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Exploring the mechanism of
agarwood moxa smoke in
treating sleep disorders based on
GC-MS and network
pharmacology

Nianhong Chen®#, Yucheng Xia??', Weiyan Wu*, Siyu Chen?,
Mingming Zhao?, Yanting Song*and Yangyang Liu?*

!Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical
Sciences, Hainan University, Haikou, China, 2Hainan Provincial Key Laboratory of Resources
Conservation and Development of Southern Medicine, Key Laboratory of State Administration of
Traditional Chinese Medicine for Agarwood Sustainable Utilization, International Joint Research
Center for Quality of Traditional Chinese Medicine, Haikou, China, *College of Traditional Chinese
Medicine, Hainan Medical University, Haikou, China, “Chengmai County Hospital of Traditional
Chinese Medicine, Haikou, China

Background: Agarwood moxibustion is a folk therapy developed by individuals
of the Li nationality in China. There is evidence that agarwood moxa smoke
(AMS) generated during agarwood moxibustion therapy can treat sleep disorders
via traditional Chinese medicines’ multiple target and pathway characteristics.
However, the specific components and mechanisms involved have yet to
be explored.

Objective: GC-MS (Gas Chromatography—Mass Spectrometry) and network
pharmacology were used to investigate AMS’s molecular basis and mechanism
in treating sleep deprivation.

Method: GC-MS was used to determine the chemical composition of AMS;
component target information was collected from TCMSP (Traditional Chinese
Medicine Systems Pharmacology), PubChem (Public Chemical Database),
GeneCards (Human Gene Database), and DisGeNet (Database of Genes and
Diseases) were used to identify disease targets, and JVenn (Joint Venn) was
used to identify the common targets of AMS and sleep disorders. STRING was
used to construct a protein interaction network, Cytoscape 3.9.1 was used to
build a multilevel network diagram of the “core components-efficacy targets-
action pathways,” the targets were imported into Metascape and DAVID for
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes)
analyses and Autodock was used for molecular docking. This research used a
network pharmacology methodology to investigate the therapeutic potential of
Agarwood Moxa Smoke (AMS) in treating sleep problems. Examining the target
genes and chemical constituents of AMS offers insights into the molecular
processes and targets of the disease.

Result: Nine active ingredients comprising anti-inflammatory substances and
antioxidants, such as caryophyllene and p-cymene, found seven sleep-regulating
signaling pathways and eight targets linked to sleep disorders. GC-MS was used
to identify the 94 active ingredients in AMS, and the active ingredients had strong
binding with the key targets. Key findings included active components with
known medicinal properties, such as p-cymene, eucalyptol, and caryophyllene.
An investigation of network pharmacology revealed seven signaling pathways
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for sleep regulation and eight targets linked to sleep disorders, shedding light on
AMS'’s effectiveness in enhancing sleep quality.

Conclusion: AMS may alleviate sleep disorders by modulating cellular and
synaptic signaling, controlling hormone and neurotransmitter pathways,
etc. Understanding AMS’s material basis and mechanism of action provides a
foundation for future research on treating sleep disorders with AMS. According
to the study, Agarwood Moxa Smoke (AMS) may improve sleep quality by
modifying cellular and synaptic signaling pathways for those who suffer from
sleep problems. This might lead to the development of innovative therapies with
fewer side effects.

KEYWORDS

agarwood moxa smoke (AMS), agarwood moxa stick, agarwood moxibustion therapy,

sleep disorders, GC—MS, network pharmacology, molecular docking

1 Introduction

Sleep disorder syndrome, also known as sleep deprivation, occurs
when there is a disruption in the onset and maintenance of sleep,
leading to inadequate sleep quality that does not meet the patient’s
physiological needs and seriously impacts their daytime activities.
This syndrome refers explicitly to circumstances in which it is difficult
or impossible to fall asleep, usually when the amount of time spent
asleep is inadequate, when it is easy to wake up from sleep, when it is
challenging to fall back asleep after waking up, or even when one is
awake the entire night (1). Epidemiological surveys indicate that sleep
disorders are positively correlated with age and affect approximately
30% of the global population annually. Sleep disorders have become a
widespread social problem (2), and the incidence rate of sleep
problems in Chinese adults is 42.5%, with a peak incidence rate of
38.2% (3). Sleep disorders not only decrease the quality of life but also
the use of benzodiazepine-type Western medicines for treatment,
which, although effective quickly, increase the risk of mental and
physical diseases, as well as drug dependence and abuse, is dangerous
(4, 5). Therefore, there is an urgent need for more effective treatment
methods with fewer side effects.

Chinese individuals frequently treat sleep issues with traditional
practices such as moxibustion and massage. Traditional Chinese
medicines adhere to dialectical treatment and holistic concepts to
provide symptomatic treatment for patients with sleep disorders (6).
Traditional Chinese medicine’s external therapy approach has fewer
adverse effects and is better tolerated by patients (7). This kind of
moxa stick is referred to as agarwood moxa stick in this article, and
the use of agarwood moxa sticks in moxibustion treatment is known
as agarwood moxibustion therapy. Agarwood moxibustion therapy is
a traditional Chinese medicine originating from individuals of the Li
nationality. This therapy is frequently used to treat a variety of chronic,
crippling illnesses, as well as diseases brought on by dampness, wind,
and cold; furthermore, this treatment can significantly improve the
quality of sleep. Agarwood has long been used as incense in China due
to its calming and sleep-promoting properties (8). In traditional
Chinese medicine, sleep disorders are thought to be caused by an
imbalance among the kidneys, liver, spleen, and heart. The practical
volatile components produced by the combustion of agarwood and
moxa velvet can be absorbed through the skin, protect the spleen and
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kidneys, relieve pain, calm the mind, and promote immunity, thereby
reducing insomnia symptoms (9, 10). Researchers have examined the
components and pharmacological effects of moxa smoke (11, 12), and
their findings show that it can lower the levels of aspartic acid and
glutamate in the brain.

After burning the agarwood and moxa velvet, the volatile
components also have a pleasant, calming effect that can help
extend the time spent asleep (13). Sleep problems have resulted
from the disruption of healthcare systems, everyday routines, and
sleep habits caused by the COVID-19 pandemic. Sleep disturbances
are made worse by elements like elevated stress, anxiety, schedule
adjustments, and social isolation. Sleep has been further disrupted
by uncertainty, fear of infection, and health worries. Screen use has
grown during lockdowns and quarantine periods, which has a
detrimental effect on sleep quality. Controlling the virus’s
transmission and reducing its downstream impacts on public
health, such as sleep problems, depend heavily on early forecasting
and detection. Addressing these issues and controlling the
transmission of the virus are crucial for mitigating the downstream
impacts on public health, including sleep problems. Early
intervention measures play a pivotal role in this effort, as they
enable timely treatment to address both the direct and indirect
effects of the pandemic on sleep and overall well-being (14). In
some regions of China, agarwood has been used for the prevention
of COVID-19, partly based on its reported aromatic purifying
properties (15). Therefore, using agarwood moxibustion can not
only to some extent achieve early prevention of diseases, but also
provide early intervention for sleep problems caused by the spread
of COVID-19 (16). While the direct effects of agarwood
moxibustion in combating COVID-19 require further scientific
validation, its traditional use underscores its potential benefits in
public health crises. However, more research needs to be done
investigating the components of moxa smoke that are produced
during moxibustion treatment and determining how these
components affect insomnia. Therefore, to explore the connection
between the chemical components of AMS and sleep and to
further elucidate the mechanism of AMS-mediated treatment of
sleep disorders, in this study, we investigated the practical
components of AMS using GC-MS in conjunction with
network pharmacology.
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2 Materials
2.1 Medicinal material

The agarwood moxa sticks used in this study were made in the
laboratory, with agarwood purchased from Haikou, Hainan, and moxa
velvet from Qichun, Hubei. The agarwood slices were crushed, run
through a sieve, and mixed evenly with moxa velvet in specific
proportions. Then, the samples were laid flat on smokeless paper,
rolled tightly, fixed, and finally, a 1.8 cm diameter agarwood moxa
stick was made.

2.2 Instrument

A Manual SPME Holder (Lot: 155193, Merck, USA), an Agilent
gas chromatography-mass spectrometer (Model: 5977B/8860, Agilent
Technologies, USA), and a PDMS SPME solid-phase microextraction
head (Lot: 163109, Merck, USA) were utilized.

2.3 Databases and software

The Traditional Chinese Medicine Systems Pharmacology
database and analysis platform (TCMSP)' (17); the PubMed
database ?(18); the Swiss target prediction database *(19); the
Pharmacochemical Database (ChEMBL)* (20); the Universal
Protein database (UniProt)® (21); the GeneCards database® (22);
the DisGeNet database’ (23); the Database for Annotation,
Visualization and Integrated Discovery v6.8 (DAVID)® (24); the
Jvenn website’ (25); the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING)' (26); the Metascape
database'!; and the RCSB Protein Data Bank database (RCSB
PDB)' (27) were utilized. Cytoscapev3.9.1 software, Autodock
book software, and Pymol software were also utilized.

In summary, the application of Agarwood Moxa Smoke
(AMS) in treating sleep disorders is fraught with difficulties, such
as problems with data completeness and quality, access to
extensive databases, and intricate integration of disparate
information. New methods may resist traditional medical
practices, and integrating research results into clinical practice
may encounter obstacles from regulatory bodies, medical
professionals, and patients. Researchers, healthcare professionals,
regulatory agencies, and traditional medicine practitioners must

https://old.tcmsp-e.com/tcmsp.php
https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch/
https://www.ebi.ac.uk/chembl/
http://www.uniprot.org
https://www.genecards.org/
https://www.disgenet.org/
https://david.ncifcrf.gov/

O 0 N O U b W N =

http://jvenn.toulouse.inra.fr/app/example.html
10 https://cn.string-db.org/

11 https://Metascape.org/

12 https://www.rcsb.org/
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work together to remove these obstacles and encourage broader
adoption of AMS-based therapy.

3 Methods
3.1 Collection of AMS

The agarwood moxa stick was ignited and precipitated in a
homemade glass collection tank; after 3 min, when the flue gas was
complete, a manual sampler was inserted, and the handle was pressed
to extend the extraction head. After 10min of extraction, the
extraction head was retracted, and the manual holder was removed.
The manual holder was immediately inserted into the gas
chromatograph sample inlet (temperature 230°C) for 3 min of analysis
without splitting the sample.

3.2 GC-MS analysis

An HP-5MS elastic quartz capillary column (30 mm*0.25 mm,
0.25um) was utilized. The carrier gas was high-purity helium,
with a volume flow rate of 1 mL/min, a sample inlet temperature
of 250°C, and a detector temperature of 300°C. Programmed
heating was performed as follows: after maintaining a column
temperature of 50°C for 1 min, the temperature was raised at a
rate of 15°C/min to 143°C, kept for 10 min, raised at a rate of
1°C/min to 155°C, raised at a rate of 25°C/min to 225°C,
maintained for 7 min, raised at a rate of 2°C/min to 250°C, and
finally maintained for 10min. The electron bombardment
(EI) energy was 70 eV, the ion source temperature was 250°C,
the solvent delay was 5min, and the scanning range was
50-500 amu.

3.3 Prediction of the sources and targets of
the chemical components in AMS

The traditional Chinese medicine system pharmacology analysis
platform (TCMSP) (17) was utilized to search and identify the
chemical components in AMS based on the chemical composition
data derived from the GC-MS analysis. Traditional Chinese medicine
(TCM) uses Agarwood Moxa Smoke (AMS), combining conventional
knowledge and cutting-edge scientific techniques. It provides focused
treatment for sleep disturbances, which may result in fewer adverse
effects and more successful results. By bridging the gap between
conventional knowledge and contemporary understanding, scientific
validation via GC-MS analysis and network pharmacology increases
acceptability and trustworthiness. Because agarwood moxa stick is a
traditional Chinese medicine mixture, its smoke contains numerous
complex chemical components of traditional Chinese medicine. Based
on Lipinski’s Rules of Five, the potential effective active ingredients
were identified. For chemical components not found in the TCMSP
database, the PubChem database (18) was used to search the Smiles
number of the element. Next, an AMS chemical component library
was created by searching the pertinent target databases Swiss Target
Prediction (19) and the ChEMBL database (20). Finally, the UniProt
database (21) was used to standardize target gene names, and only
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human (Homosapiens) target genes were retained for

subsequent analysis.

3.4 ldentification of targets in sleep
disorders

Due to the mind-tranquilizing effects of both moxa velvet and
agarwood in agarwood moxa sticks, this study further utilized the
Gene Cards (22) and DisGeNet databases (23) to search for genes
associated with sleep disorders; “Sleep disorders” was used as the
keyword to search for targets in sleep disorders, and gene names were
standardized by the DAVID v6.8 database (24). Only pertinent values
>1.5 were chosen as the primary targets for sleep disorders to ensure
the validity of the data.

3.5 Construction of the protein—protein
interaction network

On the Jvenn platform (25), the targets of AMS components were
compared to the disease targets related to sleep disorders, and the
shared targets were identified. The shared targets were considered
potential targets of AMS for treating sleep disorders. The shared target
gene set was input into the STRING database (26). Then, a protein-
protein interaction (PPI) network was constructed with Homo sapiens
as the target species and an average confidence level of 0.4 as the
threshold for the interaction score. The PPI network was visualized
with Cytoscape v3.9.1 software.

3.6 Construction of the “core
components-targets-action pathways”
network

Cytoscape 3.9.1 software created a multilevel network of “core
components, targets, and action pathways” to link AMS’s disease-
related genes, core components, and targets. A network was
established with circles representing disease-related genes, diamonds
representing core components, and triangles representing AMS
targets; this network was used to evaluate the mechanism of action of
AMS in the treatment of sleep disorders.

3.7 GO functional analysis and KEGG
pathway enrichment analysis

The targets for treating sleep disorders corresponding to the
chemical components of AMS were input into the Metascape and
David databases (24). The databases conducted Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses to obtain biological information about potential
targets and analyze AMS’s potential mechanism of action in treating
sleep disorders. GO analysis results are divided into the categories of
biological processes (BPs), cellular components (CCs), and molecular
functions (MFs). According to the p values, the top 8 results from GO
analysis were selected, and a histogram of enrichment quantity
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statistics was drawn; for KEGG analysis, the top 7 pathways were
selected for visualization.

3.8 Molecular docking validation

The active ingredients related to treating sleep disorders by AMS
were docked to core targets to forecast and evaluate the protein-
molecule interactions and binding energy. After using the TCMSP and
PubChem databases to obtain mol2 files of compound structures, the
RCSB PDB database (27) was used to obtain PDB files of the core
target structures. Using Autodock software (28) for docking and
PyMOL software (29) for visualization and processing, binding energy
was used as an indicator to evaluate the binding activity and docking
effects of ligand-protein interactions. Generally, -1.2 kcal-mol
binding energy indicates strong binding between the protein
and ligand.

4 Results

When optimizing computer models to investigate how Agarwood
Moxa Smoke (AMS) affects sleep problems, parameter tuning is an
essential component. Researchers may increase their models’
efficiency, accuracy, and resilience by fine-tuning their parameters,
providing more trustworthy outcomes. Molecular Docking parameter
tweaking, route analysis parameters, threshold selection, network
visualization, docking method settings, and binding site flexibility are
essential tactics. Network quality and dependability are affected by
threshold selection, while interpretability is improved by network
visualization. Performance assessment, hyperparameter optimization,
cross-validation, and stringent validation techniques are all part of
overall model optimization.

4.1 Chemical composition of AMS

A total of 138 chemical components were identified in
AMS. Among these volatile components, there were 20 compounds
with a relative abundance of more than 1%, including phenol,
3-methyl-phenol, p-cymene, azulene, endo-borneol, o-terpineol,
4-ethyl-2-methoxy-phenol, caryophyllene, caryophyllene oxide, bis
(2-ethylhexyl) phthalate, etc. The components of the smoke and the
combustion products of agarwood moxa sticks are complex, and
volatile aromatic compounds are one of the main components of
AMS. The study looks at how Agarwood Moxa Smoke (AMS) affects
sleep problems; however, it has trouble analyzing proprietary or
unbalanced datasets. The dependability of findings can be affected by
imbalanced datasets, resulting in biased model performance and
decreased predicted accuracy. Class distributions can be balanced
using ensemble techniques, undersampling, and oversampling.
Sensitive information in proprietary datasets makes data access,
exchange, and validation difficult. Real-world data assessment requires
collaboration with data owners. Scalability testing, result evaluation,
and robustness assessment are examples of testing capabilities.
Eugenol,

4-phenyl-3-buten-2-one, 4-phenyl-2-butanone, and

n-hexadecanoic acid may originate from (30). Sesquiterpene
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FIGURE 1
The total ion chromatogram of AMS.
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FIGURE 2
The proportion of various compounds in AMS.

compounds may degrade into monoterpenes and small-molecule
volatile compounds after high-temperature cracking. The identified
chemicals were mainly phenolic compounds containing methoxy
groups and monoterpenoids; these chemicals are related to the aroma
produced after the combustion of agarwood moxa sticks (Figures 1, 2;
Table 1).

4.2 ldentifying the targets of AMS

After searching the TCMSP database based on GC-MS results
identified 94 effective standardized active ingredients for sleep
disorders. By integrating target data, the potential targets of the 94
chemical components of AMS were predicted, with a total of 514
target sites. Using “Sleep disorders” as the search term, 17 gene targets
were obtained by compiling the sleep disorder-related disease genes
identified in multiple databases according to the described screening
criteria (Figure 3, Table 2).

4.3 Construction and analysis of the PPI
network

The 94 components of AMS and sleep disorders shared 17
nonoverlapping targets. Based on the STRING background network,
a PPI network was constructed based on the potential targets of AMS
in treating sleep disorders. The network contained 17 nodes and 34
edges, with an average node degree value of 4. According to the
enrichment analysis, the PPI network was significantly enriched with
a p-value <0.47. Based on the number of active components, the core
targets were identified as the glucose transporter 1 (GLU1) gene
SLC2A1 (31), the monooxygenase A gene MAOA (32), the
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synaptic-related genes SCN2A (33), and the dopamine transporter
receptor SLC6A3 (34).

4.4 GO and KEGG analysis

The integration of various datasets, network design, route analysis,
molecular docking, scoring functions, and docking validation present
computational overhead for the study, which looks into the therapeutic
benefits of Agarwood Moxa Smoke (AMS) on sleep disorders. The
more datasets and interactions there are, the greater the processing
cost. Computational resources are needed throughout network
building for data processing, visualization, and analysis. Pathway
analysis entails processing substantial amounts of biological data to
find essential pathways connected to the therapy of AMS. Due to the
potential requirement to analyze several scoring methods, scoring
functions incur additional computational complexity. Robust studies
need a delicate balance between computational complexity and
analytical depth. To gain a deeper understanding of the mechanism of
action of AMS in the treatment of sleep disorders, in this study,
we conducted GO and KEGG analyses of the 514 potential targets of
AMS in the treatment of sleep disorders. The eight biological processes
with the most significant enrichment by the components of AMS
(sorted by p-value) included behavior (p=2.34*10""°), brain
(p=3.98*10"),
(p=5.01*10"%), cellular response to organic cyclic compounds

development circulatory  system  processes
(p=2.10"107"), regulation of monoatomic ion transport (p=6.31*107),
import into the cell (p=8.32%10"%), response to hypoxia (p=3.80¥107),
and dopamine metabolic processes (p=1.62*10"?). In terms of cell
components, the treatment of sleep disorders with AMS mainly
involves the presynaptic membrane (p=2.57%10"%), plasma membrane
rafts (p=4.37%1077), intercalated disks (p=2.82*107%), apical parts of
the cell (p=2.04*107%), axons (p=>5.01¥10"*), GABAergic synapses
(p=1.00*107%), postsynaptic specialization membranes (p=2.19*10"),
and serotonergic synapses (p=1.12*107°). In terms of molecular
function, the target genes were mainly enriched in protein cell activity
and binding, including aspects such as sodium ion transmembrane
transporter activity (p=1.62¥107%), calmodulin binding (p=4.27%10"),
growth factor binding (p=5.37*10"°), dopamine neurotransmitter
receptor activity (p=2.95%10"°), dopamine binding (p=6.1710"°),
monoamine transmembrane transporter activity (p=1.95107),
peptidyl-dipeptidase activity (p=1.12*10"°), and steryl-beta-
glucosidase activity (p=1.12%107°) (Figure 4, Table 3).

Enrichment through KEGG pathway analysis showed that the
effect of AMS on sleep disorders was significant. The seven KEGG
pathways with considerable enrichment were dopaminergic synapse
(p=7.94*1077), the ligand-receptor
(p=4.47107°), the renin-angiotensin system (p=7.41¥10"), central
carbon metabolism in cancer (p="7.08*10""), the synaptic vesicle cycle
(p=8.71*107%), carcinogenesis-receptor
(p=6.17*107%), and the calcium signaling pathway (p=7.94*107%),
suggesting that AMS can regulate metabolic pathways related to sleep

neuroactive interaction

chemical activation

and restore the function of metabolic pathways that were impacted by
insomnia (Figure 4).

The glucose transporter gene SLC2A1, the monooxygenase A gene
MAOA, the synaptic-related genes SCN2A, dopamineD1 receptor DRD1
and dopamineD3 receptor DRD3, the nicotinic acetylcholine (2
receptors CHRNB2, the 5-hydroxytryptamine transporter receptor
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PPI network of 17 intersecting target genes.
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FIGURE 4
GO analysis and KEGG signal pathway bubble chart of the target
points for improving sleep disorders by the AMS.

SLC6A4, and the dopamine transporter receptor SLC6A3 are all
associated with multiple pathways and promote neurotransmitter
transport and neuronal excitability. The regulation of these targets by the
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active ingredients of AMS can simultaneously alter numerous signaling
pathways related to sleep disorders, reflecting the “multi-component
multi-target multi-pathway” approach. We mapped the dopamine
receptor family DRD1, DRD3, and other targets for improving sleep
disorders with the components of AMS to the dopaminergic metabolic
signaling pathway and constructed a metabolic pathway map (Figure 5).

4.5 Construction of the
“components-targets-action pathway”
network diagram

With the help of Cytoscape 3.9.1 software, the active ingredients
and their targets, as well as the targets involved in sleep disorders, were
collected, and a network diagram of the “components-targets-action
pathway” of AMS was constructed. The “component-target-pathway”
network diagram of AMS intuitively displays the corresponding
targets of each active ingredient in AMS. The blue circular nodes
represent the 94 functional targets involved in sleep disorders, and the
pink diamond nodes represent the 17 related genes that can help
regulate sleep disorders. The connection between the component and
the target indicates that the element can regulate the target (Figure 6).

4.6 Molecular docking results

The 5 main components (p-cymene, (+)-2-bornanone, endo
borneol, caryophyllene oxide, and eugenol) of AMS related to the 5
key targets (SLC2A1, MAOA, SCN2A, DRDI, and DRD3) in the
“component-target-pathway” network. The protein crystal structure
of the target was obtained from the PDB database (PDB ID numbers:
6THA, 6EZZ, 4RLY, 7JVP, and 7CMV). The molecular docking results
showed that the binding energies of (+)-2-bornanone with DRD3 and
SCN2A and eugenol with DRDI and SLC2A1 were less
than-5kJ-mol ™, indicating that the identified components have good
binding with the targets and the main active components of AMS can
improve sleep disorders via multiple targets. Some receptor-ligand
binding patterns are shown in Figure 7 and Table 4.

According to the study, qing moxa smoke contains 294 chemicals
that may be hazardous to the kidney, liver, and heart. It highlights the
complexity of the components of moxa smoke. It reccommends that to
protect the health of patients and practitioners, moxibustion rooms
should have artificial or mechanical ventilation (35). The samp8 mice
were divided into six groups, and the anti-aging effects of moxa
smoking were investigated. In comparison to the normal control
group, the results demonstrated a considerable drop in cerebral 5-ht,
da, and ne levels. On the other hand, 5-ht and ne levels were greater
in groups 12, m1, and m2, whereas da levels were higher in 12 and m2
(36). However, Table 5 shows the comparison between existing and
proposed techniques as compared with the AMS results.

5 Discussion

The GC-MS analysis results show that there are 9 main active
ingredients in AMS, including p-cymene (1.09%), eucalyptol (0.81%),
(+)-2-bornanone (0.85%), endo-borneol (1.24%), «a-terpineol
(1.11%), eugenol (0.46%), caryophyllene (2.28%), caryophyllene
oxide (1.79%) and n-hexadecanoic acid (0.40%). These ingredients
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TABLE 1 Effective active ingredients of AMS.

10.3389/fmed.2024.1400334

PubChemCID Compound name Relative Chemical Molecular
content/% formula weight/g-mol-!

1 1140 Toluene 0.35 C,Hg 92.14

2 7361 2-Furanmethanol 0.17 C;H,O, 98.10

3 7975 2-methyl-Pyridine 0.27 C¢H,N 93.13

4 7929 1,3-dimethyl-Benzene 0.18 CsHyo 106.16
5 7501 Styrene 0.31 CgHg 104.15
6 14266 2-methyl-2-Cyclopenten-1-one 0.07 CH;O 96.13

7 14505 1-(2-furanyl)-Ethanone 0.09 C¢H,O, 110.11
8 11565 3,5-dimethyl-Pyridine 0.21 C,HN 107.15
9 7668 propyl-Benzene 0.06 CoH,, 120.19
10 240 Benzaldehyde 0.47 C,H,O 106.12
11 996 Phenol 1.39 CsHO 94.11

12 13381 1-Decene 0.25 CoH, 140.27
13 252324 (Z)-1-Phenylpropene 0.32 CyHy 118.18
14 9223 Benzofuran 0.29 CsH,O 118.13
15 7936 2,4-dimethyl-Pyridine 0.30 C,;H,N 107.15
16 14,287 2-ethyl-6-methyl-Pyridine 0.16 CgH N 121.18
17 7,463 p-Cymene 1.09 CoHyy 134.22
18 440,917 D-Limonene 0.49 CioHis 136.23
19 2,758 Eucalyptol 0.81 C,H,;50 154.25
20 335 2-methyl-Phenol 0.51 C,H;O 108.14
21 342 3-methyl-Phenol 1.03 C,H;O 108.14
22 991698552 Succinic acid, tridec-2-yn-1-yl 3-methylpentyl ester 0.33 CHyO4 380.60
23 62385 1-methyl-4-(1-methylethenyl)-Benzene 0.53 CoH,, 132.20
24 14257 Undecane 0.41 C, H,, 156.31
25 6616 Camphene 0.19 CioHe 136.23
26 8500 1-(4-methylphenyl)-Ethanone 0.22 CyH,,O 134.17
27 8794 Benzyl nitrile 0.43 CH,N 117.15
28 159055 (+)-2-Bornanone 0.85 C,0H,s0 152.23
29 9231 Azulene 1.61 CyoHs 128.169
30 6552009 endo-Borneol 1.24 CyH,;s0 154.25
31 9268 Cyclododecane 1.97 C,Hy, 168.32
32 17100 alpha-Terpineol 1.11 CoH,;s0 154.25
33 28453 2,6-dimethyl-Undecane 0.31 C;Hyg 184.36
34 637759 4-phenyl-3-Buten-2-one 0.44 C,H,,0 146.19
35 29025 Verbenone 0.50 C,H,,O 150.22
36 5372813 2-methyl-3-phenyl-2-Propenal 0.95 C,0H,00 146.19
37 12581 Benzenepropanenitrile 0.50 CoHoN 131.17
38 17355 4-phenyl-2-Butanone 0.72 C,H,,O 148.20
39 1550846 (E)-3-phenyl-2-Propenenitrile 0.40 C,H,N 129.16
40 14109 hexyl-Benzene 0.88 C,,H350, 390.60
41 62465 4-ethyl-2-methoxy-Phenol 1.13 CoH,,0, 152.19
42 17095 1-Tridecene 2.55 C;Hye 182.35
43 12388 Tridecane 2.11 Ci;Hag 184.36
44 7055 2-methyl-Naphthalene 0.93 CiHy, 142.20

(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2024.1400334

PubChemCID Compound name Relative Chemical Molecular
content/% formula weight/g-mol-!
45 332 2-Methoxy-4-vinyl phenol 0.83 CyH,,0, 150.17
46 8817 5-ethenyl-2-methyl-Pyridine 0.54 CsHoN 119.16
47 7041 2,6-dimethoxy-Phenol 0.62 CgH,,0; 154.16
48 5364455 Nonene 0.76 CoHig 126.24
49 3314 Eugenol 0.46 CioH,,0, 164.20
50 14115 heptyl-Benzene 0.61 Ci3Hy 176.30
51 519194 1-Methyl-4-n-hexylbenzene 0.38 Ci3H, 176.30
52 19773 2,6,10-trimethyl-Dodecane 0.56 C,sHs, 212.41
53 5352912 1-Tetradecene 3.62 CHys 196.37
54 12389 Tetradecane 1.58 C4Hs 198.39
55 11306 1,5-dimethyl-Naphthalene 1.27 CpH), 156.22
56 11396 2,7-dimethyl-Naphthalene 1.11 Cp,H,, 156.22
57 5354499 Caryophyllene 2.28 CysHyy 204.35
58 11387 2,6-dimethyl-Naphthalene 1.29 CpH), 156.22
59 11386 2,3-dimethyl-Naphthalene 0.72 Ci,H,04 244.24
60 19774 2,6,10-Trimethyltridecane 1.07 CsHsy 226.44
61 6429347 1,4-Dimethylazulene 0.55 C,,H,, 156.22
62 16607 octyl-Benzene 0.55 C,H,, 190.32
63 563197 Cycloisolongifolene 0.89 CysHay, 204.35
64 5364464 Z,Z-3,13-Octadecedien-1-ol 0.60 CisH;,0 266.50
65 25913 1-Pentadecene 2.73 CysHso 210.40
66 12391 Pentadecane 1.99 C,sHs, 21241
67 6432455 a-Selinene 0.51 CysHay 204.35
68 13237 2,3,6-trimethyl-Naphthalene 0.98 Ci:Hy, 170.25
69 16479 1,4,6-trimethyl-Naphthalene 0.14 Ci;Hg 174.28
70 6432640 1H-Cycloprop[e]azulen-7-ol,decahydro-1,1,7-trimethyl-4- 0.23 C;sH,,0 220.35
methylene-,[1ar-(la.alpha.,4a.alpha.,7 beta.,7a.beta.,7b.
alpha.)]-
71 1742210 Caryophyllene oxide 1.79 CysH,,0 220.35
72 11006 Hexadecane 0.40 CisHsy 226.44
73 11877394 Neointermedeol 0.47 CysH,0 222.37
74 23217 1-Heptadecene 0.63 C;H,, 238.50
75 12398 Heptadecane 0.29 C;Hsg 240.50
76 10719 Chamazulene 0.39 CuHje 184.28
77 5362709 (Z)-3-Tetradecene 0.59 Ci,Hag 196.37
78 10,390 Diphenylacetylene 0.31 CHy, 178.23
79 95724 3-Phenanthrol 0.29 C,H,,0 194.23
80 8217 1-Octadecene 0.44 CisHse 252.48
81 11635 Octadecane 0.48 CsHig 252.48
82 79362 Phthalic acid, monooctyl ester 0.35 C6H,,0, 278.34
83 6423452 Phthalic acid, butyl tetradecyl ester 0.20 C,H,,0, 418.60
84 6782 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester 0.24 Ci¢H»,0, 278.34
85 10446 Neophytadiene 0.34 CyHss 278.50
86 6781 Diethyl Phthalate 0.10 C,,H,,0, 22224
(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2024.1400334

No. PubChemCID Compound name Relative Chemical Molecular
content/% formula weight/g-mol-!
87 16221 Dimethyl palmitamine 0.77 CisHaoN 269.50
88 29075 1-Nonadecene 0.19 CioHsg 266.50
89 8222 Eicosane 0.11 CyH,, 282.50
90 985 n-Hexadecanoic acid 0.40 CsH3,0, 256.42
91 8907 Isopropyl palmitate 0.08 C,sH30, 298.50
92 3015374 Henicos-1-ene 0.08 C, H,, 294.60
93 7641 Hexanedioic acid, bis(2-ethylhexyl) ester 0.20 C,,H,,0, 370.60
94 8343 Bis(2-ethylhexyl) phthalate 1.23 C,,H30, 390.60

TABLE 2 17 Intersecting target genes.

Numberofnodes 17
Numberofedges 34
Averagenodedegreee 4
Avg.Localclustering coefficient 0.47
Expected number of edges 7
PPlenrichmentp-value <2.88e7

generally have antioxidant, anti-inflammatory, antibacterial, and
antitumor effects. In addition, p-cymene has analgesic and
neuroprotective effects (37); eucalyptol can reduce neural excitability
and has soothing, neuroprotective, anti-anxiety, and antidepressant
effects (38). The main chemical components of AMS have activities
such as pain relief and sedation, which can be used to treat sleep
disorders. However, many other components of AMS and their
capabilities have not been investigated or verified, which will require
a more thorough study.

This study showed that SLC2A1, SLC6A3, SLC6A4, MAOA,
SCN2A, DRDI, DRD3, and CHRNB?2 are the core targets for AMS
treatment of sleep disorders. The dopamine receptor family, including
DRD1, DRD3, and SLC6A3, mainly acts on dopamine (DA), while
MAOA and SLC6A4 primarily affect serotonin (5-HT). SCN2A is a
subunit-encoding voltage-gated sodium ion channel in the central
nervous system that is widely distributed at the beginning of the axons
of glutamate neurons and is involved in the regulation of hippocampal
replay within sharp wave ripples (SPW-Rs), which are essential for
memory (39). SCN2A can control excitatory synaptic input (40), thus
regulating neuronal excitability. DRD1 is a receptor for the excitatory
neurotransmitter DA, and its activity is mediated by the G protein that
activates adenylate cyclase. DRDI can increase DA levels through the
DRD1 MeCP2 BDNF TrkB signaling pathway, leading to insomnia
(41). Sleep-related epilepsy can be caused by mutations in genes such
as CHRNB2, which encodes the nAChR subunit and is widely
expressed in the forebrain (42). SLC6A4 is a 5-HT transporter that can
help maintain 5-HT homeostasis in the central nervous system and
affect sleep by regulating 5-HT transport. SLC6A4 transports 5-HT
from the extracellular compartment to the cytoplasm through the
exchange of Na* during the electroneutral transport cycle, thereby
limiting the intercellular signal transduction of 5-HT (43). In the
raphe neurons of the brainstem, the uptake of 5-HT from the synaptic
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FIGURE 5
Dopaminergic synaptic pathway.

FIGURE 6
"Components-efficacy targets-action pathway network” of AMS.

gap to the presynaptic end is regulated, thereby terminating the
transmission of 5-hydroxytryptamine signals at the synapse. In
addition, mutations in the SLC6A4 and MAOA genes can induce
structural and functional abnormalities in the dorsal raphe nucleus
(DRN) and amygdala, thereby interfering with rapid eye movement
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TABLE 3 Gene ontology BP, CC, MF top 8 entry information.

10.3389/fmed.2024.1400334

No. Category Type description p-value
1 Biological processes Behavior 2.34%107"
2 Brain development 3.98%1077
3 Circulatory system process 5.01%107°
4 Cellular response to organic cyclic compound 2.10%1077
5 Regulation of monoatomic ion transport 6.31%1077
6 Import into cell 8.32%107°
7 Response to hypoxia 3.80%1077
8 Dopamine metabolic process 1.62%10~°
9 Cellular components Presynaptic membrane 2.57%107°
10 Plasma membrane raft 4.37%1077
11 Intercalated disk 2.82%107°
12 The apical part of the cell 2.04*107°
13 Axon 5.01%107°
14 GABA-ergic synapse 1.00%107
15 Postsynaptic specialization membrane 2.19%107°
16 Serotonergic synapse 1.12%107°
17 Molecular functions Sodium ion transmembrane transporter activity 1.62%10°°
18 Calmodulin binding 4.27%107°
19 Growth factor binding 5.37%107°
20 Dopamine neurotransmitter receptor activity 2.95%107°
21 Dopamine binding 6.17%107°
22 Monoamine transmembrane transporter activity 1.95%107°
23 Peptidyl-dipeptidase activity 1.12%107°
24 Steryl-beta-glucosidase activity 1.12%107°

TABLE 4 Main active ingredients and core targets of AMS.

Number Chemical Core Binding energy
compounds targets (kcal/mol)

1 (+)2-Bornanone DRD3 —4.55

2 (+)2-Bornanone SCN2A -3.97

3 Eugenol DRD1 —4.76

4 Eugenol SLC2A1 —4.82

TABLE 5 Comparison between existing and proposed study.

Reference number Methods used Results attained

(35) Qing moxa smoke 89%
(36) SAMPS mice 91.2%
Proposed method AMS 92.3%

(REM) sleep (44). In treating sleep disorders, AMS can mediate the
expression of the genes above, thereby affecting emotions and sleep by
controlling the transport and metabolism of related proteins and
neurotransmitters, the permeability and exchange of Na*, and the
transmission of synaptic signals.
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4.Eugenol-SLC2A1

3.Eugenol-DRD1

FIGURE 7
Schematic diagram of simulated docking between the main active
ingredients and core targets of AMS.

The results of KEGG analysis showed that the mechanism of
action of AMS in treating sleep disorders mainly involves the
dopamine synaptic pathway, the neuroactive ligand-receptor
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interaction, the renin-angiotensin system, the synaptic vesicle cycle
pathway, and other signaling pathways. Among them, dopaminergic
synapses are chemical synapses that play a crucial role in emotional
disorders and can affect the connections of all members of the
axonal protein superfamily of transmembrane molecules that play
essential roles in neuropsychiatric disorders and excitatory cells.
Excessive activation of the renin-angiotensin system pathway can
lead to disturbances in the internal environment, increased
reabsorption of Na* by the renal tubules, and elevated levels of renin
and angiotensin, leading to elevated blood pressure, insomnia,
anxiety, depression, and inflammation (45, 46). When insomnia
occurs in the human body, the transmission of excitation signaling
pathways is enhanced, and the content of molecules related to this
pathway also increases. GO analysis of the active components of
AMS showed that the core target genes were involved in processes
such as behavior, brain development, circulatory system processes,
and cellular responses to organic cyclic compounds. Therefore,
based on the above results, the active ingredients of AMS can
improve the behavior of individuals with sleep disorders and help
maintain normal brain development and function by regulating the
circulatory system; meanwhile, the active ingredients of AMS can
communicate and activate various pathways through signal
transduction and activating transcription factors, thereby controlling
the levels of related neurotransmitters, hormones, signal molecules,
and other substances.

5.1 Limitations and future scope

Using molecular docking and network pharmacology, the study
explores the potential use of AMS in treating sleep disorders. However,
in vitro and in vivo studies still need to be improved for better results.
To comprehend the molecular processes behind the therapeutic
benefits of AMS, future research should concentrate on thorough
experimental investigations, clinical trials, and the integration of
multi-omics data. Enhancing comprehension of AMS’s therapeutic
potential and creating novel treatment approaches may
be accomplished by evaluating patient-centered outcomes and quality-

of-life metrics.

6 Conclusion

The average amount of time people spend sleeping is steadily
declining, the number of people who have insomnia is rising, and the
causes of sleep disorders are becoming more complicated. Traditional
Chinese medicine’s diagnosis and treatment philosophy, based on
syndrome differentiation and numerous potent ingredients, offers
effective treatments for various insomnia-related conditions. Clinical
experience has demonstrated that AMS is beneficial for qi circulation,
pain relief, regulating meridians and kidneys, and calmness. In this
study, we used GC-MS technology to identify the chemical
components in AMS. The obtained compounds were subjected to
network pharmacology analysis, and 94 active components of AMS
were identified. Five hundred fourteen disease targets, 17 shared
active component regulation targets, and sleep disorder-related
targets were identified. A “components-targets-pathways” network
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for AMS and GO was established. KEGG analyses were utilized to
speculate that AMS may regulate sleep disorders through the
following 7 pathways: dopaminergic synapse, the neuroactive ligand-
receptor interaction, the renin-angiotensin system, central carbon
metabolism in cancer, the synaptic vesicle cycle, chemical
carcinogenesis-receptor activation, and calcium signaling pathways.
Based on the specific roles of targets and components, 8 key targets
were selected, including 9 potential active monomers. Molecular
docking was carried out, and DRD3 and SCN2A showed good
binding with (+)-2-Bornanone, and DRD1 and SLC2A1 showed
good binding with eugenol. In this study, we explored the potential
mechanisms underlying the calming and tranquilizing effects of AMS
in sleep disorders from the following two aspects: material
component analysis and network pharmacology, thereby providing a
theoretical basis for further exploration and subsequent experimental
research to evaluate the clinical application of AMS to improve sleep.
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Introduction: Heart disease remains a complex and critical health issue,
necessitating accurate and timely detection methods.

Methods: In this research, we present an advanced machine learning system
designed for efficient and precise diagnosis of cardiac disease. Our approach
integrates the power of Random Forest and Ada Boost classifiers, along with
incorporating data pre-processing techniques such as standard scaling and
Recursive Feature Elimination (RFE) for feature selection. By leveraging the
ensemble learning technique of stacking, we enhance the model’s predictive
performance by combining the strengths of multiple classifiers.

Results: The evaluation metrics results demonstrate the superior accuracy and
obtained the higher performance in terms of accuracy, 99.25%. The effectiveness
of our proposed system compared to baseline models.

Discussion: Furthermore, the utilization of this system within loT-enabled
healthcare systems shows promising potential for improving heart disease
diagnosis and ultimately enhancing patient outcomes.

KEYWORDS

heart disease, machine learning, classification, stacking, healthcare

1 Introduction

Heart disease (HD) is a serious public health problem that has affected
millions of individuals worldwide according to the World Health Organization
(WHO) (1, 2). Shortness of breath, muscle weakness, and swelling feet are
prominent signs of HD (3). The diagnosis of HD is significantly important for
patient treatment and recovery in the Medical Internet of Things system (MIoT)
(4). Experts and medical specialists in MIoT systems have presented many non-
invasive approaches for classifying and diagnosing cardiac disease (5). Machine
learning (ML) and deep learning (DL) models are widely utilized in the design
of computer-aided diagnosis systems (CAD) for the detection of heart disease (6).
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Different heart disease diagnosis methods have been presented
utilizing ML learning approaches in the literature. Detrano et al.
(7) created an HD classification system utilizing ML algorithms.
The Cleveland heart disease (CHD) dataset was used with
global evolutionary and feature selection methods. Their proposed
method recorded an accuracy of 77%. Humar et al. (8) proposed
an HD detection method using a Neural Network (NN) and
Fuzzy logic (FL). The classification accuracy of the said model was
87.4%. Palaniappan et al. (9) proposed a diagnosis method for HD
diagnosis. The system was developed using ML models including
Navies Bays (NB), Decision Trees (DT), and Artificial Neural
Network (ANN). NB attained 86.12% accuracy, ANN achieved
88.12% accuracy, and 80.4% accuracy gained by the DT algorithm.
Olaniyi et al. (10) proposed a three-phase model using the ANN for
HD detection in angina that obtained an accuracy of 88.89%.

For the diagnosis of HD, Samuel et al. (11) designed an
integrated model based on an ANN and Fuzzy AHP. In terms
of accuracy, 91.10% was gained by the technique. Liu et al. (12)
suggested a high-definition model based on Relief and rough
set techniques. Their proposed method attained an accuracy of
92.32%. Mohan et al. (13) proposed an HD detection method
using mixed ML algorithms. He also proposed a new strategy for
selecting key features from data for effective machine learning
classifier training and testing. They achieved 88.07% accuracy.
Haq et al. (14) Proposed a machine learning-based diagnosis
technique for identifying HD. ML models were used to detect
HD. To choose the features, feature selection algorithms were
utilized. For feature selection, they designed the Fast-Conditional-
Mutual-Information (FCMIM) feature selection method. The
proposed model (FCMIM-SVM) obtained a high accuracy of
92.37%. Tiwari et al. (15) proposed an ensemble approach for
predicting cardiovascular illness. The framework (SE) employs a
stacked ensemble classifier with machine learning algorithms such
as ExtraTrees Classifier, Random Forest, and XGBoost. They have
used different evaluation metrics for the proposed model (SE)
evaluation. The proposed method obtained 92.34% accuracy.

The presented literature on the existing HD diagnosis models
is shown in Table 1 in order to reach the problem gap in existing
models in a systematic way. All of the prior treatments used a
variety of methodologies to detect HD in its initial stages. However,
all existing algorithms have low accuracy and are computationally
complex to diagnose HD. The prediction accuracy of the HD
detection approach, as shown in Table I, requires significant
enhancement for efficient and accurate detection of HD. Thus, the
key concerns with the preceding methodologies are low accuracy
and long computation times, which may be attributed to the usage
of irrelevant features in the dataset. To solve these difficulties, new
ways of identifying HD in IoT healthcare systems are necessary.
Improving forecast accuracy is a major challenge and study area.
Thus, the primary goal of this research is to develop an accurate
and efficient HD diagnosis system.

In this research study, we have proposed an ML-based
computer-aided diagnosis (CAD) approach for detecting HD early
in the Medical Internet of Things (IoT) system. The objective is
to develop a robust and efficient system that can assist healthcare
professionals in accurately identifying HD in patients. In the
designing of the CAD system, we applied data pre-processing
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TABLE 1 Proposed models summary.

Model FS Data set
ML algorithms - CHD 77 (7)
MLP + SVM - CHD 80.41 (16)
Hybrid - CHD 88.07 (13)
MLmodel
(HRFLM)
ANN + Fuzzy - PID and CHD 87.4 (8)
Logic
(ANN-FL)
ANN - CHD 89.01 (17)
ensemble-
based
diagnosis
system
IHDPS - - 88.12 )
3-phase - SCH. 88.89 (10)
technique
using ANN
XGBoost CDHD 87.28 (18)
ANN-FUZZY- | - CHD 91.1 (11)
AHP
CART HDD 87 (19)
RRS-HD RERS feature SCH 92.32 (12)
selection
HISFP Relief, nRMR, CHD 89 2)
LASSO
SVM Cleveland 96 (20)
Clinic dataset
FCMIM-SVM Relief, nRMR, CHD 92.37 (14)
LASSO, and
LLBFS
SE Hungarian, 92.34 (15)
Cleveland,
Long Beach
VA,
Switzerland,
and Statlog

techniques such as standard scalar and the removal of null values
from the data set. To select related features from the data set, we
incorporated the Recursive Feature Elimination (RFE) algorithm.
This helps to balance the data for proper training of the algorithm
and enhance the algorithm’s predictive capability. The machine
learning classifiers Random Forest (RF) and Ada Boost (AB) were
used for the classification of affected and healthy control subjects.
These models were trained and evaluated using the entire data set
and selected feature data set. To further improve the predictive
results of these models, we incorporated a stacking approach to
select the best meta-classifier between the Random Forest and
Ada Boost. We defined a parameter grid for grid search for both
algorithms. Furthermore, a hold-out validation mechanism was
utilized, and data were split for training and testing in portions of
80 and 20%, respectively. The Cleveland Heart Database was used
to validate the proposed model. Different performance assessment
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metrics were computed for model evaluation. The experimental
results unequivocally demonstrated that our proposed model
outperformed the baseline models in terms of predictive accuracy.
Furthermore, its ease of use and compatibility with IoT healthcare
systems make it an appealing and practical choice for heart disease
prediction.

The innovative points of this research study are listed below:

A CAD approach based on ML is designed to detect cardiac

disease in its early stages in the MIoT systems.

e To normalize the dataset, we incorporated data preprocessing
such as stander scalar and RFE algorithm for irrelevant feature
elimination. The Random Forest and Ada Boost were trained
and tested on entire selected feature datasets to classify heart
disease and healthy control subjects.

e To further improve classification performance, the ensemble
learning technique stacking was used to select the best meta-
classifier between Random Forest and Ada Boost. The meta-
classifier RF was used for the final classification.

e The proposed model performance was compared with

baseline models, and our approach outperformed them.

Hence, it is recommended for use in diagnosing heart disease

in MIoT systems.

The structure of the remaining sections includes data collection
and model methodology (Section 2), experiments (Section 3),
discussion (Section 4), and conclusion (Section 5).

2 Research design
2.1 Data sets

The Cleveland heart disease dataset (CHD) (https://www.
kaggle.com/datasets/aavigan/cleveland- clinic-heart-disease-
dataset) is being examined for testing purposes in this study.
Furthermore, for cross-validation of the models, we incorporated
the data set Heart Statlog Cleveland Hungary (SCH) (https://icee-
dataport.org/open-access/heart-disease-dataset-comprehensive).

2.2 Methodology

The proposed methodology is described in the following
subsections:
1) Recursive Feature Elimination (RFE) algorithm for feature
selection: feature selection is the process of selecting a subset of
relevant features from a larger set of available features in a dataset.
It is a critical step in machine learning and data analysis, as it
helps improve model performance, reduce overfitting, and enhance
interpretability. Feature selection also reduces the computation
time of machine learning Algorithm 1. REF is a feature selection
technique commonly used in machine learning to identify the most
relevant features in a dataset. It aims to find the subset of features
that are most relevant to a given machine learning task. It starts
by taking a feature matrix X of shape (n samples, n features) and
a target variable y of shape (n samples) as input. Additionally, a
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machine learning model is chosen to perform the feature selection
process.

The RFE algorithm begins by initializing an empty list called
“selected features” to store the indices of the selected features. It also
creates another list of remaining features, which initially contains
all the indices of the features in the “original feature” matrix.

The algorithm enters a white loop that continues until the
number of selected features in selected features reaches the desired
target number of features N. Inside the loop, the model is trained
using the trained model and gets importance scores procedure.

This procedure fits the model on the subset of features given by
X [: remaining features] and y. It then calculates the importance
scores for each feature using a specific method provided by the
chosen model. The importance scores represent the relevance or
contribution of each feature to the model’s performance.

Next, the algorithm utilizes the least important feature
procedure to identify the index of the least important feature based
on the importance scores. This feature is then appended to the
selected feature list and removed from the remaining feature list.
The algorithm proceeds by selecting the subset of features from the
original feature matrix X using the indices in the selected feature
list, resulting in a new matrix called X selected. The model is then
retrained using this reduced feature set by applying the train model
procedure, which fits the model on selected X and y. The loop
continues until the number of selected features reaches the target
number N. At this point, the algorithm terminates, and the selected
features list contains the indices of the optimal feature subset,
according to the RFE algorithm. The RFE algorithm offers several
advantages, including improved model interpretability, enhanced
generalization capabilities, and reduced overfitting. By iteratively
eliminating the least important features and retraining the model,
RFE enables the identification of the most informative features for
the given task, leading to more accurate and efficient models.

Pseudo-code for the Recursive Feature Elimination (RFE)
algorithm is shown in Algorithm 1.

2.3 Proposed classification algorithms

2.3.1 Random Forest ensemble learning
algorithm

Random Forest (RF) (21) is an ensemble learning algorithm
that combines multiple decision trees to make predictions. It is
widely used for classification and regression tasks in machine
learning. The algorithm creates subsets of the original dataset
through bootstrapping and constructs decision trees by recursively
partitioning the data based on feature splits. The final prediction
is determined by aggregating the predictions of all the trees in
the ensemble. Random Forest is known for its robustness against
overfitting, ability to handle large datasets, and feature importance
estimation. However, it can be computationally expensive and
less interpretable compared with single decision trees. The
hyperparameters with essential values of random forest are shown
in Table 2.
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Data: Data set D, Original features matrix X,
n, target

i" instance, Target output

total instances in the data set
instance Ry, k is
classes label is Vs
features “N "

wli], Target number of

Result: Reduced feature set S.
1 Begin
2 Step 1: The algorithm takes as input a feature
matrix “X" of shape “(n samples, n features)." a
samples),” a

chosen machine learning model, and a target

target variable “y" of shape “(n

number of features “N "
3 Step 2:
features" to store the indices of the selected

It initializes two lists: “selected

features and “remaining features" to keep track
of the indices of the features that have not
been selected yet;

4 Step 3: The algorithm enters a loop that
continues until the desired number of features
“N" is reached,;

5 Step 4:
the model on the remaining features, calculates

Inside the loop, the algorithm trains

the importance scores for each feature, and
identifies the least important feature;

6 Step 5: The least important feature is appended
to the “selected features" list and removed from
the “remaining features" list;

7 Step 6: The model is retrained using the updated
feature subset;

8 Step 7: The loop continues until the desired
number of features “N " is obtained,;

9 Step 8: Finally, the algorithm returns the
“selected features" list containing the indices
of the selected features;

10 Finish;

Algorithm 1. Recursive Feature Elimination (RFE) algorithm.

2.3.2 Ada Boost ensemble learning algorithm

AdaBoost (AB) (22) is an ensemble learning algorithm that
puts together weak learners to form a strong classifier. It iteratively
trains weak learners on weighted data, focusing on misclassified
samples. The resulting prediction is a weighted combination of
weak learners’ predictions. AdaBoost handles complex decision
boundaries and achieves high accuracy but can be sensitive to noise
and outliers. The hyperparameters with essential values of Ada
Boost algorithm are shown in Table 3.

2.4 Stacking model based on Random
Forest and Ada Boost algorithms

The stacking approach is an ensemble technique for training

several base classifiers on the same dataset. Instead of making
individual predictions, the predictions of these base classifiers are
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TABLE 2 Random Forest hyperparameters with essential values.

Parameters Description Values

name

N estimators Number of decision trees in 1,000
the forest

Max depth Maximum depth of each 20
decision tree

Min samples split Minimum number of samples 10
required to split an internal
node

Min samples leaf Minimum number of samples 5

required to be at a leaf node

Maximum features to use for Randomness FS

splitting at each node

Max features

Bootstrap A boolean indicating whether True or False
to use bootstrap samples for

training

Function to measure the
quality of a split (e.g., Gini
impurity, entropy)

Criterion Entropy

Class weight Weights associated with each Balance
class in classification tasks to

handle class imbalance

Random seed for None

reproducibility

Random state

TABLE 3 Ada Boost algorithm hyperparameters with essential values.

Parameters Description Values

name

N estimators Parameters determine the 200
number of weak learners to be
included in the ensemble

Learning rate Controls the contribution of 0.001
each weak learner to the final
prediction

Base estimator Parameter specifies the weak -
learner used in the ensemble

Algorithm Determines the algorithm “SAMME.R”
used to update sample weights
during training

combined using a meta-classifier, which is typically a model such as
logistic regression, random forest, or a neural network. The meta-
classifier learns to make predictions based on the outputs of the
base classifiers. By combining different types of classifiers, each
with its strengths and weaknesses, the stacking approach aims to
leverage the diverse perspectives and expertise of the individual
classifiers to improve overall classification performance. This can
lead to higher accuracy and better generalization compared with
using a single classifier.

In this study, we trained two base classifiers (Random Forest
and Ada Boost) using the entire training set. By using these two
techniques, we aimed to introduce more diversity and variation
into the ensemble. The predictions of each base model, Random
Forest, and Ada Boost are then combined and used to train the
meta-classifier, which in this case is also a Random Forest model.
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Recursive Feature Elimination (RFE) algorithm for
feature selection
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Ada Boost
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Proposed stacking-based (Stacking HD) model for Heart disease diagnosis in IoT healthcare systems.

2.5 Model cross validation

The model was trained and validated using the held-out cross-
validation procedure (2). When the data set is large, the holdout CV
is an appropriate validation approach. In this study, heart disease
datasets such as CHD, CHDP, and SCH data sets were used and
separated into 80% for training and 20% for model testing.

2.6 Performance evaluation criteria

The performance evaluation metrics (6) were used in this study
to evaluate the proposed model performance. These evaluation
metrics were expressed in equations mathematically Equations 1-6,
respectively. TP denotes True Positive, TN denotes True Negative,
FP denotes False Positive, and FN is False Negative.

TP+ TN

x 100 1
TP+ TN + FP + FN W

Accuracy (Acc) =
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TP
Sensitivity (Sn) = ——— x 100 2
ensitivity (Sn) TP+ EN X (2)

TN
Specificity (Sp) = ———— x 100 3
pecificity (Sp) N+ > (3)

.. TP
Precision (Pr) = ———— x 100 (4)

TP + FP
Pr x Recall
F1-S F1-S) =2 x ———— x 100 5
core ( ) x Pr + Recall x )
Matthews correlation coefficient (MCC):
T

MCC = ! x 100 (6)

«/Tz XT3 X T4XT5
where T; = TPx TN —FPx FN, T> = TP+FP, T; = TP+FN,
Ty = TN + FP,and Ts = TN + FN.
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Input : Cleveland Heart Disease dataset (CHD),
Heart Statlog Cleveland Hungary dataset
(Heart St at | ogCl evel andHungary )
Output: Evaluation metrics for all features and
selected features
1 Step 1: Data preparation;
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28
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30

StandardizeDatadat aset
StandardScale(dat aset );
CHD <« LoadDataset(“Cleveland Heart Disease

return

dataset");

Heart St at | ogCl evel andHungary <«
LoadDataset(“Heart Statlog Cleveland Hungary
dataset");

St andar di zedCHD <« StandardizeData(CHD  );
St andar di zedHeart Statl og «

StandardizeData(Hear t St at | ogCl evel andHungary
Trai nData, TestData <«

HoldOutSplit(St andar di zedCHD  );

Step 2: Moddel construction;

TrainRandomForestdat a, num trees

Randonfor est Mbdel <« RandomForest(num t r ees);
Randonfor est Mbdel . fi t (dat a);

return Randonfor est Model ;

TrainAdaBoostdat a, num trees AdaBoost Model <«

AdaBoost(num t r ees);

AdaBoost Model . fit (dat a);

return AdaBoost Model ;

RFEdat a return RecursiveFeatureElimination(dat a);
Randontor est Model
num_t r ees=1000);

AdaBoost Mbdel <« TrainAdaBoost(Tr ai nDat a,
num_t r ees=200);

Sel ect edFeat ures <« RFE(Trai nDat a);

St acki ng;

StackingModelPredictdat a, base Model s

BaseMbdel Qut puts <« [;

for model in baseModels do

BaseMbdel Qut put s. append(nodel . pr edi ct (dat a))
end

St acki nghbdel | nput <
Concatenate(BaseMddel Qut put s);

St acki nghbdel Qut put <«

RandomForestPredict( St acki nghbdel ,
St acki nghvodel | nput);

return St acki nghbdel Qut put ;

BaseMbdel Qut put sAl | Features <«
StackingModelPredict(Test Dat a,

[ Randontor est Mbdel , AdaBoost Model | );

Randontor est Model Sel ect edFeat ures <«
TrainRandomForest(Tr ai nDat a[ Sel ect edFeat ures],
num_t r ees=1000);

AdaBoost Mbdel Sel ect edFeat ures <«
TrainAdaBoost(Tr ai nDat a[ Sel ect edFeat ur es],
num_t r ees=200);

BaseMbdel Qut put sSel ect edFeat ures «
StackingModelPredict(Test Dat a[ Sel ect edFeat ur es],
[ Randontor est Model Sel ect edFeat ur es,

AdaBoost Mbdel Sel ect edFeat ur es] );
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<« TrainRandomForest(Tr ai nDat a,

i

23

10.3389/fmed.2024.1362397

31 Step 3: Model

32 Eval uati onMetricsAl | Features <«
EvaluateModel(BaseMbdel Qut put sAl | Feat ur es,
Test Dat a);

33 Eval uati onMetricsSel ect edFeatures «

performance eval uation;

EvaluateModel(
Test Dat a);

BaseMbdel Qut put sSel ect edFeat ur es,

Algorithm 2. Stacking HD heart disease diagnosis.

Area under the ROC curve AUC:

The AUC represents the model’s ROC, and a high AUC
number indicates a high-performance model. These equations
represent various performance metrics commonly used in binary
classification tasks.

2.7 Proposed model (stacking HD)

An ML-based computer-aided diagnosis (CAD) model for
detecting HD early stages in the Medical Internet of Things (IoT)
system. In the designing of the CAD system, we applied data pre-
processing techniques such as standard scalar and the removal of
null values from the data set. To select related features from the
data set, we incorporated the Recursive Feature Elimination (RFE)
algorithm. This helps to balance the data for proper training of
the algorithm and enhance the algorithm’s predictive capability.
The machine learning classifiers Random Forest (RF) and Ada
Boost (AB) were used for the classification of affected and healthy
control subjects. These models were trained and evaluated using
the entire data set and selected feature data set. To further
improve the predictive results of these models, we incorporated
a stacking approach to select the best meta-classifier between
the Random Forest and Ada Boost. We defined a parameter
grid for grid search for both algorithms. Furthermore, a hold-
out validation mechanism was utilized and data were split for
training and testing in portions of 80 and 20%, respectively.
The Cleveland Heart Database was used to validate the proposed
model. Different performance assessment metrics were computed
for model evaluation. The experimental results unequivocally
demonstrated that our proposed model outperformed the baseline
models in terms of predictive accuracy. The model flowchart is
shown in Figure 1, and the model’s method in Algorithm 2 is
as follows.

3 Experiments

3.1 Experiments setup

For the implementation of the proposed model, we performed
various experiments. First, we incorporated data preprocessing and
feature selection techniques to balance the data set and remove the
irrelevant features from the data set. The ML classifiers Random
Forest and Ada Boost were trained on 80% the original feature data
set and the selected feature data set and evaluated with 20% data.
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Furthermore, as shown in Tables 2, 3, additional hyperparameters
were adjusted in each model accordingly. The Cleveland Heart
Disease and Heart Statlog Cleveland Hungary datasets were used
for validation of the models. To further improve the predictive
performance, a stacking mechanism was used.

The proposed model performance was evaluated by computing
various evaluation metrics. The experiments were carried out
on a laptop and run with a Google collaborator accelerator. All
experiments required Python v3.7 and other machine-learning
libraries. Consistent values are obtained after repeating the
experiments several times. The results of all experiments were
provided in tables and graphed.

3.2 Results and analysis

3.2.1 Results of data pre-processing

On the Cleveland Heart Disease dataset (CHD), the proposed
model was tested. The original data set has 303 records and 75
columns; however, all published studies used only 14 columns. We
did pre-processing on the data set, and 6 records were discarded
due to empty values. Hence, the dataset has 297 records with 13
columns and 1 output column. As a result, a features matrix of
297x13 is created. We also employed a standard scalar to verify that
each feature has a mean of 0 and a variance of 1; consequently, all
features have the same coefficient. Furthermore, we duplicated 297
samples three times to increase the size of the data set. The number
of samples in the new data set is 3%297 = 891. As a result, the new
dataset, known as the Cleveland Heart Disease Proceeded (CHDP)
data set, has a matrix size of 891x13. The description of the CHD is
shown in Table 4.

For cross-validation of the models, we incorporated the data
set Heart Statlog Cleveland Hungary (SCH). This dataset has 1,190
samples with 11 columns. These datasets were collected and put in
one place to enhance research on CAD-related machine learning
and data mining methods and perhaps eventually advance clinical
diagnosis and early treatment. The feature set Statlog Cleveland
Hungary data set is shown in Table 5. The models were trained
with Cleveland Heart Disease of feature matrix dataset 297%13 and
3%297 = 891 and tested with Heart Statlog Cleveland Hungary
data set.

3.2.2 Results of REF algorithm and feature
ranking and selected feature subsets from CHD
and SCH data sets

To choose the optimal collection of features from the SCH and
CHD data sets, the REF FS method was utilized. Table 6 shows the
feature rating and selected feature sets. According to Table 6, these
feature sets have a significant influence on the classification of HD
and HC control subjects. From CHD data set, the subset of selected
features included SEX, CTP, EIA, PES, and VCA. While from SCH
data set, the selected subset of features are SEx, CTP, FBG, EIA, and
PES. We have performed experiments on full and selected feature
datasets of both data sets in the coming sections in order to check
the models’ results on full and selected feature sets.
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TABLE 4 Description of cleveland heart disease (CHD) dataset (features
matrix of 297 * 13).

Feature name Feature Feature description
code

Age AGE Age in years

Sex SEX Male = 1 and Female = 0

Chest pain CTP Atypicalangina = 1,
Typicalangina = 2,
Asymptomatic = 3,
Nonanginalpain = 4

Resting blood pressure RBP mm hg, hospitalized

Serum cholesterol SCH In mg/dl

Fasting blood sugar >120 FBS fasting blood sugar >120

mg/dl mg/d(T =1, F=0)

Normal =0, STT =1,
Hypertropy = 2

Resting electrocardiographic RES

Maximum heart rate MHR -

Exercise included angina EIA Yes=1,No=0

Old peak = ST depression OPK -

included by exercise relative

to rest

Slope peak exercise St PES Up sloping = 1, Flat = 2,

segment Down sloping = 3

Number of major vessels VCA -

(0-3) colored by fluoroscopy

Thallium scan THA Normal = 3, Fixed defect = 6,
Reversible defect = 7

Lable LB Heart disease = 1, healthy = 0

TABLE 5 Description of Statlog Cleveland Hungary (SCH) data set
(features matrix of 1,190 * 11).

Feature name Feature Feature description
code

Age AGE Age in years

Sex SEX Male = 1 and female = 0

Chest pain CTP Atypical-angina = 1,
typical-angina = 2,
Asymptomatic = 3,
Non-anginal-pain = 4

Resting blood pressure RBP mm hg, hospitalized

Serum cholesterol SCH In mg/dl

Fasting blood sugar >120 FBS fasting blood sugar >120

mg/dl mg/dl(T=1,F=0)

Resting electrocardiographic RES Normal =0, STT =1,
Hypertropy=2

Maximum heart rate MHR -

Exercise included angina EIA Yes=1,No=0

Old peak = ST depression OPK -

included by exercise relative

to rest

Slope peak exercise St PES Up sloping = 1, flat = 2, down

segment sloping = 3

Targrt TG Heart disease = 1, healthy = 0
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TABLE 6 Feature ranking and selected feature subsets from CHD and SCH data sets by REF algorithm, i.e., 297 * 5 c 297 *13and 1,190« 5 c 1,190 % 11.

Dataset Feature name Feature code Feature ranking Selected feature
CHD Age AGE 7
Sex SEX 1 SEX
Chestpain CTP 1 CTP
Resting blood pressure RBG 8
Serum cholesterol SCH 9
Fasting blood sugar FBG 2
Resting electrocardiographic RES 5
Maximum heart rate MHR 6
Exercise included angina EIA 1 EIA
OldPeak OPK 3
SlopofST PES 1 PES
Flouroscorpy VCA 1 VCA
Thal THA 4
SCH Age AGE 6
Sex SEX 1 SEX
Chestpain CTP 1 CTP
Resting blood pressure RBG 5
Serum cholesterol SCH 7
Fasting blood sugar FBG 1 FBG
Resting electrocardiographic RES 3
Maximum heart rate MHR 4
Exercise included angina EIA 1 EIA
OldPeak OPK 4
SlopofST PES 1 PES

3.2.3 Results of Random Forest and Ada Boost
with full and selected feature data sets

The classification performance of Random Forest and
Ada Boost was evaluated on whole and selected feature
datasets of CHD, CHDP, and SCH datasets, respectively.
The models were configured with basic hyperparameters,
as shown in Tables2, 3. The held-out cross-validation was
incorporated, and data sets were divided into 80 and 20% ratios
for training and validating of the models, respectively. The
model’s performance was evaluated by computing different
evaluation metrics, and the results were reported and discussed
in detail.

Table 7 presented the results of classifiers Random forest
and Ada boost trained and evaluated on full and selected
feature sets on the CHD data set. On the full feature set,
obtained results are 88.33% accuracy, 88.45% specificity, 89.23%
sensitivity, 94.65% precision, 91.02% MCC, and 89.02% F1-
score. While on selected features set the model 89.12%,
92.24%, 88.22%, 89.98%, 93.24%, and 90.00%, respectively.
The model improved accuracy 89.12-88.33 = 0.79% on the
selected feature set. The performance of other metrics also
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greatly improved. In Figure 2, Random Forest results are
graphically presented.

The Ada Boost results are presented in Table 7 with the full
feature set and obtained 78.33%, 78.21%, 92.11%, 89.34%, 91.00%,
and 79.21% of accuracy, specificity, sensitivity, precision, MCC, and
F1-score, respectively. On the selected feature set, the Ada Boost
achieved 78.78%, 97.23%, 88.65%, 93.36%, 92.02%, and 80.58%
of accuracy, sensitivity, specificity, precision, MCC, and F1-score
values, respectively. Figure 3 graphically presents the model results
of Ada boost on both selected and full feature data sets of CHD
data set.

Table 8 presented the results of classifiers Random forest and
Ada boost trained and evaluated on full and selected feature sets on
the CHDP data set. The accuracy, specificity, sensitivity, precision,
MCC, and Fl-score values on the full feature set were 98.34%,
98.45%, 98.32%, 93.67%, 97.33%, and 98.32%, while those values on
selected feature set were 98.89%, 99.00%, 98.77%, 98.67%, 96.00%,
and 99.01%, respectively. The model improved accuracy 98.89-
98.34 = 0.54% on the selected feature set. The performance of other
metrics also greatly improved. In Figure 4, Random Forest results
are graphically presented.
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TABLE 7 Results of Random Forest and Ada Boost with full and selected feature sets of CHD data set.

Data set Metrics
Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)
Random forest Full feature 88.33 88.45 89.23 94.65 91.02 89.02
- Selected feature 89.12 92.24 88.22 89.98 93.24 90.00
Ada boost Full feature 78.33 78.21 92.11 89.34 91.00 79.21
- Selected feature 78.78 97.23 88.65 93.36 92.02 80.58

Performance of Random Forest on CHD full feature and selective
feature datasets

90
88
86
B4
82
Acc Sp Sn Pr MCC F1-S

m FullFeature  m Selected Feature

CERE8

Perfromace (%)

Data set

FIGURE 2
Results of Random Forest with full and selected feature sets of (CHD) data set.

Performance of Ada Boost on CHD full feature and selective
feature datasets

Acc Sp sn Pr MCC F1-§

m FullFezture m Selected Feature

100

Performance (%)

o 8 &8 8

Data set

FIGURE 3
Results of Ada Boost with full and selected feature sets of (CHD) data set.

On the other hand, Ada Boost results with CHDP  Fl-score. The Ada Boost achieved 93.89% accuracy, 93.89%
dataset are presented in Table 8 with the full feature set  specificity, 94.09% sensitivity, 95.09% precision, 94.23%
and obtained 93.29% accuracy, 93.28% specificity, 93.02%  MCC, and 94.43% Fl-measure on the specified feature set.
sensitivity, 94.00% precision, 93.89% MCC, and 94.02%  Figure 5 graphically presented the model results of Ada boost
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TABLE 8 Results of Random Forest and Ada Boost with full and selected feature sets of CHDP data set.

Dataset Metrics
Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)
Random forest Full feature 98.34 98.45 98.32 93.67 97.33 98.32
- Selected feature 98.89 99.00 98.77 98.67 96.00 99.01
Ada boost Full feature 93.29 93.28 93.02 94.00 93.89 94.02
- Selected feature 93.89 93.99 94.09 95.09 96.23 94.43

Performance of Random Forest on CHDP full feature and selective
feature datasets

Acc Sp Sn Pr MCC F1-§

B FullFeature m Selected Feature

8

Performance (%)
& 8 B8 B8

Data set

FIGURE 4
Results of Random Forest with full and selected feature sets of CHDP data set.

Performance of Ada boost on CHDP full feature and selective
feature datasets

Acc Sp sn Pr MCC F1-5

m FullFemture m Selected Feature

Performance (%)
2 B8 R B8 S

Data set

FIGURE 5
Results of Ada Boost with full and selected feature sets of CHDP data set.

on both selected and full feature data sets of the CHDP  Table 9 presented the Random Forest and Ada Boost classifier’s

data set. experimental results. With the full feature set, the Random Forest
We have checked the model’s performance on full and selected ~ gained 94.53%, 94.59%, 94.56%, 95.02%, 94.33%, and 94.53% of
feature data sets (SCH) in order to evaluate these models. accuracy, specificity, sensitivity, precision, MCC, and F1-score,
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TABLE 9 Results of Random Forest and Ada Boost with full and selected feature sets of SCH data set.

Dataset Metrics
Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)
Random forest Full feature 94.53 94.59 94.53 95.02 94.33 94.53
- Selected feature 95.00 94.30 93.87 94.23 95.01 92.04
Ada boost Full feature 86.96 86.98 86.89 97.92 86.00 87.00
- Selected feature 87.02 98.99 86.23 87.36 88.98 87.98

Performance of Random Forest on SCH full feature and selective
feature datasets

Acc Sp Sn Pr MCC F1-5

m FullFeature wm S&ected Feature

Performance (%)
8288 e 88

Data set

FIGURE 6
Results of Random Forest with full and selected feature sets of (SCH) data set.

Performance of Ada boost on SCH full feature and selective
feature datasets

100

85
80
75
Acc Sp Sn Pr MCC F1-5

m FullFeature m Selected Feature

Perfroamnce (%)
8

Data set

FIGURE 7
Results of Ada Boost with Full and Selected Feature sets of SCH data set.

respectively. While accuracy, sensitivity, specificity, precision,  results of Random Forest on both selected and full feature data sets
MCC, and F1-score values on the selected feature set the Random  of the SCH data set.

Forest achieved 95.00%, 94.30%, 93.87%, 94.23%, 95.01%, and The Ada Boost results on full and selected feature data
92.04%, respectively. Figure 6 graphically presented the model  sets (SCH) are shown in Table 9. On the full feature set, the
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FIGURE 8
Accuracy comparison of Random Forest on three data sets.

CHDP
98.89
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TABLE 10 Classifier evaluation with cross dataset.

Metrics
Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)
Random Forest 98.97 96.87 98.73 97.24 95.28 98.70
Ada Boost 95.21 95.76 96.23 97.34 94.45 95.02
Model Performance with Cross data set
100
—_ 99
£ 98
g 97
B 96
E
‘§ 95
5 54
= 93 I
92
Acc Sp Sn Pr MCC F1-§
M Random Foresx  98.97 96.87 98.73 97.24 95.28 98.7
W Ada Boost 95.21 95.76 96.23 97.34 8445 95.02
m Random Forest m Ada Boost
Model
FIGURE 9
Model results trained and validated with the independent cross-data set.

Ada boost achieved 86.96% accuracy, 86.98% specificity, 86.89%
sensitivity, 97.92% precision, 86.00% MCC, and 87.00% F1-score.
The Ada Boost improved predictive performance on selected
feature dataset and obtained 87.02% accuracy, 98.99% specificity,
86.23% sensitivity, 87.36% precision, 88.98% MCC, and 87.98%
Fl-score. Figure7 graphically displayed the Ada Boost model
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results on both the selected and full feature data sets of the SCH
data set.

On the basis of the experimental results of Random Forest
and Ada Boost classifiers on full and selected feature sets on three
datasets including, CHD, CHDP, and SCH, as shown in Tables 7-9,
we concluded that the performance of Random Forest algorithm is
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TABLE 11 Stacking HD model performance with CHD, CHDP, and SCH data sets.

10.3389/fmed.2024.1362397

Model Datasets Acc (%  Sp (%) Sn Pr (%) MCC (%) F1-S (%)
Random Forest CHD 92.67 94.09 87.02 96.03 97.43 95.78
Random Forest CHDP 99.25 95.89 99.04 97.56 98.00 99.30
Random Forest SCH 97.20 96.56 95.46 93.79 96.45 97.33
Staking HD model performance of different data set
100
98

Performance (%)
&

FIGURE 10
Stacking HD model performance on different data sets.

96
o4
92
88
86
24
82
80
Acc Sp Sn Pr MCC

F1-5
CHD 92.67 9409 87.02 96.03 97.43 95.78
CHDP 99.25 95.89 99.04 97.56 98 993
SCH 97.2 96.56 85.46 93.79 96.45 97.33
m CHD mCHDP mSCH
Data set

higher as compared with Ada Boost algorithm on CHDP data set.
In terms of accuracy, Random forest with CHDP data set obtained
98.89% classification accuracy. On CHD data set, the accuracy of RF
algorithm was 89.12% and the accuracy of SCH data set was 95.00%.
Thus, on the basis of the data set, the Random forest classifier in
CHDP data set is higher than in CHD and SCH data sets. Hence,
Random Forest is a suitable classifier for the diagnosis of HD in
ToT healthcare systems. The RF performance in terms of accuracy
on three data sets is graphically presented in Figure 8 for better
understanding.

3.2.4 Models performance evaluation with cross
dataset

With separate cross-datasets, we examined the predictive
outcomes of the Random Forest (RF) and Ada Boost (AB)
classifiers. We trained the Random Forest and Ada Boost with CHD
data set and tested with an independent SCH data set. The models
were configured with basic hyperparameters as shown in Tables 2,
3. The model’s performance was evaluated by computing different
evaluation metrics and experimental results, as shown in Table 10.

Table 10 reported performance metrics results for the random
forest model including accuracy, sensitivity, specificity, precision,
MCC, and F1-score which were 98.97%, 96.87%, 98.73%, 97.24%,
95.28%, and 98.70%, respectively. The test accuracy of the Random
forest model is higher as compared to the test accuracy of the Ada
Boost model on the same data. While the Ada Boost reached an
accuracy of 95.21%, a specificity of 95.76%, a sensitivity of 96.23%,
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a precision of 97.34%, MCC of 94.45%, and F1-score of 95.02%. The
test accuracy is higher as compared to the test accuracy of the same
data. The cross-data performance of Random Forest and Ada Boost
is graphically shown in Figure 9.

3.2.5 Results of the stacking model (stacking HD)
We used the performance of all models (Random Forest
and Ada Boost) as new training data to increase classification
performance. The Random Forest model results were highest
between Random Forest and Ada Boost models when the selected
feature data sets of CHD, CHDP, and SCH were used. The
outcomes of the stacking-based model (stacking HD) are shown in
Table 11. The stacking-based model (stacking HD) performance of
different data sets is presented graphically in Figure 10 for better
understanding. The table presents that the results of the stacking-
based model (stacking HD) are better and obtained 92.67%
accuracy, 94.09% speciﬁcity, 87.02% sensitivity, 96.03% precision,
97.43% MCC, and 95.78% F1-score on the CHD selected feature
data set. The performance of the stacking approach on CHD data is
better than that of individuals models Random forest as reported
in Table 7 such as 89.12% accuracy, 92.24% specificity, 88.22%
sensitivity, 89.98% precision, 93.24% MCC and 90.00% F1-score.
The Confusion Matrix (CM) and ROC curve of the stacking-based
model on CHD data set are shown graphically in Figures 11A, 12A.
While on CHDP selected feature dataset, the stacking HD
model meta classifier (Random Forest) obtained the higher
performance in terms of 99.25% accuracy, 95.89% specificity,
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FIGURE 11
Confusion matrixes for three datasets. (A) Confusion matrix of staking based model on CHD data. (B) Confusion matrix of staking based model on
CHDP data set. (C) Confusion matrix of staking based model on SCH data set.

99.04% sensitivity, 97.56% precision, 98.00% MCC, and 99.30% 3.2.6 Comparison of stacking HD model with
Fl-measure. The CM and ROC curves of the stacking-based existing models

model on CHDP data set are shown graphically in Figures 11B, The proposed model (stacking HD) predictive accuracy is
12B. The stacking approach-based model on the SCH data set  compared with baseline models, as shown in Table 12. Table 12
obtained 97.20% accuracy, 96.56% specificity, 95.46% sensitivity,  presented that the stacking HD model reached a higher 99.25%
93.79% precision, 96.45% MCC, and 97.33% Fl-score. The CM  accuracy as compared with baseline models. The suggested
and ROC curves of the stacking-based model on SCH data set  method’s great performance revealed that it correctly diagnoses HD
are shown graphically in Figures 11C, 12C. The above stacking-  and may be simply applied in IoT healthcare for the diagnosis of
based model (Stacking HD) results on different data sets presented  heart diseases.

that stacking-based models perform better than individual models.

The result of the stacking-based model is the high performance . .

of CHDP data set as compared with CHD and SCH data 4 Discussion

sets. Among the three stacking model, the stacking HD on the

CHDP data set obtained a higher accuracy of 99.25%. Hence, The diagnosis of heart disease (HD) is a critical task in the
the stacking HD model is an appropriate method to diagnose early stages of IoT healthcare systems. World Health Organization
HD in its early stages. Random forest is considered as the —(WHO) reported that a large number of people are suffered from
meta classifier. HD each year (1). To handle the initial stages of recognition of HD,
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FIGURE 12
ROC curves on the stacking-based model for three data sets. (A) ROC curves on the stacking-based model with CHD data set. (B) ROC curves on the
stacking-based model with CHDP data set. (C) ROC curves on the stacking-based model with SCH data set.

various diagnosis methods have been proposed by medical experts
and researchers. Machine learning techniques based on Computer-
Aided Diagnostic Systems (CAD) in an IoT healthcare system
can accurately detect HD in its initial phases (30, 31). Machine
learning techniques are widely used in CAD systems to diagnose
critical diseases such as heart disease in IoT healthcare (32, 33).
However, the existing HD diagnostic methods have the problem of
lack of accuracy in the diagnosis HD correctly. The low prediction
accuracy arises due to imbalanced data and irrelevant feature data
for the ML model training. To address this issue, a new approach
for properly and efficiently diagnosing heart disease is required for
IoT healthcare systems.

The research study designed machine learning technique-based
CAD systems for HD diagnosis in IoT-healthcare systems. In the
designing of the CAD system, data pre-processing techniques such
as standard scalar and removing null values attribute records from
the data set. For related feature selection from the data set, we
incorporated the Recursive Feature Elimination (RFE) algorithm
to balance the data for good training of the model to enhance
the model’s predictive capability. The machine learning classifiers
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Random Forest and Ada Boost were used for the classification of
affected and healthy control subjects. These models were trained
and evaluated using the entire data set and selected feature data set.
To further improve the predictive performance of these models,
we incorporated a stacking approach to select the best meta-
classifier between the Random Forest and Ada Boost. We defined
a parameter grid for grid search for both algorithms.

Furthermore, the held-out validation procedure was used, and
data were split into sections of 80 and 20% for training and testing.
The proposed model was validated using CHD, CHDP, and SCH
databases. For model performance evaluation, various performance
assessment metrics results were generated. The experimental results
were compared with the existing state of the arts methods.

Here, the experimental results are briefly presented. The RFE
algorithm from the CHD data set of the subset of selected
features included SEX, CTP, EIA, PES, and VCA. While from
the SCH data set, the selected subsets of features are SEX, CTP,
FBG, EIA, and PES. The performance of the Radom Forest
algorithm on CHDP data was higher as compared with CHD
and SCH data sets. Hence, Table 8 presented the results of the
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TABLE 12 Proposed model performance comparison with baseline
models.

Model Acc (%) Ref
ML algorithms 77 7)

MLP + SVM 80.41 (16)
Random Forest model 88 (23)
GA-RBF 94.20 (24)
Hybrid MLmodel (HRFLM) 88.07 (13)
SGD 87.69 (25)
ANN + Fuzzy Logic 87.4 (8)

(ANN-FL)

ANN ensemble-based 89.01 (17)
diagnosis system

IHDPS 88.12 )

3p-ANN 88.89 (10)
RF 96.72 (26)
ANN-FUZZY-AHP 91.1 (11)
SVM 96.72 27)
KNN 90.789 (28)
Random Forest 92.3 (29)
RRS-HD 92.32 (12)
HISFP 89 2)

FCMIM-SVM 92.37 (14)
SE 92.34 (15)
Proposed stacking HD (CHD) 92.67 2024
Proposed stacking HD 99.25 2024
(CHDP)

Proposed stacking HD (SCH) 97.20 2024

classifier Random forest trained and evaluated on full and selected
feature sets on the CHDP data set. The values for the whole
feature set’s accuracy, sensitivity, specificity, precision, MCC, and
Fl-score were 98.34%, 98.45%, 98.32%, 93.67%, 97.33%, and
98.32%. While the values on selected feature set models were
98.89%, 99.00%, 98.77%, 98.67%, 96.00%, and 99.01%, respectively.
The model improved accuracy 98.89-98.34 = 0.54% on the
selected feature set. The performance of other metrics also greatly
improved. The Random Forest accuracy is also higher than the
Ada Boost classifier. Similarly, when stacking techniques were
incorporated, the Random Forest performance was higher than
Ada Boost, and the Random Forest model was selected as the
meta-model. According to Table 7, on the CHDP chosen feature
dataset, the stacking technique selected the Random Forest meta
classifier and produced the higher performance in terms of
accuracy, sensitivity, specificity, precision, MCC, and Fl-score,
each with a score of 99.25%, 95.89%, 99.04%, 97.56%, 98.00%, and
99.30%.

The confusion matrix and ROC curves of the stacking
approach with data sets CHD, CHDP, and SCH are shown in
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Figures 11, 12. Hence, the ROC curve of the stacking model
with the CHDP data set is higher, so it presents that the model
accurately detected the HD as compared with CHD and SCH
data sets.

Our analysis of the aforementioned results led us to the
conclusion that the proposed model, stacking HD, provided
better predictive outcomes and was easily implementable for HD
detection in IoT-based healthcare systems.

5 Conclusion and future work
direction

Machine learning-based Computer-Aided Diagnosis Systems
are typically utilized to effectively identify heart disease. However,
because current artificial diagnostic approaches are imprecise,
medical practitioners are not adopting them into the heart
diagnosis process efficiently. In the research study, we created
an accurate technique for identifying HD using ML techniques.
In the proposed approach, machine learning classifiers including
Random-Forest (RF) and Ada-Boost are incorporated for the
classification of heart disease and healthy control subjects. For data
pre-processing and feature selection, we incorporated standard
scalar and Recursive Feature Elimination (RFE) techniques to
balance the data for proper training of the algorithm to enhance
the model’s predictive capability. We defined a parameter grid for
grid search for both algorithms. To enhance algorithm accuracy,
an ensemble learning technique was incorporated to select the
best classification model. A held-out validation mechanism was
utilized, and HD datasets were used to validate the proposed
model.

The proposed model was evaluated using different evaluation
metrics. According to experimental outcomes on the selected
feature dataset (CHDP), the stacking technique selected meta
classifier (Random Forest) and obtained the higher performance in
terms of accuracy, 99.25%, and greater ROC cure. The proposed
stacking HD model experimental outcomes presented that the
model obtained higher results in terms of accuracy compared
with existing models. Due to its excellent results, the proposed
stacking HD model is recommended for HD detection in IoT
healthcare systems. In the future, we will incorporate deep learning,
transfer learning, and federated learning techniques to design a
more advanced system for the diagnosis of heart disease in the IOT
healthcare system.

Data availability statement

The data sets utilized in this work were collected from a
public repository. The Cleveland Heart Disease dataset is available
at the link: https://www.kaggle.com/datasets/aavigan/cleveland-
clinic-heart-disease-dataset. Heart Statlog Cleveland Hungary
data set is available at the link: https://ieee-dataport.org/open-
access/heart-disease-dataset-comprehensive. All methods were
performed in accordance with the relevant guidelines and
regulations.

frontiersin.org


https://doi.org/10.3389/fmed.2024.1362397
https://www.kaggle.com/datasets/aavigan/cleveland-clinic-heart-disease-dataset
https://www.kaggle.com/datasets/aavigan/cleveland-clinic-heart-disease-dataset
https://ieee-dataport.org/open-access/heart-disease-dataset-comprehensive
https://ieee-dataport.org/open-access/heart-disease-dataset-comprehensive
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Jian et al.

Ethics statement

Ethical review and approval was not required for the study on
human participants, in accordance with the local legislation and
institutional requirements.

Author contributions

WJ: Funding acquisition, Resources, Validation, Visualization,
Writing - original draft, Writing - review & editing. JL: Funding
acquisition, Resources, Validation, Visualization, Writing -
original draft, Writing — review & editing, Conceptualization, Data
curation, Formal analysis, Investigation, Methodology, Project
administration, Software, Supervision. AH: Conceptualization,
Data curation, Formal analysis, Funding acquisition, Investigation,
Methodology, Software,
Supervision, Validation, Visualization, Writing - original draft,

Project administration, Resources,
Writing - review & editing. SK: Conceptualization, Data
curation, Formal analysis, Funding acquisition, Investigation,
Methodology, Software,

Supervision, Validation, Visualization, Writing - original draft,

Project administration, Resources,
Writing - review & editing. RA: Writing — review & editing,
Formal analysis, Visualization, Software. SA: Writing — review &
editing, Methodology, Validation, Visualization, Software. MH:
Data curation, Validation, Visualization, Writing — original draft,

Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study

References

1. Mendis S. Global Atlas on Cardiovascular Disease Prevention and Control. Geneva:
World Health Organization (WHO) (2011).

2. Haq AU. A hybrid intelligent system framework for the prediction of heart
disease using machine learning algorithms. Mob Inf Syst. (2018) 2018: 3860146.
doi: 10.1155/2018/3860146

3. Durairaj M. A comparison of the perceptive approaches for pre-processing the
data set for predicting fertility success rate. Int ] Control Theory Appl. (2016) 9:255-60.

4. Kumar PM, Gandhi UD. A novel three-tier Internet of Things architecture with
machine learning algorithm for early detection of heart diseases. Comput Electr Eng.
(2018) 65:222-35. doi: 10.1016/j.compeleceng.2017.09.001

5. Mpanya D. Predicting mortality and hospitalization in heart failure using
machine learning: a systematic literature review. IJC Heart Vasc. (2021) 34:100773.
doi: 10.1016/j.ijcha.2021.100773

6. Haq AU. IIMFCBM: intelligent integrated model for feature extraction and
classification of brain tumors using MRI clinical imaging data in IoT-healthcare.
IEEE ] Biomed Health Inform. (2022) 26:5004-12. doi: 10.1109/JBHI.2022.31
71663

7. Detrano R, Janosi A. International application of a new probability algorithm
for the diagnosis of coronary artery disease. Am ] Cardiol. (1989) 64:304-10.
doi: 10.1016/0002-9149(89)90524-9

8. Kahramanli H, Allahverdi N. Design of a hybrid system for diabetes
and heart diseases. Expert Syst Appl. (2008) 35:82-9. doi: 10.1016/j.eswa.2007.
06.004

9. Palaniappan S. Intelligent heart disease prediction system using data mining
techniques. In: 2008 IEEE/ACS International Conference on Computer Systems

Frontiersin Medicine

10.3389/fmed.2024.1362397

was supported by the National Natural Science Foundation of
China (Grant No. 61370073), the National High Technology
Research and Development Program of China, and the project
of the Science and Technology Department of Sichuan Province
(Grant No. 2021YFG0322).

Acknowledgments

The authors extend their appreciation to the Deputyship
for Research and Innovation, Ministry of Education in Saudi
Arabia for funding this research through the project number
IFP-IMSIU-2023119. The authors also appreciate the Deanship
of Scientific Research at Imam Mohammad Ibn Saud Islamic
University (IMSIU) for supporting and supervising this project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

and Applications. Doha: IEEE (2008), p. 108-15. doi: 10.1109/AICCSA.2008.
4493524

10. Olaniyi EO. Heart diseases diagnosis using neural networks arbitration. Int |
Intell Syst Appl. (2015) 7:72. doi: 10.5815/ijisa.2015.12.08

11. Samuel OW. An integrated decision support system based on ANN and
Fuzzy_AHP for heart failure risk prediction. Expert Syst Appl. (2017) 68:163-72.
doi: 10.1016/j.eswa.2016.10.020

12. Liu X, Wang. A hybrid classification system for heart disease diagnosis
based on the RFRS method. Comput Math Methods Med. (2017) 2017:8272091.
doi: 10.1155/2017/8272091

13. Mohan S, Thirumalai C. Effective heart disease prediction using
hybrid machine learning techniques. IEEE Access. (2019) 7:81542-54.
doi: 10.1109/ACCESS.2019.2923707

14. Li JP, Haq AU. Heart disease identification method using machine
learning classification in e-healthcare. IEEE Access. (2020) 8:107562-82.
doi: 10.1109/ACCESS.2020.3001149

15. Tiwari A, Chugh A, Sharma A. Ensemble
cardiovascular ~ disease prediction. Comput Biol Med.
doi: 10.1016/j.compbiomed.2022.105624

framework  for
(2022)  146:105624.

16. Gudadhe M. Decision support system for heart disease based on support
vector machine and artificial neural network. In: 2010 International Conference on
Computer and Communication Technology (ICCCT). Allahabad: IEEE (2010), p. 741-5.
doi: 10.1109/ICCCT.2010.5640377

17. Das R, Turkoglu I. Effective diagnosis of heart disease through neural networks
ensembles. Expert Syst Appl. (2009) 36:7675-80. doi: 10.1016/j.eswa.2008.09.013

frontiersin.org


https://doi.org/10.3389/fmed.2024.1362397
https://doi.org/10.1155/2018/3860146
https://doi.org/10.1016/j.compeleceng.2017.09.001
https://doi.org/10.1016/j.ijcha.2021.100773
https://doi.org/10.1109/JBHI.2022.3171663
https://doi.org/10.1016/0002-9149(89)90524-9
https://doi.org/10.1016/j.eswa.2007.06.004
https://doi.org/10.1109/AICCSA.2008.4493524
https://doi.org/10.5815/ijisa.2015.12.08
https://doi.org/10.1016/j.eswa.2016.10.020
https://doi.org/10.1155/2017/8272091
https://doi.org/10.1109/ACCESS.2019.2923707
https://doi.org/10.1109/ACCESS.2020.3001149
https://doi.org/10.1016/j.compbiomed.2022.105624
https://doi.org/10.1109/ICCCT.2010.5640377
https://doi.org/10.1016/j.eswa.2008.09.013
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Jian et al.

18. Bhatt CM, Patel P, Ghetia T, Mazzeo PL. Effective heart disease prediction
using machine learning techniques. Algorithms. (2023) 16:88. doi: 10.3390/
216020088

19. Ozcan M, Peker S. A classification and regression tree algorithm
for heart disease modeling and prediction. Healthc Anal. (2023) 3:100130.
doi: 10.1016/j.health.2022.100130

20. Shukur BS, Mijwil MM. Involving machine learning techniques in heart
disease diagnosis: a performance analysis. Int ] Electr Comput Eng. (2023) 13:2177.
doi: 10.11591/ijece.v13i2

21. Breiman L. Random  forests. =~ Mach  Learn. (2001)  45:5-32.
doi: 10.1023/A:1010933404324
22. Hastie T. Multi-class AdaBoost. Stat Interface. (2009) 2:349-60.

doi: 10.4310/S11.2009.v2.n3.a8

23. Jansi Rani S, Chandran KS. Smart wearable model for predicting heart disease
using machine learning: wearable to predict heart risk. ] Ambient Intell Humaniz
Comput. (2022) 13:4321-32. doi: 10.1007/s12652-022-03823-y

24. Doppala BP. A hybrid machine learning approach to identify coronary diseases
using feature selection mechanism on heart disease dataset. Distrib and arallel
Databases. (2021) 41:1-20. doi: 10.1007/s10619-021-07329-y

25. Pires IM. Machine learning for the evaluation of the presence of heart disease.
Procedia Comput Sci. (2020) 177:432-7. doi: 10.1016/j.procs.2020.10.058

26. Al Ahdal A. Monitoring cardiovascular problems in heart patients using machine
learning. ] Healthc Eng. (2023) 2023:9738123. doi: 10.1155/2023/9738123

Frontiersin Medicine

35

10.3389/fmed.2024.1362397

27. Saboor A. A method for improving prediction of human heart disease
using machine learning algorithms. Mob Inf Syst. (2022) 2022:1410169.
doi: 10.1155/2022/1410169

28. Shah D, Patel S. Heart disease prediction using machine learning techniques. SN
Comput Sci. (2020) 1:1-6. doi: 10.1007/542979-020-00365-y

29. Kishor A, Jeberson W. Diagnosis of heart disease using internet of things
and machine learning algorithms. In: Proceedings of Second International Conference
on Computing, Communications, and Cyber-Security: IC4S 2020. Singapore: Springer
(2021), p. 691-702. doi: 10.1007/978-981-16-0733-2_49

30. Ganesan M, Sivakumar N. IoT-based heart disease prediction and
diagnosis model for healthcare using machine learning models. In: 2019 IEEE
International Conference on System, Computation, Automation and Networking
(ICSCAN). Pondicherry: IEEE (2019), p. 1-5. doi: 10.1109/ICSCAN.2019.88
78850

31. Nancy AA, Ravindran D. IoT-cloud-based smart healthcare monitoring
system for heart disease prediction via deep learning. Electronics. (2022) 11:2292.
doi: 10.3390/electronics11152292

32. Ahamed J, Manan Koli A, Ahmad K, Alam Jamal M, Gupta BB. CDPS-
IoT: cardiovascular disease prediction system based on IoT using machine learning.
Int J Interact Multimedia Artif Intellig. (2022) 7:78-86. doi: 10.9781/ijimai.2021.
09.002

33. Ahmed F. An Internet of Things (IoT) application for predicting the
quantity of future heart attack patients. Int J Comput Appl. (2017) 164:36-40.
doi: 10.5120/ijca2017913773

frontiersin.org


https://doi.org/10.3389/fmed.2024.1362397
https://doi.org/10.3390/a16020088
https://doi.org/10.1016/j.health.2022.100130
https://doi.org/10.11591/ijece.v13i2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.4310/SII.2009.v2.n3.a8
https://doi.org/10.1007/s12652-022-03823-y
https://doi.org/10.1007/s10619-021-07329-y
https://doi.org/10.1016/j.procs.2020.10.058
https://doi.org/10.1155/2023/9738123
https://doi.org/10.1155/2022/1410169
https://doi.org/10.1007/s42979-020-00365-y
https://doi.org/10.1007/978-981-16-0733-2_49
https://doi.org/10.1109/ICSCAN.2019.8878850
https://doi.org/10.3390/electronics11152292
https://doi.org/10.9781/ijimai.2021.09.002
https://doi.org/10.5120/ijca2017913773
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY

Amin Ul Haq,

University of Electronic Science and
Technology of China, China

REVIEWED BY

Ebrahim Elsayed,

Mansoura University, Egypt
Gurjot Singh Gaba,

Linképing University, Sweden
Misbah Abbas,

Nencki Institute of Experimental Biology
(PAS), Poland

Lakshmana Ramasamy,

Higher Colleges of Technology,
United Arab Emirates

*CORRESPONDENCE
Praveen Kumar Reddy Maddikunta
praveenkumarreddy@vit.ac.in

RECEIVED 29 March 2024
ACCEPTED 15 May 2024
PUBLISHED 03 June 2024

CITATION

Ahmed R, Maddikunta PKR, Gadekallu TR,
Alshammari NK and Hendaoui FA (2024)
Efficient differential privacy enabled federated
learning model for detecting COVID-19
disease using chest X-ray images.

Front. Med. 11:1409314.

doi: 10.3389/fmed.2024.1409314

COPYRIGHT

© 2024 Ahmed, Maddikunta, Gadekallu,
Alshammari and Hendaoui. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Medicine

Frontiers in Medicine

TYPE Original Research
PUBLISHED 03 June 2024
pol 10.3389/fmed.2024.1409314

Efficient differential privacy
enabled federated learning model
for detecting COVID-19 disease
using chest X-ray images
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The rapid spread of COVID-19 pandemic across the world has not only
disturbed the global economy but also raised the demand for accurate disease
detection models. Although many studies have proposed effective solutions for
the early detection and prediction of COVID-19 with Machine Learning (ML)
and Deep learning (DL) based techniques, but these models remain vulnerable
to data privacy and security breaches. To overcome the challenges of existing
systems, we introduced Adaptive Differential Privacy-based Federated Learning
(DPFL) model for predicting COVID-19 disease from chest X-ray images which
introduces an innovative adaptive mechanism that dynamically adjusts privacy
levels based on real-time data sensitivity analysis, improving the practical
applicability of Federated Learning (FL) in diverse healthcare environments.
We compared and analyzed the performance of this distributed learning model
with a traditional centralized model. Moreover, we enhance the model by
integrating a FL approach with an early stopping mechanism to achieve efficient
COVID-19 prediction with minimal communication overhead. To ensure privacy
without compromising model utility and accuracy, we evaluated the proposed
model under various noise scales. Finally, we discussed strategies for increasing
the model's accuracy while maintaining robustness as well as privacy.

KEYWORDS

COVID-19 detection, decentralized training, adaptive differential privacy, federated
learning, convolutional neural network, healthcare data privacy

1 Introduction

The global healthcare system faces an unprecedented challenge due to SARS-CoV-2. The
COVID-19 pandemic has emerged as a significant global health crisis, impacting millions
worldwide and causing widespread economic and societal disruption on a global scale. The
rapid spread of the virus has led to the harnessing of cutting-edge technologies for patient data
collection, disease prediction, surveillance, and management. COVID-19 disease-related data
being generated or collected by the various Internet of Things (IoT) applications are being
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managed and processed using efficient big data analytics and
computational methods such as ML or DL algorithms (1). Diverse
healthcare datasets are collected, encompassing epidemiological data
(e.g., confirmed cases, deaths, recoveries), clinical records (e.g.,
symptoms, comorbidities), demographic information (e.g., gender,
age), and socio-economic factors (e.g., population density, mobility
patterns). However, this data inherently contains sensitive information
related to specific patients, regions, or locations (2). Therefore, robust
measures are crucial to safeguard data privacy and confidentiality
during various activities such as sharing, exchanging, managing, and
processing, which often involve multiple entities and tools. Healthcare
data privacy standards guarantee that only authorized individuals or
organizations have access to a patient’s personal medical information.
This protects sensitive information like a patient name, patient
address, date of birth, and important medical status being shared
without their consent (3). However, traditional centralized systems
have major drawbacks, including significant processing time,
increased network traffic, and a heightened risk of unauthorized
data access.

Over the years, various methods have been developed for
addressing the limitations of centralized architectures. While
preserving data privacy and confidentiality through authorized access
control. However, recent advances in applied Al technologies provide
promising results with distributed learning techniques, resulting in
increased data processing. FL is a distributed learning approach in
which only model parameters are exchanged between the server and
clients over several iterations, rather than actual data being transferred
to the server. The clients perform training on their data using the
model parameters provided by the server. Throughout this process,
initial privacy is provided, and communication costs are reduced.
Since the amount of data on clients is less compared to the central data
pool, local learning is attained with minimal hardware requirements
(4). Figure 1 illustrates the processing of medical data from various
hospitals using FL architecture. Although FL achieves privacy through
the physical isolation of data, it does not guarantee privacy for local
data. During the model transmission process, the server can invert the
client’s local information using model gradients, leading to a potential
inference attack. Even though FL fulfills the design principles
necessary for achieving privacy, but still, the attacker can still steal the
private information of a user through the intermediate results of the
FL process (5). However, this be addressed in two ways. First, we can
consider encryption methods to protect the information flow of
intermediate results such as Homomorphic Encryption (HE) (6) and
Secure Multi-party Computation (MPC) (7). Secondly, we can
consider the perturbation of the original private information, through
techniques such as Differential Privacy (DP), which can prevent the
revelation of intermediate results (8).

By introducing noise to the original dataset or learning
parameters, the DP technique guarantees a high level of privacy
protection in data analysis, thus making it impossible for attackers
to access sensitive data. Although DP was proposed in 2006, its
recent Al applications to improve data security, stabilize the
learning process, develop unbiased models, and apply composition
in specific AI domains have attracted significant interest from
researchers and tech titans such as Google, Microsoft, and Apple
(9). These organizations are interested in retrieving statistics from
client devices, either by developing applications with Central
Differential Privacy (CDP) or Local Differential Privacy (LDP)
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techniques (10). CDP techniques involve the inclusion of random
noise to the actual data after it has been acquired from all clients
by a data curator in a central server. However, the LDP mechanism
introduces noise before transmitting the data or learning parameter
to the central server, guaranteeing privacy from the beginning of
data transmission process. Besides applications in ML and DL, DP
has also improved the convergence rate by guaranteeing privacy in
distributed learning environments (11). An adaptive Differential
Privacy Federated Learning Medical IoT (DPFL-MIoT) uses
several techniques such as DP, FL, and deep neural networks with
adaptive gradient descent to mask model parameters by infusing
noise (12).
The main contributions of the work are as follows:

1 We have developed a distributed learning model to predict
COVID-19 disease by considering the three different classes of
Chest X-Ray images such as COVID, Normal, and Pneumonia.

2 We
Federated Learning (DPFL) framework with an early-stopping

designed Adaptive Differential Privacy-Enhanced
technique to preserve patient data while maintaining utility.

3 We have conducted several experiments to analyze and evaluate
the Utility and Privacy of the data, and the impact of the early
stopping mechanism on the performance of the proposed
DPFL model.

The rest of the paper is organized as follows: Section 2 discusses
existing works on FL and AFL using DP. Section 3 presents the
proposed FL models with a DP mechanism. A detailed discussion of
the experimental setup, dataset, and obtained results are provided in
Section 4. Finally, the conclusion and future research directions are
discussed in Section 5.

2 Literature review

FL revolutionizes ML by decentralizing model training across
devices, safeguarding local data privacy. This collaborative model
involves a central server managing global parameters and clients with
local datasets. Model updates from clients enhance the global model
iteratively. FL offers advantages like privacy preservation, reduced
communication overhead, and collaborative learning. Challenges
include handling heterogeneous data and addressing communication
and security concerns. This sets the stage for exploring privacy-
preserving mechanisms like Differential Privacy within the FL
framework. To reduce the prediction bias and to eradicate the
overfitting problems caused by to small dataset, Chen et al. (13) have
proposed a DP-based adaptive worker selection algorithm. The
proposed framework generated a vulnerability prediction map
considering COVID-19 data through various apps using distributed
FL models to ensure privacy. Wu et al. (14) suggested an FL model
with an adaptive gradient descendent and differential privacy
mechanism for a multiparty collaborative environment by ensuring
efficient model training with minimal communication cost. Even
though, the proposed technique enhances the accuracy and stability
of the model but still lacks model convergence efficiency due to
hyperparameter fluctuations. Ulhaq et al. (15) have developed a
Differential privacy-enabled FL framework for COVID-19 disease
diagnosis by ensuring data privacy. The authors have designed and
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Federated learning in healthcare systems.

developed the theoretical model, hence the model needs to
be implemented for further analysis.

Similarly, Wang et al. (16) have designed a privacy-enhanced
disease diagnosis using FL. The proposed model incorporates
Variational Autoencoder (VAE), differential privacy noise, and
incentive mechanism during the disease diagnosis process in a
distributed environment. Simulation results have shown that the
accuracy of the global model decreases with an increase in the privacy
budget. The privacy requirements of the individuals are not the same,
hence the authors Liu et al. (17) have introduced a hybrid differential
privacy technique to the existing privacy-friendly FL framework by
dividing the user into groups as per their privacy requirements. The
adaptive gradient clipping mechanism and improved composition
methods of the model will improve the model accuracy by reducing
the noise issues. To reduce the impact of noise on the accuracy of the
model the authors Yang et al. (18) have proposed Kalman Filter-based
Differential Privacy Federated Learning Method (KDP-FL). The
Proposed algorithm was tested in a simulated environment; however,
the Kalman filter noise reduction method results in better accuracy
but increases the computational overhead.

To reduce and nullify the leakage of sematic information of the
training data by the Generative Adversarial Networks (GAN), the
author’s Zhang et al. (19) have developed a “Federated Differentially
Private Generative Adversarial Network (FedDPGAN)” model for the
detection of COVID-19 pneumonia, which is aimed to improve the
data privacy of the patients. DP-GAN of the proposed model protects
the sematic information of the training dataset in a distributed
learning environment. The model was tested and analyzed by
considering both the IID and Non-IID settings of the COVID-19
dataset. The experimental results have shown 3% increase in the
overall performance compared to the FL model by ensuring the
privacy of data. Similarly, Ho et al. (20) introduced a privacy-focused
FL system for COVID-19 detection, aiming to create a decentralized
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learning framework among multiple hospitals that does not need the
transfer of actual patient data. The proposed framework ensures the
privacy of patient data by incorporating differential privacy techniques
such as DP stochastic gradient descent (DP-SGD). The experimental
results show that incorporating a spatial pyramid pooling layer into a
2D CNN, as well as specific design choices for handling Non-IID data,
such as the number of total clients, the degree of client parallelism,
and the computations per client, resulted in an increase in
overall accuracy.

To achieve privacy with high utility in a distributed learning
environment, the authors Li et al. (21) have proposed a secure
Asynchronous Federated Learning (AFL) with DP algorithm for
collaborative edge-cloud devices. The multi-stage adjustable private
algorithm of the proposed model will dynamically adjust the noise
and learning rates to improve the efficiency and convergence. The
experimental findings show better results compared to the existing
machine learning models with improved privacy. Lu et al. (22) has
proposed a differentially private AFL approach for data sharing in
vehicular networks. The authors have proposed local DP technique to
nullify the attacks caused by the centralized curator during the
weighted aggregation process. The experimental results have shown
faster convergence with a few observations as the number of clients’
increases such as increased training period required to learn from the
server model with reduced accuracy. Nguyen et al. (23) has proposed
a novel asynchronous federated optimization framework with buffered
asynchronous aggregation and Differential privacy scheme. The model
was aimed to achieve improved privacy and scalability. The simulation
results of the model outperformed the traditional methods.

Li et al. (24) have proposed an optimized asynchronous federated
model for a depression detection system. The model was designed to
enhance both the communication efficiency and the convergence rate
while maintaining users’ privacy using the DP technique. The
experimental results have shown 86.67% accuracy and minimal

frontiersin.org


https://doi.org/10.3389/fmed.2024.1409314
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ahmed et al.

communication cost. Even though the FL provides a privacy guarantee
for the user’s data, to strengthen the privacy safeguards the authors,
Nampalle et al. (25) have proposed a novel FL with a DP technique for
medical image classification. The proposed method consists of a novel
noise calibration mechanism and adaptive privacy budget allocation
strategy. Even though the simulation results have shown an improved
efficiency in the classification of skin lesions and brain tumor images,
the model requires further analysis and testing to improve the overall
performance. Malik et al. (26) introduced DMFL_Net, a FL-based
model for COVID-19 image classification. The study aims to improve
COVID-19 dlassification, data privacy, and communication efficiency
across medical institutions. The model incorporates DenseNet-169
into FL environment to enable collaborative training without sharing
its contents to clients, thus guaranteeing privacy. The experiments
were conducted on chest X-ray images to compare the performance
of DMFL_Net with the conventional transfer learning approaches
VGG-19 and VGG-16. The experimental results show that the
proposed DMFL_Net model attains an accuracy of 98.45%,
outperforming all other models and ensuring data privacy and
optimal communication efficiency between participating hospitals.
Dayan et al. (27) proposed a FL model named EXAM, that predicts
the future oxygen requirements for COVID-19 patients based on chest
X-rays, vital signs, and test results. The primary objective of the
present study is to design a robust, generalizable model that can
classify patients efficiently and effectively among different healthcare
systems without the need for personal information sharing, thereby
enhancing privacy and data security. The proposed model utilizes a
34-layer CNN (ResNet34) for extracting features from chest X-rays
and a Deep & Cross network for integrating EMR features. The
experiments were performed on data collected from 20 institutes
around the world, and the results indicate that the proposed EXAM
model enhanced accuracy and generalizability across trained models,
with an AUC increase of 16 and 38% for generalizability.

Table 1 represents the summary of existing differential privacy-
based Federated Learning models.

The literature review for Section 2 was carried out in accordance
with the PRISMA guidelines shown in Figure 2.

3 Proposed model

In this section we present the preliminaries of Federated average
algorithm and differential privacy mechanism. Following that,
we present an overview of our proposed model, including the
architecture and approaches used to classify Chest X-ray images to
identify COVID-19 cases.

3.1 Differential privacy

Differential privacy (DP) enables the analysis of the features of an
entire dataset or population without disclosing any personal
information. A differentially private algorithm ensures that the
inclusion or exclusion of a tuple from the dataset has no vital effect on
the output. Dwork et al. defined DP as follows:

Definition 1: (6,6) —Differential Privacy—“A randomized
algorithm R:J-> K with input domain J and output range K is (¢,5)
-differentially private if for all pairs of neighboring datasets J, J' € J,
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and every measurable LcK, we have
Pr(R(J) € L) < e£~Pr(R(J') € L) +0 where probabilities are with
respect to the coin flips of R Equation”

Where the privacy budget ¢ is used to determine the strengths of
privacy protection and & = 0 result in e-differential private mechanism.
This type of DP is accomplished by introducing noise, which is
identified through a sensitivity analysis of the dataset. Lower values of
€ improve privacy but reduce effectiveness because of more noise,
which lead to poor accuracy. Higher € values improve data utility
while compromising privacy. The chance of a further privacy violation
after the € guarantee is controlled by a measure called 8. When
adjusting € and 8, we must consider the desired prediction accuracy,
acceptable privacy risk, and data sensitivity.

The following two probabilistic methods help to induce noise.

Laplace mechanism (10): The Laplace mechanism is a process of
adding noise derived from the continuous Laplace distribution

0,—p where A is the sensitivity of function p, which measures
€

the largest change in function p’s output generated by adding or
removing a single individual’s data from the dataset. A higher
sensitivity indicates that the function is more responsive to changes in
the input dataset. During the process of noise addition to the dataset,
L1 sensitivity and the epsilon value (i.e., the privacy budget) are
considered for effective results. Hence, the Laplace mechanism can
be defined as below: )

Definition 2: “Given a function P:J' = Y, where Y is the set of all
possible outputs, and € > 0 The Laplace mechanism is represented in
Eq. (1).

R(J)= p(J)JrLap(O,Aepj M

Gaussian mechanism (10): The Gaussian Mechanism is a
substitution to the Laplace Mechanism, which adds Gaussian Noise
and supports tractability of the privacy budget under composition.
Unlike Laplace Mechanism, Gaussian Technique uses L2 sensitivity
rather than the L1 sensitivity, providing better control over the privacy
budget by ensuring reasonable privacy guarantees and smoother noise
distribution of L2 sensitivity will also preserve the utility. It can
be defined as below.

Definition 3: "Given two neighboring datasets J and J in the
dataset universe J i, a query functionp:J i G, where G is the set of
all possible outputs, and ¢ > 0”. The e-Gaussian DP (e-GDP)
mechanism is given in Eq. (2).

R(J)=p(J)+ N[o,i’} 2

2
Where, \/ [O,A;j is considered as the normal distribution.
€

3.2 Federated averaging process

In a FL system that includes one server and # clients, where each
client maintains local database J; where i={1, 2, 3,...,n}. The server’s
objective is to continuously learn from the data stored on # clients
through multiple iterations, employing the local weights sent by the #
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TABLE 1 Summary of existing DP-based FL models.

References Methodology

Advantages/salient

10.3389/fmed.2024.1409314

Disadvantages/future enhancement

Chen etal. (13) “DP Based adaptive worker selection
algorithm for FL with LSTM training

model”

feature

Resolves the issues of inadequate
amount of dataset, ensure users data

privacy using DP mechanism

Requires further threat analysis.

Wuetal. (14) Adaptive gradient descendent
mechanism with DP for collaborative

learning

The model shows strong robustness

and is less volatile.

The model suffers from convergence issues for a large

set of data.

Ulhaq and Burmeister (15) FL-based DP model for disease

diagnosis.

Seven design principles are defined

for effective implementation.

Only a theoretical model, hence it requires actual

implementation for proper analysis

Wang et al. (16) FL model with variational autoencoder
(VAE) and DP preserve the patient’s data

privacy

The model guarantees high accuracy

and low adversarial inference attacks

Lack of strategies to improve the accuracy of a global

model.

Liuetal. (17) Hybrid Differential Privacy Model for

FL.

The model removes the adverse
effect of noise addition by using the

adaptive clip method

Lack of strategies to stabilize correctness, privacy, and

communication in FL

GAN-based DP mechanism for FL
(FedDPGAN). GAN Based DP
mechanism for FL (FedDPGAN).

Zhang et al. (19)

High-quality training samples

generation.

High-quality training samples generation.

Ho et al. (20) FL-based DPSGD for disease analysis,
CNN model incorporating a spatial

pyramid pooling strategy.

Improved robustness of the Model
and improved accuracy of Non-IID

data.

The model requires further analysis by considering a

large dataset.

Nampalle et al. (25) Adaptive privacy budget allocation

mechanism for FL.

Improved privacy of medical data.

The proposed model failed to harmonize privacy and

model performance

Malik et al. (26) DMFL_Net for the classification of

COVID-19

High classification accuracy and

robustness in privacy preservation.

The FL model’s complexity limits its ability to scale to

larger networks of organizations.

Dayan et al. (27) FL for predicting clinical outcomes

COVID-19 patients

The use of FL improved accuracy
and privacy, making it appropriate

for sensitive medical applications.

Due to the complexity of managing and synchronizing

updates across the network, it does not scale smoothly

as the number of participating sites increases.

clients to minimize loss. The optimization problem can be represented
as shown in Eq. (3).

n
Wi* = argmin} piFi (Wi,7;) 3)
i=1

Here, Wt* denotes the server model parameter generated after
aggregating the local models from # clients, Wt; is denoted as the
model parameter from the ith client, and F, is considered as the loss
function of the ith client. Overfitting to specific client datasets in a
heterogeneous data environment is a challenge in FL. Regularization
and model averaging methods are used to address this issue. Applying
regularization to the loss functions F; helps in minimize overfitting,
and Federated Averaging engages averaging model updates from
clients to reduce overfitting. p; is proportional to the amount of data
Ji contained by client i, affecting the client total model. The value of
pi impacts the convergence rate of the model. Managing these
weights is essential for guaranteeing that the model performs well
among all client data transfers. The training mechanism of FL systems
consists of several steps: Initially, the FL model sets the server’s
weights. After that, it executes the following steps over
multiple rounds:

Frontiers in Medicine

Step 1: Forwarding the server weights: Server weights are
forwarded to N clients in a network. Later, each client keeps a buffer
to store the received weights in multiple iterations for future reference.

Step 2: Client Model Training: Using the latest model sent by the
server, the clients will train their data on local machines. Soon after
the training process, the updated models are returned to the server for
further operations.

Step 3: Client Model Aggregation: The updated client model
weights from 7 clients are transferred to the server. Later, the server
will generate new weight by aggregating all client weight updates
through mean computation, which is represented in Eq. (4).

n
wt' = —Zi:OWti
n

2o

4)

3.3 DP enabled federated averaging
algorithm

In this section, we will discuss the architecture and steps involved
in the proposed DPFL model and the pseudocode of the DPFL.
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3.3.1 Model architecture B[ (5(T;4) | = @)

The proposed DP-based FL model is aimed at providing user-level

privacy by modifying the basic Federated Average algorithms in two

different ways:

1 Clip the Model Updates: Model clipping is performed using

adaptive methods instead of predefined clipping norms. The
adaptive approach updates the clipping threshold based on a
specific quantile, ensuring that values are accurately estimated
within that range. Also, enables the model to maintain stability
and convergence while effectively controlling the magnitude of
updates, aimed to improve training performance and
model accuracy.

Let A€ S be a random variable and 8 €[0,1] be a quantile to

be satisfied. Then, for any T is given in Eqs. (5, 6) results in Eq. (7).

So

o [a-B)(T-A) ifA<T
EB(T’A)_{ B(A-T) otherwise (5)

(1-B) ifA<T
—B  otherwise

(p(T:A) ={ ©)

Frontiers in Medicine

Hence, (| _p)pr[A<T]- pPr[A>T]=Pr[A<T]-p

2 Addition of noise: In order to improve privacy without
degrading the utility of data, the proposed model will
be monitored using the standard deviation of the Gaussian
noise and number of clients. Initially, we determine the
noise tolerance of the model based on a varied amount of
noise values by considering a small number of clients per
round. Then we train the final model with increased noise
on the sum and more clients per round. Reducing the
number of clients at first eases the computational load and
allows for effective noise level exploration. This methodology
facilitates the assessment of the impact of varying noise
levels on the usefulness of the information while offering
valuable perspectives on the balance between privacy and
usefulness. Figure 3 depicts the stages of the proposed
DPFL model.

3.3.2 DPFL algorithm

Considering 7 as the number of users in a round and f €/0,1] as
the target quantile for the norm distribution where clipping is to
be applied, for every iteration m € [ M|, let ™" represent the clipping
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threshold, and 17y the learning rate. Let Y be the set of users sampled
in round m. Each user k € Y will send the binary indicator a;"along
with the usual model update A}, where a;" = ]I( AT <) Defining

a" Z 9, we apply the update V < V-exp(-ny(a-y))
nicyn
However, to prevent the

updates,

Z al' + N (0 ca) :
ke)"
The target quantile (B) for the normal distribution affects the

information
noise to

leakage of private

through model we add Gaussian

the sum G =

clipping threshold (V™) by selecting the value at which the distribution’s
tails are trimmed. Higher p values result in higher clipping thresholds,
allowing for further removal of the distribution. The learning rate ny
in the update rule for V controls how quickly the clipping threshold
adjusts to observed gradients. Higher ny results in quicker V
modifications, potentially speeding up convergence by allowing the
model to react to changes in data distribution. Excessive 1y values
disrupt training, leading to divergence. A lower ny promotes stability
but delay convergence rates. The regularization parameter y maintains
the clipping threshold within the intended bounds by modifying it in
response to the discrepancy between the target value y and the average
clipping rate a. Thus, the federated learning process’s privacy-utility
trade-offis adjusted by varying y. Algorithm 1 depicts DPFL Algorithm.

ALGORITHM 1: DPFL Algorithm

Function Train (n,B,1y,nz.ny X,064.B8)

Initialize model 00, clipping bound 0

—1/2
XA (X—Z -(20p )_2)

For (each round m=0,1,2,

V" « (samplemusers uniformly)

For each user k € Y in parallel do
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(A? ,a;{")<— FedAvg(k,Qm,nv,Vm)

End For

OA <—xAVm

A [kezymAm+/\/(010'A)]

A= pam=l g Am

oM+l gm KM

[ o +N(000)]

key"
yml Vm-exp(—m/ (&m - [3)}

End For

unction FedAv, i,90, v
g n

0«00

B« (userk'slocal data is divided into batches)

Forbatchb € Bdo

0«0 -nVi(0;b)

Acg-00

a<Tjajr

A’eA-min(l,Lj
[rall

End For

return(A',a)
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3.4 Early stopping mechanism

The early stopping technique is a widely utilized method for
regularization in DNN. It is an effective and simple technique that
typically outperforms most of the general regularization approaches.
During training, the model continually stores and updates the best
parameters attained so far. If there’s no further improvement in
validation error after a set number of iterations, the training halts,
retaining the last best parameters. When dealing with models that are
prone to overfitting, it is common to recognize a gradual decrease in
training error followed by an increase in validation error. Early stopping
represents a balance between training duration and generalization error,
minimizing communication overhead while still achieving optimal
parameters. By reducing the need for communication and subsequently
diminishing noise, early stopping enhances the utility of the data. The
early stopping algorithm can be represented in Algorithm 2 as follows:

ALGORITHM 2 : General Early Stopping Mechanism

Input: s> represents the number steps during the evaluation period.

e=> represents the number of epochs, meaning it terminates after observing the worse

performance.
6 => represents the initial parameter.
0«06

p<«0

q<—0,r<—oo,9* <—0,p* «—p
While (¢ <e) do
Execute the training algorithm for s steps and update 60

p<p+n

1" « validation_set_error (6)
If ' < r then

*

0" <0, rer'

g0, Pren

Else

qg—q+1
End If
End while

Output: The optimal parameter 6%, the optimal number of training steps "

4 Experimental results

This section discusses the experimental activities used to analyze
and evaluate the effectiveness of the proposed algorithm. We discuss
the dataset, experimental setup, model and training data, and
performance analysis using various metrics.

4.1 Dataset description

The proposed model is evaluated considering the Covidl19,
Pneumonia, Normal Chest X-Ray Image dataset from Mendeley Data
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TABLE 2 Distribution of the COVID-19 dataset into training and testing
sets.

Data-split details ‘ Normal ‘ Covid-19 Pneumonia
Train data samples 1,442 1,300 1,440
Test data samples 360 326 360

(28). This dataset includes 5,228 chest X-ray images categorized into
three categories: 1,626 COVID-19, 1,802 normal (asymptomatic), and
1,800 pneumonia (non-COVID-19). All images are resized to 256 *
256 pixels to reduce computational load, which is important in a FL
environment where computations are distributed across devices of
different capabilities. During the process we classify the image dataset
into train and test sample datasets having 4,182 training samples and
1,046 testing samples, respectively. Table 2 describes the data
distribution among each of the categories, and Figure 4 depicts sample
images from each category.

4.2 Implementation and model

The proposed model is developed using the Python programming
language and evaluated within a Tensorflow framework in a Colab
environment. TensorFlow Federated and TensorFlow Privacy
packages allow developers to simulate and test the functioning of
distributed learning with privacy. TensorFlow Federated provides a
wide range of FL-specific features. This allows for the modeling of FL
processes on decentralized data, which is crucial for our research as
data privacy and local computation are essential. The TensorFlow
Privacy framework includes pre-built mechanisms, such as optimizers,
to make it easier to integrate differential privacy into machine learning
processes. The primary objective is to categorize the disease into three
groups: normal, COVID-19, and pneumonia, through the use of CNN
model. Our CNN model, depicted in Figure 5, contains two 3 x 3
convolutional layers with 32 and 64 channels, followed by a 2 x 2 max
pooling layer. The two convolutional layers were used to achieve a
balance between model complexity and computational efficiency,
which is important in a FL environment where edge devices have
limited computational resources. It includes a fully connected layer
with 128 units and utilizes ReLU activation, a softmax output layer for
classification. To prevent overfitting during the training process, two
dropout layers with probabilities of 0.25 and 0.5 are positioned just
before and after the fully connected layer.

4.3 Distributed and central architecture

The CNN model is trained in both distributed and traditional
central learning environments considering the parameters as number_
of_clients=100, client_ratio=0.3, local_epochs=2, and batch_
size=16. With the increase in number of rounds, the accuracy in
identifying COVID-19 diseases enhances more in FL-based
environments. Therefore, the FL model shows superior learning
capabilities compared to conventional learning systems. The FL-based
model performs better after 50 rounds of execution. Therefore, the
overall accuracy of the FL-based approach achieves 94.3%, while
central learning is 93.5%. Figure 6 depicts an analysis of
communication rounds between FL and central learning models,
indicating that training on diverse datasets from various clients results
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in better model generalization. In FL, the client trains a model using
local data and only shares model updates. This minimizes the risk of
overfitting for COVID-19 patient data. Each round of FL training
provides new updates from multiple client datasets, improving the
model’s ability to predict and achieve higher accuracy. This finding
highlights distributed learning’s advantage over traditional central
learning methodologies in terms of improving model performance.
The proposed distributed learning techniques are further
evaluated by comparing various existing CNN models such as
Resnet18, Resnet50, and VGG18, with our model. The analysis uses
number_of_clients=100, client_ratio=0.3, local_epochs=2, and
batch_size=16. Our CNN has an optimal number of layers, and
activation functions that handle the data’s features more efficiently.
The model is designed to generalize better when trained on
decentralized datasets and is highly parameter-efficient, resulting in
higher accuracy with less parameters. This efficiency is important in
FL, where models are updated throughout networks using minimal
computational resources. Figure 7 depicts the accuracy analysis of the
models where the CNN model outperforms the aforementioned
models in terms of accuracy for different communication round. The
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primary goal of FL is to manage communication rounds with the
computational and communication overheads. Frequent updates
result in faster convergence and higher accuracy. We noticed that as
the number of rounds increased, the model’s accuracy enhanced,
implying that more frequent updates benefit model performance.

The proposed distributed FL model undergoes additional analysis
by varying the batch size, which shows that the FL model’s accuracy
increases exponentially as the batch size increases across various
rounds, as shown in Figure 8. Increasing the batch size leads to a larger
volume of data processed during every round of training. Larger batch
sizes help to smooth out noisy gradients and stabilize the training
process, resulting in better convergence and accuracy. Therefore, this
aids in enhancing the accuracy of the model’s learning process.

4.4 FL with differential privacy mechanism
FL guarantees privacy by eliminating the need to share data

between participants or servers. To improve the privacy mechanisms
of FL-based learning, we proposed the Differential Privacy Federated
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Learning model. The experiment is carried out in a distributed
learning environment with a 0.2 noise_multiplier, 50 clients_per
round, a learning_rate of 0.01, two epochs, and a client_ratio of 0.01.
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However, the introduction of noise reduces the accuracy of the
DP-based FL when compared to the traditional FL. Figure 9 shows a
3% drop in accuracy for the DPFL-based model compared to FL. The
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Accuracy analysis of FL model with respect to varied batch size.
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noise disrupts the learning process, lowering the model’s capability ~ the introduced noise necessitates a compromise between privacy and
to accurately capture the underlying patterns in the data. Asaresult, — model accuracy.

Frontiers in Medicine 46 frontiersin.org


https://doi.org/10.3389/fmed.2024.1409314
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ahmed et al.

4.5 Model noise sensitivity analysis

Model Noise Sensitivity Analysis in FL is important for deploying
FL models in environments where data noise is unavoidable, as it
helps to understand how noise in the data affects the performance and
reliability of learning models trained on various decentralized devices
or servers. In the healthcare domain, the main focus is the accuracy of
diagnosis models, as inaccurate predictions can have an immediate
effect on the health of patients (29). However, because medical records
are so sensitive, patient data privacy is a major concern (30, 31). To
meet these requirements, healthcare professionals can select a lower
noise multiplier if the model’s predictive accuracy is vital for critical
diagnostic tasks. Yet, for less sensitive tasks, a higher noise multiplier
may be sufficient to ensure more privacy. Our findings suggest a
strategic approach in which noise levels are adjusted depending on the
sensitivity of the data and the importance of the task. This enables
health care professionals to keep patient trust by protecting their data
while guaranteeing that the diagnostic models are as accurate as
needed. Data scientists working in a variety of sectors particularly
healthcare, are frequently challenged with creating models that
balance usability and privacy standards. They could apply our findings
to create adaptive privacy mechanisms that dynamically adjust the
noise multiplier according to real-time assessments of data sensitivity
and model performance. Understanding and minimizing the impact
of noise can improve the reliability, accuracy, and effectiveness of FL
models. To improve utility and maintaining privacy, our proposed
model includes an adaptive clipping mechanism based on an increased
noise addition mechanism. The adaptive clipping mechanism
automatically adjusts the sensitivity between aggregated data as well

10.3389/fmed.2024.1409314

model updates, resulting in an optimal balance of data privacy and
model utility. This mechanism helps in controlling the impact of noise
introduced to ensure privacy, improving the models learning
efficiency, and protecting each data point. Initially, we train the model
by considering 50 clients per round by considering noise multipliers
in the range [0, 0.25, 0.5, 0.75, and 1.0].

Figures 10, 11 show that the model can tolerate noise multipliers
up to 0.5, implying that noise multipliers of 0, 0.25, and 0.5 do not
decrease the utility of the data. However, a noise multiplier of 0.75
reduces accuracy, while 1.0 causes the model to completely diverge.
The adaptive clipping mechanism allows the model to withstand noise
up to a certain level (0.5 in this case) while maintaining utility. This
demonstrates the effectiveness of the proposed method, which
balances privacy and accuracy. Additional simulations are carried out
to determine the implications of changing the client count in each
round while keeping a constant noise multiplier of 0.25 and client
ratio of 0.01 throughout the process. As the client count increased
from 10 to 40, the model’s accuracy improved and the loss percentage
decreased. However, based on the results of our previous experiments
and with the goal of reducing data privacy risks while preserving data
utility, we ran another simulation with a privacy budget of le-05 and
a total of 120 clients per round. In spite of the increased noise
multiplier, the outcomes show enhanced precision in comparison to
earlier tests, suggesting that the privacy-preserving mechanisms
successfully discover a balance between privacy and utility. Figure 12
depicts the improved accuracy of the proposed model. Therefore,
increasing the number of clients per round results in a more diverse
and representative dataset, resulting in better generalization and
model efficiency.

Accuracy

FIGURE 10
Accuracy analysis of DP enabled FL based on varied noise multiplier.

Rounds
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4.6 Model performance for early stopping
mechanism

Another experiment was carried out with a configuration of 50
clients_per round, a learning_rate of 0.01, and 100 epochs to
investigate the impact of incorporating an early stopping mechanism
into the proposed DPFL model, as shown in Figure 13. During the
experiment, the proposed DPFL model’s accuracy improved as the
number of training epochs increased by dynamically adjusting the
noise range within a specific privacy level. By evaluating the model’s
performance on a validation dataset during training, the early
stopping mechanism terminate the training process when the model
begins to overfit, thus improves the model’s generalizability. As a
result, the integration of the early stopping mechanism with DPFL
model achieved an accuracy of 91.2% after 80 epochs, hence it
ensures the consistent privacy level throughout the training process,
without sacrificing accuracy and also minimizes overall
communication costs.

Early termination of training may have a disproportionate impact

on specific clients, resulting in biased model updates and imbalances.
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This issue can be addressed by using the early stopping criterion
based on client attributes or performance measures, ensuring that all
clients contribute significantly to the training process and are
treated equally.

5 Conclusion

In this work, we propose an enhanced Privacy-Preserving FL
system with Differential Privacy techniques to predict COVID-19
using Chest X-Ray images. Initially, we trained Chest X-Ray image
data using a CNN model, evaluating Federated and non-Federated
training methods. The results show that FL-based training enhances
performance by 0.8% over non-FL or traditional centralized
learning. Secondly, we introduce an enhanced FL-based system that
includes additional differential privacy and an adaptive noise
inclusion mechanism. This system’s adaptive clipping effectively
identifies the model’s noise tolerance level while preserving data
utility across different noise scales. However, the proposed DPFL

model’s initial results show a 3% reduction in accuracy when
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predicting COVID-19 due to the masking process. The integration
of an efficient privacy-utility trade-off and an early stopping
mechanism to DPFL has resulted in a 1% increase in accuracy and a
decrease in communication rounds. As a result, the proposed early
stopping-based DPFL model outperforms existing DP-based FL
models in terms of COVID-19 predictions. The model can be further
enhanced by considering the popular pre-trained models for a large
dataset and also considering other aspects such as improving the
scalability and robustness of the FL. Additionally the incorporation
of various to techniques for model personalization, model
generalization, and fair client contribution evaluation will further
strengthen the model.
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Intelligent diagnosis system based
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for predicting freezing of gait in
Parkinson'’s disease
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of Petroleum and Energy Studies, Dehradun, India

Introduction: Freezing of gait (FOG) is a significant issue for those with Parkinson'’s
disease (PD) since it is a primary contributor to falls and is linked to a poor
superiority of life. The underlying apparatus is still not understood; however, it
is postulated that it is associated with cognitive disorders, namely impairments
in executive and visuospatial functions. During episodes of FoG, patients may
experience the risk of falling, which significantly effects their quality of life.

Methods: This research aims to systematically evaluate the effectiveness of
machine learning approaches in accurately predicting a FoG event before
it occurs. The system was tested using a dataset collected from the Kaggle
repository and comprises 3D accelerometer data collected from the lower
backs of people who suffer from episodes of FOG, a severe indication frequently
realized in persons with Parkinson’s disease. Data were acquired by measuring
acceleration from 65 patients and 20 healthy senior adults while they engaged
in simulated daily life tasks. Of the total participants, 45 exhibited indications
of FoG. This research utilizes seven machine learning methods, namely the
decision tree, random forest, Knearest neighbors algorithm, LightGBM, and
CatBoost models. The Gated Recurrent Unit (GRU)-Transformers and Longterm
Recurrent Convolutional Networks (LRCN) models were applied to predict FoG.
The construction and model parameters were planned to enhance performance
by mitigating computational difficulty and evaluation duration.

Results: The decision tree exhibited exceptional performance, achieving sensitivity
rates of 91% in terms of accuracy, precision, recall, and F1- score metrics for the
FoG, transition, and normal activity classes, respectively. It has been noted that the
system has the capacity to anticipate FoG objectively and precisely. This system will
be instrumental in advancing consideration in furthering the comprehension and
handling of FoG.

KEYWORDS

freezing, Parkinson’s, gait, machine leaning, prediction, classification, transformers
models
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1 Introduction

Parkinson’s disease (PD) is a degenerative neurological sickness
that disturbs a large number of individuals (1). Freezing of gait (FoG)
and the subsequent increased risk of falls are the primary disabling
issues for a noteworthy figure of individuals with PD (2). There are
presently few options for pharmacological therapies. Several tools and
wearable devices that make available treatments, like rhythmical
cueing and step-synchronized vibratory cueing, demonstrate good
concert and results (3). Efficient treatment of FoG is now being
investigated via examination on FoG recognition and prediction.

FoG is a sporadic walking problem characterized by sudden
interruptions in stride or a significant decrease in forward movement
of the feet (4). It greatly impacts quality of life and increases the
likelihood of reductions and breakages in individuals with PD (2, 5).
These symptoms may disrupt patients’ everyday activities, jeopardize
their mental well-being, and lead to a weakening in their superiority
of life. Approximately half of individuals with PD have encountered
signs of FoG, which is the primary factor leading to falls (6-8). FoG is
characterized as a temporary and intermittent inability or noteworthy
reduction in the advancing motion of the feet, even when there is a
desire to walk. In their study, Schaafsma et al. (9) categorized FoG into
five distinct subtypes: start hesitation, turn hesitation, hesitation in
confined spaces, hesitation toward a specific goal, and hesitation in
wide spaces. Typically, FoG is linked to a particular sensation of “the
feet being adhered to the ground” (10). FoG is influenced by
surroundings, drugs, and anxiety, which might impact its frequency
and duration (11). FoG is often considered to be a characteristic of
akinesia, which is a severe type of bradykinesia (12). FoG is
characterized by transient periods of immobility or the execution of
very small steps while attempting to begin walking or change direction
(2). The state of FoG is significantly influenced by ambient cues,
cognitive input, medicines, and anxiety (11, 13). It is more common

10.3389/fmed.2024.1418684

to experience it at home rather than in a clinical environment,
particularly in scenarios when there is full darkness or when there is
a higher cognitive load, such as dual-tasking conditions (14-17).
Figure 1 displays FoG sporadic walking.

FoG is a very debilitating condition often seen in individuals with
PD. The symptoms often manifest in the later stages of the illness, with
roughly 50% of all PD patients experiencing some indications and
around 80% being significantly impacted (10, 18-20). Episodes of FoG
often present as a sudden and temporary inability to initiate
movement, often occurring while starting to walk, during making
turns, or under stressful circumstances. During bouts of FoG,
individuals with PD experience a phenomenon where they perceive
their feet to be firmly stuck to the ground without any apparent cause
(9). During episodes of FoG while walking, patients exhibit variations
in their walking pattern and experience a significant decrease in the
length of their steps. Additionally, they often display shaking in their
legs (19, 20). The typical frequency range for normal gait steps, as
measured by ankle sensors, is 0.5 to 3 Hz. However, FoG occurrences
have a higher rate variety of 6 to 8 Hz (21-23).

Recent research has begun using machine leaning and deep
learning for the resolution of automated categorization. Deep
learning is a branch of artificial intelligence (AI) that utilizes
algorithms having capability of mechanically extracting
distinguishing features from information and data, such as signals
acquired straight from sensors without any prior processing. Deep
learning (DL) and machine learning (ML) have facilitated the
creation of classifiers that cover the entire process and have
demonstrated exceptional performance in various fields, including
image processing, computer vision, medical information analysis,
bioinformatics, natural language processing, logical reasoning,
robotics, and control (24-27). Therefore, DL techniques have been
used in human activity recognition (HAR) systems utilizing data
collected from various light sensors (28, 29).

shuffling with small steps

K;
F

A
)

complete akinesia

trembling in place

effective forward motion

leg motion

FIGURE 1
FoG sporadic walking.
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DL and ML methods have become more popular for detecting FoG
in recent years, as seen by the employment of these techniques in several
studies (30-34).The following are the most significant and noteworthy.
Kim et al. (30) and Pepa et al. (32) introduced a novel sensing tool,
namely a smartphone positioned in the pant pocket, as a more
convenient method for monitoring patients with PD and detecting
FoG. The researchers used a technique that relied on convolutional
neural networks (CNN) to automatically extract distinctive
characteristics from sensors integrated into an Android smartphone.
The performance of the CNN classifier was compared to that of the
random forest (RF) classifier, and the CNN classifier exhibited a
sensitivity that was 20% greater than that of the RF classifier.

Approximately 7 to 10 million individuals worldwide are affected
by PD, with a significant portion experiencing FoG. During an episode
of FoG, a patient experiences a phenomenon where their feet get
immobilized, making it impossible for them to go forward despite
their efforts. FoG significantly impairs health-related quality of life,
leading to depression, heightened fall risk, greater reliance on
wheelchairs, and limited autonomy.

This study used a standardized dataset obtained from 65 participants,
using a 3D accelerometer. The dataset has been categorized into four
classes: Normal, Turn, Walking, and StartHesitation. Preprocessing
methods were suggested to cleanse the dataset and address the issue of
imbalanced classes. The output from the preprocessing approach was
analyzed using several ML, deep learning and transformers modes to
determine if the patients are experiencing FoG or are in a normal state.
The primary contribution of this work is as follows:

1 The initial system employed for the classification of FoG used
a new dataset.

2 In our research, we have categorized the dataset into four
distinct classes namely Normal, Turn, Walking, and
StartHesitation because the dataset did not have labels.

3 Employed various of ML, deep learning, and transformer
approaches to predict the occurrence of FoG in patients with
PD, the system achieved 91% with respect to accuracy.

2 Background of the study

FoG is an indication often seen in people with PD. However,
the fundamental mechanisms of FoG are not well understood.
Patients with PD often report this symptom as a sensation of their
feet being firmly adhered to the ground (34-37). Handojoseno
et al. (38) utilized the wavelet factors of electroencephalogram
(EEG) data as the input for the multilayer perceptron neural
network and KNN technique. This method achieved a sensitivity
of 87% and an accuracy of 73% in predicting the transition from
walking to FoG. Delval et al. (39) used a multi-camera setup to
capture the gait kinematics gestures of patients. Deep pointers
were affixed to the patients’ bodies and recorded from various
angles. Okuno et al. (40) utilized a plantar pressure measurement
system of 1.92m x 0.88 m for recording the walking patterns of
patients by monitoring the weight exerted on their soles. While
the sensors may all be used for FoG detection, the predominant
method for FoG detection in community environments relies on
inertial sensors.
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Moore et al. (21) developed a portable monitoring apparatus and
algorithm that used the occurrence features of vertical leg movement.
This movement was measured using an accelerometer put on the left
shank of 11 individuals with PD. The contributors’ ages ranged from
45 to 72 years. The contributors were trained to go through a series of
interior passages, including a tight entryway, and three obstacles. This
research took into account the specific effects of the levodopa/
carbidopa drug combination throughout both the “on” and “oft”
periods. The researchers used a threshold-based method to identify
FoG, achieving a FoG detection rate of 78% and an accuracy rate of
89%. Delval et al. (39) conducted research in which they induced FoG
in patients and used a series of measurable indicators to identify the
presence of FoG. They used a 3D motion-analysis device to capture
video footage of 10 sick and 10 healthy people while they were on a
treadmill. Indicators were affixed to the heels, toes, ankles, shoulders,
and on the T10 vertebra. Obstacles were encountered due to special
situations, causing the patients to be in an inactive state. The
identification of FoG in that particular investigation relied on a
combination of threshold and frequency investigation. Bachlin et al.
(41) devised a FoG recognition architecture using three accelerometers
and implementing Moore’s threshold-based algorithm (21). Upon
detecting an episode of FoG, the device used a metronome to offer
stimulation to the patient, aiding them in regaining their focus and
stability. The system support resulted in improved gait for six out of
eight individuals who had FoG. Azevedo et al. (41) Developed a FoG
detector that included gait pattern analysis by using a solitary inertial
sensor positioned on the lower extremity. Based on its findings, it
determines that relying just on frequency-based analysis is insufficient
for accurately identifying the occurrence of FoG. It is essential to not
only detect but also forecast when a FoG event will take place. The
authors used rhythm and tread data into their methodology to
enhance the categorization process. In order to assess the walking
patterns of individuals with PD, Jovicic et al. (42) developed a
technique that utilizes inertial sensors placed on both lower legs to
categorize different gait patterns. The system also distinguished
between regular and pathological gait by utilizing an expert rule-based
approach, based on data collected from 12 PD patients who walked
over a convoluted course. A rule-based categorization approach was
used for the identification and categorization of FoG. Pham et al. (43)
introduced a FoG detection method that is not reliant on specific
individuals. The uniqueness of this idea is in its ability to operate
autonomously from the topic matter. An additional instance of a FoG
recognition system that uses wearable accelerometers and video
capture to categorize the occurrence is shown in the research
conducted by Zach et al. (44). Their finding suggests that FoG may
be detected with just one accelerometer placed in the lumbar area.

Pepa et al. (32) used soft computing approaches for FOG
identification. A fuzzy method was created to integrate information
pertaining to freeze index, energy, cadency fluctuation, and the
derivative energy ratio. A building was constructed that relied on
a smartphone as its foundation. Their findings demonstrated that,
on average, the system exhibited a specificity of 92.33% and recall
of 83.33% in classifying FoG events. Cole et al. (36) presented a
method using dynamic neural networks (DNN) to accurately
identify FoG. They gathered information from three accelerometers
and an electromyographic shallow worn by patients and achieved
favorable consequences in terms of detection. A noteworthy
involvement of this study is the creation of a database documenting
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unscripted and unimpeded everyday activities of PD patients,
including instances of FoG. Ahlrichs et al. (22) introduced a FoG
detector that utilizes a single accelerometer worn at the waist and
a recognizer based on SVM. They documented the performance of
20 people with PD engaging in pre-planned everyday tasks.
Patients were required to be documented both when taking
medicine and while not taking medication. Their findings
demonstrated a precision rate of 98.7%.

Rodriguez-Martin et al. (45) developed a ML method designed
to identify episodes of FoG. Their preference for FoG detection was
SVM. Their technique relies on a solitary 3D accelerometer
positioned at the waist to identify FoG in real-world scenarios. A
total of 21 individuals diagnosed with PD contributed in the
research work. The patients were asked to execute two sets of
pre-determined exercises during both their “off” and “on” times.
These activities were associated with everyday existence. According
to their research, the medicine had an impact on the patients’
motor reaction. Deep learning methods have been popular for
detecting FoG in recent years, as seen by their frequent application
in research (30, 34, 46-48). Kim et al. (30) used a novel sensing
device, namely a smartphone positioned in the trouser pocket, to
discover a more pragmatic approach for monitoring patients with
PD and identifying FoG. The researchers used a technique that
relied on CNN to automatically extract distinctive characteristics
from sensors integrated into an Android smartphone. The
performance of the CNN method was compared to that of the RF
technique, and the CNN exhibited a sensitivity that was 20% better
that of the RF classifier. Xia et al. (49) suggested a FoG detection
method based on CNN to accomplish automated feature learning
and classification for FoG. Bachlin et al. (41) conducted
experiments that relied on the patient’s input and studies that did
not need the patient’s involvement. The most favorable outcomes
were documented in the patient-dependent experiments. Same
researchers used DL to predict FoG and PD (50-53).

3 Materials and methods

The proposed system aims to identify FoG, a distressing symptom
that affects many individuals with PD. The proposed solution is built

10.3389/fmed.2024.1418684

upon a machine learning models that have been trained using data
obtained from a wearable 3D sensor device positioned on the lower
end. Figure 2 displays the framework of the FoG system based on a
machine learning approach.

3.1 Dataset

The dataset was obtained from the Kaggle repository and
consists of 3D accelerometer data from the lower back of
individuals experiencing bouts of FoG, a debilitating condition
often seen in individuals with PD. FoG has a detrimental effect
on the ability to walk, hindering movement and independence.
The goal is to identify the initiation and termination of each
freezing episode, as well as the presence of three specific kinds of
FoG events: start hesitation, turning, and walking. The data series
consists of three unique datasets, each obtained under separate
circumstances: (1) The tDCS FoG (tdcsfog) dataset consists of
data series obtained in a laboratory setting, where individuals
underwent a FoG-provoking procedure; (2) The DeFOG dataset
consists of data series that were obtained in the subject’s home as
they conducted a FoG-provoking regimen; and (3) The daily
living dataset consists of 1 week of uninterrupted 24/7 recordings
from 65 people. Out of the total number of participants, 45
display symptoms of FoG and also have series in the DeFOG
dataset. In contrast, the other 20 patients do not show any
symptoms of FoG and do not have series in any other part of the
data. Table 1 displays meta data, whereas the training dataset is
presented in Table 2.

3.2 Preprocessing approach

Data features engineering require the creation of new features
or the transformation of existing features to enhance the effectiveness
of a machine-learning model. Data preprocessing entails the
extraction of pertinent information from unprocessed data and
converting it into a format that is readily comprehensible by a
model. The objective is to enhance the precision of the model by
providing more significant and relevant data. The missing values in
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Handling
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FIGURE 2
Framework of the system to predict FoG.
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TABLE 1 Metadata of dcsfog and tdcsfog.

10.3389/fmed.2024.1418684

Features name Description Types of dataset
Visit Int64
Medication Int64
Time A numerical value representing a discrete unit of time. The tdcsfog dataset records series at a frequency of
128 Hz, meaning there are 128 timesteps per second. On the other hand, the defog and daily series are recorded
at a frequency of 100 Hz, resulting in 100 timesteps per second.
AccV, AccML, AccAP The lower-back sensor measures acceleration along three axes: vertical (V), mediolateral (ML), and Float64
anteroposterior (AP). The data is expressed in units.
Event Class Object

TABLE 2 features of dataset.

Features name Description

Visit Lab visits include an initial evaluation, two subsequent evaluations for distinct therapy phases, and a final evaluation for follow-up
purposes.

Test Test used

Medication Subjects may have been either receiving or not receiving anti-parkinsonian medication throughout the recording.

Data Cleaning Normalization

FIGURE 3
Preprocessing steps.

Features Encoding

Oversampling

the dataset were removed from all features. We have combined
DeFOG features, namely Time, AccV, AccML, and AccA, with the
DeFOG-metadata for Subject, Visit, and Medication Condition.
Figure 3 shows the preprocessing steps for the classification of FoG
of PD patients.

3.2.1 Normalization

Normalization is an essential preprocessing step for any machine-
learning task. The process can be executed by either scaling or altering
the initial data in order to equalize the influences of various
characteristics in the data examples. In the present research work,
we have standardized the input data to generate a representation
among one and zero.

X~ Xmin

Xnormalize = (1)
Xmax — ¥min

Where the x is training data, and X, is maximum value [1] and
Xmin i minimum value [0].

Frontiers in Medicine

3.2.2 Handling imbalance classes

Unbalanced data raises to a condition where the representation of
observations and samples among dissimilar classes is unequal, with
one class dominating the dataset and the other classes having
insufficient representation.

The synthetic minority oversampling strategy (SMOTE) is a
resampling strategy used to address extremely imbalanced datasets by
creating synthetic samples in the minority class, hence increasing its
representation. SMOTE is effective in increasing the figure of minority
class examples and achieving class balance. To mitigate the problem of
overfitting, the synthetic production of fresh samples deviated from the
increase procedure.

The primary concept behindhand SMOTE technique is to
create additional data samples in the minority class using
interpolation between neighboring examples within this class
(54). SMOTE enhances the amount of instances belonging to the
minority class in an unbalanced dataset, thus improving the
classifier’s ability to generalize well. Figure 4 shows the SMOTE
method in practice.
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FIGURE 4
Working of SMOTE method.
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Results of SMOTE approach (A) before SMOTE (B) After SMOTE.
D,,eW=D,«+(Dj—D,»]x5 ) 3.3 Algorithms

The dataset Dy, represents the ADHD dataset. D; consists of
samples from the minority group, whereas D; is a k-nearest
neighbor of D;. Let 8 represent a uniformly distributed random
number between 0 and 1. We used the SMOTE technique to enhance
the categorizing process.

Figure 5 and Table 3 show the dataset before and after class
distribution of the dataset using the SMOTE approach in the training
dataset. The startHesitation class has less values (352); therefore,
we have applied the SMOTE approach for handing this imbalance
class to enhance the machine algorithms.

Frontiers in Medicine

3.3.1 K-nearest neighbors

The KNN technique is a straightforward nonparametric
approach that\ is often utilized for the purposes of regression and
classification tasks. The KNN algorithm is a kind of instance-
based learner, commonly referred to as idle learning. It does not
build a categorization model-based approach till it is given
samples to classify. The fundamental premise of KNN in
categorization is to compare individual test samples with k nearby
training samples in the variable space. The category of the test
sample is determined based on the classification of its nearest k
neighbors. Neighbors are often determined by calculating the
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TABLE 3 Results of SMOTE approach.

Before the SMOTE

Classes Values
Normal 105,176
Turn 104,785
Walking 68,999
StartHesitation 352
After the SMOTE

Normal 105,176
Turn 105,176
Walking 105,176
StartHesitation 104,785

TABLE 4 RF parameters.

Parameters name Values

Estimators 500
Criterion gini
Min_samples_leaf 1

Max_depth 10
Max_features auto
Random_state 42

Euclidean distance between the data point being analyzed and its
k nearest neighbors. The k parameter, denoting the quantity of
nearest neighbors’ number, is often kept minimal to avoid the
inclusion of excessive data points that may distort the underlying
characteristics of the data point under consideration. It is
important to choose acceptable values for k in order to avoid
overfitting and model instability, since large values of k might
contribute to both issues. KNN utilizes the Euclidean distance
metric. The underlying assumption is that each element in the
dataset may be shown as a point in a space with N dimensions.
KNN utilizes a parameter k to denote the number of examples to
be considered, based on which the majority class is selected to
categorize the new instance.

B = y(x1—x2)+ (x5 —x, )’ 3

where x|, X7, X3, and X4 calculate of the Euclidean distance in a
two-dimensional space.

3.3.2 Decision tree

A decision tree (DT) is a well-recognized nonparametric supervised
learning technique. DT is one of the ML algorithms that can be applied
for both regression and classification tasks. DT classifies the instances
by traversing down the tree from the root to certain leaf nodes. Instances
are categorized by evaluating the attribute specified by the node,
beginning at the root node of the tree, and thereafter down the tree
branch associated with the attribute value. The most often used criteria
for splitting are “gini” for measuring Gini impurity and “entropy” for
quantifying information gain, which may be mathematically represented.
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C
Entropy =(S) = pilogs pi (4)
L s
Entropy (S| B) = ZT entropy (S;) (5)
Gain (S \B) = entropy(S) —entropy (S |B) (6)

The training dataset is indicated as S, while the freezing of gait
dataset is represented by the class ¢, which encompasses both attack
and normal data. The likelihood of seeing data that belongs to class S;
is represented as B. This probability is specifically related to the
subsets of class S; in the characteristics B.

3.3.3 Random Forest

A random forest (RF) classifier is a well-recognized collaborative
classification technique used in machine learning and data science across
several application domains. This approach employs “parallel ensembling,”
whereby several DT classifiers are concurrently trained on distinct
sub-samples of the dataset. The ultimate result is decided via mainstream
vote or averaging of the outcomes. Therefore, it reduces the issue of over-
fitting and enhances both the accuracy of predictions and control. Hence,
the RF learning model, which utilizes many decision trees, often exhibits
higher accuracy compared to a model based on a single decision tree. In
order to construct a sequence of decision trees with regulated diversity,
the method associates bootstrap combination (bagging) with arbitrary
attributes selection. It is versatile for both classification and regression
issues and is suitable for both categorical and continuous variables. Table 4
shows parameters of RF model.

3.3.4 LightGBM approach

LightGBM approach is a gradient boosting context that employs
tree-based learning techniques. It is specifically engineered to
be widely spread and highly effective, offering the following benefits:
Enhanced training velocity and increased efficacy; Reduced memory
consumption LightGBM provides support for parallel and GPU
learning; Proficient at managing enormous volumes of data
LightGBM is a rapid, circulated, and efficient gradient-boosting
system that relies on decision tree methods. It is extensively used in
a range of machine-learning tasks, including regression, ranking, and
categorization (55). It is a furthering method that utilizes numerous
weak machine-learning methods to create a powerful learning model.
Boosting methods amplify the weights of incorrectly classified data
while reducing the weightiness of successfully categorized data.
Table 5 shows LightGBM parameter.

3.4 Gated recurrent unit—transformers

3.4.1 Gated recurrent unit

The GRU is a fundamental architecture of recurrent neural
networks (RNNs) that has resemblance to Long Short-Term
Memory (LSTM) models. GRU is specifically developed to represent
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sequential data by enabling the selective retention or loss of
information over time. Nevertheless, GRU possesses a more
streamlined structure compared to LSTM, with a reduced number
of parameters. This characteristic facilitates training and enhances
computing efficiency.

The GRU is designed to handle sequential data by iteratively
updating its hidden state in response to both the current input and the
prior hidden state. During each iteration, the GRU calculates a
“candidate activation vector” that integrates data from the input and
the preceding hidden state. Subsequently, the candidate vector is
employed to modify the concealed state for the subsequent time step.
Two gates, namely the reset gate and the update gate, are used to
calculate the candidate activation vector. The reset gate is responsible
for determining the extent to which the previous hidden state is
disregarded, whereas the update gate is responsible for determining
the extent to which the candidate activation vector is integrated into
the future hidden state.

10.3389/fmed.2024.1418684

Input is i;, output is o;, update gate output is og, reset gate output
is 7, and Hadamard product is ©. Weight matrices V, W, and b are
parameters. The GRU encoder and Transformer path embeds input
sequences using a recurrent GRU layer. Thirty-two GRU units
encoded 200-dimensional vectors each timestep. Using multi-head
self-attention with two heads, GRU embeddings may attend to each
other based on learnt connections. Residual connections and layer
normalization stabilize training. Flattening attention outputs to 1D
vectors. Structure of GRU mode is presented in Figure 6.

3.4.2 Transformers

The self-attention mechanism-based sequence-to-sequence model
Transformer is extensively used in natural language processing methods
including machine translation, text summarization, language synthesis.
Significant outcomes are achieved quickly. Transformers has a different
architecture than RNN. The Transformer branch in the proposed
GRU-Transformer model assumes a crucial function in capturing complex

U=c (VH Xp + Wy0-1 + by ) (7) interdependencies and multidimensional characteristics present in the
input sequence. The aforementioned objective is accomplished by utilizing
the self-attention and multi-head attention processes of the Transformer,
as seen in Figure 3. Its attention-based encoder-decoder structure enables

=0 (VV X+ Wror1 +by ) ®) the Transformer to effectively handle sequence-to-sequence tasks.
Q=XWq (11)
iy = tanh (Vox; + Wo (1; © 04-1) + bo) 9)
K =XWwy (12)
0r =0 (p © o1 (1- 1) Oy (10)
V= XWy (13)
TABLE 5 LightGBM parameters.
Parameters name Values
oK’
Estimators 500 A=So ftm ax (1 4)
Learning_rate 0.01 v di
Max_depth 10
Random_state 42 Y=AV (1 5)
e —— e
y N|
D - ® O
| 1 |
| B I
| |
| re z, h. |
m— ur,, ':"!’ I
I o o M tanh
| ( [wr IW‘ I'—U" |
\ )
s S
FIGURE 6
GRU structure.
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FIGURE 7
GRU-transformers.

Where, X be the input and (K, Q, V) is query matrix, key
matrix, value matrix, learnable weight matrix is A4, attention
matrix is ¥, output matrix is m , and attention header dimension,
the scaling factor, reduces overly large or minuscule attention
weights. To determine key value weight, softmax is used as a
normalizer. The attention mechanism calculates the association
between each input sequence item and the others to capture
global dependencies.

The unit recurrent layer is 200 unit that stores sequence data
and may capture dependencies. The parameter “return_sequences”
sends the sequence of outputs for each time step to the next layer
instead of just the final output. This Transformer component lets
the model focus on different input sequence segments during
prediction. Two 200-key dimension attention heads are used in
the suggested method. This implementation helps the layer
capture data relationships and connections. Attention boosts and
accelerates learning. The residual link, or skip connection, solves
the fading gradient problem by offering an alternate gradient
movement path. Each time step of the sequence receives an
individual 120-unit dense layer to extract unique characteristics.
This strategy stochastically assigns input units to 0 during training
after the TimeDistributed layer at 0.2 to reduce overfitting.

The output of the previous layers is turned into a unified vector to
link with the final Dense layer for classification. The neural network
generates probabilities for each of the four classes using a Dense layer
with softmax activation. Figure 7 shows the structure of
GRU-transformers. Parameters of GRU-transformers is presented in
Table 6.

3.5 Long-term recurrent convolutional
networks

LRCN neural networks combine the strengths of the CNN and
RNN to handle sequential input with spatial and temporal
dependency. The model’s early layers use Convolutional Neural
Networks (CNNs) to extract spatial properties from input data. These
collected characteristics feed Recurrent Neural Networks (RNNs) to
capture temporal relationships and long-term correlations. LRCN may
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TABLE 6 paramters of GRU-transformers.

GRU 32 units
Multi-Head Attention 2 heads
Add 2 heads
Layer Norm --
Flatten -
Dropout 0.5
Dense 1,024

acquire spatial and temporal complex data representations by
integrating CNN and LSTM components. This neural network design
handles sequential data well. LRCN is an RNN developed to evaluate
its performance on sequence input data.

i
C=>>1;F; (16)

11

L
ck=BF+ Y Fhxclt) (17)

j=

Where, F represents a convolution kernel or filter, while i and j
represent rows and columns of dataset. A unique two-dimensional
output is obtained by convolving the input dataset.

With the kernel. B,L represents the bias matrix, whereas F,LJ
represents the filter connecting the jth feature map in the layer.

fr= G(WefX; + Wefht—l +Wer G Uy +) (18)
i =0 (Wi Xy + Wiiby 1+ Wei Gy +Uy) (19
Cy = (fici—1 + iy tanh(Wye Xy + Wiehy—1 +U) (20)
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Sequential forward and reverse methods apply the equations
above. They represent the LSTM model equations. A gated cell in the
LSTM network evaluates input data and retains it based on relevance
or weight. The input gate, forget gate, and output gate make up the
LSTM model. The forget gate f; decides whether states to keep or
discard. The input gate i, modifies the value based on signals. The
output gate o, transmits cell status to neighboring neurons. The design
has a logistic layer and a layer that generates a new vector to mix with
the state. In a recurrent neural network (RNN), the hidden layer
processes X; using the weight matrix W to produce yt. The LSTM
model uses a memory cell called /4, which is governed by three gates.
The structure of LRCN is presented in Figure 8.

3.6 Evaluation metrics

Prior to further exploring our study; it is essential to elucidate the
significance and computation techniques of several assessment
measures. In this study, we have selected four primary assessment
metrics: accuracy, precision, recall, f1-score, and rate of change (ROC).

Accuracy = TP+TN x100% (23)
TP+ FP+ FN+TN
Recall = _Ir x100% (24)
TP + FN
. P
Precision =——  x100% (25)
TP + FP
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Let D be the dataset containing sensor data from FoG Parkinson’s
disease patients, where D={(X; Y))} N, where X, represents the
features and Y; represents the corresponding FoG labels.

D is collected from wearable devices.

Data preprocessing.

clean the data D' = clean (D)

Normalize the data D" = normalize (D')

Resample the data D" = resample (D")

Feature extraction

Extract features: X={X} ",_,

Model training

4.1 Select machine learning algorithms: ML_Algorithms={DT,RE,

KNN, LightGMBet, CatBoost}

4.2 Split the data into

testing sets: Dyyqin, Diess = Split (D"’,70%)

4.3 Train the models: Model; = train (MLalgorithm >Dirain );
j=1,2,3, ... num_algorithms

training and

Model evaluation

evaluate models 7 Metrics ; = evaluate
(Model j, Dyesy ), j =1,2,3,...num _algorithms
FoG Detection:

Predict FoG instances: Y = predict (modelpes;, X)
FoG_Events=detect (Y)

4 Experimental

This section presents the classification results and discoveries derived
from a sequence of experiments carried out for predicting PD FoG by
applying machine-learning algorithms. The main aim of these
experiments was to evaluate the efficacy of several classification models
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in accurately distinguishing various types of classes associated with gait
behavior, specifically Normal, Turn, StartHesitation, and Walking. The
evaluation primarily examined evaluation parameters such as accuracy,
precision, recall, and f1-score for each class, offering valuable insights
into the capabilities as well as limitations of the applied models. This part
included simulation setup, split dataset, and machine-leaning results.

4.1 Simulation setup

This module encompasses the specific steps and procedures
involved in carrying out our suggested approaches. The instruments
used in this document are enumerated in Table 7.

TABLE 7 Environmental requirements of the presented model.

Hardware Software

RAM size 16 GB Python

Intel(R) Core(TM) i7 Panda

CPU GHz TensorFlow library
Keras library
Matplotlib
NumPy library

TABLE 8 Testing results of the RF model.

10.3389/fmed.2024.1418684

4.2 Split dataset

The dataset was divided into a 70% training dataset and a 30%
testing dataset.

4.3 Results

4.3.1 Random forest testing results

Table 8 provides the testing results of the RF model for PD
FoG. It had strong performance in accurately differentiating the
“Turn class,” with a precision of 0.98, recall of 0.99, fl-score of
0.96, and a total accuracy of 90%. Though, there were
complications in precisely detecting occurrences of the Turn class,
as the recall rate was significantly lower despite a high
precision score.

Figure 9 displays the confusion matrix of the RF model used for
the classification of FoG of PD disease patients. The misclassification
rate of the RF model in diagnosing FoG is less. The RF model
exhibited a true negative rate of 25,586 for the classification of
FoG. The number of true positive instances classified are 25,586 as
Normal, 99 as Turn, 27,078 as startHesitation, and 18,999
as Walking.

Precision % Recall % F1-score % Accuracy %
RF Normal 87 85 90 90
startHesitation 98 99 96
Turn 90 91 89
Walking 94 96 93
Weighted 90 90 90
Confusion Matrix
25000
o =) 3201 1292
20000
- - 1 99 0 0
K]
2 15000
[+
-
(Y]
=
~ - 2355 1 - 10000
- 5000
m - 582 0
! ! ! - 0
0 1 2 3
Predicted Labels
FIGURE 9
Confusion matrix of RF.
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TABLE 9 Testing results of the DT model.

10.3389/fmed.2024.1418684

Precision % Recall % F1-score % Accuracy %
RF Normal 89 89 89 91
startHesitation 97 99 94
Turn 90 90 90
Walking 96 97 95
Weighted 91 91 91
Confusion Matrix
25000
o 36 5956 3659
20000

- - 1 99 0 0
) 15000
o
Q2
o
—
@
=

~ - 2868 23 - 10000

- 5000
m - L3 L 0
1 1 - 0
0 1
Predicted Labels
FIGURE 10
Confusion matrix of decision tree.

4.3.2 Decision tree testing results

The experimental results while using the DT model demonstrated
exceptional and excellent performance, notably in accurately
categorizing the instances labeled as Turn. The model demonstrated
exceptional precision (97%), recall (99%), F1-score (94%), and an
overall accuracy of 91% for classes that existed in the clinical
experimental dataset used. Although the model demonstrated strong
accuracy and recall overall, it encountered difficulties in accurately
detecting instances of the Turn class. This is evident from the poorer
precision and recall scores specifically associated with this class.
Table 9 summarizes the classification results based on the DT model.

The confusion matrix in Figure 10 displays the performance of the
decision tree approach. The decision tree algorithm achieved a high
accuracy of 91% throughout an evaluation stage. The program accurately
classified 20,431 instances as normal. The misclassification of the class
startHesitation is 2,868 instances more than that of the other classes,
while the misclassification of the class Turn is only 1 instance.

Frontiers in Medicine

4.4 K-nearest neighbor’s classification results

The KNN model had excellent performance in accurately
identifying instances belonging to the Walking class, achieving
high precision (73%), recall (82%), fl-score (66%), and
a total accuracy of 63%. Nevertheless, there were notable
limitations in effectively classifying the Turn class samples,
with  both
significantly noted in testing classification reports. Table 10

precision  and  recall scores  being
demonstrates the classification results based on the KNN model
(Table 10).

The confusion matrix for the KNN model is displayed in
Figure 11. The number of instances correctly predicted as “Normal”
is 18,642, whereas there are no instances incorrectly predicted as
“Turn” However, the false positive rate is significantly high. The rate
of false positives for the “startHesitation” class is particularly high,

with a value of 10,554.
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TABLE 10 Testing results of the KNN model.

10.3389/fmed.2024.1418684

Precision % Recall % F1-score % Accuracy %
RF Normal 58 53 64 63
startHesitation 63 1.00 47
Turn 61 61 61
Walking 73 82 66
Weighted 63 63 63
Confusion Matrix
17500
47 7536 3857
15000
12500
100 0 0
n
2 10000
1]
-
L
=
- 7500
44
- 5000
m - 1464 - -2500
1 | 1 - 0
0 1 2 3

FIGURE 11
Confusion matrix of KNN.

Predicted Labels

4.5 Classification results using the
LightGBM model

This subsection presents the findings in detail of the classification
results of the Light GBM model, which exhibited significant precision
(84%), recall (91%), f1-score (78%), and overall accuracy (80%) in
accurately categorizing the “Walking” cases. We faced complications
in accurately identifying instances of the “Normal” category, leading
to lower precision and recall scores. Table 11 displays the testing
results of the LightGBM model.

Figure 12 displays the confusion matrix of the LightGBM
model. It is worth noting that the misclassification (FP) rate for
the “startHesitation” class is significantly high, with a total of
2,868 instances. The occurrence of false positives in the “Turn”
class is extremely low, less than 1. The number of instances
correctly classed as “Normal” and identified as negative is
20,431.

Frontiers in Medicine

4.6 CatBoost model classification results

This section presents the results of the CatBoost model. The
CatBoost algorithm exhibited remarkable precision (80%), recall
(92%), f1-score (86%), and overall accuracy (82%) for the “Walking”
class. Nevertheless, there were limitations in accurately categorizing
cases that fell within the “startHesitation” class, leading to relatively
low precision and recall ratings. Table 12 presents the testing and
classification outcomes of the CatBoost model. The confusion matrix
of CatBoost is presented Figure 13.

4.7 Results of GRU-transformers and
LRCNN models

In this section GRU mode was combined with transformers model
for classification FoG, we have used 200 hidden units for GRU model.
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TABLE 11 Testing results of the LightGBM model.

10.3389/fmed.2024.1418684

Precision % Recall % F1-score % Accuracy %
LightGBM Normal 75 68 84 80
startHesitation 77 99 63
Turn 83 86 80
Walking 84 91 78
Weighted 81 80 80
Confusion Matrix
25000
o 36 5956 3659
20000
- - 1 99 0 0
" 15000
o
Q
1]
- |
[
=
~ - 2868 23 25634 - 10000
- 5000
m - 1131 0
1 | | - 0
0 1 2 3
Predicted Labels
FIGURE 12
Confusion matrix of LightGBM.

Table 13 shows the parameters of GRU-transformers and LRCNN
models. It is noted that the accuracy of GRU-transformers and LRCN
were achieved. It is investigated that the GRU-transformers and LRCN
were better models for classification FoG.

The accuracy performance of the GRU-transformers is depicted
in Figure 14. The GRU-transformers validation accuracy initially
stood at 82% and then improved to 86% after 70 Epochs. The accuracy
loss started from 0.43 and reached 0.32.

The performance and loss accuracy in the validation stages was
calculated using the binary_crossentropy approach. The validation
accuracy of the LRCN model is depicted in Figure 15. During the
validation phase, the LRCN model exhibited started at 38% and
reached to 86%. The accuracy loss is a decrease in accuracy loss from
0.42 to 0.35.

5 Results discussion

FoG is a motor disturbance categorized by an abrupt and
fleeting inability to start or maintain walking, which poses
difficulties for patients with PD. The timely identification and

Frontiers in Medicine

predicting of FoG episodes are essential for efficient therapies and
enhanced quality of life. The objective of this research was to
evaluate the possibility of applying different machine-learning
algorithms and GRU-transformers and LRCN models to predict
FoG for a preventive strategy to mitigate the occurrence. In order
to achieve this objective, random forest, k-nearest neighbor,
LightGBM, and GRU-transformers and LRCN models algorithms
were applied for detecting FoG.

The difficulties in classifying minority classes, specifically
“startHesitation,” highlight the influence of imbalanced datasets on
the effectiveness of models. Addressing these problems is essential
in the context of FoG prediction to enable early detection of gait
irregularities, facilitate prompt interventions, and enhance
outcomes for individuals with PD. Therefore, we have applied an
oversampling method for handling the imbalanced classes at the
training phase. Figure 16 the relationship among features of the
training dataset.

According to the experimental results obtained from using
various machine-learning models, the decision tree model had a
strong overall accuracy of 91% and an impressive fl-score of 0.96,
particularly excelling in accurately categorizing “Normal” gait.
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TABLE 12 Testing results of the CatBoost model.

10.3389/fmed.2024.1418684

Precision % Recall % F1-score % Accuracy %
CatBoost Normal 85 71 77 82
startHesitation 27 1.00 42
Turn 81 86 84
Walking 80 92 86
Weighted 82 82 82
Confusion Matrix
17500
o 6911 6324 4618
15000
12500
- - 0 100 0 0
L]
2 10000
(1]
- |
[
=
~N - 2066 7020 18060
- 5000
m - 785 2440 -2500
| | | ={)
0 1 2 3
Predicted Labels
FIGURE 13
Confusion matrix of CatBoost.

TABLE 13 Weight Avg. results of GRU-transformers and LRCNN model.

Models Accuracy % Precision% Recall % fl-score %
GRU-transformers 86 84 86 83 ‘
LRCNN 86 85 86 84 ‘

Nevertheless, the difficulties in precisely recognizing occurrences of
“Turn” highlight the necessity of adjusting and optimizing the
detection process to achieve a balance between accuracy and
comprehensiveness. This is crucial for reliably identifying tiny
irregularities in walking patterns that indicate FoG. The decision tree
model demonstrated a notable weighted accuracy of 91% for all
classes. The random forest approach scored a high accuracy (90%).

Frontiers in Medicine

The KNN algorithm demonstrated a commendable level of accuracy
(63%) and precision (63%). However, it is noted that the KNN
achieved less accuracy compared with different existing ML
approaches. Comprehending the influence of distance metrics and
the quantity of neighbors is essential for enhancing its capacity to
detect tiny variations linked to FoG. The LightGBM model showed
potential, specifically in accuracy, attaining an accuracy of 80% and
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(A,B) Performance LRCN model.

an fl-score of 0.80. The CatBoost model demonstrated a strong
precision of 0.82 and recall of 0.82, resulting in an accuracy of 82%
and an fl-score of 82.

The ROC curve is a visual depiction that displays the performance
of a classification algorithm at different levels of categorization. The
graph depicts the relationship between two variables. The receiver
operating characteristic (ROC) is computed using the following formula:

TP

TRP=—— (24)
TP + FN

L (25)
FP+TN
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Where TRP is the true positive rate and FPR is the false
positive rate.

Figure 17 displays the ROC curve for both the DT and RF models.
The DT model achieved a high ROC score of 99% for the
“startHesitation” class and an ROC score of 98 for the “Walking” class.
The receiver operating characteristic (ROC) analysis of the RF model
yielded a high precision of 100% for the “startHesitation” class and an
ROC value of 98% for the “Turn” class.

The LightGBM, and CatBoost algorithms scored less in accuracy.
However, the ROC of the models are good, and the LightGBM, and
CatBoost models scored ROC 100% in the “startHesitation” class.
Figure 18 displays the ROC of LightGBM, and CatBoost models.

Figures 19, 20 diplays ROC of GRU-transformers and LRCN
models for predicting FoG. It is noted both models have achieved
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ROC of proposed system, (A) RF (B) decision tree.
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similar performance, and GRU-transformers and LRCN were scored
high percentage ROC =91 with class “Walking”

Table 14 presents a comparison of the suggested algorithms,
highlighting that the decision tree technique achieved a high accuracy
rate of 91%.
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6 Conclusion

FoG is a locomotive impairment observed in individuals with
advanced PD, which has been linked to an elevated likelihood of
falling and a worse overall quality of life. Freezing incidents can
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ROC of proposed system, (A) LightGBM (B) CatBoost.
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be alleviated or averted through external intervention, such as the
utilization of pictorial or auditory signals, which are triggered by
FoG detection and prediction systems. The fundamental aim of this
research work was predicting FoG using a standard dataset. This
research concerted on the detection and prediction of FoG by
analyzing 3D accelerometer data collected from the lower back of
persons with PD, who frequently experience this terrible symptom.
The dataset was obtained from a cohort of 65 participants. The
dataset consists of four distinct classes: Normal, Turn,
startHesitation, and Walking. Preprocessing techniques, such as

cleaning the dataset and addressing imbalanced classes, were
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implemented to enhance the performance of the ML methods.
Various machine-learning algorithms, including decision tree,
random forest, k-nearest neighbors, Light GBM, GRU-transformers
and LRCN models, were employed for FoG detection and
prediction. Of these, the decision tree algorithm exhibited a distinct
advantage when working with datasets collected from sensors,
achieving a high accuracy rate of 91%. This is the initial model
employed for detecting FoG using this dataset. Furthermore, the
main aim of this study also was to identify effective ML and DL
algorithms that has capability of detecting and predicting FoG using
a wearable system in real-time data.
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TABLE 14 Comparison results.
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Introduction: Cardiovascular disease (CVD) stands as a pervasive catalyst
for illness and mortality on a global scale, underscoring the imperative for
sophisticated prediction methodologies within the ambit of healthcare data
analysis. The vast volume of medical data available necessitates effective
data mining techniques to extract valuable insights for decision-making and
prediction. While machine learning algorithms are commonly employed for
CVD diagnosis and prediction, the high dimensionality of datasets poses a
performance challenge.

Methods: This research paper presents a novel hybrid model for predicting CVD,
focusing on an optimal feature set. The proposed model encompasses four
main stages namely: preprocessing, feature extraction, feature selection (FS),
and classification. Initially, data preprocessing eliminates missing and duplicate
values. Subsequently, feature extraction is performed to address dimensionality
issues, utilizing measures such as central tendency, qualitative variation, degree
of dispersion, and symmetrical uncertainty. FS is optimized using the self-
improved Aquila optimization approach. Finally, a hybridized model combining
long short-term memory and a quantum neural network is trained using the
selected features. An algorithm is devised to optimize the LSTM model's weights.
Performance evaluation of the proposed approach is conducted against existing
models using specific performance measures.

Results: Far dataset-1, accuracy-96.69%, sensitivity-96.62%, specifity-96.77%,
precision-96.03%, recall-97.86%, Fl-score-96.84%, MCC-96.37%, NPV-96.25%,
FPR-3.2%, FNR-3.37% and for dataset-2, accuracy-95.54%, sensitivity-95.86%,
specifity-94.51%, precision-96.03%, F1-score-96.94%, MCC-93.03%, NPV-94.66%,
FPR-547%, FNR-4.1%. The findings of this study contribute to improved CVD
prediction by utilizing an efficient hybrid model with an optimized feature set.

Discussion: We have proven that our method accurately predicts cardiovascular
disease (CVD) with unmatched precision by conducting extensive experiments
and validating our methodology on a large dataset of patient demographics and
clinical factors. QNN and LSTM frameworks with Aquila feature tuning increase
forecast accuracy and reveal cardiovascular risk-related physiological pathways.
Our research shows how advanced computational tools may alter sickness
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prediction and management, contributing to the emerging field of machine
learning in healthcare. Our research used a revolutionary methodology and
produced significant advances in cardiovascular disease prediction.

KEYWORDS

quantum neural network, cardiovascular disease prediction, feature extraction, self-
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1 Introduction

CVD is a global health issue that kills many people. The WHO
estimates a 37% mortality rate, affecting 17.9 million people (1). CVD
deaths are mostly caused by stroke and heart disease. These frightening
findings highlight the need to understand the complex causes of
CVD. The complex nature of CVD, which is linked to risk factors like
high blood pressure, insulin levels, smoking, and sedentary lifestyles,
highlights the need for comprehensive prevention, early detection, and
management strategies (2). Understanding these risk variables is
essential for establishing targeted therapies and reducing the global
effect of cardiovascular health issues as researchers study CVD (3).
Studies show that up to 90% of CVD cases are avoidable, but early
detection, treatment, and recovery are crucial. Early CVD detection is
essential for timely interventions. However, CVD prediction is too
sophisticated for the brain. Time dependency, erroneous results, and
knowledge upgradation due to vast CVD datasets complicate
identification (4). These datasets typically have irrelevant and redundant
features that hamper classification. Noise from unwanted features
affects system performance. Addressing this, our research focuses on FS
to eliminate unwanted features before applying classification
approaches. This process enhances model simplification, reduces the
risk of overfitting, and improves computational efficiency (5).

Traditional diagnosis heavily relies on clinical signs and
symptoms, making disease analysis challenging. Predicting CVD is
particularly complex due to multiple contributing factors, leading to
inconsistent outcomes and assumptions. In the medical domain, data
mining (DM) methods, especially ML techniques (6), are employed
to analyze diseases like cancer, stroke, diabetes (7), and CVD. This
research specifically utilizes advanced DM approaches for studying
CVD. Also, some more accurate DM approaches are being used to
study heart disease. Researchers have applied various DM systems
such as support vector machines (SVM), decision trees (DT), and
artificial neural networks (ANN) to identify CVD (8). With all of the
above methods, patient records are continuously categorized and
predicted. It continuously checks the patients movements and informs
the patient and doctor of the risk of illness if there is a change. With
the help of techniques like ML, doctors can easily detect CVD in the
early stage itself. Amongst the traditional invasive-based method,
angiography is represented as the well-known heart problem diagnosis
method but, it has some limits. Conversely, a method such as
intelligent learning-based computational approaches, non-invasive-
based techniques is considered more effective for predicting
CVD. Cardiovascular disease (CVD), one of the leading causes of
death worldwide, causes much morbidity and death. Early detection
and prediction are essential to prevent CVD and reduce its impact on
individuals and healthcare systems. Medical advances in machine
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learning and predictive analytics have created promising new
opportunities for early cardiovascular disease risk factor diagnosis (9).

Predicting cardiovascular disease is crucial due to its incidence and
damage. High-risk patients can be identified, advised on lifestyle
changes, and prevented from developing cardiovascular disease (CVD).
Genetic and risk factor-based predictive diagnostics provide
individualized healthcare and tailored medicines. Traditional risk
assessment and advanced machine learning algorithms predict
cardiovascular disease. Traditional risk assessments like the Framingham
Risk Score and Reynolds Risk Score use demographic, clinical, and
biochemical data to estimate CVD risk across time. These techniques
have directed primary preventive initiatives by identifying high-risk
populations. Machine learning algorithms’ ability to search massive data
sets for detailed patterns has propelled their rise in cardiovascular disease
prediction. More accurate and powerful predictive models have been
constructed combining electronic health records, imaging data, genetic
information, and lifestyle factors using supervised learning approaches
such logistic regression, support vector machines, random forests, and
neural networks. Before predictive analytics can fully forecast
cardiovascular illness, many challenges must be overcome. Multiple data
sources, such as genetic data, wearable sensor data, and socioeconomic
characteristics, make cohesive prediction models difficult. Integrating all
these data types while maintaining privacy, interoperability, and quality
is still difficult. When clinical decision-making is crucial, machine
learning model interpretability is a concern. Black-box algorithms can
produce accurate predictions, but healthcare practitioners are wary of
them since they do not expose their inner workings. Because
cardiovascular disease risk changes, models must be developed and
validated for varied populations and healthcare systems (10).

Future multidisciplinary teams of medics, data scientists, and Al
professionals will improve cardiovascular disease prediction.
Integrating data from microbiomics, proteomics, metabolomics, and
genomes may lead to new cardiovascular risk biomarkers and better
risk prediction models. Wearables, smartphone health apps, and
remote monitoring systems enable real-time risk assessment and
personalized treatments based on lifestyle and physiological
parameters. Here, a Hybrid Intelligent Model with an Optimal Feature
Set is introduced for the prediction of CVD. The main contributions
are summarized below:

1. The proposed research addresses the issue of dimensionality
reduction by implementing FS techniques to reduce the
number of features.

2. To introduce the STAO method for optimal FS, overcoming
challenges in extensive CVD datasets.

3. Proposing a hybrid model that combines LSTM and QNN to
enhance the prediction performance of CVD.
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The subsequent sections follow a structured framework: Section
2 reviews conventional CVD prediction models. In Section 3, the
proposed model architecture is presented, and discussions on feature
extraction, central tendency, dispersion, qualitative variation, and
symmetrical uncertainty are provided. Section 4 introduces SIAO for
optimal FS. The hybrid LSTM-QNN classification method is covered
in Section 5. Experimental results and discussions are presented in
Section 6. Section 7 contains the conclusion, summarizing
contributions, and suggesting future research.

2 Literature review

This section critically analyses CVD prediction approaches,
highlighting significant research and their contributions to the
discipline. Using an Improved Quantum CNN (IQCNN) for accuracy,
Pitchal et al. (11) developed an automated model for heart disease
prediction that includes preprocessing, feature extraction, and
prediction. This technique, which surpassed Bi-LSTM and CNN with
0.91 accuracy, shows promise for using IoT technologies for health
diagnosis. Innovative computer methods improve cardiac disease
prediction in their work.

Lietal. (12) used a hybrid deep learning (DL) model to predict
CVD. The hybrid model, which uses 7,291 patient data and two deep
neural network (DNN) models and one RNN for training,
outperformed standard methods in prediction accuracy. Secondary
training with a KNN model improved predicted accuracy. Prediction
accuracy of 82.8%, precision of 87.08%, recall of 88.57%, and F1-score
of 87.82% in the test set outperform single-model ML predictions. The
hybrid model reduced overfitting, improving CAD prediction and
clinical diagnosis. Singh et al. (13) examined how IoMT devices
transformed continuous CVD patient monitoring. Their study
proposed an advanced DL framework for the IoMT ecosystem that
could improve patient care by predicting CVD. They effectively extract
spatial and sequential characteristics from diverse [oMT data sources,
such as pulse oximeters and electrocardiograms, using their innovative
hybrid CNN-RNN architecture. With the utilization of transfer
learning (TL) and real-world data, the proposed model surpasses
previous methods in terms of precision and resilience. Their research
assists medical professionals in gaining insights into predictive factors,
enhancing the model’s ability to be understood and its impact
on therapy.

In their study, Oyewola et al. (14) utilized an ensemble
optimization DL method to diagnose early CVD. They employed the
Kaggle Cardiovascular Dataset for both training and testing purposes.
The ensemble model achieves superior performance compared to
neural network architectures, boasting an impressive accuracy rate of
98.45%. The research examined and provided a practical solution to
streamline CVD diagnosis for doctors. It showcased the models
impressive speed and precision in identifying patients and interpreting
CVD test results, leading to advancements in healthcare practices.
Incorporating wearable systems, exploring advanced ensemble
techniques, and utilizing diverse data sources have been found to
enhance predictive capabilities and improve model performance in
real-world healthcare settings, according to recent research. In 2023,
a team of researchers developed a cutting-edge model for assessing the
risk of cardiovascular disease (CVD). They utilized advanced
algorithms and optimization strategies to create the SOLSSA-CatBoost
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model, which shows great promise in this field. Their approach proved
to be highly effective, surpassing the performance of multiple machine
learning models and optimization techniques on Kaggle CVD
datasets. They achieved impressive F1-scores of 90 and 81.51%. This
work contributes to the field of predictive healthcare by offering a
more precise tool for assessing the risk of cardiovascular disease.
However, further research is required to evaluate its practicality and
effectiveness in diverse populations.

In their study, Palanivel et al. (15) discussed the global health
concern of cardiovascular disease (CVD) and emphasized the
importance of early prediction. They presented a compelling approach
that combines FS and an innovative Multi-Layer Perceptron (MLP)
for Enhanced Brownian Motion based on Dragonfly Algorithm
(MLP-EBMDA) classification using DM methods. This contribution
encompasses an optimized unsupervised feature selection technique,
a distinctive classification model with an accuracy of 94.28%, and a
methodical approach to predicting early cardiovascular disease. The
methodology is meticulously organized and precise, but it requires
validation and real-world implementation.

In their study, Yewale et al. (16) devised a comprehensive
framework for predicting cardiovascular disease. They made a
deliberate choice to exclude FS and instead focused on data balance
and outlier identification. Their work involved utilizing the Cleveland
dataset to investigate various performance factors and achieve an
impressive accuracy rate of 98.73% and sensitivity rate of 98%,
surpassing previous research findings. The methodology demonstrates
an impressive level of precision, with a specificity of 100%, positive
prediction value of 100%, and negative prediction value of 97%. It also
implemented OD by using a separate forest for a thorough analysis.
Their work is notable for its meticulous evaluation metrics.

In their study, Behera et al. (17) devised a novel approach
combining machine learning techniques to predict heart and liver
diseases. They utilized a modified particle swarm optimization (PSO)
algorithm in conjunction with support vector machines (SVM). The
study focused on the rising occurrence of heart and liver disorders and
the importance of promptly detecting them for better patient
outcomes. By integrating SVM with modified PSO, the hybrid model
achieved significant improvements in classification accuracy, error
reduction, recall, and F1-score. The research’s empirical foundation is
strengthened by the data from the UCI ML collection. In their study,
Sudha and Kumar (18) proposed a hybrid CNN and LSTM network
for predicting cardiovascular disease, aiming to tackle the pressing
issue of timely and accurate detection on a global scale. Utilizing
cutting-edge DL advancements, the suggested model seamlessly
combined CNN and LSTM to surpass the accuracy limitations of
traditional ML methods. The hybrid system achieved an accuracy of
89% on a CVD dataset following 10 k-fold cross-validation. The
suggested analysis outperformed SVM, Naive Bayes (NB), and DT
models in terms of performance. Their approach stands out with its
distinctive technique, impressive precision, and practicality as an
alternative to ML models in predicting CVD.

Elavarasi et al. (19), provided a summary of the recent
challenges in predicting cardiovascular disease (CVD), focusing on
the issues faced by traditional systems and the complexity of deep
learning (DL). They utilized the elephant search algorithm (ESA) to
explore innovative interpretability solutions during their
investigation. ESA is seamlessly integrated with SVM to enhance
the accuracy of CVD prediction, even though it faces challenges
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when dealing with large datasets and computational complexity.
They strive to enhance FS by enhancing the accuracy and
interpretability of CVD dataset. Their research enhanced clinical
decision support systems (DSSs), shedding light on the ongoing
debate surrounding CVD prediction methodologies.

Table 1 summarizes standard CVD prediction models features
and drawbacks. An Automated IQCNN Model improved heart
disease prediction and IoT diagnostics (11), however dataset
specificity and scalability were issues. Wei et al. (20)’s SOLSSA-
CatBoost Model improved CVD risk assessment accuracy through
algorithmic fusion, however real-world applicability was questioned.
In Palanivel et al. (15), the MLP-EBMDA classification model
showcased optimized unsupervised FS, a novel classification model
with higher accuracy, and a systematic approach to early CVD

10.3389/fmed.2024.1414637

prediction. Li et al. (12), proposed a hybrid DL model with features
like the utilization of two DNN models and an RNN, achieving
average accuracy and effectively addressing overfitting challenges.
Singh et al. (13), introduced an IoMT-Enhanced DL framework,
incorporating a hybrid architecture combining CNNs and RNNG,
extracting spatial and sequential features from heterogeneous loMT
data sources, and emphasizing interpretability and impact on
treatment processes. Oyewola et al. (14) proposed an ensemble
optimization DL technique that stands out for outperforming various
NN architectures with high accuracy and simplifying CVD diagnosis
for medical professionals. Elavarasi et al. (19) presented an
ESA-integrated SVM for CVD prediction, focusing on interpretability
through FS and optimizing FS using ESA and SVM while addressing
challenges associated with traditional systems. Yewale et al. (16),

TABLE 1 Review of features and challenges of conventional models based on a prediction of CVD.

References Deployed model Features Challenges

Pitchal et al. (11) Automated IQCNN Model Incorporates preprocessing, feature Reliance on specific datasets; Scalability in
extraction, and prediction with IQCNN; diverse healthcare settings
Notable high accuracy level; Advances
IoT use in health diagnostics

Lietal. (12) Hybrid DL model Utilizes two DNN models and an RNN; Effectively addresses overfitting challenges

Achieved Average accuracy, precision,

recall, and F1-score

Singh et al. (13) IoMT-Enhanced DL framework

Hybrid architecture combining CNNs
and RNNs; Extracts spatial and
sequential features from heterogeneous
IoMT data sources; Incorporates TL and

real-world data

Ensuring interpretability and impact on

treatment processes

Oyewola et al. (14) Ensemble Optimization DL technique

Outperforms various NN architectures
with higher accuracy; Simplifies CVD

diagnosis for medical professionals

Use of sophisticated ensemble techniques

Palanivel et al. (15) MLP-EBMDA classification

Optimized unsupervised FS; Novel
classification model with high accuracy;
Systematic approach to early CVD

prediction

Use more datasets to get accurate results.

Yewale et al. (16) Ensemble techniques with data balancing and

OD

Achieves High accuracy and sensitivity;
Demonstrates High specificity and

positive prediction value

Need to use a diverse composition of

metrics.

Beheraetal. (17) Hybrid ML algorithm with PSO and SVM

Utilizes modified particle swarm
optimization and SVM; Showcases
Average classification accuracy and error

reduction

Need to investigate the runtime

complexity.

Sudha and Kumar (18) Hybrid CNN and LSTM Network

Combines CNNs with LSTM networks
for CVD prediction; Achieves High
accuracy validated through k-fold cross-

validation

Apply the hybrid approach to real-world

applications

Wei et al. (20) SOLSSA-CatBoost Model

Integrates improved SSA with CatBoost;
Enhanced by salp swarm algorithm, OBL,

and lateral mutation; Superior F1-scores

Real-world applicability and diverse

population performance

Elavarasi et al. (19) ESA-integrated SVM

Addresses challenges with traditional
systems; Focuses on interpretability
through FS; Optimizes FS using ESA and
SVM

Handling large datasets and computational

complexity
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ensemble techniques with data balancing and OD achieved higher
accuracy and sensitivity, demonstrating high specificity and positive
prediction value, although a need for a diverse composition of metrics
was identified. Behera et al. (17) proposed a hybrid ML algorithm
incorporating PSO and SVM showcased the utilization of modified
PSO-SVM, resulting in average classification accuracy and error
reduction, with a call to investigate runtime complexity. Finally, Sudha
and Kumar (18) proposed a hybrid CNN and LSTM CVD prediction
approach with great accuracy proven by 10 k-fold cross-validation and
recommended for real-world applications. These systematic reviews
shed light on these models’ strengths and weaknesses, leading to CVD
prediction methodology development between paragraphs belonging
to the same section.

In essence, our proposed model, as outlined, integrates the
strengths of DL, and bio-inspired algorithms techniques while
systematically addressing the limitations identified in the existing
approaches. The innovative features of our model, including optimized
FS through SIAO and the hybridization of LSTM and QNN, contribute
to its potential to provide enhanced accuracy, efficiency, and practical
applicability in real-world CVD prediction scenarios.

3 Methodology

The hybrid model averages LSTM and QNN classifier outputs to
predict. The SIAO method optimizes LSTM weight adjustment,
improving prediction model accuracy. Thus, CVD prediction works.
As shown in Figure 1, CVD prediction involves four key steps:
preprocessing, feature extraction, FS, and prediction.

o Step 1: Preprocessing — The initial stage removes duplicates and
missing data to ensure data quality and dependability for analysis.

o Step 2: Feature Extraction — This phase involves detailed feature
extraction. Central tendency, qualitative variation, dispersion,
and symmetrical uncertainty are identified. These attributes help
solve the dataset’s high dimensionality problem.

o Step 3: Feature Selection — The Symmetrical Uncertainty-based
Iterative Algorithm Optimization (SIAO) technique is used to
choose features optimally. This smart selection procedure
improves model efficiency and accuracy by using only the most
important features.

o Step 4: CVD Prediction — A hybrid model combining LSTM and
QNN technology is trained using ideally selected features. This
stage optimizes LSTM model weights using the STAO algorithm.
This
predictive power.

optimization technique improves the model’s

The proposed CVD prediction approach is shown in Figure 1.

3.1 Optimal selection of features via
self-improved Aquila optimization

The extracted features pose challenges related to dimensionality
reduction, prompting the utilization of an SIAO Algorithm for optimal
FS in this research endeavor.
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3.1.1 SIAO algorithm

In 2021, Abualigah et al. (1) proposed an Aquila Optimization
(AO), which is a modern swarm intelligence (SI) algorithm.
Aguila consists of 4 types of hunting behaviors for specific sorts
of prey. Aquila adeptly adapts hunting strategies for specific prey,
utilizing its rapid velocity and robust talons; correspondingly, the
AO Algorithm comprises four intricately designed stages
as follows:

Expanded Exploration (X7): Excessive ascend with a vertical bend.
Eq. 1 and Eq. 2 define the mathematical expression of expended
exploration of AO, in which Aquila flies excessively over the floor and
explores the quest area widely, and then a vertical dive can be taken as
soon as the Aquila identifies the prey’s location.

X (1 +1) = Xpegy (t).[l - ;j +(Xas(e) = Xpest (t) rand) (1)

XM(t):NZXi(t) (2)

Where better position attained was represented as Xpeg (t) and
X p(r) represents the mean position of Aquila in the present iteration.
t denoted as the current iteration and the T represents the maximum
iteration. The size of the population is mentioned as N and a random
number (between 0 and 1) is indicated as rand.

Narrowed Exploration (X>7): Outline flight with the brief skim
attack. Narrowed exploration is one of the frequently used hunting
approaches for Aquila Employing brief gliding maneuvers for targeted
prey attacks, the AO Algorithm elegantly combines sliding within the
selected area and precise aerial navigation around the prey, with the
refined exploration process succinctly defined by Eq. 3.

X5 (t+1):Xbest(t).LF(D)+XR(,) +(y—x).rand 3)

Where Hawks’ random position is indicated as X p(;), and the size
of a dimension is denoted as D. Function of Levy flight LF (D), is
expressed in below Eq. 4a and Eq. 4b.

LF(D):squlcj (4a)
Mx
I(1+K)x sin(%)
o= K1 (4b)
r(l - KJ.K.2[2)
2

Where T and K means stable values equivalent to 0.01 & 1.5; u
and v denote random values between 0 & 1; y and x represent the
spiral shape in the search. These values are mathematically calculated
as follows (See Eq. 5):

x=rxsind
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FIGURE 1
Proposed approach of CVD prediction.

y=rxcos
r =114+ 0.00565 x Dy

@:—wxpl+3XT” (5)

Where, the search cycle number is represented as rl, which exists
between the range of 1 and 20, the value of @ is equal to 0.005. Also,
Dy is mentioned as the integer values and D indicates the size of
the dimensions.

Extended Exploitation (X3): Executing the minimal flight strategy
with a calibrated descent attack, the Aquila adopts a nuanced approach.
In this tactical maneuver, the prey’s location is approximately
ascertained, prompting the Aquila to initiate a vertical assault. The AO
algorithm strategically capitalizes on the identified region,
meticulously navigating closer to the prey before launching the attack.
This intricate behavior is mathematically articulated in Eq. 6.

X3(1+1) = Xpest (1) = Xag (1) —r
and((UB—LB).rand+LB).><6 (6)

The parameters of the exploitation adjustment are assigned a value
of 0.1 in this context. UB and LB are boundary values. In this, we have
proposed Eq. 7 for choosing a random number between o and 1, which
is calculated using a logistics map. The mathematical expression for
the random value is given in Eq. 7.

rand = LB + rand (0,1)x (UB — LB) (7)

Subsequently, the arithmetic crossover is performed, in which two
regions are randomly selected, and by performing linear combination
2 offspring are produced.
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Narrowed Exploitation (X4): Executing a strategy involving
pursuit and ground-based assault, the Aquila pursues prey, following
the trajectory of its escape, culminating in an attack on the ground, as
mathematically articulated in Eq. 8-11.

X4 (1+41)= OF x Xpegt (1) -

(G].X(t).mnd - GZ.LF(D) + rand x Gl) (8)
2xrand—1

OF (1)=t (-7) )

G =2xrand —1 (10)

1mn

t
Gy =2x|1——
2 ( Tj

Where a current position is denoted as X (1), for search strategy
balancing quality function value and is indicated as OF (7). During the
tracking of prey, Aquila’s movement parameter is denoted by G1.
When chasing the prey, the slope of flight is termed as G2, which is
minimized linearly from 2 to 0.

Algorithm 1 describes the steps of proposed SIAO algorithms.

Algorithm 1: Proposed SIAO
Step 1: Initialization Phase.
Commence by initializing the population of the AO.
Initialize the relevant parameters associated with AO.
WHILE (termination condition) do.
Calculate the values of the fitness function.
Xpest (t) finds the best solution.
for (i=1,2...,N) do.
Improve the mean value of the present solution.
Improve the x, y, LF (D), G1, G2
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If rand £0.5 then

Step 2: Expanded exploration (X7).
Improve the present solution using Eq. 1.
If Fitness X (t + 1) <Fitness (X(t)) then

X(0)=(x(¢+1)
If Fitness (X] (t + 1)) < Fitness (X pesr (t)) then
Kpest (1) =(X1(2+1))

Step 3: Narrowed exploration (X>).
Improve the present solution using Eq. 3.
If Fitness X5 (t + 1) <Fitness (X(t)) then

X(1)=(x2(1+1))
If Fitness (X3 (¢ +1)) <Fitness (Xpey (¢)) then
Kt (1) = (X (1 +1))
If then r and <0.5

The rand is calculated using the proposed Eq.
“rand = LB + rand (0,1)x (UB - LB)”

Step 4: Expanded Exploitation (X3).
Improve the present solution detailed in Eq. 6.
If Fitness X3 (t + 1) <Fitness (X(t)) then

X(0)=(x5(1+1)
If Fitness (X3 (t + 1)) < Fitness (X pegr (t)) then
Npest (1) =(X3(2+1))

Step 4: Narrowed Exploitation (X4).
Improve the present solution detailed in Eq. 8.
If Fitness (X 4 (t + 1)) <Fitness (X(t)) then

X(1)=(Xa(1+1))
If Fitness (X4 (¢ +1)) <Fitness (Xpey (¢)) then
KXpeat (1) = (Xa (1 +1))
return the best solution (Xjeq).

3.1.2 Solution encoding

In this work, the optimization strategy is applied in two phases.
For selecting the optimal FS from the extracted feature set F, the
selected features are termed as Fy. Second, the weight of LSTM
indicated as W is tuned optimally, and the tuned weights are denoted
as W/*: The graphical representation in Figure 2 illustrates the input
solution for the envisaged SIAO methodology.
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3.2 Classification process via hybrid
LSTM-QNN classifier

As delineated earlier, the optimal features chosen undergo
integration into a hybrid classifier for disease presence prediction. To
augment the classifier’s performance, the fine-tuning of LSTM weights
is intricately executed through the application of the proposed SIAO
methodology (Figure 3).

3.2.1 LSTM model

The learning outcome of RNN influences the base theory of
LSTM. LSTM can study the lengthy dependencies among variables
(21). The long-period series is evaluated using LSTM pseudocode.
Activation functions like tanh and sigmoid are essential for NNs, as
they introduce non-linearity, allowing the network to tackle complex
data patterns and decisions. The resultant outcome enhances the
explosion gradient disappearance of the NN algorithm. For controlling
the process of memorizing LSTM uses the mechanism called Gating.
The unit of LSTM comprises three gates namely input, output, and
forget gates.

1. Forget Gate: Here, the attention and ignorance of information
are decided. Through the function of the sigmoid, the
information from the current input and hidden state is passed
where the current input is denoted as X () and the hidden
state is indicated as /(7 —1). 0 and 1 are the range of values
generated by the sigmoid function. For the point-by-point
multiplication, the value of 1’ (t) isused in Eq. 12.

where timestamp id is denoted as t, f; denotes the forget gate of t,
input is determined as x;, /1 is the previous hidden state, W signifies
weight matrix, and b, denotes the connection bias at timestamp ¢.

2. Input Gate: Here, the operations were performed to update the
status of cells. The current position state and hidden position
state are projected into the function of the sigmoid. The
transformation of values takes place between 0 and 1. Then the
same information will get passed to the function of the. For
performing network regulation, the tanh operator generates a
value range between 0 and 1. The generated values are ready for
point-by-point multiplication in Eq. 13-17.

iv =0 (Wi [ 1]+ by) (13)
Fy
P | F> | F3 : - - F, > X
Wy
Wy | Wi | Wiz | . : - | Wi > X
FIGURE 2
Proposed methodology of CVD prediction.
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FIGURE 3
Hybrid model (Average of LSTM and QNN).

!

Average of LSTM and QNN

C; = tanh (W[ h—1. ]+ bc ) (14)

Where, ; denotes the weight matrix, b; indicated the bias vector
att, the value generated by tanh is denoted as C;, weight matrix of the
tanh operator between cell state information and network output is
indicated as 7., and the bias vector is represented as b,.

3. Cell state: The subsequent step is to select and save the
information in the cell state. The multiplication is performed
for the previous cell state and forgets the vector. If the value of
the resultant outcome is 0, then in the cell state the value will
drop. Then the point-by-point addition is performed by the
output value of the vector in the input.

Cr = fixCr +igx G (15)

Here, the cell state of information is denoted as Cy, the previous
timestamp is indicated by C,_j, and the value generated by tanh is
expressed as C;.

4. Output Gate: To determine the value of the hidden state, the
output gate is utilized. In this state, the information on the
inputs that came before it is stored. Within the beginning, the
sigmoid function will be given both the value of the current
state as well as the value of the hidden state that came before it.
A new cell state will be generated as a result of this, and it will
be sent to the function that is responsible for calculating tanh.
After that, a multiplication operation will be carried out on
those outputs on a point-by-point basis. The network decides
the information that is carried out for the hidden state based
on the results that it has obtained. The hidden state that is
produced as a result is then utilized for prediction.

01 =0 (Wo.[ 15|+ by) (16)
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ht =0t><tanh(Ct) (17)

Where the output gate at ¢ is denoted by o, out gates” weight
matrix is indicated by W, a vector is represented as b,, and the output
of LSTM is mentioned as /.

3.2.2 QNN model

A QNN (22), as elucidated in reference, constitutes a multi-
layered feedforward NN renowned for its efficacy in classifying
uncertain data. The QNN state shift function embodies a linear
composition of multiple sigmoid functions, commonly referred to as
a multi-level switch function. Unlike the binary expression of
traditional sigmoid functions with two states, the QNN’s hidden layer
neural cells exhibit a richer spectrum of states. Introducing a discrete
quantum interval for the sigmoid function allows for the mapping of
diverse data onto distinct levels, affording enhanced classification
flexibility. The quantum interval within a QNN is acquired through a
training process. Structurally, a QNN comprises input, hidden, and
output layers, with the output function of the hidden layer
mathematically articulated in Eq. 18.

by = nlsgf[ﬂ(WTX -6,)] (18)

Where, y=1,2,3,...u and f(x) :1/1(1+exp(—x)) is an
excitation function in which W is expressed as the weight of the
network, X is the input vector, the slope factor is indicated as f3, the
input of the quantum cell is represented as wTX,and the quantum
interval is termed as 0.

frontiersin.org


https://doi.org/10.3389/fmed.2024.1414637
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Darolia et al.

3.3 Preprocessing phase

The preprocessing phase is conducted as an initial step to assess
the data quality. Data cleaning is performed to eliminate incorrect and
incomplete data. Additionally, null values and duplicate entries are
removed during this preprocessing phase.

3.3.1 Central tendency

Toward a central point the size of the sample inclined toward
infinity. This data property is termed a central tendency and the point
toward the data gets inclined is termed a central tendency measure
(23). A central propensity can be suitable for both a constrained
association of features and for a theoretical transference. Moreover,
some of the measures of central tendency for n data points with value
Ldatai) extracted in our proposed model are given as follows:

1. Arithmetic Mean (AM, I data(i) ): The arithmetic mean, a
fundamental measure of central tendency, is denoted as the
sum of all data annotations divided by the total number of data
points. Eq. 19 expresses the mean of the data.

- 1
Idata(i) = ;;Idata(i) (19)

2. Median: A statistical metric denoting the central value within
a dataset, effectuates a division of the dataset into two
equidistant halves. This partition is achieved through the
meticulous arrangement of data points in ascending order,
facilitating the identification of a singular data point
characterized by an equitable distribution of values both
superior and inferior to it. The methodology for ascertaining
the median subtly diverges contingent on whether the dataset
harbors an odd or even count of values. Eq. 20 elucidates the
mathematical formulation encapsulating the concept of
the median.

Loy +1
Median = [d”’“r} (20)

3. Mode: In the dataset, one of the frequently occurring values is
the mode. The mode is also a degree of central tendency that
identifies the group or rating that happens the maximum often
inside the distribution of data.

4. Standard deviation (SD, o ): In statistics, standard deviation
measures the dataset dispersion relative to the mean. Also, the
SD is calculated as the variance square root. Eq. 21 denotes the
mathematical expression for SD.

o= \/%Z(Idata(i) _[data(i) )n (21)

i=1

The minimum value obtained was considered as the initial order
statistics and the maximum value is the last order statistics.
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Geometric mean (GM): A sophisticated measure of central
tendency, that computes the product of specified values in a
numerical series. Importantly, it is undefined if any element
in the series is negative or zero, as succinctly expressed
in Eq. 22.

n

(22)

GM = (Hldata(i)]
i-1

. Harmonic Mean (HM): Delineated as the reciprocal of the AM,

computed from the reciprocals of individual annotations. Its
evaluation is confined to a comprehensive "positive scale,"
ensuring meticulous consideration of positive values
exclusively. Eq. 23 elegantly captures the intricate mathematical
formulation underpinning the HM.

HM = (23)

1
| P

Idata(i )

. Trimmed Mean (TM): It encompasses the determination of the

mean following the selective omission of specific elements
from the extremes of a probability distribution or pattern. This
procedure uniformly excludes an equal quantity from both the
high and low ends.

. Interquartile range (IQR): Within statistical analysis, IQR

assumes a pivotal role as a metric to gauge the dispersion of
data and observations. The precise mathematical notation for
IQR is succinctly expressed in Eq. 24, providing an exact
quantification of this statistical characteristic.

3n

4
Z Idata(i)

i="+1
4

10R=2
n

(24

. Midrange: The midrange is defined as the mean of the

maximum and minimum number in the dataset. It is expressed
mathematically in Eq. 25.

Y - lOW(]data(i)) + high([data(i))

= . (25)

Midhinge: The midhinge is considered as the estimation of
central tendency (C) shown in Eq. 29.

G (Idata(i)) +G3 (Idata(i))
2

Myg = m = (26)
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11. Trimean: A trimean is represented as the general tendency of a
data set and its mathematical notation is given in Eq. 27 where
Cy, Cy, C3 are central tendencies for quartiles.

C1+2.C,Cs

Triy, = 2

(27)

12. Winsorized means: This method pertains to an averaging
technique that initially substitutes the smallest and largest
values with the annotations nearest to them. This strategic
replacement is executed to mitigate the influence of anomalous
extreme values during the computation process.

3.3.2 Degree of dispersion

In statistical analysis, dispersion, also interchangeably referred to
as variability, spread, or scatter, characterizes the degree of deviation
or spreading inherent within a distribution (24). This metric delineates
the extent to which data points diverge or converge from a central
tendency, offering valuable insights into the distribution’s

inherent dynamics.

1. IQR: Serves as a sophisticated metric embodying statistical
dispersion, elucidating the nuanced spread encapsulated
between the 75 and 25 percentiles. This measure offers a
granular depiction of variability by meticulously assessing the
interquartile span.

2. Range: In the domain of statistical analysis, the Range assumes
the role of a fundamental measurement, meticulously
quantifying the explicit divergence existing between the
uppermost and lowermost values within a dataset. This metric
provides an unambiguous reflection of the dataset’s
inherent variability.

3. Mean absolute difference (MAD): It is a quantitative facet of
dispersion, that delineates the dissonance between two
independently drawn values from a probability distribution.
This metric affords a nuanced insight into the distributional
nuances characterizing the dataset.

4. Average absolute deviation (AAD): It assumes the mantle of
quantifying the normative divergence of data points from the
pivotal central tendency within an informational index, thereby
encapsulating the comprehensive variability inherent in
the dataset.

5. Distance standard deviation: In the insight’s hypothesis, the
departure distance relationship is a fraction of dependence
between two mutually uneven vectors of unrestricted
measurement. A diverse fraction of divergence is
“dimensionless”

6. Coefficient of Variation (CV): It ensconced within the domain
of probability statistics, and surfaces as a comprehensive
barometer of dispersal within a probability or recurrence
distribution. Articulated as a ratio, the CV serves as a
standardized gauge, representing the fraction of SD to
the mean.

7. Quartile coefficient of dispersion (QCD): A nuanced statistical
metric, that assumes symbolic relevance in evaluating
divergence within a dataset. Its precise calculation leverages the
first (A) and third (A) quartiles for each dataset, culminating
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in the articulation of the scattering coefficient, as rigorously
expressed in Eq. 28.

B -A

CD =
P hh

(28)

8. Replicating the coefficient of Gini & relative mean difference:
MAD, which is a precise measure of accurate divergence
equivalent to the AAD of 2 independent attributes drawn from
a probability distribution. A noteworthy metric associated with
MAD is the AAD, representing the MAD divided by the
AM and twice the Gini coefficient.

9. Entropy (H): The entropy of a discrete variable displays
invariance in both location and scale, signifying inherent scale
independence. In contrast to traditional dispersion measures,
the entropy of a continuous variable remains constant across
regions and seamlessly accommodates new information,
exhibiting a unique scalability. The entropy function H (y) for
continuous variable x, ¢ can be arithmetically expressed
in Eq. 29.

H(y)zH(x)+log(c) (29)

3.3.3 Qualitative variation (QV)

This index is the measure of arithmetical dispersion in the ostensible
distribution (25). Between the 0 and 1 bounds, the data normalization
exists and then changes to level 4. The data level changes are expressed
in Table 2.

Twenty-three features are there in the QV index. Also, indices of
Wilcox’s and its characteristics include RanVR, MNDIf, R packages,
ModVR, B index, HRel, StDev, MNDif, and AvDev. Gibbs indices
include M1, M2, M4, and M6, while single-order sample indices
encompass MenhinicKs, Lloyd & Ghelardi’s, Shannon-Wiener,
Average taxonomic distinctness, Hill’s diversity numbers, Theil’s H,
Brillouin, McIntosh’s D and E, Cotgreave’s, Bulla’s E, Berger—Parker,
Index of qualitative variation, Margalef’s, Caswell’s V, Rarefaction,
Smith and Wilson’s B, Q statistic, Harvey, Camargos, E, Smith &
Wilson's, Simpsons, Heip’s, Rényi entropy, Strongs, Horn’s, and
Fishers alpha. Fpy determined the characteristics of extracted
qualitative variation.

3.3.4 Symmetric uncertainty

The characteristics and class of symmetric uncertainty are
evaluated based on the estimated SU relationship metric (26). The
communal information is calculated using Eq. 30.

CM(Q.P) = £ PO(Q.8)log: — PO(0.P) (30)

0(Q).PO(P)

In Eq. 31, communal information is indicated by CM, the feature
is represented as Q, the class is denied as P, and the function of
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TABLE 2 Transformed data levels.

Datapoint transferred ‘ Data range normalized

1 1f 0-0.25
2 If 0.25-0.5
3 1f 0.5-0.75
4 1f0.75-1

probability is represented as PO. Also, Eq. 31 indicates
symmetrical uncertainty.
SU(Q.P)=2(CM(Q.P))/(H(Q).H(P)) 31)

In Eq. 32, the entropy function is indicated as H. Fgr; denotes the
symmetric uncertainty feature. So, the entire feature F combines the
features that are extracted like central tendency Fcr, degree of
dispersion Fp, qualitative variation Fpy, and symmetrical uncertainty
Fsy were termed in Eq. 32.

F=Fcr+Fp+Fpy + Fsu (32)

4 Results and discussions
4.1 Simulation details

The execution of the CVD prediction model within the Python
3.11 environment involves a systematic evaluation, methodically
assessing a plethora of Type I metrics and Type II metrics. This
comprehensive scrutiny unfolds across two distinct datasets: Dataset
1, sourced from the Cleveland dataset (UCI Machine Learning
Repository, n.d.-a) featuring 76 attributes, with a focused exploration
of a refined subset of 14 attributes, notably emphasizing the Cleveland
dataset. Meanwhile, Dataset 2, attained from the (UCI Machine
Learning Repository, n.d.-b) comprises 13 attributes and an intricately
defined cost matrix denoted as ‘abse’ and ‘pres’ The orchestrated
training and testing processes systematically unfold across varied
proportions (60, 70, 80, and 90%), providing a structured lens for a
nuanced examination of the predictive model’s performance.

absence( 1

presenceS 0

In the above matrix, the row indicates the true values and the
columns predicted.

4.2 Performance analysis of the adopted
and traditional model for Dataset-1

The performance of the proposed model is evaluated over the
existing models like SVM (21), DBN (Deep Belief Network) (22),
RNN (27), DCNN (Deep CNN) (28), 7 classifiers (DT, NB, LR, SVM,
k-NN, ANN and Vote (a hybrid technique with NB and LR)) (4), 4
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ML classifiers (DT, LR, XGBoost, SVM) (29), BiGRU (Bidirectional
Gated Recurrent Unit) (30), SMO (Sequential Minimal
Optimization) + HC (Hybrid Classifiers) (26), SSA (Salp Swarm
Algorithm)+HC (31), DHOA (Dear Hunting Optimization
Algorithm) + HC (32), AO +HC (7), SI+AO +LSTM + QNN + HC,
accordingly. The predictive model’s performance is rigorously
evaluated through key metrics, including accuracy, precision, and
sensitivity, across various learning percentages (60, 70, 80, and 90%).
Figure 4 illustrates the exceptional accuracy of the compositional
model, achieving a remarkable 95.54% during the 90% training phase.
The projected approach consistently surpasses the performance of
other existing models at all learning percentages, such as SVM, DBN,
RNN, DCNN, 7 classifiers, 4 ML classifiers, BiGRU, SMO +HC,
SSA+HC, DHOA +HC, AO+HC, SI+AO+LSTM +
QNN +HC. Figure 5 sheds light on the superior sensitivity of the
proposed SI-AO-LSTM-QNN approach, particularly evident with a
peak sensitivity of 95.86% at the 90% training percentage. This notable
performance outshines other existing approaches. Sensitivity rates for
the 60, 70, and 80% training percentages are also substantial, standing
at 91.6, 92.95, and 94.39%, respectively. Precision analysis, as depicted
in Figure 6, further emphasizes the prowess of the proposed model.
Achieving the highest precision rate of 96.03% during the 90%
training phase, the SI-AO-LSTM-QNN approach outperforms the
already existing models. Precision rates for the other training
percentages are commendable, measuring at 92.76, 94.33, and 95.47%.

Table 3 provides a comprehensive performance analysis for the
prediction of CVD on Dataset 1, focusing on a Training percentage
(TP) of 90%. Various metrics, including accuracy, sensitivity,
specificity, precision, recall, Fl-score, Matthews Correlation
Coefficient (MCC), Negative Predictive Value (NPV), False Positive
Rate (FPR), and False Negative Rate (FNR), are reported for a range
of existing models, as well as the proposed model,
SI+AO+LSTM + QNN + HC. Notably, the proposed model achieves
outstanding results with an accuracy of 96.69%, sensitivity of 96.62%,
specificity of 96.77%, precision of 96.03%, recall of 97.86%, F1-score
of 96.85%, MCC of 96.37%, NPV of 96.25%, FPR of 3.23%, and FNR
of 3.38%. These metrics collectively indicate the superior predictive
capabilities of the proposed SI+AO+LSTM+QNN+HC model,
showcasing its robust performance compared to other existing models
across a diverse set of evaluation criteria.

4.3 Performance analysis of the adopted
and traditional model for Dataset-2

In dataset 2, the proposed model is compared to SVM, DBN,
RNN, DCNN, 7 classifiers, 4 ML classifiers, BiGRU, SMO + HC,
SSA +HC, DHOA + HC, AO+ HC, SI+ AO +LSTM + QNN + HC,
and others. Notably, the SI-AO-LSTM-QNN approach consistently
outperforms the existing models, achieving higher values across
critical metrics. Specifically, for accuracy, sensitivity, and
precision, the proposed model attains impressive rates of 96.69,
96.62, and 96.03%, respectively. These superior metrics are
observed consistently across various learning percentages, with
the highest values achieved at the 90th learning percentage.
Figure 7 visually represents the accuracy comparison, illustrating
that the SI-AO-LSTM-QNN model excels, achieving the highest
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Comparative analysis of the precision rates in predicting CVD on Dataset-1.

TABLE 3 Performance analysis for prediction of CVD of dataset 1 for TP = 90%.

Metrics Accuracy Sensitivity Specificity Precision F1-

SVM (33) 0.91079 0.915957 0.91079 0.91079 0.91079 0.91079 0914113 0.08921 0.084043
DBN (34) 0.916754 0.943232 0.921099 0.923449 0.918028 0.91879 0.939337 0.078901 0.056768
RNN (29) 0.863295 0.83929 0.884078 0.864878 0.851892 0.780951 0.861998 0.115922 0.16071
DCNN (6) 0.854458 0.865934 0.852423 0.840533 0.853045 0.724256 0.876004 0.147577 0.134066
7 classifiers (4) 0.944006 0.904322 0.944193 0.94492 0.944902 0.877832 0.90148 0.055807 0.095678
4 ML classifier 0.939135 0.938981 0.939321 0.940045 0.940026 0.928548 0.936801 0.060679 0.061019
©)

BiGRU (25) 0.831094 0.834353 0.836954 0.803626 0.818701 0.704706 0.862893 0.163046 0.165647
SMO+HC 0.905631 0.917888 0.891647 0.899332 0.908415 0.871494 0.913507 0.108353 0.082112
(35)

SSA+HC (30) 0.901581 0.91371 0.887748 0.895251 0.904286 0.868333 0.909493 0.112252 0.08629
DHOA +HC 0.896831 0.908896 0.883071 0.890535 0.899522 0.863758 0.904701 0.116929 0.091104
(28)

AO+HC (7) 0.94413 0.943851 0.945169 0.948321 0.94577 0.933364 0.94166 0.054831 0.056149
LSTM (32) 0.828358 0.735632 0.961921 0.965309 0.834964 0.689585 0.7164 0.038079 0.264368
QNN (21) 0.9273 0.9461 0.9075 0.9136 0.9295 0.8740 0.9428 0.0924 0.0538
Proposed 0.966922 0.966244 0.967714 0.9603 0.968473 0.963715 0.962534 0.032286 0.033756
model

accuracy among the compared models. Figure 8 showcases the  sensitivity of the proposed model across different
precision performance, indicating higher values, especially at the  training percentages.

80th and 90th learning percentages. Lastly, Figure 9 presents the Table 4 provides a comprehensive performance analysis for the
sensitivity analysis, highlighting the consistently superior  prediction of CVD on Dataset 2, with a focus on the TP rate of 90%.

Frontiers in Medicine 85 frontiersin.org


https://doi.org/10.3389/fmed.2024.1414637
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Darolia et al.

Various metrics, including accuracy, sensitivity, specificity, precision,
F1-score, MCC, NPV, FPR, and FNR, are reported for a range of
existing models, as well as the proposed model
SI+AO+LSTM+QNN+HC. The SI+AO+LSTM+QNN+HC
model outshines the other models consistently across all metrics,
achieving an accuracy of 95.55%, sensitivity of 95.87%, specificity of
94.52%, precision of 96.03%, F1-score of 96.94%, MCC of 93.09%,
NPV of 94.67%, FPR of 5.48%, and FNR of 4.13%. These superior
metrics signify the robust predictive capabilities of the proposed
model, showcasing its effectiveness in comparison to a diverse set of
existing models across a spectrum of evaluation criteria on
Dataset-2.

4.4 Convergence analysis

Convergence analysis of the proposed SI-AO-LSTM-QNN, in
comparison to conventional methods like SMO, SSA, DHOA, AO,
and SI-AQ, is visually presented in Figures 10, 11. The primary
objective of the adopted methodology revolves around convergence
analysis, with a specific focus on maximizing accuracy. The analysis
reveals that heightened convergence is achieved with an increase in
the iteration count. Given the inverse relationship between accuracy
and errors, the overarching goal of this research is to attain the
highest possible detection accuracy, thereby minimizing error rates.
In Figure 10, which pertains to Dataset-1, the graphical
representation illustrates superior convergence of the proposed
work over existing counterparts, with maximal convergence evident
at the 20th iteration. Likewise, in Figure 11, corresponding to
Dataset-2, the presented work demonstrates robust convergence,

10.3389/fmed.2024.1414637

surpassing other methods and reinforcing its effectiveness in
the classification.

4.5 Statistical analysis

Tables 5, 6 provide a comparative statistical analysis of accuracy
for the proposed SI-AO-LSTM-QNN model against traditional
schemes on Dataset-1 and Dataset-2, respectively. The stochastic
nature of the optimization algorithm led to five independent runs,
and statistical measures such as mean, SD, median, worst, and best
were recorded for accuracy. In Table 6 for Dataset-1, the proposed
SI-AO-LSTM-QNN  model
performance of 95.23%, outperforming traditional methods.
Notably, the method exhibits a narrow SD of 1.279, indicating
consistency across runs. The worst-case scenario is observed at

showcases a superior mean

93.31%, and the best-case scenario attains an impressive 96.69%.
In comparison, other traditional methods show varying
with SI-AO-LSTM-QNN consistently
demonstrating higher accuracy.

performance levels,

4.6 Analysis on features

Tables 7, 8 provide an in-depth analysis of feature performance in
predicting CVD for Dataset-1 and Dataset-2, respectively. In Dataset-1,
the proposed feature exhibits superior predictive capabilities with an
accuracy of 95.59%, outperforming scenarios without FS (94.58%) and
optimization (94.62%). The proposed feature also excels in key metrics
such as F1-score, precision, sensitivity, specificity, MCC, NPV, FPR,
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FIGURE 7
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Comparative analysis of the accuracy rates in predicting CVD on Dataset-2.
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TABLE 4 Performance analysis for prediction of CVD of Dataset 2 for TP = 90%.

Metrics Accuracy Sensitivity Specificity Precision F1- MCC NPV
score
SVM (33) 0.903943 0.91079 0.884254 0.916544 0.918485 0.887562 0.898065 0.115746 0.08921
DBN (34) 091717 0.925456 0.89554 0.941486 0.937214 0.867554 0.885457 0.10446 0.074544
RNN (29) 0.757692 0.788 0.774623 0.820833 0.804082 0.754632 0.779862 0.225377 0.212
DCNN (6) 0.873491 0.884144 0.812193 0.875556 0.880953 0.782849 0.841727 0.187807 0.115856
7 classifiers (4) 0.907628 0.911215 0.892074 0.914643 0.9168 0.884667 0.905379 0.107926 0.088785
4 ML classifier 0.925602 0.929508 0.912176 0.941193 0.939203 0.870667 0.910303 0.087824 0.070492
©)
BiGRU (25) 0.788 0.844286 0.745249 0.815172 0.829474 0.780115 0.758131 0.254751 0.155714
SMO+HC 0.918383 0.925771 0.89847 0.92913 0.931322 0.884695 0.912411 0.10153 0.074229
(35)
SSA+HC (30) 0.913569 0.920919 0.893732 0.924301 0.926481 0.880019 0.907629 0.106268 0.079081
DHOA +HC 0.908756 0.916067 0.888993 0.919472 0.921641 0.875343 0.902847 0.111007 0.083933
(28)
AO+HC (7) 0.938558 0.943341 0.921635 0.952722 0.952239 0.888595 0.916232 0.078365 0.056659
LSTM (32) 0.8703 0.8703 0.8703 0.9306 0.8995 0.7206 0.7704 0.1296 0.1296
QNN (21) 0.9079 0.9328 0.862 0.9258 0.9293 0.7973 0.874 0.1379 0.0671
Proposed 0.955479 0.958691 0.945167 0.9603 0.969417 0.930939 0.946673 0.054833 0.041309
model
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FIGURE 10 FIGURE 11
Convergence analysis for Dataset-1. Convergence analysis for Dataset-2.

and FNR, underscoring its effectiveness in enhancing the overall
predictive accuracy for CVD in Dataset-1. Specifically, the proposed
feature demonstrates improved sensitivity and NPV, suggesting its
robust ability to correctly identify positive cases and avoid
false negatives.

Turning attention to Dataset-2 in Table 8, the proposed feature
showcases exceptional predictive performance, achieving an accuracy
of 96.65% compared to scenarios without FS (93.49%) and
optimization (94.34%). The proposed feature consistently outperforms
across various metrics, emphasizing its importance in accurate CVD
prediction. Particularly noteworthy are the high values for precision,
sensitivity, and F1-score, indicating the ability of the proposed feature
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to correctly classify positive cases and minimize false positives.
Opverall, both tables affirm that the inclusion of the proposed feature,
with careful selection and optimization, significantly improves the
predictive accuracy of CVD across different datasets.

5 Conclusion and future work

The conclusion of the paper underscores the significant
advancements made in the prediction of CVD through the
development and application of a Hybrid Model that integrates LSTM
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TABLE 5 Comparative statistical analysis of accuracy for proposed and
traditional schemes in Dataset-1.

Method Mean Median SD Worst Best
SVM (33) 90.64 90.65 0.367 90.18 91.07
DBN (34) 89.81 89.50 1.156 88.58 91.67
RNN (29) 83.27 82.81 1.914 81.11 86.32
DCNN (6) 83.92 84.28 1.505 81.67 85.44
7 classifiers 88.35 87.49 3.830 84.03 94.40
(4)

4 ML classifier 92.25 92.35 1.337 90.37 93.91
)

BiGRU (25) 79.21 82.39 5.930 68.95 83.10
SMO +HC 87.79 88.25 2.334 84.10 90.56
(35)

SSA +HC (30) 87.52 87.95 2.243 84.03 90.15
DHOA +HC 87.29 87.72 2.119 84.03 89.68
(28)

AO+HC (7) 92.73 92.83 1.348 90.83 94.41
LSTM (32) 95.23 95.45 1.279 9331 96.69

TABLE 6 Comparative statistical analysis of accuracy for proposed and
traditional schemes in Dataset-2.

Method Mean Median SD Worst Best
SVM (33) 87.33 87.24 2.15 84.45 90.39
DBN (34) 87.62 87.76 3.00 83.25 91.71
RNN (29) 72.73 73.10 248 68.95 75.76
DCNN (6) 84.82 8491 1.85 82.13 87.34
7 classifiers (4) 87.21 86.81 2.28 84.48 90.76
4 ML classifier 88.00 88.11 3.29 83.25 92.56
)

BiGRU (25) 77.02 76.69 1.19 75.92 78.80
SMO +HC 88.09 88.02 2.62 84.48 91.83
(35)

SSA+HC (30) 88.07 87.91 2.25 85.13 91.35
DHOA +HC 87.84 87.68 2.13 85.13 90.87
(28)

AO+HC (7) 89.10 88.45 2.97 85.65 93.85
LSTM (32) 92.90 92.74 1.81 90.56 95.54

and QNN. This model, optimized by a novel algorithm, demonstrates
exceptional efficacy in handling complex healthcare data, as evidenced
by its superior performance metrics over existing models. Notably, the
model achieves a remarkable 14.05% improvement in accuracy on
Dataset-1 and a 20.7% enhancement on Dataset-2, with sensitivity
metrics that outperform a broad spectrum of current models including
SVM, DBN, RNN, DCNN, BiGRU, SMO, SSA, DHOA, and AO. These
results not only validate the models capability in accurately predicting
CVD but also highlight its potential to significantly impact future
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TABLE 7 Feature analysis for Dataset-1.

Metrics Without FS Without Proposed
optimization feature
Accuracy 0.945848375 0.946277097 0955888608
Fl-score 0.947162427 0959159303 0963933803
Precision 0.952755906 0.96353167 0.958619611
Sensitivity 0941634241 0.954826438 0.969368891
Specificity 0950331126 0.92962963 0930392593
MCC 0.891698291 0.880765057 0.915424716
NPV 0938675388 0.91355778 0.950517634
FPR 0.049668874 0.07037037 0.06960741
FNR 0.058365759 0.045173562 0.03063111

TABLE 8 Feature analysis for Dataset-2.

Metrics Without Without Proposed
FS optimization feature
Accuracy 0.934916 0.943396 0.96652
Fl-score 0.939274 0.956938 0.974655
Precision 0.922979 0.961538 0.969282
Specificity 0.911591 0.925926 0.940741
Sensitivity 0.956864 0.952381 0.980151
MCC 0.870635 0.87446 0.925606
NPV 0.949849 0.909091 0.96109
FPR 0.088409 0.074074 0.059259
FNR 0.043136 0.047619 0.019849

healthcare practices by providing more precise and reliable diagnoses.
Looking forward, the research identifies several areas for potential
improvement and expansion, such as refining the optimization
algorithm, further tuning the hybrid model, broader evaluation across
diverse datasets, exploration of real-time implementation possibilities,
and incorporation of additional data sources. These directions aim to
further enhance the model’s accuracy and applicability, contributing
to the ongoing evolution of predictive healthcare models and
ultimately, to the advancement of patient care in cardiovascular diseases.
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Introduction: In the evolving healthcare landscape, we aim to integrate
hyperspectral imaging into Hybrid Health Care Units to advance the diagnosis of
medical diseases through the effective fusion of cutting-edge technology. The
scarcity of medical hyperspectral data limits the use of hyperspectral imaging in
disease classification.

Methods: Our study innovatively integrates hyperspectral imaging to
characterize tumor tissues across diverse body locations, employing the
Sharpened Cosine Similarity framework for tumor classification and subsequent
healthcare recommendation. The efficiency of the proposed model is evaluated
using Cohen's kappa, overall accuracy, and fl1-score metrics.

Results: The proposed model demonstrates remarkable efficiency, with kappa
of 91.76%, an overall accuracy of 95.60%, and an fl-score of 96%. These
metrics indicate superior performance of our proposed model over existing
state-of-the-art methods, even in limited training data.

Conclusion: This study marks a milestone in hybrid healthcare informatics,
improving personalized care and advancing disease classification and
recommendations.

KEYWORDS

hyperspectral imaging classification, Sharpened Cosine Similarity, deep learning, tumor
tissues, Hybrid Health Care

1 Introduction

Our research explores the utilization of hyperspectral imaging (HI) to revolutionize
tumor tissue classification in various body regions, aiming to impact the medical field
significantly. This approach promises to refine diagnostic accuracy and pave the path for
more personalized treatment plans. Taking a step toward the era of highly personalized,
adequate healthcare, our study aims to enhance patient care. The reason HI is utilized
for disease diagnosis is grounded in the understanding that changes in tissue’s optical
properties, stemming from morphological and biochemical alterations during disease
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progression, can be detected (1). For instance, rapid cell division in
malignant cells leads to increased metabolic enzyme levels and the
formation of new vessels through angiogenesis to meet the demand
for nutrients and oxygen (2).

HI capitalizes on these changes to identify lesions and abnormal
tissue without needing histological examination, saving time
and improving treatment efficacy. Biopsy samples, which are
stable and easily obtained from patients, implement scanning HI
feasible. Recent studies have explored correlations between HI
and histological examination results to validate HI as an accurate
disease diagnostic tool. Various tissues, including the breast (3),
liver (4), brain (5), kidney (6), stomach (7), head and neck (8),
and thyroid gland (9), have been investigated, demonstrating HI’s
capability for disease diagnosis. The complexity of HI is addressed
by employing artificial intelligence, which exhibits comparable
diagnostic accuracy compared to histology.

One notable advantage of HI-based disease diagnosis is its
ability to directly examine biopsy tissue during surgery. Unlike
histology, which typically takes hours, HI can analyze tissue
within minutes. This rapid analysis enables real-time assessment of
resection margins to check for residual tumor tissues. In a study,
HI successfully identified breast cancer from excised breast tissue
during surgery with an accuracy exceeding 84% (10). Additionally,
HI has found application in identifying blood cells, showcasing
its potential to delineate abnormal tissue without relying on
biochemical techniques (11). These applications underscore the
capacity of HI to support swift and accurate decision-making in
clinical settings. Our research contributes significantly to the field
in addressing the pressing need for more adaptable and precise
tumor classification in healthcare diagnostics. The following points
outline the key contributions made in this study:

e Versatile tumor classification: introduces a hyperspectral
imaging-based classifier offering location-independent and
adaptable tumor classification, surpassing the limitations of
existing methods.

e Sharpened Cosine Similarity (SCS): SCS is proposed as
an innovative technique within the hyperspectral imaging
classification framework, demonstrating superior precision
and efficiency for tumor classification, especially under limited
training data.

e Empirical evaluation: provides a

rigorous empirical

evaluation of the proposed model, substantiating its
superior performance through metrics like Cohen’s kappa,
overall accuracy, and fl-score.

e Hybrid Health Care (HHC) integration: applies hyperspectral
imaging classification within HHC Units, contributing to
personalized and effective medical care solutions with broader

implications for healthcare informatics.

2 Literature review

Traditional imaging techniques like Magnetic Resonance
Imaging (MRI) (12), Computed Tomography (CT) Scans (13),
Positron Emission Tomography (PET) Scans (14), Functional MRI
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(fMRI) (15), and Magnetic Resonance Spectroscopy (MRS) (16)
have their own set of challenges in tumor detection (17). While
these methods are indispensable, their specificity to specific tumor
types hinders widespread application. Furthermore, implementing
advanced deep learning algorithms presents scalability and real-
time processing issues in clinical environments (18). Addressing
these limitations, our approach offers a more versatile and
computationally efficient alternative, enhancing its potential for
clinical integration.

Elaborating on existing imaging modalities, MRI stands out
for its high sensitivity (90%-95%) in brain tumor detection but
grapples with the risk of false results and limitations in pinpointing
specific tumor types or smaller lesions (19). CT Scans, utilizing X-
rays, exhibit a sensitivity range of 60%-90% and a specificity of
~90%. Still, the method is constrained by radiation risks and less
detailed soft tissue imaging (20). PET Scans employing ionizing
radiation show varying sensitivity (70%-90%) and reasonable
specificity (80%-90%), yet are subject to sensitivity limitations due
to tumor characteristics and tracer use (21). fMRI, indicating brain
activity through blood flow, offers high sensitivity (80%-90%) and
specificity in identifying key brain areas but is susceptible to motion
artifacts and variable interpretation (22). MRS provides a window
into the biochemical makeup of tissues, yielding crucial data
on tumor metabolism and types (23). Each modality contributes
uniquely to tumor diagnosis, balancing specific advantages and
inherent challenges.

Tumors, formed when cells behave abnormally, exhibit a range
of sizes and can emerge anywhere in the body. Genes mutation,
whether inherited, acquired gradually, or induced by substances
like alcohol and tobacco, transform cells into cancerous ones (24).
Growing tumors can invade neighboring tissues, displace normal
cells, and produce enzymes breaking down surrounding tissues.
Local invasion occurs when tumors grow larger, and metastasis
happens when cancer cells spread to other body parts through
blood or lymphatics (25). Classification involves categorizing
tumors broadly by tissue, organ, or system, specifically by type,
grading based on cellular and structural features using the World
Health Organization (WHO) system, and staging using the Tumor
Node Metastasis (TNM) system (26). Solid neoplasms, including
carcinomas, sarcomas, and lymphomas, are classified based on type.
The WHO Classification of Tumors provides detailed insights into
tumor histotypes across various organ systems (27). According to
the WHO system, tumor grading assigns a numerical grade (1-3)
based on cellular differentiation. Staging relies on the TNM system,
considering the presence of distant metastases (M), lymph node
involvement (N), and the size or extension of the primary tumor
(T) (28).

The most common cause of cancer death among children
under the age of 15 and the second fastest-growing cause of
cancer death among those over the age of 65 are brain tumors,
which originate in brain cells and may be benign or malignant
(29). Gene defects, exposure to certain chemicals, and radiation
therapy to the head increase the risk of these tumors (30).
Gliomas, the most common type, form from neural cells, including
astrocytomas and ependymomas (31). Other types, such as brain
stem gliomas, optic nerve gliomas, primitive neuroectodermal
(PNET), medulloblastomas,

tumors craniopharyngiomas,
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FIGURE 1
RGB representations of dataset images with PatientID-ImagelD codes, delineating approximate tumor areas guided by neurosurgeon expertise and
the IGS system.

and pineal region tumors, pose distinct challenges in terms
(32).
variations is crucial for tailored treatment approaches and

of location and characteristics Understanding these
underscores the complexity of brain tumor classification and
detection.

Moreover, Lung carcinoma, or lung cancer (33), results
from genetic mutations in airway cells triggered by factors
like smoking (34). It manifests as non-small-cell lung cancer
(85%) and small-cell lung cancer (15%) (35). Breast cancer
originates from mutated breast cells, often spreading invasively,
with common types being lobular, ductal carcinoma in situ (DCIS),
and invasive ductal carcinoma (IDC) (36, 37). Meningiomas,
arising from brain membranes, may compress nearby tissues,
and their slow growth lacks a defined cause (38). HI stands
poised to revolutionize tumor classification and identification
by capturing unique optical properties associated with different
tumor types (39). HI offers a non-invasive and potentially
rapid method for precise diagnosis, contributing to improved
treatment strategies and patient outcomes in lung, breast, and
meningiomas.

Frontiersin Medicine

3 Materials and methods
3.1 Dataset

The dataset we used to conduct experiments was initially
collected and published by the In-vivo HS Human Brain database
(40) comprising 36 in-vivo brain surface images from 22 unique
patients. This labeled dataset includes tumor and normal tissue,
blood vessels, and other irrelevant materials within the surgical
scene (referred to as background). Tumor types are differentiated
in the dataset, encompassing primary (grade IV glioblastoma and
grade III and II anaplastic oligodendrogliomas) and secondary
tumors (lung and breast). Additionally, RGB representations of
hyperspectral cubes within the in-vivo hyperspectral human brain
image database are presented in Figure 1. The dataset designates the
approximate tumor area using a yellow line, aiding in identifying
the rubber ring marker corresponding to pathological analyses of
the tumor tissue. Patient ID and Image ID details in Table 1 offer
a comprehensive overview, including image characteristics and the
pathological diagnosis of each image. The total number of labeled
pixels for each class and image is specified, addressing cases where
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TABLE 1 Patient-specific image data and label distribution where “N” refers to “normal” tissue, “T" signifies “tumor tissue,” "BV" represents “blood
vessels,” and “B” denotes the “background.”

Patient ID Image ID Size True labels Diagnosis
N

004 02 389 x 345 x 826 ] ] ] O Normal brain

005 01 483 x 488 x 826 O O ] O Renal carcinoma (S)

007 01 582 x 400 x 826 O O O O Normal brain

008 01 460 x 549 x 826 O m] O O Grade IV glioblastoma (P)

008 02 480 x 553 x 826 [m} 0 [} O Grade IV glioblastoma (P)

010 03 460 x 549 x 826 [m} [} [} ] Grade IV glioblastoma (P)

012 01 443 x 497 x 826 O m] O O Grade IV glioblastoma (P)

012 02 445 x 498 x 826 O O O O Grade IV glioblastoma (P)

013 01 298 x 253 x 826 [} [} [} 0O Lung carcinoma (S)

014 01 317 x 244 x 826 m] m] O O Grade IV glioblastoma (P)

015 01 376 x 494 x 826 [m} 0 [} ] Grade IV glioblastoma (P)

016 01 376 x 494 x 826 O O O O Normal brain

016 02 335 x 326 x 826 O O O O Normal brain

016 03 376 x 494 x 826 O ] ] O Normal brain

016 04 383 x 297 x 826 O O O O Grade IV glioblastoma (P)

016 05 414 x 292 x 826 O O O O Grade IV glioblastoma (P)

017 01 441 x 399 x 826 [m} [} [} ] Grade IV glioblastoma (P)

018 01 479 x 462 x 826 O O O O Grade I glioblastoma (P)

018 02 510 x 434 x 826 O O O O Grade I glioblastoma (P)

019 01 601 x 535 x 826 ] ] ] O Meningioma

020 01 378 x 330 x 826 O O O O Grade IV glioblastoma (P)

021 01 452 x 334 x 826 [m} ] [} O Breast carcinoma (S)

021 02 448 x 324 x 826 [} 0 [} ] Breast carcinoma (S)

021 05 378 x 330 x 826 O O O O Breast carcinoma (S)

022 01 597 x 527 x 826 O O O O Grade III anaplastic
oligodendroglioma (P)

022 02 611 x 527 x 826 O O O O Grade III anaplastic
oligodendroglioma (P)

022 03 592 x 471 x 826 O O O O Grade IIT anaplastic
oligodendroglioma (P)

025 02 473 x 403 x 826 [m} 0 [} ] Grade IV glioblastoma (P)

026 02 340 x 324 x 826 O O O O Normal brain

027 02 493 x 476 x 826 O O O O Normal brain

028 03 422 x 398 x 826 O O O O Normal brain

028 04 482 x 408 x 826 0 [} 0O 0O Lung adenocarcinoma (S)

028 05 482 x 390 x 826 0 ] O ] Lung adenocarcinoma (S)

029 02 365 x 371 x 826 O O O O Normal brain

029 04 399 x 342 x 826 O O O O Grade II anaplastic
oligodendroglioma (P)

030 02 382 x 285 x 826 O O O O Normal brain
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FIGURE 2
Streamlined tumor diagnosis in hybrid healthcare: a patient-centric approach from initial scan to tailored treatment.

certain images were diagnosed as specific tumor types without
labeled tumor samples due to procedural challenges.

The authors (40) mention the inherent challenges in acquiring
in-vivo HI during neurosurgical procedures; the dataset primarily
captures common tumor types over two years. The customized
hyperspectral acquisition system, a preliminary demonstrator,
is designed to capture tumor images on the surface or in easily
focused deeper layers. The authors utilize a push broom camera
for spatial scanning; the system’s limitations include increased
acquisition time and potential spatial coherence issues due to
patient brain movement and procedural artifacts. As snapshot
cameras offer real-time image acquisition but have fewer spectral
bands than push-broom cameras, future investigations using
high spectral resolution push-broom cameras are warranted. The
dataset creation process by authors (40) addresses challenges
from limited patient availability, presenting a preliminary
database for exploring HI applications in tissue and tumor
identification, tumor boundary delineation, and providing
pertinent information for neurosurgeons. Their methodology
leverages
MRI, surgeon expertise, and pathological analysis results.

spectral characteristics guided by intraoperative
Subsequent data acquisition efforts are anticipated to broaden
the database, encompassing more tumor types with detailed

pathological descriptions.

3.2 HHC: Al tumor diagnostics

Our innovative methodology for tumor tissue classification
within an HHC Unit unfolds with the patients arrival at the
facility. The initial phase involves a hyperspectral sensor scan,
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capturing intricate details of the patient’s internal composition.
This technology provides a comprehensive overview, laying the
foundation for precise diagnosis. Following the hyperspectral scan,
the acquired data undergoes processing through Factor Analysis.
This step is crucial for dimension reduction, ensuring that the
hyperspectral cube retains only relevant features essential for
accurate classification. The processed data then traverses through
the layers of our SCS model. As a breakthrough in tumor
classification, the SCS model enhances precision, even when trained
with limited data. This stage is pivotal for predicting and classifying
tumor tissues, contributing to superior performance compared to
existing models.

Once the classification is complete, the results are securely
stored within the hospital’s private records, ensuring data
confidentiality. This stored information becomes a valuable
resource for future reference and analysis. Integrated into
the HHC Unit is a seamless access mechanism through
Healthcare APIs. Healthcare
these APIs to access detailed reports and results related to

professionals can leverage
tumor tissues. This integration streamlines the diagnostic

process, providing a user-friendly interface for medical
interpretation.

The final phases of our methodology involve the medical
Healthcare API,

professionals in interpreting results and making informed

interpreter within the aiding healthcare
recommendations. These recommendations extend to surgical
interventions and ongoing medical care, all tailored to the specific
classification of tumor tissues and their respective locations.
Figure 2 presents a comprehensive and patient-centric approach
to tumor tissue classification within the HHC Unit. By seamlessly
integrating hyperspectral imaging, Factor Analysis, and the
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innovative SCS model, we aim to revolutionize healthcare
diagnostics and enhance the overall patient experience.

3.3 Proposed Sharpened Cosine Similarity
method

(MxN)xB  \here the dimensions

HI represented as X € R
(M x N) correspond to a specific area on the tissue surface and
B denotes the total number of spectral bands in the HI. Each pixel
within X, indicated as x;; wherei = 1,2,...,Mandj = 1,2,..., N,
is grouped into C unique tissue types, collectively expressed as
Y = (1,92 -..>yn). Moreover, every x;; € X describes a tissue
pixel through a spectral vector x;; = [xij1,Xij2, ... %ijB] € X
containing a series of B spectral data points.

In the initial processing phase, spatial characteristics are
emphasized by implementing a patch extraction method. This
preliminary step involves the creation of a hyperspectral cube, x;; €
REX9%D | encapsulating the area surrounding the focal pixel (i, )
over a region of dimensions s x s. This approach is instrumental
in enhancing the model’s ability to distinguish between different
features by integrating spectral and spatial attributes. As such,
the spectral-spatial cubes x;j, drawn from the primary data and

sx)xDare consolidated into

conforming to the dimensionality R(
the dataset X in preparation for subsequent feature extraction
processes. The concluding step involves the selection of training
and testing samples across each distinct class.

In neural networks, the convolution operation involves a
sliding dot product operation, symbolized as w - x;, between
an image patch x; and a filter w, which might miss crucial
information due to its basic similarity measure. Enhancing this
with normalization transforms the operation into cosine similarity,
defined as % This is similar to calculating the cosine of the
angle between vectors, utilizing Euclidean distance.

To address these limitations, Strided Cosine Similarity (SCS)
was developed as expressed in Equation (1). It operates similarly to
convolution but includes key differences. In standard convolution,
the operation is a dot product w-x;j, while SCS involves normalizing
the vectors. The normalization in SCS ensures the magnitude of

vectors is unity before the dot product, leading to an expression like
W-Xjj

w+qlllixij+qll>
The similarity measure in SCS ranges between -1 and

where q is a small value to avoid numerical instability.

1, indicating complete opposition or perfect alignment of the
kernel and image patch, respectively. To mitigate the issue of
small magnitudes, which can lead to noise inclusion, additional
parameters are introduced in SCS, formulated as;

W~X,'j

SCS(w, x;j)= (1)

lw =+ qllllx;; + ql

Similar to conventional convolution in deep learning, SCS is
a striding operation that extracts features from an image patch.
However, it includes an additional step of magnitude normalization
before the dot product, leading to what some literature refers
to as Sharpened Cosine normalization. The effectiveness of SCS
surpasses traditional convolutional processes in terms of speed due
to fewer required parameters and the absence of normalization or
activation functions.
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In contrast to standard pooling, absolute max-pooling is
employed in SCS for backpropagation filter updates, selecting the
highest magnitude irrespective of the sign. The overall model with
SCS is trained over 50 epochs, a batch size of 256, and a learning
rate of 0.001. The learning rate significantly influences the model’s
learning rate, while momentum aids accuracy and speed. An root
mean square prop and momentum-based optimizer, specifically the
Adam optimizer, is utilized for its efficiency and computational
advantages.

4 Experiment analysis

This section presents an overview of the evaluation metrics,
baselines SOTA and implementation details.

4.1 Evaluation metrics

The results presented in this study are evaluated using the
following metrics:

Kappa statistic: This statistical measure assesses the level
of agreement between predicted classifications and ground-truth
maps, as defined by Equation (2). In this equation, A, represents
the observed agreement, calculated using Equation (3), while A,
denotes the expected agreement, computed using Equation (4).

A, — A
=2 =€ (2)
1—A,
where,
B TP + TN 3
" TP+ FN+FP+ TN
and,
o FN 4+ TN . FP 4+ TN
¢ " \TP+FN+FP+TN ~ TP+ FN+FP+ TN @
TP + FN

TP+ FN + FP+ TN

Here, TP and FP denote true positives and false positives,
respectively, while TN and FN represent true negatives and false
negatives.

Average accuracy (AA): AA signifies the average classification
performance across different classes, as depicted in Equation (5).

_ TP+IN )
- TP+ TN +FN

Overall accuracy (OA): OA is computed as the ratio of correctly
classified examples to the total number of test examples, as defined

by Equation (6).

1 N
OAzﬁiZI:TPi (6)

In the equations above, TP represents true positives, FP
represents false positives, TN represents true negatives, and FN
represents false negatives.
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FIGURE 3
Visualization of validation loss and accuracy for 2D CNN, RNN, LeeNet, Xception and SCS.

4.2 Baseline models

4.2.1 Recurrent Neural Networks

The Recurrent Neural Networks (RNN) architecture (41)
presents a blend of convolutional and fully connected layers within
a Sequential model. Beginning with a Conv2D layer employing a
3 x 3 kernel and ReLU activation, the subsequent MaxPooling2D
layer downsamples the spatial dimensions. Flattening the output
precede a fully connected layer of 100 neurons, integrated with
Batch Normalization and ReLU activation for regularization. With
softmax activation, the final layer tailors the output to fit the
specified number of classes. This design reflects a hybrid approach,
incorporating convolutional operations followed by dense layers,
offering flexibility for various applications in classification tasks.

4.2.2 2-Dimensional Convolution Neural
Network

The 2-Dimensional Convolution Neural Network (2D CNN)
architecture (42) is structured within a Sequential model, featuring
a Conv2D layer with a 3 x 3 kernel and ReLU activation,
applied to input data of shape (window size, window size,
kernel size). Subsequently, a MaxPooling2D layer down-samples
spatial dimensions with a pooling size adjustment option. The
flattened output leads to a fully connected layer with 100 neurons,
supplemented by Batch Normalization and ReLU activation for
regularization. The final layer, employing softmax activation, tailors
the output to match the specified number of classes. This design
reflects a standard 2D convolutional neural network suitable for
diverse classification tasks with image data. Adjustments to the
pooling size provide adaptability based on specific requirements.

4.2.3 LeNet
The LeNet architecture, a seminal convolutional neural
1990s,

network devised by Yann LeCun in the marked
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a breakthrough in computer vision (43). Comprising two
convolutional layers with 5 x 5 filters and ReLU activation, each
succeeded by average pooling; the network captures hierarchical
features in the input. The subsequent dense layers, with 120 and
84 neurons, distill high-level representations. The final layer,
employing softmax activation, tailors the output to the number
of classes. LeNet’s simplicity and efficacy laid the foundation for
modern CNNG, influencing subsequent developments in image
classification.

4.2.4 Xception

The Xception architecture (44) is a 2D variant of the
Xception neural network, known for its depth-wise separable
convolutions and exceptional performance in image classification
tasks. The model begins with an entry flow featuring a series of
convolutional layers with batch normalization and ReLU activation.
The residual block 1 introduces separable convolutions, preserving
spatial information efficiently. The middle flow comprises eight
repeated blocks, each containing three separable convolutional
layers, facilitating feature extraction. The exit flow further refines
features with a combination of separable convolutions and residual
connections. The model concludes with a global average pooling
layer and a dense layer with softmax activation, tailoring the
output to the specified number of classes. The Xception architecture
is designed to capture complex hierarchical features in image
data, making it suitable for various image classification tasks.
Adjustments to the number of filters and other parameters can be
made based on specific requirements.

4.3 Implementation details

For our empirical assessment, we utilized in-vivo

HS Human Brain database which is
3.1

already discussed

in  Section and accessible on request on this
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TABLE 2 Performance analysis of the SOTA models on each predicted class for different patient IDs and image IDs.

10.3389/fmed.2024.1385524

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model
Normal tissue 0.88 0.86 0.97 0.77 0.96
Tumor tissue - - - - -
004 02
Hypervascularized tissue 0.44 0.18 0.26 0.00 0.82
Background 0.54 0.68 0.75 0.00 0.77
Normal tissue 0.85 0.87 0.95 0.72 0.98
Tumor tissue - - - - -
005 01
Hypervascularized tissue 0.50 0.22 0.28 0.10 0.98
Background 0.50 0.63 0.80 0.15 0.86
Normal tissue 0.82 0.85 0.89 0.82 0.99
Tumor tissue 0.95 0.92 0.98 0.15 1.00
008 01
Hypervascularized tissue 0.84 0.81 0.89 0.16 0.99
Background 0.89 0.92 0.96 0.19 1.00
Normal tissue 0.99 0.89 0.99 0.95 0.99
Tumor tissue - - - - -
013 01
Hypervascularized tissue 0.92 0.88 0.95 0.11 1.00
Background 0.94 0.93 0.99 0.15 0.99
Normal tissue 1.00 1.00 1.00 0.98 1.00
Tumor tissue - - - - -
018 01
Hypervascularized tissue 0.98 0.98 0.99 0.18 1.00
Background 1.00 1.00 0.25 0.15 1.00
Normal tissue 0.97 0.87 1.00 0.91 1.00
Tumor tissue - - - - -
019 01
Hypervascularized tissue 0.94 0.31 0.99 0.25 0.99
Background 0.91 0.69 0.99 0.18 1.00
Normal tissue 0.93 0.26 0.98 0.95 1.00
Tumor tissue 0.71 0.47 0.97 0.35 0.99
021 01
Hypervascularized tissue 0.95 0.42 1.00 0.13 1.00
Background 0.98 0.73 0.95 0.23 0.98
Normal tissue 1.00 0.80 1.00 0.89 1.00
Tumor tissue - - - - -
022 01
Hypervascularized tissue 0.95 0.69 1.00 0.19 1.00
Background 0.97 0.81 1.00 0.23 1.00
Normal tissue - - - - -
Tumor tissue 1.00 1.00 1.00 0.95 1.00
028 05
Hypervascularized tissue - - - - -
Background - - - - -
Normal tissue - - - - -
Tumor tissue 0.98 0.76 0.98 0.86 1.00
029 04
Hypervascularized tissue - - - - -
Background 0.99 0.75 0.86 0.12 1.00

The bold values represent the Class-Wise Performance Analysis Based on F1-Score for Different Patient IDs and Image IDs.
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TABLE 3 Comparative performance analysis of SOTA at patient and image level for each predicted class.

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model
Kappa accuracy 49.93 47.66 71.67 30.02 80.53
Overall accuracy 77.00 77.09 85.61 62.86 89.91
Average accuracy 59.23 54.37 67.09 33.33 86.25
004 02
Fl-score 77 77 86 63 90
Training time (seconds) 10.15 10.35 10.23 226.65 68.92
Testing time (seconds) 0.75 0.78 0.70 4.68 2.04
Kappa accuracy 58.46 60.51 68.85 29.45 91.98
Overall accuracy 66.77 63.92 70.35 3525 97.6
Average accuracy 61.66 57.33 67.66 32.33 94.0
005 01
Fl-score 68 59 70 34 97
Training time (seconds) 39.63 41.60 42.93 254.75 83.45
Testing time (seconds) 1.71 1.95 2.10 5.65 3.12
Kappa accuracy 84.60 84.0 89.84 31.47 98.45
Overall accuracy 90.10 89.91 95.89 37.35 100.0
Average accuracy 87.50 87.25 93.90 33.45 99.50
008 01
Fl-score 91 90 95 35 100
Training time (seconds) 8.94 8.42 7.30 154.89 75.2
Testing time (seconds) 1.38 291 1.63 2.84 1.73
Kappa accuracy 92.59 86.6 96.47 39.25 99.45
Opverall accuracy 93.97 92.9 98.6 41.79 99.76
Average accuracy 95.16 90.4 97.66 40.33 99.89
013 01
Fl-score 95 90 98 42 100
Training time (seconds) 5.73 7.94 6.76 107.21 80.72
Testing time (seconds) 0.23 1.71 1.60 2.40 1.65
Kappa accuracy 99.23 99.51 72.12 41.62 99.71
Opverall accuracy 99.61 99.75 76.59 44.82 99.85
Average accuracy 99.11 99.40 74.66 43.66 99.38
018 01
F1-score 100 100 76 45 100
Training time (seconds) 36.57 107.21 86.04 352.47 239.37
Testing time (seconds) 1.36 1.60 1.40 4.37 1.83
Kappa accuracy 93.38 25.45 98.58 41.68 98.95
Overall accuracy 95.88 61.83 99.11 45.23 99.50
Average accuracy 86.93 43.01 98.45 44.66 99.33
019 01
F1-score 96 62 99 46 100
Training time (seconds) 17.17 95.1 38.46 537.42 354.81
Testing Time (seconds) 0.59 2.89 1.43 6.85 4.29
Kappa accuracy 85.12 45.74 97.83 38.61 98.55
Overall accuracy 90.99 48.39 98.91 42.35 99.75
Average accuracy 89.25 45.19 97.56 41.50 99.25
021 01
F1-score 90 47 98 41 100
Training time (seconds) 347 5.41 38.46 37.42 34,18
Testing time (seconds) 1.54 2.89 1.43 3.85 3.19
(Continued)
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TABLE 3 (Continued)

10.3389/fmed.2024.1385524

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model
Kappa accuracy 97.86 65.68 99.82 43.12 99.80
Overall accuracy 98.92 79.33 99.89 47.98 99.90
Average accuracy 97.33 74.64 99.90 46.66 99.85
022 01
Fl-score 98 79 100 48 100
Training time (seconds) 11.80 67.98 23.49 335.96 139.54
Testing time (seconds) 0.48 1.54 0.85 3.38 1.24
Kappa accuracy - - - - -
Overall accuracy 100 100 100 97.42 100
Average accuracy 100 100 100 95.36 100
028 05
Fl-score 100 100 100 95 100
Training time (seconds) 4.71 6.45 9.08 96.41 43.18
Testing time (seconds) 0.20 0.37 0.53 1.76 0.93
Kappa accuracy - - - - -
Overall accuracy 98.9 75.8 92.69 50.81 100
Average accuracy 98.3 75.64 91.45 49.05 100
029 04
Fl-score 99 78 92 50 100
Training time (seconds) 3.91 5.59 5.05 35.55 2791
Testing time (seconds) 0.40 0.68 0.43 1.86 1.12

The bold values represent the Comparative Performance Analysis of SOTA and SCS Models Across Various Evaluation Metrics.

https://hsibraindatabase.iuma.ulpgc.es/. This experiment used
a Jupyter notebook running on an Intel 11th Gen processor and 32
GB of RAM. For all experiments, the training, validation, and test
samples distribution was set at 15%, 15%, and 70%, respectively.
To ensure an equitable comparison, all models, including the
RNN, 2D CNN, LeeNet, Xception, and proposed SCS models, were
executed simultaneously with a single, randomly chosen set of
samples. The reported results were achieved using a patch size of 3
% 3, and the three most informative bands were identified through
Factor Analysis (FA). Regarding training parameters, the models
began with randomly initialized weights, which were subsequently
optimized via backpropagation using the Adam optimizer and a
softmax loss function. Figure 3 present a detailed analysis of the
validation loss and accuracy for all models under consideration. In
this study, we adhere to this principle by keeping these parameters
uniform across all compared methods, including our SCS pipeline,
within a single execution run.

5 Discussion

In this section, we conduct a twofold comparative analysis
to evaluate the performance of our SCS pipeline for the Hybrid
Healthcare Unit. Firstly, at the patient level, we assess the system’s
efficacy in providing personalized tumor tissue classifications and
treatment recommendations. Subsequently, at the same tumor class
level, we analyze the system’s precision in distinguishing minute
variations within specific classes. These comparative experiments
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aim to comprehensively understand the Hybrid Healthcare Units
capabilities, addressing individual patient needs and the challenges
within distinct tumor classes.

5.1 Comparative experiment—Class level

We present a comprehensive performance analysis based on
the F1-Score, comparing SOTA, including 2D CNN, RNN, LeeNet,
Xception, and our proposed SCS across different patients. The
objective of this comparative experiment class level is to evaluate
and compare the performance of these models in accurately
classifying different tissue types in HI as results discussed in
Table 2. Across different patients, our SCS consistently achieves
high accuracy in predicting tissue classes, as presented in the
Table 3. Notably, for Patient IDs 005, 008, 022, 028, and 029, SCS
achieves exceptional accuracy close to or at 100% in classifying
normal tissue, hypervascularized tissue, and background classes.
This demonstrates the model’s robustness in handling diverse
cases. In cases where tumor tissue is present, the SCS model also
successfully achieves accurate predictions comparison with other
models (2D CNN, RNN, LeeNet, and Xception 2D). The model’s
effectiveness in leveraging SCS-enhanced features for accurate
tissue classification irrespective of body location are shown in
classification map outputs (Figure 4). These sub-figures correspond
to different tumor tissue types: Normal Brain, Renal Carcinoma,
Lung Carcinoma, Meningioma, and Lung Adenocarcinoma. The
model’s ability to handle various tissue classes and consistent
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Normal Brain Renal Carcinoma Lung Carcinoma Meningioma Lung Adenocarcinoma
FIGURE 4
Output visualization of tumor tissues classification across different body locations.
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FIGURE 5
Visualization of evaluation metrics across SCS, RNN, 2D CNN, LeeNet, and Xception.

accuracy across different patients and images highlight its potential
as a valuable tool in medical diagnostics, particularly for tumor
tissue classification.

5.2 Comparative experiment—Patient level

A detailed analysis of the performance of SOTA models
on key metrics, including Kappa Accuracy, Overall Accuracy,
Average Accuracy, F1-Score, Training Time, Testing Time, and
Memory Consumption. Table 3 summarizes the performance
metrics for each patient and their corresponding image IDs
across various tissue classes. From the patient-level experiment,
the SCS model consistently outperformed both models across
multiple performance metrics. For instance, in Patient ID 004,

Frontiersin Medicine

the SCS model achieved a Kappa Accuracy of 80.53, surpassing
2D CNN (49.93), RNN (47.66), LeeNet (71.67) and Xception
(30.02). Similar trends were observed regarding Overall Accuracy,
Average Accuracy, and F1 score, where the SCS model consistently
demonstrated superior performance across all patient IDs. Notably,
in Patient ID 021, the SCS model achieved a Kappa Accuracy
of 98.55, significantly surpassing 2D CNN (85.12), RNN (45.74),
LeeNet (97.83), and Xception (38.61). SCS model’s ability to
consistently attain high accuracy, coupled with efficient training
times and memory consumption, underscores its potential for
accurate tissue classification in HI data, highlighting its value in
practical medical applications. Although other models such as 2D
CNN, RNN, and LeeNet have less training time, their accuracy is
low compared to the SCS model; as we know, in deep learning, there
is a trade-off between speed and accuracy. Figure 5 shows results
underscore the superior performance of the SCS model across
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various metrics, indicating its efficacy in accurately classifying
tissue types in HI data. The consistent out performance of the SCS
model reaffirms its potential to enhance medical diagnostics and
contribute to real-world applications.

6 Conclusion

Our research highlights the pivotal role of HI integrated
with AI in advancing tumor tissue classification with the new
Hybrid Health Care Units landscape. The innovative application
of the Sharpened Cosine Similarity framework has proven highly
effective, achieving remarkable performance metrics of 91.76%
Cohen’s kappa, 95.60% overall accuracy, and 94.29% fl-score.
These results, surpassing current SOTA research even under
limited training data, affirm our proposed model’s robustness and
potential clinical impact. The scarcity of specific hyperspectral
medical data has been acknowledged as a challenge, emphasizing
the need for ongoing efforts to expand and diversify datasets
for further validation and generalization of our approach.
However, the demonstrated superiority of our model in tumor
classification positions it as a valuable tool for enhancing diagnostic
capabilities in medical imaging. Future research could extend
the proposed model by diversifying and expanding hyperspectral
medical datasets for broader validation. Exploring real-time
implementation in clinical settings and investigating additional
AT techniques could enhance predictive capabilities. Furthermore,
exploring broader applications beyond tumor classification, such
as skin conditions, could maximize the model’s utility. These
efforts would advance healthcare informatics, improving diagnostic
accuracy within Hybrid Health Care Units.
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Introduction: Global Cardiovascular disease (CVD) is still one of the leading
causes of death and requires the enhancement of diagnostic methods for
the effective detection of early signs and prediction of the disease outcomes.
The current diagnostic tools are cumbersome and imprecise especially with
complex diseases, thus emphasizing the incorporation of new machine learning
applications in differential diagnosis.

Methods: This paper presents a new machine learning approach that uses MICE
for mitigating missing data, the IQR for handling outliers and SMOTE to address
first imbalance distance. Additionally, to select optimal features, we introduce
the Hybrid 2-Tier Grasshopper Optimization with L2 regularization methodology
which we call GOL2-2T. One of the promising methods to improve the predictive
modelling is an Adaboost decision fusion (ABDF) ensemble learning algorithm with
babysitting technique implemented for the hyperparameters tuning. The accuracy,
recall, and AUC score will be considered as the measures for assessing the model.

Results: On the results, our heart disease prediction model yielded an accuracy of
83.0%, and a balanced F1 score of 84.0%. The integration of SMOTE, IQR outlier
detection, MICE, and GOL2-2T feature selection enhances robustness while
improving the predictive performance. ABDF removed the impurities in the model and
elaborated its effectiveness, which proved to be high on predicting the heart disease.

Discussion: These findings demonstrate the effectiveness of additional machine
learning methodologies in medical diagnostics, including early recognition
improvements and trustworthy tools for clinicians. But yes, the model's use and
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extent of work depends on the dataset used for it really. Further work is needed
to replicate the model across different datasets and samples: as for most models,
it will be important to see if the results are generalizable to populations that are
not representative of the patient population that was used for the current study.

KEYWORDS

multivariate imputation by chained equations, synthetic minority over-sampling
technique, interquartile range, adaptive boosted decision fusion, cardiovascular
disease and adaboost decision fusion (ABDF)

1 Introduction

Many communities are affected by heart disease, a major global
health problem that is responsible for many cases of sickness and
death. There is an increasing need to understand the complexity of
heart diseases as our understanding of cardiovascular health expands.
Think about this: someone dies of cardiovascular issues every 37s in
America, which highlights the urgency to quell this unseen epidemic
(American Heart Association, 2022). This mind-boggling figure shows
how huge numbers of people, families, and societies are affected by
cardiac diseases (1).

The human heart is one fantastic example of biologically
engineered machinery that coordinates life’s intricate workings by
driving vital energy through a network of complex vessels. However,
repercussions can be disastrous when this symphony gets disrupted.
Heart problems include conditions like coronary artery disease, heart
failure, arrhythmias and congenital malformations. Their etiology is
multifactorial involving genetic predispositions, behavioral factors
and countless sophisticated biochemical pathways (2). Beyond the
confines of medical practice, heart diseases contain a rich assortment
of stories—chronicles of courage, sadness and hope. Every heartbeat
affects those whose lives are touched by it and every diagnosis carries
along its own path for each of them which are distinct and personal.

A major global health issue, cardiovascular disease, and
cardiovascular disorders. Coronary artery disease (CAD), the most
common, causes narrowing or blockage of the coronary arteries,
leading to angina or myocardial infarction. Heart failure reduces
oxygen delivery because the heart cannot pump blood properly. Mild
exercise causes an abnormal heart rate that can impair circulation.
Valvular heart disease damages the heart muscles and limits blood
flow. Cardiomyopathy occurs when the heart muscle contracts or
stiffens, reducing its ability to carry blood (3).

Poor diet, lack of physical activity, tobacco use, alcohol abuse and
obesity are major risk factors. Heart disease prevention includes
healthy eating, exercise, weight control, and smoking cessation.
Treatment options range from medical to surgical, depending on the
severity. Routine inspections detect and address them quickly (4).
Knowing the risk factors and prioritizing cardiovascular health helps
reduce the impact of cardiovascular disease.

Risk factors for cardiovascular disease include smoking and
alcohol misuse. Coronary artery disease (5), hypertension, decreased
oxygen saturation, and accelerated blood clotting are all consequences
of smoking. Consuming alcohol raises the risk of hypertension, heart
disease (6, 7), and cholesterol. When smoked and drunk at the same
time, oxidative stress rises, the immune system is weakened, and
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blood arteries and cholesterol are damaged. Heart disease, particularly
myocardial, cerebral, and cardiac insufficiency, is greatly increased by
this lethal combination. It is vital to quit smoking, restrict alcohol
intake, and maintain cardiovascular health since these habits add up
to a lot of harm. Although beating addiction could be difficult, the
rewards in terms of heart health are substantial.

Adaptive enhanced decision fusion is crucial for disease
prediction, especially in cardiovascular health. Combining numerous
models and adjusting to changing data patterns enhances early disease
detection and prediction. The ABDF educates doctors on cardiac
illnesses to help them choose the best treatments and improve patient
outcomes. In the complex realm of cardiovascular diseases, its
versatility allows quick risk assessment and appropriate intervention.
ABDF is a cutting-edge ensemble learning approach that enhances
cardiovascular health patient care and predictive analytics.

As data reveals, the cardiovascular problem percentage among
people in India as diagnosed in the year 2020 is shown in Figure 1, using
the breakdown by age group. In cardiovascular matters, most often, the
older age group was seen having more frequent problems than the
younger age group. The rate of cardiovascular disease found among the
teenagers of the age group below 19 is about 2.98%, which is comparably
lower compared to that of the young people of the age group 20-29,
which registers about 5%. Investigators have been able to ascertain that
the 45- to 59-year-old population group had an illness rate of
cardiovascular problems of about 11.9%, while that of the 30- to
44-year-old group was about 6.28%. At a rate of 18.7%, the above-60-
year-old succession group accounts for the highest prevalence of
cardiovascular diseases. Given the existence of age disparities,
policymakers should focus on the development of auxiliary policies,
early detection, effective healthcare delivery, and educational campaigns
that will help in the ongoing battle against the rising frequency of
cardiovascular diseases among the aging population (8-12).

2 Literature review

In 2020, Shah et al. (13) examine data mining and machine learning
for heart disease prediction. The study stresses the need of precise and
timely identification of heart disease, a top worldwide mortality. Using
the enormous Cleveland database of UCI repository, 303 cases and 76
characteristics are rigorously condensed to 14 important elements. The
study compares popular algorithms including Naive Bayes, decision
tree, K-nearest neighbor (KNN), and random forest for heart disease
prediction. KNN was the most accurate algorithm, demonstrating
predictive modeling potential. The finding agrees with earlier research
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FIGURE 1

Bar graph people with heart issues across India in 2020, by age group (8) (https://www.statista.com).

that many algorithms are needed for complete findings. Future data
mining approaches such time series analysis, clustering, association
rules, support vector machines, and evolutionary algorithms are
suggested to improve predicted accuracy. While insightful, the paper
admits its limits and advocates for further research to improve early and
accurate heart disease prediction algorithms.

In 2020, Katarya et al. (14) conducted a survey saying that heart
disease is a global issue with rising treatment expenses, therefore early
detection is essential. Alcohol, tobacco, and inactivity are essential heart
disease indicators. The paper recommends using machine learning,
particularly supervised methods, for healthcare decision-making and
prediction to address this essential issue. Several algorithms, including
as ANN, DT, RE SVM, NB, and KNN, being investigated for heart
disease prediction. The research summarizes these algorithms’
performance to reveal their efficacy. In conclusion, automated
technologies to anticipate cardiac disease early on help healthcare
professionals diagnose and empower patients to monitor their health.
Feature selection is critical, and hybrid grid search and random search
are suggested for optimization. Search algorithms for feature selection
and machine learning will improve cardiac disease prediction, leading
to better healthcare treatments, according to the report.

In 2021, Jindal et al. (15) highlights the increasing number of heart
diseases and the need for prediction models. The declaration
acknowledges the challenge of correct diagnosis and promotes machine
learning techniques for accurate projections. Logistic regression and
KNN are compared to naive Bayes in the research. The proposed heart
disease prediction system reduces costs and improves medical care. The
research also includes a Logistic Regression, Random Forest Classifier,
and KNN cardiovascular disease detection model. The model’s accuracy
is 87.5%, up from 85% for previous models. The literature shows that
the KNN method outperforms other algorithms with an accuracy rate
of 88.52%. The article claims that machine learning can predict cardiac
issues more accurately than conventional techniques, improving patient
care and lowering costs.
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In 2019, Gonsalves et al. (16) uses Machine Learning (ML)
approaches such as Naive Bayes (NB), Support Vector Machine
(SVM), and Decision Tree (DT) to predict Coronary Heart Disease
(CHD). Coronary heart disease (CHD) is a major cause of death
around the world, highlighting the need of early detection. The work
uses historical medical data and three supervised learning approaches
to discover CHD data correlations to improve prediction precision.
The summary of the literature acknowledges the complexity of
medical data and CHD prediction linkages, stressing the challenges of
existing techniques. The study’s focus on NB, SVM, and DT matches
existing research techniques, highlighting the availability of disease
prediction machine learning algorithms. Early screening and
identification are crucial for patient well-being, resource allocation,
and preventative interventions, according to the research. The
discussion of ML model performance, including accuracy, sensitivity,
specificity, and other characteristics, sheds light on Naive Bayes,
Support Vector Machines, and Decision Trees. Despite not meeting
threshold rates, the Naive Bayes (NB) classifier looks to be the best
option for the dataset. According to the literature review, unsupervised
learning and data imbalance should be studied in the future. This will
enhance prediction algorithms and may lead to mobile CHD
diagnosis apps.

In 2018, Nashif et al. (17), addresses cardiovascular problems
across the globe and highlights the necessity to detect and monitor
them early. The cloud-based heart disease prediction system uses
powerful machine learning. Interestingly, the Support Vector Machine
(SVM) method has 97.53% accuracy. Real-time patient monitoring
using Arduino for data collection is presented in the study, focusing
on remote healthcare. Comparative evaluations show SVM
outperforms other models. The abstract concludes with potential
issues including photoplethysmography-based blood pressure
monitoring. The literature analysis highlights cloud-based prediction
and real-time patient monitoring as a solution to PPG-based
system constraints.
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In 2023, Bhatt et al. (18) used Machine learning to create a
cardiovascular disease prediction model. The study employed 70,000
Kaggle-downloaded real-world samples. Huang initialization
improves k-modes clustering classification accuracy. GridSearchCV
optimizes random forest, decision tree, multilayer perceptron, and
XGBoost models. With 86.37 to 87.28% accuracy, the models are
great. Multiple layer perceptron outperforms other models. The study
adjusts age, blood pressure, and gender to account for heart disease
progression. Despite promising outcomes, the study had limitations.
These include employing a single dataset, only considering particular
clinical and demographic features, and not comparing results to other
test datasets. More research is needed to overcome these restrictions,
compare clustering algorithms, test the model on new data, and
improves interpretability. Machine learning—particularly clustering
algorithms—can effectively predict cardiac illness and guide focused
treatment and diagnostic measures.

In 2023, Abood Kadhim et al. (19) examines the growing use of
artificial intelligence—specifically machine learning—in cardiac
disease diagnosis and prediction. Support vector machines, random
forests, and logistic regression are tested on Cleveland Clinic data.
Research on artificial intelligence in cardiac care is also examined. The
study found that support vector machines are the most accurate heart
disease diagnosis tools at 96%. It also presents a 95.4% accurate
random forest model for cardiac attacks. The findings demonstrate the
importance of Al in healthcare decision-making and early cardiac
problem intervention.

Recent researches have stressed the need for global cardiovascular
disease diagnosis and identification. Several papers in 2020 and 2021
studied Naive Bayes, decision tree, K-nearest neighbor (KNN), and
random forest algorithms using data mining and machine learning
methods. The primary findings are that K-Nearest Neighbors (KNN)
may predict heart disease, that supervised machine learning may
make healthcare decisions, and that logistic regression, KNN, and
naive Bayes are comparable. These findings show the usefulness of

10.3389/fmed.2024.1407376

predictive models in addressing the rising number of cardiac ailments,
leading to healthcare technology advances for early identification and
better patient treatment (Figure 2).

2.1 Motivation

Due to the global the amount of cardiovascular diseases, data
mining and machine learnnng research on heart disease prediction is
escalating. Heart disease is the most common cause of mortality
worldwide. To reduce mortality rates, these medical conditions must
be accurately and quickly detected. Researchers are studying machine
learning to improve diagnostic skills since conventional methods
frequently make inaccurate predictions. These studies aim to enhance
early diagnosis and treatment. Medical data is complex and risk
variables change, making machine learning an intriguing method for
finding meaningful patterns and improving heart disease prediction.

2.2 Research gap

Despite the wealth of knowledge in machine learning approaches
to heart disease prediction, additional research is needed. Shah et al.
(13), Katarya et al. (14), Jindal et al. (15), Gonsalves et al. (16), Nashif
etal. (17), Bhatt et al. (18), and Abood Kadhim et al. (19) all emphasize
the importance of accurate and early heart disease detection. These
researches have examined how K-nearest neighbor (KNN), Support
Vector Machine (SVM), Random Forest, and logistic regression can
increase predicted accuracy. These attempts are intriguing, but they also
highlight limits like dataset dependence, feature selection optimization
issues, and the need for more unsupervised learning research. Address
data imbalance and real-time patient monitoring equipment concerns.
Thus, even though machine learning could change cardiac illness
prediction, more research is needed to improve algorithms, overcome
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Machine learning algorithms for heart disease prediction.
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data constraints, and improve cardiovascular health care outcomes. The
current study lacks detailed algorithm assessments, leaving the best
technique for exact predictions unknown. There is also insufficient
research into using advanced data mining methods like time series
analysis and evolutionary algorithms to better forecast heart illness.
Overcome these gaps to increase prediction model robustness and
precision in this critical healthcare sector.

The research’s scope is to create trustworthy and effective
cardiovascular disease diagnostic tools. Our goal is to reduce heart
disease deaths and improve heart disease predictions using powerful
machine learning.

« SMOTE, IQR outlier identification, and MICE are used to solve
data difficulties in this work. We also introduce Hybrid GOL2-2T,
a hybrid feature selection approach.

o It uses L2
Optimization Algorithm.

regularization and the Grasshopper

o A babysitter algorithm and Adaptive Boosted Decision Fusion
(ABDF) ensemble learning increase predictive modeling accuracy.

o Our model will be assessed by accuracy, recall, and AUC score.

The main goal of this project is to develop reliable diagnostic tools
for early diagnosis and treatment of cardiovascular diseases. This can
help doctors improve patient outcomes and reduce illness.

In the subsequent sections, Section 2 provides a comprehensive
literature analysis of the corpus of recent publications. The suggested
methodology is then presented in Section 3. Section 4 offers a
thorough summary of the results and the discussion that follows. In
Section 5, prospective avenues for further research are explored and
the article is summarized with a conclusion.

10.3389/fmed.2024.1407376

3 Proposed methodology

For the two-tier Feature Selection Hybrid GOL2-2T, starting from
the data pre-processing stage among the partitions, 70% of the data
partition is allotted for the training set and 30% for the testing set. An
objective under this category makes it easy to evaluate the performance
of the models in question based on it deeply. The second to the last step
is the missing data estimate, which makes use of the Multivariate
Imputation by Chained Equations (MICE) approach. This, in return,
ensures the completeness of information from one or many variables.
In this case, the following techniques were corrected with a deficiency
of training the model and have high interoperability with the techniques
of machine learning; Imputation, Data scaling, and Label encoding.
Inside the method, it has the Inter Quartile Range (IQR) to identify and
deal with an outlier in an effort to enhance the resilience of the model
through a reduction in influence that emanates from abnormal data
points. The major maxim is SMOTE, which a synthetic minority is over-
sampling technique aimed at the problem of class imbalance. The
technique established a fair representation through the development of
synthetic minorities, toward the reduction of biases that may associate
with the general over-representation of the dominant class.

2-tier Feature Selection is based on the L2 Regularization (Ridge)
(20) along with the Grasshopper Optimization (GOA) method;
therefore, the proposed Hybrid GOL2-2 T model is going to form a
2-level model for Feature Selection. It also employs ABDF
hyperparameters, which have been babysitting algorithm to be fine-
tuned after proper pre-processing of the dataset. Therefore, AdaBoost
Decision Fusion (ABDF) maximizes the predictive modeling tasks’
accuracies by pulling the performance measures out with respect to
other models for comparison (Figure 3).

2-tier Feature Selection

] Handling
Hand.llng Imbalanced
Outliers
data

(" Grasshopper Optimization Algorithm (GOA)
Hybrid
GOL2-2T
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Hyper parameter tuning
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FIGURE 3
Heart disease forecasting workflow.
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3.1 Data collection

The 1988 heart disease dataset (21) is an excellent resource for
studying and forecasting cardiovascular disease prevalence. Age, gender,
type of chest pain, blood pressure, cholesterol levels, and the presence of
numerous cardiovascular diseases are among the 14 important factors.
There is a large variety of ages represented in the dataset, with the
majority falling between 40 and 60. Of those, 207 are male and 96 are
female. With a value of 1 for males and 0 for females, the variable “sex”
is included in the data for each issue as an essential health indicator.
While we display resting blood pressure (trestbps) and serum cholesterol
levels (chol) as whole numbers, we categorize chest discomfort as 1, 2, 3,
or 0. Exang, exercise-induced angina, exercise-induced ST depression
compared to rest, the slope of the peak exercise ST segment, the number
of major vessels colored by fluoroscopy, and thalassemia type are some
other factors that improve the dataset. In order to promote a thorough
study of cardiovascular health and facilitate the development of reliable
prediction systems, the “target” property shows whether heart disease is
present (1) or absent (0) (Figure 4).

3.1.1 Visualizing the attributes of heart disease
dataset using pair plot

This dataset encompasses six numerical variables: RestingBP,
Cholesterol, FastingBS, MaxHR, Oldpeak. Two variables are
distributed in each grid subplot. Variable correlations in the Heart
Disease dataset are shown in the pair plot. The correlation between
two variables is displayed in every matrix scatterplot. The level of heart
disease dictates the color of the dots. Early detection of data patterns
and trends can be aided by this. It can reveal whether there are
commonalities between those who have cardiac disease and those
who do not.

Histograms show variable distribution, while scatter plots show
the connection between paired variables. In the upper left subplot,
RestingBP distribution is presented. The y-axis shows data point
frequency, and the x-axis shows RestingBP levels. The bottom right
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subplot displays the association between MaxHR and Oldpeak, an
off-diagonal plot. This subplot shows Oldpeak on the y-axis and
MaxHR on the x-axis. Examining the pair plot can reveal patterns and
linkages, such as cholesterol-resting blood pressure correlations. This
graphical tool simplifies dataset analysis, especially for outliers and
linear correlations. We consider non-diagonal scatter plots while
examining linear relationships. Straight lines between scatter plot dots
indicate the variables’ direction and strength. Outliers are scatter plot
data points far from the main cluster. If we want to use machine
learning to forecast cardiac disease from patient data, we need to
understand these tendencies. It might be necessary to make
adjustments and do further research on visual representations in order
to have a better understanding of the dataset (Figure 5).

3.2 Pre-processing

3.2.1 Data cleaning with MICE

Data pretreatment requirements include cleaning the data to
ensure dataset correctness and completeness and that it is analysis
or model training ready. Absent data often hurts machine learning
models. MICE (22) handle missing data thoroughly and statistically
through Multiple Imputation by Chained Equations shown in
equation (1). In an iterative process, MICE calculate conditional
distributions for all variables with missing data using observed
data and other variable imputations. As iterations continue until
convergence, the process creates various entire datasets. To
accommodate for missing value uncertainty, each dataset has its
own imputations. Multiple Imputation by Chained Equations
(MICE) works well for non-random missing data patterns in real-
world datasets where observed values may affect missing. It
evaluates variables and predicts data distributions. The MICE
technique provides imputations, updates models, and combines
findings to provide credible imputed datasets. Finalized datasets
can be used to train machine-learning models. MICE address
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TABLE 1 Machine learning algorithms for heart disease prediction.

Algorithm Accuracy rate | Citation

SVM 97.53 Nashif et al. (17)

NB 85 Gonsalves et al. (16)
KNN 88.52 Jindal et al. (15)

KNN 90.78 Shah et al. (13)
GridSearchCV + MLP 87.28 Bhatt et al. (18)

Random Search + RF 95.4 Abood Kadhim et al. (19)

missing data to improve model performance and assure unbiased
parameter estimates.

imputed
G = S (i) i M

A imputed
N

absent item.

shows the value that has been ascribed to the

o f The missing value is estimated by the function. The data type
of variable j might affect this function.

o X;_ - With the exception of variable j, all observed values of the
variables are represented by the vector in the ith observation.

e €;: Error term
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The observed values of all the variables in this context, with the
exception of variable j in observation i, are stored in the vector x; _ e
By using these observed values, the function fis used to estimate the
missing value. The assumed value’s error word €; denotes any
inexplicable volatility or unpredictability.

3.2.2 Scaling with label encoder

There are two essential methods for preparing machine
learning data: label encoding and scaling. To transform
categorical data into a numerical form, Label Encoding assigns
unique integer labels to each category. One method for giving
numerical values to categorical variables is Label Encoding (23).
With Label Encoding, “Male” and “Female” would be represented
as 0 and 1, respectively, in a “Gender” column. For algorithms
that can only take numerical input, this simplifies the usage of
categorical variables. On the flip side, numerical features can
be scaled to be uniform in size so that no one characteristic can
have an outsized impact due to size disparities. Model
convergence and performance are both enhanced by methods
Standard Scaling, [shown in equation (2)] which ensure that all
features contribute equally. A typical preprocessing step involves
converting categorical characteristics using Label Encoding and
then scaling numerical features to make their magnitudes
consistent. Label Encoding and Scaling, when used together;
make it easy to get datasets ready to be used in machine
learning algorithms.
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Before and after outlier capping by using IQR.
X - u TABLE 2 Before and after applying SMOTE.
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o The initial feature value was X.
o The feature values mean is represented by p.
o The feature values standard deviation is represented by o.

3.2.3 Handling outliers with IQR

Careful data preparation, including outlier removal, improves
machine learning model durability. Interquartile Range (IQR) is a
prominent method for finding and treating dataset outliers.
Interquartile range (IQR) is the difference between a distribution’s
third and first quartiles, or 75th and 25th percentiles [shown in
equation (3)]. Abnormal data points fall below or above the lower and
higher limits (Q1-1.5* IQR and Q3 + 1.5 * IQR, respectively) [shown
in equations (4, 5)]. Outliers might hurt the model’s performance, but
the IQR-based technique would find and fix them. To minimize
outliers’ impact on learning, alter them. This reduces model sensitivity
to unexpected data sets. This is crucial for algorithms that respond fast
to data distribution changes (Table 1).

The initial stage in IQR-based outlier treatment is splitting the
sample into quartiles and determining the IQR (24). Outliers can
be deleted or altered by comparing them against boundaries. This
technique emphasizes creating more extensive and reliable datasets to
improve ML model generalizability and prediction accuracy. The IQR
outlier control approach must be used to prepare data for future machine
learning experiments to ensure reliability and efficiency (Figure 6).

IQRoutlier = Q3 -Q (3)
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Before applying SMOTE

After applying SMOTE

Class Count Class Count

0 410 0 508

1 508 1 508
LowerBound = Q; —1.5*IQR (4)
UpperBound = Q3 +1.5*IQR (5)

3.2.4 Handling imbalanced dataset with SMOTE

To ensure that machine learning algorithms are not biased toward
the dominant class and hence reduce prediction accuracy, imbalanced
datasets must be handled. In order to rectify class imbalance,
particularly in cases when minority occurrences are underrepresented,
this system applies the Synthetic Minority Over-sampling Technique
(SMOTE) (25) [shown in equation (6)]. Class distribution has an
imbalance with 508 class 1 instances and 410 class 0 instances (shown
in Table 2 and Figure 7). It would indicate that the 0.8071 imbalance
ratio is less than the 1 - imbalance_threshold threshold. SMOTE
manipulates the underrepresented class’s dataset presence by creating
false instances of it. This is accomplished by building artificial instances
along line segments that connect instances of minority classes. With a
more evenly distributed dataset, the model may learn from more
examples and, perhaps, make better predictions with new data.

Model prediction is improved with SMOTE (26) because it
decreases class imbalance. When data from minority groups is limited,
this strategy really shines in terms of model performance. To aid in
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Before and after applying SMOTE

the management of unbalanced datasets, SMOTE encourages correct
and equitable predictions across all classes.

Imbalanced Ratio (IR )
The count of occurrences in the majority class

The count of occurrences in the minority class

3.2.5 Feature selection using hybrid GOL2-2T

A new hybrid feature selection approach called the Hybrid
GOL2-2T, in which L2 regularization is fused with the Grasshopper
Optimization Algorithm (GOA) (27), is discussed. This solution of
the metaheuristic attracts a promising subset of the feature set
through the application of an objective function and global search.
We then applied L2 regularization to the selected feature set.
Majorly, the objective of L2 regularization is to penalize too many
coefficients, promote sparsity, and preserve only the most useful
features. Hybrid GOL-2 T combining fine tuning powers from L2
regularizations with the muscular strength of GOA combined gives
a dependable feature selection technique. In this respect, models
that provide predictive classification via two-level approaches
should have higher classification accuracy and dependability since
they help in selecting the most relevant characteristics and
reducing overfitting. As has been correctly pointed out, for these
reasons, this approach has gained significant acceptance and has
become an indispensable tool for many machine learning
applications, like regression and classification tasks.

3.2.6 Grasshopper optimization algorithm
Developed in 2017 by Saremi et al. (32), the Grasshopper

Optimization Technique (GOA) is a metaheuristic optimization

technique inspired by nature. The idea originated from the way
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grasshoppers behaved in unison. GOA has been used to solve a
variety of optimization problems, including feature selection in the
context of machine learning. Here is a brief description of how GOA
works shown in Algorithm 1, complete with formulas and the
algorithm itself:

Algorithm 1: Grasshopper Optimization Algorithm (GOA)
Initialize population of grasshoppers (solutions)
Initialize best solution (best_solution)
Initialize number of iterations (iterations)
While (termination criterion is not met)
For each grasshopper ii
Calculate social interaction component S; shown in
equation (7)
Calculate gravity component G;; shown in equation (8)
Calculate wind component 4;; shown in equation (9)
Calculate movement of grasshopper ii (x;;)
Update position of grasshopper ii (x;;)
Evaluate objective function for new position ( fimess;;)
If (( fitness;;) > fitness of best_solution)
Update best solution (best_solution)
End If
End For
Update number of iterations (iterations)
End While
Return best solution

Sii:C*[sum(xjj—xﬁ)] (7)
N

Gii = ~g * (% —o0) ®)

frontiersin.org


https://doi.org/10.3389/fmed.2024.1407376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Praveen et al.

Ai =U *(xe — xi) 9)

Where,

c is a decreasing coeflicient that balances the processes of
exploration and exploitation.

g is a constant that determines the strength of the gravity
component is the center of the search space.

U is a constant that determines the strength of the
wind component.

X, is the position of the best solution found so far.

N is the number of grasshoppers.

x;; and x j; are the positions of the grasshoppers.

The algorithm generates grasshoppers, each representing a
possible solution. The first grasshopper in the population gets the best
answer. The algorithm then loops through each grasshopper in the
population. The application calculates grasshopper social interaction,
gravity, and wind components. These components steer the
grasshopper toward the best alternative.

The components calculated in the previous stage are used to
modify the grasshopper’s movement. The objective function
measures grasshopper positioning and solution efficacy. A new site
becomes the ideal option if it outperforms the old one. After
reaching grasshopper population termination criteria, the technique
continues iteratively. A maximum number of iterations, a minimum

10.3389/fmed.2024.1407376

fitness value, or any other suitable stopping condition may be used
for the job. After optimization, the technique returns the ideal
answer (Figure 8).

3.2.7 L2 regularization

L2, sometimes called ridge regression (28), is a machine learning
technique used to reduce a model’s complexity by adding a penalty
term to the loss function. The penalty term is directly correlated with
the square of the magnitudes of the coefficients, encouraging the
model to have smaller coeflicients and reducing the likelihood of
overfitting shown in Algorithm 2.

The L2 regularization term is added to the loss function as shown
in equation (10).

Loss = MSE + (alpha* sum ( coefficient * 2)) (10)

Where:

MSE is the mean squared error between the predicted and actual
values shown in equation (11).

alpha is the regularization parameter (a hyperparameter).

Coeflicient is the coefficient of the feature in the model.

The algorithm for L2 regularization can be described as follows:

Algorithm 2: L2 regularization
Initialize coefficients to small random values
While (termination criterion is not met)

End

Initialize
Population

Initialize the
best solution

Initialize the e

Termination
number of

criteria is

FIGURE 8
Feature selection flow chart for Grasshopper optimization algorithm.

iterations T
5 Evaluate
o (_Zaigulate social t Calculate Update objective
For each {nteraction component, movement of position of function for new
grasshopper ii gravity component, and grasshopper ii grasshopper ii ot
wind component PESHEn
(fitness_ii)

(best_solution)

If ((fitness_ii)
> fitness of
best_solution)

Update best
solution
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Calculate MSE using the current values of the coefficients by
using equation (11)
Calculate sum of squared coefficients by using equation (12)
Calculate regularized loss function as the sum of the MSE and
the regularization term (alpha * sum of squared coefficients)
Update coeflicients to minimize the regularized loss function
End While
Return the optimized coefficients

1 & )2
Mean Squared Error (MSE) = - > ( Vi — y,-i)

ii=1

(1m

P
Sum of squared coefficients (SSC) = 29/21 (12)

ji=1

Where,

o p is the number of coefficients.
« yj; as the data point’s observed value ii
« y}; as the anticipated value for data point ii.

The L2 regularization approach may be used to a wide range of
models due to its computational efficiency. To achieve the optimal
the
hyperparameter alpha has to be changed. Features that are more

balance between bias and variance, regularization
effective at lowering the Mean Squared Error (MSE) are chosen
when L2 regularization reduces the size of the model’s coefficients.
L2 regularization may be used as a feature selection method by
selecting only those features in the model that have coefficients

greater than zero (Figure 9).
3.3 Hyperparameter tuning using
babysitting algorithm

The babysitting Algorithm (BA) (29) in AdaBoost (30) decision
fusion manually evaluates the model’s performance after iteratively

10.3389/fmed.2024.1407376

constructing a table, separating the dataset into training, validation,
and testing sets, and progressively experimenting with different
combinations are the steps. For each combination, an AdaBoost
classifier is trained on the training set and assessed on the validation
set using a performance metric. The hyperparameter table is updated
when the trial number, hyperparameters, and performance measure
change. Select the hyperparameters with the best validation set
outcomes after all trials. The training and validation sets are utilized
to train a new AdaBoost classifier using the optimum hyperparameters.
For an impartial evaluation, the finished model is tested on the testing
set shown in Algorithm 3.

Algorithm 3: Hyperparameter Tuning Babysitting on
AdaBoost Decision Fusion
// Initialize hyperparameters and performance metric
InitializeHyperparameters()
// Initialize the hyperparameter table
InitializeHyperparameterTable()
/] Main loop for hyperparameter tuning
while (stopping criterion not met) do
/] Tterate through hyperparameter combinations
for each hyperparameter combination do
/I Train AdaBoost classifier with current hyperparameters
model =
TrainAdaBoostClassifier(current_hyperparameters)
/I Evaluate the model's performance on the validation set
performance_metric = EvaluateModelPerformance(model,
validation_set)
// Update hyperparameter table with current hyperparameters
and performance metric
UpdateHyperparameterTable(current_hyperparameters,
performance_metric)
end for
/I Select best hyperparameters based on the highest
performance metric
best_hyperparameters = SelectBestHyperparameters()
// Train AdaBoost classifier with the best hyperparameters on
the combined training and validation sets
best_model = TrainAdaBoostClassifier(best_hyperparameters,

modifying the hyperparameters. Setting hyperparameters, = combined_training_ validation_set)

¢ Calculate MSE using the
current values of the

o coefficients
Imgilh,ze tﬂlf Termination ¢ Calculate sum of

2% lllcxends v criterion is squared coefficients

S ]ran (o not met ¢ Calculate regularized

vales loss function
¢ Update coefficients to
minimize the regularized

loss function

FIGURE 9

Feature selection flow chart for L2 regularization.
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/] Evaluate the final model on the testing set
final_performance_metric = EvaluateModelPerformance(best_
model, testing_set)
/I Update stopping criterion based on convergence or
maximum iterations
UpdateStoppingCriterion()
end while

3.4 Model building for heart failure
prediction

3.4.1 Ensemble technique with adaptive boosted
decision fusion

“Adaptive Boosted Decision Fusion (31) is an advanced ensemble
learning algorithm that effectively combines the principles of
Adaptive Boosting (AdaBoost) and Decision Fusion.” To prioritize
instances that are harder to classify, this innovative approach has the
algorithm adaptively changing the weights [shown in equation (13)]
given to less effective learners. When combined with decision fusion,
ABDF sequential training method for weak models allows for the
efficient integration of results from many decision-makers [shown in
equations (14-18)]. The ultimate result is a very accurate and reliable
prediction model that is both adaptable and resilient. One way to
make the ensemble better is via adaptive boosted decision fusion,
which uses iterative refinement and smartly gives different learners
different weights depending on how well they do. When it’s critical
to combine multiple decision-making viewpoints to get superior
predicted outcomes, this method shines.

Input:

Training dataset: D = {(u)q Uy )(uxz,uyz), ...... ,(ux,, Uyp )}

Where ux; the feature is vector and uy; is the corresponding label.

Number of weak learners: UT

Initialization:
P . 1 .
1. Initialize instance weights : uw; = — fori=1,2,3....... n (13)
n
2. Initialize an empty ensemble of weak learners.
For each iteration :ur =1,2,3......UT : (14)

3. Train a weak learner u/ using the current instance weights.

i. Compute the error of the weak learner :

n
&= uwi.| (uhy (ux; ) # uy;
i=1

(15)

where |(.) is the indicator function.

1

—— (16
zm[l—@)
€t

Jori=123..... .nuw; < uwi.exp(—oc,.uyi, uhy (uxi)) (17)

ii. Compute the learner weight : o, =

iii. Update instance weights :
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TABLE 3 Selected features with scores using GOA.

Features Score

cp 0.047363
trestbps 0.002171
chol 0.000873
thalach 0.007371
oldpeak 0.047905
ca 0.03526

TABLE 4 Selected Features with Scores using L2 regularization.

Feature Score

cp 0.051832
oldpeak 0.047056
ca 0.037252
thalach 0.007355
trestbps 0.002556

uwj

Normalize weights : uw; < (18)

. Uw;
i=1 !

iv Add the weak learner u/, to the ensemble with weight ;.
Output:

Ensemble of weak learners : {(oq Juhy ) (a2 Juhy ) e s (aT Juhyr )} (19)

Predictions:

For a new instance ux, the final prediction is given by :

H (ux) = sin( %at (ux)

ut=1

(20)

This method combines the best features of AdaBoost and Decision
Fusion in a way that strengthens the ensemble (26), making it better
at handling misclassifications and making accurate predictions. A
long-lasting ensemble model that frequently outperforms individual
models is produced by ABDF iterative method of correcting errors of
weak models [shown in equation (19)]. Classification problems, such
as the prediction [shown in equation (20)] of cardiac illness, frequently
use ABDE It finds usage in a variety of domains due to its flexibility
in accommodating varied poor learners (Tables 3, 4).

4 Result and discussion
4.1 Performance assessments

4.1.1 Feature selection outcome using GOL2-2T
The Grasshopper Optimization Algorithm (GOA) (32)
identified heart disease predictors. This method found critical
characteristics like chest pain type (cp), resting blood pressure
(trestbps), serum cholesterol (chol), maximum heart rate (thalach),
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Feature Scores

FIGURE 10
A line graph denoting selected features with scores using GOA.
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FIGURE 11

Features

A bar graph denoting selected features with scores using L2 regularization.

ST depression caused by exercise compared to rest (oldpeak), and
the number of main vessels colored by fluoroscopy (ca). High
scores showed relevancy. The prediction model ranked attributes
by score. Next, we used ridge regression, also known as L2
regularization, to enhance feature selection. Revised features
included oldpeak, thalach, ca, trestbps, and cp. Revaluating
characteristics using L2 regularization yielded scores that
accurately represent their value in heart disease prediction.
Comparing the two feature selection approaches shows
convergence in the selected qualities, suggesting they may

Frontiers in Medicine 116

be essential for heart disease identification. However, slight
discrepancies in feature significance showed that GOA and L2
regularization use different techniques and criteria. We need more
study to evaluate the predictive modeling of the upgraded features
and the implications for heart disease diagnostics (Figures 10, 11).

4.1.2 Hyperparameter tuning outcome using
babysitting algorithm on ABDF

The AdaBoost Decision Fusion model’s hyperparameters were
optimized by a two-pronged approach involving tuning the

frontiersin.org
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TABLE 5 AdaBoost decision fusion model hyperparameters tuning summary.

Models used Hyperparameters tuning Hyperparameters Search Space
algorithm
AdaBoost decision Fusion Babysitting n_estimators 50-200
learning_rate 0.5-1

TABLE 6 AdaBoost decision fusion hyperparameters with babysitting.

Trial no. Accuracy n_estimators learning_rate
0 0.802 50 0.1
1 0.82 50 0.5
2 0.812 50 1
3 80.00 100 0.1
4 0.822 100 0.5
5 0.804 100 1
6 0.819 200 0.1
7 0.79 200 0.5
8 83.00 200 1
Accuracy vs. n_estimators Accuracy vs. learning_rate
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FIGURE 12
A dotted line graph denoting ABDF hyperparameters with babysitting.

TABLE 7 IQR outlier detection ABDF performance metrics.

n_estimators and learning rate with the help of the Babysitting

Algorithm (see in Table 5). A narrow range of the search space for IQR outlier detection with ABDF results
n_estimators, which was from 50 to 200, and a more broad range Metri

A . etrics Values
of the learning rate, which was from 0.5 to 1, was seen. The
hyperparameter optimization was made through a number of runs Accuracy 083
by substituting various combinations of parameters for n_ Precision 0.84
estimators and learning_rate (see in Table 6 and Figure 12). The Recall 0.85
data obtained from the ABDF model showed deviation across the 1 score 0.84
many attempts conducted in the experiment; Trial No. 8 gave 8 as
the most accurate results, their accuracy being 83.00%. The AVC Score 089
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crucial aspiration of this process was the attainment of an optimal
accuracy and robustness model for the ABDF model, specifically
as it concerned the given task.

4.2 IQR outlier detection with ABDF

Heart disease may be reliably predicted using the ABDF
method and the IQR outlier preprocessing strategy. The model

10.3389/fmed.2024.1407376

achieves an 83% accuracy rate in instance categorization and an
84% success rate in accurately anticipating predicted positives (see
in Table 7 and Figure 13). The model correctly identifies a large
number of positive examples, as evidenced by its impressive recall
score of 85%. An F1 Score of 84% (a measure of both recall and
accuracy) indicates that the model is performing well. With an
Area Under the Curve (AUC) score of 89% (see in Figure 14), the
model clearly can differentiate between positive and negative
occurrences. Based on these metrics, it appears that preprocessing

IQR with ABDF Performance Metrics

FIGURE 13
Bar graph shows IQR outlier detection with ABDF performance metrics.
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ROC for IQR outlier detection with ABDF.

False Positive Rate

0.6 0.8 1.0

Frontiers in Medicine

118 frontiersin.org


https://doi.org/10.3389/fmed.2024.1407376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Praveen et al.

TABLE 8 Comparison of proposed method and other methods on heart disease dataset.

10.3389/fmed.2024.1407376

Algorithm Accuracy Precision Recall fl_score
Classification tree (33) 77.0 79.0 79.0 79.0
ANN (17) 77.39 78.30 77.40 76.90
NB (34) 81.25 57.89 73.33 32.35
Proposed method 83.0 84.0 85.0 84.0
Comparison of Algorithms on Heart Disease Dataset
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FIGURE 15
Line graph for comparison of proposed method and other methods on heart disease dataset.
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FIGURE 16
Bar graph for comparison of proposed method and other methods on heart disease dataset.
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using ABDF and IQR improves the accuracy, precision, recall, and
overall predictive performance of models used to forecast cardiac
diseases. According to its reliable performance, the model may
be relied on by healthcare providers to aid in the rapid
identification and treatment for people at risk of heart disease.

4.2.1 Comparison of proposed method and other
methods on heart disease dataset

In Table 8, multiple approaches are used to a heart disease
dataset to assess accuracy, precision, recall, and Fl-score. The
suggested technique outperforms the others with 83.0% accuracy.
This shows that it locates dataset instances properly. This method
outperforms the Classification Tree and Artificial Neural Network
(ANN) methods in classification testing. The new approach
outperforms previous methods in accuracy, recall, and F1-score.
Its great overall performance is due to its balanced trade-off
between precisely recognizing positive examples (precision) and
capturing all positive occurrences (recall).

The Naive Bayes (NB) technique exceeds the suggested method
in accuracy (81.25%) but much worse in precision, recall, and
F1-score. More particular, the NB technique has poorer precision
and F1-score than the suggested strategy, suggesting more false
positives and a worse accuracy-recall trade-off. The findings
suggest that the proposed technique balances accuracy and
precision-recall, making it suitable for heart illness classification
(see in Figures 15, 16). The comparison research also emphasizes
the need of choosing the right technique for favorable performance
indicators. This scenario shows that the recommended strategy is
better than the present options.

5 Discussions

Our work presents an 83% reliable machine learning heart disease
prediction approach. We used cutting-edge methods like SMOTE, IQR
outlier detection, MICE, and GOL2-2T, a hybrid feature selection
technique, to improve predictive accuracy and robustness. Combining
these techniques improved feature selection and model performance,
according to our findings. Our heart disease patient identification
approach is very accurate. These results demonstrate the need of using
cutting-edge machine learning algorithms in medicine to identify and
cure diseases early.

Our findings may help doctors predict cardiac disease,
improving patient care and intervention. Our accurate diagnostic
equipment may enhance patient outcomes and minimize
cardiovascular disease mortality. However, our research has some
drawbacks. Our hopeful results are limited to a dataset and may
not apply to other patient populations or healthcare situations.
Data quality and feature selection criteria may also affect our
model’s performance.

We urge additional research to corroborate our results across a
variety of datasets and populations. Using additional machine
learning methods (35-40) and domain-specific information may
improve the model’s interpretability and prediction accuracy. To
evaluate the long-term effects of early cardiac disease identification
on patient outcomes, longitudinal studies are needed. In conclusion,
our results emphasize the necessity for ongoing study to develop
cardiovascular prediction analytics.
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6 Conclusion and future scope

In conclusion, our study met the urgent demand for precise and
effective cardiovascular disease prognostic diagnostic tools. MICE,
IQR outlier detection, SMOTE, and Adaptive Boosted Decision
Fusion (ABDF) were used to improve heart disease prediction
models’ precision and reliability. The Hybrid GOL2-2T feature
selection technique has enhanced our process by discovering
important features and decreasing overfitting.

We solved class imbalance, missing data, and outlier identification
to create a model that outperforms previous methods. The accuracy
rate of 83.0% and balanced F1 score of 84.0% of our heart disease
prediction method were impressive. The accuracy, recall, and AUC
score demonstrate the validity and applicability of our methods. Our
findings show that powerful machine learning techniques must
be used in healthcare to produce reliable cardiovascular disease
diagnosis tools. The study gives doctors tools for early diagnosis and
effective treatment of cardiovascular disease risk.

Future study may improve prediction models and examine
additional factors to improve diagnostic precision.
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Timely and unbiased evaluation of Autism Spectrum Disorder (ASD) is essential
for providing lasting benefits to affected individuals. However, conventional
ASD assessment heavily relies on subjective criteria, lacking objectivity.
Recent advancements propose the integration of modern processes,
including artificial intelligence-based eye-tracking technology, for early ASD
assessment. Nonetheless, the current diagnostic procedures for ASD often
involve specialized investigations that are both time-consuming and costly,
heavily reliant on the proficiency of specialists and employed techniques. To
address the pressing need for prompt, efficient, and precise ASD diagnosis,
an exploration of sophisticated intelligent techniques capable of automating
disease categorization was presented. This study has utilized a freely accessible
dataset comprising 547 eye-tracking systems that can be used to scan
pathways obtained from 328 characteristically emerging children and 219
children with autism. To counter overfitting, state-of-the-art image resampling
approaches to expand the training dataset were employed. Leveraging deep
learning algorithms, specifically MobileNet, VGG19, DenseNet169, and a hybrid
of MobileNet-VGG19, automated classifiers, that hold promise for enhancing
diagnostic precision and effectiveness, was developed. The MobileNet model
demonstrated superior performance compared to existing systems, achieving an
impressive accuracy of 100%, while the VGG19 model achieved 92% accuracy.
These findings demonstrate the potential of eye-tracking data to aid physicians
in efficiently and accurately screening for autism. Moreover, the reported results
suggest that deep learning approaches outperform existing event detection
algorithms, achieving a similar level of accuracy as manual coding. Users and
healthcare professionals can utilize these classifiers to enhance the accuracy
rate of ASD diagnosis. The development of these automated classifiers based on
deep learning algorithms holds promise for enhancing the diagnostic precision
and effectiveness of ASD assessment, addressing the pressing need for prompt,
efficient, and precise ASD diagnosis.

KEYWORDS

autism spectrum disorder, eye tracking, deep leaning, VGG19, MobileNet,
DenseNet169, hybrid model
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1 Introduction

Autism Spectrum Disorder (ASD) is a neurological condition that
in both
communication, as well as challenges in social interaction. It is also

involves  complications spoken and non-spoken
marked by monotonous and stereotyped behaviors (1). The intensity
of indicators and the impact of ASD differ from one circumstance to
another. As to the Centers for Disease Control and Prevention (CDC),
the commonness of ASD is assessed to be 1 in 54 children. This
condition affects individuals from diverse racial, ethnic, and
socioeconomic backgrounds. Furthermore, the prevalence of ASD in
boys is four times higher than in girls. Additionally, girls with ASD
often have fewer observable symptoms compared to boys (2). Autism
is a persistent and enduring condition that remains present throughout
a person’s whole life (3). Hence, it is of utmost importance to identify
ASD at an early stage, since individuals who are identified with ASD
during early infancy can greatly benefit from suitable therapies,
leading to a favorable long-term result (4).

Facial expressions communicate a wealth of personal, emotional,
and social information from early infancy. Even in a short interaction,
people may effortlessly focus on and rapidly comprehend the intricate
details of a person’s face, accurately identifying their emotional state
and social situation, and frequently recalling their face later (5).
Neuroimaging research has indicated that eye interaction can
stimulate brain movement in parts of the brain associated with social
interactions. Additionally, studies on human development have
provided evidence that infants and young children have a natural
inclination to pay attention to and comprehend faces that make direct
eye contact. Increasing evidence suggests that ASD is related with an
aberrant design pattern of eye tracking conduct (6, 7). Therefore, it is
widely accepted that autism is characterized by impairments in facial
handling. Nevertheless, the precise attributes of these discrepancies
and the correlations among atypical face processing and deviant socio-
emotional function in ASD remain inadequately comprehended.

Eye tracking, a non-invasive and straightforward measurement
technique, has garnered the attention of scientists in recent years
(8-11). The use of eye tracking in ASD research is justified by the
correlation between ASD and different attention patterns, which differ
from those seen in typical development (12-15). Hence, the use of eye
tracking based system to quantify eye activities and gaze designs
should assist in understanding the aberrant behavior associated with
persons diagnosed with ASD, as well as distinguishing individuals
with ASD from typically developing (TD) individuals. Eye tracking is
a method used by certain computational systems to aid in the
identification of mental problems (16, 17). Eye tracking technology is
beneficial in addressing ASD, a neurodevelopmental disease marked
by challenges in social communication and repetitive activities. An
early indication of ASD is the absence of visual engagement, namely
the lack of eye contact. This trait is seen in infants as early as six
months old, irrespective of the cultural context in which they are
raised. Eye-tracking technology is essential in diagnosing ASD
through the analysis of visual patterns (18). A device based on
eye-tracking framework classically comprises a high-determination
digital camera device and a sophisticated technique based machine
learning algorithm that accurately determines the coordinates of eye
gaze when persons watch films or pictures. This technology’s eye gaze
data may help customize therapy to ASD patients social issues (19).
To further understand how eye-tracking biomarkers might
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discriminate ASD subgroups, we should explore the effects of closely
related mental illnesses such as attention deficit hyperactivity disorder
(ADHD), nervousness, and attitude complaint. We may better
understand how these variables may affect our ability to distinguish
different groups in a medical setting by doing this. Research indicates
that children who having the cases of Autism ASD and ADHD tend
to have shorter periods of focused attention on faces while looking at
static social cues that are not very complex, compared to children who
simply have ASD and those with TD (20).

Research has shown that eye-tracking data can be utilized as
medical indicators that can be applied in medical health domain to
identify ASD in children at an initial state (18). Biomarkers, sometimes
referred to as biological markers, are quantifiable and impartial signs
that offer insights around a patient’s apparent organic state. Bodily
fluids or soft tissue biopsies are frequently employed to assess the
efficacy of handling for a disease or medicinal disorder.

A crucial element of social interaction is maintaining eye contact,
a skill that individuals with ASD often find challenging. Eye tracking
technology may be applied to measure the length of time someone
maintains eye interaction and the occurrence and track of their eye
movements. This provides measurable signs of difficulties in social
interactions. Individuals with ASD may also exhibit other irregularities
in pictorial processing, including heightened focus on specific details,
sensory hypersensitivity, and difficulties with complex visual tasks.
Hence, the sophisticated deep learning algorithms, namely MobileNet,
VGG19, DenseNet169, and the hybrid of MobileNet-VGG19, were
applied for the early-stage recognition of ASD. The primary
contributions of this research article are as follows:

« This work introduces a new method for creating eye-tracking
event detectors using a deep learning methodology.

o The research asserts that it has attained accuracy (100%) in
identifying ASD by employing the MobileNet algorithm. This
indicates that the DenseNet169 and hybrid of MobileNet-VGG19
model that was created has demonstrated encouraging outcomes
in accurately differentiating persons with ASD from those who
do not have ASD, using eye tracking data.

« The proposed methodology was compared with different existing
systems that used the same dataset; it is observed that our model
achieved high accuracy because we have used a different
preprocessing approach from improving dataset.

« This work presents an innovative artificial intelligence (AI)
technique for the diagnosis of ASD. Its objective is to differentiate
persons with autism from those without utilizing deep learning
models, relying on publicly accessible eye-tracking datasets. The
suggested approach was evaluated against other existing systems
that utilized the same dataset. It was found that the proposed
system achieved a high accuracy rate of 100% when compared to
one of the deep learning models.

2 Background

ASD can be detected by early screening techniques utilizing DL
algorithms. These approaches have become more prominent because
of their accuracy rate and capability to grip large volumes of data. It
assists experts in automating the diagnostic procedure and reducing
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the time spent on tests (21, 22). Al techniques are used in the
rehabilitation process to lessen symptoms of ASD. This research
analyzes the utilization of DL approaches in the past five years for
diagnosing ASD through the application of eye tracking techniques.

Fang et al. (23) introduced a novel method for identifying children
with ASD based on stimuli that include the ability to follow someone’s
gaze. Individuals with ASD exhibited typical patterns of visual
attention, especially while observing social settings. The scientists
developed a novel deep neural network (DNN) method to abstract
distinctive characteristics and categorize children with ASD and
healthy controls based on individual images.

Elbattah et al. (24) developed a machine learning (ML)-based
approach to aid in the diagnosing process. This approach relies on
acquiring knowledge of sequence-oriented patterns in action eye
motions. The primary philosophy was to represent eye-tracking data
as written documents that analyze a sequence of rapid eye movements
(saccades) and periods of gaze fixation. Therefore, the study utilized
the natural language processing (NLP) technique to transform the
unorganized eye-tracking information.

Li et al. (25) introduced an automated evaluation framework for
detecting typical intonation patterns and predictable unique phrases
that are important to ASD. Their focus was on the linguistic and
communication difficulties experienced by young children with
ASD. At first, the scientists utilized the Open SMILE toolKkit to extract
high-dimensional auditory characteristics at the sound level. They also
employed a support vector machine (SVM) backend as the standard
baseline. Furthermore, the researchers suggested many DNN
arrangements and structures for representing a shared prosody label
derived directly from the audio spectrogram after the constant
Q transform.

Identification and intervention for ASD have enduring effects on
both ASD children as well as their families, necessitating informative,
medical, social, and economic assistance to enhance their overall well-
being. Professionals have problems in conducting ASD assessments
due to the absence of recognized biophysiological diagnostic
techniques (25, 26). Therefore, the diagnosis is often determined by a
thorough evaluation of behavior, using reliable and valid standardized
techniques such as the Autism Diagnostic Observation Schedule
(ADOS) (27) and the Autism Diagnostic Interview-Revised (ADI-R)
(28). These tools, widely approved in investigation and research
domains, are considered the most reliable method for diagnosing ASD
in medical situations (29, 30). However, using them involves the use
of many materials, a significant amount of time, and is somewhat
expensive (25, 26). Furthermore, the diagnostic technique necessitates
the involvement of skilled and knowledgeable interviewers, who have
the potential to influence the process. This is accompanied by the
inclusion of intricate clinical procedures (25, 31). Collectively, these
difficulties frequently contribute to a postponed identification, leading
to a delay in the initiation of early intervention (26). Research indicates
that early treatments for children with ASD before the age of five result
in a much higher success rate of 67%, compared to a success rate of
just 11% when interventions begin after the age of 5 (32).

Eye-tracking technology is regarded as a beneficial method for
doing research on ASD since it allows for the early detection of autism
and its characteristics (33, 34) in a more objective and dependable
manner compared to traditional assessments (35). There has been a
significant rise in the amount of eye-tracking research focused on
autism in the past period. This increase can be attributed to improved
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accessibility to eye-tracking technology and the development of
specialized devices and software that make recording eye-tracking
data easier and more cost-effective.

Machine learning and eye-tracking devices are often used
together. Data-driven machine learning uses sophisticated
mathematics learning, statistical estimates, and information theories
(36, 37). This method trains a computer program to examine data
and find statistical trends (36-39). Machine learning may improve
autism investigation studies by giving an unbiased and
reproduceable second evaluation (18), including initial autism
detection (40), analysis (41), behavior (16), and brain activity (17).
Machine learning may also be a viable biomarker-based tool for
objective ASD diagnosis (42). ASD is diagnosed via machine
learning in IoT systems (43). By helping ASD youngsters learn,
assistive technology may improve their lives. This method is backed
by studies (44).

Various studies have utilized artificial neural network (ANN) to
classify cases of ASD. For example, in ref. (18), the authors investigated
the integration of eye-tracking technologies with ANN to assist in the
detection of ASD. Initially, other approaches that did not use neural
networks were used. The precision achieved by this ensemble of
models was adequate. Subsequently, the model underwent testing
using several ANN structures. According to the results, the model
with a single layer of 200 neurons achieves the maximum level of
accuracy. In ref. (45), researchers examined ASD children’s visual
attention when observing human faces. They extract semantic
characteristics using DNN. When viewing human faces, ASD feature
maps differ from those without ASD. These feature maps are combined
with CASNet features. They contrasted CASNet to six different deep
learning based techniques. CASNet has outdone all other models in
every situation. The scientists used eye movement patterns to classify
children with TD and ASD (46). They combined CNNs with LSTMs.
CNN-LSTM extracted features from saliency maps and scan route
fixation points. SalGAN pretrained prediction model preprocessed
and input network data. The validation dataset accuracy of the
proposed model is 74.22%.

Akter et al. (47) proposed a method that uses transfer learning to
identify ASD by analyzing face features. They developed an improved
facial recognition system using transfer learning, which can accurately
identify individuals with ASD.

Raj and Masood (48) utilized several machine and deep learning
techniques with the aim of identifying ASD in youngsters. They
utilized three publicly available datasets obtained from the
UCI Repository.

Xie et al. (49) proposed a two-stream deep learning network for
the detection of visual attention in individuals with ASD. The
suggested framework was built using two VGGNets that were derived
from the VGG16 architecture and were similar to each other.

3 Methods

This section presents in depth the planned methodology applied
to develop ASD detection system using deep learning techniques
capable to detect ASD from eye tracking images based features. This
methodology includes dataset collection, data preprocessing, deep
learning classification model, evaluation metrics and results analysis.
The framework of this methodology is shown in Figure 1.
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FIGURE 1
Structure of the proposed methodology.

3.1 Dataset

The dataset was obtained from a public repository that contains
eye-tracking images. The collection presently comprises 547 images.
The default images dimensions were established at 640 x 480. More
precisely, there were 328 images for the people without ASD, and 219
images for the persons diagnosed with ASD. Figure 2 shows samples
of eye-tracking images that were used for examining the
proposed methodology.

3.2 Data preprocessing

It is an important step in making the images dataset for training
machine learning models. We applied various data preprocessing
methods to make certain the dataset is suitable for model training
which are discussed as follows.

o Image Resize: The first step in data preprocessing encompasses
resizing all images in the dataset to a standard size of 640 x 480
pixels. This ensures uniformity in image measurements and
facilitates effective processing during model training.

o Image Enhancement: For all images in the dataset used, we applied
a specific preprocessing step by improving their resolution by
20% using the Image Enhance module. This enhancement aims
to enhance the quality and clarity of the images data, particularly
for those where it’s considered necessary.

Vectorization: After resizing and enhancing the images,
we converted them into numerical arrays using vectorization
techniques. This step includes transforming each image into a
multi-dimensional array of pixel values, making it compatible
with computational operations and deep learning algorithms.

o Normalization: after transformation to numerical arrays,
we normalized the pixel values to fall within the range of [0, 1].
Normalization ensures that the pixel values are scaled appropriately,
facilitating more stable and efficient model training by preventing
issues related to large variations in input images data.

Splitting Data: Once the images are preprocessed and
converted into numerical arrays, we divide the dataset into
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three sets namely training, validation, and testing. This step is
essential for evaluating model results, as it allows us to train
the model on one subset of data, validate its performance on
another subset, and finally test its generalization ability on a
separate unseen subset.

o Data Augmentation: To increase the diversity and robustness of
the training dataset, data augmentation techniques, using the
Image Data Generator module, was applied. This method involve
rotation, shifting, and flipping of images, introducing variations
that help avoid overfitting and enhance the model’s capability to
be generalized to new, unseen images data.

3.3 Improving the deep leaning algorithms

3.3.1 The VGG19 model

The VGG19 model (50) is a sequential model architecture
constructed in this study for the purpose of detecting ASD based on
eye-tracking features. Initially, the model incorporates the pre-trained
VGGI19 architecture, with the weights initialized from the ImageNet
dataset, excluding the fully connected layers, and specifying the input
shape to match the dimensions of the input images with size of (640,
480). Subsequently, a GlobalAveragePooling2D layer is added to
obtain a condensed representation of the features extracted by VGG19.
Following this, several dense layers are appended to the model,
comprising 1,024, 128, and 64 neurons, each activated by the rectified
linear unit (ReLU) function, to facilitate the learning of intricate
patterns within the data. Lastly, a Dense layer with 2units and a
softmax activation function are employed for binary classification,
enabling the model to predict the probability of ASD presence.
Figure 3 shows the VGG1 model structure.

Upon compiling the model, utilizing the sparse categorical
cross-entropy loss function and RMSprop optimizer with a
learning rate of 0.0001, data augmentation approach is adopted
throughout training process to improve the model’s generality
competences. Through this architecture, the model aims to
effectively discern the presence of ASD based on the provided
eye-tracking features, leveraging the robustness of the VGG19
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FIGURE 2
Sample of images: (A) ASD (B) TD.
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FIGURE 3
Structure of the VGG19 model.
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3.3.2 The MobileNet model
The MobileNet (
structure, which allows for the systematic building of a neural

) model architecture has a sequential model

network layer by layer. The MobileNet pre-trained convolutional
neural network (CNN) is used as the basis model in this
methodology, which is prepared with learnt representations from the
ImageNet dataset. However, the fully connected layers of the
MobileNet are excluded to facilitate transfer learning. Following
integration of the MobileNet base model, a Global Average Pooling
2D layer is used to compress the three-dimensional spaces of the
feature maps formed by the convolutional layers. The pooling layer
calculates the mean value of each feature map over all spatial
locations, resulting in a fixed-size vector representation of the input
image, regardless of its size.
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Successively, many dense (completely linked) layers are added to
capture more complex characteristics and perform classification tasks.
The dense layers are composed of 1,024, 128, and 64 neurons,
respectively, each of which is activated using the ReLU activation
function. The ReLU activation function is selected for its capacity to
introduce non-linearity, hence improving the complexity of the model
and the efficiency of training.

The classification layer of the model that is named as output layer
consists of a dense layer with 2 units, representing the two classes for
binary classification (ASD or TD). These units are activated using the
softmax function. This function generates probability for every class.
This model architecture seeks to utilize the data obtained by
MobileNet and conduct classification based on these features. It then
proceeds to fine-tune the dense layers to suit the particular purpose
of ASD detection using eye-tracking features. The MobileNet
architecture is presented in and model’s parameters are listed
in
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3.3.3 The DenseNet169 model

We also applied the DenseNet169 (52) model as the base, which is
tailored for ASD detection based on eye-tracking features. Utilizing
pre-trained weights from the ImageNet dataset, the model excludes
the fully connected layers for transferring learning tasks. After
integrating a Global Average Pooling 2D layer to condense feature
maps, dense layers capture higher-level features. Dropout layers
mitigate overfitting, and the output layer, activated by softmax,
produces class probabilities. With frozen base model layers, the model
is compiled with appropriate functions and benefits from learning rate
scheduling. Data augmentation enhances training, aligning with the
ASD detection task’s needs. Figure 5 displays the structure of
DenseNet169 model, and Table 3 outlines the parameters used in
DenseNet169 model.

3.3.4 The hybrid model
The framework of this a combination model employs the
capacities of two solidified convolutional neural network (CNN)

TABLE 1 Parameters of the VGG19 model.

Parameter Description

Architecture Sequential

Base model VGG19 (pre-trained on ImageNet)

Input shape (640, 480, 3)

Global pooling layer Global Average Pooling 2D

Dense layers 1,024, 128, 64 neurons with ReLU activation
Output layer Dense layer with 2 units, softmax activation (binary

classification)

Loss function Sparse categorical cross-entropy

10.3389/fmed.2024.1436646

structures, VGG19 (46) and MobileNet (51) models, to enhance its
efficacy in recognizing ASD using eye-tracking features. At first, the
model provides in the pre-trained VGG19 and MobileNet structures,
although without their completely connected layers. It then freezes all
layers to maintain their learnt representations. Global Average Pooling
2D layers are subsequently employed to acquire feature representations
from the output of each model. These representations are merged to
develop a united feature vector, which is then handled through
numerous robust layers to capture complicated data patterns.
Following that, the model is collected utilizing acceptable loss and
optimization functions, while data augmentation approaches are
employed during training to improve its generalization capability. This
hybrid model aims to improve classification accuracy in the ASD
detection task by combining the features learned by VGG19 and
MobileNet. By using the capabilities of both architectures, it seeks to
attain heightened accuracy. Table 4 summarizes the parameters used
in the hybrid VGG19-MobileNet model, and Figure 6 displays the
structure of hybrid model.

3.4 Evaluation metrics

Assessing the performance and testing results obtained by the
proposed deep learning models namely MobileNet, VGG19,
DenseNet169 and hybrid of MobileNet-VGG19 are crucial for
gauging the effectiveness of the models. The evaluation measures
provide an alternative perspective on the model’s advantages and
disadvantages. There are several matrices used to quantify
performance, including accuracy, recall (sensitivity), specificity,
These
Equations (1-4), can be calculated from the confusion matrix.

and Fl-score. evaluation matrices, expressed by

Input images Convolution Depthwise Pointwise

Convolution Convolution

FIGURE 4
Structure of the MobileNet model.

Depthwise separable

Convolution

Optimizer RMSprop with learning rate of 0.0001

) TP+ TN 100 "
Metrics Accurac cecuracy = x

Y FP+FN +TP+TN
Data augmentation Applied during training using Image Data Generator
Training batch size 16
Validation batch size 32
Recall = Sensitivity = x100% )
Number of epochs 100 + FP
ASD

=
1024 Z>

™D

average pooling

Full connections
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TN
Specificity = —— x100% 3
pecificity = - EN ’ 3)
Fl—score — 2+ Precisionx Recall | o, )

precision + Recall

where TB, TN, FP, and EN stand for true positives, true negatives, false
positives, and false negatives, respectively.

4 Results

This section focuses on the gained testing results of each model
for spotting ASD using eye-tracking characteristics. The testing

TABLE 2 Parameters of the MobileNet model.

Architecture Sequential

Weights Image net

Input shape (640, 480, 3)

Pooling layer 0.5

Dense 256

Output layer Dense layer with 2 units, softmax activation (binary

classification)
Loss function Sparse categorical cross-entropy
Optimizer adam with learning rate of 0.0001
Metrics Accuracy

Data augmentation Applied during training using Image Data Generator

Training batch size 16
Validation batch size 32
Number of epochs 100

10.3389/fmed.2024.1436646

process included evaluation of four separate deep learning models:
MobileNet, VGG19, DenseNet169, and a combination of VGG19 and
MobileNet called the hybrid model.

4.1 Models’ configuration

The efficacy of the advanced deep learning algorithm was evaluated
in a specific environment to identify ASD using an eye-tracking
method. Table 5 presents the environment of the DL models.

4.2 Splitting dataset

The dataset was segregated into three subsets: training, testing,
and validation. Table 6 displays the specific division that was employed
in the proposed method for diagnosing ASD.

4.3 The test classification results of the
MobileNet model

The MobileNet model demonstrated outstanding performance in all
parameters, attaining perfect precision, recall, and F1-score for both
ASD and non-ASD classes. This indicates that the model accurately
categorized all cases of ASD and non-ASD without any incorrect positive
or negative predictions, resulting in a remarkable overall accuracy of
100%. Table 7 presents the testing classification results of MobileNet.

The impressive performance of MobileNet underscores its efficacy
in accurately recognizing instances of ASD through the utilization of
eye-tracking characteristics. Figure 7 depicts the confusion matrix,
which reveals that 33 images were correctly identified as true
negatives (TN), 22 images were correctly classified as true positives
(TP), and there were no instances of false positives (FP) or false
negatives (FN). Based on the empirical data, it has been determined
that the MobileNet model obtained a high level of accuracy.

Figure 8 displays the performance of the MobileNet model. The
model’s accuracy exhibited a progressive increase in validation
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TABLE 3 Parameters of the DenseNet169 model.

10.3389/fmed.2024.1436646

Parameter Description

Base model

DenseNet169 pre-trained CNN initialized with ImageNet weights, excluding fully connected layers

Global Average Pooling 2D

Condenses spatial dimensions of feature maps

Dense layers

512 and 256 neurons with ReLU activation, capturing higher-level features

Dropout layers

Dropout rate of 0.5 for regularization, preventing overfitting

Output layer

Dense layer with 2 units for binary classification, activated by softmax

Frozen base model layers

Retains learned features during training

Loss function

Sparse categorical cross-entropy

Optimizer

RMSprop with learning rate of 0.0001

Learning rate scheduler

Reduces learning rate based on validation loss

Data augmentation

Applied during training to improve generalization

TABLE 4 Parameters of the hybrid model.

Parameter

Pre-trained models

Description

VGG19 and MobileNet are used as pre-trained CNN architectures.

Trainable layers

Alllayers in both VGG19 and MobileNet models are frozen

Output layers

Global Average Pooling 2D layers are added to the output of each model

Concatenated output

The outputs of both models are concatenated to create a fused feature vector

Dense layers

Several dense layers with ReLU activation functions: 1024, 128, and 64 units

Output activation

Softmax activation function is used for the output layer

Loss function

Sparse categorical cross entropy loss function is used

Optimizer

RMSprop optimizer with a learning rate of 0.0001 is employed

Data augmentation

Image data augmentation techniques are applied during training

Training epochs

The model is trained for 100 epochs

Batch size

Batch size is set to 16 for training and 32 for validation

Input Images

FIGURE 6

Structure of the hybrid model of VGG19 and MobileNet.

SoftMax function

™D

performance, starting at 50% and reaching 100%. In contrast, the
accuracy in training performance had a smoothing effect, starting at
65% and also reaching 100%. The decline in the MobileNet starting and
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validation performance has resulted in a fall of 1.6% to reach 0.0. This
confirms that the MobileNet model has achieved a high
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4.4 Testing results of the VGG19 model

This subsection introduces the testing classification results gained
by the VGG19 model which achieved an accuracy of 87%, its recall,

TABLE 5 Environment of the proposed DL.

GPU GPU T4 X 2 Kaggle

Memory 4GB

Language Python

TensorFlow

Keras

Panda

TABLE 6 Dataset.

Training set 77.78%

Validation set 22.22%

Testing set 10%

TABLE 7 Testing classification results of the MobileNet model.

F1-
score

Recall
(%)

Class Precision Support

(%)

Accuracy
(%)

(%)

10.3389/fmed.2024.1436646

precision and F1-score for the ASD class were pointedly lower than
those for the non-ASD class. This suggests that although the model
demonstrated good performance in appropriately categorizing
individuals without ASD, it encountered difficulties in correctly
identifying individuals with ASD, resulting in a greater incidence of
false negatives. Table 8 summarizes and presents the testing results of
VGG19 model.

Further modification or improvement of the VGG19 design
may be required to enhance its effectiveness in diagnosing
ASD. Figure 9 depicts the confusion matrix of the VGG19 model
used to categorize Autism Spectrum Disorder (ASD) using an
eye-tracking method. The VGG19 model correctly identified 31
images as true negatives (TN) and 19 images as true positives (TP).
However, it misclassified 3 images and incorrectly classified 2
images as false negatives (FN).

Figure 10 illustrates the process of validating and training the
VGG19 model. The VGG19 model achieved a validation accuracy of
87%. The VGG19 model attained an accuracy rate of 89% in
diagnosing Autism Spectrum Disorder (ASD) using the eye-tracking
dataset during training. The loss of the VGG19 model decreased to 0.3.

4.5 Testing classification results of the
hybrid VGG19-MobileNet model

(%) The hybrid VGGI19-MobileNet model exhibited strong
Non performance, with a 91% accuracy with well-balanced precision,
ASD 100 100 100 33 recall, and Fl-score for both ASD and non-ASD categories. The
‘ hybrid model successfully utilized the advantageous qualities of both
ASD 100 100 100 22 100
VGGI19 and MobileNet architectures, leading to enhanced
Macro 100 100 100 55 classification performance. Table 9 presents the testing classification
Average results obtained by the hybrid VGG19-MobileNet model.
30
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FIGURE 7
Confusion matrix of the MobileNet model.
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TABLE 8 Testing results of the VGG19 model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)
Non ASD 82 100 90 33
ASD 100 68 81 22 87
Macro average 91 84 86 55
30
8 25
2
2
@
=
o - 10
2
-5
NonASD ASD
Predicted
FIGURE 9
Confusion matrix of the VGG19 model.

The model’s ability to accurately differentiate between cases of
ASD and non-ASD highlights its potential utility in clinical settings
for diagnosing ASD based on eye-tracking features. Figure 11 presents
the confusion matrix of the hybrid VGG19-MobileNet model. In this
hybrid model, 31 images were accurately labeled as TD and 19 images
were accurately classified as ASD (autism spectrum disorder). The
hybrid model correctly classifies 3 images as FP and incorrectly
classifies 2 images as FN.

The results performance of the VGG19-MobileNet model is
depicted in Figure 12. The VGG19-MobileNet model obtained a

Frontiers in Medicine

validation accuracy of 91% and a training accuracy of 92%. The hybrid
model had a reduction from 0.6 to 0.4.

4.6 Testing results of the DenseNet169
model

The DenseNet169 model attained an accuracy of 78%, exhibiting
superior precision, recall, and Fl-score for the non-ASD class in
comparison to the ASD class. This indicates that although the model
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TABLE 9 Testing results of the hybrid model.

Class Precision (%) Recall (%) F1-score (%) Support (%)
Non ASD 91 94 93 33

ASD 90 86 88 2
Macro average 91 90 90
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FIGURE 11
Confusion matrix of the hybrid model.
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performed well in accurately categorizing those without ASD, its
ability to identify individuals with ASD was comparatively less
effective. Table 10 summarizes the testing classification results of the
DenseNet169 model.

The elevated rate of false negatives in ASD cases highlights
possible opportunities for enhancing the model’s ability to detect
ASD-related characteristics. In general, although all models
demonstrated potential in detecting ASD, there is a need for more
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improvement and optimization of model structures to boost the
accuracy and precision of ASD diagnosis using eye-tracking data.

5 Discussion

ASD is a neurodevelopmental condition marked by enduring
difficulties in social interaction, communication, and restricted or
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TABLE 10 Testing results of the DenseNet169 model.

Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)
Non ASD 74 97 84 33
ASD 92 50 65 22 78 ‘
Macro average 83 73 74 55 ‘

repetitive behaviors. People with Autism Spectrum Disorder (ASD)
can display a diverse array of symptoms and levels of functioning,
resulting in significant variation within the spectrum. Eye-tracking
technology is the technique of observing and documenting the
movement of a person’s eyes in order to examine different aspects of
visual attention, perception, and cognitive processing. Eye-tracking
studies in individuals with ASD commonly examine gaze fixation
patterns, saccades (quick eye movements), and pupil dilation to
explore disparities in visual processing and social attention between
individuals with ASD and those who are typically developing.

The experimental results presented in this study demonstrate
the efficacy of several convolutional neural network (CNN) models
in detecting and predicting Autism Spectrum Disorder (ASD) by
utilizing eye-tracking features. The classification accuracy,
precision, recall, and F1-score of each model offer valuable insights
their
movement patterns.

The MobileNet model exhibited outstanding performance,

into efficacy in detecting ASD cases using eye

attaining flawless precision, recall, and F1-score for both ASD and
non-ASD categories. This indicates that MobileNet successfully
diagnosed all cases of ASD and non-ASD, demonstrating its potential
usefulness in diagnosing ASD using eye-tracking data.

Although the VGG19 model achieved an accuracy of 87%, its
precision, recall, and F1-score for the ASD class were somewhat lower,
suggesting a higher occurrence of false negatives. This implies that
VGG19 might have difficulties in reliably detecting cases of ASD solely
based on eye movement patterns.

The DenseNet169 model attained an accuracy of 78%, exhibiting
superior precision, recall, and Fl-score for the non-ASD class in
comparison to the ASD class. This disparity suggests possible

Frontiers in Medicine

133

constraints in the model’s ability to detect ASD-related eye movement
characteristics, resulting in an increased occurrence of incorrect
negative diagnoses for individuals with ASD.

The hybrid VGGI19-MobileNet model exhibited
performance, with a 91% accuracy with well-balanced precision,
recall, and Fl-score for both ASD and non-ASD categories. This
suggests that the hybrid model successfully utilized the advantages of
both VGG19 and MobileNet architectures to enhance ASD
identification using eye-tracking features.

strong

Figure 13 displays the receiver operating characteristics (ROC)
findings of the proposed deep learning (DL) model. The MobileNet
model earned a high accuracy score of 100%, while both the
VGG19 and hybrid models achieved the same accuracy
score of 96%.

In summary, the experimental results highlight the capability of
CNN models, specifically MobileNet and the hybrid VGG19-
MobileNet model, to accurately detect ASD cases using eye-tracking
data. However, additional study is required to optimize the design of
models and increase their ability to detect patterns in eye movements
associated to ASD. This will ultimately lead to better accuracy in
diagnosing and treating ASD. The proposed system was compared to
several current eye-tracking systems (46-48), as seen in Table 11 and
Figure 14. Our enhanced MobileNet model achieved a perfect score
of 100%, surpassing all other current systems.

6 Conclusion

Eye tracking is a commonly used method for detecting ASD
in both young children and adults. Research including eye
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TABLE 11 Results of the proposed eye-tracking diagnosis system compared with other systems.
Authors, years Dataset Approach Accuracy %
Akter et al., 2021 (47) Same DT, SVM, LR, KNN, and MLP Accuracy (87%), and AUC (79%)
Cilia et al., 2021 (53) Same CNN 90%
Elbattah et al., 2021 (54) Same Variational Autoencoder (VAE) 79%
This proposed model Same MobileNet Accuracy (100%), and ROC (100%)
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FIGURE 14

Accuracy of the proposed eye-tracking diagnostic system compared with other systems.
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tracking has revealed that individuals with autism have distinct
gaze patterns compared to normally developing individuals.
Various diagnostic procedures have been considered for the
diagnosis of ASD, such as parent interviews, homogenous
behavioral appraisals, and neurological examinations.
Eye-tracking technology has gained significance for supporting
the study and analysis of autism. This research presents a
methodology that utilizes advanced deep learning algorithms,
including MobileNet, VGG19, DenseNet169, and a hybrid of
MobileNet-VGG19, to analyze and display the eye-tracking
patterns of persons diagnosed with ASD. The study specifically
focuses on children and adults in the initial phases of growth. The
primary concept is to convert the movement patterns of the eye
into a visual depiction, allowing for the use of image-based
methods in activities connected to diagnosis. The visualizations
generated are freely accessible as an image collection for use by
other studies seeking to explore the capabilities of eye-tracking in
the setting of Autism ASD. The collection consists of 547 images,
with 328 images representing persons without ASD and 219
images representing those diagnosed with ASD. The MobileNet
model scored high accuracy 100%, the proposed methodology was
compared with different with existing ASD model, it is investigated
that our model out performance.

An important avenue for future study is to expand the sample size
by include a wider range of participants, including a greater number
of persons with ASD and TD individuals. By increasing the size of the
sample, researchers might potentially uncover additional patterns and

subtleties in the data.
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Introduction: Our research addresses the critical need for accurate
segmentation in medical healthcare applications, particularly in lung nodule
detection using Computed Tomography (CT). Our investigation focuses on
determining the particle composition of lung nodules, a vital aspect of diagnosis
and treatment planning.

Methods: Our model was trained and evaluated using several deep learning
classifiers on the LUNA-16 dataset, achieving superior performance in terms
of the Probabilistic Rand Index (PRI), Variation of Information (VOI), Region of
Interest (ROI), Dice Coecient, and Global Consistency Error (GCE).

Results: The evaluation demonstrated a high accuracy of 91.76% for parameter
estimation, confirming the effectiveness of the proposed approach.

Discussion: Our investigation focuses on determining the particle composition
of lung nodules, a vital aspect of diagnosis and treatment planning. We proposed
a novel segmentation model to identify lung disease from CT scans to achieve
this. We proposed a learning architecture that combines U-Net with a Two-
parameter logistic distribution for accurate image segmentation; this hybrid
model is called U-Net++, leveraging Contrast Limited Adaptive Histogram
Equalization (CLAHE) on a 5,000 set of CT scan images.

KEYWORDS

image segmentation, two-parameter logistic type distribution, performance evaluation,
CLAHE, ROI segmentation, lung cancer detection

1 Introduction

Lung cancer begins in the lungs and spreads throughout the rest of the body (1),
including the brain. Lung cancer is the most common cause of cancer-related mortality
worldwide (2). Although lung cancer is more frequent in smokers, it may also occur in
nonsmokers (3). The incidence of lung cancer is often and excessively increased with
smoking. Lung cancer risk may be lowered even if you have smoked for a long period.
Segmentation, a type of image compression, is necessary to infer information from photos.
Imaging modalities (4), including Magnetic Resonance Imaging (MRI) and Computed
Tomography (CT), can be utilized to create Computer-Aided Diagnostic (CAD) (5) models
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that can be used to diagnose and treat patients in precision
medicine. Using a limited quantity of medical image data, we
demonstrated the efficacy of our proposed model, which we refer
to as U-NET++. A method known as the dice coefficient loss was
used to compute the findings of the investigations. An approach to
labeling preprocessing that is in line with the approaches that are
already in use is presented in this paper.
The main novelty of this study is as follows.

e To propose the segmentation model for identifying lung
disease made on CT scans with the limited set of CT scan
images using the CLAHE.

e To develop the learning architecture combining U-Net with
a two-parameter logistic distribution for image segmentation,
was used for segmentation.

e To train the models using several deep learning classifiers and
evaluate the performance of the models using benchmarks
on the LUNA16 dataset using different information
retrieval metrics.

The following section describes the organization of the
subsequent sections of this study.

A considerable amount of important research is presented in
Section 2. Deep learning architectures are used in segmenting
medical images by U-NET++-, which is created by combining the
two-parameter model recommended with distribution learning of
the U-Net type. Section 3 provides a comprehensive explanation
of the topic. At this point, the criteria for evaluating the
model’s performance discussed in the fourth part of the section
are presented.

2 Related works

A meta-analysis of the literature was performed. Table 1
clearly shows the literature matrix representation of their meta-
analysis and the strong relationships between the authors and
their respective works. CT scans were assessed based on the image
brightness. Different areas of the same region should have the
same intensity; hence, segmentation is an effective method to
separate objects. Various segmentation procedures were found to
be useful in this study. Three-step segmentation-based strategy for
distinguishing lung regions.

First, the lung was segmented using gray-level thresholding.
Dynamic programming then divides the lung lobes. Finally,
morphology-based smoothing approaches were employed. Region-
based segmentation includes enlarging, dividing, and combining
the areas (17).

A novel convolutional network type known as U-NET++ was
developed to analyze CT images used in the biological sciences.
U-NET++ was used in this study to extract lung fields from
CT images. In healthcare, U-NET++ is nothing more than
a variation of ConvNet, combined with various ad hoc data
augmentation methods.

The robustness of the model was compromised because the
authors of (6-8) carried out their research using the same data
potential. The traditional U-Net network (9-16) is a semantic
segmentation network built using a fully convolutional neural
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network. Although it has a relatively small number of layers, the
network is nevertheless capable of functioning well, although less
complex than its predecessors. The UNET network consists of two
main components: down-sampling and up-sampling algorithms.
The process of feature extraction, also known as down sampling,
involves using convolutional, and pooling layers. This stage
is accountable for obtaining characteristics from the original
image. A deconvolution technique is employed to enhance the
feature map’s intricacy. The alternative term for the structure
that involves down-sampling and up-sampling is the decoder-
encoder structure. The original picture undergoes convolutional
and pooling layers during the down-sampling process. This leads
to the generation of feature maps that include different levels
of information. Regarding visual characteristics, the feature maps
exhibit diverse abstraction levels. Combining the down-sampled
feature map makes it possible to retrieve a larger portion of the
abstract detail information lost during training. As a consequence,
the network becomes more successful at segmentation. During
the up-sampling process, the deconvolution layer systematically
increases the feature image’s dimensions. Consequently, the lung’s
three-dimensional nature results in a substantial loss of spatial
information. Consequently, a substantial quantity of relevant
information is lost when down-sampling occurs. As retrieving
all data is impractical, up-sampling yields imprecise outcomes
and disregards visual nuances. Moreover, in addition to the
aforementioned concerns, implementing a deep neural network
is necessary for future advancement. According to the results
of applying U-NET++ to a new dataset, the precision of the
IOU and Dice coeflicients improved. The test results demonstrate
that the U-NET++ architecture improves the efficiency of
multiscale conversion and fully connected systems. The authors
in (18) propose a novel approach for lung CT scan classification.
They combined handcrafted features were extracted using Q-
deformed entropy (QDE), which captured image texture based
on intensity variations, with features automatically learned by a
Convolutional Neural Network (CNN). This fusion strategy aimed
to improve the identification of healthy lungs from those affected
by conditions like COVID-19 or pneumonia (18). This proposed
approach demonstrated the benefits of combining handcrafted and
automatically learned features. Segmentation focused the model on
relevant lung regions, and the LSTM network effectively utilized the
fused features for accurate classification.

3 Materials and methods
3.1 U-NET++ architectural design

This study introduces the U-NET++ hybrid model, which
utilizes a two-parameter logistic function to identify lung nodules
from CT scans accurately. Lung CT scans were classified as
“benign” or “malignant” when used as an input for a binary
classification system. A unique hybrid model that combines U-Net
(19) and two-parameter logistic distribution was developed to
segment and diagnose lung cancer. The model was generated
using the dataset of LUNA-16 lung CT images. The U-NET++
model is highly esteemed as a leading architecture in computer
vision, primarily because it is built on established computer vision
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TABLE 1 Presents the related study and limitations in the works.

10.3389/fmed.2024.1429291

References Dataset Split Key arguments Drawbacks
Huang and Hu (6) Lung Nodule Analysis 2016 60:40 The Noisy U-Net (NU-Net) increases the Insufficient validation across a number of clinical
dataset and Alibaba Tianchi diagnosis of early lung cancer nodules by situations or datasets has been done to evaluate
Lung Cancer Detection increasing the sensitivity to tiny nodules NU-Net’s applicability and robustness. The practical
Competition dataset. measuring between 3 and 5 mm in diameter. | application is restricted since it ignores false positives
This is achieved by adding distinct noise to and the algorithm’s inconsistent performance with
hidden layers during training. diverse nodule properties. The lack of advanced
method comparison studies limits NU-Net’s
effectiveness compared to U-Net.

Zhao etal. (7) LUNA-16 70:30 The proposed approach for accurately The article lacks a thorough validation or explanation
detecting cancerous lung lesions from CT of the model’s performance variability across various
scans involves using a patch-based 3D datasets or in real-world clinical situations.

U-Net and a contextual convolutional Furthermore, the lack of a comparison to current
neural network. approaches hinders the ability to assess the superiority
or applicability of the proposed strategy.

Chiu et al. (8) LUNA-16 70:30 The 2D U-Net approach effectively identifies | The use of the ROI segmentation technique enhances
lung nodules in medical pictures. The the accuracy of lung nodule identification. The
detection performance may be improved by U-Net-based network architecture demonstrates high
utilizing ROI segmentation models and proficiency in segmenting lung nodules. Additionally,
further labeling. complementary labeling appears to be helpful in

situations when there is a scarcity of data.

Gao etal. (9) LUNA-16 70:30 The U-Net model, which incorporates an The research will likely neglect practical factors, such as
attention mechanism and residual structure, variations in SPECT imaging circumstances or
effectively segments lung cancer bone anomalies that may undermine the model’s robustness
metastases in SPECT images, improving in real clinical settings.
early identification and treatment outcomes.

Cai et al. (10) LUNA-16 60:40 The U-Net deep learning network The research work fails to describe the Al model’s
consistently enables the identification of clinical validation and integration in real-world
lung cancer nodules larger than 3 mm in healthcare settings, obscuring its practicality. It
diameter, hence facilitating the progress of prioritizes model accuracy above false positives and
early detection and therapy methods for this negatives, which are essential for successful practical
disease. diagnosis. Due to its architecture and lack of testing

against more adaptable modern methods, the U-Net
and PSP Net ATl models’ effectiveness is unknown. Due
to its dataset dependence, the model may not work for
all patient groups or imaging situations (Lunal6).

Banuetal. (11) LUNA-16 70:30 The use of WEU-Net, also known as weight The work does not explain how the model shows
excitation U-Net, enhances the early nodule variety, size, and consistency across datasets.
identification of lung cancer by precisely The therapeutic adoption of this technology depends
segmenting lung nodules in CT images. on time efficiency and computational needs, which are

being disregarded. The lack of a comparison with other
cutting-edge segmentation methods hinders our
comprehension of WEU-Net’s efficacy. To conclude,
the model’s interpretability and therapeutic potential in
diagnostic and treatment planning are undisputed.

Xia (12) LUNA-16 60:40 When it comes to detecting supplemental The research lacks a thorough examination of any
lung cancer, RUNet image segmentation biases or confounding variables that may impact the
outperforms 3D U-Net. Pro-CRP, CEA, and accuracy of diagnoses and the performance of the
NSE serve as diagnostic markers for model when selecting patients. The research did not
malignant lung cancers. assess the generalizability of the findings to larger

groups of patients or other imaging techniques other
than MRI. The absence of a comparative analysis with
other verified segmentation approaches impedes the
understanding of the specific benefits that RUNet offers
in contrast to other methods. Moreover, there is
insufficient information about using the model in
clinical settings to verify its effectiveness in real-world
situations or with external datasets.

Chhabra et al. (13) IIITD-CLF 8:2 The study discusses how regularization and Factors like scalability, external validity, possible bias,
patch size affect how well the model works. and limited generalizability should be considered.
segmentation with different network designs
and patch sizes to make it more accurate.

Venkatesh et al. LIDC-IDRI 70:30 It aims to revolutionize the detection of lung | The evaluation of the effectiveness of the suggested

(14) cancer by offering a more accurate and technique in relation to existing methods is limited due

efficient approach compared to existing
approaches.

to the lack of a comparative study with state-of-the-art
systems. Further investigation is required to enable the
idea’s implementation in real-world clinical
environments, considering ethical concerns, regulatory
challenges, and the potential to scale up.
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References Dataset Split Key arguments Drawbacks

Madhu et al. (15) POCUS 70:30 This paper presents XCovNet, an improved The study enhances medical imaging technology for the
Xception neural network, which detection of infectious diseases by developing XCovNet
outperforms existing deep learning models and showcasing its improved performance in
for point-of-care lung ultrasound data comparison to current models. This is essential to fulfill
analysis, enabling accurate identification of the need for accurate and expedient diagnostic tools in
COVID-19. contexts with limited resources.

Lamba et al. (16) GSCE25066 70:30 The aim of the project is to use machine The study paper does not explicitly discuss any

learning techniques to find crucial genes for
cancer subtyping. These genes will then be
validated using the Kaplan-Meier Survival
Model.

recognized research constraints in the categorization of
breast cancer subtypes based on gene expression data.
Subsequent studies in this domain might examine the
impact of different feature selection methods on the
effectiveness of models and the reliability of findings
across different datasets.
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approaches. When assessed using the ImageNet test dataset, this
model achieved a precision rate of 91%. The main architectural
improvement in the model is the filter size, an improved
version of the U-NET. Figure 1 illustrates the architecture of the
proposed model.

In the current section, a detailed presentation of the
combination of two- and three-parameter logistic distribution
models is presented. Figure 2 shows a two-parameter U-NET++
logistic-type distribution. In general, the pixel intensities are the
content through which the quantification of the image details
performed on several regions of the images. The brightness of a
picture or image can be measured by using several performance
metrics such as the moisture in the surroundings, lightening of
the images, vision, and the surrounding environmental conditions.
This measurement can be performed using the pixel values and
pixel intensities. For instance, pixel (a, b) intensity measurement
was performed using the function z = f(a, b) and considered
as a random variable. To better analyze and understand the
performance of the currently considered model and the intensities
of pixels for various images, the model was designed for both
parametric and parametric models. The pdf of the pixel intensity
is given by

y-U

Q

[ 2} (%)
k|:1+e(}%)2:|

—00 <y <00,—00 <U<00,2>0

fre@?) =

(1)

Where y is the pixel Intensity, U is the mean of pixels s, and omegas
the variance of the ented image’s pixels.
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3.2 U-NET++ algorithm

3.2.1 U-Net ith two parameter type distribution
;2

For updating Q% we differentiate R(Q, Q) with respect to
Q> and equate it to zero. That is ﬁ(Q(Q, Q®W)) = 0. This
implies E [%(log L(Q, Q(l))):l = 0. The derivative was applied
and implemented for both parameter models with o, for the two-
parameter model, with estimation error of 0.001 and it was with the

biased estimation. From the Equations 1-6 segmentation algorithm
used in the proposed algorithm.
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For three-parameter logistic type distribution: -
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3.3 Module design

Figure 3 discuss about the methodology design followed in our
proposed work. A typical image processing method is contrast-
limited adaptive histogram (CLAHE) equalization. Smooth regions
become noisier with adaptive histogram equalization. CLAHE may
enhance noise in hectic circumstances. Histogram size may be
limited by CLAHE. Understand that deep learning variation is a
major issue. Use two tag techniques for variety. Match the center to
the background to reduce variation. This study employed the dice
coefficient loss function used by picture segmentation pros. The
experiment suggests labeling may be better than initial marking in
cases with insufficient data. Medical images are hard to classify and
find. Everyone agrees transferring less data is hard. Semi-supervised
learning overcomes auto-labeling naming issues. Proposed study
successfully locates the lung using ROI segmentation from CT
scans. Process attention model. The ROI segmentation model
during data processing may find lung tumors, study suggests.

4 Model parameters and discussions
4.1 LUNA-16 dataset

A total of 5,000 CT scans were obtained from LUNA-16.
Four expert radiologists annotated the images in the LIDC/IDRI
database for 2 years (20-22). Each radiologist diagnosed the
nodules as non-nodules, nodules with a diameter of < 3mm, or
nodules with a diameter of >3 mm (23). This article examines
the annotation process in detail. Three of every four nodules
larger than 3mm in diameter must be identified by radiologists
(24). Non-standard findings have not been noted before (non-
nodules, nodules <3 mm, and nodules annotated by only one or
two radiologists). Table 2 shows various illustrations of nodules in
the LUNA-16 dataset.
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TABLE 2 Various benigna and malignant nodules present in the LUNA-16
dataset.

S.No. Nodule name Nodule image

1 Small nodule

2 Ground glass opacity nodule
3 Rough edged nodule

4 Thick walled nodule

5 Granular nodule

6 Pleural surface nodule

7 Pulmanory region nodule

TABLE 3 Presents the standard deviation of various features in
LUNA-16/LIDC-IDRI dataset.

Features in LUNA-16  Testing Training
Malevolence 1.98 £0.95 1.65 £ 1.03
Conjecture 2.60 £0.70 2.65£0.77
Subtlety 1.89 £ 0.74 3.65 £ 0.69
Lobulation 2.73 £0.67 2.36 £0.71
Diameter in mm 9.17 £ 3.51 8.56 4 0.56
Margin 3.03 £ 1.56 3.68 £0.58

Table 3 presents various feature extraction values obtained from
the LUNA16 database. A node, which refers to a specific structure,
has a wide range of characteristics, with malignancy being used as
an example to illustrate this. The estimation of the node’s outline
coordinates is utilized, whereas the surrounding area of the nodule
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TABLE 4 Dataset details.

Dataset name  Description

LUNA-16 Comprising annotated lung CT scans collected from
partnering medical institutions, Includes data from

LUNA 16 and LIDC-IDRI

Number of samples 5,000 annotated CT scans slices

Image resolution 128 x 128

Annotation methods | Expert radiologists using semi-automated tools

-Slice normalization
-Rescaling to uniform dimensions
-Augmentation for training set

Preprocessing steps

is often underestimated. Lobulation refers to the configuration and
attributes of a nodule. The measurement of a nodule in millimeters
determines its diameter, which in turn determines its length. The
border of the nodule indicates a transparent region.

Table 4 describes the dataset used in our study. We compiled
a custom LUNA-16 dataset by combining annotated lung CT
scans from various sources, including LIDC-IDRI datasets. This
dataset comprises 5,000 annotated CT scans slices, each with
a resolution of 512 x 512 pixels. The images were annotated
by expert radiologists using semi-automated tools, ensuring high
quality labels for training and evaluation.

4.2 Study design

Three categories of data were created, namely training,
validation, and testing. We built a model, trained it using validation
data, and tested it. This method is repeated until a firm understands
how our model reacts in real-world scenarios. Allow average
pooling and expand the size of the final output by using layers
in the filter. We examined our test data to determine what we
could learn from it in order to enhance the model. Because we
are neither testing nor training a model on a test dataset, we
can utilize it only once per session. Two-parameter and three-
parameter mixtures generate a model using a single test dataset,
which significantly reduces the time and effort required. Figure 4
illustrates the study design.

4.3 Split and pre-process data

Jpeg serves as the data transport format in our architecture
in the same way as DICOM. The Neuroimaging Informatics
(NIFIT) (25) is a 501(c)(3) not-
for-profit organization committed to the advancement of

Technology Initiative

neuroimaging informatics (NITI) (26). Despite its origins
in neuroimaging, it is now commonly used in brain and
other medical imaging. By memorizing the coordinates, it is
possible to relate pixel values (i, j, k) to the position space (x,
y, z) (X, ¥, z). Each data scan may provide three-dimensional
medical images comprising 128 x 128 slices of varying
thicknesses. Additional RAM is required to store the data in
the DICOM format.
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CLAHEI2 contribute to the enhancement of CT scan quality
(Contrast Limited Adaptive Histogram Equalization). The artwork
places a premium on contrast and visual detail. The Hounsfield
center values for the lung window and soft tissue were 600, 1,500,
and 50,400. As a result, the lung window is the most frequently
used Hounsfield range for lung image diagnosis. As shown in
Table 1, the Hounsfield values of various body components were
dispersed. Following sampling, the objective was to compress a
snapshot to preserve the memory. Standardization is the next step
in reducing computing costs. Subsequently, CLAHE was used to
enhance nodule contrast and visibility.

Contrast-limited adaptive histogram equalization (CLAHE)
has been used in image processing for a long time. Instead of
adaptive Histogram Equalization (AHE13) (27), it cannot be used.
Standard adaptive equalization may amplify noise in ordinarily
homogeneous areas of the image. Consequently, the histogram
tends to focus on this region. The CLAHE has the potential
to enhance noise in locations where it is almost continuous. In
Figure 5, the LUNA-16 dataset is preprocessed using the Wiener
filter and CLAHE.

The CLAHE approach can be used to decrease the histogram
concentration. When utilizing CLAHE, the concentrated histogram
component was maintained. On the other hand, the exceeding
histogram was maintained and equally distributed throughout
all histogram bins. The Wiener filter is an extremely successful
technique for visual noise reduction. PET/CT scans were afflicted
with an additive noise of constant intensity. Figure 6 shows an
example of the original CT scan image, second image is with
CLAHE and third one is with CLAHE and weiner.

4.4 Architecture and implementation

The lung segmentation method utilized in this study used
5,000 lung CT scan images and masks. Each CT scan image has
a resolution of 128 x 128 pixels. Images s black and white the
final consequence is a split lung. The technique begins with the
data being saved in memory and each image being resized to
32 x 32 pixels. Image processing was accelerated by shrinking
the photographs. The images were corrected after rescaling.
Subsequently, the dataset was partitioned into 70 percent training
set and 30 percent test set. Rotation was performed to increase
the number of training samples. There were eight rotating copies
for each training sample. In Table 5, U-NET++ is composed of
layer blocks that compress and stretch clockwise. The augmented
dataset was initially used to define the input layer. The following are
the layers of convolution, non-linearity, and down sampling. Non-
linearity is first applied to decrease the final image size, followed
by convolution to apply a filter, and finally max-pooling. The
image is concatenated by applying similar layers in contracting and
expanding patterns, and then up-sampled to make it larger. The
output layer provides a lung segmentation image. After all layers
have been trained, the U-Net ConvNet is created (28). For example,
using Adam as the optimizer, the dropout was set to 0.5, epochs
were set to 10, and steps per epoch were set to 200 (29). Each
layer, similar to the model architecture, has its own set of filters.
We examined the performance of U-Net ConvNet using test data.
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FIGURE 4
Proposed model study design and training, testing and validation process.
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FIGURE 5
Flowchart and pre-processing steps.

FIGURE 6
The first picture from left to right shows how the Wiener filter works with CLAHE. (A) Original CT scan image. (B) CT image with CLAHE image. (C)
CLAHE with Weiner filter.
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TABLE 5 Proposed network architecture with two parameters distribution.

10.3389/fmed.2024.1429291

Layer Type Input size Outputsize Kernalsize Stride Padding ‘
U-NET++ down sampling encoder process
Layer 1 Conv+ReLU 128 x 128 128 x 128 3x3 1 1
Layer 2 Conv+ReLU 128 x 128 128 x 128 3x3 1 1
Layer 3 Max Pooling 128 x 128 64 x 64 2x2 2 0
Layer 4 Conv+ReLU 128 x 128 64 x 64 3x3 1 1
Layer 5 Conv+ReLU 64 x 64 64 x 64 3x3 1 1
Layer 6 Max Pooling 64 x 64 32 x 32 2x2 2 0
Layer 7 Conv+ReLU 32 x 32 32 x32 3x3 1 1
Layer 8 Conv+ReLU 32 x 32 32 x 32 3x3 1 1
Layer 9 Max Pooling 32 x 32 16 x 16 2x2 2 0
Layer 10 Conv+ReLU 16 x 16 16 x 16 3x3 1 1
Layer 11 Conv+ReLU 16 x 16 16 x 16 3x3 1 1
Layer 12 Max Pooling 16 x 16 8x8 2x2 2 0
Layer 13 Conv+ReLU 8x8 8x8 3x3 1 1
Layer 14 Conv+ReLU 8x8 8x8 3x3 1 1
Layer 15 Max Pooling 8x8 4x4 2x2 2 0
U-Net++ up-sampling decoder process
Layer 16 Up sample 4x4 8x8 2x2 2 0
Transposed Conv
Layer 17 Conv+ReLU 8x8 8x8 3x3 1 1
Layer 18 Conv+ReLU 8x8 8x8 3x3 1 1
Layer 19 Up sample 8x8 16 x 16 2x2 2 0
Transposed Conv
Layer 20 Conv+ReLU 16 x 16 16 x 16 3x3 1 1
Layer 21 Conv+ReLU 16 x 16 16 x 16 3x3 1 1
Layer 22 Up sample 16 x 16 32 x 32 2x2 2 0
Transposed Conv
Layer 23 Conv+ReLU 32 x 32 32 x 32 3x3 1 1
Layer 24 Conv+ReLU 32 x 32 32 x32 3x3 1 1
SoftMax function Convolutional Layer_8 32x32 32x32 3x3 1 1
Benign or malignant | SoftMax Function 32x32 32x32 3x3 1 0

The
provides the layer name, followed by the number of filters,

There were five columns in total. first column
filter type/size, dimension, and concatenated layers. Eleven
convolutional layers were used. The input layer is the first
layer. A 32 x 32-pixel input layer is displayed in this
picture. For the Conl layer, eight 3 x 3 filters are needed.
The size of the images remained unchanged. Conl was
closely related to other conl. After the con layers, there were

ReLU layers.

4.4.1 Simulation settings
To facilitate the replication of our work, we provide a detailed
description of the simulation settings and the dataset used. This
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information includes hardware and software configurations, data
preprocessing steps, and hyperparameter settings.

The outlined in Table6 provides
comprehensive details on the hardware software environment

simulation  settings
used for our requirements. Our setup included an Intel core
i9-10900k CPPU and an NVIDIA GEFORCE RTX 3090 GPU,
ensuring sufficient computational power for training deep learning
models. We utilized Ubuntu 20.04 LTS as our operating system,
with python 3.8 and TensorFlow 2.4 for model development
and training.

Table 7 details the hyperparameters and model configuration.
We implemented a U-NET++ with 20 layers, utilizing a kernal
size of 3 x 3 and max pooling layer of 2 x 2. The ReLU activation
function was used throughout the network, with a sigmoid
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TABLE 6 Simulation setting used in our proposed work.

Component Description

Hardware

CPU Intel Core i9-10900K

GPU NVIDIA GeForce RTX 3090
RAM 64 GB DDR4

Software

Operating System (OS) Ubuntu 20.04 LTS
Programming language Python 3.8

Deep learning framework TensorFlow 2.4, Keras

Data preprocessing

Normalization Rescale pixel values to range [0,1]

Augmentation techniques | Rotation, translation, flipping, scaling

Data split 70% training, 15% validation, 15% testing

Model training

Optimizer Adam
Learning 0.001
Batch size 32
Epochs 100

Loss function Dice loss

Metrics Dice co-efficient, IoU, Sensitivity, Specificity

TABLE 7 Hyperparameters and model configurations.

Parameter Values

Network architecture U-NET++
Number of layers 20
Kernal size 3x3

Pooling Max pooling (2 x 2)

Activation function ReLU (Rectified Linear Unit)

Output layer activation | Sigmoid

Dropout rate 0.5

Regularization L2 regularization with delta = 0.001

activation function in the output layers for binary segmentation
(30). A dropout rate of 0.5 and L2 regularization were applied to
prevent overfitting.

These settings and configurations provide a robust framework
for replicating our lung cancer segmentation model and can
serve as a foundation for further research and development in
this domain.

4.5 Training process

The loss function expresses the loss of the die coefficients.
Frequently, the dice coefficient is used to segment medical images,
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as shown in Figure 7. It is often used to compare two samples. This
experiment generated sufficient compelling evidence to be deemed
to be conclusive.

This research is mostly concerned with two-dimensional
pictures. It might end up saving a lot of money in the long term.
Another example is graphics processing unit (GPU) throttling.
Owing to memory limitations, the majority of GPUs have difficulty
in training 3D models. 2D and 3D models are available for
downloading in various formats. We break down our findings into
different segmentation strategies with an emphasis on unbalanced
and tiny datasets. In addition, the model training process converged
in 200 epochs. The confusion matrix can be used to evaluate real-
world data and calculate metrics such as accuracy, sensitivity, and
specificity. The testing loss is approximately 0.4 in Figure 6, whereas
CLAHE and Wiener may be as low as 0.1 without pre-processing.

5 Results discussion and comparison
with other models

The results were enhanced by using the ROI segmentation
method. It seems that it has the capacity to address the problem
of the model’s inaccurate positioning of labels. As a consequence,
following the recommended methodology may lead to decreased
losses. Furthermore, it was shown that the training session
continued to slow down. The lesson is enhanced in its effectiveness
as shown in Figure 8. It is advisable to apply the same treatment to
both one-dimensional and two-dimensional data. The objective of
this strategy is to eliminate any errors in labeling in both directions.
Over time, there was a gradual reduction in the size of each
point. Engaging in conversations with individuals helps achieve
both objectives.

If the dataset is insufficient, it may be necessary to round up
more labels. Overall, there were 159 cancerous tumors, and the
standard deviation of the Dice coeflicient was 0.2. Although its
model had a low mFPI, the DL-based model was successful in
detecting lung tumors from chest X-rays, the results are shown in
Figure 8. The evaluations of the proposed models are presented in
Table 8.

TensorFlow was used to evaluate the effectiveness of the
U-NET++ approach for the segmentation of lung tumors.
The evaluation was performed with the assistance of an image
segmentation examiner. Images from LUNA-16 were used to
complete the segmentation process. The results of the logistic
distributions with the two parameters are shown in the following
table. Based on the information shown in Table 9, it is presumed
that the intensities of the image pixels adhere to a combination of
logistic-type distributions with two parameters.

The pixel intensities in each of the k sectors of the image
were assumed to follow a two-parameter logistic distribution, with
unique parameters. This assumption was based on the fact that a
picture. The histogram of pixel intensities was analyzed to estimate
the segment count for each CT scan image used in the experiment.
The histograms that indicate the pixel intensities that may be
observed in the CT scan images are shown in Figure 9.

Typically, malignant tumors have

higher  average

radius values compared to benign tumors, as seen by

histograms and bar graphs. The average radius of malignant
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Train History_loss Train History_loss

FIGURE 7
The proposed framework with respect to both training and validation accuracy.

FIGURE 8
Prior to and during the segmentation procedure, the ground-truth forecast was used in each of these instances

TABLE 8 The evaluation report of the different lung nodule semantic segmentation with comparison to our proposed algorithm.

(10) ()
Dice similarity index 87.22% 90.24% 91.76%
Error matrix Accuracy 90% Accuracy 89% Accuracy: 90%
Sensitivity 90% Sensitivity 90% Sensitivity: 89%
Specificity 89% Specificity 86% Specificity: 90%

tumors is 20.1020, whereas benign tumors normally have 5.1 Visualization of the model

a radius of 11.3286. These data indicate the differences

in average radius values between benign and malignant After examining the data, they found a connection, as shown
tumor types. in Table 10, between how well the suggested method worked and
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TABLE 9 The refined value of k with two-parameter U-NET architecture.

Constraints  First parameters Revised calculations

Image region Image area

1 2 1 2
o 0.500 0.500 02588 | 0.7428 0.500 0.500 02588 | 0.7428 0.500 0.500 02588 | 0.7428
i 60.54 121.98 19.48 136.18 60.54 121.98 19.48 136.18 60.54 121.98 19.48 136.18
o? 94.2568 128.784 124281 | 117.251 | 94.2568 | 128.784 | 124281 | 117.251 | 942568 & 128.784 | 124281 | 117.251

Cc
Radius Mean for Benign and Malignant Tumors
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Most frequent malignant radius mean is: 20.1020
Most frequent benign radius mean is: 11.3286

FIGURE 9
In this illustration, the pixel intensities generated from CT scan images of lung nodules that were either benign or malignant were included. (A)
Malignant tumor. (B) Benign tumor. (C) Shows the radius mean for benign and malignant tumors.

TABLE 10 Comparing the proposed model's quantitative segmentation results to well-established benchmark models.

References Classifier models Dice coefficient (%) Sensitivity (%) Specificity (%)
Huangand Hu (6) | NU-NET 89.26 + 12.45 89.63 + 23.56 89.21 + 14.25
Zhao et al. (7) U-NET 76.24 + 17.89 85.45 + 12.54 88.24 + 15.45
Chiu etal. (8) 2D U-NET 81.89 + 14.56 91.25 + 12.89 78.26 + 15.45
Gao etal. (9) U-NET 86.45 + 56.78 78.56 + 23.57 87.65 + 23.90
Cai etal. (10) U-NET 87.22 + 56.45 75.67 + 23.74 56.24 + 22.56
Banu etal. (11) 3D U-NET 90.24 + 24.45 80.26 + 23.77 79.23 + 22.74
Xia (12) WU-NET 83.12 + 25.06 88.96 + 26.32 80.24 + 23.56
Proposed work U-NET++ 91.76 + 26.67 89.54 % 3.65 85.98 £ 25.98

Bold values indicate highest compared with other classifiers.
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other ways of showing the same thing. To determine how well
the U-NET++ model segmented the LUNA16 trial dataset, five
radiotherapists were used for comparison with real experts. Of
the three radiologists, 81.26% were good at segmenting patients.
The U-NET++ model was also tested by comparing it with the
U-NET model and many other benchmark models, such as the
newest ResNet152V2.

The number of nodes, Dice coeflicient value index, and
distribution are presented in Figure 10. This allowed the U-
NET++ model to be tested on a test set. Giving each node a
number and placing it in the midst of a test set trial is standard.

Y 02

FIGURE 10
The frequency of lung CT scans was examined in the
LUNA16 collection.

10.3389/fmed.2024.1429291

Duan et al. (23) employed a U-NET architecture with advanced
deep learning techniques, resulting in a dice co-efficient of 0.88.
Similarly, Duan et al. (23) utilized V-NET incorporating 3D
convolutional layers, achieving a dice co-efficient of 0.90. The
method by Petit et al. (25) leveraged transformer networks,
while Ali et al. (26) utilized efficient net for a more parameter
efficient approach.

Table 11 shows a numeric comparison of how well the new
method U-NET++ works with three other deep learning models,
U-Net (7), NU-Net (6), and WU-Net (12), using CT images of lung
nodules from a dataset that was already made public, the suggested
method is better than the average method for segmenting images of
lung nodules.

We used Fisher’s least significant difference (LSD) method in
SPSS software to look at the numeric results and see if the suggested
way in Table 12 worked. By using the LSD test, we can see that the
suggested method does better than standard methods in terms of
IoU, recall, precision, and F1-score (p < 0.001).

After preprocessing the image, shown in the Figure 11A the
grouped picture, Figure 11B what was found when Lung tumors
were identified. Figure 11C results of cutting lung tumors into
whole pieces. Figure 11D the findings of the lung tumor search.
Figure 11E picture showing the effects on a specific area of lung
tumors when they are cut into pieces. Figure 11F a picture of a lung
tumor that was accurately cut into pieces.

Our Model, built on a U-NET++ architecture, demonstrated
a baseline performance with a dice-coefficient of 91.76% and an
IoU of 89.78%. Recent methods, such as the swin Transformer
by Ronneberger et al. (27), achieved higher performance metrics
through the use of advanced architectures and techniques.

TABLE 11 Quantitative evaluation of lung cancer segmentation methods based on key performance metrics, model architectures and unique features.

Score 96% C.| for mean
St. deviation St. error Lower bound Upper bound
ToU Proposed methods 0.879 0.105 0.049 0.748 0.925
U-Net (7) 0.805 0.104 0.073 0.677 0.916
NU-NET (6) 0.780 0.117 0.062 0.680 0.824
WU-NET (12) 0.731 0.144 0.088 0.613 0.865
Recall Proposed method 0.933 0.035 0.043 0.814 0.963
U-Net (7) 0.870 0.022 0.038 0.759 0.955
NU-NET (6) 0.850 0.027 0.030 0.755 0.967
WU-NET (12) 0.805 0.154 0.83 0.702 0.954
Precision Proposed method 0.950 0.130 0.040 0.834 0.991
U-Net (7) 0.890 0.106 0.029 0.780 0.992
NU-NET (6) 0.880 0.086 0.024 0.770 0.996
WU-NET (12) 0.831 0.154 0.062 0.704 0.946
F1-Score Proposed method 0.940 0.120 0.040 0.826 0.993
U-Net (7) 0.886 0.086 0.023 0.754 0.975
NU-NET (6) 0.851 0.117 0.035 0.789 0.923
WU-NET (12) 0.813 0.128 0.057 0.721 0.948

Bold values indicates is highest compared with other classifiers.
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TABLE 12 Statistical analysis.

10.3389/fmed.2024.1429291

ToU Proposed model U-Net (7) 0.072% <=0.001 0.061 0.094
NU-NET (6) 0.096 <=0.001 0.084 0.125
WU-NET (12) 0.145* <=0.001 0.125 0.165

Recall Proposed model U-Net (7) 0.055% <=0.001 0.038 0.074
NU-NET (6) 0.0617 <=0.001 0.050 0.075
WU-NET (12) 0.115% <=0.001 0.103 0.135

Precision Proposed model U-Net (7) 0.056% <=0.001 0.045 0.078
NU-NET (6) 0.065 <=0.001 0.055 0.085
WU-NET (12) 0.122° <=0.001 0.104 0.145

F1-Score Proposed model U-Net (7) 0.048" <=0.001 0.038 0.065
NU-NET (6) 0.072* <=0.001 0.065 0.089
WU-NET (12) 0.1217 <=0.001 0.112 0.137

#Indicates proposed Method is better than the existing classifiers.
A B Cc

FIGURE 11

Utilizing the provided approach, we performed visual segmentation of heterogeneous lung nodules. (A) Clustered image. (B) Segmented image. (C)
Extracted image. (D) Extracted image with nodules localizations. (E) Nodule capture. (F) Nodule region highlighted

The images in Figure 12 show a DSC value of at least 0.8 can be
trusted for most tumors. The dice index results were compared with
the U-NET++ architecture’s specific performance to ensure that
the model’s results were correct. The Dice similarity score (DSC)
for the U-NET++ model was 90.84%, which is an unusually high
level of success. Because it has fewer parameters than the original U-
NET design, the U-NET++ model can effectively separate features
and divide them into groups.

The ROC curves in Figure 11 demonstrate that radiologists
have the capacity to obtain much greater levels of specificity
(i.e., decreased false positive rates) with a low impact on

Frontiersin Medicine

sensitivity (31). By narrowing down the requirement for a positive
screen for individuals who are recommended to undergo repeat
computed tomography (CT) scans, it is possible to achieve
a specificity of 92.4%, while slightly decreasing the sensitivity
to 86.9%.

6 Conclusions and future work

Lung segmentation is necessary for the effective diagnosis
and identification of lung disorders. There has been a frenzy of
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FIGURE 12
AUC curve for the proposed classifier with respective to other classifiers.

lung segmentation research over the past few years, all aimed at
improving the accuracy. To identify and categorize lung illnesses,
automated analysis of a CT scan must first “segment” the lung.
The precision at which lung segmentation can be performed has
been the subject of several studies. Deep learning algorithms
and basic thresholding approaches have been applied to lung
segmentation. U-NET++ is particularly effective in separating cells
and neurons from images acquired using a PET Scan. In this
study, U-NET++ was used for lung segmentation. The accuracy
of the lung segmentation using U-NET++ was 91%. The original
purpose of U-NET++ was to separate tiny images. The lungs
were effectively divided using CT images. By shrinking the images,
they were reduced from 128 x 128 to 32 x 32 pixels. There were
25 convolutional layers in total in this network. It is much more
accurate to train U-NET++ using an original image size of 128 x
128. The convolutional layers may be increased in size to enhance
the accuracy of the filter.
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Alzheimer's disease (AD) is a devastating brain disorder that steadily worsens over
time. It is marked by a relentless decline in memory and cognitive abilities. As the
disease progresses, it leads to a significant loss of mental function. Early detection
of AD is essential to starting treatments that can mitigate the progression of
this disease and enhance patients’ quality of life. This study aims to observe
AD'’s brain functional connectivity pattern to extract essential patterns through
multivariate pattern analysis (MVPA) and analyze activity patterns across multiple
brain voxels. The optimized feature extraction techniques are used to obtain
the important features for performing the training on the models using several
hybrid machine learning classifiers for performing binary classification and multi-
class classification. The proposed approach using hybrid machine learning
classification has been applied to two public datasets named the Open Access
Series of Imaging Studies (OASIS) and the AD Neuroimaging Initiative (ADNI). The
results are evaluated using performance metrics, and comparisons have been
made to differentiate between different stages of AD using visualization tools.

KEYWORDS

Alzheimer’s disease, blood flow, multivariate pattern analysis, fMRI, neuroimaging,
biomarker

1 Introduction

The human brain is a highly complex organ regulating the human neurological system.
The human neocortex has up to 100 billion neurons connecting throughout the brain (1).
They constitute a vast, interconnected network linked to human activities and emotions.
Various neuroimaging techniques can acquire a wide range of brain signals. The term
"neuroimage” is based on the representation of brain functionality or architecture (2). AD
is among the most common types of memory loss in the twenty-first century and is a
significant healthcare problem. As per statistics, there are ~5.5 Americans aged 65 years
and older affected by AD (3). AD is a progressive brain disease. It is marked by a loss of
executive function that treatment cannot resolve. Thus, studies have been conducted to
develop ways to predict the disease, especially before symptoms appear, to slow or prevent
them from worsening (4).

Traditionally, AD was detected through an invasive technique. Recently, multiple
neuroimaging modalities have been developed to identify AD: positron emission
tomography (PET) uses specific radiotracers to visualize and quantify amyloid plaques in
the brain; electroencephalography (EEG) is utilized to obtain the electrical activity; and
functional magnetic resonance imaging (fMRI) is utilized to measure the functionality of
the brain with the help of oxygen level change detection in various parts of the brain, such
asvoxels (5). Moreover, the anatomical brain features are studied using magnetic resonance
imaging (MRI), having high spatial determination, and can compare soft tissues (6).

153 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1412592
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1412592&domain=pdf&date_stamp=2024-07-19
mailto:baalmarri@kfu.edu.sa
https://doi.org/10.3389/fmed.2024.1412592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1412592/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Alarjani and Almarri

Because neuroimaging techniques are rapidly changing,
combining large amounts of high-dimensional, multimodal
neuroimaging data is challenging. Thus, computer-aided machine
learning methods for consolidative study have rapidly become
extremely popular, and multiple neuroimaging modalities have
recently been developed to identify AD. A popular neuroimaging
process for examining brain activity in neurodegenerative illnesses
is resting-state fMRI (7).

Based on recent research, brain changes associated with AD
begin up to two decades before symptoms appear. Due to the high
cost and side effects of current medicines, it is essential to focus
on enhancing the quality of life or reducing the impact of the
disease. To this end, a computer learning model showing significant
performance in predicting the disease earlier can help minimize
losses (8).

The structure of the study is outlined as follows: Section II
provides background on the phases of AD and BOLD data. Section
III reviews previous study on fMRI data. Section IV introduces the
framework, while Section V shows the results. Section VI discusses
the evaluation metrics used, and Section VII compares the findings
with previous studies. Finally, Section VIII concludes the study and
outlines future research directions.

1.1 Motivation and contribution

In recent years, computer-aided design systems have become
increasingly important in diagnosing and grading AD, a severe
disease affecting many people, particularly the older population.
AD causes memory loss and an inability to function in one’s
environment. The biology of the disease is not yet fully understood,
and no cure or medication is currently available to prevent its
progress. Early detection is essential for minimizing the impact
of the illness and enhancing patients’ quality of life. However,
classifying AD is challenging due to various constraints involved
in fMRI scans, such as low spatial resolution, image artifacts, and
motion aftereffects. Despite the low spatial resolution, the abstract
and high-level shapes can still provide valuable information for
our analysis. With a large amount of data, we have the potential
to capture a wide range of variations, which can help improve the
robustness and generalization of the model, based on inter subjects.
This diversity can also help identify and characterize AD patterns
and various sub-types or stages. Addressing these problems at
different stages is necessary to develop a robust detection and
classification framework for AD.

The primary contributions of this study include:

e To apply techniques using MVPA to consider patterns across
multiple variables simultaneously.

e To identify relevant features in order to mitigate the impact of
irrelevant or redundant ones by using the LASSO method.

e To propose a framework for detecting AD based on brain
signals using hybrid machine learning classifiers.

e To evaluate the results using performance metrics on the
public datasets of OASIS and ADNI for improved accuracy
rates.
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1.2 Early diagnosis benefits
Early detection of AD is crucial for several reasons (9):

e Early intervention: It is referred to as the strategies
implemented for the early detection of AD. As there is no
treatment for AD, the progression of the disease can help to
manage the symptoms (10).

e Treatment planning: Early detection of AD allows for
the timely implementation of comprehensive treatment
plans, including medications, lifestyle changes, and cognitive
interventions.

e Clinical trials: Early detection enables individuals to
participate in clinical trials for new treatments, which
are crucial for advancing our understanding of AD and
developing new therapies.

e Learn about the management of AD symptoms.

e Develop a community for assistance.

e Conduct clinical studies to test any recent possible
medication (9).

2 Background
2.1 Phases of AD

AD has been classified into four stages (11), as shown in
Figure 1:

2.1.1 Normal control

Normal control is also known as cognitive normal, which is
the natural process of cognitive aging. Individuals of 66 years
of age healthily, retaining their ability to think, respond and
communicate. This is related to the natural aging process (12). They
show no symptoms of AD.

2.1.2 Mild Cognitive Impairment or prodromal
stage

The intermediate stage between healthy control and AD is
referred to as MCI. During this stage, an individual experiences
short-term memory loss and difficulty remembering the names of
familiar people or objects as a symptom. According to studies, 80%
of MCI patients advance to AD after a certain time period of ~5-6
years (12).

Individuals may experience minor abnormalities in cognitive
function, but they are insufficiently severe to meet the criteria
for the diagnosis of Alzheimer’s disease in Early Mild Cognitive
Impairment (EMCI stage) (13). Therefore, this stage is generally
considered harmless. Not everyone with MCI will develop AD, and
some people may even show improvement in their mental abilities.
This stage damages the medial temporal lobe of the hippocampus
and causes symptoms of short-term memory loss.

More progression is toward another alarming stage, which is
Late Mild Cognitive Impairment (LMCI) (13), affecting the lateral
and parietal lobes of the brain. Reading difficulties, poor object
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recognition, difficulty knowing the names of people, and a lack of
sense of direction are all symptoms of this stage.

2.1.3 Alzheimer's disease

AD is the final stage of the disease, characterized by severe
memory loss, including the names of people and things. This stage
is incurable (14). The stage of AD begins in the hippocampus
and entorhinal cortex and gradually spreads to other brain
sections, affecting the frontal, temporal, and occipital lobes of the
brain. Poor judgment, impulsivity, a short attention span, and
vision issues are all symptoms of this period. Advancing age,
hereditary variables, brain traumas, vascular illnesses, pathogens,
and external conditions are among the risk factors contributing
to AD development, as shown in Figure 2. What leads to the
pathological changes observed in AD remains unclear. While
several theories exist, two of the most prominent ones suggest that
cholinergic dysfunction and amyloid protein abnormalities may be
significant risk factors. However, no widely accepted explanation
exists for the underlying mechanisms of AD (15).

2.2 Blood Oxygenation Level-Dependent
signal

Several important factors influence the BOLD signal, as shown
in Figure 3.

The complex interaction between neural action and causing
a hemodynamic reply, and how an MRI scanner can detect this
response. The magnetic field intensity, echo duration, and type of
imaging technology used are only a few of the experimental factors
in the scanning of fMRI that influence the number of BOLD signals
detected by each scanner. For instance, although the hemodynamic
response is the same, a 1% BOLD signal throughout an echo of
30 ms is comparable to 2% over an echo period of 60 ms, and
the reaction is continuous. Additionally, BOLD imaging is prone
to several aberrations, including field inhomogeneities, ghosting,
and head motion (17). Determining how accurately the BOLD reply
imitates a specific hemodynamic response is challenging due to the
number of interacting variables.

The balloon method by Buxton et al. (18) has been developed
through extensive research on the type of hemodynamic reply,
particularly by Friston et al. (19). As previously mentioned by
Buxton et al. (18), the BOLD signal vascular basis is primarily
thought to be a relative inequality between rises in blood flow
of local cerebral and concomitant (albeit smaller) rises in oxygen
digestion, resulting in a brief drop in the deoxyhemoglobin to
oxyhemoglobin ratio.

The blood volume, hematocrit, vascular geometry, and
oxygenation levels of basal are other physiological variables
affecting changes in the deoxyhemoglobin concentration (20,
21). Despite these crucial starting conditions, the hemodynamic
response can differ significantly between species and cortical areas.
Different facets of the hemodynamic response may alter on various
timescales and have various neuronal underpinnings and effects
on the signal of BOLD. It is now widely acknowledged that the
signal of BOLD also occurs at prominent draining veins, possibly
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a few centimeters below the neuronally active part, in addition to
capillaries. Inferentially, such changes in the signal would be located
spatially apart from the stimulated brain tissue.

Consequently, regarding the "brain vs. vein" debate (22),
suggest that the density is based on microvascular, which will
consistently be less than that of neurons (23), is impeded by
massive contributions of vessels, and is more likely to be the aspect
restraining the BOLD-based fMRI spatial resolution. The spin-
echo fMRI method reduces these vein contributions, making them
potentially useful for more precisely tracing the neuronal sources of
fMRI BOLD (24, 25). Capillaries have a more significant impact on
image intensity (26), with stronger field strengths. Therefore, these
two might become more beneficial when used together.

3 Literature review

Several studies have developed ideas for systems that could
be used to classify AD. This section examines current studies
using deep learning (DL) and machine learning (ML) models in
systems for diagnosing and detecting AD. Some previous studies
on detecting this disease have used standard ML methods (27).
Additionally, many neuroimaging studies feature extraction
strategies for fMRI signals; for example, Lama and Kwon (28)
implemented graph theory to help predict AD at three stages: AD,
MG, and NC, with classifications based on the linear support vector
machine (SVM) and the regularized extreme learning machine. The
Node2vec graph embedding approach converts graph features into
feature vectors.

Parmar et al. (29) developed a 3D-CNN that uses rs-fMRI
data to predict AD development. By employing unconventional
techniques, they extracted patterns from neuroimaging data and
found that a simple deep-learning model works well in categorizing
AD. The findings of the study suggest a promising future, where
fMRI-based biomarkers could assist in the early diagnosis and
classification of AD. The study achieved 96.67% accuracy.

Guo and Zhang (30) introduced a distinct network using an
autoencoder(AE) to detect natural aging and progression disorders.
The network is based on biased neural networks and can easily
diagnose AD. The researchers evaluated the system using the fMRI
AD dataset and observed that it provides 25% better accuracy
than other methods. The study achieved a remarkable 94.6%
accuracy. Another study by Alarjani et al. (31) compared machine
learning (ML) and deep learning (DL) models for early detection
of AD using fMRI data. A 3D convolutional neural network (3D-
CNN) extracted features from support vector machine (SVM) for
classification. The 3D-CNN achieved 98.3% accuracy, while the
SVM achieved 97.5%.

Shahparian et al. (32) developed an ML-based system that
detected AD using fMRI images. The system is used to calculate
time series for specific anatomical regions using the individual’s
fMRI data, and the latent low-rank representation method is
utilized to extract pertinent features. Based on the acquired
characteristics, the SVM classifier determines whether the person is
healthy at the onset of the disease or has AD. The proposed method
has an accuracy exceeding 97.5%. The problem with vascular
dementia (VD) and AD is that both are more frequent. These
may cause controversial diagnoses while using classical MRI and
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clinical methods. Castellazzi et al. (33) different ML algorithms
alongside combinations of MRI data are analyzed. AD and VD
are two of the most common. Concerning AD and VD, they may
demonstrate multiple neurological symptoms that may lead to
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ambiguous diagnoses when using MRI criteria and conventional
clinical. To overcome this problem, a method to classify AD and
VD is presented. The system is assessed by three algorithms, such
as ANN, SVM, and neuro-fuzzy inference.
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Wang and Lim (34) conducted a new assessment approach
introduced for individuals with AD and MCI compared with
NC individuals, which utilized the zoom-in neural network DL
algorithm. By extracting features from the resting-state fMRI
dataset obtained from the ADNI, the algorithm could detect
the implicated regions during AD by utilizing the automated
anatomical labeling (AAL) Atlas. The study found that the ZNN
obtained good results of 97.7, 84.8, and 72.7% accuracy for
distinguishing AD from NC and MCI, NC from MCI and AD, and
MCI from NC and AD, respectively. This was achieved using seven
discriminative ROIs in the AAL-90.

Data optimization is indeed a complex task in the field
of neuroimaging. However, Zamani et al. (35) proposed an
interesting approach integrating artificial neural network (ANN)
with evolutionary algorithms to optimize the neuroimaging data
with multiple parameters. Using the rs-fMRI data based on
the resting state, they measured the FC and computed 1,155
parameters. They tested the system using the ADNI dataset and
achieved 94% accuracy.

To achieve AD discrimination at various stages, Nguyen et
al. (36) suggested a voxel-wise discriminative system for multi-
measuring rs-fMRI and combining hybrid MVPA and extreme
learning machine (ELMs) and applied it to two different datasets.
Jiao et al. (37) proposed a method focusing on the multi-
scale combination of features. This approach utilizes global static
features, moment features, and more refined features extracted
from networks that are static, dynamic, and high-order functional.
Subsequently, SVM was used to classify EMCI versus NC. Lu et
al. (38) developed a system categorizing AD, MCI, and CN of fMRI
data using FC throughout the brain rather than feature selection.
They then used an ELM to classify binary stages. Unfortunately,
this framework is only appropriate for a small dataset.

Yang et al. (39) extensively applied the brain function network
to classify AD biomarkers 240 in the MCI stage. They used
multiple time points of rs-fMRI data by combining the fused sparse
network model based on centralized learning that is parameter-
free. The essential features selected by the similarity network
fusion method were then used to classify them using SVM. In
addition, Chan et al. (40) proposed approach for AD uses a
graph neural network (GNN) on MRI and fMRI scans. It encodes
scans into brain graphs, clusters representations learned by the
GNN to identify disease subtypes, and constructs population
graphs for final decision-making. This approach outperforms
existing methods, identifying three AD subtypes and revealing
unique biomarkers, such as left cuneus and left isthmus cingulate
cortex degeneration.

Lama et al. (41) constructed the brain network using
Pearson’s correlation-based FC of fMRI data. The brain network’s
graph features were transformed into feature vectors using the
Node2vec graph embedding technique. Furthermore, they selected
features using various approaches, which they then applied
to classifiers: single-layered extreme learning and multi-layered
ELM. Koluragi et al. (42) combined SVM and EfficientNetBO to
improve the performance. The integrated approach outperformed
individuals, leveraging EfficientNetB0’s efficient resource utilization
and balance.

In earlier research, rs-fMRI used a mono-band frequency
range and focused on low-order neurodynamics. Thus, high-order
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neurodynamics were deliberately excluded. To address these issues,
Sethuraman et al. (43) proposed an automated system to detect AD
using rs-fMRI. The system constructs a high-order neurodynamic
functional network using different levels of rs-fMRI time-series
data, such as slow4 and slow5, and the full-band ranges from 0.027
t00.08 Hz, 0.01 to 0.027 Hz, and 0.01 to 0.08 Hz. SVM and k-nearest
neighbor (KNN) were used for ML, and AlexNet and Inception
were implemented to classify various stages of AD. The system
achieved 96.61% accuracy in differentiating between AD and NC.
Begum and Selvaraj (44) used deep CNN (DCNN) and 3D densely
connected convolutional neural network algorithms to diagnose
AD and perform feature analysis on fMRI data.

To enhance early detection (45), the effectiveness of Extreme
Learning Machines (ELMs) was assessed alongside fMRI-based FC
metrics. The non-linear methods such as MIC and eMIC were
applied as classification features leads to robust outcomes. The
study achieved a 95% accuracy rate in distinguishing between
AD and NC using these methods. The study conducted by
Penalba-Sanchez et al. (46) investigated the dynamic and static
FC of resting-state fMRI using various methods across 116
ROIs for four participant groups. Additionally, they utilized
graph theory metrics to investigate network segregation and
integration. The results showed that the EMCI group had a longer
typical path length and lower degree compared with the healthy
control (HC) group.

3.1 Important of gap

MVPA techniques can enhance the ability to detect significant
changes in the activity of the brain that may not be noticeable
with traditional univariate methods. This is particularly important
in AD, where early detection of subtle changes can be crucial
for timely intervention. Additionally, MVPA allows a more
detailed understanding of how different brain regions interact
and contribute to cognitive processes. This can provide valuable
insights into the underlying mechanisms of AD and other
neurological disorders.

4 Proposed framework

AD is a serious health condition affecting many people,
particularly the older population worldwide. It is a debilitating
illness causing memory loss and impairing one’s ability to interact
with their surroundings. Early detection is crucial in mitigating
the effects of Alzheimer’s disease and improving the quality of
life. Recognizing the disease at its onset enables the reduction of
its impact on patients. We constructed a predictive framework
to detect AD at an early stage based on human brain imaging
techniques: fMRI. Figure 4 presents a summary of the proposed
framework. It includes the following steps: (1) data collection
(i.e., IMRI), (2) preprocessing of fMRI data to avoid articles (i.e.,
noisy), (3) computing FC through MVPA, (4) extracting time series
of fMRI data, (5) computing correlation matrices for each stage,
(6) feature selection to select relevant features (i.e., voxel), (7)
supervised learning, and (8) evaluation and analysis.
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4.1 fMRI signal preprocessing

Since medical images are complex and difficult to extract
features, various techniques must be used to process images in the
dataset.

A flexible preprocessing pipeline is used to prepare functional
and structured data, including realignment, slice timing correction
(STC), normalization to MNI space, and smoothing (47).
For realignment, we utilized the SPM realignment unwarping
procedure suggested by Andersson et al. (48). Then, scans are co-
registered based on a reference image, such as the first scan of the
first session. For this, a least square technique and a transformation
of a 6-parameter (rigid body) are utilized, as presented in the
study by Friston et al. (49). After that, the interpolation of the B-
spline was resampled to reduce the effects of motive and magnetic
artifacts.

Temporal misalignment and methods were applied to identify
scans. A reference BOLD image was developed by applying the
mean to the scans, and the outliers were excluded. The SPM unified
normalization algorithm is used to perform the normalization and
obtain the standard MNI space (50, 51), with the probability map
template based on default IXI-549 tissue, as resampled to 2 mm
isotropic voxels. Finally, the spatial convolution of the data was
performed with the help of a Gaussian kernel of 6 mm full-width
at half-maximum (FWHM) for smoothing (see Figure 5 for an
illustration).

4.2 Functional connectivity

An essential application of fMRI studies is brain network
mapping in AD patients and between the brain network

Frontiersin Medicine

mapping routes. At rest, the default mode network is among
the most exciting networks (52). DMN relates to knowing
previous events, imagining future events, self-relevant mental
processing, and checking external information (53). Alterations
in DMN functional activity have been linked to neurological
disorders (54-56). Most studies show decreased FC in the DMN.
In a study by Koch et al. (57), the power of the DMN in rs-
fMRI was examined to differentiate between three groups: CN
individuals, MCI, and patients with AD. Moreover, this can be
constructed using numerous imaging technologies [for example,
EEG/magnetoencephalography [MEG] and structural, diffusion,
and functional MRI]. Ways to analyze FC include UNIVAR and
MVPA.

4.2.1 Univariate analysis

UNIVAR is a method used to analyze fMRI data. UNIVAR
assesses the individual voxel neural activation or the average voxel
activation of the brain. Thus, it is used for the localization of brain
regions participating in processing specific stimuli such as face
versus object. The conclusion about the brain regions participating
in cognitive processes is also drawn from the study by Haynes
and Rees (58). A general linear model is employed on each
voxel, which is why it is called univariate (59). FCA characterizes
communication between various brain regions during a task or rest.
It also measures the relationship strength between the BOLD signal
of the time series (60), as shown in Figure 6.

Vx,y T (x,y) =guxb (x,y) +€n(x,y).0 (x,y) (1)

Null hypothesis C.b(x, y) = 0
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Here in Equation 1, n refers to the number of subjects in a
study, and x and y are the voxel pair. The characterizing FC of these
two voxels can be considered as r,(x, y), where g, is referred to as
the vector of a predictor of each subject n. The unknown regression
coefficient of an unknown vector is b(x,y), while €, (x,y) and o
(x,y) are error term and inter-subject variance, respectively. A null
hypothesis can be formed using C.b(x, y) = 0.

Many studies used UNIVAR, such as in the study by Moeller
et al. (61), to identify the region’s dynamic activity close to the
expected waveform. In another method Bu et al. (62), the authors
examined the UNIVAR and MVPA overlap.

4.2.2 MultiVoxel (or Multivariate) Pattern Analysis
Multivariate Pattern Analysis MVPA is the most used technique
for analyzing functional data. In this study, the spatial pattern of
neural activation across various voxels is considered (e.g., voxels
in fMRI or channels in MEG/EEG). It also assesses whether it
has information related to the task (63). It is called multivariate
because it is based on analyzing a set of voxels rather than single
voxel modeling (64). The similarities of such patterns can also be
investigated by the activation of these patterns, such as by viewing
a scene vs. a face, Norman et al. (65), as shown in Figure 7. The
MVPA can be mathematically defined as follows (Equation 2).

Vx ra(x) = gn * B(x) + €4(x) % Y (%) 2)

Null hypothesis C.B(x).P(x) = 0

While r,, (x) refers to connectivity value whole map, unknown
predictor of regression coeflicients is denoted by B(x). €, (x) refers
to residual error. > (x) is denoted as voxel-by-voxel matrix of
positive definite. While C denotes between subject, P(x) represents
contrast matrix of between-voxels. There are many studies that
used MVPA such as in the study by Yoon et al. (66), it
used validate impairment hypothesis in schizophrenia-distributed
representations. In another method, Lee et al. (67) conducted
hypothesiss by using MVPA to check that based on the brain
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prediction, the efficiency of models has variations across the stimuli
types.

4.3 Region of interest

After preprocessing BOLD fMRI data, we can extract features
from the fMRI data depending on the atlas. Automated Anatomical
Labeling (AAL) atlas is a tool used in neuroimaging that provides
a pre-defined anatomical division of the human brain. This tool
is widely used in neuroscience research, particularly in functional
and structural brain imaging studies, such as fMRI and PET. The
AAL atlas helps researchers to identify and label specific brain
regions in their neuroimaging data. The human brain is divided
into anatomical regions, each with a specific label in the AAL atlas.
AAL atlas provides standardized three-dimensional coordinates
for each region, which researchers can use to locate and precisely
label brain imaging data areas. The AAL atlas performs various
analyzes, including region-of-interest (ROI) studies in functional
brain imaging, to map brain activity during specific tasks or resting-
state conditions (68). Few types of the AAL atlas are as follows:
AAL1L (69), AAL2 (70), Chinese AAL (71), AAL3 (68). Dealing
with high-dimensional and small sample datasets such as fMRI
data is challenging when it comes to classification and modeling.
To address this issue, the AAL template is utilized in this study
to calculate the functional link matrix after processing the original
image. In Figure 8, the AAL3 used to perform feature extraction
to identify relevant brain regions or patterns for the fMRI. AAL3
includes 170 regions, masking objects with an atlas to extract time
series within each ROI (see Figure 9).

4.4 Compute connectivity
Multiple techniques are available to calculate the FC of fMRI.

These techniques include connectivity maps of seed-to-voxel, ROI-
to-ROI connectivity matrices, independent component analysis,
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and multivariate pattern analysis (MVPA). This study proposes
FC using MVPA to analyze individual voxel resolution in the
brain-wide connectome. This approach uses the MVPA methods
to overcome the challenges of brain-wide connectome analysis.
MVPA was applied to a 4D BOLD dataset to compute the
correlation matrix between voxel time series within each ROI
and remove relevant voxels based on their correlation with other
voxels. These analyzes calculate a series of associated connectivity
patterns and spatial maps that illustrate the voxel connectivity
to the rest of the brain. Based on the provided fMRI time-series
data, the calculated correlation matrix will then contain correlation
values between ROI pairs. The FC matrix is displayed using the
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AAL3 template, which includes 166 brain regions, resulting in a
connectivity matrix of 166 X 166. The correlation matrix ranges
from 0 to 1, with 0 indicating no correlation and 1 indicating a high
degree of correlation. The matrix is shown in Figures 10, 11.

4.5 Feature selection

4.5.1 LASSO

Suppose we have a data (x',Y;),i=1,2,...,N, where x' =

T . -
(Xil, Y; ) refers to the variables used for prediction, y; refers to the
response. In the usual setup of regression, we suppose that either all
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(A) Performed mask and functional of AD. (B) Performed mask and functional of MCI. (C) Performed mask and functional of NC.
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FIGURE 10
Functional connection matrix and brain network visualization for each stage (AD, MCI, and NC). (A) Functional connectivity NC. (B) Functional
connectivity AD. (C) Functional connectivity MCI.
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FIGURE 11

Functional connectivity AD. (C) Functional connectivity MCI

Functional connection matrix and brain network visualization for each stage (AD, MCI, and NC) in ADNI dataset. (A) Functional connectivity NC. (B)

Connectivity (RRC matrix)

observation is independent or y;s are independently conditionally
of the given y;s we can suppose that X;; referred to as standardized

~ ~ AN\T
> ixijjN = 0, Y_;x%ij/N Suppose B = (,Bl, . ,ﬂp> , and the lasso

estimate (&, B)

Here, t > 0 is referred to as a parameter for tuning. For all t,
the solution for a is @ = ). We can consider without losing the
generality that @ = 0 which omit «. The solution of the above
equation is a problem of quadratic programming having linear
constraints of inequality.

The amount of shrinkage is controlled by the parameter ¢ > 0.
It is applied for estimation. Suppose ﬁj refers to the estimates of full
least squares. Let ) ‘ ,B} ‘, then the shrinkage will occur due to t < 0.
This shrinkage will occur in the solutions toward 0. There are some
coeflicients and value of these coefficients will be 0. If t = #(/2, then
the affect will be same as searching the best subset having a size of
p/2. Tt is not necessary that the matrix of design will be of full rank.

The motivation behind the Lasso is from a proposal by
Breiman, and it can be defined as Equations 3 and 4.

2
N

@& B) = arg min Z

i=1

yi—a =) B
J
subject to Z Bl <t (3)
J

2

Z yi—o— chﬁjoxij subject to ¢; > 0, ch <t (4

i=1 Jj

As previously mentioned, fMRI data are high-dimensional,
with many voxels (3D pixels) representing regions of the brain. In
this context, LASSO helps select a subset of these most relevant
voxels for a particular analysis. Lasso is used as a regularization
technique in linear regression methods. It adds a penalty term to the
sum of squared errors, encouraging sparsity in the resulting model.
It promotes the selection of a subset of features (voxels or ROI)
while setting others to zero. Identifying relevant voxels or ROIs:
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Lasso regression is employed to identify relevant features (relevant
brain regions or voxels). The Lasso coefficients provide information
about the importance of each feature by setting a suitable penalty
parameter (alpha = 0.01). Features with non-zero coeflicients are
considered relevant, and those with coefficients set to zero are
effectively excluded from the model (72). We selected the A value
that minimized the cross-validated mean squared error (MSE), as
shown in Figures 12, 13.

4.6 Machine learning

Machine learning (ML) is among the most efficient and robust
tools that have entered the medical imaging domain in the last few
years. The recent advances in this field have enabled intelligent
algorithms capable of assisting human experts in making wise
decisions. Data are prepared in various directions, such as single
and hybrid models, to classify the disease by organizing the time
series of relevant voxel(s) into a matrix and labeling samples as AD,
MCI, or NC based on their task condition or behavioral response.
Table 1 presents the hyper-parameters of ML.

4.6.1 Single model
4.6.1.1 Support vector machine

Support vector machine (SVM) is among the most common
classification and regression analysis algorithms. They use patterns
found through data analysis and pattern recognition to predict
newly collected data. The SVM classifies data into different classes
by creating a hyperplane. The nearest points from each class are
kept as far apart as feasible by the hyperplane, which is selected to
optimize the margin between the two classes (73).

4.6.1.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is an important ML model based
on supervised learning. The approach assumes similarity between
new and existing subjects. Subsequently, it places the latest subject
in the group, which is mostly similar to the existing categories,
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MSE of the LASSO fit, cross-validated with a parameter lambda (1), for the OASIS dataset.
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Mean squared error (MSE) of the LASSO fit, cross-validated with a parameter lambda (1), for the ADNI dataset.
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such as AD, MCI, and NC. The KNN algorithm saves all existing
data and generates new subjects based on similarity. Once a new
subject is developed, the KNN method instantly categorizes it into a
suitable category. Notably, KNN is a non-parametric technique, so
no assumptions about original data are made. During the training
phase, the KNN algorithm stores the dataset and classifies new
subjects into a category similar to the old data (74).

4.6.1.3 AdaBoost
AdaBoost classification involves training of numerous weak
classifiers on the same training set to create a robust classifier. The
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weak classifier is a stump of the tree. The models then decide which
prediction is the best; however, this technique depends on the weak
classifier. It would increase the accuracy if used along with another
algorithm (75).

4.6.2 Hybrid approach

In our case, the ensemble classifier combined the predictions of
three base classifiers, namely, SVM, AdaBoost, and KNN classifiers
by voting (Figure 14). In soft voting, each data point in fMRI
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collects the probability estimates (class probabilities) from each of 5 Results and ana lySiS
the individual classifiers in the ensemble. The average or weighted
average of these probabilities is computed for each class to make 5.1 Datasets

a final decision for that data point. The predicted class label for ) ] )
5.1.1 Open Access Series of Imaging Studies

A free-access data set was retrieved from the OASIS dataset. It
has three versions: OASIS-I, OASIS-II, and OASIS-III. OASIS-III
is a longitudinal neuroimaging, biomarker, cognitive, and clinical

each data point is determined by selecting the class with the highest
average probability.

TABLE 1 Tuning for machine learning models. . . .
9 g dataset for normal aging and AD with ages varying between 42

Model Hyperparameters and 95 years, including 1,379 subjects (male/female) and 2,842 MRI

sessions, which include T1w, T2w, and resting-state BOLD (rs-

SVM kernel = "sigmoid", € = 0.2, random state = 300 BOLD). In our case, We used rs-BOLD data, typically acquired as
AdaBoost | Default a sequence of 3D brain volumes, with each volume representing a
KNN n_neighbors = 300, weights = "uniform", p = 2 snapshot of brain activity, including all data for the mild cognitive

_ impairment (MCI) stage, with all slices. We balanced the selection
HML voting = "hard"

by choosing approximately the same number of samples for AD

Classifier2 -

FIGURE 14
Mechanism of ensemble.
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FIGURE 15
Three-plane view for (AD, CN, and MCI) from the OASIS dataset.
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and normal cognition (NC) classes to prevent bias. Figure 15
presents all three plane views of fMRI data. It has the following
requirements: Each stage has several subjects (males and females),
including functional and structural data (i.e., T1 W), and each
subject has an array of size 64 * 64 * 36 * 164, representing height
* width * number of horizontal slices * number of data points. The
data are captured using 3.0 T (Tesla) scanners with a slice thickness
of 2.4 mm, and the flip angle is 80 degrees (76). Table 2 displays the
subjects’ demographic information.

5.1.2 AD Neuroimaging Initiative
Its free-access dataset is retrieved from the ADNI. The
ADNI was initiated in 2004 under the leadership of Dr. Michael

TABLE 2 Subject cohort of fMRI (OASIS dataset).

10.3389/fmed.2024.1412592

W. Weiner. ADNI is a collaborative effort involving multiple
institutions and researchers in the United States and Canada.
It is a longitudinal study that was carried out in stages at
several centers in North America (ADNI1, ADNIGO, ADNI2,
and ADNI3). ADNI aims to develop biomarkers as clinical trial
outcome measures. The ADNI includes MRI, PET, fMRI, and
DTI and genetic data sessions at various stages for males and
females (77). Additionally, we can select a sagittal, coronal, and
axial plane, adding them to data collections and downloading
them as NIFTI files, as shown in Figure 16. In this study, we
downloaded fMRI data comprising 95 normal, 35 MCI, and 55
AD subjects.

Table 3 shows that the ADNI dataset is not imbalanced.
However, we still need to address the issue of imbalanced data,

TABLE 3 Subject cohort of fMRI (ADNI dataset).

\D) MCI NC
Type of image DICOM?* AD MCI NC
Number of subjects 101 95 102 Type of image NIfIT*
Total of slice 16,564 15,580 16,728 Number of subjects 55 35 95
Sex (M/F) 72/29 40/55 60/42 Total of slices 1096 701 1900
Clinical dementia rating (CDR) 0.5 0 1 Male/female 30/25 20/15 50/45
Flip angle 77° Range of age 65-75
Voxel size in fMRI 3x3x3mm?® Acquisition plane Axial rsfMRI (eyes open)
TR/TE 2s/25 ms Voxel size in axial rs-fMRI 3x3x3mm’
Width 64 64 64 TR/TE TR=3s TE=30
Height 64 64 64 Thickness 3.312999963760376 mm
Acquisition scanner 3.0 T (Tesla) Acquisition scanner Philips medical systems

# Digital Imaging and Communications in Medicine.

*Neuroimaging informatics technology initiative.

Axial
Plane

Sagittal
Plane

Coronal
Plane

FIGURE 16
Three-plane view of AD, CN, and MCI from the ADNI dataset.
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A majority class

(b) SMOTE

FIGURE 17

minority class

SMOTE techniques to handle imbalanced data. (A) imbalance class. (B) SMOTE.

-

Synthetic Samples

TABLE 4 Different between OASIS and ADNI datasets.

OASIS ADNI

Availability Openly available to the available to researchers, but
scientific community access is subject to data use
agreements and restrictions.
Size and Relatively smaller dataset with | larger with data from sites and
Scope fewer subjects and a narrower a broader range of
focus multiple assessments.
Cost and Require less computational Require additional resources
resources resources. expertise due to its
comprehensive nature and
complex data structure.

as it can affect accuracy. To do this, we utilized the Synthetic
Minority Oversampling Technique (SMOTE) (78). One of the most
common techniques used to tackle imbalanced data is SMOTE.
This technique involves several steps, including identifying the
minority classes, selecting their instances, finding the nearest
neighbors, and creating synthetic samples. To ensure an equitable
representation of participants, the minority class, known as "MCL"
was oversampled in this framework. It is important to note that the
dataset has no missing or null values, eliminating the need for data
imputation or removal. Figure 17 outlines the step-by-step process
for predicting AD.

Table4 shows the main differences between the
OASIS and ADNI datasets are as follows: OASIS provides
open diverse with  less

access to a population  but

comprehensive data, while ADNI provides extensive data

Frontiersin Medicine

and standardized protocols but with restricted access and a more
homogeneous population.

5.2 Evaluation analysis

The trained model’s performance is measured using evaluation
metrics, with each implementation having a different preprocessing
and classifier training (79).

5.2.1 K-fold cross-validation

Cross-validation is a widely used method in ML for evaluating
how well a model can make predictions. This method is easy
to understand and helps reduce bias during evaluation. We have
used 10-fold cross-validation for each configuration created by
combining available values (80), as shown in Figure 18.

5.2.2 Classification metrics

This section presents the experimental results, focusing on
precision, recall, F1-score, and accuracy metrics used for disease
classification. These metrics are calculated based on confusion
metrics, and accordingly, the performance metrics were identified
in Equation (5) (81):

Precision = TP/(TP + FP) (5)
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K-fold Cross Validation
Iteration1 — ’ Test Train Train \ Train ‘ Train ‘
Iteration2 ‘ Train ‘ Test ‘ Train ‘ Train ‘ Train ‘
Iteration 3 ‘ Train ‘ Train Test Train ‘ Train ‘
Iteration 9 —— ‘ Train ‘ Train Train ‘ Test } Train ‘
Iteration 10 ——» ‘ Train Train Train Train ’ Test
FIGURE 18
K-fold cross-validation.

Recall, also referred to as sensitivity (SN), is defined as
the capability to identify AD patients. The formula is given in
Equation (6):

Recall = TP/(TP + FN) (6)

F1- score is a degree of the accuracy of the test, which reflects
both the recall and precision of the test to calculate the score. The
given formula is for the F1- score in Equation (7):

Fl-score = 2TP/(2TP + FP + FN) (7)

Accuracy (ACC) is the likelihood of correct positive and
negative forecasts, as shown in Equation (8).

ACC=TP+ TN/TP+ TN + FP + FN (8)

Where the parameters TP, FP, TN, and FN are defined as
follows:

e True positive (TP): The subject has AD, and categorization
outcome is positive (AD).

e False positive (FP): A subject has NC, and categorization
outcome is positive.

e True negative (TN): A subject has NC, and categorization
outcome is negative (Normal).

e False negative (FN): The person has AD, but the test is
negative.

6 Comparison with previous studies

Based on the related study presented in Table 5, it was observed
that most studies depend on a single model for ML and DL to
classify AD. Moreover, most of the studies used a small dataset and
the AAL-90 atlas to define the nodes (regions) of the brain. Thus, it
is necessary to improve a model in various ways to extract and select
essential features. Our study used MVPA for fMRI scans from the
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OASIS-3 and ADNI datasets to extract activation and connectivity
patterns.

7 Conclusion

AD is referred to as a neurodegenerative disease that worsens
gradually and irreversibly over time. In this article, we proposed
a framework to compute FC through MVPA. The fMRI data are
relatively complex, with numerous voxels representing different
brain regions in 3D space. We used LASSO to select a subset of
relevant voxels for a specific analysis to simplify the analysis and
focus on the most critical voxels.

We defined the ROIs or brain areas to analyze FC. These ROIs
are often selected based on previous knowledge or hypotheses.
Moreover, time-series data were extracted from these ROIs. For
MVPA, the activity across multiple voxel patterns is crucial. Each
data point represents the activity pattern in a specific ROI for a
given task, and a correlation matrix of fMRI data is then computed.
We applied our framework to single and HML algorithms to
classify AD stages based on the activity patterns within ROIs. Our
method surpasses state-of-the-art techniques in identifying AD,
MCI, and NC in the experimental results.

Medical image classification is a crucial issue in computer
science that has been extensively studied over recent decades.
While significant improvement has been made in the reliability
of various methods, they may need to provide accurate results
due to their limitations in terms of universality, susceptibility to
illumination effects, and the inadequacy of data quality, resulting in
poor accuracy. We have many dimensions, few data points for each
scan, and the training sample in f{MRI. Additionally, trades between
having enough non-redundant features to capture and not having
too many noise features lead to overfitting on our data; so it is hard
to distinguish between a noise and a signal accurately. In addition,
we applied AAL3 to extract the ROI that includes 170 regions, but
in preprocessed and defined regain, it only used 166 regions, and
some regain skipped. Finally, the variety of public datasets is not
that wide. Additionally, we posed the problem as an fMRI scan in all
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TABLE 5 Comparison between our study and similar studies in the fMRI literature.

Type of class
References AD/MCI AD/NC MCI/NC AD/MCI/NC
Lama and Kwon (28) Acc LSVM - - - 96.11%
f1-Sc - - - - 97.3%
Rec ADNI - - - 95.03%
Prec - - - 97.18%
Parmar et al. (29) Acc - 94.58% - -
f1-Sc 94.82% - -
Rec ADNI 3D-CNN - 95.2% - -
Prec - 94.44% - -
Guo and Zhang (30) Acc - - - _
f1-sco - - R R
Rec ADNI-2 AE - 94.6% - -
Pre - 96.7% - -
Shahparian et al. (32) Acc 98.26% 97.51% - -
f1-sco 98.9% 98.28% - -
Rec ADNI SVM 97.83% 100% - -
Pre 100% 96.63% - -
Wang and Lim (34) Acc 72.7% 84.8 % 97.7% -
f1-sco - - - R
Rec ADNI ZNN - - - R
Pre - - - -
Jiao et al. (37) Acc - - 91.13% -
f1-sco - - B R
Rec ADNI-2 SVM - - 93.17% -
Pre - - 87.92% -
Yang et al. (39) Acc - - 91.13% -
f1-sco - - - -
Rec ADNI-2 SVM - - 93.17% -
Pre - - 87.92% -
Begum and Selvaraj (44) Acc 97.52% 97.53% - -
f1-sco 97.14% 98.46% - -
Rec ADNI 3D-DCNN 90.48% 95.42% - -
Pre 94.98% 97.98% - -
Acc 83.3% 93.18% 92.15% 87.79%
f1-sco 83.44% 93.28% 92.44% 88.64%
Rec ADNI SVM 83.30% 93.28% 92.15% 87.79%
Pre 83.3% 94.29% 93.99% 92.60%
Our work Acc 84% 88.71% 89.57% 88.28%
fl-sco 84.21% 88.83% 90% 88.41%
Rec ADNI KNN 84% 88.71% 89.57% 88.28%
Pre 88% 89.96% 89.96% 90.34%
(Continued)
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TABLE 5 (Continued)

10.3389/fmed.2024.1412592

Type of class
References AD/MCI AD/NC MCI/NC AD/MCI/NC
Acc 87.92% 89.98% 80% 91%
fl-sco 87.94% 89.52% 81.19% 91%
Rec ADNI Adaboost 87.92% 89.98% 80% 89%
Pre 88.53% 91.39% 88.38% 92%
Acc 94.93% 90.94% 96.15% 93.96%
f1-sco 94.98% 91% 96.23% 94%
Rec ADNI *HML 94.93% 90.94% 96.15% 93.96%
Pre 95.61% 93% 96.65% 94.78%
Acc 86.97% 81.3% 90% 88%
fl-sco 86.49% 80.49% 90.51% 88%
Rec OASIS SVM 86.97% 81.33% 90% 85%
Pre 90.79% 89 % 90% 91%
Acc 86.4% 86% 89% 84%
fl-sco 86.26% 86.8% 90.5% 84%
Rec OASIS KNN 86.47% 86.7% 89% 77%
Pre 87.58% 89.8% 89.8% 92%
Acc 82.94% 86.16% 89.94% 87%
f1-sco 82.9% 86% 82.9% 87%
Rec OASIS Adaboost 82.94% 86.1% 89.94% 86%
Pre 82.93% 89.75% 89.30% 88%
Acc 95.47% 95.11% 93.5% 92%
fl-sco 95.50% 95.13% 93.54% 92%
Rec OASIS HML 95.47% 95.11% 93.49% 93%
Pre 96.22% 95.83% 93.34% 92%
* Hybrid machine learning. Bold values indicate highest score.
of our experiments. The main obstacle remains the intricate nature  editing. MA: Conceptualization, Data curation,
of the data and the restricted sample size within the existing dataset. =~ Methodology, Software, Visualization, Writing -

In the future, we intend to improve early detection performance
by employing advanced AI methods such as explainable AI (XAI),
to provide explainable results, in addition to label predictions.
Moreover, we will extend the framework to track different disease
modalities, such as PET and MRI. Moreover, we aim to increase the
number of stages to include all the stages of AD, such as EMCI and
LMCL
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Epilepsy is one of the most frequent neurological illnesses caused by epileptic
seizures and the second most prevalent neurological ailment after stroke,
affecting millions of people worldwide. People with epileptic disease are
considered a category of people with disabilities. It significantly impairs a
person’s capacity to perform daily tasks, especially those requiring focusing
or remembering. Electroencephalogram (EEG) signals are commonly used to
diagnose people with epilepsy. However, it is tedious, time-consuming, and
subjected to human errors. Several machine learning techniques have been
applied to recognize epilepsy previously, but they have some limitations.
This study proposes a deep neural network (DNN) machine learning model
to determine the existing limitations of previous studies by improving the
recognition efficiency of epileptic disease. A public dataset is used in this study
and classified into training and testing sets. Experiments were performed to
evaluate the DNN model with different dataset classification ratios (80:20),
(70:30), (60:40), and (50:50) for training and testing, respectively. Results were
evaluated by using different performance metrics including validations, and
comparison processes that allow the assessment of the model’s effectiveness.
The experimental results showed that the overall efficiency of the proposed
model is the highest compared with previous works, with an accuracy rate of
97%. Thus, this study is more accurate and efficient than the existing seizure
detection approaches. DNN model has great potential for recognizing epileptic
patient activity using a numerical EEG dataset offering a data-driven approach
to improve the accuracy and reliability of seizure detection systems for the
betterment of patient care and management of epilepsy.

KEYWORDS

deep learning, deep neural network, electroencephalogram, epilepsy disability,
epilepsy detection, seizure activity recognition

1 Introduction

Epilepsy is a prevalent neurological condition that affects millions of people worldwide. It
is considered a kind of disability, where epileptic patients are considered a category of people
with disabilities. Different techniques are used to detect c activities and their shortcomings.
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EEG is the manual way of diagnosing seizures by pinning many
electrodes everywhere on the head, making it difficult to pinpoint
where the electrical activity in the brain originates. Additionally,
medical professionals’ reading of EEG signals is slow, time-consuming,
and subject to human mistakes during the diagnosis process. Machine
learning techniques are also used to identify epileptic seizures.
Different methods have been adapted for epilepsy detection, such as
CNN, K-NN, Naive Bayes, and DWT, and briefly discussed in the
literature of the study. However, most existing state-of-the-art
methods are considered complex, time-consuming, and suffer from
some limitations in terms of accuracy performance.

Early epilepsy detection can help society, health sectors, and
medical specialists. Human activity recognition (HAR) is the
automatic detection of numerous physical actions people perform
daily. It is used to identify the actions that are carried out by a person,
given a set of observations of themselves and the nearby environment.
Activity recognition can be attained by exploiting the information
retrieved from various sources, such as environmental (1) or body-
worn sensors (2). Multiple approaches have adapted dedicated motion
sensors in different body parts such as the wrist, waist, and chest.
These sensors are primarily uncomfortable for users and do not
provide long-term results for activity monitoring, e.g., sensor
repositioning after dressing (3). A HAR system aids in the recognition
of a person’s activities and the provision of intervention responses.
Most activities that keep track of everyday fitness exercises, such as
walking, jogging, walking upstairs, and walking downstairs, are done
daily. Taking phone calls, sweeping, making food, combing hair,
washing hands, brushing teeth, wearing coats and shoes, and writing
and reading are all tasks that everyone does daily. Also growing
demand for wearable devices with sensing abilities (smart watches,
intelligent bands) used to take out important information (4). Figure 1
shows some of the daily activities of human life.

Through wearable devices, human activity recognition (HAR) is
currently considered an essential tool for health care in the future.
Tracking patient activities not only helps medical professionals to

10.3389/fmed.2024.1405848

provide hospital care services to patients across any distance with the
latest technology of communication and information but also provides
facilities for patients to be monitored online (6). The advantages are
the prevention of hospitalization, the cost, and improving human
health. Patient activity recognition PAR includes monitoring Vital
Data (VD) such as blood pressure, pulse, and blood glucose (7).

Different sensors are used to monitor various activities to improve
patients’ health. The developments in wearable and cell phone devices
have made it possible to gather information from built-in smartphones
and health trackers, including microphones, magnetometers,
gyroscopes, GPS, and accelerometers. An epileptic seizure is a usual
neurological disorder that happens because of unexpected discharge of
neurons of the brain and stress influence. It is a condition distinguished
by repeated (two or more) epileptic seizures. A single event is considered
as numerous seizures occurring within a 24-h time or an episode of
status epilepticus (SE). It is one of the world’s oldest conditions of
humankind, and still, it is the most typical neurological condition that
affects people of all ages. About 50 million people worldwide have a
diagnosis of epilepsy (8). A clinical device, an electroencephalogram
(EEG) signal, plays a vital role in diagnosing epilepsy. It gives a
photograph of the human brain while doing a cognitive task or even
resting. The EEG is gathered by putting electrodes on the patient’s scalp.
Then, electro-activity is recorded, produced by the brain, and can
identify epilepsy, but this method for examining an EEG signal for
epileptic seizure recognition is time-consuming (9). Figure 2 visualizes
the hotspot of seizure in the human brain.

Machine learning techniques have been proposed to switch this
typical method. There are two fundamental stages of extraction and
classification of data involved in machine learning. The traditional
system of consulting doctors is time-consuming and more costly, also
leading to fatigue-based diagnostic mistakes and subject to the
absence of diagnostic facilities in regions of the world where physicians
are not available. Recently, machine learning methods have been
capable of attaining skilled-level performance in health care and the
medical field (11). Different deep learning approaches are used to
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FIGURE 1
Human activities of daily life (5).
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Motor Function Area

FIGURE 2
Seizure hotspots in the human brain (10).

detect seizures, like support vector machines, convolutional neural
networks, and deep convolutional neural networks. Still, these
techniques use complex algorithms and image data extracted
from EEG.

There are several reasons behind the development of a Deep
Neural Network-based method for identifying seizure activity in
epilepsy patients. First and foremost, it tackles the pressing issue of
prompt and accurate seizure detection, which is necessary for both
patient care and efficient treatment. Furthermore, improvements in
machine learning—especially in deep learning—present the possibility
of very precise pattern identification in EEG data, which might
improve detection rates. This strategy also seeks to enhance the quality
of life for individuals with epilepsy by facilitating more targeted
intervention techniques, which in turn lowers the frequency and
intensity of seizures.

This study used a deep neural network (DNN) based model to
recognize seizures. Since patterns of EEG seizures differ significantly
between patients, it is challenging to recognize seizures. Thus, most of
the automated methods that will be discussed in the literature review
use complex algorithms and substantial image data sets, which is time-
consuming and inefficient. The focus is on creating a model to swiftly
and accurately detect epilepsy. Our main aim is to develop a fast and
precise system. Through thorough testing and training, we aim to
achieve high accuracy while also considering speed. Ultimately, our
goal is to improve epilepsy diagnosis, potentially benefiting patients
with better and faster care.

2 Literature review

Many deep learning and machine learning methods and
algorithms are used for the detection of human activities, patient
activities, and epileptic patient activities. In this section, some previous
work that has been done recently will be discussed. Hassan et al. (12)
proposed research on a smartphone inertial sensors-based approach
for HAR. Effectual attributes are first taken out via raw data. The
attributes contain median, mean, autoregressive coeflicients, etc. The
attributes are processed through a linear discriminant examination
and kernel principal component analysis (KPCA) and (LDA) to make
them extra robust. Lastly, the attributes are trained by a Deep Belief
Network (DBN) for effective activity detection. The system comprises

Frontiers in Medicine
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three central portions: sensing, attribute recognition, and extraction.
The sensing part collects the sensor’s information as input to the HAR
system. Attribute extraction removes noise to isolate signals. Finally,
where DBN is used, a key aspect is modeling actions from attributes
via deep learning with an overall accuracy of 95.85%.

Gul et al. (13) researched abnormal human activity recognition as
a Tool for Patient Monitoring. The You Look Only Once (YOLO)
network, which is based on CNN architecture, is used as a backbone
CNN model. To train the CNN model, a large dataset of patient films
is constructed by labeling each frame with the positions and behaviors
of the patient. For 32 epochs, a CNN model with 23,040 tagged photos
of the patient’s actions was used. The model assigned a unique action
label and a confidence score for video orders by identifying the
recurring action label in each frame. The study found that aberrant
action recognition is 96.8% accurate. For patient nursing, the proposed
framework can benefit hospitals and elder care homes. Murad et al.
(14) performed a study on deep recurrent neural networks (DRNN)
and built a model that can capture distant dependencies in variable-
The model has
unidirectional, and cascaded structural design, which is built on long

length input arrangements. bidirectional,
short-term memory (LSTM). The approach exceeds other modern
methods because it is capable of taking out more particular attributes
via deep layers in end-to-end and task-dependent fashion and has an
overall accuracy of 96.7%. Uddin et al. (15) performed research on
Activity Recognition for Cognitive Assistance Using Body based
sensor data and Deep Convolutional Neural Networks in which
signals are examined from body wearable sensors for Medicare like
gyroscope, ECG, accelerometer, and magnetometer sensors. The deep
CNN is trained once attributes are extracted from sensor data using
Gaussian kernel-based PCA and Z-score normalization. Lastly,
trained deep CNN is utilized to detect activities in examining data.
The method provides cognitive aid in wearable sensor-based
intelligent medical care systems. The proposed method has an average
accuracy of 93.90%.

Ouichka et al. (16) conducted research on prediction of seizures
using DNN methods. In which five models (1-CNN, 2-CNN, 3-CNN,
4-CNN, and Transfer learning with ResNet50) for the prediction of
epileptic seizures were proposed. The findings show that both
methods, one using a fusion of three CNNs (3-CNN) and the other
using four CNNs (4-CNN), achieve an accuracy of 95%. Specifically,
the 3-CNN method yields an accuracy of 95.0%, a recall of 94.5%, and
an F1-score of 95.0%. The 4-CNN method provides an accuracy of
95.5%, a recall of 95.5%, and an F1-score of 95.0%. Ibrahim et al. (17)
presented two patient-specific CNN models for prediction and
detection of seizure in which spectrogram images of EEG signal
segments was used. The third CNN model is designed for patient
non-specific scenarios and can classify two and three EEG signal
states. It operates effectively on both spectrogram and PSR images of
EEG segments. Experiments showed the highest classification
performance when using PSR images, due to their superior
representation of EEG signals. In contrast, the first two models are
suitable for patient-specific uses, but their reliance on spectrogram
images somewhat restricts their performance.

Poorani et al. (18) performed a research on a one-dimensional,
patient-specific scheme for detecting epilepsy seizures addresses
binary classification (seizure vs. non-seizure). The 1D-CNN and
CNN-LSTM models offer a computationally efficient approach by
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processing EEG data through pooling and dense layers. Abderrahim
et al. (19) conducted an experiment in which they introduces four
models: S-CNN, Modif-CNN, CNN-SVM, and Comb-2CNN, each
demonstrating high accuracy in predicting epileptic seizures. The
Modif-CNN model stands out with an impressive accuracy rate of
97.96%, making the results from all models both promising
and interesting.

The presented study also addresses the challenges identified and
some limitations of recent studies and machine learning techniques
such as many models struggle to handle EEG data in real time and
need large amounts of computing power. Additional problems include
handling undesired data in the EEG, individual variations in seizure
patterns, and an imbalance in data classes. Specifically for other deep
learning models Long-term dependency maintenance is a hurdle for
RNNs, non-image dataset adaptation may be a barrier for CNNG,
training and parameter optimization are issues for RL so the current
model that is using to identify Epileptic activities by using multiple
hidden layers that allows to learn complex patterns and data
representation the depth of these layers allows to capture the
complicated features resulting in enhanced performance. DNN
algorithm is more efficient because of its computational complexity,
deep architecture and its ability to learn complicated patterns from the
data as Compare to other deep learning models.

3 Problem identification and solution

There are various methods used to detect epileptic seizures; one
of the most common and manual ways is EEG, which is a very time-
consuming process. Computer-aided diagnosis methods, automatic
detection, deep learning, and machine learning methods exist. The
conventional technique of identifying different brain disorders has
been inspected manually for centuries. Still, those manual methods
have some limitations, such as inaccuracy, slow diagnosing process,
and various outcomes of the same inputs. Manual identification needs
more resources and time. So, to achieve high accuracy and fast
diagnosis, computer-aided disease detection methods have been used
for the last few decades. This method will assist medical professionals
in the clarification of medical imaging. Medical computer-aided
diagnosis methods are limited by noise, fuzziness, and uncertainty in
medical images, so such limitations may affect decisions of disease
diagnosis while determining the disease type. The main idea of this
research is to detect epileptic seizures using a Deep Neural Network
(DNN), which is more powerful and optimistic. A simple numerical
model that is built on deep learning has applications in the fields of
bioinformatics, healthcare, and computer science. The personal
monitoring system for the detection of epilepsy with high accuracy is
becoming popular for the improvement of human life. Researchers
can achieve their targeted objectives and improve their expertise
through this research. In the current study, the DNN model contains
several layers of neurons that build up an output layer.

4 Proposed methodology

The proposed method consists of four main stages, illustrated in
Figure 3. Initially, data acquisition involves collecting the necessary
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data. This is followed by the data cleaning stage, where irrelevant or
redundant features are eliminated to ensure the dataset is optimized
for further analysis. Once cleaned, the dataset is divided into two
subsets: one for training the model and the other for testing
its performance.

In the activity recognition phase, a deep neural network is
employed to identify brain activities related to seizures. This
involves the model learning patterns and distinguishing between
different types of brain activity. Finally, in the performance
evaluation phase, the model’s effectiveness is assessed using various
metrics. These metrics include the Fl-score, which balances
precision and recall, precision itself, the confusion matrix that
shows the performance of the classification, accuracy indicating the
proportion of correctly classified instances, and the Receiver
Operating Characteristic (ROC) curve, which illustrates the true
positive rate against the false positive rate across different threshold
values. This structured approach ensures that each phase
contributes to building a robust and reliable model for recognizing
with thorough evaluation to validate

epileptic seizures,

its performance.

4.1 Data loading

The data of this study is publicly available and uploaded to the
model for cleaning, splitting and classification. After uploading the
historical data, the valuable data will be extracted, and then irregular,
null, garbage, and inconsistent values will be eliminated, which may
lead to many difficulties. Data cleaning removes unwanted features
that do not belong to the proposed study. In the next stage, data
transformation is done, in which the raw data is turned into a format
or structure that is more suited for the model or algorithm.

4.2 Data splitting

The data is split into two parts: the first part of the dataset is used
for training, and the remaining part will be used for data testing. The
proposed model will split DNN’s dataset into different training and
testing ratios to achieve high accuracy.

4.2.1 Training set

The data samples are used to fit the model, and a subset of the
dataset is used to train the model (in the context of neural networks,
calculating weights and biases). The model sees and learns this data,
allowing it to improve its parameters.

4.2.2 Test set

The data set objectively evaluates a final models fit to the training
data. It is used once the model has been adequately trained with
training and validation.

4.3 Model architecture

ANN’s model architecture includes the creation of layers,
which are input layers, dense layers, and output layers. Each neuron
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FIGURE 3
Adopted methodology.

in the dense layer receives input from all neurons in the previous
layer, making it a deep-connected neural network layer. The thick
layer is revealed to be the layer that is most usually utilized. The
size of the input layers and output layers are also defined in
this section.

4.4 Model compilation

Compilation is the last stage in the model creation process.
The model will be ready to move to the training and testing phase
at this stage. The model compilation uses some functions, such as
the loss function, to find errors or deviations in the learning
procedure. Moreover, the optimizer is used to optimize the
weights of the inputs by comparing the loss function and
prediction. The evaluation metrics are applied to evaluate the
model’s performance.

4.5 Model training

The training set consisted of sample output data and the input
data sets that affect the outcome. The training model is utilized to
process the input data using the algorithm to match the processed
result to the sample output. NumPy arrays using the fit function are
used to train models. The main aim of the fit function is to evaluate
the model during the training stage (20).
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4.6 Model testing

After the training model moves toward the testing phase, testing
of the model is the process of analyzing a fully trained model’s
performance on a testing set. The testing set is a collection of samples
separated from the training and validation sets, but it has the same
probability distribution as the training set (21).

4.7 Model evaluation

In this stage, performance evaluation will be done to improve the
system. Confusion matrix, F1-score, Precision, recall, and accuracy in
a rigorously statistical manner are the parameters utilized for
performance evaluation.

4.7.1 Confusion matrix

A Confusion Matrix is an n x n matrix used to assess the model’s
classification performance, where N represents the number of target
classes. The matrix differentiates the actual values from the machine
learning models predictions. This gives us a clear picture of how
efficiently our classification method works and the types of errors it
generates (22).

4.7.2 Accuracy

Model accuracy is a metric for determining which model is
the most effective in detecting patterns and correlations among
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variables in a dataset using training or input data. The greater a
model’s generalization to ‘unseen’ data is, the more accurate
insights and predictions it can deliver, and hence the additional
commercial value it can provide. The accuracy of classification
models is one of the factors to consider while evaluating the (23).
Accuracy represents the percentage of correct predictions made
by our model. Equation (1) below is the formal definition of:

Number of right predictions (0

Accuracy =

Total number of predictions

Equation (2) below determined binary classification accuracy
regarding negatives and positives.

Accuracy =TP +TN/(TP + TN + FP + FN) (2)

TP stands for True Positives, TN stands for True Negatives, FP
stands for False Positives, and FN stands for False Negatives.

4.7.3 Precision

Precision is a statistic that measures the accuracy of a
machine learning model’s positive prediction. Precision (i.e.,
the total number of true positives plus the number of false
positives) is the ratio of true positives to total positive predictions
as shown in Equation (3) below (24).

True Positive (TP)

3
True Positive (TP) + False Positive(FP) 3)

Precision =

4.7.4 Recall

The model’s recall indicates how successfully it finds True
Positives. As an outcome, recall tells us how many patients we correctly
identified as having illness out of the total number of patients with
disease (25). Mathematically shown in Equation (4) below.

True Positive (TP)
True Positive (TP) + False Negative(FN)

Recall = (4)

4.7.5 Fl-score

The F1 score represents a balance of precision and recall.
The harmonic mean of accuracy and recall is used to compute
the F1 score. The harmonic mean is a measure that can be used
instead of the arithmetic mean. Calculating an average rate is
especially beneficial (26). The average accuracy and recall are
computed using the Fl-score. Because they are both rates, the
harmonic mean makes sense. It is calculated using the
Equation (5) below:

2 # (Precision * Recall)

(Precision + Recall)

©)

F1—score =
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5 Experimental setup

The experiments that are done are related to epilepsy detection
using deep neural networks and will be deeply discussed in this section.

5.1 System specification

The system that is used in this research is an HP Intel core i5-fourth
generation Desktop with 8 GB RAM, 1.90GHz processor, and 500 GB
hard drive—Windows 10 64-bit operating system. In the proposed
research, Python language is used to simulate Epileptic patient activity
recognition. Google COLAB is used to execute the Python code.

5.2 Dataset description

The dataset used in this study is publicly available on the KAGGLE
platform at the following link: https://www.kaggle.com/datasets/
harunshimanto/epileptic-seizure-recognition. The reference’s original
dataset is separated into five categories, each containing 100 files, each
representing a particular subject/person. For 23.6s, each file records
brain activity. A 4097 of data points are taken from the linked time
series. Each data point represents the value of the EEG recording at a
certain instant in time. So it has an overall of 500 people, each with
4,097 data points collected over 23.5s.

All 4,097 data points are split and scrambled into 23 portions,
each holding 178 data points for 1s, with each data point reflecting the
amplitude of the EEG recording at a certain point. So, it has 23 x
500=11,500 pieces of data (row), each data point containing 178 data
points for 1s (column), and the last column represents the labels y,
which are 1, 2, 3, 4, and 5. In column 179, the response variable is y,
and the explanatory variables are X1, X, > X783 The 178-dimensional
input vector’s category is stored in y. In particular, 1, 2, 3, 4, and 5.
Seizure activity is recorded. They took an EEG recording from the
tumor’s location. They located the tumor in the brain and captured
EEG activity in a normal brain region.

Eyes closed, which suggests the patient’s eyes were closed while the
EEG signal was being recorded. Also, eyes open refers to the patient’s
eyes being open while the EEG signal of the brain is being recorded.

There are 178 EEG characteristics and five potential classes, as
mentioned before. The dataset’s purpose is to detect epilepsy from
EEG data correctly. There are five classes in the dataset. The class label
1 is for patients who have an epileptic seizure (seizure activity). The
other classes, 2, 3, 4, and 5, are for the patients who did not have
epileptic seizures (non-seizure activity). In this study, we classify the
patients with seizure activity from those with non-seizure activity.
Hence, a binary classification task is conducted among class label 1,
encoded as class label 1 for patients with seizure activity, and the other
classes 2, 3, 4, and 5, encoded as class label 0 for patients with
non-seizure activity. Let us specify the dependent variable (Y) and
independent variables (X) to train the model (f).

5.3 DNN structure

DNN s are capable of identifying complex patterns within data
due to their deep architecture, which includes multiple layers of
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neurons. Proposed model is highly adaptable and can be applied
to various tasks, including natural language processing and
numerical data processing. This versatility makes them a strong
candidate for diverse research applications. When trained with
large datasets, DNNs often achieve higher accuracy compared to
other models. Their ability to model complex functions and
relationships within data is advantageous for tasks requiring
precise and detailed analysis. The model consists of three dense
layers in which each input layer to each output layer is fully
connected. The activation function, rectified linear unit (ReLU),
is used in dense layers for the output layer activation function.
Sigmoid is used because the model works on binary classification.
The dropout with each dense layer temporarily ignores/deactivates
the network’s neurons.

5.4 Results with 80% training and 20% test
sets

Data splitting is performed with a ratio of 80% for training and
20% for model testing. The results of the experiments are evaluated
regarding the true positive examples in the confusion matrix, which
are 1850, false positive examples, which are 10. False negative
examples, which are 51, and true negative examples, which are 389,
as shown in Figure 4A. In Figure 4B, we can see that the accuracy

10.3389/fmed.2024.1405848

curve of the model for training differs from 99% and above, and the
accuracy of testing varies from 96 to 97%. In Figure 4C, the ROC
moves from 0.9 of true positive toward 1.0 of false positive rate. In
the model loss graph, as shown in Figure 4D, the loss of testing is
about 10-17%, and the loss of training is approximately in the range
of 0-2%.

The excellence of the developed model can be obtained by the
values of precision, recall, F1-score, and accuracy shown in Table 1.
The precision of the model is 97% for non-seizure activity, whereas the
precision of seizure activity is 98%. The recall results are 99%for
non-seizure activity and 88% for seizure activity. Also, we can see that
the F1-score for non-seizure activity is 98%, and for seizure activity is
93%, regarding 1860 instances of non-seizure activity and 440
instances of seizure activity.

TABLE 1 Performance evaluation of non-seizure and seizure activity with
an 80:20 ratio.

Class F1-  Precision Recall Accuracy Support
label @ score (%) (%) (%)
(%)
0 98 97 99 97 1860
1 93 98 88 440
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Model training and testing with an 80:20 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.
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5.5 Results with 70% training and 30% test
sets

The results of splitting data into 70% for training and 30% for
testing the model are discussed in this subsection. As shown in
Figure 5A, the confusion matrix displays the first row-wise value
to represent the true positive instances, which are patients who do
not have epileptic seizures, and the model classifies them correctly
as true positive instances. The second value of the confusion
matrix is for the false positive instances, which are the model
classified incorrectly as patients not having epileptic seizures, but
in actuality, they have. The third value of the confusion matrix is
several false negative instances, which the model classified as
patients having epileptic seizures, but in actuality, they do not
have the disease. The last value of the confusion matrix is for the
true negative instances that the model classified as patients who
have epileptic seizures and have epileptic seizures. In Figure 5B,
the blue curve represents the training accuracy of the model, and
the orange curve indicates the testing accuracy. It shows that the
maximum accuracy of training reaches 99%, and the testing
accuracy reaches 97.5% during the different number of epochs.

10.3389/fmed.2024.1405848

false positive rate. It shows that when the true positive rate is 0.8,
the false positive is 0.0, and when the true positive is 1.0, the true
positive is 0.93. Figure 5D visualizes the training and testing
model loss, showing how much data is lost at different epochs.
The model has 97% overall accuracy, as seen in Figure 5B.

The precision, recall, Fl1-score, and accuracy values shown in
Table 2 show the study’s proficiency. The accuracy of the model is 97%
for overall activity recognition. The precision of non-seizure activity is
97 and 98% for seizure activity, whereas the recall for seizure activity is
99% and for non-seizure activity is 86%. The F1-score for non-seizure
activity is 98 and 92% for seizure activity. This experiments test
instances (support) are 2,753 for non-seizure activity and 697 for
seizure activity.

TABLE 2 Performance evaluation of non-seizure and seizure activity with
a 70-30 ratio.

F1-
score
(%)

Recall
(%)

Precision
(%)

Class
label

Accuracy Support
(%)

Figure 5C shows the ROC curve that represents the trade-off 0 98 97 99 97 2753
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Model training and testing with a 70:30 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.
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5.6 Results with 60% training and 40% test
sets

In this subsection, the experiment uses 60% of the dataset for
training the model and 40% for the models’ test. The obtained
results are presented in Figure 6. The confusion matrix is given in
Figure 6A. It shows that 3,670 instances are classified as true
positives, 21 instances are classified as false positives, 131 instances
are classified as false negatives, and 778 instances are classified as
true negatives. Figure 6B visualizes the model accuracy rates during
the training process, which are above 99% for training accuracy and
between 96 and 97% for testing accuracy. Figure 6C shows the ROC
of the model at different numbers of true and false positive rates for
the splitting data with a 60:40 ratio. For model loss, Figure 6D
shows that the testing loss varies from 15 to 25% and from 0 to 5%
for the training loss.

The efficiency of the model can be assessed by the values of
precision, recall, F1-score, and accuracy shown in Table 3. The
accuracy of the developed model is 96% for classifying both
activities, while the precision for non-seizure activity is 97 and 96%
for seizure. The recall for non-seizure is 99 and 88% for seizure

10.3389/fmed.2024.1405848

5.7 Results with 50% training and 50%
testing sets

Figure 7 presents the model’s results trained on 50% of the dataset
and tested on the remaining 50%. In Figure 7A, the confusion matrix
shows that the number of true positives is 4,561 and the number of
false positives is 37, measuring the model’s ability to predict the
non-seizure activity truly. The false negative and true negative
instances in the confusion matrix, which are 152 and 1,000, mean that
the model can predict 152 cases from 1,152 as they have non-seizure
activity, but actually, they have seizure activity. Similarly, the model
can predict 1,000 instances as they have had seizure activity since
1,152, and they have had seizure activity. The accuracy of training and
testing during the training phase are given in Figure 7B. It shows the
model’s accuracy fluctuation from 0 to 100 epochs. The same is true

TABLE 3 Performance evaluation of non-seizure and seizure activity with
a 60:40 ratio.

F1-
score
(%)

Recall
(VA

Precision
(%)

Class
label

Accuracy Support

(%)

. ) e . o
activity. The Fl-score for non-seizure activity is 96 and 91% for o % o7 9 9% 3,663
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Model training and testing with a 60:40 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.
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for the models loss, which is given in Figure 7D. Figure 7C shows the
ROC of the model at different numbers of true and false positive rates
for the splitting data with a 50:50 ratio.

The results of precision, recall, F1-score, and accuracy are listed in
Table 4. It illustrates the effectiveness of the model. We can see that the
precision for non-seizure activity is 98% and for seizure is 94%, the
recall for non-seizure is 98%, and for seizure is 87%, and the F1-score
for non-seizure is 94 and 94% for seizure. The number of test instances
(support) is 4,598 for non-seizures and 1,152 for seizure activity. The
results of evaluation metrics for the model in overall splitting ratios
are presented in Table 5.

5.8 10-fold cross validation

A 10-fold cross-validation technique is applied to the whole
dataset to evaluate the model’s performance further, as shown in
Figure 8. The total number of instances in the dataset is 11,500. It is
divided into 10 equal parts for the 10-fold cross-validation. In each
part, 1150 instances are used to test the model. The obtained results
are introduced in this subsection. Figure 8 illustrates the strategy of a
10-fold cross-validation technique for splitting the data for training
and validation sets.

In Table 6, we present a comparison of different models’ accuracy
results using the holdout and 10-fold cross-validation techniques. As

10.3389/fmed.2024.1405848

we can see, the lowest accuracies are for the logistic regression model,
which is 82.5% using a holdout technique, and 80.1% using a 10-fold
cross-validation technique, while the highest accuracies are for the
proposed model, which is 97% using a holdout technique and 95.5%
using a 10-fold cross-validation technique. Also, we can notice that
the accuracy of different models using a holdout technique is slightly
higher compared to a 10-fold validation technique.

Table 7 compares different models’ F1-score results using the
holdout and 10-fold cross-validation techniques. As we can see, the
lowest F1-scores are for the logistic regression model, with 81.5%
using a holdout technique and 80.1% using a 10-fold cross-validation
technique, while the highest F1-scores are for the proposed model,
which is 93% using a holdout technique and 90.5% using a 10-fold
cross-validation technique. Also, we can notice that the F1-score of
different models using a holdout technique is a little bit higher when
compared with a 10-fold validation technique.

TABLE 4 Performance evaluation of non-seizure and seizure activity with
a 50-50 ratio.
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TABLE 5 Overall performance of the model with different ratios.

10.3389/fmed.2024.1405848

Training Testing F1-score (%) Precision (%) Recall (%) Accuracy (%)
80% 20% 93 98 88 97
70% 30% 92 98 86 97
60% 40% 91 % 88 9%
50% 50% 90 9% 87 95
>
>
>
e —  —
Train Validation tee
Test Split Split
>
10 Fold
Cross Validation
FIGURE 8
A 10-fold cross-validation technique.

TABLE 6 Accuracy of different models using the holdout and 10-fold
cross-validation techniques.

TABLE 7 Fl-score of different models using the holdout and 10-fold
cross-validation techniques.

Accuracy of Accuracy of 10- F1-score of F1-score of 10-

holdout fold validation holdout fold validation

technique (%) technique (%) technique (%) technique (%)
ANN 95.7 93.4 ANN 923 90.4
Naive Bayes 95 94.3 Naive Bayes 89.2 87.3
KNN 93.1 91.6 KNN 90 91.6
Logistic regression 82.5 80.1 Logistic regression 81.5 80.1
DNN 97 95.5 DNN 93 90.5

Similarly, in Table 8, we compare the precision results of different
models using the holdout and 10-fold cross-validation techniques. As
we can see, the lowest precisions are for the logistic regression model,
with 81.5% using a holdout technique, and 80.1% using a 10-fold
cross-validation technique, while the highest precisions are for the
proposed model, with 93% using a holdout technique and 90.5% using
a 10-fold cross-validation technique. Also, we can notice that the
precision of different models using a holdout technique is slightly
higher compared to a 10-fold validation technique.

Figure 9 shows the receiver operator characteristic curve (ROC).
The orange curve indicates the ROC of the proposed model using a
holdout technique. It is shown that when the true positive rate is 0.9,
the false positive is 0.0, and when the true positive is 0.93, the false
positive is 1.0. The blue curve represents the ROC of the proposed
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model using a 10-fold cross-validation technique. It is 0.0 when it
starts, but when the curve reaches 0.8, the graph achieves a rate of
0.98. The ROC curve presents how well the model can differentiate
among positive and negative classes by plotting the true positive rate
against the false positive rate at several thresholds. The performance
of the model is summarized by a single value by the area under the
ROC curve (AUC). When the cost of false positives and false negatives
fluctuates, the ROC curve provides a balanced assessment of the
model’s performance by taking into account both true positive and
false positive rates.

Figures 10, 11 show the proposed model’s loss and accuracy using
a 10-fold cross-validation technique. The error or model loss graph
indicates the overall loss of 10-fold cross-validation during testing and
training. In the case of testing, the loss is 0.16% at the first epoch, and
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TABLE 8 The precision of different models using the holdout and 10-fold
cross-validation techniques.

Precision of Precision of 10-
Holdout fold Validation
Technique (%) Technique (%)

ANN 95 93.4
Naive Bayes 96.4 94.3
KNN 92 91.6
Logistic regression 85.1 83.5
DNN 98 95.5
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FIGURE 9

ROC of the proposed model using a holdout and a 10-fold cross-
validation technique.

it goes higher at 50 and 100 epochs. The loss is 0.23%. For training, the
loss is 0.03% on the first epoch and goes higher on the epoch number
40; when it reaches the epoch number 100, the loss is 0.01%.

The accuracy graph for the training of 10-fold cross-validation is
shown above as it can be seen that the graph started from 90%
accuracy on 0 epoch and remained almost the same at 90 epoch, but
an abrupt increase in accuracy can be seen after 90 epoch and achieve
93% accuracy. The accuracy graph for testing of 10-fold cross-
validation in which the graph fluctuates between 65 and 100%.

6 Discussion

The present study aims to achieve high accuracy by using a
numerical data set for our model. The model is trained and tested
using different dataset ratios for the best results. Before this study,
most of the previous methods used image data sets to execute their
research work, but in this study, historical numerical data was
employed, which is not complex compared to other methods.
Furthermore, a binary classifier (non-seizure or seizure) is used,
which does not predefine more specific seizure categories to provide
a more generalizable classifier. The DNN algorithm has more than one
hidden layer between the input and output layers; the data will
be passed through these hidden layers’ functions, in which the
function applies weights to the inputs and sends them as the output
using an activation function. The activation function used in this
study is Sigmoid.
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A 10-fold cross-validation accuracy.

TABLE 9 Accuracy (%) comparison results in the percentage of the
proposed DNN model with the other models at different splitting ratios.

80-20% 70-30% 60-40% 50-50%
ANN 95.7 95 94 92
Naive Bayes 95 94 93 915
KNN 93 92.5 91.5 91
Logistic 82.5 82 81 80
regression
DNN 97 97 96.5 95

7 Comparative analysis

This section will compare the proposed model with the other
machine learning approaches concerning accuracy, precision,
Fl-score, and recall. The comparison of machine learning
models with different training and testing ratios, i.e., 80-20%,
70-30%, 60, —40%, and 50-50%, will be done through graphs
and tables.
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FIGURE 12
Visualization of accuracy comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

TABLE 10 F1-score (%) comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.

80-20% 70-30% 60-40% 50-50%
ANN 92 91 90 90
Naive Bayes 89 87 85 85
KNN 90 88 86 86
Logistic regression 81 79 77 76
DNN 93 92 91 90
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FIGURE 13
Visualization of F1-score comparison results in percentage of proposed DNN model with other models at different splitting ratios.

7.1 Accuracy Bayes, using different splitting ratios as given in Table 9 and visualized
in Figure 12. We can see that the proposed DNN model achieves the

The accuracy of the proposed DNN model is compared with the  highest accuracy result compared to other models. Despite a general
other models, such as Logistic regression, KNN, ANN, and Naive  decline in accuracy across all models when the training data is
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reduced, the DNN model exhibits notable resilience, maintaining
comparatively high accuracy even with a balanced 50-50 data split.
This suggests that the DNN model is capable of delivering strong
performance even with a smaller amount of training data.

7.2 Fl1-score

The F1-score of the proposed DNN model is compared with the
other models, such as Logistic regression, KNN, ANN, and Naive
Bayes, using different splitting ratios as given in Table 10 and
visualized in Figure 13. Logistic Regression consistently shows the
lowest F1-scores for all data splits, indicating its limited effectiveness
for this task. On the other hand, while ANN, KNN, and Naive Bayes
deliver decent results, they still fall short compared to the performance
achieved by the DNN model.

7.3 Precision

We examine the precision of the proposed Deep Neural
Network (DNN) model in contrast to several established models:
Artificial Neural Network (ANN),
Neighbors (KNN), and Logistic Regression. This evaluation

Naive Bayes, K-Nearest

encompasses various data splitting ratios, including 80-20%,
70-30%, 60-40%, and 50-50%.as shown in Table 11 and Figure 14.
The values will be changed when the training and testing data ratios
are changed.

10.3389/fmed.2024.1405848

74 Recall

In this section, we investigate the recall capabilities of the
proposed Deep Neural Network (DNN) model when compared to
alternative models across diverse data splitting ratios. The outcomes
are illustrated in Table 12 and Figure 15. Recall assesses a model’s
proficiency in correctly recognizing all pertinent instances among the
total relevant instances. As we manipulate the proportions between
training and testing datasets, the figures in the table will
adapt accordingly.

8 Conclusion

The primary objective of this study is to optimize the accuracy and
performance of our research outcomes. To accomplish this, we have
employed a sophisticated deep neural network (DNN) algorithm
while systematically manipulating the ratios of training and testing
datasets to discern optimal results. The results showed substantial
advancements over previous research endeavors, boasting a
remarkable 97% accuracy rate, a precision rate of 98%, an F1-score of
92%, and a recall rate of 80%. Furthermore, our commitment to robust
validation methodologies is evident in applying a rigorous 10-fold
cross-validation technique designed to further enhance the model’s
performance and bolster its reliability across the dataset. Integrating
EEG data with other physiological measurements, such as heart rate
and movement data, may enhance the accuracy of seizure detection.
Future research could investigate methods for combining these diverse

TABLE 11 Precision (%) comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.

80-20% 70-30% 60-40% 50-50%
ANN 95 92 91 91
Naive Bayes 96 95 85 85
KNN 92 93 90 89
Logistic regression 85 83 83 80
DNN 98 97 95 90
m80%-20% m70%-30% m60%-40% 50%-50%
120
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I
100 o aa RS t
0 cx) 22
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20
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ANN Naive Bayes KNN Logistic
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FIGURE 14
Visualization of precision comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.
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TABLE 12 Recall (%) comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

Model 80-20% 70-30% 60-40% 50-50%
ANN 84 84 83 81
Naive Bayes 87 85 83 82
KNN 84 82 80 79
Logistic regression 86 84 82 80
DNN 88 86 88 87
m80%-20% m70%-30% m60%-40% 50%-50%
90 )
™~ 0 0 N
88 0 © © m O
" 00 3]
86 < < 0 < <
00 00 . 0 0
84 o0 O~ ~ N
- 00 00 00
82 0 o o
® g 3]

80 ™~
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74
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FIGURE 15
Visualization of recall comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

data types to utilize the unique benefits of each. Additionally
combining the seizure detection system with electronic health records
to enhance patient history tracking and care management could also
be Upcoming research.
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In the Internet of Things (IoT) healthcare sector, the wireless body area network
(WBAN) is being used to optimize medical results by tracking and treating patients
as they go about their daily lives. Health insurance has also been one of the
cybercriminal's main goals. The Systematic Review of |oT Healthcare systems
particularly wireless body area networks is significant, to reach the benefits
and challenges faced by existing methods in the domain. This study provides
a systematic survey of WBAN data protection. Various types of devices are used
in medical science to detect and diagnose diseases. The network is an integral
part of medical science in today’s era. In medical sciences, sensors take data
from a problematic place like cancerous cells. This research discussed a lot
of techniques in the literature review. Most of them are not able to fulfill the
requirements. If an unauthorized person reaches the data that can be a severe
issue, like the diagnosed disease was blood cancer, and after unauthorized
access manipulation can change even the diagnosed issue in the database. A
doctor can prescribe the medication based on provided data that has been
manipulated by unauthorized persons. Several existing schemes are explored in
the literature to determine how the protection of sharing patients’ healthcare
data can be improved. The systematic literature review (SLR) of multiple security
schemes for WBAN is presented in this survey paper.

KEYWORDS

WBAN, data security, encryption decryption, SLR, healthcare

1 Introduction

The security of WBAN (1) is essential and should not be forgotten. It is confidential,
sensitive medical information and must be shielded from unauthorized persons who
can use details that may be harmful to the person (2). By using WBAN with the
use of various varieties of sensors to track the patients to detect any life-threatening
diseases healthcare applications are enhanced. This technology aims to increase the
quality of medical services delivered and reduce certain related costs. BAN has a broad
spectrum of applications, like tracking the medical conditions of patients and optimizing
their response to clinical guidelines, but protection and privacy are some of the main
concerns in BAN-based healthcare systems at the same time medical data must be
kept protected from risk factors and hackers during storage and transmission (3, 4).
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The existing literature discusses data privacy and protection (5, 6),
but it doesn’t go into depth about the SLR and the requirements
for collecting data. There is a lot of literature on security strategies,
but it isn’t focused on security research. This study used three
different Databases including IEEE, ACM, and Springers. The
existing literature discusses data privacy and protection, but it
doesn’t go into depth about the SLR and the requirements for
collecting data. There is a lot of literature on security strategies, but
itisn’t focused on security research. This study used three different
Databases including IEEE, ACM, and Springers. Develop a string
by using the objective of all papers and then used 3 synonyms
of each keyword in the string. This research discussed inclusion
criteria in which we have two parts one is included and another
is excluded (not included). The thesis, newspaper, books and are
not included in the inclusion criteria and title-based, abstract-
based, and objective-based research papers are included. After that
design, this study performs objective-based filtering and abstract-
based filtering. Aim objectives and methodologies of each paper are
discussed below. And also provide critical analysis. The conclusion
of this research is to provide an efficient way for data security
in WBAN. Privacy in WBAN is important and should not be
forgotten. Medical data is important and must be shielded from
unauthorized access. The motivation is to compile and research
papers that deal with security issues in depth. In this research papers
were identified after an extensive search using strings in different
databases. The papers were then screened using title and abstract-
based evaluations to determine if the study was appropriate or not.
We present the comparative analysis of data in tabular form in
this section. The study concluded that WBAN is a more effective
approach to exchanging data between doctors and patients by
doing this survey. In Table 1, existing surveys on data security in
WBAN are discussed. This shows the strength of this survey paper
with already existing survey papers using the comparison method.
Compare all survey papers in terms of communication cost, energy
consumption, storage, etc.

1.1 Motivation of the study

The existing literature discusses data privacy and protection,
but it doesn’t go into depth about the SLR and the requirements
for collecting data. Many methods for improving technical
efficiency have already been established in this area, but current
work required more accuracy. Another relevant and high-
quality SLR survey has been rationalized, but it used a limited
amount of established literature, which could impact methodology
comparisons. Additionally, a systematic analysis is based on
comparing and highlighting study gaps; however, this survey
does not include many details regarding current WBAN literature
schemes. The research conducts a systematic literature review,
which is used to support the proposed SLR in the survey. The major
contributions of this study are as follows:

1. To create a taxonomy that covers the security encryption
techniques that are required in the WBAN setting. Existing work
has been addressed in depth in each section of the taxonomy to
address a variety of issues, including time, cost, and predicting
network attacks.
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2. From 2017 to 2024, we followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (RISMA) flow chart
to search the literature, delete duplicate information, screen,
exclude, and include articles.

3. SLR can be used for very relevant schemes that concentrate on
protecting healthcare data by preventing security threats while
using less memory.

4. To encourage researchers to provide effective solutions to
problems, a security review with criticism is performed.

The rest of the paper is arranged as follows. Section 1 presents
the introduction to WBAN. Section 2 shows the Systematic
literature review (SLR). Section 3 shows the Detailed Literature
Review and Section 4 concludes this work.

2 Systematic literature review

This study chose a year range(2017-2024), selected three
synonyms for each string keyword, searched three databases (ACM,
Springer, IEEE), and then conducted random searches against
strings. This research created a string containing all of the papers’
objectives and then utilized three synonyms for each keyword
in the string. Then this research talked about inclusion criteria,
where one component is included and the other is excluded (not
included). The thesis, newspaper, books and are not included in
the inclusion criteria, and title-based, abstract-based, and objective-
based research papers are included.

2.1 Research selection procedure

The PRISMA (23) flow chart in Figure 1 demonstrates our
survey’s systematic review procedure. In the selection process,
research papers from the years 2017 to 2024 are included.
Currently, 130 papers are being considered. publications that
fulfill the study criteria are selected after searching for similar
publications in various databases. During an initial review, 75
papers were shortlisted, and 30 relevant articles that met the
requirements were included in the survey.

2.1.1 Detailed literature review

WBAN is a multifaceted network that includes a variety of
sensor hubs that track and relay data in real-time in a variety of
situations. Sensor nodes collect vital information and send it to
a medical server for further analysis. Since data includes highly
confidential and important patient information, data security
and safety is a critical challenge. WBAN information security is
being investigated over a long period, from 2017 to 2024. This
research literature focuses on various schemes such as SHA (Secure
Hashing Algorithm), AES(Advanced Encryption Standards), and
many others.

2.1.2 AES based schemes
This research papers (11, 24) goal is to build and apply
a safe end-to-end PMS by focusing on the secure wireless

frontiersin.org


https://doi.org/10.3389/fmed.2024.1422911
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Jian et al.

TABLE 1 Overview of existing research.

References

Objective

Techniques

10.3389/fmed.2024.1422911

Criticism

channel information to eliminate the need for
additional hardware requirements.

Indicator).

Rehman et al. (7) 2020 The specification for storage, the cost of Internet protection protocol The lack of usability features, and different
computing and communication, time, and and automatic validation routing threats, like a privileged insider, user,
cost computational. (AVISPA) platform. and server impersonation, do not provide an

effective password change point.

Jabeen et al. (8) 2020 Complexity of time, key generation Novel data protection AES also has disadvantages, like high cost of
development, computational time algorithm genetic-based encryption calculation for hardware, large in size, use of
for encryption. scheme, AES. CPUs.

Hasan et al. (9) 2020 Reliability, Trust, provide less cost and time. - Execute more slowly, The more complicated

mathematical model.

Jabeen et al. (8) 2020 The study examines a variety of current -
strategies to determine how patient health
data protection can be improved.

Parvez et al. (10) 2019 Electronic health records (EHR) systems Electronic Healthcare Changes in workflow temporary loss of
handle the internet’s most private Repository (EHR). productivity.
information, improve security.

Chowdhury et al. 2018 Portable support in the form of consuming AES, MQTT AES also has disadvantages, like high costs of

(11) minimum energy consumption creates a computation, and high specification for
larger framework for a PMS end-to-end safe hardware. More difficult, wide footprint, use of
communication way for different CPUs, high storage and power.
medications.

Shanthapriya and 2018 Integrity, reliability, medical privacy, and The polynomial curve and the | The key concept behind these strategies is that

Vaithianathan (12) security. Steganography technique are without being found, edges will bear more

generated. variation than smooth areas.

Braham et al. (4) 2018 The energy-efficient system, energy-efficient - No formal syntax or semantic logic is restricted
protection protocol, reducing the cost of to authentication protocol analysis. Does not
healthcare. have proper encryption accounts.

Malik et al. (13) 2018 Resolving variously defined gaps in storage Internet protection protocol Lack of functionality features various known
requirements, enhancing privacy, improving and application automatic attacks, such as privileged insider, user, and
security. validation (AVISPA) platform. | server impersonation, do not include.

Anwar et al. (14) 2018 - AES and MQTT Theoretically, file-type attacks are successful
DOS, IoT attacks are not suitable for
high-complexity sensor networks.

Roy etal. (15) 2017 - AES, ECC The implementation of AES and ECC is
challenging. Complex, time-consuming, and
hard to execute.

Hasan et al. (9) 2020 Achieve high throughputs and low latncy for SDN (Software-defined Vulnerabilities in security, inconsistency

emergency traffic. Networking) SDESW’s flow demands rise as the network
becomes more complex.

Ren et al. (16) 2019 only the designated person has access to the DVSSA Complexity and Time Consumption.
user’ data.

Zhang and Ma (17) 2018 Improve user privacy at a low cost. A security mechanism that is It takes a long time to authenticate each node.

aware of the channel

Shanmugavadivel 2021 In a cloud environment improve data AES, Genetic Algorithm for High complexity.

etal. (18) security using the AES. Task Flow Scheduling.

Singh and Prasad 2021 Provide detailed study of different systems -

(19) and protocols for dealing with energy
efficiency and security.

Soni and Singh 2021 Lower execution cost, calculation time, and LAKA Lightweight Higher power consumption.

(20) power consumption when compared to other | Authentication and Key
protocols. Agreement Protocol.

Sandhu and Malik 2020 The goal of this article is to efficiently PAP(Priority aware protocol) As the priority level rises, so does the amount of

21) transmit data based on the priority of the energy expended.
data.

Lietal. (22) 2017 The goal of this article is to use physical RSSI(Received Signal Strength | An algorithm is difficult to implement because it

is complex.
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= # Searching records from Google # Searching IEEE Xplore records
3 Scholar (n=193) (n=150)
¥: # Records after duplicates are deleted (n=130)
5
# Records were reviewed. #Records excluded
(n=130) (n=3%)
@ # Articles evaluated for eligibility ; # Articles excluded with reasons
i (n=75) (n=43)
-(3) Insufficient presentation of methods
and data sets
-(6) Used hybrid models
-(3) Evaluation metrics not mentioned
B -(2) Abstract
! # Articles included in qualitative synthetic review -(1) Not in English
S (n=30) -(1) other models than WBAN
FIGURE 1
The PRISMA flow diagram depicts the procedure by which we searched the literature, removed duplicate records, screened, excluded, and included
articles in our systematic review.

connection gateway sensors with a lightweight encryption protocol
that consumes minimal power. The research goal should be to
provide protection and authorization processes to ensure that
during the entire communication route, the data is not disclosed
to an external observer nor damaged by a malicious sensor
inside or in the vicinity of the WBAN. Lightweight encryption
protocol, low energy consumption, a wider system for different
medications, and an end-to-end safe communication network
for a PMS are some of the key objectives of this study. The
wireless body area network (WBAN) which is also used to
capture the sensitive medical information of the patients is
the access network of the users through a server in which
the data of the patients is processed. In comparison to the
literature approaches, the research work (8) aims to have less
computational time complexity and a cost-effective genetic-based
algorithm. This method also introduces a new algorithm for a
key generation that has fewer steps and fewer computational
methods. After generating the patient’s data, the genetic-based
lightweight encryption algorithm was applied over the nanosensors

Frontiersin Medicine

units. Genetic-based light encryption algorithm applied after
producing the data of patients and over nanosensors devices. The
encrypted information is then transmitted to the server, which
further transforms it through a wireless network. Patients can
also be tested with remote medical nanosensors nowadays, also
for the collection of ongoing patients records, WBAN includes
connected small sensors that are distributed via the networks for
further processing. Cloud-based WBAN has recently gotten a lot
of interest, but the cloud has many disadvantages in terms of
data management and security. Consider these issues using the
Advanced Encryption Standard (AES) and the Genetic Algorithm,
this (Shanmugavadive) research provides improved data security
and efficient task flow scheduling (GA). WBAN should address
two critical criteria to deliver reliable services data security and
privacy.Fake data and information in medical records can lead
to major problems. If a person alters the values of gathered
information and the physician prescribes medication based on the
changed information, significant health problems and even death
might occur (18).
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2.1.3 Data authentication

An essential component of Wireless Body Area Networks
(WBAN) security and privacy protocols is the authentication
of sensitive health-related data transmitted through the
network. It is essential that both WBAN nodes have data
authentication, and the coordinator must be able to confirm
that the data is being sent from a reliable source and not
a fraudster. Symmetric approaches, which generate the
MAC (Message Authentication Code) of the whole set of
data using a shared key, are used to verify the source of the
data (25).

2.1.4 Data authorization

A user’s identity, role, or permissions determine which data
or resources they can access or cannot access. This process is
known as data authorization. It involves verifying users’ identities
and figuring out if they are authorized to view, edit, or remove
data (25).

2.1.5 Block cipher based schemes

This research work (7) aims to defend from various known
cyberattacks, in particular, the vulnerability attack also on the base
station and the dos attacks on the sensor node. These research
findings and safety review show that in terms of storage needs,
computing, and communication costs, the suggested improved
system has overcome various established gaps. The goal of this
paper is to establish a framework for safeguarding patients” health
data from all safety difficulties. Requirements for storage, cost
of computing and connectivity, time, and cost of computing.
The suggested security system demonstrates its effectiveness in
protecting against various known cyber-attacks, especially the
compromise attack on the base station and the doc attacks on
the sensor node. This paper’s (15) goal is to propose a cost-
effective framework that prevents unauthorized attackers from
removing data packets or forwarding false data. This paper’s
goal is to present novel data protection mechanisms for WBAN
that are capable of detecting getting into trouble relay nodes or
links. The process refers to the routing algorithm for AOVD.
The non-homogenous pattern of Poisson is used here to describe
the possibility of malicious actions. The protection does not add
any new packets of controls. To access performance, SLR on
AODV is simulated and the results are compared with AODV.
At a low cost, it is used to detect harmful intruders. The
wireless body area networks (WBAN) are common options for
a wide variety of health, sports activities, and recovery current
study applications. In providing secure identification using an
encryption mechanism, some existing WBAN routing protocols
can be found, but they do not provide a lightweight communication
solution. An energy-efficient framework is proposed in this
paper that stops unauthorized intruders by dropping data
packets or forwarding fake data. While it can communicate
with any other reactive WBAN routing algorithm, the algorithm
can be applied on the Adhoc On-demand distance-vector
machine (AODV) protocol. In detecting malicious nodes with
minimal latency, the protocol is simulated and results show its
effectiveness.
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2.1.6 ZigBee

This research paper (13) first gives an overview of WBAN,
how it was used for medical surveillance, then highlights its
design, significant security, and privacy specifications, and attacks
on specific network layers in a WBAN, and finally talks about
different encryption protocols and laws to provide WBAN data
protection solutions. Provides WBAN protections sensors are used
to capture a patient’s confidential and valuable medical data, are
they may even be used in sports. WBANs connect with the device
and other applications such as ZigBee, WI-FI, cellular networks,
and applications for the wireless personal area network (WPAN).
The wireless body area network is a series of wireless sensors that
can be mounted in or out of the body of the human or living
person, thus detecting or tracking the body’s functions and adjacent
circumstances.

2.1.7 BAN detection

This paper (4) aims to review BAN communication standards,
security risks, and BAN-based applications weaknesses, as well
as current privacy and security processes. Privacy and security
problems and the internet technology used in a BAN are outlined in
the report. This technology aims to increase the quality of medical
services rendered and reduce certain related costs. BAN has a wide
variety of uses, such as tracking the health conditions of patients
and optimizing the response to treatment plans, but protection
and safety are among the main concerns in BAN-based healthcare
systems at the same time, as medical data must be kept protected
from adverse reactions and threats during stroke and transmission.
Reducing healthcare cost, and energy-efficient climate, protocols
for energy-efficient protection. Many studies have shown that if
diseases are identified in their initial phases, there is a way to detect
them.

2.1.8 Hashing algorithm

This paper (14) aims to design Safe hashing algorithms (SHA)
and encryption techniques used in research reviews to make data
transfer more secure and efficient (14). It creates digital signatures
using a hash method to move patient data more stably and
authentically. This proposed algorithm makes use of an asymmetric
key generation technique, which uses a pair of public and private
keys, making the algorithms slow and more complex. Protecting
Data Communication in WBAN through Digital Signatures, the
proposed technique is based on a combination of different methods
for securing data in WBAN by using protected keys and digital
signatures. BNC digitally signs each data packet to SK and sends
it to all sensor nodes in the network. WBAN (Wireless Body Area
Network) is a special form of sensor network that connects patients
with medical service providers via the Internet to exchange crucial
health data. WBAN offers several advantages, including location-
independent monitoring, no influence on patients movement,
early illness diagnosis and prevention, remote patient support, and
so on. To ensure security, researchers have proposed several health
data transmission techniques. The author (Soni) proposes a low-
cost health authentication and key agreement technique that is
both secure and lightweight. The suggested protocol uses a one-
way hashing algorithm (SHA-256), and the National Institute of
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Standards and Technology (NIST) has determined that it is safe
against the polynomial-time method (20).

2.1.9 Multiple scheme

Mehmood et al. (26) aims to design a framework for the
portable authentication process and session key arrangement
between sensor nodes and health professionals that discuss both
patterns of communication. The safety review shows that required
security features are maintained. The purpose of this paper is
to implement lightweight user security mechanisms that facilitate
internal and external information exchange to build a safe session
key between a health professional and a particular sensor node
linked to the body of the patient. In the future, the scheme will
be applied in an actual system in which the sensor nodes mostly
on the patients body communicate with mobile devices, cloud
services, authentic gateway, and health professionals. The wireless
body area network (WBAN) is also an IOT-based health service
that greatly improves health treatment by allowing patients’ health
conditions to be tracked remotely. This paper (12) aim is an attempt
to examine that IOT based WBAN security infrastructure on a base
of the main security agreement scheme. Key encryption techniques
are extremely inefficient in terms of computing, processing, and
energy usage. In tier 1 of WBAN, this paper mainly focuses on
various primary agreement frameworks. Four different groups
separate the private key agreement schemes, conventional key
framework, physiological key strategy, hybrid scheme, and private
key agreement strategy. The Internet of things (IoT) (27) is one
of the newest technologies these days that has consumed a lot
of possibilities. Wireless body area network (WBAN) also is such
emerging field that provides a remote ability to prevent and collect
patients’ health data using IoT based wearable biosensors. In IoT
devices that are extremely resources constraints, their architectures
are discovered to be ineffective. This study is an attempt to
examine the IoT-based. The goal of this paper (12) is to create
a polynomial-based curve for a safe system that helps the patient
with dignity, authenticity, confidentiality, and privacy. An attacker
can access the medical data of the patients that are stored in
the controller or hack the data while communicating through
wireless communication, without any of the patient’s permission.
An attacker can alter the message produced within the BAN
before they are transmitted to a receiver (such as location, layout,
quality, query, etc.) or change the communication content being
transferred from the BAN to an external entity(e.g doctor). Farooq
et al. (28) proposed a method to secure physical layer (PHY)
transmission. This approach encrypts data without requiring the
keys. Physical Layer Security The sensor nodes in multi-hop WBAN
use the MTFG (Multi-Hop Topology Formation Game) algorithm
to create a spanning tree for multi-hop communication in the
uplink of the WBAN. This algorithm can be implemented in
a distributed manner, among each sensor being aware of the
presence of its neighbors to choose the best direction. The system’s
performance is evaluated in a variety of situations, and the results
show that the suggested scheme has the best performance, which
can be tailored to meet the competing needs of protection and
latency for different applications. This article offers software-
defined networking (SDN)-based WBAN (SDWBAN) architecture
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for application-specific traffic control to address these challenges.
The suggested system achieves high throughput and low latency
for emergency traffic in SDWBANS, according to the results of
the paper’s experiments. The objective of this paper is a scalable
and adaptable SDWBAN framework that allows for dynamic
network control as the number of apps on the network grows
(traffic management) (9). WBAN is a sensor network with nodes
that may be attached outside or within the body. Priority aware
protocol (PAP) was proposed in this (Sandhu) paper to deal
with smart healthcare systems. PAP is made up of three primary
components: sensor, controller, and medical server. The sensor
module detects the data, assigns a dynamic priority to the data
packet based on the estimated values, and then delivers it to the
controller unit according to the data packet’s determined priority.
The major goal of this article is to send data from a node to
a coordinator node and then to a patient database in a timely
and reliable manner (21). Radio waves on the receiving end are
used to calculate the (RSSI). RSSI used 128 bits of size for data.
Implementation of RSSI is complex and requires high memory.
The restricted data density of RSSI-based key generation and
agreement is a major problem. Unlike them, the research presents a
physical layer-based security strategy in this work that uses physical
channel information and eliminates the need for additional
hardware (22).

2.1.10 Blockchain

WBAN provides a quick approach to gathering patient data,
but they also introduces severe issues, the most important
of which is the secure storage of the data obtained. WBAN
devices data storage and data security do not fulfill the
demands of WBAN customers. As a result, the (Ren) paper
uses a blockchain database to collect data, which increases
the datas security. In addition, the research paper solution
proposes a blockchain-based storage architecture for WBAN. The
blockchain’s storage space is limited, and the data it stores is
exposed to unwanted access. To address these issues, the article
presented a sequential aggregate signature method with a specified
verifier (DVSSA), which ensures that a user’s data may only
be read by the authorized person and protects WBAN users’
privacy (16).

2.1.11 Characteristic of the channel

The essential component of many telemedicine applications,
such as customized medicine and home-based smartphone apps
is a wireless body area network (WBAN) that uses wireless media
to offer data transfer services. WBAN is an important field that is
used to transmit patients related important information. Because
of the wide accessibility of media in WBAN, malicious tapping or
tampering attacks can readily occur, stealing personal information
or introducing incorrect data. To avoid this type of attack (Zhang)
proposed a mechanism that is used to channel characteristic aware
privacy protection method for WBAN is suggested to improve
user privacy at a relatively low cost and with great flexibility.
Tempering attacks, malicious node attacks, and inserting fake data
attacks may all be possible as a result of the great accessibility
of resources.
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2.1.12 Survey scheme

The systematic literature review (SLR) of multiple protection
schemes for WBAN is presented in this survey paper. The study
came up with a research question to look at the possibilities of
multiple attacks while keeping memory constraints in mind. The
study used quality valuation to ensure that the schemes were
relevant to the research question. Furthermore, the schemes are
examined from 2016 to 2020 to concentrate on recent work. Several
current systems are investigated in the literature to determine how
the protection of sharing patients” healthcare data can be improved.
The study degree of confidence and satisfaction required by patients
(29). Also examines the protection of various attack scenarios.
The efficient transmission of data over a wireless channel may be
disrupted by a variety of attacks (29). Existing studies include an
overview of data protection in the medical environment, but the
research concentrated on data security schemes in WBAN that
reduce various attacks to provide the degree of confidence and
satisfaction required by patients (29). WBAN is highly beneficial
in today’s environment, but it faces a variety of issues that must
be overcome before it can be used. This (Singh) research considers
different systems and protocols for dealing with energy efficiency,
security, and privacy in depth. WBAN is a type of Wireless Sensor
Network that comprises tiny bio-medical types of equipment
known as nodes that are dedicated to guaranteeing continuously
patient monitoring based on certain essential criteria. Because
of its benefits, including portability, flexibility, and simplicity of
patient monitoring, smart healthcare has gotten a lot of attention.
WBAN is made up of a variety of heterogeneous devices, thus
the amount of data and bandwidth required varies depending on
their characteristics (19). First, the research discussed the article
title, year, and references in this research Table 1. Then discuss the
objective of each paper and also the technique or methodology.
Finally, critical analyses were discussed for each of them. Gathered
a variety of literary techniques to give us the ability to come up
with new ways to defend against attacks that are vulnerable to
the schemes. Because of their complex algorithms, the majority
of research methods are time and cost-intensive. AES is difficult
to implement on software in a way that is both fast. Table 2
compares the security of various schemes in the literature based
on eavesdropping (30), denial of service (DoS) (31), malicious
nodes (32), and execution time and cost. Several schemes have been
proposed in the literature to examine the strengths of these security
mechanisms to reduce attacks in the WBAN scenario.

3 Research gap

The research gaps according to the literature review are
reported here. In the research Papers (7, 13, 29) uses the AES
algorithm and that is a very complex algorithm. AES is a complex
and costly algorithm and not suitable for sensor networks. This
algorithm is complicated to implement. Encryption is difficult with
large key sizes. Furthermore, decrypting data with this algorithm
takes a longer time. And also these schemes are affected by
DOS and IoT-based attacks. In this research paper (22) RSSI
scheme is presented and this algorithm is difficult to implement
because it is complex. In research paper (21) PAP(Priority Aware
Protocol) as the priority level rises, so does the amount of energy
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TABLE 2 Comparative analysis of techniques.

Scheme Time Eavesdropping DOS MN
Chowdhury et al. + + - _
(11

Rehman et al. (7) + - + -
Shanthapriya and - + - +
Vaithianathan (12)

Braham et al. (4) - - - R
Jabeen et al. (8) + - - _
Jabeen et al. (8) - - - +
Mehmood et al. + + - _
(26)

Parvez et al. (10) + - - _
Roy et al. (15) + - + R
Anwar et al. (14) + + - _
Farooq et al. (28) - - + +
Jabeen et al. (29) + + - _
Hasan et al. (9) + - + +
Ren et al. (16) - - - +
Zhang and Ma (17) - + - +
Shanmugavadivel et + - - R
al. (18)

Singh and Prasad + - - B
(19)

Soni and Singh (20) + - - +
Sandhu and Malik + + - _
(1)

Lietal. (22) - - - R

expended. In the paper, Ren et al. (16) DVSSA has proposed it
is a time-consuming and complex technique also data tampering
attack is possible on it. In paper, Roy et al. (15) SDN(Software
Defined Networking) is proposed. This scheme is affected by two
attacks and that is DOS, MINA. Vulnerabilities in security, and
inconsistency SDESW’s flow demands rise as the network becomes
more complex. In this research paper (20) LAKA is presented and
that is increased energy use.

4 Conclusions

The protection of data in WBAN is important and should not
be neglected. WBAN is used for gathering the medical conditions of
patients and is sent to any portable device that is linked to databases
that can store patient details. Because of the critical importance
of the health issue, it must be kept hidden from unauthorized
persons. In addition to highlighting security and privacy problems,
a number of approaches for a WBAN utilizing IoT systems
are thoroughly evaluated. Only a few research methodologies
are considered viable due to the multifaceted nature of WBAN,
and there are some extremely challenging and difficult research
methodologies. This literature focuses on various approaches to
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information security however, only a few are considered to be
superior to others in terms of information security. Various current
strategies are observed in the literature to understand how the
security of patient’s health data is upgraded.
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Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder and the
most prevailing cause of dementia. AD critically disturbs the daily routine, which
usually needs to be detected at its early stage. Unfortunately, AD detection using
magnetic resonance imaging is challenging because of the subtle physiological
variations between normal and AD patients visible on magnetic resonance
imaging.

Methods: To cope with this challenge, we propose a deep convolutional
generative adversarial network (DeepCGAN) for detecting early-stage AD in this
article. The DeepCGAN is an unsupervised generative model that expands the
dataset size in addition to its diversity by utilizing the generative adversarial
network (GAN). The Generator of GAN follows the encoder-decoder framework
and takes cognitive data as inputs, whereas the Discriminator follows a structure
similar to the Generator's encoder. The last dense layer uses a softmax classifier
to detect the labels indicating the AD.

Results: The proposed model attains an accuracy rate of 97.32%, significantly
surpassing recent state-of-the-art models’ performance, including Adaptive
Voting, ResNet, AlexNet, GoogleNet, Deep Neural Networks, and Support Vector
Machines.

Discussion: The DeepCGAN significantly improves early AD detection accuracy
and robustness by enhancing the dataset diversity and leveraging advanced
GAN techniques, leading to better generalization and higher performance
in comparison to traditional and contemporary methods. These results
demonstrate the ecacy of DeepCGAN in enhancing early AD detection, thereby
potentially improving patient outcomes through timely intervention.

KEYWORDS

GAN, CNN, Alzheimer's disease, deep learning, cognitive features

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition primarily affecting the
elderly, characterized by memory, behavioral, and cognitive impairments that disrupt
daily life (1). This devastating disease is projected to have a staggering impact on
global health in the coming decades. Epidemiological studies indicate a disturbing trend,
with expectations of a fourfold surge in the worldwide prevalence of AD by 2050,
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potentially exceeding 100 million cases (2). The impending
prevalence of AD raises critical concerns for individuals, families,
and healthcare systems worldwide. The burden of AD extends
beyond the individual, affecting the very fabric of society. Some
studies employ mathematical modeling to forecast the trends
and growth of AD, considering factors such as increasing life
expectancy, shifting mortality patterns, and the prevalence
of cardiovascular diseases. Unfortunately, these projections
collectively suggest a growing proportion of the population will be
impacted by AD in the future (3).

Detecting AD in its early stages is of paramount importance
for effective intervention and treatment. AD diagnosis is a complex
endeavor, demanding the accurate identification of different
dementia subtypes (4). While the challenges are substantial, recent
research highlights the central role of AD in dementia cases,
constituting approximately two-thirds of all diagnoses (5). One
of the pressing issues in AD management is the lack of effective
pharmacological treatments in clinical practice. This shortfall has
prompted a paradigm shift in therapeutic strategies, emphasizing
the early-stage detection of AD as a promising avenue for
intervention (6, 7). Identifying individuals in the early stages of
cognitive decline or Mild Cognitive Impairment, whether stable
or progressive, is pivotal for understanding high-risk populations
and potentially delaying AD progression. The combination of the
increasing prevalence of AD and the complexity of its diagnosis
underscores the urgent need for advancements in early detection
methods and comprehensive care strategies to address the growing
global challenge of AD.

The AD research landscape has shifted significantly due to deep
learning (DL) models, including stacked auto-encoders, recurrent
neural networks, support vector machines, and convolutional
neural networks (CNN). The bi-directional gated recurrent units
(BiGRUs) layers consist of 2,048 units, with 1,024 units in
each direction. The BiGRUs capture long-term temporal cues
from the cognitive data, which is crucial for identifying patterns
and changes indicative of early AD which have emerged as
potent tools in this endeavor (8). However, limitations exist in
feature quality, especially from image processing (9), requiring DL
models adaptable to diverse data types. Simultaneously, generative
adversarial networks (GANs), (which is a class of machine
learning frameworks where two neural networks, a generator, and
a discriminator, compete against each other to produce more
accurate results) originally designed for images, have found their
place in AD classification (9). DL models with GANSs are proficient
in classifying AD states and enhancing image-based AD tasks,
like denoising images and precise brain segmentation (10, 11).
These advances drive understanding, detection, and treatment
of AD, a pressing neurodegenerative disease. Although, these
architectures have made sufficient advancement in AD detection;
however, these existing AD detection models have primarily
focused on neuroimaging data, resulting in the underutilization
of critical cognitive features. Moreover, temporal information,
which is highly relevant for understanding AD progression, has
been largely neglected in the literature. Additionally, the well-
known challenge of training instability in these models remains a
significant concern.
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Existing models often struggle with limited dataset sizes and
lack diversity, leading to overfitting and poor generalization.
Traditional GAN-based methods, primarily designed for image
data, fail to leverage cognitive data crucial for early AD detection.
This article introduces a groundbreaking method for the early
detection of AD—the deep convolutional generative adversarial
network (DeepCGAN), which is an unsupervised generative model
designed to leverage cognitive (clinical) data for AD detection.
DeepCGAN addresses these issues by using a deep convolutional
GAN framework to expand and diversify the dataset, generating
high-quality synthetic data that improves detection accuracy and
robustness. DeepCGANs generate high-quality synthetic medical
images, crucial for augmenting limited datasets like MRI and PET
scans and enhancing model generalization. They create diverse
synthetic samples, augmenting training data in medical imaging
where labeled data is scarce, improving model performance.
DeepCGANS’ convolutional layers learn complex features for
accurate early Alzheimer’s detection, and their flexibility across
imaging modalities makes them versatile beyond disease detection,
which makes DeepCGANSs a powerful and effective choice for early
AD detection.

To address the aforementioned gaps, the proposed model
effectively incorporates and analyzes cognitive data, offering a more
comprehensive understanding of AD. Also, the proposed model
integrates temporal information using BiGRUs to capture long-
term patterns and introduces mechanisms like gradient penalty
and relativistic average loss to stabilize training, thereby enhancing
the stability and reliability of AD detection with GANs. Operating
through a dual structure, the Generator follows an encoder-
decoder framework that takes cognitive data as input, while the
Discriminator mirrors the architecture of the Generator’s encoder.
Moreover, the proposed model employs two distinct loss functions,
Wasserstein and Relativistic loss, ensuring stable training and
improved performance. The pivotal component of the model is the
last dense layer, employing a softmax classifier to detect AD labels.
The proposed DeepCGAN undergoes comprehensive training
using cognitive data, demonstrating promising results in the early
prediction of AD, achieving a remarkable 97.32% accuracy on
cognitively labeled data from the ADNI dataset, surpassing recent
state-of-the-art models. The contributions of this article include:

1. For
DeepCGAN, an unsupervised generative model that extends the

detecting early-stage AD, this article proposes a
cognitive features of the data and its diversity by utilizing the
GAN framework.

2. To optimize the detection performance of DeepCGAN, a novel
convolutional encoder-decoder-based GAN is proposed and
trained on the cognitive features.

3. Our comprehensive experiments on the ADNI dataset show
that the proposed DeepCGAN performs better in detecting
early-stage AD compared to start-of-the-art models.

The remainder of this article is structured as follows: Section 2
reviews related work. Section 3 presents the proposed DeepCGAN.
Section 4 describes the experimental setup, and Section 5 discusses
the evaluation of the proposed model. Finally, Section 6 concludes
the article.

frontiersin.org


https://doi.org/10.3389/fmed.2024.1443151
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ali et al.

2 Related work

The current gold standard for detecting and prognosing
neurodegenerative AD relies on clinical assessments of symptoms
and their severity. However, early disease detection before clinical
symptoms manifest is critical for effective disease management and
timely therapeutic intervention. Research indicates that analyzing
structural and functional changes in patients during the early
stages of AD can provide valuable insights (12). Machine learning
approaches offer a rapid and robust means to interpret medical
examinations, aiding in the early detection of AD. Early detection
is paramount, allowing for proactive intervention and potentially
improving patient outcomes. Machine learning enhances the
diagnostic process by uncovering subtle patterns and anomalies
that may precede clinical symptoms. It transcends the limitations of
conventional clinical assessments, which often rely on symptomatic
markers that become evident at later disease stages. Integrating
machine learning into AD detection represents a paradigm shift,
emphasizing the significance of early and accurate diagnosis in
transforming AD research and treatment strategies.

CNNs are deep learning models (13) known for their
ability to extract complex patterns (14-16). They excel in
body part segmentation, surpassing traditional methods like
logistic regression and support vector machines (17). CNN-
based computer-aided diagnosis (CAD) systems are effective
in neurodegenerative disease detection (18). In AD detection,
methods combining the dual-tree complex wavelet transform with
neural networks show promise (19). Architectures like GoogleNet
and ResNet deliver strong results in distinguishing healthy
subjects from those with AD and mild cognitive impairment
(20). LeNet-5 has been effectively employed for AD vs. normal
control (NC) brain classification (21). Hosseini et al. extended
previous work by proposing a Deeply Supervised Adaptive 3D-
CNN (DSA-3D-CNN) for AD prediction (22). They trained this
model on the CAD-Dementia dataset without skull stripping
preprocessing and rigorously evaluated its performance through
10-fold cross-validation. In addition to CNNs, ensemble learning
(EL) has proven invaluable in the detection and prognosis of
neurodegenerative diseases. Given the often limited availability
and the inherent 3D nature of medical imaging data, training
classifiers can be a challenge (23). EL offers a promising
solution by combining the strengths of multiple trained models,
making it particularly useful for classification tasks involving
heterogeneous datasets. To harness the power of ensemble learning,
individual classifiers are trained on various subsets of the data
and subsequently combined. EL with bootstrapping techniques
becomes especially beneficial when relevant data is scarce, such
as cognitive features. Additionally, when dealing with limited
data, common practices include data augmentation to enhance
the performance of ensemble models. This combined approach
of CNNs and ensemble learning offers a robust and adaptable
framework for tackling the complexities of neurodegenerative
disease detection and prognosis.

GAN s are a prominent method for enhancing imaging data by
creating synthetic data that competes with a discriminator aiming
to distinguish real from synthetic data (24). When generative
networks excel, they can replicate data based on the inherent
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structure of real data. In the field of medical imaging, GANs
have found success in tasks like MRI and CT reconstruction and
unconditional image synthesis (25, 26). Furthermore, GANSs exhibit
a wide array of applications in AD-related image processing. They
are proficient in denoising low-dose positron emission tomography
(PET) scans to yield high-quality images (10, 11, 27). Accurate
brain image segmentation, facilitated by GANS, aids in locating
features critical for AD diagnosis and research across various
image modalities (28-30). Despite the promise of GANs in AD
image processing, the existing models for detecting AD have
predominantly centered around neuroimaging data, leading to
the insufficient utilization of vital cognitive features. Furthermore,
the valuable temporal dimension, crucial for comprehending the
progression of AD, has been notably overlooked in the existing
literature. Additionally, the persisting issue of training instability
in these models continues to pose a noteworthy challenge.

3 Materials and methods

The DeepCGAN model, proposed in this study, is designed
for AD detection. It leverages a Generative Adversarial Network
architecture, specifically tailored to the analysis of cognitive features
and temporal information, which are often overlooked in existing
AD detection models.

3.1 Generative adversarial networks

GAN is a fundamental architecture in machine learning,
composed of two primary components: the Generator G(z)
and the Discriminator D(x), as shown in Figure 1. The GAN
framework is designed for generative tasks, aiming to produce
synthetic data that closely resembles real data distributions.
The Generator G(z) is responsible for creating new data
samples. It takes random noise N(z) as input, typically
drawn from a uniform or normal distribution. Through
a learned transformation process, the Generator generates
data that mimics real training data. This process relies on
adjusting internal parameters to produce data samples that are
increasingly realistic.

The Discriminator D(x) acts as an adversary to the Generator.
Its primary role is to differentiate between genuine data from
the training set and data generated by the Generator. The
Discriminator evaluates each input and assigns a probability score,
indicating the likelihood of the input being real. If an input is
genuine, D(x) approaches 1, whereas if it is generated, D(x) tends
toward 0. The GAN operates as a two-player minimax game,
optimizing the value function V(G, D). The objective function is
given in Equation 1:

mGin mgx V(G, D) = Expy,. (v [log D(x)]

HE;~p, (2 [log(1 — D(G(2)))] (1
Here, D(-) provides the probability that a given sample belongs

to the training data X. The Generator aims to minimize log(l —
D(G(z))), making D(G(z)) as high as possible, essentially fooling
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FIGURE 1
GAN framework with generator and discriminator.

the Discriminator into considering G(z) as real data. Conversely,
the Discriminator seeks to maximize D(X) and 1 — D(G(z)), driving
its optimal state toward P(x) = 0.5. In practice, GANs continually
refine the Generator to produce data that is indistinguishable
from real data, representing a powerful framework for generating
synthetic data in various domains.

3.2 DeepCGAN for AD detection

The architecture of our proposed GAN model for AD detection
is illustrated in Figure 2. This model is carefully designed to
effectively utilize cognitive features in the detection process. The
Generator component of our model is based on an encoder-
decoder framework, optimized for processing cognitive features
as inputs. The encoder in our model is designed to extract
meaningful features from the input data through a series of
convolutional layers. The encoder comprises five 2-D convolutional
layers, strategically placed to extract local correlations within the
input features. A reshape layer is employed to appropriately format
the encoded features. These layers progressively downsample
the input, capturing local correlations and essential patterns.
Each convolutional layer is followed by batch normalization
and Leaky Rectified Linear Unit (ReLU) activation functions
to stabilize training and introduce non-linearity. Positioned in
the middle of the Generator architecture, the BiGRU layers
are crucial for capturing long-term dependencies and temporal
dynamics in the cognitive features. Each BiGRU layer consists
of 2,048 units (1,024 in each direction), enabling the model to
learn bidirectional temporal patterns that are significant for early
Alzheimer’s detection.

The decoder mirrors the encoder’s structure but performs
the inverse operation. It utilizes deconvolutional (transposed
convolution) layers to reconstruct the input data from the encoded
features. The skip connections between corresponding layers of
the encoder and decoder facilitate fine-grained feature integration,
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enhancing the model’s ability to preserve important information
during reconstruction. The Generator’s primary function is to
produce synthetic data that closely resembles the real cognitive
feature data. By transforming random noise inputs through the
encoder-BiGRU-decoder pipeline, the Generator learns to create
realistic data samples that help augment the training set and
improve the robustness of the Discriminator. The input to our
DeepCGAN model consists of cognitive features derived from the
ADNI dataset. The input to the model is a three-dimensional tensor
with a batch size of 32, 50-time steps, and 128 features. Thus, the
input shape is [32, 50, 128], specifically tailored to capture the
temporal and cognitive aspects critical for Alzheimer’s detection.
The data preprocessing steps include normalization and
sequence padding to ensure uniform input dimensions. The
preprocessing steps include: Normalization: The cognitive features
are normalized to ensure consistent scales and improve model
training stability. Padding: Sequences are padded to a fixed length
(e.g., 50 time steps) to ensure uniform input dimensions across
different samples. Handling Missing Values: Features with more
than 40% missing values are removed. For the remaining features,
missing values are imputed using appropriate statistical methods
(e.g., mean imputation). In addition, two BiGRUs layers are
thoughtfully inserted in the middle of the Generator architecture,
which enhances the model’s ability to capture long-term temporal
cues from the cognitive data. This integration addresses a critical
gap in existing models that primarily focus on neuroimaging data,
thereby improving the detection of early AD. The decoder of
our model mirrors the encoder’s structure and consists of five 2-
D deconvolutional layers, also known as transposed convolution
layers. Batch normalization is consistently applied following each
convolutional and deconvolutional operation. ReLU functions are
used as activation functions within the hidden layers, while a
sigmoid activation function is applied to the output layer. To
facilitate fine-grained feature integration, we have incorporated
skip connections within the Generator. These skip connections
concatenate the outputs of each convolutional layer in the encoder
with the corresponding inputs of the deconvolutional layers in
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FIGURE 2

Proposed CNN-based GAN model (DeepCGAN)

the decoder. This design element enhances the model’s ability to
capture intricate feature cues effectively.

denoted as D,
similar structure with the encoder of the Generator. However,

The Discriminator component, shares a
a flattened layer is introduced after the fifth convolutional layer
to streamline feature processing. Finally, a fully connected dense
layer with softmax activation is integrated into the Discriminator
to enable classification tasks. Notably, the Discriminator provides
two types of outputs, D(y) and Dk(y), with D(y) representing
sigmoidal output and Dk(y) signifying linear output, linked by the
sigmoid non-linearity function A(Dk(y)) = D(y). The proposed
GAN model for AD detection leverages cognitive features and
exhibits a sophisticated architecture, comprising convolutional,
deconvolutional, and recurrent layers, skip connections, and a
dual-output Discriminator. These design innovations collectively
contribute to the model’s efficacy in AD detection. Most AD
detection models predominantly focus on neuroimaging data,
neglecting cognitive features. Our model efficiently incorporates
and exploits these underutilized data sources. By including
BiGRUs, our model accounts for long-term temporal cues, a
crucial aspect often overlooked in AD progression analysis. The
Discriminator’s architecture, featuring dual output types and
skip connections, introduces novel enhancements to improve the
model’s performance in distinguishing real and synthetic data.

The Discriminator is designed to differentiate between real
and synthetic data. It shares a similar structure with the encoder
and includes an additional fully connected layer with softmax
activation for classification. The dual outputs of the Discriminator,
D(y) and Dk(y), provide sigmoidal and linear outputs, respectively,
enhancing the model’s ability to distinguish between genuine
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and generated data. The DeeCGAN model is specifically tailored
for Alzheimer’s detection by focusing on cognitive features and
temporal information, which are often underutilized in traditional
models. By leveraging the strengths of DeeCGANSs in generating
realistic synthetic data and incorporating bidirectional GRUs for
temporal analysis, our model is able to achieve high accuracy in
early Alzheimer’s detection.

3.3 Loss function

In the realm of GANs, choosing appropriate loss functions
plays a pivotal role in achieving stable training and optimal
performance. Our proposed GAN model incorporates and
thoroughly investigates two distinct loss functions to determine the

one that yields superior results.

3.3.1 Wasserstein loss

The Wasserstein loss, denoted as Lp for the Discriminator and
Lg for the Generator, offers significant advantages in stabilizing and
enhancing the robustness of GAN models (18). The Wasserstein
loss function is used to train the DeepCGAN model due to its ability
to provide a smoother gradient, leading to more stable training.
This stability is crucial for AD detection, as it ensures that the
model effectively learns from the subtle and complex patterns in the
cognitive data. These loss functions are defined in Equations 2-4:

Lp = —Ey~pg) [Dr(1)] + Ex~p) [Dr(G(x))], (2)
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Lg = =Ey~p() [Di(G(x))], (€)

Lep = B5-55 [(||V7Dk@)||z - 1)2] > (4)

where V5Dy () represents the gradient of the Discriminator output
with respect to y.

3.3.2 Relativistic loss

The second loss function incorporated into our GAN model
is the Relativistic loss. It computes the probability of real data
features being classified as real and the probability of synthetic data
features being classified as real. This is achieved by considering
the difference between the Discriminator’s outputs for real and
synthetic input features. The loss functions for the Discriminator
and Generator are given by Equations 5, and 6, respectively.

Lp = —E(xy)~p(xy) [(5)) [log(vDk(y) — D(G()))]],  (5)

Lo = —Eiey)~pauaey) [log(vz@(G(x)) - Dk(y))] (©)

However, the the Relativistic loss in Equations5 and 6
exhibits high variance, primarily when the Generator significantly
influences the Discriminator. To address this, we consider the
average loss functions for the Discriminator and Generator are
given by Equations 7, and 8, respectively.

Lp = —E,~p(y)y [10g(D5(7)] —Ex~p()x [log( 1— Dg(x)(x))] , (7)

Lg = —Eyopx [log(DG(-x)(x))] —Eypx [log(1 — Dy(»)], (8)

where Dj(y) and Dgiy (x) represent the relativistic Discriminator
outputs for real and synthetic data, respectively. Thus, our
GAN model incorporates both Wasserstein and Relativistic loss
functions, each with its distinct advantages. These loss functions
are carefully chosen and utilized to optimize the model’s training
stability and performance in AD detection.

We selected the Wasserstein loss and Relativistic loss due
to their efficacy in stabilizing GAN training and enhancing the
quality of generated data. The Wasserstein loss addresses mode
collapse and provides meaningful gradients for GAN convergence.
The Relativistic loss improves the model’s discriminative power
by comparing real and generated data in a relativistic manner,
aligning with the goal of distinguishing subtle differences in
medical data. These loss functions balance sensitivity and specificity
in Alzheimer’s detection, with the Wasserstein loss ensuring high-
quality synthetic data and the Relativistic loss enhancing the
discriminator’s accuracy and robustness.

4 Experiments

This section provides insights into the dataset, experimental
settings, and an evaluation of the proposed model.
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4.1 Dataset

We utilized the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (20), consisting of three distinct stages. The
ADNI dataset encompasses cognitive test scores and records of
5,013 instances, corresponding to 819 different AD patients. The
cognitive features selected for this study include memory recall
tests, attention assessments, and executive function evaluations,
which are clinically relevant as they have been shown to be
significant indicators of early cognitive decline associated with
AD. Patients visited the clinic multiple times during clinical trials,
resulting in new cognitive test scores generated and stored as
additional records in the dataset for each visit. Among these
records, there are 1,643 belonging to cognitively normal individuals
and 3,370 related to AD patients. However, the dataset exhibited
missing values and underwent initialization through an Iterative
Imputer technique to impute the missing values using a round-
robin method. This ensures that the most clinically significant
features are retained and accurately represented in the dataset.
The irrelevant features were removed during the data cleaning and
preprocessing.

In the ADNII dataset, each record comprises 113 features.
The data includes various cognitive assessments (e.g., MMSE
scores, ADAS-Cog scores), biomarkers (e.g., cerebrospinal fluid
biomarkers, amyloid-beta levels), and potentially neuroimaging
features (e.g, MRI and PET scan data). These features are
chosen for their relevance in assessing cognitive decline and AD
progression. The input data is organized as a temporal sequence,
capturing changes in cognitive features over time. This is crucial for
modeling the progression of AD, which involves gradual cognitive
decline. The dataset was divided into 80% for training and 20% for
testing, resulting in 5,000 samples for training and 1,250 samples
for testing. Some of these features had excessive missing values,
prompting the removal of those with more than 40% missing
values. The remaining features underwent initialization through
an Iterative Imputer technique to impute the missing values
using a round-robin method. After preprocessing, the final dataset
comprised 4,500 samples. Additionally, the dataset contained
features with varying value ranges, which were normalized to a
range of 0-1 using the min-max scaling method. Primary filtering
of cognitive features was performed using Pearson’s correlation
coeflicient to identify those most correlated with AD diagnosis.
Features with a correlation coefficient above a predefined threshold
were selected for further analysis. Performance evaluation utilized
metrics including Accuracy, Sensitivity, and F1-Score, which are
computed by Equations 9, 10, and 11, respectively.

TP+ TN

Accuracy = 9)
TP+ TN + FP + FN

TP

S itivity = ——— 10
ensitivity TP+ EN (10)
2TP
Fl —Score = —— (11)
2(TP + FP + EN)

Here, TP represents True Positives, TN stands for True
Negatives, FP is False Positives, and FN represents False Negatives.
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4.2 Network settings

The DeepCGAN model architecture for AD detection
incorporates carefully chosen parameters to optimize performance
across multiple metrics. The feature maps in the Generator’s
encoder are structured with fixed sizes of 16, 32, 64, 128, and
256 in successive convolutional layers, with specific kernel sizes
and strides tailored to enhance feature extraction efficiency. The
kernel size is set to (1,3) for the first 2D-Conv layer and (2,3)
for subsequent layers, all with a stride of (1,2). Convolutional
layers are utilized for their strength in extracting local patterns
and hierarchical features from the cognitive data, which are
essential for distinguishing subtle differences between normal and
AD-affected individuals.Similarly, the BiGRU layers are configured
with 2,048 units, with 1,024 units in each direction, split into
forward and backward directions, operating over a fixed time
step of 50. The BiGRUs were selected for their ability to capture
long-term dependencies and temporal patterns in cognitive data,
which are crucial for accurately modeling the progression of
AD over time. For the Generator’s decoder, these parameters
are inversely set to reconstruct the input features faithfully.
Moreover, the Discriminator (D) employs deconvolutional
layers with gradually increasing feature maps from 4 to 64,
designed to discriminate between real and generated samples
effectively. The proposed AD detection models, incorporating
these two distinct losses, undergo training and optimization
using the Adam optimizer for 1,000 epochs, with a learning rate
of 0.005 and a batch size of 32 samples. The combination of
convolutional layers and BiGRUs in the DeepCGAN architecture
leverages both spatial and temporal features, providing a robust
framework for early AD detection by capturing complex patterns
in cognitive data that simpler architectures might miss. This
setup ensures robust optimization and convergence of the
DeepCGAN model. To assess the performance of our proposed
model, we conducted a comprehensive comparison with several
other models, including DeciTree, RanForest, KNN, Linear
Regression (LR), SVM, DNN, AdaBoost, and Adaptive Voting,
utilizing various metrics such as Accuracy, Precision, Recall,
and F1-Score.

5 Results and analysis

In this section, we present the results of our
experiments and provide a comprehensive analysis of
the findings.

5.1 Model performance comparison

Table 1 displays the results obtained from our proposed
DeepCGAN model along with other DL models trained on
similar cognitive features for detecting cognitive normal and AD.
We measure the model’s performance using Accuracy, Precision,
Recall, and F1-Score as evaluation metrics. Notably, the results
demonstrate that our proposed DeepCGAN outperforms all other
competing models in terms of these metrics. The DeepCGAN
achieved an Accuracy of 97.32%, Precision of 95.31%, Recall of
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TABLE 1 Performance analysis using various measures for ADNI cognitive
features dataset.

DL model  Acc. (%) Pre. (%) Rec. (%) F1-S. (%)
DeciTree 88.93 88.93 88.93 88.93
RanForest 90.33 90.30 90.33 90.31
KNN 85.14 85.40 85.14 85.24
LR 82.05 81.83 82.05 81.45
SVM 85.84 85.68 85.84 85.71
DNN 90.53 90.67 90.53 90.59
AdaBoost 86.64 86.61 86.64 86.31
AdapVoting 93.92 93.89 93.92 93.89
DeepCGAN 97.32 95.31 95.43 95.61

95.43%, and F1-Score of 95.61%, respectively. In contrast, the
lowest-performing model, linear regression, achieved only 82.05%
Accuracy, 81.83% Precision, and 81.45% F1-Score.

To highlight the improvements made by our proposed model,
we chose linear regression as a reference model. DeepCGAN
substantially improved Accuracy by 15.27%, Precision by 13.48%,
and F1-Score by 14.16% compared to linear regression. Moreover,
when compared to the second-best model, Adaptive Voting,
DeepCGAN showed a 3.40% improvement in Accuracy. It also
outperformed DNN and Random Forest by 6.79 and 6.99% in
Accuracy, respectively, which is a significant performance gain.
Furthermore, our DeepCGAN model demonstrated substantial
improvements in Recall and F1-Score compared to competing
models. The Recall increased from 88.93% (DeciTree) to 95.43%
with DeepCGAN, and the Fl-Score increased from 86.31%
(AdaBoost) to 95.61%. These results signify the superior ability of
DeepCGAN to correctly identify AD cases while minimizing false
negatives. The errors are vastly improved over other models. To
highlight the effectiveness of the proposed model, we present the
overall improvements depicted in Figure 3. The linear regression
is the reference model that has achieved the lowest performance
among DL models. Figure 3 indicates the best performance of the
proposed DeepCGAN.

5.2 Loss function analysis

Our DeepCGAN model was trained and optimized using
two different loss functions: Wasserstein and Relativistic loss.
The Wasserstein loss function was chosen for its ability to
provide a smoother gradient, thereby stabilizing the training
This for AD
detection, where the model must accurately learn from subtle

process. stability is particularly important
variations in cognitive data. Figure4 presents the confusion
matrices for both losses, revealing that the Wasserstein loss
function results in better performance. Figure 4A illustrates
the predicted labels when trained with Wasserstein loss, while

Figure 4B shows the outcomes with Relativistic loss. It is evident
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that the model trained with Wasserstein loss provides more
accurate predictions.

To further assess the performance, we compared the
model’s Accuracy on training and validation data. The
Wasserstein loss outperformed the relativistic loss by a
significant margin, indicating faster convergence and better
Accuracy. Figure 5 displays the loss curves over 1,000 epochs,
illustrating the DeepCGAN
model in achieving its detection task. We also evaluated
the Area Under the Curve (AUC), which measures the
model’s ability to differentiate between labels. DeepCGAN
exhibited higher AUC values compared to models trained with
relativistic loss, further confirming its superior discriminatory
capability. Figure 6 AUC both

superior performance of the

illustrates the curves for

loss functions.
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5.3 Comparison against state-of-the-art
models

In this subsection, we compare our proposed DeepCGAN
model with state-of-the-art (SOTA) models in the literature,
including AlexNet (31), VGG-16 (32), GoogleNet (33), and
ResNet (34), using cognitive features from the ADNI dataset. This
comparison aims to benchmark the performance of DeepCGAN
under similar experimental settings and datasets. Table 2 presents
the results in terms of Accuracy, Precision, Recall, F1-scores, and
AUC.

DeepCGAN surpassed all SOTA models in terms of Accuracy,
achieving an Accuracy of 97.32%, which is a 5.59% improvement
over GoogleNet. Similarly, Precision improved from 90.20%
(GoogleNet) to 95.31%, reflecting a 5.11% boost in Precision.
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TABLE 2 Performance analysis (in %) for SOTA using ADNI Cognitive features dataset.

Model Accuracy Precision Recall F1-score AUC ‘
AlexNet 93.75 94.98 92.28 93.61 93.68
VGG-16 94.96 94.02 95.43 94.97 94.96
GoogleNet 91.73 90.20 93.50 91.82 91.79
ResNet 94.96 93.00 97.15 95.03 94.98
DeepCGAN 97.32 95.31 95.43 95.61 99.51

When compared to AlexNet, DeepCGAN demonstrated a 3.57%
increase in Accuracy. Furthermore, DeepCGAN achieved the
highest AUC among all models, with a 99.51% AUC, outperforming
ResNet by 4.53% and VGG-16 by 4.55%, highlighting its
superior discriminatory power. Regarding Recall, DeepCGAN

Frontiersin Medicine

exhibited substantial improvements over SOTA models except
for ResNet, where the results were marginally lower. Specifically,
the Recall increased from 92.28% (AlexNet) to 95.43% with
DeepCGAN. The F1-Score achieved with GoogleNet was 91.82%.
DeepCGAN’s superior performance can be attributed to its
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TABLE 3 Performance comparison of the proposed model on ADNI
dataset cognitive features.

Model Records Accuracy AUC
Gill et al. (35) 600 81.80% 79.0%
AdaptiveVoting 5013 93.92% 99.3%
DeepCGAN 5013 97.32% 99.5%

novel architecture, which combines convolutional layers for
effective feature extraction and BiGRUs for capturing temporal
dependencies. This dual approach enables the model to detect
subtle changes and patterns in cognitive data more accurately
than models that rely solely on neuroimaging data or simpler
architectures. Additionally, the use of GANSs for data augmentation
increases the dataset’s size and diversity, enhancing the model’s
generalizability and robustness. The core innovation lies in
expanding the cognitive features dataset and enhancing its diversity
through GAN.

DeepCGANSs  significantly enhance Alzheimer’s detection
due to their ability to generate realistic synthetic images,
crucial for augmenting limited MRI and PET scan datasets.
Their deep convolutional layers extract complex features,
improving diagnostic accuracy by capturing subtle disease
indicators. Adversarial training refines synthetic images iteratively,
ensuring they closely resemble real patient data. DCGANSs
adaptability across imaging modalities and superior performance
in comparative evaluations underline their transformative
role in improving diagnostic accuracy and clinical outcomes
for AD.

5.4 Comparison with existing techniques

In this section, we compare our proposed DeepCGAN model
with a recently reported technique by Gill et al. (35) that used
cognitive features for AD detection. Both studies utilized the
same ADNI dataset, and the results are presented in Table 3. Our
proposed DeepCGAN model outperformed the model proposed by
Gill et al. (35) and Adaptive Voting using cognitive features from
the ADNI dataset. DeepCGAN achieved the highest Accuracy of
97.32%, representing a 15.52% improvement over Adaptive Voting
and a 3.4% improvement over Gill et al’s technique for early
AD detection. This improvement is due to its ability to generate
synthetic data that closely resembles the actual cognitive features,
thus reducing overfitting and improving the model’s ability to
generalize to new, unseen data.

6 Conclusion

In this study, we propose a novel convolutional encoder-
decoder-based GAN for early AD detection using cognitive
features. This model leverages a Generator module with Conv2D
and Deconv2D layers in an encoder-decoder architecture to
optimize Accuracy, Precision, Recall, F1-Score, and AUC metrics.
Our experimental results demonstrate the superior performance of
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DeepCGAN, which significantly advances early AD detection, and
outperforms several state-of-the-art models and benchmarks across
various measures, achieving an outstanding 97.32% Accuracy
compared to most other DL models in this study’s SOTA
comparison. Moreover, We find that using the Wasserstein loss
is superior for training the proposed GAN. While our GAN
excels, it is important to acknowledge the potential of SOTA
DL models for early AD detection, which offer advantages
over non-DL techniques like Gill’s study. These DL models can
expedite diagnosis, making them valuable tools in the detection
of neurodegenerative diseases like Alzheimers. The unique
contribution of DeepCGAN lies in its novel use of GANs to enhance
the datasets size and diversity, coupled with a sophisticated
architecture that integrates convolutional layers and BiGRUs. This
approach significantly improves accuracy, precision, and overall
performance metrics in detecting AD at early stages, demonstrating
the model’s superior capability in distinguishing subtle cognitive
changes indicative of early AD. In the future, we aim to develop
even more robust and streamlined DL models for detecting
early and various stages of AD. Our proposed DeepCGAN
model significantly advances early AD detection by leveraging
a convolutional encoder-decoder-based GAN with Wasserstein
loss, achieving superior performance metrics compared to SOTA
models such as AlexNet, VGG-16, GoogleNet, and ResNet.
This novel approach enhances the diversity and richness of
cognitive features, resulting in a remarkable improvement in
accuracy, precision, and discriminatory power, as demonstrated
through comprehensive comparisons with existing techniques
and models.
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The globalimpact of the ongoing COVID-19 pandemic, while somewhat contained,
remains a critical challenge that has tested the resilience of humanity. Accurate and
timely prediction of COVID-19 transmission dynamics and future trends is essential
for informed decision-making in public health. Deep learning and mathematical
models have emerged as promising tools, yet concerns regarding accuracy
persist. This research suggests a novel model for forecasting the COVID-19's
future trajectory. The model combines the benefits of machine learning models
and mathematical models. The SIRVD model, a mathematical based model that
depicts the reach of the infection via population, serves as basis for the proposed
model. A deep prediction model for COVID-19 using XGBoost-SIRVD-LSTM s
presented. The suggested approach combines Susceptible-Infected-Recovered-
Vaccinated-Deceased (SIRVD), and a deep learning model, which includes Long
Short-Term Memory (LSTM) and other prediction models, including feature
selection using XGBoost method. The model keeps track of changes in each
group’s membership over time. To increase the SIRVD model's accuracy, machine
learning is applied. The key properties for forecasting the spread of the infection are
found using a method called feature selection. Then, in order to learn from these
features and create predictions, a model involving deep learning is applied. The
performance of the model proposed was assessed with prediction metrics such as
R?, root mean square error (RMSE), mean absolute percentage error (MAPE), and
normalized root mean square error (NRMSE). The results are also validated to those
of other prediction models. The empirical results show that the suggested model
outperforms similar models. Findings suggest its potential as a valuable tool for
pandemic management and public health decision-making.

KEYWORDS

deep learning, extreme gradient boosting (XGBoost), susceptible-infected-recovered-
vaccination-deceased (SIRVD), long short-term memory (LSTM), feature selection,
COVID-19, prediction

1 Introduction

The COVID-19 epidemic has presented a serious threat to civilization worldwide. The
virus has killed millions of people and spread quickly. World Health Organization (WHO) at
the end of 2019 announced COVID-19 as global epidemic disease, since its outbreak
worldwide. As of November 6, 2023, reported by WHO, there are 775,335,916 confirmed
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cases and 7,045,569 deaths worldwide (1). Based on WHO data,
13.59bn vaccine doses have been given as of May 2, 2024. COVID-19
immensely affected daily life, health, and the economy at the global
level. Governments and public health experts have put in place a
number of strategies to prevent the epidemic, including social
isolation, mask use, and vaccine. However, the transmission of the
virus has not totally been halted by these precautions. Predicting how
the pandemic will develop in the future is one of the difficulties in
combatting COVID-19. This is significant for various reasons. First,
it can assist governments and public health experts in making choices
regarding the distribution of resources and pandemic response.
Second, it can assist organizations and people in making decisions
regarding how to run and safeguard themselves. The upcoming
course of COVID-19 transmission is forecasted using various
techniques. Making use of mathematical models is one strategy. The
transmission of the virus and its effects on various populations can
be predicted using mathematical models. Mathematical modeling is
a crucial device for analyzing epidemic infectious diseases, presented
in 1927 by Kermack (2). Since the outbreak of the pandemic, various
mathematical models have been employed in predicting the diseases,
which are epidemic. The widely used mathematical models include
SIR (3), which assesses susceptible, infected, and recovered rates (4),
and SEIR (5), which evaluates based on susceptible, exposed, infected,
and recovered rates. Furthermore, most of the research studies are the
enhanced models derived from these two models. However, using
mathematical models can be challenging and complex.

Machine learning is a different strategy for forecasting COVID-
19s future trajectory. Machine learning, a form of artificial intelligence,
possesses the ability to gain information from data and produce
predictions. The efficacy of models involving machine learning in
predicting transmission of various illnesses, including influenza, has
been established through empirical evidence. Many studies are
available on predicting and transmitting the virus’s spread (6).

This paper introduces a novel deep learning model named
Extreme  Gradient  Boosting-Susceptible-Infected-Recovered-
Vaccinated-Deceased-Long Short-Term Memory (XGBoost-SIRVD-
LSTM), which is designed to forecast the quantity of COVID-19 cases.
The suggested XGBoost-SIRVD-LSTM model operates in four stages:
(1) Data pre-processing, (2) XGBoost feature importance score feature
selection, (3) SIRVD epidemic model design, and (4) LSTM
prediction. The suggested model is tested using datasets from John
Hopkins University’s CSSE (7) and Our World in Data (8). The dataset
is first pre-processed using the min-max normalization technique.
Second, the XGBoost is used for feature selection, which is done using
the feature importance score. Finally, the optimal features are supplied
into the SIRVD model to estimate the COVID-19 transmission with
respect to time. Finally, the LSTM model is applied to the dataset for
disease prediction. The empirical results suggest that the suggested
model exhibits superior performance in relation to accuracy for
predicting outcomes compared to alternative deep learning models.

The following are the research study’s contributions:

« In this study, we introduce a deep learning model that utilizes
XGBoost-SIRVD-LSTM  model to COVID-19
infection cases.

predict
o The outcomes of the suggested model assessed in comparison

with existing deep learning models and utilizing performance
measures for prediction.
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The remaining sections of the paper are structured as follows:
Section 2 presents a summary of the current body of literature. Section
3 delves into background information of the techniques employed in
the proposed model. Section 4 outlines the methodology proposed in
detail. Section 5 explores the dataset, presents the experimental
results, and includes a comparative analysis with other models.

2 Literature review

This section elaborates on numerous models for COVID-19
prediction found in the literature. A standard SIR model for predicting
COVID-19 pandemic progression was proposed in Kartono et al. (9).
The model was tested using the most recent confirmed cases from the
WHO dashboard. The authors used this approach to forecast instances
in Singapore, Saudi Arabia, Indonesia, and the Philippines. In their
study, Kumar et al. (10) employed recurrent neural network (RNN)
models, including gated recurrent unit (GRU) and LSTM cells, to
predict the future patterns of COVID-19 cases. The researchers
utilized the publicly accessible COVID-19 dataset from Johns Hopkins
University and emphasized the importance of factors such as age,
population density, healthcare infrastructure, and disease-prevention
efforts in the rapid progression of the COVID-19 outbreak. To analyze
the COVID-19 pandemic, the study conducted exploratory data
analysis using machine-learning techniques, followed by the
implementation of the SIR model (11). The most popular John
Hopkins dataset for COVID-19 was used for experiments, with just
data from the Kingdom of Saudi Arabia used to forecast instances. The
researchers analyzed three possibilities for anticipating the progression
of the outbreak and its possible resolution, namely new medicine,
lockdowns, and no actions. The simulation results demonstrate that
interventions such as new drugs and lockdowns outperform no-action
scenarios. To forecast the COVID-19 instances, the MLP with feature
selection (MLPEFS) classification model was presented (12). This study
was based on the characteristics and symptoms of Electronic Medical
Records (EMR) patients. Three separate datasets and eight alternative
models were utilized to evaluate the provided model. According to the
experimental findings, the suggested MLPFS outperformed the other
seven models chosen for comparison in terms of accuracy indicators,
extracted number of features, and time required to implement the
model. The SIRVD model, an extension of classic epidemiological
models, incorporates vaccination and time-dependent fatality rates
(13). Analyzing exact solutions and approximations, it reveals crucial
insights into epidemic dynamics, offering benchmarks for numerical
simulations. By applying analytical approximations, particularly
effective for low cumulative infection rates, it elucidates the impact of
vaccination and time-varying fatality rates, enabling precise parameter
extraction from COVID-19 data, essential for pandemic management.
Babaei et al. (14) explores integrability conditions and exact analytical
solutions for the SIRV model, crucial for understanding COVID-19
dynamics, using a partial Hamiltonian approach. Analyzing two cases
based on model parameters and considering different phase spaces, it
provides insights into the dynamics of susceptible, infected, recovered,
and vaccinated populations over time through graphical
representations. Federico (15) addresses an optimal vaccination
strategy within an SIRS compartmental model, aiming to minimize
social and economic costs while reducing susceptibility. Theoretical
contributions include a non-smooth verification theorem and
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conditions for well-posed closed-loop equations, while numerical
implementations highlight the effectiveness of vaccination policies in
long-term infection control, particularly with low reproduction and
reinfection rates.

In an another study, researchers suggested a three-stage
COVID-19 prediction, namely pre-processing, feature selection, and
classification (16). Wrapper-based feature selection using Recursive
Feature Extraction and embedded-based feature selection using Extra
Tree Classifier were the two methods used. The naive bayes and
restricted Boltzmann Machine models were employed for
classification. The proposed approach was implemented using WHO
data. According to the authors, the model worked well and produced
better prediction results with feature selection than models without
feature selection. In their previous work, the researchers put forth
COVID-19 prediction models utilizing Susceptible_Infected_
Recovered (SIR) and Susceptible_Exposed_Infected_Quarantined_
Recovered (SEIQR) epidemic models for several countries, including
Australia, United Kingdom, and Italy (3). To enhance parameters in
these epidemic models (L-BFGS-B), they employed optimization
algorithms such as Conjugate Gradient (CG), Nelder-Mead, restricted
memory bound constrained, and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS). The performance of these two models was compared
to the performance of two machine learning methods, prophet and
logistic function. The authors discovered that the prophet model
outperformed the logistic function and provided a superior prediction
model for Italy and the United Kingdom than for Australia. The
prediction accuracy was significantly increased once the models such
as SIR and SEIQR were optimized. In their findings, the authors
observed that the prophet model demonstrated superior performance
compared to the logistic function, particularly in predicting the
COVID-19 trends for United Kingdom and Italy, while its
performance in the case of Australia was relatively less favorable. The
accuracy of predictions was notably improved by optimizing the SIR
and SEIQR models. In a separate study conducted by the authors of
Chandra et al. (17), deep learning-based LSTM models were explored
for predicting the future trajectory of COVID-19 in specific Indian
states that experienced a high incidence of the disease. Various LSTM
models, including LSTM, bidirectional, and encoder-decoder models,
were developed for disease spread prediction. The authors highlighted
that the encoder-decoder LSTM model exhibited superior prediction
accuracy compared to other models. In Alassafi et al. (18), a
comparison study was undertaken to assess the efficacy of RNN and
LSTM models in predicting the spread of the coronavirus. The dataset
utilized for this analysis consisted of data from Malaysia, Morocco,
and Saudi Arabia, sourced from the European Center for Disease
Prevention and Control. The authors examined the models’
effectiveness in predicting positive cases, recoveries, and COVID-19-
related mortality rates. Also, estimating the potential quantity of cases
over the next 7days. Another research study (19) proposed an
XGBoost-DNN classifier model for detecting network intrusions. The
model employed XGBoost feature importance scores to select relevant
features and utilized DNN for classification of network intrusions.

In a separate study, researchers introduced a feature selection
based on ensemble approach with LSTM for network intrusion
classification (20). Their method aimed to improve the accuracy
of network invasion detection by utilizing LSTM along with
ensemble-based feature selection. Youssef et al. (4) employed the
SEIQR model and utilized real data of Saudi Arabia for predicting
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the transmission of COVID-19 cases. The results demonstrated
the efficiency of the model suggested in analyzing epidemic
thus
government policies.

The COVID-19 pandemic has significantly accelerated
research on the development of predictive models for the

spread, providing a basis for framing effective

pandemic’s future trajectory. Numerous models, including
mathematical, machine learning, and hybrid models, have been
put forth. The propagation of the virus can be simulated and the
effects on various populations can be predicted using mathematical
models that are based on epidemiological principles. However,
using mathematical models can be challenging and complex. An
artificial intelligence that can learn from data and predict the
future is known as a machine-learning model. It has been
demonstrated that machine-learning models are useful for
forecasting the spread of other diseases, such as influenza.
Nevertheless, machine-learning models can often rely heavily on
the specific data they were trained on, resulting in potential
challenges when attempting to generalize to new data. To overcome
these limitations, hybrid models (21-23) merge the advantages of
both mathematical models and machine learning approaches. By
combining these two techniques, hybrid models have the potential
to offer greater precision and accuracy compared to using either
method in isolation. However, the development of hybrid models
can be intricate and pose significant challenges. Despite the
extensive research conducted thus far, there remains a need for
more precise and reliable models to effectively forecast the future
trajectory of COVID-19. Thus, this study endeavors to fill this
research void by proposing a novel model that leverages the
strengths of both mathematical and machine learning methods.

3 Methodology
3.1 Xgboost feature selection

Extreme Gradient Boosting (XGBoost) is a scalable machine
learning technique used for tree boosting, which falls within the class
of scalable machine learning approaches (24). This method, known as
a distributed optimized library for gradient boosting, is capable of
analyzing the relevance of each feature in the dataset. It has been
demonstrated as a reliable and practical approach in machine learning
research (19, 25). In comparison to earlier boosting methods,
XGBoost excels at selecting a robust classifier from a set of weaker
classifiers. It offers advantages such as effective handling of missing
values, avoidance of overfitting, and faster computation times for
parallel and distributed models. The primary objective of XGBoost
utilizes an optimized gradient descent approach with versatile
differentiable loss functions is to employ an optimized gradient
descent method with arbitrary differentiable loss functions. This is
achieved by incorporating weak learners to minimize the loss
function, thus defining and optimizing the overall objective function.

Extreme gradient boosting strives to reduce the objective function
in the following manner (as shown in Equation 1).

obj(0)=2L(ﬁi,yi]+29(fk),fke F (1)
i k
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The training loss function, denoted as L, quantifies the disparity
between the predicted value y; by the model proposed and actual
value of y;. Overfitting is prevented thanks to the regularization
function €, which estimates the model’s complexity. The set of all
possible regression trees is represented by the function f in the
functional space F. By using parameters and a greedy search method,
XGBoost determines the optimal tree structure to minimize the
objective function.

3.2 SIRVD epidemic model

The SIRVD is derived from the SIR epidemic model (26). This
model encompasses dynamics of the virus’s interaction during
transmission with the host and classifies individuals into five
distinct groups: susceptible, infected, recovered, vaccinated, and
deceased (27). The SIRVD expands upon the existing SIR
framework by including the new states of vaccinated and deceased.
Vaccinated persons are those who have been inoculated against the
disease, while deceased individuals are those who have died after
becoming sick in the community (28). The ordinary differential
equations below represent the mathematical formulation of the
SIRVD model (Equations 2-7).

ds, (ti)

d(t;)

:_ﬁlr(t;\)’S(ti)+0_Rr(ti)_asr(ti) @)

dl () _ Pl (4)S, ()

R A QR DG
djr(it;):y’r(fi)GRr(ff) (4)
e 0

dby (1;) _ 51,(6) o

N =S, (6)+di (1) + R () 4V (1) 4 Do (1) @)

where,

f—Infection rate, encompasses the spread of the infection in a
susceptible state.

y—Recovery rate consists of the transferal from the infected to the
recovered state.

8—Rate of death, represents the transferal from the infected to the
deceased state.

a—Rate of vaccination consists of the transferal from susceptible
to the vaccinated condition.
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c—rate of susceptibility depicts the transferal from recovered to a
susceptible state.
It is stated that the transference cycle of the virus is characterized
Blr(ti)Sr(ti)
by N

who transmitted from the susceptible individuals (Sr) to the infected

depicts the number of individuals per unit of time

individuals (7r). The five parameters of the SIRVD epidemic model
such as 8,y,0, a, and o are considered to be constant, as these are
dynamic and thereby, this model neglects their time-dependent
characteristics. To predict the growth of the disease trend efficiently
and effectively, a time-dependent SIRVD model was proposed, which
includes these factors of the SIRVD epidemic model with respect to
time #i. The proposed SIRVD epidemic model can reasonably trace the
COVID-19 disease transmission and also predicts the future spread
of the disease.

3.3 SIRVD epidemic time-dependent
COVID-19 model

The SIRVD model, which is dependent on time, incorporates five
parameters that change over time: the infection rate f, the recovery
rate v, the death rate §, the vaccination rate «, and the susceptibility
rate ¢ as in Liao et al. (27). These parameters are represented as
functions of time, denoted as P(ti), y(¢i), 8(ti), a(ti), and o(ti) (27). The
differential equations have been adjusted as follows (Equations 8-12):

rle)  BUMLS) o) 1)) 0

dj(gg) = ﬁ(ti)lrg\t;)sr (1) v ()1 (5) -8 (6)S1, (1) (9)

Dy ()1, (1)~ (1) R (1) (10)

dVr(l,')

d(t;)

= a(1)S, (1) (11)

U= 5(1;)61, (1;) (12)

N is a constant across the population, then the sum of each
population’s gain or decrease in the state equals to zero (as shown in
Equation 13).

ds, (1) . dr, (1) . dR, (1) . av,(t;) . dD,(t;)

d(t)  d(y) d(s)  d(y)  d(n)

=0 (13)

Since the COVID-19 data are updated regularly on daily basis, the
Equations 8-12 can be changed to differential Equations 14-18.
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S, (li+l)7 S, (ti) =

7WM(IJ&(@)7a(,,.)s,(,,,) (14)

1 (1) =1, (1) =

w,y(,,.),,(,,.),g(,,,)g,,(,,.) (15)

Ry (ti1) = Re (1) =y (6) 1 () =0 () R (1) (16)

Vi(tin) = Ve (t:) = () Sy (1;) (17)

Dy (ti1) = Dr (1) =8 ()81, (;) (18)

Since the human body would create antibodies to the virus, it is
believed that the COVID-19 reinfection rate during transmission was
approximately equal to zero (29).

Subsequently, the formula of y(7) can be expressed as
(Equations 19-21):

R, (ti+1 ) R, (ti)

v(ti)= ) (19)
Similarly,
Sr i - Sr i
o) = Srlir) =S (1) ﬁr)(ti) () (20)
g(ti):Dr(tH—l)_Dr(ti) 1)

Ir(l‘i)

Once the rate of death and recovery is computed, add up with
Equation 13. Thus, f8 (ti), the time dependent parameter can
be obtained using Equation 22.

)= (U, () =L (6) + R (411) = R, (1) + D, (t1:1) = D, (1)) x N

ﬂ(ﬁ Ir(ti)xSr(ti)

(22)

3.4 Long short-term memory

Long Short Term Memory (LSTM) is a specialized deep learning-
based RNN architecture that finds extensive use in practical applications
of time series models (30). As a subclass of artificial neural networks,
RNNG display dynamic behavior over time due to their interconnected
nodes forming a directed graph along a temporal sequence. RNNs can
process input sequences of varying lengths by leveraging their internal
state or memory. An RNN can be precisely defined as a collection of
analogous networks, each transmitting information to a different
recipient, enabling them to connect prior knowledge with the current
context. However, as this gap widens, RNNs may struggle to learn to
establish meaningful relationships in the data, particularly focusing on
short-term memory over long-term memory’s influence.
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To address the challenges of long-term dependencies, LSTM
networks were introduced by Hochreiter and Schmidhuber (30).
LSTMs have demonstrated exceptional proficiency in classifying
and predicting from time series data. These networks are constructed
as chains of replicated modules, each equipped with a unique
structure. A typical LSTM unit comprises of memory cell, and three
gates say, forget, input, and output. The memory cell possesses the
ability of retaining information across extended time intervals,
while the three gates discussed earlier controls the information flow
in the cell. The output gate determines which value should be stored
as the expected output, the input gate decides which additional
information to record, and the forget gate selectively discards certain
information from the cell state. Figure 1 illustrates the LSTM’s
structure, where lines connect entire vectors from one node’s output
to another node’s input. The circles represent pointwise operations,
while the yellow boxes denote the layers of the previously trained
neural network.

The output of LSTM gates, which use sigmoid activation
functions to process information, is either 0 or 1. “0” indicates
that the gates are blocking everything, and “1” indicates that
everything is able to pass past the gates. In the LSTM, the
equations of gates are:

I :G(Wf.[a,,l,z,]+bf) (23)
iy :G(Wi.[at,l,zt]+bi) (24)
oy =0'(w0.[a,,] ,z,]+bo) (25)

From Equations 23-25, i, o, and (30) represents three gates say,
forget, input and output. The sigmoid function is denoted by the
symbol o, and x, represents the relevant weight for each LSTM block.
as—1 represents the preceding output at 7 —1, timestamp, while z,
denotes the current input vector at timestamp, ¢ and by represents bias
neurons for gate z. The formulas for the final output, candidate cell
state, and cell state are given as follows:

Et = tanh(wc.[at+1 ,Zt] + bC) (26)
Ct = ft *cpro1 + ic *cy (27)
a; =04 * tana(ct) (28)

From the Equations 26-28, ¢; and ¢,—| depicts the current and
preceding cell states or memory at ¢ and # — | timestamps, respectively.
The term ¢; expresses to the output of the tanh function, which
represents the potential cell state at timestamp ¢. The symbol * denotes
element-wise multiplication between vectors.

3.5 Proposed XGBoost-SIRVD-LSTM model

Figure 2 shows the suggested model’s workflow details. The
proposed XGBoost-SIRVD-LSTM model works in four phases: (1)

frontiersin.org


https://doi.org/10.3389/fmed.2024.1427239
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Alkhalefah et al.

10.3389/fmed.2024.1427239

Ct1

hea

a Sigmod Neural Networks

FIGURE 1
LSTM architecture.

ht

@ Vector Multiplication @ Vector Addition - Tangent Function tanh Tangent Neural Networks

Data preprocessing, (2) Feature selection using XGBoost feature
importance score, (3) SIRVD epidemic model construction, and (4)
Prediction using LSTM. This model focuses mainly on the
prediction of the recent trends of the epidemic based on the
evaluation of the parameter changes in the epidemic. The remainder
of this section explains the various stages of the suggested
prediction model.

The steps for the proposed XGBoost-SIRVD-LSTM model are
as follows:
COVID-19  dataset
cases, susceptible cases, recovered cases, deceased cases,

Input: containing  confirmed
and vaccination.
Output: estimating/predicting the COVID-19 infection rate.

Algorithm steps:

1 Implement data
COVID-19 dataset.
2 Utilize the Min-Max approach to normalize the dataset.

pre-processing techniques on the

3 For feature selection, use XGBoost feature importance score.

4 Develop the SIRVD epidemic model with the selected features
from step 3.

5 Using step 4, the quantity of COVID-19 infection cases using
LSTM are predicted.

6 Evaluate the
performance metrics.

proposed model using predictive

This section discusses the detailed steps involved in the proposed
XGBoost-SIRVD-LSTM model for prediction.

Frontiers in Medicine

3.5.1 Data pre-processing
The min-max normalization suggested in this paper to pre-process
the COVID-19 data. Using below Equation 29, the feature values are
normalized between [0, 1].
yi —min

min— max normalization, y; = ———— (29)
max— min

Where max denotes the highest value and min denotes the
least value.

3.5.2 Feature selection using XGBoost feature
importance score

The dataset pre-processed after step 1 used for feature
optimization in this step. XGBoost feature importance score
computed for the optimal selection of features from the
COVID-19 dataset (19). Feature importance scores are normalized
so that they sum up to 1 across all features. Higher scores indicate
more important features relative to others in the dataset. Feature
importance scores are useful for feature selection and
understanding which features contribute most to the predictions

made by the model.

3.5.3 SIRVD epidemic model construction

In this stage, the reduced-feature dataset obtained from
step 2 is employed to construct the SIRVD epidemic model. The
model incorporates five parameters: (infection) p, (recovery) vy,
(death) 8, (vaccination) a, and (susceptibility) o, which varies
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STEP1:COVID:19 Data
Processing

STEP2:Feature selection
using XGBoost

STEP3: SIRVD epidemic
model construction

Time-Dependent SIRVD Model
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FIGURE 2
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The workflow of the proposed XGBoost-SIRVD-LSTM model for COVID-19 prediction.

STEP4: prediction using LSTM
Deep Learning Model

over time represented by t (27). The dataset is prepared
and formatted according to the specifications of the SIRVD
model. The construction of the suggested SIRVD occurs once;
dataset has been processed and transformed into the
desired format.

3.5.4 Prediction using LSTM

The SIRVD model from step 3 is used for prediction using LSTM
in this stage. In this study, single day prediction is computed for
predicting the COVID-19 infection, and the model is tested with
third, seventh, fourteenth, twenty-first- and twenty-eighth-days’
prediction to evaluate the developed model’s efficacy.

4 Results

This section describes the dataset in depth, including the
evaluation metrics and efficacy evaluation of the suggested model.

Frontiers in Medicine

4.1 Dataset

Extreme Due to the outbreak of COVID-19, multiple governments
worldwide have made public their actions or measures and undertaken
real-time data analysis to determine the disease’s up-to-date trends. In
this research study, two research data, which are publicly available are
collected for experimentation of the proposed model, namely CSSE
from Johns Hopkins University (7) and Our World in Data (8). The
John Hopkins dataset comprises cumulative cases, including
confirmed, recovered, and deceased at a global level. This dataset
includes country, province, longitude, latitude, and total affected
patients on a specified date as its features.

The data source from Our World in Data includes potential features
of interest, namely confirmed and deceased cases, hospitalizations,
vaccinations, and testing. The vaccination data obtained from this data
source includes various information such as the country name
(location), country code (iso_code), date of observation (date), total
number of administered doses (total vaccinations), and the count of
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vaccinated individuals (people_vaccinated). These data, in combination
with the data from John Hopkins University, are utilized to implement
and assess the proposed model.

4.2 Evaluation metrics

The performance of the XGBoost-SIRVD-LSTM model’s
performance involves comparing the observed and forecasted values.
The evaluation metrics employed in this study include R?
(determination coefficient) (Equation 32), normalized root mean
square error (NRMSE) (Equation 31), root mean square error (RMSE)
(Equation 30), and mean absolute percentage error (MAPE)
(Equation 33) (31). The validation of the suggested model computed
with the following formulas for calculating these metrics.

1Y :
RMSE = NZ(%%J (30)
i=l1

e

y

NRMSE = (31)

C (EN a0

R = (32)

S -5 T (i)

1Y v vi
MAPE:EZ”MHIOO%

=1 Vi

(33)

4.3 Performance evaluation

The evaluation of the proposed model involves the utilization of
datasets mentioned above. The experiments are conducted using
Python, with deep learning libraries: numpy, pandas, keras, and
tensorflow. The experimentation is performed on hardware with the
following specifications: Intel (R) Core i7-8750H CPU @ 2.20 GHz,
64-bit operating system, RAM of 8.00 GB, and with GPU.

The architecture of deep learning models is determined by their
hyper-parameters, which play a crucial role in achieving high-
quality models. In this study, the optimal hyper-parameters are
determined using a grid search approach. Table 1 presents the
hyper-parameters utilized in the developed model. The dataset is
split as training and testing sets in the ratio of 70:30 and
implemented in training and testing the proposed COVID-19
infection case prediction model. The evaluation metrics described
in the equations above are used in this study, and Table 2 compares
the single-day prediction results of the developed model with
existing models in literature.

The effectiveness of the proposed model is assessed by comparing
its outcomes with those of existing literature on recurrent deep learning
models, including bidirectional LSTM, GRU, Stacked LSTM, Vanilla
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TABLE 1 Hyper-parameters for the proposed model.

Hyper-parameter Test values

Optimizer {SGD, ADAGRAD, Adam}

Learning rate {0.01, 0.1, 0.5}

Batch size {64, 128, 256}

Epochs {1,000, 2,000, 3,000}

TABLE 2 Results depicting prediction for a single day with the proposed
model as well as other models.

Model R? MAPE = RMSE  NRMSE
Bidirectional LSTM 0.92 3.66 145,200 0.05
GRU 0.96 1.89 89,782 0.03
Stacked LSTM 0.96 215 92,065 0.03
Vanilla LSTM 0.92 329 151,580 0.05
SIRVD-DL 0.99 0.92 38,519 0.01
XGBoost-SIRVD-LSTM 0.99 0.90 35,025 0.01

LSTM, and SIRVD-DL (27). The unique combination of machine
learning and mathematical modeling makes the XGBoost-SIRVD-
LSTM model better than others. First, using XGBoost for feature
selection helps the model find and prioritize key variables, enhancing
prediction accuracy. Second, adding the SIRVD model captures
COVID-19 transmission dynamics between susceptible, infected,
recovered, vaccinated, and deceased populations. Thirdly, LSTM’s
sequential data learning allows it to capture COVID-19 temporal
patterns and trends. Our comprehensive strategy combines the benefits
of each component, resulting in improved prediction accuracy in
empirical data. This integrative approach yields more accurate estimates
than machine learning or epidemiological models. The experiments
were specifically conducted to predict outcomes for the third, seventh,
fourteenth, twenty-first, and twenty-eighth days. The experimental
results are presented in Figures 3-7. To evaluate the performance of the
proposed model, the obtained results are compared to those of other
recurrent deep learning models, such as bidirectional LSTM, GRU,
stacked LSTM, vanilla LSTM, and SIRVD-DL (27). The experiments
were accurately performed to predict outcomes for the third day, seventh
day, fourteenth day, twenty-first day, and twenty-eighth day. The
experimental findings are displayed in Figures 4-7. Similarly, the
proposed model resulted with the R? score of 0.999 on the 3-day, 0.997
on the 7-day, 0.956 on the 14-day, 0.64 on the 21-day, and 0.19 on the
28-day. When compared to other models that were taken into
consideration for evaluation, the R? score grows comparatively as the
number of predicting days’ rises, demonstrating the effectiveness of the
suggested model. The other models consequently displayed negative
values as the number of days increased, indicating that the fitting
function’s prediction error was higher than the mean function. As a
result, the prediction models’ performance when combined with other
models is ineffective.

From the preceding discussion, the contributions of the proposed
model can be summarized as follows:

1 A new XGBoost-SIRVD-LSTM model is introduced for
predicting COVID-19 infection cases. This model combines
XGBoost for feature selection and integrates the SIRVD
epidemic model with LSTM for disease prediction.
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FIGURE 3
Comparison analysis of prediction results of the suggested model with other models for a 3-day duration.
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FIGURE 4
Comparison analysis of prediction results of the suggested model with other models for a 7-day duration.

2 SIRVD-DL and other recurrent deep learning models were 5 Conclusion
used to compare the efficacy of the suggested model.
This research work introduces an innovative model that merges
When compared to previous models, the performance of the  mathematical and machine learning methodologies to forecast the
proposed XGBoost-SIRVD-LSTM produced improved predictions. future trajectory of COVID-19. The XGBoost-SIRVD-LSTM model
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Comparison analysis of prediction results of the suggested model with other models for a 14-day duration.
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FIGURE 6

Comparison analysis of prediction results of the suggested model with other models for a 21-day duration.

Vanilla LSTM SIRVD-DL  XGBoost-SIRVD-LSTM

represents a significant advancement in forecasting the course of
COVID-19, offering a solution to the critical challenge of precise
prediction in the face of a dynamically evolving pandemic. By
harmonizing the strengths of XGBoost for feature selection with the

Frontiers in Medicine

SIRVD models capacity to track COVID-19 transmission over time,
this research provides a comprehensive approach for pandemic
forecasting. The dataset is processed using LSTM to provide disease
predictions. The model is evaluated using the Our World in Data and
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Comparison analysis of prediction results of the suggested model with other models for a 28-day duration.
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CSSE datasets from John Hopkins University. The experimental
findings illustrate that the suggested model surpasses alternative deep
learning models in terms of performance, exhibiting superior
prediction accuracy and precision. These findings suggest that the
model proposed will be one of a valuable resource for forecasting the
future course of COVID-19. It has the potential to assist governments
and public health experts in making informed decisions and
formulating effective strategies to combat the pandemic.
Here are some specific potential future research trajectories:

1 Increase the model’s precision and accuracy. More data, more
advanced machine learning algorithms, or a mix of the two
may be used to achieve this.

2 Improve the model’s usability. This could be achieved by
creating a user interface that makes it simple for users to enter
data and generate predictions.

3 Predict the efficacy of various therapies using the model.
Governments and public health professionals may utilize this
information to assist in choosing which actions to prioritize.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

HA: Conceptualization, Funding acquisition, Project

administration, Resources, Writing - original draft, Writing

Frontiers in Medicine

- review & editing. DP: Conceptualization, Data curation, Formal
analysis, Software, Validation, Writing - original draft. NK:
Conceptualization, Methodology, Supervision, Validation, Writing
- review & editing. MA: Conceptualization, Formal analysis,
Methodology, Writing - original draft, Writing - review & editing.
UU: Conceptualization, Methodology, Resources, Writing — review
& editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article.
This research was funded by King Abdulaziz City for Science
and Technology (KACST) via the Fast Track Funding
Path for COVID-19 Research Projects,
5-21-01-001-0036.

grant number

Acknowledgments

The authors extend their appreciation to King Abdulaziz City for
Science and Technology (KACST) to fund this work via the Fast Track
Funding Path for COVID-19 Research Projects, grant number
5-21-01-001-0036.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fmed.2024.1427239
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Alkhalefah et al.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

1. WHO (2023). WHO Coronavirus (COVID-19) Dashboard 2023. Available online
at: https://covid19.who.int/ (Accessed on May 2, 2024).

2. Kermack WO, McKendrick AG, Walker GT. A contribution to the mathematical
theory of epidemics. Proc Roy Soc London Ser A Contain Papers Math Phys Charact.
(1997) 115:700-21.

3. Rahimi I, Gandomi AH, Asteris PG, Chen E. Analysis and prediction of COVID-19
using SIR, SEIQR, and machine learning models: Australia, Italy, and UK cases. Inform.
(2021) 12. doi: 10.3390/inf012030109

4. Youssef H, Alghamdi N, Ezzat MA, El-Bary AA, Shawky AM. Study on the SEIQR
model and applying the epidemiological rates of COVID-19 epidemic spread in
Saudi Arabia. Infect Dis Model. (2021) 6:678-92. doi: 10.1016/j.idm.2021.04.005

5. He S, Peng Y, Sun K. SEIR modeling of the COVID-19 and its dynamics. Nonlinear
Dynam. (2020) 101:1667-80. doi: 10.1007/s11071-020-05743-y

6. Fatimah B, Aggarwal P, Singh P, Gupta A. A comparative study for predictive
monitoring of COVID-19 pandemic. Appl Soft Comput. (2022) 122:108806. doi:
10.1016/j.as0¢.2022.108806

7. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in
real time. Lancet Infect Dis. (2020) 20:533—4. doi: 10.1016/S1473-3099(20)30120-1

8. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell ], Appel C, et al. A global
database of COVID-19 vaccinations. Nat Hum Behav. (2021) 5:947-53. doi: 10.1038/
541562-021-01122-8

9. Kartono A, Karimah SV, Wahyudi ST, Setiawan AA, Sofian I. Forecasting the long-
term trends of coronavirus disease 2019 (COVID-19) epidemic using the susceptible-
infectious-recovered (SIR) model. Infect Dis Rep. (2021) 13:668-84. doi: 10.3390/
idr13030063

10. ArunKumar KE, Kalaga DV, Kumar CMS, Kawaji M, Brenza TM. Forecasting of
COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent
units (GRUs) and long short-term memory (LSTM) cells. Chaos Solitons Fract. (2021)
146:110861. doi: 10.1016/j.cha0542021.110861

11. Alanazi SA, Kamruzzaman MM, Alruwaili M, Alshammari N, Alqahtani SA, Karime
A. Measuring and preventing COVID-19 using the SIR model and machine learning in smart
health care. ] Healthcare Eng. (2020) 2020:1-12. doi: 10.1155/2020/8857346

12. El-Attar N-E, Sabbeh S-F, Fasihuddin H, Awad W-A. An improved DeepNN with
feature ranking for Covid-19 detection. Comput Mater Contin. (2022) 71:2249-69. doi:
10.32604/cmc.2022.022673

13. Schlickeiser R, Kroger M. Mathematics of epidemics: on the general solution of
SIRVD, SIRV, SIRD, and SIR compartment models. Mathematics. (2024) 12:941. doi:
10.3390/math12070941

14. Amiri Babaei N, Ozer T. On exact integrability of a Covid-19 model: SIRV. Math
Methods Appl Sci. (2024) 47:3529-46. doi: 10.1002/mma.8874

15. Federico S, Ferrari G, Torrente M-L. Optimal vaccination in a SIRS epidemic
model. Economic Theory. (2024) 77:49-74. doi: 10.1007/s00199-022-01475-9

16. Ali RH, Abdulsalam WH. The prediction of COVID 19 disease using feature selection
techniques. ] Phys Conf Ser. (2021) 1879:022083. doi: 10.1088/1742-6596/1879/2/022083

Frontiers in Medicine

219

10.3389/fmed.2024.1427239

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

17. Chandra R, Jain A, Singh CD. Deep learning via LSTM models for COVID-19
infection forecasting in India. PLoS One. (2022) 17:¢0262708. doi: 10.1371/journal.
pone.0262708

18. Alassafi MO, Jarrah M, Alotaibi R. Time series predicting of COVID-19 based on
deep learning. Neurocomputing. (2022) 468:335-44. doi: 10.1016/j.neucom.2021.10.035

19. Devan P, Khare N. An efficient XGBoost—-DNN-based classification model for
network intrusion detection system. Neural Comput & Applic. (2020) 32:12499-514. doi:
10.1007/500521-020-04708-x

20. Devan P, Khare N. EFS-LSTM (ensemble-based feature selection with LSTM)
classifier for intrusion detection system. Int J e-Collab. (2020) 16:72-86. doi: 10.4018/
1JeC.2020100106

21.Singh P, Gupta A. Generalized SIR (GSIR) epidemic model: an improved
framework for the predictive monitoring of COVID-19 pandemic. ISA Trans. (2022)
124:31-40. doi: 10.1016/j.isatra.2021.02.016

22. Cooper I, Mondal A, Antonopoulos CG. A SIR model assumption for the spread
of COVID-19 in different communities. Chaos, Solitons Fractals. (2020) 139:110057. doi:
10.1016/j.chaos.2020.110057

23. Devaraj J, Elavarasan RM, Pugazhendhi R, Shafiullah GM, Ganesan S, Jeysree
AK, et al. Forecasting of COVID-19 cases using deep learning models: is it reliable
and practically significant? Results Phys. (2021) 21:103817. doi: 10.1016/j.
rinp.2021.103817

24. Liew XY, Hameed N, Clos J. An investigation of XGBoost-based algorithm for
breast cancer classification. Mach Learn Appl. (2021) 6:100154. doi: 10.1016/j.
mlwa.2021.100154

25.Zheng Y, Zhu Y, Ji M, Wang R, Liu X, Zhang M, et al. A learning-based model to
evaluate hospitalization priority in COVID-19 pandemics. Patterns. (2020) 1:100092.
doi: 10.1016/j.patter.2020.100092

26. Farooq J, Bazaz MA. A novel adaptive deep learning model of Covid-19 with focus
on mortality reduction strategies. Chaos, Solitons Fractals. (2020) 138:110148. doi:
10.1016/j.chaos.2020.110148

27.Liao Z, Lan P, Fan X, Kelly B, Innes A, Liao Z. SIRVD-DL: a COVID-19 deep
learning prediction model based on time-dependent SIRVD. Comput Biol Med. (2021)
138:104868. doi: 10.1016/j.compbiomed.2021.104868

28. Usherwood T, LaJoie Z, Srivastava V. A model and predictions for COVID-19
considering population behavior and vaccination. Sci Rep. (2021) 11:12051. doi:
10.1038/s41598-021-91514-7

29. Phelan AL. COVID-19 immunity passports and vaccination certificates: scientific,
equitable, and legal challenges. Lancet. (2020) 395:1595-8. doi: 10.1016/
S0140-6736(20)31034-5

30. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. (1997)
9:1735-80. doi: 10.1162/neco0.1997.9.8.1735

31.Kafieh R, Arian R, Sacedizadeh N, Amini Z, Serej ND, Minaee S, et al.
COVID-19 in Iran: forecasting pandemic using deep learning. Comput Math Methods
Med. (2021) 2021:1-16. doi: 10.1155/2021/6927985

frontiersin.org


https://doi.org/10.3389/fmed.2024.1427239
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://covid19.who.int/
https://doi.org/10.3390/info12030109
https://doi.org/10.1016/j.idm.2021.04.005
https://doi.org/10.1007/s11071-020-05743-y
https://doi.org/10.1016/j.asoc.2022.108806
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1038/s41562-021-01122-8
https://doi.org/10.1038/s41562-021-01122-8
https://doi.org/10.3390/idr13030063
https://doi.org/10.3390/idr13030063
https://doi.org/10.1016/j.chaos.2021.110861
https://doi.org/10.1155/2020/8857346
https://doi.org/10.32604/cmc.2022.022673
https://doi.org/10.3390/math12070941
https://doi.org/10.1002/mma.8874
https://doi.org/10.1007/s00199-022-01475-9
https://doi.org/10.1088/1742-6596/1879/2/022083
https://doi.org/10.1371/journal.pone.0262708
https://doi.org/10.1371/journal.pone.0262708
https://doi.org/10.1016/j.neucom.2021.10.035
https://doi.org/10.1007/s00521-020-04708-x
https://doi.org/10.4018/IJeC.2020100106
https://doi.org/10.4018/IJeC.2020100106
https://doi.org/10.1016/j.isatra.2021.02.016
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1016/j.rinp.2021.103817
https://doi.org/10.1016/j.rinp.2021.103817
https://doi.org/10.1016/j.mlwa.2021.100154
https://doi.org/10.1016/j.mlwa.2021.100154
https://doi.org/10.1016/j.patter.2020.100092
https://doi.org/10.1016/j.chaos.2020.110148
https://doi.org/10.1016/j.compbiomed.2021.104868
https://doi.org/10.1038/s41598-021-91514-7
https://doi.org/10.1016/S0140-6736(20)31034-5
https://doi.org/10.1016/S0140-6736(20)31034-5
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1155/2021/6927985

& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY

Sultan Ahmad,

Prince Sattam Bin Abdulaziz University,
Saudi Arabia

REVIEWED BY

Neeraj Kumar Pandey,

Graphic Era University, India

Jackson Burton,

Biogen Idec, United States

Irfan Uddin,

Kohat University of Science and Technology,
Pakistan

*CORRESPONDENCE
Nesren Farhah
n.farhah@seu.edu.sa

RECEIVED 23 June 2024
ACCEPTED 23 August 2024
PUBLISHED 04 September 2024

CITATION
Farhah N (2024) Utilizing deep learning
models in an intelligent spiral drawing
classification system for Parkinson'’s disease
classification.

Front. Med. 11:1453743.

doi: 10.3389/fmed.2024.1453743

COPYRIGHT

© 2024 Farhah. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Medicine

Frontiers in Medicine

TYPE Original Research
PUBLISHED 04 September 2024
pol 10.3389/fmed.2024.1453743

Utilizing deep learning models in
an intelligent spiral drawing
classification system for
Parkinson’s disease classification

Nesren Farhah*

Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Riyadh,
Saudi Arabia

Introduction: Parkinson’s disease (PD) is a neurodegenerative illness that
impairs normal human movement. The primary cause of PD is the deficiency
of dopamine in the human brain. PD also leads to several other challenges,
including insomnia, eating disturbances, excessive sleepiness, fluctuations in
blood pressure, sexual dysfunction, and other issues.

Methods: The suggested system is an extremely promising technological
strategy that may help medical professionals provide accurate and unbiased
disease diagnoses. This is accomplished by utilizing significant and unique traits
taken from spiral drawings connected to Parkinson'’s disease. While PD cannot
be cured, early administration of drugs may significantly improve the condition
of a patient with PD. An expeditious and accurate clinical classification of PD
ensures that efficacious therapeutic interventions can commence promptly,
potentially impeding the advancement of the disease and enhancing the quality
of life for both patients and their caregivers. Transfer learning models have been
applied to diagnose PD by analyzing important and distinctive characteristics
extracted from hand-drawn spirals. The studies were carried out in conjunction
with a comparison analysis employing 102 spiral drawings. This work enhances
current research by analyzing the effectiveness of transfer learning models,
including VGG19, InceptionV3, ResNet50v2, and DenseNetl69, for identifying
PD using hand-drawn spirals.

Results: Transfer machine learning models demonstrate highly encouraging
outcomes in providing a precise and reliable classification of PD. Actual results
demonstrate that the InceptionV3 model achieved a high accuracy of 89%
when learning from spiral drawing images and had a superior receiver operating
characteristic (ROC) curve value of 95%.

Discussion: The comparison results suggest that PD identification using these
models is currently at the forefront of PD research. The dataset will be enlarged,
transfer learning strategies will be investigated, and the system’s integration into
a comprehensive Parkinson’s monitoring and evaluation platform will be looked
into as future research areas. The results of this study could lead to a better
quality of life for Parkinson’s sufferers, individualized treatment, and an early
classification.
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1 Introduction

Parkinson’s disease (PD) is a chronic deteriorating illness that
primarily affects the motor system of the central nervous system. Its
indications often manifest gradually, and as the disease progresses,
non-motor indications become more prevalent. The primary
indications are tremors, stiffness, bradykinesia, and gait disturbances.
PD may also result in dysphoria, apprehension, sleep disturbances,
sensory impairments, and alterations in behavior. Environmental
factors and genetic inheritance are significant contributors to the
development of PD (1, 2).

In 2019, a World Health Organization research reported that
approximately 8.5 million individuals are diagnosed with PD (3). The
prevalence of this condition increases with age, with only 4% of
afflicted persons younger than 50years old. PD is a highly prevalent
neurological disorder worldwide, ranking as the second most common
condition after Alzheimer’s disease. It affects a significant number of
people, as evidenced by the data from sources (4, 5). Currently,
therapists have limitations in effectively treating the symptoms of this
condition as interventions are still in their early stages (6). The main
tool used to determine a PD classification (PDD) is the patients
medicinal past; however, such classification remains uncertain (3).
Thus, it is critical to offer a simple and reliable method for detecting
this disease in order to save time and money on invasive classification
and treatment (7, 8).

Patients with PD may exhibit a broad variety of non-motor
symptoms, including mood disorders and depression, among others.
These symptoms, including language and other relevant aspects, may
manifest in the patient’s facial expressions (9). The present study aims
to analyze the effect of PD on both motor and non-motor abilities by
applying handwriting modeling methodologies, with a special focus
on spirals. This study seeks to fill a current knowledge gap by exploring
the potential of spiral drawing as a tool for PD assessment.

Spiral drawing is a sophisticated and intricate motor skill that
requires coordination. Consequently, it is regarded as an accurate
evaluation of motor function. The Motion Rating Scale and its
subcategory, The Unified PD Rating Scale (UPDRS-III), are the
predominant and universally acknowledged rating scales for assessing
PD. PD impacts a range of bodily processes, including speaking,
handwriting, walking, and coordination, all of which are classified as
motor functions. Various methods for measuring motor decline and
non-motor biomarkers have been proposed to assess the severity of
PD, which is considered a motor condition resulting from
neurodegeneration. Both the classification and intensive care of PD
are expensive and challenging because of two primary factors: (1) the
inconvenience faced by caregivers in transporting the patient to the
clinic and (2) the need for skilled medical professionals to conduct
physical examinations and make diagnoses based on their
observations. Clinical invasive techniques are only accessible at the
early stage of the disease, and they carry risks and require considerable
resources, especially in underdeveloped regions of the world. These
techniques are only beneficial if early classification is achieved (10, 11).

At present, there is no accurate standard for making an objective
finding of PD. When a non-specialist makes the classification, the
likelihood of a mistake increases dramatically. There is a 20% chance of
making a wrong classification in such instances (12). The accuracy of
the classification is improved by carefully analyzing the main indications,
which include tremors, bradykinesia, and stiffness. Having said that,
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physician bias may creep into clinical assessments. Medical choice
support systems are attracting interest for their capability to enhance
objectivity and facilitate early classification. An early identification of
PD will enable the development of tailored interventions for people with
PD (13, 14). A crucial objective in the study of neurodegenerative
illnesses is to discover precise biomarkers (15). Within the literature,
several research have been conducted to diagnose PD by analyzing
speech. These studies (16-18) mostly use sustained vowels and natural
speech for diagnostic purposes. Motor symptoms may also be identified
and monitored by analyzing patients’ motions and gait (19, 20).
Several techniques have been created to examine the handwriting
of patients with PD (21). Both static and dynamic characteristics are
intriguing, including factors such as speed and the lowering of pen
pressure throughout the handwriting (22). Numerous recent review
studies have been published (23, 24). The legibility of an individuals
handwriting is influenced by their visual acuity, writing technique, and
linguistic proficiency, resulting in significant differences across
individuals. A viable substitute for handwriting is the use of illustrations.
Deep learning (DL) models have greatly revolutionized biomedical and
medical image analysis (25). DL approaches have been applied in
different domains, including segmentation, detection, classification,
and classification (11), owing to their exceptional capability to extract
sophisticated features, leading to enhanced accuracy in illness
categorization. This may mostly be ascribed to their remarkable ability
to generalize. Convolutional neural networks (CNNs) have been crucial
in promoting the progress of the medical imaging field, achieving
notable success in several medical image classification tasks (19, 20).

1.1 Main contribution

Spiral drawing is a sophisticated and intricate motor skill that
requires coordination. Accordingly, it is regarded as an accurate
evaluation of motor function and an initial examination for early
indications of PD. This article proposes a method for PDD by
analyzing spiral drawings and employing transfer learning models.
The method categorizes an individual as either healthy or diagnoses
them with PD based on their spiral drawing. A spiral drawing
produced by a healthy individual will closely resemble a typical spiral
form. By contrast, a spiral created by an individual with PD will
exhibit significant deviation from a flawless spiral form and appear
twisted because of the individual’s sluggish motor movements and
diminished synchronization between the hand and the brain.

2 Related works

Drotar and colleagues planned the utilization of a feature selection
algorithm and support vector machine (SVM) approach to analyze the
handwriting of patients with PD (26, 27). Their study is one of the first
efforts to analyze the results of hand motions in the air or on a surface
for diagnosing motor disorders associated with neurodegenerative
illnesses. The findings revealed that these motions have a significant
influence on the evaluation of handwriting and achieve a prediction
accuracy of 85.61% (26). The work featured the PaHaW handwriting
database, which was created by having individuals with PD complete
eight distinct handwriting challenges, one being the Archimedean
spiral. Basnin et al. (27) demonstrated their approach by using deep
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transfer learning, achieving a testing accuracy of 91.36%. The research
only used a dataset consisting of 800 hand-drawn spiral pictures. Das
etal. (28) investigated a sophisticated technique for identifying PD using
pictures that were hand-drawn by the patients. The authors combined
discrete wavelet transform coeflicients with histograms of oriented
gradient data to enhance the accuracy of detection rate. They revealed
the effectiveness of integrating these methods to extract pertinent
information and identify vital coefficients, resulting in improved
accuracy in disease detection using machine learning techniques. They
specifically highlighted the efficacy of random forest (RF) and SVM
approaches when applied to spiral pattern features of images.
Researchers have discovered that studying handwriting or hand
drawings is a more efficient method for identifying PD (29). Shaban (30)
advocated for the use of a meticulously adjusted VGG19 model that
applies spiral and wave handwriting patterns to diagnose conditions.
The dataset used was of limited size and comprised 102 wave photos and
102 spiral images. Data augmentation, such as applying picture rotation,
was used to alleviate the problem of model overfitting. After
implementing 10-fold cross-validation, the CNN model demonstrated
impressive accuracies of 88 and 89% for the wave and spiral pictures,
respectively. Megha Kamble et al. (31) proposed a comprehensive
examination of the static and dynamic spirals created by people with
Parkinson’s disease. To do this, we extracted kinematic characteristics
related to movement in the air and on the surface from data files created
for 25 patients and 15 healthy controls. We utilized mathematical models
for this purpose. Gil-Martin (32) this study contributes to the ongoing
endeavor by examining a convolutional neural network (CNN) for the
purpose of detecting PD based on drawing gestures. The analysis was
conducted with a publicly available dataset: Digitized graphics are
utilized to create spiral drawings for Parkinson’s disease. Donalto
Impedovo et al. (33) have proposed handwriting as a robust indicator
for the development of a diagnostic tool for Parkinson’s disease. The
authors have applied a machine learning classification framework to the
PaHaW dataset and achieved high specificity performance scores. Marta
San Lucianol et al. (34) proposed the utilization of spiral drawing for
computerized analysis of PD, as digitized spirals demonstrate a
correlation with motor scores. The indices that are generated or
calculated that have a correlation with the overall execution of a spiral
include severity, shape, and kinematic irregularity. Kinematic irregularity
includes second order smoothness and first order zero crossing. Other
indices include tightness, mean speed, and variability of spiral width.
Theyazn H. H. Aldhyani et al. (10) study makes a contribution by
utilizing deep learning models to diagnose PD using photos of spiral and
wave drawings. Manju Singh et al. (35) aims to provide a method for
detecting PD utilizing spiral sketching and convolutional neural
networks (CNN). The core concept is to examine an individual’s spiral
drawings and categorize them as either indicative of good health or
indicative of Parkinson’s disease. The spiral doodles produced by
individuals in good health bear a striking resemblance to conventional
helical forms. Table 1 presents a concise summary of the key attributes
of prior studies on PD identification using drawings and other datasets.

3 Materials and methods

This section details the planned methodology applied to develop
a PDD system based on DL techniques, specifically designed to detect
PD from features extracted from spiral drawing images. This
methodology includes dataset collection, data preprocessing, DL
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classification models, evaluation metrics, and results analysis. The
framework of this methodology is shown in Figure 1.

3.1 Dataset collection

For our experimental study, we employed a dataset of spiral
drawing images obtained from the Kaggle platform. This dataset,
which was created by Adriano et al. (36) based on the NIATS of the
Federal University, includes digital records of 102 spiral image
samples, with 51 from Parkinson’s disease patients (PDP) and 51 from
healthy persons. The images have been pre-split into a training set and
a testing set (Figure 2).

3.2 Data preprocessing

For our experimental work on PDD using drawn spiral images,
we utilized a comprehensive dataset from the Kaggle platform. This
dataset includes digital drawings from 51 PDPs and 51 healthy
individuals. The processing steps are presented in Figure 3.

3.2.1 Data loading and preparation

The dataset was divided into two classes: “healthy” and
“parkinson?” Each image was resized to 100 x 100 pixels and converted
to array format for consistency. Labels were encoded into binary
format, where “healthy” was labeled as 0 and “parkinson” as 1. This
preparation step ensured uniform input data for the model.

3.2.2 Data augmentation

To increase the diversity and robustness of the training dataset,
we applied data augmentation techniques using the Image Data
Generator module, including rotation, shifting, and flipping of images.
We likewise introduced variations that prevent overfitting and
enhance the models capability to generalize to novel, unnoticed
image data.

3.2.3 Data splitting

In this step, we split the dataset into a training set and a testing set
using an 80-20 split ratio. This stratification ensures a balanced
representation of both classes in the training and testing phases.

3.2.4 Normalization and label encoding

The pixel values of the images were standardized to the range [0,
1] to expedite the training process and improve model performance.
Additionally, the labels were one-hot encoded to facilitate
categorical classification.

3.3 Diagnoses and classification models

For the classification and classification of drawn spiral images into
the “Parkinson” and “healthy” classes, we applied several advanced
CNN architectures, including VGG19, InceptionV3, ResNet50v2, and
DenseNet169. These models were pre-trained on the ImageNet
dataset, which comprises over 14 million images across 1,000
categories. ImageNet provides a robust foundation for transfer
learning due to its diverse range of visual concepts, although it does
not inherently include clinical images.
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TABLE 1 Overview of the current state of the art in employing various types of publicly available datasets based on artificial intelligence techniques.

Authors

Vanegas et al. (42)

Datasets

Parkinson’s dataset in

Approaches

Decision tree

Object of study

For this study, authors employed machine learning techniques to create a model that can accurately

collected using sensor

device

EGG approaches detect the most significant indicators from the EEG spectra during visual stimulation. The purpose
of this model is to aid in the classification of PD.
Oh et al. (43) Parkinson’s dataset in CNN model This study utilized the electroencephalogram (EEG) data of twenty individuals with PD and twenty
EGG individuals without PD. An established CNN architecture consisting of thirteen layers effectively
eliminates the requirement for traditional feature representation stages.
Prasuhn et al. (44) Parkinson’s dataset in SVM approach The proposed work suggests utilizing computer-aided methods and a highly reproducible method,
using MRI images as opposed to manually segmenting Substantia nigra (SN) to enhance the dependability and
precision of Diffusion Tensor Imaging (DTI) of the measurements employed for categorisation.
Rasheed et al. (45) Parkinson’s dataset in BPVAM This study presents two classification algorithms aimed at enhancing the accuracy of identifying PD
using voice cases based on voice measures. Initially, implemented the BPVAM algorithm, which is a variable
adaptive moment-based backpropagation algorithm of artificial neural networks (ANN).
Gunduz et al. (46) Parkinson’s datasetin | GB model This study presents two frameworks utilizing CNNs method to accurately classify PD by analyzing
using voice sets of vocal (voice) data. Both frameworks are used to combine different feature sets, but they differ
in how they combine these sets.
Pdisher et al. (47) Parkinson’s dataset CNN model Employed DL techniques to categorize motion data obtained from a solitary IMU sensor worn on

the wrist, which was recorded in unstructured settings. In order to validate the results, patients were
followed by a specialist in movement disorders, and their motor condition was assessed regularly

and without active participation every minute.

Taliki et al. (48)

Parkinson’s dataset in

using sensory

Random forest

This article explores instances of misclassification and presents a proposed system for obtaining a
second opinion. The system relies on wearable sensors and artificial intelligence. To address this
issue, authors developed several standardized tasks and collected movement data using wearable

sensors worn by persons diagnosed with PD other extrapyramidal illnesses.

using hand drawing

Shaban et al. (30) Parkinson’s dataset DL-based VGG16 | This work explores the application of a fine-tuned VGG-19 model to screen for PD using a Kaggle
using hand drawing handwriting dataset. The study involves conducting experiments to test the effectiveness of this
approach. The dataset consisted of 102 wave and 102 spiral handwriting patterns.
Robin (49) Parkinson’s dataset RestNet50 Developing RestNet50 to detect PD using of 102 of 102 wave and 102 spiral
using hand drawing
Stpete_ishii (50) Parkinson’s dataset CNN model Developing online for classification of PD by using spiral images
using hand drawing
Shaban et al. (30) Handwriting dataset CNN model Developing online for classification of PD by using spiral images
(same dataset)
Adrian (36) Parkinson’s dataset CNN model Developing online for classification of PD by using spiral images

Evaluation

Image Data

Image

preprocessing
Dataset

FIGURE 1
Framework of the proposed methodology.

. Results
Metrics

3.3.1 VGG19 model

We employed a CNN using the pre-trained VGG19 model to
identify PD (37). The input layer accepts images resized to 100 x 100
pixels with three color channels. The model, pre-trained on the
ImageNet dataset and excluding its top categorization layer, assists as
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a feature mining with average pooling. This is followed by a custom
dense layer with 64units and ReLU activation to introduce
nonlinearity. The final layer is a dense output layer with 2 units and
softmax activation, designed for binary classification between healthy
individuals and PDPs. The model is compiled with the Adam
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Healthy

FIGURE 2
Samples of spiral drawing images dataset.

Parkinsons

Data Loading and
Preparation

‘ Data Augmentation ‘ Data Splitting

FIGURE 3
Preprocessing steps.

optimizer, where categorical cross-entropy is the loss function and
accuracy is the assessment metric. The data training process was
conducted over 50 epochs with a batch size of 16 samples in each
iteration, utilizing augmented training data. Figure 4 shows the
VGG19 model architecture. The parameters of the VGG19 model are
presented in Table 2.

3.3.2 InceptionV3 model

We also employed the pre-trained InceptionV3 model (38), whose
inception modules are well known for their effective multi-scale
feature extraction capabilities for PD detection by analyzing spiral
drawing image features. Images with three color channels and a
resizing of 100x 100 pixels are accepted by the input layer. With
average pooling, the InceptionV3 model functions as the feature
extractor, omitting its top classification layer. To add nonlinearity, a
bespoke dense layer with 128 units and a ReLU activation function is
applied. The last layer is a dense output layer for binary classification
among individuals without PD and those with the condition. Figure 5
depicts the Inception model structure.

InceptionV3 has two units in the output layer to represent the
dataset classes, namely, Parkinson and Healthy, as well as softmax
activation applied for the classification task. The Adam optimizer is

Frontiers in Medicine

used to create the model. Model training is carried out using a batch
size of 32 utilizing augmented training data across 50 epochs. Table 3
summarizes the inception model parameters and their values used to
develop and implement the model.

3.3.3 DenseNet169 model

We also applied the pre-trained DenseNet169 (39, 40) model for
PD detection and classification based on spiral drawing image
features. This model is known for having a dense pattern of
connectivity that promotes improved feature reuse and maximum
information flow across layers. Images with three color channels and
a resizing of 224 x 224 pixels are accepted by the input layer. With
average pooling, the pre-trained DenseNet169 model functions as
the feature extractor, omitting its top classification layer. A bespoke
dense layer with 128 units and a ReLU activation function is applied
to add nonlinearity. Figure 6 illustrates the DenseNetl169
model structure.

The final layer is a dense output layer used for binary classification
between individuals without PD and those with the condition. Also
known as the output or last layer, this layer has two units to represent
the dataset classes and uses a Softmax activation function to calculate
the probability of each sample being either PPD or Healthy. The model
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FIGURE 4

Structure of the VGG19 model.

TABLE 2 Summary of the VGG19 model parameters.

Layer Parameters

Input Layer (100, 100, 3)

VGG19 Base Model Pre-trained on ImageNet, include_top = False, average

pooling

Dense Layer 64 units, ReLU activation

Output Layer 2 units, Softmax activation

Optimizer Adam

Loss Function Categorical Cross-entropy

utilizes accuracy as the evaluation measure, categorical cross-entropy
as the loss function, and the Adam optimizer for training. Table 4
presents the summary of the model parameters used.

3.3.4 ResNet50v2 model

A DL framework called residual network (ResNet) was presented
by Kaiming He et al. (41). The capability of this architecture to
effectively train deep neural networks has attracted huge interest. The
main breakthrough in ResNet is the use of residual connections, or
skip connections, which improve gradient flow and lessen the problem
of vanishing gradients. The residual blocks make up the bulk of the
ResNet architecture. These blocks are made up of multiple
convolutional layers, an activation function (usually ReLU), and batch

224 x 224 pixels with three color channels an can be loaded into the
input layer. The feature extractor with average pooling is the
pre-trained ResNet50v2 model without its top classification layer.
Nonlinearity is added by adding a customized dense layer with 128
neurons and a ReLU activation function. Figure 7 depicts the
model architecture.

The final layer is an output layer with two neurons and softmax
activation function for binary classification of patients with PD and
healthy people. Categorical cross-entropy is used as the loss function,
accuracy is the assessment measure, and the model is assembled based
on the Adam optimizer. Using supplemented training data, the

Metrics Accuracy training process was run across 50 epochs with a batch size of 32.
No. of Epochs 50 Table 5 outlines the model parameters used.
Batch Size Used 16 To evaluate the models’ performance on our current dataset,

we first trained these pre-trained models on the spiral image dataset
before testing them. We recorded performance metrics such as
accuracy, precision, recall, and F1-score.

3.4 Evaluation metrics

Assessing the performance and testing results obtained by the
proposed DL models, namely, VGG19, DenseNet169, Inception, and
ResNet50v2, are crucial for gauging the effectiveness of the models.
Several metrics are used to quantify performance, including precision,
recall, accuracy, F1-score, and ROC curve, which are calculated from
the confusion matrix. The evaluation measures provide an alternative
perspective on the advantages and disadvantages of the model.

normalization. The skip link, which enables the direct addition of the Accuracy = TP +TN <100 (1)
blocK’s input to its output, is what distinguishes a residual block. This FP+FN+TP+TN

method enhances gradient flow during backpropagation and helps the

network learn residual functions. We applied the ResNet50v2 model L

structure in our experimental work for PD detection and classification Fl—score=2% precisionx Recall x100% (2)

based the features of spiral drawing images. The images were scaled to

Frontiers in Medicine

precision + Recall

frontiersin.org


https://doi.org/10.3389/fmed.2024.1453743
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Farhah 10.3389/fmed.2024.1453743
a )
(s )
& = [ convolutional Layer ] Mean Pooling Layer
lnput image [] Max Pooling Layer [l Fully Connocted Layer
[ conval I propoat Layer [ Softmax Layer
. J
FIGURE 5
Inception model structure.

TABLE 3 Summary of the Inception model parameters.

Layer Parameters
Input layer (100, 100, 3)
Dense layer 128 units, ReLU activation
Output layer 2 units, Softmax activation
Optimizer Adam
Loss function Categorical Cross-entropy
Metrics Accuracy
No. of epochs 50
Batch size used 32
Precision = True Positives x100% (3)

True Positives + False Positives

True Positi
Recall = Sensitivity = rue Tosiive x100% (4)
True Positive + False Negatives

4 Experimental results

This section reports the findings obtained from various experiments
carried out for PD recognition and classification using various DL
models, namely, VGG19, ResNet50, InceptionV3, and DenseNet169.
Each model was assessed based on its ability to accurately categorize
spiral drawn images from patients with PD and healthy individuals.

4.1 Testing results of the VGG19 model

As revealed in Table 6 below, an overall accuracy of 72% is shown
in the testing classification results for PD recognition utilizing the
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VGG19 model. With a recall of 86% and precision of 60% for
Parkinson’s cases, the model successfully recognized the majority of
Parkinson’s cases with a small number of false positives.

Recall was 64% and precision was 88% for healthy persons,
indicating a higher classification accuracy for healthy cases but with
some false negatives. For Parkinson’s patients, the F1-score was 71,
while for healthy cases it was 74. The macro averages for precision,
recall, and F1-score were 74, 75, and 72%, respectively. These findings
point to areas where the model might be improved to lower
classification mistakes while also demonstrating how well it detects
PD. Figure 8 shows a graphical representation of the performance
results for the VGG19 model.

Figure 8A illustrates the validation and training accuracies of the
model over 50 epochs, presenting how well it learned to distinguish
between Parkinson’s and healthy cases. Figure 8B presents the model’s
loss over the training period, indicating the reduction in prediction
error as training progressed. Figure 8C depicts the area under the
curve (AUC) of the VGG19 model, providing a quantity of the model’s
capacity to distinguish between the two classes with an AUC value of
81% The AUC is a valuable metric for evaluating the overall results of
the classification model.

4.2 Testing results of the inception v3
model

The testing classification findings utilizing the InceptionV3 model
for PD identification are given in Table 7. The InceptionV3 model
attained an overall accuracy of 89%. For Parkinson’s cases, the model
achieved a precision of 78% and a recall of 100%, indicating it
accurately recognized all true Parkinson’s occurrences but included
some false positives. For healthy individuals, the precision was 100%
and the recall was 82%, showing exceptional precision but missing
some real healthy examples. The F1-score for PD was 88%, and for
healthy persons, it was 90%.
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DenseNet169 model structure.

TABLE 4 Summary of the DenseNet169 model parameters.

Layer Parameters

Input layer (224,224, 3)

DenseNet169 base model Pre-trained on ImageNet, include_

top = False, average pooling

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical cross-entropy

Metrics Accuracy
No. of epochs 50
Batch size used 16

The overall averages of the metrics are 91% for precision, 89% for
recall, and 89% for F1-score, demonstrating the balanced performance
of the model across both classes. These results suggest that
InceptionV3 is highly effective for PD detection, particularly excelling
in correctly identifying true cases of the disease. Figure 9 shows a
graphical representation of the performance results for the
Inceptionv3 model.

Figure 9A shows the validation and training accuracies, which
started at 55% and ended at 79% for training and the validation started
at 45% and ended at 89%. The significant improvement from the
initial to the final epoch indicates effective learning. Figure 9B
illustrates the model’s loss over the training period, with a notable
reduction from an initial loss of 1.2840 to a final loss of 0.4486 for
training and 0.3879 for validation, indicating the increased ability of
the model to make accurate predictions. Figure 9C depicts the AUC
of the InceptionV3 model, which reached an impressive value of 95,
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demonstrating the robust discriminative ability of the model between
Parkinson’s and healthy cases.

4.3 Testing results of the ResNet50v2
model

This subsection presents the outcomes of our experiments
utilizing the ResNet50v2 model for the detection and classification of
Parkinson’s Disease (PD). The model achieved an overall accuracy of
80%. For instances of Parkinson’s, the ResNet50v2 model exhibited a
precision of 79% and a recall of 92%. This indicates that the model
correctly identified 92% of Parkinson’s cases within the testing set,
though it produced some false positives. In contrast, for healthy
individuals, the model attained a precision of 83% and a recall of 62%,
signifying a reasonable accuracy in classifying healthy cases but
missing some true healthy instances. The F1-scores were 85% for
Parkinson’s cases and 71% for healthy cases. The testing classification
performance of the ResNet50V2 model is summarized in Table 8.

The macro average precision, recall, and F1-score were 81, 77, and
78%, respectively. These metrics underscore the models efficacy in
distinguishing between PD and healthy individuals, although there
remains room for improvement, particularly in increasing the recall
for healthy cases. Figure 10 graphically represents the performance of
the ResNet50V2 model over 50 epochs.

Figure 10A shows the validation and training accuracies, which
improved significantly from 40% initially to 90% for training and 85%
for validation by the final epoch, indicating effective learning.
Figure 10B illustrates the model’s loss over the training period, with a
reduction from a preliminary loss of 1.20 to an ending loss of 0.20 for
training and 0.40 for validation, reflecting good enhanced prediction
accuracy of the model.
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ResNet50 model architecture.

TABLE 5 Summary of the ResNet50 model parameters.

Layer Parameters

Input layer (224,224, 3)

ResNet50v2 base model Pre-trained on ImageNet, include_

top = False, average pooling

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical Cross-entropy

Metrics Accuracy
No. of epochs 50
Batch size used 32

4.4 Testing results of the DenseNet169
model

The testing classification results for the DenseNet169 model in
detecting PD using spiral drawing images are summarized in Table 9.
The DenseNet169 model achieved an overall accuracy of 85%,
indicating a high level of performance in distinguishing between PD
patients and healthy individuals based on their spiral drawing patterns.

The model showed 80% precision and 100% recall for Parkinson’s
cases. This implies that there were no false negatives in the model’s
identification of all actual cases of PD. However, as the precision score
shows, the model did generate some erroneous positives. For
Parkinson’s cases, the F1-score was 89%, indicating a fair trade-off
between recall and precision for this class.

The model’s precision for healthy individuals was 100%, meaning
that it was always accurate when it projected a case to be healthy. The
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recall rate for healthy patients was 62%, indicating that some genuine
healthy instances were overlooked by the algorithm, leading to
misleading negative results. Compared to the Parkinson’s class, the
F1-score for healthy persons was 77%, indicating a reduced but still
acceptable balance between precision and recall. The macro averages
of 81% for recall, 83% for F1-score, and 90% for accuracy show how
well the model performed generally in both classes. The recall macro
average shows that there is still need for growth in accurately
recognizing every instance across both classes, but the high precision
macro average shows how well the model can make positive
predictions. Figure 10 shows a graphical representation of the
performance plots of the DensNet169 model.

As seen in Figure 10, the training accuracy of the model started at
50% and steadily increased to 89% by the last epoch. Simultaneously,
there was an upward trend in the validation accuracy, starting at 60%
and reaching 83%. The training loss was reduced significantly from 90
to 20% in terms of model loss. In a similar vein, the validation loss
significantly decreased, going from 100 to 55%. Collectively, these
indicators show how the model’s performance and capacity for
generalization have increased during the training phase.

5 Discussion of the results

PD is a neurodegenerative condition that progresses over
time and is characterized by both motor and non-motor
symptoms. Accurate identification of PD is essential for timely
intervention. Conventional diagnostic methods often rely on
subjective neurological exams and clinical evaluations, leading to
potential inaccuracies. Therefore, there is growing interest in
leveraging advanced computational and machine learning
methods to enhance diagnostic precision. Figure 11 shows
performance of DenseNet169.
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TABLE 6 Testing classification results of the VGG19 model.

10.3389/fmed.2024.1453743

Precision % Recall % Fl-score% Support Accuracy%
Parkinson 60 86 71 7 72
Healthy 88 64 74 11 ‘
Macro average 74 75 72 18 ‘

TABLE 7 Testing classification results of the InceptionV3 model.

Precision % Recall % Fl-score% Support Accuracy%
Parkinson 78 100 88 7 89
Healthy 100 82 90 11
Macro average 91 89 89 18
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FIGURE 8

(A) Validation and training accuracies of the model, (B) model loss, and (C) AUC of the VGG19 model.

TABLE 8 Testing classification results of the ResNet50v2 model.

Precision % Recall % Fl-score % Support Accuracy %
Parkinson 79 92 85 12 80 ‘
Healthy 83 62 71 8
Macro average 81 77 78 20 ‘

In this study, we assessed the performance of several deep
learning models VGGI19, InceptionV3, ResNet50V2, and
DenseNet169 in identifying PD from spiral drawing tests. The
results highlight the strengths and limitations of each model. The
VGG19 model achieved a total accuracy of 72%, demonstrating
the lowest performance in detecting PD cases and a higher rate
of false positives and false negatives compared to the
other models.

The DenseNet169 model demonstrated an accuracy rate of
85%, whereas the InceptionV3 model achieved a higher accuracy
of 89%, both surpassing the performance of the ResNet50V2
model. The InceptionV3 model, in particular, exhibited excellent
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sensitivity and minimal false positives, making it highly effective
in identifying both Parkinson’s disease (PD) and healthy cases. In
contrast, ResNet50V2 achieved an accuracy of 80%, with notable
precision in identifying PD cases but less efficacy in classifying
healthy individuals. Collectively, these findings indicate that
transfer learning models based CNN architectures have capability
to classify Parkinson’s disease status using intelligent spiral
drawings features, especially InceptionV3 and DenseNet169, that
showed substantial potential for enhancing PD classification.
Future research should focus on optimizing these models further,
exploring additional data sources, and validating these findings in
real-world clinical settings. Figure 12 displays the ROC of the
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TABLE 9 Testing classification results of the DensNet169 model.

Precision % Recall % Fl-score % Support Accuracy %
Parkinson 80 100 89 12 85
Healthy 100 62 77 8
Macro average 90 81 83 20
A B
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FIGURE 10

(A) Validation and training accuracies of the model, (B) model loss of the ResNet50v2 model.

proposed models, where the InceptionV3 model is found to  the RF technique in (38). According to Haq et al. (39), lightning CNNs
achieve a high percentage of 91%. achieved an accuracy of 63.33%, while in Huang et al. (41), a standard

This subsection highlights the variations in accuracy outcomesby ~ CNN approach demonstrated a significant increase with an accuracy
providing an analysis of several techniques used on the same dataset  of 83%. By comparison, the InceptionV3 model we used in our
of 102 spiral images. The authors reported a 67% accuracy rate using  investigation produced the best accuracy of 89%. This better
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(A) DensNet169 model training and validation accuracy and (B) model loss.

TABLE 10 Comparison of the contribution of the present study with
existing research.

Reference ID Approach Dataset Accuracy

Prasuhn et al. (44) RF Same dataset 102 67%

spiral images

Rasheed et al. (45) Lightning Same dataset 102 63.33%
CNNs spiral images
Pfister et al. (47) CNNs Same dataset 102 83%
spiral images
Our study InceptionV3 | Same dataset 102 89%

spiral images

performance highlights the potential of sophisticated DL architectures
above more conventional machine learning and simpler neural
network approaches, proving their effectiveness in correctly detecting
PD using spiral drawing images. Table 10 displays the comparative
analysis between our study results and existing ones based on the
same dataset and accuracy metric.

6 Conclusion

The timely detection of PD is of utmost significance. The
complexity of identifying PD necessitates the development of
effective diagnostic instruments. In this work, PDD was determined
by examining the Parkinson’s spiral test. In contrast to other
investigations in the literature, this study regarded the Parkinson’s
spiral test as an issue of recognition. Furthermore, pattern
recognition approaches can yield favorable outcomes when used in
the analysis of spiral images in PD. This strategy can enhance the
effectiveness of diagnosing PD, a condition that is challenging to
detect in its early stages. The proposed approach utilized a
standardized dataset of 102 spiral samples obtained from
individuals diagnosed with PD. The implementation involved the
use of VGG19, InceptionV3, ResNet50v2, and DenseNet169 models
for the detection of PD utilizing spiral drawings. The aim of this
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work was to improve the diagnostic process of PD by utilizing
transfer learning models. The approach shows promising results in
diagnosing PD by analyzing the movement patterns of patients with
PD. The classifier, trained on photos of the spiral drawing challenge,
achieved an accuracy of 89% and an ROC score of 91% using the
InceptionV3 and ResNet50v21 models. The use of DL-based
analysis can enhance the efficiency and accessibility of spiral
drawing assessment in clinical and research contexts due to its
automated and scalable nature. Creating a deep learning system that
utilizes spiral drawing images to detect PD can be a valuable
method for aiding clinical decision making and advancing drug
research. It can improve the diagnostic process, assist in selecting
and monitoring patients in clinical trials, and offer objective
measures of outcomes, ultimately leading to better patient care and
the progress of PD research. The limitation of this research is that
it did not investigate the possibility of use spiral drawings to identify
other associated movement disorders; instead, it concentrated on
utilizing them to create a system for diagnosing PD. The study
showed that spiral image analysis is a useful tool for diagnosing PD,
but it did not look into whether the technique can distinguish PD
from other disorders that can similarly impair motor function, such
essential tremor. Another key limitation is that the data utilized was
based on previously diagnosed PD participants, thereby making it
more challenging to apply this AI approach as PD diagnostic
criteria, given that the classification is already known. However, this
research demonstrates that more sophisticated transfer learning
architectures can improve on previous deep learning approaches for
PD classification. As additional study data becomes available,
especially spiral drawing data that can be collected in a general
population of prodromal PD or those displaying motor symptoms,
such architectures can be readily adapted.

Overall, although spiral image analysis for PD classification shows
promise in the current research, more investigation is required to
examine the approach’s more extensive prospective applications and
prove its efficacy for a larger range of movement disorders and patient
demographics. Future research addressing these limitations may result
in an even more potent and therapeutically valuable tool to aid in the
differential classification and early detection of PD and associated
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ROC metric of the proposed models: (A) VGG19, (B) Inception, (C) ResNet50v2, and (D) DensNet169.

disorders. In Future studies will try to solve this issue for improving
the system.
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Sciences, Noida International University, Greater Noida, Uttar Pradesh, India

Neurodegenerative disorders such as Alzheimer's Disease (AD) and Mild
Cognitive Impairment (MCI) significantly impact brain function and cognition.
Advanced neuroimaging techniques, particularly Magnetic Resonance Imaging
(MRI), play a crucial role in diagnosing these conditions by detecting structural
abnormalities. This study leverages the ADNI and OASIS datasets, renowned for
their extensive MRI data, to develop effective models for detecting AD and MCI.
The research conducted three sets of tests, comparing multiple groups: multi-
class classification (AD vs. Cognitively Normal (CN) vs. MClI), binary classification
(AD vs. CN, and MCI vs. CN), to evaluate the performance of models trained
on ADNI and OASIS datasets. Key preprocessing techniques such as Gaussian
filtering, contrast enhancement, and resizing were applied to both datasets.
Additionally, skull stripping using U-Net was utilized to extract features by
removing the skull. Several prominent deep learning architectures including
DenseNet-201, EfficientNet-B0O, ResNet-50, ResNet-101, and ResNet-152 were
investigated to identify subtle patterns associated with AD and MCI. Transfer
learning techniques were employed to enhance model performance, leveraging
pre-trained datasets for improved Alzheimer's MCI detection. ResNet-101
exhibited superior performance compared to other models, achieving 98.21%
accuracy on the ADNI datasetand 97.45% accuracy on the OASIS dataset in multi-
class classification tasks encompassing AD, CN, and MCI. It also performed well
in binary classification tasks distinguishing AD from CN. ResNet-152 excelled
particularly in binary classification between MCI and CN on the OASIS dataset.
These findings underscore the utility of deep learning models in accurately
identifying and distinguishing neurodegenerative diseases, showcasing their
potential for enhancing clinical diagnosis and treatment monitoring.

KEYWORDS

deep learning, Densenet, EfficientNet-B0, Resnet, skull stripping, healthcare,
clustering, decision making
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1 Introduction

Neurodegenerative illnesses like AD affect brain cognitive
function. It is one of the most common cause of Dementia. The exact
cause of disease is still not fully discovered and so the cure. It is
believe that it happens due to a combination of genetic, environmental,
and lifestyle factors. The protein accumulation in the brain which is
Amyloid Plaques is the main cause. The plaques accumulates between
the neurons because of which the death of neuron starts.
Inflammation in the brain and oxidative damage to neurons are also
believed to play roles in the development and progression of
Alzheimer’s disease. These processes can further contribute to
neuronal dysfunction and death. These disorders cause problems with
brain function and impair cognition (1). Progressive decline in
cognitive function, including memory loss and diminished cognitive
ability, characterizes AD, the most prevalent form of dementia.
Conversely, MCI is a transitional stage between typical cognitive
aging and AD, distinguished by observable deterioration in cognitive
functions that do not significantly impede routine tasks (2). These
conditions impose a burden on healthcare organizations as well as
society at large, in addition to endangering the health and safety of
those affected.

The efficient detection of AD and MCI has become a crucial area
of interest in medical research. The progress in neuroimaging
methods, including magnetic resonance imaging (MRI), has improved
the ability to diagnose these conditions. MRI scans are used to
diagnose Alzheimer’s and MCI by examining structural abnormalities,
which often require advanced image processing to increase clarity and
extract relevant features (3).

The ADNI (4) and OASIS (5) datasets are renowned for their
efficacy in diagnosing Alzheimer’s and MCI, both used in this analysis
and recognized for their vast human macroscopic MRI data. These
datasets cover healthy and AD/MCI patients. MRI images from both
datasets are used to identify anatomical changes connected to
neurodegenerative illnesses, such as brain volume and cortical
thickness (4, 5).

Multiple methods are utilized to preprocess MRI data to increase
AD and MCI diagnosis accuracy and comprehension. A Gaussian
filter reduces noise and decreases artifacts and electrical noise to
improve visual clarity (6), contrast-limited responsive Histogram
Equalization (CLAHE) enhances contrast, the image is resized to
224x224 pixels for consistency (7), and CNN model compatibility and
intensity levels are normalized across scans (8). Skull stripping
eliminates non-brain tissues to focus further investigations on the
importance of brain regions, and then Tissue segmentation segments
the brain into gray matter, white matter, and cerebrospinal fluid,
providing more precise data for study (9). In ADNI additional
preprocessing, we performed skull stripping using U-Net (10) to
remove the cranium. The brain is cut cross-sectionally along three
axes—axial, coronal, and sagittal. The slices are evaluated for quality,
and three are selected to show the most essential MRI imaging areas
while reducing noise (9, 11, 12).

Many research’s have been working in the area however the work
done so far has limitation that this paper is trying to address. The work
done by researcher’s is focused on one dataset, where as we have used
the multiclass dataset for the research. The improvised preprocessing
model that can work on MRI from different datasets and the
prediction model provides the consistency accuracy while predicting.
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This investigation offers several substantial improvements to the
existing Research on the identification of Alzheimer’s and MCI:

« To extract and preprocess the renowned datasets, ADNI and
OASIS, from the neuroimaging discipline for the investigation.

« To propose a framework model for early detection of AD using
different deep learning techniques such as DenseNet-201,
EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 for the
classification of MCI detection

« To evaluate and analyze the performance of prominent deep
learning  using metrics  for

performance making

recommendations in healthcare organizations.

The complexity of MRI images for AD and MCI identification
highlights cutting-edge deep learning processes. This work contributes
to neuroimaging studies and AD/MCI diagnosis as the
discipline progresses.

The paper not only addresses binary classification but also
emphasizes multiclass classification. The predictive model extends
beyond determining whether a subject has AD or not; it also predicts
the stage of the disease, such as AD, CN, or MCL

In binary classification, the model's output provides a
straightforward yes or no answer regarding the presence of AD or
another condition. However, in multiclass classification, the model
distinguishes between different stages of the disease, offering a more
nuanced understanding of the individual’s cognitive health status. This
approach is crucial for clinical applications as it allows healthcare
providers to not only diagnose the presence of AD but also to
categorize the severity or progression of the disease. Such detailed
predictions can significantly aid in early intervention, personalized
treatment planning, and monitoring of disease progression over time.

The paper is structured around the materials and methods
outlined in Section 3, encompassing preprocessing techniques,
transfer learning, and notable CNN architectures. Section 4 presents
the dataset details and outcomes of the proposed approach. Lastly,
Section 5 encapsulates the conclusion and outlines future avenues for
the model’s development.

2 Literature review

The analysis of the research done so far is represented in
this section.

Modern deep-learning architectures are used to identify subtle
patterns from the datasets to create powerful AD and MCI detection
applications/models. These architectures ensure and advance
neurodegenerative condition research. Most prominent advanced
deep-learning architectures such as DenseNet-201 (13),
EfficientNet-BO (14), ResNet-50, ResNet-101, and ResNet-152 (15)
have been investigated to develop efficient models for detecting
Alzheimer’s and MCI. The architectures often extract detailed patterns
from complicated datasets and are used with transfer learning.

The DenseNet-201 design operates by establishing dense
connections between each layer and all subsequent layers in a feed-
forward manner to recycle features efficiently. The connection
mentioned above improves the transmission of features and promotes
the reuse of features, resulting in more effective use of parameters (13).
EfficientNet-B0 prioritizes enhancing model efficiency by scaling the
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network in many dimensions (depth, breadth, and resolution) to
achieve an optimal trade-off (14). ResNet-50, ResNet-101, and ResNet-
152 belong to the ResNet (Residual Network) family. This network
family includes skip connections, also known as shortcuts, which
enable bypassing one or more layers. This technique helps to address
the vanishing gradient issue and facilitates the training of intense
networks. These skip connections further enhance the propagation of
gradients during backpropagation, enabling the model to learn more
efficiently (15). Each of these designs offers distinct methods for
extracting features and optimizing parameters, making them suitable
for various elements of Alzheimer’s MCI detection in MRI datasets.
A 3D-CNN model was trained using ADNI MRI data to distinguish
AD from CN. An AD brain mask was found using a genetic algorithm-
based Occlusion Map technique, and Backpropagation-based explain
ability methods. The recommended model had 87% accuracy in 5-fold
cross-validation, mirroring prior findings, whereas an updated
3D-CNN model with 29 brain regions achieved a high validation
accuracy using the Irp_z_plus_fast explain ability technique (16). The
assessment process exploits shallow CNN architecture on 2D
T1-weighted MR brain images. This pipeline rapidly and accurately
identifies normal, MCI, and AD. The technique is labeled MCI
prodromal AD. They tested it against DenseNet121, ResNet50, and
EfficientNetB7 (17). A unique ensemble deep-learning AD classification
technique was developed. Soft-NMS consolidates candidate data and
improves detection in the Faster R- CNN architecture. Enhanced
ResNet50 extracts more complicated visual data. For sequence data
processing, the feature extraction network employed Bi-GRU. Improved
Faster R-CNN did the classification well (18). Researchers created
EfficientNetB2 for AD, MCI, and NC. Front-end Global Attention
(GAM)
Coordination Attention helped get channel and location data from

Mechanism in EfficientNetB2 took crucial features.
two-dimensional slice data for appropriate diagnosis. Micro-designing
using the ConvNeXt network reduced model complexity and improved
categorization. The recommended method outperformed CNNs on
AD/NC, AD/MCI, and MCI/NC dichotomous data (19). Investigators
created an integrated automated method for guided machine learning-
driven selection using K-Means++. A sophisticated deep learning
framework using EfficientNetV2S transfer learning and learned
features. Trials utilized ADNI and OASIS benchmark datasets. In
research and validation, the integrated design outperformed all other
models. Model validation was 20-fold. On the ADNI dataset, CN
showed 83.64% accuracy against AD, 82.69% against MCI, 71.40%
against MCI, and 91.54% on the OASIS dataset (20).

3 Materials and methods

The research approach used in this study centers on utilizing the
ADNI and OASIS datasets, which are well-known for their extensive
human macroscopic MRI data. These datasets include people who are

in good health as well as those who have been diagnosed with AD and
MCI (4, 5).

3.1 Methodology

MRI data is preprocessed using Gaussian filters (6), CLAHE for
contrast enhancement, standardized image dimensions, and
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normalizing intensity levels (7, 8). U-Net removes the cranium for the
ADNI dataset, and the brain is sliced along three axes for cross-
sectional slices. These slices undergo a quality evaluation to provide
the best depiction while minimizing noise and highlighting significant
regions of MRI imaging (9-13). State-of-the-art deep-learning
architectures like DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-
101, and ResNet-152 extract intricate patterns from the datasets,
hence aiding in creating effective models for AD and MCI
identification. This mechanism guarantees the strength and
dependability of the analysis performed on the ADNI and OASIS
datasets, enabling progress in comprehending and identifying
neurodegenerative disorders (13-15). Figure 1 presents the
methodology for detecting AD and MCI using ADNI and
OASIS datasets.

During the implementation the steps followed will be explained
in the paragraph. The dataset will be provided to preprocessing model.
The preprocessing model will make sure each image goes through
Gaussian filter, Clahe and resizing. The ADNI images will go through
additional two steps which are skull stripping and slicing. Once the
data is preprocessed the images will be split in training and testing
data in 80:20 ratio. For the model training the training dataset will
be provide to the model. In the model image features will be extracted
through different models and post that it will go through the transfer
learning models. Once the model is trained the images from the test
dataset will be provided and the prediction will be done by model. The
efficacy of the model will be judged on F1 score, accuracy, recall value
and precision. The model will categorize the images in the three
buckets as CN, AD & MCI.

3.2 Data preprocessing

The preprocessing approaches explored for identifying AD and
MCI include noise reduction, CLAHE, Image resizing, and
normalization. Noise reduction in MRI scans is achieved by using a
Gaussian filter. This filter effectively reduces noise caused by different
sources, better depicting the images for analysis. Gaussian filtering
reduces intensity fluctuations and maintains structural information,
enhancing MRI data quality (6). CLAHE improves the contrast of
specific areas by adjusting the intensity levels according to local
histograms. This leads to a more detailed representation of the
essential structural features of AD research (7). Resizing an image to
a defined dimension, such as 224x224 pixels, guarantees consistency
and compatibility with CNN models. This process maintains the
structural data of the image for analytical purposes. Normalization is
a process that makes intensity levels similar across MRI scans. This
helps in accurate and comparative analysis by guaranteeing that
intensity distributions are the same (8).

The designated preprocessing techniques enhance the accuracy
and comprehensibility of MRI data in identifying AD and MCI in
both the ADNI and OASIS datasets. In addition, some prominent
steps of preprocessing involved for the ADNI dataset:

Skull Striping: The U-Net architecture has an encoder-decoder
structure incorporating skip links, similar to ResNets (10). Regarding
skull stripping, the network takes a 3D MRI image as input and
produces a binary mask that identifies the brain area. During learning,
the network can divide the brain into distinct segments by predicting
which pixels are part of the brain and which are not. The encoder
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component of the U-Net collects features from the input image at
various scales, while the decoder component increases the resolution
of these features to produce a segmentation mask that matches the
resolution of the input image. Spatial information is using skip links
that facilitate conserved and accurate localization. The neural network
is taught using a dataset consisting of MRI images and their matching
manually generated skull-stripped masks (11). After training, the
U-Net may automatically perform skull stripping on newly acquired
MRI images, making it a significant asset in neuroimaging research
and clinical practice (9, 12).

Slicing: After removing the skull, slice the brain along the three
axes (axial, coronal, and sagittal) to get cross-sectional slices. This
procedure entails segmenting the three-dimensional (3D) pictures
into two-dimensional (2D) slices, which record distinct brain
structure viewpoints. After getting the slices, visually assess their
quality. Select three slices for a better qualitative representation than
the rejected ones. This reduces noise and highlights the most essential
areas of MRI imaging (11).

The images in Figure 2 show cross-sectional views before and after
skull stripping, demonstrating the effects of the preprocessing method.

3.3 Prominent CNNs

ResNets: Residual Networks (ResNets) utilize shortcut connections
between layers to facilitate residual learning. The residual learning
approach entails acquiring knowledge about the residual mapping rather
than the direct mapping of the input data, thereby enabling the efficient
training of intense networks. Shortcut connections facilitate the
propagation of gradients across layers and effectively address the
disappearing gradients often seen in deep neural networks. ResNet
comprises numerous residual blocks, including several convolutional
layers and shortcut connections. This design enables the network to
capture intricate input data aspects effectively (15).

ResNet can employ shortcut connections, bypassing one or more
layers. The shortcut connections merely execute identity mapping; the
results of these connections are aggregated with those of the layered
layers. When many layers are appended, vanishing gradient issues
frequently arise, preventing backpropagation from updating the
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sagittal plane slice

FIGURE 2
Slices of pre (Left) and post (Right) skull stripping (4). (A): axial plane
slice, (B): Coronal plane slice, (C): Sagittal plana Slice.

weights of the initial layers. The problem might be remedied through
the incorporation of an identity link. The ResNet architecture
facilitates the direct propagation of gradients in the opposite direction,
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allowing them to traverse from the later layers to the initial filters via
an identity link. By incorporating residual learning, the method
improves the CNN architecture and renders it more applicable to the
training of deep networks. A plain and simple network with a more
significant number of layers tends to have more errors, but ResNet,
which has specific layer configurations such as 50 and 101, has a
superior capacity to handle deeper networks (15, 21, 22). Figure 3
presents the concept of shortcut connections.

ResNet familiarizes the conception of residual learning, where the
layer transforms the input into a layer, and a shortcut connection
bypasses one or more layers. Equation 1 presents the residual learning
through Shortcut connection, understanding the basic building blocks
of ResNets and how they are combined to form the architecture. This
is expressed mathematically as:

Output (Y ) = F (Input (X)) + Input (X) (1)

Here, F(input(X)) represents the transformation performed by
the layer.

A ResNet block typically consists of two convolutional layers
followed by a shortcut connection. Let us denote input to the block as
X, output as Y, and the residual function as F(X) (15). In Equation 2
the output y is computed as:

Y=F(X{W})+X )

where Wi are the weights of the convolutional layers.

ResNet has several layers, and these basic blocks are stacked
together. The architecture consists of convolutional layers, batch
normalization, ReLU activations, and residual blocks.

Let us consider a single convolutional layer within the residual
function to simplify and derive this equation. Equation 3 calculates
the output Y1 of the convolutional layer is given by:

Y=o (WM *X+b) (3)

Weight Layer

Relu
¥ Identity

Woeight Layer

FX) —d

A 4
4 N\
po bl v o =

Relu
-

FIGURE 3
Shortcut connection used by ResNet.
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Here, W1 is the weights, b1 is the bias, o is the activation function
(commonly ReLU), and * denotes convolution.

Now, let us consider another convolutional layer with output Y2
which can be calculated as Equation 4:

Y2=c(W*Y +by) 4)

The residual function F(X) can be represented as the composition
of these two layers:

F(X)=c(Wyx(c (WX +b))+b) )

Substituting the expression for F(X) of Equation 5 into the
Equation 1, we get:

Y=o (W *(c(M*X +b))+by )+ X (6)

Equation 6 represents the forward pass through a single
residual block.

The beauty of ResNet architecture lies in the ability to learn the
identity mapping (i.e., Y =X) if needed. If the optimal transformation
for a block is close to the identity mapping, the weights of the
convolutional layers can be adjusted to approach the identity function,
allowing for easier optimization during training (15, 23).

Each ResNet network consists of numerous convolutional layers,
pooling layers, and fully connected layers with varying output sizes and
numbers of filters. The advantages include improved accuracy with
increased depth and overcoming the degradation problem observed in
shallower networks. The disadvantages may include higher
computational complexity, as indicated by the increase in floating-point
operations (FLOPs), which measures the number of floating-point
operations a neural network performs during inference or training with
deeper networks (15).

ResNet-50: ResNet-50 uses residual learning to solve the degradation
issue of deeper neural networks by creating skip connections or shortcuts
that enable information to move directly across layers. The model
consists of 50 layers, which include convolutional, pooling, and fully
linked layers, using residual blocks as the fundamental components.
Each residual block has many convolutional layers and a shortcut link to
help the network learn abstract features (15).

ResNet-50 can train deeper networks without the vanishing
gradient issue, improving performance on complex datasets. ResNet-
50’ skip connections simplify training optimization, speeding
convergence and improving generalization. ResNet-50 can be helpful
for image classification and feature extraction because of its novel
design and efficient training processes (18, 21).

ResNet-101: ResNet-101 is a CNN composed of precisely 101 layers.
The construction of this architecture utilizes bottleneck blocks, which
consist of three layers. It entails laying out various convolutional blocks
with unique weights and additional elements, such as batch
normalization and ReLU activations. The method employs residual
learning to tackle degradation issues and enhance accuracy by leveraging
higher depth. The network incorporates shortcut connections to
facilitate residual learning, offering the choice between identity mapping
or projection shortcuts. The model is trained using batch normalization,
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stochastic gradient descent (SGD), weight decay, and dropout. This
approach achieves high accuracy and successfully addresses
optimization challenges encountered in regular networks. ResNet-101
consists of recurring blocks with different filter quantities and other
properties. The design guarantees that the number of parameters, depth,
breadth, and computing cost remain identical to those of plain networks
(15, 24).

ResNet-152: Its 152 layers make ResNet-152 one of the deepest
convolutional neural networks. Multiple convolutional layers and
identity mappings in residual blocks enable feature extraction at
various abstraction levels. Skips in ResNet-152 let information flow
directly from previous layers to subsequent ones, maintaining gradient
flow and simplifying training optimization. Deep and skip connections
improve this architecture’s image recognition performance, including
accuracy, convergence during training, and the ability to handle
vanishing gradient issues in deep neural networks (15, 24).

DenseNet-201: The Dense Convolutional Network (DenseNet) is
characterized by a dense connection structure, which enables effective
feature reuse and rapid model generation. The DenseNet-201 connects
layers feed forwardly by utilizing feature maps from previous levels as
inputs and producing feature maps for subsequent layers. The network
has a total of a(a+1)/2 direct connections for nodes, i.e., a, which
successfully alleviates the vanishing-gradient problem, improves
feature propagation, encourages feature reuse, and decreases
parameter count. The architecture comprises many compact blocks,
including convolutional layers alternated with transition layers, which
reduce dimensionality and regulate the complexity of the model. This
architectural design facilitates extracting features and propagating
gradients, effectively tackling the issue of disappearing gradients in
deep neural networks (13).

The main benefits of this approach are eliminating unnecessary
features, less computational burden, and increased understanding of
the model’s behavior due to dense connections. These advantages
result in enhanced accuracy and efficiency while performing deep-
learning tasks (11).

EfficientNet-B0: EfficientNet-B0 uses compound scaling to adjust
the network’s depth, breadth, and resolution equally. This leads to the
creation of smaller and more precise models. The fundamental idea is
to attain the best possible performance within computing limitations
by carefully managing the model’s depth, breadth, and resolution. The
design incorporates inverted bottleneck blocks, squeeze-and-
excitation blocks, and movable inverted bottleneck blocks, which
optimize the use of parameters and processing resources.
EfficientNet-BO demonstrates exceptional performance, increased
precision, reduced processing requirements, and adaptability, making
it suitable for resource-limited settings such as mobile devices and
edge computing (14).

3.4 Transfer learning

Transfer learning is a potent approach in ML that entails adjusting
a pre-trained model from one task to another associated task, thereby
capitalizing on the information acquired during the initial training.
This strategy dramatically enhances the model’s performance while
decreasing the need for extensive datasets in the target domain (25).
Transfer learning allows researchers to optimize specific tasks by
refining pre-existing CNN models such as ResNet-50, ResNet-101,
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ResNet-152, DenseNet-201, and EfficientNet-B0. These models have
been extensively trained on datasets like ImageNet (11).
Fine-tuning, an essential component of transfer learning, is
modifying the model’s characteristics to match the patterns and
correlations of the target problem. For example, ResNet and EfficientNet
topologies sometimes improve by including extra dense layers, usually
256 and 128 units. This method allows models to specialize in activities
beyond their initial training goals. Transfer learning allows models to
use the information from pre-training on extensive datasets, enabling
quicker convergence and enhanced generalization when fine-tuned on
particular datasets. This strategy simplifies the process of developing
models and improves performance in different applications (25, 26). The
demonstration of the employment of transfer learning on ResNet-101 is
presented in Figure 4, which removes the top layer and adds a new layer.

4 Results and discussion

The experiment was conducted utilizing a system including
quadruple NVIDIA RTX A6000 GPUs, each equipped with 32GB of
memory, resulting in a combined processing capability of 194.8
TFLOPS. The system also included 64 GB of RAM and an AMD EPYC
7232P Octa Core CPU.

4.1 Dataset

The ADNI and OASIS datasets comprise human macroscopic MRI
data, encompassing both individuals in good health and those who
have received a diagnosis of Alzheimer’s and MCI disease. The ADNI
and OASIS datasets employed in the investigation, renowned for their
unrestricted access, provide researchers with invaluable resources for
examining the human brain’s structural characteristics via MRI
imaging. These datasets enable inquiries into both typical brain
anatomy and pathological alterations that are linked to Alzheimer’s
and MCI disease. The robust prediction model can be integrated with
the MRI system so that it act as a helpful resource to the doctors.

ADNI: The ADNI dataset, a vast resource for AD progression
research, uses MRI images to reveal deep brain anatomy. The ADNI
longitudinal study uses MRI, PET, and other biological markers to
identify biomarkers for early detection and tracking of AD. It allows
in-depth analysis of brain area using bottom-to-top brain scanning
axial visuals, with T1-weighted images improving anatomical
structure analysis and problem detection. The ADNI incorporates
several methods for participant and phantom scans. Participants
undergo scanning utilizing a variety of sequences, including axial T2
STAR, axial 3D PASL, accelerated sagittal MPRAGE, sagittal 3D
FLAIR, axial DTT, field mapping, axial rsfMRI with eyes open, and
HighResHippocampus. The specific sequences may differ depending
on the scanner’s manufacturer, for example, GE Systems for axial DTT
scans and Philips Systems for resting-state fMRI and axial T2-FLAIR
scans. This overview offers essential information on the imaging
procedures and sequences used in the ADNI dataset. The dataset
includes MRI scans from over 1,200 participants, each having multiple
scans over time (4).

The age cohort-specific Alzheimer’s disease progression analysis
is possible from 20 to 90. Further processing involved extracting 2D
slices from the original T1-weighted MRI scans and a processed
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TABLE 1 ADNI axial and coronal planes slices (4).

Class Train Test Total
AD 4,980 1,244 6,224
MCI 4,162 1,040 5,202
CN 6,605 1,651 8,256

collection after skull stripping. The distribution of these slices across
different anatomical planes was recorded as follows and given in
Tables 1, 2.

This breakdown provides detailed insight into the composition
of the dataset, which is crucial for understanding the distribution of
data for training and testing purposes across different classes and
anatomical planes (4). When working with MRI images many
computational complexity’s need to be considered like image size and
resolutions. Data augmentation need to be applied so that model has
good number of images for the training. The preprocessing and
feature extraction should be robust so that noise can be handled.
Optimizing these factors is crucial for achieving efficient and effective
analysis of MRI data in medical applications.

This investigation focused on three classes: CN, AD, and MCI,
which had corresponding MRI scan counts of 159, 123, and 100,
respectively. The dataset was partitioned into training and testing sets
to facilitate deep learning tasks, wherein training comprised 80% of
the data and testing included 20%. The CN group allocated 127 scans
for training and 32 scans for testing, whereas the AD group utilized
99 scans for training and 24 scans for testing. For assessment
purposes, there are 20 scans for testing of the MCI and 80 scans
for training.

OASIS: The OASIS dataset is accessible to the public for
investigation. It comprises cross-sectional MRI data from 416 people
aged 18 to 96years. Among these individuals, 100 have been
diagnosed with AD at a very low to moderate stage. The dataset
comprises T1-weighted MRI images for each participant, enabling a
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broad spectrum of analytical methodologies. The dataset has
undergone de-identification, meticulous quality screening, and post-
processing to provide standardized anatomical measurements. The
inclusion of measures such as estimated total intracranial volume
(eTIV) and normalized whole-brain volume (nWBYV) offers valuable
insights into the structural changes in the brain associated with aging
and AD (5, 27). Table 3 shows the train-test (80-20%) split and
quantity of MRI images for AD, MCI, and CN.

4.2 Performance metrics

Performance metrics quantify deep learning model performance.
Many performance indicators include accuracy, precision, recall, and
F1 score. Accuracy is the ratio of real positives and negatives to data
points. Predicting the majority class may give the model high
accuracy with imbalanced datasets, which may be misleading. The F1
score is a metric that combines recall and precision (26). On these
metrics, precision, and recall calculations are predicated. Recall is the
percentage of positive instances from the overall count of positive
cases. At the same time, precision denotes the ratio of accurate
optimistic predictions to the overall count of positive predictions.
Incorporating false positives and false negatives, the F1 score is an
exceptionally effective metric for assessing the performance of
datasets containing unbalanced classes (28).

The specified CNN model employs the following Hyperparameters:

Although RMSprop is renowned for its capability to modify
learning rates and manage sparse gradients, a learning rate of 0.02
may be excessively high and could be improved. The detection of AD
and MCI are examples of multi-class classification tasks amenable to
categorical cross-entropy. The batch size 64 frequently balances
model stability and computational efficiency. Although 50 training
epochs are a reasonable starting point, the validation loss must
be closely monitored to prevent overfitting, and early halting should
be considered.
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4.3 Analysis

This investigation included three types of classification: first,
multi-class classification in the AD vs. CN vs. MCI classes. The second
is the Binary classification of AD and CN, and the third is MCI and
CN. Comparing the predicted and observed labels yielded the
accuracy of classification.

4.3.1 Multi-class classification (AD vs. CN vs. MCI)
Table 4 compares employed CNNs onto the specified two datasets
in the investigation of multi-class classification, i.e., AD, MCI, and
CN. The outcomes presented in Table 4 demonstrate the model’s
remarkable capacity to differentiate between cases of AD and MCI. The
experimental results for the three-class classification experiment
revealed that models become increasingly proficient in handling multi-
class problems, as evidenced by their superior performance.
Quantification was performed on three cerebral components—
white matter, gray matter, and cerebrospinal fluid—as part of the
assessment of malady severity. The findings presented in Table 5
illustrate that the group comparing AD to CN to MCI attained
exceptional levels of ResNet-101 Accuracy, Precision, Recall, and F1
Score. The findings show significant variations in performance across
the CNN models in the multi-class classification test for AD, CN, and
MCI. ResNet-101 scored the maximum accuracy and F1 score across
both datasets, 98.21 and 94.78% for ADNI and 97.45 and 93.45% for
OASIS, respectively, proving its ability to discriminate between the
classes. ResNet-152 followed closely, achieving 97.89% accuracy for
ADNI and 96.91% for OASIS. EfficientNet-B0, despite performing
satisfactorily and scoring 89.67% for ADNI and 88.56% for OASIS. The
F1 scores, which consider both accuracy and recall, reflected the
patterns found in the individual measures, with ResNet-101 getting

TABLE 2 ADNI sagittal planes slices (4).

Class Train Test Total
AD 4,644 1,160 5,804
MCI 3,522 1,200 4,402
CN 3,912 978 4,890
TABLE 3 OASIS class wise instances (27).

Class Train Test Total
AD 390 98 488
MCI 4,800 1,200 6,000
CN 4,800 1,200 6,000

TABLE 4 AD vs. CN vs. MCI (multi-class classification).

10.3389/fmed.2024.1445325

the most significant F1 scores for both datasets, followed by ResNet-
152 and EfficientNet-B0. These findings indicate that ResNet-101 is
the best model for this multi-class classification job, followed by
ResNet-152, with EfficientNet-B0 trailing behind in performance.
ResNet-101 has the highest accuracy level, meaning it can correctly
put cases into each class. ResNet-152 and EfficientNet-B0 have lower
accuracy measurements and fewer correct results. ResNet-101 did
better than the others in memory to catch more true positives. ResNet-
152 and EfficientNet-B0 had lower scores, which means they missed
more false positives. Figure 5 illustrates the confusion matrix of the
ResNet-101.

4.3.2 Binary classification (AD vs. CN)

The outcomes of the binary classification test, distinguishing
between AD and CN individuals, demonstrate diverse degrees of
performance and are presented in Table 6. The AD versus CN group
exhibited the subsequent categorization for the assessment primarily
because of notable disparities in brain tissue region. The AD versus
MCI group indices showed a reasonably high value but somewhat
lower than the AD versus CN group. This observation aligns with
predictions since MCI is pathologically more similar to AD than
CN. Consequently, distinguishing between MCI and AD may
be slightly more challenging. The findings indicated that the ResNet-
101 model attained a notable level of accuracy in accurately
categorizing the AD. The approach had a 92.34% accuracy in
differentiating normal controls from AD patients. Again, ResNet-152
closely follows as the second-highest achiever, exhibiting robust
performance across all criteria. DenseNet-201 has commendable
performance but could be a lot better than ResNet-152. Conversely,
EfficientNet-BO0 has the least favorable performance compared to the
other models. Figure 6 illustrates the confusion matrix of the ResNet-
101 with the ADNI dataset.

4.3.3 Binary classification (MCl vs. CN)

The outcomes of the binary classification of MCI and CN
individuals demonstrate diverse degrees of performance and are
presented in Table 7. In the endeavor of classifying MCI from CN, the
efficacy of CNN models varied across metrics and datasets. ResNet-
152 demonstrated the most exceptional overall performance among
the assessed models, attaining an accuracy of 90.11% on the OASIS
dataset and 89.56% on the ADNI dataset. Furthermore, the model
exhibited high precision, recall, and F1 Score values across both
datasets, signifying its resilient capability to differentiate between cases
of MCI and CN. ResNet-101 demonstrated commendable
performance. According to these findings, deeper CNN architectures,
namely ResNet-152 and ResNet-101, exhibit notable efficacy in

Accuracy Precision Recall F1 Score
A O A (0] O
ResNet-50 83.45 80.12 82.56 79.34 82.34 80.45 82.65 80.23
ResNet-101 98.21 97.45 94.67 93.12 94.89 93.67 94.78 93.45
ResNet-152 97.89 96.91 92.01 90.89 91.78 91.45 91.89 91.23
DenseNet-201 78.23 76.56 78.45 76.34 77.89 76.78 78.01 76.45
EfficientNet-B0 89.67 88.56 89.23 88.45 89.45 88.67 89.34 88.56
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distinguishing between MCI and CN. Figure 7 illustrates the confusion
matrix of the ResNet-152 with the OASIS dataset.

The investigation found that ResNet-101 is best performed in the
multi-classification and binary classification for the ADNI dataset; it
is also well achieved with the OASIS dataset. The ResNet-101 model’s
accuracy and loss were used to track and assess the training and
validation process and presented through Figure 8. ResNet-101’s
multi-class classification performance improves with time, as shown
in Figures 8A,B, by showing training and validation accuracy and loss
throughout epochs.

The training and validation accuracy consistently rises, while the
training and validation loss consistently decreases, indicating that the
model successfully integrates information from the training data.

4.4 Ablation study

The present investigation leverages the ADNI and OASIS
datasets, which include comprehensive human macroscopic MRI
data on healthy people and Alzheimer’s MCI patients. The ADNI
dataset uses U-Net to remove the skull and brain, slicing along three
axes for cross-sectional slices. These slices are quality-checked to
minimize noise and highlight important MRI imaging areas.
Prominent deep learning architectures like DenseNet-201,
EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 extract
complex patterns to identify AD and MCI. The approach allows
reliable ADNI and OASIS dataset processing,
neurodegenerative condition comprehension and detection. The

improving

research examined how preprocessing techniques, deep learning
architectures, and transfer learning methodologies affect the
performance of models and compared their effectiveness. While
Gaussian filters are frequently employed to reduce image noise, they
might not be the most optimal approach to accentuate critical
features in MRI data, especially when identifying Alzheimer’s and
MCI. However, transfer learning is a highly effective method in deep
learning, the results obtained from fine-tuning with specified

TABLE 5 Hyperparameters.

Sr No Parameter Value

1 Optimizer RMSprop

2 Learning Rate 0.02

3 Loss Function Categorical Cross-Entropy
4 Batch Size 64

5 Number of Epoch 20

10.3389/fmed.2024.1445325

pre-trained models and their effectiveness. While these models have
been extensively trained on datasets like ImageNet, the performance
of the transfer learning approach may have needed to be improved.
The research examined the effects of incorporating dense layers of
256 and 128 units into each specified deep learning architecture after
transfer learning from ImageNet-trained models to the ADNI and
OASIS datasets. By comparing the efficacy of each architecture with
and without additional layers, the research seeks to identify the

Predicted

FIGURE 5
Confusion matrix of the ResNet-101 with ADNI dataset.

Predicted

FIGURE 6
Confusion matrix of the ResNet-101 with ADNI dataset.

Predicted

FIGURE 7
Confusion matrix of the ResNet-101 with OASIS dataset.

TABLE 6 AD vs. CN (binary classification).

Accuracy Precision Recall F1 Score
A (@) A (0] 0]
ResNet-50 87.45 85.32 86.78 88.23 86.23 89.45 86.78 87.89
ResNet-101 92.34 90.12 90.02 92.89 90.01 91.34 90.17 91.89
ResNet-152 89.67 88.23 88.78 90.45 88.34 91.23 88.78 89.67
DenseNet-201 85.67 84.12 84.78 86.23 84.45 87.12 84.78 85.67
EfficientNet-B0 78.23 77.45 77.78 79.56 77.89 80.12 77.78 78.23
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TABLE 7 MCl vs. CN (binary classification).

10.3389/fmed.2024.1445325

Accuracy Precision Recall F1 Score
A 0] A @) 0]
ResNet-50 75.23 69.45 80.34 74.56 75.34 68.23 78.45 71.23
ResNet-101 86.57 79.45 92.34 85.23 86.87 78.99 88.76 81.23
ResNet-152 89.56 90.11 93.12 86.12 87.34 79.45 89.23 82.34
DenseNet-201 84.32 77.89 90.45 82.67 84.45 76.78 87.34 79.56
EfficientNet-B0 82.45 76.23 89.12 81.34 82.56 74.93 85.12 78.32
A, ADNI; O, OASIS.
TABLE 8 Comparative analysis.
A . .
Training and Validation Accuracy # Classes Deep learning architecture = Acc. Ref.
, (%)
\
096 / \\ / 2 3D-CNN 93.00 (16)
2 EfficientNet-B2 93.30 (19)
094 s ResNet18, AlexNet, SqueezeNet, 82.53 21)
VGG16, InceptionV3 & DenseNet
o2 2 DenseNet 96.51 (30)
3 ResNet-18 69.10 (1)
3 VGG-16 & 19 95.35 (32)
00
; DenseNet-201, EfficientNet-BO0, 98.21 Our
ResNet-50, ResNet-101, and ResNet-152
oss
— Traineng ACCUracy
— Valdation ACCuracy
0 s 1 1 0 EfficientNet-BO demonstrated subpar performance, suggesting
B limitations in its ability to classify data, particularly when coupled
Training and Validation Loss with transfer learning and preprocessing utilizing Gaussian filters.
= e akies Lase Table 8 depicts an empirical comparison of AD and MCI
e (9% identification using prominent deep-learning architectures, showing
that our investigation achieved the maximum efficacy on both datasets.
s The analysis of deep learning architectures shows differing degrees
of performance across various deep learning models. Table 8 presents the
g number of classes, the deep learning architecture used, and the attained
accuracy. EfficientNet-B2 and 3D-CNN both demonstrated excellent
accuracy in binary classification tests, suggesting their usefulness in the
03 task. DenseNet demonstrated superior performance in a multi-class
classification job with three classes, highlighting its resilience in
. addressing intricate classification challenges compared to other models.
ResNet-18 obtained lower accuracy in a different multi-class classification
scenario, indicating its shortcomings in hard classification tasks
o1 compared to other models. While in our investigation, the employed
° s » 1 » ResNet-101 obtained the highest accuracy in the multi-class classification
FIGURE 8 challenge, showcasing enhanced performance. The findings emphasize
ResNet-101 training and validation accuracy (A) and training and the significance of choosing a suitable deep learning architecture
validation loss (B) on multiclass classification. according to the particular classification problem and the intricacy of the

structure that positively influences the distinction between CN, AD,
and MCI groups the most. It can be deduced from the analysis that
ResNet-101 exhibited the highest performance among the CNNs,
with ResNet-152 following suit, EfficientNet-B0
demonstrated the lowest performance. Across both datasets, ResNet-

whereas
101 consistently attained the highest accuracy and F1 score,
showcasing its efficacy in identifying AD and MCL. In the same way
that ResNet-101 outperformed ResNet-152, albeit marginally,
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dataset. The research highlights the subtle variations in performance
across different deep learning architectures, stressing the need to make
well-informed choices to enhance model performance for specific tasks.

5 Conclusion
The investigation highlights the crucial use of modern

neuroimaging and deep learning approaches in diagnosing and
comprehending neurodegenerative disorders like Alzheimer’s and
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MCI. The extraction of valuable insights from complicated brain
imaging using employed datasets ADNI and OASIS, which provide
comprehensive MRI data, and implementation of advanced
preprocessing techniques like skull stripping and segmentation
on ADNL

The U-Net architecture performed skull stripping on MRI
images, successfully eliminating non-brain tissues. Specific deep
learning models, such as DenseNet-201, EfficientNet-B0, ResNet-50,
ResNet-101, and ResNet-152, were assessed for their ability to detect
AD and MCI. Transfer learning is a powerful method for improving
models, especially in situations with little datasets. Performance
research shows that ResNet-101 regularly outperforms other models,
followed closely by ResNet-152 with the datasets. ResNet-101 stands
out as the best performer, attaining the most significant Accuracy
levels and F1 Score on both datasets. This demonstrates its ability to
effectively differentiate between people with AD, MCI, and CN
instances, highlighting its resilience. ResNet-152 performed most in
distinguishing between MCI and CN instances in a binary
classification exercise with the OASIS dataset. The findings indicated
that the CNN models performed well in this multi-class (29) and
binary classification.

The study yielded promising results, yet several constraints and
areas for future research remain to be addressed. Variations in model
performance could stem from dataset characteristics and preprocessing
methods. Further exploration of diverse preprocessing techniques and
datasets is crucial to achieving a more comprehensive evaluation of
model efficacy. While the research focused on a limited range of deep
learning architectures, investigating additional structures and ensemble
techniques may further enhance performance. Moreover, delving into
model architecture choices and identifying biomarkers specific to
Alzheimer’s and MCI could deepen our understanding of the underlying
mechanisms of these disorders. Integrating clinical data with
neuroimaging holds potential to improve diagnostic accuracy and
prognostic predictions for Alzheimer’s and MCI. Future studies could
benefit from combining these complementary sources of information
to develop more robust and reliable predictive models. In the future
research the research should focus on incorporating multimodality
images like PET Scan with MRI for the more precise prediction and
should try to use generative Al models on generating future brain
images and use if for prediction.
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The accuracy of spatial clustering detection is crucial for public health policy
development and identifying etiological clues. Circular and flexibly-shaped scan
statistics are widely used for disease cluster detection, but differences in results
arise mainly due to parameter sensitivity and variations in the scanning window
shapes. This study aims to analyze the impact of parameter settings on the results
of these methods and compare their performance in disease clustering detection.
Using tuberculosis data from Wuhan, China (2015-2019), the study identified the
optimal parameter settings—MSWS and K-value—for each method to ensure
accurate clustering. A comprehensive comparison was made using two quantitative
indicators, the LLR value and cluster size, as well as clustering visualizations. The
results show that the optimal MSWS parameter for SaTScan is determined through
a Gini coefficient-based stepwise-threshold-reduction approach, while a K-value
of 30 is ideal for FleXScan. SaTScan tends to produce more regular clusters, while
FleXScan often generates more irregular clusters. FleXScan detects fewer clusters
but with higher LLR values and larger average cluster sizes, although the maximum
cluster size is smaller. These findings provide valuable insights for optimizing
disease clustering detection methods and enhancing public health interventions.

KEYWORDS

spatial scan statistics, disease cluster detection, SaTScan, FleXScan, Gini coefficient,
log-likelihood ratio (LLR), cluster size

1 Introduction

The purpose of spatial cluster detection of diseases is to identify whether clustering disease
exists and to locate the areas where these clusters occur. This information can provide clues
for further etiological investigation. Spatial scan statistics have been widely used as a technique
for detecting disease clusters (1-4). This method was first introduced by Kulldorft, along with
the freely available SaTScan software, and has since been extended with several different
statistical models. The method utilizes a likelihood ratio test statistic to evaluate a large number
of different and overlapping scanning windows. The test statistic is formulated based on a
probability model depending on the data type, such as the Poisson model for count data.
However, this method is limited to circular scan windows for detecting compact clusters,
which may struggle to accurately identify non-circular clusters. Consequently, other
researchers have proposed alternative approaches that employ different scanning window
selection schemes, such as elliptical (5-7) and flexibly-shaped windows (8-10).

A popular alternative for detecting clusters with arbitrary shapes is the flexibly shaped
spatial scan statistic proposed by Tango and Takahashi, which is implemented in the FleXScan
software. This method employs an adjacency expansion search, scanning adjacent units in the
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spatial region to detect irregularly shaped clusters (8-10). However,
the selection of scanning windows in FleXScan is dependent on an
exhaustive search strategy, which leads to exponential runtime scaling
as the K-value increases. Here, the K-value is a constant that indicates
the maximum number of sub-regions allowed within a preset window,
severing as a crucial parameter in the implementation of the FleXScan
method. Due to computational constraints, the K-value is typically
limited to 30, with a default of 15. To address these limitations, Tango
and Takahashi (10) proposed a restricted version of the flexibly-
shaped scan statistic that focuses exclusively on regions with elevated
risk. This modified approach offers improved computational efficiency
and enables the use of a K-value up to 30 (10, 11).

In addition, Speakman et al. (12) developed the GraphScan
method for detecting connected clusters of arbitrary shapes in graph
or network data. This method improves search efficiency by
incorporating a branch-and-bound depth-first search approach, which
enhances the brute force algorithm used in FleXScan. Cadena et al. (13)
presented a framework for network anomaly detection based on scan
statistics that outperforms existing methods in terms of performance
and scalability. Meysami M et al. (6) proposed the flexible-elliptical
scan method, which combines the flexible and elliptic scan methods to
address their respective limitations and leverage their advantages.
However, for non-statistical users such as epidemiologists and public
health researchers, user-friendly software may be more practical than
introducing new algorithms. Currently, the most commonly used
methods are still circular and flexibly-shaped scan statistics, which can
be directly implemented in SaTScan and FleXScan, respectively.

However, both methods face the challenge of parameter setting
during implementation, as the cluster results are highly sensitive to
these parameters. For example, the performance of circular spatial scan
statistics is influenced by the selection of the maximum scanning
window size (MSWS) (14-16). If the MSWS is too large, the detected
clusters may be overly large and may include areas with non-elevated
risk. Conversely, if it is too small, numerous small clusters may
be detected. Different MSWS values yield varying cluster sizes,
locations, and numbers within the same dataset. Although it is
common to use 50% of the total population as the default setting for
MSWS in SaTScan, this may result in an overly large cluster. Therefore,
determining the optimal MSWS value is crucial for the SaTScan
method. Performance indicators such as sensitivity, specificity, positive
predictive value (PPV), and Youden’s index (YDI) are typically used to
select the optimal MSWS (16), but these metrics are often only available
in simulation studies. Han et al. (17) proposed the Gini coefficient as
an effective criterion for determining optimal cluster reporting sizes,
which helps avoid unnecessarily large and less informative clusters.
This approach has been implemented in SaTScan version 9.3 and has
shown success with both simulated and real data (18, 19). Another
indicator, called the maximum clustering heterogeneous set-proportion
(MCHS-P), was introduced by Wang et al. (16) for selecting suitable
MSWS. However, the Gini coefficient remains widely used due to its
direct application through SaTScan, despite some limitations pointed
out by Lietal. (15) and Wang et al. (16).

Abbreviations: LLR, Log-Likelihood Ratio; RR, Risk Ratio; MSWS, Maximum Scanning
Window Size; MLC, Maximum Likelihood Clustering; MCHS-P, Maximum Clustering

Heterogeneous Set-Proportion; PPV, Positive Predictive Value; YDI, Youden's index.
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The FleXScan method suggests that setting K = 30 theoretically
helps achieve the optimal maximum likelihood clustering (MLC).
However, it is important to understand the impact of different
K-values on the final clustering results. For example, if we set K = 15,
can we still achieve a good MLC, and what are the differences between
the two clustering results? Evaluating the influence of K-value requires
practical analysis and comparison.

The accuracy of spatial cluster detection results is of great
significance for the formulation of prevention and control policies in
the region and the detection of further etiology. Spurious cluster
results, however, may have unnecessary negative impacts on the socio-
economic development of that region (20). Therefore, selecting the
appropriate parameter settings is important for accurate cluster
identification. Unfortunately, there is currently no standard reference
criterion for parameter selection.

Previous studies have demonstrated that different research
purposes require different parameter combinations for analysis.
However, most previous studies are based on simulated data with
specific assumptions, and the conclusions drawn may not be fully
applicable to real data, which has certain limitations. The optimal
parameter combination varies with different data, and the conclusions
of simulation research are often difficult to extend to more complex
and variable real-world scenarios without sufficient prior knowledge.

Therefore, the purpose of our study is to compare the differences
between the two different scanning window methods, and to
determine the optimal parameter settings for each method. This will
clarify the impact of parameter settings on the results and provide a
reference for other researchers. We will utilize real pulmonary
tuberculosis disease data (at the township level) from Wuhan,
spanning 2015 to 2019, as our research dataset. We will provide
optimal parameter settings for the two scanning window types in
different years and compare the spatial clustering results obtained
from these methods.

2 Study area and data

Our study area is Wuhan City, the capital of Hubei Province,
located in central China. Known as “the River City;” Wuhan is situated
at the confluence of the Yangtze River and the Han River the largest
tributary of the Yangtze. This strategic location has made Wuhan a
crucial transportation hub, connecting various parts of China through
its extensive network of railways, highways, and waterways. Wuhan
City comprises 13 county-level units and 164 town-level units, with a
total area of 8,569.15 square kilometers. As of the end 0f 2021, according
to official information, Wuhan had a permanent population of 12.3265
million, with its population spatial distribution shown in Figure 1. It
can be observed from the figure that the central urban area is densely
populated, while the peripheral rural areas are sparsely populated.

The case information for pulmonary tuberculosis in this study was
obtained from the National Tuberculosis Management Information
System, specifically the registered and managed medical records of
pulmonary tuberculosis patients based on their initial diagnosis
locations from 2015 to 2019. A total of 30,486 pulmonary tuberculosis
patients were included in the study. We first employed geocoding
techniques to spatially encode the addresses of the cases and then
combined this with population demographic data to obtain the
incidence rate at the township level. Thus, the final research data used
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Study area.

in this study consisted of the pulmonary tuberculosis incidence ratesin
Wauhan at the township level from 2015 to 2019.

3 Methods

The study involved determining optimal parameters, visualizing
incidence and disease clustering results, and conducting a comparative
analysis. We assessed and compared the performance of both methods
in detecting disease clusters by evaluating LLR values and cluster size.
To facilitate comparability, both methods were implemented using the
same statistical model, specifically the Poisson statistical model.

3.1 Evaluation metrics for comparison

3.1.1The LLR value

The LLR value quantifies the deviation of observed data from
random spatial distribution. A higher LLR value suggests a higher
likelihood of non-random clustering, indicating the presence of
genuine spatial clusters. Comparing LLR values allows us to assess the
strength and significance of detected clusters, helping to identify
meaningful and informative clusters in the analysis.

3.1.2 The cluster size

The cluster size represents the number of sub-regions contained
within a cluster. Restricting the cluster size may help reduce the
likelihood of misclassifying random noise as clusters. Tango et al. (8)
pointed out that it is unlikely for the size of a true cluster to be larger
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than 10-15 percent of the total number of regions. However, this is
not a fixed rule and may vary depending on the specific research field
and data characteristics.

3.2 MSWS settings for the circular scan
statistic

Initially, we attempted to use the same MSWS value for different
years within the same spatial region. However, this approach proved
to be unreasonable, as the spatial distribution of diseases varied
significantly across different years. To address this issue, we utilized
Gini coeflicients to assist in identifying the optimal clusters. The Gini
coeflicient is a statistical measure of data inequality, which helps
evaluate the quality of clustering results under different MSWS values.
A higher Gini coefficient indicates a more uneven spatial distribution
of the clustering result, suggesting that the clustering results achieved
at that particular MSWS value possess greater distinctiveness and
significance in terms of differentiation.

In this study, we tested MSWS values of 5, 10, 15, 20, 25, 30, 40,
and 50% for each year from 2015 to 2019.We then calculated the
corresponding Gini coeflicients for each MSWS value. The MSWS
value associated with the highest Gini coefficient was selected as the
optimal choice. Our analysis revealed that even within the same
spatial region, the optimal MSWS values varied due to differences in
the spatial distribution of diseases across different years.

However, we have found in practice that simply using the Gini
coefficient as a criterion for determining MSWS is insufficient.
According to the Gini coeflicient, the optimal MSWS in 2018 should
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be 25%, However, the spatial clustering result at this value includes too
many sub-regions, with the most likely cluster (MLC) containing 31
sub-regions and the secondary cluster containing 39 sub-regions.
Together these two clusters cover nearly 50% of the total number of
sub-regions. Clearly, the clusters are too large and may contain
non-clustered areas. Therefore, we predetermined the MSWS value to
be 10% when the Gini coefficient was the second largest. At this
MSWS value, the MLC is divided into two small clusters and
non-cluster regions, resulting in a significant reduction in the number
of intra-cluster sub-regions. Although the LLR value of the MLC
decreased, the LLR values of other clusters increased. The results are
presented in Table 1 and Figure 2.

Finally, considering both the Gini coefficient and the number of
sub-regions included in the clusters, we determined the optimal
MSWS values for this study, as shown in Table 2.

3.3 K-value setting for the flexibly-shaped
scan statistic

Theoretically, a larger K-value increases the number of candidate
scan windows that need to be calculated, but it also enhances the
likelihood of identifying clusters with higher LLR values, indicating a
higher probability of detecting true clusters. From this perspective, a
K-value of 30 is ideal. However, to assess the effect of the K-value on
the final results, we compared the results for K = 15 and K = 30. These
results are presented in Table 3, and the spatial clusters are also
presented on the map in Figure 3.

The results indicate that the spatial distribution of clusters is
roughly the same when K = 15 and K = 30, but there are differences in
cluster levels, as ordered by descending LLR values. Notably, there are
variations in the spatial distribution of the MLC and the number of
sub-regions included. When K =30, the MLC contains more
sub-regions and has a higher LLR value. Due to the limitation of the
K-value, when K = 15, clusters 3 and 5 are identified as two separate
clusters, with the LLR values of 29.72 and 16.27, respectively. However,
these two clusters merge into a single, larger cluster when K = 30, with
the LLR value increasing to 50.02.

3.4 Cluster visualization

To facilitate understanding of the results, we visualize the cluster
analysis results on the map, using the color brightness to indicate the

10.3389/fpubh.2024.1432645

magnitude of the LLR statistical value. Darker colors correspond to
higher LLR values, suggesting a greater likelihood of true clustering.
Additionally, we employ different color lightness on the map to
represent the incidence rates of townships and streets as a reference
for the spatial clustering results.

4 Results

4.1 Comparison of SaTScan and FleXScan in
evaluation metrics

Tables 4-8 present detailed comparison results of the SaTScan and
FleXScan methods from 2015 to 2019. These tables include
information on cluster level (ordered by descending LLR values),
number of sub-regions (i.e., cluster size), number of cases, expected
number of cases, population, RR value, LLR value, and p value.

By comparing the relevant information of the two methods in
Tables 4-8, particularly the LLR values and cluster sizes, we find that
FleXScan identifies fewer clusters than SaTScan, but generally with
higher LLR values. This suggests that the FleXScan method applies
stricter criteria for defining clusters, reducing the likelihood of falsely
identifying non-cluster areas as clusters. Consequently, while
FleXScan may detect fewer true clusters, it is likely more accurate in
identifying statistically significant clusters. The higher LLR values
associated with FleXScan indicate stronger clustering signals,
reflecting a greater probability of detecting true clusters.

In addition, we measure cluster size by the number of sub-regions
covered. Tables 4-8 show that FleXScan identifies clusters with a
larger average size but a smaller maximum size compared to the
SaTScan method. This suggests that FleXScan tends to recognize
larger, more consistent clusters but with a less extreme maximum size.
In contrast, SaTScan produces results with greater variability in cluster
sizes, indicating more dispersed and variable cluster sizes.
Consequently, FleXScan demonstrates higher stability in cluster size
compared to SaTScan, as it produces more consistent cluster sizes
across different datasets.

Both methods generally produce MLCs of similar sizes, typically
containing fewer than 16 sub-regions, representing less than 10% of
the total 164 sub-regions. However, 2017 is an exception, with
SaTScan’s MLC size reaching 31 sub-regions, compared to 20
sub-regions for FleXScan. This discrepancy is mainly due to SaTScan’s
higher MSWS value of 20% in 2017, which was larger than in other
years and resulted in a larger MLC size.

TABLE 1 Comparison of cluster results with different MSWS values in SaTScan.

MSWS = 25% (2018)

MSWS = 10% (2018)

Level of Number Number Population Level of Number Number Population
clusters of Sun- of cases in risk clusters of Sun- of cases in risk
region region

MLC 31 1,270 1,861,018 3870 <0.001 MLC 12 614 815,615 3270 | <0.001

2 39 1,517 2,398,624 22,66  <0.001 2 4 242 279,704 23.58 | <0.001

3 2 143 181,846 9.00 = <0.001 3 3 111 111,182 17.33 | <0.001
4 1 69 60,229 1543 | <0.001
5 13 586 895,986 10.76 | 0.002
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Clusters detected with different MSWS value in SaTScan. (A) MSWS is 25%, (B) MSWS is 10%.

TABLE 2 The selected optimal MSWS value in different years.

2015 2016

15% ‘ 10%

2017 2018 2019

‘ 20% ‘ 10% ‘ 15% ‘

Year

‘ MSWS ‘

This difference in performance arises from FleXScan’s use of an
exhaustive algorithm, which evaluates all potential scan windows to
pinpoint those with the highest LLR values. This approach allows
FleXScan to be more precise in detecting clusters and identifying
significant clustering patterns, as it thoroughly assesses a wide range
of possible cluster configurations. By contrast, SaTScan utilizes a
circular scanning window, which can constrain its ability to capture
irregularly shaped or more complex clustering patterns. The circular
window’s limitations can result in less accurate cluster detection and
higher variability in the sizes of detected clusters. Furthermore, the
SaTScan method, which involves scanning regions with progressively
larger circles, might miss clusters that are not well-aligned with the
circular shape or that have non-uniform spatial distributions. This can
lead to less consistent results and a greater variability in cluster sizes,
as observed in the data.

4.2 Comparison of SaTScan and FleXScan
in cluster visualization

Figures 4-8 show the clustering results generated by the SaTScan
and FleXScan methods in Wuhan from 2015 to 2019 on maps.
Additionally, pulmonary tuberculosis incidence maps are provided for
comparison and reference.

To accurately represent the cluster areas, we used the cluster regions
comprising all polygons whose centroids are enclosed by the cluster
circle, rather than directly using the cluster circles generated by SaTScan.

Frontiers in Public Health

Furthermore, since certain years have numerous cluster levels with only
a few regions per level (e.g., in 2016, SaTScan identified a total of 10
cluster levels, many of which included only one sub-region). To improve
the legibility of the visualization, we categorized the original clustering
regions into four categories based on LLR values and the number of
included sub-regions. The legend specifies the number of sub-regions
in each category, and the MLC was assigned a single distinct category.
This classification converted the original data into ordinal data,
represented by different lightness of color in Figures 4-8. The color
intensity in each map corresponds to the clustering area level determined
by the LLR value, with darker colors indicating higher likelihoods.

From Figures 4-8, it is evident that the clusters obtained by
SaTScan are more regular in shape, whereas those identified by
FleXScan exhibit excessive irregularity. Clusters with highly irregular
shapes may be less meaningful, as they complicate the assessment of
geographical significance for practitioners (9, 17).

Overall, the clusters identified by SaTScan and FleXScan generally
align with the spatial distribution of high-incidence areas, primarily
located in the suburban districts of Wuhan, which are sparsely
populated and economically underdeveloped. However, some high-
incidence areas were not identified as clusters, suggesting that the
elevated incidence rates in these regions may be random. Although the
spatial coverage of clusters identified by both methods is largely similar,
there are significant differences in the LLR values and the specific
sub-regions included. Notably, the spatial distribution of MLCs
identified by the two methods from 2015 to 2019 differs considerably,
with the exception of 2017, where the distributions are similar.

5 Discussion

In this study, we undertook a detailed comparative analysis of the
SaTScan and FleXScan methods for disease clustering using real data
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TABLE 3 Comparison of cluster results with different K-values in FleXScan.

10.3389/fpubh.2024.1432645

2015 (K = 15) 2015 (K = 30)
Level of  Number Number Population LLR p- Level of Number Number Population
clusters of Sun- of cases in risk value clusters of Sun- of cases in risk
region region
MLC 8 455 477,903 46.16  0.001 MLC 11 645 688,811 6279  0.001
2 7 314 314,546 3730 0.001 2 19 738 856,888 50.02  0.001
3 11 490 577,467 2972 0.001 3 1 70 46,702 2271 0.001
4 1 70 46,702 2271 0.001 4 2 72 57,870 1575 | 0.003
5 7 215 240,358 1627 | 0.001 5 1 72 58,570 1530 | 0.004
6 1 72 58,570 1530 | 0.001 6 4 111 105,171 15.04 | 0.004
7 5 223 257,809 1440 = 0.001 7 5 223 257,809 1440 | 0.006
A
K=15 K=30
e

cluster level

| REt)
0o 5 10 20 kM . 20)
L I 3-4(12)
s5-7013)

FIGURE 3

The clusters detected with different K-value in FleXScan. (A) K = 15, (B) K = 30.

cluster level
)

2 (19)

0o 5 10 20 KM

[ I 3
4-7012

from 2015 to 2019. This comparison aimed to explore the strengths
and limitations of each method in accurately detecting disease clusters.

5.1 Real disease data

Unlike most previous studies that relied on simulated data, our
research utilized real disease data. Although this limited our ability to
use common quantitative metrics, such as sensitivity, specificity, PPV,
and YDI, to determine the optimal parameter settings and compare
method performance, using LLR values and cluster size as our analysis
metrics is still appropriate, albeit not entirely comprehensive.
Nevertheless, real disease data better reflect actual disease distribution
and trends, enhancing the realism and generalizability of our results
and providing more reliable support for public health decision-
making.
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5.2 Parameter settings

The Gini coefficient, traditionally used to determine the MSWS in
SaTScan, has been validated as effective by some researchers (17, 18).
However, our findings align with those of Li et al. (15), who identified
limitations in this approach. Specifically, the Gini coeflicient measures
overall distribution uniformity across the entire region and may not
capture the nuances of smaller, individual clusters when multiple
clusters are present. This may lead to multiple small clusters being
combined into one large cluster, resulting in distorted results, as
confirmed in our study illustrated in Section 3.2. To address this issue,
we recommend combining the Gini coefficient approach with a
gradual reduction in the threshold to accurately identify and separate
individual clusters, thereby obtaining more reliable clustering results.

FleXScan identifies clusters using LLR values. While setting
K = 30 is theoretically optimal, our study reveals that focusing solely
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TABLE 4 Comparison of SaTScan clusters and FleXScan clusters in 2015.

SaTScan-2015 (MSWS = 15%)

Restricted FleXScan-2015 (K = 30)

Cluster Number  Number Expected Population Cluster Number Number Expected Populationin
level of sub- of cases cases in risk level of sub- of cases cases risk
regions regions

MLC 12 529 351.0 591,071 156 4178 | <0.0001 MLC 11 645 409.0 688,811 164 | 6279 0.001
2 7 324 2149 361,950 154 2493 | <0.0001 2 19 738 508.8 856,888 151 | 50.02 0.001
3 29 1,035 841.7 1,417,641 128 | 24225 | <0.0001 3 1 70 27.7 46,702 254 | 2271 0.001
4 1 70 27.7 46,702 254 | 2270 | <0.0001 4 2 72 344 57,870 211 | 1575 0.003
5 1 41 14.8 24,884 279 | 1568 | <0.0001 5 1 72 348 58,570 208 | 1530 0.004
6 1 72 348 58,570 208 | 1529 | <0.0001 6 4 111 62.5 105,171 179 | 15.04 0.004
7 5 224 164.7 277,338 1.37 9.89 0.006 7 5 223 153.1 257,809 147 | 1440 0.006

TABLE 5 Comparison of SaTScan clusters and FleXScan clusters in 2016.

SaTScan-2016 (MSWS = 10%)

Restricted FleXScan-2016 (K = 30)

Cluster Number Number Expected Population Cluster Number Number Expected Population
level of sub- of cases cases in risk level of sub- of cases cases in risk
regions regions

MLC 8 431 264.5 432,035 1.67 | 4621 | <0.0001 MLC 9 566 3483 568,916 169 | 61.09  0.0005
2 1 91 36.4 59,445 252 2902 | <0.0001 2 6 388 2275 371,545 175 = 4879 | 0.0005
3 17 604 459.2 749,933 135 | 2254 | <0.0001 3 7 357 2453 400,657 148 | 2330  0.0005
4 3 169 109.2 178,290 156 | 1431 | <0.0001 4 4 200 135.9 221,932 149 | 1353 0.01
5 1 59 27.8 45,394 213 | 13.28 0.0001 5 1 59 27.8 45,394 213 | 1329 0.01
6 1 14 27 4,407 520 | 11.76 | <0.0007 6 1 14 27 4,407 520 1177 0.03
7 4 248 186.2 304,145 1.35 9.58 0.005

8 1 63 35.8 58,518 177 | 844 0.01

9 1 34 25.6 25,420 2.19 8.16 0.02

10 1 52 29.0 47,400 1.80 7.39 0.03

253

1e 12 buep

Sv92ZsHT ¥202°Uandy/6855 0T


https://doi.org/10.3389/fpubh.2024.1432645
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

U11eaH d1gNd Ul S491U0S

610" uISIa1U0L

TABLE 6 Comparison of SaTScan clusters and FleXScan clusters in 2017.

SaTScan-2017 (MSWS = 20%)

Restricted FleXScan-2017 (K = 30)

Cluster Number  Number Expected Population Cluster Number Number Expected Population
level of sub- of cases cases in risk level of sub- of cases cases in risk

regions regions
MLC 31 1,374 1048.8 1,829,721 140 | 56.64 | <0.0001 MLC 20 1,126 768.4 1,340,576 157 8503 | 0.0005
2 3 111 62.7 109,295 179 | 1534 | <0.0001 2 11 511 340.5 594,032 155 3953 | 0.0005
3 4 215 145.1 253,094 150 | 1507 | <0.0001 3 4 188 128.4 223,975 148 1240 0.02
4 1 64 339 59,207 190 | 1061 | <0.0001
5 5 214 163.2 284,795 132 | 740 | <0.0001

TABLE 7 Comparison of SaTScan clusters and FleXScan clusters in 2018.

SaTScan-2018 (MSWS = 10%)

Restricted FleXScan-2018 (K = 30)

Cluster Number  Number Expected @ Population Cluster Number @ Number Expected @ Population
level of sub- of cases cases in risk level of sub- of cases cases in risk

regions regions
MLC 12 614 4417 815,615 144 | 3270 | <0.0001 MLC 13 703 495.0 913,950 148 4275 | 0.0005
2 4 242 151.5 279,704 162 | 2358 | <0.0001 2 11 504 337.7 623,635 154 3805 | 0.0005
3 3 111 60.2 111,182 186 | 1733 | <0.0001 3 10 509 355.2 655,898 147 3151 | 0.0005
4 1 69 326 60,229 213 | 1543 | <0.0001 4 7 336 228.1 421,252 150 2328 | 0.0005
5 13 586 485.2 895,986 123 1076 0.002 5 3 213 150.2 277,388 143 1195 0.03
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TABLE 8 Comparison of SaTScan clusters and FleXScan clusters in 2019.

Frontiers in Public Health

30)

Population

Restricted FleXScan-2019 (K

15%)

SaTScan-2019 (MSWS

RR

Number Number @ Expected Population RR p - Cluster Number Number Expected

Cluster

of sub- of cases

level

(]
=
©
>

of cases

of sub-

mmmm

S o 2|8 a

S| &S| 8| <

S 8532 3

21212 S

SRS =

o | |

| | | R\

a8 N A

0 o AN | o~

¥ v v A

N8| v | |\

T IR P B I O

~ B N = v

e X a v o

L P s S SN B

¥ =D o o3

S5 ¥ o @

&S Y e~

QR R T~

N - R T S

g ¥ &8 Az

<+ 0w N~

O 9~ a N o

S b v & &

K © | @a | = o~

A2 o v n

Q

EN <+ |

- = = = =

S 2|29 2/ | 81 3|

S 22|22/ 28|85

el @228 a8/l s

c  cls|s s 23| 3!|Ss

vV, vV, vV v | VvV o

- N A T - R N R R T

LI I I T A B B B I B AL T B B BV

N S~ TR Y R S T =N = el

NN AN = | =

¥ o % a o % —=| v o

@ % ¢ ¥ R ¥ T x|

L R N T B o B T e T e T R

—~ & n o~ o o

N w |~ |3 =8 =

L N S = N N N I S Y- S s

8 S S 3 & &g 2w

a9 % Z o ¥ ®| xzg A

<+ N @ - & N

A A AR -
NN -

N8 d 8 &R 9 R

<+ ® o CRESEES ~

© ¥ | Nz ¢ o =R

N NN L B o | —

© NN~ N o *| ~ .

Q

—

= T O T TS R B SO T N

10.3389/fpubh.2024.1432645

on the highest LLR values can lead to clusters with highly irregular
shapes (21-23). Duczmal et al. (21, 22) have noted that such
irregular shapes can complicate geographic interpretation and
suggest that both LLR values and cluster shapes should be considered
together to achieve clusters that are both statistically significant and
meaningful. Irregular cluster shapes may arise from specific
geographic features, population distribution, or data noise and
might not accurately reflect the actual disease distribution.
Therefore, considering the regularity of cluster shapes is important
to avoid misleading interpretations and ineffective public health
interventions. The current version of FleXScan lacks features to
control or modify cluster shapes, highlighting the need for further
developments in this area.

5.3 Computational efficiency

Although both methods can be implemented through software, it
is essential to discuss their computational efficiency to gain a deeper
understanding of the differences in their results. The efficiency
primarily depends on the number of scanning windows that need to
be calculated.

In the SaTScan method, let the entire study area contain m
sub-regions. For each region, the scanning radius varies
systematically from 0 to a predefined maximum (MSWS value),
centered on each region. If each region has T concentric circular
windows, the maximum number of windows that need to
be calculated is m x T.

In contrast, the FlexScan method requires calculating a greater
number of scanning windows. The process is as follows:

Let Z; represent region i (1 < i < m), and Zj; denote the scanning
window formed by sub-region Z; and its k-1 connected neighboring
sub-regions. The basic method for determining these k-1
sub-regions is:

(1) Calculate the K-1 nearest neighboring sub-regions of Z; (which
may not necessarily be adjacent toZ;).

(2) From these K-1 neighboring sub-regions, select k-1 (noting
that 1 < k < K) while ensuring that they form a “connected”
scanning window with Z;.

For example, with k = 4, this means that the scanning window
consists of Z; and three neighboring sub-regions. In the worstcase,
the selection of these three sub-regions can result in C13<_1
combinations. Therefore, theoretically, the FleXScan method may
need to calculate m * 2K windows in the worst case. Although the
requirement for “connectivity” among sub-regions means that the
actual number of scanning windows calculated will be lower, it
remains substantial. This is why the FleXScan software typically
recommends that the value of K should not exceed 30, with a default
value of 15.

From a computational efficiency perspective, the SaTScan method
demonstrates higher efficiency, while the FleXScan method is
comparatively less efficient. Thus, enhancing the computational
efficiency of the FleXScan method presents a valuable area for further
research. Both classic methods can currently be implemented directly
through software, allowing researchers to focus less on their
computational efficiency. However, any optimizations or
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improvements based on these methods must inevitably consider
computational efficiency.

5.4 Result visualizations

This study employed a map visualization method to display the
spatial distribution of disease clusters, using color brightness to
indicate risk levels. However, differences in cluster distributions
from the SaTScan and FleXScan methods are not intuitively
discernible. Introducing interactive visualization tools would
enhance the comparison of distribution differences among clusters
with varying risk levels, improving the clarity and practicality of
the analysis.
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5.5 Limitations

Despite the in-depth comparison and analysis of the SaTScan and
FleXScan methods, our study has several limitations:

(1) Before applying FleXScan, obtaining a complete spatial
adjacency matrix for the specific geographic area is crucial.
Missing spatial adjacency relationships can bias clustering
results, making preliminary topological checks essential to
ensure the integrity of the adjacency matrix. In this study,
we defined the spatial adjacency matrix using queen adjacency,
which considers shared vertex connections. This may explain
the irregular cluster shapes produced by FleXScan. Since queen
adjacency only considers regions sharing a vertex as neighbors,
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it may lack precision, especially for irregular or complex cluster
shapes. To enhance the accuracy and interpretability of
clustering results, future research could explore alternative
adjacency definitions, such as rock adjacency (shared edge
adjacency) or bishop adjacency (considering both shared
vertices and edges).
(2) Although our study used multi-year disease data, the cross-
sectional nature of the data limited the use of space-time scan
statistics, restricting a full assessment of SaTScan and
FleXScan’s and precision.
Additionally, our analysis was limited to Wuhan City and did
not include data from broader scales like Hubei Province.
Future research should assess these methods across different
geographical scales, such as provincial or national levels, to

spatiotemporal  sensitivity

Frontiers in Public Health

provide a more comprehensive evaluation and increase the
generalizability of the results.
(3) Our comparison focused on circular and flexible-shaped scan
windows. However, elliptical scan windows, which can adjust
their radii in two directions to better fit non-uniform spatial
distributions (6), warrant further exploration and evaluation in

future research.

6 Conclusion

In this study, we concentrated on determining the optimal
parameter settings for circular and flexible-shaped scan statistics and
their effects on clustering results. We also explored the characteristics
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of these two methods and the influence of different scan window
shapes on accuracy and reliability, offering valuable insights for
future research.

While the FleXScan method may offer advantages in terms of
result accuracy, disease spatial clustering patterns are highly complex.
To mitigate the limitations of a single method, it is advisable to use a
combination of methods to determine the final clustering results.
Furthermore, the exploration of disease spatial clustering
characteristics should be integrated with the study of influencing
factors. Investigating clustering patterns not only aids in developing
more effective prevention and control strategies but also reveals the
factors and dynamics that influence disease occurrence and spread. By
integrating these research methods, a more comprehensive
understanding of disease transmission and its impact can be achieved,
leading to more targeted and effective intervention measures.
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