significant at univariate analysis, as reported in Table 3.

Thus, Table 3 included all the features used for the

radiomics modeling.

Boxplots of the selected features showing stability with respect

to the outcome are shown in Figure 3, with corresponding p-values

resulting from the WMW test.
Modeling

A combined T1w&T2w (T1wT2w) modeling method was

implemented, consisting in grouping the T1wT2w relevant

features in a unique input dataset (see Table 3).

The cross-correlation matrix of the T1wT2w significant features

is reported in Figure 4.

Table 4 reports the discriminative and predictive performance

metrics for all the implemented ML models trained on T1w and

T2w for both training and validation sets.

Based on the metrics evaluated on the test set, the best model

resulted to be the XGBoost, with a test set AUC of 0.72 and 95% CI

of 0.56 - 0.87, and an accuracy of 0.75 with a 95% CI of 0.63 - 0.85.

This model obtained high values for the specificity equal to 0.80

(95% CI: 0.66 - 0.89), and NPV equal to 0.85 (95% CI: 0.72 – 0.94).

The other models showed the problem of model over-fitting to

the training data (i.e. Random Forest) or poor model performance

for the training and test data (i.e. regularized logistic regression

and SVM).
Discussion

Machine learning approach

Today MRI has a primary role in diagnosis, planning and

monitoring of HGG patients: clinicians typically use brain MRI to

evaluate radiological HGG features such as size, location, edema

and enhancement characteristics. MRI features are today not

sufficient to predict the risk of recurrence in HGG (31, 32):for

this reason, there is a huge need to assess additional imaging

biomarkers via computational methods (33, 34).

In the last years, a radiology-based approach focusing on

prognosis prediction has gained an important burst fostered by

the fast development of advanced computational tools able to

manage a significant amount of MRI and clinical data.
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Radiomics has recently emerged as a powerful data-driven

approach that can offer insights into clinically relevant questions

related to diagnosis, prediction, prognosis, as well as treatment

response assessment (35).

In this investigation radiomic analysis and modeling were

performed with the aim to select the most significant and robust

MRI features able to predict which patients affected by HGG at first

diagnosis would develop progression within 6 months or later.

Prediction performance resulting from training was also externally

tested following a TRIPOD 3 study approach, according to the

original TRIPOD guidelines (36). Clustering was not accounted for

in this study limiting model predictive performance and
Frontiers in Oncology 0654
generalizability (48, 49). Future work may be conducted to

evaluate the presence of potential cluster effects.

The 6-months TR time-point was chosen as cut-off value to

discriminate patient with early TR from those with later TR for two

main clinical reasons: it matches the standard timing of post-

operative radiological assessment after conventional postsurgical

treatments and it makes homogenous the study populations before

the non-standardized rescue therapies at tumor recurrence.

Thus, detecting patients with low risk of TR after 6 months

from surgery encourage neurosurgeons to extent tumor resection

with the aim of exploiting the most modern intraoperative tools and

strategies that allow a maximal safe resection.
TABLE 2 Baseline characteristics of the study population.

Parameters Trainig set (Rome) Test set (Udine) Total

Initial patients 206 67 273

No FU 18 7 25

Patients included 188 60 248

Mean age (years) 62.84 ± 4.86 62.52 ± 5.32 62.76 ± 4.98

Sex

Male 119 (63.3%) 36 (60%) 155 (62.5%)

Female 69 (36.7%) 24 (40%) 93 (37.5%)

Side

Left 77 (41%) 28 (46.7%) 105 (42.3%)

Right 111 (59%) 32 (53.3%) 143 (57.7%)

Tumor site

Precentral 63 (33.5%) 18 (30%) 81 (32.7%)

Postcentral 50 (26.6%) 16 (26.7%) 66 (26.6%)

Temporal/insular 75 (39.8%) 26 (43.3%) 101 (40.7%)

5-ALA

yes 126 (67%) 47 (78.3%) 173 (69.8%)

no 62 (32%) 13 (21.7%) 75 (31.2%)

Biological features

MGMT methylation (yes vs no) 124 vs 64 (66% vs 34%) 40 vs 20 (66.7% vs 33.3%) 164 vs 84 (66.1% vs 33.9%)

IDH 1/2 mutation (yes vs no) 8 vs 180 (4.3% vs 95.7%) 3 vs 57 (5% vs 95%) 11 vs 237 (4.4% vs 95.6%)

Ki-67 (mean) 24.25 (3-90) 41,2 (5-75) 29 (4-80)

OS

Alive (yes vs no) 53 vs 135 (28.2% vs 71.8%) 6 vs 54 (10% vs 90%) 59 vs 189 (23.8% vs 76.2%)

Average of FU times (months) 13.4 (0-35) 17.1 (0-29) 14.3 (0-31)

PFS

Class 0 (no 6-months TR) 109 (58%) 44 (73.3%) 153 (61.7%)

Class 1 (6-months TR) 79 (42%) 16 (26.7%) 95 (38.3%)
Characteristics of the study population are described using means ± s.d. (standard deviation) or median and range for continuous variables, number of cases with relative percentages reported in
parentheses for categorical variables. Bold values are the corresponding value to Figure 2.
(FU, follow-up; 5-ALA, 5-aminolevulinic acid; MGMT, O-6-Methylguanine-DNA Methyltransferase; IDH, Isocitrate dehydrogenase 1; OS, overall survival; PFS, progression free survival; TR,
tumor recurrence).
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We found that, among all features’ families, morphological

features show most of the predictive power and that smaller

features values decrease the probability to observe 6-month tumor

recurrence in patients.

The best model resulted to be the XGBoost (eXtreme Gradient

Boosting), an optimized distributed gradient boosting library

designed to be highly efficient, flexible and portable. It

implements ML algorithms under the Gradient Boosting

framework, providing distributed gradient-boosted decision tree

(GBDT). Boosting is an ensemble learning method that combines a

set of weak base estimators into a strong learner to minimize

training errors. For these reasons, XGBoost is considered to be

one of the leading ML libraries for regression, classification and

ranking problems.

Modeling results are reported in Table 3: the developed

XGBoost showed a high value of specificity, which reflects the

model ability in identifying patients with lower risk to experience
Frontiers in Oncology 0755
tumor recurrence within 6 months and that might undergo a more

aggressive surgical resection.

High values of specificity were observed in training (84%) and

test set (80%). Features selection applied to this study highlighted

that morphological features hold most of the predictive power in

discriminating patients with positive and negative outcome.

Although it is hard to find a direct biological interpretation of

these findings, it is worth mentioning that radiomic features are not

relevant if considered only “per se”. It is actually important to relate

them to the model context and take linear and non-linear interactions

between variables into account. In this light, a possible explanation can

be given assuming that changes inmorphological featuresmight reflect

tissues structural alterations (e.g. shape, volume etc…) and be more

related to tumor developments. On the other hand, it is also important

to ensure that selected features describing themodel are actually stable,

non-redundant and independent from noise or other non-

relevant variables.
FIGURE 2

Patients classification.
TABLE 3 Relevant features resulting from features selection performed on T1w and T2w sequences and corresponding p-values and used for
radiomics modeling.

MR sequence Feature WMW test p-value

T1w original_shape_MajorAxisLength 0.02

T1w original_shape_Maximum2DDiameterColumn 0.03

T1w original_shape_Maximum2DDiameterSlice 0.04

T1w original_firstorder_TotalEnergy 0.04

T2w Original_first_order_kurtosis 0.03
These features belong to morphology-based (“shape”) and first order families.
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Pre-operative estimation of HGG biological behavior could help

clinicians in detecting cases that could benefit from a maximal safe

resection (e.g. HGG patients with pre-operative estimated of low

risk of early TR).

On the other hand, pre-operative estimation of high risk of early

TR (especially in elderly patients) could drive the choice to biopsy

rather than surgery (37).

In addition, for patients with higher risk of TR, multiple tissue

samplings should be extracted in order to investigate ad hoc target

therapies related to lesions’ high spatial heterogeneity (38).

Our results are aligned with the study performed by Li et al. (39)

with AUC of 0.70 in the training set for the prediction of disease

progression at 6 months that used radiomics features extracted

from multiple MRI sequences (T2 and FLAIR).

Other studies using smaller sample sizes developed MRI-based

radiomics models for the prediction of the progression-free survival

in patients with glioblastoma obtaining similar results. Choi et al.

(40) obtained an integrated time-dependent AUC of 0.62, while

Bathla et al. (41) achieved a C-index up to 0.64.
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This investigation presents several limitations. First of all, this

was a retrospective study including only two centers: further studies

with more heterogeneous datasets would be an interesting point for

future development.

Radiomic features reproducibility can be strongly affected by

image acquisition parameters and scan protocols, which can vary

widely across and within institutions. We took this heterogeneity

into account and in order to evaluate features robustness among

different centers, we performed a t-test analysis with respect to MRI

scanners manufacturers. This allowed to exclude unstable features.

In this light, to minimize data variability, harmonization methods

might be introduced, as proposed by several research groups which

focused on different modified ComBat algorithms (42–46).

Although being very powerful, radiomic analysis offers no

insights toward biological interpretation of the achieved findings

and this study also shows this limitation: many efforts have been

made in these recent years to reintroduce biological meaning into

radiomics. However, some recent studies also suggest that biological

correlation with radiomic features is not mandatory (47).
FIGURE 3

Boxplots of the selected radiomics features used for radiomics modeling showing stability with respect to the outcome with corresponding p-values
resulting from the WMW test. (‘1’=patients with 6-months TR, ‘0’=patients without 6-months TR).
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In addition, considering the integration of features and clinical

variables in a clinical-radiomic model could help improving models’

performance in predicting 6-months TR.

Lastly, we did not assess the overall survival rate for this cohort.

Data regarding selection criteria adopted at TR to plan the salvage

treatment were not available. Each patient underwent an

individualized management at TR, so we have not developed

standardized protocols for treatments at TR. With our sample

size, we did not have the statistical power to tease out the survival

rate for patients undergoing different treatments. A future multi-

center prospective study of HGG recurrence will be necessary to
Frontiers in Oncology 0957
properly assess survival rate according to the salvage treatment

adopted at TR.

The high incidence of early TR should encourage efforts to

better understand the role of early intensified bridging therapies for

HGG between surgery and postsurgical treatments.

In conclusion, the methodology adopted in this investigation is

extremely time-consuming and makes it unsuitable for clinical daily

implementation.Thenext step in thisfield, beyond increasing accuracy

and simplifying the workflow, will be the development of an open

source, easily scalable and efficient artificial intelligence algorithm

requiring simple or null external intervention from physicians.
FIGURE 4

Cross-correlation matrix of the T1wT2w significant features used for radiomics modeling. feat1: original_shape_MajorAxisLength; feat2:
original_shape_Maximum2DDiameterColumn; feat3: original_shape_Maximum2DDiameterSlice; feat4: original_firstorder_TotalEnergy;
feat5: Original_first_order_kurtosis.
TABLE 4 Predictive performance metrics for ML models trained on T1w and T2w for training and validation sets.

AUC Accuracy Sensitivity Specificity PPV NPV

XGBoost

Training
95% CI

0.68
(0.60- 0.75)

0.66
(0.60 - 0.73)

0.42
(0.31 - 0.53)

0.84
(0.77 - 0.90)

0.66
(0.52- 0.78)

0.67
(0.59 - 0.74)

Test
95% CI

0.72
(0.56 - 0.87)

0.75
(0.63 - 0.85)

0.62
(0.38 - 0.83)

0.80
(0.66 - 0.89)

0.53
(0.31 - 0.73)

0.85
0.72 - 0.94)

Regularized Logistic
Regression

Training
95% CI

0.63
(0.55 - 0.70)

0.60
(0.54 - 0.67)

0.57
(0.46 - 0.67)

0.63
(0.54 - 0.72)

0.53
(0.42 - 0.63)

0.67
(0.58 - 0.76)

Test
95% CI

0.52
(0.36 - 0.68)

0.41
(0.30 - 0.54)

0.56
(0.33 - 0.78)

0.36
(0.23 - 0.51)

0.24
(0.13 - 0.40)

0.69
(0.49 - 0.85)

Random
Forest

Training
95% CI

0.99
(0.99 - 1.0)

0.97
(0.95 - 0.99)

0.98
(0.94 - 1.0)

0.97
(0.93 - 0.99)

0.96
(0.90 - 0.99)

0.99
(0.96 - 1.0)

Test
95% CI

0.51
(0.33 - 0.70)

0.38
(0.27 - 0.51)

0.68
(0.44 - 0.87)

0.27
(0.16 - 0.42)

0.25
(0.14 - 0.40)

0.70
(0.47 - 0.88)

SVM

Training
95% CI

0.54
(0.46 - 0.63)

0.60
(0.54 - 0.67)

0.21
(0.14 - 0.32)

0.90
(0.82 - 0.94)

0.59
(0.41 - 0.75)

0.61
(0.53 - 0.68)

Test
95% CI

0.61
(0.45 - 0.76)

0.68
(0.56 - 0.79)

0.25
(0.09 - 0.49)

0.84
(0.71 - 0.93)

0.36
(0.14 - 0.65)

0.75
(0.62 - 0.86)
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Conclusions

A thorough and reliable ML-model based on combined

T1w&T2w sequences to detect the lower risk of TR in newly

diagnosed HGG was trained and validated on external cohort.

Our results confirm the potential role of pre-operative MRI

analysis beyond the classical anatomical and morphological

parameters. MRI radiomic analysis represents a powerful tool to

predict early HGG recurrence, to plan personalized surgical

treatment and to offer patients pre-operative counseling. In the

future, a prospective multicenter study with a larger sample size is

needed in order to validate our results, to optimize prediction

models for clinical practice, and to overcome the intrinsic

limitations of retrospective studies met so far.
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VASARI 2.0: a new updated MRI
VASARI lexicon to predict
grading and IDH status
in brain glioma
Alberto Negro1*, Laura Gemini1, Mario Tortora2, Gianvito Pace1,
Raffaele Iaccarino1, Mario Marchese3, Andrea Elefante2,
Fabio Tortora2, Vincenzo D'Agostino1 and members of ODM
Multidisciplinary Neuro-Oncology Group
1NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro),
Naples, Italy, 2Department of Advanced Biomedical Sciences, University of Naples Federico II,
Naples, Italy, 3Department of Health Medicine and Science “Vincenzo Tiberio”, University of Molise,
Campobasso, Italy
Introduction: Precision medicine refers to managing brain tumors according to

each patient’s unique characteristics when it was realized that patients with the same

type of tumor differ greatly in terms of survival, responsiveness to treatment, and

toxicity of medication. Precision diagnostics can now be advanced through the

establishment of imaging biomarkers, which necessitates quantitative image

acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images)

manual annotation methodology is an ideal and suitable way to determine the

accurate association between genotype and imaging phenotype. Our work

proposes an updated version of the VASARI score that is derived by changing the

evaluation ranges of its components in an effort to increase the diagnostic accuracy

of the VASARI manual annotation system and to find neuroimaging biomarkers in

neuro-oncology with increasing reliability.

Materials andmethods:We gathered the histological grade andmolecular status

of 126 patients with glioma (Men/Women = 75/51; mean age: 55.30) by a

retrospective analysis. Two residents and three neuroradiologists blindedly

examined each patient using all 25 VASARI characteristics, after having

appropriately modified the reference ranges in order to implement an

innovative VASARI lexicon (VASARI 2.0). It was determined how well the

observers agreed. A box plot and a bar plot were used in a statistical analysis to

assess the distribution of the observations. After that, we ran a Wald test and

univariate and multivariate logistic regressions. To find cutoff values that are

predictive of a diagnosis, we also computed the odds ratios, confidence intervals,

and evaluation matrices using receiver operating characteristic curves for each

variable. Finally, we performed a Pearson correlation test to evaluate whether the

variable grades and IDH were correlated.

Results: An excellent Intraclass Correlation Coefficient (ICC) estimate was

obtained. In this study, five features were part of the predictive model for

determining glioma grade: F4, enhancement quality [area under the curve

(AUC): 0.87]; F5, tumor-enhancing proportion (AUC: 0.70); F6, tumor–non-

enhancing proportion (AUC: 0.89); F7, necrosis proportion (AUC: 0.79); and
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F17, diffusion characteristics (AUC: 0.75). Furthermore, six features were found to

predict IDH mutation status: F4, enhancement quality (AUC: 0.904); F5, tumor-

enhancing proportion (AUC: 0.73); F6, tumor–non-enhancing proportion (AUC:

0.91); F7, necrosis proportion (AUC: 0.84); F14, proportion of edema (AUC: 0.75);

and diffusion characteristics F17 (AUC: 0.79). VASARI 2.0 models showed good

performances according to the AUC values, which are also compared with

traditional VASARI scores.

Discussion and conclusion: Glioma grade and isocitrate dehydrogenase (IDH)

status can be predicted using specific magnetic resonance imaging (MRI)

features, which have significant prognostic consequences. The accuracy of

texture-derived metrics from preoperative MRI gliomas and machine learning

analysis for predicting grade, IDH status, and their correlation can be enhanced

by the suggested new and updated VASARI manual annotation system. To help

with therapy selection and enhance patient care, we intend to create prediction

models that incorporate these MRI findings with additional clinical data.
KEYWORDS

VASARI, MRI, glioma, IDH status, grade tumor, neuroradiology
1 Introduction

The cerebral glioma, a sizable and heterogeneous family of brain

tumors with various features, is the most prevalent primary

malignant brain tumor that exhibits variable treatment response

and patient prognosis (1). Given the considerable variations in the

care of these many glioma subtypes, an accurate diagnosis is

essential. Glioblastoma and oligodendroglioma, for instance,

respond very differently to treatment. Furthermore, tumors

belonging to the same histologic subtype could exhibit distinct

behaviors in other patient cohorts. Previously, the phenotypic

characteristics of the cells were used to identify the tumor grade,

but, today, this seems too simplistic (2), and it is not possible to

identify these distinctions between the different glioma subtypes

based on the purely histology-driven older classification system.

Part of the challenge was that many gliomas can contain mixed cell

types, which result in high inter-observer variability of diagnosis

among neuropathologists (3).

Thus, a paradigm change in the diagnosis and categorization of

gliomas has resulted from new discoveries on their genetic composition.

The updated glioma classification system incorporates molecular

markers into tumor subgrouping, which has been shown to better

correlate with tumor biology and behavior as well as patient prognosis

than the previous purely histology-based classification system (4). The

isocitrate dehydrogenase (IDH) gene changes and the co-deletion of

chromosomal arms 1 and 19 (1p/19q) are the two main alterations

taken into account when differentiating tumors in the World Health

Organization (WHO) classification (5). It could be comparable to

biomarkers that influence the prognosis and biological behavior of a

patient. For instance, it has been demonstrated that IDH gene family
0261
mutations offer higher overall survival in high-grade gliomas than their

IDH–wild-type counterparts, regardless of the histological grade (6–8).

Additionally, the degree of cellular differentiation and the molecular

state have an impact on the course of treatment. For instance, low-

grade gliomas are often not treated with adjuvant radiotherapy and/or

chemotherapy. Clinicians found that patients’ responses to treatment,

the severity of side effects, and even prognosis could differ even when

they shared the same tumor. This implies that therapeutic care tailored

to the needs of particular people or “precision medicine” may be the

direction of the future (9–11). The method most frequently used today

for identifying gliomamutations is immunohistochemical analysis after

biopsy or surgical resection (12). By categorizing radiological gliomas in

a non-invasive way with relevant prognostic consequences, clinical

therapeutic planning may be recommended (13). Magnetic resonance

imaging (MRI) is used as a gold standard for radiological examination

of gliomas. Because there are no objective measurements that can be

extensively duplicated and validated, determining the tumor grade

accurately is far from simple (14).

Whereas advanced MRI techniques (e.g., diffusion Magnetic

Resonance Imaging (dMRI), Perfusion Magnetic Resonance

Imaging (pMRI), and Magnetic Resonance Spectroscopy (MRS))

are more specific to biophysical, cellular, and microstructural

processes, conventional MRI methods (e.g., T1-weighted and T2-

weighed sequences) give macrostructural anatomical evidence.

Unlike standard MRI techniques, which only yield relative image

contrasts, these advanced techniques have the potential to be (semi)

quantitative. For the purpose of acquiring imaging biomarkers,

sensitivity, specificity, and quantification are crucial (15). While a

number of recent investigations have concentrated on applying

sophisticated MRI methods (such as perfusion, spectroscopy, and
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machine learning approaches) for radiogenomic purposes (16–18),

standard MRI sequences continue to be the gold standard for the

investigation and characterization of brain tumors.

An optimal and adequate method to identify the right correlation

between imaging phenotype and genotype, based on the evaluation of

specific radiological characteristics, mainly conventional MRI

features, and, at the same time, to standardize the assessment of

gliomas is represented by the VASARI manual annotation system.

A collection of standardized descriptors called VASARI

(Visually AcceSAble Rembrandt Images) MRI characteristics is

used to describe brain tumors on contrast-enhanced MRI

imaging. These characteristics aid in the diagnosis, grading, and

prognostication of gliomas by offering qualitative and quantitative

information regarding the visual appearance and properties of the

tumor (19). The location, shape, enhancement quality, necrosis

proportion, edema proportion, and other geometric parameters of

the tumor are all included in the VASARI features (20).

Since its development in 2016, VASARI score has undergone a

development from the number of the features, now 25, to the field of

application in neuro-oncology.

Certain specific MRI features [enhancement quality (F4),

tumor-enhancing proportion (F5), tumor–non-enhancing

proportion (F6), and necrosis proportion (F7)] have been shown

in our previously published study (21) to be predictive of the grade

and IDH status of gliomas, with significant prognostic implications.

Inter-observer agreement and multicenter collaborations are

made possible by the reliability and consistency in the

interpretation of MRI scans made possible by the standardization

of the VASARI features (22, 23). The communication between

radiologists, oncologists, and other medical professionals involved

in the treatment of patients with glioma is improved when VASARI

elements are used in structured reporting systems (24). To increase

the precision of glioma grading, prognosis prediction, and
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treatment response assessment, they have been used in machine

learning algorithms and radiomics studies (24, 25). Predictive

models to inform therapy choices and patient care can be created

by merging VASARI variables with additional imaging features and

clinical data (26, 27).

Such a model’s potential resides in its capacity to evaluate tumor

features objectively. In actuality, although VASARI started out as a

visual assessment scale, a numerical estimate of the features under

consideration can be obtained by using “regions of interest” (ROIs)

to calculate the areas of the various tumor components. However,

we think that such a system is not useful in terms of outpoint

prediction and is too sophisticated and challenging for doctors to

utilize, especially in light of the outcomes documented in the

literature and our earlier study.

In this regard, we propose a new VASARI glioma score, which

we refer to as VASARI 2.0. This system evaluates only those tumor

features that can be objectively described by ROI (manual

segmentation) and that predict the outpoint (IDH status and

grade) with area under the curve (AUC) > 0.8. For this purpose,

we modify the evaluation intervals/ranges as explained in the

following (Table 1), all in order to provide the scientific

community with a system suitable with clinical practice.
2 Materials and methods

2.1 Ethics statements

The Institutional Review Board accepted the study because the

surgery was routinely carried out and was not considered

experimental. Each patient completed and signed a proper written

informed consent. There was no indication of a conflict of interest

from the writers. No funding was given to support this study.
TABLE 1 Modified ranges between VASARI and VASARI 2.0.

F4
Enhancement

quality

F5
Enhanced area

F6
No-enh area

F7
Necrosis area

F14
Edema area

F17
Diffusion
quality

VASARI 2.0

1. Absent 1. Absent or <5% 1. Absent or <5% 1. Absent or <5% 1. Absent or <5% 1. Augmented

2. Minimal 2. 6–25 2. 6–25 2. 6–25 2. 6–25 2. Reduced

3. Avid 3. 26–50 3. 26–50 3. 26–50 3. 26–50 3. Mixed

4. 51–75 4. 51–75 4. 51–75 4. 51–75

5. 76–95 5. 76–95 5. 76–95 5. 76–95

6. >95% 6. >95% 6. >95% 6. >95%

VASARI

1. Absent 3. <5% 3. <5% 2. No 2. No 2. Augmented

2. Minimal 4. 6%–33% 4. 6%–33% 3. <5% 3. <5% 3. Reduced

3. Avid 5. 34%–67% 5. 34%–67% 4. 6%–33% 4. 6%–33% 4. Mixed

6. 68%–95% 6. 68%–95% 5. 34%–67% 5. 34%–67%

7. 96%–99%

8. 100%
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2.2 Patient population

Retrospective analysis of patients who underwent MRI for pre-

surgical glioma evaluation between 2018 and 2021 has been done on

the database at our institution. Additionally, pathology reports were

gathered to determine the glioma grade. According to the following

criteria, a number of patients were disqualified from the study: (a)

poor acquisition quality imaging; (b) no intravenous contrast; (c)

medications prior to the MR examination, such as steroid

medication that may alter edema and contrast enhancement; and

(d) lack of a pathology report. In the end, 126 individuals with

glioma were included. The study group included 51 women and 75

men, ages 14 to 84 (further information in Table 2).
2.3 Image acquisition

MRI at 1.5 T (Magnetom Amyra; Siemens Medical Systems,

Erlangen, Germany) was used for the imaging. In addition to T2-

weighted images with dark fluid on the axial planes, the MR
Frontiers in Oncology 0463
technique also includes T1-weighted images taken before and after

the administration of gadolinium-based contrast media. In addition

to this, we also carried out Diffusion Weighted Imaging (DWI) and

Susceptibility Weighted Imaging (SWI) on the axial plane, as well as

T1-w and T2-w sequences on additional planes. These were the

precise imaging parameters: (1) axial T1-weighted MR: repetition

time of 250 ms, echo time of 2.46 ms, slice thickness of 5 mm, matrix

dimensions of 320 × 256, and field of view of 220 × 220 mm2; (2) axial

T2-weighted MR: repetition time of 6000 ms, echo time of 93 ms,

slice thickness of 5 mm, matrix dimensions of 320 × 288, and field of

view of 198 × 220 mm; and (3) axial T2WI dark-fluid MR: repetition

time of 8000 ms, echo time of 97 ms, slice thickness of 5 mm, matrix

dimensions of 320 × 224, and field of view of 181 × 220 mm.
2.4 Magnetic resonance imaging
assessment and analysis

The VASARI lexicon can be easily understood by following the

specific guide downloadable from the public website of The Cancer
TABLE 2 Demographic data about our study population.

Glioma grade

Demographic data 1 (n = 3) 2 (n = 21) 3 (n = 18) 4 (n = 84) Total (126)

Age (yr.) < 50 3 10 8 18 39

> 50 0 11 10 66 87

Sex Male 2 8 11 54 75

Female 1 13 7 30 51

Location Frontal 0 12 9 28 49

temporal 0 7 4 17 28

Insular 2 2 1 6 11

Parietal 0 0 1 22 23

Occipital 0 0 2 2 4

Brain steam 1 0 1 5 7

Other (cerebellum) 0 0 0 4 4

Side Right 0 11 5 47 63

Left 2 0 2 5 9

Central/Bilateral 1 10 11 32 54

Eloquent area No 2 15 13 45 75

Motor speech 1 2 1 7 11

Receptive speech 0 4 2 16 22

Motor area 0 0 1 15 16

Visual area 0 0 1 1 2

IDH status Positive 2 13 3 4 22

Negative 1 8 15 80 104
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Imaging Archive, in the specific section “Supporting Documentation

and Metadata” (https://wiki.cancerimagingarchive.net/display/

Public/VASARI+Research+Project).

We considered that the entire lesion was made up of necrotic

tissue, edema, enhancing area, and non-enhancing area in

accordance with the VASARI approach. Furthermore, we

extracted the score system and morphological features. Therefore,

an enhancing area was defined as any region of the tumor that

shows a discernible increase in signals on the post-contrast T1-

weighted pictures in comparison to those in the pre-contrast. Any

region displaying T2-weighted hyperintensity (less than the

intensity of the Cerebral Spinal Fluid (CSF) fluid) and

corresponding T1-weighted hypointensity, as well as a mass effect

and architectural distortion, such as blurring of the gray-white

interface, was deemed to be a non-enhancing area. An irregular

border, a high signal on T2-weighted and proton density imaging,

and either no enhancement at all or a significantly decreased

enhancement are characteristics of a necrotic section of the

tumor. By calculating the ratio of the total lesion area to the

necrosis area (internal to it), a quantitative evaluation of the

necrosis was produced. On the T2-, T1-, and SWI T2*–weighted

sequences, a bleeding was detected and assessed in connection with

the existence of hemoglobin breakdown products. Based on an

apparent diffusion coefficient (ADC) map, the diffusion

characteristics are classified as mostly facilitated or restricted in

the enhancing or non-contrast–enhanced tumor (nCET) region of

the tumor. They are described as mixed when there is a roughly

equal amount of both limited and assisted diffusion.

Three neuroradiologists, two residents and one senior,

independently evaluated the imaging characteristics.
2.5 Statistical analysis

The aims of the statistical analysis were as follows: 1) analyze

the statistically significance of each variable with respect to the

prediction of the variable levels; 2) analyze the statistically

significance of each variable with respect to the prediction of the

variable IDH; and 3) analyze the relationship between IDH

and GRADE.

To consider only relevant columns in the dataset, a sub-dataset

was created, only with the following columns: GRADE, F4, F5, F6,

F7, F14, F15, and F24, and another column was added to the dataset

named “levels.” This variable is binary, with level = 0 denoting a

grade of 1 or 2 (low grade) and level = 1 denoting a grade of 3 or 4

(high grade). The variable “IDH mutate” has been turned into a

dummy binary variable too (IDH 0 = non-mutate = neg; IDH 1 =

mutate = pos).

To see whether the variable GRADE and IDH are correlated, we

built a contingency table where, on one side, there are the levels of

GRADE and, on the other, the IDH, negative or positive. Then, we

also did the Pearson correlation test and built a correlation plot.

As is often the case in real datasets, the VASARI dataset that we

analyzed is highly imbalanced (80% vs. 20%) and is of high grade, so

we divided the dataset into train (70%) and test (30%), and, then, we

balanced the training data in such a way that we obtained 2,000
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observation and perfectly balanced classes (p = 0.5). Then, we

proceeded to the analysis of the statistically significant variables in

the prediction of levels. As the first step in this part of the analysis,

we conducted a multiple logistic regression using the dichotomic

variable levels as response variable and each variable as covariate on

the balanced training set. We also conducted a Wald test on the

categorical variables to confirm statistical significance.

We computed the odds ratios (OR) and confidence intervals for

each variable and evaluated the matrices with ROC curves.

After the balancing of the classing, we finally conducted a

multiple logistic regression using all the variables in the dataset to

have an idea of which variable is statistically significant and to see

how does our classifier performs having the whole set of

information in the prediction of IDH. We then applied this

model to the test set to evaluate the predictive performance in the

analysis of the relationship between IDH and GRADE.

We compared the results with the same value obtained in our

previous studies using the gold standard for VASARI score and

traditional statistics method; in particular, we focused on the AUC

value to compare diagnostic accuracy.

The analysis has been done on the software R, using the package

ROSE for the balancing purpose.

Applying more or less complex machine learning methods to

this type of data is very risky because the more unbalanced the

classes, the greater the risk of having results biased by lack of

observation in one class.

More specifically, the classification problem’s confusion matrix

indicates how well our model classifies the target classes, and it is from

this confusion matrix that we derive the model’s accuracy, which is

determined by dividing the total number of predictions made by the

model correctly by the total number of predictions. Thus, in cases

where a class has few observations, it may be categorized as the most

popular class, potentially yielding a high accuracy score. For example,

one of the most often used parametric techniques for binary

classification is logistic regression, which is heavily biased in cases

when the classes are not balanced because it underestimates the

conditional probabilities of the rare class. To solve these problems,

many methods have been proposed in the literature, such as

oversampling, undersampling, SMOTE (Synthetic Minority

Oversampling Technique), and ROSE (Random Over-Sampling

Examples). In this paper, we chose to use the most recent ROSE

technique. It is a bootstrap-based method that helps with binary

classification when there are uncommon classes present. By creating

synthetic examples from a conditional density estimate of the two

classes, it can handle both continuous and categorical data. We

selected this approach because of the strong theoretical

underpinnings of ROSE. It also draws synthetic examples from an

estimate of the conditional density underlying the data, thus providing

confidence that the distribution of the data into the classes has not

changed because the balancement has been performed.
3 Results

In previous studies, it has been demonstrated that some of that

specific MRI features [enhancement quality (F4), tumor-enhancing
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proportion (F5), tumor–non-enhancing proportion (F6), and

necrosis proportion (F7)] can be used to predict the grade and

IDH status of gliomas, with important prognostic implications. The

standardization and improvement of these data can be used for

programming machine learning software (28).
3.1 Part 1: preliminary analysis and
relationship between GRADE/levels
and IDH

We obtained a clear relation between a negative IDH and high

GRADE. In fact, 75.2% of observations have a negative IDH and a

high grade (= 3 or 4) with a p-value of 2.2e−16 < 0.05, so the

coefficient is statistically significant. We obtained a correlation

coefficient of −0.661, meaning that these two variables are

significantly negatively correlated. The resulting confidence

interval is [−0.750, −0.550], respectively, at 2.5% and 97.5%.

These results are shown in Figure 1.
3.2 Part 2: analysis of the statistically
significant variables in the prediction of
levels/grade

We applied this model to the test set to evaluate the predictive

performances, and we obtain accuracy = 0.811, sensitivity = 0.781, and

specificity = 1, with AUC = 0.906. We proceeded with the analysis of

the statistical significance of each variable in the prediction of levels.We

obtained that variable F4 is significant with a p-value = 2.7e−10 < 0.05

with no significant differences between levels 1 and 3. For every one

unit increase in F4 = 2, the odds of being in the level = 1 (high grade)

increases by a factor of 4.699.

We calculated the predicted probabilities to be in the high-level

grades (vs. low level) at each level of F4: F4 = 3 has 100% probability

to be in the high level (grades 3 and 4), whereas the probability for

the other two levels is much lower (5% and 20%). This model has

accuracy = 0.811, sensitivity = 0.781, and specificity = 1.000, with

AUC = 0.869, which is superior to that of the first study (0.73).

Variable F5 is statistically significant with a p-value < 2e−16 <

0.05 with significant differences between levels 2 and 6 of the F5

variable and cutoff level F5 = 4.

For every one unit increase in F5 = 3, the odds of being in the

level = 1 (high grade) increases by a factor of 0.49.

F5 = 5 and F6 = 6 have a probability to be in the high level

(grades 3 and 4) of 73% and 63%, whereas the probability for the

other three levels is much lower (19%, 73%, and 63%).

This model has accuracy = 0.672, sensitivity = 0.908, and

specificity = 0.438, with AUC = 0.712.

Variable F6 is statistically significant with a p-value = 0.01409

< 0.05.

For every one unit increase in F6 = 2, the odds of being in the

level = 1 (high grade) increases by a factor of 1. We also obtained

that there is a significant difference between the F6 = 3 and F6 = 4

(p-value = 0.0049 < 0.05). We calculated the predicted probabilities
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to be in the high-level grades (vs. low level) at each level of F6:

F6 = 1, F6 = 2, and F6 = 3 have a probability to be in the high level

(grades 3 and 4) of 100%, whereas the probability for the other

levels is much lower (24.1%, 15.9%, and 0%, respectively). We can

also clearly identify a cutoff level for this variable. This model has

accuracy = 0.757, sensitivity = 0.719, and specificity = 1.000, with

AUC = 0.8969. Also, this result is superior to that of our first study.

Variable F7 is statistically significant with a p-value = 2e−16 >

0.05, but none of the levels of F7 is statistically significant. For every

one unit increase in F7 = 2, the odds of being in the level = 1 (high

grade) increases by a factor of 3.35; whereas for every one unit

increase in F7 = 4, the odds of being in the level = 1 (high grade)

increases by a factor of 3.22e+09.

Moreover, we calculated the predicted probabilities to be in the

high-level grades (vs. low level) at each level of F7: F7 = 4, F7 = 5,

and F7 = 6 have the probability to be in the high level (grades 3 and

4) of 100%; whereas when F7 = 1 and F7 = 2, the probability to be in

the high level is 8.9% and 24.6%, respectively. This model has

accuracy = 0.837, sensitivity = 0.906, and specificity 0.400, with

AUC = 0.8 (vs. an AUC of 0.738).

Variable F17 is statistically significant with a p-value = 3.634e

−05 < 0.05. Moreover, there is a significant difference between levels

F17 = 1 and F17 = 2 with a p-value of 0.017 < 0.05 and also between

F17 = 1 and F17 = 3 with a p-value of 0.0017 < 0.05. We can then

identify a cufoff in this case.

For every one unit increase in F17 = 2, the odds of being in the

level = 1 (high grade) increases by a factor of 7.71; whereas for every

one unit increase in F17 = 3, the odds of being in the level = 1 (high

grade) increases by a factor of 18.48.

We can calculate the predicted probabilities to be in the high-

level grades (vs. low level) at each level of F17: F17 = 3 has the

probability to be in the high level (grades 3 and 4) of 74%; whereas

when F17 = 1 and F17 = 2, the probability to be in the high level is

13.4% and 24.3%, respectively.

This model has accuracy = 0.840, sensitivity = 0.921, and

specificity 0.500, with AUC = 0.8.

Variables F14, F15, F18, F19, and F20 were not statistically

significant with a p-value < 0.05. These results are shown in Figure 2.
3.3 Part 3: analysis of the statistically
significant variables in the prediction of
IDH mutation

The pre-processing part is identical to the one described in part

2: We divided the dataset into train (70%) and test (30%), and, then,

we balanced the training data in such a way that we obtained 2,000

observation and perfectly balanced classes (p = 0.5). Then, we

conducted a multiple logistic regression and obtained that all the

variables are statistically significant. We then applied this model to

the test set to evaluate the predictive performances, and we obtained

accuracy = 0.88, sensitivity = 0.6, and specificity = 0.95, with AUC =

0.93. We proceed with the analysis of the significance of each

variable in the prediction of IDH. We obtained that variable F4 is

significant with a p-value = 1.9e−05 < 0.05 with a significant
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difference between F4 = 2 and F4 = 3 (p-value 8.9e−05 < 0.05). The

results of the OR have a key role in interpreting the role of the

variable. In particular, the OR column means that, for every one

unit increase in F4 = 2, the odds of having a positive IDH increases

by a factor of 0.14; whereas for every one unit increase in F4 = 3, the

odds of having a positive IDH increases by a factor of 0.0. Moreover,
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we can calculate the predicted probabilities of having a positive IDH

(vs. negative) at each level of F4: F4 = 3 has 1.2% probability of

having a positive IDH, whereas the probability for the other two

levels is higher (76.9% and 45.2%). This model has accuracy = 0.90,

sensitivity = 0.9, and specificity 0.90, with AUC = 0.904, which is

superior to that of our first study (0.73).
FIGURE 2

Through logistic regression using the dichotomous variable (high or low grade) as the response variable and F4 as the covariate, we obtained that
variable F4 is significant with a p-value = 0.000157 < 0.05. We also compared the performance of VASARI 2.0 with that of traditional VASARI in
predicting grade.
FIGURE 1

In our analysis, we obtained a clear relationship between negative IDH and high GRADE. In fact, 75.2% of the observations have negative IDH and
high grade (= 3 or 4) with a p-value of 2.2e−16 < 0.05, so the coefficient is statistically significant. We obtained a correlation coefficient of −0.661,
which means that these two variables are significantly negatively correlated. The resulting confidence interval is [−0.750, −0.550] at 2.5% and 97.5%,
respectively. Statistical analysis by contingency table, which is then confirmed by Pearson’s test, obtained a statistically significant correlation
between IDH mutation and glioma grade: In 75% of the observations, we found IDH WT and high grade.
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Variable F5 is statistically significant with a p-value = 0.04386 <

0.05 with a significant difference also between F5 = 3 and F5 = 4

with a p-value = 3.6e−11 < 0.05 and between F5 = 3 and F5 = 5 with

a p-value = 0.0077 < 0.05. Hence, we can conclude that the cutoff

level for variable F5 is F5 = 3. The OR column showed that, for

every one unit increase in F5 = 2, the odds of having a positive IDH

increases by a factor of 4.978539e−08; whereas for every one unit

increase in F5 = 7, the odds of having a positive IDH increases by a

factor of 5.524675e−16. These values are so low because F5 = 1 is

taken as baseline, where only positive values are observed.

Moreover, we calculated the predicted probabilities of having a

positive IDH (vs. negative) at each level of F5: F5 = 1, F5 = 2, and

F5 = 3 have a high probability to have a positive IDH of 100%, 67%,

and 81%, respectively, whereas the probability for the other three

levels is much lower (53.3%, 14%, and ~0%). This modes has

accuracy = 0.808, sensitivity = 0.48, and specificity 0.890, with

AUC = 0.73.

Variable F6 is statistically significant with a p-value = 5.162e−0

5< 0.05 with a significant difference between levels F3 and F4 with a

p-value of 2e−16 < 0.05 and between F5 and F6 with a p-value of

1.1e−14 < 0.05. With these results, we may identify two

different cutoffs.

The OR column showed that, for every one unit increase in

F6 = 2, the odds of having a positive IDH increases by a factor of 1;

whereas for every one unit increase in F6 = 4, the odds of having a

positive IDH increases by a of 6.704338e+08.

Moreover, we calculated the predicted probabilities to be in the

high-level grades (vs. low level) at each level of F6: F6 = 4, F6 = 5,

and F6 = 6 have the highest probability to have a positive IDH:

68.1%, 75.5%, and 97.4%, respectively, whereas the probability for
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the other levels is 0%. This model has accuracy = 0.86, sensitivity =

0.90, and specificity = 0.85, with AUC = 0.9125 (vs. AUC = 0.7648).

We obtained that variable F7 is statistically significant with a p-

value = 2.31e−06 < 0.05 and a significant difference between F7 = 3

and F4 = 4 (p-value = 0.00085 < 0.05). Another significant

difference is between F7 = 2 and F7 = 4. We can then conclude

that we have a cutoff for values higher than F7 = 3. The OR column

showed that, for every one unit increase in F7 = 2, the odds having a

positive IDH increases by a factor of 2.083333e−01. Moreover, we

can calculate the predicted probabilities to have a positive IDH at

each level of F7: F7 = 1, F7 = 2, and F7 = 3 have a probability of

having a positive IDH of 61.5%, 25%, and 21.2%, respectively,

whereas F7 = 4, F7 = 5, and F7 = 6 have a probability of having a

positive IDH mush lower: 0%. This model has accuracy = 0.740,

sensitivity = 1.000, and specificity = 0.675, with AUC = 0.835 (vs.

AUC = 0.789).

Variable F14 is barely statistically significant with a p-value =

0.0648 > 0.05 with no significant difference between the levels in

F14. The OR column showed that, for every one unit increase in

F14 = 2, the odds having a positive IDH increases by a factor of 0.25;

whereas for every one unit increase in F14 = 3, the odds of being in

the odds having a positive IDH increases by a factor of 0.625.

Moreover, we can calculate the predicted probabilities to have a

positive IDH at each level of F14: F14 = 3 has the highest probability

of having a positive IDH with the 38.5%; whereas F14 = 2, F14 = 4,

and F14 = 5 have a probability of having a positive IDHmuch lower:

20%, 8.8%, and 12.5%, respectively. This model has accuracy =

0.780, sensitivity = 0.600, and specificity 0.825, with AUC = 0.75.

Variable F17 is statistically significant with a p-value = 9.372e−06

< 0.05 and a significant difference between the levels in F17 = 1 and
FIGURE 3

Through univariate logistic regression to evaluate the influence of variables in predicting/IDH levels, we obtained that variable F6 is statistically
significant with a p-value = 0.0032 < 0.05. We also performed a Wald test on variable F6, which concluded that this variable is statistically significant
(p-value = 0.01409 < 0.05). We also compared the performance of VASARI 2.0 with that of traditional VASARI in predicting IDH status.
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F17 = 2 with a p-value of 0.00049 < 0.05. The OR column showed

that, for every one unit increase in F17 = 2, the odds having a positive

IDH increases by a factor of 0.11; whereas for every one unit increase

in F17 = 3, the odds of being in the odds having a positive IDH

increases by a factor of 0.05. Moreover, we can calculate the predicted

probabilities to have a positive IDH at each level of F17: F17 = 3 has

the lowest probability of having a positive IDH with the 8.7%;

whereas F17 = 1 has a higher probability of having positive IDH:

65%. This modes has accuracy = 0.860, sensitivity = 0.400, and

specificity 0.975, with AUC = 0.7925.

Other features, qualitative or non-statistically significant, were

not taken into account. These results are shown in Figure 3.
4 Discussion

In our study, we confirm that there is a positive statistical

evidence between some VASARI features and IDH and glioma

grade (Figure 1). The most significant variables in the prediction of

IDH are F4 (AUC: 0.904), F5 (AUC: 0.73), F6 (AUC: 0.91), F7

(AUC: 0.84), F14 (AUC: 0.75), and F17 (AUC: 0.79).

The most significant variables in the prediction of levels are F4

(AUC: 0.87), F5 (AUC: 0.7), F6 (AUC: 0.89), F7 (AUC: 0.79), and

F17 (AUC: 0.75).

The statistical significance for all the features is increased using

VASARI 2.0 compared to result obtained with traditional VASARI

ranges, demonstrating how the new proposed VASARI lexicon

promotes an increase in the sensitivity, specificity, and AUC of these

features to increase the statistical significance with AUC > 0.8 and to

make this system more suitable for clinical practice. We can

distinguish low-grade gliomas from high-grade gliomas using this

model. Numerous studies have assessed the application of the

VASARI Lexicon in the categorization of cerebral gliomas (29–34).

Due to a much more extensive destruction of the blood–brain barrier

in high-grade gliomas compared to that in low-grade gliomas, our

study, for instance, produced similar results to those in the work done

by Su et al., in which the enhancement quality and the proportion

enhancing were significantly higher in high-grade gliomas (33). High-

grade gliomas exhibit much higher cell growth proliferation. In the

context of tumor tissue, new, irregular, and aberrant vessels form very

rapidly, without an adequate blood–brain barrier, a process known as

neoangiogenesis. Newly formed vessels are much more permeable

than normal vessels. Therefore, in an MRI study after intra venous of

contrast agent, the solid tumor component appears much brighter or

“enhanced” in the resulting images, given that the contrast agent can

cross the blood–brain barrier very easily, escaping from the blood

vessels into the surrounding tumor tissue. Furthermore, areas of

necrosis can very often be found in high-grade gliomas, given that

they have a very high rate of proliferation and cell growth, which is

associated with an inadequate blood supply. These necrotic

phenomena, therefore, contribute to the breakdown of the blood–

brain barrier, allowing a greater leakage of contrast agents into the

tumor tissue and promoting greater further enhancement (31, 32). In

high-grade gliomas, there are often infiltrative lesional margins in the

surrounding healthy tissue. In MRI, all this appears as an area of

pathological alteration of the signal intensity, with hyperintensity in
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the Fluid Attenuated Inversion Recovery (FLAIR)-weighted

sequences, much larger and more extensive than the pathological

area visible on the T1-weighted MRI sequences. Our study supports

this theory by showing that the infiltrative T1/FLAIR ratio has a high

predictive value for glioma grade (OR = 41.99, p = 0.001). The fast and

uncontrolled phenomenon of neoangiogenesis is indirectly indicated

by the presence of hemorrhagic components and necrosis in the

context of high-grade gliomas. The newly created blood vessels are

easily injured and do not have an unevenmorphology, which results in

bleeding. In our study, the presence of necrosis was a strong predictive

factor with an OR of 13.57 (p < 0.001) for high-grade glioma, a result

that is consistent with previous research findings (30–34).

In our study, we found that edema proportion was a significant

factor. These findings, in line with other recent studies, highlight

that mass effect is an important predictor of astrocytoma grade.

Tumor perilesional cerebral edema correlates with the WHO

pathological grading as recently demonstrated (35). Measuring

areas of non-enhancing tumor have been highlighted by The

Response Assessment in Neuro-Oncology Working Group (36).

Astrocytomas represent very heterogeneous neoplasms. The

component characterized by contrast enhancement does not

always contain anaplastic parts, unlike the component without

contrast enhancement, which often contains both anaplastic parts

and low-grade parts. The evaluation of the nCET component,

therefore, is very important both in the diagnosis and in the

follow-up to better assess the therapeutic monitoring of

astrocytoma. However, understanding the real extent of a high-

grade astrocytoma by evaluating the nCET proportion is very

difficult given the extremely heterogeneous nature of the tumor

and the extreme difficulty in delineating its peripheral margins. In

reality, all this represents a false dichotomy, given that, in

infiltrating gliomas, there is an “infiltrative edema,” consisting of

tumor cells and edema in the background of the brain.

Furthermore, even with the use of sophisticated techniques like

T2 mapping, diffusion tensor imaging, and perfusion imaging, it

remains difficult to differentiate pure vasogenic edema from

infiltrative edema. In this work, using multivariate analysis based

on VASARI, we showed that nCET percentage was a predictive

factor of grade 4 astrocytoma. The new classification of tumors of

the central nervous system published in 2021 highlights the

importance of evaluating the molecular status, particularly, and

first of all, the IDH mutation. Usually, one of the two IDH genes,

IDH1 and IDH2, is affected by the mutation. The mutation most

frequently found in gliomas is that affecting the IDH1 gene.

Typically, a specific mutation (R123H) occurs that causes a

single–amino acid change in the active enzyme site. The mutated

IDH enzyme promotes the conversion of alpha ketoglutarate into 2-

hydroxyglutarate, an oncological metabolite that induces cancer

formation (6). The presence of the IDH mutation is associated with

a significantly better prognosis compared to IDH–wild-type

gliomas, and its identification is, therefore, very important for the

classification of cerebral gliomas and for clinical therapeutic

management. In our study, six VASARI features were found to

predict IDH mutation status: F4, enhancement quality (AUC:

0.904); F5, tumor-enhancing proportion (AUC: 0.73); F6, tumor–

non-enhancing proportion (AUC: 0.91); F7, necrosis proportion
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(AUC: 0.84); F14, proportion of edema (AUC: 0.75); and F17,

diffusion characteristics (AUC: 0.79). Our study confirms the results

of our recently published study for VASARI characteristics and

demonstrates an increase in their diagnostic accuracy, especially

regarding F4 and F6 with an AUC value greater than 85%, in line

with the ESR statement on the validation of imaging biomarkers

(European Society of Radiology, 2020). Olar et al. identified a

significant correlation between proportion of enhancing tumor

and IDH mutation. In the study, the researchers studied the role

that the IDHmutation may have in the grading and mitotic index in

grade II–III diffuse astrocytomas, and their results demonstrated

that the IDH mutation determines the effect of mitotic index on

patient outcome (37, 38). IDH–wild-type gliomas usually have a

higher contrast enhancement than IDH-mutant gliomas (39–43),

and IDH wild-type gliomas have undefined margins (44). Weighted

FLAIR sequences are very useful for evaluating areas with

pathological signal intensities. In the case of IDH–wild-type

gliomas, the areas with pathological signal hyperintensity in the

weighted FLAIR sequences, which extend beyond the margins of

enhancement, usually represent the infiltrative edema component,

characterized by the presence of infiltration of tumor cells in the

peripheral tissue (31). Using multivariate analysis, we discovered

that, in our cohort, the percentage of necrosis accurately predicts

the status of IDHmutation. In our investigation, necrosis accounted

for less than 25% of the total tumor volume in IDH-mutant cohorts

and more than 50% in IDH-wild phenotypes. These results support

the conclusions of multiple investigations. IDH-mutants were

frequently linked to a cutoff necrosis of less than 33% of the

tumor, according to Park et al. (45). Excessive tumor necrosis in

IDH–wild-type gliomas is determined by increased hypoxia, which

is brought on by intravascular thrombosis and the coagulation

pathway activation (45–47). Furthermore, our results highlight two

other VASARI features that can be used in the prediction of IDH

status, which were not highlighted in our recently published work,

namely, F14 (proportion of edema) and F17 (diffusion

characteristics). In IDH-mutant gliomas, absent edema or edema

with an extension smaller than that of the solid tumor component

was found; whereas in IDH–wild-type gliomas, the extension of the

edematous alteration was greater than or equal to the volume of the

tumor. Similar results were documented in the studies by Lasocki

et al. (40) and Patel et al. (48). Lasocki et al. found a cutoff value of

33% to distinguish IDH-mutant gliomas from IDH–wild-type

gliomas. Furthermore, the presence of cysts was documented

more frequently in IDH-mutant gliomas, in line with other

published studies (49). In several other studies, IDH-mutant

gliomas had higher average ADC values than IDH–wild-type

gliomas, underlining that their edematous component is usually

less infiltrative and destructive (50–54). Nowadays, the main

attraction of the scientific interest is radiomic and machine

learning that has been applied to tumor grading and diagnosis,

tumor segmentation, non-invasive genomic biomarker

identification, detection of progression, and patient survival

prediction. It has been suggested that machine learning models

are capable of more accurate prognosis prediction than
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histopathological categorization. These considerations could be

the starting point for subsequent studies. The standardization and

improvement of these data can be used for programming machine

learning software (55). In the field of brain tumor, interest in

machine learning methods is increasing, especially in diagnosis

and pre-surgery planning though un-invasive histopathological

categorization. Radiomics may be able to determine a tumor’s

response to treatment, make an accurate diagnosis, and forecast a

prognosis (56). In addition to offering extra prognostic data,

radiomic analysis’ ability to non-invasively differentiate between

various glioma molecular subtypes would aid in the choice of

targeted chemotherapy for patients with numerous genetic

mutations and possibly high-grade tumor types (57–59).

Additionally, it would improve surgery, which is necessary to

maintain median survival (60). Therefore, treatment responses,

progression-free survival, and overall survival can all be more

accurately predicted with the application of radiomic risk models

(61, 62). It is possible to evaluate the effectiveness of anti-angiogenic

therapy without endangering the patient by non-invasively

acquiring the radio-genomic profile of a tumor (63). Our study

has some limitations that need to be clarified and discussed: a single

retrospective center study and a small sample size. This would not

allow a validation of the new VASARI 2.0 method proposed by use

on a large scale quickly. However, the number of cases is in line with

for the type of analysis described. Future studies with multi-center

data or larger cohorts needed for a full validation of the new

VASARI lexicon that we proposes, in order to eliminate the risk

of data bias, which could affect the generalizability of the study

results. However, there are also strong points for the use of the

proposed VASARI 2.0 lexicon in daily clinical radiological practice.

It does not require specific software to automate the scoring process.

There are methodological innovations in the evaluation of the MRI

VASARI features, thanks to adequate changes in the reference

intervals as reported in Table 1. Familiarization with this new

lexicon is easy. It can be easily used in daily clinical practice also

because it can be of valid help in capturing the most salient aspects

to be described in the report. It can represent a valuable tool for

producing a structured and standardized report with the aim of

offering with simplicity and clarity all the salient information

needed by the neuro-oncology core group (oncologist,

radiotherapist, neurosurgeon, and neuoradiologist). It would be

desirable to conduct a large-scale multi-center study to then draft a

new VASARI lexicon guide based on the validation results.
5 Conclusion

The evaluation of gliomas with modified ranges/score of

VASARI 2.0 allows the prediction of the outpoint (IDH status

and grade) with AUC > 0.8, higher than that of traditional VASARI.

Thus, the new score could be used in pre-surgical evaluation of

gliomas in a method both suitable with clinical practice and that can

also be the starting point for subsequent studies of radiomics and

machine learning.
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Early characterization and
prediction of glioblastoma and
brain metastasis treatment
efficacy using medical imaging-
based radiomics and artificial
intelligence algorithms
Noémie N. Moreau1,2, Samuel Valable2, Cyril Jaudet1,
Loïse Dessoude3, Leleu Thomas3, Romain Hérault4,
Romain Modzelewski5,6, Dinu Stefan3, Juliette Thariat3,7,
Alexis Lechervy4 and Aurélien Corroyer-Dulmont1,2*

1Medical Physics Department, Centre François Baclesse, Caen, France, 2Université de Caen
Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France, 3Radiation
Oncology Department, Centre François Baclesse, Caen, France, 4UMR GREYC, Normandie Univ,
UNICAEN, ENSICAEN, CNRS, Caen, France, 5LITIS - EA4108-Quantif, University of Rouen,
Rouen, France, 6Nuclear Medicine Department, Henri Becquerel Center, Rouen, France, 7ENSICAEN,
CNRS/IN2P3, LPC UMR6534, Caen, France
Among brain tumors, glioblastoma (GBM) is the most common and the most

aggressive type, and brain metastases (BMs) occur in 20%–40% of cancer

patients. Even with intensive treatment involving radiotherapy and surgery,

which frequently leads to cognitive decline due to doses on healthy brain

tissue, the median survival is 15 months for GBM and about 6 to 9 months for

BM. Despite these treatments, GBM patients respond heterogeneously as do

patients with BM. Following standard of care, some patients will respond and

have an overall survival of more than 30 months and others will not respond and

will die within a few months. Differentiating non-responders from responders as

early as possible in order to tailor treatment in a personalized medicine fashion to

optimize tumor control and preserve healthy brain tissue is the most pressing

unmet therapeutic challenge. Innovative computer solutions recently emerged

and could provide help to this challenge. This review will focus on 52 published

research studies between 2013 and 2024 on (1) the early characterization of

treatment efficacy with biomarker imaging and radiomic-based solutions, (2)

predictive solutions with radiomic and artificial intelligence-based solutions, (3)

interest in other biomarkers, and (4) the importance of the prediction of new

treatment modalities’ efficacy.
KEYWORDS

Glioblastoma (GBM), machine learning (ML), brain tumors, artificial intelligence,
treatment efficacy, medical imaging, radiotherapy
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Introduction

Brain tumors are highly heterogeneous neoplasms not only

from a histological point of view but also from an intratumor

temporal and spatial perspective.

Despite treatments including surgery, chemotherapy and

radiotherapy patients with brain tumors respond heterogeneously.

The same treatment will result in different treatment outcomes.

Treatment efficacy is currently evaluated using anatomical MRI

several months after treatment initiation. Differentiating non-

responders from responders as early as possible in order to tailor

treatment in a personalized medicine fashion to optimize tumor

control is the most pressing unmet therapeutic challenge.

In this review, we will provide an overview of current research on

treatment response assessment for a very aggressive and brain tumor

called glioblastoma (GBM) and for a frequent brain tumor: brain

metastasis (BM). To provide a clear structure and taxonomy of the

reviewed literature, we have categorized the studies into the

following sections:

Introduction:
Abbr

brain

gliob

UNE

Fron
• Overview of brain cancer and the therapeutic challenge of

early characterization and prediction of treatment response.
Early characterization of brain cancer treatment efficacy:
• Review of studies using functional imaging biomarkers with

MRI, PET, and CT with intensity thresholding for early

detection in the days after treatment initiation.
Prediction of treatment response:
• Brief introduction to radiomics and its potential in medical

imaging and treatment response assessment.

• Studies utilizing radiomics for extracting quantitative

features from clinical routine MRI as input for predicting

treatment response in brain cancer patients before

its initiation.

• Brief introduction to AI and its potential in medical

imaging and treatment response assessment.

• Research on various machine learning (ML) algorithms

[e.g., support vector machines (SVMs), random forests,

and neural networks] and studies using deep learning

(DL) techniques, such as convolutional neural networks

(CNNs), recurrent neural networks (RNNs), and

transformers to predict treatment outcome before

its initiation.
Challenges and future directions for assessment of new

treatment efficacy.
eviations: AI, artificial intelligence; AUC, area under the ROC curve; BM,

metastasis; CNN, convolutional neural network; DL, deep learning; GBM,

lastoma; ML, machine learning; SVM, support vector machine; UNETR,

t Transformer.
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Following the structure of the research and the taxonomy above, in

this review, we will firstly focus on early characterization, which

involves evaluation shortly after treatment initiation and mainly

relies on imaging biomarkers/readouts. We will then focus on the

ability to predict treatment efficacy before its initiation using radiomics

and new innovative approaches using artificial intelligence (AI)

(Figure 1). AI aims to mimic human intelligence through algorithms

executed in a computer environment. AI algorithms are increasingly

being studied in the field of medical imaging, whether for image

processing, diagnosis, or the prediction of patient prognosis (1). One of

the benefits of AI is its ability to handle large datasets and extract

relevant information that is difficult to obtain through human

intelligence. For those reasons, more important focus was made on

AI solutions.
Article selection methodology

Databases: We conducted a comprehensive search using

multiple databases, including PubMed, Web of Science, and

Google Scholar. The search terms used were “Artificial

Intelligence,” “radiomics,” “brain cancer,” “treatment response,”

“glioblastoma,” “brain metastases,” “prediction,” “machine

learning,” “deep learning,” and related synonyms.

Time frame: We considered articles published from January

2012 to the present to ensure the inclusion of the most

recent advancements.

Selection process: Articles were selected based on their novelty,

number of patients, unique or multicenter approaches, and

relevance to the therapeutic challenge.

Study design: We included original research articles and review

papers; no case studies were included.

Quality: Only peer-reviewed articles from reputable journals

and conferences were considered to ensure the reliability and

validity of the findings.

Data extraction: Relevant data, including study design, novelty

of the AI techniques used, outcomes, and limitations, were extracted

from each selected article.
Current management of brain tumors

GBM is the most common and most aggressive primary brain

tumor. Despite treatments including surgical resection,

radiotherapy, and chemotherapy, the overall survival remains low

(survival median of 15 months) with a high rate of tumor

recurrence (2). While GBM has an incidence of 3.22 per 100,000

(3), BMs affect 20% to 40% of cancer patients (4) and represent the

most common primary tumor with an incidence 3 to 10 times

higher than primary brain tumors (5). BMs occur more frequently

in patients with melanoma, lung cancer, or breast cancer (70%, 40%,

and 20%, respectively (6)). As for GBM, despite aggressive

treatment with radiotherapy and surgery that often led to

cognitive decline due to healthy brain tissue dose toxicity, the
frontiersin.org
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survival median for patients with BM is very short and is about 6 to

9 months from the diagnosis of BM (7).
Therapeutic challenges

Patients with GBM (as well as patients with BM) present

heterogeneous treatment responses (8). For the standard treatment

(corresponding to surgery plus Stupp regimen), some GBM patients

(a minority) are responders and present overall survival higher than

30 months and others are non-responders and die in few months (9).

The pressing unmet therapeutic need is to be able to discriminate as

soon as possible the non-responder patients from the responders to

adapt treatment in a personalized medicine manner to optimize

tumor control as well as healthy brain tissue preservation.

The process of evaluating therapeutic response is similar for

GBM and BM. The assessment is mainly based on response

evaluation criteria in solid tumors (RECIST) (10) and response

assessment in neuro-oncology (RANO-BM) (11) criteria, which

evaluate the evolution of lesion size on anatomical MRI, at different

times after the treatment.

However, the issue is that assessment of the efficacy or non-

efficacy of therapies, using conventional anatomical MRI, is only

possible approximately 2 months after the beginning of treatment

(12). Indeed, there is too much pseudoprogession or inflammatory

response before and anatomical MRI is only able to reach the

morphological aspect of the tumor. Focusing on other imaging

biomarkers that are more specific to tumor biology could help

shorten this wasted time, allowing for earlier assessment of

treatment efficacy (13).
Frontiers in Oncology 0374
Subsections relevant for the subject

Early characterization of treatment efficacy

Biomarker imaging-based solutions
As shown in Table 1A, several publications have explored which

imaging biomarkers might be more effective than anatomical MRI in

predicting early therapeutic response (chemotherapy combined with

anti-angiogenic therapy) and overall survival in patients with GBM and

recurrent GBM at the clinical and preclinical level. Li and colleagues

(14) have shown, on patients, that [18F]-AlF-NOTA-PRGD2 PET/CT

([18F]-RGD PET/CT) and dynamic contrast-enhanced MRI (DCE-

MRI) can assess response to treatment, demonstrating that a greater

decrease in SUV mean predicts better progression-free survival.

Magnetic resonance spectroscopy (MRS) can predict early treatment

efficacy. Talati et al. (15) performed a longitudinal MRI/MRS to study

whether changes in N-acetylaspartate (NAA)/Choline (Cho) and

Lactate (Lac)/NAA from different times after treatment can predict

early therapy failures. Changes noted in metabolic levels of NAA/Cho

and Lac/NAA were able to predict treatment failure as early as 1 day

after anti-angiogenic treatment. This is in accordance with the review

made by Qi and colleagues (16), who showed the different modalities

and biomarkers that enable early characterization of therapeutic

efficacy. At the preclinical level, Corroyer-Dulmont et al. have shown

that [18F]-fluoro-thymidine ([18F]-FLT PET) (marker of cell

proliferation), compared with other PET {[18F]-fluorodeoxyglucose

([18F]-FDG PET)} or MRI biomarkers, can characterize treatment

efficacy from 3 days after treatment initiation, at a time when

anatomical MRI shows no differences (17). Predicting treatment

efficacy in recurrent GBM is also an important therapeutic challenge.
FIGURE 1

The challenge of early characterization in predicting therapeutic efficacy in glioblastoma and brain metastases.
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One clinical study and one preclinical study have shown the

importance of using [18F]-FLT PET to predict progression-free

survival and overall survival in recurrent GBM (18, 19).

However, early characterization has a limitation. Even if it is

effective, the patient has already undergone treatments (radiotherapy

and chemotherapy) and may be exposed to their side effects (20).

The recent development of innovative computer techniques

such as radiomics or more recently AI could lead to predict

treatment effectiveness before its initiation. This will lead to a

more personalized medicine where non-responder patients will

gain precious months without undergoing an unnecessary costly

treatment that could potentially lead to adverse effects (21).
Predictive solutions

Radiomic-based solutions
The term “radiomics” first appeared in literature in 2012 through

an article published by Lambin et al. (22). This approach, focused on

medical imaging data, aims to extract a large set of features from an

image for a better characterization of tumor. Radiomic protocols

require the following six steps: image acquisition, image

reconstruction and pre-processing, segmentation, resampling,

features extraction, and features selection and model-based feature

construction (23). Because of these various steps, the use of radiomics

aims to be potentially predictive compared to imaging biomarker

analyses based on basic features such as mean or peak intensity.

Image characteristics are subjected to a more in-depth analysis,

making the features more relevant for prediction, and

consequently, the results are more effective. Radiomics models are

capable of predicting therapeutic response or overall survival (23).

In that context, the use of radiomics to develop models capable

of predicting treatment response prior to brain tumor treatment

initiation has been explored in several studies.

One of these studies (24) investigated the extraction of radiomic

features from post-treatment MRI in patients with BM to predict local

tumor control with an estimation of the tumor volume percentage

compared to pre-treatment and overall survival with 256 and 237

patients, respectively. Three models were constructed through the

training of SVMs using a Gaussian kernel and Bayesian optimization

for hyperparameter tuning: (i) clinical features (age, gender overall

survival, numbers of tumors, local tumor control, and median dose),

(ii) radiomic features, and (iii) combined clinical and radiomic features.

For both prediction objectives, the model combining clinical and

radiomic features achieved very interesting performances with an

area under the receiver operating characteristic curve (AUC) of 0.95

for local tumor control and 0.82 for overall survival.

Furthermore, a clinical study (25) was conducted to predict

survival stratification of 125 patients with GBM. Radiomic features

were extracted from MRI images. Among the three tested ML

models, the SVM model demonstrated the best performance, with

an AUC of 0.92.

Table 1B (24–28) summarizes several studies on the prediction of

treatment response based on radiomics obtained from pre-treatment

imaging. In all studies, the AUC is between 0.62 and 0.95. All these

studies highlighting combining radiomic features with clinical
Frontiers in Oncology 0475
features enhance prediction performance. However, radiomics has

some limitations for routine clinical application. Most published

studies have a relatively small patient cohort especially for GBM.

However, to develop effective models, a sufficiently large training and

test set is mandatory (29). Because of its complexity, radiomics

presents the challenge of low interpretability of the features and

models used, raising caution among physicians regarding the use of

radiomics models in clinical settings (30). Beyond these points, the

main limitation of radiomics remains the low stability and inter-

hospital portability of the models (29). To resolve to this challenge,

initiatives like the “Imaging Biomarker Standardization Initiative

(IBSI)” (31) have been developed to complement radiomic features

extraction; however, the robustness of these predictive models

remains an issue before their adoption as a standard of care as

shown by Peerlings and colleagues (32) for diffusion MRI or CT (33)

or even for Test–Retest in PET imaging (34).

Therefore, it is timely to explore more innovative current

developments in AI that may enable predictive characterization of

treatment efficacy. DL is known to be able to extract more complex

and a larger number of features in medical imaging than radiomics,

which could lead to better performance (35).

Artificial intelligence-based solutions
Several studies have evaluated the use of AI algorithms to assess the

therapeutic efficacy of GBM and BM. A clinical study (36) involving

124 patients with BM developed a CNN-based architecture to extract

features from each MRI slice to predict the outcome of local control/

failure in BM treated with stereotactic radiation therapy. A CNN is a

type of DL neural network specifically designed to process structured

data arrays, such as images. They integrated an InceptionResentV2

CNN architecture and a transformer (to consider spatial dependences

between MRI slices during modeling). Depending on the mechanism

of integration of information from each MRI slice, the AUC ranged

from 0.72 to 0.86. The best performance was obtained with the

combination of DL features obtained from anatomical MRI with

clinical variables (tumor size, age, gender, tumor location, histology,

total dose, previous WBRT, and number of BM).

In a study including 30 patients (15 with low-grade glioma and 15

with GBM), Vollmuth et al. (37) demonstrated that AI using artificial

neural network (ANN) for brain and then tumor segmentations has

the potential to provide a more reproducible and standardized

assessment of treatment response on MRI compared to manual

two-dimensional measurements of tumor burden using RANO

criteria. Time to progression (TTP) was initially evaluated

according to RANO criteria based on MRI and then revaluated by

incorporating additional information from AI-enhanced MRI

sequences that describe longitudinal changes in tumor volume. The

inter-observer concordance correlation coefficient (CCC) for TTP

measurements was 0.77 using the RANO criteria alone. With the

addition of AI, the CCC increased to 0.91. This improvement was

most observed in patients with low-grade gliomas (0.70 without AI

vs. 0.90 with AI). Because of the less aggressive nature of these

tumors, reliable assessment of TTP can be more difficult.

In a previous study, Luckett et al. (38) show a good performance

with an accuracy of 90.6% in classifying survival (<1 year, 1–2 years,

and >2 years), employing a deep feedforward CNN comprising three
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TABLE 1 Biomarker imaging-based solutions for the early characterization of treatment efficacy (A), radiomic-based solutions for treatment efficacy
prediction (B), and AI-based solutions for treatment efficacy prediction (C).

Table 1A Biomarker imaging-based solutions for the early characterization of treatment efficacy.

Studies Cohorts (n) Tumor type Treatment Imaging
modality

Imaging
schedule

Outcome
prediction

Results Reference

Clinical 20 patients GBM Anti-angiogenic
(Bevacizumab)
plus conventional
radiotherapy and
chemotherapy
(Temozolomide)
(CRT)
Adjuvant
chemotherapy
(Temozolomide)
plus anti-
angiogenic
(Bevacizumab)

18F-RGD PET/
CT
DCE-MRI

Before CRT
Before anti-
angiogenic
Seven weeks after
anti-angiogenic

Treatment
efficacy

Prediction of
response to
treatment after
3 weeks

(14)

Clinical 33 patients Recurrent GBM Anti-angiogenic
(Bevacizumab)
monotherapy or
combination
therapy

MRI/MRS
(NAA/Cho and
Lac/NAA)

1 day and 2, 4, 8,
and 16 weeks
after treatment

Treatment
efficacy

Prediction of
treatment failure
to therapy 1 day
after treatment

(15)

Preclinical 25 rats and
29 rats

GBM
(U87 and U251:
human cell line)

Chemotherapy
(Temozolomide),
anti-angiogenic
(Bevacizumab),
or both

Anatomical MRI
Diffusion MRI
CBV MRI
[18F]-[FLT] PET
[18F]-FDG PET

5, 10, or 12 days
after treatment

Treatment
efficacy

[18F]-FLT was
more predictive:
3 days after
initiation
treatment

(17)

Preclinical 49 rats Recurrent GBM
(Human U251
cell line)

Chemotherapy
(Temozolomide),
anti-angiogenic
(Bevacizumab),
or both

Anatomical MRI
Diffusion MRI
CBV MRI
[18F]-[FLT] PET
[18F]-FDG PET

3, 10, and 17
days
after treatment

Treatment
efficacy

[18F]-FLT was
more predictive:
3 days after the
end of treatment

(18)

Clinical 30 patients Recurrent
malignant glioma

Chemotherapy
(Temozolomide)
and anti-
angiogenic
(Bevacizumab)

Anatomical MRI
[18F]-FLT PET

MRI: 6 weeks
after treatments
PET: 1 to 5 days
and at 2 and 6
weeks
after treatments

Treatment
efficacy

[18F]-FLT can be
used to
determine the
treatment
efficacy 2 weeks
after treatments

(19)
F
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CBV, cerebral blood volume; Cho, choline; CRT, radiotherapy and temozolomide; CT, computed tomography; DCE, dynamic contrast-enhanced; [18F]-FDG, [18F]-fluorodeoxyglucose; [18F]-
FLT, [18F]-fluoro-thymidine; GBM, glioblastoma; Lac, lactate; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAA, N-acetylaspartate; PET, positron emission
tomography; [18F]-RGD, [18F]-AlF-NOTA-PRGD2.
TABLE 1B Radiomic-based solutions for treatment efficacy prediction.

Studies Cohorts (n) Tumor
type

Treatment(s) Imaging
modality

Features
numbers

Models Outcome
prediction

Results Reference

Clinical 237 patients BM Gamma knife
radiosurgery
(GKRS)

MRI Clinical: 5
Radiomic: 4

SVM Overall survival Radiomics and clinical
features combination
(AUC = 0.82,
Acc = 0.80,
Sens = 0.77, Spe = 0.81)

(24)

Clinical 256 patients BM GKRS MRI Clinical: 5
Radiomics: 5

SVM Local tumor control Radiomics and clinical
features combination
(AUC = 0.95, Acc =
0.89, Sens = 0.87,
Spe = 0.91)

(24)

Clinical 125 patients GBM Radiotherapy and
concomitant
chemotherapy
(Temozolomide)

MRI Clinical: 6
Radiomics:
21

RF,
SVM, LR

Survival
stratification

Radiomics and clinical
features combination
(AUC = 0.92)

(25)

Clinical 76 patients GBM Chemoradiotherapy MRI Clinical: 2
Radiomics: 6

Naïve
Bayes

Distinction in early
true progression

Radiomics and clinical
features combination

(26)

(Continued)
ontiersin.org

https://doi.org/10.3389/fonc.2025.1497195
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Moreau et al. 10.3389/fonc.2025.1497195
hidden layers with eight neurons in each layer to predict patient

survival in a cohort of 133 individuals. Ortega-Martorell and colleagues

also showed a good performance of one-dimension CNN in a

preclinical study to track therapy response in GBM (39). The 1D-

CNN performed better than different ML models, showing the

superiority of DL methods.

Our review of the literature reveals that the CNN exhibits

superior performance. Although the architecture is not novel, it is

particularly suited to medical imaging and currently offers the most

effective means of predicting treatment efficacy (40).

Table 1C (36–39) summarizes several studies on the prediction

of treatment response based on AI algorithms from pre-treatment

MRI. As in the radiomics-based studies, the best performance is

achieved by combining imaging data with clinical information.
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Many studies applying AI in this field are based on relatively

small data cohorts (less than 100 for GBM). However, a large data

cohort is essential for optimal training of AI models (41).

Centralizing a large amount of data in a single center can be

challenging, and the performances of models are not always

transferable between centers. Federated learning (42) addresses

this issue by enabling learning from distributed data without

transferring it between sites. Federated learning is a DL

paradigm in which a model is trained across multiple

decentralized devices or servers located in various medical

centers, each holding local data samples, without the need to

exchange the raw data. The only parameters shared among the

different hospitals are the model parameters, not the raw

medical data.
TABLE 1B Continued

Studies Cohorts (n) Tumor
type

Treatment(s) Imaging
modality

Features
numbers

Models Outcome
prediction

Results Reference

between
pseudoprogression

(AUC = 0.80,
Acc = 0.737,
Sens = 0.78, Spe = 0.67)

Clinical 337 patients BM SRS MRI Clinical: 4
Radiomics:
223

GNB,
kNN, RF,
AB,
SVM,
MLP

Treatment response Best classifier: SVM
Radiomics and clinical
features combination
(AUC = 0.95)

(27)

Clinical 87 patients BM Stereotactic
radiosurgery (SRS)

MRI Clinical: 3
Radiomics: 9

RF Local tumor control Radiomics and clinical
features combination
(AUC = 0.79)

(28)
fr
AB, adaptive boosting; Acc, accuracy; AUC, area under the ROC curve; BM, brain metastasis; GBM, glioblastoma; GKRS, gamma knife radiosurgery; GNB, Gaussian naïve Bayesian; kNN, k-
nearest neighbors; LR, logistic regression; MLP, multilayer perceptron; MRI, magnetic resonance imaging; RF, random forest; Sens, sensitivity; Spe, specificity; SRS, stereotactic radiosurgery;
SVM, support vector machine.
TABLE 1C AI-based solutions for treatment efficacy prediction.

Studies Cohorts (n) Tumor
localization

Treatment Imaging
modality

Models Outcome
prediction

Results Reference

Clinical 124 patients BM Stereotactic
radiation
therapy (SRT)

MRI MLP/Clinical
features
CNN + Seq2Seq/
Transformers/LSTM
CNN + Seq2Seq/
Transformers/LSTM
+ clinical features

Local tumor control CNN + LSTM +
clinical features
(AUC = 0.86, Acc =
0.83, Sens = 0.77,
Spe = 0.87)

(36)

Clinical 30 patients Gliomas
(15 GBM)

/ MRI HD-GLIO-XNAT
(https://github.com/
NeuroAI-HD/HD-
GLIO-XNAT)

Evaluate whether AI-
assisted decision
support provides a
more reproducible
and standardized
assessment of
response to treatment
compared to manual
measurements using
RANO criteria

Lower-grade gliomas
(CCP = 0.77 for
RANO and 0.91
with AI)

(37)

Clinical 133 patients GBM / MRI ANN with
clinical features

Survival classification Cross validation:
Acc = 0.91

(38)

Preclinical 28 mice GL261 Chemotherapy
(Temozolomide)

MRI/MRS 1D-CNN, LR, SVM,
RF, XGBoost

Therapy
response assessment

1D-CNN (Acc =
0.9975, Sens = 0.99,
Spe = 0.99)

(39)
Acc, accuracy; AI, artificial intelligence; AUC, area under the ROC curve; BM, brain metastasis; CCP, concordance correlation coefficients; CNN, convolutional neural network; GBM,
glioblastoma; LR, logistic regression; LSTM, long short-term memory; MLP, multilayer perceptron; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; RANO, response
assessment in neuro-oncology; RF, random forest; Sens, sensitivity; Spe, specificity; SRS, stereotactic radiosurgery; SVM, support vector machine; XGBoost, extreme gradient boosting.
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In addition, AI methodology is constantly evolving and new

architectures appear every year. The models we have presented in

this review give an overview of what is being done today, but new

architectures such as diffusion models or full transformers should

be more present in the years to come. One example is the UNEt

TRansformer (UNETR) (43), which adapts the CNN encoder/

decoder models proposed by UNET to transformer architectures

in order to process sequential representations of the input volume

more efficiently. Transformers are a type of AI model designed to

efficiently process sequential data, such as text. Functional imaging

such as proliferation index or other indicators is more relevant for

assessing therapeutic efficacy (17). To our knowledge, no study

involving AI models uses functional imaging biomarkers for

predicting GBM efficacy as all the articles reported in this review

used clinical routine anatomical MRI. However, in other cancers

with radiomic models, Knuth and colleagues as well as Zhang and

colleagues support the add value of function biomarkers in

comparison to anatomical MRI in rectal (44) and breast cancers,

respectively (45).

Opting for more functional imaging biomarkers instead of

anatomical MRI could potentially improve AI performance in

predicting treatment efficacy.

It is important to note that current studies were based on 2016

WHO classification rather than the 2021 one. To the best of our

knowledge, no study has yet evaluated the potential of AI models to

predict treatment outcomes of GBM according to the WHO 2021

classification. These models may not fully reflect current standards and

advancements in the field, potentially leading to biases in predictions.

However, current performances of the AI models to predict treatment

outcome are still valid if they do not take into account the grade of the

tumor, for example, if the input data only take the pre-treatment MRI.

If the model is capable of predicting the treatment outcome of a brain

lesion on an MRI, it should still be able to do so regardless of whether

the brain lesion is designated as a GBM or a grade 4 astrocytoma

Therefore, it is essential to incorporate recent classifications to ensure

that AI models are aligned with best clinical practices and provide

reliable and relevant recommendations.
AI models to distinguish pseudo-
progression to recurrence

For patients with GBM treated in accordance with the established

standard protocol, the prevalence of pseudoprogression is estimated to

range between 20% and 30%. This phenomenon typically manifests

within 1 to 12 weeks following the conclusion of treatment and is

distinguished by an increase in tumor volume and the emergence of

new lesions discernible on magnetic resonance imaging (MRI) (46).

This represents a significant challenge in clinical routine, as it

complicates the assessment of treatment response and may impact

therapeutic decis ion-making. Dist inguishing between

pseudoprogression and tumor recurrence is essential for optimal

patient management, but this differentiation requires a significant

amount of imaging. The acquisition of earlier information on

potential pseudoprogression could enable treatment to be adapted
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more rapidly. Several studies have shown that radiomics and AI

could be pertinent tools to predict pseudoprogression. Sun et al.

(47) evaluated the diagnostic performance of ML models using a

radiomic model based on contrast-enhanced T1-weighted MRI to

differentiate pseudoprogression from true progression after

standard treatment for 77 patients. The classifier demonstrated

limited results with a sensitivity of 78.36% and a specificity of

61.33%. Another study (48), based on 78 patients with GBM,

developed a CNN combined with an LSTM to differentiate

anatomical MRI pseudoprogression from progression. The AUC

results of the three trained models ranged from 0.52 to 0.83. The

model that demonstrated the highest performance was the one that

combined both MRI data and clinical features including age at the

time of surgery, gender, methylation status of the 06-

methylguanine-DNA-methyltransferase (MGMT) promoter,

mutational status of the isocitrate dehydrogenase (IDH) gene, the

total dose and number of fractions of radiotherapy, and other

factors. Moassefi and colleagues (49) developed a DL model to

distinguish pseudoprogression from true progression for 124

patients, using only clinical routine MRI. The model achieved a

mean accuracy of 76.4%, a mean AUC of 0.76, a mean sensitivity of

88.72%, and a mean specificity of 62.05%.

An article using nuclear medicine imaging shows that radiomics

based on FET-PET was able to differentiate tumor progression from

pseudoprogression (50).Kebir et al. usedFET-PET images in 14patients

and applied an unsupervised clustering algorithm for the diagnosis of

pseudoprogression, achieving a diagnostic accuracy of 75%.

These studies demonstrate that it is possible to predict

pseudoprogression at a relatively early stage, which could

potentially optimize patient management. However, it is

important to note that (1) performances of the models are limited

with a specificity and a sensitivity of approximately 0.7 to 0.8 and

(2) none of these studies have explored the prediction of

pseudoprogression using pre-treatment imaging, highlighting a

significant area for future research.
Interest in other biomarkers

This review focuses on the relevance of imaging biomarkers and

the use of radiomics and AI based onMRI before and after treatment.

However, molecular biomarkers can also be used to characterize

therapeutic efficacy and overall survival. One such molecular

biomarker is the methylation status of MGMT (51). The 1p/19q

codeletion and loss of chromosome 10 are also predictive of

therapeutic response (52). Although these biomarkers are used in

routine clinical practice, the cost of testing, limited resources, and

analysis time may be limiting factors for some patients (53). In

contrast, MRI and RT DOSE are performed for each patient.

In addition, a biopsy is only performed on a part of the tumor.

Since GBMs are recognized as highly heterogeneous tumors,

molecular or protein expression will not be representative of the

entire tumor, introducing a variability in the evaluation of

therapeutic response (54). Therefore, imaging biomarkers appear

to be the most suitable for routine clinical application.
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New treatment modalities

Predicting the efficacy of treatments is of great interest for

responder patients. However, for non-responder patients, the use of

new treatment modalities, such as proton therapy and carbon ion

therapy, is essential. It is important to conduct studies in these areas to

assess the appropriateness of using one treatment over another, based

on expected therapeutic efficacy. These studies are of crucial

importance for the integration of these new treatments, which still

need to be validated, especially through clinical trials (55). In this

context, an AI tool that predicts treatment efficacy before initiation

would be of significant interest.
Conclusion

The practical applications of AI and radiomics in the

management of brain cancer are significant. These technologies

enable earlier diagnosis, facilitating rapid and personalized

treatment plans. For patients, this translates into better clinical

outcomes and improved quality of life, particularly through the

rapid identification of cases of non-response to treatment, paving

the way to more appropriate therapeutic alternatives. As far as

healthcare systems are concerned, AI and radiomics offer the

possibility of optimizing the use of resources and reducing the

financial impact of costly and ineffective treatments.

However, a number of challenges remain. These include the

time and effort required to train healthcare professionals in the use

of these technologies, as well as the management of administrative

and regulatory obstacles.

The review highlights the pressing need for early and accurate

characterization of treatment efficacy in GBM and BMs, given their

aggressive nature and the heterogeneous responses to standard

treatments. Current methods, relying on anatomical MRI, often

fail to provide timely assessments due to pseudoprogression,

leading to delayed treatment adjustments and potential cognitive

decline from radiotherapy.
Early characterization of treatment efficacy

Imaging biomarkers, such as PET/CT, DCE-MRI, and MRS,

have shown promise in predicting treatment response and overall

survival earlier than conventional MRI. However, these methods

still require patients to undergo initial treatments, exposing them to

potential side effects.
Predictive solutions

Radiomics and AI offer innovative approaches to predict

treatment efficacy before initiation. Studies combining radiomic

features with clinical data have achieved high AUC values,

indicating strong predictive performance. However, radiomics
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faces challenges such as low interpretability and limited inter-

hospital portability, which initiatives like the IBSI aim to address.

Our review shows that AI, particularly DL techniques like CNNs,

has demonstrated superior performance in predicting treatment

outcomes. Combining AI-extracted features from MRI with clinical

variables has yielded impressive results, with AUC values ranging

from 0.72 to 0.99. Federated learning presents a solution to the

challenge of data centralization, allowing models to be trained across

multiple decentralized sites without exchanging raw data.
Challenges and future directions

Despite the promising results, several challenges remain. Most

studies are based on small patient cohorts, which limits the

generalizability of the findings. Additionally, the use of functional

imaging biomarkers, which may provide more relevant information

than anatomical MRI, has not been extensively explored in AI models

for brain efficacy prediction. The integration of radiomics and DL in

neuro-oncology has led to significant advancements in the

management of gliomas, particularly by exploiting complex imaging

features to predict molecular and clinical profiles. However, significant

challenges remain, including the harmonization of multimodal data.

Future research should focus on developing federated learning

frameworks and enhancing model interpretability (56).
Pseudoprogression and new
treatment modalities

Distinguishing pseudoprogression from true progression is

crucial for optimal patient management. Radiomics and AI have

shown potential in this area; however, the performance of these

models is limited, and predicting pseudoprogression using pre-

treatment imaging remains an inadequately explored area.

AI and the radiomics model have some limitations that have to

be pointed out:
(a) Bias in training data or learning algorithms: Biases in

training data represent a major challenge for training AI

models. If the dataset used is not representative of the

overall population, model performance is likely to degrade,

particularly for more diverse patient groups. To limit these

biases and better explain model behaviors, a data quality

process is essential. This helps to identify and address

potential gaps in the distribution of the data used.

(b) AI reliability in a clinical situation, especially with patient

populations that are part of more heterogeneous groups:

The reliability of AI systems in the clinical setting is a

fundamental issue, especially when it comes to treating

heterogeneous patient populations. For example, brain

tumors such as GBM and BM present great heterogeneity

both between tumors and within the same tumor. This

diversity can limit the ability of AI models to generalize

effectively. To address this, it is essential to rigorously
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validate these models and continuously adapt them using

updated data. In addition, the study of model explainability

is essential to understand the decisions made by models.
Moreover, patients included in clinical trials are not

representative of the general population of patients in clinical

practice because the selection criteria are strict. Consequently, the

results of most clinical trials do not allow the same conclusions to be

drawn in a different population or context (57).

(c) The challenge of integrating new technology into day-to-day

clinical practice: Integrating AI technologies into everyday clinical

practice involves a number of challenges. Firstly, sufficiently powerful

IT infrastructures are needed to run these models. Secondly, medical

staff need to be trained in their use, which can come up against a

certain resistance to change. In these cases, the explicability of the

models plays a key role in instilling confidence and facilitating their

adoption. In addition, it is crucial to develop user-friendly interfaces,

integrating these models into practical tools for medical staff. Finally,

regulatory and ethical aspects, such as data confidentiality and patient

safety, must be considered to ensure the safe and responsible

deployment of technologies in the clinical environment.

Articles cited in this review evaluate the performance of the AI

models with specificity/sensitivity approaches and not with concrete

data from clinical routine experiments or case studies on brain tumor

treatment efficacy. A study has developed an AI model for diagnosing

breast cancer and determined whether it could be useful to

radiologists (58). The study showed that AI had better results than

radiologists (91% vs. 59%). The integration of AI into clinical practice

is raising new challenges while offering considerable opportunities. It

is helping to improve the accuracy of diagnoses, optimize

administrative tasks, and personalize treatment plans. Moreover, AI

allows healthcare staff to spend more time with patients, enhancing

the quality of care and the human relationship (59). For example, the

authors showed that a BM segmentation system based on DL can be

optimally applied to improve the efficiency of BM delineation in

clinical practice (60). Another study has developed DLmodels for the

purpose of proposing an alternative solution for patient-specific

quality assurance that would make treatment machines more

available to patients and thus enable more patients to be treated (61).

In summary, while significant progress has been made in early

characterization and prediction of treatment efficacy in GBM and

BM using imaging biomarkers, radiomics, and AI, further research

is needed to address current limitations and explore new avenues.

Integrating functional imaging biomarkers, updating AI models to

reflect recent architecture, and investigating new treatment

modalities are key areas for future development.
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Introduction: Glioma segmentation is vital for diagnostic decision-making,

monitoring disease progression, and surgical planning. However, this task is

hindered by substantial heterogeneity within gliomas and imbalanced region

distributions, posing challenges to existing segmentation methods.

Methods: To address these challenges, we propose the DeepGlioSeg network, a

U-shaped architecture with skip connections for continuous contextual feature

integration. The model includes two primary components. First, a CTPC

(CNN-Transformer Parallel Combination) module leverages parallel branches of

CNN and Transformer networks to fuse local and global features of glioma images,

enhancing feature representation. Second, the model computes a region-based

probability by comparing the number of pixels in tumor and background regions

and assigns greater weight to regions with lower probabilities, thereby focusing on

the tumor segment. Test-time augmentation (TTA) and volume-constrained (VC)

post-processing are subsequently applied to refine the final segmentation outputs.

Results: Extensive experiments were conducted on three publicly available

glioma MRI datasets and one privately owned clinical dataset. The quantitative

and qualitative findings consistently show that DeepGlioSeg achieves superior

segmentation performance over other state-of-the-art methods.

Discussion: By integrating CNN- and Transformer-based features in parallel and

adaptively emphasizing underrepresented tumor regions, DeepGlioSeg

effectively addresses the challenges associated with glioma heterogeneity and

imbalanced region distributions. The final pipeline, augmented with TTA and VC

post-processing, demonstrates robust segmentation capabilities. The source

code for this work is publicly available at https://github.com/smallboy-code/

Brain-tumor-segmentation.
KEYWORDS

automated segmentation, glioma, CTPC, convolutional neural network, magnetic
resonance imaging
frontiersin.org0183

https://www.frontiersin.org/articles/10.3389/fonc.2025.1449911/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1449911/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1449911/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1449911/full
https://github.com/smallboy-code/Brain-tumor-segmentation
https://github.com/smallboy-code/Brain-tumor-segmentation
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1449911&domain=pdf&date_stamp=2025-02-04
mailto:drlrp2022@163.com
mailto:mcgrady0712@163.com
https://doi.org/10.3389/fonc.2025.1449911
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1449911
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2025.1449911
1 Introduction

Brain tumors, also known as intracranial tumors in medical

terminology, are abnormal masses of tissue characterized by

uncontrolled cell growth and proliferation. According to the National

Brain Tumor Society (1), gliomas account for approximately one-third

of all brain tumors. Gliomas predominantly originate from glial cells,

which surround and support the neurons in the cerebral cortex. These

glial cells include ependymal cells, oligodendrocytes, and astrocytes.

Gliomas put pressure on the brain or spinal cord, causing symptoms

such as headaches, changes in personality, and weakness in the arms,

etc. (2). They can disrupt brain function and pose a significant threat to

an individual’s life. The exact cause of gliomas remains unclear, and

they can develop in all age groups, with a higher incidence observed in

adults. Early detection and diagnosis of gliomas are critical to the

effectiveness of treatment. Therefore, it is important to identify and

diagnose gliomas in a timely manner to improve therapeutic outcomes.

In recent years, advances in medical imaging techniques such as

positron emission tomography (PET), computed tomography (CT),

and magnetic resonance imaging (MRI) have become increasingly

important in the detection and diagnosis of disease. These different

imaging modalities have the ability to identify distinct tumor

regions within soft tissue (3). Typically, gliomas can be identified

using a variety of MRI modalities, including T1-weighted (T1), T1-

weighted with contrast enhancement (T1-CE), T2-weighted (T2),

and T2-weighted fluid-attenuated inversion recovery (FLAIR). Each

of these imaging modalities offers unique perspectives and

insights into the properties of the tumor, resulting in different

representations of the tumor on the images, as shown in Figure 1.

After acquiring multimodal volumetric data of gliomas, a

meticulous pixel-by-pixel segmentation process is applied to each

individual slice until the entire 3D brain volume is accurately

delineated into informative areas, establishing the ground truth

(GT). The resulting segmentation output is then central to

subsequent stages, including diagnosis, treatment planning,

surgical strategies, and ongoing monitoring of tumor dynamics

and changes.
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In the search for valuable insights into brain tumors,

radiologists have traditionally relied on manual segmentation of

MRI images, using their expertise in anatomy and physiology (4).

However, manual pixel-level segmentation of brain tumors by

radiologists is a labor-intensive process (5). Radiologists face

significant challenges during manual segmentation due to factors

such as indistinct boundaries of gliomas, which includes

peritumoral edema, necrotic cores, and tumor core enhancement.

As a result, manual segmentation efforts by radiologists typically

yield Dice scores in the range of 74% to 85% (6). Furthermore,

manual segmentation is time-consuming, with radiologists

spending 3–5 hours annotating an MRI scan for a single patient

(7). Therefore, fully automated glioma segmentation methods are of

paramount clinical importance and practical value (8).

Glioma segmentation faces significant challenges characterized

by high heterogeneity and regional imbalances. First, high

heterogeneity is evident in the wide variety of tumor shapes,

structures, and locations. As shown in Figure 1, gliomas exhibit

considerable inter-patient variability in structural characteristics,

geometric configurations, and spatial distributions. This inherent

variability poses a significant impediment to the accuracy of glioma

segmentation. Consequently, an optimal model must effectively

capture both local features (such as texture and edges) and global

features (including shape, location, and structure) of gliomas.

However, most existing convolutional neural networks (CNNs)

focus primarily on extracting features at the local level, falling

short of achieving a comprehensive representation.

Second, regional imbalance arises from the large size differences

between the brain tumor, the background, and various tumor

subregions. In the case of the BraTS2020 dataset, pixels within the

tumor region represent only 1.1% of the total pixels. This tiny fraction

of the tumor region may inadvertently cause the model to prioritize

the background region, hindering accurate characterization of tumor

features. Moreover, the proportions of each tumor subregion within

the total tumor are significantly different (58%, 19.8%, and 22.2% for

the whole tumor (WT), enhanced tumor (ET), and tumor core (TC),

respectively). This unbalanced distribution among subregions
FIGURE 1

The four multimodal MR images with glioma tumors are: (A) FLAIR, (B) T1, (C) T1-CE, and (D) T2. Different colors are used to differentiate tumor
subregions: red for necrotic and non-enhanced tumor (NCR/NET), green for peritumoral edema (ED), and blue for enhanced tumor (ET).
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presents a substantial challenge for the model in classifying categories

within these smaller proportions.

Many existing methods incorporate global information to

address the challenges mentioned above. Typically, these methods

use atrous convolution to expand the receptive field. However, in

scenarios involving data types with smaller regions, such as brain

tumors, atrous convolution may miss pixels, making it less suitable. A

limited number of methods have used self-attention mechanisms to

establish long-range dependencies. For example, Chen et al. (9)

introduced a Parallel Self-Attention (PSSA) mechanism that

transforms self-attention into a standard convolution operation on

an appropriately transformed feature. This innovation effectively

unifies self-attention and convolution. However, this approach

diffuses local features into global features through layer stacking,

which may dampen the performance of the method. Notably, the

Transformer architecture excels at capturing global representations

and requires fewer computational resources compared to traditional

self-attention mechanisms (10). For example, Zhang et al. (11)

proposed the parallel branched TransFuse network, which

combines both Transformer and CNN architectures. This network

includes a BiFusion module, consisting of spatial attention and

channel attention, to facilitate feature fusion between the two

branches. However, a limitation of this approach is the lack of

fusion between the Transformer and CNN branches during the

down sampling process, as these branches remain independent.

In the present study, we develop a unique DeepGlioSeg framework

that enables glioma segmentation in multimodal MRI data. This

network adopts a U-shaped architecture with skip connections,

strategically used to support the continuous exploitation of

contextual information. The DeepGlioSeg network introduces a

central CTPC (CNN-Transformer Parallel Combination) module as

its core component, comprising parallel branches for both CNN and

Transformer networks. This innovative module facilitates the fusion of

local and global features within glioma images through the

collaborative interaction of these two branches. As a result, it

effectively captures both the global and local features of gliomas,

mitigating the challenges posed by the high heterogeneity in tumor

shape, structure, and location. As shown in Figure 2, this module
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consistently outperforms convolution-based feature maps in accurately

capturing the intricate shape and structure of gliomas. In addition, the

DeepGlioSeg network employs a weighted loss approach to address the

issue of region imbalance. It extends the generalized Dice loss to

account for multiple regions and adjusts the contribution of each

region with weighted values. Specifically, larger loss weights are

assigned to categories associated with smaller regions, thereby

increasing the focus on the tumor region.

We summarize our contributions as follows:
1. Our method introduces a CTPC module, which

includes both a Transformer branch and a parallel CNN

branch. This module facilitates the fusion of local and

global features within glioma images through the

interactive cooperation of these two branches, enhancing

contextual relationships.

2. Our method assigns specific weights to each region based

on the volume ratio of the region relative to the

background. This weighting mechanism increases

attention to the tumor region.

3. To evaluate the robustness of our algorithm, we curated a

private brain tumor dataset consisting of data from 232

patients. Extensive experiments were performed on this

private dataset, as well as on three publicly available

datasets. The results consistently demonstrate the

effectiveness of our proposed approach.
2 Related works

2.1 Brain tumor segmentation methods

Previous research on brain tumor segmentation in MR images

can be categorized into (1) machine learning-based segmentation

methods and (2) CNN-based segmentation methods. Machine

learning-based methods have been adapted for brain tumor

segmentation tasks, such as support vector machines (SVM) (12)
FIGURE 2

Comparison of feature maps between the CTPC module and CNN.
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and random forests (13). For example, Bauer and colleagues (14)

employed SVM classification methods in conjunction with

hierarchical conditional random field regularization to improve

the segmentation of brain tumor images.

CNNs have been extensively applied to brain tumor segmentation

tasks, yielding remarkable results. For instance, spatial attention gates

and channel attention gates were introduced into the U-Net network

architecture by Xu et al. (15). Additionally, Xu et al. (15) developed a

new FCNwith a feature reuse module and a feature integrationmodule

(F2-FCN), enabling the extraction of more valuable features by reusing

features from different layers. Shen and Gao (16) introduced a network

with an encoding path that operates independently across channels and

a decoding path focusing on feature fusion. This network utilizes self-

supervised training and presents a novel approach to domain

adaptation on the feature map, mitigating the risk of losing

important restoration information within channels.

Cascaded methods have also emerged as a key research focus in

brain tumor segmentation, achieving notable advancements through

various strategies. For instance, Le Folgoc et al. (17) introduced lifted

auto-context forests, a multi-level decision tree structure that

optimizes segmentation via auto-context mechanisms. Wang et al.

(18) proposed a cascaded anisotropic convolutional neural network,

enhancing tumor edge and structure segmentation with anisotropic

convolutional kernels. Lachinov et al. (19) iteratively refined

segmentation results using a cascaded 3D U-Net variant,

demonstrating its efficacy on the BraTS2018 dataset. Weninger

et al. (20) designed a two-step approach with a 3D U-Net for

tumor localization, followed by another for detailed segmentation

into core, enhanced, and peritumoral edema regions. Finally, Ghosal

et al. (21) developed a deep adaptive convolutional network with an

adaptive learning mechanism that dynamically adjusts parameters,

addressing the complexity of multimodal MRI.
2.2 Segmentation combined with CNN
and transformer

The application of Transformer architecture to image

segmentation has recently gained prominence, particularly in its

integration with CNNs, a fusion that has yielded remarkable results

in the field of medical image segmentation (9, 22–24). For example,

Cao et al. (22) constructed a Transformer-based U-type skip

connection encoder-decoder architecture called Swin-Unet. It is

the first pure Transformer segmentation network and successfully

demonstrates the applicability of transformers in the visual data

domain. Building on Swin-Unet, more and more methods have

begun to explore the fusion of Transformer and CNN. For instance,

Hatamizadeh et al. (23) presented the architecture of UNet

Transformer (UNETR), which uses a pure Transformer as the

backbone for learning features in the encoding part, while only

CNN is used in the decoding part.

Furthermore, not limited to Transformer, there has been

increasing exploration of the application of self-attention

mechanisms. For example, Chen et al. (9) theoretically derived a

global self-attention approximation scheme that approximates self-
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attention by performing convolution operations on transformed

features. Building on this, some approaches have developed multi-

module structures that combine convolution and self-attention to

integrate both local and non-local interactions. For instance, Petit

et al. (24) presented the U-transformer model, which combines the

U-type image segmentation structure with the self-attention and

cross-attention mechanisms of the Transformer.

Recent advancements in hybrid CNN-Transformer architectures

have significantly improved glioma segmentation by enhancing

boundary precision and integrating local and global features. Gai

et al. (25) proposed RMTF-Net, which combines ResBlock and mixed

transformer features with overlapping patch embedding and a Global

Feature Integration (GFI) module to improve decoding quality. Zhu

et al. (26) developed a multi-branch hybrid Transformer that

combines the Swin Transformer for semantic extraction and a

CNN for boundary detection, incorporating a Sobel-based edge

attention block to enhance tumor boundary preservation. Hu et al.

(27) introduced ERTN, a dual-encoder model with a rank-attention

mechanism to prioritize key queries, balancing performance and

efficiency. These studies showcase diverse strategies for leveraging

CNN-Transformer hybrids to address segmentation challenges,

particularly in cases with complex tumor boundaries.
2.3 Category imbalance

A common problem in pixel-level semantic segmentation is

class imbalance. This issue tends to reduce accuracy in regions

belonging to the minority class (28, 29). For example, Hossain et al.

(30) suggested that an effective way to address class imbalance is to

adjust the loss function. They propose the bifocal loss function

(DFL) to correct the problem of vanishing gradients in focal loss

(FL). They introduce a regularization term to impose constraints on

the negative class labels, which increases the loss for classes that are

difficult to classify. Bressan et al. (31) used pixel-level weights in the

training phase to dynamically adjust the importance of individual

pixels, either increasing or decreasing their weight as needed. In

other words, the contribution of each pixel in the loss function is

weighted, which increases the importance of minority class pixels.

Pan et al. (32) also faced the challenge of unbalanced foreground

and background voxels when performing coronary segmentation.

They use the concept of focal loss to optimize the network and

achieve good results. To address the significant class imbalance

problem observed in brain tumors, we follow the approach of the

GDL loss function and assign more weight to small class regions,

minimizing the model’s focus on background regions.
3 Methodology

The proposed DeepGlioSeg framework consists of two phases: (1)

the training phase, which includes data preprocessing, loss calculation,

and parameter updating, and (2) the inference phase, which includes

data preprocessing, learned model import, and postprocessing. A

diagram summarizing this framework is shown in Figure 3.
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3.1 Preprocessing

We used the BraTS and ZZH datasets, where each brain MRI

scan includes FLAIR, T1, T1-CE, and T2 modalities, each with

distinct eigenvalue distributions due to contrast differences. These

variations pose challenges such as slower convergence and

overfitting due to inconsistent intensity scales across modalities.

To address these issues, we normalized voxel values within brain

regions by subtracting the mean and dividing by the standard

deviation. This standardization facilitated effective learning and

mitigated convergence issues. Voxel values in non-brain regions

were set to zero to eliminate interference from irrelevant

background data. The normalization formula is as follows:

X0 =
X − mB

sB
(1)

whereX0 represents the processed image,X symbolizes the original

voxel value in the brain region, mB signifies the average intensity value

of the brain region, and sB indicates the standard deviation of the brain

region. This approach ensures that the model can focus on meaningful

information while reducing variability caused by background noise. To

further enhance robustness and generalization, we applied data

augmentation techniques such as random rotations, flips, and elastic

deformations. These augmentations prevent overfitting by exposing the

model to diverse variations, improving its performance on unseen data

in real-world clinical settings.

Four sets of modal sequences, each with a size of 240×240×155,

were merged to obtain 4-channel 3D image data with a size of

240×240×155×4. Each training example has a corresponding label
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with a size of 240×240×155. The labels consist of four categories:

background (label: 0), necrotic and non-enhanced tumor (label: 1),

peritumoral edema (label: 2), and GD-enhanced tumors (label: 4).

Finally, based on hardware and computational considerations, a

training patch with a size of 128×128×128 was extracted from the

training case.
3.2 DeepGlioSeg network architecture

The general design of DeepGlioSeg is shown in Figure 4A, which

features a symmetric encoder-decoder architecture with skip

connections. The basic concept revolves around the alternating

stacking of CTPC modules and down sampling layers, combining

local features with global representations at different resolution levels.

Importantly, the CTPC module maintains consistent feature map

sizes, while deconvolution gradually restores resolution. Throughout

the network, all convolutional layers are complemented by batch

normalization layers and ReLU activation functions. To mitigate

overfitting, an initial convolutional layer with dropout functionality is

included at the beginning of the model. Additionally, eight successive

convolutional layers are implemented at the base of DeepGlioSeg to

enhance feature extraction.

To manage the computational demands within the Transformer

branch, the Feature Fusion Pathway (FFP) employs different down

sampling steps corresponding to various resolution levels while

maintaining a patch embedding size of 4096. It is important to note

that the feature map input to the Transformer remains constant

at 16×16×16.
FIGURE 3

The diagram of the proposed DeepGlioSeg for automated glioma segmentation in multimodal MRI images.
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3.3 CTPC module structure

In deep learning, CNNs collect local features at different

resolutions by applying convolutional operations, effectively

preserving local details as feature maps. Vision Transformers, on

the other hand, are specifically designed to aggregate global

representations by iteratively processing compressed patch

embeddings through a series of self-attention modules. The CTPC

module, as shown in Figure 4B, consists of three essential elements:

the CNN module, the Transformer branch, and the FFP. These

components are integrated to facilitate feature fusion between the

two branches, effectively enhancing the feature extraction

capabilities of the network.

3.3.1 CNN branch
As shown in Figure 4C, the CNN branch consists of two iterative

convolution modules. Each module contains a sequence of a 1×1×1

downward convolution layer, a 3×3×3 spatial convolution layer, a

1×1×1 upward convolution layer, and a residual link connecting the

module’s input and output. While the Vision Transformer encodes

image patches into word vectors, potentially leading to a loss of local

detail, the CNN branch operates differently. In a CNN, the

convolutional kernel glides over the neighborhood map, enabling it

to extract continuous local features. This feature allows for the

preservation of intricate and detailed local features to a significant

extent. As a result, the CNN branch serves as a continuous supplier of

local detail to the Transformer branch.
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3.3.2 Transformer branch
The Transformer branch includes a multi-head self-attention

module and a multi-layer perceptron (MLP) block, as shown in

Figure 4C. Layer normalization is applied before both the multi-

head self-attention module and the MLP block. Additionally, two

residual connections are incorporated at corresponding positions.

To balance computational efficiency and feature map resolution,

the CNN branch output is down sampled to a 16×16×16

patch embedding.

3.3.3 Feature fusion path
The FFP functions to connect and align the shape disparity

between the feature map in the CNN pathway and the patch

embedding in the Transformer pathway. It actively promotes the

continuous integration of local features with global representations

through interactive mechanisms. Notably, the shape of the feature

stream differs between the CNN and Transformer pathways.

Specifically, the CNN feature map has a shape of C×H×W×D,

where C, H,W, and D denote the channel, height, width, and depth,

respectively. In contrast, the patch embedding takes the form E×C,

where E is the embedding size and C is the number of image

patches. Prior to inputting the feature map into the Transformer

branch, channel alignment of the feature map and patch embedding

is achieved by a 1×1×1 convolution. The volume dimensions are

then compressed to 16×16×16 using the down sampling module,

with different steps chosen for different resolution levels. Finally, the

patch embedding is obtained via a reshape operation.
FIGURE 4

Overview of the proposed DeepGlioSeg network architecture: (A) The architecture of DeepGlioSeg. (B) The specific implementation steps of the
CTPC module. (C) The detailed composition of the Conv block and Trans block.
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3.3.4 Position embedding
To capture essential positional information crucial for the

segmentation task, we introduced learnable positional embeddings

that are merged with the patch embedding by direct addition. When

transitioning from the Transformer branch back to the CNN branch,

it is necessary to upsample the patch embedding to restore it to the

original shape of the CNN feature map. A 1×1×1 convolutional layer

is then applied to harmonize the channel dimensions. Finally, the

resulting output is combined with the feature map. Throughout this

process, batch normalization is used to regulate the features.
3.4 Loss function

There is a significant data imbalance between tumor and non-

tumor tissue for the purpose of identifying and delineating brain

tumors and their subregions. Sudre et al. (33) noted that as the

degree of data imbalance increases, the loss function based on

overlap measurement is less susceptible to fluctuations compared to

weighted cross-entropy. Therefore, the Dice coefficient was utilized

to focus on different tumor subregions. The formula for the Dice

coefficient is given by:

LDice = 1 −
2oN

i=1pigi + ϵ

oN
i=1pi +oN

i=1g + ϵ
(2)

In this formula, gi represents the ground truth label for pixel i in

category c, and pi denotes the predicted probability of pixel i

belonging to category l. The term N represents the total number

of pixels in the image, and ϵ is a small constant added to avoid

division by zero, ensuring the stability of the loss function.

For multi-class segmentation tasks, a weight wl is typically

introduced based on the frequency of each category l. According

to the statistical analysis of the proportion of each category, the

weights were set to 0.1, 1, 2, and 2 for the background, WT, TC, and

ET, respectively. The Multi-class Generalized Dice Loss (Multi-

GDL) was then used as the model’s loss function, which can be

written as:

LGDL = 1 −
2oL

l=1wloN
i=1p

(l)
i g(l)i + ϵ

oL
l=1wl oN

i=1p
(l)
i +oN

i=1g
(l)
i

� �
+ ϵ

(3)

In the above formula, L represents the total number of classes,

and p(l)i and g(l)i denote the predicted probability and ground truth

label for pixel i in class l, respectively. The weight wl ensures that the

contribution of each class is appropriately adjusted based on its

frequency, addressing the issue of data imbalance.
3.5 Postprocessing

In the inference phase, the original image was sliced from left to

right and from top to bottom into eight inference blocks of size

128×128×128 and post-processed with test-time augmentation

(TTA) and volume-constraint (VC). For each inference block,

seven different flips ((x), (y), (z), (x, y), (x, z), (y, z), (x, y, z))

were performed, as shown in Figure 5A. The flipped data were then
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fed into the model, and the corresponding inference results were

obtained. The rotation angles of the different inference results were

restored, and the average value was taken as the final output.

For VC, if the reference segmentation for the ET is missing, the

BraTS evaluation assigns a reward of 0 for false positive predictions,

and the Dice score is 1. Therefore, in this study, if the ET volume

predicted by the model was less than the threshold of 500, the ET

region was reclassified as necrotic and non-enhanced tumor tissue.

As shown in Figure 5B, the ET region is replaced with necrotic and

non-enhanced tumors after volume restriction.
4 Experimental setting

4.1 Dataset

Three public benchmark datasets and one private dataset were

used to evaluate the effectiveness of the proposed DeepGlioSeg. The

Brain Tumor Segmentation Challenge provided the BraTS2019,

BraTS2020, and BraTS2021 datasets used in this study (6, 34, 35).

The BraTS2019 dataset consists of 335 training cases and 125

validation cases. The BraTS2020 dataset contains 369 training

examples and 125 validation examples. The BraTS2021 dataset

includes 1251 training samples and 219 validation samples.

The ZZH dataset was collected by the first affiliated hospital of

Zhengzhou University with institutional review board approval

(reference number: 2019-KY-231). It consists of 232 patient

records in the same format as the BraTS datasets. Each sample

was manually labeled by two radiologists at the first affiliated

hospital of Zhengzhou University. The dataset was split into

training, validation, and test sets in a 7:1:2 ratio. The training set

was used to train the model, the validation set was used to guide

hyperparameter tuning and early stopping, and the test set was used

to evaluate generalization. This approach prevents data leakage and

ensures an unbiased performance evaluation.
4.2 Evaluation metrics

The Dice similarity coefficient (Dice), Sensitivity (Sen), and

Hausdorff distance (Haus95) are used to assess the segmentation

performance of the model. Considering the glioma’s anatomical

features and structure, the model’s performance in segmenting the

following three tumor sub-regions is evaluated: WT (necrotic and

non-enhanced tumor, peritumoral edema, and enhanced tumor),

TC (necrotic and non-enhanced tumor, enhanced tumor), and ET

(enhanced tumor).
4.3 Experimental details

The optimization method used is Adam with a learning rate of

0.0002, and training is performed with a batch size of 4.

DeepGlioSeg is trained for approximately 1000 iterations. A

minimum loss value threshold is set, and the average loss value of

each epoch is calculated during training. Training is stopped when
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the loss value drops below the set threshold. The size of the image

input to the model is 128×128×128×4.

After each downsampling layer, the size of the feature map is

halved, and the number of channels is doubled. The number of initial

convolution kernels is 16. The loss weights for the four regions—ET,

WT, TC, and background—are set to [2, 1, 2, 0.1]. The following data

augmentation techniques are applied: (1) random cropping of the

data from 240×240×155 to 128×128×128; (2) random mirroring and

rotation in the axial, coronal, and sagittal planes with a probability of

0.5; and (3) random intensity shifts in the range [-0.1, 0.1] and scaling

factors in the range [0.8, 1.2]. The network is trained using Multi-

GDL, and L2 normalization is applied to regularize the model, with

the weight decay rate set to 1e-5.
5 Results

5.1 Ablation study

5.1.1 CTPC module configuration
We conducted experiments to identify the optimal configuration

of the CTPC module for better segmentation performance. Table 1

summarizes the impact of different CTPC configurations on model

performance. The baseline model employs a standard encoder-

decoder architecture with separate CNN and Transformer
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branches, which independently extract local and global features.

Although effective individually, the lack of integration between

these branches limits the model’s ability to combine local and

global information, reducing segmentation accuracy.

DeepGlioSeg addresses this by incorporating the CTPCmodule,

which enables the simultaneous fusion of local and global features.

Unlike the baseline, where features are processed separately, the

CTPC module integrates the outputs from both branches, fusing

local and global features into a unified representation. This

enhanced feature fusion improves segmentation accuracy,

particularly for complex and heterogeneous tumor regions. The

fully embedded CTPC model achieved a 4.5% improvement in Dice

score (84.3% vs. 79.8%) over the baseline, demonstrating the

effectiveness of this integration.

The CTPC module addresses challenges in feature alignment

and compatibility between CNN and Transformer outputs. By

using 1×1×1 convolutions for channel alignment, it ensures CNN

features match the Transformer input dimensions, preserving local

detail while facilitating global feature integration. Downsampling

reduces the volume dimensions to 16×16×16, balancing

computational efficiency with feature richness for global context.

The final reshaping generates patch embeddings that facilitate

effective local-global interaction, making the CTPC module highly

effective for capturing complex patterns, crucial for tumor

segmentation tasks.
FIGURE 5

Results obtained by the postprocessing: (A) TTA; (B) VC. TTA was performed using 7 different flips: (x), (y), (z), (x, y), (x, z), (y, z), (x, y, z). VC replaces
the ET predicted by the model if its volume is below the 500-voxel threshold.
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5.1.2 Learnable position embedding
In the work of Dosovitskiy (36), a learnable embedding was

incorporated into the embedded patch sequence and complemented

with position embeddings to preserve critical positional information.

Similarly, for glioma segmentation, we introduced a learnable position

embedding to encode crucial positional information for the task.

Within the CTPC module, the CNN and Transformer branches

enable the fusion of feature streams through a shared pathway.

Before passing the CNN feature stream into the Transformer

branch, we used standard one-dimensional learnable position

embeddings to encode position information. The embeddings were

then added to the feature map via summation. As shown in Table 2,

the introduction of learnable position embeddings improved the

average Dice score by 1% (84.3% vs. 83.3%).

5.1.3 Strided convolution
As shown in Figure 3, downsampling the feature map from the

CNN branch is necessary to achieve spatial dimension alignment.

Peng et al. (37) used average pooling in the feature coupling unit for

this purpose. However, pooling can filter out valuable information

during downsampling. To mitigate this, we chose strided

convolution as the downsampling module. Strided convolution

enables multiple downsampling steps while facilitating further

feature extraction by adjusting the step size. The network uses

four resolution levels (128, 64, 32, 16) from top to bottom, with

downsampling modules having step sizes of 8, 4, 2, and 1,

respectively. To ensure computational consistency, we maintained

the patch embedding size in the Transformer branch at 4096. As

shown in Table 2, using strided convolution as the downsampling

module within the FFP improved the average Dice score by 0.7%

(84.3% vs. 83.6%).
Frontiers in Oncology 0991
5.1.4 Postprocessing
During inference, we used a dual post-processing approach

involving TTA and VC. We evaluated the impact of these strategies

on segmentation performance through comparative experiments,

summarized in Table 3. The combined use of both strategies led to a

3.5% improvement in the average Dice score (84.3% vs. 80.8%).

Importantly, these strategies improved performance without

introducing additional computational complexity. We calculated a

p-value for this metric, which was less than 0.05, supporting

this improvement.

We systematically tested voxel count (VC) thresholds ranging

from 100 to 1000 voxels to optimize the Dice score across tumor

subregions, focusing on improving segmentation quality. As shown

in Figure 6, a 500-voxel threshold achieved the best balance between

false positives and true positives. At lower thresholds (e.g.,<500

voxels), over-segmentation occurred, leading to excessive false

positives, particularly in the ET region, where small noise regions

were incorrectly classified as tumor. Conversely, higher thresholds

(>500 voxels) risked under-segmentation, excluding small but

clinically significant tumor regions, reducing sensitivity and

potentially missing subtle pathological features. The 500-voxel

threshold effectively mitigated these issues, ensuring more robust

and accurate segmentation across all tumor subregions.

To further justify this choice, we conducted a sensitivity analysis

to evaluate the impact of different VC thresholds on segmentation

performance. The results, summarized in Table 4, indicate that a

threshold of 500 voxels consistently yielded the highest average Dice

score while maintaining a favorable balance between precision and

sensitivity across the four datasets. For the BraTS2019 dataset, the

average Dice score reaches a maximum of 0.834 at a 500-voxel

threshold, compared to 0.816 and 0.811 at thresholds of 100 and
TABLE 1 Qualitative comparison of results on the BraTS2020 dataset, including the model architecture without the CTPC module (Baseline),
encoding path configuration (EPC), decoding path configuration (DPC), and encoding-decoding path configuration (EDPC).

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC WT TC Mean

Baseline 0.770 0.895 0.728 0.798 0.783 0.899 0.695 0.792 41.7 6.25 26.1 24.7

EPC 0.753 0.892 0.854 0.835 0.775 0.906 0.770 0.817 32.8 6.80 12.9 17.5

DPC 0.753 0.895 0.858 0.835 0.781 0.914 0.799 0.831 36.5 6.88 10.1 17.8

EDPC 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
fron
Red denotes the best results, and blue means the second best.
TABLE 2 Ablation study of the CTPC architecture on the BraTS2020 dataset, testing the impact of different components. .

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC Mean TC Mean

Pool 0.760 0.889 0.850 0.833 0.782 0.912 0.804 0.833 28.8 8.89 9.13 15.6

Scov 0.761 0.892 0.856 0.836 0.781 0.907 0.808 0.832 27.3 6.56 9.21 14.4

Sconv+PE 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
Red denotes the best results, and blue means the second best.
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1000, respectively. Sensitivity and precision also achieve their

highest values of 0.838 and 0.842 at the 500-voxel threshold. In

the BraTS2020 dataset, the average Dice score reaches a maximum

of 0.843 when the threshold is 500, with sensitivity and precision

also reaching their maximum values of 0.836 and 0.855,

respectively. For the BraTS2021 dataset, when the threshold is

500, all evaluation metrics show excellent performance, with the

average Dice score at 0.865, sensitivity at 0.855, and precision at

0.846. For the ZZH dataset, although all metrics are relatively low

across all thresholds, at the 500-voxel threshold, the Dice

coefficient, sensitivity, and precision are 0.616, 0.639, and 0.653,

respectively, showing a relative advantage compared to the

performance under other thresholds. Overall, setting the

threshold at 500 for volume constraints generally yields better

segmentation results.

5.1.5 Loss function
Brain tumor segmentation faces significant category

imbalances, both between tumor and non-tumor tissue and

among different tumor subregions. To address this, we assigned
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class weights based on category frequencies. Incorporating class

weights into the GDL function increased the average Dice score by

5.2% (84.3% vs. 79.1%), as shown in Table 5, demonstrating its

effectiveness in handling class imbalance.

Glioma MRI datasets inherently exhibit imbalances among

tumor regions, with the TC and ET being significantly smaller

compared to the WT. To address this imbalance and emphasize

clinically critical regions, we assigned higher weights to the ET and

TC during training. Specifically, the model was configured with

weights of 0.1 for the background, 1 for the WT, and 2 for the ET

and TC, as shown in Table 6. This weighting strategy improved the

Dice scores for the smaller regions by encouraging the model to

prioritize them over the disproportionately large background and

WT regions. We observed that increasing the weights for the ET

and TC significantly enhanced their segmentation accuracy,

ensuring better representation of these clinically significant areas.

Simultaneously, reducing the background weight to 0.1 prevented

the model from overfitting to irrelevant regions, which often

dominate the data due to their larger size. Conversely, assigning

higher weights to the background degraded the segmentation
TABLE 3 Effect of post-processing on segmentation performance on the BraTS2020 dataset, evaluating strategies such as no post-processing (None),
only TTA, and a combination of TTA and VC.

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC Mean TC Mean

None 0.694 0.880 0.850 0.808 0.695 0.905 0.806 0.802 45.8 9.22 11.9 22.3

TTA 0.728 0.897 0.865 0.830 0.726 0.911 0.812 0.816 39.3 5.92 9.94 18.4

TTA+VC 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
fron
Red denotes the best results, and blue means the second best.
FIGURE 6

Visualization of results from different threshold selections in the VC post-processing technique on both the BraTS and ZZH datasets.
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performance on the smaller regions, as the model became biased

toward identifying the dominant background area. The selected

weight configuration effectively strikes a balance by focusing on

critical tumor subregions while minimizing distractions from the

background, resulting in segmentation that is both accurate and

clinically relevant.

5.1.6 CNN branch and transformer branch
The CTPC module consists of two primary components: the

CNN and Transformer branches. To better understand their

contributions, we conducted ablation studies, with results

summarized in Table 7. Removing the CNN branches caused a

significant drop in segmentation performance, highlighting their

critical role in the CTPC framework.
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In contrast, introducing the Transformer branch significantly

improved performance at a relatively low parameter cost. This

demonstrates the Transformer’s high efficiency and underscores its

strength within the model.

5.1.7 Different optimization strategy
We conducted experiments to evaluate the impact of different

optimization strategies on model performance. Specifically, we

tested SGD, Adam, and Adagrad on the BraTS2020 dataset to

assess their influence on segmentation metrics. As summarized in

Table 8, the SGD optimizer struggled with the ET metric (0.751),

indicating difficulty in segmenting complex structures, though it

performed slightly better on WT and TC metrics, averaging 0.811.

In contrast, the Adam optimizer delivered the best overall

performance, excelling in WT (0.897) and TC (0.865),

demonstrating its ability to handle intricate segmentation tasks.

Adagrad’s results were intermediate, performing well in WT (0.875)

and TC (0.838) but falling short of Adam. These results highlight

the need for effective optimizers like Adam to complement robust

model architectures.

5.1.8 Cross-dataset model testing
Table 9 summarizes our evaluation of the model ’s

generalization, trained on BraTS2021 and tested on BraTS2019,

BraTS2020, and ZZH datasets. On BraTS2019, the model achieved

Dice scores of 0.645 (ET), 0.775 (WT), and 0.735 (TC), averaging

0.718. Performance improved slightly on BraTS2020, with scores of

0.651 (ET), 0.782 (WT), and 0.732 (TC), averaging 0.721, indicating

good adaptation to consistent imaging protocols.

In contrast, testing on themore heterogeneous ZZH clinical dataset

resulted in lower Dice scores: 0.411 (ET), 0.705 (WT), and 0.431 (TC),

averaging 0.515. This performance drop highlights the challenges of

domain shifts and non-standardized imaging. These findings show the

model’s robustness on standardized datasets but underline the need for

domain adaptation to handle clinical variability.
5.2 Results

The comparison of the qualitative results for the BraTS2019,

BraTS2020, BraTS2021, and ZZH datasets is displayed in Table 10.

The segmentation outcomes for the three subregions on the BraTS

datasets are similar, with WT achieving the highest accuracy and

exhibiting fewer outliers. However, the annotation quality of the

ZZH dataset for two subregions, ET and TC, could be improved.
TABLE 4 Comparison of segmentation performance with different
thresholds across all the datasets.

Datasets Threshold Dice Sensitivity Precision

BraTS2019

100 0.816 0.833 0.835

300 0.831 0.837 0.838

500 0.834 0.838 0.842

700 0.827 0.821 0.841

1000 0.811 0.829 0.828

BraTS2020

100 0.821 0.825 0.828

300 0.833 0.842 0.834

500 0.843 0.836 0.855

700 0.834 0.811 0.863

1000 0.815 0.823 0.831

BraTS2021

100 0.827 0.824 0.822

300 0.83 0.827 0.824

500 0.865 0.855 0.846

700 0.835 0.833 0.831

1000 0.833 0.83 0.828

ZZH

100 0.574 0.603 0.621

300 0.581 0.605 0.623

500 0.616 0.639 0.653

700 0.592 0.614 0.628

1000 0.584 0.611 0.637
TABLE 5 Comparison of segmentation performance with different loss functions on the BraTS2020 dataset.

ET

Dice

Mean ET

Sen

Mean ET

Haus95

WT TC WT TC Mean TC Mean

DL 0.753 0.877 0.745 0.791 0.753 0.891 0.722 0.789 35.9 14.7 16.5 22.4

GDL 0.760 0.886 0.852 0.832 0.775 0.905 0.788 0.823 30.1 7.92 15.4 17.8

Multi-GDL 0.768 0.897 0.865 0.843 0.785 0.911 0.812 0.836 27.1 5.92 9.94 14.3
fron
Red denotes the best results, and blue means the second best.
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To further demonstrate the efficacy of the proposed

DeepGlioSeg, nine advanced image segmentation algorithms in

the field of medical image segmentation were reproduced,

including 3D U-Net (38), 3D V-Net (39), Attention U-Net (40),

nnU-Net (41), nnFormer (42), Segtran (43), SwinUNETR (44),

TransBTS (45), and UNETR (23).

For the BraTS2019 dataset, the mean Dice scores for each

method across the ET, WT, and TC regions, as well as the overall

mean Dice score, are presented in Table 11. Notably, our proposed

method demonstrates superior performance, achieving the highest

Dice scores across all regions and the overall mean Dice score.

Specifically, it achieves Dice scores of 0.761 for ET, 0.887 for WT,

0.854 for TC, and an impressive overall mean Dice score of 0.834.

Conversely, other contemporary approaches exhibit varying levels

of segmentation accuracy, with Dice scores ranging from 0.656 to

0.750 for ET, 0.831 to 0.879 for WT, 0.781 to 0.835 for TC, and

0.756 to 0.821 for the overall mean Dice score. These results

underscore the significant improvement achieved by our

proposed method over existing approaches, emphasizing its

potential to advance the field of brain tumor segmentation.
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For the BraTS2020 dataset, the results are summarized in

Table 12. Our proposed method stands out as the best-performing

approach, achieving the highest mean Dice scores: 0.897 for WT,

0.865 for TC, 0.768 for ET and 0.843 for the overall mean Dice score.

It is important to highlight that SwinUNETR is the closest competitor

to our proposed method, achieving remarkable mean Dice scores of

0.754 for ET, 0.883 for WT, 0.837 for TC, and 0.823 for the mean

Dice score. Comparatively, while several other methods also show

competitive performance, our proposed method consistently

outperforms them across all regions, demonstrating its effectiveness

in accurately segmenting brain tumors on the BraTS2020 dataset.

For the BraTS2021 dataset, Table 13 provides a comprehensive

overview of the segmentation performance of several methods. Our

proposed method demonstrates exceptional segmentation accuracy,

achieving the highest Dice scores across all regions. It stands out with

Dice scores of 0.808 for ET, 0.910 for WT, 0.878 for TC, and an

impressive mean Dice score of 0.865. This performance underscores

the ability of our proposed method to accurately delineate brain tumor

regions, indicating potential clinical relevance. SwinUNETR and

Segtran also exhibit strong segmentation performance, achieving

mean Dice scores of 0.854 and 0.845, respectively. Their robust

performance reflects the effectiveness of their segmentation strategies

and highlights their potential clinical utility. Our comprehensive

evaluation on the BraTS2021 validation dataset confirms the

exceptional performance of our proposed approach, outperforming

all other methods across different segmentation regions.

To demonstrate the excellence of the proposed DeepGlioSeg in

segmenting clinical datasets of suboptimal quality, we present the

results of our experiments on the ZZH dataset, comparing the

segmentation performance of several advanced technologies for

brain tumor segmentation. Table 5 provides a comprehensive

evaluation of the segmentation effectiveness of nine advanced

image segmentation technologies. From Table 14, we summarize

the following key points: (1) The ZZH dataset presents unique

challenges for brain tumor segmentation. The Dice scores of all

methods are significantly lower compared to previous datasets,

indicating the presence of complex tumor phenotypes and

irregular shapes in this dataset. (2) Among the evaluated

methods, our proposed method consistently achieves the highest

Dice scores, demonstrating its effectiveness in addressing the

challenges posed by the ZZH dataset. Specifically, it achieves an

average Dice score of 0.616, indicating relatively strong

segmentation performance even in this challenging context. (3)

While our proposed method stands out, there is variability in the

performance of other methods. SwinUNETR also shows

competitive effectiveness, with an average Dice score of 0.613.

The lower segmentation performance on the ZZH dataset

compared to the BraTS datasets arises from differences in data

quality, diversity, imaging protocols, and real-world complexities.

First, BraTS benefits from high-quality, standardized annotations

by multiple radiologists, ensuring consistent labels. In contrast,

ZZH annotations reflect varying expertise and subjective

judgments, introducing inconsistencies, particularly for smaller

regions like ET. Second, the BraTS datasets are diverse,

encompassing varied patient demographics, tumor grades, and

imaging conditions, enabling better generalization. By
TABLE 6 Comparison of segmentation performance with different
weights using the GDL on all the datasets used.

Datasets Weights Dice Sensitivity Precision

BraTS2019

0.1, 1, 1, 1 0.802 0.812 0.817

0.1, 1, 2, 2 0.834 0.838 0.842

1, 1, 1, 1 0.795 0.801 0.812

1, 1, 2, 2 0.799 0.806 0.814

BraTS2020

0.1, 1, 1, 1 0.831 0.822 0.838

0.1, 1, 2, 2 0.843 0.836 0.855

1, 1, 1, 1 0.805 0.793 0.812

1, 1, 2, 2 0.812 0.806 0.825

BraTS2021

0.1, 1, 1, 1 0.844 0.835 0.833

0.1, 1, 2, 2 0.865 0.855 0.846

1, 1, 1, 1 0.833 0.827 0.822

1, 1, 2, 2 0.841 0.835 0.828

ZZH

0.1, 1, 1, 1 0.596 0.616 0.635

0.1, 1, 2, 2 0.616 0.639 0.653

1, 1, 1, 1 0.574 0.583 0.591

1, 1, 2, 2 0.586 0.615 0.633
TABLE 7 Comparison of segmentation performance of the CNN branch
and Transformer branch on the BraTS2020 dataset.

CNN branch Trans branch Mean Dice Params

✗ ✓ 0.654 5.09M

✓ ✗ 0.798 5.47M

✓ ✓ 0.843 6.62M
Red denotes the best results, and blue means the second best.
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comparison, ZZH’s limited and less diverse sample restricts feature

learning and introduces potential demographic biases. Third,

standardized imaging protocols in BraTS ensure consistent data

characteristics, whereas ZZH exhibits variability in scanner models,

field strengths, and acquisition parameters, affecting tumor visibility

and segmentation accuracy. Lastly, ZZH reflects real clinical

challenges, such as artifacts, motion blur, and non-standardized

conditions, which are less prevalent in BraTS.

Figures 7 and 8 provide visual comparisons of segmentation results

from various methods on the BraTS2019, BraTS2020, and BraTS2021

datasets, supported by quantitative metrics such as HD95 and

boundary overlap to objectively assess boundary quality. The HD95

metric, which evaluates worst-case boundary deviations, highlights the

precision of DeepGlioSeg compared to state-of-the-art models such as

SwinUNETR and Segtran. For instance, DeepGlioSeg achieves an

HD95 of 5.09 for the ET on BraTS2021, outperforming SwinUNETR

(6.45) and Segtran (6.78), indicating superior boundary alignment.

Additionally, boundary overlap metrics such as Dice scores reinforce

these findings. DeepGlioSeg achieves a Dice score of 0.92 for the WT,

outperforming models that struggle with under-segmentation or

over-segmentation in intricate regions. This performance is

attributed to DeepGlioSeg’s hybrid CNN-Transformer architecture,

which effectively integrates local detail extraction and global context

modeling, enabling precise tumor boundary delineation even in
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challenging cases. These quantitative results align with the visual

comparisons, demonstrating DeepGlioSeg’s capability to handle

complex boundary variations.

However, challenges persist in tumors with high heterogeneity,

where significant variability in appearance affects segmentation

consistency. DeepGlioSeg demonstrates superior performance in

handling such heterogeneity, achieving consistent results across

various datasets, such as ZZH, BraTS2019, BraTS2020, and

BraTS2021. Its success lies in the flexible CTPC architecture,

which integrates CNNs for capturing localized details and

Transformers for modeling global context. This dual-pathway

approach enables the seamless fusion of local and global features,

ensuring accurate delineation of complex tumor boundaries. As

highlighted in Figure 9, DeepGlioSeg produces sharper and more

precise tumor segmentations than nnU-Net and SwinUNETR,

particularly in real-world datasets (e.g., ZZH), which exhibit

greater variability than more standardized datasets such as BraTS.

DeepGlioSeg’s design directly overcomes the limitations of

existing models. nnU-Net, while efficient in capturing local

features, struggles to generalize across datasets due to its lack of

global context modeling. SwinUNETR incorporates Transformers

for global feature representation but lacks the balanced local-global

integration of DeepGlioSeg, limiting its ability to segment tumors

with complex boundaries in heterogeneous datasets. In contrast, the

CTPC module’s efficient fusion of local and global features allows

DeepGlioSeg to excel in identifying subtle tumor variations. This

capability is crucial for accurate segmentation in real-world

clinical settings.
6 Discussion

Gliomas present significant challenges for segmentation due to

their complex heterogeneity, including variability in shape,

structure, and location. Accurate tumor boundary delineation is

essential, requiring models capable of capturing both local and

global features. However, many existing methods struggle to

achieve this integration effectively. To address this challenge, we

propose the DeepGlioSeg framework, which integrates a CTPC

module with parallel CNN and Transformer branches. The CNN

branch captures fine-grained local details, while the Transformer

branch models long-range dependencies. The combination of these

two pathways ensures a robust fusion of local and global features,

which enhances the model’s ability to represent complex tumor
TABLE 8 Quantitative results comparing performance across different
optimization strategy.

Strategy
Dice

ET WT TC Mean

SGD 0.751 0.859 0.821 0.811

Adam 0.768 0.897 0.865 0.843

Adagrad 0.758 0.875 0.838 0.823
TABLE 9 Performance of cross-dataset model testing.

Cross Dataset
Dice

ET WT TC Mean

BraTS2021->BraTS2019 0.645 0.775 0.735 0.718

BraTS2021->BraTS2020 0.651 0.782 0.732 0.721

BraTS2021->ZZH 0.411 0.705 0.431 0.515
TABLE 10 Qualitative comparison of results on the BraTS2019, BraTS2020, BraTS2021, and ZZH datasets.

Dataset
ET

Dice

Mean ET

Sen

Mean ET

Haus95

MeanWT TC WT TC WT TC

BraTS2019 0.761 0.887 0.854 0.834 0.785 0.905 0.809 0.836 33.2 7.03 7.09 15.8

BraTS2020 0.768 0.897 0.865 0.843 0.758 0.911 0.812 0.836 27.1 5.92 9.94 14.3

BraTS2021 0.808 0.91 0.878 0.865 0.836 0.925 0.843 0.868 22.4 5.06 10.7 12.7

ZZH 0.491 0.811 0.546 0.616 0.621 0.819 0.65 0.697 41.3 7.74 7.63 18.9
fron
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characteristics—such as varying shapes and structural heterogeneity

—resulting in improved segmentation accuracy.

In addition to effective feature fusion, DeepGlioSeg tackles the

issue of class imbalance—a common problem in glioma

segmentation, where certain tumor regions, such as the ET, are

underrepresented. To address this, we employ a weighted loss

function that extends the generalized Dice loss. By assigning

higher weights to clinically significant but underrepresented

regions (like ET), the model can prioritize these areas during

training, ensuring accurate segmentation of both larger regions

(e.g., the WT) and smaller, more challenging regions crucial for

treatment planning. This approach helps mitigate the bias toward

larger regions, which is often seen in conventional models.
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Table 15 compares the computational complexity of the

proposed method with state-of-the-art models across four

datasets: BraTS2019, BraTS2020, BraTS2021, and ZZH. Key

metrics include the number of parameters (Params in M),

computational cost (FLOPs in G), and statistical significance

(p-value). Transformer-based models, such as TransBTS and

SwinUNETR, exhibit higher parameter counts (15.56M–30.62M)

and computational costs (163.73G–254.45G), while lighter models

like 3DUNet and Atten-Unet maintain smaller parameter sizes but

incur higher FLOPs. The proposed method strikes an optimal

balance with 6.92M parameters and 156.79G FLOPs, significantly

reducing computational demands while maintaining competitive

performance. Lower p-values across datasets confirm the statistical
TABLE 11 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
BraTS2019 dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.721 0.864 0.832 0.805

3DVnet 0.712 0.861 0.824 0.799

Atten-Unet 0.738 0.848 0.800 0.795

nnU-Net 0.741 0.868 0.834 0.814

nnformer 0.656 0.831 0.781 0.756

Segtran 0.725 0.858 0.831 0.804

SwinUNETR 0.750 0.879 0.835 0.821

TransBTS 0.741 0.862 0.834 0.812

UNETR 0.736 0.859 0.812 0.802

Proposed 0.761 0.887 0.854 0.834
Red denotes the best results, and blue means the second best.
TABLE 12 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
BraTS2020 dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.746 0.870 0.848 0.821

3DVnet 0.734 0.865 0.844 0.814

Atten-Unet 0.742 0.852 0.802 0.818

nnU-Net 0.742 0.871 0.842 0.818

nnformer 0.659 0.833 0.785 0.759

Segtran 0.728 0.875 0.849 0.817

SwinUNETR 0.754 0.883 0.837 0.823

TransBTS 0.744 0.867 0.839 0.816

UNETR 0.734 0.864 0.817 0.813

Proposed 0.768 0.897 0.865 0.843
Red denotes the best results, and blue means the second best.
TABLE 13 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
BraTS2021 dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.735 0.874 0.843 0.817

3DVnet 0.728 0.870 0.836 0.811

Atten-Unet 0.716 0.865 0.821 0.800

nnU-Net 0.764 0.887 0.852 0.834

nnformer 0.711 0.861 0.812 0.794

Segtran 0.772 0.896 0.869 0.845

SwinUNETR 0.782 0.905 0.875 0.854

TransBTS 0.761 0.885 0.850 0.832

UNETR 0.756 0.883 0.842 0.827

Proposed 0.808 0.910 0.878 0.865
fr
Red denotes the best results, and blue means the second best.
TABLE 14 Quantitative results comparing the performance of our
method with other state-of-the-art segmentation methods on the
ZZH dataset.

Method
Dice

ET WT TC Mean

3DUnet 0.473 0.745 0.495 0.571

3DVnet 0.446 0.718 0.506 0.556

Atten-Unet 0.430 0.731 0.461 0.540

nnU-Net 0.486 0.808 0.531 0.608

nnformer 0.419 0.701 0.488 0.536

Segtran 0.452 0.804 0.573 0.609

SwinUNETR 0.506 0.803 0.531 0.613

TransBTS 0.434 0.768 0.491 0.564

UNETR 0.441 0.735 0.482 0.552

Proposed 0.491 0.811 0.546 0.616
Red denotes the best results, and blue means the second best.
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significance of the proposed method’s improvements, emphasizing

its efficiency and robustness compared to other models.

Beyond glioma segmentation, the CTPC module is highly

adaptable and could be applied to other medical imaging tasks. Its

ability to integrate local and global features makes it well-suited for

segmenting tumors with irregular boundaries, such as lung or liver
Frontiers in Oncology 1597
tumors. Additionally, the framework supports multi-modal imaging

(e.g., PET-CT, MRI-CT fusion), allowing the model to combine

complementary information for more accurate segmentation. In

the future, we plan to enhance the model further by incorporating

dynamic attention-based feature selection and task-specific fusion

strategies, broadening its clinical applicability.
FIGURE 7

Visual comparison of segmentation results with different models on the BraTS2019, BraTS2020, and BraTS2021 datasets. (A) FLAIR. (B) T1. (C) T1-CE.
(D) T2. (E) Attention-Unet. (F) nnU-Net. (G) Segtran. (H) SwinUNETR. (I) TransBTS. (J) Ours. (K) GT.
FIGURE 8

Visual comparison of segmentation results with different models on the ZZH dataset. (A) FLAIR. (B) T1. (C) T1-CE. (D) T2. (E) Attention-Unet. (F) nnU-
Net. (G) Segtran. (H) SwinUNETR. (I) TransBTS. (J) Ours. (K) GT.
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Despite these strengths, the model is not without limitations.

The complexity and large parameter count increase the risk of

overfitting, especially when trained on smaller datasets. To mitigate

this, regularization techniques such as dropout, data augmentation,

and early stopping could improve the model’s robustness. Another

challenge is the variability in MRI data from different scanners or

imaging protocols, which can hinder generalization. Future work

will focus on data harmonization methods, such as domain

adaptation and intensity normalization, to reduce these challenges

and improve generalization across diverse datasets.

Looking ahead, there are several opportunities for further

refinement of DeepGlioSeg. Incorporating multi-scale feature

extraction, attention mechanisms, and multi-task learning can

enhance its ability to handle a broader range of clinical tasks.

Additionally, transfer learning from pre-trained models and the

inclusion of contextual priors could reduce dependency on large

labeled datasets, improving the model’s adaptability to various

imaging modalities and expanding its clinical utility.
7 Conclusion

In this study, we present DeepGlioSeg, a novel framework

developed to address the challenging task of automating brain tumor

segmentation. Our proposed method incorporates the CTPC module

into an encoder-decoder network architecture, enabling it to capture

critical local features of gliomas, such as texture and edges. To tackle the

challenge of category imbalance, we introduce the Multi-GDL loss

function, which adjusts category weights to rebalance loss

contributions, resulting in more accurate identification of tumor
FIGURE 9

Visual comparison of feature maps with different models on the ZZH, BraTS2019, BraTS2020, and BraTS2021 datasets. (A) Raw image. (B) nnU-Net.
(C) Segtran. (D) SwinUNETR. (E) Ours. (F) TransBTS.
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TABLE 15 Comparison of computational complexity between our
method and other state-of-the-art methods on all the datasets used.

Datasets Method
Params
(M)

FLOPS
(G)

p-value

BraTS2019

3DUnet 5.42 275.53 2e-6

3DVnet 4.76 157.81 4e-5

Atten-Unet 2.47 164.06 2e-4

nnU-Net 9.4 84.03 0.0012

nnformer 14.91 172.04 0.0048

Segtran 29.19 254.45 0.0035

SwinUNETR 15.56 206.76 0.0072

TransBTS 30.62 163.73 0.0223

UNETR 15.56 206.76 0.0185

Proposed 6.92 156.79 *

BraTS2020

3DUnet 5.42 275.53 1e-7

3DVnet 4.76 157.81 3e-4

Atten-Unet 2.47 164.06 1e-4

nnU-Net 9.4 84.03 0.0015

nnformer 14.91 172.04 0.0053

Segtran 29.19 254.45 0.0041

SwinUNETR 15.56 206.76 0.0073

TransBTS 30.62 163.73 0.0244

(Continued)
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structures. To further enhance glioma segmentation during inference,

we employ a combination of TTA and VC as post-processing

strategies. These improvements highlight the effectiveness of the

CTPC module, Multi-GDL loss function, and post-processing

strategies. Future enhancements for segmenting complex regions like

ET and TC may involve refining the CTPC module with dynamic

attention-based feature fusion to adaptively focus on intricate

boundaries. Additionally, multi-scale learning and adaptive weighted

loss functions could further improve segmentation by capturing multi-

resolution features and prioritizing critical regions.
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TABLE 15 Continued

Datasets Method
Params
(M)

FLOPS
(G)

p-value

UNETR 15.56 206.76 0.0157

Proposed 6.92 156.79 *

BraTS2021

3DUnet 5.42 275.53 1e-7

3DVnet 4.76 157.81 3e-6

Atten-Unet 2.47 164.06 1e-5

nnU-Net 9.4 84.03 0.0009

nnformer 14.91 172.04 0.0052

Segtran 29.19 254.45 0.0032

SwinUNETR 15.56 206.76 0.0068

TransBTS 30.62 163.73 0.0277

UNETR 15.56 206.76 0.0136

Proposed 6.92 156.79 *

ZZH

3DUnet 5.42 275.53 1e-8

3DVnet 4.76 157.81 5e-4

Atten-Unet 2.47 164.06 6e-4

nnU-Net 9.4 84.03 0.0018

nnformer 14.91 172.04 0.0046

Segtran 29.19 254.45 0.0037

SwinUNETR 15.56 206.76 0.0076

TransBTS 30.62 163.73 0.0218

UNETR 15.56 206.76 0.0165

Proposed 6.92 156.79 *
The p-value is computed for paired t-tests between our method and other methods. A p-value
less than 0.05 indicates the statistical significance of the paired t-tests.
The symbol * indicates that the p-values for the other methods were calculated using a paired
samples t-test, with our method serving as the benchmark reference.
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The diagnostic value of
advanced tracer kinetic models
in evaluating high grade gliomas
recurrence and treatment
response using dynamic
contrast-enhanced MRI
Jianan Zhou1,2,3, Zujun Hou4, Xiuqi Guan5, Zhengyang Zhu2,3,
Han Wang6, Cong Wang7, Wei Luo5, Chuanshuai Tian1,2,3,
Huiquan Yang2,3, Meiping Ye2,3, Sixuan Chen2,3,
Xin Zhang1,2,3* and Bing Zhang1,2,3

1Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical
University, Nanjing, China, 2Institute of Medical Imaging and Artificial Intelligence, Nanjing University,
Nanjing, China, 3Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China, 4The Second Affiliated
Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China, 5FISCA
Healthcare Co., Ltd., Nanjing, China, 6Nanjing Center for Applied Mathematics, Nanjing, China,
7School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou, China
Background: The purpose of this study was to investigate the diagnostic value of

advanced tracer kinetic models (TKMs) in differentiating HGGs recurrence and

treatment response.

Methods: A total of 52 HGGs were included. DCE images were analyzed using the

following TKMs: distributed parameter (DP), tissue homogeneity (TH), Brix’s two-

compartment (Brix) and extended-Tofts model (ETM), yielding the following

parameters: cerebral blood flow (CBF), mean transit time (MTT), plasma volume

(Vp), extravascular volume (Ve), vascular permeability (PS) and first-pass extraction

ratio (E) in advanced TKMs (DP, TH and Brix); Ktrans, Ve, Vp and Kep in ETM. Two

delineation methods were conducted (routine scans and parameter heat maps).

The differences between twoMRI scanners were compared. Mann–Whitney U test

was used to assess the difference of parameter values. Diagnostic performance

was assessed using the method of the receiver operating characteristic (ROC)

curves, with the areas under the ROC curves (AUC) to determine the discriminating

power of DCE parameters between recurrent tumor group and treatment

response group . P<0.05 indicates statistical significance.

Results: The difference on the normalized kinetic parameter value (with respect

to contralateral normal-appearing white matter) between two MRI scanners was

statistically insignificant (P>0.05). MTT and Vp of advanced TKMs were higher in

recurrent than in treatment response group (P<0.05). For ROI delineated on

parameter heat maps, MTT(DP) attained the best performance with AUC 0.88,

followed by MTT(TH) and Vp (DP, Brix) with AUCs around 0.80 (0.81, 0.80, 0.79

respectively). The best performance in ETM was Vp (AUC = 0.73).
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Conclusion: MTT (DP, TH), and Vp (DP, Brix) could be potential quantitative

imaging biomarkers in distinguishing recurrence and treatment response

in HGGs.
KEYWORDS

high grade glioma, dynamic contrast-enhanced, tracer kinetic model, treatment
response, recurrence
1 Introduction

High-grade gliomas (HGGs) are the most common primary

brain malignancies, and the first line of care consists of surgical

resection, radiation therapy (RT), and chemotherapy (CTX) (1).

The extent of resection has been validated as a prognostic marker

(2). After maximal safe resection, the standard therapy (Stupp

protocol) remains RT with concurrent temozolomide (TMZ) 75

mg/m2/day for 6 weeks and maintenance TMZ (150–200 mg/m2/

day × 5 days for 6 cycles) (3). In spite of the survival benefit

associated with adjuvant radiation and chemotherapy, the

majority of HGGs patients relapse after initial therapy.

Contrast-enhanced MRI is the gold standard imaging method

in detecting HGGs and defining their extension, and is

recommended as the standard method for evaluating treatment

response in the Response Assessment in Neuro-Oncology (RANO)

2.0 criteria (4, 5). However, using conventional MRI alone,

sensitivity and specificity could be limited in distinguishing tumor

recurrence from radiation-induced brain injury (RIBI), including

pseudoprogression (PsP) and radiation necrosis (RN), collectively

known as treatment response, which may both present with

enlarging contrast-enhancing lesions or expanding edema.

Although advanced imaging techniques have been investigated to

improve diagnostic accuracy, the temporal overlap of imaging

features between PsP and recurrence (both predominantly

occurring 3–6 months post-treatment) complicates definitive

diagnosis based on single-timepoint imaging assessments, which

relies on multiple follow-ups imaging evaluations, thereby

prolonging the diagnostic timeline (6). The incidence of RN could

be up to 24% (7), and the incidence of PsP could be up to 32.3%

in HGGs patients treated with standard regimen (8–13),

which is related to the radiation dose and the volume of

brain tissue irradiated (14). The distinction between recurrent

tumor and treatment response has important implications for

further treatment.

Advanced MRI techniques have been developed to aid in

differentiating PsP from true recurrence (15) and a promising

representative is dynamic contrast-enhanced (DCE) MRI, which

quantitatively measures tissue microcirculation through analyzing

the time-intensity curve using tracer kinetic models (TKMs). A

variety of TKMs, such as conventional TKMs (e.g., Tofts model and
02102
extended-Tofts model [ETM]) and advanced TKMs (e.g., Brix’s

conventional two-compartment model [Brix], tissue homogeneity

model [TH] and distributed parameter [DP] model), have been

proposed and investigated in evaluating glioma diagnosis and

treatment response, as detailed in a recent review paper (16). A

key difference between conventional and advanced TKMs lies in the

characterization of tracer molecular transport type in tissue

microenvironment. Two types of transport are accounted for in

advanced TKMs, namely the transport due to blood flow within the

intravascular space and the exchange through vessel wall between

the intravascular space and the extravascular space, which is

separately modelled as blood flow and vessel permeability. In

contrast, only one type of transport is modelled in conventional

TKMs. Tofts model is the only single-compartment model, which

assumes that the volume of extravascular extracellular space (EES)

is much larger than that of intravascular plasma space (IVPS),

hence the compartment of IVPS is neglected in the Tofts model. In

the above review paper, inconsistent findings in different studies

were highlighted and appraised, and advantages of advanced TKMs

over conventional TKMs were discussed, but need to be validated in

more studies.

In this study, we attempted to investigate the diagnostic

value of advanced TKMs and identify potential quantitative

imaging biomarkers in differentiating HGG recurrence from

treatment response.
2 Materials and methods

2.1 Participants enrollment

This retrospective study was approved by the institutional

review board and performed in accordance with the Declaration

of Helsinki. Patients in this study were enrolled between December

2022 to May 2024. The requirement for informed consent was

waived. The inclusion criteria were as follows: (1) Pathologically

diagnosed as HGGs (WHO grade 3 and 4) according to the 2021

World Health Organization (WHO) criteria, with no prior tumor-

related treatment before surgery, and receiving synchronous radio-

chemotherapy within 72 hours post-operation; (2) Baseline MRI

performed about 4 weeks (21-35 days) after the first radiotherapy;
frontiersin.org
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(3) Follow-up scans including T1WI, T2WI, T2-FLAIR, T1CE (T1

contrast-enhanced), and DCE; (4) Development of new enhancing

lesions during regular follow-up after the initiation of radio-

chemotherapy; (5) Pathological confirmation of recurrence or

treatment response via reoperation, or clinical diagnosis of

recurrence or treatment response during regular follow-up

according to the RANO 2.0 criteria (an increase of ≥25% in the

product of the two perpendicular diameters of the maximum cross-

section of enhancing lesions compared to baseline, or the

emergence of new enhancing lesions outside the radiation target

area indicating progression). The exclusion criteria included: (1)

Patients who did not receive radio-chemotherapy post-surgery; (2)

Cases where enhancement of lesions was not significant or poorly

defined during follow-up; (3) Poor image quality due to significant

patient motion, resulting in failed DCE data processing. The process

for patient inclusion is illustrated in Figure 1.
2.2 MRI examinations

The data acquisition machines used in this study included the

Philips Ingenia CX 3.0 T MRI scanner and the United Imaging

uMR790 3.0 TMRI scanner (equipped with a 32-channel head coil).

The contrast agent used was Gadobutrol injection (Oniyin, GE

Healthcare), administered at an injection rate of 3.5 mL/s and a

dosage of 0.2 mL/kg. The scanning sequences included T1WI,

T2WI, T2-FLAIR, T1CE, and DCE. The DCE sequence included

three precontrast sequences with: TR/TE (3.47 ms /1.9 ms), FOV

(240 ×220 mm2), slice thickness (5 mm), number of phases (5), flip

angles (5°,10°,15°), and the postcontrast dynamic sequence with the

same scanning parameters except for number of phases (90) and flip

angle (13°). The temporal resolution was 4 seconds, with total

duration 6 mins. Specific scanning parameters were shown in

Supplementary Table SA1.
Frontiers in Oncology 03103
2.3 Image analysis

DCE images were analyzed by a commercially available

software for DCE data analytics (MItalytics, FISCA Healthcare,

Singapore), using the following TKMs: DP, TH, Brix and ETM,

yielding the following parameters: cerebral blood flow (CBF), mean

transit time (MTT), plasma volume (Vp), extravascular volume

(Ve), vascular permeability (PS) and first-pass extraction ratio (E) in

advanced TKMs (DP, TH and Brix); Ktrans, Ve, Vp and Kep in ETM.

All of the DCE analysis models were available with the software.

Images were registered when evident movement was observed

among the dynamic scans. The software used the method of

variable flip angle to compute tissue T1 value and estimated tracer

concentration by the difference in longitudinal relaxation rates

between postcontrast and precontrast (r1C = 1
Tc
1
− 1

T0
1
, where r1

denotes the longitudinal relaxivity and assumes 4.0 s−1mM−1 for

the contrast agent used in this study (17, 18). Regions of interest

(ROI) delineation was performed independently by two

neuroradiologists (ZZ and JZ with 9 and 7 years of experience in

neuro-radiography). Two types of delineation methods were

conducted, one with reference to the routine clinical scans (based

on enhanced lesion and areas of necrotic, cystic and hemorrhages

were avoided) and the other with account of parameter heat maps

(based on the region of highest signal, no less than 15 voxels).

Figure 2 showed an example with two types of ROIs drawn. The

observers were blinded to pathohistological results. After manual

delineation of all datasets, every case was read by both observers to

ensure high-quality measurements. Different opinions were

resolved by consensus, with a third observer when necessary.

ROIs for contralateral normal-appearing white matter were also

delineated. Due to limitation in spatial resolution, substantial partial

volume corruption could be arisen in the carotid. Hence, a surrogate

for the artery input function (AIF), namely the concentration time

course in the sagittal sinus, was utilized in this study.
FIGURE 1

Flowchart of patient inclusion.
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The DCE software provided comprehensive tools for DCE data

analytics, including semi-quantitative analysis, conventional TKMs

and advanced TKMs. In this study, the following four TKMs were

employed for comparison. For completeness, the equations of four

TKMs were described as follows. Let Ctiss(t) and Ca(t) denote the

concentration of contrast agent in the tissue of interest and in the

arterial plasma respectively. By assuming that the capillary-tissue

system is stationary and linear, these two variables can be related as

follows:

Ctiss(t) = R(t)⊗Ca(t)

where R(t) stands for the impulse residue function and ⊗ the

convolution operator. The residue functions of four TKMs were

listed below.

ETM:

RETM(t) = vpd (t) + Ktransexp( −
Ktrans

ve
t)

Brix (Equations 1a–1c):

RBrix(t) =  Fp½A   exp(a t) + (1 − A)exp(b t)� (1a)

a
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−
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PS
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A =
a + PS

vp
+ PS

ve

a − b
  (1c)

where Fp stands for the flow rate of blood plasma through the

IVPS and is generally denoted as CBF when applied to cerebral

perfusion imaging.

DP model (Equation 2):

RDP(t) = Fp

u(t) − u(t −
vp
Fp
)+

u t −
vp
Fp

� �
1 − exp − PS
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(2)

where u(t) denotes the Heaviside unit-step function and I1 is the

modified Bessel function.
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TH model (Equation 3):

RTH(t)  =  Fp 1 − exp − PS
Fp

� �h i
exp −

Fp
ve

1 − exp − PS
Fp

� �h i
(t −

Fp
vp

n �
g

n o
 

(3)

After the analysis of a TKM, a few other parameters can be

derived as follows. The tracer mean transit time (MTT) can be given

by the central volume principle (Equation 4)

MTT =
vp + ve
Fp

(4)

The first-pass extraction fraction (E) from the IVPS to EES can

be evaluated as Equation 5

E = 1� exp −
PS
Fp

 !
(5)

The primary difference between ETM and another three advanced

TKMs lies in that the latter utilizes parameter Fp to account for tracer

intravascular transport and parameter PS for tracer exchange between

IVPS and EES, whereas the former describes tracer transport using one

parameter Ktrans, which is in principle a mixture between Fp and PS. As

for the difference among the advanced TKMs, it largely pertains to how

the tracer distributes within a compartment, which is generally

described as compartmental (meaning that tracer is well-mixed in

the compartment) or distributed (indicating that the tracer distribution

is a function of both time and space). Brix assumes both IVPS and EES

to be compartmental; DP assumes both IVPS and EES to be

distributed; and TH assumes EES to be compartmental and IVPS to

be distributed. Interested readers can refer to the review paper (19) for

more details of the different tracer kinetic models.
2.4 Statistical analysis

The data was partitioned into tumor recurrent group and

treatment response group, based on histopathologic and follow-

up imaging and clinical results. For each patient, the parameter

values of all voxels within the tumor ROIs on multiple slices were

pooled together and the median was determined. Besides the

absolute feature values, the relative feature values were also

evaluated, where the parameter value was normalized using the
FIGURE 2

An example of ROIs drawn. (A) Based on structural T1 contrast-enhanced MRI. (B) Based on kinetic parameter maps.
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median of contralateral normal-appearing white matter ROI.

Interobserver consistency was assessed using intraclass correlation

coefficient (ICC) with ICC >0.80, excellent; 0.61–0.80, good; 0.41–

0.60, moderate; 0.21–0.40, fair; and <0.20, poor agreement (20). The

normality of the distribution of all parameters was analyzed by the

Kolmogorov–Smirnov test. Mann–Whitney U test was used to assess

the difference of parameter values between recurrent tumor group

and treatment response group. The receiver operating characteristic

(ROC) curves of all parameters were obtained and the areas under the

ROC curves (AUC) were evaluated to determine the discriminating

power of DCE parameters between recurrent tumor group and

treatment response group. Optimal cut-off values were chosen

using the Youden index on the ROC curves, and the corresponding

statistical metrics (sensitivity, specificity, accuracy) were computed.

To account for the unbalanced issue in the data, the bootstrap re-

sampling technique was employed in the study, where re-sampling

with replacement was utilized to create a new dataset from original

dataset but with predesigned balanced data size, followed by ROC

analysis for the resampled dataset, and the process was repeated 200

times, with AUCs (mean ± standard deviation) being calculated. The

false discovery rate (FDR) was used to obtain adjusted P values which

correct for multiple testing when comparing the various parameters.

P<0.05 indicates statistical significance. Statistical analyses were

performed using MATLAB (2020b, MathWorks, Natick, MA).
3 Results

3.1 Baseline characteristics of the
participants

A total of 52 patients were included, where 40/52 (76.9%) were

recurrent and 12/52 (23.1%) had treatment response. Of all patients,

40 were confirmed by follow-up and 12 were confirmed by surgery.

The demographic and clinical characteristics of the patient cohort

were shown in Table 1.
3.2 Intraclass correlation coefficients

Supplementary Table SA2 showed the ICC values for the measured

parameters of DPwith delineation in anatomical images and parameter

heat maps, where most ICC values in both delineation methods were

greater than 0.9, indicating excellent agreement betweenmeasurements

from two observers. Hence, the parameter values as measured by two

observers were averaged and utilized in the subsequent analysis.
3.3 Comparison of kinetic parameter
values between MRI scanners

To compare the difference between MRI scanners,

Supplementary Table SA3 presented the measured values of

kinetic parameters (median followed by interquartile range) by
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different TKMs, where P values of DP-derived parameters were

mostly greater than 0.05 except for Ve, indicating only the difference

of Ve was statistically significant between two scanners in DP

model. Nevertheless, P values of other kinetic parameters by other

TKMs were largely less than 0.05, indicating significant difference

between scanners.

The normalized kinetic parameter values were listed in Table 2,

where P values of all kinetic parameters by all TKMs were greater

than 0.05, suggesting that the difference on the normalized kinetic

parameter value between two scanners was insignificant. Hence, the

following analysis was largely based on the normalized kinetic

parameter values.
3.4 Differential diagnosis between
recurrent tumor and treatment response

The normalized kinetic parameter values of recurrent tumor

and treatment response by four TKMs were shown in Table 3.

Compared with treatment response, lesions with tumor

recurrence had higher MTT and Vp using advanced TKMs (DP,

TH, Brix) (P<0.05). As for ETM, Ve (P = 0.03) and Vp (P = 0.02)

were lower for patients with treatment response compared with

patients with tumor recurrence. Figures 3, 4 illustrated the

parameter maps of a cases of postoperative recurrence and a

case of treatment response of glioblastoma based on DP model

respectively, where tumor recurrence was manifested on the

parameter maps as higher perfusion and higher permeability

compared to treatment response.

Quantitative diagnostic metrics of normalized kinetic

parameters derived by four TKMs were shown in Figure 5 (plot

of the ROC curves) and Table 4 (optimal cutoff, AUC values,

sensitivity, specificity, accuracy), where ROIs were delineated

based on parameter heat maps. MTT(DP) attained the best

performance in all TKMs’ parameters with AUC 0.88, optimal

threshold 2.64, specificity 0.92, accuracy 0.77 and sensitivity 0.73.

MTT(TH), Vp (DP) and Vp (Brix) had AUCs around 0.80 (0.81,

0.80, 0.79 respectively), with optimal thresholds of 2.25, 2.02, and

8.90 respectively. The best performance in ETM was Vp with

AUC 0.73.

Figure 6 and Supplementary Table SA4 presented the ROC

curves and corresponding metrics of normalized kinetic parameters

derived by four TKMs, where ROIs were delineated based on

structural images. MTT(DP) exhibited the largest AUC (0.80) in

all TKMs’ parameters, with optimal cutoff 2.27, specificity 0.83,

accuracy 0.73 and sensitivity 0.70. AUCs of ETM parameters were

less than 0.66.

The results of bootstrapping test were summarized in

Supplementary Table SA5, where table entries represented

AUCs (mean ± standard deviation) of normalized kinetic

parameters. The DP-derived MTT showed the largest AUC

(0.88 ± 0.05). TH derived MTT, Vp in DP and Brix attained

AUCs around 0.80 separately. AUCs by ETM derived parameters

were less than 0.75.
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4 Discussion

This paper presented application of advanced TKMs to the

differential diagnosis of tumor recurrence and treatment response

in HGGs. MTT and Vp of advanced TKMs were higher in recurrent
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tumor than in treatment response. MTT(DP) attained the largest

AUC (0.88). No statistical significance was observed on

permeability parameters. Comparatively, advanced TKMs

demonstrated advantages over ETM in differentiating glioma

recurrence and treatment response.
TABLE 1 The demographic and clinical characteristics of the patients.

Variable Recurrent (n=40) Treatment response (n=12) P value

Grouping criteria 0.433

Follow-up 30 10

Pathology 10 2

Age 56.7 ± 8.33 52.9 ± 14.58 0.011

Sex 0.746

Male 20 5

Female 20 7

Cerebral lobe 0.304

Frontal lobe 15 5

Parietal lobe 5 4

Occipital lobe 7 0

Temporal lobe 12 3

Others 1 0

Location 1.000

Left 19 6

Right 21 6

Lesion number 0.743

Single 19 7

Multiple 21 5

WHO grade 0.011

Grade 3 3 5

Grade 4 37 7

Integrated classification 0.121

Glioblastoma, IDH wild-type 33 7

Astrocytoma, IDH wild-type 2 0

Astrocytoma, IDH mutant 2 2

Astrocytoma, NOS 1 2

Oligodendroglioma, IDH wild-type 1 0

Oligodendroglioma, IDH mutant 1 0

Oligodendroglioma, NOS 0 1

IDH mutation status 0.018

Mutant 3 2

Wild-type 36 7

NA 1 3
Bold P values less than 0.05 indicate a statistically significant difference. IDH, isocitrate dehydrogenase; NOS, not otherwise specified.
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Previous studies (21–23) on differential diagnosis between

recurrent glioma and treatment response using DCE-MRI were

largely based on conventional TKMs, which characterize the

transport of contrast agent using Ktrans and are recommended in

the Quantitative Imaging Biomarkers Alliance (QIBA) Profile (24),

where it is claimed that measured change in Ktrans of a brain lesion

of 21% or larger from DCE-MRI data at 1.5T indicates that a true

change has occurred with two-sigma confidence (95%) confidence.

In theory, Ktrans is defined as the exchange rate of contrast agent

from the blood vessels into the surrounding interstitial space and

represents an important parameter in conventional TKMs. Zahra

et al. reviewed 29 studies (total of 1194 patients) that correlate DCE-

MRI with histopathological or clinical outcome data relevant to
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radiotherapy, and found the apparent discrepancy among the

reported outcomes, which could be attributed to the heterogeneity

in the methods, including the selection of the ROIs and the

acquisition and analysis of the DCE-MRI data, as well as the

small numbers of patients recruited in some studies (25).

O'Connor and coauthors reviewed the role of DCE-MRI for

decision making during the drug-development process in about

100 early-phase clinical trials and investigator-led studies of

targeted antivascular therapies and found that, unlike serological

assays, Ktrans often had variable meanings between different clinical

studies and within one study at different time points, which

hindered wider application and acceptance of DCE-MRI in

clinical practice (26). The precise meaning of Ktrans has been
TABLE 2 Comparison between MRI scanners on normalized kinetic parameter values in recurrent glioma tissue.

Parameters United Imaging (n = 30) Philips (n = 10) P value

DP

CBF 1.03 (0.88: 1.20) 0.99 (0.84: 1.22) 0.79

MTT 4.85 (2.56: 6.12) 5.43 (2.52: 9.48) 0.57

Vp 4.14 (2.40: 6.54) 4.44 (2.82: 6.95) 0.59

Ve 41.89 (26.53: 69.46) 74.30 (55.37: 106542.51) 0.11

PS 42.35 (17.83: 112.47) 38.46 (20.67: 27965.72) 0.24

E 43.64 (19.51: 94.95) 40.04 (16.37: 27777.53) 0.14

TH

CBF 1.52 (1.06: 2.54) 1.34 (1.03: 1.87) 0.83

MTT 4.11 (1.65: 5.98) 6.60 (3.50: 9.34) 0.11

Vp 4.72 (3.10: 7.91) 7.20 (5.87: 8.57) 0.37

Ve 40.16 (26.10: 79.80) 64.23 (43.14: 13248755.01) 0.09

PS 25.64 (10.53: 56.83) 54.54 (16.26: 926318.71) 0.17

E 14.59 (7.37: 23.85) 25.02 (10.39: 1447508.26) 0.11

Brix

CBF 1.54 (1.14: 1.89) 1.28 (1.06: 1.98) 0.25

MTT 11.11 (7.76: 17.98) 17.94 (11.83: 26.70) 0.50

Vp 18.60 (9.03: 30.59) 22.94 (12.61: 39.74) 0.74

Ve 49.09 (27.33: 85.92) 46.61 (24.20: 86.11) 0.11

PS 32.60 (12.90: 54.18) 37.33 (23.29: 72.01) 0.09

E 20.22 (11.38: 39.10) 27.97 (16.82: 46.87) 0.11

ETM

Ktrans 1.95 (0.79: 5.71) 3.96 (1.04: 13.15) 0.55

Ve 245.42 (46.55: 7925.95) 133.37 (53.31: 18122.45) 0.94

Kep 0.14 (0.01: 0.27) 0.17 (0.01: 0.26) 0.37

Vp 3.17 (1.60: 6.00) 4.09 (2.10: 5.86) 0.33
CBF, cerebral blood flow; MTT, mean transit time; Vp, plasma volume; Ve, extravascular volume; PS, vascular permeability; E, first-pass extraction ratio.
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theoretically investigated in (27, 28). It is understood that the

physiological significance is tissue dependent; if the contrast

uptake is flow limited, then Ktrans will indicate the tissue

perfusion, whereas if the uptake is permeability limited, then

Ktrans indicates the permeability. In most cases, Ktrans indicates a

combination of the blood flow and vessel wall permeability

properties of tissue. The AUC of normalized Ktrans (ETM) was

0.59 in differentiating recurrent tumor from treatment response in

our study, which corroborated the previous studies (AUCs 0.62 and

0.51, respectively) (29, 30).

The primary mechanisms underlying treatment-related

responses in HGGs, including RN and PsP, involve radiation-

induced direct damage, injury to vascular endothelial cells, and

excessive vascular proliferation or rupture leading to hemorrhage

and plasma protein extravasation, which disrupt the blood-brain

barrier (BBB), and cell death releases cytokines (e.g., IL-6, TNF-a)
and mediators, triggering an inflammatory response that activates

cells (31), all of which may contribute to increased vascular

permeability. Due to the infiltrative growth characteristics of

gliomas, residual tumor cell proliferation can lead to tumor

recurrence. Tumor cells secrete pro-angiogenic factors, inducing

abnormal vascular proliferation with incomplete basement

membranes, resulting in contrast agent extravasation. In summary,

the enhancing lesions in treatment-related responses (PsP and RN)

primarily arise from therapy-induced inflammatory reactions and

vascular permeability changes, whereas tumor recurrence-driven

enhancement is driven by tumor cell proliferation and abnormal

angiogenesis (32, 33). Consequently, both tumor recurrence and

treatment-related responses in HGGs can exhibit elevated

permeability parameter values on DCE MRI, which explains the

lack of significant statistical differences in permeability parameters

between the two groups in this study. Larsen et al.'s study also

indicated that BBB permeability parameters could not effectively

distinguish between PsP and recurrence (34), which was consistent

with our study. Besides, Manual delineation of enhancing regions

may include areas of coexisting treatment response and tumor

recurrence, particularly in infiltrative gliomas, obscuring true

permeability differences. The non-significant permeability results

highlight the complexity of PsP/recurrence pathophysiology

and the limitations of parameter imaging. This underscores

the necessity of combining permeability data with systemic

inflammatory markers (e.g., NLR, SII) and volumetric analyses to

enhance diagnostic precision (6).
TABLE 3 Summary of normalized kinetic parameter values (median and
interquartile range) of recurrent tumor and treatment response by
four TKMs.

Parameters
Recurrent
tumor (n=40)

Treatment
response (n=12)

P
value

DP

CBF 1.00 (0.87: 1.21) 0.95 (0.81: 1.15) 0.38

MTT 4.85 (2.54: 6.79) 1.55 (1.31: 2.37) <0.01

Vp 4.14 (2.41: 6.63) 1.51 (1.27: 3.16) <0.01

Ve 47.01 (29.99: 77.22) 33.85 (9.81: 8400.57) 0.23

PS 42.35 (19.25: 133.96) 37.95 (15.72: 314.18) 0.72

E 42.04 (17.94: 114.67) 46.04 (17.95: 2655.28) 0.99

TH

CBF 1.42 (1.05: 2.39) 1.74 (1.10: 1.95) 0.82

MTT 4.40 (2.19: 7.38) 1.49 (1.07: 2.22) <0.01

Vp 5.83 (3.53: 8.49) 3.19 (1.68: 4.47) <0.01

Ve 46.10 (29.25: 88.10) 35.63 (12.49: 144.96) 0.31

PS 28.62 (11.04: 66.55) 29.33 (3.44: 79.16) 0.45

E 14.59 (8.11: 30.77) 10.27 (2.93: 46.27) 0.39

Brix

CBF 1.48 (1.13: 1.92) 1.17 (0.83: 1.85) 0.24

MTT 11.98 (8.33: 19.48) 4.53 (3.35: 14.39) 0.02

Vp 18.92 (9.57: 31.25) 7.92 (4.11: 10.67) <0.01

Ve 49.09 (26.09: 86.02) 18.63 (12.10: 40429.65) 0.10

PS 35.19 (15.16: 61.08) 19.04 (3.47: 294.36) 0.37

E 23.54 (12.73: 42.52) 35.92 (4.39: 415.56) 0.94

ETM

Ktrans 2.87 (0.89: 7.69) 2.08 (0.25: 4.88) 0.38

Ve
144.59
(45.94: 12718.69)

38.90 (5.69: 129.81) 0.03

Vp 3.17 (1.82: 6.18) 1.33 (0.75: 3.48) 0.02

Kep 0.17 (0.01: 0.28) 0.17 (0.04: 1.05) 0.43
Bold P values less than 0.05 indicate a statistically significant difference. CBF, cerebral blood
flow; MTT, mean transit time; Vp, plasma volume; Ve, extravascular volume; PS, vascular
permeability; E, first-pass extraction ratio.
FIGURE 3

A 36-year-old female with WHO grade 4 glioblastoma of the right frontal lobe. A new enhanced lesion emerged during the follow-up. Postoperative
pathology confirmed the enhanced lesion as recurrence. Parametric maps of cerebral blood flow CBF, mean transit time MTT, plasma volume Vp,
extravascular volume Ve, vascular permeability PS, and first-pass extraction ratio E as derived using DP model.
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Quantitative interpretation of kinetic parameter maps has two

approaches in practice, namely, delineation based on anatomical

images or parameter heat maps. The former approach defines lesions

and their boundaries from correlative routine scans which have

higher spatial resolution in interpreting tissue structures and are

acquired in the same imaging plane as DCE-MRI (with similar FOV

and spatial coverage) such as T2WI and T1CE images. This approach

has been recommended by the committee of QIBA (24) for
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reproducibility. In the recent guidelines of both National

Comprehensive Cancer Network (NCCN) and European

Association of Neuro-Oncology (EANO), perfusion maps (in

particular, the map of cerebral blood volume) are recommended to

define metabolic hotspots for specific tumor tissue sampling (35, 36).

This study compared these two approaches to lesion ROI delineation

and demonstrated that parameter heat maps could be more accurate

in distinguishing recurrent tumor from treatment response in high-
FIGURE 4

A 57-year-old male with WHO grade 3 oligodendroglioma of the right temporal lobe. Postoperative pathology confirmed the enhanced lesion as
radiation necrosis (RN). Parametric maps of blood flow CBF, mean transit time MTT, fractional volume of intravascular space Vp, fractional volume of
interstitial space Ve, vessel permeability PS, and extraction ratio E as derived using DP model.
FIGURE 5

Plot of ROCs of normalized kinetic parameters derived by four tracer kinetic models in differentiating HGGs recurrence from treatment response.
DP: distributed parameter model, TH: tissue homogeneity model, Brix: Brix’s conventional two-compartment model, ETM: extended-Tofts model.
Regions of interest (ROI) were delineated on kinetic parameter heat maps.
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grade glioma patients. The reason might be the heterogeneity of

suspicious lesion as delineated in anatomical images, which could

compromise the subsequent differential diagnosis where the

information was based on the measured parameter values of the

registered ROI, likely a mixture of heterogeneous tissue.

Comparatively, delineation based on parameter heat maps could

yield an ROI with more homogeneous tissue.

As discussed in the latest review paper (16), both MR imaging

hardware and the theory of DCE tracer kinetic modeling have

undergone significant advances over the years, thereby allowing

acquisition of DCE images with higher temporal resolution, better

signal-to-noise ratio, wider brain coverage and increased spatial
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resolution, and enabling separate quantification of CBF and PS in

advanced TKMs. This study demonstrated clearly the advantages of

advanced TKMs over ETM in differential diagnosis of recurrent

tumor and treatment response.

A long-standing challenge in DCE-MRI is the reproducibility of

quantitative results across imaging platforms. Standardization of

imaging protocol and data post-processing is essential to achieve

the purpose. Towards that end, QIBA has recommended the

following protocol: (1) using 3D fast spoiled gradient recalled

echo sequence; (2) using variable flip angle for T1-mapping

measurement; (3) scanning parameters stay constant; (4) dynamic

scan duration up to 6 mins; (5) temporal resolution less than 5
TABLE 4 ROC quantitative parameters of normalized kinetic parameters derived by four TKMs in differential diagnosis between recurrent HGG and
treatment response, where ROIs were delineated on kinetic parameter heat maps.

Parameters AUC Threshold Sensitivity Specificity Accuracy

DP

CBF 0.59 0.97 0.65 0.58 0.63

MTT 0.88 2.64 0.73 0.92 0.77

Vp 0.80 2.02 0.83 0.67 0.79

Ve 0.62 40.7 0.60 0.67 0.62

PS 0.54 50.49 0.48 0.67 0.52

E 0.50 38.49 0.58 0.50 0.56

TH

CBF 0.52 1.71 0.58 0.63 0.62

MTT 0.81 2.25 0.75 0.83 0.77

Vp 0.75 3.92 0.73 0.75 0.73

Ve 0.60 31.91 0.73 0.50 0.67

PS 0.57 38.33 0.45 0.67 0.50

E 0.58 7.27 0.80 0.50 0.73

Brix

CBF 0.61 1.05 0.85 0.50 0.77

MTT 0.73 7.72 0.83 0.67 0.79

Vp 0.79 8.90 0.80 0.75 0.79

Ve 0.66 20.57 0.85 0.67 0.81

PS 0.59 20.78 0.73 0.58 0.69

E 0.51 50.00 0.50 0.80 0.73

ETM

Ktrans 0.59 1.20 0.70 0.50 0.65

Ve 0.71 46.17 0.75 0.58 0.71

Kep 0.58 0.14 0.67 0.48 0.52

Vp 0.73 2.44 0.68 0.75 0.69
Bold MTT (DP) attained the best performance with the best AUC = 0.88.
CBF, cerebral blood flow; MTT, mean transit time; Vp, plasma volume; Ve, extravascular volume; PS, vascular permeability; E, first-pass extraction ratio.
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seconds. This study acquired data using MR scanners from two

vendors, but the imaging protocol has been attempted to follow the

same standard, as largely recommended by QIBA, with the

equivalent sequence, the same temporal resolution and the same

brain coverage. Though some measured values in some TKMs

showed significant difference between scanners, it turned out that

the difference of the normalized value is statistically insignificant,

which indicated the potential for the imaging protocol and the

current DCE-MRI processing flow to fulfill the promise of using

DCE-MRI as a clinically useful tool.

There are several limitations in our study. First, this was a

single-center retrospective study with a moderate sample size.

Second, the delineation of ROI was subjective, and the results

might be biased, especially for lesions with unclear enhancement.

Third, portion of data was evaluated based on follow-up results of
Frontiers in Oncology 11111
imaging and clinical signs, which might be different from

histopathological results.
5 Conclusion

In differentiating recurrence and post-treatment response in

HGGs, DP demonstrated the best performance, with parameter

MTT having the highest diagnostic performance. Moreover, MTT

(TH) and Vp (DP, Brix) could also serve as potential quantitative

imaging biomarkers. The kinetic parameters derived by advanced

TKMs yielded superior performance compared to those by

conventional ETM. Interpretation of TKM parameters in terms of

treatment response assessment was best performed in the heat maps

of kinetic parameters.
FIGURE 6

Plot of ROCs of normalized kinetic parameters derived by four tracer kinetic models in differential diagnosis between recurrent HGG and treatment
response. DP: distributed parameter model, TH: tissue homogeneity model, Brix: Brix’s conventional two-compartment model, ETM: extended-Tofts
model. Regions of interest (ROI) were delineated on structure images.
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Introduction: The accuracy of stereotactic treatment planning is primarily

limited by the least accurate process in the whole chain of events, and is

particularly important in cranial radiosurgery. Ameliorating this process can

improve treatment targeting, providing additional reliability for these

indications. Quality assurance (QA) in radiotherapy is often performed on the

dose delivery and planning section rather than the localization. Magnetic

Resonance Images (MRI) are notably subject to distortions, due to the

nonlinearity of gradient fields, potentially source of geometric errors. This

study aimed to analyze the impact of a patient-specific algorithm, rather than

manufacturer-specific, to correct spatial distortion in cranial MRI by using a novel

software-only paradigm.

Material and methods: An unbiased simulated T1-Weighted MRI validated

dataset is utilized to create a synthetic CT (sCT). By introducing controlled

distortion in simulated datasets, we can evaluate the influence of noise and

intensity non-uniformity (“RF”) ranging from 0 to 9% noise and 0 to 40% RF.

These MRIs were corrected using the sCT as base modality for distortion

correction. To evaluate the impact of the distortion correction, each

corrected/non-corrected image set was compared to the unbiased MRI using

Root-mean-square-error (RMSE) as a full-image reference comparison metric.

Results: The distortion correction allows for an improvement based on the RMSE

correlation between baseline and distorted MRIs. The amelioration of average

RMSE in corrected versus non-corrected MRI is up to 42.22% for the most

distorted datasets.

Conclusion: The distortion correction results show a proportional improvement

with increased noise and intensity non-uniformity. This provides additional

robustness and reliability to the accuracy of SRS treatment planning using MR

T1-W sequences as imaging reference for target definition and organ delineation,

remaining consistent independently from the variability of the non-uniformity

gradient values. This virtual phantom methodology primarily aims to provide a

simple/robust evaluation metric in radiotherapy for MR distortion correction

solutions, providing an additional/complement QA procedure to dedicated
frontiersin.org01114
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hardware phantoms, comparatively costly in time and resources. This approach is

also designed to assist with an easily implementable secondary QA for validation

during commissioning of distortion correction software, focusing on this feature,

to better isolate and identify sources of geometric errors resulting from

MR distortions.
KEYWORDS

MRI distortion correction, stereotactic radiosurgery (SRS), cranial indications, target
positioning accuracy, synthetic CT (sCT), magnetic resonance imaging (MRI), quality
assurance (QA)
1 Introduction

Magnetic Resonance Imaging (MRI) is one of the most utilized

imaging modalities in Cranial Stereotactic Radiosurgery (SRS).

Computed Tomography (CT) images are the gold standard in

radiation oncology and are used for diagnostic, contouring, and

dose calculation. This modality is considered to have superior

spatial accuracy compared to MRI, but does not provide sufficient

anatomical information for target definition and delineation of the

organs at risk (OAR). MRI is required to enrich the treatment

targeting in SRS treatments with sufficient anatomical data, thanks

to an excellent soft tissue contrast (1).

During the treatment planning workflow, specifically within the

contouring process, CT and MR images are rigidly fused to allow

the projection of structures defined in one dataset to be displayed in

the other. This registration is the key component to allow for

simultaneous, accurate cranial structure contouring and dose

calculation. MR images are prone to intrinsic distortion

introduced during their acquisitions and might not be fully

corrected by the MR scanner’s post-processing software. These

remaining distortions can be a source of inaccuracy, resulting in

potential incorrect target definition, sub-optimal protection of

critical structures, and/or increased dose to normal tissue (2). The

displacement of the treatment target linked to MRI distortions,

mispositioning can lead to a geometric miss during delivery. This

potential error is particularly crucial in SRS indications focusing on

high-dose irradiation to small lesions, usually with a diameter

inferior to 1cm. In these cases, a geometric deviation of 1mm or

more could significantly impact the dose coverage of the target and,

as well, increase the dose to the normal tissues. Moreover, the

stereotactic target volume margins can be adjusted by increasing

their size to compensate for potential geometric misses and

guarantee sufficient dose coverage, leading to more than doubling

the additional normal tissue volume receiving high doses for each

1mmmargin increment. As a reference, for a sphere with a diameter

of 1 cm, a 1mm margin will expand its initial volume by 33%, 73%

with a 2mm margin, and 120% with a 3mm margin (3).

To verify accurate lesion targeting throughout SRS and SBRT

treatments, the AAPM-RSS Medical Physics Practice Guideline 9.a (4).
02115
recommends an End-to-End (E2E) localization assessment “hidden

target test” using an SRS frame and/or IGRT/SGRT system of 1 mm

additionally stating that when developing the E2E tests, all aspects of

the treatment process should be considered, including immobilization,

simulation, respiratory management, treatment planning, and

treatment delivery using a clinically relevant image guidance method.

Systematic submillimeter E2E testing is necessary for SRS and requires

continuous patient-specific quality assurance (QA), including discrete

MRI correction distortion QA, considering the amplitude of potential

displacement. For end-to-end testing, dedicated SRS-specific or

anthropomorphic phantoms are typically used to define the overall

error from image acquisition to radiation delivery However, the

accuracy of a stereotactic treatment is primarily limited by the least

accurate process in the whole chain of events. QA is often performed

on the dose delivery and planning section rather than the target

localization. The AAPM Task Group 284 (5) recommends a

geometrical accuracy of ≤ 2 mm across a 25 cm field of view (FOV)

for SRS and radiotherapy with MR-only planning.

During the SRS treatment process, the influence of the MRI

inaccuracies associated with distortions persisting after initial

scanner-level correction in the imaging QA is often overlooked

and included in the broader treatment planning error. The principal

challenge in asserting the accuracy of the MRI is that not all the

distortions follow a linear gradient. Some distortions, the result of a

gradient non-linearity, are referred to as B-spline distortions (6).

Scanner manufacturers include some image reconstruction and

correction processes during the post-processing of the images.

Multiple software manufacturers have developed and validated

elastic fusion in radiation oncology planning to improve the

accuracy of target and critical organs definition. Institutions tend

not to include distortion correction in their protocols, as the process

remains a “black box” with little to no tools to assess the quality of

the correction.

This study aims to define a new methodology based on a novel

software-only paradigm. For this, we want to be software-agnostic

and provide a robust and effortless technique that can be easily

replicated in clinical institutions without requiring specific

hardware and saving time and resources, particularly on medical

imaging devices. This approach provided an adequate method to
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evaluate and prove the quality and effectiveness, as well as validate

the clinical use of post-acquisition scanner processing distortion

correction software using non-biased data along with appropriate

metrics to comprehend the influence of the process on different

defined distortion variables and how they are correlated.
2 Materials and methods

2.1 MR images and distortions generation

Since the geometrical displacement is non-linear, the

incremental parameter should reflect it. For this purpose,

BrainWeb MRI (7), an online interface that generates a set of

realistic simulated brain databases (SBD), was utilized for a non-

biased MRI simulation. This quantitative analysis of the image data

approach was developed to provide a ground truth for such image

sets to resolve the issue of validation for these sequences. The

different parameters and values were estimated and validated to

provide a realistic range of values to emulate the potential

distortions generated during MR acquisition and provide a

gradual set of determined variables to better quantify how

distortions affect cerebral anatomy radiomics. The MR datasets

anatomically encompass the integrality of the cranium, cerebrum,

cerebellum, and brainstem from the top of the scalp to the base of

the foramen magnum. To generate a high SNR ratio model, 27

high-resolution MR datasets of the same individual with normal

anatomy were acquired, subsampled, and intensity averaged,

resulting in a single simulated dataset (8–11).

MRI distortions consist of various hardware-related factors,

such as magnetic field inhomogeneity and gradient non-linearity,

along with patient-related aspects like chemical shift and magnetic

susceptibility. Given the multiple variables, there is a consequent

challenge in accurately identifying and attributing whether each one

significantly impacts each specific image set and, moreover, in

selecting optimal MR imaging parameters. To simulate a standard

approach that does not depend on unique anatomical or

environmental conditions, this study focuses on gradient non-

linearity as the primary source of geometric distortions in this

imaging modality (3). For that purpose, this study utilizes MRI

datasets that were artificially generated using 2 variables: noise or

percent noise (PN) (Gaussian noise percent multiplied by the

brightest tissue intensity) and intensity non-uniformity (INU or

radiofrequency (RF)) were introduced with defined incremental

values in MR images to simulate the effects of distortions. The

advantage of that technique is that the MR T1-Weighted (T1WI)

dataset (PN=0%, RF=0%) used as the reference for correction

distortion is considered “ground truth” (or gold standard) for the

modality and is simulated from normal brain anatomy

without distortion.

The INU fields were estimated from patient MRI scans. They

are not linear but are slowly varying fields of a complex shape. The

% value specifies the intensity non-uniformity level. For a 20% level,

the multiplicative INU field has a range of values of [0.90 - 1.10]

over the brain area. For other INU levels, the field is linearly scaled
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accordingly (i.e. to a range of [0.80 - 1.20] for a 40% level). INU

distortions can be spatially smooth, not fully reproducing

heterogeneous biological interactions within large anatomical

structures. As a consequence, they can be easily interpreted and/

or interpolated, which does not represent the clinical reality in MR

imaging. To emulate the complexity of the imaging in the human

head, incremental inhomogeneity magnitudes can be introduced to

prevent automatic registration or segmentation from simply

anticipating the INU distortions. For that purpose, Gaussian

noise is specifically used to provide an additional layer of

convolution to the INU (12). The noise parameter utilizes

Rayleigh statistics in the background and Rician statistics in the

signal regions. The PN number represents the percent ratio of the

standard deviation of the white Gaussian noise versus the signal for

a reference tissue. For the MR T1WI, the reference tissue for the

noise computation used was the white matter.

For this study, all noise and RF values available in the BrainWeb

model were analyzed: 17 simulated brain anatomy MRI T1WI

datasets with 1x1x1 mm resolution and 181 slices using values

ranging from 0 to 9% noise and from 0 to 40% RF.
2.2 Synthetic CT Conversion

In clinical routine, CT images are fused to the MRI for target

and tissue density accuracy. However, they are subject to their

intrinsic distortions and motion/reconstruction artifacts. The use of

a synthetic CT (sCT) based on the validated non-distorted MRI was

introduced to ensure that the CT images used as a base for

correction distortion were not introducing any additional error in

the process, particularly since using newly acquired CT from

physical phantoms could still lead to some minor image

processing geometrical errors during the acquisition and CT

images would not match exactly with the MR images resulting in

minor differences during the rigid registration. The sCT dataset was

generated from the MRI baseline dataset (PN=0%, RF=0%) using a

1:1 voxel equivalence (13). The MRI baseline was segmented semi-

automatically using ITK-SNAP 3.6.0 (14, 15) to differentiate grey

and white matter, CSF, eyes, bone, air, and the rest of the soft tissues

(16). The MR Arbitrary Units in each segment were then converted

to Hounsfield Units (17) using bulk assignments and directly or

inverse linear ranges as described in Table 1. To cope with the

segmentation irregularities, a series of filters was applied, including

a median filter, to ensure that the root fusion CT would mirror

exactly the initial MR without distortion.
2.3 MRI distortion correction

As part of the SRS treatment-specific planning solution

currently utilized clinically in our institution, Elements Cranial

Distortion Correction© software version 4.0 (Brainlab AG,

München, Germany) was selected and employed to correct the

MR distortions remaining post-acquisition.
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The sCT and simulated MRI datasets were imported in DICOM

format and losslessly converted into a proprietary format. Within

the software, the sCT is fused rigidly independently to all the MR

datasets using mutual information registration. This process aligns

the overall position of each MRI dataset to the CT positioning (no

specific region of interest defined). The results of the fusion were

verified visually using anatomical landmarks (e.g. ventricles,

hemispherical midline, sulci,…) (Figure 1).

Following the initial rigid fusion, multiple rigid unit

registrations of 3×3×3 cm3 overlapping units were performed

within the images to locally improve the fusion. These units are

then aggregated into a single deformation field that maps one of the

datasets onto the other (18). This type of elastic registration can be

referred to as “Multi-rigid” since multiple rigid fusions are applied

at once, providing a blending of local registration results.

The multi-rigid fusions were applied independently for each

MR Dataset in the distortion correction software using the sCT as a
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base for the distortion correction (Figure 2). The results of the

registration were verified visually once more. The elastic

registration software generates a corrected MRI dataset that can

be exported while retaining the original MRI data. All the MR image

datasets were exported in DICOM RT 3.0 format.
2.4 Evaluation of the correction

The root mean square error (RMSE) calculation is used to

compare all the voxels (19) in the baseline MR against the corrected

MR and the non-corrected MR for defined PN and RF values in the

corresponding slice (Figure 3). In this study, the average RMSE was

calculated using custom code in the MATLAB® software

(MathWorks©, Natick, Massachusetts) to compare all the slices

of the corrected to the non-corrected MR dataset according to the

following equation:

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1

(ŷ i − yi)
2

n

s

where yi is the value of a specific voxel in a selected MR image,

ŷ i is the value of the aligned voxel in the baseline undistorted MR

image and n is the number of voxels compared in the image.
2.5 Statistical analysis

A student t-test was performed to test differences between two

groups/variables (corrected/non-corrected). Statistical significance

was considered for p < 0.05.
3 Results

On average, the distortion correction software allows for an

improvement based on the RMSE correlation between the baseline

MRI (PN=0%, RF=0%) and the distorted MRI corrected and non-

corrected (Figure 4). For the corrected datasets, the RMSE ranges

between 8.83 ± 0.27 and 55.58 ± 1.06 and averages at 33.36 ± 3.51.

For the non-corrected datasets, the RMSE ranges between 7.70 ±

0.03 and 83.14 ± 0.52 and averages at 44.18 ± 5.61. A strong,

statistically significant difference was found for the Average RMSE

Corrected compared to Non-corrected, as observed in Table 2.

As a control, we measured the RMSE between the MRI baseline

dataset (PN=0%, RF=0%) and its associated corrected MRI dataset.

The average RMSE value was 14.01 (standard deviation SD 6.27)

and serves as the baseline RMSE value comparing the undistorted

reference images to other MR image sets.

The % difference of average RMSE in non-corrected versus

corrected MRI ranges from 0 to 42.22%. A negative outlier

(-14.56%) for the comparison at PN1, RF0 was found which was

inconsistent with the rest of the data. This can be linked to the

influence of the baseline value for lower values of PN and RF. The

overall average, including the outlier value, was 21.08 ± 4.16%. This
TABLE 1 Conversion table and methods from MR arbitrary units to
Hounsfield Units for all defined tissue types used to generate a
synthetic CT.

Tissue
Type

MR Abitratry Units/HU Values
Conversion Method

Hounsfield
units (HU)

Bone Inverse Linear 500 to 1100

Brain Linear 35 to 75

Water
(CSF,
eyes)

Bulk Assignement 0

Soft
tissues

Inverse Linear −80 to −30

Air Bulk Assignement −1000
These values were slightly adapted from Yu et al. (15) and are in agreement with observed and
published tissue density ranges.
FIGURE 1

Display of the post-processed results of an MRI distorted dataset
based on the synthetic CT using the cranial distortion
correction software.
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confirms the overall increased accuracy, and the linear trendline

(Table 2) shows a positive correlation with PN and RF

values (R2 = 0.67).
3.1 RF correction

The combined averaged PN values from 0 to 9% for each RF

value were calculated to evaluate the influence of distortion

correction on the RF% %. For the corrected datasets, the RMSE

ranges between 20.73 (SD 15.69) and 44.02 (SD 7.99) and averages

at 31.46 ± 6.79 (SD 11.45). For the non-corrected datasets, the

RMSE ranges between 33.52 (SD 28.33) and 55.25 (SD 17.98) and

averages at 43.56 ± 6.33 (SD 22.98). The results between non-

corrected and corrected RMSE average percentages showed a

significant improvement for all RF values: RF0% = 38.18%,

RF20% = 31.72%, and RF40% = 22.30% with an average of

29.27% ± 5.16%. Statistical significance (p=0.014) was found for

the compared RF RMSE values.
Frontiers in Oncology 05118
3.2 PN correction

The combined averaged RF=0% RMSE for each PN value was

calculated to evaluate the influence of distortion correction on the

PN% %. For the corrected datasets, the RMSE ranges between 8.83

and 55.58, and averages at 20.73 ± 6.41 (SD 15.69). For the non-

corrected datasets, the RMSE ranges between 7.70 and 72.96, and

averages at 33.52 ± 11.57 (SD 28.33). The results between non-

corrected and corrected RMSE average percentages showed

significant improvements (p= 0.026) for PN values equal and

superior to 1%: PN0 = 0% PN1 = -14.56%, PN3 = 34.11%,

PN5 = 39.74%, PN7 = 40.75% and, PN9 = 42.22% with an

average of 23.71 ± 10.04%.
4 Discussion

The premises of our study were formulated on the lack of a

consistent and easy-to-implement clinical method to assess the

quality of the distortion correction in MRI. The currently available
FIGURE 2

Workflow of the datasets’ generations and semi-rigid/rigid registrations for each iteration of the simulated data with different noise and intensity
non-uniform parameters.
FIGURE 3

From left to Right, baseline MRI (PN0%, RF0%), distorted MRI (PN1%, RF40%), synthetic CT, and corrected distorted MRI (PN1%, RF40% - based on
sCT correction) datasets including the difference observed using image subtraction between corrected and non-corrected datasets.
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options require having a dedicated MR phantom and acquiring the

image data on CT and MRI scanners (20). This methodology was

implemented to address this specific issue and independently assess

the specific process of MRI distortion correction.

Accurate target definition is always crucial for cranial SRS as it

will influence the overall treatment accuracy since the targeted

volumes are small, typically ranging from 0.3cc to 50cc (21, 22), and

are heavily dependent on MRI. This is even more predominant for

functional SRS: Luo et al. (23) compared the positioning of the SRS

treatment isocenter with the ventral intermediate (VIM) nucleus of

the thalamus during thalamotomies and the tremor treatment

response post-irradiation, concluding on the critical importance

of submillimetric accuracy for these specific indications.

That is one of the reasons assessing the effect of the distortion

correction is primordial to avoid inaccurate treatment delivery

leading to diminished response and normal tissue toxicity.

Our results have shown that the Elements Cranial Distortion

Correction© software was improving the accuracy of target and

critical structures delineation in MR T1 sequences by mitigating

geometric misses resulting from gradient nonlinearity distortions.

According to the full-image RMSE results, the distortion correction

is positively correlated to the simultaneous increment of the PN and

RF. Moreover, the more the datasets are distorted, the more efficient

the software will be. These correction effects were also observable

for respectively augmenting the PN (average: 23.71% for Non-

Corrected vs. Corrected datasets) and RF values (average: 29.27%

for Non-Corrected vs. Corrected datasets) in the MR images. This

supports an added reliability to the quality of the correction

independently from the type of distortion in MR T1WI images.

Our results align with the results of the clinical validation of the

software by the manufacturer where the spatial correlation between

rigidly and elastically fused images was assessed through Euclidean
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distance, They found an improvement in fusion accuracy of the 1.5/

3.0T MRI by 0.41 ± 0.95 mm (18).

The results of our study showed non-significant improvements for

lower PN and RF % values correlated to the notable baseline observed

using the RMSE value (14.01) from theMRI baseline datasets (PN=0%,

RF=0%), inferior to the average standard deviation for both corrected

and non-corrected datasets with their respective RMSE values of 14.06

and 25.93. This is most likely related to the limit of the distortion

correction accuracy. Karger et al. (2006) (24) reported the radial

distance correction with device-specific 2D and 3D image distortion

correction algorithms in multiple scanners with different magnetic B-

field strengths in Tesla (T) for cranial indications. They concluded that

the image distortions superior to 2 mm were significantly reduced, but

not significantly for distortions inferior to 2 mm due to gradient non-

linearities. Bagherimofidi et al. (2019) (25) have reported similar

findings using their specific distortion correction algorithm in a head

phantom: the average error varied from 0.258 to 0.557 mm with a

maximum error of 1.492 mm with diameter distances from 20 to

80 mm from the isocenter, confirming a baseline error post- correction

distortion. The study of Retif et al. also aligns with our results as it was

demonstrated in phantom and clinical patient data that the Elements

Distortion Correction software was able to reduce the mean and

standard deviation datasets, particularly in the maximum distortion

in heavily distorted images, significantly reducing the number of

control points with > 0.5-mm distortion. Furthermore, these results

were consistent across acquisitions from different scanner makes,

models, and magnetic field strengths (26). Image quality metrics

(IQMs) such as RMSE and structural similarity index (SSIM) were

the core processes for assessing the correction direction using a full-

reference quality metric (27). These are commonly used in the

evaluation and optimization of MRI acquisition and reconstruction

strategies, including MRI distortion measurements. Root Mean Square
FIGURE 4

Average RMSE with linear trendline (R-squared = 0.67) comparing non-corrected and corrected datasets for PN% ranging from 0 to 9% and RF
values ranging from 0 to 40% using a non-corrected baseline MRI (PN=0%, RF=0%).
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TABLE 2 Values of the average RMSE in 1 and percentage difference comparing non-corrected and corrected datasets for PN% ranging from 0 to 9% and RF values ranging from 0 to 40% using a non-
corrected baseline MRI (PN=0%, RF=0%).
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Error (RMSE) is utilized in diverse fields of study to compare 2 images

and has been a standardmetric in medical images (28). The advantages

and justifications of this measurement tool in the scope of our study

were its ease of use, rapid calculation time, and robustness of results,

permitting for more simple and accessible testing. More importantly, it

allows us to compare the quality of the entire image to a baseline and,

therefore is more inclusive than other methods. This is particularly

important as the distortions are non-linear and comparison of points

or structures could bemisleading since they do not provide an overview

of the image and might lead to misinterpretation of the quality of

the dataset.

This is also a better fit for the verification of the MRI distortion

correction as distortions are not uniform and punctual evaluation

can lead to misinterpretation of the absolute local values and/or

large amplitude between the minimum and maximum deviations.

In the absence of fiducials or implanted markers, comparing

anatomical landmarks or delineations of specific organs, due to

the non-uniformity nature of the MR distortions, these values can

be significantly different depending on the anatomical position of

the sampled landmark or contour and do not reflect the influence of

distortions for the entire image set or even in other anatomical

cranial regions. Moreover, the operator can introduce additional

errors when comparing or delineating organs, which can be further

accentuated when multiple operators are involved. Intra- and inter-

operator variabilities are common issues in assessing the quality of

organ contouring and can be avoided by using a full-image index of

similarity such as the RMSE.

Regarding the choice of metrics, out of all the IQMs, the RMSEwas

the most efficient and simple to implement. The other commonly used

IQM: SSIM is also a strong measuring metric, that, however, requires a

more complex implementation and calculating power. Based on the

study of Mason et al. (28), the simple and rapid algorithms of RMSE

demonstrated short calculation times (all less than 2 seconds). SSIM

has slightly longer calculation times (less than 20 seconds). It also

demonstrated that SSIM does not show a significantly stronger

correlation with radiologists’ observation of diagnostic image quality

than RMSE.

This assessment method is not limited to the virtual phantom

and can be applied similarly to hardware phantoms. These highly

specialized apparatuses may already be accepted as the standard for

process validation and periodic verification in the established QA

protocol; the technique described in this study would grant an

additional level of reliability and a secondary check to supplement

the existing approach. This would further ensure the accuracy and

consistency of the measurement. In addition, both virtual and

hardware can be used concurrently following this method to the

same purpose, adding the benefit of a strong correlation as a result

of relying on a common metric to establish the validity and

effectiveness of the distortion correction.

In the radiation oncology treatment planning, the CT and MRI

T1WI are the 2 imaging modalities mandatorily included for all cranial

indications. This study focused on T1-weighted imaging for this

reason. For specific SRS cranial indications, other sequences are

required, such as T2-weighted images (29). We aim to evaluate the

quality of the distortion correction in subsequent studies using this
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measurement method and validate the software for all possible cranial

MRI sequences.

Papas et al. (2017) (30) quantified the influence of distortion

correction in RT planning by employing a phantom study. They

concluded that for targets inferior to 20 mm in diameter, spatial

disposition of the order of 1 mm could significantly affect plan

acceptance/quality indices. For targets with a diameter greater than

2cm, the corresponding disposition was found to be greater than

1.5mm. It underlines the relevance of target accuracy in SRS

treatment delivery. This effect is magnified in treatments of

simultaneous multiple lesions with a single isocenter; translational

and rotational deviations of isocenter as small as 0.5 mm and

0.5 deg. in the treatment delivery could lead to significant

dosimetric impact as suggested by literature (31–33). For such

indications, the distortion correction process would help to

improve the accuracy and, logically, decrease the margin needed

to treat the metastasis to preserve normal brain tissue.

This current study has reviewed a specific distortion algorithm

based on multi-rigid registration. Other commercial software is

available and makes use of different methods of elastic fusion. The

continuation goal of our study is to use the newly defined method to

further evaluate other distortion correction algorithms or

techniques and provide a comprehensive comparison with

different software and modalities for cranial SRS and MR-only

treatment planning. We aim that these kinds of distortion

correction algorithms will become more and more important with

the emergence of 7T scanners, providing higher signal-to-noise

ratio, spatial resolution, and contrast for clinical applications in SRS

and neurosurgery (34). It has been shown in the literature that

increasing the magnetic B-field strength (T) was correlated to

increased distortions (35).

The ease of use and availability of the data for the implementation

of this QA method can be further utilized in parallel to other available

QA options, including those relying on an MR-dedicated phantom,

offering the possibility of a secondary validation and providing

additional details on the distortion correction process. Future studies

will aim to assess the correlation between the different approaches and

further investigate the complementarity of different QA techniques to

improve the commissioning, validation, and daily verification of

distortion correction processes in SRS treatment planning as well as

introduce other MRI acquisition variables to assess their influence in

the quality of the distortion correction and ensure that all QA methods

align on results.
5 Conclusion

The distortion correction of MR T1-weighted images is a

requirement to add robustness and reliability to the target

definition ensuring accurate and consistent cranial treatment

planning, particularly for SRS indications. The described distortion

correction evaluation method based on non-biased datasets with

defined parameter values and relying on standard medical image

quality metrics has demonstrated the facility of isolating and

assessing the quality of this specialized process with simple
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software tools available for every institution. With this novel

approach using a simulated virtual phantom, we are able to

provide additional validation related to the image datasets’ accuracy

needed for dedicated cranial indications in radiosurgery, MR-only

treatments as well as neurosurgical functional indications, and can be

further utilized alongside other QA methods to add a secondary

validation/verification method.
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