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Editorial on the Research Topic

Community series in inflammation in respiratory and neurological diseases
and the immune-interaction of the lung-brain axis, volume II
The inflammatory response has emerged as a critical determinant in the pathogenesis of a

wide range of respiratory and neurological disorders, a recognition that has progressed

alongside advances in immunological research. Immune cell activation and the subsequent

inflammatory cascades are now widely recognized as key drivers of disease progression in

both systems. Notably, pulmonary inflammation extends beyond localized vascular

remodeling, exerting systemic effects—particularly on the central nervous system—through

complex immune-mediated mechanisms. Growing evidence supports the existence of a lung-

brain axis that facilitates this crosstalk, indicating that inflammation within the respiratory

tract can influence neurological function and pathology. These findings underscore the

central role of inflammation not only in shaping disease trajectories in the lungs and brain but

also in mediating their interconnection. A deeper understanding of these immunoregulatory

mechanisms may offer valuable insights for developing targeted therapies that address both

respiratory and neurological dysfunction. In this editorial, we highlight emerging insights and

key advancements that are shaping this rapidly evolving field.
Pulmonary hypertension and the immune-
inflammatory response

In recent years, there has been a growing focus on the role of immunity and

inflammation in the pathogenesis of pulmonary hypertension (PH) (1). This involves
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https://www.frontiersin.org/articles/10.3389/fimmu.2025.1634921/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1634921/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1634921/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1634921/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1634921/full
https://www.frontiersin.org/research-topics/61689
https://www.frontiersin.org/research-topics/61689
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1634921&domain=pdf&date_stamp=2025-06-12
mailto:pandyyuan@tongji.edu.cn
mailto:kfwxj@wfmc.edu.cn
https://doi.org/10.3389/fimmu.2025.1634921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1634921
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2025.1634921
various immune-related changes, such as increased activation of

monocytes and macrophages, infiltration of T and B cells around

blood vessels, and the formation of lymphoid-like structures near

pulmonary arteries. In addition, impaired regulatory T cell

function, overactive dendritic cells, and neutrophil-driven

inflammation further contribute to disease progression by

promoting abnormal blood vessel remodeling and damaging the

lung environment (2). Zhao et al. reviewed that inflammatory cells

and their chemokines and cytokines (such as IL-1b and TNF-a,
and IL-6) affect pulmonary vascular system. And expounded

the potential relationship of vascular cells or bone morphogenetic

protein receptor 2 (BMPR2) in immune regulation. Ferrian S et al.

identified TIM-3+ T cells and IDO-1+ TIM-3+ SAMHD1+ DCs as

novel contributors to immune dysregulation that drives the driving

progression of PAH. Notably, monocyte-derived dendritic cells

(mo-DCs), along with neutrophils, play a significant role

in promoting vascular remodeling and endothelial dysfunction,

thereby representing promising targets for therapeutic

intervention (2).

DCs exacerbate disease progression through pleiotropic cytokine

secretion, particularly interleukin-6 (IL-6)—a multifunctional

mediator independently associated with the pathogenesis of PH (3).

B cells are involved in the development of PH by producing

antibodies and pro-inflammatory cytokines. These antibodies

prompt immune cells to accumulate in the vessel wall, leading to

vascular inflammation, fibrosis, and vascular remodeling. Regulatory

T cells (Tregs) play a balancing role in maintaining immune

tolerance, and in patients with systemic sclerosis-associated

pulmonary arterial hypertension (SSc-PAH), loss of Tregs function

exacerbates immune dysfunction and vascular injury. Endothelial

cells are stimulated by the deposition of immune complexes and

cytokines, and dysfunction occurs, these changes further exacerbate

the development of PH.

The development of PAH in patients with autoimmune

connective tissue diseases (CTDs)—termed CTD-associated

pulmonary arterial hypertension (CTD-PAH)—serves as

compelling clinical evidence for the central role of maladaptive

immunophenotypic changes in PAH pathophysiology, particularly

through dysregulated immune cell activation and sustained

inflammatory cascades. van Uden D et al. reviewed that the

dendritic cell (DC) compartment comprises distinct subsets under

steady-state conditions: conventional DCs, plasmacytoid DCs, and

specialized AXL+Siglec6+ DCs. During inflammation, monocytes

differentiate into mo-DCs. DC subset dynamics critically influence

autoimmune pathogenesis and likely drive pulmonary hypertension

development (idiopathic PAH/CTD-PAH) through T-cell

activation and pathogenic B-cell antibody production (4).

Immune-related biomarkers have also demonstrated predictive

value in PH. In chronic thromboembolic pulmonary hypertension

(CTEPH), serum levels of asialoglycoprotein receptor 2 (ASGR2)

correlate significantly with various immune cell parameters,

particularly in relation to balloon pulmonary angioplasty (BPA).
Frontiers in Immunology 025
Patients with CTEPH exhibited significantly elevated ASGR2 levels

prior to BPA, which decreased notably following the procedure

(Xu et al.).

Beyond PH, immune dysregulation is also evident in other

pulmonary conditions such as community-acquired pneumonia

(CAP). Qin et al. analyzed CAP patients using machine learning

and identified three immunophenotypes. Among these, Type C is

significantly associated with a more severe inflammatory state and

poor prognosis.
Immune-mediated mechanisms in the
fibrotic process

Immune cells and mediators are key drivers of fibrosis during

tissue injury and repair, with macrophages playing a central role in

both initiation and progression. Macrophage-myofibroblast

transformation (MMT) has become a Research Topic in a variety

of fibrosis diseases. Li et al. reviewed that macrophages are mainly

activated through the TGF-b mediated Smad3 signaling pathway,

which drives their differentiation to myofibroblasts expressing a-
smooth muscle actin (a-SMA) and synthesizing extracellular

matrix (ECM) components such as collagen. In addition to

transforming growth factor (TGF-b), Notch signaling pathway

and Wnt/b-catenin signaling pathway also play important

regulatory roles in the MMT process (5). Fibroblasts, once seen as

passive structural cells, are now recognized as immune sentinels

that actively shape inflammatory responses (6). These insights

highlight the dynamic crosstalk between immunity and fibrosis.
The lung-brain axis: bidirectional
interaction of immune responses
between the respiratory and nervous
systems

Under normal physiological conditions, the lungs and brain

communicate via complex signaling pathways that help maintain

systemic homeostasis. However, lung infections can disrupt this

balance, leading to functional or structural changes in the brain.

COVID-19 infection increases the risk of optic nerve and visual

pathway disorders, potentially through viral neuroinvasion,

heightened inflammation, and immune overactivation (Cao et al.).

Air pollution has emerged as a global public health concern, with

growing evidence linking respiratory exposure to neurobehavioral

impairments. This suggests that the lung–brain axis may be a critical

conduit by which microbiome dysbiosis and environmental factors

affect brain health (7). Notably, Threatt et al. reported that organic

dust exposure not only intensified pulmonary inflammation but

also induced neuroinflammatory responses in the murine brain.
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Targeting immune-inflammatory
regulation

Zhang et al. demonstrated that Acanthopanax senticosus can

significantly improve cognitive deficits in Alzheimer’s disease mice

by promoting phosphorylation of mitogen-activated protein kinase

(MAPK) signaling pathway and inhibiting the production of

inflammatory factors. ATP/GTP-binding protein like 4 gene

(AGBL4) promotes malignant progression of glioblastoma (GBM)

by regulating matrix metalloproteinase-1 (MMP-1). Zhang et al.

demonstrated that knockdown of AGBL4 inhibited the

proliferation, migration, and invasive ability of GBM cells, while

overexpression had the opposite effect.

Inflammation also plays a critical role in pulmonary vascular

remodeling in PH (8). Li et al. highlighted the therapeutic potential

of immunosuppression in treating CTD-PAH by dampening

immune dysregulation. Immunosuppression strategies have

reversed PH in preclinical models, suggesting their value as

adjunctive treatments.

In summary, this study underscores the immune-inflammatory

connection between respiratory and neurological diseases,
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highlighting shared mechanisms involving immune cells,

cytokines, and signaling pathways—particularly those mediated

by the lung—brain axis (Figure 1). While current findings point

toward the promise of immunosuppression therapy, challenges

remain. Future efforts should aim to precisely target immune

pathways to enhance treatment specificity, and improve

clinical safety.
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Pulmonary hypertension (PH) is a malignant disease with progressive increase of

pulmonary vascular pressure, which eventually leads to right heart failure. More

andmore evidences show that immune cells and inflammation play an important

role in the occurrence and development of PH. In the context of pulmonary

vascular diseases, immune cells migrate into the walls of the pulmonary vascular

system. This leads to an increase in the levels of cytokines and chemokines in

both the bloodstream and the surrounding tissues of the pulmonary vessels. As a

result, new approaches such as immunotherapy and anti-inflammatory

treatments are being considered as potential strategies to halt or potentially

reverse the progression of PH. We reviewed the potential mechanisms of

immune cells, cytokines and chemokines in PH development. The potential

relationship of vascular cells or bone morphogenetic protein receptor 2 (BMPR2)

in immune regulation was also expounded. The clinical application and future

prospect of immunotherapy were further discussed.
KEYWORDS

inflammation, immunity, cytokines, chemokines, pulmonary hypertension,
immunosuppressive therapy
1 Introduction

Pulmonary hypertension (PH) is a condition characterized by changes in the structure

and function of the pulmonary vasculature, resulting in an increase in pulmonary vascular

resistance and arterial pressure (1, 2). If left untreated, PH can progress to a severe form of

right heart failure or even death. The underlying pathophysiology of PH is complex and not
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yet fully understood. However, it is widely accepted that the

development and progression of PH are closely associated with

vascular remodeling (3). In physiological state, the contraction and

relaxation of blood vessels maintain a balanced state (4, 5). When

immune inflammatory reaction occurs, various inflammatory

factors and oxygen free radicals are produced to damage

endothelium, leading to its dysfunction (6). The balance between

vasodilating substances such as NO and vasoconstricting substances

such as endothelin (ET) is broken, and the contractility of

pulmonary blood vessels is abnormally increased (7–9). It is

reported that the thickness of intima, media and adventitia and

the average pulmonary artery pressure are correlated with the

average perivascular inflammation score, which supports the role

of perivascular inflammation in pulmonary vascular remodeling

(10). In addition, the study also showed that the inflammatory

pathology is more advanced when the bone morphogenetic protein

type 2 receptor (BMPR2) is mutated. In the experimental PH, the

fact that inflammation precedes vascular remodeling indicates that

immune changes are the cause of vascular diseases rather than the

result (11).

Further analysis of immune function in patients with PH

proved that immune response exists in the process of PH

occurrence and development (12). This can explain the

accumulation of inflammatory cells around vessels and the excess

of cytokines and chemokines (13, 14). In reality, maintaining a

delicate balance between immunity and tolerance is crucial. Any

disruption to this balance can result in chronic inflammation or

even autoimmune disorders (15, 16). This review summarized the

evidence and potential mechanism of immune cells and

inflammation in PH in recent years. In addition, the potential

relationship between vascular cells or BMPR2 in immune regulation

was expounded. It is suggested that immunity and inflammation

may be the key factors and promising therapeutic targets for PH

development in Figure 1.
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2 Immune cells and PH

Pulmonary vascular remodeling in pulmonary arterial

hypertension (PAH) patients and PH animal models is often

accompanied by different degrees of perivascular inflammatory

infiltration, including T cells, B cells, macrophages, dendritic cells

(DC), mast cells and neutrophils. This suggested that these immune

cells may play an important role in the process of pulmonary

vascular remodeling.
2.1 T cell

T cells are an important part of adaptive immune response and

play an important role in the pathogenesis of PH, mainly helper T

cells (Th cells) and regulatory T cells (Tregs) (17). Different types of

T cells have specific functions and reactions in the inflammatory

cascade reaction. Th cells produce pro-inflammatory response,

while Tregs play a balanced response to achieve self-tolerance and

prevent autoimmune (18). Studies have confirmed that the balance

and homeostasis of T cells and their cytokines can prevent the loss

of self-tolerance, and then affect the development of inflammation

and PAH.

Based on the pro-inflammatory substances they release, Th cells

can be categorized into different subsets, including Th1, Th2, and

Th17 cells. Th1 and Th17 cells are capable of promoting

inflammation through the production of various cytokines such

as interleukin-6 (IL-6), IL-2, IL-21, interferon-gamma (IFN-g), and
tumor necrosis factor-alpha (TNF-a) (19, 20). The levels of

peripheral Th17 cells, cytokines, and mRNA in patients with

connective tissue diseases-associated PAH (CTD-PAH) were

elevated (21). More importantly, the Th17/Tregs ratio was

significantly related to the severity and prognosis of CTD-PAH

(21). Moreover, the expression of T cell activation markers CD86
FIGURE 1

Cytokines and chemokines in pulmonary hypertension. IL, interleukin; CCL, C-C motif chemokine ligand; TNF, tumor necrosis factor-alpha; PGI2,
prostacyclin; VEGFR2, vascular endothelial growth factor receptor 2; MMP, matrix metalloprotein; CXCL, C-X-C motif chemokine ligand; PDH,
pyruvate dehydrogenase; BMPR2, bone morphogenetic protein type 2 receptor.
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and CD40 was higher in idiopathic PAH (IPAH) patients following

pretreatment with dexamethasone (22). Both with and without

dexamethasone, PAH monocyte-derived DCs induced a higher

activation and proliferation of CD4+ T cells, associated with a

reduced expression of IL-4 (Th2 cells response) and a higher

expression of IL-17 (Th17 cells response) (22). Animal studies

have demonstrated that depleting CD4 cells or using SR1001, a

Th17 cells development inhibitor, prevented the elevation of

pressure and remodeling responses to chronic hypoxia (23).

Furthermore, in a mice model of hypoxia-induced PH (HPH), the

use of the receptor antibody MR16-1 to block IL-6 showed

promising results. This treatment not only improved the

condition of PH but also hindered the accumulation of

macrophages and Th17 cells in the lungs (24).

And Th2 cells produce IL-4 and IL-13, which are described as

antagonists of autoimmune pathological development. Researchers

identified that Th2 CD4 T cells were necessary for Schistosoma-

induced PH, given that deletion of CD4 T cells or inhibiting their Th2

cells function protected against type 2 inflammation and PH following

Schistosoma exposure (25). They also observed that adoptive transfer

of Schistosoma-sensitized CD4 Th2 cells was sufficient to drive type 2

inflammation and PH (25). Besides, it found that chemoattractant

receptor homologous molecule expressed on Th2 cell (CRTH2)

expression was up-regulated in circulating CD3CD4 T cells in

patients with IPAH and in rodent PAH models (26). CRTH2

deficiency suppressed Th2 cells activation, including IL-4 and IL-13

secretion. CRTH2 disruption dramatically ameliorated pulmonary

artery remodeling and PH in different PAH mice models (26).

Tregs play an important role in regulating the inflammatory

response of Th cells to their own and foreign antigens. Tregs not only

controls other T cells, but also regulates monocytes, macrophages,

DCs, natural killer cells and B cells. In thymus-free rats with T cell

immunodeficiency, pulmonary arterioles were blocked by

proliferating endothelial cells. Blood vessels were surrounded by

mast cells, B cells and macrophages, similar to human PAH (27).

In addition, Tregs can regulate the proliferation of human pulmonary

artery smooth muscle cells (HPASMCs). Tregs treatment

significantly reduced the increase of right ventricular systolic

pressure (RVSP) and Fulton index induced by hypoxia, decreased

the expression of pro-inflammatory cytokines, and increased the level

of IL-10 in vivo. This was attributed to the fact that Tregs treatment

decreased the proliferation of HPASMCs and the expression of cyclin

D1, cyclin-dependent kinase 4, p-Akt and p-ERK, and increased the

expression of p27 in vitro (28). Furthermore, Tregs can inhibit the

accumulation of collagen by inhibiting the secretion of transforming

growth factor (TGF)-b1 and fibroblast growth factor 9 (29). Tregs

also down-regulated cardiac fibroblasts by secreting IL-10, which

helped to control the development of right ventricular hypertrophy

(RVH) in PAH (30).
2.2 Macrophage

Macrophages play a crucial role as a key component of the

innate immune system, and the produced antigen is presented to T

cells to differentiate and activate adaptive immune system. Studies
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have shown that pulmonary inflammation mediated by

peripulmonary macrophages is the key factor of pulmonary

vascular remodeling. In PAH rat model and patients with left

heart disease-related PH (LHD-PH), compared with the control

group, macrophages increased, accompanied by an increase in lung

IL-6 (31). At the same time, in the mice model of chronic

thromboembolic PH (CTEPH), F4/80 positive monocytes/

macrophages obviously accumulated in high-flow arteries (32). In

human and animal models with PH, it has been reported that the

level of monocyte recruitment chemokines in the lung is increased,

and the number of peripheral blood monocytes is increased. Upon

migration to the pulmonary vascular system, monocytes had the

potential to differentiate into perivascular macrophages. This

process was facilitated by the activation of chemokines chemokine

ligand 2 (CCL2) and C-X3-C motif chemokine ligand 1 (CX3CL1)

(33). Moreover, the recruitment and activation of macrophages

around pulmonary vessels have an impact on the function of

pulmonary vascular cells. SU5416 induced PH in athymic rats,

and macrophages gathered around pulmonary arterioles and

synthesize excessive leukotriene B4 (LTB4). LTB4 can damage

endothelial cells (ECs) of nearby blood vessels, cause apoptosis,

and cause abnormal proliferation of SMCs. Blocking macrophage-

derived LTB4 biosynthesis or signal transduction can reverse the

experimental PH, while depletion of CD68+ macrophages can

prevent the occurrence of PH in thymus-free rats treated by

sugen (34). Similarly, the development of HPH was related to the

significant increase of levels of CX3CR1, CC chemokine receptor 2

(CCR2) and their respective ligands CX3CR1 and CCL2. CX3CR1

deficiency can prevent HPH by regulating monocyte recruitment,

macrophage polarization and PASMCs proliferation (35).
2.3 B Cell, DC and neutrophil

B cells have the ability to differentiate into plasma cells, which

are responsible for producing autoantibodies. In addition, B cells

play a crucial role in immune responses by collaborating with

antigen-presenting DCs and lymphoid organs. They achieved this

through antigen presentation, the production of various cytokines,

and the facilitation of T effector cell differentiation (31, 36). On the

one hand, a functional role for B cells in PH was demonstrated in

that either blocking B cells by an anti-CD20 antibody or B cells

deficiency in JH-KO rats attenuated right ventricular systolic

pressure and vascular remodeling in experimental PH (32). On

the other hand, B cell depletion therapy was a potentially effective

and safe adjuvant treatment for systemic sclerosis-PAH and

systemic lupus erythematosus-PAH (37, 38).

In monocrotaline (MCT)-induced rats and hypoxic mice, the

accumulation of pulmonary neutrophils increased (39, 40).

Although neutrophils have received little attention in the

pathogenesis of PAH, it has been found that neutrophil elastase

can affect the pathogenesis. Neutrophil elastase isolated from PAH

patients, PASMCs and PH rat models was enhanced (41–44). In

MCT-induced and Sugen/hypoxic rat models, after treatment with

elafin, an inhibitor of neutrophil elastase, the changes of pulmonary

intima subsided and the lumen size increased (39).
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The study revealed that the number of circulating myeloid DCs

in IPAH patients was lower than that in the control group, and the

immune deficiency of monocyte-derived DCs was obvious (45).

However, the circulating plasma DCs (pDCs) value of IPAH

patients did not change, and the pDCs value in lung tissue

increased (46). pDCs secretes inflammatory factors and

chemokines to promote the activation of immune cells. At the

same time, these inflammatory factors and chemokines attracted

monocytes to the lungs of patients with IPAH and CTD-PAH, and

produced monocyte-derived DCs, which further aggravated

inflammation (47).
3 Cytokine and PH

The increase of perivascular immune cell accumulation and

intravascular infiltration, accompanied by the abnormal increase of

some cytokines, leads to the increase of vascular cell inflammation

and the formation of dysfunction. They played crucial roles as

regulatory factors in PAH and are closely associated with the

disease’s severity (48). At the same time, the circulating level of

cytokines was an important marker for the diagnosis and treatment

of PAH (49). Targeting specific cytokine responses and pathways is

considered a promising therapeutic strategy.

Some cytokines and chemokines were related to the poor

clinical outcome of PAH patients, and may be used as biomarkers

of disease progression. Some, such as IL-1b and TNF-a, were
related to the accumulation of extracellular matrix proteins (such

as fibronectin), which were found in PAH lesions, while others,

such as IL-6, are related to the proliferation of SMCs.
3.1 IL-1b

A study has provided evidence that the levels of IL-1b are

significantly elevated in patients with PH. This increase in IL-1b
had been found to be associated with a poorer prognosis for

individuals with PH (50). The mice model of PH showed the

same conclusion, and it has been proved that starting IL-1b
receptor antagonist can reduce PH and RVH (51). Furthermore,

there existed a correlation between IL-1b and prostacyclin (PGI2)

(17, 52). IL-1b increased PGI2 production in a dose-dependent

manner (52). Cyclooxygenase-2 (COX-2) was the key enzyme for

PGI2 synthesis (52). After treating PASMCs with IL-1b, the level of
COX-2 mRNA increased, which induced the expression of PGI2

(52, 53). However, IL-1b has been found to have a negative impact

on adenosine cyclase, leading to a decrease in cyclic adenosine

monophosphate (cAMP) production. This, in turn, weakened the

role of PGI2 (54). Furthermore, IL-1b activated other cytokines and

chemokines to play a role. The cleavage of IL-18 by IL-1b invertase

resulted in the production of bioactive IL-18. This increase in

bioactive IL-18 has been observed in patients with pulmonary

vascular diseases. Additionally, the levels of the downstream

chemokine CXCL10 were also elevated in these patients (55). The

increased expression of IL-18 and CXCL10 may make the
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inflammatory environment permanent and eventually lead to the

vascular occlusion characteristics of PAH (55).
3.2 IL-6

IL-6 is a cytokine secreted by lymphocytes, which has extensive

pro-inflammatory properties and participates in the occurrence and

development of PH. IL-6 has been found to have prognostic value in

patients with PH. The serum level of IL-6 has been shown to be an

independent predictor of survival in PH patients and can be used to

predict the outcome of these patients (56). Animal model

revealed that the RVH of rats injected with recombinant human

IL-6 increased, and PH appeared under normal oxygen conditions

(57). Similarly, lung-specific IL-6 overexpression mice

spontaneously produced PH under chronic hypoxia, and showed

muscular distal arterioles and proliferative lesions in vascular cells.

The IL-6 receptor knockout rats were not affected by HPH, and the

progressive accumulation of PASMCs was reduced (58).

IL-6 may promoted PH in the following ways: (1) IL-6 induced

excessive proliferation of pulmonary artery ECs (PAECs) and

PASMCs in the distal pulmonary vascular wall by up-regulating

vascular endothelial growth factor receptor 2 (VEGFR2) and matrix

metalloprotein -2 (20). (2) IL-6 affected many signal pathways, such

as BMPR2/Smad, MAPK/P38 and MAPK/JNK (17). (3) IL-6 played

a crucial role in regulating the balance between Th17 cells and Treg

cells. It can stimulate the immune response of Th17 cells while

inhibiting the suppressive function of Treg cells. This imbalance in

the immune response, with an increased presence of Th17 cells and

reduced Treg cell activity, has been associated with an increased risk

of PAH (59).
3.3 IL-10, IL-18 and TNF-a

Abnormal levels of cytokines, including IL-10, IL-18, and TNF-

a, have been observed in both human and animal models of PH.

IL-10 is released by T cells, which is negatively correlated with

PGI2 therapy. And IL-10 was decreased in patients after

cardiopulmonary bypass (60). At the same time, it has been

proved that the decrease of IL-10 level is a risk factor for chronic

obstructive pulmonary disease (COPD)-PH (61). However,

exogenous IL-10 significantly reduced macrophage infiltration

and vascular cell proliferation in the remodeled pulmonary artery.

It also significantly reduced the lung levels of TGF-b1 and IL-6 (62).
Therefore, the effect of IL-10 on the development of PH needs to

be studied.

Under the influence of caspase-1, the inactive precursor form of

IL-18 is converted into its active form, IL-18, which possesses

biological activity (55). IL-18 acted on the cytokine-chemokine

cascade reaction of type I immune response, affecting the

expression of IL-12, IFN-g and CXCL10. This promoted the

recruitment of more lymphocytes to the vascular wall, which in

turn exacerbated the pathological progression of PAH (55). Besides,

IL-18 affected SMCs in an autocrine or paracrine way. IL-18 could
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thicken the smooth muscle layer by up-regulating the chemotaxis of

metalloproteins and cells that constitute the vascular skeleton (63).

TNF-a is an important proinflammatory factor, which is

significantly increased in the medial layer of pulmonary artery in

COPD-PH patients (64). It is reported that transgenic mice that

overexpress TNF-a will have severe PH value and right ventricular

hypertrophy (65). Similarly, injection of TNF-a into the rat model

led to increased vascular activity and remodeling (66). TNF-a may

drove the proliferation of PAECs and PASMCs in HPH by

inhibiting pyruvate dehydrogenase (PDH) activity, inhibiting

BMPR2 and changing NOTCH signal transduction (63).
4 Chemokine and PH

4.1 CCL2

CCL2 is secreted by vascular ECs and SMCs, and its role is

mediated by CCR2. CCL2 is an effective medium for the activation

of monocytes and macrophages, which induces the secretion of

cytokines and the expression of adhesion molecules (17, 67). It is

reported that CCL2 induces the proliferation and migration of

PAECs and SMCs in patients with PH, which leads to vascular

remodeling and blood pressure increase (68). This may be because

the increase of CCL2 produced by pulmonary vascular cells

contributes to the increase of chemotactic activity of monocytes/

macrophages. So that adventitial fibroblasts are activated (69, 70),

the migration and proliferation of PASMCs increased, and

pathological vascular remodeling was induced. In the presence of

pulmonary ECs, the mobility of monocytes decreased significantly,

while the blocking antibody of CCL2 increased significantly. The

migration and proliferation of PASMCs in patients with PAH

increased in response to CCL2 stimulation (71).
4.2 CCL5

CCL5 is expressed and secreted by T cells (17). Studies have

confirmed that CCL5 can promote the proliferation of ECs.

ET-converting enzyme-1 and ET promoted mitosis and

vasoconstriction, and accelerated the pathological process of PH

(72). In fact, compared with the control group, the expression of

CCL5 mRNA in lung samples of PAH patients was increased, which

may be derived from ECs (73). Moreover, the crosstalk between

CCR5 and CCR2 mediated the synergy between macrophages and

PASMCs, thus promoting inflammatory cell infiltration and

PASMCs migration and proliferation during the development of

PAH (74).
4.3 CX3CL1

CX3CL1 exists as a cell adhesion molecule on ECs or as a

chemotactic protein, and its function is mediated by CX3CR1 (67).

Under the pathological condition of PH, CX3CL1 led to the adhesion

of macrophages expressing CX3CR1 to PAECs, which led to PAECs
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dysfunction and trigger perivascular inflammatory reaction (75). In

addition, CX3CL1 promoted the proliferation of pericytes and

PASMCs, which further aggravated the remodeling of pulmonary

small vessels, leading to further aggravation of PH (76). CX3CR1

deficiency protected against HPH by modulating monocyte

recruitment, macrophage polarization, and PAMCs proliferation (35).
5 Vascular cells and BMPR2

5.1 Vascular cells

ECs play a key role in maintaining vascular homeostasis under

various stimuli, and regulate inflammation through mediators such

as NO, ET, cell adhesion molecules, cytokines and chemokines.

Under pathological conditions such as inflammation and hypoxia,

PAECs can reduce the production of vasodilators (such as NO) and

vascular growth factors, which is beneficial to the vasoconstriction

of the distal pulmonary artery (77). Circulating ECs may be

involved in the process of vascular injury, tumorigenesis or

interaction with immune cells. In addition, endothelial progenitor

cells were bone marrow-derived cells involved in homeostasis, and

they were also physiological and pathological angiogenesis cells.

The increase of proinflammatory cytokines was also beneficial to

the activation of platelet adhesion and coagulation cascade reaction,

which led to further occlusion of arterioles (78).

It has been suggested that inflammation can recruit SMCs

population and enhance their contribution to pulmonary vascular

remodeling. Because excessive proliferation of SMCs was observed

in locally occluded blood vessels. Some studies also showed that

continuous hypoxia can induce the recruitment of mesenchymal

progenitor cells around blood vessels. The recruitment of these cells

was very important for the occurrence of PAH (79) [142,143]. The

changes of inflammatory vascular system may be caused by these

migrating cells and resident SMCs, which restore the ability needed

for vascular remodeling.
5.2 BMPR2 and immune

On the one hand, BMPR2 gene mutation has been identified as

the main genetic cause of PAH. On the other hand, BMPR2 plays an

important role in maintaining the immune system (80, 81). The

disruption of BMPR2 signaling pathway causes an increased degree

of inflammation and decreases the ability of the immune system to

resolve it. Inhibition of BMPR2 gene expression led to unregulated

proliferation and survival of endothelial cells through disordered

TGF-b signaling, thus promoting vascular remodeling (82). In

order to cope with the decrease of BMPR2 function in ECs, it is

assumed that the integrity of ECs dysfunction may be damaged,

which may lead to apoptosis, the release of TGF-b and the

development of anti-apoptotic clones (83). On the contrary,

SMCs proliferate due to TGF-b signaling, and undergo excessive

growth reaction, leading to vascular remodeling (84).

Loss of BMPR2 expression enhanced ECs inflammatory

response through various mechanisms mediated by ROS,
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nicotinamide adenine dinucleotide phosphate oxidase and NF-kB
activity (85, 86). In innate immune response, BMPR2 deficiency

increased the recruitment of macrophages to the perivascular area

of pulmonary vascular. Mutated BMPR2 can also increase the

production of granulocyte macrophage colony-stimulating factor,

thus activating macrophages (87, 88). Activated macrophages

secreted proinflammatory cytokines, such as IL-6 and IL-8 (86).

In addition, the imbalance of BMPR2 in adaptive cellular immunity

will destroy the development of T cells and lead to the increase of

ECs apoptosis. The decrease of BMPR2 expression was also related

to CD4 T cells depletion. Lack of T cells population led to

inflammation around the artery, which was dominated by

macrophage and B cells activity, thus aggravating PAH (11, 46).
6 Immunosuppression therapy in PH

At present, it is generally believed that there is a connection

between inflammation and PH, but there are still several problems.

Firstly, it is not clear whether inflammation is enough to promote

the development of PH. Secondly, what are the causes of immune

and inflammatory changes in PH lung tissues? Finally, does this

have pathological or clinical significance? It is necessary to better

understand the mechanism of immune cells, cytokines and

chemokines in PH affecting abnormal angiogenesis and

pulmonary artery remodeling. Although it is necessary to

understand the immune/inflammatory components of PH more

clearly, recent studies have shown promising results in animal

models regarding the efficacy of anti-inflammatory therapies in

reducing or even reversing the effects of PH. Currently, therapeutic

drugs targeting the three pathological pathways of PH primarily

focus on vasodilation. However, it is worth noting that these drugs

also exhibit immunomodulatory properties (89). At present, there is

no approved treatment specifically targeting the inflammatory

process associated with pulmonary vascular diseases.

Tacrolimus is a calcineurin inhibitor, which can regulate

immunity and has anti-inflammatory activity. Low-dose

tacrolimus has been proved to reverse the disease progression of

PAH rats induced by mc and hypoxia, restore the normal function

of pulmonary artery endothelial cells, and activate other functions

of BMPR2 receptor signal transduction by removing FKBP12 from

BMPR 1 type co-receptor (90).Based on B cell depletion therapy,

patients who received rituximab (an anti-CD20 monoclonal

antibody) showed a decrease in rheumatoid factor, IL-12 and IL-

17 (37). Hydroxymethylglutaryl coenzyme A (statins) have been

proved to have anti-inflammatory and immunomodulatory

functions (91, 92). Patients with IPAH, HPAH and CTD-PAH

were treated with simvastatin, which inhibited lymphocyte function

and improved right ventricular remodeling (93, 94). In addition,

compared with the control group, the level of circulating

inflammatory markers in patients with chronic embolic PH and

PAH increased (95). After treatment with corticosteroids or

immunosuppressants, the clinical symptoms of some patients

improved (96). The above evidence reveals that suppressing

immunity and inflammation can be used as a potential strategy

for PH treatment. However, immunosuppressants are a kind of
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drugs that can effectively inhibit immune cell function, reduce

immune response and inhibit inflammation. So far, no

immunosuppressants have been approved for the treatment of

multiple PH. The therapeutic effect of most immunomodulators

on PH is still in the clinical trial stage.
7 Conclusion

It is an obvious fact that immune cells and inflammation play an

important role in the pathophysiology of PH. There is increasing

evidence that PH is not only caused by dynamic vasoconstriction.

Inflammatory cells and their chemokines and cytokines affect

pulmonary vascular system. However, many molecular and

cellular mechanisms remain unsolved. It is significant for

immunotherapy and anti-inflammation to better understand how

inflammation and immunity participate in the development of

polycyclic aromatic hydrocarbons.
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Acanthopanax senticosus
improves cognitive impairment
in Alzheimer’s disease by
promoting the phosphorylation
of the MAPK signaling pathway
Zhichun Zhang1,2†, Yonghui Wu2†, Dan Shi1†, Chanyu Jiang2,
Hengyan Cao1, Fengyi Jiang1, Xiaomin Bao1, Yan Shen1*

and Xiao Shi1*

1Department of Gerontology, Yueyang Hospital of Integrated Traditional Chinese and Western
Medicine, Shanghai, China, 2Graduate School of Shanghai University of Traditional Chinese Medicine,
Shanghai, China
Background: Acanthopanax senticosus (AS) can improve sleep, enhance

memory, and reduce fatigue and is considered as an effective drug for

Alzheimer’s disease (AD). The therapeutic effect and mechanism need to be

further investigated.

Methods: To confirm the AS play efficacy in alleviating memory impairment in

mice, 5×FAD transgenic mice were subjected to an open-field experiment and a

novelty recognition experiment. Network pharmacology technique was used to

analyze the information of key compounds and potential key targets of AS for

the treatment of AD, molecular docking technique was applied to predict the

binding ability of targets and compounds, and Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were also performed on

the targets to derive the possible metabolic processes and pathway mechanisms

of AS in treating AD. Quantitative real-time PCR (qRT-PCR) and western blot

technique were carried out to validate the candidate genes and pathways.

Results: In the open-field experiment, compared with the wild-type (WT) group,

the number of times the mice in the AD group crossed the central zone was

significantly reduced (P< 0.01). Compared with the AD group, the number of

times the mice in the AS group crossed the central zone was significantly

increased (P< 0.001). In the new object recognition experiment, compared

with the WT group, the percentage of times the AD group explored new

objects was significantly reduced (P< 0.05). Compared with the AD group, the

AS group had an increase in the percentage of time spent exploring new things

and the number of times it was explored (P< 0.05). At the same time, the

donepezil group had a significantly higher percentage of times exploring new

things (P< 0.01). By using network pharmacology technology, 395 common

targets of AS and AD were retrieved. The Cytoscape software was used to

construct the protein–protein interaction (PPI) network of common targets.

Using the algorithm, nine key targets were retrieved: APP, NTRK1, ESR1, CFTR,

CSNK2A1, EGFR, ESR2, GSK3B, and PAK1. The results of molecular docking

indicate that 11 pairs of compounds and their corresponding targets have a
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significant binding ability, as the molecular binding energies were less than -7.0.

In comparison to the AD group, themRNA expression of the key target genes was

significantly decreased in the AS treatment group (P< 0.001). The KEGG analysis

showed that the MAPK signaling pathway was significantly enriched, andWestern

blot confirmed that the TRAF6 protein decreased significantly (P< 0.0001).

Meanwhile, the levels of MAP3K7 and P38 phosphorylation increased, and

there was also an increase in the expression of HSP27 proteins.

Conclusion: Our study indicates that the multi-component and multi-target

properties of AS play an important role in the alleviation of anxiety and memory

impairment caused by AD, and the mechanism is involved in the phosphorylation

and activation of the MAPK signaling pathway. The results of this study could

provide a novel perspective for the clinical treatment of AD.
KEYWORDS

Acanthopanax senticosus, Alzheimer’s disease, network pharmacology, MAPK signaling
pathway, neuroinflammation
1 Introduction

Alzhe imer ’ s d i s e a s e (AD) i s the mos t common

neurodegenerative disease which is a common cause of dementia,

and the incidence of AD gradually increases with age (1). The

clinical manifestations include memory loss, disorientation, and

language impairment. The patient’s ability to handle social affairs

and self-care will decline as the condition worsens (2). Current

hypothesis for the pathogenesis of AD include Ab plaque-related

neurodegeneration, neurofibrillary tangles, synaptic dysfunction

and neurotransmitter imbalance, and neuroinflammation (3).

FDA-approved drugs including donepezil, rivastigmine, and

galantamine are mainly used to treat b-amyloid deposition and

tau fiber tangles, but the effect is not significant (3, 4). More and

more studies showed that neuroinflammation played a key role in

AD neurodegeneration, and how to control the inflammatory

response caused by Ab protein provides a new research direction

for the treatment of AD (5–7).

Related research showed (8–10) that traditional Chinese

medicine with multiple components, targets, and pathways can

treat AD by improving neurocholine function, reducing

inflammatory response, and resisting oxidative stress.

Acanthopanax senticosus (AS) is a Wujiaceae plant that can

improve sleep, enhance memory, and reduce fatigue (11).

Relevant experimental studies have shown that AS extract can

significantly enhance mice’s object recognition memory (12);

EEAK (ethanol extract of AS) can improve cognitive dysfunction

caused by cholinergic blockade and improve the performance of

mice in Y-maze and novel object recognition experiments (13). ML

Jinc et al. found that (14) AS can induce the expression of HO-1

through the p38-CREB and Nrf2 pathways, thereby reducing the

expression of pro-inflammatory mediators such as iNOS, COX-2,
0218
and NO in LPS-stimulated BV2 cells, and has a neuroprotective

effect. Therefore, AS is considered to have a certain therapeutic

effect on AD, but its possible mechanism is still unclear.

This study intends to verify the therapeutic effect of the

traditional Chinese medicine AS on AD through system network

pharmacology, molecular docking technology, and animal

experiments, explore the relevant molecular mechanisms, and

provide more scientific basis for the clinical treatment of AD.
2 Materials and methods

2.1 Preparation and feeding of
experimental animal models

Specific-pathogen-free (SPF)-grade 5×FAD transgenic mice

were obtained from the Model Animal Research Institute of

Nanjing University (Animal Qualification Certificate No.

201400975) and kept under SPF conditions. The animal

experiments were approved by the Animal Care and Use

Committee of Shanghai University of Traditional Chinese

Medicine (ethics number: PZSHUTCM210702001).

5×FAD transgenic mice were cross-bred with C57BL/6J mice.

The mice were raised in separate cages according to their gender

after 20 days of life. Their tails were docked at 30 days for genetic

identification of mouse breeds, and 5×FAD mice were selected as

the Acanthopanax senticosus treatment group (AS group), the

donepezil hydrochloride treatment group (donepezil group), and

the model group (AD group), while the C57BL/6J mice in the same

litter were the blank group (WT group), with 12 mice in each group.

After 2 months of regular feeding of the mice, the AS group was

changed to a diet supplemented with 1.69 mg/kg of Acanthopanax
frontiersin.org
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senticosus (Heilongjiang Ussuri River Harbin Branch, batch no.

20210501), and the donepezil group was changed to a diet

containing 3.8 g/kg of the drug, donepezil hydrochloride tablets

(Sibohai, Phyllanthus Bio-Technology Co. Ltd, batch no.

21030004). All the drug-containing diets were manufactured by

Jiangsu Synergy Pharmaceutical and Biological Engineering Co.

Ltd., and animal tissues were acquired after 3 months of

continuous feeding.
2.2 Animal experiment

2.2.1 Open-field experiment
The test box for the open-field experiment consisted of four

square opaque boxes with a length, width, and height dimension of

50 × 50 × 40 cm, and a square area of 20×20 cm in the center of the

test box was designated as the analysis area. Each mouse was

allowed to move freely in the test box for 5 min, and the total

distance traveled, the average speed of movement, and the number

of times the mice crossed the central area of the experimental site

were recorded by using Ethovision XT 11.5 image acquisition and

analysis software for the different groups. The experimental

environment was kept quiet, and the test chamber was wiped

with 75% alcohol after each round of experiments.

2.2.2 Novelty recognition experiment
The test chambers for the novelty recognition experiment

consisted of four square opaque whiteboards measuring 50 × 50 ×

40 cm in length, width, and height, with two identical X-objects and

Y-objects placed in the center of each chamber and secured with a

transparent tape. The detection behavior of each mouse was

recorded for 5 min using Ethovision XT 11.5 image acquisition

and analysis software. Approximately 1 h after the abovementioned

behavioral experiments, object Y was replaced by object Z, which

was different in size, shape, and color from object Y, and then the

mice were placed in the experimental field in the order of the

sequence and moved randomly around the experimental field for

5 min. The residence time and number of times the mice explored

each object were recorded. The location preference index of the first

trial was calculated as RI = Tx/(Ty + Tx) × 100%, which was used to

observe whether the experimental mice had a preference for toys X

and Y, and whether there was a difference in curiosity between the

toys, to determine whether the curious nature of the mice’s

exploration was normal. The formula for the experimental

position preference index for the next 1 h is RI = Tz/(Tz + Tx) ×

100%, which was used to determine the curiosity index of the

experimental mice toward the novel object Z.
2.3 Network pharmacology analysis

2.3.1 Component collection and target prediction
The TCMIP (http://www.tcmip.cn/TCMIP/index.php/Home/

Login/login.html) and HERB (http://herb.ac.cn/) databases were
Frontiers in Immunology 0319
searched using the keyword “ciwujia” (Acanthopanax senticosus,

AS). The screening conditions were oral bioavailability (OB) ≥0.3,

drug likeness (DL) ≥0.18, Lipinsk’s five principles, and high

gastrointestinal absorption, and we supplemented the literature

with active ingredients that have clear utility in AS (15). The Swiss

Target Prediction database (http://www.swisstargetprediction.ch/)

was used to predict the targets of the relevant compounds. Using

“Alzheimer’s disease” as a keyword, the OMIM database (https://

www.omim.org/), TTD database (http://db.idrblab.net/ttd/), and

GeneCards database (https://www.genecards.org/) (score ≥5) were

searched, screened, and intersected to obtain AD-related

disease targets.

2.3.2 Component–target network construction
of AS treatment for AD

The targets of AS and AD were imported into the Venny 2.1

online software mapping tool platform (https://bioinfogp.cnb.csic.es/

tools/venny/) to draw a Venn diagram, and the common targets

obtained were the potential targets of AS for AD. These potential

targets and their corresponding compound data were processed with

Cytoscape 3.7.2 software to construct a compound–target network

(CTN) of AS for AD.
2.3.3 Construct protein–protein
interaction network

Taking the target in the abovementioned CTN as the objective,

IntAct, BioGrid, and STRING databases are used to construct the

protein–protein (PPI) network. The MCODE algorithm was used to

filter the key clusters in the PPI network, construct the PPI network,

and calculate the parameters of degree, degree centrality (DC),

closeness centrality (CC), and betweenness centrality (BC) of the

network and then select the core clusters according to the mean value.
2.3.4 GO enrichment analysis and KEGG
pathway analysis

The DAVID database (https://david.ncifcrf.gov/) was used to

perform Gene Ontology (GO) functional annotation of core targets,

including Biological Process (BP), Cellular Component (CC), and

Molecular Function (MF), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis was performed to predict

the possible pathway mechanisms of AS for AD.
2.4 Molecular docking

The core targets obtained from the PPI network were mapped to

the CTN network to find the key compounds corresponding to the

core targets. The 3D protein structure of the core target was retrieved

from the PDB database (https://www.rcsb.org/) as a receptor, and the

receptor protein was subjected to pre-docking preparation operations

such as dehydrogenation and hydrogenation by UCSF Chimera 1.16

software. Using the abovementioned key compounds as ligands,

molecular docking was performed using Auto Dock Vina 1.1.2
frontiersin.or
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software, and the pairs with binding energies ≤-7.5 were visualized by

Pymol 2.4.0 software.
2.5 qRT-PCR detection of key protein
mRNA content

mRNA was extracted from the cerebral cortex of each group of

mice using the TRIzol method. cDNA reverse transcription was

performed at 25°C for 5 min, 55°C for 10 min, and 85°C for 5 s. The

PCR primers were purchased from Sangong Bioengineering

(Shanghai) Co., Ltd., and the sequence of the primers (5′ to 3′) is
shown in Table 1. The reaction program was set at 95°C for 30 s,

95°C for 15 s, and 60°C for 30 s in the quantitative PCR instrument

(C1000 Touc, BIO-RAD). The results were expressed as 2-DDCT

values and analyzed for statistical differences.
2.6 Western blot to validate the pathway
of action

An appropriate amount of mouse hippocampal tissue stored at

-80°C in the refrigerator was taken out, RIPA lysis buffer was added,

and the tissue was disrupted with an ultrasonic crusher and

centrifuged at 12,000 rpm for 15 min. The supernatant was

aspirated and 5× Protein Loading Buffer (Beyotime, P0015) was

added. The protein samples were heated in a water bath at 100°C for

10 min. Electrophoresis was performed at 120 V for 80 min, and the

membranes were transferred to a newmembrane. After blocking with

5% BSA solution for 2 h, the primary antibody was incubated. The

antibodies used for each sample were TRAF6 (#8028, CST, 1:1,000),

anti-MAP3K7 (K008561P, Solarbio, 1:1,000), anti-p-MAP3K7

(K006194P, Solarbio, 1:1,000), P38 (#8690, CST, 1: 1,000), p-P38

(#4511, CST, 1:1,000), and HSP27 (#95357, CST, 1:1,000), overnight

at 4°C in the refrigerator. After three washes in TBST solution,

secondary antibodies were used: anti-rabbit IgG, HRP-conjugated
Frontiers in Immunology 0420
antibody (#7074, CST, 1:2,000) was incubated for 1 h. The protein

band signals were captured using the FL1000 Intelligent Imaging

Scanning System (Thermo Fisher Scientific, USA). The protein band

intensities were quantified using Image J (v1.45f) software.
2.7 Statistical method

The experimental data obtained from all behavioral

experiments were expressed as mean ± SD (�x ± s), and SPSS 26.0

software was used for statistical analysis. One-way ANOVA was

used for two-way comparisons between multiple groups and when

P<0.05 is a statistically significant difference criterion.
3 Results

3.1 Behavioral experiment results

The effects of AS on anxiety, nervousness, and other emotions

of mice were analyzed by recording the distance traveled, average

speed of movement, and number of times crossing the central zone

of different groups of freely moving mice in the open-field

experiment, and the results show that there was no significant

difference between the distance traveled and the average speed of

movement of mice in the WT, AD, donepezil, and AS groups in the

behavioral experiments (P< 0.05) (Figures 1A, B). The number of

times the mice in the AD group crossed the central zone was

significantly lower than that of the WT group (5.38 ± 1.19 vs. 10.12

± 3.31; P< 0.01), while the number of times the mice in the AS

group traversed the central zone was significantly higher than that

of the AD group (11.38 ± 3.11 vs. 5.38 ± 1.19; P< 0.001), whereas

there was no significant difference in the donepezil group (6.25 ±

1.75 vs. 5.38 ± 1.19) (Figure 1C).

Mice are naturally curious and exploratory of new things, and

the effect of spikenard on learning and memory impairment in
TABLE 1 qRT-PCR primer sequences.

Gene Forward (o′– 3′) Reverse (e′– 3′)

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA

APP ACCCCAGATCGCCATGTTC CCCACTTTCCATTCTGCACATTC

NTRK1 CAGTCTGATGACTTCGTTGATGC CTCTTCACGATGGTTAGGCTTC

ESR1 CCCGCCTTCTACAGGTCTAAT CTTTCTCGTTACTGCTGGACAG

CFTR CTGGACCACACCAATTTTGAGG GCGTGGATAAGCTGGGGAT

CSNK2A1 ATGTGGTGGAATGGGGGAATC GCAAGTGTGATGATGTTGGGC

EGFR GCATCATGGGAGAGAACAACA TCAGGAACCATTACTCCATAGGT

ESR2 CTGTGCCTCTTCTCACAAGGA TGCTCCAAGGGTAGGATGGAC

GSK3B AAGCGATTTAAGAACCGAGAGC AGAAATACCGCAGTCGGACTAT

PAK1 GAAACACCAGCACTATGATTGGA ATTCCCGTAAACTCCCCTGTG
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; APP, amyloid precursor protein; NTRK1, neurotrophic receptor tyrosine kinase 1; ESR1, estrogen receptor 1; CFTR, CF transmembrane
conductance regulator; CSNK2A1, casein kinase 2 alpha 1; EGFR, epidermal growth factor receptor; ESR2, estrogen receptor 2; GSK3B, glycogen synthase kinase 3 beta; PAK1, P21 (RAC1)
activated kinase 1.
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demented mice could be determined by conducting new object

recognition experiments. The experimental results showed that in

the training phase (0 h) (Figure 1D), there was no significant

difference in the percentage of time spent exploring unfamiliar

toys (0.60 ± 0.05 vs. 0.53 ± 0.11 vs. 0.55 ± 0.06 vs. 0.57 ± 0.04; P >

0.05) and the percentage of number of explorations (0.57 ± 0.07 vs.

0.54 ± 0.11 vs. 0.56 ± 0.07 vs. 0.60 ± 0.04; P > 0.05) among the mice

in the WT, AD, donepezil, and AS groups, indicating that there was

no difference in the inherent curiosity for novelty among the mice in

each group.

During the test phase (1 h) (Figure 1E), compared with the WT

group, the AD group showed a decrease in the percentage of number

of times of curious exploration of object Z (0.45 ± 0.07 vs. 0.55 ± 0.07;

P< 0.05) and a decrease in the percentage of time spent exploring

(0.46 ± 0.09 vs. 0.56 ± 0.05), but there was no significant difference;

compared with AD group, the percentage of time spent exploring and

the percentage of number of times of curious exploration of object Z

are increased in the AS group (0. 56 ± 0.08 vs. 0.45 ± 0.07; 0.60 ± 0.07

vs. 0.46 ± 0.09; P< 0.05); compared with the AD group, the donepezil

group had a significantly higher percentage of times exploring object

Z (0.58 ± 0.05 vs. 0.45 ± 0.07; P< 0.01) and an increased percentage of

time exploring object Z, but there was no statistically significant

difference and it was lower than the AS group.
3.2 Active ingredients–target network of
AS in treating AD

By searching the TCMIP database, the HERB database, and the

Chinese Pharmacopoeia (2020 edition), 25 active ingredients

(Table 2) and 395 targets for AS were obtained. GeneCards

database (score ≥5), OMIM database, and TTD database were used

to retrieve 3563 AD-related targets. The intersection of the two

databases yielded 245 targets common to AS and AD (Figure 2A),

which belonged to a total of 25 chemical components in AS, and a

compound–target network (CTN) was constructed using Cytoscape-

v3.7.2 software (Figure 2B).
Frontiers in Immunology 0521
TABLE 2 Potentially active compounds in Acanthopanax senticosus.

PubChem CID Compound

72 3,4-Dihydroxybenzoic acid

338 Salicylic acid

1183 Vanillin

10742 Syringic acid

13250 Ethyl gallate

73117 (+)-Eudesmin

15699109 Coniferaldehyde glucoside

21636080 Chiisanogenin

428040 Ethyl glucoside

443023 (+)-Syringaresinol

445858 Ferulic acid

5280343 Quercetin

5280372 Coniferin

5280536 4-Hydroxy-3-methoxycinnamaldehyde

5282316 (9Z,12E)-12-Nitrooctadeca-9,12-dienoic acid

5315944 Ciwujiatone

5315945 Clausarin

5316860 Syringin

5318565 Isofraxidin

637542 4-Hydroxycinnamic acid

68289 Sesamo

689043 Caffeic acid

71312557 Eleutheroside E

72307 Sesamin

9859136 Eleutheroside C
B C

D E

A

FIGURE 1

Behavioral experimental results on the open-field test and the new-object recognition experiment. (A) Moving distance in each group of the open-
field test. (B) Average moving speed in each group of the open-field test. (C) Times of crossing the central area in each group of the open-field test.
(D) 0 h percentage of new things explored and 0 h percentage of time exploring new things. (E) 1 h percentage of new things explored and 1 h
percentage of time exploring new things (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001.
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3.3 Analysis of core targets and biological
functions of AS in treating AD

Protein interaction pairs (PPI pairs) of the abovementioned 245

targets screened in IntAct (https://www.ebi.ac.uk/intact/), BioGrid

(https://thebiogrid.org/), and STRING databases were transferred

to Cytoscape software to construct the protein–protein interaction

(PPI) network for AS of AD. The topological parameters of each

node in the PPI network were calculated using the MCODE

algorithm, and a total of 19 core protein interaction cluster

networks were screened, of which 85 targets related to AS for AD

were identified in these 19 core protein interaction clusters. The

core nodes were screened by the mean values of degree, degree

centrality (DC), closeness centrality (CC), betweenness centrality

(BC) and other parameters, and finally nine key targets were

obtained, including APP, NTRK1, ESR1, CFTR, CSNK2A1,

EGFR, ESR2, GSK3B, and PAK1, which suggest that these targets

play an important role in AS for AD.

The results of the GO enrichment analysis of these nine key

targets showed that (Figure 2D) the biological process (BP) of AS

treatment of AD was highlighted in the processes of protein

phosphorylation, protein autophosphorylation, positive regulation

of protein phosphorylation, cellular response to estradiol

stimulation, and learning or memory; cellular composition (CC)

was mainly in the processes of macromolecular complexes, axons,

plasma membrane, cell surface, early endosomal membranes and
Frontiers in Immunology 0622
receptor complexes, etc.; and molecular function (MF) focuses on the

role of enzyme binding, protein serine/threonine/tyrosine kinase

activity, ATP binding, binding of the same proteins, estrogen

receptor activity, and nitric oxide synthase regulatory activity.

The KEGG pathway analysis identified 22 relevant biological

pathways that may be significantly affected by AS in the treatment

of AD (Figure 2C). AS was found to play a role in some cancer

pathways, such as breast and endometrial cancer as well as in

Alzheimer’s disease pathways and pathways associated with

neurodegenerative diseases. Others play important roles in the

ErbB signaling pathway, the Ras signaling pathway, the MAPK

signaling pathway, the PI3K-Akt signaling pathway, and so on.
3.4 Molecular docking

To further explore the potential mechanism of AS for the

treatment of AD, these nine key targets and their corresponding 16

compounds in AS were subjected to molecular docking operations.

The results (Table 3) showed that the binding free energies of each

compound docked to the proteins were all less than -5.0 kJ/mol, and

the lower the free binding energy, the higher the affinity between the

protein receptor and the small molecule ligand, and the more likely

the interaction would occur. This indicates that the compounds in AS

have high affinity with all relevant proteins. Docking results below

-7.5 kJ/mol were visualized using Pymol software (Figure 3).
B

C D

A

FIGURE 2

Target information and network topology analysis results of Acanthopanax senticosus (AS) and Alzheimer’s disease. (A) Venn diagram.
(B) “Compound–target” network (CTN) of common targets and compounds in AS. Pink rhombus, compounds; green polygons, targets. (C) Kyoto
Encyclopedia of Genes and Genomes pathways enrichment analysis. The bluer the color, the larger the P value. The size of each bubble reflects the
number of genes enriched in the terms. (D) Gene Ontology enrichment analysis.
frontiersin.org

https://www.ebi.ac.uk/intact/
https://thebiogrid.org/
https://doi.org/10.3389/fimmu.2024.1383464
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1383464

Frontiers in Immunology 0723
3.5 mRNA expression of key genes in
mouse cerebral cortex

According to the statistical results of qRT-PCR (Figure 4A), the

mRNA content expression of APP, NTRK1, ESR1, CFTR,

CSNK2A1, EGFR, ESR2, GSK3B, and PAK1 in the hippocampus

of the brains of mice in the AD group was significantly elevated

compared with those of mice in the WT group (P< 0.01, P< 0.001,

P< 0.0001). The mRNA expression of APP, NTRK1, ESR1, CFTR,

CSNK2A1, EGFR, ESR2, GSK3B, and PAK1 in the AS group

showed a significant decrease compared with that of the AD

group (P< 0.001, P< 0.0001). It was demonstrated that the key

targets of AS for the treatment of AD derived from network

pharmacology were plausible and effective.
3.6 Western blot analysis of key pathways
in the treatment of AD by AS

According to the results of the KEGG biological function

analysis, the most relevant pathway for AS treatment of AD is

involved in the MAPK pathway. The TRAF6, MAP3K7, p-

MAP3K7, P38, p-P38, and HSP27 proteins in this pathway were

selected for western blot analysis. The analysis showed that the

expression level of TRAF6 protein in the hippocampal tissue of the

AD group was significantly increased compared to that of the WT

group, while the relative protein levels of p-MAP3K7/MAP3K7, the

relative protein levels of p-P38/P38, and the expression of HSP27

protein were decreased. In contrast, in the hippocampus of mice

after therapeutic intervention with AS, it can be found that mice in

the AS group have a significant decrease in the expression level of

TRAF6 protein and a notable increase in the expression level of

MAPK phosphorylation and the HSP27 protein compared with the

AD group; all the results were significant (Figure 4B). This suggests

that AS may treat AD by regulating the phosphorylation process of

the MAPK signaling pathway.
4 Discussion

It is established that the accumulation of extracellular amyloid b
and neurofibrillary tangles in the brain contributes to the onset of

Alzheimer’s disease; however, the current study suggests that AD is

significantly linked to inflammatory processes within the central

nervous system (CNS) (16). Flavonoid compounds have

demonstrated the ability to inhibit neuroinflammatory processes

and enhance memory recognition in mice with AD (17). According

to the findings of clinical trials conducted by Tohda et al., the extract of

AS is safe for augmentation in cognitive function, and it effectively

alleviates anxiety in healthy individuals (18). In our study, we can see

that AS has some efficacy in alleviating cognitive impairment caused

by AD from the results of the behavioral experiments. In the open-

field experiment, although there was no statistically significant

difference between the groups of mice in terms of the distance

traveled and the average speed of movement, the number of times

the mice in the AS group crossed the central zone was significantly
TABLE 3 Binding ability of key targets and corresponding compounds.

Target
PDB
ID

Ligands
deltaG
(kcal/mol)

CSNK2A1 1NA7 Quercetin -8.7

GSK3B 1Q5K Quercetin -8.6

EGFR 1IVO Quercetin -8.2

GSK3B 1Q5K (+)-Eudesmin -7.7

ESR2 4J26 Quercetin -7.7

GSK3B 1Q5K Coniferin -7.6

APP 1AAP Quercetin -7.5

GSK3B 1Q5K Clausarin -7.4

ESR1 1A52
(9Z,12E)-12-Nitrooctadeca-9,12-
dienoic acid

-7.4

EGFR 1IVO Coniferaldehyde glucoside -7.4

CSNK2A1 1NA7
(9Z,12E)-12-nitrooctadeca-9,12-
dienoic acid

-7.2

APP 1AAP Caffeic acid -6.8

ESR2 4J26 Caffeic acid -6.4

GSK3B 1Q5K Isofraxidin -6.4

ESR1 1A52 Caffeic acid -6.3

EGFR 1IVO Isofraxidin -6.3

ESR2 4J26 4-Hydroxycinnamic acid -6.3

PAK1 3FXZ Ciwujiatone -6.2

ESR2 4J26 Ferulic acid -6.2

ESR1 1A52
4-Hydroxy-
3-methoxycinnamaldehyde

-6.1

ESR1 1A52 4-Hydroxycinnamic acid -6.1

CFTR 1XMI Ciwujiatone -6.1

EGFR 1IVO Caffeic acid -6.1

ESR2 4J26
4-Hydroxy-
3-methoxycinnamaldehyde

-6.1

ESR2 4J26 Ethyl gallate -6.1

ESR2 4J26 Salicylic acid -6.1

ESR2 4J26 3,4-Dihydroxybenzoic acid -6.0

GSK3B 1Q5K
4-Hydroxy-
3-methoxycinnamaldehyde

-6.0

APP 1AAP Ferulic acid -5.9

NTRK1 1HE7 Ciwujiatone -5.9

EGFR 1IVO
(9Z,12E)-12-Nitrooctadeca-9,12-
dienoic acid

-5.9

EGFR 1IVO
4-Hydroxy-
3-methoxycinnamaldehyde

-5.8

EGFR 1IVO Ferulic acid -5.7

APP 1AAP
4-Hydroxy-
3-methoxycinnamaldehyde

-5.4

EGFR 1IVO Sesamol -5.4
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higher, which means that the mice showed good autonomous

exploratory behavior and the negative emotional responses such as

anxiety and nervousness were significantly alleviated by the

administration of AS. According to the novelty recognition

experiment, compared with the AD group, the percentage of time

spent curiously exploring Z and the percentage of frequency of curious

exploration increased in the AS group, while the percentage of number

of times exploring Z was significantly higher in the donepezil group.

Taken in combination, this suggests that both AS and donepezil can

improve transient memory impairment in AD model mice.

To elucidate the potential therapeutic targets and mechanisms of

action for AS in the treatment of AD, a comprehensive analysis of 245

candidate targets was conducted using network pharmacology

techniques. A topological algorithm was employed to establish a

protein–interaction network (PPI), which identified nine key targets

for AS in AD treatment: amyloid-beta precursor protein (APP),

neurotrophic receptor tyrosine kinase 1 (NTRK1), estrogen receptor

alpha (ESR1), cystic fibrosis transmembrane conductance regulator
Frontiers in Immunology 0824
(CFTR), casein kinase 2 alpha 1 (CSNK2A1), epidermal growth factor

receptor (EGFR), estrogen receptor 2 (ESR2), glycogen synthase kinase

3 beta (GSK3B), and P21 activated kinase 1 (PAK1). The quantitative

real-time PCR (qRT-PCR) data revealed that the mRNA expression

levels of these targets in the hippocampus of AS-treated mice

significantly decreased compared to that of the AD group. Several

studies have shown that in addition to amyloid deposition and

tau protein hyperphosphorylation leading to AD, mice carrying

mutants of the human APP gene and lacking the apoE gene also

exhibit memory deficits (19). It also promotes synapse formation,

dendrite sprouting, and neuronal migration (20). Chronic

intracerebroventricular injection of sAPPa in mice mitigated

cognitive and synaptic deficits (21). NTRK1 (TrkA), a receptor for

nerve growth factor (NGF), regulates neuronal growth, differentiation,

and apoptosis in the CNS (22). Inflammatory mediators, including IL-

1b, TNF-a, and IL-6, stimulate the synthesis of nerve growth factor

(NGF) in both neurons and glial cells, concurrently increasing the

expression of the TrkA receptor. Upon Toll-like receptor (TLR)
FIGURE 3

Molecular docking diagram of quercetin, (+)-eudesmin, and coniferin with related key targets.
BA

FIGURE 4

Results of qRT-PCR and Western blot (WB) about proteins related to the treatment of Alzheimer’s disease by Acanthopanax senticosus. (A) mRNA
level of key targets on each group. (B) Results of WB (n = 3). *P < 0.05, **P < 0.01, ***P< 0.001, ****P< 0.0001.
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activation, NGF binds to TrkA, triggering a cascade that involves the

activation of Ras, PI3K, phospholipase Cg1, and downstream signaling

pathways, such as the MAPK pathway. This cascade interferes with

intracellular TLR signaling, thereby augmenting the endogenous

negative feedback mechanisms that modulate excessive inflammation

(23–25). R Romano et al. showed that EGFR, part of the receptor

tyrosine kinase superfamily, is crucial for neural stem cell maintenance,

astrocyte maturation, and neurite outgrowth in the CNS (26). Its

inhibition improves astrocyte proliferation after injury, enhances

autophagy, and reduces Ab toxicity and neuroinflammation (27),

correlating with a reduced risk of associated dementia (ADD) (28).

ESR1 and ESR2, estrogen receptor-related genes, are implicated in

neuronal degeneration due to estrogen decline, leading to cognitive

difficulties (29). ERa and ERb expression in neurons and astrocytes is

associated with cognitive function maintenance in older women (30,

31). CFTR, expressed in neurons and other cell types, is linked to

improved cognitive performance with physical activity in CF patients

(32, 33). GSK3, a ubiquitous serine–threonine kinase with two

isoforms (GSK3a and GSK3b), is widely found in the CNS (34).

GSK3b overexpression promotes the BACE1 cleavage of APP, favoring

Ab plaque formation, which disrupts the Wnt pathway, leading to tau

phosphorylation and accelerating AD progression (34, 35).

According to the CTN graph, it is evident that the expression of

key targets is associated with several anti-inflammatory and

antioxidant properties in AS, including quercetin, (+)-eudesmin,

12-nitrooctadeca-9,12-dienoic acid, coniferaldehyde glucoside,

caffeic acid, and isofraxidin, which has been shown to decrease

Ab production by inhibiting BACE1 and acetylcholinesterase

(AChE), regulate the NF-kB pathway to reduce COX-2 levels, and

mediate the inhibition of neuroinflammatory responses via the

Nrf2/HO1 pathway, thereby intervening in AD (36–38).

The analysis of functional enrichment can facilitate a more

comprehensive understanding of the interactions among gene

products. According to the results of the KEGG analysis, the MAPK

signaling pathway appears to be the most promising treatment avenue

for Alzheimer’s disease (AD). Mitogen-activated protein kinases

(MAPK) represent a group of serine–threonine kinases, comprising

extracellular signal-regulated kinases (ERK), p38, and c-Jun NH2-

terminal kinases (JNK) (39). Each MAPK signaling axis contains at

least three components: MAPK kinase kinase kinase (MAP3K),

MAPK kinase kinase (MAP2K), and MAPK kinase (40). Notably,

the MAPK signaling pathway, which has been found to be

significantly associated with AD development, can be triggered by

inflammatory factors such as TNFa or IL-1b or in response to cellular

stress (41, 42). Relevant studies have demonstrated that inhibiting the

MAPK signaling pathway can effectively mitigate the inflammatory

response, thereby alleviating the symptoms of AD (43, 44). The results

of the Western blot analysis demonstrate that, compared with the AD

group, the AS group exhibited a significant decrease in TRAF6 protein

expression and an increase in p-MAP3K7/MAP3K7 relative protein

content, p-P38/P38 relative protein content, and HSP27 protein

expression levels. These findings suggest that AS may control the

inflammatory response and improve cognitive dysfunction by

inhibiting the expression of the TRAF6 protein, increasing the

phosphorylation of the MAPK pathway and inhibiting the

activation of pro-inflammatory factors.
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In conclusion, AS can enhance short-term learning memory

and effectively alleviate anxiety in 5xFAD mice. The mechanism of

action is related to the activation of phosphorylation of the MAPK

pathway and inhibition of the production of inflammatory factors.

AS contains active compounds including quercetin, caffeic acid, and

isofraxidin, with its main targets being APP, NTRK1, EGFR,

GSK3B, and other genes. This study analyzes the feasibility and

mechanism of action of AS in the treatment of AD, providing a

novel approach to finding effective solutions for AD treatment in

clinical settings.
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Serum ASGR2 level: an efficacy
biomarker for balloon pulmonary
angioplasty in patients with
chronic thromboembolic
pulmonary hypertension
Wei-Jie Xu1†, Shang Wang2†, Qian-Hao Zhao2†, Jia-Yi Xu3,
Xiao-Yi Hu2, Su-Gang Gong2, Jing He2, Hong-Ling Qiu2,
Ci-Jun Luo2, Jian Xu2, Hui-Ting Li2, Ze-Pu Li4, Lan Wang2,
Yu Shi5*, Ya-Lin Zhao6* and Rong Jiang2*

1Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of
Medicine, Shanghai, China, 2Department of Cardiopulmonary Circulation, Shanghai Pulmonary
Hospital, School of Medicine, Tongji University, Shanghai, China, 3School of Life Science and
Technology, Tongji University, Shanghai, China, 4Department of Cardiology, Affiliated Renhe Hospital
of Shanghai University, Shanghai, China, 5Department of Cardiology, Yantai Yu-Huangding Hospital,
Medical College of Qingdao University, Yantai, China, 6Department of Respiratory Critical Care
Medicine, The First Hospital of Kunming, Kunming, China
Background: This study aimed to employ plasma proteomics to investigate the

molecular changes, pathway alterations, and potential novel biochemical

markers associated with balloon pulmonary angioplasty (BPA) in patients with

chronic thromboembolic pulmonary hypertension (CTEPH).

Methods: Pre- and post-BPA plasma samples from five CTEPH patients in the

PRACTICE study were analyzed to identify differentially expressed proteins.

Proteomic and bioinformatics analyses were conducted, and the identified

proteins were further validated using ELISA assays in a separate cohort of the

same study. Correlation and multivariate regression analyses were performed to

investigate the associations between these differentially expressed proteins and

clinical parameters.

Results: Significantly higher serum levels of asialoglycoprotein receptor 2

(ASGR2) were detected in 5 CTEPH patients compared to those in healthy

individuals but decreased significantly after successful BPA procedures. The

decrease in serum levels of ASGR2 after the completion of BPA procedures

was further validated in a separate cohort of 48 patients with CTEPH [0.70 (0.51,

1.11) ng/mL vs. 0.38 (0.27, 0.59) ng/mL, P < 0.001]. Significant associations were

found between the pre-BPA ASGR2 level and clinical parameters, including

neutrophil percentage (R = 0.285, P < 0.05), platelet (PLT) count (R = 0.386,

P < 0.05), and high-density lipoprotein cholesterol (HDL-C) before BPA

(R = -0.285, P < 0.05). Significant associations were detected between post-

BPA serum ASGR2 levels and lymphocyte percentage (LYM%) (R = 0.306,

P < 0.05), neutrophil-to-lymphocyte ratio (R = -0.294, P < 0.05), and

pulmonary vascular resistance after BPA (R = -0.35, P < 0.05). Multivariate

stepwise regression analysis revealed that pre-BPA ASGR2 levels were
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associated with HDL-C and PLT count (both P < 0.001), while post-BPA ASGR2

levels were associated with LYM% (P < 0.05).

Conclusion: Serum levels of ASGR2 may be a biomarker for the effectiveness of

BPA treatment in CTEPH patients. The pre-BPA serum level of ASGR2 in CTEPH

patients was associated with HDL-C and the PLT count. The post-BPA serum

level of ASGR2 was correlated with the LYM%, which may reflect aspects of

immune and inflammatory status.
KEYWORDS

chronic thromboembolic pulmonary hypertension, balloon pulmonary angioplasty,
proteomics, asialoglycoprotein receptor 2, immune
1 Introduction

Chronic thromboembolic pulmonary hypertension (CTEPH) is

a pulmonary vascular disease characterized by pulmonary artery

thrombus, pulmonary vascular remodeling leading to vascular

stenosis or occlusion, and progressive elevated pulmonary artery

pressure, ultimately leading to right heart failure (1). In addition to

thrombotic factors, immune function and inflammatory status

contribute significantly to the development of CTEPH, which is

characterized by increased activation of innate and adaptive

immune cells that promote inflammation and vascular disease (2).

In addition to riociguat, a targeted medicine for CTEPH, and

pulmonary endarterectomy, balloon pulmonary angioplasty (BPA)

is an appropriate alternative therapeutic option for patients who are

not eligible for surgery or who experience persistent or recurrent

pulmonary hypertension after PEA. Balloon pulmonary angioplasty

effectively improves hemodynamics, right ventricular (RV)

function, exercise capacity, symptoms, and prognosis (3, 4).

Moreover, BPA treatment has been demonstrated to decrease

interleukin (IL)-6 and C-reactive protein levels in CTEPH

patients , indicating its potential to improve systemic

inflammation (5). Although transcriptome sequencing and

bioinformatics analysis have been used to investigate the

pathogenesis of CTEPH (6), proteomic studies assessing the

therapeutic efficacy of BPA are lacking.

In this study, we conducted proteomic profiling to identify

changes in protein expression between pre-BPA and post-BPA

samples from patients with CTEPH. Differentially expressed

proteins were identified, and their correlations with clinical

parameters were investigated in a cohort of patients enrolled in

the PRACTICE study. We aimed to utilize plasma proteomics to

uncover molecular changes, pathway alterations, and potential

novel biochemical markers associated with BPA treatment in

CTEPH patients.
0229
2 Materials and methods

2.1 Study population

The CTEPH patients included in our study were selected from

the PRACTICE study (ChiCTR2000032403) (7). The PRACTICE

study, which was a prospective, randomized controlled study

conducted at a single center, aimed to compare the effectiveness

and safety of combining BPA with riociguat versus riociguat

monotherapy in patients with inoperable CTEPH. All patients

enrolled in the study met the diagnostic criteria for CTEPH in

the ESC/ERS 2022 guidelines (8). These criteria included a mean

pulmonary artery pressure (mPAP) > 20 mmHg, pulmonary artery

wedge pressure (PAWP) ≤ 15 mmHg, and pulmonary vascular

resistance (PVR) > 2 Wood units (WUs) via right heart

catheterization (RHC). In the BPA group, patients initially

underwent pre-RHC and received riociguat therapy for

management of pulmonary arterial hypertension (PAH).

Following a 3-month stabilization period, hospitalizations were

scheduled at monthly intervals for BPA sessions until sufficient

improvement in pulmonary vasculature patency was achieved. A

post-RHC assessment was conducted three days after the final BPA

procedure to evaluate hemodynamics. The study protocol was

conducted in accordance with the revised Declaration of Helsinki,

and approval was obtained from the Ethics Committee of the

Shanghai Pulmonary Hospital (L20-385-1). Written informed

consent was obtained from all participants.

Pre-BPA and post-BPA assessments included the World Health

Organization functional class (WHC FC), 6-minute walk distance

(6MWD), routine blood tests, lipid profile, N-terminal pro-B-type

na t r iu re t i c pep t ide (NT-proBNP) l eve l s , RHC and

echocardiography parameters. Parameters that were measured

and recorded during the RHC included mPAP, PAWP, cardiac

output (CO), and PVR (9). Echocardiographic parameters included
frontiersin.org
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right atrial area (RAA), right ventricular end-diastolic transverse

diameter (RVEDTD), right ventricular end-diastolic longitudinal

diameter, right atrial transverse diameter (RATD), right atrial

longitudinal diameter (RALD), and tricuspid annular plane

systolic excursion (TAPSE) (10).

Pre- and post-BPA serum samples from five CTEPH patients in

the PRACTICE study were analyzed to identify differentially

expressed proteins. Proteomic and bioinformatics analyses were

conducted, and the identified proteins were further validated using

enzyme-linked immunosorbent assay (ELISA) in a separate cohort

of 48 CTEPH patients in the PRACTICE study.
2.2 Sample collection

Blood samples were centrifuged at 3000×g for 10 minutes at 4°C

to obtain serum, which was stored at -80°C for ELISA testing.
2.3 Mass spectrometry

Plasma samples from five patients were subjected to analysis,

which involved protein extraction, peptide digestion,

chromatographic fractionation, and liquid chromatography-

tandem mass spectrometry data acquisition.
2.4 Bioinformatics analysis

The analysis consisted of three stages: quantitative, differential

expression and functional analysis (11).

2.4.1 Quantitative analysis
The detected proteins were compared with contents of the

Swiss-Prot human protein database, and the number and overlap

of relationships between groups were counted.

2.4.2 Differential expression analysis
The quantifiable proteins identified through mass spectrometry

were carefully selected, and multiple rounds of comprehensive

protein quantification experiments were conducted. The ratio of

the mean values before and after treatment was calculated to assess

differential expression, while the P value was used to determine the

significance of protein level comparisons between the two groups.
2.4.3 Functional analysis
For subcellular localization and domain analysis, CELLO and

InterProScan software, respectively, were used to investigate the

functional regions and biological roles of proteins (12). Blast2GO

software annotates differentially expressed protein sets with the

Gene Ontology (GO) database, categorizing them into biological

processes, molecular functions, and cellular components (13). KASS

interprets and annotates proteins based on the KEGG pathway

database (13). Fisher’s exact test was performed to compare the

distribution of gene ontology GO classifications and KEGG
Frontiers in Immunology 0330
pathways in the target protein set with that in the overall protein

set, enabling enrichment analysis.
2.5 Enzyme-linked immunosorbent assay

The plasma concentrations of apolipoprotein C1 (APOC1),

asialoglycoprotein receptor 2 (ASGR2) and heparan sulfate

proteoglycan 2 (HSPG2) were selected from 13 differentially

expressed proteins and measured using a Human APOC1 ELISA

Kit (catalog# EH0529, FineTest®), a Human ASGR2 ELISA Kit

(catalog#EH2669, FineTest®) and a Human HSPG2 ELISA Kit

(catalog#EH0955, FineTest®), respectively. The detection limits

were as follows: APOC1, 9.375−600 ng/mL, ASGR2 0.156−10 ng/

mL, and HSPG2 0.625−40 ng/mL. The protein concentrations were

determined by measuring the absorbance at 450 nm and then using

a standard curve for calculations.
2.6 Data analysis

In the proteomics analysis, logarithmic transformation with a base

of 2 was applied to normalize the data. The Student’s t test was then

used to calculate P values for statistical analysis. Due to the limited

number of significant differences, genes exhibiting an expression fold

change ≥ 1.18 were considered significantly upregulated, while genes

with an expression fold change < 0.85 were considered significantly

downregulated, with a significance level of P < 0.05.

The serum ASGR2 levels and clinical parameters with a normal

distribution are presented as the means ± standard deviations.

Nonnormally distributed data are reported as medians

(interquartile ranges). The Mann-Whitney U test was used to

compare the serum concentrations of differentially expressed

proteins (DEPs) between the CTEPH patients and individuals.

The pre- and post-BPA changes in DEPs and clinical parameters

were assessed using either the Wilcoxon signed-rank test or paired t

test, depending on whether the data were normally distributed.

Spearman correlation analysis was performed to explore the

relationships between serum ASGR2 levels and clinical parameters

before and after BPA treatment.

Multiple linear stepwise regression analyses were conducted to

investigate the associations between ASGR2 and clinical

parameters. To address nonnormally distributed data, the natural

logarithm (ln) was utilized to transform the values into normally

distributed data. Covariance tests were performed on the relevant

variables. GraphPad Prism 9 and IBM SPSS 23.0 software were

used. A P value less than 0.05 was considered statistically significant.
3 Results

3.1 Characteristics of CTEPH patients
undergoing proteomic analysis

The average age of the five patients was 59.2 ± 8.7 years, and

three of them were female. After the completion of BPA treatment,
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the mPAP significantly decreased from 40.6 ± 6.9 mmHg to 19.4 ±

4.6 mmHg (P < 0.01). Additionally, the PVR decreased significantly

from 9.6 ± 4.2 mmHg to 3.1 ± 0.4 mmHg (P = 0.023) (Table 1).
3.2 Proteomic and bioinformatics analysis

A total of 625 proteins were identified in the quantitative

analysis, with 559 proteins overlapping between the groups.

Furthermore, 21 proteins were exclusively detected in the pre-

BPA group, while 45 proteins were exclusively detected in the

post-BPA group.

Volcano plots were generated based on fold change values ≥

1.18 or ≤ 0.85 and P values < 0.1 (Figure 1A). Four downregulated

differentially expressed proteins encoded by the genes IGHV3-53,

CCT3, HSPG2, and ASGR2 were identified. Nine upregulated

differentially expressed proteins encoded by the genes TAGLN2,

PDLIM1, TPI1, APOC1, CFHR5, LTF, IGLL1, IGHV4-34, and

IGKV1-12 were also identified (Figure 1B).

The GO functional annotation revealed significant enrichment of

differentially expressed proteins in key biological processes (such as

humoral immune response, complement activation, and cell

recognition), emphasizing their relevance to immune function and

cell interactions (Figures 1C, D). In terms of molecular function, these

proteins were primarily involved in immunoglobulin receptor

binding and antigen binding (Figure 1E) and were also significantly

enriched in cellular components, such as immunoglobulin complexes

and the external side of the plasma membrane (Figure 1F). Notably,

APOC1, HSPG2, and ASGR2-encoded proteins were frequently

found in these enriched pathways, suggesting their potential as

characteristic differentially expressed proteins for further validation.

According to the KEGG pathway analysis, the top pathways

were phototransduction, fructose and mannose metabolism,
Frontiers in Immunology 0431
primary immunodeficiency, cholesterol metabolism, glycolysis/

gluconeogenesis, long-term potentiation, renin secretion,

amphetamine addiction, inositol phosphate metabolism and

amino acid biosynthesis.
3.3 Detection of DEPs in serum samples
from 5 CTEPH patients

The serum levels of APOC1 and HSPG2 in 5 CTEPH patients

were significantly greater than those in healthy individuals.

However, no significant differences were observed between the

pre- and post-BPA treatments. Compared with those in healthy

individuals, significantly greater serum levels of ASGR2 were

detected in 5 CTEPH patients (P = 0.03) but decreased

significantly after successful BPA procedures (P = 0.028) (Figure 2).
3.4 Validation of ASGR2 in the
PRACTICE cohort

Following the completion of BPA treatment, a notable decrease

in the serum ASGR2 concentration was observed in the 48 CTEPH

patients in the PRACTICE study [0.70 (0.51, 1.11) ng/mL vs. 0.38

(0.27, 0.59) ng/mL, P < 0.001]. Of the patients, 24 were female, with

a mean age of 61.8 ± 11.3 years.

Following successful BPA therapy, a significant improvement

was observed in the WHO FC (P < 0.001). Hemodynamically, post-

BPA treatment substantially reduced the mPAP and PVR (45.7 ±

11.1 mmHg vs. 25.7 ± 6.3 mmHg and 9.3 ± 6.0 mmHg vs. 3.3 ± 0.8

mmHg, respectively; both P < 0.001). Additionally, CO and SvO2

significantly increased [4.8 ± 1.2 L/min vs. 5.6 ± 1.1 L/min, P =

0.004; 59.5 ± 8.8% vs. 68.9 ± 6.8%, P < 0.001, respectively]. Through
TABLE 1 Clinical information of 5 CTEPH patients undergoing proteomic analysis.

Patient Gender Age
(years)

6MWD
(m)

NT-proBNP
(pg/ml)

RAP
(mm Hg)

mPAP
(mm Hg)

PAWP
(mm Hg)

CO
(L/min)

PVR
(Wood U)

SVO2

(%)

Pre-BPA

1 Female 65 465 151.5 1 40 6 2.41 14.10 59.8

2 Male 50 375 126.0 1.0 45 5 2.97 13.47 60.5

3 Female 57 420 235.0 3.0 31 8 6.07 3.79 70.5

4 Female 53 520 60.0 0.0 49 1 5.57 8.62 48.7

5 Male 71 195 4281.0 1 38 10 3.40 8.24 56.6

Post-BPA

1 Female 65 450 136.5 1 14 2 3.9 3.05 69.9

2 Male 50 390 29.0 1 15 4 3.20 3.44 60.7

3 Female 57 400 125.0 1 21 6 4.23 3.55 70.3

4 Female 53 520 65.0 1 24 9 5.90 2.54 69.5

5 Male 71 455 353.7 0 23 6 5.73 2.97 58.3
frontie
6MWD, 6-minute walking distance; NT-proBNP, N-terminal pro B-type natriuretic peptide; RAP, right atrial pressure; mPAP, mean pulmonary artery pressure; PAWP, pulmonary artery wedge
pressure; CO, cardiac output; PVR, pulmonary vascular resistance; SVO2, saturation of mixed venous blood oxygen.
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echocardiography, significant reductions were observed in RV

structure parameters, including RAA, RATD, RALD, and

RVEDTD [18.50 (15.9, 23.2) mm² vs. 14.1 (11.5, 17.8) mm², P <

0.01; 18.5 (15.9, 23.2) cm vs. 14.1 (11.5, 17.8) cm, P < 0.001; 5.2 ± 0.8

cm vs. 4.6 ± 0.8 cm, P < 0.001; 4.0 ± 0.7 cm vs. 3.5 ± 0.5 cm, P <

0.001, respectively]. A significant increase in RV systolic function

was observed for the TAPSE [11.0 (9.2, 12.0) mm vs. 13.0 (11.0,

14.0) mm, P < 0.001] (Table 2).
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The levels of NT-proBNP decreased significantly [596.3

(110.4−1763.5) pg/ml to 125.5 (54.8−178.6) pg/ml, P < 0.001]. The

white blood cell counts increased [5.7 (4.7−6.8) × 109/L vs. 6.6 (4.9−8.2)

× 109/L) (P = 0.011), accompanied by an increase in the neutrophil

percentage (NEU%) [56.0 ± 9.30% vs. 67.0 ± 10.9%, P = 0.041].

However, there was a decrease in the lymphocyte percentage (LYM%)

[32.7 ± 8.1% vs. 23.5 ± 9.2%, P = 0.005] and eosinophil percentage [2.8

± 2.9% vs. 1.9 ± 2.9%, P = 0.0013]. These changes resulted in an
B

C D

E F

A

FIGURE 1

Differentially expressed protein identification and functional enrichment analysis. (A) Volcano plot. (B) Heatmap of differentially expressed proteins.
(C) Bar plot showing the number of differentially expressed proteins at the secondary functional annotation level of GO. (D) The top 10 enriched
terms in the biological process category. (E) The top 10 enriched terms in the molecular function category. (F) The top 10 enriched terms in the
cellular component category.
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elevated neutrophil-to-lymphocyte ratio (NLR) [1.9 ± 0.8 vs. 3.4 ± 1.6,

P = 0.021]. Platelet counts remained unchanged.

In terms of lipid metabolism, a significant increase in apolipoprotein

A-1 (ApoA-I) levels was observed [1.3 ± 0.3 g/L vs. 1.4 ± 0.2 g/L, P =

0.003). No significant changes were detected in total cholesterol,

triglyceride, high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), small dense LDL cholesterol (SDLDL-

C), ApoB, ApoE, or lipoprotein (a) levels (Table 3).
3.5 Correlation analysis of serum
ASGR2 levels

According to the Spearman correlation analysis, pre-BPA

ASGR2 levels were positively correlated with pre-BPA NEU% and

PLT count but negatively correlated with HDL-C (R = 0.285, R =

0.386, R = -0.285, all P < 0.05). Post-BPA ASGR2 levels were

positively correlated with post-BPA LYM % and the NLR (R =

0.306; R = -0.294, both P < 0.05, respectively). A significant positive

Spearman correlation was observed between post-BPA ASGR2

levels and post-BPA PVR (R = -0.35, P < 0.05) (Figure 3).
3.6 Multiple linear stepwise regression
analysis of ASGR2

For the pre-BPA treatment data, the equation ln

(ASGR2pre-BPA) = -1.433 HDL-C pre-BPA + 1.013 PLT pre-BPA (R2
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= 0.407, F = 15.812, P < 0.001) was obtained. Notably, NEU% was

excluded from the analysis due to multicollinearity. Subsequently,

for the pre-BPA treatment data, ln(ASGR2 post-BPA) = -2.879 +

0.388 ln(LYM% post-BPA) (R
2 = 0.15, F = 6.016, P < 0.05) (Table 4).
4 Discussion

This study aimed to utilize plasma proteomics to explore the

molecular changes, pathway alterations, and potential novel

biochemical markers associated with BPA in CTEPH patients. The

findings of the study can be summarized as follows: (I) After successful

BPA procedures, the serum levels of ASGR2, which were initially

greater in CTEPH patients than in healthy individuals, significantly

decreased. (II) Prior to BPA treatment, a correlation was observed

between serum ASGR2 levels and PLT count as well as HDL-C levels.

Following BPA treatment, serum ASGR2 levels were associated with

LYM%. (III) Serum ASGR2 levels may be associated with PVR.

As a subunit of the asialoglycoprotein receptor (ASGPR),

ASGR2 plays a significant role in cellular processes. Known as the

Ashwell–Morell receptor, ASGPR is a transmembrane protein

primarily expressed in hepatocytes that specifically recognizes N-

acetylgalactosamine and galactose. Its main function is to

internalize and degrade glycoproteins through desialylation,

contributing to the maintenance of serum glycoprotein

homeostasis (14). A strong correlation of ASGR2 with

gastrointestinal tumors, including hepatocellular carcinoma,

gastric cancer, and colorectal cancer has been reported (14).
B

C D

A

FIGURE 2

Detection of APOC1, HSPG2 and ASGR2 in serum samples from 5 CTEPH patients. CTEPH, Chronic thromboembolic pulmonary hypertension. *p<
0.05; ns, not significant; ****p<0.001.
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Moreover, emerging evidence suggests a potential association

between ASGR2 and neuropsychiatric/neurodegenerative diseases,

as well as hemophilia. Currently, there is no available research that

establishes a connection between ASGR2 and PAH.
4.1 Relationship between ASGR2 and
PLT count

Our study revealed a correlation between serumASGR2 levels and

PLT count in CTEPH patients before BPA intervention. Decreased

PLT count and function have been recognized as factors that promote

the development of CTEPH (15). In patients with CTEPH, PLTs

demonstrate heightened activation, yet there is an intriguing
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phenomenon of reduced PLT aggregation and increased

depolymerization. The activation of PLTs affects the production of

proinflammatory chemokines and the aggregation of pulmonary

interstitial macrophages, thereby contributing to the inflammatory

state. The aggregation of PLTs and granulocytes in the peripheral

blood further contributes to immune inflammation and the

pathophysiology of CTEPH (16). The literature on the direct impact

of ASGR2 in CTEPH patients is limited. However, studies suggest that

the ASGR2 genotype may modulate von Willebrand factor,

influencing the molecular link between inflammatory pathways and

PLT adhesion during thrombus formation in CTEPH patients.
TABLE 2 Hemodynamic and echocardiographic changes pre- and
post-BPA.

Variable Pre-BPA
n = 48

Post-BPA
n = 48

P value

Age (y) 61.8 ± 11.3

Female, n (%) 24 (50)

ASGR2, ng/mL 0.70 (0.51, 1.11) 0.38 (0.27,0.59) < 0.001

WHO FC, n (%) < 0.001

II 5 (10.4) 37 (77.1)

III 42 (87.5) 11 (22.9)

IV 1 (2.1) 0 (0)

6MWD, m 356.5 ± 104.1 442.3 ± 67.8 < 0.001

Hemodynamics

mPAP, mm Hg 45.7 ± 11.1 25.7 ± 6.3 < 0.001

PAWP, mm Hg 8.0 ± 3.4 7.8 ± 3.5 0.736

CO, L/min 4.8 ± 1.2 5.6 ± 1.1 0.004

PVR, Wood U 9.3 ± 6.0 3.3 ± 0.8 < 0.001

SVO2, % 59.5 ± 8.8 68.9 ± 6.8 < 0.001

Echocardiography

RAA, mm2 18.5 (15.9, 23.2) 14.1 (11.5, 17.8) < 0.001

RATD, cm 4.4 ± 0.9 3.6 ± 0.6 < 0.001

RALD, cm 5.2 ± 0.8 4.6 ± 0.8 < 0.001

RVEDTD, cm 4.0 ± 0.7 3.5 ± 0.5 < 0.001

RVEDLD, cm 6.5 (5.8, 7.0) 6.6 (6.0, 7.0) 0.166

sPAP, mmHg 71.5 (52.3, 97.8) 42.0 (37.3, 49.0) < 0.001

TAPSE, mm 11.0 (9.2, 12.0) 13.0 (11.0, 14.0) < 0.001
Values are expressed as the mean ± SD or median (quartile range). BPA, balloon pulmonary
angioplasty; ASGR2, asialoglycoprotein receptor 2; WHO FC, World Health Organization
functional class; 6MWD, 6-minute walking distance; mPAP, mean pulmonary artery pressure;
PAWP, pulmonary artery wedge pressure; CO, cardiac output; PVR, pulmonary vascular
resistance; SVO2, saturation of mixed venous blood oxygen; RAA, right atrial area; RATD,
right atrial transverse dimension; RALD, right atrial longitudinal dimension; RVEDTD, right
ventricular transverse dimension; RVEDLD, right ventricular longitudinal dimension; sPAP,
systolic pulmonary artery pressure; TAPSE, tricuspid annular plane systolic excursion.
TABLE 3 Blood test changes between pre- and post-BPA.

Variable Pre-BPA
n = 48

Post-BPA
n = 48

P value

NT-proBNP,
pg/ml

596.3 (110.4, 1763.5) 125.5 (54.8, 178.6) < 0.001

ESR, mm/h 16.0 ± 12.0 14.3 ± 11.5 0.522

hs-CRP, mg/L 5.6 ± 8.9 4.1 ± 6.0 0.327

Blood routine

WBC, ×109/L 5.7 (4.7, 6.8) 6.6 (4.9, 8.2) 0.011

NEU%, % 56.0 ± 9.3 67.0 ± 10.9 0.041

LYM%, % 31.7 (26.2, 39.5) 20.9 (16.2, 30.4) 0.005

NLR 1.9 ± 0.8 3.4 ± 1.6 0.021

EO%, % 2.8 ± 2.9 1.9 ± 2.9 0.013

PLT, ×109/L 225.5 ± 85.4 224.3 ± 77.6 0.839

Renal function

UA, mmol/L 355.0 (294.5, 445.3) 339.5 (278.6, 400.3) 0.070

BUN, mmol/L 6.1 ± 1.9 6.2 ± 1.5 0.666

Crea, mmol/L 68.6 ± 16.0 66.5 ± 14.4 0.167

Lipid metabolism

TCH, mmol/L 4.2 ± 0.8 4.5 ± 0.9 0.115

TG, mmol/L 1.4 ± 0.6 1.4 ± 0.7 0.881

HDL-C, mmol/L 1.1 ± 0.3 1.1 ± 0.3 0.213

LDL-C, mmol/L 2.7 ± 0.7 2.9 ± 0.6 0.180

SDLDL-C, mmol/L 0.8 ± 0.3 0.7 ± 0.3 0.217

ApoA-I, g/L 1.3 ± 0.3 1.4 ± 0.2 0.003

ApoB, g/L 2.0 ± 8.3 0.9 ± 0.2 0.192

ApoE, g/L 36.4 (29.4, 45.0) 36.5 (28.9, 48.0) 0.765

LP (a), mg/L 124.9 (79.4, 281.5) 143.8 (92.6, 301.1) 0.549
fro
Values are expressed as the mean ± SD or median (quartile range). BPA, balloon pulmonary
angioplasty; NTproBNP, N-terminal pro B-type natriuretic peptide; ESR, erythrocyte
sedimentation rate; hs-CRP, high-sensitivity C-reactive protein; WBC, white blood cell;
NEU%, neutrophil percentage; LYM%, lymphocyte percentage; NLR, neutrophil to
lymphocyte ratio; EO%, eosinophil percentage; PLT, platelet; UA, uric acid; BUN, blood
urea nitrogen; Crea, creatinine; TCH, total cholesterol; TG, triglyceride; HDL-C, high density
lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; SDLDL-C, small dense
low density lipoprotein cholesterol; ApoA, Apolipoprotein A; ApoB, Apolipoprotein B; ApoE,
Apolipoprotein E; LP (a), lipoprotein (a).
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However, further research is needed to fully understand the role of

ASGR2 in CTEPH pathogenesis (17).

Our study revealed a correlation between the PLT count and

ASGR2 level before BPA treatment. However, this correlation was

no longer present after successful BPA treatment. These findings

suggest that the initial abnormalities in PLT count and function

observed in CTEPH patients are resolved by BPA intervention

treatment, resulting in reduced inflammation and decreased PLT

aggregation. The ASGR2 level may reflect the immune and

inflammatory status of patients with CTEPH.
4.2 Relationship between ASGR2
and HDL-C

We observed a correlation between serum ASGR2 levels and

HDL-C levels in CTEPH patients prior to BPA treatment. In

CTEPH patients, dysfunctional HDL-C is associated with RV

structure, PVR and proinflammatory effects (18–20). HDL-C

levels are associated with peripheral blood leukocytes, including

neutrophils, lymphocytes, and monocytes (21). The monocyte-to-

HDL ratio is a novel marker of systemic inflammation in PH

patients (21). The current understanding of the impact of ASGR2
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on HDL-C formation and conversion, as well as its role in lipid

metabolism and lipid levels, is still uncertain.

In our study, no significant change in HDL-C levels was

observed pre- or post-BPA intervention. The correlation between

ASGR2 and HDL-C, which was initially present prior to BPA
B C D
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FIGURE 3

Association between ASGR2 and clinical parameters. ASGR2, asialoglycoprotein receptor 2; HDL-C, high-density lipoprotein cholesterol; PVR,
pulmonary vascular resistance; LYM%, lymphocyte percentage; NLR, neutrophil-to-lymphocyte ratio; BPA, balloon pulmonary angioplasty; NEU%,
neutrophil percentage. (A) pre-BPA PVR and ASGR2. (B) post-BPA PVR and ASGR2. (C) pre-BPA NEU% and ASGR2. (D) post-BPA NEU% and ASGR2.
(E) pre-BPA LYM% and ASGR2. (F) post-BPA LYM% and ASGR2 (G) pre-BPA NLR and ASGR2. (H) post-BPA NLR and ASGR2. (I) pre-BPA PLT and
ASGR2. (J) post-BPA PLT and ASGR2. (K) pre-BPA HDL-C and ASGR2. (L) post-BPA HDL-C and ASGR2.
TABLE 4 Stepwise linear regression of ASGR2.

Variable P Tol R2 Adjusted R2 F

Pre-BPA (n = 48)

PLT, ×109/L 0.001

0.407 0.382 15.812HDL-C, mmol/L < 0.001

NEU%, % 0.551 0.076

Post-BPA (n = 48)

Constant < 0.001

0.150 0.125 6.016
LYM%, % 0.019

NLR 0.185 0.042

PVR, Wood U 0.063 0.969
frontie
Tol, collinearity tolerance; ASGR2, asialoglycoprotein receptor 2; HDL-C, high density
lipoprotein cholesterol; PLT, platelet; NEU%, neutrophil percentage; LYM%, lymphocyte
percentage; NLR, neutrophil to lymphocyte ratio; PVR, pulmonary vascular resistance.
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treatment, disappeared after BPA treatment. Inflammation has been

shown to reduce the levels of ApoA-I, the protein component of

HDL-C, and impair the function of HDL-C, resulting in

proinflammatory effects. Notably, ApoA-I has been found to

inhibit IL-6 secretion by macrophages and attenuate IL-6-induced

proliferation and migration of pulmonary artery endothelial cells

(22). Macrophages at inflamed sites can express ApoA-I, potentially

exerting anti-inflammatory effects without affecting serum HDL-C

levels (19, 23).

Our study revealed that ApoA-I levels increased after BPA

treatment in CTEPH patients, indicating a potential link between

inflammation and HDL-C function. Prior to BPA, inflammatory

processes in CTEPH patients may lead to decreased ApoA-I levels

and dysfunctional HDL-C, contributing to vascular pathologies.

Following BPA intervention, the elevated ApoA-I levels, together

with macrophages, suppressed inflammation and restored normal

HDL function without affecting HDL-C levels. These findings

support the hypothesis that ASGR2 may serve as a marker

reflecting the inflammatory status and hemodynamic levels in

CTEPH patients through its association with HDL-C.
4.3 Relationships between ASGR2, LYM,
NEU and the NLR

In our study, a significant correlation between ASGR2

expression and the percentage of NEUs was detected before BPA

treatment, but this correlation disappeared after treatment.

Neutrophils and their products, including myeloperoxidase,

proteases, and neutrophil extracellular traps (NETs), are key

contributors to PH. They degrade vascular elastin, drive vascular

remodeling, amplify the leukocyte response, and modify the local

inflammatory environment (24). Additionally, neutrophils can

impair the antioxidant and anti-inflammatory functions of HDL-

C, potentially leading to the development of atherosclerosis (25).

The interaction between NETs and platelets during programmed

cell death promotes thrombosis formation in PAH patients. In

addition, neutrophils can also impair the antioxidant and anti-

inflammatory functions of HDL-C, leading to the development of

atherosclerosis (26).

In our study, no significant correlation was found between

ASGR2 expression and the LYM% or NLR before BPA treatment.

However, after BPA treatment, a correlation between ASGR2

expression, LYM%, and the NLR was observed. Immune system

dysfunction plays a crucial role in the pathogenesis of PH, as

evidenced by alterations in circulating T-cell subsets. T

lymphocytes infiltrate the pulmonary arteries of CTEPH patients

and secrete cytokines, leading to damage to newly formed blood

vessels and exacerbating disease progression. The upregulation of T

lymphocytes and cytokines promotes the recruitment of

inflammatory cells and contributes to the proliferation of smooth

muscle and endothelial cells (27–29). Peripheral blood cells infiltrate

affected lung tissues, leading to inflammatory cell infiltration and
Frontiers in Immunology 0936
impacting peripheral blood cell counts and ratios (30). The decrease

in the percentage of peripheral blood LYMs following BPA

intervention indicated a successful improvement in immune

signaling, leading to reduced lymphocyte activation and

proliferation. Furthermore, importantly, the NLR is a reliable

biomarker for the diagnosis of PH, risk stratification, and prognosis

prediction (31). Therefore, ASGR2 may be an indicator of immune

function and inflammatory status in CTEPH patients, as reflected by

its association with LYM, NEU, PLT, HDL-C and the NLR.

Multiple linear stepwise regression analysis revealed no

significant relationships between ASGR2 and the NEU% or NLR,

likely due to multicollinearity. The LYM% explained 15% of the

variation in ASGR2 after BPA treatment, while the combination of

PLT and HDL-C explained 40.7% of the variation before BPA

treatment. Nevertheless, there are still unidentified factors that

influence ASGR2, highlighting the need for further research.
4.4 Relationship between ASGR2 and PVR

In our study, the serum levels of ASGR2 may be associated with

PVR. The PVR is associated with the NLR, LYM, and pulmonary

vascular remodeling (32, 33). Furthermore, PVR is negatively

correlated with the levels of IL-7, a cytokine necessary for B-cell

maturation and regulatory T-cell survival (34). Taken together, these

findings suggest that PVR levels may be influenced by lymphocyte

immune function and inflammation. We observed that the P value

for PVR was 0.063, indicating a trend toward significance. The

exclusion of PVR from the multiple regression analysis was

primarily due to the limited sample size, which may have impacted

the statistical power to detect a significant relationship.
4.5 Limitations

This study may be limited by its small sample size. Although our

study revealed statistically significant correlations between ASGR2

and NEU, LYM%, and the NLR, the strength of these associations

was modest. This may be attributed to the limited sample size

employed in our study. To enhance the robustness and

generalizability of our findings, future research should focus on

recruiting a larger sample size for further validation and replication

of our results.
5 Conclusions

The serum ASGR2 concentration may be a biomarker for BPA

treatment effectiveness in CTEPH patients. The pre-BPA serum

level of ASGR2 in CTEPH patients was associated with HDL-C and

the PLT count. The post-BPA serum level of ASGR2 was correlated

with the LYM%, which may reflect aspects of immunity and

inflammatory status.
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AGBL4 promotes malignant
progression of glioblastoma
via modulation of MMP-1
and inflammatory pathways
Shuai Zhang1†, Lilin Cheng1†, Yandong Su1†, Zhongrun Qian2†,
Zhen Wang1, Chao Chen1, Rong Li1, Aikang Zhang1, Jiawei He1,
Jiangxin Mao1, Hongxiang Wang1* and Juxiang Chen1*

1Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China,
2Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of
China, Division of Life Sciences and Medicine, Hefei, Anhui, China
Introduction: Glioblastoma multiforme (GBM), the most common primary

malignant brain tumor, is notorious for its aggressive growth and dismal

prognosis. This study aimed to elucidate the molecular underpinnings of GBM,

particularly focusing on the role of AGBL4 and its connection to inflammatory

pathways, to discover viable therapeutic targets.

Methods: Single-cell sequencing was utilized to examine the expression levels of

AGBL4 and functional assays were performed to assess the effects of

AGBL4 modulation.

Results: Our findings identified the significant upregulation of AGBL4 in GBM,

which correlated with adverse clinical outcomes. Functional assays demonstrated

that AGBL4 knockdown inhibited GBM cell proliferation, migration, and invasion

and influenced inflammatory response pathways, while AGBL4 overexpression

promoted these activities. Further investigation revealed that AGBL4 exerted its

oncogenic effects through modulation of MMP-1, establishing a novel regulatory

axis critical for GBM progression and inflammation.

Discussion: Both AGBL4 and MMP-1 may be pivotal molecular targets, offering

new avenues for targeted therapy in GBM management.
KEYWORDS

glioblastoma, prognosis, AGBL4, MMP-1, single-cell sequencing
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1 Introduction

Gliomas are the most common malignant primary tumors in

the central nervous system, derived from glial or precursor cells

and encompass diverse histopathological subtypes, including

GBM, astrocytoma, oligodendroglioma, ependymoma, and

oligoastrocytoma. GBM is the most common and aggressive form,

making up the majority of cases (1). Despite standard treatment

involving maximal safe resection, chemotherapy, radiotherapy, and

tumor treating fields, GBM remains therapeutically challenging

due to its aggressive nature, tendency to infiltrate the surrounding

brain, and develop resistance to therapies (2). This results in a

dismal 5-year survival rate of merely 4.7% (3). Consequently, there

is an urgent need to elucidate the molecular underpinnings of

GBM to improve diagnostic efficacy and develop novel targeted

therapies (4).

The advent of single-cell sequencing technology has

revolutionized our understanding of cellular processes in biology

(5). By enabling the measurement of individual cell genomes, single-

cell sequencing facilitates the analysis of differentially expressed genes

(DEGs), the identification of key factors dysregulated during

tumorigenesis, and the construction of regulatory network and

clonality trees within tumor lesions. It also enables the study of

tumor heterogeneity across multiple levels, which is crucial for

understanding resistance to therapy and for creating new treatment

approaches (6). Therefore, single-cell sequencing has been widely

employed for detecting mutations and studying the epigenomic

changes during tumor progression.

Emerging evidence implicates the ATP/GTP-binding protein-

like 4 gene (AGBL4) in various pathological processes, including

antituberculosis drug-induced hepatotoxicity (7), cardiometabolic

risk (8), and colorectal cancer, where it is anticipated to serve as a

novel biomarker (9). However, its role in gliomas, particularly

GBM, remains largely unexplored. In this study, we employed

single-cell sequencing to confirm high expression levels of AGBL4

in GBM tissues linked to poor outcomes, supported by data from

The Cancer Genome Atlas (TCGA) and Changhai Hospital.

Functional assays demonstrated its capacity to promote GBM cell

proliferation, migration, and invasion. Subsequent investigations

identified matrix metalloproteinase-1 (MMP-1) as a key gene

increased in GBM tissues and a likely target of AGBL4. Reducing

AGBL4 levels significantly hindered GBM growth in xenograft

models, a process that MMP-1 could reverse.

Further analysis indicated that AGBL4-related DEGs like

MMP-1, Fos proto-oncogene (FOS), and FosB proto-oncogene

(FOSB) are involved in the interleukin (IL)-17 signaling pathway,

suggesting that AGBL4 and MMP-1 could influence GBM

progression via inflammatory pathways. Subsequent analyses

showed a complex relationship among AGBL4, MMP-1, and

other inflammatory genes in regulating the GBM tumor

microenvironment, affecting tumor behavior and patient survival.

These findings highlight the potential of inflammation-related

factors as focal points for future research and the development of

novel therapeutic strategies for GBM.
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2 Materials and methods

2.1 Patients and tissue samples

Specimen collection and clinical data were approved by the

Research Ethics Committee of Changhai Hospital, Naval Medical

University. Written informed consent was secured from each

participant. The study included three primary and three recurrent

GBM samples from six Chinese patients for single-cell sequencing.

Additionally, eight fresh GBM samples and four normal brain

tissues from traumatic injury patients were obtained. Sixty-five

paraffin-embedded primary GBM specimens from January 2005

to December 2019, with clinical data and follow-up, were analyzed.

GBM patient datasets from TCGA database provided

external validation.
2.2 Single-cell sequencing

GBM sample single-cell sequencing libraries were constructed

following the Chromium Next GEM Single Cell 3’ Reagent Kits

v3.1. Gene expression matrices were generated and processed using

Cell Ranger software on the 10×Genomics platform. Genomic and

transcriptomic mapping was done using Spliced Trans Alignment

to a Reference software, producing gene counts matrices per cell.

Cell filtration, standardization, classification, differential gene

expression analysis, and marker gene screening were conducted

using the Seurat package in R studio. Sequencing was outsourced to

Oebiotech Co., Ltd., Shanghai, China.
2.3 Western blot analysis

Samples were lysed using RIPA buffer (cat R0010, Solarbio,

Beijing, China) with protease inhibitors (SKU 11836153001, Roche,

Basel, Switzerland). Proteins were separated on 10% SDS-PAGE

gels (cat 20325ES62, Yeason, Shanghai, China) and transferred onto

PVDF membranes (cat GVWP02500, Millipore, MA, USA).

Membranes were incubated with anti-human AGBL4 antibody

(1:1000) and anti-actin antibody (1:10,000) overnight at 4°C, then

with secondary antibodies for 1 hour at room temperature. Protein

bands were visualized using an ECL kit (cat PI32209, Thermo

Scientific Pierce, Waltham, MA, USA).
2.4 Quantitative real-time PCR

Total RNA was extracted with TRIzol ® reagent (cat 15596026CN,

Thermo Fisher Scientific, Waltham, MA, USA). Complementary DNA

was synthesized using HiScript II RT SuperMix (cat R223–01, Vazyme,

Nanjing, China). RT-PCR quantified AGBL4 mRNA levels using

GAPDH as an endogenous control with primers Human-AGBL4-F

(AATCTACCAGCAGACCAAAATG) and Human-AGBL4-R

(TCAAAACAAAAGGCAAAGGAC).
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2.5 Cell culture and transfection

GBM cell lines T98G, U251-MG, U87-MG, and A172, sourced

from the Cell Bank of Chinese Academy of Science, were maintained

in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal

bovine serum at 37°C in a 5% CO2 atmosphere. Lentiviral vectors for

AGBL4 knockdown (KD) and overexpression (OE) were produced

by Hanyin Biotech, Shanghai, China. Specific AGBL4-KD and

AGBL4-OE lentiviruses were used to transduce U87-MG and

A172, and T98G and U251-MG cell lines, respectively. The

sequences for AGBL4-shRNAs were: shRNA1: GAGGGAA

TGTGAGCAAATA, shRNA2: CCGGACCATAGGAAGAACT,

shRNA3: GCTTACTGCTACCCATATA.
2.6 Cell viability, colony formation, scratch
assay, and Matrigel-transwell assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK-

8, cat CK04–01, Dojindo, Japan) by measuring the optical density at

450 nm at 24, 48, 72, 96, and 120 hours post-treatment. Colony

formation efficiency was evaluated by seeding cells in 6-well plates

and staining emerging colonies with 0.1% crystal violet. To assess

cell migration, a scratch assay was performed. Cells were grown in

6-well plates and a scratch was made in the center of the wells using

a 200 µL pipette tip. After washing away the cellular debris and

further incubating, images of the scratch were captured to evaluate

the migration rate by measuring the gap closure. For invasion

assays, the upper chamber of a transwell apparatus was coated with

Matrigel (cat CLS3422, 8-µm pores, Millipore, MA, US) and seeded

with 5 × 104 cells in 100 mL of serum-free medium. The lower

chamber was filled with 600 µL of complete culture medium. After

overnight incubation, cells that migrated to the underside of the

membrane were stained with 0.1% crystal violet, and five random

fields were counted under a light microscope.
2.7 Immunohistochemical analysis

Immunohistochemistry was performed to detect AGBL4

expression in a GBM tissue microarray with 65 samples from the

Department of Neurosurgery, Changhai hospital, Naval Medical

University. The procedure included fixing, dehydrating,

embedding, and sect ioning tissues , which were then

deparaffinized and rehydrated. Heat-mediated antigen retrieval

was performed, followed by blocking of endogenous peroxidase

and nonspecific binding. Sections were incubated with primary and

secondary antibodies, developed with chromogen, counterstained

with hematoxylin, and finally, dehydrated, cleared, and mounted for

microscopic examination. The percentage of positive cells was

divided into 0 (0–5%), 1 (6–25%), 2 (26–50%), 3 (51–75%) and 4

(76–100%). The intensity of protein expression was determined as 0

(no staining), 1 (weakly staining), 2 (moderately staining) and 3

(strongly staining). The scores was calculated by multiplying the

percentage of positive cells and the intensity of protein expression as

follows: 0 (-), 2–3 (+), 4–6 (++), and >6 (+++). A total score of ≥4
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points categorizes the specimens into the high AGBL4 group, while

scores <4 points indicate low AGBL4 group.
2.8 Xenograft animal model

Male athymic nu/nu mice aged 6 weeks, obtained from Shanghai

Jiao Tong University, were used in compliance with guidelines set by

the Institutional Animal Care and Use Committee of Changhai

Hospital, Naval Medical University. For tumor induction, we used

three groups of mice (6 mice per group) injected with different cell

lines: U87-MG control cells (U87MG-NC), AGBL4-knockdown

U87-MG cells (U87MG-AGBL4-KD), and U87-MG cells with

both AGBL4 knockdown and MMP-1 overexpression (U87MG-

AGBL4-KD+MMP1-OE). Each mouse was anesthetized and their

heads were secured in a stereotaxic instrument for precise

intracranial injection of 5 × 105 cells into the corpus striatum.

Post-injection, the mice were monitored every three days for

changes in behavior and body weight. Magnetic resonance imaging

(MRI) was utilized to assess tumor development when clinical signs

such as reduced eating, decreased movement, circling behavior, or

weight loss were observed. Tumor volumes were calculated based on

the MRI data, and body weight differences among the three groups

were compared on the day ofMRI scanning. Mice were euthanized at

humane endpoints, which were clearly defined by severe

neurological dysfunction, inability to access food or water,

unrelieved pain, or other signs indicating a severe decline in

quality of life. The overall survival periods were recorded and the

brains were harvested for further histopathological examination.
2.9 Statistics

Statistical analyses were performed using SPSS software

(version 19.0). Student’s t-test was used to compare the mean

differences between two groups. Kaplan-Meier survival analysis

and log-rank test were employed to evaluate the survival

outcomes among different groups. All statistical analyses were

two-sided, and P < 0.05 was considered statistically significant.

Statistical graphs were drawn using GraphPad Prism 7 software

(GraphPad Software Inc., San Diego, CA, USA).

Methods for Hematoxylin-Eosin (H&E) staining and

bioinformatics analysis are detailed in the Supplementary Materials.
3 Results

3.1 AGBL4 is highly expressed in GBM and
predicts poor prognosis

Single-cell sequencing was performed on both primary and

recurrent GBM specimens. Dimensionality reduction via the t-

distributed stochastic neighbor embedding (t-SNE) algorithm

revealed nineteen distinct clusters (Figure 1A). AGBL4 expression

was observed across a majority of these tumor clusters (Figure 1B),

with a significant upregulation in recurrent GBM compared to
frontiersin.org
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primary GBM (Figure 1C). Survival analysis using TCGA database

indicated that elevated AGBL4 levels were associated with a worse

prognosis in GBM patients (Figure 1D).

To validate the role of AGBL4 in GBM prognosis, we analyzed

AGBL4 expression in normal brain tissues (n=4) and GBM tissues

(n=8) through RT-PCR and WB. The WB results confirmed a

marked increase in AGBL4 levels in GBM tissues relative to normal

brain samples (Figures 1E, F). Immunohistochemical analysis was

conducted on primary GBM tissue microarray. Based on the scoring
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criteria outlined before, samples were classified into low and high

AGBL4 expression groups. Representative images of low

(Figure 1G) and high (Figure 1H) AGBL4 groups illustrate the

distinctions in staining intensity and cellular distribution. Survival

analysis demonstrated a significant association between AGBL4

expression levels and patient outcomes. Specifically, patients

categorized into the high AGBL4 group (scores ≥4) exhibited

notably shorter survival times compared to those in the low

AGBL4 group (scores <4) (P=0.017) (Figure 1I).
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FIGURE 1

AGBL4 was highly expressed in GBM and predicted poor prognosis. (A) t-SNE visualization of 19 distinct clusters identified from single-cell RNA
sequencing of primary and recurrent GBM samples. (B) Expression of AGBL4 across the clusters revealed by t-SNE plot. (C) AGBL4 expression is
significantly higher in recurrent GBM compared to primary GBM samples. (D) Survival curves of GBM patients with low AGBL4 or high AGBL4
expression, obtained from TCGA database, P=0.017. (E) WB analysis confirms elevated AGBL4 protein levels in GBM tissues compared to normal
brain samples. (F) Quantification of qRT-PCR verifies the upregulation of AGBL4 in GBM relative to normal brain tissues, P=0.0176. (G, H)
Representative images of immunohistochemical staining show (G) low and (H) high AGBL4 expression in GBM tissues. Scale bars: 100 mm (4X), 25
mm (40X). (I) Kaplan-Meier analysis demonstrates that GBM patients with high AGBL4 staining have significantly shorter survival times compared to
those with low AGBL4 expression, P = 0.0170.
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Altogether, these results demonstrate that AGBL4 expression is

significantly elevated in GBM and its overexpression is predictive of

poor prognosis in both our cohort and TCGA dataset.
3.2 Knockdown of AGBL4 inhibits GBM cell
proliferation, migration, and invasion

To determine the roles of AGBL4 in GBM cell functions, we first

analyzed AGBL4 expression in various GBM cell lines. Using the 2-

DDCt method, RT-PCR results showed differential expression levels of

AGBL4, with U87-MG and A172 cells exhibiting higher expression

compared to T98G and U251-MG cells (Figure 2A). Additionally,

WB analysis confirmed these findings, showing protein expression

levels consistent with the RT-PCR results (Figure 2B). Following the

knockdown of AGBL4 using the most effective shRNA sequence

(shRNA2: CCGGACCATAGGAAGAACT) in U87-MG and A172
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cell lines, WB analysis confirmed the efficient reduction of AGBL4

expression The knockdown efficiency was quantified at

approximately 70% in the U87-MG cell line and around 65% in

the A172 cell line (Figures 2C–E).

Functional assays were then performed to investigate the effect

of AGBL4 on GBM cell pathology. The CCK-8 assay and colony

formation assay, both indicative of cell proliferative capacity,

showed that AGBL4 knockdown significantly decreased

proliferation in U87-MG and A172 cells (Figures 3A–F). Scratch

assays demonstrated that AGBL4 knockdown also decreased the

migratory capabilities of these cells (Figures 3G–J). Finally,

Matrigel-transwell assays provided quantitative and visual

evidence of the diminished invasion capacity following AGBL4

knockdown (Figures 3K–N).

These findings collectively suggest that AGBL4 is integral to the

proliferative, migratory, and invasive characteristics of GBM cells,

confirming its potential as a target for GBM therapy.
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C

FIGURE 2

Relative expression levels of AGBL4 in GBM cells. (A) QRT-PCR analysis shows varying expression levels of AGBL4 across different GBM cell lines,
with U87-MG and A172 exhibiting higher expression compared to T98G and U251-MG. (B, C) WB analysis confirms the protein expression patterns
of AGBL4 in (B) U87-MG, U251-MG, T98G, and A172 cell lines and (C) after AGBL4 knockdown in A172 and U87-MG cells, and overexpression in
T98G and U251-MG cells. (D–G) Quantification of qRT-PCR demonstrates successful AGBL4-KD in (D) U87-MG and (E) A172 cells, and successful
AGBL4-OE in (F) U251-MG and (G) T98G cells.
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3.3 Overexpression of AGBL4 improves
GBM cell proliferation, migration
and invasion

To investigate the roles of AGBL4 in GBM growth, we

overexpressed AGBL4 in T98G and U251-MG cells. WB results
Frontiers in Immunology 0644
verified the overexpression of AGBL4 in these cells (Figure 2C). RT-

PCR also confirmed that the relative expression levels of AGBL4

were significantly increased in both U251-MG and T98G

overexpression groups (Figures 2F, G). The CCK-8 assay

demonstrated that AGBL4 overexpression enhanced the

proliferation ability of GBM cells (Figures 4A, B). Additionally,
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FIGURE 3

Knockdown of AGBL4 inhibits GBM cell proliferation, migration and invasion abilities. (A, B) CCK-8 assays show reduced proliferation in (A) U87-MG
and (B) A172 cells after AGBL4 knockdown. (C–F) Colony formation assays demonstrate decreased colony numbers and sizes in (C, D) U87-MG and
(E, F) A172 cells after AGBL4 knockdown. (G–J) Scratch migration assays reveal impaired migratory ability of (G, H) U87-MG and (I, J) A172 cells
following AGBL4 knockdown. (K–N) Matrigel transwell invasion assays illustrate diminished invasive potential in (K, L) U87-MG and (M, N) A172 cells
upon AGBL4 knockdown.
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the colony formation assay revealed that AGBL4 overexpression led

to an increased number of colonies (Figures 4C–F). Scratch assays

indicated that the high expression of AGBL4 promoted the

migration of GBM cells (Figures 4G–J). Furthermore, the

Matrigel-transwell assays demonstrated a significant increase in

invasion, with more cell visible in the fields of view compared to the

controls (Figures 4K–N).

These findings highlight a critical role for AGBL4 in promoting

the proliferation, migration, and invasion of GBM cells.
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3.4 AGBL4 knockdown significantly
reduces a range of classic factors
associated with cancer-related pathways

To elucidate the molecular mechanism of AGBL4 in GBM,

we conducted transcriptome sequencing on A172 cells with or

without AGBL4 knockdown. The heatmap revealed distinct

differences and pairwise correlations in gene expression between

the various GBM cell samples (Figure 5A). Analysis identified
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FIGURE 4

High expression of AGBL4 improves GBM cell proliferation, migration and invasion abilities. (A, B) CCK-8 assays demonstrate enhanced proliferation
in (A) T98G and (B) U251-MG cells after AGBL4 overexpression. (C–F) Colony formation assays show increased colony numbers and sizes in (C, D)
T98G and (E, F) U251-MG cells after AGBL4 overexpression. (G–J) Scratch migration assays indicate improved migratory ability of (G, H) T98G and
(I, J) U251-MG cells following AGBL4 overexpression. (K–N) Matrigel transwell invasion assays reveal elevated invasive potential in (K, L) T98G and
(M, N) U251-MG cells upon AGBL4 overexpression.
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nearly 42 DEGs, with 30 up-regulated and 12 down-regulated

(Supplementary Figure 1).

Bioinformatics analysis indicated that these DEGs were

primarily involved in processes such as enzyme binding, positive
Frontiers in Immunology 0846
regulation of protein complex assembly, positive regulation of

TRAIL-activated apoptotic signaling pathway, and negative

regulation of microtubule motor activity, according to GO

annotations (Figure 5B). Furthermore, KEGG enrichment analysis
A

B

C

FIGURE 5

AGBL4 knockdown significantly reduces a range of classic factors associated with cancer-related pathways. (A) Heatmap showing differential gene
expression between NC and AGBL4-KD in A172 cells. Each column represents a different sample, and each row represents a gene. Red indicates
upregulated genes, blue indicates downregulated genes, and color intensity correlates with expression level. (B) GO annotations analysis of DEGs in
A172 cells comparing NC and KD. The bar chart categorizes GO terms by biological processes, cellular components, and molecular functions, with
the number of associated genes indicated. (C) KEGG analysis of DEGs in A172 cells after AGBL4-KD. The bar chart categorizes pathway terms by
organismal systems, human diseases, and environmental information processing, with the number of genes involved in each pathway.
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suggested that AGBL4-associated DEGs might participate in

pathways related to microRNAs in human cancer and contribute

to the IL-17 signaling pathway, which is frequently recognized as a

reference index to judge the malignancy of gliomas (Figure 5C).

Based on these findings, we speculated that AGBL4-related DEGs

might play significant roles in tumor progression within the central

nervous system.
3.5 AGBL4 promotes GBM cell
proliferation, migration, and invasion
abilities via MMP-1

From the DEGs identified in our transcriptome analysis

(Supplementary Table 1), eight candidate genes were selected

based on fold change and prognostic correlation in TCGA

database (Table 1). RT-PCR analysis revealed that among these

candidates, MMP-1 exhibited the most significant differential

expression (Supplementary Figure 2), identifying it as a target for

further investigation to clarify the specific signaling pathway

through which AGBL4 may promote GBM tumor progression.

Microarray data revealed elevated MMP-1 expression in GBM

tissues, categorized samples into high and low MMP-1 groups.

Histologically, cells in the low MMP-1 group displayed uniform

morphology, with regular arrangement and clear tissue structures,

as confirmed by H&E staining. In contrast, the high MMP-1 group

exhibited cells of varying sizes, irregular shapes, disorganized

arrangement, significant nuclear atypia, and frequent mitosis,

indicating a more aggressive cellular phenotype (Supplementary

Figure 3A). Survival analysis displayed that patients with high

MMP-1 expression had significantly shorter survival times than

those with low expression (P=0.0149), indicating that MMP-1

levels are inversely correlated with GBM patient survival

(Supplementary Figure 3B).

RT-PCR confirmed that compared to the U87-MG negative

control (U87MG-NC group), knocking down AGBL4 (U87MG-

AGBL4-KD2 group) significantly reduced the expression of MMP-

1. Overexpressing MMP-1 in the AGBL4 knockdown cells (U87MG-

AGBL4-KD2+MMP1-OE group) restored MMP-1 expression levels

to those comparable with the control group (Figures 6A, B).

Overexpression of MMP-1 on the basis of AGBL4 knockdown

could counteract the inhibitory effect of AGBL4-decrease on GBM

cells, which was manifested as the improvement of the proliferation

capacity of AGBL4-knockdown U87-MG and A172 cells after

complementing MMP-1 in CCK-8 assay (Figures 6C, D). Colony

formation assays further supported this trend. Colony formation

assays further supported this trend, with the MMP1-OE group

demonstrating the strongest ability to form colonies. The AGBL4-

KD2+MMP1-OE group’s colony-forming capacity was comparable
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to the NC. The AGBL4-KD2 group had the least robust colony-

forming ability, reinforcing the significant role of MMP-1 in GBM

cell proliferation (Figures 6E–G). The Matrigel-transwell and scratch

assays indicated that, the MMP1-OE group exhibited the highest

levels of invation and migration, followed by the AGBL4-KD2

+MMP1-OE group, which displayed similar levels to the NC

gtoup. Both of these groups exhibited enhanced capabilities

compared to the AGBL4-KD2 group, which showed the lowest

levels of invasion and migration (Figure 7).
3.6 Inhibition of AGBL4 suppresses GBM
progression and prolongs survival via
MMP-1 in animal models

To determine the effect of AGBL4 and MMP-1 in GBM in vivo,

we injected U87MG-NC, U87MG-AGBL4-KD2 and U87MG-

AGBL4-KD2+MMP1-OE cells into nude mice (n=6). After

intracranial tumor implantation, the mice were monitored every 3

days for behavioral changes and weight loss. On approximately day

15, MRI was performed to assess tumor growth when clinical

symptoms were noted. The MRI data revealed that the U87MG-

AGBL4-KD2 group exhibited significantly slower tumor growth

compared to the U87MG-NC group. Conversely, the U87MG-

AGBL4-KD2+MMP1-OE group showed accelerated tumor

progression relative to the U87MG-AGBL4-KD group

(Figures 8A, C). Survival analysis indicated that the U87MG-

AGBL4-KD2 mice had the longest survival time, followed by the

U87MG-AGBL4-KD2+MMP1-OE and U87MG-NC groups

(Figure 8B). H&E staining of nude mice’s brain tissues displayed

that there were more mitotic figures in U87MG-NC mice, followed

by U87MG-AGBL4-KD2+MMP1-OE mice, while the morphology

of cells from AGBL4-KD2 mice was relatively less irregular as well

as fewer mitotic figures (Figure 8D). The protein content of tumor

cells in the three group of nude mice differed from one another, that

is, the degree of tumor progression was quite different. The

proliferation level and the malignancy degree of U87MG-NC

mice and U87MG-AGBL4-KD2+MMP1-OE mice were both

higher than AGBL4-KD2 mice (Figure 8E).
3.7 AGBL4-MMP-1 axis is associated with
inflammatory response pathways in GBM

Enrichment analysis of AGBL4-related DEGs suggests that 3

genes, including MMP-1, FOS, and FOSB, are significantly

concentrated in IL-17 signaling pathway. This may indicate that

upregulated AGBL4, along with downstream MMP-1, could

intervene in the progression of GBM by influencing key

components within inflammation-related pathways. In the

TIMER database, an immune cell correlation analysis of MMP-1,

FOS, and FOSB revealed a negative correlation between MMP-1

gene expression and the infiltration levels of B cells, CD8+ T cells,

CD4+ T cells, and macrophages, after purity adjustment.

Conversely, a positive correlation with dendritric cell infiltration

was observed. Meanwhile, FOS gene expression showed a positive
TABLE 1 Candidate genes for downstream targets of AGBL4.

Candidate genes

CDCP1 PRUNE2 AXIN2 FRAS1

MMP-1 MIAT HSD17B6 SLITRK3
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correlation with the infiltration levels of CD4+ T cells, neutrophils,

and dendritic cell infiltration. Besides, FOSB gene expression

demonstrated a negative correlation with CD4+ T cell infiltration

and macrophage infiltration levels (Figure 9A). These findings

suggest that the expression levels of MMP-1, FOS, and FOSB are

closely related to immune cell activity in GBM, hinting at the role of

these genes, particularly MMP-1, in modulating the GBM

immune microenvironment.
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3.8 PPI network and correlation analysis of
MMP-1 and inflammatory response genes

We then constructed an interaction network integrating MMP-1

with 737 genes from the Inflammatory Response annotation cluster

(GO:0006954) of GO database to identify key molecules interacting

with MMP-1, which resulted in a PPI network comprising 15 nodes

and 87 edges (Figure 9B). Excavation of this network yielded the top
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FIGURE 6

AGBL4 promotes GBM via MMP-1 and high expression of MMP-1 improves GBM cell proliferation abilities. (A, B) Relative expression levels of MMP-1
in NC, AGBL4-KD2, AGBL4-KD2+MMP1-OE, and MMP1-OE A172 and U87-MG cells. (C, D) Proliferation abilities of NC, AGBL4-KD2, AGBL4-KD2
+MMP1-OE, and MMP1-OE A172 and U87-MG cells. (E–G) Number of formed colonies of NC, AGBL4-KD2, AGBL4-KD2+MMP1-OE, and MMP1-OE
A172 and U87-MG cells.
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10 hub genes, which were then subjected to GO and KEGG

enrichment analyses. The results, as shown in Figures 9C, D,

revealed that these hub genes are predominantly localized to the

cell surface, extracellular space, and extracellular region, and are

involved in various inflammatory and immune regulatory processes

such as the inflammatory response, positive regulation of

transcription from RNA polymerase II promoter, and positive

regulation of interleukin-6 production. KEGG pathway analysis

also indicated significant enrichment in several pathways related to

inflammation and immune responses. Collectively, these findings

underscore the role of genes interacting with MMP-1 in regulating

inflammatory responses, immune signal transduction, and cell

proliferation, invasion, and migration, indirectly reflecting the

importance of MMP-1 in maintaining tissue structure and signal

transduction within the inflammatory and tumor microenvironment.

To further examine the correlation between MMP-1 expression

levels and the expression of inflammatory response genes in GBM

samples, we utilized data from TCGA database. The results indicated

a moderate positive correlation between MMP-1 and several genes,

including NFKB1, SELE, TGFB1, THBS1, TIMP1, and TNFAIP6. A

weaker positive correlation was observed betweenMMP-1 and PTX3,

STAT3, TLR2 (Supplementary Figure 4). These findings corroborate,

at the expression level, the involvement ofMMP-1 with these genes in
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certain biological processes or pathological mechanisms within GBM,

particularly in pathways related to the inflammatory response.
3.9 Mutation profile and prognostic value
of inflammatory response genes
interacting with MMP-1

Figure 10A presents the mutation profile of the 14 inflammatory

response genes that interact with MMP-1 in GBM from TCGA

database. It is observed that over 10% of the samples harbor

mutations in at least one of the aforementioned genes, with THBS1

exhibiting the highest mutation frequency, nearing 4%. The

predominant type of mutation found in most inflammation-related

genes is missense mutation. VCAM1 harbors frame shift deletions,

while THBS1, VCAM1, and TGFB1 contain nonsense mutations, and

NOX4 shows splice site mutations. These mutation data provide

insight into the functional roles of MMP-1 and associated

inflammatory response genes in GBM, suggesting they may

influence protein function through alterations in amino acid

sequences, premature protein translation termination, protein

inactivation, or changes in protein structure, thereby affecting

inflammatory and immune responses and ultimately contributing
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FIGURE 7

AGBL4 promotes GBM via MMP-1 and high expression of MMP-1 improves GBM cells migration and invasion abilities. (A–C) The numbers of
invading cells in random fields of NC, AGBL4-KD2, AGBL4-KD2+MMP1-OE, and MMP1-OE A172 and U87-MG cells. (D–G) Migration levels of NC,
AGBL4-KD2, AGBL4-KD2+MMP1-OE, and MMP1-OE A172 and U87-MG cells.
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to tumor progression. Bioinformatic analyses of these inflammatory

response genes revealed that high expression levels of THBS1

correlate with a lower overall survival rate in GBM patients

(Figure 10B), implying that THBS1 may be an adverse prognostic

factor. Figure 10C reconfirms the expression levels of THBS1 in GBM

from TCGA database compared to normal brain tissue in GTEx

database, where THBS1 is significantly overexpressed in tumor

tissues. These findings may signify a detrimental role of THBS1 in

the pathological process of GBM, where its elevated expression

reflects more aggressive biological characteristics of the tumor and

provides direction for the development of future biomarkers.

Combining immune cell correlation analysis, PPI network

construction, gene mutation profiling, and correlative studies, we can

tentatively conclude that the interactions among AGBL4, MMP-1, and
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other inflammatory response genes, especially THBS1, may constitute

a complex network in the pathological process of GBM. This network

potentially regulates the tumor microenvironment, influencing tumor

proliferation, invasion, migration, and patient survival. These findings

highlight the potential of inflammation-related factors as focal points

for future research, offering the possibility to further explore the precise

mechanisms of thesemolecules and provide critical information for the

development of novel therapeutic strategies.
4 Discussion

AGBL4, also named as cytosolic carboxypeptidase 6, is part of

the family of enzymes that catalyze the deglutamylation of
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FIGURE 8

Inhibition of AGBL4 suppresses GBM progression and prolongs survival time in animal models. (A) MRI images showing the growth of intracranial
tumors in mice implanted with U87-MG cells that are either NC, AGBL4-KD2, or AGBL4-KD2+MMP1-OE. (B) Kaplan-Meier survival curves of mice
implanted with U87 cells that are either NC, AGBL4-KD2, or AGBL4-KD2+MMP1-OE, indicating the survival rate over time. (C) The quantification of
tumor volumes of mice implanted with U87-MG cells that are either NC, AGBL4-KD2, or AGBL4-KD2+MMP1-OE, measured from the MRI images,
with statistical significance indicated by P<0.0001. (D) H&E staining of intracranial tissues of the nude mice with U87MG-NC, U87MG-AGBL4-KD2,
and U87MG-AGBL4-KD2+MMP1-OE. (E) Immunohistochemistry of intracranial tissues of the nude mice with U87MG-NC, U87MG-AGBL4-KD2, and
U87MG-AGBL4-KD2+MMP1-OE (Magnification: 200×).
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polyglutamate side chains on proteins such as tubulins and

nucleosome assembly proteins (10). Polyglutamylation is a

reversible post-translational protein modification and has been

found playing a critical role in tubulin regulation as well as in

cellular processes such as chromatin remodeling or hematopoiesis

(10, 11). Besides, alterations in polyglutamylation levels have been

associated with several pathologies, including neurodegenerative

processes or cancer progression (12, 13). As a member of cytosolic

carboxypeptidase family, although the role of AGBL4 in various

cellular and pathological processes such as antiviral activity,

immunomodulatory activity, and renal adenocarcinamo is
Frontiers in Immunology 1351
documented (14–16), its function in central nervous system

tumors, particularly GBM, has been less explored. Our study

made an approach to the involvement of AGBL4 in GBM

pathogenesis and its potential mechanism of action through the

modulation of MMP-1.

Our finding indicate that elevated AGBL4 expression correlates

with poor prognosis in GBM patients, which aligns with data from

both TCGA and our tissue microarray experiments. The promotion

of GBM cell proliferation, invasion, and migration by AGBL4 was

substantiated through phenotypic experiments. Transcriptomic and

bioinformatic analyses further revealed that AGBL4-realted DEGs
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FIGURE 9

Immune cell correlation and molecular interaction analysis in GBM. (A) Scatter plots illustrating correlation between MMP-1, FOS, and FOSB gene
expression and the infiltration levels of immune cells in GBM, adjusted for tumor purity, P < 0.05. (B) PPI network of MMP-1 with associated genes
from the Inflammatory Response annotation cluster (GO:0006954), consisting of 15 nodes and 87 edges with MMP-1 centrally positioned. (C) GO
annotations analysis for the top 10 hub genes from the PPI network. (D) KEGG pathway enrichment analysis for the top 10 hub genes from the PPI
network, and the relationship between genes and pathways.
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were enriched in cancer-associated microRNA-related pathways

and IL-17 signaling pathway, the latter being notably related to

malignancy in central nervous system tumors. This suggests a

possible link between AGBL4 ’s oncogenic effects and

inflammatory pathways, highlighting its role in the tumor

microenvironment’s immune responses.

The matrix metalloproteinase family, particularly MMP-1, known

for its role in cleaving collagenous extracellular matrix (17), appears to

be a critical downstream effector of AGBL4. Elevated MMP-1

expression is a hallmark of highly malignant gliomas and is

implicated in enhancing tumor invasiveness and malignancy (18,

19). Pullen et al. demonstrated a regulatory pathway linking nitric
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oxide to high-grade glioma cell motility via MMP-1 (20). Anand et al.

identified that EGFR regulates MMP-1 predominantly through the

MAPK signaling pathway in GBM cells (21). Malik et al. found an

association between the 2G/2G genotype and 2G allele of -1607MMP-

1 polymorphism and GBM occurrence (22). Additionally, increased

MMP-1 and PAR1 expression correlates with higher histological

malignancy and poorer clinical outcomes in gliomas (23). While

much research has focused on MMP-1’s downstream mechanisms

in gliomas, its upstream regulators remain underexplored, which is

crucial for understanding glioma invasiveness.

Our study not only confirms the upregulation of MMP-1 in

high-grade gliomas but also identifies AGBL4 as a novel upstream
A

B C

FIGURE 10

Mutational landscape of inflammatory response genes and their impact on survival in GBM. (A) A mutational landscape displaying the frequency and
types of genetic alterations in inflammatory response genes across 393 GBM samples from TCGA with each row representing a gene, and each
column a sample. Alterations, including nonsense mutations, frame shift deletions, missense mutations, multi-hit events, and splice site alterations,
are color-coded. The graph on the right side indicates the percentage of samples with mutations in each gene, with the graph on the top showing
the total number of mutations per sample. (B) Kaplan-Meier survival curves comparing overall survival between GBM patients with high and low
expression of THBS1, P=0.046. (C) A box plot illustrating the differential expression of THBS1 between tumor (T) tissue samples in GBM patients from
TCGA and normal (N) brain tissue samples from GTEx database, with the red asterisk denoting a statistically significant higher expression in the
tumor samples.
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regulator of MMP-1. Existing studies on AGBL4 are relatively few

and mainly focus on its role in cellular component (24),

neurodegeneration (25), and immunomodulatory activities (16,

26). However, its implications in oncology, particularly in GBM,

have been less explored. Our study marks a significant advancement

by first identifying the differential expression of AGBL4 in GBM

and verifying its negative correlation with patient survival through

analysis of public databases and gene chips. This groundbreaking

research links AGBL4 to the aggressive nature of central nervous

system tumors at the molecular level for the first time. Further, our

experimental findings underscore the critical role of AGBL4 in

tumor biology, revealing that knocking down AGBL4 inhibits the

proliferation, migration, and invasion of GBM cells, thertby

highlighting its importance in tumor viability and progression.

Importantly, this research not only pioneers the investigation of

the interaction of AGBL4 with GBM, but also introduces the novel

concept that AGBL4 may contribute to GBM in an MMP-1-

dependent manner.

In addition, the interaction between AGBL4 and MMP-1

highlights a potential connection to the inflammatory processes

within the tumor microenvironment of GBM. The upregulation of

MMP-1, mediated by AGBL4, may not only promote tumor

invasiveness through structural modifications but could also

exacerbate inflammation, thereby creating a more conducive

environment for tumor growth and spread. Our data indicates

that the expression levels of MMP-1, FOS, and FOSB are closely

related to immune cell activity in GBM, suggesting their pivotal

roles in modulating the GBM immune microenvironment.

Our constructed PPI network, integrating MMP-1 with genes

from the Inflammatory Response cluster of the GO database,

identified key molecules that interact with MMP-1. These
Frontiers in Immunology 1553
interacting genes are primarily involved in inflammatory

response, positive regulation of transcription from RNA

polymerase II promoter, and positive regulation of interleukin-6

production, indirectly reflecting the importance of MMP-1 in

maintaining tissue structure and signal transduction within the

inflammatory and tumor microenvironment.

Further analysis from TCGA database on the correlation

between MMP-1 expression levels and the expression of

inflammatory response genes in GBM samples showed a

moderate positive correlation between MMP-1 and several genes,

exemplified by THBS1, confirming the involvement of AGBL4-

MMP-1 axis in GBM-related inflammatory pathways.

However, understanding the molecular pathogenesis of GBM

remains a challenge. It is speculated that AGBL4 and MMP-1 may

contribute to the occurrence, development, and spread of GBM, but

the specific mechanism and interactions between AGBL4 and

MMP-1 still require further investigation.
5 Conclusion

In summary, this study demonstrates that AGBL4 expression in

GBM is upregulated and links with poor prognosis of GBM patients

by enhancing tumor cell proliferation, migration, and invasion. Our

findings reveal a novel mechanistic pathway where AGBL4

enhances GBM malignancy primarily through modulation of

MMP-1 expression, which in turn influences the inflammatory

response pathways within the tumor microenvironment

(Figure 11). The identification of AGBL4 and MMP-1 not only

deepens our understanding of the molecular dynamics of GBM but

also highlights their involvement in inflammatory processes that
FIGURE 11

Model for the mechanism of AGBL4 in GBM tumorigenesis.
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may contribute to tumor aggressiveness, suggesting the potential of

AGBL4 and MMP-1 as strategic targets for gene-directed therapy,

as well as advocating for the development of targeted inhibitors

against these proteins as a promising new direction for therapeutic

intervention in glioma treatment.
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Chunge Cao 1†, Qiong Li2†, Dajun Cai1, Chaoyan Yue 3*

and Hu Zhao1*

1Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University,
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Purpose: To investigate the potential causal association between COVID-19

exposure and optic nerve and visual pathway disorders through a two-sample

bidirectional Mendelian randomization (MR) analysis, and to provide empirical

support for the lung-brain axis.

Methods: This MR analysis utilized publicly accessible summary-level data from

genome-wide association studies on COVID-19 (n=158,783) and optic nerve and

visual pathway diseases (n=412,181), primarily involving individuals of European

descent. The random-effect inverse-variance weighted estimation was applied

as the main analytical approach, complemented by MR-Egger, weighted median,

and weighted mode methods. The heterogeneity and pleiotropy of the

instrumental variables were assessed using Cochran’s Q test, leave-one-out

sensitivity analysis, MR-Egger intercept test, MR-PRESSO, and funnel

plot evaluations.

Results: In the forward analysis, the inverse-variance weighted method identified

a significant causal effect of COVID-19 on optic nerve and visual pathway

disorders (odds ratio = 1.697, 95% confidence interval: 1.086–2.652, p =

0.020). Directionally consistent results were also observed with MR-Egger

regression, weighted median, and weighted mode approaches. Conversely, the

reverse analysis revealed no causal effects of optic nerve and visual pathway

disorders on COVID-19 susceptibility.

Conclusion:Our findings suggest that COVID-19 exposure may increase the risk

of developing optic nerve and visual pathway disorders, supporting the lung-

brain axis hypothesis. These results underscore the importance of vigilant

monitoring of the visual system in patients recovering from COVID-19 and

suggest potential avenues for future therapeutic strategies.
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Introduction

The COVID-19 pandemic has triggered a worldwide health

emergency with far-reaching repercussions, surpassing the initial

respiratory symptoms to include prolonged neurological

complications, often termed ‘long COVID’ (1). Observational

studies have potentially shown that COVID-19 can lead to

disorders of optic nerve and visual pathways, including uveitis,

optic neuritis, macular degeneration, and retinal vascular diseases

(2, 3). These conditions may manifest as a variety of symptoms,

such as vision loss, visual field defects, reduced sensitivity to light

and contrast, as well as alterations in color perception (4).

The burgeoning concept of the lung-brain axis delineates a

sophisticated biological network facilitating communication

between the lungs and brain via neural, inflammatory, immune,

and neuroendocrine signaling pathways (5). The central nervous

system (CNS) plays a critical role in modulating the pulmonary

response to stress and inflammation through neuroendocrine

mechanisms (6). Brain injuries may provoke pulmonary

complications by eliciting the release of necrotic substances (7),

while pulmonary conditions have the potential to instigate

cerebrovascular diseases through the induction of white matter

lesions (8). Additionally, the significant influence of the lung

microbiome on brain autoimmunity has been increasingly

acknowledged (9). This reciprocal communication highlights the

symbiotic interplay between respiratory and neurological health.

Early hypotheses suggested that the SARS-CoV-2 might penetrate

the CNS via the nasal cavity and olfactory pathway or the blood-

brain barrier (BBB) (10, 11). However, cerebrospinal fluid analyses

in patients presenting neuropsychiatric symptoms have revealed

minimal detection of viral RNA, with only 8.6% (3 out of 35)

identified through reverse transcription polymerase chain reaction

(12). This suggests that neurological symptoms do not typically

result from direct SARS-CoV-2 infection of the brain tissue.

Although there has been considerable research, the connection

between COVID-19 and optic nerve or visual pathway disorders is

yet to be conclusively proven, hindered by insufficient large-scale

cohort studies and conclusive evidence. Concurrently, the varied

symptoms experienced by individuals with Long COVID, coupled

with the challenge of distinguishing symptoms caused by COVID-

19 from those that are aggravations of existing or sporadic illnesses,

significantly complicate the understanding of underlying

mechanisms and the development of therapeutic strategies.

Mendelian randomization (MR) is an innovative approach in

epidemiology, utilizing genetic variants as proxies for deducing the

causal impact of various exposures on outcomes (13). These genetic

markers are randomly segregated and allocated during the formation of

gametes and at conception, remaining uninfluenced by the

development or progression of the outcome (14). As a result, MR

typically protects against biases and unmeasured confounding factors,

providing amore robust basis for causal deduction than is possible with

traditional observational studies (15). In this study, we aim to

investigate the causal link between COVID-19 and disorders of optic

nerve and visual pathways through theMRmethod, to assess its impact

size, and to furnish evidence supporting the lung-brain axis hypothesis.
Frontiers in Immunology 0257
Materials and methods

Study design

Figure 1 depicts a graphical abstract illustrating the

bidirectional MR study. The forward MR assessed the causal

effect of COVID-19 on disorders of optic nerve and visual

pathways. The reverse MR assessed the causal effect of optic

nerve and visual pathway disorders on COVID-19 susceptibility.

This study used datasets from extensive genome-wide association

studies (GWAS). Single-nucleotide polymorphisms (SNPs) from

these GWAS datasets served as instrumental variables (IVs) for the

exposure. The MR analysis is based on three critical assumptions:

firstly, the IVs are strongly associated with the exposure; secondly,

the IVs are related to the outcome solely through the exposure

under investigation; and thirdly, the IVs are independent of any

confounding factors (16). This research employed publicly

accessible, summary-level GWAS data from studies that had

previously received institutional review board approval.

Additional ethical approval or informed consent was not requisite

for this study’s data usage, given its public, anonymized, and de-

identified nature.
Data sources

The GWAS datasets for COVID-19 (GWAS ID: ebi-a-

GCST011071) and optic nerve and visual pathway disorders

(GWAS ID: finn-b-H7_OPTNERVE) came from the IEU Open

GWAS Project. The COVID-19 dataset included 29,071 cases and

1,559,712 controls, with a total of 8,103,014 SNPs. The dataset for

optic nerve and visual pathway disorders comprised 1,301 cases and

217,491 controls, encompassing 16,380,466 SNPs. The majority of

participants in both GWAS datasets were of European descent.
Selection of IVs

We first selected SNPs that were strongly associated with the

exposure, using a genome-wide significance threshold of p < 5e-08.

To ensure a sufficient number of SNPs for the exposure, we allowed

for a relaxed threshold of p < 5e-07 or p < 5e-06. We used the

European ancestry data from the 1000 Genomes Project (RRID:

SCR_008801) and employed stringent clumping parameters with a

distance greater than 10,000 kb and an (r2 < 0.001) to minimize

linkage disequilibrium among the variables. To enhance the

accuracy of our results, we excluded palindromic SNPs with

intermediate allele frequencies. Potential confounders were

identified and removed by querying the PhenoScanner V2

database for SNPs associated with possible confounding factors.

Weak IVs were discarded using the F statistic to ensure a robust

association between the exposure factors and the IVs. The F statistic

was determined by the squared beta coefficient divided by its

variance for the SNP-exposure association, with an F statistic

greater than 10 indicating a strong association (17).
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MR analysis

Assessing the causal link between COVID-19 and disorders of

optic nerve and visual pathways, we employed four MR methods:

the random-effect inverse-variance weighted (IVW) estimation

method, MR-Egger regression method, weighted-median

estimator method, and weighted mode-based method. The IVW

method, when directional pleiotropy is absent, offers a more stable

and precise estimation of causal effects by integrating the Wald ratio

estimates from each instrumental variant (18, 19). Consequently,

IVW served as the primary method for this study, while the other

three methods served as supplementary analyses. Consistent results

across all four methods bolster the credibility of the causality

estimates. In cases of discrepancy, the IVW outcome is given

precedence as the principal finding. However, we consider the

IVW results reliable only if they are directionally concordant with

the findings of the supplementary methods.
Sensitivity analysis

The Cochran’s Q test was applied to assess the heterogeneity

among IVs, with a p-value below 0.05 indicating significant
Frontiers in Immunology 0358
heterogeneity. A leave-one-out sensitivity analysis was

performed to ensure no single SNP disproportionately

influenced the causal estimate. This involved sequentially

discarding each SNP associated with the exposure and repeating

the IVW analysis to verify the stability of the causal effects of each

SNP. The MR-Egger intercept test was employed to detect and

adjust for bias from directional pleiotropy; a non-zero intercept

suggests the presence of such bias (20). Additionally, the MR-

PRESSO method was employed to identify and correct for

horizontal pleiotropy; a global test resulting in a p-value under

0.05 signifies horizontal pleiotropy between IVs and outcomes; the

outlier test pinpoints SNPs that may be outliers, potentially

violating MR assumptions, necessitating their exclusion from

the analysis (21).
Statistical analysis

The MR analysis used TwoSampleMR (version 4.3.1), an R

statistical software package that facilitates the two-sample MR

approach. Causal estimates were presented as odds ratios (ORs)

with 95% confidence intervals (CIs). Statistical significance was

determined by a two-tailed p-value of less than 0.05.
FIGURE 1

Graphical abstract for this MR study between COVID-19 and disorders of optic nerve and visual pathways. GWAS, genome-wide association study;
MR, Mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse-variance weighted. By FigDraw.
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Results

Genetic instruments and strength

In our bidirectional analysis, we identified nine SNPs

significantly associated with COVID-19, showing a genome-wide

significance threshold of p<5e-07, and fourteen SNPs linked to

disorders of optic nerve and visual pathways, with a threshold of

p<5e-06. These associations were established after linkage

disequilibrium clumping, data harmonization, and mining of the

Phenoscanner V2 database, as detailed in Supplementary Tables 1,

2. The F-statistics for each SNP were above 10, indicating a

negligible risk of weak instrument bias.
The causal effect of COVID-19 on optic
nerve and visual pathway disorders

Figure 2 illustrates the causal relationship between COVID-19

and the incidence of optic nerve and visual pathway disorders. The

IVW method indicates a notable causal influence of COVID-19 on

optic nerve and visual pathway disorders, with an OR of 1.697 and a

95% CI ranging 1.086 to 2.652 (p = 0.020). Complementary

methods, including MR-Egger, Weighted Median, and Weighted

Mode, yielded directionally consistent but not statistically

significant results compared to IVW. The robustness of these

findings is supported by sensitivity analyses presented in Table 1

and Figure 3. Cochran’s Q test indicates uniformity across SNP

effect estimates (p = 0.841), and the MR-Egger intercept negates the

presence of directional pleiotropy (intercept = -0.039, p = 0.495).

The MR-PRESSO test also finds no evidence of horizontal

pleiotropy or outliers (p = 0.866), and the leave-one-out analysis

substantiates the consistency of our results.
The causal effect of optic nerve and visual
pathway disorders on COVID-19

As shown in Figure 2, the IVW analysis suggests that optic

nerve and visual pathway disorders do not causally affect COVID-

19 susceptibility (OR = 0.991, 95% CI: 0.969-1.012; p = 0.429). This

finding is supported by MR-Egger, Weighted Median, and

Weighted Mode methods. Detailed in Table 1 and Figure 4, the
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sensitivity analyses affirm the reliability of our conclusions.

Cochran’s Q test confirms no variability among the SNP effect

estimates (p = 0.967), and the MR-Egger intercept indicates an

absence of directional pleiotropy (Intercept = -0.001, p = 0.835).

Additionally, the MR-PRESSO test reveals no horizontal pleiotropy

or outliers (p = 0.967), and the leave-one-out test reinforces the

dependability of our findings.
Discussion

In this study, we employed a two-sample bidirectional MR

approach to explore the relationship between COVID-19 and

disorders of optic nerve and visual pathways. The forward results

provide compelling genetic evidence that COVID-19 may increase

the risk of disorders of optic nerve and visual pathways. The reverse

results show that disorders of optic nerve and visual pathways have

no causal effect on COVID-19 susceptibility. Sensitivity analyses

have reinforced the robustness of our results.

Our research has unearthed critical insights that could be

transformative for clinical practice and public health policy. These

findings highlight a significant correlation between viral infections

and an increased risk of optic nerve and visual pathway disorders.

Such knowledge is vital for physicians, enabling them to diagnose

and treat these conditions more proactively, which may lead to

better patient outcomes. Moreover, our study supports the need for

public health authorities to intensify visual health monitoring and

preventive actions during the pandemic, with a particular focus on

vulnerable groups. Educating the public and patients about the

ocular risks linked to COVID-19 is essential, as it encourages early

medical intervention when symptoms are detected. This research

also marks a pivotal step in understanding the lung-brain axis,

potentially reshaping our comprehension of how respiratory

infections influence neurological health. It paves the way for

further investigations into the specific mechanisms by which

COVID-19 impacts the optic nerve and visual pathways, spurring

the creation of novel prophylactic and therapeutic approaches. In

addition, these discoveries could be instrumental in guiding the

development of vaccines and shaping public health strategies aimed

at mitigating the long-term sequelae of COVID-19.

A comprehensive retrospective case-control study involving

2,351 patients revealed a notable increase in immune-mediated

ocular conditions like uveitis and optic neuritis, potentially linked to
FIGURE 2

Causal relationship between COVID-19 and disorders of optic nerve and visual pathways in the MR analyses. SNPs, single-nucleotide
polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted; MR, Mendelian randomization.
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COVID-19 (2). Concurrently, an observational cross-sectional

study indicated that patients with neurological symptoms of

COVID-19 exhibited a decrease in the thickness of the retinal

nerve fiber layer and ganglion cell complex, as well as a reduced

vessel density (22). In contrast, other research indicated an

elevation in the thickness of the retinal nerve fiber layer, implying
Frontiers in Immunology 0560
potential inflammation of the optic nerve or temporary alterations

during acute COVID-19 infection (23). Additionally, a separate

study observed increased intraocular pressure and specific changes

in the outer retina in severe cases 80 days post-COVID-19 infection,

although no evidence of uveitis was detected (24). The discrepancies

observed across these studies could be attributed to a variety of
B

C D

A

FIGURE 3

The forward MR analyses: Casual effect of COVID-19 on disorders of optic nerve and visual pathways. (A) Scatter plot of the association between
COVID-19 and disorders of optic nerve and visual pathways. (B) Forest plot to show the causal effect size estimate of COVID-19 on disorders of
optic nerve and visual pathways (red line segment) and 95% CI values (gray line segment) for each SNP. (C) Leave-one-out analyses to evaluate the
impact of each SNP on the overall result. (D) Funnel plot to detect obvious heterogeneity and system bias. IVW, inverse variance weighted; SNPs,
single-nucleotide polymorphisms.
TABLE 1 Results of pleiotropy and heterogeneity analyses.

Exposure Outcome

Cochran’s
Q test

MR-Egger test MR-PRESSO test

IVW
Q

p-
value

Intercept
p-

value
Global
test p

Outliers

COVID-19 Disorders of optic nerve and
visual pathways

4.177 0.841 -0.039 0.495 0.866 None

Disorders of optic nerve and
visual pathways

COVID-19 5.336 0.967 -0.001 0.835 0.967 None
fr
IVW, inverse-variance weighted; SNPs, single‐nucleotide polymorphisms.
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factors, including study design, methodological variances, sample

size differences, reporting biases, the timing of assessments, the

expertise of the investigators, the specific definitions of disorders,

and the level of control over confounding variables.

Several host receptors facilitate the entry of SARS-CoV-2 into

human cells, with the angiotensin-converting enzyme 2 (ACE2)

receptor being paramount. The viral spike protein (S protein) binds

to ACE2, triggering the cleavage of the S protein into S1 and S2

subunits. The S1 subunit, containing the receptor binding domain,

attaches to ACE2, and subsequent cleavage of the S2 subunit by host

proteases facilitates membrane fusion and viral entry (25). Multiple

tissues including mucosa of the nose, mouth, and eyes, respiratory

tract, lungs, heart, liver, kidney, brain, gastrointestinal tract,

placenta, and other organs express ACE2 with a high level (10).

Current researches indicate that SARS-CoV-2 could invade the

human brain through multiple pathways (26). Initially, the virus

may progress from the nasal cavity to the olfactory bulb via
Frontiers in Immunology 0661
olfactory nerves. Secondly, the virus might access the bloodstream

via damaged respiratory epithelium and proceed to penetrate the

BBB, utilizing ACE2-mediated transcellular pathways or disrupting

the barrier’s tight-junctions. Lastly, the virus has the potential to

invade ocular tissues and navigate along the optic nerve to the

occipital cortex. However, CSF testing in patients with COVID-19

to find evidence of viral neuroinvasion by SARS-CoV-2 showed that

of 304 patients whose CSF was tested for SARS-CoV-2 viral RNA,

there were 17 (6%) whose test was positive, all of whom had

symptoms that localized to the CNS, of 58 patients whose CSF

was tested for SARS-CoV-2 antibody, 7 (12%) had positive

antibodies with evidence of intrathecal synthesis, all of whom had

symptoms that localized to the CNS, of 132 patients who had

oligoclonal bands evaluated, 3 (2%) had evidence of intrathecal

antibody synthesis (27). The above results indicate that most

neurological complications associated with SARS- CoV-2 are

unlikely to be related to direct viral neuroinvasion.
B

C D

A

FIGURE 4

The reverse MR analyses: Casual effect of disorders of optic nerve and visual pathways on COVID-19. (A) Scatter plot of the association between
disorders of optic nerve and visual pathways and COVID-19. (B) Forest plot to show the causal effect size estimate of disorders of optic nerve and
visual pathways on COVID-19 (red line segment) and 95% CI values (gray line segment) for each SNP. (C) Leave-one-out analyses to evaluate the
impact of each SNP on the overall result. (D) Funnel plot to detect obvious heterogeneity and system bias. IVW, inverse variance weighted; SNPs,
single-nucleotide polymorphisms.
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Recent studies have illuminated the lung-brain axis, which

allows two-way communication between the lungs and CNS. This

axis consists of the following multiple interrelated pathways. As part

of the autonomic nervous system, neuroanatomical pathway

involves neurons and cells for respiratory communication,

involving the phrenic nerve for breathing and the vagus nerve for

involuntary functions. Pulmonary receptors coordinate with the

brain to regulate breathing, with increased sensitivity in diseases like

asthma and COPD causing dyspnea. Quick signaling of this

pathway is essential for cough reflexes and adjusting respiration

to maintain homeostasis and adapt to health changes. In the

endocrine pathway, the hypothalamus-pituitary-adrenal axis

releases glucocorticoids during lung stress or inflammation, while

the sympathetic system secretes adrenaline and noradrenaline for

‘fight or flight’ responses. They work together to maintain balance

and respond to diseases. In immune pathway, CNS conditions can

cause lung damage via cytokines, and lung infections can negatively

affect the CNS. Systemic inflammation is linked to CNS issues like

paraneoplastic syndromes and autoimmune diseases. The lung

serves as a critical site for the reactivation of autoreactive T cells,

which can then migrate to the CNS and trigger autoimmune

disorders. The lung’s microbial balance affects CNS susceptibility

to autoimmune conditions. Metabolites and microorganisms

pathway involves the transfer of biological substances like

exosomes and outer-membrane vesicles, ferrying proteins, lipids,

nucleic acids, and other bioactive molecules between the CNS and

lungs, crossing the BBB. Exosomes can carry cytokines that

intensify lung injury and affect microglial activity in the brain,

impacting conditions like Alzheimer’s disease. Similarly, outer-

membrane vesicles from bacteria can provoke central neuropathy

and neuroinflammatory diseases. The gas pathway is crucial for

how respiratory gases impact the CNS. Air pollutants, like ozone,

can indirectly influence CNS functions by altering neuronal activity

and activating stress response pathways, which may result in

cognitive and behavioral changes. Diseases of the lungs that lead

to hypoxemia and hypercapnia are associated with CNS disorders.

Chronic hypoxemia is known to cause white matter changes that

are associated with Alzheimer’s disease. On the other hand, mild

hypercapnia might offer neuroprotection, while severe hypercapnia

can aggravate brain injury (28).

In a prospective study assessing the prevalence of serum myelin

oligodendrocyte glycoprotein antibody (MOG-Ab) and aquaporin-

4 antibody (AQP4-Ab) among 35 patients with clinical optic

neuritis and confirmed COVID-19, it was found that serum

MOG-Ab and AQP4-Ab were detected in 28.6% (10/35) and

5.7% (2/35) optic neuritis cases after COVID-19 (29). Positivity

for MOG-Ab is generally indicative of MOG antibody-associated

disease, an immune-mediated condition that demyelinates the optic

nerves, brain, and spinal cord (30). AQP4-Ab positivity is a strong

marker for neuromyelitis optica spectrum disorder, a severe

autoimmune inflammatory disorder of the CNS, marked by

intense optic neuritis and myelitis (31). The identification of these

antibodies, coupled with a favorable response to pulse steroid

therapy, suggests that optic neuritis related to COVID-19
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represents a post-infectious, immune-mediated inflammatory

response (29). Furthermore, a comprehensive multicenter study

has shown that recipients of the mRNA vaccines BNT162b2 and

mRNA-1273 have a notably higher risk of retinal vascular occlusion

within two years post-vaccination, suggesting that SARS-CoV-2

may cause neuro-ophthalmic damage via mechanisms beyond

direct viral invasion (32).

Integrating the available evidence, we propose that SARS-

CoV-2 may precipitate conditions affecting the optic nerve and

visual pathways via the lung-brain axis routes. Initially, SARS-

CoV-2 might penetrate the CNS through BBB, directly targeting

neurons within the optic nerve and visual pathways. Furthermore,

lung inflammation from SARS-CoV-2 could amplify the release of

inflammatory mediators like cytokines, enhancing BBB

permeability and leading to optic neuritis and retinal vascular

occlusion. Additionally, lung impairment due to SARS-CoV-2

might disrupt oxygen and carbon dioxide exchange,

compromising the oxygenation of the brain and optic nerve,

with sustained hypoxemia and hypercapnia potentially causing

damage to these structures. Moreover, the infection could disrupt

lung microbial homeostasis and metabolic outputs, which might,

via the bloodstream, impact the optic nerve and visual pathways’

functionality. SARS-CoV-2 could also present antigens mimicking

MOG or AQP4 proteins on astrocytes, eliciting a pathogenic T cell

response and antigen-antibody reaction, leading to inflammation

and demyelination, thereby impairing vision. A less likely but

possible pathway for the generation of MOG-Ab may involve the

incidental unveiling of MOG protein to the immune system’s

antigen-presenting cells during inflammation in the CNS’s white

matter or optic nerve, instigated by COVID-19. The specific

mechanisms by which COVID-19 causes disorders of optic

nerve and visual pathways require further and more in-

depth research.

Our study presents several notable strengths. Primarily, the MR

approach we employed was less prone to confounding factors, such

as inflammation, vascular disease, and tumor compression, which

could also lead to optic nerve and visual pathway disorders. This

robustness stems from our utilization of multiple COVID-19-

associated SNPs, derived from extensive GWAS, as IVs. We

further refine our analysis by excluding SNPS associated with

potential confounders, identified through the PhenoScanner V2

database, to negate the impact of these confounders on our results.

These measures provided substantial statistical power to establish

causal relationships. Moreover, we implemented stringent criteria

for the selection of IVs to uphold the foundational assumptions of

MR, thereby mitigating the risk of weak instrument bias. To

account for any anomalies induced by horizontal or directional

pleiotropy, we utilized advanced methods such as MR-Egger and

MR-PRESSO for detection and correction. Additionally, we

confined the genetic background of our part ic ipants

predominantly to European ancestry, which curtailed potential

confounding effects arising from a more diverse population mix.

Our study has several limitations that warrant consideration.

The datasets analyzed were primarily composed of individuals of
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European descent, potentially limiting the generalizability of our

findings across different ethnic groups. Furthermore, the ongoing

mutation of SARS-CoV-2 could influence factors such as viral

transmissibility, viral load, disease severity, and the virus’s ability

to evade immune responses. These mutations may complicate the

causal inference regarding disorders of optic nerve and visual

pathways. Currently, there is a lack of GWAS data on post-

mutation SARS-CoV-2. Should such data become available for

various SARS-CoV-2 strains in the future, we aim to conduct

further investigations. Additionally, our MR analysis is based on

publicly accessible summary-level data rather than individual-level

data, precluding us from performing subgroup analyses based on

COVID-19 severity. This limitation may result in less precise causal

estimates and could impact the interpretation and generalization of

our results.
Conclusions

In summary, this MR study provides evidence suggesting

that COVID-19 may elevate the risk of developing optic nerve

and visual pathway disorders . Beyond deepening our

comprehension of the interplay between COVID-19 and

diseases of optic nerve and visual pathways, this research also

introduces fresh perspectives and robust data to bolster lung-

brain axis studies. These insights are pivotal for devising

preventive measures and therapeutic interventions for nervous

system diseases associated with infections. Moreover, they are

instrumental in enhancing the quality of clinical care delivered

to patients. Additionally, these discoveries lay the groundwork

for the development of innovative therapeutic approaches for

patients with infections.
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Machine learning-based
derivation and validation of
three immune phenotypes for
risk stratification and prognosis
in community-acquired
pneumonia: a retrospective
cohort study
Qiangqiang Qin1†, Haiyang Yu1†, Jie Zhao2†, Xue Xu1,
Qingxuan Li3, Wen Gu1* and Xuejun Guo1*

1Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of
Medicine, Shanghai, China, 2Department of Hematology, Xinhua Hospital, Shanghai Jiaotong
University School of Medicine, Shanghai, China, 3Department of Respiratory and Critical Care
Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
Background: The clinical presentation of Community-acquired pneumonia

(CAP) in hospitalized patients exhibits heterogeneity. Inflammation and

immune responses play significant roles in CAP development. However,

research on immunophenotypes in CAP patients is limited, with few machine

learning (ML) models analyzing immune indicators.

Methods: A retrospective cohort study was conducted at Xinhua Hospital,

affiliated with Shanghai Jiaotong University. Patients meeting predefined

criteria were included and unsupervised clustering was used to identify

phenotypes. Patients with distinct phenotypes were also compared in different

outcomes. By machine learning methods, we comprehensively assess the

disease severity of CAP patients.

Results: A total of 1156 CAP patients were included in this research. In the

training cohort (n=809), we identified three immune phenotypes among

patients: Phenotype A (42.0%), Phenotype B (40.2%), and Phenotype C (17.8%),

with Phenotype C corresponding to more severe disease. Similar results can be

observed in the validation cohort. The optimal prognostic model, SuperPC,

achieved the highest average C-index of 0.859. For predicting CAP severity,

the random forest model was highly accurate, with C-index of 0.998 and 0.794 in

training and validation cohorts, respectively.
Abbreviations: CAP, Community-acquired pneumonia; ML, Machine learning; SCAP: Severe community-

acquired pneumonia; MV, mechanical ventilation; IRVS, intensive respiratory or vasopressor support; IDSA,

Infectious Diseases Society of America; ATS, American Thoracic Society; ARDS, Acute respiratory distress

syndrome; t-SNE, t-distributed Stochastic Neighbor Embedding; PCA, Principal Component Analysis;

UMAP, Uniform Manifold Approximation and Projection; CDF, Cumulative distribution function; ROC,

Receiver Operating Characteristic; IRB, Institutional Review Board; ARDS, Acute Respiratory Distress

Syndrome; RCT, Randomized Controlled Trial.
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Conclusion: CAP patients can be categorized into three distinct immune

phenotypes, each with prognostic relevance. Machine learning exhibits

potential in predicting mortality and disease severity in CAP patients by

leveraging clinical immunological data. Further external validation studies are

crucial to confirm applicability.
KEYWORDS

community-acquired pneumonia, immune phenotype, machine learning, unsupervised
clustering, risk stratification
Introduction

Community-acquired pneumonia (CAP) is an acute parenchymal

lung infection caused by a variety of microorganisms outside the

hospital. Despite advancements in rapid diagnostic testing, novel

treatment options, and vaccine development, CAP continues to be

one of the predominant causes of hospitalization, morbidity, and

mortality globally (1). Severe community-acquired pneumonia

(SCAP) is presently defined as the condition of patients requiring

admission to the Intensive Care Unit (ICU) for mechanical ventilation

(MV) or intensive respiratory or vasopressor support (IRVS) (2).

Among 7,449 patients enrolled in the United States between 2014 and

2016, the 30-day mortality rate for SCAP was 6% (3). Consequently,

the prompt identification and immediate management of SCAP are

crucial for reducing its mortality rate. Presently, numerous methods

are employed to evaluate the severity of CAP, primarily relying on

established scores and guidelines. Nonetheless, these methods exhibit

multiple limitations that impede their utility as clinical decision

support tools (4–6).

In recent decades, machine learning (ML) algorithms have

shown better performance in predicting various diseases or

clinical conditions. Research has consistently illustrated the

efficacy of ML in managing critically ill patients by predicting

length of stay, risk of ICU readmission, and mortality rates.

Recently, Jeon Et al. established that ML models significantly

outperform traditional severity-of-illness scoring systems in

predicting ICU mortality among patients with severe pneumonia

(7). Xu et al. found that the ML model based on available clinical

features is feasible and effective in predicting adverse outcomes such

as mortality inCAP patients and ICU admission (8).

The clinical manifestations of CAP are highly variable. As a

result, patients with CAP who are hospitalized present with a wide

range of clinical symptoms, vital signs, and laboratory findings.

Previously, Stefano Aliberti et al. divided patients into three

different clinical phenotypes based on the presence or absence of

acute respiratory failure and severe sepsis at admission, which

showed significant differences in mortality (9). As infections

advance, a range of resident and mobilized immune cells are

activated to combat the invading pathogens. Research indicates that
0266
both the inflammatory response and immune regulation are pivotal

in the pathogenesis of SCAP and acute respiratory distress syndrome

(ARDS) (10). However, to date, limited studies have explored the

immune phenotypes associated with CAP and their correlation with

patient clinical outcomes. Therefore, we hypothesize that distinct

clusters of characteristics present in CAP patients at admission may

form identifiable subgroups or phenotypes, potentially signaling

disparate prognoses for the illness and serving a vital function in

the early detection of SCAP. This study sought to ascertain if immune

phenotypes in patients with CAP can be identified using

immunological data, to evaluate their correlation with prognosis,

and to predict the likelihood of SCAP.
Methods

Study design

In this research, electronic health records of patients diagnosed

with CAP admitted to the Respiratory and Critical Care department

of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University

School of Medicine between January 1, 2020 and October 31, 2023

were retrospectively collected. All patients incorporated in this

research were required to meet the diagnostic criteria of CAP and

to have blood samples collected within the first 24 hours of

admission. However, the study excluded patients who met any of

the following exclusion criteria: (1) age under 18 years; (2) diagnosis

of an autoimmune or hematologic malignancy; (3) a subsequent

diagnosis of conditions such as pulmonary tuberculosis or

idiopathic pulmonary fibrosis; and (4) those who declined further

treatment or were transferred to another hospital. (see Figure 1,

Supplementary Figure S1 for details). Additionally, in this study, we

exclusively consider data from the initial hospital admission for

individuals who experienced multiple admissions (11). Vital signs

(heart rate, systolic blood pressure and diastolic blood pressure,

temperature, respiratory rate and mentation), demographic

information(age, sex, height, weight), laboratory indicators(WBC,

Neutrophil cell count, IgA, IgE, IgM, IL-6, IL-8, CD3, CD4, CD8,

etc.) were collected within 24h after admission, and other variables
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(days from symptom onset, chief complaint, length of stay,

application of assisted ventilation, and clinical outcome) were also

extracted after patients discharged. Upon applying our predefined

inclusion and exclusion criteria, we successfully enrolled a cohort of

1,165 eligible patients for this study.
Candidate variables for clustering
and phenotyping

Patients were randomly allocated to the training and validation

cohorts in a ratio of 7:3 to ensure reproducibility and consistency in

the modeling outcomes (12). And a meticulously curated dataset

comprising various laboratory indicators has been compiled for this

analysis. When addressing missing values, we employed two

distinct strategies. For variables with less than 20% missing data,

imputation was performed using the Multivariate Imputation by

Chained Equations (MICE) package (13). Conversely, variables

with 20% or more missing data were excluded entirely to preserve

the integrity and robustness of the study (14). This methodological

approach refined our dataset to encompass 79 laboratory indicators.
Frontiers in Immunology 0367
Moreover, given the study’s emphasis on exploring the immune

phenotype of community-acquired pneumonia, we cumulatively

identified 31 immunological laboratory variables as the focal point

for clustering analysis. To identify commonalities among different

patients based on laboratory examinations, we applied the

unsupervised ‘consensus clustering’ algorithm within the training

cohort to ascertain the optimal number of clusters. Subsequently,

we corroborated the findings in both the validation cohort and the

meta-cohort. Additionally, to verify the integrity of the clustering

process, our dataset underwent analysis using the NBclust (15)

clustering algorithm. Additionally, we employed an alluvial plot to

visualize the discrepancies between conventional grading systems

and our machine learning approach. Lastly, we presented chord

diagrams to illustrate the associations between laboratory indicators

and clinical immune phenotypes.
Definitions and clinical outcomes

CAP patients were classified into three distinct immune

phenotypes (Phenotype A, Phenotype B, and Phenotype C).
FIGURE 1

The flowchart of this research.
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Utilizing prior knowledge and clinical expertise, indicators such as

the necessity for mechanical ventilation, admission to the intensive

care unit, or mortality due to the disease were employed as

surrogate markers of SCAP in this investigation. The primary

outcome was the in-hospital mortality rate. Secondary outcomes

included the 28-day mortality rate, the likelihood of progressing to

severe pneumonia, length of stay, days of ventilation, days in the

ICU, ICU-free days, and the probability of respiratory support.

Upon stratification of pneumonia patients into three immune

phenotypes, we assessed differences in all-cause in-hospital

mortality rates across the meta, training, and validation cohorts.

Simultaneously, we examined the 28-day mortality rate and the

risk of severe disease progression within these cohorts. This

approach facilitated a detailed evaluation of mortality outcomes

associated with different immune phenotypes in community-

acquired pneumonia.
Integrated machine learning based model
construction and evaluation

To assess the predictive performance of machine learning (ML)

methods based on Zaoqu liu’s framework (16), nine algorithms

were employed for patient prognosis prediction in both the training

and validation cohorts. The model with the highest average

concordance index (C-index) across these cohorts will be

considered the most effective. Additionally, this study expanded

its methodology to include thirteen ML algorithms for forecasting

the risk of severity in CAP patients, specifically: Lasso, Ridge, Elastic

Net (Enet), Stepwise GLM (Stepglm), Support Vector Machine

(SVM), Gradient Boosting Machine (GBM), Linear Discriminant

Analysis (LDA), Partial Least Squares and Logistic Regression

Model (plsRglm), Random Forest, and Naive Bayes (17–19).

Consistently, the model that exhibits superior performance across

both cohorts will be identified as the optimal model. To guarantee

the robustness and reliability of our models, we meticulously

selected only those comprising more than five variables. This

strategy enabled clinicians to concentrate on the most informative

and stable combinations of predictors. Moreover, we incorporated

the publicly accessible dataset GSE188309 (20), which concentrates

on community-acquired pneumonia, into our analysis to ascertain

potential immune infiltration from a transcriptomic perspective.
Association between clinical immune
phenotype and traditional scoring system

Generally, CURB-65 and PSI scoring systems were frequently

utilized in clinical settings to evaluate the severity of pneumonia

patients with CAP. However, recent studies have highlighted

significant limitations within these systems (21, 22). In response,

we developed a model utilizing machine learning techniques and

evaluated its predictive accuracy using the Receiver Operating

Characteristic (ROC) curve, in comparison to traditional

scoring systems.
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Statistical analysis

In this study, the Shapiro-Wilk test was utilized to assess the

normality of continuous variables prior to the formal analysis. For

comparisons, the Mann–Whitney U-test was applied to non-

normally distributed continuous variables, while the Student’s t-

test was used for those with a normal distribution, as appropriate.

For categorical variables, the Kruskal-Wallis test or the Chi-square

test was employed where relevant. Continuous variables were

presented as mean ± SD for normally distributed data and as

median (interquartile range, IQR) for non-normally distributed

data. Categorical variables were reported as frequencies and

percentages. All data generation, processing, statistical analyses,

and plotting were performed using R software version 4.2.0. A p-

value of less than 0.05 was considered statistically significant,

although this was not explicitly mentioned in the report.
IRB statement

Approval was obtained from the Institutional Review Board

(IRB) of Xinhua Hospital, Shanghai Jiao Tong University School of

Medicine, Shanghai, China, and a waiver of consent was granted

because the study used electronic medical record data and blood test

results from normal clinical visits (Approval Number: XHEC-C-

2024-026-1; Approval Date: 2024-03-19; Study Title: Clinical Study

Based on Comprehensive Multi-omics Analysis of Peripheral Blood

for Community Acquired Pneumonia). All procedures were

followed in accordance with the IRBs standards on human

experimentation and the Helsinki Declaration of 1975.
Results

Baseline characteristics of CAP patients

This study reviewed the records of 12,000 individuals

discharged from the Respiratory Department of Xinhua Hospital

between January 1, 2020, and October 31, 2023. Of these, 1,379 were

diagnosed with CAP. Following the application of exclusion criteria,

223 patients were omitted from the study. Consequently, a cohort of

1,156 CAP patients was established for inclusion in the research.

Patients were allocated into two groups: a training cohort consisting

of 809 patients and a validation cohort of 347 patients, using a

randomization ratio of 7:3. Table 1 presents the baseline

characteristics of the combined meta-cohort, along with those of

the training and validation cohorts separately. Among the

participants, 8 required treatment with an invasive ventilator, 96

received non-invasive ventilation, and 46 underwent therapy with

high-flow nasal cannula. In this study, 53 patients succumbed to

their conditions, while 239 required admission to the intensive care

unit. The median hospital stay for the meta cohort was 9 days, with

an interquartile range (IQR) of 7–14 days. The three most frequent

symptoms among the patients were cough (76%, n=880), fever

(54%, n=626), and sputum production (52%, n=600). Consistent
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TABLE 1 Characteristics of the study population and outcomes of community acquired pneumonia patients.

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Demographics

Sex, n (%) 0.715

Female 492 (43) 151 (44) 341 (42)

Male 664 (57) 196 (56) 468 (58)

Age (years), median (IQR) 65 (54, 73) 66 (58, 73) 65 (53, 73) 0.534

Height (cm), median (IQR) 166 (160, 172) 167 (160, 173) 166 (160, 172) 0.783

Weight (kg), median (IQR) 64 (56, 73) 64.75 (57, 73.08) 64 (55, 73) 0.356

Mentation, n (%) 0.721

1 1141 (99) 343 (99) 798 (99)

2 4 (0) 1 (0) 3 (0)

3 5 (0) 2 (1) 3 (0)

4 2 (0) 0 (0) 2 (0)

5 1 (0) 0 (0) 1 (0)

6 0 (0) 0 (0) 0 (0)

7 2 (0) 0 (0) 2 (0)

8 1 (0) 1 (0) 0 (0)

Vital signs

Fever peak, median (IQR) 38.1 (37.3, 39) 38 (37.3, 39) 38.1 (37.3, 39) 0.661

Temperature admission, median (IQR) 37 (36.6, 37.7) 37 (36.7, 37.7) 37 (36.6, 37.7) 0.568

Tmax during the course, median (IQR) 37.4 (37.1, 38) 37.3 (37.05, 38) 37.4 (37.1, 38) 0.405

Heart rate, median (IQR) 92 (83, 101) 90 (82, 101) 92 (83, 101) 0.202

Respiration Rate, median (IQR) 20 (18, 20) 20 (19, 20) 20 (18, 20) 0.204

Systolic blood pressure, median (IQR) 132 (120, 149) 131 (120, 148.75) 133 (120, 149) 0.684

Diastolic blood pressure, median (IQR) 79 (71, 87) 79 (72, 86) 78 (70, 88) 0.762

CURB-65 score, n (%) 0.883

0 452 (39) 130 (37) 322 (40)

1 444 (38) 137 (39) 307 (38)

2 222 (19) 70 (20) 152 (19)

3 37 (3) 10 (3) 27 (3)

4 1 (0) 0 (0) 1 (0)

PSI score, median (IQR) 70 (53, 89) 71 (54, 88) 69 (52, 90) 0.274

Chief Complaint

Cough, n (%) 0.339

No 276 (24) 76 (22) 200 (25)

Yes 880 (76) 271 (78) 609 (75)

Sputum, n (%) 0.281

No 556 (48) 158 (46) 398 (49)

Yes 600 (52) 189 (54) 411 (51)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Chief Complaint

Chest Pain, n (%) 0.792

No 1081 (94) 326 (94) 755 (93)

Yes 75 (6) 21 (6) 54 (7)

Dyspnea, n (%) 0.469

No 874 (76) 257 (74) 617 (76)

Yes 282 (24) 90 (26) 192 (24)

Chest Tightness, n (%) 0.329

No 1025 (89) 313 (90) 712 (88)

Yes 131 (11) 34 (10) 97 (12)

Fever, n (%) 0.661

No 530 (46) 163 (47) 367 (45)

Yes 626 (54) 184 (53) 442 (55)

Fatigue, n (%) 0.364

No 1112 (96) 337 (97) 775 (96)

Yes 44 (4) 10 (3) 34 (4)

Consciousness Disorder, n (%) 0.207

No 1149 (99) 343 (99) 806 (100)

Yes 7 (1) 4 (1) 3 (0)

Difficulty Breathing, n (%) 0.706

No 1128 (98) 340 (98) 788 (97)

Yes 28 (2) 7 (2) 21 (3)

Hemoptysis, n (%) 0.364

No 1112 (96) 337 (97) 775 (96)

Yes 44 (4) 10 (3) 34 (4)

Comorbidity

Respiratory system

COPD, n (%) 0.537

No 1007 (87) 306 (88) 701 (87)

Yes 149 (13) 41 (12) 108 (13)

Bronchiectasis, n (%) 0.602

No 1088 (94) 329 (95) 759 (94)

Yes 68 (6) 18 (5) 50 (6)

Emphysema bullae, n (%) 1

No 1105 (96) 332 (96) 773 (96)

Yes 51 (4) 15 (4) 36 (4)

Pulmonary hypertension, n (%) 0.842

No 1126 (97) 337 (97) 789 (98)

Yes 30 (3) 10 (3) 20 (2)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Respiratory system

Lung cancer, n (%) 0.602

No 1097 (95) 327 (94) 770 (95)

Yes 59 (5) 20 (6) 39 (5)

PE, n (%) 0.379

No 1116 (97) 338 (97) 778 (96)

Yes 40 (3) 9 (3) 31 (4)

Asthma, n (%) 0.188

No 1108 (96) 328 (95) 780 (96)

Yes 48 (4) 19 (5) 29 (4)

OSAHS, n (%) 0.225

No 1110 (96) 329 (95) 781 (97)

Yes 46 (4) 18 (5) 28 (3)

Bronchitis, n (%) 1

No 1136 (98) 341 (98) 795 (98)

Yes 20 (2) 6 (2) 14 (2)

Cardiovascular system

Hypertension, n (%) 0.107

No 689 (60) 194 (56) 495 (61)

Yes 467 (40) 153 (44) 314 (39)

Atrial fibrillation, n (%) 0.08

No 1086 (94) 333 (96) 753 (93)

Yes 70 (6) 14 (4) 56 (7)

Coronary heart disease, n (%) 1

No 1026 (89) 308 (89) 718 (89)

Yes 130 (11) 39 (11) 91 (11)

Arrhythmia, n (%) 0.015

No 1005 (87) 315 (91) 690 (85)

Yes 151 (13) 32 (9) 119 (15)

Heart failure, n (%) 0.694

No 994 (86) 301 (87) 693 (86)

Yes 162 (14) 46 (13) 116 (14)

Digestive system

Liver dysfunction, n (%) 1

No 992 (86) 298 (86) 694 (86)

Yes 164 (14) 49 (14) 115 (14)

Gastric cancer, n (%) 1

No 1146 (99) 344 (99) 802 (99)

Yes 10 (1) 3 (1) 7 (1)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Digestive system

Colorectal cancer, n (%) 0.132

No 1138 (98) 345 (99) 793 (98)

Yes 18 (2) 2 (1) 16 (2)

Esophageal cancer, n (%) 0.33

No 1151 (100) 347 (100) 804 (99)

Yes 5 (0) 0 (0) 5 (1)

Hepatitis, n (%) 0.163

No 1151 (100) 344 (99) 807 (100)

Yes 5 (0) 3 (1) 2 (0)

Urinary system

Renal Insufficiency, n (%) 0.163

No 1076 (93) 329 (95) 747 (92)

Yes 80 (7) 18 (5) 62 (8)

Urological tumors, n (%) 0.573

No 1141 (99) 344 (99) 797 (99)

Yes 15 (1) 3 (1) 12 (1)

Kidney Stones, n (%) 0.473

No 1125 (97) 340 (98) 785 (97)

Yes 31 (3) 7 (2) 24 (3)

Endocrine system

Diabetes, n (%) 0.065

No 904 (78) 259 (75) 645 (80)

Yes 252 (22) 88 (25) 164 (20)

Nervous system

Senile dementia, n (%) 0.465

No 1147 (99) 343 (99) 804 (99)

Yes 9 (1) 4 (1) 5 (1)

Cerebral infarction, n (%) 1

No 1056 (91) 317 (91) 739 (91)

Yes 100 (9) 30 (9) 70 (9)

PD, n (%) 1

No 1144 (99) 344 (99) 800 (99)

Yes 12 (1) 3 (1) 9 (1)

History of mlignancy, n (%) 0.572

No 1042 (90) 309 (89) 733 (91)

Yes 114 (10) 38 (11) 76 (9)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Full Blood Count

Hemoglobin (g/L), median (IQR) 125 (113, 135) 125 (116, 135.5) 125 (112, 135) 0.284

Neutrophil percent (%), median (IQR) 69 (58.9, 80.6) 69.8 (58.4, 80.3) 68.6 (59.3, 80.8) 0.789

Neutrophil count (*10^9/L), median (IQR) 4.43 (3.18, 6.75) 4.32 (3.1, 6.78) 4.46 (3.23, 6.72) 0.683

MCV (fl), median (IQR) 90.7 (88.3, 94) 90.8 (88.5, 93.95) 90.7 (88.1, 94) 0.435

MCH (pg), median (IQR) 30.3 (29.1, 31.4) 30.4 (29.3, 31.45) 30.2 (29.1, 31.4) 0.225

MCHC (g/L), median (IQR) 333 (325, 340) 334 (325, 341) 332 (325, 340) 0.295

MPV (fl), median (IQR) 9.4 (8.6, 10.2) 9.5 (8.7, 10.4) 9.3 (8.6, 10.2) 0.278

WBC Count (*10^9/L), median (IQR) 6.66 (5.18, 8.77) 6.61 (5.18, 8.62) 6.7 (5.18, 8.81) 0.925

Lymphocyte percent (%), median (IQR) 20.4 (11.6, 30) 20.1 (11.9, 29.65) 20.5 (11.2, 30) 0.86

Lymphocyte count (*10^9/L), median (IQR) 1.3 (0.86, 1.78) 1.34 (0.86, 1.78) 1.29 (0.87, 1.78) 0.481

Eosinophil percent (%), median (IQR) 1.5 (0.5, 2.9) 1.5 (0.5, 2.9) 1.5 (0.5, 2.8) 0.75

Monocyte percent (%), median (IQR) 6.7 (5.2, 8.53) 6.7 (5.2, 8.55) 6.8 (5.2, 8.5) 0.942

Monocyte count (*10^9/L), median (IQR) 0.44 (0.33, 0.61) 0.44 (0.32, 0.62) 0.44 (0.33, 0.61) 0.885

RDW (%), median (IQR) 13 (12.5, 13.6) 12.9 (12.4, 13.5) 13 (12.5, 13.6) 0.148

Arterial Blood Gas

HCO3 (mmol/L), median (IQR) 25.4 (23.3, 27.4) 25.5 (23.35, 27.4) 25.3 (23.3, 27.3) 0.513

HCO3std (mmol/L), median (IQR) 25.3 (23.7, 26.9) 25.4 (23.7, 26.85) 25.2 (23.7, 26.9) 0.72

pCO2 (kPa), median (IQR) 5.21 (4.72, 5.66) 5.23 (4.75, 5.66) 5.21 (4.7, 5.65) 0.352

pH, median (IQR) 7.42 (7.4, 7.45) 7.42 (7.4, 7.45) 7.42 (7.4, 7.45) 0.996

pO2 (kPa), median (IQR) 11.95 (10.3, 14.6) 11.7 (10.1, 14.15) 12.1 (10.5, 14.7) 0.061

TCO2 (mmol/L), median (IQR) 49.9 (44.98, 54.4) 50.1 (45.5, 54.45) 49.8 (44.7, 54.4) 0.556

Glu (mmol/L), median (IQR) 5.28 (4.66, 6.66) 5.3 (4.69, 6.76) 5.26 (4.64, 6.64) 0.264

Renal Function

Cr (umol/L), median (IQR) 60 (51, 73) 58.8 (50, 72) 60 (51, 74) 0.141

BUN (mmol/L), median (IQR) 5.2 (4.02, 7) 5.2 (4.02, 7) 5.2 (4.02, 6.99) 0.963

GFR (mL/min per1.75m^2), median (IQR) 104.72 (84.94, 125.35) 106.05 (87.31, 125.96) 104.37 (84.2, 124.44) 0.522

UA (umol/L), median (IQR) 269 (213, 338) 264 (217, 313.5) 269 (210, 345) 0.354

ACE (U/L), median (IQR) 23.5 (17.28, 30.2) 23.4 (17, 29.9) 23.6 (17.5, 30.5) 0.97

Blood lipids

LDL-C (mmol/L), median (IQR) 2.41 (1.89, 2.97) 2.53 (1.94, 3.08) 2.38 (1.87, 2.95) 0.05

TG (mmol/L), median (IQR) 1.04 (0.77, 1.41) 1.08 (0.79, 1.43) 1.02 (0.76, 1.4) 0.303

ApoE (mg/dL), median (IQR) 3.6 (2.9, 4.6) 3.7 (2.9, 4.5) 3.6 (2.9, 4.7) 0.846

Coagulation

D-Dimer (mg/L), median (IQR) 0.61 (0.34, 1.16) 0.61 (0.32, 1.14) 0.61 (0.34, 1.17) 0.513

TT (s), median (IQR) 13.7 (12.8, 14.7) 13.8 (12.8, 14.65) 13.7 (12.8, 14.8) 0.773

APTT (s), median (IQR) 11.9 (11, 12.9) 11.8 (11, 12.9) 11.9 (11.1, 13) 0.31

INR, median (IQR) 1.05 (0.97, 1.14) 1.04 (0.97, 1.14) 1.05 (0.97, 1.15) 0.346

PTT (s), median (IQR) 30.9 (28.5, 33.4) 30.5 (28.05, 32.95) 31.1 (28.7, 33.6) 0.024
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Coagulation

ATA (%), median (IQR) 83 (72, 93) 84 (71.5, 95) 83 (72, 93) 0.258

Inflammatory Cytokine

IL-10 (pg/mL), median (IQR) 5 (5, 5) 5 (5, 5) 5 (5, 5) 0.085

IL-1B (pg/mL), median (IQR) 5 (5, 9.76) 5 (5, 9.93) 5 (5, 9.72) 0.874

IL-2R (U/mL), median (IQR) 573.5 (409, 880.5) 569 (397, 851) 582 (412, 899) 0.218

IL-6 (pg/mL), median (IQR) 6.97 (3.09, 19.2) 6.83 (2.91, 18.4) 7.18 (3.18, 19.4) 0.553

IL-8 (pg/mL), median (IQR) 26.3 (14.67, 62.12) 28.2 (14.8, 66.35) 25.6 (14.4, 61) 0.628

TNF-a (pg/mL), median (IQR) 14.65 (8.97, 28.52) 14.9 (9.14, 29.6) 14.6 (8.91, 28.4) 0.441

IgG4 (g/L), median (IQR) 0.5 (0.26, 0.9) 0.48 (0.25, 0.86) 0.5 (0.27, 0.93) 0.541

Electrolytes

P (mmol/L), median (IQR) 1.08 (0.93, 1.22) 1.08 (0.95, 1.21) 1.07 (0.92, 1.22) 0.394

Cl (mmol/L), median (IQR) 105 (102, 107) 105 (102, 107) 105 (102, 107) 0.554

Mg (mmol/L), median (IQR) 0.92 (0.85, 0.97) 0.92 (0.85, 0.97) 0.92 (0.85, 0.98) 0.356

Potassium (mmol/L), median (IQR) 3.96 (3.69, 4.21) 3.95 (3.69, 4.19) 3.96 (3.68, 4.22) 0.748

Ca (mmol/L), median (IQR) 2.08 (1.99, 2.16) 2.09 (1.99, 2.15) 2.08 (1.99, 2.16) 0.969

Sodium (mmol/L), median (IQR) 139 (136, 141) 139 (136, 141) 139 (136, 141) 0.277

Inflammation Measurements

CRP (mg/L), median (IQR) 24 (4, 76) 21 (3, 68.5) 25 (4, 78) 0.261

PCT(ng/mL), median (IQR) 0.05 (0.04, 0.15) 0.05 (0.04, 0.14) 0.05 (0.04, 0.15) 0.149

ESR (mm/h), median (IQR) 41.5 (21, 70) 42 (21, 70) 41 (21, 69) 0.875

Myocardial Enzyme

CK-MB (U/L), median (IQR) 5 (3, 7) 5 (3.1, 8) 5 (3, 7) 0.983

cTnI (ng/ml), median (IQR) 0.01 (0, 0.01) 0.01 (0, 0.01) 0.01 (0, 0.01) 0.291

CK (U/L), median (IQR) 63 (41, 99.25) 58 (41, 88) 65 (41, 103) 0.123

a-HBDH (U/L), median (IQR) 142 (113.75, 173) 141 (114.5, 173) 142 (113, 173) 0.711

LDH (U/L), median (IQR) 212 (176, 264) 214 (176, 262) 211 (176, 264) 0.702

Cell immunity

CD3T (%), median (IQR) 70.5 (62.97, 77.29) 69.95 (61.91, 77.15) 70.67 (63.58, 77.37) 0.282

CD4T (%), median (IQR) 41.8 (34.47, 48.45) 41.01 (33.45, 48.59) 41.99 (35.02, 48.31) 0.431

CD8T (%), median (IQR) 24.13 (18.48, 30.66) 24.07 (18.59, 30.9) 24.22 (18.43, 30.56) 0.915

CD3T (Cells/uL), median (IQR) 932.35 (567.65, 1285.11) 932.52 (557.31, 1291.49) 932.18 (578.03, 1284.19) 0.827

CD4T (Cells/uL), median (IQR) 532.42 (320.8, 785.7) 515.96 (305.94, 800.39) 537.39 (332.43, 776.03) 0.742

CD64 infection index 0.84 (0.43, 2.06) 0.89 (0.43, 2.06) 0.84 (0.42, 2.06) 0.892

CD8T (Cells/uL), median (IQR) 314.12 (185.76, 461.07) 316.69 (185.76, 461.9) 313.71 (185.79, 459.57) 0.805

Humoral Immunity

Ig A (g/L), median (IQR) 2.5 (1.86, 3.31) 2.49 (1.85, 3.29) 2.5 (1.86, 3.33) 0.792

Ig E (IU/mL), median (IQR) 59.45 (21.7, 197.25) 62.3 (22.15, 184.5) 57.9 (21.2, 211) 0.921

Ig G (g/L), median (IQR) 12.3 (10.5, 14.5) 12 (10.4, 14.2) 12.4 (10.6, 14.6) 0.122
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Humoral Immunity

Ig M (g/L), median (IQR) 0.86 (0.62, 1.21) 0.89 (0.58, 1.22) 0.86 (0.62, 1.2) 0.949

Liver Function

GGT (U/L), median (IQR) 29 (18, 53) 28 (19, 49) 29 (18, 55) 0.583

Alb (g/L), median (IQR) 35.8 (32.1, 39) 35.9 (32.3, 38.8) 35.8 (32, 39.1) 0.977

AST (U/L), median (IQR) 20 (13, 34) 22 (13, 34) 20 (12, 34) 0.356

ALT (U/L), median (IQR) 21 (16, 31) 20 (16, 29.5) 21 (16, 31) 0.147

ALP (U/L), median (IQR) 75 (61, 95) 76 (60.5, 95) 75 (61, 94) 0.79

PA (mg/L), median (IQR) 158 (111, 206) 156 (116, 206) 159 (109, 207) 0.597

TB (umol/L), median (IQR) 8.7 (6.4, 11.4) 8.6 (6.2, 10.9) 8.7 (6.5, 11.5) 0.311

TP (g/L), median (IQR) 63.9 (59.5, 67.8) 63.5 (59.2, 67.8) 64 (59.8, 67.8) 0.471

FIB (g/L), median (IQR) 4.05 (3.24, 4.94) 3.9 (3.24, 4.95) 4.06 (3.24, 4.92) 0.903

Complement system

C3 (g/L), median (IQR) 1.17 (1, 1.35) 1.17 (1.01, 1.34) 1.17 (1, 1.36) 0.976

C4 (g/L), median (IQR) 0.29 (0.23, 0.37) 0.29 (0.23, 0.37) 0.29 (0.23, 0.37) 0.898

CH50 (U/mL), Mean ± SD 49.59 _ 15.19 49.31 _ 15.27 49.71 _ 15.16 0.685

Respiratory support

HFNC, n (%) 0.668

No 1110 (96) 335 (97) 775 (96)

Yes 46 (4) 12 (3) 34 (4)

NIMV, n (%) 0.941

No 1060 (92) 319 (92) 741 (92)

Yes 96 (8) 28 (8) 68 (8)

IMV, n (%) 1

No 1148 (99) 345 (99) 803 (99)

Yes 8 (1) 2 (1) 6 (1)

Clinical Outcomes

ICU duration (days), median (IQR) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.444

Ventilation duration (days), median (IQR) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.44

Length of stay, median (IQR) 9 (7, 14) 10 (7, 14) 9 (7, 14) 0.372

Inpatient Outcome, n (%) 0.46

Alive 1103 (95) 334 (96) 769 (95)

Dead 53 (5) 13 (4) 40 (5)

ICU free days (days), median (IQR) 8 (4, 11) 8 (5, 12) 7 (4, 10) 0.12

Outcome at 28 days, n (%) 0.433

Alive 1117 (97) 338 (97) 779 (96)

Dead 39 (3) 9 (3) 30 (4)

Days from symptom onset (days),
median (IQR)

10 (6, 14) 10 (5, 14) 10 (6, 14) 0.811
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Clinical Outcomes

ICU admission, n (%) 0.502

No 917 (79) 280 (81) 637 (79)

Yes 239 (21) 67 (19) 172 (21)
F
rontiers in Immunology
 1276
COPD, Chronic obstructive pulmonary disease; OSAHS, Obstructive sleep apnea hypopnea syndrome; MCV, Mean corpuscular volume; MCH, Mean corpuscular hemoglobin; MCHC, Mean
corpuscular hemoglobin concentration; WBC,White bold cell; MPV, Mean platelet volume; RDW, Red blood cell distribution width; HCO3, Carbonic acid hydrogen radical; HCO3std, Standard
bicarbonate; pCO2, Partial pressure of carbon dioxide; Ph, Potential of hydrogen; pO2, Partial pressure of oxygen; TCO2, Total carbon dioxide; Glu, Glucose; Cr,Creatinine; BUN, Blood urea
nitrogen; GFR, Glomerular Filtration Rate; UA, Urine Acid; ACE, Angiotensin-Converting Enzyme; LDL-C, Low-Density Lipoprotein Cholesterol; TG, Triglyceride; ApoE, Apolipoprotein E;
TT, Thrombin time; APTT, Activated partial thromboplastin time; INR, International normalized ratio; PTT, Partial thromboplastin time; ATA, Antithrombin Activity; IL-10, Lnterleukin-10;
IL-1B, Lnterleukin-1B; IL-2R, Lnterleukin-2 Receptor; IL-6, Lnterleukin-6; IL-8, Lnterleukin-8; TNF-a, Tumor necrosis factor-alpha; IgG4, Immunoglobulin G4; CK-MB, Creatine kinase MB;
cTnI, Cardiac troponin I; CK, Creatine kinase; a-HBDH, Alpha-hydroxybutyric dehydroge; LDH, Lactate dehydrogenase; Ig A, Immunoglobulin A; Ig E, Immunoglobulin E; Ig G,
Immunoglobulin G; Ig M, Immunoglobulin M; GGT, g-Glutamyl transferase GGT; Alb, Albumin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase;
PA, Prealbumin; TB, Total bilirubin; TP, Total Protein; FIB, Fibrinogen; C3, Complement C3; C4, Complement C4; CH50, 50% Hemolytic unit of Complement; HFNC, High Flow Nasal
Cannula; NIMV, Noninvasive Mechanical Ventilation; IMV, Invasive Mechanical Ventilation.
TABLE 2 Characteristics and outcomes of community acquired pneumonia patients divided by immune phe Notypes in training cohort.

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Demographics

Sex, n (%) 0

Female 173 (54%) 134 (38%) 34 (25%) 341 (42%)

Male 149 (46%) 217 (62%) 102 (75%) 468 (58%)

Age (years), median (IQR) 60 [39; 67] 68 [60; 76] 72 [64; 79] 65 [53; 73] 0

Height (cm), median (IQR) 165 [160; 171] 166 [160; 172] 170 [163; 175] 166 [160; 172] 0.008

Weight (kg), median (IQR) 64 [56; 73] 65 [55; 73] 63 [55; 74] 64 [55; 73] 0.977

Mentation, n (%) 0.46

1 322(39.80%) 344(42.52%) 132(16.32%) 798(98.64%)

2 0(0%) 2(0.25%) 1(0.12%) 3(0.37%)

3 0(0%) 2(0.25%) 1(0.12%) 3(0.37%)

4 0(0%) 1(0.12%) 1(0.12%) 2(0.25%)

5 0(0%) 1(0.12%) 0(0%) 1(0.12%)

6 0(0%) 0(0%) 0(0%) 0(0%)

7 0(0%) 1(0.12%) 1(0.12%) 2(0.25%)

8 0(0%) 0(0%) 0(0%) 0(0%)

Vital signs

Fever peak, median (IQR) 38 [37; 39] 38 [37; 39] 38 [38; 39] 38 [37; 39] 0.002

Temperature admission, median (IQR) 37 [36; 37] 37 [37; 38] 37 [37; 38] 37 [37; 38] 0.001

Tmax during the course, median (IQR) 37 [37; 38] 37 [37; 38] 38 [37; 39] 37 [37; 38] 0

Heart rate, median (IQR) 92 [83; 100] 92 [83; 101] 91 [84; 103] 92 [83; 101] 0.824

Respiration Rate, median (IQR) 20 [18; 20] 20 [19; 20] 20 [18; 21] 20 [18; 20] 0.043

Systolic blood pressure, median (IQR) 132 [120; 145] 134 [122; 150] 133 [118; 151] 133 [120; 149] 0.228

Diastolic blood pressure, median (IQR) 80 [71; 89] 78 [70; 87] 77 [70; 85] 78 [70; 88] 0.062
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

CURB-65 score, n (%)

0 183 (57%) 113 (32%) 26 (19%) 322 (40%)

1 116 (36%) 136 (39%) 55 (40%) 307 (38%)

2 20 (6%) 88 (25%) 44 (32%) 152 (19%)

3 3 (1%) 14 (4%) 10 (7%) 27 (3%)

4 0 (0.0%) 0 (0.0%) 1 (1%) 1 (0%)

5 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

PSI score, median (IQR) 55 [38; 69] 74 [60; 94] 93 [75; 112] 69 [52; 90] 0

Chief Complaint

Cough, n (%) 0.009

No 63 (20%) 93 (26%) 44 (32%) 200 (25%)

Yes 259 (80%) 258 (74%) 92 (68%) 609 (75%)

Sputum, n (%) 0.117

No 144 (45%) 183 (52%) 71 (52%) 398 (49%)

Yes 178 (55%) 168 (48%) 65 (48%) 411 (51%)

Chest Pain, n (%) 0.225

No 296 (92%) 328 (93%) 131 (96%) 755 (93%)

Yes 26 (8%) 23 (7%) 5 (4%) 54 (7%)

Dyspnea, n (%) 0

No 271 (84%) 259 (74%) 87 (64%) 617 (76%)

Yes 51 (16%) 92 (26%) 49 (36%) 192 (24%)

Chest Tightness, n (%) 0.233

No 288 (89%) 310 (88%) 114 (84%) 712 (88%)

Yes 34 (11%) 41 (12%) 22 (16%) 97 (12%)

Fever, n (%) 0.215

No 158 (49%) 149 (42%) 60 (44%) 367 (45%)

Yes 164 (51%) 202 (58%) 76 (56%) 442 (55%)

Fatigue, n (%) 0.024

No 314 (98%) 336 (96%) 125 (92%) 775 (96%)

Yes 8 (2%) 15 (4%) 11 (8%) 34 (4%)

Consciousness Disorder, n (%) 0.299

No 322 (100%) 348 (99%) 136 (100%) 806 (100%)

Yes 0 (0.0%) 3 (1%) 0 (0.0%) 3 (0%)

Difficulty Breathing, n (%) 0.001

No 319 (99%) 343 (98%) 126 (93%) 788 (97%)

Yes 3 (1%) 8 (2%) 10 (7%) 21 (3%)

Hemoptysis, n (%) 0.6

No 306 (95%) 339 (97%) 130 (96%) 775 (96%)
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Chief Complaint

Yes 16 (5%) 12 (3%) 6 (4%) 34 (4%)

Comorbidity

Respiratory system

COPD, n (%) 0.04

No 291 (90%) 296 (84%) 114 (84%) 701 (87%)

Yes 31 (10%) 55 (16%) 22 (16%) 108 (13%)

Bronchiectasis, n (%) 0.546

No 302 (94%) 332 (95%) 125 (92%) 759 (94%)

Yes 20 (6%) 19 (5%) 11 (8%) 50 (6%)

Emphysema bullae, n (%) 0.223

No 312 (97%) 334 (95%) 127 (93%) 773 (96%)

Yes 10 (3%) 17 (5%) 9 (7%) 36 (4%)

Pulmonary hypertension, n (%) 0.122

No 318 (99%) 338 (96%) 133 (98%) 789 (98%)

Yes 4 (1%) 13 (4%) 3 (2%) 20 (2%)

Lung cancer, n (%) 0.003

No 315 (98%) 332 (95%) 123 (90%) 770 (95%)

Yes 7 (2%) 19 (5%) 13 (10%) 39 (5%)

PE, n (%) 0.261

No 314 (98%) 334 (95%) 130 (96%) 778 (96%)

Yes 8 (2%) 17 (5%) 6 (4%) 31 (4%)

Asthma, n (%) 1

No 311 (97%) 338 (96%) 131 (96%) 780 (96%)

Yes 11 (3%) 13 (4%) 5 (4%) 29 (4%)

OSAHS, n (%) 0.203

No 311 (97%) 342 (97%) 128 (94%) 781 (97%)

Yes 11 (3%) 9 (3%) 8 (6%) 28 (3%)

Bronchitis, n (%) 0.316

No 319 (99%) 343 (98%) 133 (98%) 795 (98%)

Yes 3 (1%) 8 (2%) 3 (2%) 14 (2%)

Cardiovascular system

Hypertension, n (%) 0

No 223 (69%) 204 (58%) 68 (50%) 495 (61%)

Yes 99 (31%) 147 (42%) 68 (50%) 314 (39%)

Atrial fibrillation, n (%) 0.001

No 312 (97%) 322 (92%) 119 (88%) 753 (93%)

Yes 10 (3%) 29 (8%) 17 (12%) 56 (7%)
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Cardiovascular system

Coronary heart disease, n (%) 0.01

No 299 (93%) 303 (86%) 116 (85%) 718 (89%)

Yes 23 (7%) 48 (14%) 20 (15%) 91 (11%)

Arrhythmia, n (%) 0.003

No 290 (90%) 293 (83%) 107 (79%) 690 (85%)

Yes 32 (10%) 58 (17%) 29 (21%) 119 (15%)

Heart failure, n (%) 0

No 305 (95%) 296 (84%) 92 (68%) 693 (86%)

Yes 17 (5%) 55 (16%) 44 (32%) 116 (14%)

Digestive system

Liver dysfunction, n (%) 0.013

No 290 (90%) 294 (84%) 110 (81%) 694 (86%)

Yes 32 (10%) 57 (16%) 26 (19%) 115 (14%)

Gastric cancer, n (%) 0.129

No 321 (100%) 348 (99%) 133 (98%) 802 (99%)

Yes 1 (0%) 3 (1%) 3 (2%) 7 (1%)

Colorectal cancer, n (%) 0.093

No 318 (99%) 345 (98%) 130 (96%) 793 (98%)

Yes 4 (1%) 6 (2%) 6 (4%) 16 (2%)

Esophageal cancer, n (%) 0.152

No 322 (100%) 347 (99%) 135 (99%) 804 (99%)

Yes 0 (0.0%) 4 (1%) 1 (1%) 5 (1%)

Hepatitis, n (%) 0.654

No 322 (100%) 349 (99%) 136 (100%) 807 (100%)

Yes 0 (0.0%) 2 (1%) 0 (0.0%) 2 (0%)

Urinary system

Renal Insufficiency, n (%) 0

No 315 (98%) 315 (90%) 117 (86%) 747 (92%)

Yes 7 (2%) 36 (10%) 19 (14%) 62 (8%)

Urological tumors, n (%) 0.006

No 321 (100%) 346 (99%) 130 (96%) 797 (99%)

Yes 1 (0%) 5 (1%) 6 (4%) 12 (1%)

Kidney Stones, n (%) 0.578

No 311 (97%) 343 (98%) 131 (96%) 785 (97%)

Yes 11 (3%) 8 (2%) 5 (4%) 24 (3%)

Endocrine system

Diabetes, n (%) 0
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Endocrine system

No 277 (86%) 271 (77%) 97 (71%) 645 (80%)

Yes 45 (14%) 80 (23%) 39 (29%) 164 (20%)

Nervous system

Senile dementia, n (%) 0.122

No 322 (100%) 348 (99%) 134 (99%) 804 (99%)

Yes 0 (0.0%) 3 (1%) 2 (1%) 5 (1%)

Cerebral infarction, n (%) 0

No 306 (95%) 319 (91%) 114 (84%) 739 (91%)

Yes 16 (5%) 32 (9%) 22 (16%) 70 (9%)

PD, n (%) 0.023

No 322 (100%) 344 (98%) 134 (99%) 800 (99%)

Yes 0 (0.0%) 7 (2%) 2 (1%) 9 (1%)

History of mlignancy, n (%) 0

No 307 (95%) 312 (89%) 114 (84%) 733 (91%)

Yes 15 (4%) 39 (11%) 22 (16%) 76 (9%)

Full Blood Count

Hemoglobin (g/L), Mean ± SD 128 ± 15 123 ± 18 115 ± 21 124 ± 18 0

Neutrophil percent (%), median (IQR) 60 [52; 67] 75 [65; 83] 81 [70; 88] 69 [59; 81] 0

Neutrophil count (*10^9/L), median (IQR) 4 [3; 5] 5 [3; 7] 7 [4; 10] 4 [3; 7] 0

MCV (fl), median (IQR) 90 [87; 94] 91 [89; 94] 91 [89; 95] 91 [88; 94] 0.002

MCH (pg), median (IQR) 30 [29; 31] 30 [29; 32] 31 [29; 32] 30 [29; 31] 0.022

MCHC (g/L), median (IQR) 332 [326; 339] 331 [325; 341] 333 [325; 341] 332 [325; 340] 0.786

MPV (fl), median (IQR) 9 [9; 10] 9 [9; 10] 9 [8; 10] 9 [9; 10] 0.189

WBC Count (*10^9/L), median (IQR) 6 [5; 8] 6 [5; 9] 8 [6; 12] 7 [5; 9] 0

Lymphocyte percent (%), median (IQR) 30 [22; 37] 16 [10; 23] 10 [6; 17] 20 [11; 30] 0

Lymphocyte count (*10^9/L), median (IQR) 2 [2; 2] 1 [1; 1] 1 [1; 1] 1 [1; 2] 0

Eosinophil percent (%), median (IQR) 2 [1; 4] 1 [0; 2] 1 [0; 2] 2 [0; 3] 0

Monocyte percent (%), median (IQR) 7 [6; 8] 7 [5; 9] 6 [4; 9] 7 [5; 8] 0.141

Monocyte count (*10^9/L), median (IQR) 0 [0; 1] 0 [0; 1] 0 [0; 1] 0 [0; 1] 0.194

RDW (%), median (IQR) 13 [12; 13] 13 [12; 14] 14 [13; 14] 13 [12; 14] 0

Arterial Blood Gas

HCO3 (mmol/L), median (IQR) 25 [24; 27] 25 [23; 28] 25 [21; 27] 25 [23; 27] 0.03

HCO3std (mmol/L), median (IQR) 25 [24; 26] 26 [24; 27] 25 [22; 27] 25 [24; 27] 0.223

pCO2 (kPa), median (IQR) 5 [5; 6] 5 [5; 6] 5 [4; 5] 5 [5; 6] 0

pH, median (IQR) 7 [7; 7] 7 [7; 7] 7 [7; 7] 7 [7; 7] 0

pO2 (kPa), median (IQR) 12 [11; 14] 12 [11; 15] 12 [9; 15] 12 [10; 15] 0.234

TCO2 (mmol/L), median (IQR) 50 [46; 54] 50 [45; 55] 48 [41; 55] 50 [45; 54] 0.134

(Continued)
F
rontiers in Immunology
 1680
 fron
tiersin.org

https://doi.org/10.3389/fimmu.2024.1441838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1441838
TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Arterial Blood Gas

Glu 5 [4; 6] 6 [5; 7] 6 [5; 8] 5 [5; 7] 0

Renal Function

Cr (umol/L), median (IQR) 57 [49; 69] 61 [52; 74] 65 [56; 88] 60 [51; 74] 0

BUN (mmol/L), median (IQR) 5 [4; 6] 5 [4; 7] 7 [5; 10] 5 [4; 7] 0

GFR (mL/min per1.75m^2), median (IQR) 108 [93; 127] 103 [81; 122] 96 [74; 121] 104 [84; 124] 0

UA (umol/L), median (IQR) 280 [226; 354] 262 [200; 329] 270 [184; 350] 269 [210; 345] 0.007

ACE (U/L), median (IQR) 24 [18; 31] 22 [17; 30] 24 [17; 30] 24 [18; 30] 0.237

Blood lipids

LDL-C (mmol/L), median (IQR) 3 [2; 3] 2 [2; 3] 2 [1; 2] 2 [2; 3] 0

TG (mmol/L), median (IQR) 1 [1; 2] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0.018

ApoE (mg/dL), median (IQR) 4 [3; 5] 3 [3; 5] 4 [3; 5] 4 [3; 5] 0.436

Coagulation

D-Dimer (mg/L), median (IQR) 0 [0; 1] 1 [0; 1] 1 [1; 2] 1 [0; 1] 0

TT (s), median (IQR) 14 [13; 15] 14 [13; 15] 14 [13; 15] 14 [13; 15] 0.014

APTT (s), median (IQR) 12 [11; 12] 12 [11; 13] 13 [12; 14] 12 [11; 13] 0

INR, median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0

PTT (s), median (IQR) 31 [29; 34] 31 [28; 33] 31 [28; 34] 31 [29; 34] 0.102

ATA (%), median (IQR) 89 [79; 97] 81 [71; 90] 73 [62; 85] 83 [72; 93] 0

Inflammatory Cytokine

IL-10 (pg/mL), median (IQR) 5 [5; 5] 5 [5; 5] 5 [5; 7] 5 [5; 5] 0

IL-1B (pg/mL), median (IQR) 5 [5; 7] 5 [5; 10] 7 [5; 14] 5 [5; 10] 0

IL-2R (U/mL), median (IQR) 440 [327; 583] 606 [465; 808] 1468 [1290;1964] 582 [412; 899] 0

IL-6 (pg/mL), median (IQR) 5 [3; 10] 9 [4; 22] 20 [8; 51] 7 [3; 19] 0

IL-8 (pg/mL), median (IQR) 23 [12; 67] 25 [15; 53] 39 [21; 77] 26 [14; 61] 0

TNF-a (pg/mL), median (IQR) 12 [8; 28] 14 [9; 28] 19 [12; 30] 15 [9; 28] 0.001

IgG4 (g/L), median (IQR) 1 [0; 1] 0 [0; 1] 1 [0; 1] 0 [0; 1] 0.188

Electrolytes

P (mmol/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0

Cl (mmol/L), median (IQR) 105 [104; 107] 104 [102; 107] 103 [100; 106] 105 [102; 107] 0

Mg (mmol/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0.014

Potassium (mmol/L), median (IQR) 4 [4; 4] 4 [4; 4] 4 [4; 4] 4 [4; 4] 0.184

Ca (mmol/L), median (IQR) 2 [2; 2] 2 [2; 2] 2 [2; 2] 2 [2; 2] 0

Sodium (mmol/L), median (IQR) 140 [138; 142] 139 [136; 141] 136 [131; 140] 139 [136; 141] 0

Inflammation Measurements

CRP (mg/L), median (IQR) 8 [2; 30] 34 [7; 80] 107 [37; 160] 25 [4; 78] 0

PCT(ng/mL), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 1] 0 [0; 0] 0

ESR (mm/h), median (IQR) 32 [16; 53] 45 [24; 71] 64 [35; 90] 41 [21; 69] 0
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TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Myocardial Enzyme

CK-MB (U/L), median (IQR) 4 [3; 6] 5 [4; 8] 6 [4; 9] 5 [3; 7] 0

cTnI (ng/ml), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 0] 0 [0; 0] 0

CK (U/L), median (IQR) 63 [42; 94] 67 [41; 114] 60 [34; 122] 65 [41; 103] 0.329

a-HBDH (U/L), median (IQR) 124 [104; 153] 150 [120; 182] 166 [128; 233] 142 [113; 173] 0

LDH (U/L), median (IQR) 190 [160; 220] 220 [188; 266] 268 [203; 336] 211 [176; 264] 0

Cell immunity

CD3T (%), median (IQR) 75 [69; 80] 67 [59; 74] 69 [59; 76] 71 [64; 77] 0

CD4T (%), median (IQR) 45 [40; 50] 40 [33; 46] 40 [31; 47] 42 [35; 48] 0

CD8T (%), median (IQR) 25 [20; 31] 23 [17; 30] 24 [17; 32] 24 [18; 31] 0.023

CD3T (Cells/uL), median (IQR) 1360 [1157;1630] 687 [482; 902] 494 [343; 826] 932 [578;1284] 0

CD4T (Cells/uL), median (IQR) 827 [687;1013] 414 [267; 519] 293 [205; 480] 537 [332; 776] 0

CD64 infection index 1 [0; 1] 1 [0; 2] 2 [1; 5] 1 [0; 2] 0

CD8T (Cells/uL), median (IQR) 462 [369; 604] 226 [152; 324] 183 [100; 301] 314 [186; 460] 0

Humoral Immunity

Ig A (g/L), median (IQR) 2 [2; 3] 3 [2; 3] 2 [2; 4] 2 [2; 3] 0.869

Ig E (IU/mL), median (IQR) 49 [18; 186] 57 [21; 162] 137 [29; 791] 58 [21; 211] 0

Ig G (g/L), median (IQR) 12 [11; 14] 12 [10; 15] 12 [10; 15] 12 [11; 15] 0.275

Ig M (g/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [0; 1] 1 [1; 1] 0

Liver Function

GGT (U/L), median (IQR) 26 [16; 46] 30 [18; 58] 37 [24; 68] 29 [18; 55] 0

Alb (g/L), Mean ± SD 38 ± 4 35 ± 5 30 ± 5 35 ± 5 0

AST (U/L), median (IQR) 18 [12; 31] 21 [13; 34] 24 [15; 40] 20 [12; 34] 0.003

ALT (U/L), median (IQR) 18 [15; 26] 22 [17; 32] 27 [20; 46] 21 [16; 31] 0

ALP (U/L), median (IQR) 73 [59; 90] 74 [62; 92] 88 [68; 124] 75 [61; 94] 0

PA (mg/L), median (IQR) 192 [148; 230] 142 [103; 193] 98 [70; 142] 159 [109; 207] 0

TB (umol/L), median (IQR) 8 [6; 11] 9 [7; 11] 9 [7; 14] 9 [6; 12] 0.047

TP (g/L), median (IQR) 66 [63; 70] 62 [58; 67] 61 [55; 65] 64 [60; 68] 0

FIB (g/L), median (IQR) 4 [3; 5] 4 [3; 5] 5 [4; 5] 4 [3; 5] 0

Complement system

C3 (g/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0.032

C4 (g/L), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 0] 0 [0; 0] 0.622

CH50 (U/mL), Mean ± SD 51 ± 14 49 ± 15 48 ± 17 50 ± 15 0.11

Respiratory support

HFNC, n (%) 0

No 319 (99%) 338 (96%) 118 (87%) 775 (96%)

Yes 3 (1%) 13 (4%) 18 (13%) 34 (4%)

NIMV, n (%) 0
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with prior research (23, 24), the most prevalent comorbidities

included hypertension (40%, n=467) and type 2 diabetes mellitus

(22%, n=252). To determine the latent immune phenotypes of CAP,

the “Consensus Cluster Plus” package was utilized for consensus

clustering across the training, validation, and meta cohorts. This

analysis identified three distinct immune phenotypes within each

cohort, as demonstrated in Figures 2A, B, Supplementary Figures

S3A, B, and S4A, B, indicating that a tripartite classification was

most suitable for the data. The “nbclust” package (15, 25) was

routinely utilized for unsupervised clustering to ascertain the

optimal number of clusters. In agreement with the majority rule,

three distinct clusters were deemed to be ideal for all cohorts, as

depicted in the Supplementary Materials (Supplementary Figures

S2A, S3C, and S4C). Grounded on these findings and informed by

prior knowledge, a tripartite classification of phenotypes was
Frontiers in Immunology 1983
determined to be most appropriate. The results of clustering were

visualized by t-distributed stochastic neighbor embedding (t-SNE),

Principal Component Analysis (PCA) and Uniform Manifold

Approximation and Projection (UMAP) plot, as shown in

Figure 2C, Supplementary Figures S2B, C, S3D–F, and S4D–F.

The baseline characteristics of each cohort are presented in Table 2

and Supplementary Tables S1, S2. The three distinct immune

phenotypes varied in size, ranging from 16.8% to 43.4% of the

cohorts, and demonstrated differences in clinical presentations and

patterns of organ dysfunction. These variances are detailed in

Supplementary Tables S1, S2, and Figures 3A–D, Supplementary

Figures S7A–D, and S8A–D. Within the training cohort, patients

with CAP were grouped into three phenotypes based on distinct

laboratory features. Phenotype A patients exhibited elevated levels

of prealbumin. In contrast, phenotype B was characterized by
TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Respiratory support

No 317 (98%) 311 (89%) 113 (83%) 741 (92%)

Yes 5 (2%) 40 (11%) 23 (17%) 68 (8%)

IMV, n (%) 0.485

No 321 (100%) 347 (99%) 135 (99%) 803 (99%)

Yes 1 (0%) 4 (1%) 1 (1%) 6 (1%)

Clinical Outcomes

ICU duration (days), median (IQR) 0 [0; 0] 0 [0; 6] 0 [0; 17] 0 [0; 0] 0

Ventilation duration (days), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 4] 0 [0; 0] 0

Length of stay, median (IQR) 8 [7; 10] 10 [8; 15] 14 [9; 20] 9 [7; 14] 0

Inpatient Outcome, n (%) 0

Alive 322 (100%) 332 (95%) 115 (85%) 769 (95%)

Dead 0 (0.0%) 19 (5%) 21 (15%) 40 (5%)

ICU free days (days), median (IQR) 7 [6; 9] 8 [1; 11] 5 [0; 11] 7 [4; 10] 0.005

Outcome at 28 days, n (%) 0

Alive 322 (100%) 338 (96%) 119 (88%) 779 (96%)

Dead 0 (0.0%) 13 (4%) 17 (12%) 30 (4%)

Days from symptom onset (days),
median (IQR)

10 [7; 14] 9 [5; 14] 10 [6; 14] 10 [6; 14] 0.199

ICU admission, n (%) 0

No 300 (93%) 261 (74%) 76 (56%) 637 (79%)

Yes 22 (7%) 90 (26%) 60 (44%) 172 (21%)
fron
COPD, Chronic obstructive pulmonary disease; OSAHS, Obstructive sleep apnea hypopnea syndrome; MCV, Mean corpuscular volume; MCH, Mean corpuscular hemoglobin; MCHC, Mean
corpuscular hemoglobin concentration; WBC,White bold cell; MPV, Mean platelet volume; RDW, Red blood cell distribution width; HCO3, Carbonic acid hydrogen radical; HCO3std, Standard
bicarbonate; pCO2, Partial pressure of carbon dioxide; Ph, Potential of hydrogen; pO2, Partial pressure of oxygen; TCO2, Total carbon dioxide; Glu, Glucose; Cr, Creatinine; BUN, Blood urea
nitrogen; GFR, Glomerular Filtration Rate; UA, Urine Acid; ACE, Angiotensin-Converting Enzyme; LDL-C, Low-Density Lipoprotein Cholesterol; TG, Triglyceride; ApoE, Apolipoprotein E,
TT, Thrombin time; APTT, Activated partial thromboplastin time; INR, International normalized ratio; PTT, Partial thromboplastin time; ATA, Antithrombin Activity; IL-10, Lnterleukin-10;
IL-1B, Lnterleukin-1B; IL-2R, Lnterleukin-2 Receptor; IL-6, Lnterleukin-6; IL-8, Lnterleukin-8; TNF-a, Tumor necrosis factor-alpha; IgG4, Immunoglobulin G4; CK-MB, Creatine kinase MB;
cTnI, Cardiac troponin I; CK, Creatine kinase; a-HBDH, Alpha-hydroxybutyric dehydroge; LDH, Lactate dehydrogenase; Ig A, Immunoglobulin A; Ig E, Immunoglobulin E; Ig G,
Immunoglobulin G; Ig M, Immunoglobulin M; GGT, g-Glutamyl transferase GGT; Alb, Albumin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase;
PA, Prealbumin; TB, Total bilirubin; TP, Total Protein; FIB, Fibrinogen; C3, Complement C3; C4, Complement C4; CH50, 50% Hemolytic unit of Complement; HFNC, High Flow Nasal
Cannula; NIMV, Noninvasive Mechanical Ventilation; IMV, Invasive Mechanical Ventilation.
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reduced IgG4, triglycerides, and uric acid levels. Patients classified

as phenotype C tended to be older males with a higher likelihood of

being admitted to the ICU. Variations in laboratory indicators were

apparent among the three immune phenotypes. According to the
Frontiers in Immunology 2084
standardized mean difference between phenotypes (Figures 3E–G),

phenotype A patients showed fewer laboratory abnormalities and

less evidence of organ dysfunction. Conversely, phenotype B

patients had indicators suggestive of renal dysfunction, while
B

C

A

FIGURE 2

Consensus Clustering and visualization. (A) Identification of three immune phenotypes of community acquired pneumonia (CAP) patients by
consensus clustering. (B) Cumulative distribution function (CDF) curve illustrated consensus distribution for each phenotype. (C) T-distributed
stochastic neighbor embedding (t-SNE) method successfully divided CAP patients into three distinct immune phenotypes. The purple dot represent
patients belong to phenotype A. Patients with phenotype B are represented by a yellow dot, and those with phenotype C by a blue dot. CAP,
community acquired pneumonia; t-SNE, T-distributed stochastic neighbor embedding; CDF, Cumulative distribution function.
B C D

E F G

A

FIGURE 3

Association and variation between clinical immunological indicators and three phenotypes. Chord diagram (A–D) of the association between clinical
immunological variables and each phenotype in training cohort. Different phenotypes were shown in different colors: phenotype A is purple,
phenotype B is blue, and phenotype C is green. Rank plot (E–G) of variable mean among various phenotypes in training cohort. Variables were
normalized by mean and standard error.
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those in phenotype C were more likely to display increased

inflammatory markers (such as IL-2R, IL-8, IL-6), alongside

reduced immunologic parameters of inflammation (e.g., CD3,

CD4, CD8), lower albumin levels, and elevated body

temperatures. Patients classified as Phenotype B tend to

demonstrate moderate abnormalities in their laboratory tests.

Relative to Phenotype A, those with Phenotype B show elevated

levels of neutrophils, C-reactive protein (CRP), and erythrocyte

sedimentation rate (ESR). In addition, there is a concurrent

suppression of lymphocytes and their subsets. The levels of IgG4

do not vary significantly between these phenotypes. Patients

identified as Phenotype C also manifest a similar pattern, with

increased inflammatory markers (IL-2R, neutrophil count, and

ESR) and decreased immunological indicators (CD3+CD4+CD8+

lymphocytes); however, IgG, IgA, and TNF-a levels remain

statistically unchanged. When drawing comparisons between

Phenotypes B and C, a rise in IL-2R, CRP, ESR, and IgE is noted,

along with a reduction in lymphocyte-related indicators. These

differential markers underscore their importance in phenotype

classification and, indirectly, the robustness of this classification

scheme. Further corroboration of these findings is evident in the

validation and meta cohorts, as depicted in Supplementary Figures

S7E–G and S8E–G.
Relationship between distinct clinical
immune phenotypes and clinical outcomes

In current research, distinct immune phenotypes were

correlated with primary and secondary outcomes. Within the

training cohort, Phenotype C had the highest inpatient mortality

rate, with 21 deaths (15.4%, n=136), markedly higher than that

observed in Phenotype A (0 deaths, 0%, n=322) and Phenotype B

(19 deaths, 5.4%, n=351) (P<0.001). Furthermore, Phenotype C

experienced the highest 28-day mortality rate with 17 deaths

(12.5%, n=136) compared to Phenotypes A (0 deaths, 0%, n=322)

and B (13 deaths, 3.7%, n=351). Similar trends in survival outcomes

were observed in the meta and validation cohorts, as detailed in

Supplementary Tables S1 and S2. Across all three cohorts, patients

characterized as Phenotype C consistently exhibited a poorer

prognosis compared to those classified as Phenotypes A and B

(P<0.001; Figures 4A, B, Supplementary Figures S5A, B, and S6A,

B). Furthermore, the three clinically derived immune phenotypes

showed notable differences across all primary and secondary

outcomes (Figures 4C–H, Supplementary Figures S5C–H, and

S6C–H). Our investigation also explored the correspondence

between the immune phenotypes identified in this study and

traditional clinical categorizations such as CURB-65 and PSI. The

results indicate that our immune phenotyping operates

independently of these conventional classifications (Figure 6I,

Supplementary Figures S9A, B), firmly establishing the utility and

precision of our clustering approach. The presented evidence

highlights distinct clinical outcomes among the phenotypes and
Frontiers in Immunology 2185
underscores the significance of adopting this new classification in

clinical practice, thereby demonstrating its practical relevance.
Construction and evaluation of integrated
machine learning signatures

Based on the immunological laboratory indicators available at

Xinhua Hospital, variables exhibiting a missing rate exceeding 20%

were excluded. Consequently, 31 clinical immunological laboratory

indicators were selected for model development. Contrary to

previous research (7, 26), our investigation not only concentrates

on the prognosis of patients with CAP but also considers the

likelihood of disease severity. In recent years, machine learning

has gained widespread application in medical research,

demonstrating robust predictive performance (27–29). Several

studies have also examined the application of machine learning in

forecasting CAP outcomes (7, 30, 31). However, these investigations

have predominantly utilized a narrow range of machine learning

algorithms and have focused primarily on predicting mortality.

Physicians should, however, consider strategies for the early

identification of potentially severe pneumonia patients. To

address the limitations of previous research, this study has

developed survival models for patients and predictive models for

assessing the severity of the risk. Nine machine learning algorithms

—namely, SuperPC, PlsRocx, Elastic Net, Ridge, Lasso, stepwise

Cox, Random Survival Forests (RSF), and Gradient Boosting

Machine (GBM)—were applied to both training and validation

cohorts to facilitate optimal model selection. The results indicated

that SuperPC exhibited strong predictive performance with a

training cohort C-index of 0.784 and a validation cohort C-index

of 0.935, averaging at 0.86 (Figure 5A). Consequently, it was chosen

as the superior prognostic model. The variables included in the

prognostic model were presented in Supplementary Table S3.

Additionally, in order to identify severe patients earlier, we

utilized 12 common machine learning algorithms (RF, GBM,

Stepglm, Lasso, Enet, Glmboost, LDA, Ridge, plsRglm, xgboost,

naivebayes, and SVM) to construct a predictive model for severe

pneumonia. The results indicate that the random forest algorithm

demonstrated the highest predictive performance in both the

training cohort and the validation cohort (training cohort C-

index: 0.998, validation cohort C-index: 0.794, average C-index:

0.896, Figure 5B). The variables encompassed in this model are also

detailed in Supplementary Table S3. In this study, we conducted a

rigorous evaluation of ourmodels' performance through a

comparative analysis with conventional evaluationmetrics by

examining their Receiver Operating Characteristic (ROC) curves

(see Figures 6C–H). Remarkably, the machine learning approaches

we employed demonstrated superior performance to traditional

evaluation criteria, not only within the training cohort but also in

the validation cohort and meta cohort (see Supplementary Figure

S10). This finding underscores the potential of machine learning

methodologies in enhancing predictive accuracy in this context.
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Furthermore, we leveraged a transcriptome database related to

CAP, GSE188309, which includes data from 198 patients (refer to

Supplementary Tables S4 and S5 for details) (20, 32). Using Single

Sample Gene Set Enrichment Analysis (ssGSEA), an algorithm

frequently utilized for assessing immune infiltration (33), we

analyzed the GSE188309 dataset and identified differences in

activated CD4+ T cell levels between survivors and nonsurvivors

(see Supplementary Figure S11). This underscores the significance

of CD4+ T cells as a crucial variable in our models. Surprisingly,

CD4+ T cells were incorporated into both the prognostic and

predictive models, highlighting their critical role in forecasting the

severity and clinical outcomes for patients with CAP. Additionally,

to validate the performance of our models, we compared their
Frontiers in Immunology 2286
Receiver Operating Characteristic (ROC) curves with those derived

from conventional evaluation criteria. Collectively, our results

bolster the credibility of using machine learning to predict

patient prognosis.
Discussion

In this investigation, we identified and substantiated three

distinct immune phenotypes through dual clustering techniques,

analyzing data from 1,165 hospitalized patients with CAP.

Phenotype C emerged as indicative of a poorer prognosis,

lengthier hospitalization, and an increased need for assisted
B

C D

E F

G H

A

FIGURE 4

Primary and secondary outcomes among three distinct immune phenotypes in training cohort. (A) Survival curves for various phenotype patients
during their hospitalization. (B) Survival curves for various phenotype patients over 28 days. Blue line represents Phenotype A patients, red for
Phenotype B patients, and green for Phenotype C patients. CAP patients in Phenotype A had a better prognosis than those in Phenotype A and C
(P<0.05).Phenotype C CAP patients experience extended hospital stays (C) and ICU stays (F), prolonged ventilation days (D), and fewer ICU-free days
(E) in comparison to patients with the other two phenotypes. Green represents Phenotype A patients, light blue for Phenotype B patients, and dark
blue for Phenotype C patients. Patients with phenotype C comprise a greater proportion of patients requiring assisted ventilation (G) and those with
severe pneumonia (H). Differences are observed in patient composition with respect to ventilation and the presence of severe pneumonia. P<0.001.
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ventilation. Moreover, the study employed over 20 machine-

learning algorithms to forecast both the prognosis and severity

of CAP.

Current literature includes descriptions of phenotypes in patients

with ARDS and sepsis. In their work, Calfee et al. identified two

distinct ARDS phenotypes through latent class analysis (LCA),

employing biomarkers and clinical data in a retrospective

examination of two randomized controlled trials (RCTs) (34).

Similarly, Christopher W. Seymour and colleagues (11) delineated

four sepsis phenotypes, establishing correlations between host-

response patterns and clinical outcomes via retrospective analysis.

The secretion of inflammatory cytokines and the modulation of

immune cell activity are critical in the pathogenesis of SCAP.

Consequently, assessment of the immune phenotype in individuals

with CAP can enable clinicians to more accurately distinguish

patients at risk of progressing to SCAP. In a study conducted by

Raul M. Mackenzie (35), a cohort of 217 hospitalized CAP patients

underwent evaluation of lymphocyte subsets, inflammatory

mediators, and immunoglobulin subclasses, revealing a distinctive

lymphopenicCAP profile. This profile, characterized by diminished

CD4+ lymphocytes, elevated inflammatory responses, and reduced

IgG2 concentrations, was associated with increased disease severity

upon admission and a poorer overall prognosis. Notwithstanding

these findings, the study was limited by a relatively small sample size

and predominantly included immunocompetent patients. By

contrast, our research encompasses a broader demographic and a

significantly larger sample size, thus providing a more comprehensive

understanding of the immunological landscape in CAP. This study

aimed to delineate immune phenotypes that correlate with the

prognosis of patients with CAP. Analysis of 31 immunological and

inflammatory parameters was conducted through unsupervised

clustering, employing the “Consensus clustering” algorithm. We

identified three distinct CAP immune phenotypes: Phenotype A

emerged as the least severe, characterized by the lowest deviations

in laboratory markers and organ function. In stark contrast,

Phenotype C represented the most critical illness phenotype,

marked by an increased frequency of ICU admissions and

prevalence among elderly patients. Phenotype B represented an

intermediate level of severity. The early detection of Phenotype C is

thus crucial for improving outcomes in SCAP patients. Intriguingly,

these immunophenotypes could not be completely accounted for by

traditional severity scores such as the PSI and CURB-65. Most
Frontiers in Immunology 2387
patients with low PSI and CURB-65 scores were classified under

Phenotypes A and B; however, a minority presented with the high-

risk Phenotype C. Therefore, incorporating immunophenotyping

into the assessment offers a valuable tool for the early recognition

of high-risk patients, who score low on CURB-65 and PSI indices,

significantly contributing to the enhancement of their

clinical prognosis.

Although immune phenotypes offer valuable insights, they do not

achieve the prognostic precision of predictive models. To assess the

reliability of immune phenotypes in real-world clinical contexts, we

examined the association between immune phenotype classification

and clinical outcomes. Our findings indicated that the three deduced

immune phenotypes exhibited significant disparities across all

primary and secondary outcomes measured. Notably, patients

categorized within Phenotype C experienced poorer prognostic

outcomes compared to those with Phenotypes A and B. These

observations underscore the utility of immune phenotype

classification for prognostic evaluation in patients with CAP.

Multiple studies have demonstrated the efficacy of ML in

enhancing mortality predictions for patients with CAP. Cilloniz

et al. reported that an adapted SeF model employing ML exhibited

promise in augmenting the accuracy of mortality predictions for

CAP patients within the context of a derivation-validation

retrospective study (6). Despite such advancements, research on

prognostic models for CAP that incorporate immunological

markers remains scarce. In our investigation, we performed an

analysis of data derived from the immunological laboratory

indicators of CAP patients. Our findings indicate that the

prognostic model established via the SuperPC algorithm

demonstrates a robust predictive capability. When juxtaposed

with existing models, such as CURB-65 and PSI, our model

achieves a comparable mean C-index, suggesting its utility as an

adjunctive tool for the clinical assessment of CAP patients. Our

research not only corroborates the existing literature regarding CAP

patient prognosis but also extends the analysis to encompass the

likelihood of the severity of the disease. In evaluating 12 different

ML algorithms, we ascertained that the Random Forest algorithm

delivers a superior mean C-index, which signifies a more potent

predictive performance specifically for patients with SCAP.

Lymphocytopenia has been acknowledged as an independent risk

factor for adverse outcomes in patients with CAP (36). The cause of

lymphocytopenia is unknown, although several causes have been
BA

FIGURE 5

Heatmap dipicted C-index of various machine learning method in training and validation cohort for patients’ outcome (A) and pneumonia
severity (B).
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proposed, such as increased apoptosis, limitations in the host

immune system’s mobilization of these cells, or compartmentation

at the site of infection ADDIN EN.CITE (35). Variations in

lymphocyte subsets, particularly in CD4 T cells, have been

implicated in the immunopathogenesis of CAP. Indeed, alterations
Frontiers in Immunology 2488
in CD4 T cells have been associated with increased disease severity,

particularly in the elderly and frail patient populations (37, 38). Our

study corroborates these findings by demonstrating the prognostic

and predictive significance of CD4 T cell changes. Furthermore, an

analysis of the GSE188309 dataset reinforced the observation of a
B

C D

E F

G H

I

A

FIGURE 6

Robust performance of machine learning algorithm. (A) Time dependent bar and line graph of 9 machine learning methods at 7 days, 14days, and 21
days in training cohort. (B) Time dependent bar and line graph of 9 machine learning methods at 7 days, 14days, and 21 days in validation cohort. (C)
The performance of SuperPC method and conventional PSI and CURB-65 evaluation criteria in training cohort. (D) Time dependent ROC curve of
SuperPC method at 7 days, 14 days, 21 days in training cohort. (E) The performance of SuperPC method and conventional PSI and CURB-65
evaluation criteria in validation cohort. (F) Time dependent ROC curve of SuperPC method at 7 days, 14 days, 21 days in validation cohort. The
performance of Random forest method and conventional PSI and CURB-65 evaluation criteria in training (G) and validation (H) cohort for predicting
severe pneumonia. (I) Sankey plot illustrated the relationship between immune phenotypes and conventional pneumonia severity index (PSI) and
CURB-65 evaluation criteria in Training cohort.
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discernible difference in the activation levels of CD4 T cells between

survivors and non-survivors of CAP. These results underscore the

pivotal role of CD4 T cells in forecasting clinical outcomes and

determining disease severity in CAP patients. At present, the

mechanism of CD4 T cells participating in CAP is complex and

not completely clear. More studies are focused on the mechanism of

CD4+T cells in pneumonia caused by viral infection, especially

pneumonia caused by SARS-CoV-2. CD4+T cells can differentiate

into a range of helper and effector cell types, thereby exerting antiviral

capabilities. Virus-specific CD4+ T cells differentiate into Th1 cells

and T follicular help-er cells (Tfh). Th1 cells have antiviral activity by

producing IFNg and related cytokines. Specific circulating Tfh cells

(cTfh) are produced during acute SARS-CoV-2 infection (39). A

study by Liu et al. analyzed the lymphocyte subsets of COVID-19-

associated pneumonia and CAP and showed that CD16+CD56+%,

CD4+/CD8+ ratio, CD19+, and CD3+CD4+ independently

predicted differentiation of COVID-19 and CAP. CD3+CD4+ and

CD3+CD8+ counts were independent predictors of disease

severity (40).

For pneumonia caused by other pathogens, regulatory CD4

+CD25+ T cells were found to suppress respiratory inflammation

by promoting IL-17 and IFN-g responses in a mouse model of

mycoplasma pneumonia (41). However, the exact mechanisms

under ly ing these observat ions in our study warrant

comprehensive investigation through basic experimental research.
Conclusion

Our study’s principal finding demonstrates that evaluating

immunological parameters upon hospital admission assists in

stratifying CAP patients into three distinct immune phenotypes.

Moreover, these immune phenotypes show a strong correlation

with patient prognoses. We also discerned significant predictive

capabilities within the SuperPC algorithm, suggesting its utility as

an ancillary tool for assessing CAP. Notably, our investigation

constitutes the most extensive analysis of CAP clinical phenotypes

to date. An additional strength of this study is its breadth; rather

than focusing on CAP related to specific pathogens, it encompasses

a comprehensive evaluation of the immunophenotypes across the

spectrum of CAP. This approach allows for patient classification

and tailored intervention prior to the confirmation of precise

etiologic agents, offering crucial guidance, especially for cases

where pathogen identification proves challenging. Moreover, the

rigorous application of inclusion and exclusion criteria enhances

the applicability of our findings, rendering the results of significant

relevance to the broader patient population.
Limitation

Our study possesses several limitations. Firstly, its scope is

confined to a single center, which may not be representative of

broader populations, in contrast to multi-center studies. Secondly,

the retrospective nature of our research necessitates the

implementation of a prospective study to corroborate our
Frontiers in Immunology 2589
findings and inform future clinical practice. Looking ahead, the

inclusion of a wider range of variables beyond immunological

indicators will enable a more comprehensive assessment of multi-

organ involvement in patients with CAP. And finally, other

experiment methods for example flow mass spectrometry can be

applied in figuring out the potential mechanism of CD4 T cells

in CAP.
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SUPPLEMENTARY FIGURE 1

Graphic flowchart of this research.

SUPPLEMENTARY FIGURE 2

Visualization of clustering and dimensionality reduction results of training

cohort. (A) Nbclust method illustrated the optimal groups of training cohort
was three. (B) Principal Component Analysis (PCA) method successfully

divided CAP patients into three distinct immune phenotypes. (C) Uniform
Manifold Approximation and Projection (UMAP) method successfully divided

CAP patients into three distinct immune phenotypes. Patients with phenotype

B are represented by a yellow dot, the blue dots represent patients belong to
phenotype and those with phenotype C by a purple dot.

SUPPLEMENTARY FIGURE 3

Consensus Clustering and dimensionality reduction visualization in validation
cohort. (A) Identification of three immune phenotypes of community

acquired pneumonia (CAP) patients by consensus clustering. (B) Cumulative

distribution function (CDF) curve illustrated consensus distribution for each
phenotype. (C) Visualization of Nbclust method in determining optimal

clusters of CAP patients. (D) T-distributed stochastic neighbor embedding
(t-SNE) method successfully divided CAP patients into three distinct immune

phenotypes. (E) Uniform Manifold Approximation and Projection (UMAP)
method successfully divided CAP patients into three distinct immune

phenotypes. (F) Principal Component Analysis (PCA) method successfully

divided CAP patients into three distinct immune phenotypes.

SUPPLEMENTARY FIGURE 4

Consensus Clustering and dimensionality reduction visualization in meta

cohort. (A) Identification of three immune phenotypes of community
acquired pneumonia(CAP) patients by consensus clustering. (B) Cumulative

distribution function(CDF) curve illustrated consensus distribution for each

phenotype. (C) Visualization of Nbclust method in determining optimal
clusters of CAP patients. (D) T-distributed stochastic neighbor embedding

(t-SNE) method successfully divided CAP patients into three distinct immune
phenotypes. (E) Uniform Manifold Approximation and Projection(UMAP)
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method successfully divided CAP patients into three distinct immune
phenotypes. (F) Principal Component Analysis (PCA) method successfully

divided CAP patients into three distinct immune phenotypes.

SUPPLEMENTARY FIGURE 5

Primary and secondary outcomes among three distinct immune phenotypes
in validation cohort. (A) Survival curves for various phenotype patients during

their hospitalization. (B) Survival curves for various phenotype patients over
28 days. Blue line represents Phenotype A patients, red for Phenotype B

patients, and green for Phenotype C patients. Phenotype A had a better

prognosis than those in Phenotype A and C (P<0.05).Phenotype C CAP
patients experience extended hospital stays (C), prolonged ventilation days

(D), ICU stays (F) and fewer ICU-free days (E) in comparison to patients with
the other two phenotypes. Green represents Phenotype A patients, light blue

for Phenotype B patients, and dark blue for Phenotype C patients. CAP
patients in Patients with phenotype C comprise a greater proportion of

patients requiring assisted ventilation (G) and those with severe pneumonia

(H). Differences are observed in patient composition with respect to
ventilation and the presence of severe pneumonia. P<0.001.

SUPPLEMENTARY FIGURE 6

Primary and secondary outcomes among three distinct immune phenotypes
in meta cohort. (A) Survival curves for various phenotype patients during their

hospitalization. (B) Survival curves for various phenotype patients over 28

days. Blue line represents Phenotype A patients, red for Phenotype B patients,
and green for Phenotype C patients. Phenotype A had a better prognosis than

those in Phenotype A and C (P<0.05).Phenotype C CAP patients experience
extended hospital stays (C), prolonged ventilation days (D), ICU stays (F) and
fewer ICU-free days (E) in comparison to patients with the other two
phenotypes. Green represents Phenotype A patients, light blue for

Phenotype B patients, and dark blue for Phenotype C patients. CAP patients

in Patients with phenotype C comprise a greater proportion of patients
requiring assisted ventilation (G) and those with severe pneumonia (H).
Differences are observed in patient composition with respect to ventilation
and the presence of severe pneumonia. P<0.001.

SUPPLEMENTARY FIGURE 7

Association and variation between clinical immunological indicators and

three phenotypes. Chord diagram (A-D) of the association between clinical
immunological variables and each phenotype in validation cohort. Different

phenotypes were shown in different colors: phenotype A is purple, phenotype
B is blue, and phenotype C is green. Rank plot (E-G) of variable mean among

various phenotypes in training cohort. Variables were normalized by mean
and standard error.

SUPPLEMENTARY FIGURE 8

Association and variation between clinical immunological indicators and

three phenotypes. Chord diagram (A-D) of the association between clinical
immunological variables and each phenotype in meta cohort. Different

phenotypes were shown in different colors: phenotype A is purple,

phenotype B is blue, and phenotype C is green. Rank plot (E-G) of variable
mean among various phenotypes in training cohort. Variables were

normalized by mean and standard error.

SUPPLEMENTARY FIGURE 9

Sankey plot illustrated the relationship between immune phenotypes and
conventional pneumonia severity index (PSI) and CURB-65 evaluation criteria

in validation (A) cohort and meta cohort (B).

SUPPLEMENTARY FIGURE 10

Robust performance of machine learning algorithm. (A) The performance of
riskscore and conventional PSI and CURB-65 evaluation criteria in meta

cohort. (B) Time dependent ROC curve of riskscore method at 7 days, 14

days, 21 days in meta cohort. (C) The performance of Random forest method
and conventional PSI and CURB-65 evaluation criteria in meta cohort.

SUPPLEMENTARY FIGURE 11

The immune infiltration landscape of patients with community acquired

pneumonia. (A) Box plot illustrated different types of immune cell between

alive and deceased CAP patients. (B)Cellular interaction of immune cell types.
Positive correlation is indicated in red and negative correlation in blue.
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Machine-learning model for mortality prediction in patients with community-acquired
pneumonia: development and validation study. Chest. (2023) 163:77–88. doi: 10.1016/
j.chest.2022.07.005

7. Jeon E, Lee H, Park T, Jin K, Ryu B, Lee H, et al. Machine learning-based
prediction of in-ICU mortality in pneumonia patients. Sci Rep. (2023) 13:11527.
doi: 10.1038/s41598-023-38765-8

8. Zhixiao X, Kun G, Weiwei C, Jingwen L, Chengshui C. Performance of machine
learning algorithms for predicting adverse outcomes in community-acquired
pneumonia. Front Bioeng Biotechnol. (2022) 10:903426. doi: 10.3389/fbioe.2022.903426

9. Aliberti S, Brambilla AM, Chalmers JD, Cilloniz C, Ramirez J, Bignamini A, et al.
Phenotyping community-acquired pneumonia according to the presence of acute
respiratory failure and severe sepsis. Respir Res. (2014) 15(1):27. doi: 10.1186/1465-
9921-15-27

10. Ning L, Shishi Z, Bo W, Huiqing L. Targeting immunometabolism against acute
lung injury. Clin Immunol. (2023) 249:109289. doi: 10.1016/j.clim.2023.109289

11. Seymour C, Kennedy J, Wang S, Chang C, Elliott C, Xu Z, et al. Derivation,
validation, and potential treatment implications of novel clinical phenotypes for sepsis.
JAMA. (2019) 321:2003–17. doi: 10.1001/jama.2019.5791

12. Chen Q, Pan T, Wang Y, Schoepf U, Bidwell S, Qiao H, et al. A coronary CT
angiography radiomics model to identify vulnerable plaque and predict cardiovascular
events. Radiology. (2023) 307:e221693. doi: 10.1148/radiol.221693

13. Zhang Z. Multiple imputation with multivariate imputation by chained equation
(MICE) package. Ann Trans Med. (2016) 4:30. doi: 10.3978/j.issn.2305-5839.2015.12.63

14. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and
validation of a clinical risk score to predict the occurrence of critical illness in
hospitalized patients with COVID-19. JAMA Internal Med. (2020) 180:1081–9.
doi: 10.1001/jamainternmed.2020.2033

15. Mueller Y, Schrama T, Ruijten R, Schreurs M, Grashof D, van de Werken H,
et al. Stratification of hospitalized COVID-19 patients into clinical severity progression
groups by immuno-phenotyping and machine learning. Nat Commun. (2022) 13:915.
doi: 10.1038/s41467-022-28621-0

16. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, et al. Machine learning-based
integration develops an immune-derived lncRNA signature for improving outcomes in
colorectal cancer. Nat Commun. (2022) 13:816. doi: 10.1038/s41467-022-28421-6

17. Dam T, Roggeveen L, van Diggelen F, Fleuren L, Jagesar A, Otten M, et al.
Predicting responders to prone positioning in mechanically ventilated patients with
COVID-19 using machine learning. Ann Intensive Care. (2022) 12:99. doi: 10.1186/
s13613-022-01070-0

18. Wei Q, Chen Z, Tang Y, Chen W, Zhong L, Mao L, et al. External validation and
comparison of MR-based radiomics models for predicting pathological complete
response in locally advanced rectal cancer: a two-centre, multi-vendor study. Eur
radiology. (2023) 33:1906–17. doi: 10.1007/s00330-022-09204-5

19. Li X, Zhang H, Zhao S, Tang K. Predicting risky sexual behavior among college
students through machine learning approaches: cross-sectional analysis of individual
data from 1264 universities in 31 provinces in China. JMIR Public Health surveillance.
(2023) 9:e41162. doi: 10.2196/41162

20. Viasus D, Simonetti AF, Nonell L, Vidal O, Meije Y, Ortega L, et al. Whole-blood
gene expression profiles associated with mortality in community-acquired pneumonia.
Biomedicines. (2023) 11(2):429. doi: 10.3390/biomedicines11020429

21. Viasus D, Del Rio-Pertuz G, Simonetti A, Garcia-Vidal C, Acosta-Reyes J,
Garavito A, et al. Biomarkers for predicting short-term mortality in community-
acquired pneumonia: A systematic review and meta-analysis. J infection. (2016)
72:273–82. doi: 10.1016/j.jinf.2016.01.002
Frontiers in Immunology 2791
22. Cerda-Mancillas M, Santiago-Germán D, Andrade-Bravo B, Pedraza-Olivares F,
Valenzo-Hernández F, Leaños-Miranda A, et al. D-dimer as A biomarker of severity
and adverse outcomes in patients with community acquired pneumonia. Arch Med Res.
(2020) 51:429–35. doi: 10.1016/j.arcmed.2020.04.014

23. Artero A, Madrazo M, Fernández-Garcés M, Muiño Miguez A, González Garcıá
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Lymphopenic community-acquired pneumonia is associated with a dysregulated
immune response and increased severity and mortality. J infection. (2019) 78:423–31.
doi: 10.1016/j.jinf.2019.04.006

36. Bermejo-Martin J, Cilloniz C, Mendez R, Almansa R, Gabarrus A, Ceccato A,
et al. Lymphopenic community acquired pneumonia (L-CAP), an immunological
phenotype associated with higher risk of mortality. EBioMedicine. (2017) 24:231–6.
doi: 10.1016/j.ebiom.2017.09.023

37. Wang J, Pei L, Zhao T, Liu X, Wang Q, Zhang S, et al. CD4 T cells related to
disease severity in elderly and frailty community-acquired pneumonia patients: A
retrospective cohort study. Immunity Inflammation disease. (2023) 11:e1009.
doi: 10.1002/iid3.1009

38. Bian L, Bi Y, Zhou S, Chen Z, Wen J, Shi J, et al. T cell responses in senior
patients with community-acquired pneumonia related to disease severity. Exp Cell Res.
(2017) 361:56–62. doi: 10.1016/j.yexcr.2017.09.041

39. Alessandro S, Shane C. Adaptive immunity to SARS-CoV-2 and COVID-19.
Cell. (2021) 184(4):861–80. doi: 10.1016/j.cell.2021.01.007

40. Guohong L, Xianghu J, Xiaojiao Z, Yunbao P, Haibo X. Analysis of lymphocyte
subpopulations and cytokines in COVID-19-associated pneumonia and community-
acquired pneumonia. J Immunol Res. (2021) 2021:6657894. doi: 10.1155/2021/6657894

41. Odeh A, Simecka J. Regulatory CD4+CD25+ T cells dampen inflammatory
disease in murine mycoplasma pneumonia and promote IL-17 and IFN-g Responses.
PLoS One. (2016) 11:e0155648. doi: 10.1371/journal.pone.0155648
frontiersin.org

https://doi.org/10.1186/s13054-016-1414-2
https://doi.org/10.1007/s00134-019-05519-y
https://doi.org/10.1016/j.chest.2019.09.022
https://doi.org/10.11622/smedj.2017079
https://doi.org/10.1111/j.1469-0691.2009.02908.x
https://doi.org/10.1111/j.1469-0691.2009.02908.x
https://doi.org/10.1016/j.chest.2022.07.005
https://doi.org/10.1016/j.chest.2022.07.005
https://doi.org/10.1038/s41598-023-38765-8
https://doi.org/10.3389/fbioe.2022.903426
https://doi.org/10.1186/1465-9921-15-27
https://doi.org/10.1186/1465-9921-15-27
https://doi.org/10.1016/j.clim.2023.109289
https://doi.org/10.1001/jama.2019.5791
https://doi.org/10.1148/radiol.221693
https://doi.org/10.3978/j.issn.2305-5839.2015.12.63
https://doi.org/10.1001/jamainternmed.2020.2033
https://doi.org/10.1038/s41467-022-28621-0
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1186/s13613-022-01070-0
https://doi.org/10.1186/s13613-022-01070-0
https://doi.org/10.1007/s00330-022-09204-5
https://doi.org/10.2196/41162
https://doi.org/10.3390/biomedicines11020429
https://doi.org/10.1016/j.jinf.2016.01.002
https://doi.org/10.1016/j.arcmed.2020.04.014
https://doi.org/10.1007/s11606-021-06626-7
https://doi.org/10.1007/s11606-021-06626-7
https://doi.org/10.1016/j.arcmed.2020.12.002
https://doi.org/10.1038/s41591-022-02116-3
https://doi.org/10.1016/j.rmed.2023.107363
https://doi.org/10.1016/j.rmed.2023.107363
https://doi.org/10.1186/s13054-023-04571-x
https://doi.org/10.1186/s13054-023-04683-4
https://doi.org/10.1186/s13054-023-04716-y
https://doi.org/10.3389/fcimb.2022.838749
https://doi.org/10.1111/crj.13633
https://doi.org/10.1007/s10495-023-01871-z
https://doi.org/10.1007/s10495-023-01871-z
https://doi.org/10.1186/s12967-023-04326-w
https://doi.org/10.1016/S2213-2600(14)70097-9
https://doi.org/10.1016/j.jinf.2019.04.006
https://doi.org/10.1016/j.ebiom.2017.09.023
https://doi.org/10.1002/iid3.1009
https://doi.org/10.1016/j.yexcr.2017.09.041
https://doi.org/10.1016/j.cell.2021.01.007
https://doi.org/10.1155/2021/6657894
https://doi.org/10.1371/journal.pone.0155648
https://doi.org/10.3389/fimmu.2024.1441838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ping Yuan,
Tongji University, China

REVIEWED BY

Xiao Song,
Tongji University, China
Rong Jiang,
Tongji University, China
Jin-Ming Liu,
Tongji University, China

*CORRESPONDENCE

Baoquan Dai

wffydai@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 15 July 2024
ACCEPTED 02 September 2024

PUBLISHED 17 September 2024

CITATION

Li Z, Ma J, Wang X, Zhu L, Gan Y and Dai B
(2024) The role of immune cells in the
pathogenesis of connective tissue diseases-
associated pulmonary arterial hypertension.
Front. Immunol. 15:1464762.
doi: 10.3389/fimmu.2024.1464762

COPYRIGHT

© 2024 Li, Ma, Wang, Zhu, Gan and Dai. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 17 September 2024

DOI 10.3389/fimmu.2024.1464762
The role of immune cells in the
pathogenesis of connective
tissue diseases-associated
pulmonary arterial hypertension
Zhe Li1†, Juan Ma1†, Xuejing Wang2†, Liquan Zhu1, Yu Gan1

and Baoquan Dai1*

1Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China, 2School of
Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH)

is a disease characterized by an elevated pulmonary artery pressure that arises as

a complication of connective tissue diseases. The number of patients with CTD-

PAH accounts for 25.3% of all PAH patients. The main pathological features of

CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles,

increased pulmonary vascular resistance, autoimmune activation and

inflammatory reaction. It is worth noting that abnormal immune activation will

produce autoantibodies and release cytokines, and abnormal immune cell

recruitment will promote inflammatory environment and vascular remodeling.

Therefore, almost all forms of connective tissue diseases are related to PAH. In

addition to general therapy and targeted drug therapy for PAH, high-dose

glucocorticoid combined with immunosuppressant can quickly alleviate and

stabilize the basic CTD-PAH disease. Given this, the development of

therapeutic approaches targeting immune dysregulation and heightened

inflammation is recognized as a promising strategy to prevent or reverse the

progression of CTD-PAH. This review explores the potential mechanisms by

which immune cells contribute to the development of CTD-PAH and examines

the clinical application of immunosuppressive therapies in managing CTD-PAH.
KEYWORDS

inflammation, immunity, cytokines, chemokines, pulmonary hypertension,
immunosuppressive therapy
1 Introduction

Connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH)

refers to the progressive elevation of pulmonary artery caused by connective tissue

disease, which is a common complication of CTD (1, 2). CTD-PAH belongs to the

category of PAH. CTD-PAH patients account for 25.3% of all PAH patients, and it is the
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second most common cause of PAH, second only to the idiopathic

form. The pathological features of CTD-PAH are mainly

pulmonary vascular remodeling, including pulmonary arteriole

middle-layer hypertrophy, intimal fibrosis, plexiform lesions and

tiny pulmonary artery occlusion, etc (3, 4). These changes are

closely related to vascular endothelial injury, proliferation and

migration of smooth muscle cells (SMCs), extracellular matrix

deposition and chronic inflammatory reaction mediated by

immune abnormalities, which together lead to increased

pulmonary artery pressure and increased pulmonary circulation

resistance (5, 6). Among them, immune imbalance is an important

feature of CTD-PAH, which is very important for the initiation and

maintenance of vascular remodeling (7). For example, the change of

vascular cell phenotype leads to the change of sensitivity to

inflammatory trigger, the enhancement of self-staged

inflammatory response and the active secretion of cytokines and

chemokines (8). At present, in clinical treatment, in addition to

general treatment and targeted drug therapy for PAH, high-dose

glucocorticoid combined with immunosuppressant can quickly

alleviate and stabilize the basic CTD condition, and can effectively

improve CTD-PAH (9).

CTD encompass a broad range of systemic autoimmune

rheumatic conditions that affect multiple organ systems, such as

systemic lupus erythematosus related PAH (SLE-PAH), systemic

sclerosis related PAH (SSc-PAH), connective tissue disease related

PAH (MCTD-PAH), and rheumatoid arthritis related PAH, etc (10,

11). CTD-PAH is different in different regions. For example, in

Europe and the United States, systemic sclerosis is the main cause,

while in Asia, systemic lupus erythematosus is more common (11).

Notably, patients with SLE-PAH tend to respond more favorably to

treatm (12–14). These conditions are characterized by immune

dysregulation and the production of disease-specific autoantibodies

(15, 16). In addition, the pathogenesis of these diseases involves

immunity and vascular remodeling. In patients with CTD-PAH,

antibodies and immune complexes are often deposited on the

pulmonary artery wall, especially anti-U1RNP antibodies (17).

These antibodies can significantly up-regulate the expression of

adhesion factors (such as ICAM21 and ELAM21) and MHC class II

molecules in pulmonary artery endothelial cells (ECs), leading to

inflammatory cells infiltrating the vascular wall. The deposition of

immune complex will attract inflammatory cells (such as

neutrophils, macrophages, etc.) to infiltrate into the blood vessel

wall, causing vasculitis and cellulose necrosis, further aggravating

blood vessel injury (6). The autoimmune reaction of CTD-PAH

patients is extremely active, which leads to inflammatory reaction

and fibrosis changes in pulmonary vascular wall, which is an

important basis for the formation of pulmonary hypertension (6).

Due to the infiltration of inflammatory cells and the deposition of

immune complexes, the inner ECs are damaged, resulting in intima

thickening. Stimulated by inflammatory factors, vascular SMCs will

proliferate abnormally, aggravating lumen stenosis (18). So, this

paper reviews the potential pathogenesis of CTD-PAH in

autoimmune and immune dysregulation in recent years. And

further put forward the feasibility of immunosuppressive

treatment strategy in CTD-PAH.
Frontiers in Immunology 0293
2 Immune activation in CTD-PAH

The pathogenesis of CTD-PAH is intricate and not fully

elucidated. Currently, the predominant theory associates PAH

with extensive vascular remodeling (19). Its main characteristics

are proliferation of ECs and SMCs, fibrinoid necrosis caused by

vasculitis, and deposition of immunoglobulin and complement

components in intima and medial layers of pulmonary blood

vessels (20). Under normal conditions, blood vessels maintain a

balanced state between constriction and dilation (8, 21). However,

in the context of an immune-inflammatory response, a cascade of

inflammatory mediators and reactive oxygen species is unleashed,

leading to endothelial dysfunction (22, 23). This dysfunction

manifests as reduced production of pulmonary vasodilators,

increased production of pulmonary vasoconstrictors, and

enhanced expression of proliferation-inducing factors, thereby

elevating vascular tension and ultimately driving vascular

remodeling (24). Chronic inflammatory aggregates and the

formation of tertiary lymphoid organs (TLOs) (25, 26). TLOs,

which structurally resemble lymph nodes, include specialized

zones for T-cells with dendritic cells (DCs), organized B-cell

clusters containing germinal centers, high endothelial venules,

and lymphatic vessels (27). TLOs are thought to develop in

response to sustained local immune activation and are considered

a hallmark of chronic diseases (28). Within TLOs, tissue-migrated

DCs present antigens to naïve T-cells, inducing their activation and

differentiation (27). Immune cells such as T cells, B cells, and

macrophages are activated, releasing inflammatory mediators that

contribute to vascular remodeling and endothelial dysfunction.

In CTD-PAH, various pro-inflammatory molecules, such as

interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-a and

chemokines (such as chemokine ligand 2(CCL2)/monocyte

chemoattractant protein-1 (MCP-1), RANTES chemokines or

fracta) are synthesized by fibroblasts, ECs and vascular SMCs (9,

29, 30). In SSc-PAH, this pro-inflammatory signal involves

oxidative stress and the production of a large number of pro-

inflammatory molecules (31). For example, in SSc-PAH,

autoreactive T cells infiltrate the pulmonary vasculature and

secrete cytokines like interferon (IFN)-g and IL-17, which

promote smooth muscle cell proliferation and fibrosis (32).

Furthermore, SLE patients with severe PAH exhibit enhanced

expression of various growth factors and chemokines such as

RANTES/CCL5 and fractalkine/fractalkine (CX3CL1) within the

pulmonary artery, emphasizing the complex interplay of factors

involved in this condition.

Notably, immunoglobulins and complement have been found

to accumulate on arterial walls, triggering pulmonary vasculitis

(33). The presence of these immune complexes within pulmonary

vascular walls may contribute to the development of SLE-PAH (34).

In SLE-PAH, immune complexes preferentially adhere to larger

blood vessels, whereas in SLE-induced pneumonia, smaller vessels

may be the primary sites of immune complex deposition (34).

However, some researchers argue that inflammation appears to be

less significant in the pathogenesis of SSc-PAH andMCTD-PAH, in

contrast to SLE-PAH, where the features closely resemble the
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plexogenic lesions observed in IPAH (35). These variations in the

inflammatory profile of SSc-PAH may account for the limited

efficacy of immunosuppressive therapies in this condition.

Additionally, genetic abnormalities are less common in CTD-

PAH compared to IPAH, although they may still contribute in

specific cases. An analysis of 79 CTD-PAH patients screened for a

panel of 35 PAH-specific genes identified abnormalities in 9

individuals (11.4%) (36). Left ventricular dysfunction, prevalent in

CTD, can result in pulmonary venous hypertension, particularly

evident in SSc-PAH, where pulmonary veno-occlusive lesions are

more pronounced (37).
3 DCs in CTD-PAH

DCs are effective and multifunctional antigen presenting cells,

and their migration ability is the key to start protective pro-

inflammatory and tolerant immune response (38). At the

crossroads of innate immunity and adaptive immunity, dendritic

cells do play a prominent role in the immune monitoring of self and

non-self antigens and the initiation and coordination of specific

adaptive immune responses of different types of antigens (39).

Therefore, the first line of defense is very important at the barrier,

especially in the lungs. However, they are also involved in the

pathogenesis and progress of highly prevalent respiratory

diseases (40).

Recent studies have demonstrated that DCs become activated and

accumulate in the lungs of patients with CTD-PAH (27). These

activated DCs enhance the production of inflammatory cytokines

and chemokines, which in turn lead to pulmonary vascular

remodeling and increased pulmonary vascular resistance.

Additionally, the levels of inflammatory cytokines and chemokines

produced by these DCs are elevated. In patients with SSc, circulating

type 2 conventional DCs (cDCs) exhibit increased production of IL-6,

IL-10, and tumor necrosis factor-a (TNF-a) following stimulation with

TLR2 and TLR4 (41, 42). These cytokines are believed to play a crucial

role in the immunopathology of PAH. Notably, IL-6 stands out as a

critical cytokine in the pathogenesis of PAH, as evidenced by the

development of pulmonary hypertension symptoms in mice

overexpressing IL-6, whereas IL-6-deficient mice do not develop

pulmonary hypertension under hypoxic conditions (43, 44). These

findings indicate that DCs contribute to the development

and progression of CTD-related PAH through their pro-

inflammatory effects.

Plasmacytoid DCs (pDCs) are primarily found in lymphoid

tissues and blood under normal conditions. The severity of lung

diseases in SSc patients is related to the incidence of pDCs found in

the lungs (45). Importantly, pDC plays a direct role in causing and

maintaining fibrosis, because their consumption has been proved to

improve pulmonary fibrosis. During inflammation, pDCs migrate

to peripheral tissues, where they produce IFNs and facilitate the

activation of immune cells. Several autoimmune diseases are

associated with the interferon gene signature, to which different

cells contribute. In patients with SLE and SSc, the number of
Frontiers in Immunology 0394
circulating pDCs is reduced compared to healthy controls, likely

due to their migration to affected tissues (46, 47). In SSc patients,

elevated serum levels of C-X-C motif chemokine 10 (CXCL10) are

linked with PAH, suggesting that pDCs may have a significant role

in the immunopathology of the disease (48). Besides IFN, pDCs are

also the primary producers of CXCL4 in SSc (49). The pDC of SSc

patients abnormally expressed Toll-like receptor (TLR) 8, while

TLR8 was not expressed in healthy conditions (47). This abnormal

expression contributes to the disease progression, because the signal

transduction through TLR8 will induce the production of CXCL4

(47). CXCL4 can attract CD45-positive cells into target tissues,

potentially contributing to tissue remodeling and disease

progression. In addition, the expression of TLR8 leads to the

infiltration of pDCs into tissues, which aggravates the disease and

leads to fibrosis (47). Activation of TLR9 under anoxic conditions

has also been proved to induce the production of CXCL4 (50).

Additionally, monocytes serve as precursors for mo-DCs, which

are produced under inflammatory conditions (51), and there is an

observed increase in the number of non-classical monocytes in SSc-

PAH (52). Non-classical monocytes, which express CD16, are

known to monitor the endothelium for danger signals. They can

differentiate into tissue-resident macrophages under steady-state

conditions or into anti-inflammatory macrophages during

inflammation to assist in tissue repair. At the same time, non-

classical monocytes expressing CXCL10, CXCL8, and CCL4 are

involved in SSc pathology, with higher numbers observed in SSc

patients compared to controls (41). In summary, the increased

pulmonary expression of chemokines may draw monocytes to the

lungs of CTD-PAH patients, where they become activated and

undergo gene expression changes due to the pro-inflammatory

environment. These modified monocytes may then give rise to

mo-DCs at the site of inflammation, capable of inducing T cell

activation. The roles of cDCs, pDCs, mo-DCs and their

inflammatory mediators in CTD-PAH are shown in Figure 1.
4 Lymphocytes in CTD-PAH

Lymphocytes are the main immune cells in the body, which are

responsible for removing pathogens such as bacteria, viruses and

parasites, thus protecting the human body from infection. They play

a central role in the immune system by secreting cytokines,

participating in cellular immunity and humoral immunity (53).

The immune cells that mainly play a role include B cells and T cells,

which participate in the immune activation in the process of

vascular remodeling. The roles of c B cells, T cells and their

inflammatory mediators in CTD-PAH are shown in Figure 2.

B cells have the ability to differentiate into plasma cells, which

are responsible for producing autoantibodies. B cells achieve this

goal by presenting antigen, producing various cytokines and

promoting the differentiation of T effector cells (22, 54). B cells

play a significant role in the formation of autoantibodies in SSc. In

recent years, there has been growing recognition that B cells are a

major source of pro-inflammatory cytokines, particularly IL-6 and
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IFN-g, in autoimmune diseases (55). IL-6, a potent pro-

inflammatory cytokine, also has strong fibrotic effects (56). For

example, circulating B cells in SSc patients produce more IL-6

compared to healthy controls (57, 58). However, there is limited

data on these pro-inflammatory characteristics in PAH. In a novel
Frontiers in Immunology 0495
approach to studying SSc-PAH using female mice deficient in P-

selectin glycoprotein ligand-1, IFN-g-producing B cells showed

greater lung infiltration compared to the control group (59).

Additionally, in a rat model of PAH induced by the combination

of anti-vascular endothelial growth factor (VEGF) Sugen-5416
FIGURE 2

Potential mechanism of B cells and T cells on CTD-PAH. Beff: effector B cells, Breg, regulatory B cells; BAFF, B cell activating factor; VEGF, vascular
endothelial growth factor; TGF-b, transforming growth factor-beta; IL, interleukin; IFN, interferon.
FIGURE 1

Involvement of cDCs, pDCs and mo-DCs in CTD-PAH. cDCs, circulating type 2 conventional; pDCs, plasmacytoid DCs; IL, interleukin; CCL, C-C
motif chemokine ligand; TNF, tumor necrosis factor-alpha; CXCL, C-X-C motif chemokine ligand.
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injection and ovalbumin immunization, the depletion of B cells

correlated with reduced IL-6 expression in the lung (60). Besides,

for the peripheral blood mononuclear cells of SSc-PAH patients, the

genes involved in B-cell receptor signaling and NF-kB pathway in

the disease group were significantly up-regulated (61, 62). Unlike

effector B cells (Beffs), regulatory B cell (Bregs) produce IL-10, an

anti-inflammatory and anti-fibrotic cytokine (63). Furthermore, the

role of serum B cell-activating factor (BAFF) has been well

established in a murine model of SSc induced by bleomycin (64).

BAFF inhibits Bregs and their ability to produce IL-10. In

individuals with SSc-PAH, the levels of circulating CD24hi CD27

Bregs are lower compared to SSc patients without PAH (65). While

the existence and role of this subset in pulmonary arterial

hypertension are yet to be thoroughly investigated, indirect

evidence suggests a direct involvement of B cells in the vascular

system of these patients (66). In SSc, B cells exhibit a higher

tendency to produce vasculogenic mediators such as vascular

endothelial growth factor and angiopoietin-1 compared to healthy

controls, with no difference observed between patients with and

without PAH (67).

T cells are an important part of adaptive immune response,

including helper T cells (Th cells), regulatory T cells (Tregs) and

angiogenic T cells (Tang), etc (68). Different types of T cells have

specific functions and reactions in the inflammatory cascade reaction.

Th cells produce a pro-inflammatory response, while Tregs exert a

balanced response to achieve self-tolerance and prevent autoimmune

(53). Similar to B cells, T cells can be categorized into two main

opposing subpopulations: type 1 T cells, which primarily produce

IFN-g and IL-2, and type 2 T cells, which release IL-4, IL-5, and IL-

13, thereby activating fibroblasts via the transforming growth factor

(TGF)-b pathway (63, 69). An examination of T cell subpopulations

in SSc has revealed a complex phenotype (70). Alongside Th2 cells,

Th22, Th17, and CD4+ T cells reactive to topo-I play an active role in

initiating pulmonary involvement in SSc (70, 71). Specifically, the

topo-I-reactive CD4+ T cells demonstrate a Th17 phenotype and,

along with Th22 cells, are elevated in patients, showing a negative

correlation with pulmonary function parameters. Th17 cells produce

IL-17, known for its fibrotic properties (72). At the same time, it was

found that the expressions of IL-7R, LCK and HDAC1 were

positively correlated with the number of T cell CD4 initiation and

T cell CD4 memory. They reduce T cells in SSc-PAH PBMCs by

regulating T cell activation (32). Although an increase in regulatory

Tregs has been linked to decreased functional capacities in SSc, the

precise role of these cells remains poorly understood (73). Studies

have also delved into the involvement of T cells in angiogenesis. Hur

et al. explored T cell subsets expressing CD31 and CXCR4,

categorizing them as angiogenic T cells (Tang) due to their

significant impact on vascular formation (74, 75). A recent study

revealed their role in SSc pathogenesis. The presence of Tang cells is

higher in SSc-PAH patients compared to those without PAH and

healthy individuals (76). Moreover, there is a positive correlation

between Tang cell numbers and VEGF levels in SSc-PAH, suggesting

a connection between Tang cell activity and endothelial function.
Frontiers in Immunology 0596
5 Macrophages in CTD-PAH

Macrophages can remove pathogens and foreign bodies

through their powerful phagocytosis, and serve as antigen

presenting cells, presenting the treated antigens to T cells and B

cells, thus initiating specific immune response (77). At the same

time, macrophages can secrete a variety of inflammatory mediators,

regulate immune response and promote inflammation regression

(77). Macrophages play a crucial role in local innate immunity and

provide comprehensive protection of the lungs against external

substances (78). M1 macrophages are activated during the early

inflammatory phase and induce tissue damage, with this

differentiation pathway being regulated by damaged epithelial

cells and IFN-g (79). On the other hand, M2 macrophages, which

exhibit fibrotic characteristics, are predominant during the

proliferative phase (80–82). These activated macrophages can

mitigate the differentiation of fibroblasts into myofibroblasts, a

process particularly notable in SSc (82, 83). M2 macrophages,

identifiable by their CD163+ and CD204+ markers, accumulate in

the skin and serum of SSc patients (79). Additionally, M2

macrophages produce the chemokine CCL18, which can induce T

cell migration and stimulate fibroblasts to produce collagen (84).

Consequently, elevated levels of CCL18 in SSc patients are regarded

as markers of lung fibrotic remodeling (85). While M2 cells are

known for their fibrotic attributes, other cell populations also

contribute to this complementary remodeling process. In fact, a

mixed M1/M2 macrophage population is associated with SSc-PAH

in both human and murine models (86, 87). Furthermore,

alterations in macrophage-endothelial interactions can precipitate

vascular pathologies and subsequent fibrosis. In models of

bleomycin-induced injury, endothelial-derived cells exacerbate

fibrosis and exhibit markers indicative of endothelial-

mesenchymal transition (88). Notably, by knocking out RGC32,

macrophage activation shifts from M2 to M1, which consequently

reduces the skin and lung manifestations of bleomycin-induced

pulmonary fibrosis (89). In addition, recent studies have shown that

Regnase-1 is a multifunctional protein with RNAse activity, which

can bind and degrade the mRNA of various inflammatory

cytokines, thus inhibiting the inflammatory reaction. In patients

with CTD-PAH, the expression level of Regnase-1 is decreased,

which may lead to the over-expression of inflammatory cytokines,

and then promote the development of pulmonary hypertension

(90). The lack of Regnase-1 in macrophages will lead to the

spontaneous development of severe CTD-PAH-like lesions in

mice. This indicates that Regnase-1 in macrophages plays a key

role in maintaining immune homeostasis and preventing the

occurrence of CTD-PAH (90).

Macrophage migration inhibitory factor (MIF) is a substance

that can limit the activity of macrophages in vivo. Its main function

is to limit the excessive movement of macrophages, promote the

infiltration of macrophages in inflammatory sites, and participate in

immune regulation (91). A study investigated the role of MIF in

SLE-PAH (92). Circulating MIF levels were measured in SLE
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patients, SLE-PAH patients, and healthy donors. The results

showed that circulating MIF was elevated in SLE-PAH patients

compared to both SLE patients and healthy donors. In SLE mice,

those with higher right ventricular systolic pressure (RVSP)

produced more MIF protein in the pulmonary arteries than those

with lower RVSP. Treatment with MIF098 reduced RVSP and

inhibited excessive proliferation, muscularization, and collagen

deposition in the distal pulmonary arteries of hypoxia-challenged

mice. Additionally, MIF098 suppressed pulmonary arterial smooth

muscle cell proliferation and migration by modulating the Mitogen-

Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2

signaling pathway and cell cycle-related proteins. In cell

experiments, MIF098 also decreased collagen synthesis by

inhibiting the TGF-b1/Smad2/Smad3 pathway. These findings

suggest that MIF could serve as a biomarker and therapeutic

target for SLE-PAH. MIF antagonists may be an effective means

to improve SLE-PAH. The pathological mechanism involved above

is shown in Figure 3.
6 Vascular cells in CTD-PAH

Immune cells can regulate angiogenesis by secreting cytokines

such as VEGF and TNF-a . Immune cells can promote

angiogenesis (such as tumor-associated macrophages) and

inhibit angiogenesis (such as CD8+T cells) (93). Angiogenesis

can affect the recruitment and infiltration of immune cells, and

then affect the effect of immune response. Although vascular ECs

are not professional antigen presenting cells, they can present

antigens to T cells and express adhesion factors and cytokines to

participate in immune response. ECs play a key role in

maintaining vascular homeostasis under various stimuli, and
Frontiers in Immunology 0697
regulate inflammation through mediators such as NO, ET, cell

adhesion molecules, cytokines and chemokines (22). It is found

that leptin derived from s plays a role in the immune pathogenesis

of SSc-PAH by controlling regulatory T cells (94). At the same

time, endothelial activation occurs in SSc, and Bosentan can block

T cell/endothelial interaction in SSc-PAH and regulate the

expression of vascular factors in serum (95). In addition, the

researchers detected the response of human pulmonary artery ECs

to BMPR2 signal and pyrophosphate factor stimulated by

lipopolysaccharide. In PAECs interfered by autologous BMPR2

+/R899X ECs and SIMPR 2, the expressions of IL-8 and E- selectin

were up-regulated. The defect of BMPR2 signal transduction and

proinflammatory factors promote vascular remodeling in SLE-

PAH (96).

As an important vascular cell, fibroblasts also play an important

role in CTD-PAH. Pulmonary fibrosis is a sign of patients with SSc-

PAH, and fibroblasts are the main target cells in this process.

Fibroblasts express TGF-b and platelet-derived growth factor

receptor (97). Overregulation of Wnt/b-catenin signaling pathway

(98) and increased expression of insulin-like growth factor binding

protein regulate the induction of TGF-b in fibroblasts. All these

overexpressed protein induce fibrosis by transforming fibroblasts

into myofibroblasts (99). At the same time, the study showed that in

TGF-b-dependent SSc-PAH mouse model, bone morphogenetic

protein receptor (BMPR)2 decreased, signal transduction was

damaged and receptor turnover activity changed. Similarly, the

expression of BMPR2 was significantly decreased in SSc lung tissue

and fibroblasts. The increase of proteasome degradation of BMPR2

seems to be the basis, which may be caused by the increase of TGF-b
activity. This suggests that the damage of BMP signal transduction

caused by the increase of TGF-b dependent receptor degradation

may promote the susceptibility of PAH in SSc (100).
FIGURE 3

Potential mechanism of macrophages on CTD-PAH. MIF, macrophage migration inhibitory factor; CCL, C-C motif chemokine ligand; CXCL, C-X-C
motif chemokine ligand; IFN, interferon; RGC32, response gene to complement 32; MAPK, mitogen-activated protein kinases; ERK, extracellular
signal-regulated kinase; TGF, transforming growth factor.
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7 Immunosuppression therapy in
CTD-PAH

At present, the clinical treatment of CTD-PAH includes

specific treatment for PAH and treatment for primary CTD.

The specific treatment for PAH is to use targeted drugs. For

example, Bosentan can improve exercise tolerance, cardiac

function classification, hemodynamic parameters and clinical

deterioration time of patients with CTD-PAH (101). At the

same time, the study confirmed that Bosentan can prevent

endothelial activation in SSc by restoring T cell function (95).

For the treatment of primary CTD, high-dose glucocorticoids

(cyclophosphamide, mycophenolate mofetil, azathioprine,

methotrexate or hydroxychloroquine, etc.) combined with

immunosuppressants are usually used to alleviate the condition

of CTD and effectively improve CTD-PAH (9). Different from all

previous therapeutic drugs for PAH, Sotatercept is an activin

signal inhibitor and a First-in-class activin receptor IIA-Fc

(ActRIIA Fc) fusion protein, which can selectively bind TGF-b
family ligands, restore the balance between pro-proliferation

and anti-proliferation signal pathways related to pulmonary

artery wall and right ventricular remodeling, and play the role

of inhibiting cell proliferation, reversing vascular remodeling

and smoothing blood vessels (102). It was found that the

treatment with ActRIIA-Fc significantly reversed the expression

of pro-inflammatory and proliferative genes and normalized

macrophage infiltration in the lungs of diseased rodents (7).

This shows that sotatercept may have anti-inflammatory activity

besides its anti-proliferation effect on vascular cells.

Growing evidence confirms the significant involvement of the

immune system in the occurrence and development of CTD-PAH.

Some studies have explored the potential of immunosuppressive

therapy as a treatment target for CTD-PH. Among these, rituximab

(an anti-CD20 monoclonal antibody)-induced B cell depletion has

been the most researched intervention. Patients treated with

rituximab exhibited reductions in rheumatoid factor, IL-12, and

IL-17 (103). Several reports indicated that CTD-PAH patients

experienced improvements in conditions other than pulmonary

vascular diseases following rituximab treatment (104–106).

However, the role of immunosuppression in SSc-PAH remains

unclear, as there has been no observed response to corticosteroid or

cytotoxic therapies. The pathophysiological differences between

SSc-PAH and other types of CTD-PAH may explain the varying

responses to immunosuppressive treatments. A recent study by

Zamanian et al. revealed that after 24 weeks of rituximab treatment,

there was no significant change in the six-minute walk distance

(6MWD) for SSc-PAH patients, although an improving trend was

noted (103). The authors suggest that low levels of rheumatoid

factor, IL-2, and IL-17 might predict a favorable response to

rituximab. For non-SSc CTD-PAH patients, immunosuppressive

therapy, such as glucocorticoids or macitentan, could be considered,

especial ly i f they present with non-cardiopulmonary

manifestations, potentially benefiting from the treatment. Further
Frontiers in Immunology 0798
research is essential to better understand the role of rituximab in

specific SSc-PAH patients (11). Variability in study outcomes may

be attributed to differences in sample sizes, leading to experimental

errors. Moreover, during the research, the primary outcome

measure was changed from hemodynamic improvement to

6MWD variability due to the unexpectedly low baseline

pulmonary vascular resistance in SSc-PAH patients, which

significantly reduced the utility of the original primary outcome

measure (66). Interestingly, an independent reanalysis of trial data

focused on identifying biomarker characteristics that could indicate

rituximab efficacy within subgroups, uncovering noteworthy

findings. It is also noteworthy that in studies using a pulmonary

arterial hypertension animal model, anti-CD20 therapy began

during disease induction, making it more of a preventive rather

than a curative treatment (107, 108). Therefore, further research is

required to determine the relevance and positioning of B-cell

depletion in the PAH treatment arsenal.

The Bruton tyrosine kinase (BTK) inhibitor has shown

promising results in improving hemodynamics, reducing right

ventricular hypertrophy, and mitigating pulmonary arterial

remodeling and fibrosis, as well as reversing endothelial-to-

mesenchymal transition in PAH rats (109). BTK expression

primarily co-localizes with macrophages, suggesting that the

inhibitor’s effects are largely mediated through its action on

macrophage BTK (109). Moreover, an increase in intracellular

BTK in the B cells of CTD-PAH patients was associated with

elevated serum autoantibodies (6). This indicates that BTK

inhibition might alleviate PAH, at least in part, through its

impact on B cells. In SSc patients, ibrutinib, a BTK inhibitor, has

been found to reduce the production of pro-inflammatory cytokines

and autoantibodies by peripheral B cells, while not affecting their

IL-10 secretion (110). These findings suggest that BTK inhibitors

could potentially serve as a therapeutic strategy for PAH by

targeting both macrophages and B cells, thereby addressing

multiple facets of the disease.
8 Conclusion and prospect

It is generally believed that autoimmune activation plays a key

role in the pathophysiology of various subtypes of CTD-PAH. Their

abnormal activation promotes the inflammatory environment and

vascular remodeling characteristics of this devastating disease

through various mechanisms, including autoantibody production,

cytokine release and direct cell interaction. In the pathophysiology

of CTD-PAH, the meaning of immune imbalance and immune cell

activation is “enemy”, which leads to vascular cell damage and

enlarges vascular inflammation. However, many molecular and

cellular mechanisms behind this process remain unsolved.

A better understanding of how immunity promotes the

development of CTD-PAH is very important to promote the

immunosuppressive treatment of this disease.
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57. Dumoitier N, Chaigne B, Régent A, Lofek S, Mhibik M, Dorfmüller P, et al.
Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth
factor b and activate fibroblasts. Arthritis Rheumatol. (2017) 69:1078–89. doi: 10.1002/
art.40016

58. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated
serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in
systemic sclerosis B lymphocytes. Arthritis Rheum. (2006) 54:192–201. doi: 10.1002/
art.21526
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related diseases: emerging
biological concepts and
potential mechanism
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Macrophage-myofibroblast transformation (MMT) transforms macrophages into

myofibroblasts in a specific inflammation or injury microenvironment. MMT is an

essential biological process in fibrosis-related diseases involving the lung, heart,

kidney, liver, skeletal muscle, and other organs and tissues. This process consists

of interacting with various cells and molecules and activating different signal

transduction pathways. This review deeply discussed the molecular mechanism

of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors,

and formed a complex regulatory network. Significantly, the critical role of

transforming growth factor-b (TGF-b) and its downstream signaling pathways

in this process were clarified. Furthermore, we discussed the significance of MMT

in physiological and pathological conditions, such as pulmonary fibrosis and

cardiac fibrosis. This review provides a new perspective for understanding the

interaction between macrophages and myofibroblasts and new strategies and

targets for the prevention and treatment of MMT in fibrotic diseases.
KEYWORDS

macrophages, myofibroblasts, macrophage-to-myofibroblast transformation (MMT),
TGF-b signaling pathway, fibrosis
1 Introduction

Macrophage-myofibroblast transformation (MMT) describes how macrophages from

circulating monocytes originating in the bone marrow transform into myofibroblasts and

contribute to fibrosis (1, 2). The term was coined by Nikolic-Paterson et al. In 2014 (3).

MMT is a newly discovered mechanism that occurs in damaged tissues undergoing fibrosis;

the study of MMT relies on the detection of intermediate cells that co-express macrophage

markers, such as CD68, and myofibroblast markers, such as a-smooth muscle actin (SMA)
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(4, 5). Hematopoietic stem cells (HSC) can differentiate into

monocytes in the bone marrow. Blood monocytes entering the

injured tissue can differentiate into an M2 pro-fibrotic phenotype,

either directly or via an M1 pro-inflammatory phenotype. TGF-b/
Smad3 signaling drives macrophage transition into collagen-

producing a-SMA myofibroblasts via MMT (6) (Figure 1).

MMT is considered one of the essential mechanisms for the

origin of myofibroblasts in solid organs (7–11). Experimental

models of fibrosis, including lung fibrosis, renal fibrosis following

transplantation or ureteric obstruction, and post-myocardial

infarction fibrosis, have demonstrated MMT as an additional

source of myofibroblasts (2, 3, 6, 12, 13). Wang et al. (1) also

observed the occurrence of MMT, which contributes to interstitial

fibrosis in case of human chronic active renal allograft injury. This

was identified through the co-expression of macrophage markers

(CD68 or F4/80) and myofibroblast markers (a-SMA). Similarly,

Little et al. (14) demonstrated the presence of MMT in the

subretinal fibrotic lesions, which ultimately led to subretinal

fibrosis. Increasing evidence supports the role of macrophages in

promoting fibrosis through their transformation into

myofibroblasts, a process known as the MMT (15). Several

signaling pathways, including TGF-b1/Smad, Notch, and Wnt

signaling pathways, including are involved in MMT (3). It is

worth noting that several studies have specifically highlighted the

promotion of MMT by the TGF-b1/Smad2/b-catenin signaling

pathway (3, 16–19).

This review provides an update on current advancements in

MMT and summarizes recent evidence and mechanisms of MMT
Frontiers in Immunology 02103
in fibrosis. Furthermore, we discussed the significance of MMT in

physiological and pathological conditions. Under physiological

conditions, MMT may participate in tissue repair and wound

healing, which helps restore the structure and function of tissues.

Under pathological conditions, excessive transformation may lead

to the occurrence and development of fibrotic diseases, such as

pulmonary fibrosis (PF) and cardiac fibrosis. Understanding this

phenomenon and its underlying signal pathway would be beneficial

in finding therapeutic targets for fibrosis disease.
2 Overview of macrophage

Macrophages were first described by Elie Metchnikoff in 1893

when he observed phagocytes attacking and engulfing microbes in

starfish challenged by a rose thorn (20). Another significant

milestone came in 1924 when Aschoff defined macrophages as a

part of the reticulo-endothelial system (21). However, in 1968, Van

Furth et al. (22) proposed the mononuclear phagocyte system,

challenging the previous definition. According to this system, all

macrophages were believed to originate from the terminal

differentiation of circulating monocytes. This theory was further

supported by other researchers around the world at that time (23–

25). However, more recent studies have identified a dual origin of

tissue macrophages. It has been found that macrophages can

differentiate from circulating monocytes derived from bone

marrow stem cells, as well as primitive macrophages derived from

the embryonic yolk sac and fetal liver (26, 27). The mononuclear
FIGURE 1

MMT in tissue fibrosis.
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phagocyte system consists of three parts, including monocytes,

macrophages, and dendritic cells, with macrophages playing a

crucial role within this system (28).

Macrophages are strategically located throughout body tissues,

ingesting and processing foreign bodies, dead cells, and debris while

recruiting additional macrophages in response to inflammatory

signals. These cells are highly heterogeneous cells and have the

ability to rapidly change their function in response to local

microenvironment signals (29). Macrophages are categorized into

subsets based on their anatomical location and functional

phenotype (30). Some examples of specialized tissue-resident

macrophages include osteoclasts (bone), alveolar macrophages

(lung), histiocytes (interstitial connective tissue), and Kupffer cells

(liver). It is important to note that there is considerable overlap in

the expression of surface markers between different subsets of

macrophages (31).

Rather than being discrete and stable subsets, macrophages

represent a spectrum of activated phenotypes (32). Classically

activated macrophages, also known as M1 macrophages, are

involved in host defense against various bacteria, protozoa, and

viruses, and they also play a role in anti-tumor immunity. On the

other hand, alternatively activated macrophages, or M2

macrophages, possess anti-inflammatory properties and

contribute to wound healing. There are also “regulatory”

macrophages that can secrete high levels of interleukin-10 (IL-10)

upon binding to Fc receptors gamma (33, 34). Macrophages found

in the lung (both interstitial and alveoli), peritoneum, liver (Kupffer

cells), and brain (microglia) are generally considered to be distinct

lineage of macrophages with unique functions (35, 36).
2.1 The classification and phenotype
of macrophages

Monocytes are regarded as precursor cells of the mononuclear

phagocytic system, with macrophages being one of the key

members of this cellular system. Within the macrophage

population, there exist various subpopulations of macrophages,

each with its characteristics and functions.

2.1.1 Classification of organizational sources
The specialization of macrophages in particularmicroenvironments

explains their heterogeneity. Macrophages take different names

according to their tissue location, such as osteoclasts (bone), alveolar

macrophages (lung), microglial cells (central nervous system),

histiocytes (connective tissue), Kupffer cells (liver), and LC (skin).

These populations have such highly different transcriptional profiles

that they could be considered as many different and unique classes of

macrophages (37).

2.1.2 General functional classification
Macrophages can be defined and classified based on their

functions, such as phagocytosis and immunity, as well as specific

markers like F4/80 and CD68 (38). This classification divides

them into:
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2.1.2.1 Classically activated macrophages

Classically activated macrophages, or M1 macrophages, are

induced in vitro by interferon (IFN)-g and lipopolysaccharide

(LPS). They drive a pro-inflammatory response and aid in the

elimination of infection. Mainly through the secretion of pro-

inflammatory cytokines (such as IL-1, IL-6, TNF-a, etc.) and

chemokines, they promote the occurrence and development of

inflammatory reactions. They can devour and eliminate foreign

pathogens, activate the immune response of T cells, and regulate

and promote the Th1 immune response.

2.1.2.2 Selectively activated macrophages

Selectively activated macrophages, known as M2 macrophages,

play a role in controlling the immune response and tissue

remodeling (39). M2 macrophages encompass a variety of

phenotypes that further subdivided into M2a (exposure to IL-4 or

IL-13), M2b (induced by immune complexes in combination with

IL-1b or LPS), M2c cells (after exposure to IL-10, TGF-b or

glucocorticoids) and M2d cells (IL-6, angiogenic adenosineA2A)

(40, 41). M2 macrophages inhibit inflammatory reactions and

promote tissue repair and wound healing mainly by secreting

anti-inflammatory cytokines (such as IL-10) and growth factors

(such as vascular endothelial growth factor (VEGF) and TGF-b).
They also regulate the Th2 immune response, which is beneficial for

disease recovery in the late stage of inflammation.

Stimulated by GM-CSF, IFN-g, and LPS, M0 macrophages

polarize into M1 macrophages. Alternatively, M-CSF, IL-4, IL-13,

and immune complexes (IC) stimulation cause the polarization of

M0 macrophages to M2 macrophages. Various cytokines further

induce M2 macrophages to differentiate into M2a, M2b, M2c, and

M2d phenotypes. M1 macrophages are usually associated with

inflammation and represent a prototypic subset of pro-

inflammatory macrophages (39). In contrast, M2 macrophages

are polarized by Th2 cytokines IL-4 and IL-13, among other

factors. They are characterized by high levels of anti-

inflammatory cytokines and pro-fibrotic factors (39, 42),

contributing to matrix deposition and tissue remodeling (43). M2

macrophages are the primary source of TGF-b1, which is widely

recognized as a critical cytokine associated with fibrosis (39, 44, 45).

M2 macrophages have been found to affect pathological fibrosis

(46) and play a role in the process of fibrosis, such as in PF (47–50),

renal fibrosis (51, 52), ischemic cardiac fibrosis (53, 54), and

neovascularization (55).

Therefore, on one end of the extreme, M1 pro-inflammatory

cells facilitate the eradication of infections, albeit with the potential

to inflict damage. On the other extreme, M2 anti-inflammatory cells

have a repair phenotype that promotes a regression phase of the

injury response (51). In response to various signals, macrophages

may undergo classical M1 activation (stimulated by TLR ligands

and IFN-g) or alternative M2 activation (stimulated by IL-4/IL-13).

These states reflect Th1-Th2 polarization in T cells (56, 57). The M1

phenotype is characterized by high levels of pro-inflammatory

cytokine expression, high production of reactive nitrogen and

oxygen intermediates, promotion of the Th1 response, and potent

bactericidal and tumoricidal activity (58). M1 macrophages are also
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believed to be involved in various chronic inflammatory and

autoimmune diseases (59). M2 macrophages are considered to be

involved in the control of parasites, promoting tissue remodeling

and tumor progression, and have immunomodulatory functions.

They exhibit effective phagocytic activity and high expression of

scavenging molecules, among others (60).

2.1.3 Function classification of
homeostatic activities

Mosser and Edwards proposed a classification of macrophages

based on three primary functions that these cells perform to

maintain homeostasis in the body: host defense (classically

activated), wound healing, and immune regulation (32).

2.1.3.1 Host defense macrophages

The role of classically activated macrophages in host defense

against intracellular pathogens has been well documented. Classically

activated macrophages, as mentioned earlier, are crucial for host

defense. However, their activation needs to be tightly regulated due to

the potential for cytokines and mediators they produce to cause host-

tissue damage. For instance, classically activated macrophages

produce IL-1, IL-6, and IL-23, which have been associated with the

development and expansion of TH17 cells (61). These cells produce

IL-17, a cytokine involved in recruiting polymorphonuclear

leukocytes (PMNs) to tissues, potentially contributing to

inflammatory autoimmune pathologies. On the other hand,

macrophages can inhibit inflammation by clearing apoptotic PMNs

during inflammation, partly due to the production of TGF-b (62–64).

2.1.3.2 Wound-healing macrophages

Macrophages play a vital role in wound repair (11, 65).

Alternatively, activated macrophages have anti-inflammatory

functions and are involved in regulating wound healing. They

contribute to dampening inflammation, clearing cell debris, and

coordinating tissue repair, making them essential for the wound

healing process (66). Wound-healing macrophages can develop in

response to innate or adaptive signals. IL-4, released during tissue

damage, is one of the initial innate signals that rapidly convert

resident macrophages into a population of cells programmed to

promote wound healing (67). IL-4 stimulates arginase activity in

macrophages, allowing them to convert arginine to ornithine, a

precursor of polyamines and collagen that contributes to

extracellular matrix (ECM) production (68). When the

inflammatory stimulus or pathogen is eliminated, M1 cell

activation diminishes. Alarmins and Th2-type cytokines drive the

immune response toward a wound-healing response characterized

by the accumulation of M2 macrophages. These M2 macrophages

promote wound healing and fibrosis by producing matrix

metalloproteinases (MMPs), including MMP12, tissue inhibitor of

metalloproteinases 1 (TIMP1), growth factors (including platelet-

derived growth factor (PDGF)) and cytokines (such as TGF-b1) (29).

2.1.3.3 Regulatory macrophage

Regulatory macrophages have a key role in regulating the

inflammatory immune response to limit tissue damage. Their
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primary physiological function is to dampen inflammatory

immune responses and prevent the immunopathology associated

with prolonged activation of classically activated macrophages (66).

They are characterized by the production of high levels of IL-10

(69). Regulatory macrophages can secrete large amounts of this

cytokine in response to Fc receptor g -binding (34, 70). They

represent a relatively broad category of macrophages that play a

crucial role in inhibiting inflammatory immune responses and

preventing the immunopathology associated with prolonged

activation of classically activated macrophage (71). They are

distinct from classically activated macrophages and differ from

macrophages treated with Th2 cytokines, such as IL-4 or IL-13,

known as alternatively activated macrophages (72).

2.1.4 Other classifications
Apart from M1 and M2 macrophages, there are additional

subpopulations of macrophages, including tumor-associated

macrophages (TAMs), CD169 macrophages, and T cell receptor-

positive (TCR) macrophages (73).

2.1.4.1 TAM

Macrophages display plasticity, with their phenotype determined

by their location and the physiological or pathological context.

Classically activated macrophages (M1) and alternatively activated

macrophages (M2) represent two ends of the macrophage phenotype

spectrum (74). TAMs closely resemble M2 macrophages and are

associated with the inhibition of anti-tumor immunity (75). Myeloid-

derived suppressor cells (MDSC) are often associated with TAM and

may serve as their precursors (32, 76). TAMs promote tumorigenesis,

tumor growth, invasion, metastasis, and affect tumor metabolism

through various mechanisms (77). Recent study indicated that TAMs

have protumoral functions, indicating that they play a direct or

indirect role in promoting tumor progression (78).

2.1.4.2 CD169 macrophages

As a specific subpopulation of macrophages, CD169

macrophages have been recently studied in malignant tumors (79).

Current research suggests that CD169 macrophages have inhibitory

effect on tumors. CD169/Siglec1/sialoadhesin, a sialic acid-binding

immunoglobulin-like lectin, is primarily expressed in metallophilic

macrophages in the marginal zone of the spleen and macrophages in

the subcapsular sinus and medulla of lymph nodes. In addition to

their role in anti-infectious immunity, recent study has

demonstrated the involvement of CD169 macrophages in tumor

immunity and their association with a favorable prognosis (79).

2.1.4.3 T cell receptor

The T cell receptor (TCR) is a molecule essential for antigen

recognition and forms a complex with CD3 (80). Previous studies

have reported the presence of TCR macrophages in both human

and murine populations. TCR-ab has been observed in peripheral

blood monocytes and in vitro in activated monocyte-derived

macrophages. TCR macrophages can release CCL2 and exhibit a

high phagocytosis capacity (81). Recently, Fuchs et al. (82) reported

that TCR-ab macrophages are present in murine and human
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atherosclerotic lesions, indicating their potential as a novel

molecular target for diagnosing and treating diseases where

cholesterol plays a central role in the pathophysiology.
2.2 Macrophage function

Macrophages have highly diverse roles in maintaining the

body’s integrity, including direct participation in pathogen

elimination and tissue repair during aseptic inflammatory

conditions. Their functions vary across different tissues, playing

crucial roles in tissue development, immune response to pathogens,

surveillance and monitoring of tissue changes, and maintenance of

tissue homeostasis.
2.2.1 Phagocytosis and elimination of
pathogenic microorganisms

Macrophages are specialized phagocytes that, often with a long

lifespan, are present in all organs to maintain tissue integrity, remove

debris, and respond rapidly to initiate repair in the event of innate

immunity after injury or infection (30, 83). Plasticity and functional

polarization are the hallmarks of the mononuclear phagocyte system

(41). Their phagocytic activity is crucial for fibrogenesis, with the type

of engulfed dead cells influencing fibrosis progression (84).

Macrophages also act as heterologous phagocytes, detecting

pathogen-related molecular patterns and injury-related molecular

patterns through pattern recognition receptors (85, 86). TAMs

demonstrate bidirectional transformation between anti-

inflammatory and immunosuppressive phenotypes (57, 87).

Furthermore, macrophages play a vital role in wound repair (65).

2.2.2 Antigen presentation, immunomodulation,
and anti-inflammatory function

Macrophages have the capacity to take up and present antigens,

bridging innate and adaptive immunity (88). They can act as

antigen-presenting cells (APCs) and influence adaptive immune

responses (89). Monocytes that enter the tissue during

inflammation can carry antigens to lymph nodes and present

them to naive T-cells (90). Regulatory macrophages have been

shown to efficiently present antigens and induce antigen-specific T-

cell responses dominated by the production of Th2 cytokines (89).

Macrophages also play a crucial role in cellular immunity by

secreting cytokines and chemokines, regulating the activities of

other immune cells, and balancing the body’s immune response.

They can secrete both pro-inflammatory cytokines, such as IL-1 and

IL-6, to promote inflammatory reactions, and anti-inflammatory

cytokines, such as IL-10, to inhibit excessive inflammation.

2.2.3 Regulation function regulating fibrosis
Macrophages are considered to be the critical cell types in the

development of fibrotic diseases (17). Recent studies have also

revealed that their role as regulators of fibrosis. Like myofibroblasts,

these cells are derived from resident tissue populations such as

Kupffer cells or bone marrow migrants (91–95). Current studies

have shown that the pathogenesis of fibrosis is tightly regulated by
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different populations of macrophages, which exert unique functional

activities in the initiation, maintenance, and regression stages of

fibrosis (96, 97). Activated hepatic stellate cells (HSCs) attract and

stimulate macrophages, which produce profibrotic mediators like

TGF-b1 and PDGF, directly activating fibroblasts (94, 98). Several

studies have identified macrophages as a major source of TGF-b1 and
PDGF in fibrosis (71, 99). While macrophages contribute to fibrosis

progression, they may also mediate its regression (11). Given the

multifunctional capacity and heterogeneous phenotype of

macrophages, it is not surprising that they can enhance and limit

fibrosis (100). M2 macrophages may be a promising potential target

for future anti-fibrosis therapies.
3 Overview of myofibroblast

3.1 Source and characteristics
of myofibroblasts

In 1971, Gabbiani and his colleagues discovered and

characterized myofibroblasts, which are fibroblasts modified to

exhibit active contraction in rat wound granulation tissue. This

was the first time it had been shown that myofibroblasts promote

dermal wound contraction (101). Myofibroblasts are a subset of

activated fibroblasts that express molecular markers such as a-SMA

and the fibronectin (FN) splice variant extracellular domain (ED)-A

FN (102). Hyperactive myofibroblasts, marked by the expression of

a-SMA, are primarily responsible for the production of pathogenic

collagen tissue fibrosis (7, 103). One of the defining features of

myofibroblasts is the development of in vivo stress fibers and

contractile force (104). They exhibit morphological and structural

characteristics similar to smooth muscle cells, including a flat and

irregular morphology, developed cell-ECM interactions, and

intercellular space junctions (105). The activation of

myofibroblasts is crucial for physiological and pathological tissue

repair. Myofibroblasts are the main ECM secretory cells in wound

healing and fibrosis and are mainly responsible for the contractility

of scar tissue when it matures (106). Myofibroblasts combine the

ECM synthesis characteristics of fibroblasts with the cytoskeletal

characteristics of contractile smooth muscle cells, regulating

connective tissue remodeling (107).

Defining characteristics of myofibroblasts include abundant

rough endoplasmic reticulum, moderately developed peripheral

myofilaments with focal density, fibronectin, and a-SMA

immunostaining (108) . In wound granulat ion tissue,

myofibroblasts coexist with prominent endoplasmic reticulum

and contractile microfilaments (109). The transformation of

myofibroblasts is triggered by integrating neurohumoral, cytokine,

growth factor, and mechanical signals from the extracellular

environment (110). Myofibroblast differentiation is a critical event

for wound healing, tissue repair, and chronic fibrosis (104, 107,

111). At least three local events are required for the differentiation of

a-SMA-positive myofibroblasts: accumulation of biologically active

TGF-b1, the presence of specialized ECM proteins like ED-A splice

variants of fibronectin, and high extracellular stress are caused by

the mechanical properties of ECM and cellular remodeling activity
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(104). The mechanical resistance of the ECM, combined with the

action of fibrotic TGF-b1, is the primary stimulus for the

differentiation and persistence of myofibroblasts (104).
3.2 Distribution of myofibroblasts

Myofibroblasts can originate from various sources, including

epithelial-mesenchymal transition (EMT) (7), endothelial-

mesenchymal transition (112, 113), resident fibroblast or pericyte

proliferation (114), and the newly discovered phenomenon of

MMT (115). Experimental evidence demonstrates that about 50%

of myofibroblast accumulation comes from local proliferation of

resident tissue fibroblasts, while approximately 35% comes from

bone marrow-derived cells (116). Bone marrow transplantation

studies have demonstrated the ability of bone marrow-derived

cells to populate distal tissue sites (115, 117, 118).
3.3 The hazards of myofibroblasts

Myofibroblasts pose hazards in various ways. They are the

primary cells responsible for collagen production in tissue

fibrosis, and their contraction and ECM remodeling activity play

a crucial role in fibrotic diseases (119–121). The fate of

myofibroblasts in injured tissues, regardless of their origin, may

ultimately determine whether healing occurs normally or progress

to end-stage fibrosis (107). Persistent myofibroblast activity leads to

progressive tissue fibrosis and distortion of the typical tissue

architecture, resulting in organ failure and, ultimately, death (89).

While the high contractile force generated by myofibroblasts is

beneficial for physiological tissue remodeling, excessive force can be

detrimental to tissue function, as seen in hypertrophic scars, fibrotic

diseases, and stromal reactions to tumors (111).

Myofibroblasts are also critical components of the matrix

reaction around hepatocellular carcinoma, contributing to the

extracellular matrix component (122, 123). Activated hepatic

stellate cells, portal vein fibroblasts, and bone marrow-derived

myofibroblasts have been identified as central collagen-producing

cells in the damaged liver (91). They play significant roles in renal

fibrosis and are implicated in its pathogenesis (124). Additionally,

myofibroblasts contribute to chronic cardiac fibrosis (110).

Experimental and clinical observations suggest that myofibroblasts

produce pro-invasive signals that may be associated with cancer

progression and pain (125). Myofibroblasts present in the matrix

reaction of epithelial tumors may contribute to the progression of

cancer invasion (126, 127).
4 The contribution of MMT to the
pathogenesis of PF

4.1 Introduction of PF

PF is a chronic and progressive irreversible pulmonary

interstitial disease that poses a significant public threat health
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(128). It is a characteristic feature of a large class of interstitial

lung diseases (ILD) (129, 130). Symptoms of PF typically include

shortness of breath, unproductive cough, weight loss, and fatigue

due to hypoxia (131). It is characterized by thickened fibrotic

alveolar walls leading to impaired gas transfer, restricted

ventilatory patterns, and, as a result, respiratory failure (132, 133).

Pre-existing inflammation is a key factor in PF development.

Acute lung injury (ALI) and its more severe manifestation, acute

respiratory distress syndrome (ARDS), are specific forms of lung

inflammation characterized by diffuse alteration of the alveoli, non-

cardiogenic lung edema, and local and systemic inflammation (134–

137). Inflammatory cascades contribute to the pathogenesis of ALI,

resulting in increased permeability of lung capillary vessels and

diffuse alveolar damage (138–140). The pathomorphological

changes in the lungs during ALI/ARDS include neutrophilic

inflammatory infiltration, diffuse alveolar damage, alveolar and

interstitial edema, hyalin membrane formation in the exudative

phase, and ECM deposition in the proliferative phase (139, 141, 142).

PF is a heterogeneous disease characterized by a distinct pattern

of tissue pathology and comprises a large number of chronic

respiratory pathologies accompanied by connective tissue growth in

various lung compartments, among which interstitial lung disease

(ILD) and idiopathic PF (IPF) are the most severe and irreversible

ones with progressive fibrosing of the lung parenchyma (130, 143–

145). IPF, specifically, is a significant type of pulmonary fibrosis,

predominantly affecting the elderly, with high mortality and poor

prognosis (146). It can cause dyspnea, cough, impaired lung function,

and death (147–149). The prevalence of IPF is around 10 cases per

100,000 population, while ILDs have a prevalence of 19.4 cases per

100,000 population (150, 151). In 2014, two drugs, pirfenidone and

nintedanib, were approved by the FDA for the treatment of PF (152).

However, effective therapeutic options for PF are still lacking, and

current treatments only delay disease progression without providing

a complete cure. Moreover, these drugs have undesirable side effects,

such as gastric and intestinal bleeding and severe diarrhea. Lung

transplantation is the last resort for patients, offering some extension

of lifespan, but it is not accessible to most individuals. Therefore,

studying the molecular mechanisms underlying the transition from

acute lung inflammation to PF and identifying new molecular

markers and promising therapeutic targets for preventing PF

development remain important objectives.
4.2 Role of macrophages in
pulmonary fibrosis

Macrophages, as innate immune cells with antibacterial and

phagocytic activity, play a significant role in PF. They are the most

abundant immune cell population, accounting for about 70% (153).

They are widely distributed in the lung and alveolar tissue and are

involved in almost all the physiological and pathological processes of

the lung (154). They are the host lung defense, indispensable

paramount sentry (155, 156), and also play a vital role in the

pathogenesis of PF. Macrophage infiltration is observed in PF (157).

Macrophages are involved in all stages of lung injury and repair and

can both promote and inhibit fibrosis. They play an essential role in
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the removal of lung pathogens clearance and maintaining homeostasis

(157, 158). The pathogenic role of macrophages in PF has been

investigated in multiple studies, involving reactive oxygen species

generation (159–161), stimulation of proteinase-activated receptors

(162, 163), and secretion of pro-fibrotic cytokines (164, 165).

There are three main types of pulmonary macrophages: alveolar

macrophages (AM), interstitial macrophages (IM), and bronchial

macrophages (BM), with AM accounting for more than 90% (166).

Different subtypes of macrophages play distinct roles in lung injury,

repair, and fibrosis (167). Single-cell sequencing of lung tissue from

patients with PF have confirmed that alveolar macrophages play an

essential role in PF (168–170). Alveolar macrophages are the first

cells to come into contact with external pathogens and irritants,

initiating and later resolving lung immune responses. Additionally,

macrophages have other organ-specific functions, such as surfactant

utilization and absorption of apoptosing and destroying cells (171–

174). Monocyte-derived macrophages are key drivers of PF and

supplement alveolar macrophages that are lost immediately upon

injury (175, 176).

The effect of macrophages on PF is mainly related to their

polarization, which occurs during the repeated damage and

abnormal repair of alveolar epithelial cells (177, 178). Epithelial

apoptosis is a critical component of fibrotic disease in many organs,

including the lung (179, 180). Down-regulating the pro-fibrosis

activity of alveolar macrophages or depleting this group of cells can

effectively treat experimental PF (181–183). Macrophages can

polarize into either a pro-inflammatory M1 phenotype or an

alternatively activated M2 phenotype, depending on the

microenvironment in which they reside (184). In response to lung

injury, macrophages undergo a transition into pro-inflammatory

M1 phenotypes and begin to secrete pro-inflammatory cytokines

(TNF-a, IL-6, IL-1) and chemokines (IL-8, CCL7, CCL2), which

leads to the increased chemotaxis and progressive enrichment of

alveolar spaces by monocytes and neutrophils (185), which

aggravate the pulmonary inflammatory response. On the other

hand, M2 polarization releases various cytokines, such as TGF-b1
and IL-10, promoting the generation of myofibroblasts and the

deposition of extracellular matrix, ultimately leading to PF.

During tissue damage and early inflammation stages, the

activation of M1 macrophages promotes inflammation through

extracellular matrix-degrading MMP and pro-inflammatory

cytokines. An active cytokine environment, including Th1

cytokines, IL2, IFN-g, and TNF-a, drives M1 macrophage

activation. In contrast, other types of interstitial lung diseases

(ILDs), including PF, often have a higher proportion of anti-

inflammatory M2 macrophages (186) (Figure 2).

In the progression of PF, M1, and M2, macrophages are recruited

to the site of the lung tissue injury site to regulate the fibrotic process

after basementmembrane destruction. M1macrophages play a crucial

role in matrix degradation by directly and indirectly producing MMP

and various anti-fibrotic cytokines, essential for ECM remodeling and

help reduce the pathological fibrous proliferation observed in late ALI

(187). In contrast, M2macrophages promote fibrous proliferation and

ECM deposition in lung tissue (188, 189). Therefore, the degree of PF

depends on the balance betweenM1 andM2macrophages in the local

microenvironment of lung tissue injury. Studies have shown that
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macrophages, predominantly M2 macrophages, contribute to the

pathogenesis of PF (155, 190). M2 macrophages are the primary

source of TGF-b1 and platelet-derived growth factors that induce

fibroblast differentiation into myofibroblasts, initiating PF (191).

Macrophage subsets may regulate fibrosis by differentiating into

myofibroblasts, acting as sources of cytokines and growth factors

with fibrotic properties, and secreting proteases involved in matrix

remodeling (192). Therefore, the number and phenotype of

macrophages are considered essential for the pathological process of

PF (193, 194). While macrophages are essential for lung defense, they

can also lead to tissue damage (195). Different subtypes of

macrophages play distinct roles in lung injury, repair, and

fibrosis (196).
4.3 Role of myofibroblasts in PF

The main morphological characteristics of PF, such as ECM

deposition and remodeling of lung architecture, are consequences

of a disbalance between two physiological processes in the lungs: (1)

proliferation/apoptosis of fibroblasts and myofibroblasts; (2)

synthesis/degradation of ECM components (197). These processes

are closely interconnected, and the disruption of fibroblast and

myofibroblast functioning is the primary driver behind the

imbalance of ECM homeostasis and the development of PF. The

fibroblastic phenotype present in that diseased lung primarily by the

production of several soluble factors, such as TGF-b, PDGF, VEGF,
and thrombospondin 1, which can differentiate resident fibroblast

into myofibroblasts (170, 181, 195). Regardless of the source of lung

fibroblasts, myofibroblasts, which resemble smooth muscle cells in

terms of their contractile ability and expression of a-SMA, are

considered the key cells in PF development.

Myofibroblasts are the primary effectors responsible for the

excessive production of collagen and other extracellular matrix

proteins in fibrotic lungs (104, 198). These contractile fibroblasts

express a-SMA and abnormally proliferate in PF. They play a

significant role in the occurrence and progression of PF by

synthesizing and secreting large amounts of ECM components,

such as collagen (I, III, IV, V, and VI), fibronectin, and laminin

(199–201), making them critical in regulating the progression of PF.

Myofibroblasts have also been found to secrete or release various

proteins, lipids, and nucleic acid molecules that contribute to the

pathological characteristics of other cell types in fibrotic lungs (129).

The accumulation of myofibroblasts is considered a marker of

PF (202). Current research indicates that myofibroblasts involved in

PF originate from several sources, including the proliferation and

differentiation of resident fibroblasts, the recruitment of circulating

fibroblasts to injury sites in organs, endothelial-mesenchymal

transformation, and epithelial-mesenchymal transformation (203–

205). The synthesis of pathogenic collagen by myofibroblasts, as the

main effector of tissue fibrosis, and the process of MMT are essential

regardless of the etiology of fibrosis (3, 206–208). Myofibroblast

transdifferentiation is a marker of the fibrotic response. Evidence

suggests that macrophages are involved in regulating fibrotic

responses, with pulmonary myofibroblasts being the primary

target for the development of new therapies for IPF (104, 198).
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4.4 MMT related signaling pathways in the
development of PF

As described earlier, fibrosis is defined by the excessive

accumulation of fibrous connective tissue in and around inflamed

or damaged tissue, which can lead to permanent scarring, organ

malfunction, and, ultimately, death, as seen in end-stage liver

disease, kidney disease, IPF, and heart failure (91, 209). The

development of PF involves genes and molecular pathways that

primarily participate in pre- and postnatal lung development (210,

211). The key pathophysiological events of IPF include repetitive

alveolar epithelial cell injury, the presence or absence of local

inflammation, impaired epithelial-mesenchymal crosstalk, and

subsequent fibroblast-to-myofibroblast activation (212–214).

These mechanisms are mediated by abnormally activated

signaling molecules that drive the process of fibrosis, such as

TGF-b, Wnt/b-catenin, hedgehog, Notch, and fibroblast growth

factor signaling pathways, with the TGF-b signaling pathway being

the most critical (215, 216). While most of these pathways are

inactive in the adult organism, they become active during tissue

regeneration, and the chronic pathological activation of these

signaling pathways is associated with injury restoration processes

in all organs, including the lungs (210, 217, 218). Furthermore, a

recent study demonstrated that nintedanib, one of the FDA-

approved anti-fibrotic drugs, modulates TGF-b, VEGF, and Wnt/

b-catenin signaling pathways, further supporting the central role of

these pathways in PF development (219) (Figure 3).
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4.4.1 TGF-b pathway
4.4.1.1 TGF-b biology

TGF-b is a member of a large polypeptide family, modulating

several biological processes, including proliferation, differentiation,

and cell apoptosis in internal organs (219). Initially isolated from

platelets, TGF-b is a multifunctional cytokine that plays a crucial

role in regulating fibrosis both at physiological and pathological

levels (220, 221). The TGF-b signaling pathway is activated during

the development of fibrosis in different tissues and regardless of the

underlying cause. It leads to increased de novo synthesis of TGF-b
by multiple cell types, including macrophages, platelets, and T-cells,

as well as increased release from the extracellular matrix (222–225).

Among the three identified members of the TGF-b family in

mammals (TGF-b1, TGF-b2, and TGF-b3), TGF-b1 is the

predominant form expressed in the immune system, and it is the

most abundant subtype in most tissues, including the skin. TGF-b1
is a pro-fibrotic cytokine and a key initiator of organ inflammation

and fibrosis (226–228). It can induce the differentiation of epithelial

or endothelial cells into myofibroblasts in vitro (229–231).

4.4.1.2 TGF-b/Smad pathway

The TGF-b/Smad pathway is the primary signaling cascade

through which the TGF-b signal is transduced into various cellular

responses. Smad proteins, a family of cytoplasmic signal

transduction proteins, mediate the signals from activated TGF-b
receptors and interact with TGF-b responsive promoters. Smad2

and Smad3 are the key mediators of signals from activated TGF-b
FIGURE 2

The M0 can be polarized into M1 and M2 by different stimuli. The M1 plays an inflammatory role by releasing ROS, IL-1, IL-6 and IL-12, whereas M2
has the potential to promote fibrosis by releasing TGF-b, IL-4, IL-10 and PDGF in PF.
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receptors, and they form complexes with other transcription factors

to bind to DNA and regulate gene expression (232). Classical TGF-

b1 signal transduction operates through TGF-b receptors and

Smad2/3/4 transcription factors (230). In the tissue fibrosis

models, the protective effects observed in Smad3 gene knockout

mice indicate that TGF-b/Smad3 signaling is pro-fibrotic, while

conditional Smad2 deficiency promotes fibrosis, indicating the

opposite effects of Smad2 and Smad3 (233–235). It has been

demonstrated that Smad3 is a key signaling pathway for fibrosis

both in vivo and in vitro (131, 236, 237). The key role of Smad3 in

the development of fibrosis has also been reported in many disease

models, including bleomycin-induced PF (234). The TGF-b
signaling cascade involves the binding of TGF-b to its receptors

(TGF-bRII and TGF-bRI), leading to the activation of Smad2 and

Smad3, their translocation into the nucleus, and the transcription of

target genes (238).

4.4.1.3 Pathogenic effect of TGF-b in fibrosis

Macrophages are the primary source of the main effector

molecule TGF-b in fibrosis. TGF-b is the primary effector

molecule in fibrosis, promoting the proliferation of fibroblasts and

collagen synthesis by producing growth factors, thereby promoting

fibrosis (239). It accelerates the progression of PF by recruiting and

activating monocytes and fibroblasts and inducing ECM production

at the site of injury (240). Macrophages are one of the most

important regulators of the fibrotic response, secreting cytokines,

growth factors, and ECM-regulating proteins (43). They promote
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PF by releasing pro-fibrotic mediators (such as TGF-b),
chemokines, and matrix metalloproteinases. TGF-b stimulates

lung fibroblasts, circulating fibroblasts, and small airway epithelial

cells to transdifferentiate into myofibroblasts (199).

TGF-b promotes fibrosis through various mechanisms,

including the induction of myofibroblasts, increased synthesis of

ECM components, and inhibition of collagen degradation (241). It

plays a central role in the pathogenesis of PF by promoting the

activation, proliferation, and differentiation of epithelial cells and

collagen-producing myofibroblasts (242). TGF-b signaling is one of

the most potent inducers of fibroblast activation, stimulating the

synthesis of ECM components and inhibiting their degradation by

matrix metalloproteinases (243, 244). It also regulates the

differentiation of fibroblasts into myofibroblasts (245). TGF-b1,
b2, and b3 are all involved in embryonic lung development, the

maintenance of organ homeostasis, and responses to tissue damage.

Increasing evidence suggests that the TGF-b pathway is activated in

chronic lung diseases, including IPF (246). IPF and interstitial PF

are particularly serious lung diseases, with TGF-b signaling pathway
playing a significant role in fibrosis (247, 248).

4.4.2 Wnt/b- catenin signaling pathway
The Wnt gene family consists of 19 secreted glycoproteins and

is involved in the regulation of mammalian embryonic development

and tissue regeneration, making up the Wnt signaling pathway

(249). Classical Wnt signal transduction inhibits the

phosphorylation of b -catenin in the cytoplasm and subsequent
FIGURE 3

Overview of particular signaling pathways regulating pulmonary fibrosis development.
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translocation into the nucleus and activation of the transcription

factor TCF/LEF (250). The Wnt signaling pathway plays a vital role

in the development and maintenance of multiple organ systems,

including the brain, intestine, hematopoietic system, skin, and lung

(251–253). Increasing evidence shows that the Wnt family of

secreted glycoproteins and their associated signaling pathways are

involved in the development and play an active role in wound repair

and regeneration events, including PF, cancer, heart valve

formation, and aortic valve calcification (217, 254–257).

Classical Wnt signal transduction regulates the expression of

multiple gene families, including MMPs and angiogenic growth

factors, which play a role in PF development (258, 259). Activation

of the classical Wnt pathway is a common feature observed in

fibrotic disorders, occurring in systemic fibrotic conditions like SSc

and isolated organ fibrosis in the lung, kidney, or liver (19, 260–

265). The data suggest that inhibition of the classical Wnt pathway

may be an effective way to target TGF-b signaling in fibrotic

diseases (266). Several Wnt genes, including Wnt2, Wnt5a,

Wnt7b, Wnt11, and Wnt13, are expressed in developing and

adult lungs (251). In the adult lung, the Wnt pathway maintains

balance by regulating stem and precursor cells in both healthy

conditions and during the response to injury (267).

Wnt/b-catenin signal transduction induces an anti-apoptotic

and pro-fibrotic phenotype in lung fibroblasts, leading to fibroblast

proliferation and differentiation into myofibroblasts, exacerbating

lung tissue fibrosis (268). Activation of AEC II by Wnt/b-catenin
increases the production of IL-1b, stimulating inflammatory and

pro-fibrotic responses (269). Atypical activation of Wnt also

stimulates fibroblast proliferation and increases the synthesis of

ECM components (270). In adult lungs, the Wnt pathway

maintains homeostasis by regulating stem and precursor cells,

both in healthy conditions and during response to injury (267,

271). Additionally, Wnt signaling is involved in epithelial cell

proliferation, EMT, myofibroblast differentiation, and collagen

synthesis (217). In the epithelial cells of the lungs, Wnt stimulates

the production of surfactant and AEC II into AEC I differentiation

(272). In contrast, in lung fibroblasts, Wnt increases proliferation

and fibronectin expression and inhibits apoptosis (270). Recent

studies have also demonstrated the activation of Wnt signaling in

IPF, suggesting that this pathway plays a role in the pathogenesis of

human PF (19, 217). Inhibition of Wnt/b-catenin signaling leads to

the neutralizing of bleomycin-induced PF (273). The Wnt pathway

takes part in PF pathogenesis through multiple mechanisms,

including: (1) Wnt/b-catenin signaling pathway induces the anti-

apoptotic and pro-fibrotic phenotype in lung fibroblasts, leading to

fibroblast proliferation and their differentiation into myofibroblasts,

exacerbating lung tissue fibrosis (268). (2) Activation of AEC II by

Wnt/b-catenin increases IL-1b production, stimulating

inflammatory and pro-fibrotic responses (269). (3) Atypical

activation of Wnt also stimulates fibroblast proliferation and

increases the synthesis of ECM components (270).

Additionally, cooperative signaling pathways of Wnt/b-catenin
and TGF-b play an essential role in the development of PF: TGF-b
was shown to induce EMT synergistically with Wnt/b-catenin
(274). These findings suggest that targeting the interplay between

TGF-b and Wnt/b-catenin may be a promising therapeutic
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approach for PF. By inhibiting or modulating the cross-talks

between these pathways, it may be possible to intervene in the

pathogenesis of PF and potentially mitigate its progression.

4.4.3 Notch signaling pathway
The Notch signaling pathway is composed of four members in

mammalian cells (275). With the exception of Notch4, all genes

have been shown to regulate myofibroblast differentiation (276–

279). Notch1 and Notch3 are known to stimulate lung fibroblasts

(280). Moreover, Notch2 inhibit TGF-b induced a-SMA and

collagen I gene expression by down-regulating Notch3 in

myoblasts in hepatic stellate cells (278, 281), while in alveolar

epithelial cells, Notch1 induces phosphorylation of Smad3 and

activates a-SMA gene transcription in a manner dependent on

SRF binding sites and TGF-b control elements (282). Other

experiments have also shown that Notch1 inhibits fibroblast

proliferation dependent on Wnt11-dependent WISP-1 expression

(283). Notch signal transduction in fibrosis (including scleroderma

(284)), may be due to the activation of this signaling pathway for

myofibroblast differentiation, including through EMT)and

endothelial-mesenchymal transformation.

The Notch signaling pathway is highly conserved and plays a

crucial role in embryonic development and the homeostasis of

various organs, including the lungs (285). It functions through

paracrine signaling and one-way transmembrane receptors,

regulating cell development during organogenesis. In adult lungs,

along with other signaling pathways, the Notch pathway regulates

stem cell functions and wound healing (285, 286). Enhanced Notch

signaling has been observed during the development of PF (287),

and the suppression of JAG1, Notch1, NICD, and Hes-1 has been

shown to mitigate bleomycin-induced PF (288).
4.5 Effects of MMT on PF

MMT has been shown to contribute to interstitial fibrosis in

patients with chronic renal allograft injury, a mouse model of

unilateral ureteral obstruction (UUO), and progressive chronic

kidney disease (1). Macrophages expressing CD68+ and a-SMA+

markers play a significant role in collagen production, particularly

collagen I, and are associated with lung injury and interstitial

fibrosis (12, 196, 289). MMT cells with M2 phenotype have been

found to contribute to PF in animal models, including the lungs of

rats with unilateral ureteral obstruction (UUO) (1, 196, 289).

Eplerenone reduced the accumulation of MMT cells in the lung.

In UUO rat lung fibrosis, UUO-induced lung injury, and fibrosis,

MMT cells were found to account for the myofibroblast group,

confirming that MMT plays a role in PF. These MMT cells in the

lung exhibited an apparent M2 phenotype, indicating that the MMT

process may be an important pathway leading to PF (12).

MMT plays a crucial role in the progression of chronic

inflammation to pathological fibrosis, and the severity of interstitial

fibrosis is closely related to the number of MMT cells (1, 51, 196, 289).

MMT contributes to an increase in the population of myofibroblasts in

the lungs, which have a strong proliferative capacity and further

promote the proliferation of fibroblasts. Myofibroblasts, a subset of
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activated fibroblasts, are primarily responsible for organ deformation

by inducing the deposition of fibrous collagen during tissue fibrosis

(290). Upon transdifferentiation, myofibroblasts secrete various

components of the extracellular matrix, including collagen, leading to

excessive deposition of extracellular matrix in the lungs, a key

pathological characteristic of PF. This excessive deposition disrupts

the normal alveolar structure, resulting in alveolar collapse and reduced

lung function.

The pro-fibrotic cytokine TGF-b1 is an essential initiator of

organ inflammation and fibrosis by activating the downstream

Smad signaling cascade, especially the Smad3 signaling cascade (6).

Smad3 is a crucial transcription factor for classical TGF-b1 signal

transduction (234, 291). The inhibition of MMT by targeting

cytokines such as TGF-b1 or blocking the Smad3 signal pathway

can slow down the process of PF. Moreover, the non-receptor

tyrosine kinase Src, which can be activated by TGF-b1, has been

closely associated with tissue fibrosis. Inhibition of Src has been

shown to block MMT in animal models and reduce the severity of PF

induced by bleomycin (292–294). However, further research is

needed to fully understand the role of MMT in Src-mediated PF

and explore the potential of Src-targeted therapy for blocking MMT

and treating PF.

In summary, MMT plays an essential role in the process of PF,

which accelerates the process of PF by promoting the

transdifferentiation of macrophages into myofibroblasts. Inhibiting

the MMT process represents a potential therapeutic target for anti-

fibrotic treatment. Future studies should focus on elucidating the

regulatory mechanisms of MMT and its specific role in PF to provide

novel insights and treatment strategies for PF. A comprehensive

treatment approach considering various factors, including

inflammation control, inhibition of the fibrotic process, and

improvement of lung function, is essential for effectively

managing PF.
4.6 Effects of MMT on lung cancer

Lung cancer is the leading cause of death worldwide. For

decades, it has remained the second most common cancer and

the leading cause of cancer deaths, accounting for about 11.4% of

new cancer cases and 18% of cancer deaths globally in 2020.

Cancer‐associated fibroblasts (CAFs) are essential in tumor

microenvironment (TME) driven cancer progression. CAFs are

the most prominent stromal components (295). CAFs, a subtype

of myofibroblasts, contribute to the malignancy and advancement

of cancer (296). Cancer cells possess heterogeneity, versatility, and

adaptability, resulting in primary and secondary drug resistance

(297). The degree of macrophage-myofibroblast transition (MMT)

has been found to be closely associated with the prognosis of certain

cancers (297). MMT is an essential source of CAFs in non-small cell

lung cancer (NSCLC). The hematopoietic transcription factor

Runx1 has been identified as a critical regulator of MMT in

cancer patients. Inhibition of Runx1, macrophage-specific and

systemic, effectively blocks MMT-driven tumor formation in vivo,

making it a potential therapeutic target for eliminating pro-tumor

CAFs in patients with NSCLC (298).
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Myofibroblasts can secrete various growth factors and

cytokines, such as TGF-b and PDGF, which can stimulate the

proliferation and migration of tumor cells and promote the progress

of cancer. The TGF-b/Smad3 signal pathway is a critical regulatory

factor promoting tumor microenvironment (299–301). It is

essential to initiate MMT in chronic inflammatory diseases,

including cancer. The MMT process and tumor growth in lung

cancer are tightly regulated by Smad3 (302). TGF-b/Smad3 signal

transduction is a key regulatory factor in the tumorigenic

microenvironment. Recent evidence indicates that TGF-b can

trigger the M1/M2 polarization of TAMs by activating Smad2/3

and PI3K/AKT pathways, thus enhancing the transcription of

tumorigenic effectors such as IL-10, VEGFA, and CXCR4 (303).

However, targeting Smad3 also inhibits T cell anti-cancer

immunity, highlighting the complexity of potential therapeutic

strategies (5, 207, 293, 304).

MMT is a critical pathophysiological process within the tumor

microenvironment, leading to the generation of myofibroblasts that

secrete inflammatory factors and fibrosis-related proteins in tumor

tissues, promoting inflammation and fibrosis changes in the tumor

microenvironment (305). Co-expression of TAM markers (CD68)

and CAF markers (a-SMA) has been observed in lung, renal, and

prostate cancers, indicating the presence of MMT in these types of

cancer (1, 2, 196, 301). An interesting phenomenon in MMT is the

further differentiation of TAMs into CAFs. Silencing Smad3

specifically in macrophages effectively inhibits MMT and

consequently impedes CAF-mediated cancer progression. These

findings highlight the significance of macrophage Smad3 in

regulating CAFs through MMT, providing a specific therapeutic

target for cancer immunotherapy (5). Given the critical role of

MMT in cancer progression, inhibiting MMT may become a new

target for cancer treatment. By blocking the process of MMT, the

support of the tumor microenvironment can be weakened, the

proliferation and migration of cancer cells can be inhibited, and the

prognosis of cancer can be improved. Therefore, it is significant to

study the mechanism and intervention strategy of MMT for

developing new cancer treatment methods and improving

cancer prognosis.
5 Summary and prospect

Organ fibrosis is a common pathway by which various chronic

diseases progress to an end-stage state. The conversion of MMT is a

process where bone marrow-derived macrophages differentiate into

myofibroblasts, promoting organ fibrosis during injury. This paper

reviews the origin, distribution, and characteristics of macrophages

and myofibroblasts in organ fibrosis, along with their pathological

effects on diseases caused by organ fibrosis. The purpose is to

further understand MMT and its signaling pathway and to

determine a new target for organ fibrosis treatment.

Current research on MMT primarily focuses on renal fibrosis,

with limited studies on fibrotic diseases in other organs. The

mechanisms and influencing factors of the conversion of MMT

still require deeper exploration. Under specific conditions, MMT

provides new ideas and possibilities for treating kidney, lung, and
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liver diseases. Future studies need to focus on the crucial role of the

TGF-b/Smad3 signaling pathway in the progression of MMT and

organ fibrosis. Targeting the TGF-b/Smad3 signaling pathway for

MMT treatment is expected to become a viable strategy for the

prevention and treatment of progressive fibrosis.

The discovery of the MMT process also provides a new

direction for studying the possible mechanisms by which

macrophages promote fibrosis and offers a basis for intervening

in myofibroblast activity through multiple pathways. MMT not

only serves as a new therapeutic target for the prevention of fibrotic

diseases but also acts as a key checkpoint for the development of

chronic inflammation into pathogenic fibrosis. Understanding and

elucidating the phenomenon of MMT and its potential signaling

pathways will aid in identifying therapeutic targets for fibrosis.
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Aspirin-triggered resolvin D1
modulates pulmonary and
neurological inflammation in an
IL-22 knock-out organic dust
exposure mouse model
Alissa N. Threatt1, Jade White1,2, Nathan Klepper1,3,
Zachary Brier1,4, Logan S. Dean1,5, Ash Ibarra6,
Macallister Harris7, Kaylee Jones1, Maëlis J. L. Wahl8,
Melea Barahona1,5, Emmanuel O. Oyewole1, Morgan Pauly8,
Julie A. Moreno1,9* and Tara M. Nordgren1*

1Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and
Biomedical Sciences, Colorado State University, Fort Collins, CO, United States, 2Department of
Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States,
3Department of Animal Sciences, College of Agricultural Sciences, Colorado State University,
Fort Collins, CO, United States, 4Department of Biomedical Sciences, College of Veterinary Medicine
and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States, 5Cell and
Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States,
6Department of Chemistry, College of Natural Sciences, Colorado State University, Fort Collins,
CO, United States, 7Experimental Pathology Facility, Department of Microbiology, Immunology, and
Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort
Collins, CO, United States, 8Department of Biochemistry and Molecular Biology, College of Natural
Sciences, Colorado State University, Fort Collins, CO, United States, 9Brain Research Center, Colorado
State University, Fort Collins, CO, United States
Agriculture dust contains many organic immunogenic compounds, and organic

dust exposure is strongly associated with the development of immune-mediated

chronic pulmonary diseases such as chronic obstructive pulmonary disease

(COPD). Chronic organic dust exposure from agriculture sources induces

chronic lung inflammatory diseases and organic dust exposure has recently

been linked to an increased risk of developing dementia. The cytokine

interleukin-22 (IL-22) has been established as an important mediator in the

resolution and repair of lung tissues. The omega-3 fatty acid metabolite aspirin-

triggered Resolvin D1 (AT-RvD1) has shown efficacy in modulating the immune

response in both pulmonary and neurological inflammation but has not been

explored as a therapeutic in organic dust exposure-induced neuroinflammation.

Investigating the link between IL-22 and AT-RvD1 may help in developing

effective therapies for these immune-mediated diseases. We aimed to

investigate the link between organic dust exposure and neuroinflammation,

the role of IL-22 in the pulmonary and neurological immune response to

organic dust exposure, and the immune-modulating therapeutic applications

of AT-RvD1 in an IL-22 knock-out mouse model of organic dust exposure.

C57BL/6J (WT) and IL-22 knock-out (KO) mice were repetitively exposed to

aqueous agriculture organic dust extract (DE) 5 days per week for 3 weeks (15

total instillations) and treated with AT-RvD1 either once per week (3 total

injections) or 5 times per week (15 total injections) for 3 weeks and allowed to

recover for 3 days. We observed a significant pulmonary and neurological
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immune response to DE characterized by the development of inducible

bronchus associated lymphoid tissue in the lung and gliosis in the frontal areas

of the brain. We also observed that IL-22 knock-out increased pulmonary and

neurological inflammation severity. Animals exposed to DE and treated with AT-

RvD1 displayed reduced lung pathology severity and gliosis. Our data

demonstrate that DE exposure contributes to neurological inflammation and

that IL-22 is crucial to effective tissue repair processes. Our data further suggest

that AT-RvD1 may have potential as a novel therapeutic for organic dust

exposure-induced, immune-mediated pulmonary and neurological

inflammation, improving outcomes of those with these diseases.
KEYWORDS

agriculture dust, lung inflammation, neuroinflammation, omega-3 fatty acids, SPM,
aspirin-triggered resolvin D1, AT-RvD1
Introduction

TheCenters forDiseaseControl andPreventionrankedchronic lower

respiratorydiseases (CLRD)asa leadingcauseofdeath in theUnitedStates

(US)with 147,367deaths in 2023 (1).Chronic inflammatory lungdiseases

have also been linked to neuroinflammation and the development of

neurodegenerative diseases such asAlzheimer’s (2–5). In 2023, 6.7million

people were reported as diagnosed and living with Alzheimer’s disease in

theUS, and estimates project that number to increase to 14millionpeople

by 2060 (1, 6). CLRDs include chronic obstructive pulmonary disease

(COPD),asthma,andallergies (7–9).Particulatematter (PM)exposure isa

significant occupational hazard for agriculture workers, with organic dust

exposure strongly linked to occupational-associated CLRDs (10–13).

Organic dusts contain a variety of particulate matter (PM) sizes from

2.5 mm to 0.25 mm,microbes, andmany immunogenic compounds such

as microbial components, endotoxins, and metals that contribute to the

pulmonary immune response (14, 15).

Our laboratory has extensively characterized the pulmonary

immunological and pathological effects of organic dust exposure in

a murine model of repetitive dust exposure, but the secondary

neuroinflammatory effects of inhaled organic dust exposure have

not been explored (10, 16–19). Inhaled PM exposure has been

recently linked to an increased risk of developing dementia, with the

greatest risk being associated with agricultural organic dust

exposure over all other PM exposures (20). COPD patients have

documented increases in depressive symptoms, confusion, memory

loss, and mental functional decline as their disease progresses

(21, 22). A study conducted by the CDC analyzed comorbidities

of 8,094 patients in resident care facilities diagnosed with CLRDs

including chronic bronchitis, emphysema, and COPD (23). This

study found that 51.4% of patients with one more CLRD also

presented with Alzheimer’s disease or dementia (p <0.001), 27.4%

were diagnosed with depression (p=0.012), 7.7% were diagnosed

with multiple sclerosis, Parkinson’s disease, or epilepsy (p= 0.020),
02121
and 11.7% presented with other mental disorders (p=0.007) (23).

Overall, the authors found that 64.9% of patients with more CLRD

experienced a mental or behavioral health disorder, and 11.6%

experienced a nervous system disorder (23). Agriculture workers

often experience high levels of mental disorders including anxiety

(males: 22% females: 39%, total: 31%) and depression (males: 35%,

females: 42%, total: 39%) (24). Additionally, air pollution exposure

has been linked to neurological inflammation in murine models but

has not been assessed in the specific context of agricultural organic

dust exposure (3, 25, 26).

Both COPD and Alzheimer’s are incurable, progressive, and

ultimately fatal diseases with severe symptoms that reduce patients’

quality of life during the progression of disease (25, 27–29). The search

for therapies that combat these diseases is thus at the forefront of

immunotoxicological research. Omega-3 fatty acid metabolites termed

specialized pro-resolving mediators (SPMs), have been proposed as

exogenous therapies for a variety of inflammatory diseases, suggesting

they may be effective in reducing inflammation in a repetitive organic

dust exposure model of pulmonary and neurological inflammation

(30, 31). Aspirin-Triggered Resolvin D1 (AT-RvD1), a SPM,

has demonstrated restorative functions in pulmonary and

neuroinflammation models (32–35). Specifically, the aspirin-triggered

17(R)-RvD1 epimer has shown increased stability and pharmacological

efficacy compared to its 17(S)-RvD1 epimer in murine models of acute

lung injury and a chronic organic dust exposure-mediated pulmonary

inflammation murine model (32, 36–38).

Interleukin-22 (IL-22), an interleukin-10 (IL-10)-family

cytokine has been implicated in inflammation modulation, tissue

repair, and antimicrobial defense (39). Murine models investigating

the inflammatory consequence of IL-22 knock-out in infection,

allergy, and organic dust exposure models have demonstrated

increased disease severity in animals lacking IL-22 (40–45). We

recently demonstrated that whole-body IL-22 knock-out mice

exhibit increased pathology severity, cellular infiltrate counts, pro-
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inflammatory cytokine production, and altered tissue pathology

following repetitive organic dust exposure (45). We aimed to

investigate the link between attenuation of IL-22 and the tissue

repair functions of AT-RvD1 in an IL-22 knock-out mouse model

repetitively exposed to organic dust exposure.

We explored the link between inhaled organic dust exposure-

induced pulmonary and neurological inflammation via a mouse

model repetitively exposed to aqueous agriculture organic dust

extract (DE). We also aimed to investigate the SPM AT-RvD1 as

an exogenous therapy for pulmonary and neurological

inflammation utilizing an IL-22 knock-out transgenic mouse

model of severe pulmonary inflammation to explore its role in

modulating lung-brain axis inflammation. To investigate our

hypotheses, we evaluated the inflammatory response to organic

dust exposure and the immune modulation of AT-RvD1 in an IL-22

knock-out model repetitively exposed to DE through evaluation of

lung immune cell infiltrates, bronchoalveolar lavage fluid (BALF)

and lung tissue cytokines, lung pathology, brain microglia

quantification, and transcript evaluation in lung and brain tissue

via RNAscope technology.
Materials and methods

Dust extract preparation

Dustwas collected fromhog confinement facilities in theMidwest,

United States from surfaces at least 1meter off the ground to represent

the respirable fraction. Dust aliquots were stored at -20°C until use.

Dust extracts were prepared as previously described (18, 46). Briefly,

wholedustwas combinedwithHank’s balanced saline solution (HBSS)

(HyClone Laboratories) at a ratio of 1 g dust to 10 mL HBSS on a

magnetic stir plate for 1 hour at room temperature. The resulting

mixture was centrifuged at 2500 rpm for 20 minutes at 4°C. The

supernate was collected, while the pellet was discarded. Supernate was

transferred to a new tube and centrifuged again at 2500 rpm for 20

minutes at 4°C. Supernate was collected and filtered through 0.22 mm
syringe filters to produce 100% dust extract (DE) and stored at -20°C.

The resulting extract contains predominantly gram-positive bacterial

components, endotoxins, and trace metals (15). Complete analysis of

dust extract can be found at Online Repository Methods at

www.jacionline.org (15).
Animal husbandry and care

All animal protocols were reviewed and approved by the

Institutional Animal Care and Use Committee (Protocol Number

2887). C57BL/6J (WT) and whole-body IL-22 knock-out [C57BL/6-

Il22tm1.1(icre)Stck/J] (KO) (Jackson Labs) mice aged 8-12 weeks were

housed in the Colorado State University Painter Facility in a specific

pathogen-free environment with free access to standard mouse feed

and water. Three pairs of KO animals were purchased to establish a

breeding colony of IL-22cre x IL-22cre that produced all experimental
Frontiers in Immunology 03122
animals. Animals from the original breeding pairs and all offspring

were genotyped through TransnetYX (Memphis, TN) genotyping

PCR service to ensure accurate genotypes. WT mice were purchased

directly from Jackson Laboratories, age and sex matched to KOmice.

Purchased mice were acclimated for at least 7 days before performing

any procedures.
In vivo repetitive DE exposure and
AT-RvD1 treatment model

Mice were intranasally (i.n.) instilled with 50 ml 12.5% DE or

sterile saline 5 days/week for 3 weeks under light isoflurane sedation.

The concentration of DE was previously determined by a dose-

response study, which was found to elicit a strong pulmonary

inflammatory response without the risk of mortality (47). Sedation

for instillations was achieved using a SomnoSuite Small Animal

Anesthesia System (Kent Scientific Corporation) fitted with a small

animal anesthesia box. Animals were placed into the box with a flow

rate of 100 mL/minute at 2.0-3.0% anesthesia. Animals were removed

for instillations once breathing appeared slowed and even. Animals

were held in a supine position and 50 ml of the appropriate exposure
was loaded into a pipette tip and deposited at the tip of the animal’s

nose one drop at a time to allow natural inhalation. Afterwards,

animals were returned to their enclosures in a supine position to

encourage recovery and monitored for several minutes to ensure

return of normal behaviors. AT-RvD1 treated mice were

administered intraperitoneal (i.p) injections of 50 ml of 250 ng AT-

RvD1 or 5% ethanol (EtOH) (AT-RvD1 vehicle) in sterile saline

either once per week after the 5th DE instillation (weekly, for a total of

3 injections) or 5 times per week (daily, for a total of 15 injections)

(Figures 1A, B). Dosages and controls were determined based on

previously published data and a dose-response pilot study (data not

shown) (32, 33, 48, 49). Animals were allowed to recover for 72 hours

past-last DE instillation and AT-RvD1 injection before sacrifice.
Animal sacrifice and sample collection

Animals were euthanized in accordance with the American

Veterinary Medical Association guidelines by isoflurane overdose

immediately followed by cervical dislocation, 72 hours following the

final DE instillation and AT-RvD1 injection. Bronchoalveolar lavage

fluid (BALF) was obtained by inserting a 25G catheter into the trachea,

tying it off with suture, and lavaging the lungs three times with 1 mL of

ice-cold phosphate-buffered saline (PBS) (HyClone Laboratories) for

each wash. The first wash was collected in one 5 mL FACS tube while

washes two and three were collected in a second 5mL FACS tube. Both

tubes were centrifuged at 300 x g for 8 minutes to pellet the cells. The

supernatant fraction from wash 1 was aliquoted into a separate tube

and stored at -80°C for cytokine analysis by enzyme-linked

immunosorbent assay (ELISA). The supernates from washes two and

three were discarded, and cell pellets from both tubes were combined

with 400 µl of red blood cell lysis buffer (Life Technologies
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Corporation), placed on ice for 5 minutes, then centrifuged at 300 x g

for 8 minutes at 4°C. The supernatant fraction was discarded, and the

cell pellets were resuspended with 200 mL of PBS. A 10 ml aliquot of the
cell suspension was then collected for counting using a Countess 3 FL

automatic cell counter to generate total cell infiltrate values. The cell

suspensions were diluted with PBS to achieve a concentration of 1x106

cells/mL. 200 µl of the final cell suspension was then added to a

Thermo Cytospin 4 cytocentrifuge and centrifuged at 600 rpm for 5

minutes. Slides were dried overnight for further staining and analysis.

The left lobes of the lungs were tied off with suture, removed, placed in

800 ml of RNAlater (Invitrogen), and stored at -80°C until use. The

right lung lobes were extracted along with the heart and tracheal tissue,

then inflated with 10% neutral-buffered formalin (NBF) (Cancer

Diagnostics Inc.) before hanging under 20 cm of pressure and

submerged in 10% NBF overnight. They were then transferred to

cassettes and stored in 10% NBF for at least 48 hours before further

processing. Brains were extracted en bloc and immediately fixed whole

in tissue cassettes in 10% NBF for at least 48 hours before further

processing. All tissues were submitted to the Colorado State University

Veterinary Diagnostic Laboratory Experimental Pathology Facility

(EPF) for paraffin embedding and sectioning at 5 mm.
Frontiers in Immunology 04123
Cellular infiltrate analysis

Staining was performed on dried slides using a Volu-Sol dip-

stain kit, with methanol as the fixative, and eosin and methylene

blue (Volu-Sol) as the differential stains. Slides were imaged at 20X

magnification using an Olympus BX35 microscope and cellSense

software version 4.1. Differential counts were performed by

counting 300 cells on each image to evaluate macrophages,

neutrophils, eosinophils, and lymphocytes, assisted by QuPath

version 0.5.1.
Cytokine quantification

Bronchoalveolar lavage fluid (BALF) was collected, processed,

and stored as previously described above. Left lung lobes in

RNAlater were homogenized with lysis buffer containing PBS, 1X

RIPA lysis buffer (Thermo Scientific, Cat#: J62524.AE), and 1X

proteinase inhibitor cocktail (Thermo Scientific, Cat#: 1861279) at a

ratio of 50 mg tissue to 1 mL buffer. A Bead Mill 24 bead

homogenizer was used to break up the tissues (speed: 5.00, time:
FIGURE 1

AT-RvD1 dosing strategies in WT and IL-22 KO mice. (A) once weekly AT-RvD1 dosing strategy timeline; WT and KO animals were instilled i.n. with
12.5% DE 5 days/week for 3 weeks and treated with 250 ng AT-RvD1 i.p. once/week for 3 weeks, (B) Once daily AT-RvD1 dosing strategy timeline;
WT and KO animals were instilled i.n. with 12.5% DE 5 days/week for 3 weeks and treated with 250 ng AT-RvD1 i.p. 5 days/week for 3 weeks.
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0:05, cycles: 3, duration: 0:03). The samples were then incubated on

ice for 30 minutes, with agitation every 10 minutes. Homogenate

aliquots were stored at -80°C until use. Cytokine protein

concentrations in BALF and lung tissue were quantified using

sandwich ELISAs. Kits were purchased from DuoSet (R&D

Systems) and used according to the manufacturer ’s

recommendations with the modification of capture antibody

diluted in BupH Carbonate-Bicarbonate Buffer (Voller’s Coating

Buffer, Thermo Scientific). High-binding half-well 96-well plates

(Greiner Biotech) were coated with manufacturer-specified capture

antibody concentrations and incubated overnight at room

temperature before progression of assay. All washes were

performed using a Tecan HydroFlex™ plate washer. After

completion of the assay, plates were read on a FLUOstar Omega

spectrophotometer at 450 nm using Omega software version 5.7.

Concentration values were calculated from standards using a four-

parameter fit model in Omega MARS Software Version 4.00.
Lung histopathology

Whole right lung coronal sections, collected as previously

described above, were stained with hematoxylin and eosin (H&E)

following deparaffinization and rehydration with xylene and graded

EtOH solutions (xylene, 100% EtOH, 95% EtOH, 80% EtOH, 50%

EtOH, and finally 1X PBS). Slides were scanned at 40X on a Vectra

Polaris scanning microscope. Images of lungs from animals

administered weekly AT-RvD1 injections were blinded and

manually scored using a well-established semiquantitative scoring

method (19, 32, 45, 46, 50). Images from animals administered daily

AT-RvD1 injections were imported into VisioPharm version

2023.09.3.15043 x64 and processed through an artificial intelligence

(AI) workflow for quantitative assessment of alveolar space, alveolar

septa thickness, peribronchiolar inflammation, perivascular

inflammation, total alveolar septa nuclei, and percentage of inducible

bronchus-associated lymphoid tissue (iBALT) formations relative to

tissue area. AI quantification was performed on the whole lung tissue

with output measurements including area, percentages of parameters

to total tissue area or total parameter counts. VisioPharm is one of the

leading AI histopathology analysis software available. Our workflow

and applications were designed, annotated, trained, and verified by a

board-certified veterinary anatomic pathologist to identify our desired

readouts and ensure accurate results. The workflow is then trained

through a large set of sample images by a board-certified veterinary

anatomic pathologist where structures are identified by the software

and confirmed by the pathologist, allowing the software to “learn”how

structures are organized and are identified in the experimental images.

Briefly, the workflow consisted of multiple stepwise applications of

increasing specificity, starting with identification of the lung tissue,

followed by identification of airways and vessels, then inflammation

and iBALT, and finally identification of airway epithelial cells and

alveolar nuclei. During each step of the workflow, the results are

confirmed manually to ensure accurate detection of structures. All

parameters are normalized to tissue area to mitigate size and

artifact skewing.
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Immunofluorescence

Whole brain sagittal paraffin embedded tissue sections, as

previously described above, were deparaffinized by baking slides

at 60°C for 20 minutes, followed by rehydration through an EtOH

gradient (xylene, 50% xylene/50% EtOH, 100% EtOH, 95% EtOH,

70% EtOH), and then incubated in 1.0 M Tris buffered saline (TBS).

Antigen retrieval was achieved using 1 nM EDTA buffer with 0.05%

Tween20, pH 8.0 at 95°C for 20 minutes in a Biocare Medical

Decloaking Chamber™ NxGen (Biocare Medical). Tissues were

washed three times for 10 minutes each with 0.05M TBS and

blocked using 2% donkey serum in 0.2% Triton-X in 1.0 M TBS

for 1 hour at room temperature. Microglia were identified using

rabbit anti-ionized calcium binding adaptor molecule 1 (Iba1)

(1:1000; Abcam, Cat #: ab178846) diluted in 1.0 M TBS and

incubated overnight at 4°C. Tissues were then washed four times

for 10 minutes each with 0.05 M TBS. A goat anti-rabbit Alexa

Fluor 647 secondary antibody (Invitrogen, Cat#: A21244) diluted

1:500 in 2% donkey serum in 1.0 M TBS, was applied and incubated

for 1 hour at room temperature. Sections were washed three times

for 10 minutes each with 0.05 M TBS. Nuclear staining was achieved

by incubation with Hoechst 33342, diluted 1:2000 in PBS

(Invitrogen, Cat #: H3570), for three minutes, then washed three

times for 10 minutes each with 0.05 M M TBS. ProLong Diamond

Antifade Mountant (Fisher Scientific, Cat #: P36970) was then

applied before mounting with glass coverslips. Slides were kept at

room temperature, protected from light, for 24 – 48 hours to cure

mounting medium, then stored at 4°C in the dark prior to imaging.

Stained sections were scanned at 40X using a Vectra Polaris

microscope, and the number of microglia per area of each brain

region of interest were quantified using QuPath Version 0.5.1. All

sections were imaged on the same day with the same exposure

settings for each channel.
RNAscope

RNAscope® assays were performed according to the formalin-

fixed, paraffin-embedded (FFPE) tissue protocol provided in the

RNAscope™ Multiplex Fluorescent Reagent Kit v2 Assay Manual

(Document Number: UM 323100). Mouse lung and brain sections

previously described above were utilized, with 3 animals per sex, per

treatment condition, per genotype selected. Probes for IL-1b (Cat #:

316891-C3), CXCL10 (Cat #: 408921-C3), IL-10 (Cat #: 317261-

C2), TGF-b (Cat #: 407751), and AREG (Cat #: 430501) were

purchased from Advanced Cell Diagnostics, Inc. TSA Vivid

Fluorophore dyes 570 (Cat #: 323272) and 650 (Cat #: 232273)

were purchased from Advanced Cell Diagnostics, Inc. and diluted in

TSA buffer 1:1500 (Cat #: 322809). Opal Polaris 780 Fluorophore

Reagent Pack was purchased from Akoya Biosciences (Cat #:

FP1501001KT). TSA-DIG was diluted 1:1500 in TSA buffer for

lung sections and 1:750 for brain sections. Opal Polaris 780

Fluorophore was diluted 1:500 in Antibody Diluent/Block (Akoya

Biosciences, Cat #: ARD1001EA) for lung sections and 1:200 for

brain sections. Positive control slides using RNAscope™ 3-plex
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positive control probes (CAT #: 320881) and negative control slides

using RNAscope™ 3-plex negative control probes (Cat#: 320871)

were utilized to validate the assay and results. After completion of

the RNAscope® protocol, sections were incubated with RNAscope®

DAPI (Advanced Cell Diagnostics, Inc.) for 30 seconds, then

mounted on glass coverslips with ProLong Diamond Antifade

mounting medium (Invitrogen). The mounted sections were kept

at room temperature, protected from light, for 24–48 hours to cure

mounting medium, before being stored at 4°C until imaging. Slides

were scanned at 40X using a Vectra Polaris microscope, with all

sections imaged on the same day using the same exposure settings

for each channel. QuPath Version 0.5.1 was used according to

manufacturer protocols to detect the cell nuclei and quantify

subcellular dots per nucleus for the entirety of the lung tissue and

for each of the brain regions of interest.
Statistical analysis

All statistical and graphical analyses were performed using

GraphPad Prism Version 10. Outliers were tested for and removed

from the datasets using ROUT analysis with Q=1%. Statistical

significance was determined by performing 3-way ANOVA

analyses with Benjamini, Krieger and Yekutieli post-hoc analysis

for pairwise comparisons to reduce false discovery rate. A p-value

of less than or equal to 0.05 was used to determine significance and

a p-value of less than or equal to 0.1 was considered a trend.

Individual animals are represented by a single symbol on figures,

with filled shapes representing male animals and unfilled shapes

representing female animals. On figures, significance is denoted

by, * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001.
Results

IL-22 KO alters lung immune cell
trafficking and weekly AT-RvD1
administration reduces cellular infiltration
in IL-22 KO mice following repetitive
organic dust exposure

We have previously demonstrated that DE exposure leads to

increased infiltration of immune cells into the airways (19, 32, 51).

One well-established mechanism of AT-RvD1 is its ability to

modify immune cell recruitment to sites of infection and injury

(49). We aimed to establish an effective dosing strategy to assess the

therapeutic applications of AT-RvD1 in a model of repetitive ODE.

WT and IL-22 KO mice were instilled i.n. with 50 ml of either 12.5%
DE in sterile saline or sterile saline for 5 days per week for 3 weeks

(15 total installations) and injected i.p. with 50 ml of either 250 ng

AT-RvD1 in sterile saline or 5% EtOH (AT-RvD1 carrier) in sterile

saline once per week following the 5th DE instillation each week (3

total injections) (Figure 1A). To determine the impact of AT-RvD1

treatment on immune cell recruitment following DE, we examined

cellular infiltration into the airway via BALF cellular analysis

(Figures 2A–E) and lung histopathology (Figures 3A–D).
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Upon analysis of BALF cellular infiltrates, we observed an

increase in the total number of cellular infiltrates in both WT

(p=0.0011) and KO (p<0.0001) mice exposed to DE compared to

saline controls (Figure 2A). Additionally, we observed a trend of

increased total cells in KO mice exposed to DE compared to WT

mice exposed to DE (p=0.0702) (Figure 2A). KO mice exposed to

DE and treated with AT-RvD1 exhibited reduced total cell counts

compared to KO mice exposed to DE and treated with saline

(p=0.0265) (Figure 2A). Macrophage differential counts revealed

increased influx in WT (p=0.0162) and KO (p=0.0015) mice

exposed to DE compared to WT and KO mice exposed to saline,

respectively (Figure 2B). We also observed a trend between KO

mice exposed to DE and WT mice exposed to DE (p=0.0966)

(Figure 2B). KO mice exposed to DE and treated with AT-RvD1

demonstrated significantly reduced macrophage differential counts

compared to KO mice exposed to DE and treated with AT-RvD1

(p=0.0457) (Figure 2B). We did not observe any significant

differences or trends in the number of neutrophils, regardless of

exposure or treatment condition (Figure 2C). Eosinophil differential

counts revealed a decrease in the number of eosinophil influx in KO

mice exposed to DE and treated with AT-RvD1 compared to KO

mice exposed to DE and treated with saline (p=0.0180) (Figure 2D).

We also observed elevated trafficking of lymphocytes in WT

(p=0.0013) and KO (p<0.0001) mice exposed to DE compared to

saline exposed controls as well as significantly increased lymphocyte

counts in KOmice exposed to DE compared toWTmice exposed to

DE (p=0.0454) (Figure 2E).

We also examined lung pathology of mice injected with 250 ng

AT-RvD1 once per week to assess the effectiveness of AT-RvD1 at

reducing DE-induced lung pathology. We evaluated inducible

bronchus associated lymphoid tissue (iBALT), peribronchiolar

inflammation, and alveolar inflammation using a semiquantitative

scoring method previously utilized in our laboratory (19, 32, 50,

52, 53). Statistical analysis revealed a significant main effect of DE

exposure in all three parameters evaluated: iBALT (p=0.0002),

peribronchiolar inflammation (p<0.0001) and alveolar

inflammation (p<0.0001) (Figures 3B–D). However, on post-hoc

analysis, we observed no statistically significant differences or

trends between AT-RvD1 i.p. and saline i.p. treatment groups

(Figures 3B–D). Interestingly, we observed a similar pattern in all

parameters evaluated. We found a significant increase in the mean

inflammatory score of iBALT in both WT (p=0.0446) and KO

(p=0.0025) animals exposed to DE compared to saline-exposure

controls (Figure 3B). Additionally, we observed a significantly

increased peribronchiolar inflammation in WT (p=0.0064) and KO

(p=0.0005) animals exposed to DE compared to saline-exposed

controls (Figure 3C), as well as a significant increase in the mean

score for alveolar inflammation in KO animals exposed to DE

compared to saline-exposure controls (p=0.0004) and a trend in

WT animals exposed to DE compared to saline-exposure controls

(p=0.0596) (Figure 3D). We also did not observe any significant

changes in mean pathological scores of WT compared to KO animals

regardless of exposure or treatment group.

Following our observations of no statistically significant

changes in animals exposed to DE and treated with AT-RvD1

once weekly (Figures 3A–D), we developed a 5 day/week AT-RvD1
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FIGURE 3

AT-RvD1 administration once weekly does not improve lung pathology. WT and KO animals were instilled i.n. with 12.5% DE 5 days/week for 3
weeks and treated with 250 ng AT-RvD1 i.p. once/week for 3 weeks. (A) representative images at 20X magnification, (B) mean inflammatory score
for iBALT, (C) mean inflammatory score for peribronchiolar inflammation, (D) mean inflammatory score for alveolar inflammation. Scale bar = 50 mm.
3 way ANOVA with Benjamini, Krieger and Yekutieli post-hoc analysis, error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001. Sample sizes:
WT Saline i.n. + Saline i.p (2 female/2 male), WT Saline i.n. + AT-RvD1 i.p (2 female/2 male), WT Dust i.n. + Saline i.p (2 female/3 male), WT Dust i.n. +
AT-RvD1 i.p (3 female/3 male), KO Saline i.n. + Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p (2 female/2 male), KO Dust i.n. + Saline i.p (3
female/3 male), KO Dust i.n. + AT-RvD1 i.p (3 female/3 male).
FIGURE 2

Impacts of DE and AT-RvD1 on BALF immune cellular infiltrates in WT and IL-22 KO animals. WT and KO animals were instilled i.n. with 12.5% DE 5
days/week for 3 weeks and treated with 250 ng AT-RvD1 i.p. once/week for 3 weeks. (A) total cell counts, (B) macrophages, (C) neutrophils,
(D) eosinophils, (E) lymphocytes. 3 way ANOVA with Benjamini, Krieger and Yekutieli post-hoc analysis, error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01;
**** = p ≤ 0.0001. Sample sizes: WT Saline i.n. + Saline i.p (3 female/3 male), WT Saline i.n. + AT-RvD1 i.p (3 female/3 male), WT Dust i.n. + Saline i.p
(5 female/5 male), WT Dust i.n. + AT-RvD1 i.p (4 female/4 male), KO Saline i.n. + Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p (3 female/3
male), KO Dust i.n. + Saline i.p (5 female/4 male), KO Dust i.n. + AT-RvD1 i.p (6 female/5 male).
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injection regimen, which we found yielded more significant

therapeutic efficacy, through histopathology resolution, and was

thus employed as our model for further analysis of the pulmonary

and neurological inflammatory response to DE. Briefly, WT and IL-

22 KO mice were instilled i.n. with 50 ml of either 12.5% DE in

sterile saline or sterile saline for 5 days per week for 3 weeks, and

then injected i.p. with 50 ml of either 250 ng AT-RvD1 in sterile

saline or 5% EtOH (AT-RvD1 carrier) in sterile saline 5 days per

week for 3 weeks (Figure 1B).

Our analysis of lung histopathology via VisioPharm AI

applications revealed an increase in the percentage of iBALT

relative to lung tissue area in both WT (p=0.0014) and KO mice

(p<0.0001) exposed to DE (Figure 4B). Interestingly, we also observed
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a significant increase in iBALT percentage in KO mice compared to

WT mice exposed to DE (p=0.0002) (Figure 4B). Additionally, KO

mice exposed to DE and treated with AT-RvD1 displayed a

significant decrease in iBALT percent of lung tissue compared to

KO mice exposed to DE and treated with saline (p<0.0001)

(Figure 4B). Furthermore, we discovered significant sex differences

in the iBALT percentages displayed by bothWT and KO animals. We

found that female animals exposed to DE and treated with saline

exhibited a significantly higher iBALT percentage than male animals

exposed to DE and treated with saline in both WT (p<0.0001) and

KO (p<0.0001) animals (Figures 4C, D). Additionally, both WT

(p=0.0021) and KO (p<0.0001) female animals exposed to dust and

treated with AT-RvD1 displayed significantly reduced iBALT
FIGURE 4

AT-RvD1 treatment daily reduces iBALT in animals exposed to DE. WT and KO animals were instilled i.n. with 12.5% DE 5 days/week for 3 weeks and
treated with 250 ng AT-RvD1 i.p. 5 days/week for 3 weeks. (A) representative images at 4X and 10X magnification, (B) iBALT percentage in all
animals, (C) iBALT percentage in WT animals by sex, (D) iBALT percentage in KO animals by sex, (E) combined peribronchiolar and perivascular
inflammation percentage in all animals, (F) bronchiolar epithelium area, (G) alveolar space percentage, (H) total alveolar nuceli. Scale bar = 50 mm. 3
way ANOVA with Benjamini, Krieger and Yekutieli post-hoc analysis, error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01; **** = p ≤ 0.0001. Sample sizes:
WT Saline i.n. + Saline i.p (3 female/3 male), WT Saline i.n. + AT-RvD1 i.p (3 female/3 male), WT Dust i.n. + Saline i.p (6 female/6 male), WT Dust i.n. +
AT-RvD1 i.p (6 female/6 male), KO Saline i.n. + Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p (3 female/3 male), KO Dust i.n. + Saline i.p (7
female/7 male), KO Dust i.n. + AT-RvD1 i.p (7 female/8 male).
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compared to saline treated female animals (Figures 4C, D).

Evaluation of peribronchiolar and perivascular inflammation

percentage revealed a significant increase in both WT (p=0.0013)

and KO (p<0.0001) mice exposed to DE (Figure 4E). We observed a

trend of reduced peribronchiolar and perivascular inflammation in

KO animals exposed to DE and treated with saline and KO mice

exposed to DE and treated with AT-RvD1 (p=0.0791) (Figure 4E).

Bronchiolar epithelium area in KO mice exposed to DE was

significantly increased compared to KO mice exposed to saline

(p=0.0474) and was further increased in KO mice exposed to DE

and treated with AT-RvD1 compared to KOmice exposed to DE and

treated with saline (p=0.0233) (Figure 4F). Bronchiolar epithelium

area was also decreased in WT mice exposed to DE and treated with

AT-RvD1 compared to KOmice exposed to DE and treated with AT-

RvD1 (p=0.0353) (Figure 4F). We observed a significant decrease in

alveolar air space in KO mice exposed to saline compared to WT

mice exposed to saline (p=0.0301) (Figure 4G). Total alveolar nuclear

counts were observed to be elevated in WT mice exposed to DE

compared to WT mice exposed to saline (p=0.0377), with an

observed trend of increased nuclei in KO mice exposed to DE

compared to KO mice exposed to saline (p=0.0598) (Figure 4H).
Impacts of AT-RvD1 on lung inflammatory
mediator production in WT and IL-22 KO
mice during recovery following repetitive
DE exposure

We have previously demonstrated that ODE in mice increases

both pro- and anti-inflammatory cytokine production (32, 45, 47).

In our recovery model, we found that after 15 DE instillations, mice

displayed altered cytokine and inflammatory mediator production

in the airway and pulmonary tissue compartments at the protein

level (Figures 5A–F).

Evaluation of amphiregulin (AREG) concentrations in BALF

showed that KO mice exposed to DE exhibited decreased

concentrations compared to saline controls (p=0.0130) and that

KO mice exposed to DE displayed a trend of decreased AREG

concentrations compared to WT mice exposed to DE (p=0.0887)

(Figure 5A). Concentrations of interleukin-10 (IL-10), a classic anti-

inflammatory, pro-resolution cytokine was decreased in the BALF

of WT mice exposed to DE compared to saline controls (p=0.0009)

and a trend of decreased concentrations in KO mice exposed to DE

compared to saline controls (p=0.0535) was also observed

(Figure 5B) . Transforming growth factor-b (TGF-b)
concentrations in BALF did not yield any significant differences

regardless of genotype or treatment groups, however we did observe

a significant main effect of DE exposure (p=0.0021) (Figure 5C). In

the tissue compartment, IL-10 was observed to be elevated in KO

mice exposed to saline compared to WT mice exposed to saline

(p=0.0003) and in KO mice exposed to DE compared to WT mice

exposed to DE (p=0.0002). WT mice exposed to DE and treated

with AT-RvD1 exhibited increased tissue IL-10 concentrations

compared to WT mice exposed to DE and treated with saline

(p=0.0070) (Figure 5D). AREG quantification in lung tissues of WT

mice exposed to DE displayed increased concentrations compared
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to WT saline controls (p=0.0005) and were observed to be

decreased in KO mice exposed to DE compared to WT mice

exposed to DE (p=0.0051) (Figure 5E). We also observed a

significant decrease in AREG concentrations in KO mice exposed

to DE and treated with AT-RvD1 compared to WT mice exposed to

DE and treated with AT-RvD1 (p<0.0001). Lung tissue TGF-b
concentrations demonstrated a trend of increased concentrations in

KO mice exposed to saline compared to WT mice exposed to saline

(p=0.0533) and a significant increase in KOmice exposed to DE and

treated with AT-RvD1 compared to WT mice exposed to DE and

treated with AT-RvD1 (p<0.0003) (Figure 5F).

To evaluate mRNA transcript expression in animals exposed to

DE and treated with AT-RvD1, we utilized RNAscope technology to

visualize and quantify mRNA transcripts in whole lung tissue

sections. We evaluated areg, il10, and C-X-C motif chemokine

ligand 10 (cxcl10) transcripts in the alveolar and airway

compartments to assess the recovery of IL-22 KO mice and the

therapeutic impacts of AT-RvD1 and to assess the differences

between alveolar and airway inflammatory markers (Figures 6A–E).

In the alveolar compartment, we observed a significant increase in

areg expression in KO mice exposed to saline and treated with AT-

RvD1 compared to KOmice exposed to saline and treated with saline

(p=0.0051) (Figure 6B). Assessment of il10 expression in the alveolar

compartment yielded no significant differences or trends of,

regardless of DE exposure or AT-RvD1 treatment or genotype

(Figure 6C). Expression of cxcl10 in the alveolar compartments of

KO mice exposed to DE displayed a trend of increased expression

compared to saline-exposed KO controls (p=0.0559) (Figure 6D). In

the airway compartment, we again observed a significant increase in

areg expression in KO mice exposed to saline and treated with AT-

RvD1 compared to KOmice exposed to saline and treated with saline

(p=0.0187) (Figure 6F). We again observed no significant differences

or trends of il10 expression in the airway compartment (Figure 6G).

Interestingly, we did observe significantly elevated cxcl10 expression

in WTmice exposed to DE compared to saline-exposedWT controls

(p=0.0156), which was then revealed to be decreased in WT animals

exposed to DE and treated with AT-RvD1 (p=0.0107) (Figure 6H).
Agriculture dust exposure is associated
with gliosis and AT-RvD1 administration
reduces neuroinflammation

Brains of WT and IL-22 KO animals exposed to DE and treated

with AT-RvD1 were assessed for microglia proliferation via

immunofluorescence for Iba1+ cells. Cells were counted and

represented as a function of the area of each brain region of

interest: olfactory bulb, frontal cortex, isocortex, hippocampus,

cerebellum, and hindbrain. The olfactory bulb was chosen due to

its close proximity to the nasal passages and based upon previous

investigations that have shown that intranasal instillations of other

particulate matter sources result in gliosis in this region (54). The

frontal cortex, isocortex, and hippocampus regions of interest were

evaluated due to their functions involving memory and cognition, the

decline of which is a hallmark of neurodegenerative disease. The

cerebellum was chosen as it controls motor function, and changes in
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1495581
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Threatt et al. 10.3389/fimmu.2024.1495581
motor function can also be a pathological marker seen in

neurodegenerative disease. The hindbrain region of the brain stem

is the innervation site for the vagus nerve, which has been implicated

in neuroinflammatory models of chronic lung inflammation (2).

Increased numbers of Iba1+ microglia were detected in areas involved

in olfactory sensing and cognition including the olfactory bulb,

frontal cortex, and isocortex in WT and KO mice (Figures 7A–F).

KO mice displayed increased Iba1+ microglia in the cerebellum,

which is associated with motor function (Figures 7I, J). These data

indicate that KOmice have altered responses to DE compared toWT

controls, but that all mice regardless of genotype, experienced

microgliosis in their brains following DE exposure. The increased

number of microglia cells detected in brain tissue, is a hallmark sign

of neuroinflammation and is a reliable marker for detecting

neuroinflammatory processes (55–57).

Evaluation of the olfactory bulbs of animals exposed to DE

revealed significant increases in the number of microglia in both

WT (p<0.0001) and KO (p=0.0109) animals. We also observed an

increase in the number of microglia in mice exposed to saline and

treated with AT-RvD1 compared to with saline-exposed, saline-
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treated controls in both WT (p=0.0002) and KO (p=0.0223)

genotypes (Figure 7B). Additionally, in the olfactory bulbs we

observed a trend of increased microglia numbers in KO mice

exposed to saline and treated with saline compared to their WT

saline-exposed, saline-treated controls (0.0645) (Figure 7B). Animals

exposed to DE and treated with AT-RvD1 displayed decreased

numbers of Iba1+ cells compared to DE-exposed, saline-treated

controls in both WT (p=0.0090) and KO (p=0.0027) genotypes

(Figure 7B). In the frontal cortex, both WT (p=0.0094) and KO

(p=0.0009) animals exposed to DE displayed increased microglia

numbers (Figure 7D). Saline-exposed, AT-RvD1-treated KO animals

also displayed increased numbers compared to saline-exposed, saline-

treated KO animals (p=0.0030) (Figure 7D). DE-exposed, AT-RvD1-

treated WT animals displayed a trend of decreased numbers

compared to WT DE-exposed, saline-treated animals (p=0.0633)

(Figure 7D). Microglia numbers in the isocortex revealed a similar

pattern as the olfactory bulb, with both WT (p=0.0051) and KO

(p=0.0052) animals exposed to DE and treated with saline

demonstrating increased microglia numbers compared to their

saline controls (Figure 7F). We did not observe any significant
FIGURE 5

Effects of repetitive dust exposure and RvD1 treatment on bronchoalveolar lavage fluid (BALF) and lung tissue homogenate cytokines. WT and KO
animals were instilled i.n. with 12.5% DE 5 days/week for 3 weeks and treated with 250 ng AT-RvD1 i.p. 5 days/week for 3 weeks. (A) amphiregulin
(AREG) concentrations in BALF, (B) interleukin-10 (IL-10) concentrations in BALF, (C) transforming growth factor-b (TGF-b) concentrations in BALF,
(D) AREG concentrations in lung tissue, (E) IL-10 concentrations in lung tissue, and (F) TGFb concentrations in lung tissue. 3 way ANOVA with
Benjamini, Krieger and Yekutieli post-hoc analysis, error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001. BALF sample
sizes: WT Saline i.n. + Saline i.p (3 female/3 male), WT Saline i.n. + AT-RvD1 i.p (3 female/3 male), WT Dust i.n. + Saline i.p (6 female/6 male), WT
Dust i.n. + AT-RvD1 i.p (6 female/6 male), KO Saline i.n. + Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p (3 female/3 male), KO Dust i.n. +
Saline i.p (7 female/7 male), KO Dust i.n. + AT-RvD1 i.p (7 female/8 male). Lung tissue sample sizes: WT Saline i.n. + Saline i.p (3 female/3 male), WT
Saline i.n. + AT-RvD1 i.p (3 female/3 male), WT Dust i.n. + Saline i.p (3 female/3 male), WT Dust i.n. + AT-RvD1 i.p (3 female/3 male), KO Saline i.n. +
Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p (3 female/3 male), KO Dust i.n. + Saline i.p (3 female/3 male), KO Dust i.n. + AT-RvD1 i.p
(3 female/3 male).
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differences in the number of microglia in the hippocampus, regardless

of exposure or treatment condition (Figures 7G, H). Additionally,

animals treated with AT-RvD1 exhibited decreased microglia

numbers compared to their saline-treated controls for both WT

(p=0.0247) and KO (p=0.0117) animals (Figure 7F). Saline-exposed

KO animals displayed increasedmicroglia counts in their cerebellums

compared to WT saline-exposed animals (p=0.0093) and increased

counts in DE-exposed, saline treated KO animals compared to saline-

exposed controls (p=0.0313) (Figures 7I, J). WT animals exposed to

saline and treated with AT-RvD1 displayed increased microglia

numbers compared to saline-exposed, saline-treated WT animals in

the hindbrain (p=0.0253) (Figures 7K, L).
AT-RvD1 treatment alters brain transcript
expression in animals exposed to DE

We again utilized RNAscope technology to visualize and quantify

mRNA transcript expression in WT and KO animals exposed to DE

and treatedwithAT-RvD1usingwholebrain tissuesections toevaluate

individual regions of interest. We evaluated tgfb, il10, and il1b
transcripts in the olfactory bulb, frontal cortex, isocortex,

hippocampus, cerebellum, and hindbrain (Figures 8A–X).

Transcript quantification in the olfactory bulb revealed a trend

of increased tgfb expression between WT saline-exposed mice and

KO saline-exposed mice (p=0.0929) (Figure 8B). Additionally, a

trend was observed for increased il10 transcription in KO mice
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exposed to DE and treated with AT-RvD1 compared to WT mice

exposed to DE and treated with AT-RvD1 (p=0.0669) (Figure 8C).

Finally, il1b was significantly increased in WT DE-exposed, AT-

RvD1-treated mice compared to KO DE-exposed, AT-RvD1-

treated mice (p=0.0228) (Figure 8D). In the frontal cortex, tgfb

displayed a trend of increased transcription between WT and KO

mice exposed to saline (p=0.0600), and a trend of reduced

transcription between KO mice exposed to DE and KO mice

exposed to saline (p=0.0560) (Figure 8F). Evaluation of the

isocortex revealed significantly increased tgfb transcription

between WT and KO saline-exposed mice (p=0. 0355), as well as

significantly increased tgfb expression in KO mice exposed to DE

compared to KO saline-exposed controls (p=0.0355) (Figure 8J).

We also found that il1b expression was significantly reduced in WT

DE-exposed, AT-RvD1 treated mice compared to KO DE-exposed,

AT-RvD1 treated mice (p=0.0245) (Figure 8L). Transcript

evaluation of the hippocampus revealed significantly increased

tgfb expression in KO saline-exposed, saline-treated mice

compared to WT saline-exposed, saline-treated mice (p=0.0049)

(Figure 8N) and a significant decrease in tgfb expression in KO DE-

exposed, saline-treated mice compared to KO saline-exposed,

saline-treated controls (p=0.0198) (Figure 8N). We did not

observe any significant differences or trends in the cerebellum.

We did observe a change in the hindbrain, with il1b transcripts

significantly decreased in WT saline-exposed and AT-RvD1 treated

mice compared to WT sal ine-exposed, sal ine-treated

(p=0.0252) (Figure 8X).
FIGURE 6

AT-RvD1 treatment reduces cxcl10 mRNA expression in WT animals exposed to DE. WT and KO animals were instilled i.n. with 12.5% DE 5 days/
week for 3 weeks and treated with 250 ng AT-RvD1 i.p. 5 days/week for 3 weeks. (A) representative images of the alveolar compartment at 40X
magnification, (B) areg expression, (C) il10 expression, (D) cxcl10 expression, (E) representative images of the airway compartment at 40X
magnification, (F) areg expression, (G) il10 expression, (H) cxcl10 expression. Scale bar = 50 mm. 3 way ANOVA with Benjamini, Krieger and Yekutieli
post-hoc analysis, error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01. Sample sizes: WT Saline i.n. + Saline i.p (3 female/3 male), WT Saline i.n. + AT-RvD1
i.p (3 female/3 male), WT Dust i.n. + Saline i.p (4 female/3 male), WT Dust i.n. + AT-RvD1 i.p (3 female/3 male), KO Saline i.n. + Saline i.p (3 female/3
male), KO Saline i.n. + AT-RvD1 i.p (3 female/3 male), KO Dust i.n. + Saline i.p (3 female/3 male), KO Dust i.n. + AT-RvD1 i.p (3 female/3 male).
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FIGURE 7

Gliosis is associated with agriculture dust exposure. WT and KO animals were instilled i.n. with 12.5% DE 5 days/week for 3 weeks and treated with 250 ng
AT-RvD1 i.p. 5 days/week for 3 weeks. (A) representative images of the olfactory bulb at 40X magnification, (B) microglia counts in the olfactory bulb,
(C) representative images of the frontal cortex at 40X magnification, (D) microglia counts in the frontal cortex, (E) representative images of the isocortex
at 40X magnification, (F) microglia counts in the isocortex, (G) representative images of the hippocampus at 40X magnification, (H) microglia counts in
the hippocampus, (I) representative images of the cerebellum at 40X magnification, (J) microglia counts in the cerebellum, (K) representative images of
the hindbrain at 40X magnification, (L) microglia counts in the hindbrain. Scale bar = 50 mm and 5 mm. 3 way ANOVA with Benjamini, Krieger and
Yekutieli post-hoc analysis, error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; **** = p ≤ 0.0001. WT Saline i.n. + Saline i.p (3 female/3 male),
WT Saline i.n. + AT-RvD1 i.p (3 female/3 male), WT Dust i.n. + Saline i.p (6 female/6 male), WT Dust i.n. + AT-RvD1 i.p (8 female/6 male), KO Saline i.n. +
Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p (4 female/4 male), KO Dust i.n. + Saline i.p (7 female/6 male), KO Dust i.n. + AT-RvD1 i.p
(6 female/7 male).
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FIGURE 8

IL-22 knock-out alters brain mRNA transcripts in the presence of AT-RvD1 and DE. WT and KO animals were instilled i.n. with 12.5% DE 5 days/week for 3
weeks and treated with 250 ng AT-RvD1 i.p. 5 days/week for 3 weeks. (A) representative images of the olfactory bulb at 40X magnification, (B) tgfb expression
in the olfactory bulb, (C) il10 expression in the olfactory bulb, (D) il1b expression in the olfactory bulb, (E) representative images of the frontal cortex at 40X
magnification, (F) tgfb expression in the frontal cortex, (G) il10 expression in the frontal cortex, (H) il1b expression in the frontal cortex, (I) representative
images of the isocortex at 40X magnification, (J) tgfb expression in the isocortex, (K) il10 expression in the isocortex, (L) il1b expression in the isocortex, (M)
representative images of the hippocampus at 40X magnification, (N) tgfb expression in the hippocampus, (O) il10 expression in the hippocampus, (P) il1b
expression in the hippocampus, (Q) representative images of the cerebellum at 40X magnification, (R) tgfb expression in the cerebellum, (S) il10 expression in
the cerebellum, (T) il1b expression in the cerebellum, (U) representative images of the hindbrain at 40X magnification, (V) tgfb expression in the hindbrain, (W)
il10 expression in the hindbrain, (X) il1b expression in the hindbrain. Scale bar = 50 mm. 3 way ANOVA with Benjamini, Krieger and Yekutieli post-hoc analysis,
error bars = SEM; * = p ≤ 0.05; ** = p ≤ 0.01. Sample sizes: WT Saline i.n. + Saline i.p (3 female/3 male), WT Saline i.n. + AT-RvD1 i.p (2 female/2 male), WT
Dust i.n. + Saline i.p (3 female/3 male), WT Dust i.n. + AT-RvD1 i.p (3 female/3 male), KO Saline i.n. + Saline i.p (3 female/3 male), KO Saline i.n. + AT-RvD1 i.p
(2 female/2 male), KO Dust i.n. + Saline i.p (2 female/2 male), KO Dust i.n. + AT-RvD1 i.p. (3 female/3 male).
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Discussion

The pulmonary inflammatory response to ODE has been well

established, however the neuroinflammatory effects of this

environmental and occupational exposure are not clear (10, 16,

47). Other models of environmental exposures examining

neuroinflammation have demonstrated that inhalant exposures can

be associated with neuroinflammation and can ultimately lead to

neurodegenerative disease (3, 22, 25, 58). In addition, a pulmonary

infection model of Mycobacterium tuberculosis demonstrated severe

pulmonary bacterial infection without microbial dissemination to the

brain that produced gliosis, neuroinflammation, and misfolded

proteins, pathologies of animals developing neurodegenerative

disease (2). Epidemiological studies have also linked pulmonary

inflammation and infection in patients with COPD and

Mycobacterium tuberculosis to neurological disease and early signs

of neurodegenerative disease including cognitive decline, depression

and anxiety, reduced social interaction, and ultimately reduced

quality of life (27, 28, 59). To assess whether ODE contributes to

neurological inflammation, microglia cell numbers were evaluated as

an indicator of inflammation (2, 60, 61). Glial cells such as microglia

are the primary mediators of the neuroinflammatory response and

have been evaluated as markers of neuroinflammation in other

peripheral inflammation models (2, 59). Proliferation and

migration of microglia in different brain regions have been

implicated in neurodegenerative disease and impaired neuron

functionality. Increases in the number of microglia indicate

inflammation or inflammatory processes, while reduction of these

cells indicates resolution of inflammation (55–57). AT-RvD1 has

shown efficacy in reducing neuroinflammation, suggesting that it may

be an effective treatment to restore microglia homeostasis in deficient

models, and our data demonstrates that AT-RvD1may be effective in

reducing microglia numbers in a mouse model of ODE (15, 62).

We found that proliferation of microglia primarily occurred in the

rostral brain areas assessed: the olfactory bulb, frontal cortex, and

isocortex. This may be attributed to the route of DE exposure,

intranasal instillation, and the proximity of these brain regions to

the olfactory system. One study found that two intranasal instillations

of carbon nanoparticles were disseminated into the olfactory bulbs,

which may be a mechanism of the observed gliosis, given the

localization of the gliosis (54). Another possible mechanism is that

peripheral inflammation can contribute to gliosis without translocation

of the inflammatory substances to the brain, as observed in a study

examining gliosis in a guinea pig model ofMycobacterium tuberculosis

infection observed gliosis without dissemination of bacteria to the

brain (2). It is also possible that the components of the DE used in this

study, such as lipopolysaccharides (LPS) could be transported to the

brain through transport proteins and be directly activating microglia

via TLR4 pathways (63). We however did not observe an increase in

IL-1b transcripts in brains of mice exposed to DE, so further evaluation

of the cytokines profile and signaling is needed. We hypothesize that

the inflammatory response observed in the brain of animals exposed to

DE is TLR-mediated by microglia, however more information is

required to decern the pathways and mechanisms that contribute to

neuroinflammation in organic dust exposure. Our study is limited by

the intranasal instillation of DE technique that is an effectively sterile,
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non-live infection model that may not be directly translatable to

occupation exposure to ODE, which contains larger particles and

live microbes (14, 47, 62). In addition, our mice are also only exposed a

total of 15 times, which may not provide a sufficient exposure duration

to elicit a robust neurological inflammatory response in all brain

regions. Our laboratory has previously explored the role of IL-22 in the

pulmonary immune response to ODE, but we have not examined the

role of this cytokine in a neurological inflammatory model or in a

recovery model of repetitive ODE (45). We previously explored this

knock-out model in a 15-intstillation repetitive exposure model,

however this study examining tissues 5 hours post-last DE

instillation, but we have not yet explored the recovery period in the

days following cessation of DE exposure (45). We have also previously

examined the therapeutic actions of AT-RvD1 in a chronic dust

exposure model but have not explored its applications in an ODE-

induced neuroinflammatory model (32). We investigated the

neuroinflammatory response to agriculture dust, the role of IL-22 in

pulmonary and neurological inflammation, and the therapeutic

applications of AT-RvD1 in a pulmonary and neurological IL-22

knock-out mouse model repetitively exposed to agriculture dust

extract and treated with AT-RvD1. We found that in many of our

parameters, IL-22 KO mice displayed increased disease severity via

increased iBALT percentage (Figure 4B), increased microglia numbers

in the olfactory bulb and cerebellum of saline-exposed animals

(Figures 7B, J), and many of the differences in expression of

cytokines and mediators evaluated at the protein (Figures 5D, E)

and transcript (Figures 6B, F, 8B, D, F, J, L, N, P) levels were genotype-

driven. We observed a significant increase in the total cells collected

and lymphocyte differential counts in both WT and KO animals

following DE exposure and a significant influx of macrophages in KO

animals. This is consistent with our previous findings that IL-22 KO is

associated with increased total and differential cell counts after DE

exposure (Figure 2A) (45). However, we did find that the differential

cell counts differed in our 72-hour recovery model. This is likely due to

a shift in the immune response from an innate response characterized

by high neutrophil counts to a more adaptive response dominated by

lymphocytes (Figures 2A–E) (45, 64). KO animals treated with 250 ng

AT-RvD1 once per week displayed decreased total cells and

lymphocytes. KO animals also displayed a trend of increased total

cell counts and significantly increased lymphocytes compared to WT

animals. These data suggest that IL-22 knock-out may modulate cell

recruitment to sites of injury and that AT-RvD1 also regulates immune

cell recruitment, a well-known action of this SPM (34, 38, 43, 45, 65).

In addition, KO animals displayed increased pathology severity

including increased iBALT percentage in DE-exposed animals

compared to WT DE-exposed animals (Figure 4B). This may also be

due to altered lymphocytic recruitment as iBALT is largely composed

of organized B and T cells (66–68).One inflammatory mediator, AREG

is involved in modulating repair and remodeling in the lung after

injury and has previously been evaluated in a repetitive 15-instillation

ODE model where mice were allowed to recover for 1, 2, 3, or 4 weeks

post-last DE instillation (50). However, the modulation of AREG has

not been examined in a repetitive ODE model with a shorter, 72-hour

recovery period or in an IL-22 knock-out model treated with AT-RvD1

(50). In our previous study, we observed that AREG concentrations in

BALF increased as the recovery timepoints lengthened following
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cessation of DE exposure (50). Interestingly, we did not find that

AREG was upregulated in WT animals exposed to DE, but we did

observe that KO mice exposed to DE and recovered for 72 hours

displayed significantly decreased AREG tissue concentrations

compared to WT mice exposed to DE. Interestingly, KO mice

administered AT-RvD1 also displayed a significant decrease in

AREG lung tissue concentrations compared to WT mice exposed to

DE and treated with AT-RvD1. This may suggest that IL-22 may play

an important role in effective tissue repair and resolution response after

DE exposure as other models have found that IL-22 knock-out results

in reduced skin wound healing, however the specific mechanisms

warrant further investigation (69, 70).

We previously explored the use of AT-RvD1 treatment in a

chronic 24-week ODE mouse model and observed significantly

reduced pathology severity in mice injected with 500 ng AT-RvD1

via intravenous tail injection once weekly for 20 weeks (32).We found

that this dose was effective in reducing lung inflammation and cellular

infiltration in this model and aimed to evaluate the efficacy of AT-

RvD1 in reducing ODE-induced pulmonary and neurological

inflammation in a repetitive 15-instillation exposure model (32).

We evaluated the neurological immune response via microglia

counts and mRNA transcript evaluation using RNAscope in several

brain regions. We utilized two dosing regimen models to determine

which strategy was most effective. We first examined cellular

infiltrates and histopathology in animals treated with 250 ng AT-

RvD1 once-weekly (Figures 1A, 2A–E, 3A–D) and found limited

efficacy in immune cell influx, and no therapeutic efficacy in lung

histopathology (Figures 3A–D). We then evaluated lung

histopathology outcomes in a once-daily AT-RvD1 injection

schedule and found that animals treated with 250 ng AT-RvD1

daily displayed significant inflammation resolution in histopathology

evaluation (Figures 4A–H), therefore, our 5 day/week injection

regimen was employed for further analysis of the pulmonary and

neurological inflammatory response to DE. Our histopathological

analysis of animals administered daily AT-RvD1 injections revealed

that iBALT was the primary parameter improved in AT-RvD1-

treated animals. iBALT is considered a pathological phenotype of

COPD that is correlated with disease severity and its increased

formation has been linked to increased severity of patient clinical

signs (71–73). We have previously found that mice exposed to DE,

whether repetitively or chronically, develop significant iBALT (32, 45,

50, 51). In this study, we observed that WT and KO mice exposed to

DE revealed increased iBALT formation, with significantly increased

iBALT percentage in female mice compared to male mice. This may

be due to sex hormones contributing to adaptive immunity to varying

degrees, however our study is limited by a lack of estrus cycling and

sex hormone quantification data that would be needed to make more

informed conclusions on the mechanisms of the observed sex-specific

pathology (74). Furthermore, female animals treated with AT-RvD1

displayed significantly less iBALT formation, indicating its

effectiveness in reducing immune cell aggregates in these animals,

but more investigation into the mechanism of these sex differences is

warranted. This pattern of increased lung pathology severity in

females has been documented in human patients with COPD,

where female patients tend to experience more severe symptoms

and have higher mortality rates (54, 59). Together, these data
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demonstrate that attenuation of IL-22 alters the pulmonary

immune response to agriculture dust and increases the severity of

lung pathology and that the efficacy of AT-RvD1 attenuation of lung

pathology is IL-22- and sex-dependent. Females have also

demonstrated higher toll-like receptor production, present with

more CD4+ T cells and B cells compared to males and have a more

robust antibody response than males (74). The increased T and B cell

numbersmay account for the reduced resolution of iBALT in females,

but more investigation of the mechanisms of these sex differences in

our dust exposure model is warranted.

mRNA transcript evaluation of whole lung tissue sections

revealed significant differences in cxcl10 expression in WT mice

exposed to DE with a significant decrease inWT animals exposed to

DE and treated with AT-RvD1. CXCL10 participates in monocyte,

neutrophil, and lymphocyte recruitment and significantly

contributes to the progression of COPD disease state, which may

present as a therapeutic target of AT-RvD1 in dust-induced lung

disease (21, 75, 76). mRNA transcript evaluation of brains revealed

limited significant differences between treatment groups, with

significantly reduced il1b expression in WT animals exposed to

DE and treated with AT-RvD1 compared to KO animals exposed to

DE and treated with AT-RvD1. The mechanism of this observation

is unclear, but another study found that cultured microglia

displayed reduced il1b expression after treatment with 17(S)-

RvD1 (77). This is not directly comparable to our model of AT-

RvD1 (17(R)-RvD1) treatment but may still be informative as we

explore the therapeutic targets of AT-RvD1. A major limitation of

this study is our restricted panel of mRNA transcripts in both the

lung and brain tissues, with only one pro-inflammatory mediator

included per tissue type. This has hindered our investigation of the

therapeutic applications of AT-RvD1, and we may simply be

missing those mediators that are affected by At-RvD1 treatment.

Another limitation is our 72-hour post-last instillation timepoint,

where the mice are primarily in the resolution phase and may not be

producing high quantities of pro-inflammatory cytokines.

Expansion of our investigation of mRNA transcripts to include a

broader range of classic inflammatory mediators may assist our

assessment of the contribution of ODE to neuroinflammation and

the therapeutic actions of AT-RvD1 in our ODE model.

We aimed to determine whether agriculture dust exposure

contributes to neurological inflammation in a repetitive ODE

mouse model. Our data support the hypothesis that agriculture

dust exposure contributes microgliosis in a mouse model of

repetitive ODE. We also aimed to assess the regulation of the

pulmonary and neurological inflammatory response to ODE in an

IL-22 deficient mouse model and the immune-modulating and

therapeutic applications of AT-RvD1. Our data show that ODE

leads to pulmonary and neurological inflammation, and that IL-22

attenuation increases the severity of the pulmonary and neurological

immune response to ODE. This study confirmed our previous

findings and expanded upon our prior knowledge by

demonstrating that IL-22 KO mice exhibit increased inflammatory

markers in the recovery phase following cessation of DE exposure.

We also demonstrate that AT-RvD1 treatment once per week was

effective in reducing cellular infiltrates in BALF of KO animals, but

did not produce a significant decrease in lung pathology outcomes.
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We observed that a once daily regimen was more effective in

increasing lung anti-inflammatory cytokine protein production,

reducing lung pathology severity, reducing lung chemokine

transcript expression, and decreasing microglia numbers in mice

exposed to DE. These data indicate that AT-RvD1 may require more

frequent administration to be effective, however more evidence and

exploration is needed. We also demonstrated that AT-RvD1

treatment is more effective in IL-22 KO mice, in terms of reducing

lung cellular infiltrates and pro-inflammatory cytokine protein

concentrations, but that it is also effective in reducing lung

pathology and microglia numbers in both WT and KO animals.

We hypothesize that this is due to a dysregulation of the repair

processes in KO mice, which is partially restored by AT-RvD1

treatment, but requires further investigation to determine the

specific pathways and mechanisms involved in these observations.

Further investigation aims to identify the mechanisms by which

ODE contributes to neurological inflammation through evaluation

of various routes of escape from the pulmonary to the neurological

systems and the specific cellular mechanisms that lead to

neuroinflammation in a model of ODE. These data demonstrate

that ODE leads to neurological inflammation and that AT-RvD1

may be an effective treatment for attenuating immune-mediated

pulmonary and neurological disease caused by ODE, mitigating its

severe health effects.
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