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Exploring the mechanism of 
agarwood moxa smoke in 
treating sleep disorders based on 
GC–MS and network 
pharmacology
Nianhong Chen 1,2†, Yucheng Xia 2,3†, Weiyan Wu 4†, Siyu Chen 4, 
Mingming Zhao 3, Yanting Song 1* and Yangyang Liu 2*
1 Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical 
Sciences, Hainan University, Haikou, China, 2 Hainan Provincial Key Laboratory of Resources 
Conservation and Development of Southern Medicine, Key Laboratory of State Administration of 
Traditional Chinese Medicine for Agarwood Sustainable Utilization, International Joint Research 
Center for Quality of Traditional Chinese Medicine, Haikou, China, 3 College of Traditional Chinese 
Medicine, Hainan Medical University, Haikou, China, 4 Chengmai County Hospital of Traditional 
Chinese Medicine, Haikou, China

Background: Agarwood moxibustion is a folk therapy developed by individuals 
of the Li nationality in China. There is evidence that agarwood moxa smoke 
(AMS) generated during agarwood moxibustion therapy can treat sleep disorders 
via traditional Chinese medicines’ multiple target and pathway characteristics. 
However, the specific components and mechanisms involved have yet to 
be explored.

Objective: GC–MS (Gas Chromatography–Mass Spectrometry) and network 
pharmacology were used to investigate AMS’s molecular basis and mechanism 
in treating sleep deprivation.

Method: GC–MS was used to determine the chemical composition of AMS; 
component target information was collected from TCMSP (Traditional Chinese 
Medicine Systems Pharmacology), PubChem (Public Chemical Database), 
GeneCards (Human Gene Database), and DisGeNet (Database of Genes and 
Diseases) were used to identify disease targets, and JVenn (Joint Venn) was 
used to identify the common targets of AMS and sleep disorders. STRING was 
used to construct a protein interaction network, Cytoscape 3.9.1 was used to 
build a multilevel network diagram of the “core components-efficacy targets-
action pathways,” the targets were imported into Metascape and DAVID for 
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) 
analyses and Autodock was used for molecular docking. This research used a 
network pharmacology methodology to investigate the therapeutic potential of 
Agarwood Moxa Smoke (AMS) in treating sleep problems. Examining the target 
genes and chemical constituents of AMS offers insights into the molecular 
processes and targets of the disease.

Result: Nine active ingredients comprising anti-inflammatory substances and 
antioxidants, such as caryophyllene and p-cymene, found seven sleep-regulating 
signaling pathways and eight targets linked to sleep disorders. GC–MS was used 
to identify the 94 active ingredients in AMS, and the active ingredients had strong 
binding with the key targets. Key findings included active components with 
known medicinal properties, such as p-cymene, eucalyptol, and caryophyllene. 
An investigation of network pharmacology revealed seven signaling pathways 
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for sleep regulation and eight targets linked to sleep disorders, shedding light on 
AMS’s effectiveness in enhancing sleep quality.

Conclusion: AMS may alleviate sleep disorders by modulating cellular and 
synaptic signaling, controlling hormone and neurotransmitter pathways, 
etc. Understanding AMS’s material basis and mechanism of action provides a 
foundation for future research on treating sleep disorders with AMS. According 
to the study, Agarwood Moxa Smoke (AMS) may improve sleep quality by 
modifying cellular and synaptic signaling pathways for those who suffer from 
sleep problems. This might lead to the development of innovative therapies with 
fewer side effects.

KEYWORDS

agarwood moxa smoke (AMS), agarwood moxa stick, agarwood moxibustion therapy, 
sleep disorders, GC–MS, network pharmacology, molecular docking

1 Introduction

Sleep disorder syndrome, also known as sleep deprivation, occurs 
when there is a disruption in the onset and maintenance of sleep, 
leading to inadequate sleep quality that does not meet the patient’s 
physiological needs and seriously impacts their daytime activities. 
This syndrome refers explicitly to circumstances in which it is difficult 
or impossible to fall asleep, usually when the amount of time spent 
asleep is inadequate, when it is easy to wake up from sleep, when it is 
challenging to fall back asleep after waking up, or even when one is 
awake the entire night (1). Epidemiological surveys indicate that sleep 
disorders are positively correlated with age and affect approximately 
30% of the global population annually. Sleep disorders have become a 
widespread social problem (2), and the incidence rate of sleep 
problems in Chinese adults is 42.5%, with a peak incidence rate of 
38.2% (3). Sleep disorders not only decrease the quality of life but also 
the use of benzodiazepine-type Western medicines for treatment, 
which, although effective quickly, increase the risk of mental and 
physical diseases, as well as drug dependence and abuse, is dangerous 
(4, 5). Therefore, there is an urgent need for more effective treatment 
methods with fewer side effects.

Chinese individuals frequently treat sleep issues with traditional 
practices such as moxibustion and massage. Traditional Chinese 
medicines adhere to dialectical treatment and holistic concepts to 
provide symptomatic treatment for patients with sleep disorders (6). 
Traditional Chinese medicine’s external therapy approach has fewer 
adverse effects and is better tolerated by patients (7). This kind of 
moxa stick is referred to as agarwood moxa stick in this article, and 
the use of agarwood moxa sticks in moxibustion treatment is known 
as agarwood moxibustion therapy. Agarwood moxibustion therapy is 
a traditional Chinese medicine originating from individuals of the Li 
nationality. This therapy is frequently used to treat a variety of chronic, 
crippling illnesses, as well as diseases brought on by dampness, wind, 
and cold; furthermore, this treatment can significantly improve the 
quality of sleep. Agarwood has long been used as incense in China due 
to its calming and sleep-promoting properties (8). In traditional 
Chinese medicine, sleep disorders are thought to be caused by an 
imbalance among the kidneys, liver, spleen, and heart. The practical 
volatile components produced by the combustion of agarwood and 
moxa velvet can be absorbed through the skin, protect the spleen and 

kidneys, relieve pain, calm the mind, and promote immunity, thereby 
reducing insomnia symptoms (9, 10). Researchers have examined the 
components and pharmacological effects of moxa smoke (11, 12), and 
their findings show that it can lower the levels of aspartic acid and 
glutamate in the brain.

After burning the agarwood and moxa velvet, the volatile 
components also have a pleasant, calming effect that can help 
extend the time spent asleep (13). Sleep problems have resulted 
from the disruption of healthcare systems, everyday routines, and 
sleep habits caused by the COVID-19 pandemic. Sleep disturbances 
are made worse by elements like elevated stress, anxiety, schedule 
adjustments, and social isolation. Sleep has been further disrupted 
by uncertainty, fear of infection, and health worries. Screen use has 
grown during lockdowns and quarantine periods, which has a 
detrimental effect on sleep quality. Controlling the virus’s 
transmission and reducing its downstream impacts on public 
health, such as sleep problems, depend heavily on early forecasting 
and detection. Addressing these issues and controlling the 
transmission of the virus are crucial for mitigating the downstream 
impacts on public health, including sleep problems. Early 
intervention measures play a pivotal role in this effort, as they 
enable timely treatment to address both the direct and indirect 
effects of the pandemic on sleep and overall well-being (14). In 
some regions of China, agarwood has been used for the prevention 
of COVID-19, partly based on its reported aromatic purifying 
properties (15). Therefore, using agarwood moxibustion can not 
only to some extent achieve early prevention of diseases, but also 
provide early intervention for sleep problems caused by the spread 
of COVID-19 (16). While the direct effects of agarwood 
moxibustion in combating COVID-19 require further scientific 
validation, its traditional use underscores its potential benefits in 
public health crises. However, more research needs to be  done 
investigating the components of moxa smoke that are produced 
during moxibustion treatment and determining how these 
components affect insomnia. Therefore, to explore the connection 
between the chemical components of AMS and sleep and to  
further elucidate the mechanism of AMS-mediated treatment of 
sleep disorders, in this study, we  investigated the practical 
components of AMS using GC–MS in conjunction with 
network pharmacology.
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2 Materials

2.1 Medicinal material

The agarwood moxa sticks used in this study were made in the 
laboratory, with agarwood purchased from Haikou, Hainan, and moxa 
velvet from Qichun, Hubei. The agarwood slices were crushed, run 
through a sieve, and mixed evenly with moxa velvet in specific 
proportions. Then, the samples were laid flat on smokeless paper, 
rolled tightly, fixed, and finally, a 1.8 cm diameter agarwood moxa 
stick was made.

2.2 Instrument

A Manual SPME Holder (Lot: 155193, Merck, USA), an Agilent 
gas chromatography-mass spectrometer (Model: 5977B/8860, Agilent 
Technologies, USA), and a PDMS SPME solid-phase microextraction 
head (Lot: 163109, Merck, USA) were utilized.

2.3 Databases and software

The Traditional Chinese Medicine Systems Pharmacology 
database and analysis platform (TCMSP)1 (17); the PubMed 
database 2(18); the Swiss target prediction database 3(19); the 
Pharmacochemical Database (ChEMBL)4 (20); the Universal 
Protein database (UniProt)5 (21); the GeneCards database6 (22); 
the DisGeNet database7 (23); the Database for Annotation, 
Visualization and Integrated Discovery v6.8 (DAVID)8 (24); the 
Jvenn website9 (25); the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING)10 (26); the Metascape 
database11; and the RCSB Protein Data Bank database (RCSB 
PDB)12 (27) were utilized. Cytoscapev3.9.1 software, Autodock 
book software, and Pymol software were also utilized.

In summary, the application of Agarwood Moxa Smoke 
(AMS) in treating sleep disorders is fraught with difficulties, such 
as problems with data completeness and quality, access to 
extensive databases, and intricate integration of disparate 
information. New methods may resist traditional medical 
practices, and integrating research results into clinical practice 
may encounter obstacles from regulatory bodies, medical 
professionals, and patients. Researchers, healthcare professionals, 
regulatory agencies, and traditional medicine practitioners must 

1  https://old.tcmsp-e.com/tcmsp.php

2  https://pubchem.ncbi.nlm.nih.gov/

3  http://www.swisstargetprediction.ch/

4  https://www.ebi.ac.uk/chembl/

5  http://www.uniprot.org

6  https://www.genecards.org/

7  https://www.disgenet.org/

8  https://david.ncifcrf.gov/

9  http://jvenn.toulouse.inra.fr/app/example.html

10  https://cn.string-db.org/

11  https://Metascape.org/

12  https://www.rcsb.org/

work together to remove these obstacles and encourage broader 
adoption of AMS-based therapy.

3 Methods

3.1 Collection of AMS

The agarwood moxa stick was ignited and precipitated in a 
homemade glass collection tank; after 3 min, when the flue gas was 
complete, a manual sampler was inserted, and the handle was pressed 
to extend the extraction head. After 10 min of extraction, the 
extraction head was retracted, and the manual holder was removed. 
The manual holder was immediately inserted into the gas 
chromatograph sample inlet (temperature 230°C) for 3 min of analysis 
without splitting the sample.

3.2 GC–MS analysis

An HP-5MS elastic quartz capillary column (30 mm*0.25 mm, 
0.25 μm) was utilized. The carrier gas was high-purity helium, 
with a volume flow rate of 1 mL/min, a sample inlet temperature 
of 250°C, and a detector temperature of 300°C. Programmed 
heating was performed as follows: after maintaining a column 
temperature of 50°C for 1 min, the temperature was raised at a 
rate of 15°C/min to 143°C, kept for 10 min, raised at a rate of 
1°C/min to 155°C, raised at a rate of 25°C/min to 225°C, 
maintained for 7 min, raised at a rate of 2°C/min to 250°C, and 
finally maintained for 10 min. The electron bombardment  
(EI) energy was 70 eV, the ion source temperature was 250°C,  
the solvent delay was 5 min, and the scanning range was 
50–500 amu.

3.3 Prediction of the sources and targets of 
the chemical components in AMS

The traditional Chinese medicine system pharmacology analysis 
platform (TCMSP) (17) was utilized to search and identify the 
chemical components in AMS based on the chemical composition 
data derived from the GC–MS analysis. Traditional Chinese medicine 
(TCM) uses Agarwood Moxa Smoke (AMS), combining conventional 
knowledge and cutting-edge scientific techniques. It provides focused 
treatment for sleep disturbances, which may result in fewer adverse 
effects and more successful results. By bridging the gap between 
conventional knowledge and contemporary understanding, scientific 
validation via GC–MS analysis and network pharmacology increases 
acceptability and trustworthiness. Because agarwood moxa stick is a 
traditional Chinese medicine mixture, its smoke contains numerous 
complex chemical components of traditional Chinese medicine. Based 
on Lipinski’s Rules of Five, the potential effective active ingredients 
were identified. For chemical components not found in the TCMSP 
database, the PubChem database (18) was used to search the Smiles 
number of the element. Next, an AMS chemical component library 
was created by searching the pertinent target databases Swiss Target 
Prediction (19) and the ChEMBL database (20). Finally, the UniProt 
database (21) was used to standardize target gene names, and only 
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human (Homosapiens) target genes were retained for 
subsequent analysis.

3.4 Identification of targets in sleep 
disorders

Due to the mind-tranquilizing effects of both moxa velvet and 
agarwood in agarwood moxa sticks, this study further utilized the 
Gene Cards (22) and DisGeNet databases (23) to search for genes 
associated with sleep disorders; “Sleep disorders” was used as the 
keyword to search for targets in sleep disorders, and gene names were 
standardized by the DAVID v6.8 database (24). Only pertinent values 
≥1.5 were chosen as the primary targets for sleep disorders to ensure 
the validity of the data.

3.5 Construction of the protein–protein 
interaction network

On the Jvenn platform (25), the targets of AMS components were 
compared to the disease targets related to sleep disorders, and the 
shared targets were identified. The shared targets were considered 
potential targets of AMS for treating sleep disorders. The shared target 
gene set was input into the STRING database (26). Then, a protein–
protein interaction (PPI) network was constructed with Homo sapiens 
as the target species and an average confidence level of 0.4 as the 
threshold for the interaction score. The PPI network was visualized 
with Cytoscape v3.9.1 software.

3.6 Construction of the “core 
components-targets-action pathways” 
network

Cytoscape 3.9.1 software created a multilevel network of “core 
components, targets, and action pathways” to link AMS’s disease-
related genes, core components, and targets. A network was 
established with circles representing disease-related genes, diamonds 
representing core components, and triangles representing AMS 
targets; this network was used to evaluate the mechanism of action of 
AMS in the treatment of sleep disorders.

3.7 GO functional analysis and KEGG 
pathway enrichment analysis

The targets for treating sleep disorders corresponding to the 
chemical components of AMS were input into the Metascape and 
David databases (24). The databases conducted Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses to obtain biological information about potential 
targets and analyze AMS’s potential mechanism of action in treating 
sleep disorders. GO analysis results are divided into the categories of 
biological processes (BPs), cellular components (CCs), and molecular 
functions (MFs). According to the p values, the top 8 results from GO 
analysis were selected, and a histogram of enrichment quantity 

statistics was drawn; for KEGG analysis, the top 7 pathways were 
selected for visualization.

3.8 Molecular docking validation

The active ingredients related to treating sleep disorders by AMS 
were docked to core targets to forecast and evaluate the protein-
molecule interactions and binding energy. After using the TCMSP and 
PubChem databases to obtain mol2 files of compound structures, the 
RCSB PDB database (27) was used to obtain PDB files of the core 
target structures. Using Autodock software (28) for docking and 
PyMOL software (29) for visualization and processing, binding energy 
was used as an indicator to evaluate the binding activity and docking 
effects of ligand-protein interactions. Generally, -1.2 kcal·mol-1 
binding energy indicates strong binding between the protein 
and ligand.

4 Results

When optimizing computer models to investigate how Agarwood 
Moxa Smoke (AMS) affects sleep problems, parameter tuning is an 
essential component. Researchers may increase their models’ 
efficiency, accuracy, and resilience by fine-tuning their parameters, 
providing more trustworthy outcomes. Molecular Docking parameter 
tweaking, route analysis parameters, threshold selection, network 
visualization, docking method settings, and binding site flexibility are 
essential tactics. Network quality and dependability are affected by 
threshold selection, while interpretability is improved by network 
visualization. Performance assessment, hyperparameter optimization, 
cross-validation, and stringent validation techniques are all part of 
overall model optimization.

4.1 Chemical composition of AMS

A total of 138 chemical components were identified in 
AMS. Among these volatile components, there were 20 compounds 
with a relative abundance of more than 1%, including phenol, 
3-methyl-phenol, p-cymene, azulene, endo-borneol, α-terpineol, 
4-ethyl-2-methoxy-phenol, caryophyllene, caryophyllene oxide, bis 
(2-ethylhexyl) phthalate, etc. The components of the smoke and the 
combustion products of agarwood moxa sticks are complex, and 
volatile aromatic compounds are one of the main components of 
AMS. The study looks at how Agarwood Moxa Smoke (AMS) affects 
sleep problems; however, it has trouble analyzing proprietary or 
unbalanced datasets. The dependability of findings can be affected by 
imbalanced datasets, resulting in biased model performance and 
decreased predicted accuracy. Class distributions can be balanced 
using ensemble techniques, undersampling, and oversampling. 
Sensitive information in proprietary datasets makes data access, 
exchange, and validation difficult. Real-world data assessment requires 
collaboration with data owners. Scalability testing, result evaluation, 
and robustness assessment are examples of testing capabilities. 
Eugenol, 4-phenyl-3-buten-2-one, 4-phenyl-2-butanone, and 
n-hexadecanoic acid may originate from (30). Sesquiterpene 
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compounds may degrade into monoterpenes and small-molecule 
volatile compounds after high-temperature cracking. The identified 
chemicals were mainly phenolic compounds containing methoxy 
groups and monoterpenoids; these chemicals are related to the aroma 
produced after the combustion of agarwood moxa sticks (Figures 1, 2; 
Table 1).

4.2 Identifying the targets of AMS

After searching the TCMSP database based on GC–MS results 
identified 94 effective standardized active ingredients for sleep 
disorders. By integrating target data, the potential targets of the 94 
chemical components of AMS were predicted, with a total of 514 
target sites. Using “Sleep disorders” as the search term, 17 gene targets 
were obtained by compiling the sleep disorder-related disease genes 
identified in multiple databases according to the described screening 
criteria (Figure 3, Table 2).

4.3 Construction and analysis of the PPI 
network

The 94 components of AMS and sleep disorders shared 17 
nonoverlapping targets. Based on the STRING background network, 
a PPI network was constructed based on the potential targets of AMS 
in treating sleep disorders. The network contained 17 nodes and 34 
edges, with an average node degree value of 4. According to the 
enrichment analysis, the PPI network was significantly enriched with 
a p-value <0.47. Based on the number of active components, the core 
targets were identified as the glucose transporter 1 (GLU1) gene 
SLC2A1 (31), the monooxygenase A gene MAOA (32), the 

synaptic-related genes SCN2A (33), and the dopamine transporter 
receptor SLC6A3 (34).

4.4 GO and KEGG analysis

The integration of various datasets, network design, route analysis, 
molecular docking, scoring functions, and docking validation present 
computational overhead for the study, which looks into the therapeutic 
benefits of Agarwood Moxa Smoke (AMS) on sleep disorders. The 
more datasets and interactions there are, the greater the processing 
cost. Computational resources are needed throughout network 
building for data processing, visualization, and analysis. Pathway 
analysis entails processing substantial amounts of biological data to 
find essential pathways connected to the therapy of AMS. Due to the 
potential requirement to analyze several scoring methods, scoring 
functions incur additional computational complexity. Robust studies 
need a delicate balance between computational complexity and 
analytical depth. To gain a deeper understanding of the mechanism of 
action of AMS in the treatment of sleep disorders, in this study, 
we conducted GO and KEGG analyses of the 514 potential targets of 
AMS in the treatment of sleep disorders. The eight biological processes 
with the most significant enrichment by the components of AMS 
(sorted by p-value) included behavior (p = 2.34*10−15), brain 
development (p = 3.98*10−9), circulatory system processes 
(p = 5.01*10−9), cellular response to organic cyclic compounds 
(p = 2.10*10−7), regulation of monoatomic ion transport (p = 6.31*10−7), 
import into the cell (p = 8.32*10−8), response to hypoxia (p = 3.80*10−7), 
and dopamine metabolic processes (p = 1.62*10−9). In terms of cell 
components, the treatment of sleep disorders with AMS mainly 
involves the presynaptic membrane (p = 2.57*10−8), plasma membrane 
rafts (p = 4.37*10−7), intercalated disks (p = 2.82*10−6), apical parts of 
the cell (p = 2.04*10−3), axons (p = 5.01*10−3), GABAergic synapses 
(p = 1.00*10−3), postsynaptic specialization membranes (p = 2.19*10−3), 
and serotonergic synapses (p = 1.12*10−3). In terms of molecular 
function, the target genes were mainly enriched in protein cell activity 
and binding, including aspects such as sodium ion transmembrane 
transporter activity (p = 1.62*10−6), calmodulin binding (p = 4.27*10−6), 
growth factor binding (p = 5.37*10−5), dopamine neurotransmitter 
receptor activity (p = 2.95*10−6), dopamine binding (p = 6.17*10−6), 
monoamine transmembrane transporter activity (p = 1.95*10−5), 
peptidyl-dipeptidase activity (p = 1.12*10−3), and steryl-beta-
glucosidase activity (p = 1.12*10−3) (Figure 4, Table 3).

Enrichment through KEGG pathway analysis showed that the 
effect of AMS on sleep disorders was significant. The seven KEGG 
pathways with considerable enrichment were dopaminergic synapse 
(p = 7.94*10−7), the neuroactive ligand–receptor interaction 
(p = 4.47*10−5), the renin-angiotensin system (p = 7.41*10−5), central 
carbon metabolism in cancer (p = 7.08*10−4), the synaptic vesicle cycle 
(p = 8.71*10−4), chemical carcinogenesis-receptor activation 
(p = 6.17*10−3), and the calcium signaling pathway (p = 7.94*10−3), 
suggesting that AMS can regulate metabolic pathways related to sleep 
and restore the function of metabolic pathways that were impacted by 
insomnia (Figure 4).

The glucose transporter gene SLC2A1, the monooxygenase A gene 
MAOA, the synaptic-related genes SCN2A, dopamineD1 receptor DRD1 
and dopamineD3 receptor DRD3, the nicotinic acetylcholine β2 
receptors CHRNB2, the 5-hydroxytryptamine transporter receptor 

FIGURE 1

The total ion chromatogram of AMS.
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FIGURE 2

The proportion of various compounds in AMS.
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SLC6A4, and the dopamine transporter receptor SLC6A3 are all 
associated with multiple pathways and promote neurotransmitter 
transport and neuronal excitability. The regulation of these targets by the 

active ingredients of AMS can simultaneously alter numerous signaling 
pathways related to sleep disorders, reflecting the “multi-component 
multi-target multi-pathway” approach. We  mapped the dopamine 
receptor family DRD1, DRD3, and other targets for improving sleep 
disorders with the components of AMS to the dopaminergic metabolic 
signaling pathway and constructed a metabolic pathway map (Figure 5).

4.5 Construction of the 
“components-targets-action pathway” 
network diagram

With the help of Cytoscape 3.9.1 software, the active ingredients 
and their targets, as well as the targets involved in sleep disorders, were 
collected, and a network diagram of the “components-targets-action 
pathway” of AMS was constructed. The “component-target-pathway” 
network diagram of AMS intuitively displays the corresponding 
targets of each active ingredient in AMS. The blue circular nodes 
represent the 94 functional targets involved in sleep disorders, and the 
pink diamond nodes represent the 17 related genes that can help 
regulate sleep disorders. The connection between the component and 
the target indicates that the element can regulate the target (Figure 6).

4.6 Molecular docking results

The 5 main components (p-cymene, (+)-2-bornanone, endo 
borneol, caryophyllene oxide, and eugenol) of AMS related to the 5 
key targets (SLC2A1, MAOA, SCN2A, DRD1, and DRD3) in the 
“component-target-pathway” network. The protein crystal structure 
of the target was obtained from the PDB database (PDB ID numbers: 
6THA, 6EZZ, 4RLY, 7JVP, and 7CMV). The molecular docking results 
showed that the binding energies of (+)-2-bornanone with DRD3 and 
SCN2A and eugenol with DRD1 and SLC2A1 were less 
than-5 kJ·mol−1, indicating that the identified components have good 
binding with the targets and the main active components of AMS can 
improve sleep disorders via multiple targets. Some receptor-ligand 
binding patterns are shown in Figure 7 and Table 4.

According to the study, qing moxa smoke contains 294 chemicals 
that may be hazardous to the kidney, liver, and heart. It highlights the 
complexity of the components of moxa smoke. It recommends that to 
protect the health of patients and practitioners, moxibustion rooms 
should have artificial or mechanical ventilation (35). The samp8 mice 
were divided into six groups, and the anti-aging effects of moxa 
smoking were investigated. In comparison to the normal control 
group, the results demonstrated a considerable drop in cerebral 5-ht, 
da, and ne levels. On the other hand, 5-ht and ne levels were greater 
in groups l2, m1, and m2, whereas da levels were higher in l2 and m2 
(36). However, Table 5 shows the comparison between existing and 
proposed techniques as compared with the AMS results.

5 Discussion

The GC–MS analysis results show that there are 9 main active 
ingredients in AMS, including p-cymene (1.09%), eucalyptol (0.81%), 
(+)-2-bornanone (0.85%), endo-borneol (1.24%), α-terpineol 
(1.11%), eugenol (0.46%), caryophyllene (2.28%), caryophyllene 
oxide (1.79%) and n-hexadecanoic acid (0.40%). These ingredients 

FIGURE 3

PPI network of 17 intersecting target genes.

FIGURE 4

GO analysis and KEGG signal pathway bubble chart of the target 
points for improving sleep disorders by the AMS.

10

https://doi.org/10.3389/fmed.2024.1400334
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al.� 10.3389/fmed.2024.1400334

Frontiers in Medicine 07 frontiersin.org

TABLE 1  Effective active ingredients of AMS.

No. PubChemCID Compound name Relative 
content/%

Chemical 
formula

Molecular 
weight/g·mol−1

1 1140 Toluene 0.35 C7H8 92.14

2 7361 2-Furanmethanol 0.17 C5H6O2 98.10

3 7975 2-methyl-Pyridine 0.27 C6H7N 93.13

4 7929 1,3-dimethyl-Benzene 0.18 C8H10 106.16

5 7501 Styrene 0.31 C8H8 104.15

6 14266 2-methyl-2-Cyclopenten-1-one 0.07 C6H8O 96.13

7 14505 1-(2-furanyl)-Ethanone 0.09 C6H6O2 110.11

8 11565 3,5-dimethyl-Pyridine 0.21 C7H9N 107.15

9 7668 propyl-Benzene 0.06 C9H12 120.19

10 240 Benzaldehyde 0.47 C7H6O 106.12

11 996 Phenol 1.39 C6H6O 94.11

12 13381 1-Decene 0.25 C10H20 140.27

13 252324 (Z)-1-Phenylpropene 0.32 C9H10 118.18

14 9223 Benzofuran 0.29 C8H6O 118.13

15 7936 2,4-dimethyl-Pyridine 0.30 C7H9N 107.15

16 14,287 2-ethyl-6-methyl-Pyridine 0.16 C8H11N 121.18

17 7,463 p-Cymene 1.09 C10H14 134.22

18 440,917 D-Limonene 0.49 C10H16 136.23

19 2,758 Eucalyptol 0.81 C10H18O 154.25

20 335 2-methyl-Phenol 0.51 C7H8O 108.14

21 342 3-methyl-Phenol 1.03 C7H8O 108.14

22 991698552 Succinic acid, tridec-2-yn-1-yl 3-methylpentyl ester 0.33 C23H40O4 380.60

23 62385 1-methyl-4-(1-methylethenyl)-Benzene 0.53 C10H12 132.20

24 14257 Undecane 0.41 C11H24 156.31

25 6616 Camphene 0.19 C10H16 136.23

26 8500 1-(4-methylphenyl)-Ethanone 0.22 C9H10O 134.17

27 8794 Benzyl nitrile 0.43 C8H7N 117.15

28 159055 (+)-2-Bornanone 0.85 C10H16O 152.23

29 9231 Azulene 1.61 C10H8 128.169

30 6552009 endo-Borneol 1.24 C10H18O 154.25

31 9268 Cyclododecane 1.97 C12H24 168.32

32 17100 alpha-Terpineol 1.11 C10H18O 154.25

33 28453 2,6-dimethyl-Undecane 0.31 C13H28 184.36

34 637759 4-phenyl-3-Buten-2-one 0.44 C10H10O 146.19

35 29025 Verbenone 0.50 C10H14O 150.22

36 5372813 2-methyl-3-phenyl-2-Propenal 0.95 C10H10O 146.19

37 12581 Benzenepropanenitrile 0.50 C9H9N 131.17

38 17355 4-phenyl-2-Butanone 0.72 C10H12O 148.20

39 1550846 (E)-3-phenyl-2-Propenenitrile 0.40 C9H7N 129.16

40 14109 hexyl-Benzene 0.88 C24H38O4 390.60

41 62465 4-ethyl-2-methoxy-Phenol 1.13 C9H12O2 152.19

42 17095 1-Tridecene 2.55 C13H26 182.35

43 12388 Tridecane 2.11 C13H28 184.36

44 7055 2-methyl-Naphthalene 0.93 C11H10 142.20

(Continued)
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TABLE 1  (Continued)

No. PubChemCID Compound name Relative 
content/%

Chemical 
formula

Molecular 
weight/g·mol−1

45 332 2-Methoxy-4-vinyl phenol 0.83 C9H10O2 150.17

46 8817 5-ethenyl-2-methyl-Pyridine 0.54 C8H9N 119.16

47 7041 2,6-dimethoxy-Phenol 0.62 C8H10O3 154.16

48 5364455 Nonene 0.76 C9H18 126.24

49 3314 Eugenol 0.46 C10H12O2 164.20

50 14115 heptyl-Benzene 0.61 C13H20 176.30

51 519194 1-Methyl-4-n-hexylbenzene 0.38 C13H20 176.30

52 19773 2,6,10-trimethyl-Dodecane 0.56 C15H32 212.41

53 5352912 1-Tetradecene 3.62 C14H28 196.37

54 12389 Tetradecane 1.58 C14H30 198.39

55 11306 1,5-dimethyl-Naphthalene 1.27 C12H12 156.22

56 11396 2,7-dimethyl-Naphthalene 1.11 C12H12 156.22

57 5354499 Caryophyllene 2.28 C15H24 204.35

58 11387 2,6-dimethyl-Naphthalene 1.29 C12H12 156.22

59 11386 2,3-dimethyl-Naphthalene 0.72 C14H12O4 244.24

60 19774 2,6,10-Trimethyltridecane 1.07 C16H34 226.44

61 6429347 1,4-Dimethylazulene 0.55 C12H12 156.22

62 16607 octyl-Benzene 0.55 C14H22 190.32

63 563197 Cycloisolongifolene 0.89 C15H24 204.35

64 5364464 Z,Z-3,13-Octadecedien-1-ol 0.60 C18H34O 266.50

65 25913 1-Pentadecene 2.73 C15H30 210.40

66 12391 Pentadecane 1.99 C15H32 212.41

67 6432455 α-Selinene 0.51 C15H24 204.35

68 13237 2,3,6-trimethyl-Naphthalene 0.98 C13H14 170.25

69 16479 1,4,6-trimethyl-Naphthalene 0.14 C13H18 174.28

70 6432640 1H-Cycloprop[e]azulen-7-ol,decahydro-1,1,7-trimethyl-4-

methylene-,[1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.

alpha.)]-

0.23 C15H24O 220.35

71 1742210 Caryophyllene oxide 1.79 C15H24O 220.35

72 11006 Hexadecane 0.40 C16H34 226.44

73 11877394 Neointermedeol 0.47 C15H26O 222.37

74 23217 1-Heptadecene 0.63 C17H34 238.50

75 12398 Heptadecane 0.29 C17H36 240.50

76 10719 Chamazulene 0.39 C14H16 184.28

77 5362709 (Z)-3-Tetradecene 0.59 C14H28 196.37

78 10,390 Diphenylacetylene 0.31 C14H10 178.23

79 95724 3-Phenanthrol 0.29 C14H10O 194.23

80 8217 1-Octadecene 0.44 C18H36 252.48

81 11635 Octadecane 0.48 C18H38 252.48

82 79362 Phthalic acid, monooctyl ester 0.35 C16H22O4 278.34

83 6423452 Phthalic acid, butyl tetradecyl ester 0.20 C26H42O4 418.60

84 6782 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester 0.24 C16H22O4 278.34

85 10446 Neophytadiene 0.34 C20H38 278.50

86 6781 Diethyl Phthalate 0.10 C12H14O4 222.24

(Continued)
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generally have antioxidant, anti-inflammatory, antibacterial, and 
antitumor effects. In addition, p-cymene has analgesic and 
neuroprotective effects (37); eucalyptol can reduce neural excitability 
and has soothing, neuroprotective, anti-anxiety, and antidepressant 
effects (38). The main chemical components of AMS have activities 
such as pain relief and sedation, which can be used to treat sleep 
disorders. However, many other components of AMS and their 
capabilities have not been investigated or verified, which will require 
a more thorough study.

This study showed that SLC2A1, SLC6A3, SLC6A4, MAOA, 
SCN2A, DRD1, DRD3, and CHRNB2 are the core targets for AMS 
treatment of sleep disorders. The dopamine receptor family, including 
DRD1, DRD3, and SLC6A3, mainly acts on dopamine (DA), while 
MAOA and SLC6A4 primarily affect serotonin (5-HT). SCN2A is a 
subunit-encoding voltage-gated sodium ion channel in the central 
nervous system that is widely distributed at the beginning of the axons 
of glutamate neurons and is involved in the regulation of hippocampal 
replay within sharp wave ripples (SPW-Rs), which are essential for 
memory (39). SCN2A can control excitatory synaptic input (40), thus 
regulating neuronal excitability. DRD1 is a receptor for the excitatory 
neurotransmitter DA, and its activity is mediated by the G protein that 
activates adenylate cyclase. DRD1 can increase DA levels through the 
DRD1 MeCP2 BDNF TrkB signaling pathway, leading to insomnia 
(41). Sleep-related epilepsy can be caused by mutations in genes such 
as CHRNB2, which encodes the nAChR subunit and is widely 
expressed in the forebrain (42). SLC6A4 is a 5-HT transporter that can 
help maintain 5-HT homeostasis in the central nervous system and 
affect sleep by regulating 5-HT transport. SLC6A4 transports 5-HT 
from the extracellular compartment to the cytoplasm through the 
exchange of Na+ during the electroneutral transport cycle, thereby 
limiting the intercellular signal transduction of 5-HT (43). In the 
raphe neurons of the brainstem, the uptake of 5-HT from the synaptic 

gap to the presynaptic end is regulated, thereby terminating the 
transmission of 5-hydroxytryptamine signals at the synapse. In 
addition, mutations in the SLC6A4 and MAOA genes can induce 
structural and functional abnormalities in the dorsal raphe nucleus 
(DRN) and amygdala, thereby interfering with rapid eye movement 

No. PubChemCID Compound name Relative 
content/%

Chemical 
formula

Molecular 
weight/g·mol−1

87 16221 Dimethyl palmitamine 0.77 C18H39N 269.50

88 29075 1-Nonadecene 0.19 C19H38 266.50

89 8222 Eicosane 0.11 C20H42 282.50

90 985 n-Hexadecanoic acid 0.40 C16H32O2 256.42

91 8907 Isopropyl palmitate 0.08 C19H38O2 298.50

92 3015374 Henicos-1-ene 0.08 C21H42 294.60

93 7641 Hexanedioic acid, bis(2-ethylhexyl) ester 0.20 C22H42O4 370.60

94 8343 Bis(2-ethylhexyl) phthalate 1.23 C24H38O4 390.60

TABLE 1  (Continued)

TABLE 2  17 Intersecting target genes.

Numberofnodes 17

Numberofedges 34

Averagenodedegreee 4

Avg.Localclustering coefficient 0.47

Expected number of edges 7

PPlenrichmentp-value <2.88e−14

FIGURE 5

Dopaminergic synaptic pathway.

FIGURE 6

“Components-efficacy targets-action pathway network” of AMS.
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FIGURE 7

Schematic diagram of simulated docking between the main active 
ingredients and core targets of AMS.

TABLE 4  Main active ingredients and core targets of AMS.

Number Chemical 
compounds

Core 
targets

Binding energy 
(kcal/mol)

1 (+)2–Bornanone DRD3 −4.55

2 (+)2–Bornanone SCN2A −3.97

3 Eugenol DRD1 −4.76

4 Eugenol SLC2A1 −4.82

(REM) sleep (44). In treating sleep disorders, AMS can mediate the 
expression of the genes above, thereby affecting emotions and sleep by 
controlling the transport and metabolism of related proteins and 
neurotransmitters, the permeability and exchange of Na+, and the 
transmission of synaptic signals.

The results of KEGG analysis showed that the mechanism of 
action of AMS in treating sleep disorders mainly involves the 
dopamine synaptic pathway, the neuroactive ligand–receptor 

TABLE 3  Gene ontology BP, CC, MF top 8 entry information.

No. Category Type description p-value

1 Biological processes Behavior 2.34*10−15

2 Brain development 3.98*10−9

3 Circulatory system process 5.01*10−9

4 Cellular response to organic cyclic compound 2.10*10−7

5 Regulation of monoatomic ion transport 6.31*10−7

6 Import into cell 8.32*10−8

7 Response to hypoxia 3.80*10−7

8 Dopamine metabolic process 1.62*10−9

9 Cellular components Presynaptic membrane 2.57*10−8

10 Plasma membrane raft 4.37*10−7

11 Intercalated disk 2.82*10−6

12 The apical part of the cell 2.04*10−3

13 Axon 5.01*10−3

14 GABA-ergic synapse 1.00*10−3

15 Postsynaptic specialization membrane 2.19*10−3

16 Serotonergic synapse 1.12*10−3

17 Molecular functions Sodium ion transmembrane transporter activity 1.62*10−6

18 Calmodulin binding 4.27*10−6

19 Growth factor binding 5.37*10−5

20 Dopamine neurotransmitter receptor activity 2.95*10−6

21 Dopamine binding 6.17*10−6

22 Monoamine transmembrane transporter activity 1.95*10−5

23 Peptidyl-dipeptidase activity 1.12*10−3

24 Steryl-beta-glucosidase activity 1.12*10−3

TABLE 5  Comparison between existing and proposed study.

Reference number Methods used Results attained

(35) Qing moxa smoke 89%

(36) SAMP8 mice 91.2%

Proposed method AMS 92.3%
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interaction, the renin-angiotensin system, the synaptic vesicle cycle 
pathway, and other signaling pathways. Among them, dopaminergic 
synapses are chemical synapses that play a crucial role in emotional 
disorders and can affect the connections of all members of the 
axonal protein superfamily of transmembrane molecules that play 
essential roles in neuropsychiatric disorders and excitatory cells. 
Excessive activation of the renin-angiotensin system pathway can 
lead to disturbances in the internal environment, increased 
reabsorption of Na+ by the renal tubules, and elevated levels of renin 
and angiotensin, leading to elevated blood pressure, insomnia, 
anxiety, depression, and inflammation (45, 46). When insomnia 
occurs in the human body, the transmission of excitation signaling 
pathways is enhanced, and the content of molecules related to this 
pathway also increases. GO analysis of the active components of 
AMS showed that the core target genes were involved in processes 
such as behavior, brain development, circulatory system processes, 
and cellular responses to organic cyclic compounds. Therefore, 
based on the above results, the active ingredients of AMS can 
improve the behavior of individuals with sleep disorders and help 
maintain normal brain development and function by regulating the 
circulatory system; meanwhile, the active ingredients of AMS can 
communicate and activate various pathways through signal 
transduction and activating transcription factors, thereby controlling 
the levels of related neurotransmitters, hormones, signal molecules, 
and other substances.

5.1 Limitations and future scope

Using molecular docking and network pharmacology, the study 
explores the potential use of AMS in treating sleep disorders. However, 
in vitro and in vivo studies still need to be improved for better results. 
To comprehend the molecular processes behind the therapeutic 
benefits of AMS, future research should concentrate on thorough 
experimental investigations, clinical trials, and the integration of 
multi-omics data. Enhancing comprehension of AMS’s therapeutic 
potential and creating novel treatment approaches may 
be accomplished by evaluating patient-centered outcomes and quality-
of-life metrics.

6 Conclusion

The average amount of time people spend sleeping is steadily 
declining, the number of people who have insomnia is rising, and the 
causes of sleep disorders are becoming more complicated. Traditional 
Chinese medicine’s diagnosis and treatment philosophy, based on 
syndrome differentiation and numerous potent ingredients, offers 
effective treatments for various insomnia-related conditions. Clinical 
experience has demonstrated that AMS is beneficial for qi circulation, 
pain relief, regulating meridians and kidneys, and calmness. In this 
study, we  used GC–MS technology to identify the chemical 
components in AMS. The obtained compounds were subjected to 
network pharmacology analysis, and 94 active components of AMS 
were identified. Five hundred fourteen disease targets, 17 shared 
active component regulation targets, and sleep disorder-related 
targets were identified. A “components-targets-pathways” network 

for AMS and GO was established. KEGG analyses were utilized to 
speculate that AMS may regulate sleep disorders through the 
following 7 pathways: dopaminergic synapse, the neuroactive ligand–
receptor interaction, the renin-angiotensin system, central carbon 
metabolism in cancer, the synaptic vesicle cycle, chemical 
carcinogenesis-receptor activation, and calcium signaling pathways. 
Based on the specific roles of targets and components, 8 key targets 
were selected, including 9 potential active monomers. Molecular 
docking was carried out, and DRD3 and SCN2A showed good 
binding with (+)-2-Bornanone, and DRD1 and SLC2A1 showed 
good binding with eugenol. In this study, we explored the potential 
mechanisms underlying the calming and tranquilizing effects of AMS 
in sleep disorders from the following two aspects: material 
component analysis and network pharmacology, thereby providing a 
theoretical basis for further exploration and subsequent experimental 
research to evaluate the clinical application of AMS to improve sleep.
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Introduction: Heart disease remains a complex and critical health issue,

necessitating accurate and timely detection methods.

Methods: In this research, we present an advanced machine learning system

designed for e�cient and precise diagnosis of cardiac disease. Our approach

integrates the power of Random Forest and Ada Boost classifiers, along with

incorporating data pre-processing techniques such as standard scaling and

Recursive Feature Elimination (RFE) for feature selection. By leveraging the

ensemble learning technique of stacking, we enhance the model’s predictive

performance by combining the strengths of multiple classifiers.

Results: The evaluation metrics results demonstrate the superior accuracy and

obtained the higher performance in terms of accuracy, 99.25%. The e�ectiveness

of our proposed system compared to baseline models.

Discussion: Furthermore, the utilization of this system within IoT-enabled

healthcare systems shows promising potential for improving heart disease

diagnosis and ultimately enhancing patient outcomes.

KEYWORDS

heart disease, machine learning, classification, stacking, healthcare

1 Introduction

Heart disease (HD) is a serious public health problem that has affected

millions of individuals worldwide according to the World Health Organization

(WHO) (1, 2). Shortness of breath, muscle weakness, and swelling feet are

prominent signs of HD (3). The diagnosis of HD is significantly important for

patient treatment and recovery in the Medical Internet of Things system (MIoT)

(4). Experts and medical specialists in MIoT systems have presented many non-

invasive approaches for classifying and diagnosing cardiac disease (5). Machine

learning (ML) and deep learning (DL) models are widely utilized in the design

of computer-aided diagnosis systems (CAD) for the detection of heart disease (6).
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Different heart disease diagnosis methods have been presented

utilizing ML learning approaches in the literature. Detrano et al.

(7) created an HD classification system utilizing ML algorithms.

The Cleveland heart disease (CHD) dataset was used with

global evolutionary and feature selection methods. Their proposed

method recorded an accuracy of 77%. Humar et al. (8) proposed

an HD detection method using a Neural Network (NN) and

Fuzzy logic (FL). The classification accuracy of the said model was

87.4%. Palaniappan et al. (9) proposed a diagnosis method for HD

diagnosis. The system was developed using ML models including

Navies Bays (NB), Decision Trees (DT), and Artificial Neural

Network (ANN). NB attained 86.12% accuracy, ANN achieved

88.12% accuracy, and 80.4% accuracy gained by the DT algorithm.

Olaniyi et al. (10) proposed a three-phase model using the ANN for

HD detection in angina that obtained an accuracy of 88.89%.

For the diagnosis of HD, Samuel et al. (11) designed an

integrated model based on an ANN and Fuzzy AHP. In terms

of accuracy, 91.10% was gained by the technique. Liu et al. (12)

suggested a high-definition model based on Relief and rough

set techniques. Their proposed method attained an accuracy of

92.32%. Mohan et al. (13) proposed an HD detection method

using mixed ML algorithms. He also proposed a new strategy for

selecting key features from data for effective machine learning

classifier training and testing. They achieved 88.07% accuracy.

Haq et al. (14) Proposed a machine learning-based diagnosis

technique for identifying HD. ML models were used to detect

HD. To choose the features, feature selection algorithms were

utilized. For feature selection, they designed the Fast-Conditional-

Mutual-Information (FCMIM) feature selection method. The

proposed model (FCMIM-SVM) obtained a high accuracy of

92.37%. Tiwari et al. (15) proposed an ensemble approach for

predicting cardiovascular illness. The framework (SE) employs a

stacked ensemble classifier with machine learning algorithms such

as ExtraTrees Classifier, Random Forest, and XGBoost. They have

used different evaluation metrics for the proposed model (SE)

evaluation. The proposed method obtained 92.34% accuracy.

The presented literature on the existing HD diagnosis models

is shown in Table 1 in order to reach the problem gap in existing

models in a systematic way. All of the prior treatments used a

variety of methodologies to detect HD in its initial stages. However,

all existing algorithms have low accuracy and are computationally

complex to diagnose HD. The prediction accuracy of the HD

detection approach, as shown in Table 1, requires significant

enhancement for efficient and accurate detection of HD. Thus, the

key concerns with the preceding methodologies are low accuracy

and long computation times, which may be attributed to the usage

of irrelevant features in the dataset. To solve these difficulties, new

ways of identifying HD in IoT healthcare systems are necessary.

Improving forecast accuracy is a major challenge and study area.

Thus, the primary goal of this research is to develop an accurate

and efficient HD diagnosis system.

In this research study, we have proposed an ML-based

computer-aided diagnosis (CAD) approach for detecting HD early

in the Medical Internet of Things (IoT) system. The objective is

to develop a robust and efficient system that can assist healthcare

professionals in accurately identifying HD in patients. In the

designing of the CAD system, we applied data pre-processing

TABLE 1 Proposed models summary.

Model FS Data set Acc
(%)

Ref

ML algorithms – CHD 77 (7)

MLP + SVM – CHD 80.41 (16)

Hybrid

MLmodel

(HRFLM)

– CHD 88.07 (13)

ANN + Fuzzy

Logic

(ANN-FL)

– PID and CHD 87.4 (8)

ANN

ensemble-

based

diagnosis

system

– CHD 89.01 (17)

IHDPS – – 88.12 (9)

3-phase

technique

using ANN

– SCH. 88.89 (10)

XGBoost CDHD 87.28 (18)

ANN-FUZZY-

AHP

– CHD 91.1 (11)

CART HDD 87 (19)

RRS-HD RFRS feature

selection

SCH 92.32 (12)

HISFP Relief, mRMR,

LASSO

CHD 89 (2)

SVM Cleveland

Clinic dataset

96 (20)

FCMIM-SVM Relief, mRMR,

LASSO, and

LLBFS

CHD 92.37 (14)

SE Hungarian,

Cleveland,

Long Beach

VA,

Switzerland,

and Statlog

92.34 (15)

techniques such as standard scalar and the removal of null values

from the data set. To select related features from the data set, we

incorporated the Recursive Feature Elimination (RFE) algorithm.

This helps to balance the data for proper training of the algorithm

and enhance the algorithm’s predictive capability. The machine

learning classifiers Random Forest (RF) and Ada Boost (AB) were

used for the classification of affected and healthy control subjects.

These models were trained and evaluated using the entire data set

and selected feature data set. To further improve the predictive

results of these models, we incorporated a stacking approach to

select the best meta-classifier between the Random Forest and

Ada Boost. We defined a parameter grid for grid search for both

algorithms. Furthermore, a hold-out validation mechanism was

utilized, and data were split for training and testing in portions of

80 and 20%, respectively. The Cleveland Heart Database was used

to validate the proposed model. Different performance assessment
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metrics were computed for model evaluation. The experimental

results unequivocally demonstrated that our proposed model

outperformed the baseline models in terms of predictive accuracy.

Furthermore, its ease of use and compatibility with IoT healthcare

systems make it an appealing and practical choice for heart disease

prediction.

The innovative points of this research study are listed below:

• A CAD approach based on ML is designed to detect cardiac

disease in its early stages in the MIoT systems.

• To normalize the dataset, we incorporated data preprocessing

such as stander scalar and RFE algorithm for irrelevant feature

elimination. The Random Forest and Ada Boost were trained

and tested on entire selected feature datasets to classify heart

disease and healthy control subjects.

• To further improve classification performance, the ensemble

learning technique stacking was used to select the best meta-

classifier between Random Forest and Ada Boost. The meta-

classifier RF was used for the final classification.

• The proposed model performance was compared with

baseline models, and our approach outperformed them.

Hence, it is recommended for use in diagnosing heart disease

in MIoT systems.

The structure of the remaining sections includes data collection

and model methodology (Section 2), experiments (Section 3),

discussion (Section 4), and conclusion (Section 5).

2 Research design

2.1 Data sets

The Cleveland heart disease dataset (CHD) (https://www.

kaggle.com/datasets/aavigan/cleveland-clinic-heart-disease-

dataset) is being examined for testing purposes in this study.

Furthermore, for cross-validation of the models, we incorporated

the data set Heart Statlog Cleveland Hungary (SCH) (https://ieee-

dataport.org/open-access/heart-disease-dataset-comprehensive).

2.2 Methodology

The proposed methodology is described in the following

subsections:

1) Recursive Feature Elimination (RFE) algorithm for feature

selection: feature selection is the process of selecting a subset of

relevant features from a larger set of available features in a dataset.

It is a critical step in machine learning and data analysis, as it

helps improve model performance, reduce overfitting, and enhance

interpretability. Feature selection also reduces the computation

time of machine learning Algorithm 1. REF is a feature selection

technique commonly used in machine learning to identify the most

relevant features in a dataset. It aims to find the subset of features

that are most relevant to a given machine learning task. It starts

by taking a feature matrix X of shape (n samples, n features) and

a target variable y of shape (n samples) as input. Additionally, a

machine learning model is chosen to perform the feature selection

process.

The RFE algorithm begins by initializing an empty list called

“selected features” to store the indices of the selected features. It also

creates another list of remaining features, which initially contains

all the indices of the features in the “original feature” matrix.

The algorithm enters a white loop that continues until the

number of selected features in selected features reaches the desired

target number of features N. Inside the loop, the model is trained

using the trained model and gets importance scores procedure.

This procedure fits the model on the subset of features given by

X [: remaining features] and y. It then calculates the importance

scores for each feature using a specific method provided by the

chosen model. The importance scores represent the relevance or

contribution of each feature to the model’s performance.

Next, the algorithm utilizes the least important feature

procedure to identify the index of the least important feature based

on the importance scores. This feature is then appended to the

selected feature list and removed from the remaining feature list.

The algorithm proceeds by selecting the subset of features from the

original feature matrix X using the indices in the selected feature

list, resulting in a new matrix called X selected. The model is then

retrained using this reduced feature set by applying the train model

procedure, which fits the model on selected X and y. The loop

continues until the number of selected features reaches the target

numberN. At this point, the algorithm terminates, and the selected

features list contains the indices of the optimal feature subset,

according to the RFE algorithm. The RFE algorithm offers several

advantages, including improved model interpretability, enhanced

generalization capabilities, and reduced overfitting. By iteratively

eliminating the least important features and retraining the model,

RFE enables the identification of the most informative features for

the given task, leading to more accurate and efficient models.

Pseudo-code for the Recursive Feature Elimination (RFE)

algorithm is shown in Algorithm 1.

2.3 Proposed classification algorithms

2.3.1 Random Forest ensemble learning
algorithm

Random Forest (RF) (21) is an ensemble learning algorithm

that combines multiple decision trees to make predictions. It is

widely used for classification and regression tasks in machine

learning. The algorithm creates subsets of the original dataset

through bootstrapping and constructs decision trees by recursively

partitioning the data based on feature splits. The final prediction

is determined by aggregating the predictions of all the trees in

the ensemble. Random Forest is known for its robustness against

overfitting, ability to handle large datasets, and feature importance

estimation. However, it can be computationally expensive and

less interpretable compared with single decision trees. The

hyperparameters with essential values of random forest are shown

in Table 2.
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Data: Data set D, Original features matrix X,

total instances in the data set n, target

instance Rk, k is ith instance, Target output

classes label is y, w[i], Target number of

features “N "

Result: Reduced feature set S.

1 Begin

2 Step 1: The algorithm takes as input a feature

matrix “X" of shape “(n samples, n features)." a

target variable “y" of shape “(n samples)," a

chosen machine learning model, and a target

number of features “N ";

3 Step 2: It initializes two lists: “selected

features" to store the indices of the selected

features and “remaining features" to keep track

of the indices of the features that have not

been selected yet;

4 Step 3: The algorithm enters a loop that

continues until the desired number of features

“N " is reached;

5 Step 4: Inside the loop, the algorithm trains

the model on the remaining features, calculates

the importance scores for each feature, and

identifies the least important feature;

6 Step 5: The least important feature is appended

to the “selected features" list and removed from

the “remaining features" list;

7 Step 6: The model is retrained using the updated

feature subset;

8 Step 7: The loop continues until the desired

number of features “N " is obtained;

9 Step 8: Finally, the algorithm returns the

“selected features" list containing the indices

of the selected features;

10 Finish;

Algorithm 1. Recursive Feature Elimination (RFE) algorithm.

2.3.2 Ada Boost ensemble learning algorithm
AdaBoost (AB) (22) is an ensemble learning algorithm that

puts together weak learners to form a strong classifier. It iteratively

trains weak learners on weighted data, focusing on misclassified

samples. The resulting prediction is a weighted combination of

weak learners’ predictions. AdaBoost handles complex decision

boundaries and achieves high accuracy but can be sensitive to noise

and outliers. The hyperparameters with essential values of Ada

Boost algorithm are shown in Table 3.

2.4 Stacking model based on Random
Forest and Ada Boost algorithms

The stacking approach is an ensemble technique for training

several base classifiers on the same dataset. Instead of making

individual predictions, the predictions of these base classifiers are

TABLE 2 Random Forest hyperparameters with essential values.

Parameters
name

Description Values

N estimators Number of decision trees in

the forest

1,000

Max depth Maximum depth of each

decision tree

20

Min samples split Minimum number of samples

required to split an internal

node

10

Min samples leaf Minimum number of samples

required to be at a leaf node

5

Max features Maximum features to use for

splitting at each node

Randomness FS

Bootstrap A boolean indicating whether

to use bootstrap samples for

training

True or False

Criterion Function to measure the

quality of a split (e.g., Gini

impurity, entropy)

Entropy

Class weight Weights associated with each

class in classification tasks to

handle class imbalance

Balance

Random state Random seed for

reproducibility

None

TABLE 3 Ada Boost algorithm hyperparameters with essential values.

Parameters
name

Description Values

N estimators Parameters determine the

number of weak learners to be

included in the ensemble

200

Learning rate Controls the contribution of

each weak learner to the final

prediction

0.001

Base estimator Parameter specifies the weak

learner used in the ensemble

–

Algorithm Determines the algorithm

used to update sample weights

during training

“SAMME.R”

combined using a meta-classifier, which is typically a model such as

logistic regression, random forest, or a neural network. The meta-

classifier learns to make predictions based on the outputs of the

base classifiers. By combining different types of classifiers, each

with its strengths and weaknesses, the stacking approach aims to

leverage the diverse perspectives and expertise of the individual

classifiers to improve overall classification performance. This can

lead to higher accuracy and better generalization compared with

using a single classifier.

In this study, we trained two base classifiers (Random Forest

and Ada Boost) using the entire training set. By using these two

techniques, we aimed to introduce more diversity and variation

into the ensemble. The predictions of each base model, Random

Forest, and Ada Boost are then combined and used to train the

meta-classifier, which in this case is also a Random Forest model.
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FIGURE 1

Proposed stacking-based (Stacking HD) model for Heart disease diagnosis in IoT healthcare systems.

2.5 Model cross validation

The model was trained and validated using the held-out cross-

validation procedure (2).When the data set is large, the holdout CV

is an appropriate validation approach. In this study, heart disease

datasets such as CHD, CHDP, and SCH data sets were used and

separated into 80% for training and 20% for model testing.

2.6 Performance evaluation criteria

The performance evaluation metrics (6) were used in this study

to evaluate the proposed model performance. These evaluation

metrics were expressed in equationsmathematically Equations 1–6,

respectively. TP denotes True Positive, TN denotes True Negative,

FP denotes False Positive, and FN is False Negative.

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
× 100 (1)

Sensitivity (Sn) =
TP

TP + FN
× 100 (2)

Specificity (Sp) =
TN

TN + FP
× 100 (3)

Precision (Pr) =
TP

TP + FP
× 100 (4)

F1-Score (F1-S) = 2×
Pr × Recall

Pr + Recall
× 100 (5)

Matthews correlation coe�cient (MCC):

MCC =
T1√

T2 × T3 × T4 × T5

× 100 (6)

where T1 = TP×TN−FP×FN, T2 = TP+FP, T3 = TP+FN,

T4 = TN + FP, and T5 = TN + FN.
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Input : Cleveland Heart Disease dataset (CHD ),

Heart Statlog Cleveland Hungary dataset

(HeartStatlogClevelandHungary )

Output: Evaluation metrics for all features and

selected features

1 Step 1: Data preparation;

2 StandardizeDatadataset return

StandardScale(dataset);

3 CHD ← LoadDataset(“Cleveland Heart Disease

dataset");

4 HeartStatlogClevelandHungary ←

LoadDataset(“Heart Statlog Cleveland Hungary

dataset");

5 StandardizedCHD ← StandardizeData(CHD );

6 StandardizedHeartStatlog ←

StandardizeData(HeartStatlogClevelandHungary );

7 TrainData, TestData ←

HoldOutSplit(StandardizedCHD );

8 Step 2: Model construction;

9 TrainRandomForestdata, num_trees

RandomForestModel ← RandomForest(num_trees);

10 RandomForestModel.fit(data);

11 return RandomForestModel;

12 TrainAdaBoostdata, num_trees AdaBoostModel ←

AdaBoost(num_trees);

13 AdaBoostModel.fit(data);

14 return AdaBoostModel;

15 RFEdata return RecursiveFeatureElimination(data);

16 RandomForestModel ← TrainRandomForest(TrainData,

num_trees=1000);

17 AdaBoostModel ← TrainAdaBoost(TrainData,

num_trees=200);

18 SelectedFeatures ← RFE(TrainData);

19 Stacking;

20 StackingModelPredictdata, base Models

BaseModelOutputs ← [];

21 for model in baseModels do

22 BaseModelOutputs.append(model.predict(data));

23 end

24 StackingModelInput ←

Concatenate(BaseModelOutputs);

25 StackingModelOutput ←

RandomForestPredict( StackingModel,

StackingModelInput);

26 return StackingModelOutput;

27 BaseModelOutputsAllFeatures ←

StackingModelPredict(TestData,

[RandomForestModel, AdaBoostModel]);

28 RandomForestModelSelectedFeatures ←

TrainRandomForest(TrainData[SelectedFeatures],

num_trees=1000);

29 AdaBoostModelSelectedFeatures ←

TrainAdaBoost(TrainData[SelectedFeatures],

num_trees=200);

30 BaseModelOutputsSelectedFeatures ←

StackingModelPredict(TestData[SelectedFeatures],

[RandomForestModelSelectedFeatures,

AdaBoostModelSelectedFeatures]);

31 Step 3: Model performance evaluation;

32 EvaluationMetricsAllFeatures ←

EvaluateModel(BaseModelOutputsAllFeatures,

TestData);

33 EvaluationMetricsSelectedFeatures ←

EvaluateModel( BaseModelOutputsSelectedFeatures,

TestData);

Algorithm 2. Stacking HD heart disease diagnosis.

Area under the ROC curve AUC:

The AUC represents the model’s ROC, and a high AUC

number indicates a high-performance model. These equations

represent various performance metrics commonly used in binary

classification tasks.

2.7 Proposed model (stacking HD)

An ML-based computer-aided diagnosis (CAD) model for

detecting HD early stages in the Medical Internet of Things (IoT)

system. In the designing of the CAD system, we applied data pre-

processing techniques such as standard scalar and the removal of

null values from the data set. To select related features from the

data set, we incorporated the Recursive Feature Elimination (RFE)

algorithm. This helps to balance the data for proper training of

the algorithm and enhance the algorithm’s predictive capability.

The machine learning classifiers Random Forest (RF) and Ada

Boost (AB) were used for the classification of affected and healthy

control subjects. These models were trained and evaluated using

the entire data set and selected feature data set. To further

improve the predictive results of these models, we incorporated

a stacking approach to select the best meta-classifier between

the Random Forest and Ada Boost. We defined a parameter

grid for grid search for both algorithms. Furthermore, a hold-

out validation mechanism was utilized and data were split for

training and testing in portions of 80 and 20%, respectively.

The Cleveland Heart Database was used to validate the proposed

model. Different performance assessment metrics were computed

for model evaluation. The experimental results unequivocally

demonstrated that our proposed model outperformed the baseline

models in terms of predictive accuracy. The model flowchart is

shown in Figure 1, and the model’s method in Algorithm 2 is

as follows.

3 Experiments

3.1 Experiments setup

For the implementation of the proposed model, we performed

various experiments. First, we incorporated data preprocessing and

feature selection techniques to balance the data set and remove the

irrelevant features from the data set. The ML classifiers Random

Forest and Ada Boost were trained on 80% the original feature data

set and the selected feature data set and evaluated with 20% data.
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Furthermore, as shown in Tables 2, 3, additional hyperparameters

were adjusted in each model accordingly. The Cleveland Heart

Disease and Heart Statlog Cleveland Hungary datasets were used

for validation of the models. To further improve the predictive

performance, a stacking mechanism was used.

The proposed model performance was evaluated by computing

various evaluation metrics. The experiments were carried out

on a laptop and run with a Google collaborator accelerator. All

experiments required Python v3.7 and other machine-learning

libraries. Consistent values are obtained after repeating the

experiments several times. The results of all experiments were

provided in tables and graphed.

3.2 Results and analysis

3.2.1 Results of data pre-processing
On the Cleveland Heart Disease dataset (CHD), the proposed

model was tested. The original data set has 303 records and 75

columns; however, all published studies used only 14 columns. We

did pre-processing on the data set, and 6 records were discarded

due to empty values. Hence, the dataset has 297 records with 13

columns and 1 output column. As a result, a features matrix of

297∗13 is created. We also employed a standard scalar to verify that

each feature has a mean of 0 and a variance of 1; consequently, all

features have the same coefficient. Furthermore, we duplicated 297

samples three times to increase the size of the data set. The number

of samples in the new data set is 3∗297 = 891. As a result, the new

dataset, known as the Cleveland Heart Disease Proceeded (CHDP)

data set, has a matrix size of 891∗13. The description of the CHD is

shown in Table 4.

For cross-validation of the models, we incorporated the data

set Heart Statlog Cleveland Hungary (SCH). This dataset has 1,190

samples with 11 columns. These datasets were collected and put in

one place to enhance research on CAD-related machine learning

and data mining methods and perhaps eventually advance clinical

diagnosis and early treatment. The feature set Statlog Cleveland

Hungary data set is shown in Table 5. The models were trained

with Cleveland Heart Disease of feature matrix dataset 297∗13 and
3∗297 = 891 and tested with Heart Statlog Cleveland Hungary

data set.

3.2.2 Results of REF algorithm and feature
ranking and selected feature subsets from CHD
and SCH data sets

To choose the optimal collection of features from the SCH and

CHD data sets, the REF FS method was utilized. Table 6 shows the

feature rating and selected feature sets. According to Table 6, these

feature sets have a significant influence on the classification of HD

and HC control subjects. From CHD data set, the subset of selected

features included SEX, CTP, EIA, PES, and VCA. While from SCH

data set, the selected subset of features are SEx, CTP, FBG, EIA, and

PES. We have performed experiments on full and selected feature

datasets of both data sets in the coming sections in order to check

the models’ results on full and selected feature sets.

TABLE 4 Description of cleveland heart disease (CHD) dataset (features

matrix of 297 ∗ 13).

Feature name Feature
code

Feature description

Age AGE Age in years

Sex SEX Male = 1 and Female = 0

Chest pain CTP Atypicalangina = 1,

Typicalangina = 2,

Asymptomatic = 3,

Nonanginalpain = 4

Resting blood pressure RBP mm hg, hospitalized

Serum cholesterol SCH In mg/dl

Fasting blood sugar >120

mg/dl

FBS fasting blood sugar >120

mg/dl(T = 1, F = 0)

Resting electrocardiographic RES Normal = 0, STT = 1,

Hypertropy = 2

Maximum heart rate MHR –

Exercise included angina EIA Yes = 1, No = 0

Old peak = ST depression

included by exercise relative

to rest

OPK –

Slope peak exercise St

segment

PES Up sloping = 1, Flat = 2,

Down sloping = 3

Number of major vessels

(0–3) colored by fluoroscopy

VCA –

Thallium scan THA Normal = 3, Fixed defect = 6,

Reversible defect = 7

Lable LB Heart disease = 1, healthy = 0

TABLE 5 Description of Statlog Cleveland Hungary (SCH) data set

(features matrix of 1,190 ∗ 11).

Feature name Feature
code

Feature description

Age AGE Age in years

Sex SEX Male = 1 and female = 0

Chest pain CTP Atypical-angina = 1,

typical-angina = 2,

Asymptomatic = 3,

Non-anginal-pain = 4

Resting blood pressure RBP mm hg, hospitalized

Serum cholesterol SCH In mg/dl

Fasting blood sugar >120

mg/dl

FBS fasting blood sugar >120

mg/dl (T = 1, F = 0)

Resting electrocardiographic RES Normal = 0, STT = 1,

Hypertropy=2

Maximum heart rate MHR –

Exercise included angina EIA Yes = 1, No = 0

Old peak = ST depression

included by exercise relative

to rest

OPK –

Slope peak exercise St

segment

PES Up sloping = 1, flat = 2, down

sloping = 3

Targrt TG Heart disease = 1, healthy = 0
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TABLE 6 Feature ranking and selected feature subsets from CHD and SCH data sets by REF algorithm, i.e., 297 ∗ 5 ⊂ 297 ∗ 13 and 1, 190 ∗ 5 ⊂ 1, 190 ∗ 11.

Dataset Feature name Feature code Feature ranking Selected feature

CHD Age AGE 7

Sex SEX 1 SEX

Chestpain CTP 1 CTP

Resting blood pressure RBG 8

Serum cholesterol SCH 9

Fasting blood sugar FBG 2

Resting electrocardiographic RES 5

Maximum heart rate MHR 6

Exercise included angina EIA 1 EIA

OldPeak OPK 3

SlopofST PES 1 PES

Flouroscorpy VCA 1 VCA

Thal THA 4

SCH Age AGE 6

Sex SEX 1 SEX

Chestpain CTP 1 CTP

Resting blood pressure RBG 5

Serum cholesterol SCH 7

Fasting blood sugar FBG 1 FBG

Resting electrocardiographic RES 3

Maximum heart rate MHR 4

Exercise included angina EIA 1 EIA

OldPeak OPK 4

SlopofST PES 1 PES

3.2.3 Results of Random Forest and Ada Boost
with full and selected feature data sets

The classification performance of Random Forest and

Ada Boost was evaluated on whole and selected feature

datasets of CHD, CHDP, and SCH datasets, respectively.

The models were configured with basic hyperparameters,

as shown in Tables 2, 3. The held-out cross-validation was

incorporated, and data sets were divided into 80 and 20% ratios

for training and validating of the models, respectively. The

model’s performance was evaluated by computing different

evaluation metrics, and the results were reported and discussed

in detail.

Table 7 presented the results of classifiers Random forest

and Ada boost trained and evaluated on full and selected

feature sets on the CHD data set. On the full feature set,

obtained results are 88.33% accuracy, 88.45% specificity, 89.23%

sensitivity, 94.65% precision, 91.02% MCC, and 89.02% F1-

score. While on selected features set the model 89.12%,

92.24%, 88.22%, 89.98%, 93.24%, and 90.00%, respectively.

The model improved accuracy 89.12–88.33 = 0.79% on the

selected feature set. The performance of other metrics also

greatly improved. In Figure 2, Random Forest results are

graphically presented.

The Ada Boost results are presented in Table 7 with the full

feature set and obtained 78.33%, 78.21%, 92.11%, 89.34%, 91.00%,

and 79.21% of accuracy, specificity, sensitivity, precision,MCC, and

F1-score, respectively. On the selected feature set, the Ada Boost

achieved 78.78%, 97.23%, 88.65%, 93.36%, 92.02%, and 80.58%

of accuracy, sensitivity, specificity, precision, MCC, and F1-score

values, respectively. Figure 3 graphically presents the model results

of Ada boost on both selected and full feature data sets of CHD

data set.

Table 8 presented the results of classifiers Random forest and

Ada boost trained and evaluated on full and selected feature sets on

the CHDP data set. The accuracy, specificity, sensitivity, precision,

MCC, and F1-score values on the full feature set were 98.34%,

98.45%, 98.32%, 93.67%, 97.33%, and 98.32%, while those values on

selected feature set were 98.89%, 99.00%, 98.77%, 98.67%, 96.00%,

and 99.01%, respectively. The model improved accuracy 98.89–

98.34 = 0.54% on the selected feature set. The performance of other

metrics also greatly improved. In Figure 4, Random Forest results

are graphically presented.
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TABLE 7 Results of Random Forest and Ada Boost with full and selected feature sets of CHD data set.

Model Data set Metrics

Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)

Random forest Full feature 88.33 88.45 89.23 94.65 91.02 89.02

– Selected feature 89.12 92.24 88.22 89.98 93.24 90.00

Ada boost Full feature 78.33 78.21 92.11 89.34 91.00 79.21

– Selected feature 78.78 97.23 88.65 93.36 92.02 80.58

FIGURE 2

Results of Random Forest with full and selected feature sets of (CHD) data set.

FIGURE 3

Results of Ada Boost with full and selected feature sets of (CHD) data set.

On the other hand, Ada Boost results with CHDP

dataset are presented in Table 8 with the full feature set

and obtained 93.29% accuracy, 93.28% specificity, 93.02%

sensitivity, 94.00% precision, 93.89% MCC, and 94.02%

F1-score. The Ada Boost achieved 93.89% accuracy, 93.89%

specificity, 94.09% sensitivity, 95.09% precision, 94.23%

MCC, and 94.43% F1-measure on the specified feature set.

Figure 5 graphically presented the model results of Ada boost
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TABLE 8 Results of Random Forest and Ada Boost with full and selected feature sets of CHDP data set.

Model Dataset Metrics

Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)

Random forest Full feature 98.34 98.45 98.32 93.67 97.33 98.32

– Selected feature 98.89 99.00 98.77 98.67 96.00 99.01

Ada boost Full feature 93.29 93.28 93.02 94.00 93.89 94.02

– Selected feature 93.89 93.99 94.09 95.09 96.23 94.43

FIGURE 4

Results of Random Forest with full and selected feature sets of CHDP data set.

FIGURE 5

Results of Ada Boost with full and selected feature sets of CHDP data set.

on both selected and full feature data sets of the CHDP

data set.

We have checked the model’s performance on full and selected

feature data sets (SCH) in order to evaluate these models.

Table 9 presented the Random Forest and Ada Boost classifier’s

experimental results. With the full feature set, the Random Forest

gained 94.53%, 94.59%, 94.56%, 95.02%, 94.33%, and 94.53% of

accuracy, specificity, sensitivity, precision, MCC, and F1-score,
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TABLE 9 Results of Random Forest and Ada Boost with full and selected feature sets of SCH data set.

Model Dataset Metrics

Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)

Random forest Full feature 94.53 94.59 94.53 95.02 94.33 94.53

– Selected feature 95.00 94.30 93.87 94.23 95.01 92.04

Ada boost Full feature 86.96 86.98 86.89 97.92 86.00 87.00

– Selected feature 87.02 98.99 86.23 87.36 88.98 87.98

FIGURE 6

Results of Random Forest with full and selected feature sets of (SCH) data set.

FIGURE 7

Results of Ada Boost with Full and Selected Feature sets of SCH data set.

respectively. While accuracy, sensitivity, specificity, precision,

MCC, and F1-score values on the selected feature set the Random

Forest achieved 95.00%, 94.30%, 93.87%, 94.23%, 95.01%, and

92.04%, respectively. Figure 6 graphically presented the model

results of Random Forest on both selected and full feature data sets

of the SCH data set.

The Ada Boost results on full and selected feature data

sets (SCH) are shown in Table 9. On the full feature set, the
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FIGURE 8

Accuracy comparison of Random Forest on three data sets.

TABLE 10 Classifier evaluation with cross dataset.

Model Metrics

Acc (%) Sp (%) Sn (%) Pr (%) MCC (%) F1-S (%)

Random Forest 98.97 96.87 98.73 97.24 95.28 98.70

Ada Boost 95.21 95.76 96.23 97.34 94.45 95.02

FIGURE 9

Model results trained and validated with the independent cross-data set.

Ada boost achieved 86.96% accuracy, 86.98% specificity, 86.89%

sensitivity, 97.92% precision, 86.00% MCC, and 87.00% F1-score.

The Ada Boost improved predictive performance on selected

feature dataset and obtained 87.02% accuracy, 98.99% specificity,

86.23% sensitivity, 87.36% precision, 88.98% MCC, and 87.98%

F1-score. Figure 7 graphically displayed the Ada Boost model

results on both the selected and full feature data sets of the SCH

data set.

On the basis of the experimental results of Random Forest

and Ada Boost classifiers on full and selected feature sets on three

datasets including, CHD, CHDP, and SCH, as shown in Tables 7–9,

we concluded that the performance of Random Forest algorithm is
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TABLE 11 Stacking HD model performance with CHD, CHDP, and SCH data sets.

Model Datasets Acc (% Sp (%) Sn Pr (%) MCC (%) F1-S (%)

Random Forest CHD 92.67 94.09 87.02 96.03 97.43 95.78

Random Forest CHDP 99.25 95.89 99.04 97.56 98.00 99.30

Random Forest SCH 97.20 96.56 95.46 93.79 96.45 97.33

FIGURE 10

Stacking HD model performance on di�erent data sets.

higher as compared with Ada Boost algorithm on CHDP data set.

In terms of accuracy, Random forest with CHDP data set obtained

98.89% classification accuracy. OnCHDdata set, the accuracy of RF

algorithmwas 89.12% and the accuracy of SCH data set was 95.00%.

Thus, on the basis of the data set, the Random forest classifier in

CHDP data set is higher than in CHD and SCH data sets. Hence,

Random Forest is a suitable classifier for the diagnosis of HD in

IoT healthcare systems. The RF performance in terms of accuracy

on three data sets is graphically presented in Figure 8 for better

understanding.

3.2.4 Models performance evaluation with cross
dataset

With separate cross-datasets, we examined the predictive

outcomes of the Random Forest (RF) and Ada Boost (AB)

classifiers.We trained the RandomForest and Ada Boost with CHD

data set and tested with an independent SCH data set. The models

were configured with basic hyperparameters as shown in Tables 2,

3. The model’s performance was evaluated by computing different

evaluation metrics and experimental results, as shown in Table 10.

Table 10 reported performance metrics results for the random

forest model including accuracy, sensitivity, specificity, precision,

MCC, and F1-score which were 98.97%, 96.87%, 98.73%, 97.24%,

95.28%, and 98.70%, respectively. The test accuracy of the Random

forest model is higher as compared to the test accuracy of the Ada

Boost model on the same data. While the Ada Boost reached an

accuracy of 95.21%, a specificity of 95.76%, a sensitivity of 96.23%,

a precision of 97.34%,MCC of 94.45%, and F1-score of 95.02%. The

test accuracy is higher as compared to the test accuracy of the same

data. The cross-data performance of Random Forest and Ada Boost

is graphically shown in Figure 9.

3.2.5 Results of the stacking model (stacking HD)
We used the performance of all models (Random Forest

and Ada Boost) as new training data to increase classification

performance. The Random Forest model results were highest

between Random Forest and Ada Boost models when the selected

feature data sets of CHD, CHDP, and SCH were used. The

outcomes of the stacking-based model (stacking HD) are shown in

Table 11. The stacking-based model (stacking HD) performance of

different data sets is presented graphically in Figure 10 for better

understanding. The table presents that the results of the stacking-

based model (stacking HD) are better and obtained 92.67%

accuracy, 94.09% specificity, 87.02% sensitivity, 96.03% precision,

97.43% MCC, and 95.78% F1-score on the CHD selected feature

data set. The performance of the stacking approach on CHD data is

better than that of individuals models Random forest as reported

in Table 7 such as 89.12% accuracy, 92.24% specificity, 88.22%

sensitivity, 89.98% precision, 93.24% MCC and 90.00% F1-score.

The Confusion Matrix (CM) and ROC curve of the stacking-based

model on CHD data set are shown graphically in Figures 11A, 12A.

While on CHDP selected feature dataset, the stacking HD

model meta classifier (Random Forest) obtained the higher

performance in terms of 99.25% accuracy, 95.89% specificity,
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FIGURE 11

Confusion matrixes for three datasets. (A) Confusion matrix of staking based model on CHD data. (B) Confusion matrix of staking based model on

CHDP data set. (C) Confusion matrix of staking based model on SCH data set.

99.04% sensitivity, 97.56% precision, 98.00% MCC, and 99.30%

F1-measure. The CM and ROC curves of the stacking-based

model on CHDP data set are shown graphically in Figures 11B,

12B. The stacking approach-based model on the SCH data set

obtained 97.20% accuracy, 96.56% specificity, 95.46% sensitivity,

93.79% precision, 96.45% MCC, and 97.33% F1-score. The CM

and ROC curves of the stacking-based model on SCH data set

are shown graphically in Figures 11C, 12C. The above stacking-

based model (Stacking HD) results on different data sets presented

that stacking-based models perform better than individual models.

The result of the stacking-based model is the high performance

of CHDP data set as compared with CHD and SCH data

sets. Among the three stacking model, the stacking HD on the

CHDP data set obtained a higher accuracy of 99.25%. Hence,

the stacking HD model is an appropriate method to diagnose

HD in its early stages. Random forest is considered as the

meta classifier.

3.2.6 Comparison of stacking HD model with
existing models

The proposed model (stacking HD) predictive accuracy is

compared with baseline models, as shown in Table 12. Table 12

presented that the stacking HD model reached a higher 99.25%

accuracy as compared with baseline models. The suggested

method’s great performance revealed that it correctly diagnoses HD

and may be simply applied in IoT healthcare for the diagnosis of

heart diseases.

4 Discussion

The diagnosis of heart disease (HD) is a critical task in the

early stages of IoT healthcare systems. World Health Organization

(WHO) reported that a large number of people are suffered from

HD each year (1). To handle the initial stages of recognition of HD,
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FIGURE 12

ROC curves on the stacking-based model for three data sets. (A) ROC curves on the stacking-based model with CHD data set. (B) ROC curves on the

stacking-based model with CHDP data set. (C) ROC curves on the stacking-based model with SCH data set.

various diagnosis methods have been proposed by medical experts

and researchers. Machine learning techniques based on Computer-

Aided Diagnostic Systems (CAD) in an IoT healthcare system

can accurately detect HD in its initial phases (30, 31). Machine

learning techniques are widely used in CAD systems to diagnose

critical diseases such as heart disease in IoT healthcare (32, 33).

However, the existing HD diagnostic methods have the problem of

lack of accuracy in the diagnosis HD correctly. The low prediction

accuracy arises due to imbalanced data and irrelevant feature data

for the ML model training. To address this issue, a new approach

for properly and efficiently diagnosing heart disease is required for

IoT healthcare systems.

The research study designed machine learning technique-based

CAD systems for HD diagnosis in IoT-healthcare systems. In the

designing of the CAD system, data pre-processing techniques such

as standard scalar and removing null values attribute records from

the data set. For related feature selection from the data set, we

incorporated the Recursive Feature Elimination (RFE) algorithm

to balance the data for good training of the model to enhance

the model’s predictive capability. The machine learning classifiers

Random Forest and Ada Boost were used for the classification of

affected and healthy control subjects. These models were trained

and evaluated using the entire data set and selected feature data set.

To further improve the predictive performance of these models,

we incorporated a stacking approach to select the best meta-

classifier between the Random Forest and Ada Boost. We defined

a parameter grid for grid search for both algorithms.

Furthermore, the held-out validation procedure was used, and

data were split into sections of 80 and 20% for training and testing.

The proposed model was validated using CHD, CHDP, and SCH

databases. Formodel performance evaluation, various performance

assessmentmetrics results were generated. The experimental results

were compared with the existing state of the arts methods.

Here, the experimental results are briefly presented. The RFE

algorithm from the CHD data set of the subset of selected

features included SEX, CTP, EIA, PES, and VCA. While from

the SCH data set, the selected subsets of features are SEX, CTP,

FBG, EIA, and PES. The performance of the Radom Forest

algorithm on CHDP data was higher as compared with CHD

and SCH data sets. Hence, Table 8 presented the results of the
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TABLE 12 Proposed model performance comparison with baseline

models.

Model Acc (%) Ref

ML algorithms 77 (7)

MLP + SVM 80.41 (16)

Random Forest model 88 (23)

GA-RBF 94.20 (24)

Hybrid MLmodel (HRFLM) 88.07 (13)

SGD 87.69 (25)

ANN + Fuzzy Logic

(ANN-FL)

87.4 (8)

ANN ensemble-based

diagnosis system

89.01 (17)

IHDPS 88.12 (9)

3p-ANN 88.89 (10)

RF 96.72 (26)

ANN-FUZZY-AHP 91.1 (11)

SVM 96.72 (27)

KNN 90.789 (28)

Random Forest 92.3 (29)

RRS-HD 92.32 (12)

HISFP 89 (2)

FCMIM-SVM 92.37 (14)

SE 92.34 (15)

Proposed stacking HD (CHD) 92.67 2024

Proposed stacking HD

(CHDP)

99.25 2024

Proposed stacking HD (SCH) 97.20 2024

classifier Random forest trained and evaluated on full and selected

feature sets on the CHDP data set. The values for the whole

feature set’s accuracy, sensitivity, specificity, precision, MCC, and

F1-score were 98.34%, 98.45%, 98.32%, 93.67%, 97.33%, and

98.32%. While the values on selected feature set models were

98.89%, 99.00%, 98.77%, 98.67%, 96.00%, and 99.01%, respectively.

The model improved accuracy 98.89–98.34 = 0.54% on the

selected feature set. The performance of other metrics also greatly

improved. The Random Forest accuracy is also higher than the

Ada Boost classifier. Similarly, when stacking techniques were

incorporated, the Random Forest performance was higher than

Ada Boost, and the Random Forest model was selected as the

meta-model. According to Table 7, on the CHDP chosen feature

dataset, the stacking technique selected the Random Forest meta

classifier and produced the higher performance in terms of

accuracy, sensitivity, specificity, precision, MCC, and F1-score,

each with a score of 99.25%, 95.89%, 99.04%, 97.56%, 98.00%, and

99.30%.

The confusion matrix and ROC curves of the stacking

approach with data sets CHD, CHDP, and SCH are shown in

Figures 11, 12. Hence, the ROC curve of the stacking model

with the CHDP data set is higher, so it presents that the model

accurately detected the HD as compared with CHD and SCH

data sets.

Our analysis of the aforementioned results led us to the

conclusion that the proposed model, stacking HD, provided

better predictive outcomes and was easily implementable for HD

detection in IoT-based healthcare systems.

5 Conclusion and future work
direction

Machine learning-based Computer-Aided Diagnosis Systems

are typically utilized to effectively identify heart disease. However,

because current artificial diagnostic approaches are imprecise,

medical practitioners are not adopting them into the heart

diagnosis process efficiently. In the research study, we created

an accurate technique for identifying HD using ML techniques.

In the proposed approach, machine learning classifiers including

Random-Forest (RF) and Ada-Boost are incorporated for the

classification of heart disease and healthy control subjects. For data

pre-processing and feature selection, we incorporated standard

scalar and Recursive Feature Elimination (RFE) techniques to

balance the data for proper training of the algorithm to enhance

the model’s predictive capability. We defined a parameter grid for

grid search for both algorithms. To enhance algorithm accuracy,

an ensemble learning technique was incorporated to select the

best classification model. A held-out validation mechanism was

utilized, and HD datasets were used to validate the proposed

model.

The proposed model was evaluated using different evaluation

metrics. According to experimental outcomes on the selected

feature dataset (CHDP), the stacking technique selected meta

classifier (Random Forest) and obtained the higher performance in

terms of accuracy, 99.25%, and greater ROC cure. The proposed

stacking HD model experimental outcomes presented that the

model obtained higher results in terms of accuracy compared

with existing models. Due to its excellent results, the proposed

stacking HD model is recommended for HD detection in IoT

healthcare systems. In the future, we will incorporate deep learning,

transfer learning, and federated learning techniques to design a

more advanced system for the diagnosis of heart disease in the IOT

healthcare system.
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Efficient differential privacy 
enabled federated learning model 
for detecting COVID-19 disease 
using chest X-ray images
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Science Department, Applied College, University of Ha’il, Ha’il, Saudi Arabia

The rapid spread of COVID-19 pandemic across the world has not only 
disturbed the global economy but also raised the demand for accurate disease 
detection models. Although many studies have proposed effective solutions for 
the early detection and prediction of COVID-19 with Machine Learning (ML) 
and Deep learning (DL) based techniques, but these models remain vulnerable 
to data privacy and security breaches. To overcome the challenges of existing 
systems, we introduced Adaptive Differential Privacy-based Federated Learning 
(DPFL) model for predicting COVID-19 disease from chest X-ray images which 
introduces an innovative adaptive mechanism that dynamically adjusts privacy 
levels based on real-time data sensitivity analysis, improving the practical 
applicability of Federated Learning (FL) in diverse healthcare environments. 
We compared and analyzed the performance of this distributed learning model 
with a traditional centralized model. Moreover, we  enhance the model by 
integrating a FL approach with an early stopping mechanism to achieve efficient 
COVID-19 prediction with minimal communication overhead. To ensure privacy 
without compromising model utility and accuracy, we evaluated the proposed 
model under various noise scales. Finally, we discussed strategies for increasing 
the model’s accuracy while maintaining robustness as well as privacy.

KEYWORDS

COVID-19 detection, decentralized training, adaptive differential privacy, federated 
learning, convolutional neural network, healthcare data privacy

1 Introduction

The global healthcare system faces an unprecedented challenge due to SARS-CoV-2. The 
COVID-19 pandemic has emerged as a significant global health crisis, impacting millions 
worldwide and causing widespread economic and societal disruption on a global scale. The 
rapid spread of the virus has led to the harnessing of cutting-edge technologies for patient data 
collection, disease prediction, surveillance, and management. COVID-19 disease-related data 
being generated or collected by the various Internet of Things (IoT) applications are being 
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managed and processed using efficient big data analytics and 
computational methods such as ML or DL algorithms (1). Diverse 
healthcare datasets are collected, encompassing epidemiological data 
(e.g., confirmed cases, deaths, recoveries), clinical records (e.g., 
symptoms, comorbidities), demographic information (e.g., gender, 
age), and socio-economic factors (e.g., population density, mobility 
patterns). However, this data inherently contains sensitive information 
related to specific patients, regions, or locations (2). Therefore, robust 
measures are crucial to safeguard data privacy and confidentiality 
during various activities such as sharing, exchanging, managing, and 
processing, which often involve multiple entities and tools. Healthcare 
data privacy standards guarantee that only authorized individuals or 
organizations have access to a patient’s personal medical information. 
This protects sensitive information like a patient name, patient 
address, date of birth, and important medical status being shared 
without their consent (3). However, traditional centralized systems 
have major drawbacks, including significant processing time, 
increased network traffic, and a heightened risk of unauthorized 
data access.

Over the years, various methods have been developed for 
addressing the limitations of centralized architectures. While 
preserving data privacy and confidentiality through authorized access 
control. However, recent advances in applied AI technologies provide 
promising results with distributed learning techniques, resulting in 
increased data processing. FL is a distributed learning approach in 
which only model parameters are exchanged between the server and 
clients over several iterations, rather than actual data being transferred 
to the server. The clients perform training on their data using the 
model parameters provided by the server. Throughout this process, 
initial privacy is provided, and communication costs are reduced. 
Since the amount of data on clients is less compared to the central data 
pool, local learning is attained with minimal hardware requirements 
(4). Figure 1 illustrates the processing of medical data from various 
hospitals using FL architecture. Although FL achieves privacy through 
the physical isolation of data, it does not guarantee privacy for local 
data. During the model transmission process, the server can invert the 
client’s local information using model gradients, leading to a potential 
inference attack. Even though FL fulfills the design principles 
necessary for achieving privacy, but still, the attacker can still steal the 
private information of a user through the intermediate results of the 
FL process (5). However, this be addressed in two ways. First, we can 
consider encryption methods to protect the information flow of 
intermediate results such as Homomorphic Encryption (HE) (6) and 
Secure Multi-party Computation (MPC) (7). Secondly, we  can 
consider the perturbation of the original private information, through 
techniques such as Differential Privacy (DP), which can prevent the 
revelation of intermediate results (8).

By introducing noise to the original dataset or learning 
parameters, the DP technique guarantees a high level of privacy 
protection in data analysis, thus making it impossible for attackers 
to access sensitive data. Although DP was proposed in 2006, its 
recent AI applications to improve data security, stabilize the 
learning process, develop unbiased models, and apply composition 
in specific AI domains have attracted significant interest from 
researchers and tech titans such as Google, Microsoft, and Apple 
(9). These organizations are interested in retrieving statistics from 
client devices, either by developing applications with Central 
Differential Privacy (CDP) or Local Differential Privacy (LDP) 

techniques (10). CDP techniques involve the inclusion of random 
noise to the actual data after it has been acquired from all clients 
by a data curator in a central server. However, the LDP mechanism 
introduces noise before transmitting the data or learning parameter 
to the central server, guaranteeing privacy from the beginning of 
data transmission process. Besides applications in ML and DL, DP 
has also improved the convergence rate by guaranteeing privacy in 
distributed learning environments (11). An adaptive Differential 
Privacy Federated Learning Medical IoT (DPFL-MIoT) uses 
several techniques such as DP, FL, and deep neural networks with 
adaptive gradient descent to mask model parameters by infusing 
noise (12).

The main contributions of the work are as follows:

	 1	 We have developed a distributed learning model to predict 
COVID-19 disease by considering the three different classes of 
Chest X-Ray images such as COVID, Normal, and Pneumonia.

	 2	 We designed Adaptive Differential Privacy-Enhanced 
Federated Learning (DPFL) framework with an early-stopping 
technique to preserve patient data while maintaining utility.

	 3	 We have conducted several experiments to analyze and evaluate 
the Utility and Privacy of the data, and the impact of the early 
stopping mechanism on the performance of the proposed 
DPFL model.

The rest of the paper is organized as follows: Section 2 discusses 
existing works on FL and AFL using DP. Section 3 presents the 
proposed FL models with a DP mechanism. A detailed discussion of 
the experimental setup, dataset, and obtained results are provided in 
Section 4. Finally, the conclusion and future research directions are 
discussed in Section 5.

2 Literature review

FL revolutionizes ML by decentralizing model training across 
devices, safeguarding local data privacy. This collaborative model 
involves a central server managing global parameters and clients with 
local datasets. Model updates from clients enhance the global model 
iteratively. FL offers advantages like privacy preservation, reduced 
communication overhead, and collaborative learning. Challenges 
include handling heterogeneous data and addressing communication 
and security concerns. This sets the stage for exploring privacy-
preserving mechanisms like Differential Privacy within the FL 
framework. To reduce the prediction bias and to eradicate the 
overfitting problems caused by to small dataset, Chen et al. (13) have 
proposed a DP-based adaptive worker selection algorithm. The 
proposed framework generated a vulnerability prediction map 
considering COVID-19 data through various apps using distributed 
FL models to ensure privacy. Wu et al. (14) suggested an FL model 
with an adaptive gradient descendent and differential privacy 
mechanism for a multiparty collaborative environment by ensuring 
efficient model training with minimal communication cost. Even 
though, the proposed technique enhances the accuracy and stability 
of the model but still lacks model convergence efficiency due to 
hyperparameter fluctuations. Ulhaq et  al. (15) have developed a 
Differential privacy-enabled FL framework for COVID-19 disease 
diagnosis by ensuring data privacy. The authors have designed and 
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developed the theoretical model, hence the model needs to 
be implemented for further analysis.

Similarly, Wang et  al. (16) have designed a privacy-enhanced 
disease diagnosis using FL. The proposed model incorporates 
Variational Autoencoder (VAE), differential privacy noise, and 
incentive mechanism during the disease diagnosis process in a 
distributed environment. Simulation results have shown that the 
accuracy of the global model decreases with an increase in the privacy 
budget. The privacy requirements of the individuals are not the same, 
hence the authors Liu et al. (17) have introduced a hybrid differential 
privacy technique to the existing privacy-friendly FL framework by 
dividing the user into groups as per their privacy requirements. The 
adaptive gradient clipping mechanism and improved composition 
methods of the model will improve the model accuracy by reducing 
the noise issues. To reduce the impact of noise on the accuracy of the 
model the authors Yang et al. (18) have proposed Kalman Filter-based 
Differential Privacy Federated Learning Method (KDP-FL). The 
Proposed algorithm was tested in a simulated environment; however, 
the Kalman filter noise reduction method results in better accuracy 
but increases the computational overhead.

To reduce and nullify the leakage of sematic information of the 
training data by the Generative Adversarial Networks (GAN), the 
author’s Zhang et al. (19) have developed a “Federated Differentially 
Private Generative Adversarial Network (FedDPGAN)” model for the 
detection of COVID-19 pneumonia, which is aimed to improve the 
data privacy of the patients. DP-GAN of the proposed model protects 
the sematic information of the training dataset in a distributed 
learning environment. The model was tested and analyzed by 
considering both the IID and Non-IID settings of the COVID-19 
dataset. The experimental results have shown 3% increase in the 
overall performance compared to the FL model by ensuring the 
privacy of data. Similarly, Ho et al. (20) introduced a privacy-focused 
FL system for COVID-19 detection, aiming to create a decentralized 

learning framework among multiple hospitals that does not need the 
transfer of actual patient data. The proposed framework ensures the 
privacy of patient data by incorporating differential privacy techniques 
such as DP stochastic gradient descent (DP-SGD). The experimental 
results show that incorporating a spatial pyramid pooling layer into a 
2D CNN, as well as specific design choices for handling Non-IID data, 
such as the number of total clients, the degree of client parallelism, 
and the computations per client, resulted in an increase in 
overall accuracy.

To achieve privacy with high utility in a distributed learning 
environment, the authors Li et  al. (21) have proposed a secure 
Asynchronous Federated Learning (AFL) with DP algorithm for 
collaborative edge-cloud devices. The multi-stage adjustable private 
algorithm of the proposed model will dynamically adjust the noise 
and learning rates to improve the efficiency and convergence. The 
experimental findings show better results compared to the existing 
machine learning models with improved privacy. Lu et al. (22) has 
proposed a differentially private AFL approach for data sharing in 
vehicular networks. The authors have proposed local DP technique to 
nullify the attacks caused by the centralized curator during the 
weighted aggregation process. The experimental results have shown 
faster convergence with a few observations as the number of clients’ 
increases such as increased training period required to learn from the 
server model with reduced accuracy. Nguyen et al. (23) has proposed 
a novel asynchronous federated optimization framework with buffered 
asynchronous aggregation and Differential privacy scheme. The model 
was aimed to achieve improved privacy and scalability. The simulation 
results of the model outperformed the traditional methods.

Li et al. (24) have proposed an optimized asynchronous federated 
model for a depression detection system. The model was designed to 
enhance both the communication efficiency and the convergence rate 
while maintaining users’ privacy using the DP technique. The 
experimental results have shown 86.67% accuracy and minimal 

FIGURE 1

Federated learning in healthcare systems.
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communication cost. Even though the FL provides a privacy guarantee 
for the user’s data, to strengthen the privacy safeguards the authors, 
Nampalle et al. (25) have proposed a novel FL with a DP technique for 
medical image classification. The proposed method consists of a novel 
noise calibration mechanism and adaptive privacy budget allocation 
strategy. Even though the simulation results have shown an improved 
efficiency in the classification of skin lesions and brain tumor images, 
the model requires further analysis and testing to improve the overall 
performance. Malik et al. (26) introduced DMFL_Net, a FL-based 
model for COVID-19 image classification. The study aims to improve 
COVID-19 classification, data privacy, and communication efficiency 
across medical institutions. The model incorporates DenseNet-169 
into FL environment to enable collaborative training without sharing 
its contents to clients, thus guaranteeing privacy. The experiments 
were conducted on chest X-ray images to compare the performance 
of DMFL_Net with the conventional transfer learning approaches 
VGG-19 and VGG-16. The experimental results show that the 
proposed DMFL_Net model attains an accuracy of 98.45%, 
outperforming all other models and ensuring data privacy and 
optimal communication efficiency between participating hospitals. 
Dayan et al. (27) proposed a FL model named EXAM, that predicts 
the future oxygen requirements for COVID-19 patients based on chest 
X-rays, vital signs, and test results. The primary objective of the 
present study is to design a robust, generalizable model that can 
classify patients efficiently and effectively among different healthcare 
systems without the need for personal information sharing, thereby 
enhancing privacy and data security. The proposed model utilizes a 
34-layer CNN (ResNet34) for extracting features from chest X-rays 
and a Deep & Cross network for integrating EMR features. The 
experiments were performed on data collected from 20 institutes 
around the world, and the results indicate that the proposed EXAM 
model enhanced accuracy and generalizability across trained models, 
with an AUC increase of 16 and 38% for generalizability.

Table 1 represents the summary of existing differential privacy-
based Federated Learning models.

The literature review for Section 2 was carried out in accordance 
with the PRISMA guidelines shown in Figure 2.

3 Proposed model

In this section we present the preliminaries of Federated average 
algorithm and differential privacy mechanism. Following that, 
we  present an overview of our proposed model, including the 
architecture and approaches used to classify Chest X-ray images to 
identify COVID-19 cases.

3.1 Differential privacy

Differential privacy (DP) enables the analysis of the features of an 
entire dataset or population without disclosing any personal 
information. A differentially private algorithm ensures that the 
inclusion or exclusion of a tuple from the dataset has no vital effect on 
the output. Dwork et al. defined DP as follows:

Definition 1: ,δ( ) —Differential Privacy—“A randomized 
algorithm R:J → K with input domain J and output range K is  ,δ( )
-differentially private if for all pairs of neighboring datasets J, ′∈J J , 

and every measurable L K⊆ , we  have 
Pr ·PrR J L e R J L( )∈( ) ≤ ( )∈( ) +′ε δ  where probabilities are with 
respect to the coin flips of R Equation.”

Where the privacy budget  is used to determine the strengths of 
privacy protection and δ = 0 result in -differential private mechanism. 
This type of DP is accomplished by introducing noise, which is 
identified through a sensitivity analysis of the dataset. Lower values of 
ε improve privacy but reduce effectiveness because of more noise, 
which lead to poor accuracy. Higher ε values improve data utility 
while compromising privacy. The chance of a further privacy violation 
after the ε guarantee is controlled by a measure called δ. When 
adjusting ε and δ, we must consider the desired prediction accuracy, 
acceptable privacy risk, and data sensitivity.

The following two probabilistic methods help to induce noise.
Laplace mechanism (10): The Laplace mechanism is a process of 

adding noise derived from the continuous Laplace distribution 

0,
p∆










  where p∆  is the sensitivity of function p, which measures 

the largest change in function p’s output generated by adding or 
removing a single individual’s data from the dataset. A higher 
sensitivity indicates that the function is more responsive to changes in 
the input dataset. During the process of noise addition to the dataset, 
L1 sensitivity and the epsilon value (i.e., the privacy budget) are 
considered for effective results. Hence, the Laplace mechanism can 
be defined as below:

Definition 2: “Given a function p J Y
i

: → , where Y is the set of all 
possible outputs, and  > 0.” The Laplace mechanism is represented in 
Eq. (1).

	
R J p J Lap p( ) = ( ) + 







0,

∆
 	

(1)

Gaussian mechanism (10): The Gaussian Mechanism is a 
substitution to the Laplace Mechanism, which adds Gaussian Noise 
and supports tractability of the privacy budget under composition. 
Unlike Laplace Mechanism, Gaussian Technique uses L2 sensitivity 
rather than the L1 sensitivity, providing better control over the privacy 
budget by ensuring reasonable privacy guarantees and smoother noise 
distribution of L2 sensitivity will also preserve the utility. It can 
be defined as below.

Definition 3: "Given two neighboring datasets J and J’ in the 
dataset universe Ji, a query function p J G

i
: → , where G is the set of 

all possible outputs, and  > 0″. The -Gaussian DP (-GDP) 
mechanism is given in Eq. (2).

	
R J p J p( ) = ( ) +













N 0

2

2
,
∆

ε 	
(2)

Where, N
ε

0

2

2
,

p∆











 is considered as the normal distribution.

3.2 Federated averaging process

In a FL system that includes one server and n clients, where each 
client maintains local database Ji where i = {1, 2, 3,…,n}. The server’s 
objective is to continuously learn from the data stored on n clients 
through multiple iterations, employing the local weights sent by the n 
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clients to minimize loss. The optimization problem can be represented 
as shown in Eq. (3).

	
Wt p F Wt

Wt i

n
i i i

∗

=
= ( )∑arg min

1

,
	

(3)

Here, Wt* denotes the server model parameter generated after 
aggregating the local models from n clients, Wti is denoted as the 
model parameter from the ith client, and Fi is considered as the loss 
function of the ith client. Overfitting to specific client datasets in a 
heterogeneous data environment is a challenge in FL. Regularization 
and model averaging methods are used to address this issue. Applying 
regularization to the loss functions Fi helps in minimize overfitting, 
and Federated Averaging engages averaging model updates from 
clients to reduce overfitting. pi  is proportional to the amount of data 
 i  contained by client i, affecting the client total model. The value of 
pi  impacts the convergence rate of the model. Managing these 
weights is essential for guaranteeing that the model performs well 
among all client data transfers. The training mechanism of FL systems 
consists of several steps: Initially, the FL model sets the server’s 
weights. After that, it executes the following steps over 
multiple rounds:

Step  1: Forwarding the server weights: Server weights are 
forwarded to N clients in a network. Later, each client keeps a buffer 
to store the received weights in multiple iterations for future reference.

Step 2: Client Model Training: Using the latest model sent by the 
server, the clients will train their data on local machines. Soon after 
the training process, the updated models are returned to the server for 
further operations.

Step  3: Client Model Aggregation: The updated client model 
weights from n clients are transferred to the server. Later, the server 
will generate new weight by aggregating all client weight updates 
through mean computation, which is represented in Eq. (4).

	

Wt
Wt

i
i
n

i

i
n

′ = =

=

∑
∑

0

0 	

(4)

3.3 DP enabled federated averaging 
algorithm

In this section, we will discuss the architecture and steps involved 
in the proposed DPFL model and the pseudocode of the DPFL.

TABLE 1  Summary of existing DP-based FL models.

References Methodology Advantages/salient 
feature

Disadvantages/future enhancement

Chen et al. (13) “DP Based adaptive worker selection 

algorithm for FL with LSTM training 

model.”

Resolves the issues of inadequate 

amount of dataset, ensure users data 

privacy using DP mechanism

Requires further threat analysis.

Wu et al. (14) Adaptive gradient descendent 

mechanism with DP for collaborative 

learning

The model shows strong robustness 

and is less volatile.

The model suffers from convergence issues for a large 

set of data.

Ulhaq and Burmeister (15) FL-based DP model for disease 

diagnosis.

Seven design principles are defined 

for effective implementation.

Only a theoretical model, hence it requires actual 

implementation for proper analysis

Wang et al. (16) FL model with variational autoencoder 

(VAE) and DP preserve the patient’s data 

privacy

The model guarantees high accuracy 

and low adversarial inference attacks

Lack of strategies to improve the accuracy of a global 

model.

Liu et al. (17) Hybrid Differential Privacy Model for 

FL.

The model removes the adverse 

effect of noise addition by using the 

adaptive clip method

Lack of strategies to stabilize correctness, privacy, and 

communication in FL

Zhang et al. (19) GAN-based DP mechanism for FL 

(FedDPGAN). GAN Based DP 

mechanism for FL (FedDPGAN).

High-quality training samples 

generation.

High-quality training samples generation.

Ho et al. (20) FL-based DPSGD for disease analysis, 

CNN model incorporating a spatial 

pyramid pooling strategy.

Improved robustness of the Model 

and improved accuracy of Non-IID 

data.

The model requires further analysis by considering a 

large dataset.

Nampalle et al. (25) Adaptive privacy budget allocation 

mechanism for FL.

Improved privacy of medical data. The proposed model failed to harmonize privacy and 

model performance

Malik et al. (26) DMFL_Net for the classification of 

COVID-19

High classification accuracy and 

robustness in privacy preservation.

The FL model’s complexity limits its ability to scale to 

larger networks of organizations.

Dayan et al. (27) FL for predicting clinical outcomes 

COVID-19 patients

The use of FL improved accuracy 

and privacy, making it appropriate 

for sensitive medical applications.

Due to the complexity of managing and synchronizing 

updates across the network, it does not scale smoothly 

as the number of participating sites increases.
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3.3.1 Model architecture
The proposed DP-based FL model is aimed at providing user-level 

privacy by modifying the basic Federated Average algorithms in two 
different ways:

	 1	 Clip the Model Updates: Model clipping is performed using 
adaptive methods instead of predefined clipping norms. The 
adaptive approach updates the clipping threshold based on a 
specific quantile, ensuring that values are accurately estimated 
within that range. Also, enables the model to maintain stability 
and convergence while effectively controlling the magnitude of 
updates, aimed to improve training performance and 
model accuracy.

Let A S∈  be a random variable and β ∈[0,1] be a quantile to 
be satisfied. Then, for any T is given in Eqs. (5, 6) results in Eq. (7).

 	
β

β
β

T;A
T A if A T

A T otherwise
( ) =

−( ) −( ) ≤
−( )







1

	
(5)

So 	 β
β

β
′ ( ) = −( ) ≤

−




T;A
if A T

otherwise

1
	 (6)

Hence, 	
 β

β β

′ ( )



 =

−( ) ≤[ ] − >[ ] = ≤[ ] −
T;A

A T A T A T1 Pr PrβPr
	

(7)

	 2	 Addition of noise: In order to improve privacy without 
degrading the utility of data, the proposed model will 
be monitored using the standard deviation of the Gaussian 
noise and number of clients. Initially, we  determine the 
noise tolerance of the model based on a varied amount of 
noise values by considering a small number of clients per 
round. Then we train the final model with increased noise 
on the sum and more clients per round. Reducing the 
number of clients at first eases the computational load and 
allows for effective noise level exploration. This methodology 
facilitates the assessment of the impact of varying noise 
levels on the usefulness of the information while offering 
valuable perspectives on the balance between privacy and 
usefulness. Figure  3 depicts the stages of the proposed 
DPFL model.

3.3.2 DPFL algorithm
Considering n as the number of users in a round and β ∈[0,1] as 

the target quantile for the norm distribution where clipping is to 
be applied, for every iteration m M∈[ ], let Vm  represent the clipping 

FIGURE 2

Prisma flow chart.
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threshold, and ηV  the learning rate. Let Ym be the set of users sampled 
in round m. Each user k Ym∈ will send the binary indicator ak

malong 
with the usual model update m

k∆ , where ak
m

Vk
m m= ≤( ) ∆ 2

. Defining 
a

n
am

k
k
m

m

=
∈
∑1


, we  apply the update V V aV← − −( )( )·exp η γ  

However, to prevent the leakage of private information 
through model updates, we  add Gaussian noise to 

the sum 
a

n
a Om

k
k
m

a
m

= + ( )











∈
∑1 2

Y
N ,σ .

The target quantile (β) for the normal distribution affects the 
clipping threshold (Vm) by selecting the value at which the distribution’s 
tails are trimmed. Higher β values result in higher clipping thresholds, 
allowing for further removal of the distribution. The learning rate ηV  
in the update rule for V controls how quickly the clipping threshold 
adjusts to observed gradients. Higher ηV  results in quicker V 
modifications, potentially speeding up convergence by allowing the 
model to react to changes in data distribution. Excessive ηV  values 
disrupt training, leading to divergence. A lower ηV  promotes stability 
but delay convergence rates. The regularization parameter γ maintains 
the clipping threshold within the intended bounds by modifying it in 
response to the discrepancy between the target value γ and the average 
clipping rate a . Thus, the federated learning process’s privacy-utility 
trade-off is adjusted by varying γ. Algorithm 1 depicts DPFL Algorithm.

ALGORITHM 1 : DPFL Algorithm

Function Train n xv z V a, , , , , , ,β η η η σ β( )

Initialize model θ0 , clipping bound V 0

x x b∆ ← − ( )( )− − −
2 2

1 2
2σ

/

For (each round m = 0,1,2, ………) do

m samplemusers uniformly←( ) 

For each user k m∈  in parallel do

∆k
m
k
m m v ma FedAvg k V, , , ,( )← ( )θ η

End For

σ∆ ∆← x Vm

∆ ∆ ∆
m

k
k
m

n
I

m

= + ( )












∈

∑1
0

2

Y
N , σ

∆ ∆ ∆m m m= +−β 1


θ θ ηm m z m+ ← +1 ∆

a
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a Om

k
k
m a
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
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V V am m V m+ ← − −( )

 


1

·exp η β

End For

function FedAvg i V , , ,θ η0( )
θ θ← 0

←( )′user k slocal data is divided into batches     

Forbatchb∈ do

θ θ η θ← − ∇ ( ) ;b

∆← −θ θ0

a V← ≤
 ∆

′← 







∆ ∆

∆
·min 1,

V
 

End For

return ′( )∆ ,a

FIGURE 3

Stages of proposed DPFL model.
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3.4 Early stopping mechanism

The early stopping technique is a widely utilized method for 
regularization in DNN. It is an effective and simple technique that 
typically outperforms most of the general regularization approaches. 
During training, the model continually stores and updates the best 
parameters attained so far. If there’s no further improvement in 
validation error after a set number of iterations, the training halts, 
retaining the last best parameters. When dealing with models that are 
prone to overfitting, it is common to recognize a gradual decrease in 
training error followed by an increase in validation error. Early stopping 
represents a balance between training duration and generalization error, 
minimizing communication overhead while still achieving optimal 
parameters. By reducing the need for communication and subsequently 
diminishing noise, early stopping enhances the utility of the data. The 
early stopping algorithm can be represented in  Algorithm 2 as follows:

ALGORITHM 2 : General Early Stopping Mechanism

Input: s➔ represents the number steps during the evaluation period.

e➔ represents the number of epochs, meaning it terminates after observing the worse 

performance.

θ0 ➔ represents the initial parameter.

θ θ← 0

p ← 0

q r p p← ←∞ ← ←∗ ∗
0, , ,θ θ

While (q e< ) do

Execute the training algorithm for s steps and update θ  

p p n← +

′←r  validation_set_error θ( )

If ′ <r r  then

q p p r r← ← ← ← ′∗ ∗
0, , ,θ θ

Else

q q← +1

End If

End while

Output: The optimal parameter θ∗, the optimal number of training steps p∗

4 Experimental results

This section discusses the experimental activities used to analyze 
and evaluate the effectiveness of the proposed algorithm. We discuss 
the dataset, experimental setup, model and training data, and 
performance analysis using various metrics.

4.1 Dataset description

The proposed model is evaluated considering the Covid19, 
Pneumonia, Normal Chest X-Ray Image dataset from Mendeley Data 

(28). This dataset includes 5,228 chest X-ray images categorized into 
three categories: 1,626 COVID-19, 1,802 normal (asymptomatic), and 
1,800 pneumonia (non-COVID-19). All images are resized to 256 * 
256 pixels to reduce computational load, which is important in a FL 
environment where computations are distributed across devices of 
different capabilities. During the process we classify the image dataset 
into train and test sample datasets having 4,182 training samples and 
1,046 testing samples, respectively. Table  2 describes the data 
distribution among each of the categories, and Figure 4 depicts sample 
images from each category.

4.2 Implementation and model

The proposed model is developed using the Python programming 
language and evaluated within a Tensorflow framework in a Colab 
environment. TensorFlow Federated and TensorFlow Privacy 
packages allow developers to simulate and test the functioning of 
distributed learning with privacy. TensorFlow Federated provides a 
wide range of FL-specific features. This allows for the modeling of FL 
processes on decentralized data, which is crucial for our research as 
data privacy and local computation are essential. The TensorFlow 
Privacy framework includes pre-built mechanisms, such as optimizers, 
to make it easier to integrate differential privacy into machine learning 
processes. The primary objective is to categorize the disease into three 
groups: normal, COVID-19, and pneumonia, through the use of CNN 
model. Our CNN model, depicted in Figure 5, contains two 3 × 3 
convolutional layers with 32 and 64 channels, followed by a 2 × 2 max 
pooling layer. The two convolutional layers were used to achieve a 
balance between model complexity and computational efficiency, 
which is important in a FL environment where edge devices have 
limited computational resources. It includes a fully connected layer 
with 128 units and utilizes ReLU activation, a softmax output layer for 
classification. To prevent overfitting during the training process, two 
dropout layers with probabilities of 0.25 and 0.5 are positioned just 
before and after the fully connected layer.

4.3 Distributed and central architecture

The CNN model is trained in both distributed and traditional 
central learning environments considering the parameters as number_
of_clients = 100, client_ratio = 0.3, local_epochs = 2, and batch_
size = 16. With the increase in number of rounds, the accuracy in 
identifying COVID-19 diseases enhances more in FL-based 
environments. Therefore, the FL model shows superior learning 
capabilities compared to conventional learning systems. The FL-based 
model performs better after 50 rounds of execution. Therefore, the 
overall accuracy of the FL-based approach achieves 94.3%, while 
central learning is 93.5%. Figure  6 depicts an analysis of 
communication rounds between FL and central learning models, 
indicating that training on diverse datasets from various clients results 

TABLE 2  Distribution of the COVID-19 dataset into training and testing 
sets.

Data-split details Normal Covid-19 Pneumonia

Train data samples 1,442 1,300 1,440

Test data samples 360 326 360
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in better model generalization. In FL, the client trains a model using 
local data and only shares model updates. This minimizes the risk of 
overfitting for COVID-19 patient data. Each round of FL training 
provides new updates from multiple client datasets, improving the 
model’s ability to predict and achieve higher accuracy. This finding 
highlights distributed learning’s advantage over traditional central 
learning methodologies in terms of improving model performance.

The proposed distributed learning techniques are further 
evaluated by comparing various existing CNN models such as 
Resnet18, Resnet50, and VGG18, with our model. The analysis uses 
number_of_clients = 100, client_ratio = 0.3, local_epochs = 2, and 
batch_size = 16. Our CNN has an optimal number of layers, and 
activation functions that handle the data’s features more efficiently.

The model is designed to generalize better when trained on 
decentralized datasets and is highly parameter-efficient, resulting in 
higher accuracy with less parameters. This efficiency is important in 
FL, where models are updated throughout networks using minimal 
computational resources. Figure 7 depicts the accuracy analysis of the 
models where the CNN model outperforms the aforementioned 
models in terms of accuracy for different communication round. The 

primary goal of FL is to manage communication rounds with the 
computational and communication overheads. Frequent updates 
result in faster convergence and higher accuracy. We noticed that as 
the number of rounds increased, the model’s accuracy enhanced, 
implying that more frequent updates benefit model performance.

The proposed distributed FL model undergoes additional analysis 
by varying the batch size, which shows that the FL model’s accuracy 
increases exponentially as the batch size increases across various 
rounds, as shown in Figure 8. Increasing the batch size leads to a larger 
volume of data processed during every round of training. Larger batch 
sizes help to smooth out noisy gradients and stabilize the training 
process, resulting in better convergence and accuracy. Therefore, this 
aids in enhancing the accuracy of the model’s learning process.

4.4 FL with differential privacy mechanism

FL guarantees privacy by eliminating the need to share data 
between participants or servers. To improve the privacy mechanisms 
of FL-based learning, we proposed the Differential Privacy Federated 

FIGURE 4

Normal, COVID19, pneumonia chest X-ray image samples.

FIGURE 5

CNN model architecture.
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Learning model. The experiment is carried out in a distributed 
learning environment with a 0.2 noise_multiplier, 50 clients_per 
round, a learning_rate of 0.01, two epochs, and a client_ratio of 0.01. 

However, the introduction of noise reduces the accuracy of the 
DP-based FL when compared to the traditional FL. Figure 9 shows a 
3% drop in accuracy for the DPFL-based model compared to FL. The 

FIGURE 6

Comparison of model accuracy over communication rounds for central and federated learning architectures.

FIGURE 7

Comparative accuracy performance of CNN model against standard CNN architectures.
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noise disrupts the learning process, lowering the model’s capability 
to accurately capture the underlying patterns in the data. As a result, 

the introduced noise necessitates a compromise between privacy and 
model accuracy.

FIGURE 8

Accuracy analysis of FL model with respect to varied batch size.

FIGURE 9

Comparison of FL vs. DP enabled FL.
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4.5 Model noise sensitivity analysis

Model Noise Sensitivity Analysis in FL is important for deploying 
FL models in environments where data noise is unavoidable, as it 
helps to understand how noise in the data affects the performance and 
reliability of learning models trained on various decentralized devices 
or servers. In the healthcare domain, the main focus is the accuracy of 
diagnosis models, as inaccurate predictions can have an immediate 
effect on the health of patients (29). However, because medical records 
are so sensitive, patient data privacy is a major concern (30, 31). To 
meet these requirements, healthcare professionals can select a lower 
noise multiplier if the model’s predictive accuracy is vital for critical 
diagnostic tasks. Yet, for less sensitive tasks, a higher noise multiplier 
may be  sufficient to ensure more privacy. Our findings suggest a 
strategic approach in which noise levels are adjusted depending on the 
sensitivity of the data and the importance of the task. This enables 
health care professionals to keep patient trust by protecting their data 
while guaranteeing that the diagnostic models are as accurate as 
needed. Data scientists working in a variety of sectors particularly 
healthcare, are frequently challenged with creating models that 
balance usability and privacy standards. They could apply our findings 
to create adaptive privacy mechanisms that dynamically adjust the 
noise multiplier according to real-time assessments of data sensitivity 
and model performance. Understanding and minimizing the impact 
of noise can improve the reliability, accuracy, and effectiveness of FL 
models. To improve utility and maintaining privacy, our proposed 
model includes an adaptive clipping mechanism based on an increased 
noise addition mechanism. The adaptive clipping mechanism 
automatically adjusts the sensitivity between aggregated data as well 

model updates, resulting in an optimal balance of data privacy and 
model utility. This mechanism helps in controlling the impact of noise 
introduced to ensure privacy, improving the model’s learning 
efficiency, and protecting each data point. Initially, we train the model 
by considering 50 clients per round by considering noise multipliers 
in the range [0, 0.25, 0.5, 0.75, and 1.0].

Figures 10, 11 show that the model can tolerate noise multipliers 
up to 0.5, implying that noise multipliers of 0, 0.25, and 0.5 do not 
decrease the utility of the data. However, a noise multiplier of 0.75 
reduces accuracy, while 1.0 causes the model to completely diverge. 
The adaptive clipping mechanism allows the model to withstand noise 
up to a certain level (0.5 in this case) while maintaining utility. This 
demonstrates the effectiveness of the proposed method, which 
balances privacy and accuracy. Additional simulations are carried out 
to determine the implications of changing the client count in each 
round while keeping a constant noise multiplier of 0.25 and client 
ratio of 0.01 throughout the process. As the client count increased 
from 10 to 40, the model’s accuracy improved and the loss percentage 
decreased. However, based on the results of our previous experiments 
and with the goal of reducing data privacy risks while preserving data 
utility, we ran another simulation with a privacy budget of 1e-05 and 
a total of 120 clients per round. In spite of the increased noise 
multiplier, the outcomes show enhanced precision in comparison to 
earlier tests, suggesting that the privacy-preserving mechanisms 
successfully discover a balance between privacy and utility. Figure 12 
depicts the improved accuracy of the proposed model. Therefore, 
increasing the number of clients per round results in a more diverse 
and representative dataset, resulting in better generalization and 
model efficiency.

FIGURE 10

Accuracy analysis of DP enabled FL based on varied noise multiplier.
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FIGURE 11

Loss analysis of DP enabled FL based on varied noise multiplier.

FIGURE 12

Accuracy analysis of DP enabled FL based on increased client ratio.
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4.6 Model performance for early stopping 
mechanism

Another experiment was carried out with a configuration of 50 
clients_per round, a learning_rate of 0.01, and 100 epochs to 
investigate the impact of incorporating an early stopping mechanism 
into the proposed DPFL model, as shown in Figure 13. During the 
experiment, the proposed DPFL model’s accuracy improved as the 
number of training epochs increased by dynamically adjusting the 
noise range within a specific privacy level. By evaluating the model’s 
performance on a validation dataset during training, the early 
stopping mechanism terminate the training process when the model 
begins to overfit, thus improves the model’s generalizability. As a 
result, the integration of the early stopping mechanism with DPFL 
model achieved an accuracy of 91.2% after 80 epochs, hence it 
ensures the consistent privacy level throughout the training process, 
without sacrificing accuracy and also minimizes overall 
communication costs.

Early termination of training may have a disproportionate impact 
on specific clients, resulting in biased model updates and imbalances. 

This issue can be addressed by using the early stopping criterion 
based on client attributes or performance measures, ensuring that all 
clients contribute significantly to the training process and are 
treated equally.

5 Conclusion

In this work, we propose an enhanced Privacy-Preserving FL 
system with Differential Privacy techniques to predict COVID-19 
using Chest X-Ray images. Initially, we trained Chest X-Ray image 
data using a CNN model, evaluating Federated and non-Federated 
training methods. The results show that FL-based training enhances 
performance by 0.8% over non-FL or traditional centralized 
learning. Secondly, we introduce an enhanced FL-based system that 
includes additional differential privacy and an adaptive noise 
inclusion mechanism. This system’s adaptive clipping effectively 
identifies the model’s noise tolerance level while preserving data 
utility across different noise scales. However, the proposed DPFL 
model’s initial results show a 3% reduction in accuracy when 

FIGURE 13

Accuracy analysis of early stopping mechanism.
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predicting COVID-19 due to the masking process. The integration 
of an efficient privacy-utility trade-off and an early stopping 
mechanism to DPFL has resulted in a 1% increase in accuracy and a 
decrease in communication rounds. As a result, the proposed early 
stopping-based DPFL model outperforms existing DP-based FL 
models in terms of COVID-19 predictions. The model can be further 
enhanced by considering the popular pre-trained models for a large 
dataset and also considering other aspects such as improving the 
scalability and robustness of the FL. Additionally the incorporation 
of various to techniques for model personalization, model 
generalization, and fair client contribution evaluation will further 
strengthen the model.
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of Petroleum and Energy Studies, Dehradun, India

Introduction: Freezing of gait (FoG) is a significant issue for those with Parkinson’s 
disease (PD) since it is a primary contributor to falls and is linked to a poor 
superiority of life. The underlying apparatus is still not understood; however, it 
is postulated that it is associated with cognitive disorders, namely impairments 
in executive and visuospatial functions. During episodes of FoG, patients may 
experience the risk of falling, which significantly effects their quality of life.

Methods: This research aims to systematically evaluate the effectiveness of 
machine learning approaches in accurately predicting a FoG event before 
it occurs. The system was tested using a dataset collected from the Kaggle 
repository and comprises 3D accelerometer data collected from the lower 
backs of people who suffer from episodes of FoG, a severe indication frequently 
realized in persons with Parkinson’s disease. Data were acquired by measuring 
acceleration from 65 patients and 20 healthy senior adults while they engaged 
in simulated daily life tasks. Of the total participants, 45 exhibited indications 
of FoG. This research utilizes seven machine learning methods, namely the 
decision tree, random forest, Knearest neighbors algorithm, LightGBM, and 
CatBoost models. The Gated Recurrent Unit (GRU)-Transformers and Longterm 
Recurrent Convolutional Networks (LRCN) models were applied to predict FoG. 
The construction and model parameters were planned to enhance performance 
by mitigating computational difficulty and evaluation duration.

Results: The decision tree exhibited exceptional performance, achieving sensitivity 
rates of 91% in terms of accuracy, precision, recall, and F1- score metrics for the 
FoG, transition, and normal activity classes, respectively. It has been noted that the 
system has the capacity to anticipate FoG objectively and precisely. This system will 
be instrumental in advancing consideration in furthering the comprehension and 
handling of FoG.

KEYWORDS
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FIGURE 1

FoG sporadic walking.

1 Introduction

Parkinson’s disease (PD) is a degenerative neurological sickness 
that disturbs a large number of individuals (1). Freezing of gait (FoG) 
and the subsequent increased risk of falls are the primary disabling 
issues for a noteworthy figure of individuals with PD (2). There are 
presently few options for pharmacological therapies. Several tools and 
wearable devices that make available treatments, like rhythmical 
cueing and step-synchronized vibratory cueing, demonstrate good 
concert and results (3). Efficient treatment of FoG is now being 
investigated via examination on FoG recognition and prediction.

FoG is a sporadic walking problem characterized by sudden 
interruptions in stride or a significant decrease in forward movement 
of the feet (4). It greatly impacts quality of life and increases the 
likelihood of reductions and breakages in individuals with PD (2, 5). 
These symptoms may disrupt patients’ everyday activities, jeopardize 
their mental well-being, and lead to a weakening in their superiority 
of life. Approximately half of individuals with PD have encountered 
signs of FoG, which is the primary factor leading to falls (6–8). FoG is 
characterized as a temporary and intermittent inability or noteworthy 
reduction in the advancing motion of the feet, even when there is a 
desire to walk. In their study, Schaafsma et al. (9) categorized FoG into 
five distinct subtypes: start hesitation, turn hesitation, hesitation in 
confined spaces, hesitation toward a specific goal, and hesitation in 
wide spaces. Typically, FoG is linked to a particular sensation of “the 
feet being adhered to the ground” (10). FoG is influenced by 
surroundings, drugs, and anxiety, which might impact its frequency 
and duration (11). FoG is often considered to be a characteristic of 
akinesia, which is a severe type of bradykinesia (12). FoG is 
characterized by transient periods of immobility or the execution of 
very small steps while attempting to begin walking or change direction 
(2). The state of FoG is significantly influenced by ambient cues, 
cognitive input, medicines, and anxiety (11, 13). It is more common 

to experience it at home rather than in a clinical environment, 
particularly in scenarios when there is full darkness or when there is 
a higher cognitive load, such as dual-tasking conditions (14–17). 
Figure 1 displays FoG sporadic walking.

FoG is a very debilitating condition often seen in individuals with 
PD. The symptoms often manifest in the later stages of the illness, with 
roughly 50% of all PD patients experiencing some indications and 
around 80% being significantly impacted (10, 18–20). Episodes of FoG 
often present as a sudden and temporary inability to initiate 
movement, often occurring while starting to walk, during making 
turns, or under stressful circumstances. During bouts of FoG, 
individuals with PD experience a phenomenon where they perceive 
their feet to be firmly stuck to the ground without any apparent cause 
(9). During episodes of FoG while walking, patients exhibit variations 
in their walking pattern and experience a significant decrease in the 
length of their steps. Additionally, they often display shaking in their 
legs (19, 20). The typical frequency range for normal gait steps, as 
measured by ankle sensors, is 0.5 to 3 Hz. However, FoG occurrences 
have a higher rate variety of 6 to 8 Hz (21–23).

Recent research has begun using machine leaning and deep 
learning for the resolution of automated categorization. Deep 
learning is a branch of artificial intelligence (AI) that utilizes 
algorithms having capability of mechanically extracting 
distinguishing features from information and data, such as signals 
acquired straight from sensors without any prior processing. Deep 
learning (DL) and machine learning (ML) have facilitated the 
creation of classifiers that cover the entire process and have 
demonstrated exceptional performance in various fields, including 
image processing, computer vision, medical information analysis, 
bioinformatics, natural language processing, logical reasoning, 
robotics, and control (24–27). Therefore, DL techniques have been 
used in human activity recognition (HAR) systems utilizing data 
collected from various light sensors (28, 29).
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DL and ML methods have become more popular for detecting FoG 
in recent years, as seen by the employment of these techniques in several 
studies (30–34).The following are the most significant and noteworthy. 
Kim et al. (30) and Pepa et al. (32) introduced a novel sensing tool, 
namely a smartphone positioned in the pant pocket, as a more 
convenient method for monitoring patients with PD and detecting 
FoG. The researchers used a technique that relied on convolutional 
neural networks (CNN) to automatically extract distinctive 
characteristics from sensors integrated into an Android smartphone. 
The performance of the CNN classifier was compared to that of the 
random forest (RF) classifier, and the CNN classifier exhibited a 
sensitivity that was 20% greater than that of the RF classifier.

Approximately 7 to 10 million individuals worldwide are affected 
by PD, with a significant portion experiencing FoG. During an episode 
of FoG, a patient experiences a phenomenon where their feet get 
immobilized, making it impossible for them to go forward despite 
their efforts. FoG significantly impairs health-related quality of life, 
leading to depression, heightened fall risk, greater reliance on 
wheelchairs, and limited autonomy.

This study used a standardized dataset obtained from 65 participants, 
using a 3D accelerometer. The dataset has been categorized into four 
classes: Normal, Turn, Walking, and StartHesitation. Preprocessing 
methods were suggested to cleanse the dataset and address the issue of 
imbalanced classes. The output from the preprocessing approach was 
analyzed using several ML, deep learning and transformers modes to 
determine if the patients are experiencing FoG or are in a normal state. 
The primary contribution of this work is as follows:

	 1	 The initial system employed for the classification of FoG used 
a new dataset.

	 2	 In our research, we  have categorized the dataset into four 
distinct classes namely Normal, Turn, Walking, and 
StartHesitation because the dataset did not have labels.

	 3	 Employed various of ML, deep learning, and transformer 
approaches to predict the occurrence of FoG in patients with 
PD, the system achieved 91% with respect to accuracy.

2 Background of the study

FoG is an indication often seen in people with PD. However, 
the fundamental mechanisms of FoG are not well understood. 
Patients with PD often report this symptom as a sensation of their 
feet being firmly adhered to the ground (34–37). Handojoseno 
et al. (38) utilized the wavelet factors of electroencephalogram 
(EEG) data as the input for the multilayer perceptron neural 
network and KNN technique. This method achieved a sensitivity 
of 87% and an accuracy of 73% in predicting the transition from 
walking to FoG. Delval et al. (39) used a multi-camera setup to 
capture the gait kinematics gestures of patients. Deep pointers 
were affixed to the patients’ bodies and recorded from various 
angles. Okuno et al. (40) utilized a plantar pressure measurement 
system of 1.92 m × 0.88 m for recording the walking patterns of 
patients by monitoring the weight exerted on their soles. While 
the sensors may all be used for FoG detection, the predominant 
method for FoG detection in community environments relies on 
inertial sensors.

Moore et al. (21) developed a portable monitoring apparatus and 
algorithm that used the occurrence features of vertical leg movement. 
This movement was measured using an accelerometer put on the left 
shank of 11 individuals with PD. The contributors’ ages ranged from 
45 to 72 years. The contributors were trained to go through a series of 
interior passages, including a tight entryway, and three obstacles. This 
research took into account the specific effects of the levodopa/
carbidopa drug combination throughout both the “on” and “off ” 
periods. The researchers used a threshold-based method to identify 
FoG, achieving a FoG detection rate of 78% and an accuracy rate of 
89%. Delval et al. (39) conducted research in which they induced FoG 
in patients and used a series of measurable indicators to identify the 
presence of FoG. They used a 3D motion-analysis device to capture 
video footage of 10 sick and 10 healthy people while they were on a 
treadmill. Indicators were affixed to the heels, toes, ankles, shoulders, 
and on the T10 vertebra. Obstacles were encountered due to special 
situations, causing the patients to be  in an inactive state. The 
identification of FoG in that particular investigation relied on a 
combination of threshold and frequency investigation. Bachlin et al. 
(41) devised a FoG recognition architecture using three accelerometers 
and implementing Moore’s threshold-based algorithm (21). Upon 
detecting an episode of FoG, the device used a metronome to offer 
stimulation to the patient, aiding them in regaining their focus and 
stability. The system support resulted in improved gait for six out of 
eight individuals who had FoG. Azevedo et al. (41) Developed a FoG 
detector that included gait pattern analysis by using a solitary inertial 
sensor positioned on the lower extremity. Based on its findings, it 
determines that relying just on frequency-based analysis is insufficient 
for accurately identifying the occurrence of FoG. It is essential to not 
only detect but also forecast when a FoG event will take place. The 
authors used rhythm and tread data into their methodology to 
enhance the categorization process. In order to assess the walking 
patterns of individuals with PD, Jovicic et  al. (42) developed a 
technique that utilizes inertial sensors placed on both lower legs to 
categorize different gait patterns. The system also distinguished 
between regular and pathological gait by utilizing an expert rule-based 
approach, based on data collected from 12 PD patients who walked 
over a convoluted course. A rule-based categorization approach was 
used for the identification and categorization of FoG. Pham et al. (43) 
introduced a FoG detection method that is not reliant on specific 
individuals. The uniqueness of this idea is in its ability to operate 
autonomously from the topic matter. An additional instance of a FoG 
recognition system that uses wearable accelerometers and video 
capture to categorize the occurrence is shown in the research 
conducted by Zach et al. (44). Their finding suggests that FoG may 
be detected with just one accelerometer placed in the lumbar area.

Pepa et  al. (32) used soft computing approaches for FOG 
identification. A fuzzy method was created to integrate information 
pertaining to freeze index, energy, cadency fluctuation, and the 
derivative energy ratio. A building was constructed that relied on 
a smartphone as its foundation. Their findings demonstrated that, 
on average, the system exhibited a specificity of 92.33% and recall 
of 83.33% in classifying FoG events. Cole et al. (36) presented a 
method using dynamic neural networks (DNN) to accurately 
identify FoG. They gathered information from three accelerometers 
and an electromyographic shallow worn by patients and achieved 
favorable consequences in terms of detection. A noteworthy 
involvement of this study is the creation of a database documenting 
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unscripted and unimpeded everyday activities of PD patients, 
including instances of FoG. Ahlrichs et al. (22) introduced a FoG 
detector that utilizes a single accelerometer worn at the waist and 
a recognizer based on SVM. They documented the performance of 
20 people with PD engaging in pre-planned everyday tasks. 
Patients were required to be  documented both when taking 
medicine and while not taking medication. Their findings 
demonstrated a precision rate of 98.7%.

Rodrıguez-Martın et al. (45) developed a ML method designed 
to identify episodes of FoG. Their preference for FoG detection was 
SVM. Their technique relies on a solitary 3D accelerometer 
positioned at the waist to identify FoG in real-world scenarios. A 
total of 21 individuals diagnosed with PD contributed in the 
research work. The patients were asked to execute two sets of 
pre-determined exercises during both their “off ” and “on” times. 
These activities were associated with everyday existence. According 
to their research, the medicine had an impact on the patients’ 
motor reaction. Deep learning methods have been popular for 
detecting FoG in recent years, as seen by their frequent application 
in research (30, 34, 46–48). Kim et al. (30) used a novel sensing 
device, namely a smartphone positioned in the trouser pocket, to 
discover a more pragmatic approach for monitoring patients with 
PD and identifying FoG. The researchers used a technique that 
relied on CNN to automatically extract distinctive characteristics 
from sensors integrated into an Android smartphone. The 
performance of the CNN method was compared to that of the RF 
technique, and the CNN exhibited a sensitivity that was 20% better 
that of the RF classifier. Xia et al. (49) suggested a FoG detection 
method based on CNN to accomplish automated feature learning 
and classification for FoG. Bachlin et  al. (41) conducted 
experiments that relied on the patient’s input and studies that did 
not need the patient’s involvement. The most favorable outcomes 
were documented in the patient-dependent experiments. Same 
researchers used DL to predict FoG and PD (50–53).

3 Materials and methods

The proposed system aims to identify FoG, a distressing symptom 
that affects many individuals with PD. The proposed solution is built 

upon a machine learning models that have been trained using data 
obtained from a wearable 3D sensor device positioned on the lower 
end. Figure 2 displays the framework of the FoG system based on a 
machine learning approach.

3.1 Dataset

The dataset was obtained from the Kaggle repository and 
consists of 3D accelerometer data from the lower back of 
individuals experiencing bouts of FoG, a debilitating condition 
often seen in individuals with PD. FoG has a detrimental effect 
on the ability to walk, hindering movement and independence. 
The goal is to identify the initiation and termination of each 
freezing episode, as well as the presence of three specific kinds of 
FoG events: start hesitation, turning, and walking. The data series 
consists of three unique datasets, each obtained under separate 
circumstances: (1) The tDCS FoG (tdcsfog) dataset consists of 
data series obtained in a laboratory setting, where individuals 
underwent a FoG-provoking procedure; (2) The DeFOG dataset 
consists of data series that were obtained in the subject’s home as 
they conducted a FoG-provoking regimen; and (3) The daily 
living dataset consists of 1 week of uninterrupted 24/7 recordings 
from 65 people. Out of the total number of participants, 45 
display symptoms of FoG and also have series in the DeFOG 
dataset. In contrast, the other 20 patients do not show any 
symptoms of FoG and do not have series in any other part of the 
data. Table 1 displays meta data, whereas the training dataset is 
presented in Table 2.

3.2 Preprocessing approach

Data features engineering require the creation of new features 
or the transformation of existing features to enhance the effectiveness 
of a machine-learning model. Data preprocessing entails the 
extraction of pertinent information from unprocessed data and 
converting it into a format that is readily comprehensible by a 
model. The objective is to enhance the precision of the model by 
providing more significant and relevant data. The missing values in 

FIGURE 2

Framework of the system to predict FoG.
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the dataset were removed from all features. We  have combined 
DeFOG features, namely Time, AccV, AccML, and AccA, with the 
DeFOG-metadata for Subject, Visit, and Medication Condition. 
Figure 3 shows the preprocessing steps for the classification of FoG 
of PD patients.

3.2.1 Normalization
Normalization is an essential preprocessing step for any machine-

learning task. The process can be executed by either scaling or altering 
the initial data in order to equalize the influences of various 
characteristics in the data examples. In the present research work, 
we  have standardized the input data to generate a representation 
among one and zero.

	
x x x

x xnormalize =
−
−

min

max min 	
(1)

Where the x is training data, and xmin  is maximum value [1] and 
xmin is minimum value [0].

3.2.2 Handling imbalance classes
Unbalanced data raises to a condition where the representation of 

observations and samples among dissimilar classes is unequal, with 
one class dominating the dataset and the other classes having 
insufficient representation.

The synthetic minority oversampling strategy (SMOTE) is a 
resampling strategy used to address extremely imbalanced datasets by 
creating synthetic samples in the minority class, hence increasing its 
representation. SMOTE is effective in increasing the figure of minority 
class examples and achieving class balance. To mitigate the problem of 
overfitting, the synthetic production of fresh samples deviated from the 
increase procedure.

The primary concept behindhand SMOTE technique is to 
create additional data samples in the minority class using 
interpolation between neighboring examples within this class 
(54). SMOTE enhances the amount of instances belonging to the 
minority class in an unbalanced dataset, thus improving the 
classifier’s ability to generalize well. Figure 4 shows the SMOTE 
method in practice.

TABLE 1  Metadata of dcsfog and tdcsfog.

Features name Description Types of dataset

Visit Int64

Medication Int64

Time A numerical value representing a discrete unit of time. The tdcsfog dataset records series at a frequency of 

128 Hz, meaning there are 128 timesteps per second. On the other hand, the defog and daily series are recorded 

at a frequency of 100 Hz, resulting in 100 timesteps per second.

AccV, AccML, AccAP The lower-back sensor measures acceleration along three axes: vertical (V), mediolateral (ML), and 

anteroposterior (AP). The data is expressed in units.

Float64

Event Class Object

TABLE 2  features of dataset.

Features name Description

Visit Lab visits include an initial evaluation, two subsequent evaluations for distinct therapy phases, and a final evaluation for follow-up 

purposes.

Test Test used

Medication Subjects may have been either receiving or not receiving anti-parkinsonian medication throughout the recording.

FIGURE 3

Preprocessing steps.
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The dataset Dnew represents the ADHD dataset. Di consists of 
samples from the minority group, whereas D j  is a k-nearest 
neighbor of Di. Let δ represent a uniformly distributed random 
number between 0 and 1. We used the SMOTE technique to enhance 
the categorizing process.

Figure  5 and Table  3 show the dataset before and after class 
distribution of the dataset using the SMOTE approach in the training 
dataset. The startHesitation class has less values (352); therefore, 
we have applied the SMOTE approach for handing this imbalance 
class to enhance the machine algorithms.

3.3 Algorithms

3.3.1 K-nearest neighbors
The KNN technique is a straightforward nonparametric 

approach that\ is often utilized for the purposes of regression and 
classification tasks. The KNN algorithm is a kind of instance-
based learner, commonly referred to as idle learning. It does not 
build a categorization model-based approach till it is given 
samples to classify. The fundamental premise of KNN in 
categorization is to compare individual test samples with k nearby 
training samples in the variable space. The category of the test 
sample is determined based on the classification of its nearest k 
neighbors. Neighbors are often determined by calculating the 

FIGURE 4

Working of SMOTE method.

FIGURE 5

Results of SMOTE approach (A) before SMOTE (B) After SMOTE.

57

https://doi.org/10.3389/fmed.2024.1418684
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Al-Nefaie et al.� 10.3389/fmed.2024.1418684

Frontiers in Medicine 07 frontiersin.org

Euclidean distance between the data point being analyzed and its 
k nearest neighbors. The k parameter, denoting the quantity of 
nearest neighbors’ number, is often kept minimal to avoid the 
inclusion of excessive data points that may distort the underlying 
characteristics of the data point under consideration. It is 
important to choose acceptable values for k in order to avoid 
overfitting and model instability, since large values of k might 
contribute to both issues. KNN utilizes the Euclidean distance 
metric. The underlying assumption is that each element in the 
dataset may be shown as a point in a space with N dimensions. 
KNN utilizes a parameter k to denote the number of examples to 
be considered, based on which the majority class is selected to 
categorize the new instance.

	
E x x xi = −( ) + −( )1 2 3 4

2x
	 (3)

where x1, x2, x3, and x14 calculate of the Euclidean distance in a 
two-dimensional space.

3.3.2 Decision tree
A decision tree (DT) is a well-recognized nonparametric supervised 

learning technique. DT is one of the ML algorithms that can be applied 
for both regression and classification tasks. DT classifies the instances 
by traversing down the tree from the root to certain leaf nodes. Instances 
are categorized by evaluating the attribute specified by the node, 
beginning at the root node of the tree, and thereafter down the tree 
branch associated with the attribute value. The most often used criteria 
for splitting are “gini” for measuring Gini impurity and “entropy” for 
quantifying information gain, which may be mathematically represented.

	
Entropy S p p

i

C
i i= ( ) =

=
∑

1

2log

	
(4)
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entropy S

j

j
i

i
i|

| |
| |

( ) = ( )
=
∑

1 	
(5)

	 Gain | |S B entropy S entropy S B( ) = ( ) − ( )	 (6)

The training dataset is indicated as S, while the freezing of gait 
dataset is represented by the class c, which encompasses both attack 
and normal data. The likelihood of seeing data that belongs to class Si 
is represented as Pi. This probability is specifically related to the 
subsets of class Si in the characteristics B.

3.3.3 Random Forest
A random forest (RF) classifier is a well-recognized collaborative 

classification technique used in machine learning and data science across 
several application domains. This approach employs “parallel ensembling,” 
whereby several DT classifiers are concurrently trained on distinct 
sub-samples of the dataset. The ultimate result is decided via mainstream 
vote or averaging of the outcomes. Therefore, it reduces the issue of over-
fitting and enhances both the accuracy of predictions and control. Hence, 
the RF learning model, which utilizes many decision trees, often exhibits 
higher accuracy compared to a model based on a single decision tree. In 
order to construct a sequence of decision trees with regulated diversity, 
the method associates bootstrap combination (bagging) with arbitrary 
attributes selection. It is versatile for both classification and regression 
issues and is suitable for both categorical and continuous variables. Table 4 
shows parameters of RF model.

3.3.4 LightGBM approach
LightGBM approach is a gradient boosting context that employs 

tree-based learning techniques. It is specifically engineered to 
be widely spread and highly effective, offering the following benefits: 
Enhanced training velocity and increased efficacy; Reduced memory 
consumption LightGBM provides support for parallel and GPU 
learning; Proficient at managing enormous volumes of data 
LightGBM is a rapid, circulated, and efficient gradient-boosting 
system that relies on decision tree methods. It is extensively used in 
a range of machine-learning tasks, including regression, ranking, and 
categorization (55). It is a furthering method that utilizes numerous 
weak machine-learning methods to create a powerful learning model. 
Boosting methods amplify the weights of incorrectly classified data 
while reducing the weightiness of successfully categorized data. 
Table 5 shows LightGBM parameter.

3.4 Gated recurrent unit–transformers

3.4.1 Gated recurrent unit
The GRU is a fundamental architecture of recurrent neural 

networks (RNNs) that has resemblance to Long Short-Term 
Memory (LSTM) models. GRU is specifically developed to represent 

TABLE 3  Results of SMOTE approach.

Before the SMOTE

Classes Values

Normal 105,176

Turn 104,785

Walking 68,999

StartHesitation 352

After the SMOTE

Normal 105,176

Turn 105,176

Walking 105,176

StartHesitation 104,785

TABLE 4  RF parameters.

Parameters name Values

Estimators 500

Criterion gini

Min_samples_leaf 1

Max_depth 10

Max_features auto

Random_state 42
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sequential data by enabling the selective retention or loss of 
information over time. Nevertheless, GRU possesses a more 
streamlined structure compared to LSTM, with a reduced number 
of parameters. This characteristic facilitates training and enhances 
computing efficiency.

The GRU is designed to handle sequential data by iteratively 
updating its hidden state in response to both the current input and the 
prior hidden state. During each iteration, the GRU calculates a 
“candidate activation vector” that integrates data from the input and 
the preceding hidden state. Subsequently, the candidate vector is 
employed to modify the concealed state for the subsequent time step. 
Two gates, namely the reset gate and the update gate, are used to 
calculate the candidate activation vector. The reset gate is responsible 
for determining the extent to which the previous hidden state is 
disregarded, whereas the update gate is responsible for determining 
the extent to which the candidate activation vector is integrated into 
the future hidden state.

	 µ σ µ µ µt t tV x W o b= + +( )−1 	 (7)

	 r V x W o bt r t r t= + +( )−σ µ1 	 (8)

	
i V x W r o bt o t o t t= + ( ) +−tanh ( ) 1 0 	 (9)

	 ( )1( 1σ µ µ−= − t t t t to o i
	 (10)

Input is it, output is ot, update gate output is ∝t , reset gate output 
is rt , and Hadamard product is ⊙. Weight matrices V, W, and b are 
parameters. The GRU encoder and Transformer path embeds input 
sequences using a recurrent GRU layer. Thirty-two GRU units 
encoded 200-dimensional vectors each timestep. Using multi-head 
self-attention with two heads, GRU embeddings may attend to each 
other based on learnt connections. Residual connections and layer 
normalization stabilize training. Flattening attention outputs to 1D 
vectors. Structure of GRU mode is presented in Figure 6.

3.4.2 Transformers
The self-attention mechanism-based sequence-to-sequence model 

Transformer is extensively used in natural language processing methods 
including machine translation, text summarization, language synthesis. 
Significant outcomes are achieved quickly. Transformers has a different 
architecture than RNN. The Transformer branch in the proposed 
GRU-Transformer model assumes a crucial function in capturing complex 
interdependencies and multidimensional characteristics present in the 
input sequence. The aforementioned objective is accomplished by utilizing 
the self-attention and multi-head attention processes of the Transformer, 
as seen in Figure 3. Its attention-based encoder-decoder structure enables 
the Transformer to effectively handle sequence-to-sequence tasks.

	 Q XWQ= 	 (11)

	 K XWK= 	 (12)

	 V XWV= 	 (13)

	
A Softmax QK

d

T

k
=










	

(14)

	 Y AV= 	 (15)

FIGURE 6

GRU structure.

TABLE 5  LightGBM parameters.

Parameters name Values

Estimators 500

Learning_rate 0.01

Max_depth 10

Random_state 42
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Where, X be  the input and (K, Q, 𝑉) is query matrix, key 
matrix, value matrix, learnable weight matrix is A, attention 
matrix is Y , output matrix is dk , and attention header dimension, 
the scaling factor, reduces overly large or minuscule attention 
weights. To determine key value weight, softmax is used as a 
normalizer. The attention mechanism calculates the association 
between each input sequence item and the others to capture 
global dependencies.

The unit recurrent layer is 200 unit that stores sequence data 
and may capture dependencies. The parameter “return_sequences” 
sends the sequence of outputs for each time step to the next layer 
instead of just the final output. This Transformer component lets 
the model focus on different input sequence segments during 
prediction. Two 200-key dimension attention heads are used in 
the suggested method. This implementation helps the layer 
capture data relationships and connections. Attention boosts and 
accelerates learning. The residual link, or skip connection, solves 
the fading gradient problem by offering an alternate gradient 
movement path. Each time step of the sequence receives an 
individual 120-unit dense layer to extract unique characteristics. 
This strategy stochastically assigns input units to 0 during training 
after the TimeDistributed layer at 0.2 to reduce overfitting.

The output of the previous layers is turned into a unified vector to 
link with the final Dense layer for classification. The neural network 
generates probabilities for each of the four classes using a Dense layer 
with softmax activation. Figure  7 shows the structure of 
GRU-transformers. Parameters of GRU-transformers is presented in 
Table 6.

3.5 Long-term recurrent convolutional 
networks

LRCN neural networks combine the strengths of the CNN and 
RNN to handle sequential input with spatial and temporal 
dependency. The model’s early layers use Convolutional Neural 
Networks (CNNs) to extract spatial properties from input data. These 
collected characteristics feed Recurrent Neural Networks (RNNs) to 
capture temporal relationships and long-term correlations. LRCN may 

acquire spatial and temporal complex data representations by 
integrating CNN and LSTM components. This neural network design 
handles sequential data well. LRCN is an RNN developed to evaluate 
its performance on sequence input data.

	
C =∑∑

1 1

i j

ij ijI F
	

(16)
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Where, F represents a convolution kernel or filter, while i and j 
represent rows and columns of dataset. A unique two-dimensional 
output is obtained by convolving the input dataset.

With the kernel. BiLrepresents the bias matrix, whereas Fi jL,  
represents the filter connecting the jth feature map in the layer.

	 f W X W h W Ct ef t ef t cf t= + +− −σ ( 1 1 U f +) 	 (18)

	 i W X W h W C Ut xi t hi t ci t i= + + +− −σ ( 1 1 )	 (19)

	 C f c i W X W h Ut t t t xc t hc t= + + +− −σ ( tanh(1 1 )	 (20)

FIGURE 7

GRU-transformers.

TABLE 6  paramters of GRU-transformers.

Parameters Values

GRU 32 units

Multi-Head Attention 2 heads

Add 2 heads

Layer Norm --

Flatten ---

Dropout 0.5

Dense 1,024
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FIGURE 8

Structure of LRCN model.

	 o W X W h W C Ut xo t ho t co t o= + + +( )− −σ 1 1 ,	 (21)

	 h O Ct t t= × tanh( )	 (22)

Sequential forward and reverse methods apply the equations 
above. They represent the LSTM model equations. A gated cell in the 
LSTM network evaluates input data and retains it based on relevance 
or weight. The input gate, forget gate, and output gate make up the 
LSTM model. The forget gate ft  decides whether states to keep or 
discard. The input gate it modifies the value based on signals. The 
output gate ot transmits cell status to neighboring neurons. The design 
has a logistic layer and a layer that generates a new vector to mix with 
the state. In a recurrent neural network (RNN), the hidden layer 
processes Xt using the weight matrix W to produce yt. The LSTM 
model uses a memory cell called ht, which is governed by three gates. 
The structure of LRCN is presented in Figure 8.

3.6 Evaluation metrics

Prior to further exploring our study, it is essential to elucidate the 
significance and computation techniques of several assessment 
measures. In this study, we have selected four primary assessment 
metrics: accuracy, precision, recall, f1-score, and rate of change (ROC).

	
Accuracy TP TN

TP FP FN TN
=

+
+ + +

×100%
	

(23)

	
Recall TP

TP FN
=

+
×100%

	
(24)

	
Precision TP

TP FP
=

+
×100%

	
(25)

	
Fscore

Sensitivity

Sensitivity
=

∗ ∗
+

×
2

100
preision
preision

%
	

(26)

Algorithms of ML algorithms.
Let D be the dataset containing sensor data from FoG Parkinson’s 

disease patients, where D = {(Xi, Yi)} N
i = 1 where Xi represents the 

features and Yi represents the corresponding FoG labels.
D is collected from wearable devices.
Data preprocessing.
clean the data ′ = ( )D clean D .
Normalize the data ′′ ′= ( )D normalize D
Resample the data ′′′ ′′= ( )D resample D
Feature extraction
Extract features: X = {Xi} Ni = 1

Model training
4.1 Select machine learning algorithms: ML_Algorithms = {DT,RF, 
KNN, LightGMBet, CatBoost}
4.2 Split the data into training and 
testing sets: D D Split Dtrain test, %= ( )′′′,70

4.3 Train the models: Model train ML Dj algorithm j train= ( ), ;

j = 1,2,3, … num_algorithms
Model evaluation
evaluate models j: Metrics j = evaluate  
(Model D j num algorithmsj test, ), , , , _= …1 2 3

FoG Detection:
Predict FoG instances: Ῠ = predict (model Xbest , )

FoG_Events = detect (Ῠ)

4 Experimental

This section presents the classification results and discoveries derived 
from a sequence of experiments carried out for predicting PD FoG by 
applying machine-learning algorithms. The main aim of these 
experiments was to evaluate the efficacy of several classification models 
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in accurately distinguishing various types of classes associated with gait 
behavior, specifically Normal, Turn, StartHesitation, and Walking. The 
evaluation primarily examined evaluation parameters such as accuracy, 
precision, recall, and f1-score for each class, offering valuable insights 
into the capabilities as well as limitations of the applied models. This part 
included simulation setup, split dataset, and machine-leaning results.

4.1 Simulation setup

This module encompasses the specific steps and procedures 
involved in carrying out our suggested approaches. The instruments 
used in this document are enumerated in Table 7.

4.2 Split dataset

The dataset was divided into a 70% training dataset and a 30% 
testing dataset.

4.3 Results

4.3.1 Random forest testing results
Table 8 provides the testing results of the RF model for PD 

FoG. It had strong performance in accurately differentiating the 
“Turn class,” with a precision of 0.98, recall of 0.99, f1-score of 
0.96, and a total accuracy of 90%. Though, there were 
complications in precisely detecting occurrences of the Turn class, 
as the recall rate was significantly lower despite a high 
precision score.

Figure 9 displays the confusion matrix of the RF model used for 
the classification of FoG of PD disease patients. The misclassification 
rate of the RF model in diagnosing FoG is less. The RF model 
exhibited a true negative rate of 25,586 for the classification of 
FoG. The number of true positive instances classified are 25,586 as 
Normal, 99 as Turn, 27,078 as startHesitation, and 18,999 
as Walking.

TABLE 7  Environmental requirements of the presented model.

Hardware Software

RAM size 16 GB

Intel(R) Core(TM) i7

CPU GHz

Python

Panda

TensorFlow library

Keras library

Matplotlib

NumPy library

TABLE 8  Testing results of the RF model.

Model Class Precision % Recall % F1-score % Accuracy %

RF Normal 87 85 90 90

startHesitation 98 99 96

Turn 90 91 89

Walking 94 96 93

Weighted 90 90 90

FIGURE 9

Confusion matrix of RF.
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4.3.2 Decision tree testing results
The experimental results while using the DT model demonstrated 

exceptional and excellent performance, notably in accurately 
categorizing the instances labeled as Turn. The model demonstrated 
exceptional precision (97%), recall (99%), F1-score (94%), and an 
overall accuracy of 91% for classes that existed in the clinical 
experimental dataset used. Although the model demonstrated strong 
accuracy and recall overall, it encountered difficulties in accurately 
detecting instances of the Turn class. This is evident from the poorer 
precision and recall scores specifically associated with this class. 
Table 9 summarizes the classification results based on the DT model.

The confusion matrix in Figure 10 displays the performance of the 
decision tree approach. The decision tree algorithm achieved a high 
accuracy of 91% throughout an evaluation stage. The program accurately 
classified 20,431 instances as normal. The misclassification of the class 
startHesitation is 2,868 instances more than that of the other classes, 
while the misclassification of the class Turn is only 1 instance.

4.4 K-nearest neighbor’s classification results

The KNN model had excellent performance in accurately 
identifying instances belonging to the Walking class, achieving 
high precision (73%), recall (82%), f1-score (66%), and  
a total accuracy of 63%. Nevertheless, there were notable 
limitations in effectively classifying the Turn class samples,  
with both precision and recall scores being  
significantly noted in testing classification reports. Table  10 
demonstrates the classification results based on the KNN model 
(Table 10).

The confusion matrix for the KNN model is displayed in 
Figure 11. The number of instances correctly predicted as “Normal” 
is 18,642, whereas there are no instances incorrectly predicted as 
“Turn.” However, the false positive rate is significantly high. The rate 
of false positives for the “startHesitation” class is particularly high, 
with a value of 10,554.

TABLE 9  Testing results of the DT model.

Model Class Precision % Recall % F1-score % Accuracy %

RF Normal 89 89 89 91

startHesitation 97 99 94

Turn 90 90 90

Walking 96 97 95

Weighted 91 91 91

FIGURE 10

Confusion matrix of decision tree.
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4.5 Classification results using the 
LightGBM model

This subsection presents the findings in detail of the classification 
results of the LightGBM model, which exhibited significant precision 
(84%), recall (91%), f1-score (78%), and overall accuracy (80%) in 
accurately categorizing the “Walking” cases. We faced complications 
in accurately identifying instances of the “Normal” category, leading 
to lower precision and recall scores. Table  11 displays the testing 
results of the LightGBM model.

Figure  12 displays the confusion matrix of the LightGBM 
model. It is worth noting that the misclassification (FP) rate for 
the “startHesitation” class is significantly high, with a total of 
2,868 instances. The occurrence of false positives in the “Turn” 
class is extremely low, less than 1. The number of instances 
correctly classed as “Normal” and identified as negative is  
20,431.

4.6 CatBoost model classification results

This section presents the results of the CatBoost model. The 
CatBoost algorithm exhibited remarkable precision (80%), recall 
(92%), f1-score (86%), and overall accuracy (82%) for the “Walking” 
class. Nevertheless, there were limitations in accurately categorizing 
cases that fell within the “startHesitation” class, leading to relatively 
low precision and recall ratings. Table 12 presents the testing and 
classification outcomes of the CatBoost model. The confusion matrix 
of CatBoost is presented Figure 13.

4.7 Results of GRU-transformers and 
LRCNN models

In this section GRU mode was combined with transformers model 
for classification FoG, we have used 200 hidden units for GRU model. 

TABLE 10  Testing results of the KNN model.

Model Class Precision % Recall % F1-score % Accuracy %

RF Normal 58 53 64 63

startHesitation 63 1.00 47

Turn 61 61 61

Walking 73 82 66

Weighted 63 63 63

FIGURE 11

Confusion matrix of KNN.
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FIGURE 12

Confusion matrix of LightGBM.

Table  13 shows the parameters of GRU-transformers and LRCNN 
models. It is noted that the accuracy of GRU-transformers and LRCN 
were achieved. It is investigated that the GRU-transformers and LRCN 
were better models for classification FoG.

The accuracy performance of the GRU-transformers is depicted 
in Figure  14. The GRU-transformers validation accuracy initially 
stood at 82% and then improved to 86% after 70 Epochs. The accuracy 
loss started from 0.43 and reached 0.32.

The performance and loss accuracy in the validation stages was 
calculated using the binary_crossentropy approach. The validation 
accuracy of the LRCN model is depicted in Figure 15. During the 
validation phase, the LRCN model exhibited started at 38% and 
reached to 86%. The accuracy loss is a decrease in accuracy loss from 
0.42 to 0.35.

5 Results discussion

FoG is a motor disturbance categorized by an abrupt and 
fleeting inability to start or maintain walking, which poses 
difficulties for patients with PD. The timely identification and 

predicting of FoG episodes are essential for efficient therapies and 
enhanced quality of life. The objective of this research was to 
evaluate the possibility of applying different machine-learning 
algorithms and GRU-transformers and LRCN models to predict 
FoG for a preventive strategy to mitigate the occurrence. In order 
to achieve this objective, random forest, k-nearest neighbor, 
LightGBM, and GRU-transformers and LRCN models algorithms 
were applied for detecting FoG.

The difficulties in classifying minority classes, specifically 
“startHesitation,” highlight the influence of imbalanced datasets on 
the effectiveness of models. Addressing these problems is essential 
in the context of FoG prediction to enable early detection of gait 
irregularities, facilitate prompt interventions, and enhance 
outcomes for individuals with PD. Therefore, we have applied an 
oversampling method for handling the imbalanced classes at the 
training phase. Figure 16 the relationship among features of the 
training dataset.

According to the experimental results obtained from using 
various machine-learning models, the decision tree model had a 
strong overall accuracy of 91% and an impressive f1-score of 0.96, 
particularly excelling in accurately categorizing “Normal” gait. 

TABLE 11  Testing results of the LightGBM model.

Model Class Precision % Recall % F1-score % Accuracy %

LightGBM Normal 75 68 84 80

startHesitation 77 99 63

Turn 83 86 80

Walking 84 91 78

Weighted 81 80 80
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Nevertheless, the difficulties in precisely recognizing occurrences of 
“Turn” highlight the necessity of adjusting and optimizing the 
detection process to achieve a balance between accuracy and 
comprehensiveness. This is crucial for reliably identifying tiny 
irregularities in walking patterns that indicate FoG. The decision tree 
model demonstrated a notable weighted accuracy of 91% for all 
classes. The random forest approach scored a high accuracy (90%). 

The KNN algorithm demonstrated a commendable level of accuracy 
(63%) and precision (63%). However, it is noted that the KNN 
achieved less accuracy compared with different existing ML 
approaches. Comprehending the influence of distance metrics and 
the quantity of neighbors is essential for enhancing its capacity to 
detect tiny variations linked to FoG. The LightGBM model showed 
potential, specifically in accuracy, attaining an accuracy of 80% and 

TABLE 12  Testing results of the CatBoost model.

Model Class Precision % Recall % F1-score % Accuracy %

CatBoost Normal 85 71 77 82

startHesitation 27 1.00 42

Turn 81 86 84

Walking 80 92 86

Weighted 82 82 82

FIGURE 13

Confusion matrix of CatBoost.

TABLE 13  Weight Avg. results of GRU-transformers and LRCNN model.

Models Accuracy % Precision% Recall % f1-score %

GRU-transformers 86 84 86 83

LRCNN 86 85 86 84
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an f1-score of 0.80. The CatBoost model demonstrated a strong 
precision of 0.82 and recall of 0.82, resulting in an accuracy of 82% 
and an f1-score of 82.

The ROC curve is a visual depiction that displays the performance 
of a classification algorithm at different levels of categorization. The 
graph depicts the relationship between two variables. The receiver 
operating characteristic (ROC) is computed using the following formula:

	
TRP TP

TP FN
=

+ 	
(24)

	
FPR FP

FP TN
=

+ 	
(25)

Where TRP is the true positive rate and FPR is the false 
positive rate.

Figure 17 displays the ROC curve for both the DT and RF models. 
The DT model achieved a high ROC score of 99% for the 
“startHesitation” class and an ROC score of 98 for the “Walking” class. 
The receiver operating characteristic (ROC) analysis of the RF model 
yielded a high precision of 100% for the “startHesitation” class and an 
ROC value of 98% for the “Turn” class.

The LightGBM, and CatBoost algorithms scored less in accuracy. 
However, the ROC of the models are good, and the LightGBM, and 
CatBoost models scored ROC 100% in the “startHesitation” class. 
Figure 18 displays the ROC of LightGBM, and CatBoost models.

Figures  19, 20 diplays ROC of GRU-transformers and LRCN 
models for predicting FoG. It is noted both models have achieved 

FIGURE 14

(A,B) Performance GRU-transformers.

FIGURE 15

(A,B) Performance LRCN model.
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similar performance, and GRU-transformers and LRCN were scored 
high percentage ROC = 91 with class “Walking”.

Table  14 presents a comparison of the suggested algorithms, 
highlighting that the decision tree technique achieved a high accuracy 
rate of 91%.

6 Conclusion

FoG is a locomotive impairment observed in individuals with 
advanced PD, which has been linked to an elevated likelihood of 
falling and a worse overall quality of life. Freezing incidents can 

FIGURE 16

Correlation between features of the training dataset.

FIGURE 17

ROC of proposed system, (A) RF (B) decision tree.
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be alleviated or averted through external intervention, such as the 
utilization of pictorial or auditory signals, which are triggered by 
FoG detection and prediction systems. The fundamental aim of this 
research work was predicting FoG using a standard dataset. This 
research concerted on the detection and prediction of FoG by 
analyzing 3D accelerometer data collected from the lower back of 
persons with PD, who frequently experience this terrible symptom. 
The dataset was obtained from a cohort of 65 participants. The 
dataset consists of four distinct classes: Normal, Turn, 
startHesitation, and Walking. Preprocessing techniques, such as 
cleaning the dataset and addressing imbalanced classes, were 

implemented to enhance the performance of the ML methods. 
Various machine-learning algorithms, including decision tree, 
random forest, k-nearest neighbors, LightGBM, GRU-transformers 
and LRCN models, were employed for FoG detection and 
prediction. Of these, the decision tree algorithm exhibited a distinct 
advantage when working with datasets collected from sensors, 
achieving a high accuracy rate of 91%. This is the initial model 
employed for detecting FoG using this dataset. Furthermore, the 
main aim of this study also was to identify effective ML and DL 
algorithms that has capability of detecting and predicting FoG using 
a wearable system in real-time data.

FIGURE 18

ROC of proposed system, (A) LightGBM (B) CatBoost.

FIGURE 19

ROC of GRU-transformers.
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Introduction: Cardiovascular disease (CVD) stands as a pervasive catalyst 
for illness and mortality on a global scale, underscoring the imperative for 
sophisticated prediction methodologies within the ambit of healthcare data 
analysis. The vast volume of medical data available necessitates effective 
data mining techniques to extract valuable insights for decision-making and 
prediction. While machine learning algorithms are commonly employed for 
CVD diagnosis and prediction, the high dimensionality of datasets poses a 
performance challenge.

Methods: This research paper presents a novel hybrid model for predicting CVD, 
focusing on an optimal feature set. The proposed model encompasses four 
main stages namely: preprocessing, feature extraction, feature selection (FS), 
and classification. Initially, data preprocessing eliminates missing and duplicate 
values. Subsequently, feature extraction is performed to address dimensionality 
issues, utilizing measures such as central tendency, qualitative variation, degree 
of dispersion, and symmetrical uncertainty. FS is optimized using the self-
improved Aquila optimization approach. Finally, a hybridized model combining 
long short-term memory and a quantum neural network is trained using the 
selected features. An algorithm is devised to optimize the LSTM model’s weights. 
Performance evaluation of the proposed approach is conducted against existing 
models using specific performance measures.

Results: Far dataset-1, accuracy-96.69%, sensitivity-96.62%, specifity-96.77%, 
precision-96.03%, recall-97.86%, F1-score-96.84%, MCC-96.37%, NPV-96.25%, 
FPR-3.2%, FNR-3.37% and for dataset-2, accuracy-95.54%, sensitivity-95.86%, 
specifity-94.51%, precision-96.03%, F1-score-96.94%, MCC-93.03%, NPV-94.66%, 
FPR-5.4%, FNR-4.1%. The findings of this study contribute to improved CVD 
prediction by utilizing an efficient hybrid model with an optimized feature set.

Discussion: We have proven that our method accurately predicts cardiovascular 
disease (CVD) with unmatched precision by conducting extensive experiments 
and validating our methodology on a large dataset of patient demographics and 
clinical factors. QNN and LSTM frameworks with Aquila feature tuning increase 
forecast accuracy and reveal cardiovascular risk-related physiological pathways. 
Our research shows how advanced computational tools may alter sickness 
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prediction and management, contributing to the emerging field of machine 
learning in healthcare. Our research used a revolutionary methodology and 
produced significant advances in cardiovascular disease prediction.

KEYWORDS

quantum neural network, cardiovascular disease prediction, feature extraction, self-
improved Aquila optimization, machine learning

1 Introduction

CVD is a global health issue that kills many people. The WHO 
estimates a 37% mortality rate, affecting 17.9 million people (1). CVD 
deaths are mostly caused by stroke and heart disease. These frightening 
findings highlight the need to understand the complex causes of 
CVD. The complex nature of CVD, which is linked to risk factors like 
high blood pressure, insulin levels, smoking, and sedentary lifestyles, 
highlights the need for comprehensive prevention, early detection, and 
management strategies (2). Understanding these risk variables is 
essential for establishing targeted therapies and reducing the global 
effect of cardiovascular health issues as researchers study CVD (3). 
Studies show that up to 90% of CVD cases are avoidable, but early 
detection, treatment, and recovery are crucial. Early CVD detection is 
essential for timely interventions. However, CVD prediction is too 
sophisticated for the brain. Time dependency, erroneous results, and 
knowledge upgradation due to vast CVD datasets complicate 
identification (4). These datasets typically have irrelevant and redundant 
features that hamper classification. Noise from unwanted features 
affects system performance. Addressing this, our research focuses on FS 
to eliminate unwanted features before applying classification 
approaches. This process enhances model simplification, reduces the 
risk of overfitting, and improves computational efficiency (5).

Traditional diagnosis heavily relies on clinical signs and 
symptoms, making disease analysis challenging. Predicting CVD is 
particularly complex due to multiple contributing factors, leading to 
inconsistent outcomes and assumptions. In the medical domain, data 
mining (DM) methods, especially ML techniques (6), are employed 
to analyze diseases like cancer, stroke, diabetes (7), and CVD. This 
research specifically utilizes advanced DM approaches for studying 
CVD. Also, some more accurate DM approaches are being used to 
study heart disease. Researchers have applied various DM systems 
such as support vector machines (SVM), decision trees (DT), and 
artificial neural networks (ANN) to identify CVD (8). With all of the 
above methods, patient records are continuously categorized and 
predicted. It continuously checks the patient’s movements and informs 
the patient and doctor of the risk of illness if there is a change. With 
the help of techniques like ML, doctors can easily detect CVD in the 
early stage itself. Amongst the traditional invasive-based method, 
angiography is represented as the well-known heart problem diagnosis 
method but, it has some limits. Conversely, a method such as 
intelligent learning-based computational approaches, non-invasive-
based techniques is considered more effective for predicting 
CVD. Cardiovascular disease (CVD), one of the leading causes of 
death worldwide, causes much morbidity and death. Early detection 
and prediction are essential to prevent CVD and reduce its impact on 
individuals and healthcare systems. Medical advances in machine 

learning and predictive analytics have created promising new 
opportunities for early cardiovascular disease risk factor diagnosis (9).

Predicting cardiovascular disease is crucial due to its incidence and 
damage. High-risk patients can be  identified, advised on lifestyle 
changes, and prevented from developing cardiovascular disease (CVD). 
Genetic and risk factor-based predictive diagnostics provide 
individualized healthcare and tailored medicines. Traditional risk 
assessment and advanced machine learning algorithms predict 
cardiovascular disease. Traditional risk assessments like the Framingham 
Risk Score and Reynolds Risk Score use demographic, clinical, and 
biochemical data to estimate CVD risk across time. These techniques 
have directed primary preventive initiatives by identifying high-risk 
populations. Machine learning algorithms’ ability to search massive data 
sets for detailed patterns has propelled their rise in cardiovascular disease 
prediction. More accurate and powerful predictive models have been 
constructed combining electronic health records, imaging data, genetic 
information, and lifestyle factors using supervised learning approaches 
such logistic regression, support vector machines, random forests, and 
neural networks. Before predictive analytics can fully forecast 
cardiovascular illness, many challenges must be overcome. Multiple data 
sources, such as genetic data, wearable sensor data, and socioeconomic 
characteristics, make cohesive prediction models difficult. Integrating all 
these data types while maintaining privacy, interoperability, and quality 
is still difficult. When clinical decision-making is crucial, machine 
learning model interpretability is a concern. Black-box algorithms can 
produce accurate predictions, but healthcare practitioners are wary of 
them since they do not expose their inner workings. Because 
cardiovascular disease risk changes, models must be developed and 
validated for varied populations and healthcare systems (10).

Future multidisciplinary teams of medics, data scientists, and AI 
professionals will improve cardiovascular disease prediction. 
Integrating data from microbiomics, proteomics, metabolomics, and 
genomes may lead to new cardiovascular risk biomarkers and better 
risk prediction models. Wearables, smartphone health apps, and 
remote monitoring systems enable real-time risk assessment and 
personalized treatments based on lifestyle and physiological 
parameters. Here, a Hybrid Intelligent Model with an Optimal Feature 
Set is introduced for the prediction of CVD. The main contributions 
are summarized below:

	 1.	 The proposed research addresses the issue of dimensionality 
reduction by implementing FS techniques to reduce the 
number of features.

	 2.	 To introduce the SIAO method for optimal FS, overcoming 
challenges in extensive CVD datasets.

	 3.	 Proposing a hybrid model that combines LSTM and QNN to 
enhance the prediction performance of CVD.
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The subsequent sections follow a structured framework: Section 
2 reviews conventional CVD prediction models. In Section 3, the 
proposed model architecture is presented, and discussions on feature 
extraction, central tendency, dispersion, qualitative variation, and 
symmetrical uncertainty are provided. Section 4 introduces SIAO for 
optimal FS. The hybrid LSTM-QNN classification method is covered 
in Section 5. Experimental results and discussions are presented in 
Section 6. Section 7 contains the conclusion, summarizing 
contributions, and suggesting future research.

2 Literature review

This section critically analyses CVD prediction approaches, 
highlighting significant research and their contributions to the 
discipline. Using an Improved Quantum CNN (IQCNN) for accuracy, 
Pitchal et al. (11) developed an automated model for heart disease 
prediction that includes preprocessing, feature extraction, and 
prediction. This technique, which surpassed Bi-LSTM and CNN with 
0.91 accuracy, shows promise for using IoT technologies for health 
diagnosis. Innovative computer methods improve cardiac disease 
prediction in their work.

Li et al. (12) used a hybrid deep learning (DL) model to predict 
CVD. The hybrid model, which uses 7,291 patient data and two deep 
neural network (DNN) models and one RNN for training, 
outperformed standard methods in prediction accuracy. Secondary 
training with a kNN model improved predicted accuracy. Prediction 
accuracy of 82.8%, precision of 87.08%, recall of 88.57%, and F1-score 
of 87.82% in the test set outperform single-model ML predictions. The 
hybrid model reduced overfitting, improving CAD prediction and 
clinical diagnosis. Singh et  al. (13) examined how IoMT devices 
transformed continuous CVD patient monitoring. Their study 
proposed an advanced DL framework for the IoMT ecosystem that 
could improve patient care by predicting CVD. They effectively extract 
spatial and sequential characteristics from diverse IoMT data sources, 
such as pulse oximeters and electrocardiograms, using their innovative 
hybrid CNN-RNN architecture. With the utilization of transfer 
learning (TL) and real-world data, the proposed model surpasses 
previous methods in terms of precision and resilience. Their research 
assists medical professionals in gaining insights into predictive factors, 
enhancing the model’s ability to be  understood and its impact 
on therapy.

In their study, Oyewola et  al. (14) utilized an ensemble 
optimization DL method to diagnose early CVD. They employed the 
Kaggle Cardiovascular Dataset for both training and testing purposes. 
The ensemble model achieves superior performance compared to 
neural network architectures, boasting an impressive accuracy rate of 
98.45%. The research examined and provided a practical solution to 
streamline CVD diagnosis for doctors. It showcased the model’s 
impressive speed and precision in identifying patients and interpreting 
CVD test results, leading to advancements in healthcare practices. 
Incorporating wearable systems, exploring advanced ensemble 
techniques, and utilizing diverse data sources have been found to 
enhance predictive capabilities and improve model performance in 
real-world healthcare settings, according to recent research. In 2023, 
a team of researchers developed a cutting-edge model for assessing the 
risk of cardiovascular disease (CVD). They utilized advanced 
algorithms and optimization strategies to create the SOLSSA-CatBoost 

model, which shows great promise in this field. Their approach proved 
to be highly effective, surpassing the performance of multiple machine 
learning models and optimization techniques on Kaggle CVD 
datasets. They achieved impressive F1-scores of 90 and 81.51%. This 
work contributes to the field of predictive healthcare by offering a 
more precise tool for assessing the risk of cardiovascular disease. 
However, further research is required to evaluate its practicality and 
effectiveness in diverse populations.

In their study, Palanivel et al. (15) discussed the global health 
concern of cardiovascular disease (CVD) and emphasized the 
importance of early prediction. They presented a compelling approach 
that combines FS and an innovative Multi-Layer Perceptron (MLP) 
for Enhanced Brownian Motion based on Dragonfly Algorithm 
(MLP-EBMDA) classification using DM methods. This contribution 
encompasses an optimized unsupervised feature selection technique, 
a distinctive classification model with an accuracy of 94.28%, and a 
methodical approach to predicting early cardiovascular disease. The 
methodology is meticulously organized and precise, but it requires 
validation and real-world implementation.

In their study, Yewale et  al. (16) devised a comprehensive 
framework for predicting cardiovascular disease. They made a 
deliberate choice to exclude FS and instead focused on data balance 
and outlier identification. Their work involved utilizing the Cleveland 
dataset to investigate various performance factors and achieve an 
impressive accuracy rate of 98.73% and sensitivity rate of 98%, 
surpassing previous research findings. The methodology demonstrates 
an impressive level of precision, with a specificity of 100%, positive 
prediction value of 100%, and negative prediction value of 97%. It also 
implemented OD by using a separate forest for a thorough analysis. 
Their work is notable for its meticulous evaluation metrics.

In their study, Behera et  al. (17) devised a novel approach 
combining machine learning techniques to predict heart and liver 
diseases. They utilized a modified particle swarm optimization (PSO) 
algorithm in conjunction with support vector machines (SVM). The 
study focused on the rising occurrence of heart and liver disorders and 
the importance of promptly detecting them for better patient 
outcomes. By integrating SVM with modified PSO, the hybrid model 
achieved significant improvements in classification accuracy, error 
reduction, recall, and F1-score. The research’s empirical foundation is 
strengthened by the data from the UCI ML collection. In their study, 
Sudha and Kumar (18) proposed a hybrid CNN and LSTM network 
for predicting cardiovascular disease, aiming to tackle the pressing 
issue of timely and accurate detection on a global scale. Utilizing 
cutting-edge DL advancements, the suggested model seamlessly 
combined CNN and LSTM to surpass the accuracy limitations of 
traditional ML methods. The hybrid system achieved an accuracy of 
89% on a CVD dataset following 10 k-fold cross-validation. The 
suggested analysis outperformed SVM, Naïve Bayes (NB), and DT 
models in terms of performance. Their approach stands out with its 
distinctive technique, impressive precision, and practicality as an 
alternative to ML models in predicting CVD.

Elavarasi et  al. (19), provided a summary of the recent 
challenges in predicting cardiovascular disease (CVD), focusing on 
the issues faced by traditional systems and the complexity of deep 
learning (DL). They utilized the elephant search algorithm (ESA) to 
explore innovative interpretability solutions during their 
investigation. ESA is seamlessly integrated with SVM to enhance 
the accuracy of CVD prediction, even though it faces challenges 
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when dealing with large datasets and computational complexity. 
They strive to enhance FS by enhancing the accuracy and 
interpretability of CVD dataset. Their research enhanced clinical 
decision support systems (DSSs), shedding light on the ongoing 
debate surrounding CVD prediction methodologies.

Table 1 summarizes standard CVD prediction models’ features 
and drawbacks. An Automated IQCNN Model improved heart 
disease prediction and IoT diagnostics (11), however dataset 
specificity and scalability were issues. Wei et  al. (20)’s SOLSSA-
CatBoost Model improved CVD risk assessment accuracy through 
algorithmic fusion, however real-world applicability was questioned. 
In Palanivel et  al. (15), the MLP-EBMDA classification model 
showcased optimized unsupervised FS, a novel classification model 
with higher accuracy, and a systematic approach to early CVD 

prediction. Li et al. (12), proposed a hybrid DL model with features 
like the utilization of two DNN models and an RNN, achieving 
average accuracy and effectively addressing overfitting challenges. 
Singh et  al. (13), introduced an IoMT-Enhanced DL framework, 
incorporating a hybrid architecture combining CNNs and RNNs, 
extracting spatial and sequential features from heterogeneous IoMT 
data sources, and emphasizing interpretability and impact on 
treatment processes. Oyewola et  al. (14) proposed an ensemble 
optimization DL technique that stands out for outperforming various 
NN architectures with high accuracy and simplifying CVD diagnosis 
for medical professionals. Elavarasi et  al. (19) presented an 
ESA-integrated SVM for CVD prediction, focusing on interpretability 
through FS and optimizing FS using ESA and SVM while addressing 
challenges associated with traditional systems. Yewale et  al. (16), 

TABLE 1  Review of features and challenges of conventional models based on a prediction of CVD.

References Deployed model Features Challenges

Pitchal et al. (11) Automated IQCNN Model Incorporates preprocessing, feature 

extraction, and prediction with IQCNN; 

Notable high accuracy level; Advances 

IoT use in health diagnostics

Reliance on specific datasets; Scalability in 

diverse healthcare settings

Li et al. (12) Hybrid DL model Utilizes two DNN models and an RNN; 

Achieved Average accuracy, precision, 

recall, and F1-score

Effectively addresses overfitting challenges

Singh et al. (13) IoMT-Enhanced DL framework Hybrid architecture combining CNNs 

and RNNs; Extracts spatial and 

sequential features from heterogeneous 

IoMT data sources; Incorporates TL and 

real-world data

Ensuring interpretability and impact on 

treatment processes

Oyewola et al. (14) Ensemble Optimization DL technique Outperforms various NN architectures 

with higher accuracy; Simplifies CVD 

diagnosis for medical professionals

Use of sophisticated ensemble techniques

Palanivel et al. (15) MLP-EBMDA classification Optimized unsupervised FS; Novel 

classification model with high accuracy; 

Systematic approach to early CVD 

prediction

Use more datasets to get accurate results.

Yewale et al. (16) Ensemble techniques with data balancing and 

OD

Achieves High accuracy and sensitivity; 

Demonstrates High specificity and 

positive prediction value

Need to use a diverse composition of 

metrics.

Behera et al. (17) Hybrid ML algorithm with PSO and SVM Utilizes modified particle swarm 

optimization and SVM; Showcases 

Average classification accuracy and error 

reduction

Need to investigate the runtime 

complexity.

Sudha and Kumar (18) Hybrid CNN and LSTM Network Combines CNNs with LSTM networks 

for CVD prediction; Achieves High 

accuracy validated through k-fold cross-

validation

Apply the hybrid approach to real-world 

applications

Wei et al. (20) SOLSSA-CatBoost Model Integrates improved SSA with CatBoost; 

Enhanced by salp swarm algorithm, OBL, 

and lateral mutation; Superior F1-scores

Real-world applicability and diverse 

population performance

Elavarasi et al. (19) ESA-integrated SVM Addresses challenges with traditional 

systems; Focuses on interpretability 

through FS; Optimizes FS using ESA and 

SVM

Handling large datasets and computational 

complexity
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ensemble techniques with data balancing and OD achieved higher 
accuracy and sensitivity, demonstrating high specificity and positive 
prediction value, although a need for a diverse composition of metrics 
was identified. Behera et al. (17) proposed a hybrid ML algorithm 
incorporating PSO and SVM showcased the utilization of modified 
PSO-SVM, resulting in average classification accuracy and error 
reduction, with a call to investigate runtime complexity. Finally, Sudha 
and Kumar (18) proposed a hybrid CNN and LSTM CVD prediction 
approach with great accuracy proven by 10 k-fold cross-validation and 
recommended for real-world applications. These systematic reviews 
shed light on these models’ strengths and weaknesses, leading to CVD 
prediction methodology development between paragraphs belonging 
to the same section.

In essence, our proposed model, as outlined, integrates the 
strengths of DL, and bio-inspired algorithms techniques while 
systematically addressing the limitations identified in the existing 
approaches. The innovative features of our model, including optimized 
FS through SIAO and the hybridization of LSTM and QNN, contribute 
to its potential to provide enhanced accuracy, efficiency, and practical 
applicability in real-world CVD prediction scenarios.

3 Methodology

The hybrid model averages LSTM and QNN classifier outputs to 
predict. The SIAO method optimizes LSTM weight adjustment, 
improving prediction model accuracy. Thus, CVD prediction works. 
As shown in Figure  1, CVD prediction involves four key steps: 
preprocessing, feature extraction, FS, and prediction.

	•	 Step 1: Preprocessing – The initial stage removes duplicates and 
missing data to ensure data quality and dependability for analysis.

	•	 Step 2: Feature Extraction – This phase involves detailed feature 
extraction. Central tendency, qualitative variation, dispersion, 
and symmetrical uncertainty are identified. These attributes help 
solve the dataset’s high dimensionality problem.

	•	 Step 3: Feature Selection – The Symmetrical Uncertainty-based 
Iterative Algorithm Optimization (SIAO) technique is used to 
choose features optimally. This smart selection procedure 
improves model efficiency and accuracy by using only the most 
important features.

	•	 Step 4: CVD Prediction – A hybrid model combining LSTM and 
QNN technology is trained using ideally selected features. This 
stage optimizes LSTM model weights using the SIAO algorithm. 
This optimization technique improves the model’s 
predictive power.

The proposed CVD prediction approach is shown in Figure 1.

3.1 Optimal selection of features via 
self-improved Aquila optimization

The extracted features pose challenges related to dimensionality 
reduction, prompting the utilization of an SIAO Algorithm for optimal 
FS in this research endeavor.

3.1.1 SIAO algorithm
In 2021, Abualigah et al. (1) proposed an Aquila Optimization 

(AO), which is a modern swarm intelligence (SI) algorithm. 
Aguila consists of 4 types of hunting behaviors for specific sorts 
of prey. Aquila adeptly adapts hunting strategies for specific prey, 
utilizing its rapid velocity and robust talons; correspondingly, the 
AO Algorithm comprises four intricately designed stages 
as follows:

Expanded Exploration (X1): Excessive ascend with a vertical bend. 
Eq.  1 and Eq.  2 define the mathematical expression of expended 
exploration of AO, in which Aquila flies excessively over the floor and 
explores the quest area widely, and then a vertical dive can be taken as 
soon as the Aquila identifies the prey’s location.
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Where better position attained was represented as X tbest ( ) and 
XM t( ) represents the mean position of Aquila in the present iteration. 
t denoted as the current iteration and the T represents the maximum 
iteration. The size of the population is mentioned as N and a random 
number (between 0 and 1) is indicated as rand.

Narrowed Exploration (X2): Outline flight with the brief skim 
attack. Narrowed exploration is one of the frequently used hunting 
approaches for Aquila Employing brief gliding maneuvers for targeted 
prey attacks, the AO Algorithm elegantly combines sliding within the 
selected area and precise aerial navigation around the prey, with the 
refined exploration process succinctly defined by Eq. 3.

	 X t X t LF D X y x randbest R t2 1+( ) = ( ) ( ) + + −( )( ). . � (3)

Where Hawks’ random position is indicated as XR t( ), and the size 
of a dimension is denoted as D. Function of Levy flight LF D( ), is 
expressed in below Eq. 4a and Eq. 4b.
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Where Γ  and K  means stable values equivalent to 0.01 & 1.5; u 
and v denote random values between 0 & 1; y and x represent the 
spiral shape in the search. These values are mathematically calculated 
as follows (See Eq. 5):

	 x = × ∅r sin

77

https://doi.org/10.3389/fmed.2024.1414637
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Darolia et al.� 10.3389/fmed.2024.1414637

Frontiers in Medicine 06 frontiersin.org

	 y r= × ∅cos

	 r D= + ×r1 0 00565 1.

	
∅ = − × +

×
ω

πD1
3

2 �
(5)

Where, the search cycle number is represented as r1, which exists 
between the range of 1 and 20, the value of ω is equal to 0.005. Also, 
D1 is mentioned as the integer values and D indicates the size of 
the dimensions.

Extended Exploitation (X3): Executing the minimal flight strategy 
with a calibrated descent attack, the Aquila adopts a nuanced approach. 
In this tactical maneuver, the prey’s location is approximately 
ascertained, prompting the Aquila to initiate a vertical assault. The AO 
algorithm strategically capitalizes on the identified region, 
meticulously navigating closer to the prey before launching the attack. 
This intricate behavior is mathematically articulated in Eq. 6.

	

X t X t X t r
and UB LB rand LB

best M3 1+( ) = ( ) − ( ) −

−( ) +( ) × ∂
.

. .

α
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The parameters of the exploitation adjustment are assigned a value 
of 0.1 in this context. UB and LB are boundary values. In this, we have 
proposed Eq. 7 for choosing a random number between o and l, which 
is calculated using a logistics map. The mathematical expression for 
the random value is given in Eq. 7.

	 rand LB rand UB LB= + ( )× −( )0 1, � (7)

Subsequently, the arithmetic crossover is performed, in which two 
regions are randomly selected, and by performing linear combination 
2 offspring are produced.

Narrowed Exploitation (X4): Executing a strategy involving 
pursuit and ground-based assault, the Aquila pursues prey, following 
the trajectory of its escape, culminating in an attack on the ground, as 
mathematically articulated in Eq. 8–11.
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Where a current position is denoted as X t( ), for search strategy 
balancing quality function value and is indicated as QF t( ). During the 
tracking of prey, Aquila’s movement parameter is denoted by G1. 
When chasing the prey, the slope of flight is termed as G2, which is 
minimized linearly from 2 to 0.

Algorithm 1 describes the steps of proposed SIAO algorithms.

Algorithm 1:  Proposed SIAO
Step 1: Initialization Phase.

Commence by initializing the population of the AO.
Initialize the relevant parameters associated with AO.
WHILE (termination condition) do.

Calculate the values of the fitness function.
X tbest ( ) finds the best solution.

for (i = 1,2…, N) do.
Improve the mean value of the present solution.
Improve the x, y, LF (D), G1, G2

FIGURE 1

Proposed approach of CVD prediction.
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   If   t T≤ ( )×2 3/  then

   If   0.5r and ≤  then

Step 2: Expanded exploration (X1).
Improve the present solution using Eq. 1.
If Fitness X t1 1+( ) < Fitness (X(t)) then

X t X t( ) = +( )( )1 1

If Fitness X t1 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )1 1

Step 3: Narrowed exploration (X2).
Improve the present solution using Eq. 3.
If FitnessX t2 1+( ) < Fitness (X(t)) then

X t X t( ) = +( )( )2 1

If Fitness X t2 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )2 1

  If  then 0.5r and ≤

The rand is calculated using the proposed Eq.
“rand LB rand UB LB= + ( )× −( )0 1, .”

Step 4: Expanded Exploitation (X3).
Improve the present solution detailed in Eq. 6.
If Fitness X t3 1+( ) < Fitness (X(t)) then

X t X t( ) = +( )( )3 1

If Fitness X t3 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )3 1

Step 4: Narrowed Exploitation (X4).
Improve the present solution detailed in Eq. 8.
If Fitness X t4 1+( )( ) < Fitness (X(t)) then

X t X t( ) = +( )( )4 1

If Fitness X t4 1+( )( ) < Fitness (X tbest ( )) then

X t X tbest ( ) = +( )( )4 1

return the best solution (Xbest).

3.1.2 Solution encoding
In this work, the optimization strategy is applied in two phases. 

For selecting the optimal FS from the extracted feature set F , the 
selected features are termed as Fs. Second, the weight of LSTM 
indicated as Wf  is tuned optimally, and the tuned weights are denoted 
as Wf∗. The graphical representation in Figure 2 illustrates the input 
solution for the envisaged SIAO methodology.

3.2 Classification process via hybrid 
LSTM-QNN classifier

As delineated earlier, the optimal features chosen undergo 
integration into a hybrid classifier for disease presence prediction. To 
augment the classifier’s performance, the fine-tuning of LSTM weights 
is intricately executed through the application of the proposed SIAO 
methodology (Figure 3).

3.2.1 LSTM model
The learning outcome of RNN influences the base theory of 

LSTM. LSTM can study the lengthy dependencies among variables 
(21). The long-period series is evaluated using LSTM pseudocode. 
Activation functions like tanh and sigmoid are essential for NNs, as 
they introduce non-linearity, allowing the network to tackle complex 
data patterns and decisions. The resultant outcome enhances the 
explosion gradient disappearance of the NN algorithm. For controlling 
the process of memorizing LSTM uses the mechanism called Gating. 
The unit of LSTM comprises three gates namely input, output, and 
forget gates.

	 1.	 Forget Gate: Here, the attention and ignorance of information 
are decided. Through the function of the sigmoid, the 
information from the current input and hidden state is passed 
where the current input is denoted as X t( ) and the hidden 
state is indicated as h t −( )1 . 0 and 1 are the range of values 
generated by the sigmoid function. For the point-by-point 
multiplication, the value of f t( ) is used in Eq. 12.

	 f W h x bt f t t t= [ ] +( )−σ . 1, � (12)

where timestamp id is denoted as t, ft  denotes the forget gate of t, 
input is determined as xt , ht−1 is the previous hidden state, Wf  signifies 
weight matrix, and bt denotes the connection bias at timestamp t .

	 2.	 Input Gate: Here, the operations were performed to update the 
status of cells. The current position state and hidden position 
state are projected into the function of the sigmoid. The 
transformation of values takes place between 0 and 1. Then the 
same information will get passed to the function of the. For 
performing network regulation, the tanh operator generates a 
value range between 0 and 1. The generated values are ready for 
point-by-point multiplication in Eq. 13–17.

	 i W h x bt i t t i= [ ] +( )−σ . 1, � (13)

FIGURE 2

Proposed methodology of CVD prediction.
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C W h x bt c t t c= [ ] +( )−tanh . 1, � (14)

Where, Wi denotes the weight matrix, bi indicated the bias vector 
at t, the value generated by tanh is denoted as Ct, weight matrix of the 
tanh operator between cell state information and network output is 
indicated as Wc , and the bias vector is represented as bc.

	 3.	 Cell state: The subsequent step is to select and save the 
information in the cell state. The multiplication is performed 
for the previous cell state and forgets the vector. If the value of 
the resultant outcome is 0, then in the cell state the value will 
drop. Then the point-by-point addition is performed by the 
output value of the vector in the input.

	 C f C i Ct t t t t= × + ×−1  � (15)

Here, the cell state of information is denoted as Ct , the previous 
timestamp is indicated by Ct−1, and the value generated by tanh is 
expressed as Ct .

	 4.	 Output Gate: To determine the value of the hidden state, the 
output gate is utilized. In this state, the information on the 
inputs that came before it is stored. Within the beginning, the 
sigmoid function will be given both the value of the current 
state as well as the value of the hidden state that came before it. 
A new cell state will be generated as a result of this, and it will 
be sent to the function that is responsible for calculating tanh. 
After that, a multiplication operation will be carried out on 
those outputs on a point-by-point basis. The network decides 
the information that is carried out for the hidden state based 
on the results that it has obtained. The hidden state that is 
produced as a result is then utilized for prediction.

	 o W h x bt o t t o= [ ] +( )−σ . 1, � (16)

	 h o Ct t t= × ( )tanh � (17)

Where the output gate at t  is denoted by ot, out gates’ weight 
matrix is indicated by Wo, a vector is represented as bo, and the output 
of LSTM is mentioned as ht.

3.2.2 QNN model
A QNN (22), as elucidated in reference, constitutes a multi-

layered feedforward NN renowned for its efficacy in classifying 
uncertain data. The QNN state shift function embodies a linear 
composition of multiple sigmoid functions, commonly referred to as 
a multi-level switch function. Unlike the binary expression of 
traditional sigmoid functions with two states, the QNN’s hidden layer 
neural cells exhibit a richer spectrum of states. Introducing a discrete 
quantum interval for the sigmoid function allows for the mapping of 
diverse data onto distinct levels, affording enhanced classification 
flexibility. The quantum interval within a QNN is acquired through a 
training process. Structurally, a QNN comprises input, hidden, and 
output layers, with the output function of the hidden layer 
mathematically articulated in Eq. 18.

	
b

ns
f W Xr

s

ns
T

s= −( )





=
∑1

1
β θ

�
(18)

Where, γ = …1 2 3, , , u  and f x x( ) = + −( )( )1 1 1/ exp  is an 
excitation function in which W is expressed as the weight of the 
network, X is the input vector, the slope factor is indicated as β , the 
input of the quantum cell is represented as W XT , and the quantum 
interval is termed as θs.

FIGURE 3

Hybrid model (Average of LSTM and QNN).
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3.3 Preprocessing phase

The preprocessing phase is conducted as an initial step to assess 
the data quality. Data cleaning is performed to eliminate incorrect and 
incomplete data. Additionally, null values and duplicate entries are 
removed during this preprocessing phase.

3.3.1 Central tendency
Toward a central point the size of the sample inclined toward 

infinity. This data property is termed a central tendency and the point 
toward the data gets inclined is termed a central tendency measure 
(23). A central propensity can be  suitable for both a constrained 
association of features and for a theoretical transference. Moreover, 
some of the measures of central tendency for n data points with value 
Idata i( )  extracted in our proposed model are given as follows:

	 1.	 Arithmetic Mean (AM, Idata i( ) ): The arithmetic mean, a 
fundamental measure of central tendency, is denoted as the 
sum of all data annotations divided by the total number of data 
points. Eq. 19 expresses the mean of the data.

	
I

n
Idata i

i

n

data i( )
=

( )= ∑1

1 �
(19)

	 2.	 Median: A statistical metric denoting the central value within 
a dataset, effectuates a division of the dataset into two 
equidistant halves. This partition is achieved through the 
meticulous arrangement of data points in ascending order, 
facilitating the identification of a singular data point 
characterized by an equitable distribution of values both 
superior and inferior to it. The methodology for ascertaining 
the median subtly diverges contingent on whether the dataset 
harbors an odd or even count of values. Eq. 20 elucidates the 
mathematical formulation encapsulating the concept of 
the median.

	
Medi n

Idata i
a =

+











( ) 1

2 �
(20)

	 3.	 Mode: In the dataset, one of the frequently occurring values is 
the mode. The mode is also a degree of central tendency that 
identifies the group or rating that happens the maximum often 
inside the distribution of data.

	 4.	 Standard deviation (SD, σ ): In statistics, standard deviation 
measures the dataset dispersion relative to the mean. Also, the 
SD is calculated as the variance square root. Eq. 21 denotes the 
mathematical expression for SD.

	
σ = −( )

=
( ) ( )∑1

1n
I I

i

n

data i data i
n

�
(21)

The minimum value obtained was considered as the initial order 
statistics and the maximum value is the last order statistics.

	 5.	 Geometric mean (GM): A sophisticated measure of central 
tendency, that computes the product of specified values in a 
numerical series. Importantly, it is undefined if any element 
in the series is negative or zero, as succinctly expressed 
in Eq. 22.

	
GM I

i

n

data i
n

=










=
( )∏

1

1

�
(22)

	 6.	 Harmonic Mean (HM): Delineated as the reciprocal of the AM, 
computed from the reciprocals of individual annotations. Its 
evaluation is confined to a comprehensive "positive scale," 
ensuring meticulous consideration of positive values 
exclusively. Eq. 23 elegantly captures the intricate mathematical 
formulation underpinning the HM.

	

HM n

i
n

data i

=










= ( )

∑ 1

1

I �

(23)

	 7.	 Trimmed Mean (TM): It encompasses the determination of the 
mean following the selective omission of specific elements 
from the extremes of a probability distribution or pattern. This 
procedure uniformly excludes an equal quantity from both the 
high and low ends.

	 8.	 Interquartile range (IQR): Within statistical analysis, IQR 
assumes a pivotal role as a metric to gauge the dispersion of 
data and observations. The precise mathematical notation for 
IQR is succinctly expressed in Eq.  24, providing an exact 
quantification of this statistical characteristic.

	

IQR
n

I
i n

n

data i=

= +

( )∑2

4
1

3

4

.

�

(24)

	 9.	 Midrange: The midrange is defined as the mean of the 
maximum and minimum number in the dataset. It is expressed 
mathematically in Eq. 25.

	
M

low I high I
rg

ata i data i
=

( ) + ( )( ) ( )d

2 �
(25)

	10.	 Midhinge: The midhinge is considered as the estimation of 
central tendency (C) shown in Eq. 29.

	
M C I

C I C I
hg data i
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( )
( ) ( )

1 3

1 3

2
,

�
(26)
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	11.	 Trimean: A trimean is represented as the general tendency of a 
data set and its mathematical notation is given in Eq. 27 where 
C1, C2, C3 are central tendencies for quartiles.

	
Tri C C C
m =

+ +1 2 32

4

.

�
(27)

	12.	 Winsorized means: This method pertains to an averaging 
technique that initially substitutes the smallest and largest 
values with the annotations nearest to them. This strategic 
replacement is executed to mitigate the influence of anomalous 
extreme values during the computation process.

3.3.2 Degree of dispersion
In statistical analysis, dispersion, also interchangeably referred to 

as variability, spread, or scatter, characterizes the degree of deviation 
or spreading inherent within a distribution (24). This metric delineates 
the extent to which data points diverge or converge from a central 
tendency, offering valuable insights into the distribution’s 
inherent dynamics.

	 1.	 IQR: Serves as a sophisticated metric embodying statistical 
dispersion, elucidating the nuanced spread encapsulated 
between the 75 and 25 percentiles. This measure offers a 
granular depiction of variability by meticulously assessing the 
interquartile span.

	 2.	 Range: In the domain of statistical analysis, the Range assumes 
the role of a fundamental measurement, meticulously 
quantifying the explicit divergence existing between the 
uppermost and lowermost values within a dataset. This metric 
provides an unambiguous reflection of the dataset’s 
inherent variability.

	 3.	 Mean absolute difference (MAD): It is a quantitative facet of 
dispersion, that delineates the dissonance between two 
independently drawn values from a probability distribution. 
This metric affords a nuanced insight into the distributional 
nuances characterizing the dataset.

	 4.	 Average absolute deviation (AAD): It assumes the mantle of 
quantifying the normative divergence of data points from the 
pivotal central tendency within an informational index, thereby 
encapsulating the comprehensive variability inherent in 
the dataset.

	 5.	 Distance standard deviation: In the insight’s hypothesis, the 
departure distance relationship is a fraction of dependence 
between two mutually uneven vectors of unrestricted 
measurement. A diverse fraction of divergence is 
“dimensionless.”

	 6.	 Coefficient of Variation (CV): It ensconced within the domain 
of probability statistics, and surfaces as a comprehensive 
barometer of dispersal within a probability or recurrence 
distribution. Articulated as a ratio, the CV serves as a 
standardized gauge, representing the fraction of SD to 
the mean.

	 7.	 Quartile coefficient of dispersion (QCD): A nuanced statistical 
metric, that assumes symbolic relevance in evaluating 
divergence within a dataset. Its precise calculation leverages the 
first (P1) and third (P3) quartiles for each dataset, culminating 

in the articulation of the scattering coefficient, as rigorously 
expressed in Eq. 28.

	
QCD =

−
+

P P
P P

3 1

3 1 �
(28)

	 8.	 Replicating the coefficient of Gini & relative mean difference: 
MAD, which is a precise measure of accurate divergence 
equivalent to the AAD of 2 independent attributes drawn from 
a probability distribution. A noteworthy metric associated with 
MAD is the AAD, representing the MAD divided by the 
AM and twice the Gini coefficient.

	 9.	 Entropy (H): The entropy of a discrete variable displays 
invariance in both location and scale, signifying inherent scale 
independence. In contrast to traditional dispersion measures, 
the entropy of a continuous variable remains constant across 
regions and seamlessly accommodates new information, 
exhibiting a unique scalability. The entropy function H y( ) for 
continuous variable x , c can be  arithmetically expressed 
in Eq. 29.

	 H y H x c( ) = ( ) + ( )log � (29)

3.3.3 Qualitative variation (QV)
This index is the measure of arithmetical dispersion in the ostensible 

distribution (25). Between the 0 and 1 bounds, the data normalization 
exists and then changes to level 4. The data level changes are expressed 
in Table 2.

Twenty-three features are there in the QV index. Also, indices of 
Wilcox’s and its characteristics include RanVR, MNDif, R packages, 
ModVR, B index, HRel, StDev, MNDif, and AvDev. Gibbs’ indices 
include M1, M2, M4, and M6, while single-order sample indices 
encompass Menhinick’s, Lloyd & Ghelardi’s, Shannon–Wiener, 
Average taxonomic distinctness, Hill’s diversity numbers, Theil’s H, 
Brillouin, McIntosh’s D and E, Cotgreave’s, Bulla’s E, Berger–Parker, 
Index of qualitative variation, Margalef ’s, Caswell’s V, Rarefaction, 
Smith and Wilson’s B, Q statistic, Harvey, Camargo’s, E, Smith & 
Wilson’s, Simpson’s, Heip’s, Rényi entropy, Strong’s, Horn’s, and 
Fisher’s alpha. FQV  determined the characteristics of extracted 
qualitative variation.

3.3.4 Symmetric uncertainty
The characteristics and class of symmetric uncertainty are 

evaluated based on the estimated SU relationship metric (26). The 
communal information is calculated using Eq. 30.

	
CM Q P PO Q B

PO Q P
PO Q PO P

, ,
,( ) = ∑ ( ) ( )

( ) ( )
log

.
2

�
(30)

In Eq. 31, communal information is indicated by CM , the feature 
is represented as Q, the class is denied as P, and the function of 
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probability is represented as PO. Also, Eq.  31 indicates 
symmetrical uncertainty.

	 SU Q P CM Q P H Q H P, ,( ) = ( )( ) ( ) ( )( )2 / . � (31)

In Eq. 32, the entropy function is indicated as H. FSU  denotes the 
symmetric uncertainty feature. So, the entire feature F combines the 
features that are extracted like central tendency FCT , degree of 
dispersion FD, qualitative variation FQV, and symmetrical uncertainty 
FSU  were termed in Eq. 32.

	 F F F F FCT D QV SU= + + + � (32)

4 Results and discussions

4.1 Simulation details

The execution of the CVD prediction model within the Python 
3.11 environment involves a systematic evaluation, methodically 
assessing a plethora of Type I  metrics and Type II metrics. This 
comprehensive scrutiny unfolds across two distinct datasets: Dataset 
1, sourced from the Cleveland dataset (UCI Machine Learning 
Repository, n.d.-a) featuring 76 attributes, with a focused exploration 
of a refined subset of 14 attributes, notably emphasizing the Cleveland 
dataset. Meanwhile, Dataset 2, attained from the (UCI Machine 
Learning Repository, n.d.-b) comprises 13 attributes and an intricately 
defined cost matrix denoted as ‘abse’ and ‘pres.’ The orchestrated 
training and testing processes systematically unfold across varied 
proportions (60, 70, 80, and 90%), providing a structured lens for a 
nuanced examination of the predictive model’s performance.

	

absence
presence

0 1

5 0

In the above matrix, the row indicates the true values and the 
columns predicted.

4.2 Performance analysis of the adopted 
and traditional model for Dataset-1

The performance of the proposed model is evaluated over the 
existing models like SVM (21), DBN (Deep Belief Network) (22), 
RNN (27), DCNN (Deep CNN) (28), 7 classifiers (DT, NB, LR, SVM, 
k-NN, ANN and Vote (a hybrid technique with NB and LR)) (4), 4 

ML classifiers (DT, LR, XGBoost, SVM) (29), BiGRU (Bidirectional 
Gated Recurrent Unit) (30), SMO (Sequential Minimal 
Optimization) + HC (Hybrid Classifiers) (26), SSA (Salp Swarm 
Algorithm) + HC (31), DHOA (Dear Hunting Optimization 
Algorithm) + HC (32), AO + HC (7), SI + AO + LSTM + QNN + HC, 
accordingly. The predictive model’s performance is rigorously 
evaluated through key metrics, including accuracy, precision, and 
sensitivity, across various learning percentages (60, 70, 80, and 90%). 
Figure  4 illustrates the exceptional accuracy of the compositional 
model, achieving a remarkable 95.54% during the 90% training phase. 
The projected approach consistently surpasses the performance of 
other existing models at all learning percentages, such as SVM, DBN, 
RNN, DCNN, 7 classifiers, 4 ML classifiers, BiGRU, SMO + HC, 
SSA + HC, DHOA + HC, AO + HC, SI + AO + LSTM +  
QNN + HC. Figure 5 sheds light on the superior sensitivity of the 
proposed SI-AO-LSTM-QNN approach, particularly evident with a 
peak sensitivity of 95.86% at the 90% training percentage. This notable 
performance outshines other existing approaches. Sensitivity rates for 
the 60, 70, and 80% training percentages are also substantial, standing 
at 91.6, 92.95, and 94.39%, respectively. Precision analysis, as depicted 
in Figure 6, further emphasizes the prowess of the proposed model. 
Achieving the highest precision rate of 96.03% during the 90% 
training phase, the SI-AO-LSTM-QNN approach outperforms the 
already existing models. Precision rates for the other training 
percentages are commendable, measuring at 92.76, 94.33, and 95.47%.

Table 3 provides a comprehensive performance analysis for the 
prediction of CVD on Dataset 1, focusing on a Training percentage 
(TP) of 90%. Various metrics, including accuracy, sensitivity, 
specificity, precision, recall, F1-score, Matthews Correlation 
Coefficient (MCC), Negative Predictive Value (NPV), False Positive 
Rate (FPR), and False Negative Rate (FNR), are reported for a range 
of existing models, as well as the proposed model, 
SI + AO + LSTM + QNN + HC. Notably, the proposed model achieves 
outstanding results with an accuracy of 96.69%, sensitivity of 96.62%, 
specificity of 96.77%, precision of 96.03%, recall of 97.86%, F1-score 
of 96.85%, MCC of 96.37%, NPV of 96.25%, FPR of 3.23%, and FNR 
of 3.38%. These metrics collectively indicate the superior predictive 
capabilities of the proposed SI + AO + LSTM + QNN + HC model, 
showcasing its robust performance compared to other existing models 
across a diverse set of evaluation criteria.

4.3 Performance analysis of the adopted 
and traditional model for Dataset-2

In dataset 2, the proposed model is compared to SVM, DBN, 
RNN, DCNN, 7 classifiers, 4 ML classifiers, BiGRU, SMO + HC, 
SSA + HC, DHOA + HC, AO + HC, SI + AO + LSTM + QNN + HC, 
and others. Notably, the SI-AO-LSTM-QNN approach consistently 
outperforms the existing models, achieving higher values across 
critical metrics. Specifically, for accuracy, sensitivity, and 
precision, the proposed model attains impressive rates of 96.69, 
96.62, and 96.03%, respectively. These superior metrics are 
observed consistently across various learning percentages, with 
the highest values achieved at the 90th learning percentage. 
Figure 7 visually represents the accuracy comparison, illustrating 
that the SI-AO-LSTM-QNN model excels, achieving the highest 

TABLE 2  Transformed data levels.

Datapoint transferred Data range normalized

1 If 0–0.25

2 If 0.25–0.5

3 If 0.5–0.75

4 If 0.75–1
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FIGURE 4

Comparative analysis of the accuracy rates in predicting CVD on Dataset-1.

FIGURE 5

Comparative analysis of the sensitivity rates in predicting CVD on Dataset-1.
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accuracy among the compared models. Figure 8 showcases the 
precision performance, indicating higher values, especially at the 
80th and 90th learning percentages. Lastly, Figure 9 presents the 
sensitivity analysis, highlighting the consistently superior 

sensitivity of the proposed model across different 
training percentages.

Table 4 provides a comprehensive performance analysis for the 
prediction of CVD on Dataset 2, with a focus on the TP rate of 90%. 

FIGURE 6

Comparative analysis of the precision rates in predicting CVD on Dataset-1.

TABLE 3  Performance analysis for prediction of CVD of dataset 1 for TP  =  90%.

Metrics Accuracy Sensitivity Specificity Precision F1-
score

MCC NPV FPR FNR

SVM (33) 0.91079 0.915957 0.91079 0.91079 0.91079 0.91079 0.914113 0.08921 0.084043

DBN (34) 0.916754 0.943232 0.921099 0.923449 0.918028 0.91879 0.939337 0.078901 0.056768

RNN (29) 0.863295 0.83929 0.884078 0.864878 0.851892 0.780951 0.861998 0.115922 0.16071

DCNN (6) 0.854458 0.865934 0.852423 0.840533 0.853045 0.724256 0.876004 0.147577 0.134066

7 classifiers (4) 0.944006 0.904322 0.944193 0.94492 0.944902 0.877832 0.90148 0.055807 0.095678

4 ML classifier 

(9)

0.939135 0.938981 0.939321 0.940045 0.940026 0.928548 0.936801 0.060679 0.061019

BiGRU (25) 0.831094 0.834353 0.836954 0.803626 0.818701 0.704706 0.862893 0.163046 0.165647

SMO + HC 

(35)

0.905631 0.917888 0.891647 0.899332 0.908415 0.871494 0.913507 0.108353 0.082112

SSA + HC (30) 0.901581 0.91371 0.887748 0.895251 0.904286 0.868333 0.909493 0.112252 0.08629

DHOA + HC 

(28)

0.896831 0.908896 0.883071 0.890535 0.899522 0.863758 0.904701 0.116929 0.091104

AO + HC (7) 0.94413 0.943851 0.945169 0.948321 0.94577 0.933364 0.94166 0.054831 0.056149

LSTM (32) 0.828358 0.735632 0.961921 0.965309 0.834964 0.689585 0.7164 0.038079 0.264368

QNN (21) 0.9273 0.9461 0.9075 0.9136 0.9295 0.8740 0.9428 0.0924 0.0538

Proposed 

model

0.966922 0.966244 0.967714 0.9603 0.968473 0.963715 0.962534 0.032286 0.033756
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Various metrics, including accuracy, sensitivity, specificity, precision, 
F1-score, MCC, NPV, FPR, and FNR, are reported for a range of 
existing models, as well as the proposed model 
SI + AO + LSTM + QNN + HC. The SI + AO + LSTM + QNN + HC 
model outshines the other models consistently across all metrics, 
achieving an accuracy of 95.55%, sensitivity of 95.87%, specificity of 
94.52%, precision of 96.03%, F1-score of 96.94%, MCC of 93.09%, 
NPV of 94.67%, FPR of 5.48%, and FNR of 4.13%. These superior 
metrics signify the robust predictive capabilities of the proposed 
model, showcasing its effectiveness in comparison to a diverse set of 
existing models across a spectrum of evaluation criteria on 
Dataset-2.

4.4 Convergence analysis

Convergence analysis of the proposed SI-AO-LSTM-QNN, in 
comparison to conventional methods like SMO, SSA, DHOA, AO, 
and SI-AO, is visually presented in Figures  10, 11. The primary 
objective of the adopted methodology revolves around convergence 
analysis, with a specific focus on maximizing accuracy. The analysis 
reveals that heightened convergence is achieved with an increase in 
the iteration count. Given the inverse relationship between accuracy 
and errors, the overarching goal of this research is to attain the 
highest possible detection accuracy, thereby minimizing error rates. 
In Figure  10, which pertains to Dataset-1, the graphical 
representation illustrates superior convergence of the proposed 
work over existing counterparts, with maximal convergence evident 
at the 20th iteration. Likewise, in Figure  11, corresponding to 
Dataset-2, the presented work demonstrates robust convergence, 

surpassing other methods and reinforcing its effectiveness in 
the classification.

4.5 Statistical analysis

Tables 5, 6 provide a comparative statistical analysis of accuracy 
for the proposed SI-AO-LSTM-QNN model against traditional 
schemes on Dataset-1 and Dataset-2, respectively. The stochastic 
nature of the optimization algorithm led to five independent runs, 
and statistical measures such as mean, SD, median, worst, and best 
were recorded for accuracy. In Table 6 for Dataset-1, the proposed 
SI-AO-LSTM-QNN model showcases a superior mean 
performance of 95.23%, outperforming traditional methods. 
Notably, the method exhibits a narrow SD of 1.279, indicating 
consistency across runs. The worst-case scenario is observed at 
93.31%, and the best-case scenario attains an impressive 96.69%. 
In comparison, other traditional methods show varying 
performance levels, with SI-AO-LSTM-QNN consistently 
demonstrating higher accuracy.

4.6 Analysis on features

Tables 7, 8 provide an in-depth analysis of feature performance in 
predicting CVD for Dataset-1 and Dataset-2, respectively. In Dataset-1, 
the proposed feature exhibits superior predictive capabilities with an 
accuracy of 95.59%, outperforming scenarios without FS (94.58%) and 
optimization (94.62%). The proposed feature also excels in key metrics 
such as F1-score, precision, sensitivity, specificity, MCC, NPV, FPR, 

FIGURE 7

Comparative analysis of the accuracy rates in predicting CVD on Dataset-2.
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FIGURE 8

Comparative analysis of the precision rates in predicting CVD on Dataset-2.

FIGURE 9

Comparative analysis of the sensitivity rates in predicting CVD on Dataset-2.
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and FNR, underscoring its effectiveness in enhancing the overall 
predictive accuracy for CVD in Dataset-1. Specifically, the proposed 
feature demonstrates improved sensitivity and NPV, suggesting its 
robust ability to correctly identify positive cases and avoid 
false negatives.

Turning attention to Dataset-2 in Table 8, the proposed feature 
showcases exceptional predictive performance, achieving an accuracy 
of 96.65% compared to scenarios without FS (93.49%) and 
optimization (94.34%). The proposed feature consistently outperforms 
across various metrics, emphasizing its importance in accurate CVD 
prediction. Particularly noteworthy are the high values for precision, 
sensitivity, and F1-score, indicating the ability of the proposed feature 

to correctly classify positive cases and minimize false positives. 
Overall, both tables affirm that the inclusion of the proposed feature, 
with careful selection and optimization, significantly improves the 
predictive accuracy of CVD across different datasets.

5 Conclusion and future work

The conclusion of the paper underscores the significant 
advancements made in the prediction of CVD through the 
development and application of a Hybrid Model that integrates LSTM 

TABLE 4  Performance analysis for prediction of CVD of Dataset 2 for TP  =  90%.

Metrics Accuracy Sensitivity Specificity Precision F1-
score

MCC NPV FPR FNR

SVM (33) 0.903943 0.91079 0.884254 0.916544 0.918485 0.887562 0.898065 0.115746 0.08921

DBN (34) 0.91717 0.925456 0.89554 0.941486 0.937214 0.867554 0.885457 0.10446 0.074544

RNN (29) 0.757692 0.788 0.774623 0.820833 0.804082 0.754632 0.779862 0.225377 0.212

DCNN (6) 0.873491 0.884144 0.812193 0.875556 0.880953 0.782849 0.841727 0.187807 0.115856

7 classifiers (4) 0.907628 0.911215 0.892074 0.914643 0.9168 0.884667 0.905379 0.107926 0.088785

4 ML classifier 

(9)

0.925602 0.929508 0.912176 0.941193 0.939203 0.870667 0.910303 0.087824 0.070492

BiGRU (25) 0.788 0.844286 0.745249 0.815172 0.829474 0.780115 0.758131 0.254751 0.155714

SMO + HC 

(35)

0.918383 0.925771 0.89847 0.92913 0.931322 0.884695 0.912411 0.10153 0.074229

SSA + HC (30) 0.913569 0.920919 0.893732 0.924301 0.926481 0.880019 0.907629 0.106268 0.079081

DHOA + HC 

(28)

0.908756 0.916067 0.888993 0.919472 0.921641 0.875343 0.902847 0.111007 0.083933

AO + HC (7) 0.938558 0.943341 0.921635 0.952722 0.952239 0.888595 0.916232 0.078365 0.056659

LSTM (32) 0.8703 0.8703 0.8703 0.9306 0.8995 0.7206 0.7704 0.1296 0.1296

QNN (21) 0.9079 0.9328 0.862 0.9258 0.9293 0.7973 0.874 0.1379 0.0671

Proposed 

model

0.955479 0.958691 0.945167 0.9603 0.969417 0.930939 0.946673 0.054833 0.041309

FIGURE 10

Convergence analysis for Dataset-1.
FIGURE 11

Convergence analysis for Dataset-2.
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and QNN. This model, optimized by a novel algorithm, demonstrates 
exceptional efficacy in handling complex healthcare data, as evidenced 
by its superior performance metrics over existing models. Notably, the 
model achieves a remarkable 14.05% improvement in accuracy on 
Dataset-1 and a 20.7% enhancement on Dataset-2, with sensitivity 
metrics that outperform a broad spectrum of current models including 
SVM, DBN, RNN, DCNN, BiGRU, SMO, SSA, DHOA, and AO. These 
results not only validate the model’s capability in accurately predicting 
CVD but also highlight its potential to significantly impact future 

healthcare practices by providing more precise and reliable diagnoses. 
Looking forward, the research identifies several areas for potential 
improvement and expansion, such as refining the optimization 
algorithm, further tuning the hybrid model, broader evaluation across 
diverse datasets, exploration of real-time implementation possibilities, 
and incorporation of additional data sources. These directions aim to 
further enhance the model’s accuracy and applicability, contributing 
to the ongoing evolution of predictive healthcare models and 
ultimately, to the advancement of patient care in cardiovascular diseases.
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Introduction: In the evolving healthcare landscape, we aim to integrate

hyperspectral imaging into Hybrid Health Care Units to advance the diagnosis of

medical diseases through the e�ective fusion of cutting-edge technology. The

scarcity of medical hyperspectral data limits the use of hyperspectral imaging in

disease classification.

Methods: Our study innovatively integrates hyperspectral imaging to

characterize tumor tissues across diverse body locations, employing the

Sharpened Cosine Similarity framework for tumor classification and subsequent

healthcare recommendation. The e�ciency of the proposed model is evaluated

using Cohen’s kappa, overall accuracy, and f1-score metrics.

Results: The proposed model demonstrates remarkable e�ciency, with kappa

of 91.76%, an overall accuracy of 95.60%, and an f1-score of 96%. These

metrics indicate superior performance of our proposed model over existing

state-of-the-art methods, even in limited training data.

Conclusion: This study marks a milestone in hybrid healthcare informatics,

improving personalized care and advancing disease classification and

recommendations.

KEYWORDS

hyperspectral imaging classification, Sharpened Cosine Similarity, deep learning, tumor

tissues, Hybrid Health Care

1 Introduction

Our research explores the utilization of hyperspectral imaging (HI) to revolutionize

tumor tissue classification in various body regions, aiming to impact the medical field

significantly. This approach promises to refine diagnostic accuracy and pave the path for

more personalized treatment plans. Taking a step toward the era of highly personalized,

adequate healthcare, our study aims to enhance patient care. The reason HI is utilized

for disease diagnosis is grounded in the understanding that changes in tissue’s optical

properties, stemming from morphological and biochemical alterations during disease
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progression, can be detected (1). For instance, rapid cell division in

malignant cells leads to increased metabolic enzyme levels and the

formation of new vessels through angiogenesis to meet the demand

for nutrients and oxygen (2).

HI capitalizes on these changes to identify lesions and abnormal

tissue without needing histological examination, saving time

and improving treatment efficacy. Biopsy samples, which are

stable and easily obtained from patients, implement scanning HI

feasible. Recent studies have explored correlations between HI

and histological examination results to validate HI as an accurate

disease diagnostic tool. Various tissues, including the breast (3),

liver (4), brain (5), kidney (6), stomach (7), head and neck (8),

and thyroid gland (9), have been investigated, demonstrating HI’s

capability for disease diagnosis. The complexity of HI is addressed

by employing artificial intelligence, which exhibits comparable

diagnostic accuracy compared to histology.

One notable advantage of HI-based disease diagnosis is its

ability to directly examine biopsy tissue during surgery. Unlike

histology, which typically takes hours, HI can analyze tissue

within minutes. This rapid analysis enables real-time assessment of

resection margins to check for residual tumor tissues. In a study,

HI successfully identified breast cancer from excised breast tissue

during surgery with an accuracy exceeding 84% (10). Additionally,

HI has found application in identifying blood cells, showcasing

its potential to delineate abnormal tissue without relying on

biochemical techniques (11). These applications underscore the

capacity of HI to support swift and accurate decision-making in

clinical settings. Our research contributes significantly to the field

in addressing the pressing need for more adaptable and precise

tumor classification in healthcare diagnostics. The following points

outline the key contributions made in this study:

• Versatile tumor classification: introduces a hyperspectral

imaging-based classifier offering location-independent and

adaptable tumor classification, surpassing the limitations of

existing methods.

• Sharpened Cosine Similarity (SCS): SCS is proposed as

an innovative technique within the hyperspectral imaging

classification framework, demonstrating superior precision

and efficiency for tumor classification, especially under limited

training data.

• Empirical evaluation: provides a rigorous empirical

evaluation of the proposed model, substantiating its

superior performance through metrics like Cohen’s kappa,

overall accuracy, and f1-score.

• Hybrid Health Care (HHC) integration: applies hyperspectral

imaging classification within HHC Units, contributing to

personalized and effective medical care solutions with broader

implications for healthcare informatics.

2 Literature review

Traditional imaging techniques like Magnetic Resonance

Imaging (MRI) (12), Computed Tomography (CT) Scans (13),

Positron Emission Tomography (PET) Scans (14), Functional MRI

(fMRI) (15), and Magnetic Resonance Spectroscopy (MRS) (16)

have their own set of challenges in tumor detection (17). While

these methods are indispensable, their specificity to specific tumor

types hinders widespread application. Furthermore, implementing

advanced deep learning algorithms presents scalability and real-

time processing issues in clinical environments (18). Addressing

these limitations, our approach offers a more versatile and

computationally efficient alternative, enhancing its potential for

clinical integration.

Elaborating on existing imaging modalities, MRI stands out

for its high sensitivity (90%–95%) in brain tumor detection but

grapples with the risk of false results and limitations in pinpointing

specific tumor types or smaller lesions (19). CT Scans, utilizing X-

rays, exhibit a sensitivity range of 60%–90% and a specificity of

∼90%. Still, the method is constrained by radiation risks and less

detailed soft tissue imaging (20). PET Scans employing ionizing

radiation show varying sensitivity (70%–90%) and reasonable

specificity (80%–90%), yet are subject to sensitivity limitations due

to tumor characteristics and tracer use (21). fMRI, indicating brain

activity through blood flow, offers high sensitivity (80%–90%) and

specificity in identifying key brain areas but is susceptible tomotion

artifacts and variable interpretation (22). MRS provides a window

into the biochemical makeup of tissues, yielding crucial data

on tumor metabolism and types (23). Each modality contributes

uniquely to tumor diagnosis, balancing specific advantages and

inherent challenges.

Tumors, formed when cells behave abnormally, exhibit a range

of sizes and can emerge anywhere in the body. Genes mutation,

whether inherited, acquired gradually, or induced by substances

like alcohol and tobacco, transform cells into cancerous ones (24).

Growing tumors can invade neighboring tissues, displace normal

cells, and produce enzymes breaking down surrounding tissues.

Local invasion occurs when tumors grow larger, and metastasis

happens when cancer cells spread to other body parts through

blood or lymphatics (25). Classification involves categorizing

tumors broadly by tissue, organ, or system, specifically by type,

grading based on cellular and structural features using the World

Health Organization (WHO) system, and staging using the Tumor

Node Metastasis (TNM) system (26). Solid neoplasms, including

carcinomas, sarcomas, and lymphomas, are classified based on type.

The WHO Classification of Tumors provides detailed insights into

tumor histotypes across various organ systems (27). According to

the WHO system, tumor grading assigns a numerical grade (1–3)

based on cellular differentiation. Staging relies on the TNM system,

considering the presence of distant metastases (M), lymph node

involvement (N), and the size or extension of the primary tumor

(T) (28).

The most common cause of cancer death among children

under the age of 15 and the second fastest-growing cause of

cancer death among those over the age of 65 are brain tumors,

which originate in brain cells and may be benign or malignant

(29). Gene defects, exposure to certain chemicals, and radiation

therapy to the head increase the risk of these tumors (30).

Gliomas, the most common type, form from neural cells, including

astrocytomas and ependymomas (31). Other types, such as brain

stem gliomas, optic nerve gliomas, primitive neuroectodermal

tumors (PNET), medulloblastomas, craniopharyngiomas,
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FIGURE 1

RGB representations of dataset images with PatientID-ImageID codes, delineating approximate tumor areas guided by neurosurgeon expertise and

the IGS system.

and pineal region tumors, pose distinct challenges in terms

of location and characteristics (32). Understanding these

variations is crucial for tailored treatment approaches and

underscores the complexity of brain tumor classification and

detection.

Moreover, Lung carcinoma, or lung cancer (33), results

from genetic mutations in airway cells triggered by factors

like smoking (34). It manifests as non-small-cell lung cancer

(85%) and small-cell lung cancer (15%) (35). Breast cancer

originates from mutated breast cells, often spreading invasively,

with common types being lobular, ductal carcinoma in situ (DCIS),

and invasive ductal carcinoma (IDC) (36, 37). Meningiomas,

arising from brain membranes, may compress nearby tissues,

and their slow growth lacks a defined cause (38). HI stands

poised to revolutionize tumor classification and identification

by capturing unique optical properties associated with different

tumor types (39). HI offers a non-invasive and potentially

rapid method for precise diagnosis, contributing to improved

treatment strategies and patient outcomes in lung, breast, and

meningiomas.

3 Materials and methods

3.1 Dataset

The dataset we used to conduct experiments was initially

collected and published by the In-vivo HS Human Brain database

(40) comprising 36 in-vivo brain surface images from 22 unique

patients. This labeled dataset includes tumor and normal tissue,

blood vessels, and other irrelevant materials within the surgical

scene (referred to as background). Tumor types are differentiated

in the dataset, encompassing primary (grade IV glioblastoma and

grade III and II anaplastic oligodendrogliomas) and secondary

tumors (lung and breast). Additionally, RGB representations of

hyperspectral cubes within the in-vivo hyperspectral human brain

image database are presented in Figure 1. The dataset designates the

approximate tumor area using a yellow line, aiding in identifying

the rubber ring marker corresponding to pathological analyses of

the tumor tissue. Patient ID and Image ID details in Table 1 offer

a comprehensive overview, including image characteristics and the

pathological diagnosis of each image. The total number of labeled

pixels for each class and image is specified, addressing cases where
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TABLE 1 Patient-specific image data and label distribution where “N” refers to “normal” tissue, “T” signifies “tumor tissue,” “BV” represents “blood

vessels,” and “B” denotes the “background.”

Patient ID Image ID Size True labels Diagnosis

N T BV B

004 02 389× 345× 826 ✓ ✗ ✓ ✓ Normal brain

005 01 483× 488× 826 ✓ ✗ ✓ ✓ Renal carcinoma (S)

007 01 582× 400× 826 ✓ ✗ ✓ ✗ Normal brain

008 01 460× 549× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

008 02 480× 553× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

010 03 460× 549× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

012 01 443× 497× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

012 02 445× 498× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

013 01 298× 253× 826 ✓ ✗ ✓ ✓ Lung carcinoma (S)

014 01 317× 244× 826 ✗ ✓ ✓ ✓ Grade IV glioblastoma (P)

015 01 376× 494× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

016 01 376× 494× 826 ✓ ✗ ✓ ✓ Normal brain

016 02 335× 326× 826 ✓ ✗ ✗ ✓ Normal brain

016 03 376× 494× 826 ✓ ✗ ✓ ✓ Normal brain

016 04 383× 297× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

016 05 414× 292× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

017 01 441× 399× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

018 01 479× 462× 826 ✓ ✗ ✓ ✓ Grade I glioblastoma (P)

018 02 510× 434× 826 ✓ ✗ ✓ ✓ Grade I glioblastoma (P)

019 01 601× 535× 826 ✓ ✗ ✓ ✓ Meningioma

020 01 378× 330× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

021 01 452× 334× 826 ✓ ✓ ✓ ✓ Breast carcinoma (S)

021 02 448× 324× 826 ✓ ✓ ✓ ✓ Breast carcinoma (S)

021 05 378× 330× 826 ✓ ✗ ✓ ✓ Breast carcinoma (S)

022 01 597× 527× 826 ✓ ✗ ✓ ✓ Grade III anaplastic

oligodendroglioma (P)

022 02 611× 527× 826 ✓ ✗ ✓ ✓ Grade III anaplastic

oligodendroglioma (P)

022 03 592× 471× 826 ✗ ✓ ✗ ✗ Grade III anaplastic

oligodendroglioma (P)

025 02 473× 403× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

026 02 340× 324× 826 ✓ ✗ ✓ ✗ Normal brain

027 02 493× 476× 826 ✓ ✗ ✓ ✓ Normal brain

028 03 422× 398× 826 ✓ ✗ ✓ ✓ Normal brain

028 04 482× 408× 826 ✗ ✗ ✗ ✓ Lung adenocarcinoma (S)

028 05 482× 390× 826 ✗ ✓ ✗ ✗ Lung adenocarcinoma (S)

029 02 365× 371× 826 ✓ ✗ ✓ ✓ Normal brain

029 04 399× 342× 826 ✗ ✓ ✗ ✓ Grade II anaplastic

oligodendroglioma (P)

030 02 382× 285× 826 ✓ ✗ ✓ ✓ Normal brain
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FIGURE 2

Streamlined tumor diagnosis in hybrid healthcare: a patient-centric approach from initial scan to tailored treatment.

certain images were diagnosed as specific tumor types without

labeled tumor samples due to procedural challenges.

The authors (40) mention the inherent challenges in acquiring

in-vivo HI during neurosurgical procedures; the dataset primarily

captures common tumor types over two years. The customized

hyperspectral acquisition system, a preliminary demonstrator,

is designed to capture tumor images on the surface or in easily

focused deeper layers. The authors utilize a push broom camera

for spatial scanning; the system’s limitations include increased

acquisition time and potential spatial coherence issues due to

patient brain movement and procedural artifacts. As snapshot

cameras offer real-time image acquisition but have fewer spectral

bands than push-broom cameras, future investigations using

high spectral resolution push-broom cameras are warranted. The

dataset creation process by authors (40) addresses challenges

from limited patient availability, presenting a preliminary

database for exploring HI applications in tissue and tumor

identification, tumor boundary delineation, and providing

pertinent information for neurosurgeons. Their methodology

leverages spectral characteristics guided by intraoperative

MRI, surgeon expertise, and pathological analysis results.

Subsequent data acquisition efforts are anticipated to broaden

the database, encompassing more tumor types with detailed

pathological descriptions.

3.2 HHC: AI tumor diagnostics

Our innovative methodology for tumor tissue classification

within an HHC Unit unfolds with the patient’s arrival at the

facility. The initial phase involves a hyperspectral sensor scan,

capturing intricate details of the patient’s internal composition.

This technology provides a comprehensive overview, laying the

foundation for precise diagnosis. Following the hyperspectral scan,

the acquired data undergoes processing through Factor Analysis.

This step is crucial for dimension reduction, ensuring that the

hyperspectral cube retains only relevant features essential for

accurate classification. The processed data then traverses through

the layers of our SCS model. As a breakthrough in tumor

classification, the SCSmodel enhances precision, evenwhen trained

with limited data. This stage is pivotal for predicting and classifying

tumor tissues, contributing to superior performance compared to

existing models.

Once the classification is complete, the results are securely

stored within the hospital’s private records, ensuring data

confidentiality. This stored information becomes a valuable

resource for future reference and analysis. Integrated into

the HHC Unit is a seamless access mechanism through

Healthcare APIs. Healthcare professionals can leverage

these APIs to access detailed reports and results related to

tumor tissues. This integration streamlines the diagnostic

process, providing a user-friendly interface for medical

interpretation.

The final phases of our methodology involve the medical

interpreter within the Healthcare API, aiding healthcare

professionals in interpreting results and making informed

recommendations. These recommendations extend to surgical

interventions and ongoing medical care, all tailored to the specific

classification of tumor tissues and their respective locations.

Figure 2 presents a comprehensive and patient-centric approach

to tumor tissue classification within the HHC Unit. By seamlessly

integrating hyperspectral imaging, Factor Analysis, and the
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innovative SCS model, we aim to revolutionize healthcare

diagnostics and enhance the overall patient experience.

3.3 Proposed Sharpened Cosine Similarity
method

HI represented as X ∈ R
(M×N)×B, where the dimensions

(M × N) correspond to a specific area on the tissue surface and

B denotes the total number of spectral bands in the HI. Each pixel

within X, indicated as xij where i = 1, 2, . . . ,M and j = 1, 2, . . . ,N,

is grouped into C unique tissue types, collectively expressed as

Y = (y1, y2, . . . , yn). Moreover, every xij ∈ X describes a tissue

pixel through a spectral vector xij = [xi,j,1, xi,j,2, . . . , xi,j,B] ∈ X,

containing a series of B spectral data points.

In the initial processing phase, spatial characteristics are

emphasized by implementing a patch extraction method. This

preliminary step involves the creation of a hyperspectral cube, xi,j ∈
R
(s×s)×D, encapsulating the area surrounding the focal pixel (i, j)

over a region of dimensions s × s. This approach is instrumental

in enhancing the model’s ability to distinguish between different

features by integrating spectral and spatial attributes. As such,

the spectral-spatial cubes xi,j, drawn from the primary data and

conforming to the dimensionality R
(s×s)×D, are consolidated into

the dataset X in preparation for subsequent feature extraction

processes. The concluding step involves the selection of training

and testing samples across each distinct class.

In neural networks, the convolution operation involves a

sliding dot product operation, symbolized as w · xij, between

an image patch xij and a filter w, which might miss crucial

information due to its basic similarity measure. Enhancing this

with normalization transforms the operation into cosine similarity,

defined as
w·xij

‖w‖‖xij‖
. This is similar to calculating the cosine of the

angle between vectors, utilizing Euclidean distance.

To address these limitations, Strided Cosine Similarity (SCS)

was developed as expressed in Equation (1). It operates similarly to

convolution but includes key differences. In standard convolution,

the operation is a dot productw·xij, while SCS involves normalizing

the vectors. The normalization in SCS ensures the magnitude of

vectors is unity before the dot product, leading to an expression like
w·xij

‖w+q‖‖xij+q‖ , where q is a small value to avoid numerical instability.

The similarity measure in SCS ranges between –1 and

1, indicating complete opposition or perfect alignment of the

kernel and image patch, respectively. To mitigate the issue of

small magnitudes, which can lead to noise inclusion, additional

parameters are introduced in SCS, formulated as;

SCS(w, xij)=
w · xij

‖w+ q‖‖xij + q‖
(1)

Similar to conventional convolution in deep learning, SCS is

a striding operation that extracts features from an image patch.

However, it includes an additional step of magnitude normalization

before the dot product, leading to what some literature refers

to as Sharpened Cosine normalization. The effectiveness of SCS

surpasses traditional convolutional processes in terms of speed due

to fewer required parameters and the absence of normalization or

activation functions.

In contrast to standard pooling, absolute max-pooling is

employed in SCS for backpropagation filter updates, selecting the

highest magnitude irrespective of the sign. The overall model with

SCS is trained over 50 epochs, a batch size of 256, and a learning

rate of 0.001. The learning rate significantly influences the model’s

learning rate, while momentum aids accuracy and speed. An root

mean square prop andmomentum-based optimizer, specifically the

Adam optimizer, is utilized for its efficiency and computational

advantages.

4 Experiment analysis

This section presents an overview of the evaluation metrics,

baselines SOTA and implementation details.

4.1 Evaluation metrics

The results presented in this study are evaluated using the

following metrics:

Kappa statistic: This statistical measure assesses the level

of agreement between predicted classifications and ground-truth

maps, as defined by Equation (2). In this equation, Ao represents

the observed agreement, calculated using Equation (3), while Ae

denotes the expected agreement, computed using Equation (4).

κ =
Ao − Ae

1− Ae
(2)

where,

Ao =
TP + TN

TP + FN + FP + TN
(3)

and,

Ae =
(

FN + TN

TP + FN + FP + TN
×

FP + TN

TP + FN + FP + TN

)

+
TP + FN

TP + FN + FP + TN

(4)

Here, TP and FP denote true positives and false positives,

respectively, while TN and FN represent true negatives and false

negatives.

Average accuracy (AA): AA signifies the average classification

performance across different classes, as depicted in Equation (5).

AA =
TP + TN

TP + TN + FN
(5)

Overall accuracy (OA): OA is computed as the ratio of correctly

classified examples to the total number of test examples, as defined

by Equation (6).

OA =
1

N

N
∑

i=1

TPi (6)

In the equations above, TP represents true positives, FP

represents false positives, TN represents true negatives, and FN

represents false negatives.
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FIGURE 3

Visualization of validation loss and accuracy for 2D CNN, RNN, LeeNet, Xception and SCS.

4.2 Baseline models

4.2.1 Recurrent Neural Networks
The Recurrent Neural Networks (RNN) architecture (41)

presents a blend of convolutional and fully connected layers within

a Sequential model. Beginning with a Conv2D layer employing a

3 × 3 kernel and ReLU activation, the subsequent MaxPooling2D

layer downsamples the spatial dimensions. Flattening the output

precede a fully connected layer of 100 neurons, integrated with

Batch Normalization and ReLU activation for regularization. With

softmax activation, the final layer tailors the output to fit the

specified number of classes. This design reflects a hybrid approach,

incorporating convolutional operations followed by dense layers,

offering flexibility for various applications in classification tasks.

4.2.2 2-Dimensional Convolution Neural
Network

The 2-Dimensional Convolution Neural Network (2D CNN)

architecture (42) is structured within a Sequential model, featuring

a Conv2D layer with a 3 × 3 kernel and ReLU activation,

applied to input data of shape (window size, window size,

kernel size). Subsequently, a MaxPooling2D layer down-samples

spatial dimensions with a pooling size adjustment option. The

flattened output leads to a fully connected layer with 100 neurons,

supplemented by Batch Normalization and ReLU activation for

regularization. The final layer, employing softmax activation, tailors

the output to match the specified number of classes. This design

reflects a standard 2D convolutional neural network suitable for

diverse classification tasks with image data. Adjustments to the

pooling size provide adaptability based on specific requirements.

4.2.3 LeNet
The LeNet architecture, a seminal convolutional neural

network devised by Yann LeCun in the 1990s, marked

a breakthrough in computer vision (43). Comprising two

convolutional layers with 5 × 5 filters and ReLU activation, each

succeeded by average pooling; the network captures hierarchical

features in the input. The subsequent dense layers, with 120 and

84 neurons, distill high-level representations. The final layer,

employing softmax activation, tailors the output to the number

of classes. LeNet’s simplicity and efficacy laid the foundation for

modern CNNs, influencing subsequent developments in image

classification.

4.2.4 Xception
The Xception architecture (44) is a 2D variant of the

Xception neural network, known for its depth-wise separable

convolutions and exceptional performance in image classification

tasks. The model begins with an entry flow featuring a series of

convolutional layers with batch normalization and ReLU activation.

The residual block 1 introduces separable convolutions, preserving

spatial information efficiently. The middle flow comprises eight

repeated blocks, each containing three separable convolutional

layers, facilitating feature extraction. The exit flow further refines

features with a combination of separable convolutions and residual

connections. The model concludes with a global average pooling

layer and a dense layer with softmax activation, tailoring the

output to the specified number of classes. The Xception architecture

is designed to capture complex hierarchical features in image

data, making it suitable for various image classification tasks.

Adjustments to the number of filters and other parameters can be

made based on specific requirements.

4.3 Implementation details

For our empirical assessment, we utilized in-vivo

HS Human Brain database which is already discussed

in Section 3.1 and accessible on request on this
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TABLE 2 Performance analysis of the SOTA models on each predicted class for di�erent patient IDs and image IDs.

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model

004 02

Normal tissue 0.88 0.86 0.97 0.77 0.96

Tumor tissue – – – – –

Hypervascularized tissue 0.44 0.18 0.26 0.00 0.82

Background 0.54 0.68 0.75 0.00 0.77

005 01

Normal tissue 0.85 0.87 0.95 0.72 0.98

Tumor tissue – – – – –

Hypervascularized tissue 0.50 0.22 0.28 0.10 0.98

Background 0.50 0.63 0.80 0.15 0.86

008 01

Normal tissue 0.82 0.85 0.89 0.82 0.99

Tumor tissue 0.95 0.92 0.98 0.15 1.00

Hypervascularized tissue 0.84 0.81 0.89 0.16 0.99

Background 0.89 0.92 0.96 0.19 1.00

013 01

Normal tissue 0.99 0.89 0.99 0.95 0.99

Tumor tissue – – – – –

Hypervascularized tissue 0.92 0.88 0.95 0.11 1.00

Background 0.94 0.93 0.99 0.15 0.99

018 01

Normal tissue 1.00 1.00 1.00 0.98 1.00

Tumor tissue – – – – –

Hypervascularized tissue 0.98 0.98 0.99 0.18 1.00

Background 1.00 1.00 0.25 0.15 1.00

019 01

Normal tissue 0.97 0.87 1.00 0.91 1.00

Tumor tissue – – – – –

Hypervascularized tissue 0.94 0.31 0.99 0.25 0.99

Background 0.91 0.69 0.99 0.18 1.00

021 01

Normal tissue 0.93 0.26 0.98 0.95 1.00

Tumor tissue 0.71 0.47 0.97 0.35 0.99

Hypervascularized tissue 0.95 0.42 1.00 0.13 1.00

Background 0.98 0.73 0.95 0.23 0.98

022 01

Normal tissue 1.00 0.80 1.00 0.89 1.00

Tumor tissue – – – – –

Hypervascularized tissue 0.95 0.69 1.00 0.19 1.00

Background 0.97 0.81 1.00 0.23 1.00

028 05

Normal tissue – – – – –

Tumor tissue 1.00 1.00 1.00 0.95 1.00

Hypervascularized tissue – – – – –

Background – – – – –

029 04

Normal tissue – – – – –

Tumor tissue 0.98 0.76 0.98 0.86 1.00

Hypervascularized tissue – – – – –

Background 0.99 0.75 0.86 0.12 1.00

The bold values represent the Class-Wise Performance Analysis Based on F1-Score for Different Patient IDs and Image IDs.

Frontiers inMedicine 08 frontiersin.org98

https://doi.org/10.3389/fmed.2024.1385524
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Butt et al. 10.3389/fmed.2024.1385524

TABLE 3 Comparative performance analysis of SOTA at patient and image level for each predicted class.

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model

004 02

Kappa accuracy 49.93 47.66 71.67 30.02 80.53

Overall accuracy 77.00 77.09 85.61 62.86 89.91

Average accuracy 59.23 54.37 67.09 33.33 86.25

F1-score 77 77 86 63 90

Training time (seconds) 10.15 10.35 10.23 226.65 68.92

Testing time (seconds) 0.75 0.78 0.70 4.68 2.04

005 01

Kappa accuracy 58.46 60.51 68.85 29.45 91.98

Overall accuracy 66.77 63.92 70.35 35.25 97.6

Average accuracy 61.66 57.33 67.66 32.33 94.0

F1-score 68 59 70 34 97

Training time (seconds) 39.63 41.60 42.93 254.75 83.45

Testing time (seconds) 1.71 1.95 2.10 5.65 3.12

008 01

Kappa accuracy 84.60 84.0 89.84 31.47 98.45

Overall accuracy 90.10 89.91 95.89 37.35 100.0

Average accuracy 87.50 87.25 93.90 33.45 99.50

F1-score 91 90 95 35 100

Training time (seconds) 8.94 8.42 7.30 154.89 75.2

Testing time (seconds) 1.38 2.91 1.63 2.84 1.73

013 01

Kappa accuracy 92.59 86.6 96.47 39.25 99.45

Overall accuracy 93.97 92.9 98.6 41.79 99.76

Average accuracy 95.16 90.4 97.66 40.33 99.89

F1-score 95 90 98 42 100

Training time (seconds) 5.73 7.94 6.76 107.21 80.72

Testing time (seconds) 0.23 1.71 1.60 2.40 1.65

018 01

Kappa accuracy 99.23 99.51 72.12 41.62 99.71

Overall accuracy 99.61 99.75 76.59 44.82 99.85

Average accuracy 99.11 99.40 74.66 43.66 99.38

F1-score 100 100 76 45 100

Training time (seconds) 36.57 107.21 86.04 352.47 239.37

Testing time (seconds) 1.36 1.60 1.40 4.37 1.83

019 01

Kappa accuracy 93.38 25.45 98.58 41.68 98.95

Overall accuracy 95.88 61.83 99.11 45.23 99.50

Average accuracy 86.93 43.01 98.45 44.66 99.33

F1-score 96 62 99 46 100

Training time (seconds) 17.17 95.1 38.46 537.42 354.81

Testing Time (seconds) 0.59 2.89 1.43 6.85 4.29

021 01

Kappa accuracy 85.12 45.74 97.83 38.61 98.55

Overall accuracy 90.99 48.39 98.91 42.35 99.75

Average accuracy 89.25 45.19 97.56 41.50 99.25

F1-score 90 47 98 41 100

Training time (seconds) 3.47 5.41 38.46 37.42 34.18

Testing time (seconds) 1.54 2.89 1.43 3.85 3.19

(Continued)
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TABLE 3 (Continued)

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model

022 01

Kappa accuracy 97.86 65.68 99.82 43.12 99.80

Overall accuracy 98.92 79.33 99.89 47.98 99.90

Average accuracy 97.33 74.64 99.90 46.66 99.85

F1-score 98 79 100 48 100

Training time (seconds) 11.80 67.98 23.49 335.96 139.54

Testing time (seconds) 0.48 1.54 0.85 3.38 1.24

028 05

Kappa accuracy – – – – –

Overall accuracy 100 100 100 97.42 100

Average accuracy 100 100 100 95.36 100

F1-score 100 100 100 95 100

Training time (seconds) 4.71 6.45 9.08 96.41 43.18

Testing time (seconds) 0.20 0.37 0.53 1.76 0.93

029 04

Kappa accuracy – – – – –

Overall accuracy 98.9 75.8 92.69 50.81 100

Average accuracy 98.3 75.64 91.45 49.05 100

F1-score 99 78 92 50 100

Training time (seconds) 3.91 5.59 5.05 35.55 27.91

Testing time (seconds) 0.40 0.68 0.43 1.86 1.12

The bold values represent the Comparative Performance Analysis of SOTA and SCS Models Across Various Evaluation Metrics.

https://hsibraindatabase.iuma.ulpgc.es/. This experiment used

a Jupyter notebook running on an Intel 11th Gen processor and 32

GB of RAM. For all experiments, the training, validation, and test

samples distribution was set at 15%, 15%, and 70%, respectively.

To ensure an equitable comparison, all models, including the

RNN, 2D CNN, LeeNet, Xception, and proposed SCS models, were

executed simultaneously with a single, randomly chosen set of

samples. The reported results were achieved using a patch size of 3

× 3, and the three most informative bands were identified through

Factor Analysis (FA). Regarding training parameters, the models

began with randomly initialized weights, which were subsequently

optimized via backpropagation using the Adam optimizer and a

softmax loss function. Figure 3 present a detailed analysis of the

validation loss and accuracy for all models under consideration. In

this study, we adhere to this principle by keeping these parameters

uniform across all compared methods, including our SCS pipeline,

within a single execution run.

5 Discussion

In this section, we conduct a twofold comparative analysis

to evaluate the performance of our SCS pipeline for the Hybrid

Healthcare Unit. Firstly, at the patient level, we assess the system’s

efficacy in providing personalized tumor tissue classifications and

treatment recommendations. Subsequently, at the same tumor class

level, we analyze the system’s precision in distinguishing minute

variations within specific classes. These comparative experiments

aim to comprehensively understand the Hybrid Healthcare Unit’s

capabilities, addressing individual patient needs and the challenges

within distinct tumor classes.

5.1 Comparative experiment—Class level

We present a comprehensive performance analysis based on

the F1-Score, comparing SOTA, including 2D CNN, RNN, LeeNet,

Xception, and our proposed SCS across different patients. The

objective of this comparative experiment class level is to evaluate

and compare the performance of these models in accurately

classifying different tissue types in HI as results discussed in

Table 2. Across different patients, our SCS consistently achieves

high accuracy in predicting tissue classes, as presented in the

Table 3. Notably, for Patient IDs 005, 008, 022, 028, and 029, SCS

achieves exceptional accuracy close to or at 100% in classifying

normal tissue, hypervascularized tissue, and background classes.

This demonstrates the model’s robustness in handling diverse

cases. In cases where tumor tissue is present, the SCS model also

successfully achieves accurate predictions comparison with other

models (2D CNN, RNN, LeeNet, and Xception 2D). The model’s

effectiveness in leveraging SCS-enhanced features for accurate

tissue classification irrespective of body location are shown in

classificationmap outputs (Figure 4). These sub-figures correspond

to different tumor tissue types: Normal Brain, Renal Carcinoma,

Lung Carcinoma, Meningioma, and Lung Adenocarcinoma. The

model’s ability to handle various tissue classes and consistent
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FIGURE 4

Output visualization of tumor tissues classification across di�erent body locations.

FIGURE 5

Visualization of evaluation metrics across SCS, RNN, 2D CNN, LeeNet, and Xception.

accuracy across different patients and images highlight its potential

as a valuable tool in medical diagnostics, particularly for tumor

tissue classification.

5.2 Comparative experiment—Patient level

A detailed analysis of the performance of SOTA models

on key metrics, including Kappa Accuracy, Overall Accuracy,

Average Accuracy, F1-Score, Training Time, Testing Time, and

Memory Consumption. Table 3 summarizes the performance

metrics for each patient and their corresponding image IDs

across various tissue classes. From the patient-level experiment,

the SCS model consistently outperformed both models across

multiple performance metrics. For instance, in Patient ID 004,

the SCS model achieved a Kappa Accuracy of 80.53, surpassing

2D CNN (49.93), RNN (47.66), LeeNet (71.67) and Xception

(30.02). Similar trends were observed regarding Overall Accuracy,

Average Accuracy, and F1 score, where the SCS model consistently

demonstrated superior performance across all patient IDs. Notably,

in Patient ID 021, the SCS model achieved a Kappa Accuracy

of 98.55, significantly surpassing 2D CNN (85.12), RNN (45.74),

LeeNet (97.83), and Xception (38.61). SCS model’s ability to

consistently attain high accuracy, coupled with efficient training

times and memory consumption, underscores its potential for

accurate tissue classification in HI data, highlighting its value in

practical medical applications. Although other models such as 2D

CNN, RNN, and LeeNet have less training time, their accuracy is

low compared to the SCSmodel; as we know, in deep learning, there

is a trade-off between speed and accuracy. Figure 5 shows results

underscore the superior performance of the SCS model across
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various metrics, indicating its efficacy in accurately classifying

tissue types in HI data. The consistent out performance of the SCS

model reaffirms its potential to enhance medical diagnostics and

contribute to real-world applications.

6 Conclusion

Our research highlights the pivotal role of HI integrated

with AI in advancing tumor tissue classification with the new

Hybrid Health Care Units landscape. The innovative application

of the Sharpened Cosine Similarity framework has proven highly

effective, achieving remarkable performance metrics of 91.76%

Cohen’s kappa, 95.60% overall accuracy, and 94.29% f1-score.

These results, surpassing current SOTA research even under

limited training data, affirm our proposed model’s robustness and

potential clinical impact. The scarcity of specific hyperspectral

medical data has been acknowledged as a challenge, emphasizing

the need for ongoing efforts to expand and diversify datasets

for further validation and generalization of our approach.

However, the demonstrated superiority of our model in tumor

classification positions it as a valuable tool for enhancing diagnostic

capabilities in medical imaging. Future research could extend

the proposed model by diversifying and expanding hyperspectral

medical datasets for broader validation. Exploring real-time

implementation in clinical settings and investigating additional

AI techniques could enhance predictive capabilities. Furthermore,

exploring broader applications beyond tumor classification, such

as skin conditions, could maximize the model’s utility. These

efforts would advance healthcare informatics, improving diagnostic

accuracy within Hybrid Health Care Units.
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Introduction: Global Cardiovascular disease (CVD) is still one of the leading 
causes of death and requires the enhancement of diagnostic methods for 
the effective detection of early signs and prediction of the disease outcomes. 
The current diagnostic tools are cumbersome and imprecise especially with 
complex diseases, thus emphasizing the incorporation of new machine learning 
applications in differential diagnosis.

Methods: This paper presents a new machine learning approach that uses MICE 
for mitigating missing data, the IQR for handling outliers and SMOTE to address 
first imbalance distance. Additionally, to select optimal features, we introduce 
the Hybrid 2-Tier Grasshopper Optimization with L2 regularization methodology 
which we call GOL2-2T. One of the promising methods to improve the predictive 
modelling is an Adaboost decision fusion (ABDF) ensemble learning algorithm with 
babysitting technique implemented for the hyperparameters tuning. The accuracy, 
recall, and AUC score will be considered as the measures for assessing the model.

Results: On the results, our heart disease prediction model yielded an accuracy of 
83.0%, and a balanced F1 score of 84.0%. The integration of SMOTE, IQR outlier 
detection, MICE, and GOL2-2T feature selection enhances robustness while 
improving the predictive performance. ABDF removed the impurities in the model and 
elaborated its effectiveness, which proved to be high on predicting the heart disease.

Discussion: These findings demonstrate the effectiveness of additional machine 
learning methodologies in medical diagnostics, including early recognition 
improvements and trustworthy tools for clinicians. But yes, the model’s use and 
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extent of work depends on the dataset used for it really. Further work is needed 
to replicate the model across different datasets and samples: as for most models, 
it will be important to see if the results are generalizable to populations that are 
not representative of the patient population that was used for the current study.

KEYWORDS

multivariate imputation by chained equations, synthetic minority over-sampling 
technique, interquartile range, adaptive boosted decision fusion, cardiovascular 
disease and adaboost decision fusion (ABDF)

1 Introduction

Many communities are affected by heart disease, a major global 
health problem that is responsible for many cases of sickness and 
death. There is an increasing need to understand the complexity of 
heart diseases as our understanding of cardiovascular health expands. 
Think about this: someone dies of cardiovascular issues every 37 s in 
America, which highlights the urgency to quell this unseen epidemic 
(American Heart Association, 2022). This mind-boggling figure shows 
how huge numbers of people, families, and societies are affected by 
cardiac diseases (1).

The human heart is one fantastic example of biologically 
engineered machinery that coordinates life’s intricate workings by 
driving vital energy through a network of complex vessels. However, 
repercussions can be disastrous when this symphony gets disrupted. 
Heart problems include conditions like coronary artery disease, heart 
failure, arrhythmias and congenital malformations. Their etiology is 
multifactorial involving genetic predispositions, behavioral factors 
and countless sophisticated biochemical pathways (2). Beyond the 
confines of medical practice, heart diseases contain a rich assortment 
of stories—chronicles of courage, sadness and hope. Every heartbeat 
affects those whose lives are touched by it and every diagnosis carries 
along its own path for each of them which are distinct and personal.

A major global health issue, cardiovascular disease, and 
cardiovascular disorders. Coronary artery disease (CAD), the most 
common, causes narrowing or blockage of the coronary arteries, 
leading to angina or myocardial infarction. Heart failure reduces 
oxygen delivery because the heart cannot pump blood properly. Mild 
exercise causes an abnormal heart rate that can impair circulation. 
Valvular heart disease damages the heart muscles and limits blood 
flow. Cardiomyopathy occurs when the heart muscle contracts or 
stiffens, reducing its ability to carry blood (3).

Poor diet, lack of physical activity, tobacco use, alcohol abuse and 
obesity are major risk factors. Heart disease prevention includes 
healthy eating, exercise, weight control, and smoking cessation. 
Treatment options range from medical to surgical, depending on the 
severity. Routine inspections detect and address them quickly (4). 
Knowing the risk factors and prioritizing cardiovascular health helps 
reduce the impact of cardiovascular disease.

Risk factors for cardiovascular disease include smoking and 
alcohol misuse. Coronary artery disease (5), hypertension, decreased 
oxygen saturation, and accelerated blood clotting are all consequences 
of smoking. Consuming alcohol raises the risk of hypertension, heart 
disease (6, 7), and cholesterol. When smoked and drunk at the same 
time, oxidative stress rises, the immune system is weakened, and 

blood arteries and cholesterol are damaged. Heart disease, particularly 
myocardial, cerebral, and cardiac insufficiency, is greatly increased by 
this lethal combination. It is vital to quit smoking, restrict alcohol 
intake, and maintain cardiovascular health since these habits add up 
to a lot of harm. Although beating addiction could be difficult, the 
rewards in terms of heart health are substantial.

Adaptive enhanced decision fusion is crucial for disease 
prediction, especially in cardiovascular health. Combining numerous 
models and adjusting to changing data patterns enhances early disease 
detection and prediction. The ABDF educates doctors on cardiac 
illnesses to help them choose the best treatments and improve patient 
outcomes. In the complex realm of cardiovascular diseases, its 
versatility allows quick risk assessment and appropriate intervention. 
ABDF is a cutting-edge ensemble learning approach that enhances 
cardiovascular health patient care and predictive analytics.

As data reveals, the cardiovascular problem percentage among 
people in India as diagnosed in the year 2020 is shown in Figure 1, using 
the breakdown by age group. In cardiovascular matters, most often, the 
older age group was seen having more frequent problems than the 
younger age group. The rate of cardiovascular disease found among the 
teenagers of the age group below 19 is about 2.98%, which is comparably 
lower compared to that of the young people of the age group 20–29, 
which registers about 5%. Investigators have been able to ascertain that 
the 45- to 59-year-old population group had an illness rate of 
cardiovascular problems of about 11.9%, while that of the 30- to 
44-year-old group was about 6.28%. At a rate of 18.7%, the above-60-
year-old succession group accounts for the highest prevalence of 
cardiovascular diseases. Given the existence of age disparities, 
policymakers should focus on the development of auxiliary policies, 
early detection, effective healthcare delivery, and educational campaigns 
that will help in the ongoing battle against the rising frequency of 
cardiovascular diseases among the aging population (8–12).

2 Literature review

In 2020, Shah et al. (13) examine data mining and machine learning 
for heart disease prediction. The study stresses the need of precise and 
timely identification of heart disease, a top worldwide mortality. Using 
the enormous Cleveland database of UCI repository, 303 cases and 76 
characteristics are rigorously condensed to 14 important elements. The 
study compares popular algorithms including Naïve Bayes, decision 
tree, K-nearest neighbor (KNN), and random forest for heart disease 
prediction. KNN was the most accurate algorithm, demonstrating 
predictive modeling potential. The finding agrees with earlier research 
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that many algorithms are needed for complete findings. Future data 
mining approaches such time series analysis, clustering, association 
rules, support vector machines, and evolutionary algorithms are 
suggested to improve predicted accuracy. While insightful, the paper 
admits its limits and advocates for further research to improve early and 
accurate heart disease prediction algorithms.

In 2020, Katarya et al. (14) conducted a survey saying that heart 
disease is a global issue with rising treatment expenses, therefore early 
detection is essential. Alcohol, tobacco, and inactivity are essential heart 
disease indicators. The paper recommends using machine learning, 
particularly supervised methods, for healthcare decision-making and 
prediction to address this essential issue. Several algorithms, including 
as ANN, DT, RF, SVM, NB, and KNN, being investigated for heart 
disease prediction. The research summarizes these algorithms’ 
performance to reveal their efficacy. In conclusion, automated 
technologies to anticipate cardiac disease early on help healthcare 
professionals diagnose and empower patients to monitor their health. 
Feature selection is critical, and hybrid grid search and random search 
are suggested for optimization. Search algorithms for feature selection 
and machine learning will improve cardiac disease prediction, leading 
to better healthcare treatments, according to the report.

In 2021, Jindal et al. (15) highlights the increasing number of heart 
diseases and the need for prediction models. The declaration 
acknowledges the challenge of correct diagnosis and promotes machine 
learning techniques for accurate projections. Logistic regression and 
KNN are compared to naive Bayes in the research. The proposed heart 
disease prediction system reduces costs and improves medical care. The 
research also includes a Logistic Regression, Random Forest Classifier, 
and KNN cardiovascular disease detection model. The model’s accuracy 
is 87.5%, up from 85% for previous models. The literature shows that 
the KNN method outperforms other algorithms with an accuracy rate 
of 88.52%. The article claims that machine learning can predict cardiac 
issues more accurately than conventional techniques, improving patient 
care and lowering costs.

In 2019, Gonsalves et  al. (16) uses Machine Learning (ML) 
approaches such as Naïve Bayes (NB), Support Vector Machine 
(SVM), and Decision Tree (DT) to predict Coronary Heart Disease 
(CHD). Coronary heart disease (CHD) is a major cause of death 
around the world, highlighting the need of early detection. The work 
uses historical medical data and three supervised learning approaches 
to discover CHD data correlations to improve prediction precision. 
The summary of the literature acknowledges the complexity of 
medical data and CHD prediction linkages, stressing the challenges of 
existing techniques. The study’s focus on NB, SVM, and DT matches 
existing research techniques, highlighting the availability of disease 
prediction machine learning algorithms. Early screening and 
identification are crucial for patient well-being, resource allocation, 
and preventative interventions, according to the research. The 
discussion of ML model performance, including accuracy, sensitivity, 
specificity, and other characteristics, sheds light on Naive Bayes, 
Support Vector Machines, and Decision Trees. Despite not meeting 
threshold rates, the Naive Bayes (NB) classifier looks to be the best 
option for the dataset. According to the literature review, unsupervised 
learning and data imbalance should be studied in the future. This will 
enhance prediction algorithms and may lead to mobile CHD 
diagnosis apps.

In 2018, Nashif et  al. (17), addresses cardiovascular problems 
across the globe and highlights the necessity to detect and monitor 
them early. The cloud-based heart disease prediction system uses 
powerful machine learning. Interestingly, the Support Vector Machine 
(SVM) method has 97.53% accuracy. Real-time patient monitoring 
using Arduino for data collection is presented in the study, focusing 
on remote healthcare. Comparative evaluations show SVM 
outperforms other models. The abstract concludes with potential 
issues including photoplethysmography-based blood pressure 
monitoring. The literature analysis highlights cloud-based prediction 
and real-time patient monitoring as a solution to PPG-based 
system constraints.

FIGURE 1

Bar graph people with heart issues across India in 2020, by age group (8) (https://www.statista.com).
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In 2023, Bhatt et  al. (18) used Machine learning to create a 
cardiovascular disease prediction model. The study employed 70,000 
Kaggle-downloaded real-world samples. Huang initialization 
improves k-modes clustering classification accuracy. GridSearchCV 
optimizes random forest, decision tree, multilayer perceptron, and 
XGBoost models. With 86.37 to 87.28% accuracy, the models are 
great. Multiple layer perceptron outperforms other models. The study 
adjusts age, blood pressure, and gender to account for heart disease 
progression. Despite promising outcomes, the study had limitations. 
These include employing a single dataset, only considering particular 
clinical and demographic features, and not comparing results to other 
test datasets. More research is needed to overcome these restrictions, 
compare clustering algorithms, test the model on new data, and 
improves interpretability. Machine learning—particularly clustering 
algorithms—can effectively predict cardiac illness and guide focused 
treatment and diagnostic measures.

In 2023, Abood Kadhim et al. (19) examines the growing use of 
artificial intelligence—specifically machine learning—in cardiac 
disease diagnosis and prediction. Support vector machines, random 
forests, and logistic regression are tested on Cleveland Clinic data. 
Research on artificial intelligence in cardiac care is also examined. The 
study found that support vector machines are the most accurate heart 
disease diagnosis tools at 96%. It also presents a 95.4% accurate 
random forest model for cardiac attacks. The findings demonstrate the 
importance of AI in healthcare decision-making and early cardiac 
problem intervention.

Recent researches have stressed the need for global cardiovascular 
disease diagnosis and identification. Several papers in 2020 and 2021 
studied Naïve Bayes, decision tree, K-nearest neighbor (KNN), and 
random forest algorithms using data mining and machine learning 
methods. The primary findings are that K-Nearest Neighbors (KNN) 
may predict heart disease, that supervised machine learning may 
make healthcare decisions, and that logistic regression, KNN, and 
naive Bayes are comparable. These findings show the usefulness of 

predictive models in addressing the rising number of cardiac ailments, 
leading to healthcare technology advances for early identification and 
better patient treatment (Figure 2).

2.1 Motivation

Due to the global the amount of cardiovascular diseases, data 
mining and machine learnnng research on heart disease prediction is 
escalating. Heart disease is the most common cause of mortality 
worldwide. To reduce mortality rates, these medical conditions must 
be accurately and quickly detected. Researchers are studying machine 
learning to improve diagnostic skills since conventional methods 
frequently make inaccurate predictions. These studies aim to enhance 
early diagnosis and treatment. Medical data is complex and risk 
variables change, making machine learning an intriguing method for 
finding meaningful patterns and improving heart disease prediction.

2.2 Research gap

Despite the wealth of knowledge in machine learning approaches 
to heart disease prediction, additional research is needed. Shah et al. 
(13), Katarya et al. (14), Jindal et al. (15), Gonsalves et al. (16), Nashif 
et al. (17), Bhatt et al. (18), and Abood Kadhim et al. (19) all emphasize 
the importance of accurate and early heart disease detection. These 
researches have examined how K-nearest neighbor (KNN), Support 
Vector Machine (SVM), Random Forest, and logistic regression can 
increase predicted accuracy. These attempts are intriguing, but they also 
highlight limits like dataset dependence, feature selection optimization 
issues, and the need for more unsupervised learning research. Address 
data imbalance and real-time patient monitoring equipment concerns. 
Thus, even though machine learning could change cardiac illness 
prediction, more research is needed to improve algorithms, overcome 

FIGURE 2

Machine learning algorithms for heart disease prediction.
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data constraints, and improve cardiovascular health care outcomes. The 
current study lacks detailed algorithm assessments, leaving the best 
technique for exact predictions unknown. There is also insufficient 
research into using advanced data mining methods like time series 
analysis and evolutionary algorithms to better forecast heart illness. 
Overcome these gaps to increase prediction model robustness and 
precision in this critical healthcare sector.

The research’s scope is to create trustworthy and effective 
cardiovascular disease diagnostic tools. Our goal is to reduce heart 
disease deaths and improve heart disease predictions using powerful 
machine learning.

	•	 SMOTE, IQR outlier identification, and MICE are used to solve 
data difficulties in this work. We also introduce Hybrid GOL2-2 T, 
a hybrid feature selection approach.

	•	 It uses L2 regularization and the Grasshopper 
Optimization Algorithm.

	•	 A babysitter algorithm and Adaptive Boosted Decision Fusion 
(ABDF) ensemble learning increase predictive modeling accuracy.

	•	 Our model will be assessed by accuracy, recall, and AUC score.

The main goal of this project is to develop reliable diagnostic tools 
for early diagnosis and treatment of cardiovascular diseases. This can 
help doctors improve patient outcomes and reduce illness.

In the subsequent sections, Section 2 provides a comprehensive 
literature analysis of the corpus of recent publications. The suggested 
methodology is then presented in Section 3. Section 4 offers a 
thorough summary of the results and the discussion that follows. In 
Section 5, prospective avenues for further research are explored and 
the article is summarized with a conclusion.

3 Proposed methodology

For the two-tier Feature Selection Hybrid GOL2-2 T, starting from 
the data pre-processing stage among the partitions, 70% of the data 
partition is allotted for the training set and 30% for the testing set. An 
objective under this category makes it easy to evaluate the performance 
of the models in question based on it deeply. The second to the last step 
is the missing data estimate, which makes use of the Multivariate 
Imputation by Chained Equations (MICE) approach. This, in return, 
ensures the completeness of information from one or many variables. 
In this case, the following techniques were corrected with a deficiency 
of training the model and have high interoperability with the techniques 
of machine learning; Imputation, Data scaling, and Label encoding. 
Inside the method, it has the Inter Quartile Range (IQR) to identify and 
deal with an outlier in an effort to enhance the resilience of the model 
through a reduction in influence that emanates from abnormal data 
points. The major maxim is SMOTE, which a synthetic minority is over-
sampling technique aimed at the problem of class imbalance. The 
technique established a fair representation through the development of 
synthetic minorities, toward the reduction of biases that may associate 
with the general over-representation of the dominant class.

2-tier Feature Selection is based on the L2 Regularization (Ridge) 
(20) along with the Grasshopper Optimization (GOA) method; 
therefore, the proposed Hybrid GOL2-2 T model is going to form a 
2-level model for Feature Selection. It also employs ABDF 
hyperparameters, which have been babysitting algorithm to be fine-
tuned after proper pre-processing of the dataset. Therefore, AdaBoost 
Decision Fusion (ABDF) maximizes the predictive modeling tasks’ 
accuracies by pulling the performance measures out with respect to 
other models for comparison (Figure 3).

FIGURE 3

Heart disease forecasting workflow.
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3.1 Data collection

The 1988 heart disease dataset (21) is an excellent resource for 
studying and forecasting cardiovascular disease prevalence. Age, gender, 
type of chest pain, blood pressure, cholesterol levels, and the presence of 
numerous cardiovascular diseases are among the 14 important factors. 
There is a large variety of ages represented in the dataset, with the 
majority falling between 40 and 60. Of those, 207 are male and 96 are 
female. With a value of 1 for males and 0 for females, the variable “sex” 
is included in the data for each issue as an essential health indicator. 
While we display resting blood pressure (trestbps) and serum cholesterol 
levels (chol) as whole numbers, we categorize chest discomfort as 1, 2, 3, 
or 0. Exang, exercise-induced angina, exercise-induced ST depression 
compared to rest, the slope of the peak exercise ST segment, the number 
of major vessels colored by fluoroscopy, and thalassemia type are some 
other factors that improve the dataset. In order to promote a thorough 
study of cardiovascular health and facilitate the development of reliable 
prediction systems, the “target” property shows whether heart disease is 
present (1) or absent (0) (Figure 4).

3.1.1 Visualizing the attributes of heart disease 
dataset using pair plot

This dataset encompasses six numerical variables: RestingBP, 
Cholesterol, FastingBS, MaxHR, Oldpeak. Two variables are 
distributed in each grid subplot. Variable correlations in the Heart 
Disease dataset are shown in the pair plot. The correlation between 
two variables is displayed in every matrix scatterplot. The level of heart 
disease dictates the color of the dots. Early detection of data patterns 
and trends can be  aided by this. It can reveal whether there are 
commonalities between those who have cardiac disease and those 
who do not.

Histograms show variable distribution, while scatter plots show 
the connection between paired variables. In the upper left subplot, 
RestingBP distribution is presented. The y-axis shows data point 
frequency, and the x-axis shows RestingBP levels. The bottom right 

subplot displays the association between MaxHR and Oldpeak, an 
off-diagonal plot. This subplot shows Oldpeak on the y-axis and 
MaxHR on the x-axis. Examining the pair plot can reveal patterns and 
linkages, such as cholesterol-resting blood pressure correlations. This 
graphical tool simplifies dataset analysis, especially for outliers and 
linear correlations. We  consider non-diagonal scatter plots while 
examining linear relationships. Straight lines between scatter plot dots 
indicate the variables’ direction and strength. Outliers are scatter plot 
data points far from the main cluster. If we  want to use machine 
learning to forecast cardiac disease from patient data, we need to 
understand these tendencies. It might be  necessary to make 
adjustments and do further research on visual representations in order 
to have a better understanding of the dataset (Figure 5).

3.2 Pre-processing

3.2.1 Data cleaning with MICE
Data pretreatment requirements include cleaning the data to 

ensure dataset correctness and completeness and that it is analysis 
or model training ready. Absent data often hurts machine learning 
models. MICE (22) handle missing data thoroughly and statistically 
through Multiple Imputation by Chained Equations shown in 
equation (1). In an iterative process, MICE calculate conditional 
distributions for all variables with missing data using observed 
data and other variable imputations. As iterations continue until 
convergence, the process creates various entire datasets. To 
accommodate for missing value uncertainty, each dataset has its 
own imputations. Multiple Imputation by Chained Equations 
(MICE) works well for non-random missing data patterns in real-
world datasets where observed values may affect missing. It 
evaluates variables and predicts data distributions. The MICE 
technique provides imputations, updates models, and combines 
findings to provide credible imputed datasets. Finalized datasets 
can be  used to train machine-learning models. MICE address 

FIGURE 4

Histograms of numeric columns.
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missing data to improve model performance and assure unbiased 
parameter estimates.

	
y f xji

imputed
i j i∧ = ( )+∈−, 	 (1)

	•	 y ji
imputed∧ shows the value that has been ascribed to the 

absent item.
	•	 f: The missing value is estimated by the function. The data type 

of variable j might affect this function.
	•	 xi j,− : With the exception of variable j, all observed values of the 

variables are represented by the vector in the ith observation.
	•	∈i: Error term

The observed values of all the variables in this context, with the 
exception of variable j in observation i, are stored in the vector xi j,− . 
By using these observed values, the function f is used to estimate the 
missing value. The assumed value’s error word ∈i  denotes any 
inexplicable volatility or unpredictability.

3.2.2 Scaling with label encoder
There are two essential methods for preparing machine 

learning data: label encoding and scaling. To transform 
categorical data into a numerical form, Label Encoding assigns 
unique integer labels to each category. One method for giving 
numerical values to categorical variables is Label Encoding (23). 
With Label Encoding, “Male” and “Female” would be represented 
as 0 and 1, respectively, in a “Gender” column. For algorithms 
that can only take numerical input, this simplifies the usage of 
categorical variables. On the flip side, numerical features can 
be scaled to be uniform in size so that no one characteristic can 
have an outsized impact due to size disparities. Model 
convergence and performance are both enhanced by methods 
Standard Scaling, [shown in equation (2)] which ensure that all 
features contribute equally. A typical preprocessing step involves 
converting categorical characteristics using Label Encoding and 
then scaling numerical features to make their magnitudes 
consistent. Label Encoding and Scaling, when used together; 
make it easy to get datasets ready to be  used in machine 
learning algorithms.

FIGURE 5

Visualizing the attributes of heart disease dataset using pair plot.

TABLE 1  Machine learning algorithms for heart disease prediction.

Algorithm Accuracy rate Citation

SVM 97.53 Nashif et al. (17)

NB 85 Gonsalves et al. (16)

KNN 88.52 Jindal et al. (15)

KNN 90.78 Shah et al. (13)

GridSearchCV + MLP 87.28 Bhatt et al. (18)

Random Search + RF 95.4 Abood Kadhim et al. (19)

110

https://doi.org/10.3389/fmed.2024.1407376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Praveen et al.� 10.3389/fmed.2024.1407376

Frontiers in Medicine 08 frontiersin.org

	
X X
scaled =

− µ
σ 	

(2)

	•	 The initial feature value was X.
	•	 The feature values mean is represented by μ.
	•	 The feature values’ standard deviation is represented by σ.

3.2.3 Handling outliers with IQR
Careful data preparation, including outlier removal, improves 

machine learning model durability. Interquartile Range (IQR) is a 
prominent method for finding and treating dataset outliers. 
Interquartile range (IQR) is the difference between a distribution’s 
third and first quartiles, or 75th and 25th percentiles [shown in 
equation (3)]. Abnormal data points fall below or above the lower and 
higher limits (Q1–1.5 * IQR and Q3 + 1.5 * IQR, respectively) [shown 
in equations (4, 5)]. Outliers might hurt the model’s performance, but 
the IQR-based technique would find and fix them. To minimize 
outliers’ impact on learning, alter them. This reduces model sensitivity 
to unexpected data sets. This is crucial for algorithms that respond fast 
to data distribution changes (Table 1).

The initial stage in IQR-based outlier treatment is splitting the 
sample into quartiles and determining the IQR (24). Outliers can 
be  deleted or altered by comparing them against boundaries. This 
technique emphasizes creating more extensive and reliable datasets to 
improve ML model generalizability and prediction accuracy. The IQR 
outlier control approach must be used to prepare data for future machine 
learning experiments to ensure reliability and efficiency (Figure 6).

	 IQR Q Qoutlier = −3 1	 (3)

	 LowerBound Q IQR= − ∗1 1 5. 	 (4)

	 UpperBound Q IQR= + ∗3 1 5. 	 (5)

3.2.4 Handling imbalanced dataset with SMOTE
To ensure that machine learning algorithms are not biased toward 

the dominant class and hence reduce prediction accuracy, imbalanced 
datasets must be  handled. In order to rectify class imbalance, 
particularly in cases when minority occurrences are underrepresented, 
this system applies the Synthetic Minority Over-sampling Technique 
(SMOTE) (25) [shown in equation (6)]. Class distribution has an 
imbalance with 508 class 1 instances and 410 class 0 instances (shown 
in Table 2 and Figure 7). It would indicate that the 0.8071 imbalance 
ratio is less than the 1  - imbalance_threshold threshold. SMOTE 
manipulates the underrepresented class’s dataset presence by creating 
false instances of it. This is accomplished by building artificial instances 
along line segments that connect instances of minority classes. With a 
more evenly distributed dataset, the model may learn from more 
examples and, perhaps, make better predictions with new data.

Model prediction is improved with SMOTE (26) because it 
decreases class imbalance. When data from minority groups is limited, 
this strategy really shines in terms of model performance. To aid in 

TABLE 2  Before and after applying SMOTE.

Before applying SMOTE After applying SMOTE

Class Count Class Count

0 410 0 508

1 508 1 508

FIGURE 6

Before and after outlier capping by using IQR.
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the management of unbalanced datasets, SMOTE encourages correct 
and equitable predictions across all classes.

	

Imbalanced Ratio IR

The count of occurrences in the major

( )
=

iity class

The count of occurrences in the minority class 	
(6)

3.2.5 Feature selection using hybrid GOL2-2  T
A new hybrid feature selection approach called the Hybrid 

GOL2-2 T, in which L2 regularization is fused with the Grasshopper 
Optimization Algorithm (GOA) (27), is discussed. This solution of 
the metaheuristic attracts a promising subset of the feature set 
through the application of an objective function and global search. 
We  then applied L2 regularization to the selected feature set. 
Majorly, the objective of L2 regularization is to penalize too many 
coefficients, promote sparsity, and preserve only the most useful 
features. Hybrid GOL-2 T combining fine tuning powers from L2 
regularizations with the muscular strength of GOA combined gives 
a dependable feature selection technique. In this respect, models 
that provide predictive classification via two-level approaches 
should have higher classification accuracy and dependability since 
they help in selecting the most relevant characteristics and 
reducing overfitting. As has been correctly pointed out, for these 
reasons, this approach has gained significant acceptance and has 
become an indispensable tool for many machine learning 
applications, like regression and classification tasks.

3.2.6 Grasshopper optimization algorithm
Developed in 2017 by Saremi et  al. (32), the Grasshopper 

Optimization Technique (GOA) is a metaheuristic optimization 
technique inspired by nature. The idea originated from the way 

grasshoppers behaved in unison. GOA has been used to solve a 
variety of optimization problems, including feature selection in the 
context of machine learning. Here is a brief description of how GOA 
works shown in Algorithm 1, complete  with formulas and the 
algorithm itself:

Algorithm 1: Grasshopper Optimization Algorithm (GOA)
Initialize population of grasshoppers (solutions)
Initialize best solution (best_solution)
Initialize number of iterations (iterations)
While (termination criterion is not met)
    For each grasshopper ii
        Calculate social interaction component Sii  shown in 

equation (7)
        Calculate gravity component Gii  shown in equation (8)
        Calculate wind component Aii shown in equation (9)
        Calculate movement of grasshopper ii (xii)
        Update position of grasshopper ii (xii)
        Evaluate objective function for new position ( fitnessii)
        If (( fitnessii) > fitness of best_solution)
            Update best solution (best_solution)
        End If
    End For
    Update number of iterations (iterations)
End While
Return best solution

	
S C

sum x x
Nii
jj ii

= ∗
−( )











	
(7)

	 G g x oii ii= − ∗ −( ) 	 (8)

FIGURE 7

Before and after applying SMOTE.
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	 A U x xii e ii= ∗ −( ) 	 (9)

Where,

	•	 c is a decreasing coefficient that balances the processes of 
exploration and exploitation.

	•	 g is a constant that determines the strength of the gravity 
component is the center of the search space.

	•	 U is a constant that determines the strength of the 
wind component.

	•	 xe is the position of the best solution found so far.
	•	 N is the number of grasshoppers.
	•	 xii and x jj are the positions of the grasshoppers.

The algorithm generates grasshoppers, each representing a 
possible solution. The first grasshopper in the population gets the best 
answer. The algorithm then loops through each grasshopper in the 
population. The application calculates grasshopper social interaction, 
gravity, and wind components. These components steer the 
grasshopper toward the best alternative.

The components calculated in the previous stage are used to 
modify the grasshopper’s movement. The objective function 
measures grasshopper positioning and solution efficacy. A new site 
becomes the ideal option if it outperforms the old one. After 
reaching grasshopper population termination criteria, the technique 
continues iteratively. A maximum number of iterations, a minimum 

fitness value, or any other suitable stopping condition may be used 
for the job. After optimization, the technique returns the ideal 
answer (Figure 8).

3.2.7 L2 regularization
L2, sometimes called ridge regression (28), is a machine learning 

technique used to reduce a model’s complexity by adding a penalty 
term to the loss function. The penalty term is directly correlated with 
the square of the magnitudes of the coefficients, encouraging the 
model to have smaller coefficients and reducing the likelihood of 
overfitting shown in Algorithm 2.

The L2 regularization term is added to the loss function as shown 
in equation (10).

	
Loss MSE alpha sum coefficient= + ( )( )∗

^ 2
	

(10)

Where:
MSE is the mean squared error between the predicted and actual 

values shown in equation (11).
alpha is the regularization parameter (a hyperparameter).
Coefficient is the coefficient of the feature in the model.
The algorithm for L2 regularization can be described as follows:

Algorithm 2:  L2 regularization
Initialize coefficients to small random values
While (termination criterion is not met)

FIGURE 8

Feature selection flow chart for Grasshopper optimization algorithm.
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    Calculate MSE using the current values of the coefficients by 
using equation (11)

    Calculate sum of squared coefficients by using equation (12)
    Calculate regularized loss function as the sum of the MSE and 

the regularization term (alpha * sum of squared coefficients)
    Update coefficients to minimize the regularized loss function
End While
Return the optimized coefficients

	
Mean Squared Error MSE( ) = −( )

=
∑1

1

2

n
y y

ii

n
ii ii

ι

	
(11)

	
Sum of squared coefficients SSC( ) =

=
∑
jj

p

jj
1

2θ
	

(12)

Where,

	•	 p is the number of coefficients.
	•	 yii as the data point’s observed value ii
	•	 yiiι  as the anticipated value for data point ii.

The L2 regularization approach may be used to a wide range of 
models due to its computational efficiency. To achieve the optimal 
balance between bias and variance, the regularization 
hyperparameter alpha has to be changed. Features that are more 
effective at lowering the Mean Squared Error (MSE) are chosen 
when L2 regularization reduces the size of the model’s coefficients. 
L2 regularization may be used as a feature selection method by 
selecting only those features in the model that have coefficients 
greater than zero (Figure 9).

3.3 Hyperparameter tuning using 
babysitting algorithm

The babysitting Algorithm (BA) (29) in AdaBoost (30) decision 
fusion manually evaluates the model’s performance after iteratively 
modifying the hyperparameters. Setting hyperparameters, 

constructing a table, separating the dataset into training, validation, 
and testing sets, and progressively experimenting with different 
combinations are the steps. For each combination, an AdaBoost 
classifier is trained on the training set and assessed on the validation 
set using a performance metric. The hyperparameter table is updated 
when the trial number, hyperparameters, and performance measure 
change. Select the hyperparameters with the best validation set 
outcomes after all trials. The training and validation sets are utilized 
to train a new AdaBoost classifier using the optimum hyperparameters. 
For an impartial evaluation, the finished model is tested on the testing 
set shown in Algorithm 3.

Algorithm 3:  Hyperparameter Tuning Babysitting on 
AdaBoost Decision Fusion

// Initialize hyperparameters and performance metric
InitializeHyperparameters()
// Initialize the hyperparameter table
InitializeHyperparameterTable()
// Main loop for hyperparameter tuning
while (stopping criterion not met) do
    // Iterate through hyperparameter combinations
    for each hyperparameter combination do
        // Train AdaBoost classifier with current hyperparameters
        model = 

TrainAdaBoostClassifier(current_hyperparameters)
        // Evaluate the model's performance on the validation set
        performance_metric = EvaluateModelPerformance(model, 

validation_set)
        // Update hyperparameter table with current hyperparameters 

and performance metric
        UpdateHyperparameterTable(current_hyperparameters, 

performance_metric)
    end for
    // Select best hyperparameters based on the highest 

performance metric
    best_hyperparameters = SelectBestHyperparameters()
    // Train AdaBoost classifier with the best hyperparameters on 

the combined training and validation sets
    best_model = TrainAdaBoostClassifier(best_hyperparameters, 

combined_training_validation_set)

FIGURE 9

Feature selection flow chart for L2 regularization.
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TABLE 4  Selected Features with Scores using L2 regularization.

Feature Score

cp 0.051832

oldpeak 0.047056

ca 0.037252

thalach 0.007355

trestbps 0.002556

    // Evaluate the final model on the testing set
    final_performance_metric = EvaluateModelPerformance(best_

model, testing_set)
    // Update stopping criterion based on convergence or 

maximum iterations
    UpdateStoppingCriterion()
end while

3.4 Model building for heart failure 
prediction

3.4.1 Ensemble technique with adaptive boosted 
decision fusion

“Adaptive Boosted Decision Fusion (31) is an advanced ensemble 
learning algorithm that effectively combines the principles of 
Adaptive Boosting (AdaBoost) and Decision Fusion.” To prioritize 
instances that are harder to classify, this innovative approach has the 
algorithm adaptively changing the weights [shown in equation (13)] 
given to less effective learners. When combined with decision fusion, 
ABDF sequential training method for weak models allows for the 
efficient integration of results from many decision-makers [shown in 
equations (14–18)]. The ultimate result is a very accurate and reliable 
prediction model that is both adaptable and resilient. One way to 
make the ensemble better is via adaptive boosted decision fusion, 
which uses iterative refinement and smartly gives different learners 
different weights depending on how well they do. When it’s critical 
to combine multiple decision-making viewpoints to get superior 
predicted outcomes, this method shines.

Input:
Training dataset: D ux uy ux uy ux uyn n= ( )( ) …… ( ){ }1 1 2 2, , , , , .

Where uxi the feature is vector and uyi is the corresponding label.
Number of weak learners: UT
Initialization:

1. Initialize instance weights : , , .uw
n
for i ni = = ……

1
1 2 3 	 (13)

2. Initialize an empty ensemble of weak learners.

	 For each iteration : , , . :ut UT= ……1 2 3 	 (14)

3. Train a weak learner uht  using the current instance weights.

	

i.Compute the error of the weak learner :

. | (∈ =
=
∑t
i

n
i tuw uh u

1

xx uyi i( ) ≠
	

(15)

where ꟾ(.) is the indicator function.

	

ii.Compute the learner weight :

ln

αt
t

t

=
−∈
∈











1

2
1

	

(16)

	

iii. Update instance weights :

, , . , .exp .for i n uw uwi i t= …… ← −1 2 3 α uuy uh uxi t i. ( )( ) 	(17)

	

Normalize weights :uw uw

uw
i

i

i
n

i
←

=∑ 1 	

(18)

iv Add the weak learner uht  to the ensemble with weightαt.
Output:

	 Ensemble of weak learners , , , , ,: α α α1 1 2 2uh uh uhT UT( )( ) ( ){ }…… 	(19)

Predictions:

	

For a new instance the final prediction is given byux

H ux

, :

si( ) = nn(

ut

UT
t ux

=
∑ ( )

1

α
	
(20)

This method combines the best features of AdaBoost and Decision 
Fusion in a way that strengthens the ensemble (26), making it better 
at handling misclassifications and making accurate predictions. A 
long-lasting ensemble model that frequently outperforms individual 
models is produced by ABDF iterative method of correcting errors of 
weak models [shown in equation (19)]. Classification problems, such 
as the prediction [shown in equation (20)] of cardiac illness, frequently 
use ABDF. It finds usage in a variety of domains due to its flexibility 
in accommodating varied poor learners (Tables 3, 4).

4 Result and discussion

4.1 Performance assessments

4.1.1 Feature selection outcome using GOL2-2 T
The Grasshopper Optimization Algorithm (GOA) (32) 

identified heart disease predictors. This method found critical 
characteristics like chest pain type (cp), resting blood pressure 
(trestbps), serum cholesterol (chol), maximum heart rate (thalach), 

TABLE 3  Selected features with scores using GOA.

Features Score

cp 0.047363

trestbps 0.002171

chol 0.000873

thalach 0.007371

oldpeak 0.047905

ca 0.03526
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ST depression caused by exercise compared to rest (oldpeak), and 
the number of main vessels colored by fluoroscopy (ca). High 
scores showed relevancy. The prediction model ranked attributes 
by score. Next, we  used ridge regression, also known as L2 
regularization, to enhance feature selection. Revised features 
included oldpeak, thalach, ca, trestbps, and cp. Revaluating 
characteristics using L2 regularization yielded scores that 
accurately represent their value in heart disease prediction. 
Comparing the two feature selection approaches shows 
convergence in the selected qualities, suggesting they may 

be  essential for heart disease identification. However, slight 
discrepancies in feature significance showed that GOA and L2 
regularization use different techniques and criteria. We need more 
study to evaluate the predictive modeling of the upgraded features 
and the implications for heart disease diagnostics (Figures 10, 11).

4.1.2 Hyperparameter tuning outcome using 
babysitting algorithm on ABDF

The AdaBoost Decision Fusion model’s hyperparameters were 
optimized by a two-pronged approach involving tuning the 

FIGURE 10

A line graph denoting selected features with scores using GOA.

FIGURE 11

A bar graph denoting selected features with scores using L2 regularization.
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n_estimators and learning rate with the help of the Babysitting 
Algorithm (see in Table 5). A narrow range of the search space for 
n_estimators, which was from 50 to 200, and a more broad range 
of the learning rate, which was from 0.5 to 1, was seen. The 
hyperparameter optimization was made through a number of runs 
by substituting various combinations of parameters for n_
estimators and learning_rate (see in Table 6 and Figure 12). The 
data obtained from the ABDF model showed deviation across the 
many attempts conducted in the experiment; Trial No. 8 gave 8 as 
the most accurate results, their accuracy being 83.00%. The 

FIGURE 12

A dotted line graph denoting ABDF hyperparameters with babysitting.

TABLE 7  IQR outlier detection ABDF performance metrics.

IQR outlier detection with ABDF results

Metrics Values

Accuracy 0.83

Precision 0.84

Recall 0.85

f1_score 0.84

AUC Score 0.89

TABLE 5  AdaBoost decision fusion model hyperparameters tuning summary.

Models used Hyperparameters tuning 
algorithm

Hyperparameters Search Space

AdaBoost decision Fusion Babysitting n_estimators 50–200

learning_rate 0.5–1

TABLE 6  AdaBoost decision fusion hyperparameters with babysitting.

Trial no. Accuracy n_estimators learning_rate

0 0.802 50 0.1

1 0.82 50 0.5

2 0.812 50 1

3 80.00 100 0.1

4 0.822 100 0.5

5 0.804 100 1

6 0.819 200 0.1

7 0.79 200 0.5

8 83.00 200 1
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crucial aspiration of this process was the attainment of an optimal 
accuracy and robustness model for the ABDF model, specifically 
as it concerned the given task.

4.2 IQR outlier detection with ABDF

Heart disease may be  reliably predicted using the ABDF 
method and the IQR outlier preprocessing strategy. The model 

achieves an 83% accuracy rate in instance categorization and an 
84% success rate in accurately anticipating predicted positives (see 
in Table 7 and Figure 13). The model correctly identifies a large 
number of positive examples, as evidenced by its impressive recall 
score of 85%. An F1 Score of 84% (a measure of both recall and 
accuracy) indicates that the model is performing well. With an 
Area Under the Curve (AUC) score of 89% (see in Figure 14), the 
model clearly can differentiate between positive and negative 
occurrences. Based on these metrics, it appears that preprocessing 

FIGURE 13

Bar graph shows IQR outlier detection with ABDF performance metrics.

FIGURE 14

ROC for IQR outlier detection with ABDF.
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TABLE 8  Comparison of proposed method and other methods on heart disease dataset.

Algorithm Accuracy Precision Recall f1_score

Classification tree (33) 77.0 79.0 79.0 79.0

ANN (17) 77.39 78.30 77.40 76.90

NB (34) 81.25 57.89 73.33 32.35

Proposed method 83.0 84.0 85.0 84.0

FIGURE 15

Line graph for comparison of proposed method and other methods on heart disease dataset.

FIGURE 16

Bar graph for comparison of proposed method and other methods on heart disease dataset.
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using ABDF and IQR improves the accuracy, precision, recall, and 
overall predictive performance of models used to forecast cardiac 
diseases. According to its reliable performance, the model may 
be  relied on by healthcare providers to aid in the rapid 
identification and treatment for people at risk of heart disease.

4.2.1 Comparison of proposed method and other 
methods on heart disease dataset

In Table  8, multiple approaches are used to a heart disease 
dataset to assess accuracy, precision, recall, and F1-score. The 
suggested technique outperforms the others with 83.0% accuracy. 
This shows that it locates dataset instances properly. This method 
outperforms the Classification Tree and Artificial Neural Network 
(ANN) methods in classification testing. The new approach 
outperforms previous methods in accuracy, recall, and F1-score. 
Its great overall performance is due to its balanced trade-off 
between precisely recognizing positive examples (precision) and 
capturing all positive occurrences (recall).

The Naive Bayes (NB) technique exceeds the suggested method 
in accuracy (81.25%) but much worse in precision, recall, and 
F1-score. More particular, the NB technique has poorer precision 
and F1-score than the suggested strategy, suggesting more false 
positives and a worse accuracy-recall trade-off. The findings 
suggest that the proposed technique balances accuracy and 
precision-recall, making it suitable for heart illness classification 
(see in Figures 15, 16). The comparison research also emphasizes 
the need of choosing the right technique for favorable performance 
indicators. This scenario shows that the recommended strategy is 
better than the present options.

5 Discussions

Our work presents an 83% reliable machine learning heart disease 
prediction approach. We used cutting-edge methods like SMOTE, IQR 
outlier detection, MICE, and GOL2-2 T, a hybrid feature selection 
technique, to improve predictive accuracy and robustness. Combining 
these techniques improved feature selection and model performance, 
according to our findings. Our heart disease patient identification 
approach is very accurate. These results demonstrate the need of using 
cutting-edge machine learning algorithms in medicine to identify and 
cure diseases early.

Our findings may help doctors predict cardiac disease, 
improving patient care and intervention. Our accurate diagnostic 
equipment may enhance patient outcomes and minimize 
cardiovascular disease mortality. However, our research has some 
drawbacks. Our hopeful results are limited to a dataset and may 
not apply to other patient populations or healthcare situations. 
Data quality and feature selection criteria may also affect our 
model’s performance.

We urge additional research to corroborate our results across a 
variety of datasets and populations. Using additional machine 
learning methods (35–40) and domain-specific information may 
improve the model’s interpretability and prediction accuracy. To 
evaluate the long-term effects of early cardiac disease identification 
on patient outcomes, longitudinal studies are needed. In conclusion, 
our results emphasize the necessity for ongoing study to develop 
cardiovascular prediction analytics.

6 Conclusion and future scope

In conclusion, our study met the urgent demand for precise and 
effective cardiovascular disease prognostic diagnostic tools. MICE, 
IQR outlier detection, SMOTE, and Adaptive Boosted Decision 
Fusion (ABDF) were used to improve heart disease prediction 
models’ precision and reliability. The Hybrid GOL2-2 T feature 
selection technique has enhanced our process by discovering 
important features and decreasing overfitting.

We solved class imbalance, missing data, and outlier identification 
to create a model that outperforms previous methods. The accuracy 
rate of 83.0% and balanced F1 score of 84.0% of our heart disease 
prediction method were impressive. The accuracy, recall, and AUC 
score demonstrate the validity and applicability of our methods. Our 
findings show that powerful machine learning techniques must 
be  used in healthcare to produce reliable cardiovascular disease 
diagnosis tools. The study gives doctors tools for early diagnosis and 
effective treatment of cardiovascular disease risk.

Future study may improve prediction models and examine 
additional factors to improve diagnostic precision.
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Timely and unbiased evaluation of Autism Spectrum Disorder (ASD) is essential 
for providing lasting benefits to affected individuals. However, conventional 
ASD assessment heavily relies on subjective criteria, lacking objectivity. 
Recent advancements propose the integration of modern processes, 
including artificial intelligence-based eye-tracking technology, for early ASD 
assessment. Nonetheless, the current diagnostic procedures for ASD often 
involve specialized investigations that are both time-consuming and costly, 
heavily reliant on the proficiency of specialists and employed techniques. To 
address the pressing need for prompt, efficient, and precise ASD diagnosis, 
an exploration of sophisticated intelligent techniques capable of automating 
disease categorization was presented. This study has utilized a freely accessible 
dataset comprising 547 eye-tracking systems that can be used to scan 
pathways obtained from 328 characteristically emerging children and 219 
children with autism. To counter overfitting, state-of-the-art image resampling 
approaches to expand the training dataset were employed. Leveraging deep 
learning algorithms, specifically MobileNet, VGG19, DenseNet169, and a hybrid 
of MobileNet-VGG19, automated classifiers, that hold promise for enhancing 
diagnostic precision and effectiveness, was developed. The MobileNet model 
demonstrated superior performance compared to existing systems, achieving an 
impressive accuracy of 100%, while the VGG19 model achieved 92% accuracy. 
These findings demonstrate the potential of eye-tracking data to aid physicians 
in efficiently and accurately screening for autism. Moreover, the reported results 
suggest that deep learning approaches outperform existing event detection 
algorithms, achieving a similar level of accuracy as manual coding. Users and 
healthcare professionals can utilize these classifiers to enhance the accuracy 
rate of ASD diagnosis. The development of these automated classifiers based on 
deep learning algorithms holds promise for enhancing the diagnostic precision 
and effectiveness of ASD assessment, addressing the pressing need for prompt, 
efficient, and precise ASD diagnosis.
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autism spectrum disorder, eye tracking, deep leaning, VGG19, MobileNet, 
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1 Introduction

Autism Spectrum Disorder (ASD) is a neurological condition that 
involves complications in both spoken and non-spoken 
communication, as well as challenges in social interaction. It is also 
marked by monotonous and stereotyped behaviors (1). The intensity 
of indicators and the impact of ASD differ from one circumstance to 
another. As to the Centers for Disease Control and Prevention (CDC), 
the commonness of ASD is assessed to be  1  in 54 children. This 
condition affects individuals from diverse racial, ethnic, and 
socioeconomic backgrounds. Furthermore, the prevalence of ASD in 
boys is four times higher than in girls. Additionally, girls with ASD 
often have fewer observable symptoms compared to boys (2). Autism 
is a persistent and enduring condition that remains present throughout 
a person’s whole life (3). Hence, it is of utmost importance to identify 
ASD at an early stage, since individuals who are identified with ASD 
during early infancy can greatly benefit from suitable therapies, 
leading to a favorable long-term result (4).

Facial expressions communicate a wealth of personal, emotional, 
and social information from early infancy. Even in a short interaction, 
people may effortlessly focus on and rapidly comprehend the intricate 
details of a person’s face, accurately identifying their emotional state 
and social situation, and frequently recalling their face later (5). 
Neuroimaging research has indicated that eye interaction can 
stimulate brain movement in parts of the brain associated with social 
interactions. Additionally, studies on human development have 
provided evidence that infants and young children have a natural 
inclination to pay attention to and comprehend faces that make direct 
eye contact. Increasing evidence suggests that ASD is related with an 
aberrant design pattern of eye tracking conduct (6, 7). Therefore, it is 
widely accepted that autism is characterized by impairments in facial 
handling. Nevertheless, the precise attributes of these discrepancies 
and the correlations among atypical face processing and deviant socio-
emotional function in ASD remain inadequately comprehended.

Eye tracking, a non-invasive and straightforward measurement 
technique, has garnered the attention of scientists in recent years 
(8–11). The use of eye tracking in ASD research is justified by the 
correlation between ASD and different attention patterns, which differ 
from those seen in typical development (12–15). Hence, the use of eye 
tracking based system to quantify eye activities and gaze designs 
should assist in understanding the aberrant behavior associated with 
persons diagnosed with ASD, as well as distinguishing individuals 
with ASD from typically developing (TD) individuals. Eye tracking is 
a method used by certain computational systems to aid in the 
identification of mental problems (16, 17). Eye tracking technology is 
beneficial in addressing ASD, a neurodevelopmental disease marked 
by challenges in social communication and repetitive activities. An 
early indication of ASD is the absence of visual engagement, namely 
the lack of eye contact. This trait is seen in infants as early as six 
months old, irrespective of the cultural context in which they are 
raised. Eye-tracking technology is essential in diagnosing ASD 
through the analysis of visual patterns (18). A device based on 
eye-tracking framework classically comprises a high-determination 
digital camera device and a sophisticated technique based machine 
learning algorithm that accurately determines the coordinates of eye 
gaze when persons watch films or pictures. This technology’s eye gaze 
data may help customize therapy to ASD patients’ social issues (19). 
To further understand how eye-tracking biomarkers might 

discriminate ASD subgroups, we should explore the effects of closely 
related mental illnesses such as attention deficit hyperactivity disorder 
(ADHD), nervousness, and attitude complaint. We  may better 
understand how these variables may affect our ability to distinguish 
different groups in a medical setting by doing this. Research indicates 
that children who having the cases of Autism ASD and ADHD tend 
to have shorter periods of focused attention on faces while looking at 
static social cues that are not very complex, compared to children who 
simply have ASD and those with TD (20).

Research has shown that eye-tracking data can be  utilized as 
medical indicators that can be applied in medical health domain to 
identify ASD in children at an initial state (18). Biomarkers, sometimes 
referred to as biological markers, are quantifiable and impartial signs 
that offer insights around a patient’s apparent organic state. Bodily 
fluids or soft tissue biopsies are frequently employed to assess the 
efficacy of handling for a disease or medicinal disorder.

A crucial element of social interaction is maintaining eye contact, 
a skill that individuals with ASD often find challenging. Eye tracking 
technology may be applied to measure the length of time someone 
maintains eye interaction and the occurrence and track of their eye 
movements. This provides measurable signs of difficulties in social 
interactions. Individuals with ASD may also exhibit other irregularities 
in pictorial processing, including heightened focus on specific details, 
sensory hypersensitivity, and difficulties with complex visual tasks. 
Hence, the sophisticated deep learning algorithms, namely MobileNet, 
VGG19, DenseNet169, and the hybrid of MobileNet-VGG19, were 
applied for the early-stage recognition of ASD. The primary 
contributions of this research article are as follows:

	•	 This work introduces a new method for creating eye-tracking 
event detectors using a deep learning methodology.

	•	 The research asserts that it has attained accuracy (100%) in 
identifying ASD by employing the MobileNet algorithm. This 
indicates that the DenseNet169 and hybrid of MobileNet-VGG19 
model that was created has demonstrated encouraging outcomes 
in accurately differentiating persons with ASD from those who 
do not have ASD, using eye tracking data.

	•	 The proposed methodology was compared with different existing 
systems that used the same dataset; it is observed that our model 
achieved high accuracy because we  have used a different 
preprocessing approach from improving dataset.

	•	 This work presents an innovative artificial intelligence (AI) 
technique for the diagnosis of ASD. Its objective is to differentiate 
persons with autism from those without utilizing deep learning 
models, relying on publicly accessible eye-tracking datasets. The 
suggested approach was evaluated against other existing systems 
that utilized the same dataset. It was found that the proposed 
system achieved a high accuracy rate of 100% when compared to 
one of the deep learning models.

2 Background

ASD can be detected by early screening techniques utilizing DL 
algorithms. These approaches have become more prominent because 
of their accuracy rate and capability to grip large volumes of data. It 
assists experts in automating the diagnostic procedure and reducing 
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the time spent on tests (21, 22). AI techniques are used in the 
rehabilitation process to lessen symptoms of ASD. This research 
analyzes the utilization of DL approaches in the past five years for 
diagnosing ASD through the application of eye tracking techniques.

Fang et al. (23) introduced a novel method for identifying children 
with ASD based on stimuli that include the ability to follow someone’s 
gaze. Individuals with ASD exhibited typical patterns of visual 
attention, especially while observing social settings. The scientists 
developed a novel deep neural network (DNN) method to abstract 
distinctive characteristics and categorize children with ASD and 
healthy controls based on individual images.

Elbattah et al. (24) developed a machine learning (ML)-based 
approach to aid in the diagnosing process. This approach relies on 
acquiring knowledge of sequence-oriented patterns in action eye 
motions. The primary philosophy was to represent eye-tracking data 
as written documents that analyze a sequence of rapid eye movements 
(saccades) and periods of gaze fixation. Therefore, the study utilized 
the natural language processing (NLP) technique to transform the 
unorganized eye-tracking information.

Li et al. (25) introduced an automated evaluation framework for 
detecting typical intonation patterns and predictable unique phrases 
that are important to ASD. Their focus was on the linguistic and 
communication difficulties experienced by young children with 
ASD. At first, the scientists utilized the Open SMILE toolkit to extract 
high-dimensional auditory characteristics at the sound level. They also 
employed a support vector machine (SVM) backend as the standard 
baseline. Furthermore, the researchers suggested many DNN 
arrangements and structures for representing a shared prosody label 
derived directly from the audio spectrogram after the constant 
Q transform.

Identification and intervention for ASD have enduring effects on 
both ASD children as well as their families, necessitating informative, 
medical, social, and economic assistance to enhance their overall well-
being. Professionals have problems in conducting ASD assessments 
due to the absence of recognized biophysiological diagnostic 
techniques (25, 26). Therefore, the diagnosis is often determined by a 
thorough evaluation of behavior, using reliable and valid standardized 
techniques such as the Autism Diagnostic Observation Schedule 
(ADOS) (27) and the Autism Diagnostic Interview-Revised (ADI-R) 
(28). These tools, widely approved in investigation and research 
domains, are considered the most reliable method for diagnosing ASD 
in medical situations (29, 30). However, using them involves the use 
of many materials, a significant amount of time, and is somewhat 
expensive (25, 26). Furthermore, the diagnostic technique necessitates 
the involvement of skilled and knowledgeable interviewers, who have 
the potential to influence the process. This is accompanied by the 
inclusion of intricate clinical procedures (25, 31). Collectively, these 
difficulties frequently contribute to a postponed identification, leading 
to a delay in the initiation of early intervention (26). Research indicates 
that early treatments for children with ASD before the age of five result 
in a much higher success rate of 67%, compared to a success rate of 
just 11% when interventions begin after the age of 5 (32).

Eye-tracking technology is regarded as a beneficial method for 
doing research on ASD since it allows for the early detection of autism 
and its characteristics (33, 34) in a more objective and dependable 
manner compared to traditional assessments (35). There has been a 
significant rise in the amount of eye-tracking research focused on 
autism in the past period. This increase can be attributed to improved 

accessibility to eye-tracking technology and the development of 
specialized devices and software that make recording eye-tracking 
data easier and more cost-effective.

Machine learning and eye-tracking devices are often used 
together. Data-driven machine learning uses sophisticated 
mathematics learning, statistical estimates, and information theories 
(36, 37). This method trains a computer program to examine data 
and find statistical trends (36–39). Machine learning may improve 
autism investigation studies by giving an unbiased and 
reproduceable second evaluation (18), including initial autism 
detection (40), analysis (41), behavior (16), and brain activity (17). 
Machine learning may also be a viable biomarker-based tool for 
objective ASD diagnosis (42). ASD is diagnosed via machine 
learning in IoT systems (43). By helping ASD youngsters learn, 
assistive technology may improve their lives. This method is backed 
by studies (44).

Various studies have utilized artificial neural network (ANN) to 
classify cases of ASD. For example, in ref. (18), the authors investigated 
the integration of eye-tracking technologies with ANN to assist in the 
detection of ASD. Initially, other approaches that did not use neural 
networks were used. The precision achieved by this ensemble of 
models was adequate. Subsequently, the model underwent testing 
using several ANN structures. According to the results, the model 
with a single layer of 200 neurons achieves the maximum level of 
accuracy. In ref. (45), researchers examined ASD children’s visual 
attention when observing human faces. They extract semantic 
characteristics using DNN. When viewing human faces, ASD feature 
maps differ from those without ASD. These feature maps are combined 
with CASNet features. They contrasted CASNet to six different deep 
learning based techniques. CASNet has outdone all other models in 
every situation. The scientists used eye movement patterns to classify 
children with TD and ASD (46). They combined CNNs with LSTMs. 
CNN-LSTM extracted features from saliency maps and scan route 
fixation points. SalGAN pretrained prediction model preprocessed 
and input network data. The validation dataset accuracy of the 
proposed model is 74.22%.

Akter et al. (47) proposed a method that uses transfer learning to 
identify ASD by analyzing face features. They developed an improved 
facial recognition system using transfer learning, which can accurately 
identify individuals with ASD.

Raj and Masood (48) utilized several machine and deep learning 
techniques with the aim of identifying ASD in youngsters. They 
utilized three publicly available datasets obtained from the 
UCI Repository.

Xie et al. (49) proposed a two-stream deep learning network for 
the detection of visual attention in individuals with ASD. The 
suggested framework was built using two VGGNets that were derived 
from the VGG16 architecture and were similar to each other.

3 Methods

This section presents in depth the planned methodology applied 
to develop ASD detection system using deep learning techniques 
capable to detect ASD from eye tracking images based features. This 
methodology includes dataset collection, data preprocessing, deep 
learning classification model, evaluation metrics and results analysis. 
The framework of this methodology is shown in Figure 1.
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3.1 Dataset

The dataset was obtained from a public repository that contains 
eye-tracking images. The collection presently comprises 547 images. 
The default images dimensions were established at 640 × 480. More 
precisely, there were 328 images for the people without ASD, and 219 
images for the persons diagnosed with ASD. Figure 2 shows samples 
of eye-tracking images that were used for examining the 
proposed methodology.

3.2 Data preprocessing

It is an important step in making the images dataset for training 
machine learning models. We  applied various data preprocessing 
methods to make certain the dataset is suitable for model training 
which are discussed as follows.

	•	 Image Resize: The first step in data preprocessing encompasses 
resizing all images in the dataset to a standard size of 640 × 480 
pixels. This ensures uniformity in image measurements and 
facilitates effective processing during model training.

	•	 Image Enhancement: For all images in the dataset used, we applied 
a specific preprocessing step by improving their resolution by 
20% using the Image Enhance module. This enhancement aims 
to enhance the quality and clarity of the images data, particularly 
for those where it’s considered necessary.

	•	 Vectorization: After resizing and enhancing the images, 
we converted them into numerical arrays using vectorization 
techniques. This step includes transforming each image into a 
multi-dimensional array of pixel values, making it compatible 
with computational operations and deep learning algorithms.

	•	 Normalization: after transformation to numerical arrays, 
we normalized the pixel values to fall within the range of [0, 1]. 
Normalization ensures that the pixel values are scaled appropriately, 
facilitating more stable and efficient model training by preventing 
issues related to large variations in input images data.

	•	 Splitting Data: Once the images are preprocessed and 
converted into numerical arrays, we divide the dataset into 

three sets namely training, validation, and testing. This step is 
essential for evaluating model results, as it allows us to train 
the model on one subset of data, validate its performance on 
another subset, and finally test its generalization ability on a 
separate unseen subset.

	•	 Data Augmentation: To increase the diversity and robustness of 
the training dataset, data augmentation techniques, using the 
Image Data Generator module, was applied. This method involve 
rotation, shifting, and flipping of images, introducing variations 
that help avoid overfitting and enhance the model’s capability to 
be generalized to new, unseen images data.

3.3 Improving the deep leaning algorithms

3.3.1 The VGG19 model
The VGG19 model (50) is a sequential model architecture 

constructed in this study for the purpose of detecting ASD based on 
eye-tracking features. Initially, the model incorporates the pre-trained 
VGG19 architecture, with the weights initialized from the ImageNet 
dataset, excluding the fully connected layers, and specifying the input 
shape to match the dimensions of the input images with size of (640, 
480). Subsequently, a GlobalAveragePooling2D layer is added to 
obtain a condensed representation of the features extracted by VGG19. 
Following this, several dense layers are appended to the model, 
comprising 1,024, 128, and 64 neurons, each activated by the rectified 
linear unit (ReLU) function, to facilitate the learning of intricate 
patterns within the data. Lastly, a Dense layer with 2 units and a 
softmax activation function are employed for binary classification, 
enabling the model to predict the probability of ASD presence. 
Figure 3 shows the VGG1 model structure.

Upon compiling the model, utilizing the sparse categorical 
cross-entropy loss function and RMSprop optimizer with a 
learning rate of 0.0001, data augmentation approach is adopted 
throughout training process to improve the model’s generality 
competences. Through this architecture, the model aims to 
effectively discern the presence of ASD based on the provided 
eye-tracking features, leveraging the robustness of the VGG19 

FIGURE 1

Structure of the proposed methodology.
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convolutional neural network. Table 1 outlines the parameters of 
VGG19 model.

3.3.2 The MobileNet model
The MobileNet (51) model architecture has a sequential model 

structure, which allows for the systematic building of a neural 
network layer by layer. The MobileNet pre-trained convolutional 
neural network (CNN) is used as the basis model in this 
methodology, which is prepared with learnt representations from the 
ImageNet dataset. However, the fully connected layers of the 
MobileNet are excluded to facilitate transfer learning. Following 
integration of the MobileNet base model, a Global Average Pooling 
2D layer is used to compress the three-dimensional spaces of the 
feature maps formed by the convolutional layers. The pooling layer 
calculates the mean value of each feature map over all spatial 
locations, resulting in a fixed-size vector representation of the input 
image, regardless of its size.

Successively, many dense (completely linked) layers are added to 
capture more complex characteristics and perform classification tasks. 
The dense layers are composed of 1,024, 128, and 64 neurons, 
respectively, each of which is activated using the ReLU activation 
function. The ReLU activation function is selected for its capacity to 
introduce non-linearity, hence improving the complexity of the model 
and the efficiency of training.

The classification layer of the model that is named as output layer 
consists of a dense layer with 2 units, representing the two classes for 
binary classification (ASD or TD). These units are activated using the 
softmax function. This function generates probability for every class. 
This model architecture seeks to utilize the data obtained by 
MobileNet and conduct classification based on these features. It then 
proceeds to fine-tune the dense layers to suit the particular purpose 
of ASD detection using eye-tracking features. The MobileNet 
architecture is presented in Figure 4 and model’s parameters are listed 
in Table 2.

FIGURE 3

Structure of the VGG19 model.

FIGURE 2

Sample of images: (A) ASD (B) TD.
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3.3.3 The DenseNet169 model
We also applied the DenseNet169 (52) model as the base, which is 

tailored for ASD detection based on eye-tracking features. Utilizing 
pre-trained weights from the ImageNet dataset, the model excludes 
the fully connected layers for transferring learning tasks. After 
integrating a Global Average Pooling 2D layer to condense feature 
maps, dense layers capture higher-level features. Dropout layers 
mitigate overfitting, and the output layer, activated by softmax, 
produces class probabilities. With frozen base model layers, the model 
is compiled with appropriate functions and benefits from learning rate 
scheduling. Data augmentation enhances training, aligning with the 
ASD detection task’s needs. Figure  5 displays the structure of 
DenseNet169 model, and Table 3 outlines the parameters used in 
DenseNet169 model.

3.3.4 The hybrid model
The framework of this a combination model employs the 

capacities of two solidified convolutional neural network (CNN) 

structures, VGG19 (46) and MobileNet (51) models, to enhance its 
efficacy in recognizing ASD using eye-tracking features. At first, the 
model provides in the pre-trained VGG19 and MobileNet structures, 
although without their completely connected layers. It then freezes all 
layers to maintain their learnt representations. Global Average Pooling 
2D layers are subsequently employed to acquire feature representations 
from the output of each model. These representations are merged to 
develop a united feature vector, which is then handled through 
numerous robust layers to capture complicated data patterns. 
Following that, the model is collected utilizing acceptable loss and 
optimization functions, while data augmentation approaches are 
employed during training to improve its generalization capability. This 
hybrid model aims to improve classification accuracy in the ASD 
detection task by combining the features learned by VGG19 and 
MobileNet. By using the capabilities of both architectures, it seeks to 
attain heightened accuracy. Table 4 summarizes the parameters used 
in the hybrid VGG19-MobileNet model, and Figure 6 displays the 
structure of hybrid model.

3.4 Evaluation metrics

Assessing the performance and testing results obtained by the 
proposed deep learning models namely MobileNet, VGG19, 
DenseNet169 and hybrid of MobileNet-VGG19 are crucial for 
gauging the effectiveness of the models. The evaluation measures 
provide an alternative perspective on the model’s advantages and 
disadvantages. There are several matrices used to quantify 
performance, including accuracy, recall (sensitivity), specificity, 
and F1-score. These evaluation matrices, expressed by 
Equations (1–4), can be calculated from the confusion matrix.

	
Accuracy TP TN

FP FN TP TN
=

+
+ + +

×100
	

(1)

	
Recall Sensitivity

TP
TP FP

= =
+

×100%

	
(2)

TABLE 1  Parameters of the VGG19 model.

Parameter Description

Architecture Sequential

Base model VGG19 (pre-trained on ImageNet)

Input shape (640, 480, 3)

Global pooling layer Global Average Pooling 2D

Dense layers 1,024, 128, 64 neurons with ReLU activation

Output layer
Dense layer with 2 units, softmax activation (binary 

classification)

Loss function Sparse categorical cross-entropy

Optimizer RMSprop with learning rate of 0.0001

Metrics Accuracy

Data augmentation Applied during training using Image Data Generator

Training batch size 16

Validation batch size 32

Number of epochs 100

FIGURE 4

Structure of the MobileNet model.
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Specificity TN

TN FN
=

+
×100%

	
(3)

	
F score precision Recall

precision Recall
1 2 100− = ∗

×
+

× %
	

(4)

where TP, TN, FP, and FN stand for true positives, true negatives, false 
positives, and false negatives, respectively.

4 Results

This section focuses on the gained testing results of each model 
for spotting ASD using eye-tracking characteristics. The testing 

process included evaluation of four separate deep learning models: 
MobileNet, VGG19, DenseNet169, and a combination of VGG19 and 
MobileNet called the hybrid model.

4.1 Models’ configuration

The efficacy of the advanced deep learning algorithm was evaluated 
in a specific environment to identify ASD using an eye-tracking 
method. Table 5 presents the environment of the DL models.

4.2 Splitting dataset

The dataset was segregated into three subsets: training, testing, 
and validation. Table 6 displays the specific division that was employed 
in the proposed method for diagnosing ASD.

4.3 The test classification results of the 
MobileNet model

The MobileNet model demonstrated outstanding performance in all 
parameters, attaining perfect precision, recall, and F1-score for both 
ASD and non-ASD classes. This indicates that the model accurately 
categorized all cases of ASD and non-ASD without any incorrect positive 
or negative predictions, resulting in a remarkable overall accuracy of 
100%. Table 7 presents the testing classification results of MobileNet.

The impressive performance of MobileNet underscores its efficacy 
in accurately recognizing instances of ASD through the utilization of 
eye-tracking characteristics. Figure 7 depicts the confusion matrix, 
which reveals that 33 images were correctly identified as true 
negatives (TN), 22 images were correctly classified as true positives 
(TP), and there were no instances of false positives (FP) or false 
negatives (FN). Based on the empirical data, it has been determined 
that the MobileNet model obtained a high level of accuracy.

Figure 8 displays the performance of the MobileNet model. The 
model’s accuracy exhibited a progressive increase in validation 

TABLE 2  Parameters of the MobileNet model.

Parameter Description

Architecture Sequential

Weights Image net

Input shape (640, 480, 3)

Pooling layer 0.5

Dense 256

Output layer
Dense layer with 2 units, softmax activation (binary 

classification)

Loss function Sparse categorical cross-entropy

Optimizer adam with learning rate of 0.0001

Metrics Accuracy

Data augmentation Applied during training using Image Data Generator

Training batch size 16

Validation batch size 32

Number of epochs 100

FIGURE 5

Structure of the DenseNet 169 model.
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performance, starting at 50% and reaching 100%. In contrast, the 
accuracy in training performance had a smoothing effect, starting at 
65% and also reaching 100%. The decline in the MobileNet starting and 

validation performance has resulted in a fall of 1.6% to reach 0.0. This 
confirms that the MobileNet model has achieved a high 
percentage score.

FIGURE 6

Structure of the hybrid model of VGG19 and MobileNet.

TABLE 3  Parameters of the DenseNet169 model.

Parameter Description

Base model DenseNet169 pre-trained CNN initialized with ImageNet weights, excluding fully connected layers

Global Average Pooling 2D Condenses spatial dimensions of feature maps

Dense layers 512 and 256 neurons with ReLU activation, capturing higher-level features

Dropout layers Dropout rate of 0.5 for regularization, preventing overfitting

Output layer Dense layer with 2 units for binary classification, activated by softmax

Frozen base model layers Retains learned features during training

Loss function Sparse categorical cross-entropy

Optimizer RMSprop with learning rate of 0.0001

Learning rate scheduler Reduces learning rate based on validation loss

Data augmentation Applied during training to improve generalization

TABLE 4  Parameters of the hybrid model.

Parameter Description

Pre-trained models VGG19 and MobileNet are used as pre-trained CNN architectures.

Trainable layers All layers in both VGG19 and MobileNet models are frozen

Output layers Global Average Pooling 2D layers are added to the output of each model

Concatenated output The outputs of both models are concatenated to create a fused feature vector

Dense layers Several dense layers with ReLU activation functions: 1024, 128, and 64 units

Output activation Softmax activation function is used for the output layer

Loss function Sparse categorical cross entropy loss function is used

Optimizer RMSprop optimizer with a learning rate of 0.0001 is employed

Data augmentation Image data augmentation techniques are applied during training

Training epochs The model is trained for 100 epochs

Batch size Batch size is set to 16 for training and 32 for validation
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4.4 Testing results of the VGG19 model

This subsection introduces the testing classification results gained 
by the VGG19 model which achieved an accuracy of 87%, its recall, 

precision and F1-score for the ASD class were pointedly lower than 
those for the non-ASD class. This suggests that although the model 
demonstrated good performance in appropriately categorizing 
individuals without ASD, it encountered difficulties in correctly 
identifying individuals with ASD, resulting in a greater incidence of 
false negatives. Table 8 summarizes and presents the testing results of 
VGG19 model.

Further modification or improvement of the VGG19 design 
may be  required to enhance its effectiveness in diagnosing 
ASD. Figure 9 depicts the confusion matrix of the VGG19 model 
used to categorize Autism Spectrum Disorder (ASD) using an 
eye-tracking method. The VGG19 model correctly identified 31 
images as true negatives (TN) and 19 images as true positives (TP). 
However, it misclassified 3 images and incorrectly classified 2 
images as false negatives (FN).

Figure 10 illustrates the process of validating and training the 
VGG19 model. The VGG19 model achieved a validation accuracy of 
87%. The VGG19 model attained an accuracy rate of 89% in 
diagnosing Autism Spectrum Disorder (ASD) using the eye-tracking 
dataset during training. The loss of the VGG19 model decreased to 0.3.

4.5 Testing classification results of the 
hybrid VGG19-MobileNet model

The hybrid VGG19-MobileNet model exhibited strong 
performance, with a 91% accuracy with well-balanced precision, 
recall, and F1-score for both ASD and non-ASD categories. The 
hybrid model successfully utilized the advantageous qualities of both 
VGG19 and MobileNet architectures, leading to enhanced 
classification performance. Table 9 presents the testing classification 
results obtained by the hybrid VGG19-MobileNet model.

TABLE 5  Environment of the proposed DL.

GPU GPU T4 Χ 2 Kaggle

Memory 4GB

Language Python

TensorFlow

Keras

Panda

TABLE 6  Dataset.

Training set 77.78%

Validation set 22.22%

Testing set 10%

TABLE 7  Testing classification results of the MobileNet model.

Class Precision 
(%)

Recall 
(%)

F1-
score 

(%)

Support 
(%)

Accuracy 
(%)

Non 

ASD
100 100 100 33

100ASD 100 100 100 22

Macro 

average
100 100 100 55

FIGURE 7

Confusion matrix of the MobileNet model.
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The model’s ability to accurately differentiate between cases of 
ASD and non-ASD highlights its potential utility in clinical settings 
for diagnosing ASD based on eye-tracking features. Figure 11 presents 
the confusion matrix of the hybrid VGG19-MobileNet model. In this 
hybrid model, 31 images were accurately labeled as TD and 19 images 
were accurately classified as ASD (autism spectrum disorder). The 
hybrid model correctly classifies 3 images as FP and incorrectly 
classifies 2 images as FN.

The results performance of the VGG19-MobileNet model is 
depicted in Figure  12. The VGG19-MobileNet model obtained a 

validation accuracy of 91% and a training accuracy of 92%. The hybrid 
model had a reduction from 0.6 to 0.4.

4.6 Testing results of the DenseNet169 
model

The DenseNet169 model attained an accuracy of 78%, exhibiting 
superior precision, recall, and F1-score for the non-ASD class in 
comparison to the ASD class. This indicates that although the model 

FIGURE 8

The MobileNet model: (A) Accuracy; (B) Loss.

TABLE 8  Testing results of the VGG19 model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

Non ASD 82 100 90 33

87ASD 100 68 81 22

Macro average 91 84 86 55

FIGURE 9

Confusion matrix of the VGG19 model.
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performed well in accurately categorizing those without ASD, its 
ability to identify individuals with ASD was comparatively less 
effective. Table 10 summarizes the testing classification results of the 
DenseNet169 model.

The elevated rate of false negatives in ASD cases highlights 
possible opportunities for enhancing the model’s ability to detect 
ASD-related characteristics. In general, although all models 
demonstrated potential in detecting ASD, there is a need for more 

improvement and optimization of model structures to boost the 
accuracy and precision of ASD diagnosis using eye-tracking data.

5 Discussion

ASD is a neurodevelopmental condition marked by enduring 
difficulties in social interaction, communication, and restricted or 

FIGURE 10

The VGG19 model: (A) Accuracy; (B) Loss.

TABLE 9  Testing results of the hybrid model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

Non ASD 91 94 93 33

91ASD 90 86 88 22

Macro average 91 90 90 55

FIGURE 11

Confusion matrix of the hybrid model.
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repetitive behaviors. People with Autism Spectrum Disorder (ASD) 
can display a diverse array of symptoms and levels of functioning, 
resulting in significant variation within the spectrum. Eye-tracking 
technology is the technique of observing and documenting the 
movement of a person’s eyes in order to examine different aspects of 
visual attention, perception, and cognitive processing. Eye-tracking 
studies in individuals with ASD commonly examine gaze fixation 
patterns, saccades (quick eye movements), and pupil dilation to 
explore disparities in visual processing and social attention between 
individuals with ASD and those who are typically developing.

The experimental results presented in this study demonstrate 
the efficacy of several convolutional neural network (CNN) models 
in detecting and predicting Autism Spectrum Disorder (ASD) by 
utilizing eye-tracking features. The classification accuracy, 
precision, recall, and F1-score of each model offer valuable insights 
into their efficacy in detecting ASD cases using eye 
movement patterns.

The MobileNet model exhibited outstanding performance, 
attaining flawless precision, recall, and F1-score for both ASD and 
non-ASD categories. This indicates that MobileNet successfully 
diagnosed all cases of ASD and non-ASD, demonstrating its potential 
usefulness in diagnosing ASD using eye-tracking data.

Although the VGG19 model achieved an accuracy of 87%, its 
precision, recall, and F1-score for the ASD class were somewhat lower, 
suggesting a higher occurrence of false negatives. This implies that 
VGG19 might have difficulties in reliably detecting cases of ASD solely 
based on eye movement patterns.

The DenseNet169 model attained an accuracy of 78%, exhibiting 
superior precision, recall, and F1-score for the non-ASD class in 
comparison to the ASD class. This disparity suggests possible 

constraints in the model’s ability to detect ASD-related eye movement 
characteristics, resulting in an increased occurrence of incorrect 
negative diagnoses for individuals with ASD.

The hybrid VGG19-MobileNet model exhibited strong 
performance, with a 91% accuracy with well-balanced precision, 
recall, and F1-score for both ASD and non-ASD categories. This 
suggests that the hybrid model successfully utilized the advantages of 
both VGG19 and MobileNet architectures to enhance ASD 
identification using eye-tracking features.

Figure 13 displays the receiver operating characteristics (ROC) 
findings of the proposed deep learning (DL) model. The MobileNet 
model earned a high accuracy score of 100%, while both the 
VGG19 and hybrid models achieved the same accuracy 
score of 96%.

In summary, the experimental results highlight the capability of 
CNN models, specifically MobileNet and the hybrid VGG19-
MobileNet model, to accurately detect ASD cases using eye-tracking 
data. However, additional study is required to optimize the design of 
models and increase their ability to detect patterns in eye movements 
associated to ASD. This will ultimately lead to better accuracy in 
diagnosing and treating ASD. The proposed system was compared to 
several current eye-tracking systems (46–48), as seen in Table 11 and 
Figure 14. Our enhanced MobileNet model achieved a perfect score 
of 100%, surpassing all other current systems.

6 Conclusion

Eye tracking is a commonly used method for detecting ASD 
in both young children and adults. Research including eye 

FIGURE 12

The Hybrid model: (A) Accuracy; (B) Loss.

TABLE 10  Testing results of the DenseNet169 model.

Class Precision (%) Recall (%) F1-score (%) Support (%) Accuracy (%)

Non ASD 74 97 84 33

78ASD 92 50 65 22

Macro average 83 73 74 55
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FIGURE 13

ROC of: (A) MobileNet model; (B) VGGA19 model; (C) Hybrid model.

TABLE 11  Results of the proposed eye-tracking diagnosis system compared with other systems.

Authors, years Dataset Approach Accuracy %

Akter et al., 2021 (47) Same DT, SVM, LR, KNN, and MLP Accuracy (87%), and AUC (79%)

Cilia et al., 2021 (53) Same CNN 90%

Elbattah et al., 2021 (54) Same Variational Autoencoder (VAE) 79%

This proposed model Same MobileNet Accuracy (100%), and ROC (100%)
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FIGURE 14

Accuracy of the proposed eye-tracking diagnostic system compared with other systems.
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tracking has revealed that individuals with autism have distinct 
gaze patterns compared to normally developing individuals. 
Various diagnostic procedures have been considered for the 
diagnosis of ASD, such as parent interviews, homogenous 
behavioral appraisals, and neurological examinations. 
Eye-tracking technology has gained significance for supporting 
the study and analysis of autism. This research presents a 
methodology that utilizes advanced deep learning algorithms, 
including MobileNet, VGG19, DenseNet169, and a hybrid of 
MobileNet-VGG19, to analyze and display the eye-tracking 
patterns of persons diagnosed with ASD. The study specifically 
focuses on children and adults in the initial phases of growth. The 
primary concept is to convert the movement patterns of the eye 
into a visual depiction, allowing for the use of image-based 
methods in activities connected to diagnosis. The visualizations 
generated are freely accessible as an image collection for use by 
other studies seeking to explore the capabilities of eye-tracking in 
the setting of Autism ASD. The collection consists of 547 images, 
with 328 images representing persons without ASD and 219 
images representing those diagnosed with ASD. The MobileNet 
model scored high accuracy 100%, the proposed methodology was 
compared with different with existing ASD model, it is investigated 
that our model out performance.

An important avenue for future study is to expand the sample size 
by include a wider range of participants, including a greater number 
of persons with ASD and TD individuals. By increasing the size of the 
sample, researchers might potentially uncover additional patterns and 
subtleties in the data.
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Introduction: Our research addresses the critical need for accurate

segmentation in medical healthcare applications, particularly in lung nodule

detection using Computed Tomography (CT). Our investigation focuses on

determining the particle composition of lung nodules, a vital aspect of diagnosis

and treatment planning.

Methods: Our model was trained and evaluated using several deep learning

classifiers on the LUNA-16 dataset, achieving superior performance in terms

of the Probabilistic Rand Index (PRI), Variation of Information (VOI), Region of

Interest (ROI), Dice Coecient, and Global Consistency Error (GCE).

Results: The evaluation demonstrated a high accuracy of 91.76% for parameter

estimation, confirming the e�ectiveness of the proposed approach.

Discussion: Our investigation focuses on determining the particle composition

of lung nodules, a vital aspect of diagnosis and treatment planning. We proposed

a novel segmentation model to identify lung disease from CT scans to achieve

this. We proposed a learning architecture that combines U-Net with a Two-

parameter logistic distribution for accurate image segmentation; this hybrid

model is called U-Net++, leveraging Contrast Limited Adaptive Histogram

Equalization (CLAHE) on a 5,000 set of CT scan images.

KEYWORDS

image segmentation, two-parameter logistic type distribution, performance evaluation,

CLAHE, ROI segmentation, lung cancer detection

1 Introduction

Lung cancer begins in the lungs and spreads throughout the rest of the body (1),

including the brain. Lung cancer is the most common cause of cancer-related mortality

worldwide (2). Although lung cancer is more frequent in smokers, it may also occur in

nonsmokers (3). The incidence of lung cancer is often and excessively increased with

smoking. Lung cancer risk may be lowered even if you have smoked for a long period.

Segmentation, a type of image compression, is necessary to infer information from photos.

Imaging modalities (4), including Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT), can be utilized to create Computer-AidedDiagnostic (CAD) (5)models
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that can be used to diagnose and treat patients in precision

medicine. Using a limited quantity of medical image data, we

demonstrated the efficacy of our proposed model, which we refer

to as U-NET++. A method known as the dice coefficient loss was

used to compute the findings of the investigations. An approach to

labeling preprocessing that is in line with the approaches that are

already in use is presented in this paper.

The main novelty of this study is as follows.

• To propose the segmentation model for identifying lung

disease made on CT scans with the limited set of CT scan

images using the CLAHE.

• To develop the learning architecture combining U-Net with

a two-parameter logistic distribution for image segmentation,

was used for segmentation.

• To train the models using several deep learning classifiers and

evaluate the performance of the models using benchmarks

on the LUNA16 dataset using different information

retrieval metrics.

The following section describes the organization of the

subsequent sections of this study.

A considerable amount of important research is presented in

Section 2. Deep learning architectures are used in segmenting

medical images by U-NET++, which is created by combining the

two-parameter model recommended with distribution learning of

the U-Net type. Section 3 provides a comprehensive explanation

of the topic. At this point, the criteria for evaluating the

model’s performance discussed in the fourth part of the section

are presented.

2 Related works

A meta-analysis of the literature was performed. Table 1

clearly shows the literature matrix representation of their meta-

analysis and the strong relationships between the authors and

their respective works. CT scans were assessed based on the image

brightness. Different areas of the same region should have the

same intensity; hence, segmentation is an effective method to

separate objects. Various segmentation procedures were found to

be useful in this study. Three-step segmentation-based strategy for

distinguishing lung regions.

First, the lung was segmented using gray-level thresholding.

Dynamic programming then divides the lung lobes. Finally,

morphology-based smoothing approaches were employed. Region-

based segmentation includes enlarging, dividing, and combining

the areas (17).

A novel convolutional network type known as U-NET++ was

developed to analyze CT images used in the biological sciences.

U-NET++ was used in this study to extract lung fields from

CT images. In healthcare, U-NET++ is nothing more than

a variation of ConvNet, combined with various ad hoc data

augmentation methods.

The robustness of the model was compromised because the

authors of (6–8) carried out their research using the same data

potential. The traditional U-Net network (9–16) is a semantic

segmentation network built using a fully convolutional neural

network. Although it has a relatively small number of layers, the

network is nevertheless capable of functioning well, although less

complex than its predecessors. The UNET network consists of two

main components: down-sampling and up-sampling algorithms.

The process of feature extraction, also known as down sampling,

involves using convolutional, and pooling layers. This stage

is accountable for obtaining characteristics from the original

image. A deconvolution technique is employed to enhance the

feature map’s intricacy. The alternative term for the structure

that involves down-sampling and up-sampling is the decoder-

encoder structure. The original picture undergoes convolutional

and pooling layers during the down-sampling process. This leads

to the generation of feature maps that include different levels

of information. Regarding visual characteristics, the feature maps

exhibit diverse abstraction levels. Combining the down-sampled

feature map makes it possible to retrieve a larger portion of the

abstract detail information lost during training. As a consequence,

the network becomes more successful at segmentation. During

the up-sampling process, the deconvolution layer systematically

increases the feature image’s dimensions. Consequently, the lung’s

three-dimensional nature results in a substantial loss of spatial

information. Consequently, a substantial quantity of relevant

information is lost when down-sampling occurs. As retrieving

all data is impractical, up-sampling yields imprecise outcomes

and disregards visual nuances. Moreover, in addition to the

aforementioned concerns, implementing a deep neural network

is necessary for future advancement. According to the results

of applying U-NET++ to a new dataset, the precision of the

IOU and Dice coefficients improved. The test results demonstrate

that the U-NET++ architecture improves the efficiency of

multiscale conversion and fully connected systems. The authors

in (18) propose a novel approach for lung CT scan classification.

They combined handcrafted features were extracted using Q-

deformed entropy (QDE), which captured image texture based

on intensity variations, with features automatically learned by a

Convolutional Neural Network (CNN). This fusion strategy aimed

to improve the identification of healthy lungs from those affected

by conditions like COVID-19 or pneumonia (18). This proposed

approach demonstrated the benefits of combining handcrafted and

automatically learned features. Segmentation focused the model on

relevant lung regions, and the LSTMnetwork effectively utilized the

fused features for accurate classification.

3 Materials and methods

3.1 U-NET++ architectural design

This study introduces the U-NET++ hybrid model, which

utilizes a two-parameter logistic function to identify lung nodules

from CT scans accurately. Lung CT scans were classified as

“benign” or “malignant” when used as an input for a binary

classification system. A unique hybrid model that combines U-Net

(19) and two-parameter logistic distribution was developed to

segment and diagnose lung cancer. The model was generated

using the dataset of LUNA-16 lung CT images. The U-NET++
model is highly esteemed as a leading architecture in computer

vision, primarily because it is built on established computer vision
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TABLE 1 Presents the related study and limitations in the works.

References Dataset Split Key arguments Drawbacks

Huang and Hu (6) Lung Nodule Analysis 2016

dataset and Alibaba Tianchi

Lung Cancer Detection

Competition dataset.

60:40 The Noisy U-Net (NU-Net) increases the

diagnosis of early lung cancer nodules by

increasing the sensitivity to tiny nodules

measuring between 3 and 5mm in diameter.

This is achieved by adding distinct noise to

hidden layers during training.

Insufficient validation across a number of clinical

situations or datasets has been done to evaluate

NU-Net’s applicability and robustness. The practical

application is restricted since it ignores false positives

and the algorithm’s inconsistent performance with

diverse nodule properties. The lack of advanced

method comparison studies limits NU-Net’s

effectiveness compared to U-Net.

Zhao et al. (7) LUNA-16 70:30 The proposed approach for accurately

detecting cancerous lung lesions from CT

scans involves using a patch-based 3D

U-Net and a contextual convolutional

neural network.

The article lacks a thorough validation or explanation

of the model’s performance variability across various

datasets or in real-world clinical situations.

Furthermore, the lack of a comparison to current

approaches hinders the ability to assess the superiority

or applicability of the proposed strategy.

Chiu et al. (8) LUNA-16 70:30 The 2D U-Net approach effectively identifies

lung nodules in medical pictures. The

detection performance may be improved by

utilizing ROI segmentation models and

further labeling.

The use of the ROI segmentation technique enhances

the accuracy of lung nodule identification. The

U-Net-based network architecture demonstrates high

proficiency in segmenting lung nodules. Additionally,

complementary labeling appears to be helpful in

situations when there is a scarcity of data.

Gao et al. (9) LUNA-16 70:30 The U-Net model, which incorporates an

attention mechanism and residual structure,

effectively segments lung cancer bone

metastases in SPECT images, improving

early identification and treatment outcomes.

The research will likely neglect practical factors, such as

variations in SPECT imaging circumstances or

anomalies that may undermine the model’s robustness

in real clinical settings.

Cai et al. (10) LUNA-16 60:40 The U-Net deep learning network

consistently enables the identification of

lung cancer nodules larger than 3mm in

diameter, hence facilitating the progress of

early detection and therapy methods for this

disease.

The research work fails to describe the AI model’s

clinical validation and integration in real-world

healthcare settings, obscuring its practicality. It

prioritizes model accuracy above false positives and

negatives, which are essential for successful practical

diagnosis. Due to its architecture and lack of testing

against more adaptable modern methods, the U-Net

and PSP Net AI models’ effectiveness is unknown. Due

to its dataset dependence, the model may not work for

all patient groups or imaging situations (Luna16).

Banu et al. (11) LUNA-16 70:30 The use of WEU-Net, also known as weight

excitation U-Net, enhances the early

identification of lung cancer by precisely

segmenting lung nodules in CT images.

The work does not explain how the model shows

nodule variety, size, and consistency across datasets.

The therapeutic adoption of this technology depends

on time efficiency and computational needs, which are

being disregarded. The lack of a comparison with other

cutting-edge segmentation methods hinders our

comprehension of WEU-Net’s efficacy. To conclude,

the model’s interpretability and therapeutic potential in

diagnostic and treatment planning are undisputed.

Xia (12) LUNA-16 60:40 When it comes to detecting supplemental

lung cancer, RUNet image segmentation

outperforms 3D U-Net. Pro-CRP, CEA, and

NSE serve as diagnostic markers for

malignant lung cancers.

The research lacks a thorough examination of any

biases or confounding variables that may impact the

accuracy of diagnoses and the performance of the

model when selecting patients. The research did not

assess the generalizability of the findings to larger

groups of patients or other imaging techniques other

than MRI. The absence of a comparative analysis with

other verified segmentation approaches impedes the

understanding of the specific benefits that RUNet offers

in contrast to other methods. Moreover, there is

insufficient information about using the model in

clinical settings to verify its effectiveness in real-world

situations or with external datasets.

Chhabra et al. (13) IIITD-CLF 8:2 The study discusses how regularization and

patch size affect how well the model works.

segmentation with different network designs

and patch sizes to make it more accurate.

Factors like scalability, external validity, possible bias,

and limited generalizability should be considered.

Venkatesh et al.

(14)

LIDC-IDRI 70:30 It aims to revolutionize the detection of lung

cancer by offering a more accurate and

efficient approach compared to existing

approaches.

The evaluation of the effectiveness of the suggested

technique in relation to existing methods is limited due

to the lack of a comparative study with state-of-the-art

systems. Further investigation is required to enable the

idea’s implementation in real-world clinical

environments, considering ethical concerns, regulatory

challenges, and the potential to scale up.

(Continued)
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TABLE 1 (Continued)

References Dataset Split Key arguments Drawbacks

Madhu et al. (15) POCUS 70:30 This paper presents XCovNet, an improved

Xception neural network, which

outperforms existing deep learning models

for point-of-care lung ultrasound data

analysis, enabling accurate identification of

COVID-19.

The study enhances medical imaging technology for the

detection of infectious diseases by developing XCovNet

and showcasing its improved performance in

comparison to current models. This is essential to fulfill

the need for accurate and expedient diagnostic tools in

contexts with limited resources.

Lamba et al. (16) GSCE25066 70:30 The aim of the project is to use machine

learning techniques to find crucial genes for

cancer subtyping. These genes will then be

validated using the Kaplan-Meier Survival

Model.

The study paper does not explicitly discuss any

recognized research constraints in the categorization of

breast cancer subtypes based on gene expression data.

Subsequent studies in this domain might examine the

impact of different feature selection methods on the

effectiveness of models and the reliability of findings

across different datasets.

FIGURE 1

Architecture of U-NET++.

FIGURE 2

Two-parameter U-NET++ two-parameter type distribution.
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FIGURE 3

Methodology design.

approaches. When assessed using the ImageNet test dataset, this

model achieved a precision rate of 91%. The main architectural

improvement in the model is the filter size, an improved

version of the U-NET. Figure 1 illustrates the architecture of the

proposed model.

In the current section, a detailed presentation of the

combination of two- and three-parameter logistic distribution

models is presented. Figure 2 shows a two-parameter U-NET++
logistic-type distribution. In general, the pixel intensities are the

content through which the quantification of the image details

performed on several regions of the images. The brightness of a

picture or image can be measured by using several performance

metrics such as the moisture in the surroundings, lightening of

the images, vision, and the surrounding environmental conditions.

This measurement can be performed using the pixel values and

pixel intensities. For instance, pixel (a, b) intensity measurement

was performed using the function z = f (a, b) and considered

as a random variable. To better analyze and understand the

performance of the currently considered model and the intensities

of pixels for various images, the model was designed for both

parametric and parametric models. The pdf of the pixel intensity

is given by
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For three-parameter logistic type distribution: -

∂

∂�i
2











∑N
s=1

∑K
i=1 Pi(ys.,Q

l) logβi

[

3
3p+π

2

][

p+
(

ys− i
�i

)2
]

e
−
(

ys− i
�i

)

�i



1+e
−
(

ys− i
�i

)



2











= 0.

(4)

ϒ
2(l+1)

i =

∑N
s=1

Pi (ys. ,Q
(l) )

(

ys− i
(l+1)

)

2�i
3(l)

−
∑N

s=1

Pi (ys. ,Q
(l) )

(

ys− i
(l+1)

)

σi
3(l)









1+e

(ys− i)
�i









−
∑N

s=1
Pi (ys. ,Q

(l) )

2�i
2(l)

∑N
s=1

Pi (ys. ,Q
(l) )

(

ys− i
(l+1)

)2

σi
4(l)

[

p�i
2(l) +

(

ys− i
(l+1)

)2
]

. (5)

Were

pi

(

ys,Q
(l)
)

=





βi
(l+1)fi

(

ys,ϒi
(l+1),�i

2(l)
)

∑k
i=1 βi

(l+1)fi

(

ys,ϒi
(l+1),�i

(l)
)



 . (6)

3.3 Module design

Figure 3 discuss about the methodology design followed in our

proposed work. A typical image processing method is contrast-

limited adaptive histogram (CLAHE) equalization. Smooth regions

become noisier with adaptive histogram equalization. CLAHE may

enhance noise in hectic circumstances. Histogram size may be

limited by CLAHE. Understand that deep learning variation is a

major issue. Use two tag techniques for variety. Match the center to

the background to reduce variation. This study employed the dice

coefficient loss function used by picture segmentation pros. The

experiment suggests labeling may be better than initial marking in

cases with insufficient data. Medical images are hard to classify and

find. Everyone agrees transferring less data is hard. Semi-supervised

learning overcomes auto-labeling naming issues. Proposed study

successfully locates the lung using ROI segmentation from CT

scans. Process attention model. The ROI segmentation model

during data processing may find lung tumors, study suggests.

4 Model parameters and discussions

4.1 LUNA-16 dataset

A total of 5,000 CT scans were obtained from LUNA-16.

Four expert radiologists annotated the images in the LIDC/IDRI

database for 2 years (20–22). Each radiologist diagnosed the

nodules as non-nodules, nodules with a diameter of ≤ 3mm, or

nodules with a diameter of ≥3mm (23). This article examines

the annotation process in detail. Three of every four nodules

larger than 3mm in diameter must be identified by radiologists

(24). Non-standard findings have not been noted before (non-

nodules, nodules <3mm, and nodules annotated by only one or

two radiologists). Table 2 shows various illustrations of nodules in

the LUNA-16 dataset.

TABLE 2 Various benigna and malignant nodules present in the LUNA-16

dataset.

S. No. Nodule name Nodule image

1 Small nodule

2 Ground glass opacity nodule

3 Rough edged nodule

4 Thick walled nodule

5 Granular nodule

6 Pleural surface nodule

7 Pulmanory region nodule

TABLE 3 Presents the standard deviation of various features in

LUNA-16/LIDC-IDRI dataset.

Features in LUNA-16 Testing Training

Malevolence 1.98± 0.95 1.65± 1.03

Conjecture 2.60± 0.70 2.65± 0.77

Subtlety 1.89± 0.74 3.65± 0.69

Lobulation 2.73± 0.67 2.36± 0.71

Diameter in mm 9.17± 3.51 8.56± 0.56

Margin 3.03± 1.56 3.68± 0.58

Table 3 presents various feature extraction values obtained from

the LUNA16 database. A node, which refers to a specific structure,

has a wide range of characteristics, with malignancy being used as

an example to illustrate this. The estimation of the node’s outline

coordinates is utilized, whereas the surrounding area of the nodule
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TABLE 4 Dataset details.

Dataset name Description

LUNA-16 Comprising annotated lung CT scans collected from

partnering medical institutions, Includes data from

LUNA 16 and LIDC-IDRI

Number of samples 5,000 annotated CT scans slices

Image resolution 128× 128

Annotation methods Expert radiologists using semi-automated tools

Preprocessing steps -Slice normalization

-Rescaling to uniform dimensions

-Augmentation for training set

is often underestimated. Lobulation refers to the configuration and

attributes of a nodule. The measurement of a nodule in millimeters

determines its diameter, which in turn determines its length. The

border of the nodule indicates a transparent region.

Table 4 describes the dataset used in our study. We compiled

a custom LUNA-16 dataset by combining annotated lung CT

scans from various sources, including LIDC-IDRI datasets. This

dataset comprises 5,000 annotated CT scans slices, each with

a resolution of 512 × 512 pixels. The images were annotated

by expert radiologists using semi-automated tools, ensuring high

quality labels for training and evaluation.

4.2 Study design

Three categories of data were created, namely training,

validation, and testing. We built a model, trained it using validation

data, and tested it. This method is repeated until a firm understands

how our model reacts in real-world scenarios. Allow average

pooling and expand the size of the final output by using layers

in the filter. We examined our test data to determine what we

could learn from it in order to enhance the model. Because we

are neither testing nor training a model on a test dataset, we

can utilize it only once per session. Two-parameter and three-

parameter mixtures generate a model using a single test dataset,

which significantly reduces the time and effort required. Figure 4

illustrates the study design.

4.3 Split and pre-process data

Jpeg serves as the data transport format in our architecture

in the same way as DICOM. The Neuroimaging Informatics

Technology Initiative (NIFIT) (25) is a 501(c)(3) not-

for-profit organization committed to the advancement of

neuroimaging informatics (NITI) (26). Despite its origins

in neuroimaging, it is now commonly used in brain and

other medical imaging. By memorizing the coordinates, it is

possible to relate pixel values (i, j, k) to the position space (x,

y, z) (x, y, z). Each data scan may provide three-dimensional

medical images comprising 128 × 128 slices of varying

thicknesses. Additional RAM is required to store the data in

the DICOM format.

CLAHE12 contribute to the enhancement of CT scan quality

(Contrast Limited Adaptive Histogram Equalization). The artwork

places a premium on contrast and visual detail. The Hounsfield

center values for the lung window and soft tissue were 600, 1,500,

and 50,400. As a result, the lung window is the most frequently

used Hounsfield range for lung image diagnosis. As shown in

Table 1, the Hounsfield values of various body components were

dispersed. Following sampling, the objective was to compress a

snapshot to preserve the memory. Standardization is the next step

in reducing computing costs. Subsequently, CLAHE was used to

enhance nodule contrast and visibility.

Contrast-limited adaptive histogram equalization (CLAHE)

has been used in image processing for a long time. Instead of

adaptive Histogram Equalization (AHE13) (27), it cannot be used.

Standard adaptive equalization may amplify noise in ordinarily

homogeneous areas of the image. Consequently, the histogram

tends to focus on this region. The CLAHE has the potential

to enhance noise in locations where it is almost continuous. In

Figure 5, the LUNA-16 dataset is preprocessed using the Wiener

filter and CLAHE.

The CLAHE approach can be used to decrease the histogram

concentration.When utilizing CLAHE, the concentrated histogram

component was maintained. On the other hand, the exceeding

histogram was maintained and equally distributed throughout

all histogram bins. The Wiener filter is an extremely successful

technique for visual noise reduction. PET/CT scans were afflicted

with an additive noise of constant intensity. Figure 6 shows an

example of the original CT scan image, second image is with

CLAHE and third one is with CLAHE and weiner.

4.4 Architecture and implementation

The lung segmentation method utilized in this study used

5,000 lung CT scan images and masks. Each CT scan image has

a resolution of 128 × 128 pixels. Images s black and white the

final consequence is a split lung. The technique begins with the

data being saved in memory and each image being resized to

32 × 32 pixels. Image processing was accelerated by shrinking

the photographs. The images were corrected after rescaling.

Subsequently, the dataset was partitioned into 70 percent training

set and 30 percent test set. Rotation was performed to increase

the number of training samples. There were eight rotating copies

for each training sample. In Table 5, U-NET++ is composed of

layer blocks that compress and stretch clockwise. The augmented

dataset was initially used to define the input layer. The following are

the layers of convolution, non-linearity, and down sampling. Non-

linearity is first applied to decrease the final image size, followed

by convolution to apply a filter, and finally max-pooling. The

image is concatenated by applying similar layers in contracting and

expanding patterns, and then up-sampled to make it larger. The

output layer provides a lung segmentation image. After all layers

have been trained, the U-Net ConvNet is created (28). For example,

using Adam as the optimizer, the dropout was set to 0.5, epochs

were set to 10, and steps per epoch were set to 200 (29). Each

layer, similar to the model architecture, has its own set of filters.

We examined the performance of U-Net ConvNet using test data.
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FIGURE 4

Proposed model study design and training, testing and validation process.

FIGURE 5

Flowchart and pre-processing steps.

FIGURE 6

The first picture from left to right shows how the Wiener filter works with CLAHE. (A) Original CT scan image. (B) CT image with CLAHE image. (C)

CLAHE with Weiner filter.
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TABLE 5 Proposed network architecture with two parameters distribution.

Layer Type Input size Output size Kernal size Stride Padding

U-NET++ down sampling encoder process

Layer 1 Conv+ReLU 128× 128 128× 128 3× 3 1 1

Layer 2 Conv+ReLU 128× 128 128× 128 3× 3 1 1

Layer 3 Max Pooling 128× 128 64× 64 2× 2 2 0

Layer 4 Conv+ReLU 128× 128 64× 64 3× 3 1 1

Layer 5 Conv+ReLU 64× 64 64× 64 3× 3 1 1

Layer 6 Max Pooling 64× 64 32× 32 2× 2 2 0

Layer 7 Conv+ReLU 32× 32 32× 32 3× 3 1 1

Layer 8 Conv+ReLU 32× 32 32× 32 3× 3 1 1

Layer 9 Max Pooling 32× 32 16× 16 2× 2 2 0

Layer 10 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 11 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 12 Max Pooling 16× 16 8× 8 2× 2 2 0

Layer 13 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 14 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 15 Max Pooling 8× 8 4× 4 2× 2 2 0

U-Net++ up-sampling decoder process

Layer 16 Up sample

Transposed Conv

4× 4 8× 8 2× 2 2 0

Layer 17 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 18 Conv+ReLU 8× 8 8× 8 3× 3 1 1

Layer 19 Up sample

Transposed Conv

8× 8 16× 16 2× 2 2 0

Layer 20 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 21 Conv+ReLU 16× 16 16× 16 3× 3 1 1

Layer 22 Up sample

Transposed Conv

16× 16 32× 32 2× 2 2 0

Layer 23 Conv+ReLU 32× 32 32× 32 3× 3 1 1

Layer 24 Conv+ReLU 32× 32 32× 32 3× 3 1 1

SoftMax function Convolutional Layer_8 32× 32 32× 32 3× 3 1 1

Benign or malignant SoftMax Function 32× 32 32× 32 3× 3 1 0

There were five columns in total. The first column

provides the layer name, followed by the number of filters,

filter type/size, dimension, and concatenated layers. Eleven

convolutional layers were used. The input layer is the first

layer. A 32 × 32-pixel input layer is displayed in this

picture. For the Con1 layer, eight 3 × 3 filters are needed.

The size of the images remained unchanged. Con1 was

closely related to other con1. After the con layers, there were

ReLU layers.

4.4.1 Simulation settings
To facilitate the replication of our work, we provide a detailed

description of the simulation settings and the dataset used. This

information includes hardware and software configurations, data

preprocessing steps, and hyperparameter settings.

The simulation settings outlined in Table 6 provides

comprehensive details on the hardware software environment

used for our requirements. Our setup included an Intel core

i9-10900k CPPU and an NVIDIA GEFORCE RTX 3090 GPU,

ensuring sufficient computational power for training deep learning

models. We utilized Ubuntu 20.04 LTS as our operating system,

with python 3.8 and TensorFlow 2.4 for model development

and training.

Table 7 details the hyperparameters and model configuration.

We implemented a U-NET++ with 20 layers, utilizing a kernal

size of 3 × 3 and max pooling layer of 2 × 2. The ReLU activation

function was used throughout the network, with a sigmoid
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TABLE 6 Simulation setting used in our proposed work.

Component Description

Hardware

CPU Intel Core i9-10900K

GPU NVIDIA GeForce RTX 3090

RAM 64 GB DDR4

Software

Operating System (OS) Ubuntu 20.04 LTS

Programming language Python 3.8

Deep learning framework TensorFlow 2.4, Keras

Data preprocessing

Normalization Rescale pixel values to range [0,1]

Augmentation techniques Rotation, translation, flipping, scaling

Data split 70% training, 15% validation, 15% testing

Model training

Optimizer Adam

Learning 0.001

Batch size 32

Epochs 100

Loss function Dice loss

Metrics Dice co-efficient, IoU, Sensitivity, Specificity

TABLE 7 Hyperparameters and model configurations.

Parameter Values

Network architecture U-NET++

Number of layers 20

Kernal size 3× 3

Pooling Max pooling (2× 2)

Activation function ReLU (Rectified Linear Unit)

Output layer activation Sigmoid

Dropout rate 0.5

Regularization L2 regularization with delta= 0.001

activation function in the output layers for binary segmentation

(30). A dropout rate of 0.5 and L2 regularization were applied to

prevent overfitting.

These settings and configurations provide a robust framework

for replicating our lung cancer segmentation model and can

serve as a foundation for further research and development in

this domain.

4.5 Training process

The loss function expresses the loss of the die coefficients.

Frequently, the dice coefficient is used to segment medical images,

as shown in Figure 7. It is often used to compare two samples. This

experiment generated sufficient compelling evidence to be deemed

to be conclusive.

This research is mostly concerned with two-dimensional

pictures. It might end up saving a lot of money in the long term.

Another example is graphics processing unit (GPU) throttling.

Owing to memory limitations, the majority of GPUs have difficulty

in training 3D models. 2D and 3D models are available for

downloading in various formats. We break down our findings into

different segmentation strategies with an emphasis on unbalanced

and tiny datasets. In addition, themodel training process converged

in 200 epochs. The confusion matrix can be used to evaluate real-

world data and calculate metrics such as accuracy, sensitivity, and

specificity. The testing loss is approximately 0.4 in Figure 6, whereas

CLAHE and Wiener may be as low as 0.1 without pre-processing.

5 Results discussion and comparison
with other models

The results were enhanced by using the ROI segmentation

method. It seems that it has the capacity to address the problem

of the model’s inaccurate positioning of labels. As a consequence,

following the recommended methodology may lead to decreased

losses. Furthermore, it was shown that the training session

continued to slow down. The lesson is enhanced in its effectiveness

as shown in Figure 8. It is advisable to apply the same treatment to

both one-dimensional and two-dimensional data. The objective of

this strategy is to eliminate any errors in labeling in both directions.

Over time, there was a gradual reduction in the size of each

point. Engaging in conversations with individuals helps achieve

both objectives.

If the dataset is insufficient, it may be necessary to round up

more labels. Overall, there were 159 cancerous tumors, and the

standard deviation of the Dice coefficient was 0.2. Although its

model had a low mFPI, the DL-based model was successful in

detecting lung tumors from chest X-rays, the results are shown in

Figure 8. The evaluations of the proposed models are presented in

Table 8.

TensorFlow was used to evaluate the effectiveness of the

U-NET++ approach for the segmentation of lung tumors.

The evaluation was performed with the assistance of an image

segmentation examiner. Images from LUNA-16 were used to

complete the segmentation process. The results of the logistic

distributions with the two parameters are shown in the following

table. Based on the information shown in Table 9, it is presumed

that the intensities of the image pixels adhere to a combination of

logistic-type distributions with two parameters.

The pixel intensities in each of the k sectors of the image

were assumed to follow a two-parameter logistic distribution, with

unique parameters. This assumption was based on the fact that a

picture. The histogram of pixel intensities was analyzed to estimate

the segment count for each CT scan image used in the experiment.

The histograms that indicate the pixel intensities that may be

observed in the CT scan images are shown in Figure 9.

Typically, malignant tumors have higher average

radius values compared to benign tumors, as seen by

histograms and bar graphs. The average radius of malignant
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FIGURE 7

The proposed framework with respect to both training and validation accuracy.

FIGURE 8

Prior to and during the segmentation procedure, the ground-truth forecast was used in each of these instances.

TABLE 8 The evaluation report of the di�erent lung nodule semantic segmentation with comparison to our proposed algorithm.

Evaluation Cai et al. (10) Banu et al. (11) Proposed model

Dice similarity index 87.22% 90.24% 91.76%

Error matrix Accuracy 90% Accuracy 89% Accuracy: 90%

Sensitivity 90% Sensitivity 90% Sensitivity: 89%

Specificity 89% Specificity 86% Specificity: 90%

tumors is 20.1020, whereas benign tumors normally have

a radius of 11.3286. These data indicate the differences

in average radius values between benign and malignant

tumor types.

5.1 Visualization of the model

After examining the data, they found a connection, as shown

in Table 10, between how well the suggested method worked and
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TABLE 9 The refined value of k with two-parameter U-NET architecture.

Constraints First parameters Revised calculations

Image region Image area

1 2 1 2 1 2 1 2 1 2 1 2

αi 0.500 0.500 0.2588 0.7428 0.500 0.500 0.2588 0.7428 0.500 0.500 0.2588 0.7428

µi 60.54 121.98 19.48 136.18 60.54 121.98 19.48 136.18 60.54 121.98 19.48 136.18

σ
2
i 94.2568 128.784 124.281 117.251 94.2568 128.784 124.281 117.251 94.2568 128.784 124.281 117.251

FIGURE 9

In this illustration, the pixel intensities generated from CT scan images of lung nodules that were either benign or malignant were included. (A)

Malignant tumor. (B) Benign tumor. (C) Shows the radius mean for benign and malignant tumors.

TABLE 10 Comparing the proposed model’s quantitative segmentation results to well-established benchmark models.

References Classifier models Dice coe�cient (%) Sensitivity (%) Specificity (%)

Huang and Hu (6) NU-NET 89.26± 12.45 89.63± 23.56 89.21± 14.25

Zhao et al. (7) U-NET 76.24± 17.89 85.45± 12.54 88.24± 15.45

Chiu et al. (8) 2D U-NET 81.89± 14.56 91.25± 12.89 78.26± 15.45

Gao et al. (9) U-NET 86.45± 56.78 78.56± 23.57 87.65± 23.90

Cai et al. (10) U-NET 87.22± 56.45 75.67± 23.74 56.24± 22.56

Banu et al. (11) 3D U-NET 90.24± 24.45 80.26± 23.77 79.23± 22.74

Xia (12) WU-NET 83.12± 25.06 88.96± 26.32 80.24± 23.56

Proposed work U-NET++ 91.76 ± 26.67 89.54 ± 3.65 85.98 ± 25.98

Bold values indicate highest compared with other classifiers.
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other ways of showing the same thing. To determine how well

the U-NET++ model segmented the LUNA16 trial dataset, five

radiotherapists were used for comparison with real experts. Of

the three radiologists, 81.26% were good at segmenting patients.

The U-NET++ model was also tested by comparing it with the

U-NET model and many other benchmark models, such as the

newest ResNet152V2.

The number of nodes, Dice coefficient value index, and

distribution are presented in Figure 10. This allowed the U-

NET++ model to be tested on a test set. Giving each node a

number and placing it in the midst of a test set trial is standard.

FIGURE 10

The frequency of lung CT scans was examined in the

LUNA16 collection.

Duan et al. (23) employed a U-NET architecture with advanced

deep learning techniques, resulting in a dice co-efficient of 0.88.

Similarly, Duan et al. (23) utilized V-NET incorporating 3D

convolutional layers, achieving a dice co-efficient of 0.90. The

method by Petit et al. (25) leveraged transformer networks,

while Ali et al. (26) utilized efficient net for a more parameter

efficient approach.

Table 11 shows a numeric comparison of how well the new

method U-NET++ works with three other deep learning models,

U-Net (7), NU-Net (6), andWU-Net (12), using CT images of lung

nodules from a dataset that was already made public, the suggested

method is better than the average method for segmenting images of

lung nodules.

We used Fisher’s least significant difference (LSD) method in

SPSS software to look at the numeric results and see if the suggested

way in Table 12 worked. By using the LSD test, we can see that the

suggested method does better than standard methods in terms of

IoU, recall, precision, and F1-score (p < 0.001).

After preprocessing the image, shown in the Figure 11A the

grouped picture, Figure 11B what was found when Lung tumors

were identified. Figure 11C results of cutting lung tumors into

whole pieces. Figure 11D the findings of the lung tumor search.

Figure 11E picture showing the effects on a specific area of lung

tumors when they are cut into pieces. Figure 11F a picture of a lung

tumor that was accurately cut into pieces.

Our Model, built on a U-NET++ architecture, demonstrated

a baseline performance with a dice-coefficient of 91.76% and an

IoU of 89.78%. Recent methods, such as the swin Transformer

by Ronneberger et al. (27), achieved higher performance metrics

through the use of advanced architectures and techniques.

TABLE 11 Quantitative evaluation of lung cancer segmentation methods based on key performance metrics, model architectures and unique features.

Method Score 96% C.I for mean

Mean St. deviation St. error Lower bound Upper bound

IoU Proposed methods 0.879 0.105 0.049 0.748 0.925

U-Net (7) 0.805 0.104 0.073 0.677 0.916

NU-NET (6) 0.780 0.117 0.062 0.680 0.824

WU-NET (12) 0.731 0.144 0.088 0.613 0.865

Recall Proposed method 0.933 0.035 0.043 0.814 0.963

U-Net (7) 0.870 0.022 0.038 0.759 0.955

NU-NET (6) 0.850 0.027 0.030 0.755 0.967

WU-NET (12) 0.805 0.154 0.83 0.702 0.954

Precision Proposed method 0.950 0.130 0.040 0.834 0.991

U-Net (7) 0.890 0.106 0.029 0.780 0.992

NU-NET (6) 0.880 0.086 0.024 0.770 0.996

WU-NET (12) 0.831 0.154 0.062 0.704 0.946

F1-Score Proposed method 0.940 0.120 0.040 0.826 0.993

U-Net (7) 0.886 0.086 0.023 0.754 0.975

NU-NET (6) 0.851 0.117 0.035 0.789 0.923

WU-NET (12) 0.813 0.128 0.057 0.721 0.948

Bold values indicates is highest compared with other classifiers.
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TABLE 12 Statistical analysis.

Multiple comparisons 96% C.I for mean

Dependent Model(a) Methods(b) Mean di�erence Sig Lower bound Upper bound

IoU Proposed model U-Net (7) 0.072# <=0.001 0.061 0.094

NU-NET (6) 0.096# <=0.001 0.084 0.125

WU-NET (12) 0.145# <=0.001 0.125 0.165

Recall Proposed model U-Net (7) 0.055# <=0.001 0.038 0.074

NU-NET (6) 0.061# <=0.001 0.050 0.075

WU-NET (12) 0.115# <=0.001 0.103 0.135

Precision Proposed model U-Net (7) 0.056# <=0.001 0.045 0.078

NU-NET (6) 0.065# <=0.001 0.055 0.085

WU-NET (12) 0.122# <=0.001 0.104 0.145

F1-Score Proposed model U-Net (7) 0.048# <=0.001 0.038 0.065

NU-NET (6) 0.072# <=0.001 0.065 0.089

WU-NET (12) 0.121# <=0.001 0.112 0.137

#Indicates proposed Method is better than the existing classifiers.

FIGURE 11

Utilizing the provided approach, we performed visual segmentation of heterogeneous lung nodules. (A) Clustered image. (B) Segmented image. (C)

Extracted image. (D) Extracted image with nodules localizations. (E) Nodule capture. (F) Nodule region highlighted.

The images in Figure 12 show a DSC value of at least 0.8 can be

trusted formost tumors. The dice index results were compared with

the U-NET++ architecture’s specific performance to ensure that

the model’s results were correct. The Dice similarity score (DSC)

for the U-NET++ model was 90.84%, which is an unusually high

level of success. Because it has fewer parameters than the original U-

NET design, the U-NET++model can effectively separate features

and divide them into groups.

The ROC curves in Figure 11 demonstrate that radiologists

have the capacity to obtain much greater levels of specificity

(i.e., decreased false positive rates) with a low impact on

sensitivity (31). By narrowing down the requirement for a positive

screen for individuals who are recommended to undergo repeat

computed tomography (CT) scans, it is possible to achieve

a specificity of 92.4%, while slightly decreasing the sensitivity

to 86.9%.

6 Conclusions and future work

Lung segmentation is necessary for the effective diagnosis

and identification of lung disorders. There has been a frenzy of
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FIGURE 12

AUC curve for the proposed classifier with respective to other classifiers.

lung segmentation research over the past few years, all aimed at

improving the accuracy. To identify and categorize lung illnesses,

automated analysis of a CT scan must first “segment” the lung.

The precision at which lung segmentation can be performed has

been the subject of several studies. Deep learning algorithms

and basic thresholding approaches have been applied to lung

segmentation. U-NET++ is particularly effective in separating cells

and neurons from images acquired using a PET Scan. In this

study, U-NET++ was used for lung segmentation. The accuracy

of the lung segmentation using U-NET++ was 91%. The original

purpose of U-NET++ was to separate tiny images. The lungs

were effectively divided using CT images. By shrinking the images,

they were reduced from 128 × 128 to 32 × 32 pixels. There were

25 convolutional layers in total in this network. It is much more

accurate to train U-NET++ using an original image size of 128 ×
128. The convolutional layers may be increased in size to enhance

the accuracy of the filter.
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Multivariate pattern analysis of
medical imaging-based
Alzheimer’s disease
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Department of Computer Science, College of Computer Sciences and Information Technology, King

Faisal University, Al-Hofuf, Saudi Arabia

Alzheimer’s disease (AD) is a devastating brain disorder that steadily worsens over

time. It is marked by a relentless decline in memory and cognitive abilities. As the

disease progresses, it leads to a significant loss ofmental function. Early detection

of AD is essential to starting treatments that can mitigate the progression of

this disease and enhance patients’ quality of life. This study aims to observe

AD’s brain functional connectivity pattern to extract essential patterns through

multivariate pattern analysis (MVPA) and analyze activity patterns across multiple

brain voxels. The optimized feature extraction techniques are used to obtain

the important features for performing the training on the models using several

hybridmachine learning classifiers for performing binary classification andmulti-

class classification. The proposed approach using hybrid machine learning

classification has been applied to two public datasets named the Open Access

Series of Imaging Studies (OASIS) and the AD Neuroimaging Initiative (ADNI). The

results are evaluated using performance metrics, and comparisons have been

made to di�erentiate between di�erent stages of AD using visualization tools.

KEYWORDS

Alzheimer’s disease, blood flow, multivariate pattern analysis, fMRI, neuroimaging,

biomarker

1 Introduction

The human brain is a highly complex organ regulating the human neurological system.

The human neocortex has up to 100 billion neurons connecting throughout the brain (1).

They constitute a vast, interconnected network linked to human activities and emotions.

Various neuroimaging techniques can acquire a wide range of brain signals. The term

"neuroimage" is based on the representation of brain functionality or architecture (2). AD

is among the most common types of memory loss in the twenty-first century and is a

significant healthcare problem. As per statistics, there are ∼5.5 Americans aged 65 years

and older affected by AD (3). AD is a progressive brain disease. It is marked by a loss of

executive function that treatment cannot resolve. Thus, studies have been conducted to

develop ways to predict the disease, especially before symptoms appear, to slow or prevent

them from worsening (4).

Traditionally, AD was detected through an invasive technique. Recently, multiple

neuroimaging modalities have been developed to identify AD: positron emission

tomography (PET) uses specific radiotracers to visualize and quantify amyloid plaques in

the brain; electroencephalography (EEG) is utilized to obtain the electrical activity; and

functional magnetic resonance imaging (fMRI) is utilized to measure the functionality of

the brain with the help of oxygen level change detection in various parts of the brain, such

as voxels (5).Moreover, the anatomical brain features are studied usingmagnetic resonance

imaging (MRI), having high spatial determination, and can compare soft tissues (6).

Frontiers inMedicine 01 frontiersin.org153

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1412592
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1412592&domain=pdf&date_stamp=2024-07-19
mailto:baalmarri@kfu.edu.sa
https://doi.org/10.3389/fmed.2024.1412592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1412592/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alarjani and Almarri 10.3389/fmed.2024.1412592

Because neuroimaging techniques are rapidly changing,

combining large amounts of high-dimensional, multimodal

neuroimaging data is challenging. Thus, computer-aided machine

learning methods for consolidative study have rapidly become

extremely popular, and multiple neuroimaging modalities have

recently been developed to identify AD. A popular neuroimaging

process for examining brain activity in neurodegenerative illnesses

is resting-state fMRI (7).

Based on recent research, brain changes associated with AD

begin up to two decades before symptoms appear. Due to the high

cost and side effects of current medicines, it is essential to focus

on enhancing the quality of life or reducing the impact of the

disease. To this end, a computer learningmodel showing significant

performance in predicting the disease earlier can help minimize

losses (8).

The structure of the study is outlined as follows: Section II

provides background on the phases of AD and BOLD data. Section

III reviews previous study on fMRI data. Section IV introduces the

framework, while Section V shows the results. Section VI discusses

the evaluation metrics used, and Section VII compares the findings

with previous studies. Finally, Section VIII concludes the study and

outlines future research directions.

1.1 Motivation and contribution

In recent years, computer-aided design systems have become

increasingly important in diagnosing and grading AD, a severe

disease affecting many people, particularly the older population.

AD causes memory loss and an inability to function in one’s

environment. The biology of the disease is not yet fully understood,

and no cure or medication is currently available to prevent its

progress. Early detection is essential for minimizing the impact

of the illness and enhancing patients’ quality of life. However,

classifying AD is challenging due to various constraints involved

in fMRI scans, such as low spatial resolution, image artifacts, and

motion aftereffects. Despite the low spatial resolution, the abstract

and high-level shapes can still provide valuable information for

our analysis. With a large amount of data, we have the potential

to capture a wide range of variations, which can help improve the

robustness and generalization of the model, based on inter subjects.

This diversity can also help identify and characterize AD patterns

and various sub-types or stages. Addressing these problems at

different stages is necessary to develop a robust detection and

classification framework for AD.

The primary contributions of this study include:

• To apply techniques using MVPA to consider patterns across

multiple variables simultaneously.

• To identify relevant features in order to mitigate the impact of

irrelevant or redundant ones by using the LASSO method.

• To propose a framework for detecting AD based on brain

signals using hybrid machine learning classifiers.

• To evaluate the results using performance metrics on the

public datasets of OASIS and ADNI for improved accuracy

rates.

1.2 Early diagnosis benefits

Early detection of AD is crucial for several reasons (9):

• Early intervention: It is referred to as the strategies

implemented for the early detection of AD. As there is no

treatment for AD, the progression of the disease can help to

manage the symptoms (10).

• Treatment planning: Early detection of AD allows for

the timely implementation of comprehensive treatment

plans, including medications, lifestyle changes, and cognitive

interventions.

• Clinical trials: Early detection enables individuals to

participate in clinical trials for new treatments, which

are crucial for advancing our understanding of AD and

developing new therapies.

• Learn about the management of AD symptoms.

• Develop a community for assistance.

• Conduct clinical studies to test any recent possible

medication (9).

2 Background

2.1 Phases of AD

AD has been classified into four stages (11), as shown in

Figure 1:

2.1.1 Normal control
Normal control is also known as cognitive normal, which is

the natural process of cognitive aging. Individuals of 66 years

of age healthily, retaining their ability to think, respond and

communicate. This is related to the natural aging process (12). They

show no symptoms of AD.

2.1.2 Mild Cognitive Impairment or prodromal
stage

The intermediate stage between healthy control and AD is

referred to as MCI. During this stage, an individual experiences

short-term memory loss and difficulty remembering the names of

familiar people or objects as a symptom. According to studies, 80%

of MCI patients advance to AD after a certain time period of ∼5–6

years (12).

Individuals may experience minor abnormalities in cognitive

function, but they are insufficiently severe to meet the criteria

for the diagnosis of Alzheimer’s disease in Early Mild Cognitive

Impairment (EMCI stage) (13). Therefore, this stage is generally

considered harmless. Not everyone with MCI will develop AD, and

some people may even show improvement in their mental abilities.

This stage damages the medial temporal lobe of the hippocampus

and causes symptoms of short-term memory loss.

More progression is toward another alarming stage, which is

Late Mild Cognitive Impairment (LMCI) (13), affecting the lateral

and parietal lobes of the brain. Reading difficulties, poor object
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recognition, difficulty knowing the names of people, and a lack of

sense of direction are all symptoms of this stage.

2.1.3 Alzheimer’s disease
AD is the final stage of the disease, characterized by severe

memory loss, including the names of people and things. This stage

is incurable (14). The stage of AD begins in the hippocampus

and entorhinal cortex and gradually spreads to other brain

sections, affecting the frontal, temporal, and occipital lobes of the

brain. Poor judgment, impulsivity, a short attention span, and

vision issues are all symptoms of this period. Advancing age,

hereditary variables, brain traumas, vascular illnesses, pathogens,

and external conditions are among the risk factors contributing

to AD development, as shown in Figure 2. What leads to the

pathological changes observed in AD remains unclear. While

several theories exist, two of the most prominent ones suggest that

cholinergic dysfunction and amyloid protein abnormalities may be

significant risk factors. However, no widely accepted explanation

exists for the underlying mechanisms of AD (15).

2.2 Blood Oxygenation Level-Dependent
signal

Several important factors influence the BOLD signal, as shown

in Figure 3.

The complex interaction between neural action and causing

a hemodynamic reply, and how an MRI scanner can detect this

response. The magnetic field intensity, echo duration, and type of

imaging technology used are only a few of the experimental factors

in the scanning of fMRI that influence the number of BOLD signals

detected by each scanner. For instance, although the hemodynamic

response is the same, a 1% BOLD signal throughout an echo of

30 ms is comparable to 2% over an echo period of 60 ms, and

the reaction is continuous. Additionally, BOLD imaging is prone

to several aberrations, including field inhomogeneities, ghosting,

and headmotion (17). Determining how accurately the BOLD reply

imitates a specific hemodynamic response is challenging due to the

number of interacting variables.

The balloon method by Buxton et al. (18) has been developed

through extensive research on the type of hemodynamic reply,

particularly by Friston et al. (19). As previously mentioned by

Buxton et al. (18), the BOLD signal vascular basis is primarily

thought to be a relative inequality between rises in blood flow

of local cerebral and concomitant (albeit smaller) rises in oxygen

digestion, resulting in a brief drop in the deoxyhemoglobin to

oxyhemoglobin ratio.

The blood volume, hematocrit, vascular geometry, and

oxygenation levels of basal are other physiological variables

affecting changes in the deoxyhemoglobin concentration (20,

21). Despite these crucial starting conditions, the hemodynamic

response can differ significantly between species and cortical areas.

Different facets of the hemodynamic response may alter on various

timescales and have various neuronal underpinnings and effects

on the signal of BOLD. It is now widely acknowledged that the

signal of BOLD also occurs at prominent draining veins, possibly

a few centimeters below the neuronally active part, in addition to

capillaries. Inferentially, such changes in the signal would be located

spatially apart from the stimulated brain tissue.

Consequently, regarding the "brain vs. vein" debate (22),

suggest that the density is based on microvascular, which will

consistently be less than that of neurons (23), is impeded by

massive contributions of vessels, and is more likely to be the aspect

restraining the BOLD-based fMRI spatial resolution. The spin-

echo fMRI method reduces these vein contributions, making them

potentially useful for more precisely tracing the neuronal sources of

fMRI BOLD (24, 25). Capillaries have a more significant impact on

image intensity (26), with stronger field strengths. Therefore, these

two might become more beneficial when used together.

3 Literature review

Several studies have developed ideas for systems that could

be used to classify AD. This section examines current studies

using deep learning (DL) and machine learning (ML) models in

systems for diagnosing and detecting AD. Some previous studies

on detecting this disease have used standard ML methods (27).

Additionally, many neuroimaging studies feature extraction

strategies for fMRI signals; for example, Lama and Kwon (28)

implemented graph theory to help predict AD at three stages: AD,

MC, and NC, with classifications based on the linear support vector

machine (SVM) and the regularized extreme learningmachine. The

Node2vec graph embedding approach converts graph features into

feature vectors.

Parmar et al. (29) developed a 3D-CNN that uses rs-fMRI

data to predict AD development. By employing unconventional

techniques, they extracted patterns from neuroimaging data and

found that a simple deep-learning model works well in categorizing

AD. The findings of the study suggest a promising future, where

fMRI-based biomarkers could assist in the early diagnosis and

classification of AD. The study achieved 96.67% accuracy.

Guo and Zhang (30) introduced a distinct network using an

autoencoder(AE) to detect natural aging and progression disorders.

The network is based on biased neural networks and can easily

diagnose AD. The researchers evaluated the system using the fMRI

AD dataset and observed that it provides 25% better accuracy

than other methods. The study achieved a remarkable 94.6%

accuracy. Another study by Alarjani et al. (31) compared machine

learning (ML) and deep learning (DL) models for early detection

of AD using fMRI data. A 3D convolutional neural network (3D-

CNN) extracted features from support vector machine (SVM) for

classification. The 3D-CNN achieved 98.3% accuracy, while the

SVM achieved 97.5%.

Shahparian et al. (32) developed an ML-based system that

detected AD using fMRI images. The system is used to calculate

time series for specific anatomical regions using the individual’s

fMRI data, and the latent low-rank representation method is

utilized to extract pertinent features. Based on the acquired

characteristics, the SVM classifier determines whether the person is

healthy at the onset of the disease or has AD. The proposed method

has an accuracy exceeding 97.5%. The problem with vascular

dementia (VD) and AD is that both are more frequent. These

may cause controversial diagnoses while using classical MRI and

Frontiers inMedicine 03 frontiersin.org155

https://doi.org/10.3389/fmed.2024.1412592
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alarjani and Almarri 10.3389/fmed.2024.1412592

FIGURE 1

Phases of AD.

FIGURE 2

Risk factors of AD.

FIGURE 3

The fMRI BOLD signals and hemodynamic response (16).

clinical methods. Castellazzi et al. (33) different ML algorithms

alongside combinations of MRI data are analyzed. AD and VD

are two of the most common. Concerning AD and VD, they may

demonstrate multiple neurological symptoms that may lead to

ambiguous diagnoses when using MRI criteria and conventional

clinical. To overcome this problem, a method to classify AD and

VD is presented. The system is assessed by three algorithms, such

as ANN, SVM, and neuro-fuzzy inference.
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Wang and Lim (34) conducted a new assessment approach

introduced for individuals with AD and MCI compared with

NC individuals, which utilized the zoom-in neural network DL

algorithm. By extracting features from the resting-state fMRI

dataset obtained from the ADNI, the algorithm could detect

the implicated regions during AD by utilizing the automated

anatomical labeling (AAL) Atlas. The study found that the ZNN

obtained good results of 97.7, 84.8, and 72.7% accuracy for

distinguishing AD from NC and MCI, NC from MCI and AD, and

MCI from NC and AD, respectively. This was achieved using seven

discriminative ROIs in the AAL-90.

Data optimization is indeed a complex task in the field

of neuroimaging. However, Zamani et al. (35) proposed an

interesting approach integrating artificial neural network (ANN)

with evolutionary algorithms to optimize the neuroimaging data

with multiple parameters. Using the rs-fMRI data based on

the resting state, they measured the FC and computed 1,155

parameters. They tested the system using the ADNI dataset and

achieved 94% accuracy.

To achieve AD discrimination at various stages, Nguyen et

al. (36) suggested a voxel-wise discriminative system for multi-

measuring rs-fMRI and combining hybrid MVPA and extreme

learning machine (ELMs) and applied it to two different datasets.

Jiao et al. (37) proposed a method focusing on the multi-

scale combination of features. This approach utilizes global static

features, moment features, and more refined features extracted

from networks that are static, dynamic, and high-order functional.

Subsequently, SVM was used to classify EMCI versus NC. Lu et

al. (38) developed a system categorizing AD, MCI, and CN of fMRI

data using FC throughout the brain rather than feature selection.

They then used an ELM to classify binary stages. Unfortunately,

this framework is only appropriate for a small dataset.

Yang et al. (39) extensively applied the brain function network

to classify AD biomarkers 240 in the MCI stage. They used

multiple time points of rs-fMRI data by combining the fused sparse

network model based on centralized learning that is parameter-

free. The essential features selected by the similarity network

fusion method were then used to classify them using SVM. In

addition, Chan et al. (40) proposed approach for AD uses a

graph neural network (GNN) on MRI and fMRI scans. It encodes

scans into brain graphs, clusters representations learned by the

GNN to identify disease subtypes, and constructs population

graphs for final decision-making. This approach outperforms

existing methods, identifying three AD subtypes and revealing

unique biomarkers, such as left cuneus and left isthmus cingulate

cortex degeneration.

Lama et al. (41) constructed the brain network using

Pearson’s correlation-based FC of fMRI data. The brain network’s

graph features were transformed into feature vectors using the

Node2vec graph embedding technique. Furthermore, they selected

features using various approaches, which they then applied

to classifiers: single-layered extreme learning and multi-layered

ELM. Koluragi et al. (42) combined SVM and EfficientNetB0 to

improve the performance. The integrated approach outperformed

individuals, leveraging EfficientNetB0’s efficient resource utilization

and balance.

In earlier research, rs-fMRI used a mono-band frequency

range and focused on low-order neurodynamics. Thus, high-order

neurodynamics were deliberately excluded. To address these issues,

Sethuraman et al. (43) proposed an automated system to detect AD

using rs-fMRI. The system constructs a high-order neurodynamic

functional network using different levels of rs-fMRI time-series

data, such as slow4 and slow5, and the full-band ranges from 0.027

to 0.08Hz, 0.01 to 0.027Hz, and 0.01 to 0.08Hz. SVM and k-nearest

neighbor (KNN) were used for ML, and AlexNet and Inception

were implemented to classify various stages of AD. The system

achieved 96.61% accuracy in differentiating between AD and NC.

Begum and Selvaraj (44) used deep CNN (DCNN) and 3D densely

connected convolutional neural network algorithms to diagnose

AD and perform feature analysis on fMRI data.

To enhance early detection (45), the effectiveness of Extreme

Learning Machines (ELMs) was assessed alongside fMRI-based FC

metrics. The non-linear methods such as MIC and eMIC were

applied as classification features leads to robust outcomes. The

study achieved a 95% accuracy rate in distinguishing between

AD and NC using these methods. The study conducted by

Penalba-Sánchez et al. (46) investigated the dynamic and static

FC of resting-state fMRI using various methods across 116

ROIs for four participant groups. Additionally, they utilized

graph theory metrics to investigate network segregation and

integration. The results showed that the EMCI group had a longer

typical path length and lower degree compared with the healthy

control (HC) group.

3.1 Important of gap

MVPA techniques can enhance the ability to detect significant

changes in the activity of the brain that may not be noticeable

with traditional univariate methods. This is particularly important

in AD, where early detection of subtle changes can be crucial

for timely intervention. Additionally, MVPA allows a more

detailed understanding of how different brain regions interact

and contribute to cognitive processes. This can provide valuable

insights into the underlying mechanisms of AD and other

neurological disorders.

4 Proposed framework

AD is a serious health condition affecting many people,

particularly the older population worldwide. It is a debilitating

illness causing memory loss and impairing one’s ability to interact

with their surroundings. Early detection is crucial in mitigating

the effects of Alzheimer’s disease and improving the quality of

life. Recognizing the disease at its onset enables the reduction of

its impact on patients. We constructed a predictive framework

to detect AD at an early stage based on human brain imaging

techniques: fMRI. Figure 4 presents a summary of the proposed

framework. It includes the following steps: (1) data collection

(i.e., fMRI), (2) preprocessing of fMRI data to avoid articles (i.e.,

noisy), (3) computing FC throughMVPA, (4) extracting time series

of fMRI data, (5) computing correlation matrices for each stage,

(6) feature selection to select relevant features (i.e., voxel), (7)

supervised learning, and (8) evaluation and analysis.
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FIGURE 4

Proposed framework.

4.1 fMRI signal preprocessing

Since medical images are complex and difficult to extract

features, various techniques must be used to process images in the

dataset.

A flexible preprocessing pipeline is used to prepare functional

and structured data, including realignment, slice timing correction

(STC), normalization to MNI space, and smoothing (47).

For realignment, we utilized the SPM realignment unwarping

procedure suggested by Andersson et al. (48). Then, scans are co-

registered based on a reference image, such as the first scan of the

first session. For this, a least square technique and a transformation

of a 6-parameter (rigid body) are utilized, as presented in the

study by Friston et al. (49). After that, the interpolation of the B-

spline was resampled to reduce the effects of motive and magnetic

artifacts.

Temporal misalignment and methods were applied to identify

scans. A reference BOLD image was developed by applying the

mean to the scans, and the outliers were excluded. The SPM unified

normalization algorithm is used to perform the normalization and

obtain the standard MNI space (50, 51), with the probability map

template based on default IXI-549 tissue, as resampled to 2 mm

isotropic voxels. Finally, the spatial convolution of the data was

performed with the help of a Gaussian kernel of 6 mm full-width

at half-maximum (FWHM) for smoothing (see Figure 5 for an

illustration).

4.2 Functional connectivity

An essential application of fMRI studies is brain network

mapping in AD patients and between the brain network

mapping routes. At rest, the default mode network is among

the most exciting networks (52). DMN relates to knowing

previous events, imagining future events, self-relevant mental

processing, and checking external information (53). Alterations

in DMN functional activity have been linked to neurological

disorders (54–56). Most studies show decreased FC in the DMN.

In a study by Koch et al. (57), the power of the DMN in rs-

fMRI was examined to differentiate between three groups: CN

individuals, MCI, and patients with AD. Moreover, this can be

constructed using numerous imaging technologies [for example,

EEG/magnetoencephalography [MEG] and structural, diffusion,

and functional MRI]. Ways to analyze FC include UNIVAR and

MVPA.

4.2.1 Univariate analysis
UNIVAR is a method used to analyze fMRI data. UNIVAR

assesses the individual voxel neural activation or the average voxel

activation of the brain. Thus, it is used for the localization of brain

regions participating in processing specific stimuli such as face

versus object. The conclusion about the brain regions participating

in cognitive processes is also drawn from the study by Haynes

and Rees (58). A general linear model is employed on each

voxel, which is why it is called univariate (59). FCA characterizes

communication between various brain regions during a task or rest.

It also measures the relationship strength between the BOLD signal

of the time series (60), as shown in Figure 6.

∀x, y rn
(

x, y
)

= gn ∗ b
(

x, y
)

+ ǫn(x, y).σ
(

x, y
)

(1)

Null hypothesis C.b(x, y) = 0
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FIGURE 5

Pipeline for preprocessing of BOLD data.

Here in Equation 1, n refers to the number of subjects in a

study, and x and y are the voxel pair. The characterizing FC of these

two voxels can be considered as rn(x, y), where gn is referred to as

the vector of a predictor of each subject n. The unknown regression

coefficient of an unknown vector is b(x,y), while ǫn (x,y) and σ

(x,y) are error term and inter-subject variance, respectively. A null

hypothesis can be formed using C.b(x, y) = 0.

Many studies used UNIVAR, such as in the study by Moeller

et al. (61), to identify the region’s dynamic activity close to the

expected waveform. In another method Bu et al. (62), the authors

examined the UNIVAR and MVPA overlap.

4.2.2 MultiVoxel (or Multivariate) Pattern Analysis
Multivariate Pattern AnalysisMVPA is themost used technique

for analyzing functional data. In this study, the spatial pattern of

neural activation across various voxels is considered (e.g., voxels

in fMRI or channels in MEG/EEG). It also assesses whether it

has information related to the task (63). It is called multivariate

because it is based on analyzing a set of voxels rather than single

voxel modeling (64). The similarities of such patterns can also be

investigated by the activation of these patterns, such as by viewing

a scene vs. a face, Norman et al. (65), as shown in Figure 7. The

MVPA can be mathematically defined as follows (Equation 2).

∀x rn(x) = gn ∗ B(x)+ ǫn(x) ∗
∑

(x) (2)

Null hypothesis C.B(x).P(x) = 0

While rn (x) refers to connectivity value whole map, unknown

predictor of regression coefficients is denoted by B(x). ǫn (x) refers

to residual error.
∑

(x) is denoted as voxel-by-voxel matrix of

positive definite. While C denotes between subject, P(x) represents

contrast matrix of between-voxels. There are many studies that

used MVPA such as in the study by Yoon et al. (66), it

used validate impairment hypothesis in schizophrenia-distributed

representations. In another method, Lee et al. (67) conducted

hypothesiss by using MVPA to check that based on the brain

prediction, the efficiency of models has variations across the stimuli

types.

4.3 Region of interest

After preprocessing BOLD fMRI data, we can extract features

from the fMRI data depending on the atlas. Automated Anatomical

Labeling (AAL) atlas is a tool used in neuroimaging that provides

a pre-defined anatomical division of the human brain. This tool

is widely used in neuroscience research, particularly in functional

and structural brain imaging studies, such as fMRI and PET. The

AAL atlas helps researchers to identify and label specific brain

regions in their neuroimaging data. The human brain is divided

into anatomical regions, each with a specific label in the AAL atlas.

AAL atlas provides standardized three-dimensional coordinates

for each region, which researchers can use to locate and precisely

label brain imaging data areas. The AAL atlas performs various

analyzes, including region-of-interest (ROI) studies in functional

brain imaging, tomap brain activity during specific tasks or resting-

state conditions (68). Few types of the AAL atlas are as follows:

AAL1 (69), AAL2 (70), Chinese AAL (71), AAL3 (68). Dealing

with high-dimensional and small sample datasets such as fMRI

data is challenging when it comes to classification and modeling.

To address this issue, the AAL template is utilized in this study

to calculate the functional link matrix after processing the original

image. In Figure 8, the AAL3 used to perform feature extraction

to identify relevant brain regions or patterns for the fMRI. AAL3

includes 170 regions, masking objects with an atlas to extract time

series within each ROI (see Figure 9).

4.4 Compute connectivity

Multiple techniques are available to calculate the FC of fMRI.

These techniques include connectivity maps of seed-to-voxel, ROI-

to-ROI connectivity matrices, independent component analysis,
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FIGURE 6

Schematic diagram of univariate analysis.

FIGURE 7

Schematic diagram of Multi-Voxel Pattern Analysis.

FIGURE 8

View for the AAL3 template.

and multivariate pattern analysis (MVPA). This study proposes

FC using MVPA to analyze individual voxel resolution in the

brain-wide connectome. This approach uses the MVPA methods

to overcome the challenges of brain-wide connectome analysis.

MVPA was applied to a 4D BOLD dataset to compute the

correlation matrix between voxel time series within each ROI

and remove relevant voxels based on their correlation with other

voxels. These analyzes calculate a series of associated connectivity

patterns and spatial maps that illustrate the voxel connectivity

to the rest of the brain. Based on the provided fMRI time-series

data, the calculated correlation matrix will then contain correlation

values between ROI pairs. The FC matrix is displayed using the

AAL3 template, which includes 166 brain regions, resulting in a

connectivity matrix of 166 X 166. The correlation matrix ranges

from 0 to 1, with 0 indicating no correlation and 1 indicating a high

degree of correlation. The matrix is shown in Figures 10, 11.

4.5 Feature selection

4.5.1 LASSO
Suppose we have a data (xi,Yi), i = 1, 2, . . . , N, where xi =

(

Xil,Yip

)T
refers to the variables used for prediction, yi refers to the

response. In the usual setup of regression, we suppose that either all
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FIGURE 9

(A) Performed mask and functional of AD. (B) Performed mask and functional of MCI. (C) Performed mask and functional of NC.

FIGURE 10

Functional connection matrix and brain network visualization for each stage (AD, MCI, and NC). (A) Functional connectivity NC. (B) Functional

connectivity AD. (C) Functional connectivity MCI.
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FIGURE 11

Functional connection matrix and brain network visualization for each stage (AD, MCI, and NC) in ADNI dataset. (A) Functional connectivity NC. (B)

Functional connectivity AD. (C) Functional connectivity MCI.

observation is independent or yis are independently conditionally

of the given yijs we can suppose that Xij referred to as standardized
∑

ixij/N = 0,
∑

ix
2
ij/N Suppose β̂ =

(

β̂1, . . . , β̂p

)T
, and the lasso

estimate (α̂, β̂)

Here, t ≥ 0 is referred to as a parameter for tuning. For all t,

the solution for a is α̂ = ŷ. We can consider without losing the

generality that α̂ = 0 which omit α. The solution of the above

equation is a problem of quadratic programming having linear

constraints of inequality.

The amount of shrinkage is controlled by the parameter t ≥ 0.

It is applied for estimation. Suppose β̂j refers to the estimates of full

least squares. Let
∑

∣

∣

∣
β̂j

∣

∣

∣
, then the shrinkage will occur due to t < 0.

This shrinkage will occur in the solutions toward 0. There are some

coefficients and value of these coefficients will be 0. If t = t0/2, then

the affect will be same as searching the best subset having a size of

p/2. It is not necessary that the matrix of design will be of full rank.

The motivation behind the Lasso is from a proposal by

Breiman, and it can be defined as Equations 3 and 4.

(α̂, β̂) = argmin







N
∑

i=1



yi − α −
∑

j

βjxij





2




subject to
∑

j

|βj| ≤ t. (3)

N
∑

i=1



yi − α −
∑

j

cjβ̂
◦
j xij





2

subject to cj ≥ 0,
∑

cj ≤ t (4)

As previously mentioned, fMRI data are high-dimensional,

with many voxels (3D pixels) representing regions of the brain. In

this context, LASSO helps select a subset of these most relevant

voxels for a particular analysis. Lasso is used as a regularization

technique in linear regressionmethods. It adds a penalty term to the

sum of squared errors, encouraging sparsity in the resulting model.

It promotes the selection of a subset of features (voxels or ROI)

while setting others to zero. Identifying relevant voxels or ROIs:

Lasso regression is employed to identify relevant features (relevant

brain regions or voxels). The Lasso coefficients provide information

about the importance of each feature by setting a suitable penalty

parameter (alpha = 0.01). Features with non-zero coefficients are

considered relevant, and those with coefficients set to zero are

effectively excluded from the model (72). We selected the λ value

that minimized the cross-validated mean squared error (MSE), as

shown in Figures 12, 13.

4.6 Machine learning

Machine learning (ML) is among the most efficient and robust

tools that have entered the medical imaging domain in the last few

years. The recent advances in this field have enabled intelligent

algorithms capable of assisting human experts in making wise

decisions. Data are prepared in various directions, such as single

and hybrid models, to classify the disease by organizing the time

series of relevant voxel(s) into a matrix and labeling samples as AD,

MCI, or NC based on their task condition or behavioral response.

Table 1 presents the hyper-parameters of ML.

4.6.1 Single model
4.6.1.1 Support vector machine

Support vector machine (SVM) is among the most common

classification and regression analysis algorithms. They use patterns

found through data analysis and pattern recognition to predict

newly collected data. The SVM classifies data into different classes

by creating a hyperplane. The nearest points from each class are

kept as far apart as feasible by the hyperplane, which is selected to

optimize the margin between the two classes (73).

4.6.1.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is an important ML model based

on supervised learning. The approach assumes similarity between

new and existing subjects. Subsequently, it places the latest subject

in the group, which is mostly similar to the existing categories,
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FIGURE 12

MSE of the LASSO fit, cross-validated with a parameter lambda (λ), for the OASIS dataset.

FIGURE 13

Mean squared error (MSE) of the LASSO fit, cross-validated with a parameter lambda (λ), for the ADNI dataset.

such as AD, MCI, and NC. The KNN algorithm saves all existing

data and generates new subjects based on similarity. Once a new

subject is developed, the KNNmethod instantly categorizes it into a

suitable category. Notably, KNN is a non-parametric technique, so

no assumptions about original data are made. During the training

phase, the KNN algorithm stores the dataset and classifies new

subjects into a category similar to the old data (74).

4.6.1.3 AdaBoost

AdaBoost classification involves training of numerous weak

classifiers on the same training set to create a robust classifier. The

weak classifier is a stump of the tree. The models then decide which

prediction is the best; however, this technique depends on the weak

classifier. It would increase the accuracy if used along with another

algorithm (75).

4.6.2 Hybrid approach
In our case, the ensemble classifier combined the predictions of

three base classifiers, namely, SVM, AdaBoost, and KNN classifiers

by voting (Figure 14). In soft voting, each data point in fMRI
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collects the probability estimates (class probabilities) from each of

the individual classifiers in the ensemble. The average or weighted

average of these probabilities is computed for each class to make

a final decision for that data point. The predicted class label for

each data point is determined by selecting the class with the highest

average probability.

TABLE 1 Tuning for machine learning models.

Model Hyperparameters

SVM kernel = "sigmoid", C = 0.2, random state = 300

AdaBoost Default

KNN n_neighbors = 300, weights = "uniform", p = 2

HML voting = "hard"

5 Results and analysis

5.1 Datasets

5.1.1 Open Access Series of Imaging Studies
A free-access data set was retrieved from the OASIS dataset. It

has three versions: OASIS-I, OASIS-II, and OASIS-III. OASIS-III

is a longitudinal neuroimaging, biomarker, cognitive, and clinical

dataset for normal aging and AD with ages varying between 42

and 95 years, including 1,379 subjects (male/female) and 2,842MRI

sessions, which include T1w, T2w, and resting-state BOLD (rs-

BOLD). In our case, We used rs-BOLD data, typically acquired as

a sequence of 3D brain volumes, with each volume representing a

snapshot of brain activity, including all data for the mild cognitive

impairment (MCI) stage, with all slices. We balanced the selection

by choosing approximately the same number of samples for AD

FIGURE 14

Mechanism of ensemble.

FIGURE 15

Three-plane view for (AD, CN, and MCI) from the OASIS dataset.
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and normal cognition (NC) classes to prevent bias. Figure 15

presents all three plane views of fMRI data. It has the following

requirements: Each stage has several subjects (males and females),

including functional and structural data (i.e., T1 W), and each

subject has an array of size 64 * 64 * 36 * 164, representing height

* width * number of horizontal slices * number of data points. The

data are captured using 3.0 T (Tesla) scanners with a slice thickness

of 2.4 mm, and the flip angle is 80 degrees (76). Table 2 displays the

subjects’ demographic information.

5.1.2 AD Neuroimaging Initiative
Its free-access dataset is retrieved from the ADNI. The

ADNI was initiated in 2004 under the leadership of Dr. Michael

TABLE 2 Subject cohort of fMRI (OASIS dataset).

AD MCI NC

Type of image DICOMa

Number of subjects 101 95 102

Total of slice 16,564 15,580 16,728

Sex (M/F) 72/29 40/55 60/42

Clinical dementia rating (CDR) 0.5 0 1

Flip angle 77◦

Voxel size in fMRI 3x3x3mm3

TR/TE 2 s/25 ms

Width 64 64 64

Height 64 64 64

Acquisition scanner 3.0 T (Tesla)

a Digital Imaging and Communications in Medicine.

W. Weiner. ADNI is a collaborative effort involving multiple

institutions and researchers in the United States and Canada.

It is a longitudinal study that was carried out in stages at

several centers in North America (ADNI1, ADNIGO, ADNI2,

and ADNI3). ADNI aims to develop biomarkers as clinical trial

outcome measures. The ADNI includes MRI, PET, fMRI, and

DTI and genetic data sessions at various stages for males and

females (77). Additionally, we can select a sagittal, coronal, and

axial plane, adding them to data collections and downloading

them as NIFTI files, as shown in Figure 16. In this study, we

downloaded fMRI data comprising 95 normal, 35 MCI, and 55

AD subjects.

Table 3 shows that the ADNI dataset is not imbalanced.

However, we still need to address the issue of imbalanced data,

TABLE 3 Subject cohort of fMRI (ADNI dataset).

AD MCI NC

Type of image NIfTI∗

Number of subjects 55 35 95

Total of slices 1096 701 1900

Male/female 30/25 20/15 50/45

Range of age 65–75

Acquisition plane Axial rsfMRI (eyes open)

Voxel size in axial rs-fMRI 3x3x3mm3

TR/TE TR = 3 s; TE = 30

Thickness 3.312999963760376 mm

Acquisition scanner Philips medical systems

∗Neuroimaging informatics technology initiative.

FIGURE 16

Three-plane view of AD, CN, and MCI from the ADNI dataset.
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FIGURE 17

SMOTE techniques to handle imbalanced data. (A) imbalance class. (B) SMOTE.

TABLE 4 Di�erent between OASIS and ADNI datasets.

OASIS ADNI

Availability Openly available to the

scientific community

available to researchers, but

access is subject to data use

agreements and restrictions.

Size and

Scope

Relatively smaller dataset with

fewer subjects and a narrower

focus multiple

larger with data from sites and

a broader range of

assessments.

Cost and

resources

Require less computational

resources.

Require additional resources

expertise due to its

comprehensive nature and

complex data structure.

as it can affect accuracy. To do this, we utilized the Synthetic

Minority Oversampling Technique (SMOTE) (78). One of the most

common techniques used to tackle imbalanced data is SMOTE.

This technique involves several steps, including identifying the

minority classes, selecting their instances, finding the nearest

neighbors, and creating synthetic samples. To ensure an equitable

representation of participants, the minority class, known as "MCI,"

was oversampled in this framework. It is important to note that the

dataset has no missing or null values, eliminating the need for data

imputation or removal. Figure 17 outlines the step-by-step process

for predicting AD.

Table 4 shows the main differences between the

OASIS and ADNI datasets are as follows: OASIS provides

open access to a diverse population but with less

comprehensive data, while ADNI provides extensive data

and standardized protocols but with restricted access and a more

homogeneous population.

5.2 Evaluation analysis

The trained model’s performance is measured using evaluation

metrics, with each implementation having a different preprocessing

and classifier training (79).

5.2.1 K-fold cross-validation
Cross-validation is a widely used method in ML for evaluating

how well a model can make predictions. This method is easy

to understand and helps reduce bias during evaluation. We have

used 10-fold cross-validation for each configuration created by

combining available values (80), as shown in Figure 18.

5.2.2 Classification metrics
This section presents the experimental results, focusing on

precision, recall, F1-score, and accuracy metrics used for disease

classification. These metrics are calculated based on confusion

metrics, and accordingly, the performance metrics were identified

in Equation (5) (81):

Precision = TP/(TP + FP) (5)
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FIGURE 18

K-fold cross-validation.

Recall, also referred to as sensitivity (SN), is defined as

the capability to identify AD patients. The formula is given in

Equation (6):

Recall = TP/(TP + FN) (6)

F1- score is a degree of the accuracy of the test, which reflects

both the recall and precision of the test to calculate the score. The

given formula is for the F1- score in Equation (7):

F1-score = 2TP/(2TP + FP + FN) (7)

Accuracy (ACC) is the likelihood of correct positive and

negative forecasts, as shown in Equation (8).

ACC = TP + TN/TP + TN + FP + FN (8)

Where the parameters TP, FP, TN, and FN are defined as

follows:

• True positive (TP): The subject has AD, and categorization

outcome is positive (AD).

• False positive (FP): A subject has NC, and categorization

outcome is positive.

• True negative (TN): A subject has NC, and categorization

outcome is negative (Normal).

• False negative (FN): The person has AD, but the test is

negative.

6 Comparison with previous studies

Based on the related study presented in Table 5, it was observed

that most studies depend on a single model for ML and DL to

classify AD. Moreover, most of the studies used a small dataset and

the AAL-90 atlas to define the nodes (regions) of the brain. Thus, it

is necessary to improve amodel in various ways to extract and select

essential features. Our study used MVPA for fMRI scans from the

OASIS-3 and ADNI datasets to extract activation and connectivity

patterns.

7 Conclusion

AD is referred to as a neurodegenerative disease that worsens

gradually and irreversibly over time. In this article, we proposed

a framework to compute FC through MVPA. The fMRI data are

relatively complex, with numerous voxels representing different

brain regions in 3D space. We used LASSO to select a subset of

relevant voxels for a specific analysis to simplify the analysis and

focus on the most critical voxels.

We defined the ROIs or brain areas to analyze FC. These ROIs

are often selected based on previous knowledge or hypotheses.

Moreover, time-series data were extracted from these ROIs. For

MVPA, the activity across multiple voxel patterns is crucial. Each

data point represents the activity pattern in a specific ROI for a

given task, and a correlation matrix of fMRI data is then computed.

We applied our framework to single and HML algorithms to

classify AD stages based on the activity patterns within ROIs. Our

method surpasses state-of-the-art techniques in identifying AD,

MCI, and NC in the experimental results.

Medical image classification is a crucial issue in computer

science that has been extensively studied over recent decades.

While significant improvement has been made in the reliability

of various methods, they may need to provide accurate results

due to their limitations in terms of universality, susceptibility to

illumination effects, and the inadequacy of data quality, resulting in

poor accuracy. We have many dimensions, few data points for each

scan, and the training sample in fMRI. Additionally, trades between

having enough non-redundant features to capture and not having

too many noise features lead to overfitting on our data; so it is hard

to distinguish between a noise and a signal accurately. In addition,

we applied AAL3 to extract the ROI that includes 170 regions, but

in preprocessed and defined regain, it only used 166 regions, and

some regain skipped. Finally, the variety of public datasets is not

that wide. Additionally, we posed the problem as an fMRI scan in all
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TABLE 5 Comparison between our study and similar studies in the fMRI literature.

Type of class

References Perf Data Model AD/MCI AD/NC MCI/NC AD/MCI/NC

Lama and Kwon (28) Acc LSVM - - - 96.11%

f1-Sc - - - - 97.3%

Rec ADNI - - - 95.03%

Prec - - - 97.18%

Parmar et al. (29) Acc - 94.58% - -

f1-Sc 94.82% - -

Rec ADNI 3D-CNN - 95.2% - -

Prec - 94.44% - -

Guo and Zhang (30) Acc - - - -

f1-sco - - - -

Rec ADNI-2 AE - 94.6% - -

Pre - 96.7% - -

Shahparian et al. (32) Acc 98.26% 97.51% - -

f1-sco 98.9% 98.28% - -

Rec ADNI SVM 97.83% 100% - -

Pre 100% 96.63% - -

Wang and Lim (34) Acc 72.7% 84.8 % 97.7% -

f1-sco - - - -

Rec ADNI ZNN - - - -

Pre - - - -

Jiao et al. (37) Acc - - 91.13% -

f1-sco - - - -

Rec ADNI-2 SVM - - 93.17% -

Pre - - 87.92% -

Yang et al. (39) Acc - - 91.13% -

f1-sco - - - -

Rec ADNI-2 SVM - - 93.17% -

Pre - - 87.92% -

Begum and Selvaraj (44) Acc 97.52% 97.53% - -

f1-sco 97.14% 98.46% - -

Rec ADNI 3D-DCNN 90.48% 95.42% - -

Pre 94.98% 97.98% - -

Acc 83.3% 93.18% 92.15% 87.79%

f1-sco 83.44% 93.28% 92.44% 88.64%

Rec ADNI SVM 83.30% 93.28% 92.15% 87.79%

Pre 83.3% 94.29% 93.99% 92.60%

Our work Acc 84% 88.71% 89.57% 88.28%

f1-sco 84.21% 88.83% 90% 88.41%

Rec ADNI KNN 84% 88.71% 89.57% 88.28%

Pre 88% 89.96% 89.96% 90.34%

(Continued)
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TABLE 5 (Continued)

Type of class

References Perf Data Model AD/MCI AD/NC MCI/NC AD/MCI/NC

Acc 87.92% 89.98% 80% 91%

f1-sco 87.94% 89.52% 81.19% 91%

Rec ADNI Adaboost 87.92% 89.98% 80% 89%

Pre 88.53% 91.39% 88.38% 92%

Acc 94.93% 90.94% 96.15% 93.96%

f1-sco 94.98% 91% 96.23% 94%

Rec ADNI *HML 94.93% 90.94% 96.15% 93.96%

Pre 95.61% 93% 96.65% 94.78%

Acc 86.97% 81.3% 90% 88%

f1-sco 86.49% 80.49% 90.51% 88%

Rec OASIS SVM 86.97% 81.33% 90% 85%

Pre 90.79% 89 % 90% 91%

Acc 86.4% 86% 89% 84%

f1-sco 86.26% 86.8% 90.5% 84%

Rec OASIS KNN 86.47% 86.7% 89% 77%

Pre 87.58% 89.8% 89.8% 92%

Acc 82.94% 86.16% 89.94% 87%

f1-sco 82.9% 86% 82.9% 87%

Rec OASIS Adaboost 82.94% 86.1% 89.94% 86%

Pre 82.93% 89.75% 89.30% 88%

Acc 95.47% 95.11% 93.5% 92%

f1-sco 95.50% 95.13% 93.54% 92%

Rec OASIS HML 95.47% 95.11% 93.49% 93%

Pre 96.22% 95.83% 93.34% 92%

∗ Hybrid machine learning. Bold values indicate highest score.

of our experiments. The main obstacle remains the intricate nature

of the data and the restricted sample size within the existing dataset.

In the future, we intend to improve early detection performance

by employing advanced AI methods such as explainable AI (XAI),

to provide explainable results, in addition to label predictions.

Moreover, we will extend the framework to track different disease

modalities, such as PET andMRI. Moreover, we aim to increase the

number of stages to include all the stages of AD, such as EMCI and

LMCI.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

BA: Conceptualization, Formal analysis, Project

administration, Validation, Writing - review &

editing. MA: Conceptualization, Data curation,

Methodology, Software, Visualization, Writing -

original draft.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

The authors extend their appreciation to the Deputyship for

Research and Innovation, Ministry of Education in Saudi

Arabia for funding this research work through the project

number: INTS065.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Frontiers inMedicine 17 frontiersin.org169

https://doi.org/10.3389/fmed.2024.1412592
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alarjani and Almarri 10.3389/fmed.2024.1412592

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Schaefer M, Michelin L, Kepner J. Naming schema for a human brain-scale neural
network. arXiv Preprint. (2021). doi: 10.48550/arXiv.2109.10951

2. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate
brain. Front Hum Neurosci. (2009) 2009:31. doi: 10.3389/neuro.09.031.2009

3. Bird TD. Alzheimer Disease Overview. GeneReviews (2018).

4. Apostolova LG, Thompson PM. Mapping progressive brain structural changes
in early Alzheimer’s disease and mild cognitive impairment. Neuropsychologia. (2008)
46:1597–612. doi: 10.1016/j.neuropsychologia.2007.10.026

5. Weiner MW, Aisen PS, Jack Jr CR, Jagust WJ, Trojanowski JQ, Shaw L, et al.
The Alzheimer’s disease neuroimaging initiative: progress report and future plans.
Alzheimer’s Dement. (2010) 6:202–11. doi: 10.1016/j.jalz.2010.03.007

6. Carr MW, Grey ML. Magnetic Resonance Imaging: overview, risks, and safety
measures. Am J Nurs. (2002) 102:26–33. doi: 10.1097/00000446-200212000-00012

7. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. (2006)
314:777–81. doi: 10.1126/science.1132814

8. Richens JG, Lee CM, Johri S. Improving the accuracy of medical
diagnosis with causal machine learning. Nat Commun. (2020) 11:3923.
doi: 10.1038/s41467-020-17419-7

9. Allsop D. Introduction to Alzheimer’s disease. Alzheimer’s Dis. (2000) 2000:1–21.
doi: 10.1097/00002093-200000001-00001

10. Mosconi L, Brys M, Glodzik-Sobanska L, De Santi S, Rusinek H, De Leon
MJ. Early detection of Alzheimer’s disease using neuroimaging. Exp Gerontol. (2007)
42:129–38. doi: 10.1016/j.exger.2006.05.016

11. Medical Care Corporation. Education Progression of Alzheimer’s (2011). Available
online at: https://www.mccare.com/education/alzprogression.html (accessed June 4,
2023).

12. Kim SM, Song J, Kim S, Han C, ParkMH, Koh Y, et al. Identification of peripheral
inflammatory markers between normal control and Alzheimer’s disease. BMC Neurol.
(2011) 11:1–6. doi: 10.1186/1471-2377-11-51

13. Guo M, Li Y, Zheng W, Huang K, Zhou L, Hu X, et al. A novel
conversion prediction method of MCI to AD based on longitudinal dynamic
morphological features using ADNI structural MRIs. J Neurol. (2020) 267:2983–97.
doi: 10.1007/s00415-020-09890-5

14. Wang SSS, Good TA. An overview of Alzheimer’s disease. J Chin Inst Chem Eng.
(2005) 36:533–59.

15. Korolev IO. Alzheimer’s disease: a clinical and basic science review.Med Stud Res
J. (2014) 4:24–33.

16. Arthurs OJ, Boniface S. How well do we understand the neural
origins of the fMRI BOLD signal? Trends Neurosci. (2002) 25:27–31.
doi: 10.1016/S0166-2236(00)01995-0

17. Turner R, Ordidge RJ, Haacke E, Liang ZP. Technical challenges of
functional magnetic resonance imaging. IEEE Eng Med Biol Mag. (2000) 19:42–54.
doi: 10.1109/51.870231

18. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation
changes during brain activation: the balloon model.Magnet ResonMed. (1998) 39:855–
64.

19. Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear responses in fMRI:
the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage. (2000)
12:466–77. doi: 10.1006/nimg.2000.0630

20. Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanisms
in tissues.Magnet Reson Med. (1994) 31:9–21.

21. Ogawa S, Menon R, Tank DW, Kim S, Merkle H, Ellermann J, et al. Functional
brain mapping by blood oxygenation level-dependent contrast magnetic resonance
imaging. A comparison of signal characteristics with a biophysical model. Biophys J.
(1993) 64:803–12.

22. Frahm J, Merboldt KD, Hänicke W, Kleinschmidt A, Boecker H. Brain or
veins oxygenation or flow? On signal physiology in functional MRI of human brain
activation. NMR Biomed. (1994) 7:45–53.

23. Menon RS, Kim SG. Spatial and temporal limits in cognitive neuroimaging with
fMRI. Trends Cogn Sci. (1999) 3:207–16.

24. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, et al.
The intravascular contribution to fMRI signal change: Monte Carlo modeling and
diffusion-weighted studies in vivo.Magnet Reson Med. (1995) 34:4–10.

25. Lee SP, Silva AC, Ugurbil K, Kim SG. Diffusion-weighted spin-echo fMRI at 9.4 T:
microvascular/tissue contribution to BOLD signal changes.Magnet Reson Med. (1999)
42:919–28.

26. Menon RS, Thomas CG, Gati JS. Investigation of BOLD contrast in fMRI using
multi-shot EPI. NMR Biomed. (1997) 10:179–82.

27. Warren SL, Moustafa AA. Functional magnetic resonance imaging, deep
learning, and Alzheimer’s disease: a systematic review. J Neuroimag. (2023) 33:5–18.
doi: 10.1111/jon.13063

28. Lama RK, KwonGR. Diagnosis of Alzheimer’s disease using brain network. Front
Neurosci. (2021) 15:605115. doi: 10.3389/fnins.2021.605115

29. Parmar HS, Nutter B, Long R, Antani S, Mitra S. Deep learning of volumetric 3D
CNN for fMRI in Alzheimer’s disease classification. Med Imag 2020 Biomed Appl Mol
Struct Funct Imag. (2020) 11317:66–71. doi: 10.1117/12.2549038

30. Guo H, Zhang Y. Resting state fMRI and improved deep learning algorithm
for earlier detection of Alzheimer’s disease. IEEE Access. (2020) 8:115383–92.
doi: 10.1109/ACCESS.2020.3003424

31. Alarjani M. "Detect Alzheimer’s disease from neuroimaging using artificial
intelligence techniques," in 2023 3rd International Conference on Computing and
Information Technology (ICCIT). Tabuk: IEEE. (2023). p. 192–200.

32. Shahparian N, Yazdi M, Khosravi MR. Alzheimer disease diagnosis from fMRI
images based on latent low rank features and support vector machine (SVM). Curr
Sign Transduct Ther. (2021) 16:171–7. doi: 10.2174/1574362414666191202144116

33. Castellazzi G, CuzzoniMG, Cotta RamusinoM,Martinelli D, Denaro F, Ricciardi
A, et al. A machine learning approach for the differential diagnosis of Alzheimer and
vascular dementia fed by MRI selected features. Front Neuroinformat. (2020) 14:25.
doi: 10.3389/fninf.2020.00025

34. Wang B, Lim JS. Zoom-in neural network deep-learning model for Alzheimer’s
disease assessments. Sensors. (2022) 22:8887. doi: 10.3390/s22228887

35. Zamani J, Sadr A, Javadi AH. Classification of early-MCI patients from healthy
controls using evolutionary optimization of graph measures of resting-state fMRI,
for the Alzheimer’s disease neuroimaging initiative. PLoS ONE. (2022) 17:e0267608.
doi: 10.1371/journal.pone.0267608

36. Nguyen DT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B. Hybrid
multivariate pattern analysis combined with extreme learning machine for Alzheimer’s
dementia diagnosis using multi-measure rs-fMRI spatial patterns. PLoS ONE. (2019)
14:e0212582. doi: 10.1371/journal.pone.0212582

37. Jiao Z, Xia Z, Ming X, Cheng C, Wang SH. Multi-scale feature combination
of brain functional network for eMCI classification. IEEE Access. (2019) 7:74263–73.
doi: 10.1109/ACCESS.2019.2920978

38. Lu J, ZengW, Zhang L, Shi Y, et al. Diagnosis of Alzheimer’s disease with extreme
learning machine on whole-brain functional connectivity. Concept Magnet Reson B
Magnet Reson Eng. (2022) 2022:1047616. doi: 10.1155/2022/1047616

39. Yang P, Zhou F, Ni D, Xu Y, Chen S, Wang T, et al. Fused sparse network learning
for longitudinal analysis of mild cognitive impairment. IEEE Trans Cybernet. (2019)
51:233–46. doi: 10.1109/TCYB.2019.2940526

40. Chan YH, Ang JL, Gupta S, He Y, Rajapakse JC. Subtype-specific biomarkers of
Alzheimer’s disease from anatomical and functional connectomes via Graph Neural
Networks. In: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Seoul: IEEE (2024). p. 2195–9.

41. Lama RK, Kim JI, Kwon GR. Classification of Alzheimer’s disease based on core-
large scale brain network using multilayer extreme learning machine. Mathematics.
(2022) 10:1967. doi: 10.3390/math10121967

42. Koluragi P, Deshpande Y, Dhumale G, Chikkamath S, Nirmala S, Budihal SV.
Multi-model approach for Alzheimer’s disease detection and classification. In: 2024 3rd
International Conference for Innovation in Technology (INOCON). Indai: IEEE (2024).
p. 1–5.

43. Sethuraman SK,MalaiyappanN, RamalingamR, Basheer S, RashidM, AhmadN.
Predicting Alzheimer’s disease using deep neuro-functional networks with resting-state
fMRI. Electronics. (2023) 12:1031. doi: 10.3390/electronics12041031

Frontiers inMedicine 18 frontiersin.org170

https://doi.org/10.3389/fmed.2024.1412592
https://doi.org/10.48550/arXiv.2109.10951
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1016/j.neuropsychologia.2007.10.026
https://doi.org/10.1016/j.jalz.2010.03.007
https://doi.org/10.1097/00000446-200212000-00012
https://doi.org/10.1126/science.1132814
https://doi.org/10.1038/s41467-020-17419-7
https://doi.org/10.1097/00002093-200000001-00001
https://doi.org/10.1016/j.exger.2006.05.016
https://www.mccare.com/education/alzprogression.html
https://doi.org/10.1186/1471-2377-11-51
https://doi.org/10.1007/s00415-020-09890-5
https://doi.org/10.1016/S0166-2236(00)01995-0
https://doi.org/10.1109/51.870231
https://doi.org/10.1006/nimg.2000.0630
https://doi.org/10.1111/jon.13063
https://doi.org/10.3389/fnins.2021.605115
https://doi.org/10.1117/12.2549038
https://doi.org/10.1109/ACCESS.2020.3003424
https://doi.org/10.2174/1574362414666191202144116
https://doi.org/10.3389/fninf.2020.00025
https://doi.org/10.3390/s22228887
https://doi.org/10.1371/journal.pone.0267608
https://doi.org/10.1371/journal.pone.0212582
https://doi.org/10.1109/ACCESS.2019.2920978
https://doi.org/10.1155/2022/1047616
https://doi.org/10.1109/TCYB.2019.2940526
https://doi.org/10.3390/math10121967
https://doi.org/10.3390/electronics12041031
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alarjani and Almarri 10.3389/fmed.2024.1412592

44. Begum AP, Selvaraj P. Alzheimer’s disease classification and detection by
using AD-3D DCNN model. Bullet Electr Eng Informat. (2023) 12:882–90.
doi: 10.11591/eei.v12i2.4446

45. Chauhan N, Choi BJ. Classification of Alzheimer’s disease using maximal
information coefficient-based functional connectivity with an extreme learning
machine. Brain Sci. (2023) 13:1046. doi: 10.3390/brainsci13071046

46. Penalba-Sánchez L, Oliveira-Silva P, Sumich AL, Cifre I. Increased functional
connectivity patterns inmild Alzheimer’s disease: a rsfMRI study. Front Aging Neurosci.
(2023) 14:1037347. doi: 10.3389/fnagi.2022.1037347

47. Nieto-Castanon A. Handbook of Functional Connectivity Magnetic Resonance
Imaging Methods in CONN. Boston, MA: Hilbert Press (2020).

48. Andersson JL, Hutton C, Ashburner J, Turner R, Friston K. Modeling
geometric deformations in EPI time series. Neuroimage. (2001) 13:903–19.
doi: 10.1006/nimg.2001.0746

49. Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RS. Spatial
registration and normalization of images. Hum Brain Map. (1995) 3:165–89.

50. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage.
(2007) 38:95–113. doi: 10.1016/j.neuroimage.2007.07.007

51. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. (2005) 26:839–51.
doi: 10.1016/j.neuroimage.2005.02.018

52. Margulies DS, Böttger J, Long X, Lv Y, Kelly C, Schäfer A, et al.
Resting developments: a review of fMRI post-processing methodologies for
spontaneous brain activity. Magnet Reson Mater Phys Biol Med. (2010) 23:289–307.
doi: 10.1007/s10334-010-0228-5

53. Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, et al. Impaired long
distance functional connectivity and weighted network architecture in Alzheimer’s
disease. Cerebr Cortex. (2014) 24:1422–35. doi: 10.1093/cercor/bhs410

54. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al.
Dissociable intrinsic connectivity networks for salience processing and executive
control. J Neurosci. (2007) 27:2349–56. doi: 10.1523/JNEUROSCI.5587-06.2007

55. Chaovalitwongse WA, Won D, Seref O, Borghesani P, Askren MK, Willis S, et al.
Network optimization of functional connectivity within default mode network regions
to detect cognitive decline. IEEE Trans Neural Syst Rehabil Eng. (2017) 25:1079–89.
doi: 10.1109/TNSRE.2017.2679056

56. Sheline YI, Raichle ME. Resting state functional connectivity in preclinical
Alzheimer’s disease. Biol Psychiat. (2013) 74:340–7. doi: 10.1016/j.biopsych.2012.11.028

57. Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M,
Bokde AL, et al. Diagnostic power of default mode network
resting state fMRI in the detection of Alzheimer’s disease.
Neurobiol Aging. (2012) 33:466–78. doi: 10.1016/j.neurobiolaging.2010.
04.013

58. Haynes JD, Rees G. Decoding mental states from brain activity in humans. Nat
Rev Neurosci. (2006) 7:523–34. doi: 10.1038/nrn1931

59. Raizada RD, Kriegeskorte N. Pattern-information fMRI:
new questions which it opens up and challenges which face
it. Int J Imag Syst Technol. (2010) 20:31–41. doi: 10.1002/ima.
20225

60. Yang Z, Fang F,Weng X. Recent developments inmultivariate pattern analysis for
functional MRI. Neurosci Bullet. (2012) 28:399–408. doi: 10.1007/s12264-012-1253-3

61. Moeller JR, Habeck CG, et al. Reciprocal benefits of mass-univariate
and multivariate modeling in brain mapping: applications to event-related
functional MRI, H(2)(15)O-, and fdg-pet. Int J Biomed Imag. (2006) 2006:79862.
doi: 10.1155/IJBI/2006/79862

62. Bu X, Hu X, Zhang L, Li B, ZhouM, Lu L, et al. Investigating the predictive value
of different resting-state functional MRI parameters in obsessive-compulsive disorder.
Transl Psychiat. (2019) 9:17. doi: 10.1038/s41398-018-0362-9

63. Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with
pattern-information fMRI—an introductory guide. Soc Cogn Affect Neurosci. (2009)
4:101–9. doi: 10.1093/scan/nsn044

64. Lewis-Peacock JA, Norman KA. Multi-voxel pattern analysis of fMRI data. Cogn
Neurosci. (2014) 512:911–20. doi: 10.7551/mitpress/9504.003.0099

65. Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn Sci. (2006) 10:424–30.
doi: 10.1016/j.tics.2006.07.005

66. Yoon JH, Tamir D, Minzenberg MJ, Ragland JD, Ursu S, Carter CS. Multivariate
pattern analysis of functional magnetic resonance imaging data reveals deficits
in distributed representations in schizophrenia. Biol Psychiat. (2008) 64:1035–41.
doi: 10.1016/j.biopsych.2008.07.025

67. Lee IS, JungWm, Park HJ, Chae Y. Spatial information of somatosensory stimuli
in the brain: multivariate pattern analysis of functional magnetic resonance imaging
data. Neural Plast. (2020) 2020:8307580. doi: 10.1155/2020/8307580

68. Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling
atlas 3. Neuroimage. (2020) 206:116189. doi: 10.1016/j.neuroimage.2019.116189

69. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix
N, et al. Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. (2002)
15:273–89. doi: 10.1006/nimg.2001.0978

70. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of
the orbitofrontal cortex in the automated anatomical labeling atlas.Neuroimage. (2015)
122:1–5. doi: 10.1016/j.neuroimage.2015.07.075

71. Liang P, Shi L, Chen N, Luo Y, Wang X, Liu K, et al. Construction of brain atlases
based on a multi-center MRI dataset of 2020 Chinese adults. Sci Rep. (2015) 5:18216.
doi: 10.1038/srep18216

72. Kukreja SL, Löfberg J, Brenner MJ. A least absolute shrinkage and selection
operator (LASSO) for nonlinear system identification. IFAC Proc. (2006) 39:814–9.
doi: 10.3182/20060329-3-AU-2901.00128

73. Ayodele TO. Machine learning overview. N Adv Machine Learn. (2010) 2:9–18.

74. Kramer O, Kramer O. K-nearest neighbors. Dimensional Reduct Unsupervised
Near Neighbors. (2013) 2:13–23. doi: 10.1007/978-3-642-38652-7_2

75. Schapire RE. The boosting approach to machine learning: an overview. Nonlin
Estimat Classif. (2003) 9:149–71. doi: 10.1007/978-0-387-21579-2_9

76. Marcus DS, Fotenos AF, Csernansky JG, Morris JC, Buckner RL. Open access
series of imaging studies: longitudinal MRI data in nondemented and demented older
adults. J Cogn Neurosci. (2010) 22:2677–84. doi: 10.1162/jocn.2009.21407

77. IDA. Alzheimer’s Disease Neuroimaging Initiative (2022) Available online at:
https://ida.loni.usc.edu (accessed November 01, 2022).

78. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority
over-sampling technique. J Artif Intell Res. (2002) 16:321–57. doi: 10.1613/jair.953

79. Zhou J, Gandomi AH, Chen F, Holzinger A. Evaluating the quality of machine
learning explanations: a survey on methods and metrics. Electronics. (2021) 10:593.
doi: 10.3390/electronics10050593

80. Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat
Comput. (2011) 21:137–46. doi: 10.1007/s11222-009-9153-8

81. Dalianis H, Dalianis H. Evaluation metrics and evaluation. Clin Text Min. (2018)
6:45–53. doi: 10.1007/978-3-319-78503-5_6

Frontiers inMedicine 19 frontiersin.org171

https://doi.org/10.3389/fmed.2024.1412592
https://doi.org/10.11591/eei.v12i2.4446
https://doi.org/10.3390/brainsci13071046
https://doi.org/10.3389/fnagi.2022.1037347
https://doi.org/10.1006/nimg.2001.0746
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1007/s10334-010-0228-5
https://doi.org/10.1093/cercor/bhs410
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1109/TNSRE.2017.2679056
https://doi.org/10.1016/j.biopsych.2012.11.028
https://doi.org/10.1016/j.neurobiolaging.2010.04.013
https://doi.org/10.1038/nrn1931
https://doi.org/10.1002/ima.20225
https://doi.org/10.1007/s12264-012-1253-3
https://doi.org/10.1155/IJBI/2006/79862
https://doi.org/10.1038/s41398-018-0362-9
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.7551/mitpress/9504.003.0099
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1016/j.biopsych.2008.07.025
https://doi.org/10.1155/2020/8307580
https://doi.org/10.1016/j.neuroimage.2019.116189
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1038/srep18216
https://doi.org/10.3182/20060329-3-AU-2901.00128
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1162/jocn.2009.21407
https://ida.loni.usc.edu
https://doi.org/10.1613/jair.953
https://doi.org/10.3390/electronics10050593
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1007/978-3-319-78503-5_6
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Frontiers in Medicine 01 frontiersin.org

A deep neural network-based 
approach for seizure activity 
recognition of epilepsy sufferers
Danial Khurshid 1, Fazli Wahid 2,3, Sikandar Ali 1, 
Abdu H. Gumaei 4*, Samah M. Alzanin 4 and 
Mogeeb A. A. Mosleh 5,6*
1 Department of Information Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 
Pakistan, 2 College of Science and Engineering, School of Computing, University of Derby, Derby, 
United Kingdom, 3 School of Computing Sciences, University of East Anglia, Norwich, United 
Kingdom, 4 Department of Computer Science, College of Computer Engineering and Sciences, Prince 
Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia, 5 Faculty of Engineering and Information 
Technology, Taiz University, Taiz, Yemen, 6 International University of Technology Twintech, Sana’a, 
Yemen

Epilepsy is one of the most frequent neurological illnesses caused by epileptic 
seizures and the second most prevalent neurological ailment after stroke, 
affecting millions of people worldwide. People with epileptic disease are 
considered a category of people with disabilities. It significantly impairs a 
person’s capacity to perform daily tasks, especially those requiring focusing 
or remembering. Electroencephalogram (EEG) signals are commonly used to 
diagnose people with epilepsy. However, it is tedious, time-consuming, and 
subjected to human errors. Several machine learning techniques have been 
applied to recognize epilepsy previously, but they have some limitations. 
This study proposes a deep neural network (DNN) machine learning model 
to determine the existing limitations of previous studies by improving the 
recognition efficiency of epileptic disease. A public dataset is used in this study 
and classified into training and testing sets. Experiments were performed to 
evaluate the DNN model with different dataset classification ratios (80:20), 
(70:30), (60:40), and (50:50) for training and testing, respectively. Results were 
evaluated by using different performance metrics including validations, and 
comparison processes that allow the assessment of the model’s effectiveness. 
The experimental results showed that the overall efficiency of the proposed 
model is the highest compared with previous works, with an accuracy rate of 
97%. Thus, this study is more accurate and efficient than the existing seizure 
detection approaches. DNN model has great potential for recognizing epileptic 
patient activity using a numerical EEG dataset offering a data-driven approach 
to improve the accuracy and reliability of seizure detection systems for the 
betterment of patient care and management of epilepsy.

KEYWORDS

deep learning, deep neural network, electroencephalogram, epilepsy disability, 
epilepsy detection, seizure activity recognition

1 Introduction

Epilepsy is a prevalent neurological condition that affects millions of people worldwide. It 
is considered a kind of disability, where epileptic patients are considered a category of people 
with disabilities. Different techniques are used to detect c activities and their shortcomings. 
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EEG is the manual way of diagnosing seizures by pinning many 
electrodes everywhere on the head, making it difficult to pinpoint 
where the electrical activity in the brain originates. Additionally, 
medical professionals’ reading of EEG signals is slow, time-consuming, 
and subject to human mistakes during the diagnosis process. Machine 
learning techniques are also used to identify epileptic seizures. 
Different methods have been adapted for epilepsy detection, such as 
CNN, K-NN, Naïve Bayes, and DWT, and briefly discussed in the 
literature of the study. However, most existing state-of-the-art 
methods are considered complex, time-consuming, and suffer from 
some limitations in terms of accuracy performance.

Early epilepsy detection can help society, health sectors, and 
medical specialists. Human activity recognition (HAR) is the 
automatic detection of numerous physical actions people perform 
daily. It is used to identify the actions that are carried out by a person, 
given a set of observations of themselves and the nearby environment. 
Activity recognition can be attained by exploiting the information 
retrieved from various sources, such as environmental (1) or body-
worn sensors (2). Multiple approaches have adapted dedicated motion 
sensors in different body parts such as the wrist, waist, and chest. 
These sensors are primarily uncomfortable for users and do not 
provide long-term results for activity monitoring, e.g., sensor 
repositioning after dressing (3). A HAR system aids in the recognition 
of a person’s activities and the provision of intervention responses. 
Most activities that keep track of everyday fitness exercises, such as 
walking, jogging, walking upstairs, and walking downstairs, are done 
daily. Taking phone calls, sweeping, making food, combing hair, 
washing hands, brushing teeth, wearing coats and shoes, and writing 
and reading are all tasks that everyone does daily. Also growing 
demand for wearable devices with sensing abilities (smart watches, 
intelligent bands) used to take out important information (4). Figure 1 
shows some of the daily activities of human life.

Through wearable devices, human activity recognition (HAR) is 
currently considered an essential tool for health care in the future. 
Tracking patient activities not only helps medical professionals to 

provide hospital care services to patients across any distance with the 
latest technology of communication and information but also provides 
facilities for patients to be monitored online (6). The advantages are 
the prevention of hospitalization, the cost, and improving human 
health. Patient activity recognition PAR includes monitoring Vital 
Data (VD) such as blood pressure, pulse, and blood glucose (7).

Different sensors are used to monitor various activities to improve 
patients’ health. The developments in wearable and cell phone devices 
have made it possible to gather information from built-in smartphones 
and health trackers, including microphones, magnetometers, 
gyroscopes, GPS, and accelerometers. An epileptic seizure is a usual 
neurological disorder that happens because of unexpected discharge of 
neurons of the brain and stress influence. It is a condition distinguished 
by repeated (two or more) epileptic seizures. A single event is considered 
as numerous seizures occurring within a 24-h time or an episode of 
status epilepticus (SE). It is one of the world’s oldest conditions of 
humankind, and still, it is the most typical neurological condition that 
affects people of all ages. About 50 million people worldwide have a 
diagnosis of epilepsy (8). A clinical device, an electroencephalogram 
(EEG) signal, plays a vital role in diagnosing epilepsy. It gives a 
photograph of the human brain while doing a cognitive task or even 
resting. The EEG is gathered by putting electrodes on the patient’s scalp. 
Then, electro-activity is recorded, produced by the brain, and can 
identify epilepsy, but this method for examining an EEG signal for 
epileptic seizure recognition is time-consuming (9). Figure 2 visualizes 
the hotspot of seizure in the human brain.

Machine learning techniques have been proposed to switch this 
typical method. There are two fundamental stages of extraction and 
classification of data involved in machine learning. The traditional 
system of consulting doctors is time-consuming and more costly, also 
leading to fatigue-based diagnostic mistakes and subject to the 
absence of diagnostic facilities in regions of the world where physicians 
are not available. Recently, machine learning methods have been 
capable of attaining skilled-level performance in health care and the 
medical field (11). Different deep learning approaches are used to 

FIGURE 1

Human activities of daily life (5).

173

https://doi.org/10.3389/fmed.2024.1405848
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khurshid et al.� 10.3389/fmed.2024.1405848

Frontiers in Medicine 03 frontiersin.org

detect seizures, like support vector machines, convolutional neural 
networks, and deep convolutional neural networks. Still, these 
techniques use complex algorithms and image data extracted 
from EEG.

There are several reasons behind the development of a Deep 
Neural Network-based method for identifying seizure activity in 
epilepsy patients. First and foremost, it tackles the pressing issue of 
prompt and accurate seizure detection, which is necessary for both 
patient care and efficient treatment. Furthermore, improvements in 
machine learning—especially in deep learning—present the possibility 
of very precise pattern identification in EEG data, which might 
improve detection rates. This strategy also seeks to enhance the quality 
of life for individuals with epilepsy by facilitating more targeted 
intervention techniques, which in turn lowers the frequency and 
intensity of seizures.

This study used a deep neural network (DNN) based model to 
recognize seizures. Since patterns of EEG seizures differ significantly 
between patients, it is challenging to recognize seizures. Thus, most of 
the automated methods that will be discussed in the literature review 
use complex algorithms and substantial image data sets, which is time-
consuming and inefficient. The focus is on creating a model to swiftly 
and accurately detect epilepsy. Our main aim is to develop a fast and 
precise system. Through thorough testing and training, we aim to 
achieve high accuracy while also considering speed. Ultimately, our 
goal is to improve epilepsy diagnosis, potentially benefiting patients 
with better and faster care.

2 Literature review

Many deep learning and machine learning methods and 
algorithms are used for the detection of human activities, patient 
activities, and epileptic patient activities. In this section, some previous 
work that has been done recently will be discussed. Hassan et al. (12) 
proposed research on a smartphone inertial sensors-based approach 
for HAR. Effectual attributes are first taken out via raw data. The 
attributes contain median, mean, autoregressive coefficients, etc. The 
attributes are processed through a linear discriminant examination 
and kernel principal component analysis (KPCA) and (LDA) to make 
them extra robust. Lastly, the attributes are trained by a Deep Belief 
Network (DBN) for effective activity detection. The system comprises 

three central portions: sensing, attribute recognition, and extraction. 
The sensing part collects the sensor’s information as input to the HAR 
system. Attribute extraction removes noise to isolate signals. Finally, 
where DBN is used, a key aspect is modeling actions from attributes 
via deep learning with an overall accuracy of 95.85%.

Gul et al. (13) researched abnormal human activity recognition as 
a Tool for Patient Monitoring. The You Look Only Once (YOLO) 
network, which is based on CNN architecture, is used as a backbone 
CNN model. To train the CNN model, a large dataset of patient films 
is constructed by labeling each frame with the positions and behaviors 
of the patient. For 32 epochs, a CNN model with 23,040 tagged photos 
of the patient’s actions was used. The model assigned a unique action 
label and a confidence score for video orders by identifying the 
recurring action label in each frame. The study found that aberrant 
action recognition is 96.8% accurate. For patient nursing, the proposed 
framework can benefit hospitals and elder care homes. Murad et al. 
(14) performed a study on deep recurrent neural networks (DRNN) 
and built a model that can capture distant dependencies in variable-
length input arrangements. The model has bidirectional, 
unidirectional, and cascaded structural design, which is built on long 
short-term memory (LSTM). The approach exceeds other modern 
methods because it is capable of taking out more particular attributes 
via deep layers in end-to-end and task-dependent fashion and has an 
overall accuracy of 96.7%. Uddin et al. (15) performed research on 
Activity Recognition for Cognitive Assistance Using Body based 
sensor data and Deep Convolutional Neural Networks in which 
signals are examined from body wearable sensors for Medicare like 
gyroscope, ECG, accelerometer, and magnetometer sensors. The deep 
CNN is trained once attributes are extracted from sensor data using 
Gaussian kernel-based PCA and Z-score normalization. Lastly, 
trained deep CNN is utilized to detect activities in examining data. 
The method provides cognitive aid in wearable sensor-based 
intelligent medical care systems. The proposed method has an average 
accuracy of 93.90%.

Ouichka et al. (16) conducted research on prediction of seizures 
using DNN methods. In which five models (1-CNN, 2-CNN, 3-CNN, 
4-CNN, and Transfer learning with ResNet50) for the prediction of 
epileptic seizures were proposed. The findings show that both 
methods, one using a fusion of three CNNs (3-CNN) and the other 
using four CNNs (4-CNN), achieve an accuracy of 95%. Specifically, 
the 3-CNN method yields an accuracy of 95.0%, a recall of 94.5%, and 
an F1-score of 95.0%. The 4-CNN method provides an accuracy of 
95.5%, a recall of 95.5%, and an F1-score of 95.0%. Ibrahim et al. (17) 
presented two patient-specific CNN models for prediction and 
detection of seizure in which spectrogram images of EEG signal 
segments was used. The third CNN model is designed for patient 
non-specific scenarios and can classify two and three EEG signal 
states. It operates effectively on both spectrogram and PSR images of 
EEG segments. Experiments showed the highest classification 
performance when using PSR images, due to their superior 
representation of EEG signals. In contrast, the first two models are 
suitable for patient-specific uses, but their reliance on spectrogram 
images somewhat restricts their performance.

Poorani et al. (18) performed a research on a one-dimensional, 
patient-specific scheme for detecting epilepsy seizures addresses 
binary classification (seizure vs. non-seizure). The 1D-CNN and 
CNN-LSTM models offer a computationally efficient approach by 

FIGURE 2

Seizure hotspots in the human brain (10).
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processing EEG data through pooling and dense layers. Abderrahim 
et al. (19) conducted an experiment in which they introduces four 
models: S-CNN, Modif-CNN, CNN-SVM, and Comb-2CNN, each 
demonstrating high accuracy in predicting epileptic seizures. The 
Modif-CNN model stands out with an impressive accuracy rate of 
97.96%, making the results from all models both promising 
and interesting.

The presented study also addresses the challenges identified and 
some limitations of recent studies and machine learning techniques 
such as many models struggle to handle EEG data in real time and 
need large amounts of computing power. Additional problems include 
handling undesired data in the EEG, individual variations in seizure 
patterns, and an imbalance in data classes. Specifically for other deep 
learning models Long-term dependency maintenance is a hurdle for 
RNNs, non-image dataset adaptation may be a barrier for CNNs, 
training and parameter optimization are issues for RL so the current 
model that is using to identify Epileptic activities by using multiple 
hidden layers that allows to learn complex patterns and data 
representation the depth of these layers allows to capture the 
complicated features resulting in enhanced performance. DNN 
algorithm is more efficient because of its computational complexity, 
deep architecture and its ability to learn complicated patterns from the 
data as Compare to other deep learning models.

3 Problem identification and solution

There are various methods used to detect epileptic seizures; one 
of the most common and manual ways is EEG, which is a very time-
consuming process. Computer-aided diagnosis methods, automatic 
detection, deep learning, and machine learning methods exist. The 
conventional technique of identifying different brain disorders has 
been inspected manually for centuries. Still, those manual methods 
have some limitations, such as inaccuracy, slow diagnosing process, 
and various outcomes of the same inputs. Manual identification needs 
more resources and time. So, to achieve high accuracy and fast 
diagnosis, computer-aided disease detection methods have been used 
for the last few decades. This method will assist medical professionals 
in the clarification of medical imaging. Medical computer-aided 
diagnosis methods are limited by noise, fuzziness, and uncertainty in 
medical images, so such limitations may affect decisions of disease 
diagnosis while determining the disease type. The main idea of this 
research is to detect epileptic seizures using a Deep Neural Network 
(DNN), which is more powerful and optimistic. A simple numerical 
model that is built on deep learning has applications in the fields of 
bioinformatics, healthcare, and computer science. The personal 
monitoring system for the detection of epilepsy with high accuracy is 
becoming popular for the improvement of human life. Researchers 
can achieve their targeted objectives and improve their expertise 
through this research. In the current study, the DNN model contains 
several layers of neurons that build up an output layer.

4 Proposed methodology

The proposed method consists of four main stages, illustrated in 
Figure 3. Initially, data acquisition involves collecting the necessary 

data. This is followed by the data cleaning stage, where irrelevant or 
redundant features are eliminated to ensure the dataset is optimized 
for further analysis. Once cleaned, the dataset is divided into two 
subsets: one for training the model and the other for testing 
its performance.

In the activity recognition phase, a deep neural network is 
employed to identify brain activities related to seizures. This 
involves the model learning patterns and distinguishing between 
different types of brain activity. Finally, in the performance 
evaluation phase, the model’s effectiveness is assessed using various 
metrics. These metrics include the F1-score, which balances 
precision and recall, precision itself, the confusion matrix that 
shows the performance of the classification, accuracy indicating the 
proportion of correctly classified instances, and the Receiver 
Operating Characteristic (ROC) curve, which illustrates the true 
positive rate against the false positive rate across different threshold 
values. This structured approach ensures that each phase 
contributes to building a robust and reliable model for recognizing 
epileptic seizures, with thorough evaluation to validate 
its performance.

4.1 Data loading

The data of this study is publicly available and uploaded to the 
model for cleaning, splitting and classification. After uploading the 
historical data, the valuable data will be extracted, and then irregular, 
null, garbage, and inconsistent values will be eliminated, which may 
lead to many difficulties. Data cleaning removes unwanted features 
that do not belong to the proposed study. In the next stage, data 
transformation is done, in which the raw data is turned into a format 
or structure that is more suited for the model or algorithm.

4.2 Data splitting

The data is split into two parts: the first part of the dataset is used 
for training, and the remaining part will be used for data testing. The 
proposed model will split DNN’s dataset into different training and 
testing ratios to achieve high accuracy.

4.2.1 Training set
The data samples are used to fit the model, and a subset of the 

dataset is used to train the model (in the context of neural networks, 
calculating weights and biases). The model sees and learns this data, 
allowing it to improve its parameters.

4.2.2 Test set
The data set objectively evaluates a final model’s fit to the training 

data. It is used once the model has been adequately trained with 
training and validation.

4.3 Model architecture

ANN’s model architecture includes the creation of layers, 
which are input layers, dense layers, and output layers. Each neuron 
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in the dense layer receives input from all neurons in the previous 
layer, making it a deep-connected neural network layer. The thick 
layer is revealed to be the layer that is most usually utilized. The 
size of the input layers and output layers are also defined in 
this section.

4.4 Model compilation

Compilation is the last stage in the model creation process. 
The model will be ready to move to the training and testing phase 
at this stage. The model compilation uses some functions, such as 
the loss function, to find errors or deviations in the learning 
procedure. Moreover, the optimizer is used to optimize the 
weights of the inputs by comparing the loss function and 
prediction. The evaluation metrics are applied to evaluate the 
model’s performance.

4.5 Model training

The training set consisted of sample output data and the input 
data sets that affect the outcome. The training model is utilized to 
process the input data using the algorithm to match the processed 
result to the sample output. NumPy arrays using the fit function are 
used to train models. The main aim of the fit function is to evaluate 
the model during the training stage (20).

4.6 Model testing

After the training model moves toward the testing phase, testing 
of the model is the process of analyzing a fully trained model’s 
performance on a testing set. The testing set is a collection of samples 
separated from the training and validation sets, but it has the same 
probability distribution as the training set (21).

4.7 Model evaluation

In this stage, performance evaluation will be done to improve the 
system. Confusion matrix, F1-score, Precision, recall, and accuracy in 
a rigorously statistical manner are the parameters utilized for 
performance evaluation.

4.7.1 Confusion matrix
A Confusion Matrix is an n x n matrix used to assess the model’s 

classification performance, where N represents the number of target 
classes. The matrix differentiates the actual values from the machine 
learning model’s predictions. This gives us a clear picture of how 
efficiently our classification method works and the types of errors it 
generates (22).

4.7.2 Accuracy
Model accuracy is a metric for determining which model is 

the most effective in detecting patterns and correlations among 

FIGURE 3

Adopted methodology.

176

https://doi.org/10.3389/fmed.2024.1405848
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khurshid et al.� 10.3389/fmed.2024.1405848

Frontiers in Medicine 06 frontiersin.org

variables in a dataset using training or input data. The greater a 
model’s generalization to ‘unseen’ data is, the more accurate 
insights and predictions it can deliver, and hence the additional 
commercial value it can provide. The accuracy of classification 
models is one of the factors to consider while evaluating the (23). 
Accuracy represents the percentage of correct predictions made 
by our model. Equation (1) below is the formal definition of:

	
Accuracy

Number of right predictions

Total number of predic
=

ttions 	
(1)

Equation (2) below determined binary classification accuracy 
regarding negatives and positives.

	 Accuracy TP TN TP TN FP FN= + + + +( )/ 	 (2)

TP stands for True Positives, TN stands for True Negatives, FP 
stands for False Positives, and FN stands for False Negatives.

4.7.3 Precision
Precision is a statistic that measures the accuracy of a 

machine  learning model’s positive prediction. Precision (i.e., 
the  total number of true positives plus the number of false 
positives) is the ratio of true positives to total positive predictions 
as shown in Equation (3) below (24).

	
Precision

True Positive TP

True Positive TP False Positiv
=

( )
( ) + ee FP( ) 	

(3)

4.7.4 Recall
The model’s recall indicates how successfully it finds True 

Positives. As an outcome, recall tells us how many patients we correctly 
identified as having illness out of the total number of patients with 
disease (25). Mathematically shown in Equation (4) below.

	
Recall

True Positive TP

True Positive TP False Negative FN
=

( )
( ) + (( ) 	

(4)

4.7.5 F1-score
The F1 score represents a balance of precision and recall. 

The harmonic mean of accuracy and recall is used to compute 
the F1 score. The harmonic mean is a measure that can be used 
instead of the arithmetic mean. Calculating an average rate is 
especially beneficial (26). The average accuracy and recall are 
computed using the F1-score. Because they are both rates, the 
harmonic mean makes sense. It is calculated using the 
Equation (5) below:

	
F score

Precision Recall

Precision Recall
1

2
− =

∗ ∗( )
+( ) 	

(5)

5 Experimental setup

The experiments that are done are related to epilepsy detection 
using deep neural networks and will be deeply discussed in this section.

5.1 System specification

The system that is used in this research is an HP Intel core i5-fourth 
generation Desktop with 8 GB RAM, 1.90GHz processor, and 500 GB 
hard drive—Windows 10 64-bit operating system. In the proposed 
research, Python language is used to simulate Epileptic patient activity 
recognition. Google COLAB is used to execute the Python code.

5.2 Dataset description

The dataset used in this study is publicly available on the KAGGLE 
platform at the following link: https://www.kaggle.com/datasets/
harunshimanto/epileptic-seizure-recognition. The reference’s original 
dataset is separated into five categories, each containing 100 files, each 
representing a particular subject/person. For 23.6 s, each file records 
brain activity. A 4097 of data points are taken from the linked time 
series. Each data point represents the value of the EEG recording at a 
certain instant in time. So it has an overall of 500 people, each with 
4,097 data points collected over 23.5 s.

All 4,097 data points are split and scrambled into 23 portions, 
each holding 178 data points for 1 s, with each data point reflecting the 
amplitude of the EEG recording at a certain point. So, it has 23 × 
500 = 11,500 pieces of data (row), each data point containing 178 data 
points for 1 s (column), and the last column represents the labels y, 
which are 1, 2, 3, 4, and 5. In column 179, the response variable is y, 
and the explanatory variables are X X X1 2 178, ⊃ . The 178-dimensional 
input vector’s category is stored in y. In particular, 1, 2, 3, 4, and 5. 
Seizure activity is recorded. They took an EEG recording from the 
tumor’s location. They located the tumor in the brain and captured 
EEG activity in a normal brain region.

Eyes closed, which suggests the patient’s eyes were closed while the 
EEG signal was being recorded. Also, eyes open refers to the patient’s 
eyes being open while the EEG signal of the brain is being recorded.

There are 178 EEG characteristics and five potential classes, as 
mentioned before. The dataset’s purpose is to detect epilepsy from 
EEG data correctly. There are five classes in the dataset. The class label 
1 is for patients who have an epileptic seizure (seizure activity). The 
other classes, 2, 3, 4, and 5, are for the patients who did not have 
epileptic seizures (non-seizure activity). In this study, we classify the 
patients with seizure activity from those with non-seizure activity. 
Hence, a binary classification task is conducted among class label 1, 
encoded as class label 1 for patients with seizure activity, and the other 
classes 2, 3, 4, and 5, encoded as class label 0 for patients with 
non-seizure activity. Let us specify the dependent variable (Y) and 
independent variables (X) to train the model (f).

5.3 DNN structure

DNNs are capable of identifying complex patterns within data 
due to their deep architecture, which includes multiple layers of 
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neurons. Proposed model is highly adaptable and can be applied 
to various tasks, including natural language processing and 
numerical data processing. This versatility makes them a strong 
candidate for diverse research applications. When trained with 
large datasets, DNNs often achieve higher accuracy compared to 
other models. Their ability to model complex functions and 
relationships within data is advantageous for tasks requiring 
precise and detailed analysis. The model consists of three dense 
layers in which each input layer to each output layer is fully 
connected. The activation function, rectified linear unit (ReLU), 
is used in dense layers for the output layer activation function. 
Sigmoid is used because the model works on binary classification. 
The dropout with each dense layer temporarily ignores/deactivates 
the network’s neurons.

5.4 Results with 80% training and 20% test 
sets

Data splitting is performed with a ratio of 80% for training and 
20% for model testing. The results of the experiments are evaluated 
regarding the true positive examples in the confusion matrix, which 
are 1850, false positive examples, which are 10. False negative 
examples, which are 51, and true negative examples, which are 389, 
as shown in Figure 4A. In Figure 4B, we can see that the accuracy 

curve of the model for training differs from 99% and above, and the 
accuracy of testing varies from 96 to 97%. In Figure 4C, the ROC 
moves from 0.9 of true positive toward 1.0 of false positive rate. In 
the model loss graph, as shown in Figure 4D, the loss of testing is 
about 10–17%, and the loss of training is approximately in the range 
of 0–2%.

The excellence of the developed model can be obtained by the 
values of precision, recall, F1-score, and accuracy shown in Table 1. 
The precision of the model is 97% for non-seizure activity, whereas the 
precision of seizure activity is 98%. The recall results are 99%for 
non-seizure activity and 88% for seizure activity. Also, we can see that 
the F1-score for non-seizure activity is 98%, and for seizure activity is 
93%, regarding 1860 instances of non-seizure activity and 440 
instances of seizure activity.

FIGURE 4

Model training and testing with an 80:20 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.

TABLE 1  Performance evaluation of non-seizure and seizure activity with 
an 80:20 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 98 97 99 97 1860

1 93 98 88 440
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5.5 Results with 70% training and 30% test 
sets

The results of splitting data into 70% for training and 30% for 
testing the model are discussed in this subsection. As shown in 
Figure 5A, the confusion matrix displays the first row-wise value 
to represent the true positive instances, which are patients who do 
not have epileptic seizures, and the model classifies them correctly 
as true positive instances. The second value of the confusion 
matrix is for the false positive instances, which are the model 
classified incorrectly as patients not having epileptic seizures, but 
in actuality, they have. The third value of the confusion matrix is 
several false negative instances, which the model classified as 
patients having epileptic seizures, but in actuality, they do not 
have the disease. The last value of the confusion matrix is for the 
true negative instances that the model classified as patients who 
have epileptic seizures and have epileptic seizures. In Figure 5B, 
the blue curve represents the training accuracy of the model, and 
the orange curve indicates the testing accuracy. It shows that the 
maximum accuracy of training reaches 99%, and the testing 
accuracy reaches 97.5% during the different number of epochs. 
Figure  5C shows the ROC curve that represents the trade-off 
between specificity (1 – FPR) and sensitivity (or TPR) (27). 
Basically, it is the relation between the true positive rate and the 

false positive rate. It shows that when the true positive rate is 0.8, 
the false positive is 0.0, and when the true positive is 1.0, the true 
positive is 0.93. Figure  5D visualizes the training and testing 
model loss, showing how much data is lost at different epochs. 
The model has 97% overall accuracy, as seen in Figure 5B.

The precision, recall, F1-score, and accuracy values shown in 
Table 2 show the study’s proficiency. The accuracy of the model is 97% 
for overall activity recognition. The precision of non-seizure activity is 
97 and 98% for seizure activity, whereas the recall for seizure activity is 
99% and for non-seizure activity is 86%. The F1-score for non-seizure 
activity is 98 and 92% for seizure activity. This experiment’s test 
instances (support) are 2,753 for non-seizure activity and 697 for 
seizure activity.

TABLE 2  Performance evaluation of non-seizure and seizure activity with 
a 70–30 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 98 97 99 97 2753

1 92 98 86 697

FIGURE 5

Model training and testing with a 70:30 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.
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5.6 Results with 60% training and 40% test 
sets

In this subsection, the experiment uses 60% of the dataset for 
training the model and 40% for the models’ test. The obtained 
results are presented in Figure 6. The confusion matrix is given in 
Figure  6A. It shows that 3,670 instances are classified as true 
positives, 21 instances are classified as false positives, 131 instances 
are classified as false negatives, and 778 instances are classified as 
true negatives. Figure 6B visualizes the model accuracy rates during 
the training process, which are above 99% for training accuracy and 
between 96 and 97% for testing accuracy. Figure 6C shows the ROC 
of the model at different numbers of true and false positive rates for 
the splitting data with a 60:40 ratio. For model loss, Figure  6D 
shows that the testing loss varies from 15 to 25% and from 0 to 5% 
for the training loss.

The efficiency of the model can be assessed by the values of 
precision, recall, F1-score, and accuracy shown in Table  3. The 
accuracy of the developed model is 96% for classifying both 
activities, while the precision for non-seizure activity is 97 and 96% 
for seizure. The recall for non-seizure is 99 and 88% for seizure 
activity. The F1-score for non-seizure activity is 96 and 91% for 
seizure activity. The number of instances is 3,663 for non-seizure 
activity and 937 for seizure activity.

5.7 Results with 50% training and 50% 
testing sets

Figure 7 presents the model’s results trained on 50% of the dataset 
and tested on the remaining 50%. In Figure 7A, the confusion matrix 
shows that the number of true positives is 4,561 and the number of 
false positives is 37, measuring the model’s ability to predict the 
non-seizure activity truly. The false negative and true negative 
instances in the confusion matrix, which are 152 and 1,000, mean that 
the model can predict 152 cases from 1,152 as they have non-seizure 
activity, but actually, they have seizure activity. Similarly, the model 
can predict 1,000 instances as they have had seizure activity since 
1,152, and they have had seizure activity. The accuracy of training and 
testing during the training phase are given in Figure 7B. It shows the 
model’s accuracy fluctuation from 0 to 100 epochs. The same is true 

FIGURE 6

Model training and testing with a 60:40 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.

TABLE 3  Performance evaluation of non-seizure and seizure activity with 
a 60:40 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 96 97 99 96 3,663

1 91 96 88 937
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TABLE 4  Performance evaluation of non-seizure and seizure activity with 
a 50–50 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 94 95 98 95 4,598

1 90 94 87 1,152

for the model’s loss, which is given in Figure 7D. Figure 7C shows the 
ROC of the model at different numbers of true and false positive rates 
for the splitting data with a 50:50 ratio.

The results of precision, recall, F1-score, and accuracy are listed in 
Table 4. It illustrates the effectiveness of the model. We can see that the 
precision for non-seizure activity is 98% and for seizure is 94%, the 
recall for non-seizure is 98%, and for seizure is 87%, and the F1-score 
for non-seizure is 94 and 94% for seizure. The number of test instances 
(support) is 4,598 for non-seizures and 1,152 for seizure activity. The 
results of evaluation metrics for the model in overall splitting ratios 
are presented in Table 5.

5.8 10-fold cross validation

A 10-fold cross-validation technique is applied to the whole 
dataset to evaluate the model’s performance further, as shown in 
Figure 8. The total number of instances in the dataset is 11,500. It is 
divided into 10 equal parts for the 10-fold cross-validation. In each 
part, 1150 instances are used to test the model. The obtained results 
are introduced in this subsection. Figure 8 illustrates the strategy of a 
10-fold cross-validation technique for splitting the data for training 
and validation sets.

In Table 6, we present a comparison of different models’ accuracy 
results using the holdout and 10-fold cross-validation techniques. As 

we can see, the lowest accuracies are for the logistic regression model, 
which is 82.5% using a holdout technique, and 80.1% using a 10-fold 
cross-validation technique, while the highest accuracies are for the 
proposed model, which is 97% using a holdout technique and 95.5% 
using a 10-fold cross-validation technique. Also, we can notice that 
the accuracy of different models using a holdout technique is slightly 
higher compared to a 10-fold validation technique.

Table  7 compares different models’ F1-score results using the 
holdout and 10-fold cross-validation techniques. As we can see, the 
lowest F1-scores are for the logistic regression model, with 81.5% 
using a holdout technique and 80.1% using a 10-fold cross-validation 
technique, while the highest F1-scores are for the proposed model, 
which is 93% using a holdout technique and 90.5% using a 10-fold 
cross-validation technique. Also, we can notice that the F1-score of 
different models using a holdout technique is a little bit higher when 
compared with a 10-fold validation technique.

FIGURE 7

Model training and testing 50–50 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.
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Similarly, in Table 8, we compare the precision results of different 
models using the holdout and 10-fold cross-validation techniques. As 
we can see, the lowest precisions are for the logistic regression model, 
with 81.5% using a holdout technique, and 80.1% using a 10-fold 
cross-validation technique, while the highest precisions are for the 
proposed model, with 93% using a holdout technique and 90.5% using 
a 10-fold cross-validation technique. Also, we  can notice that the 
precision of different models using a holdout technique is slightly 
higher compared to a 10-fold validation technique.

Figure 9 shows the receiver operator characteristic curve (ROC). 
The orange curve indicates the ROC of the proposed model using a 
holdout technique. It is shown that when the true positive rate is 0.9, 
the false positive is 0.0, and when the true positive is 0.93, the false 
positive is 1.0. The blue curve represents the ROC of the proposed 

model using a 10-fold cross-validation technique. It is 0.0 when it 
starts, but when the curve reaches 0.8, the graph achieves a rate of 
0.98. The ROC curve presents how well the model can differentiate 
among positive and negative classes by plotting the true positive rate 
against the false positive rate at several thresholds. The performance 
of the model is summarized by a single value by the area under the 
ROC curve (AUC). When the cost of false positives and false negatives 
fluctuates, the ROC curve provides a balanced assessment of the 
model’s performance by taking into account both true positive and 
false positive rates.

Figures 10, 11 show the proposed model’s loss and accuracy using 
a 10-fold cross-validation technique. The error or model loss graph 
indicates the overall loss of 10-fold cross-validation during testing and 
training. In the case of testing, the loss is 0.16% at the first epoch, and 

TABLE 5  Overall performance of the model with different ratios.

Training Testing F1-score (%) Precision (%) Recall (%) Accuracy (%)

80% 20% 93 98 88 97

70% 30% 92 98 86 97

60% 40% 91 96 88 96

50% 50% 90 94 87 95

FIGURE 8

A 10-fold cross-validation technique.

TABLE 6  Accuracy of different models using the holdout and 10-fold 
cross-validation techniques.

Model Accuracy of 
holdout 

technique (%)

Accuracy of 10-
fold validation 
technique (%)

ANN 95.7 93.4

Naive Bayes 95 94.3

KNN 93.1 91.6

Logistic regression 82.5 80.1

DNN 97 95.5

TABLE 7  F1-score of different models using the holdout and 10-fold 
cross-validation techniques.

Model F1-score of 
holdout 

technique (%)

F1-score of 10-
fold validation 
technique (%)

ANN 92.3 90.4

Naive Bayes 89.2 87.3

KNN 90 91.6

Logistic regression 81.5 80.1

DNN 93 90.5
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it goes higher at 50 and 100 epochs. The loss is 0.23%. For training, the 
loss is 0.03% on the first epoch and goes higher on the epoch number 
40; when it reaches the epoch number 100, the loss is 0.01%.

The accuracy graph for the training of 10-fold cross-validation is 
shown above as it can be  seen that the graph started from 90% 
accuracy on 0 epoch and remained almost the same at 90 epoch, but 
an abrupt increase in accuracy can be seen after 90 epoch and achieve 
93% accuracy. The accuracy graph for testing of 10-fold cross-
validation in which the graph fluctuates between 65 and 100%.

6 Discussion

The present study aims to achieve high accuracy by using a 
numerical data set for our model. The model is trained and tested 
using different dataset ratios for the best results. Before this study, 
most of the previous methods used image data sets to execute their 
research work, but in this study, historical numerical data was 
employed, which is not complex compared to other methods. 
Furthermore, a binary classifier (non-seizure or seizure) is used, 
which does not predefine more specific seizure categories to provide 
a more generalizable classifier. The DNN algorithm has more than one 
hidden layer between the input and output layers; the data will 
be  passed through these hidden layers’ functions, in which the 
function applies weights to the inputs and sends them as the output 
using an activation function. The activation function used in this 
study is Sigmoid.

7 Comparative analysis

This section will compare the proposed model with the other 
machine learning approaches concerning accuracy, precision, 
F1-score, and recall. The comparison of machine learning 
models with different training and testing ratios, i.e., 80–20%, 
70–30%, 60, −40%, and 50–50%, will be done through graphs 
and tables.

TABLE 8  The precision of different models using the holdout and 10-fold 
cross-validation techniques.

Model Precision of 
Holdout 

Technique (%)

Precision of 10-
fold Validation 
Technique (%)

ANN 95 93.4

Naive Bayes 96.4 94.3

KNN 92 91.6

Logistic regression 85.1 83.5

DNN 98 95.5

FIGURE 9

ROC of the proposed model using a holdout and a 10-fold cross-
validation technique.

FIGURE 10

A 10-fold cross-validation loss.

FIGURE 11

A 10-fold cross-validation accuracy.

TABLE 9  Accuracy (%) comparison results in the percentage of the 
proposed DNN model with the other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 95.7 95 94 92

Naive Bayes 95 94 93 91.5

KNN 93 92.5 91.5 91

Logistic 

regression

82.5 82 81 80

DNN 97 97 96.5 95
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7.1 Accuracy

The accuracy of the proposed DNN model is compared with the 
other models, such as Logistic regression, KNN, ANN, and Naïve 

Bayes, using different splitting ratios as given in Table 9 and visualized 
in Figure 12. We can see that the proposed DNN model achieves the 
highest accuracy result compared to other models. Despite a general 
decline in accuracy across all models when the training data is 
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FIGURE 12

Visualization of accuracy comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

TABLE 10  F1-score (%) comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 92 91 90 90

Naive Bayes 89 87 85 85

KNN 90 88 86 86

Logistic regression 81 79 77 76

DNN 93 92 91 90

92 89 90
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FIGURE 13

Visualization of F1-score comparison results in percentage of proposed DNN model with other models at different splitting ratios.
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reduced, the DNN model exhibits notable resilience, maintaining 
comparatively high accuracy even with a balanced 50–50 data split. 
This suggests that the DNN model is capable of delivering strong 
performance even with a smaller amount of training data.

7.2 F1-score

The F1-score of the proposed DNN model is compared with the 
other models, such as Logistic regression, KNN, ANN, and Naïve 
Bayes, using different splitting ratios as given in Table  10 and 
visualized in Figure 13. Logistic Regression consistently shows the 
lowest F1-scores for all data splits, indicating its limited effectiveness 
for this task. On the other hand, while ANN, KNN, and Naïve Bayes 
deliver decent results, they still fall short compared to the performance 
achieved by the DNN model.

7.3 Precision

We examine the precision of the proposed Deep Neural 
Network (DNN) model in contrast to several established models: 
Artificial Neural Network (ANN), Naïve Bayes, K-Nearest 
Neighbors (KNN), and Logistic Regression. This evaluation 
encompasses various data splitting ratios, including 80–20%, 
70–30%, 60–40%, and 50–50%.as shown in Table 11 and Figure 14. 
The values will be changed when the training and testing data ratios 
are changed.

7.4 Recall

In this section, we  investigate the recall capabilities of the 
proposed Deep Neural Network (DNN) model when compared to 
alternative models across diverse data splitting ratios. The outcomes 
are illustrated in Table 12 and Figure 15. Recall assesses a model’s 
proficiency in correctly recognizing all pertinent instances among the 
total relevant instances. As we manipulate the proportions between 
training and testing datasets, the figures in the table will 
adapt accordingly.

8 Conclusion

The primary objective of this study is to optimize the accuracy and 
performance of our research outcomes. To accomplish this, we have 
employed a sophisticated deep neural network (DNN) algorithm 
while systematically manipulating the ratios of training and testing 
datasets to discern optimal results. The results showed substantial 
advancements over previous research endeavors, boasting a 
remarkable 97% accuracy rate, a precision rate of 98%, an F1-score of 
92%, and a recall rate of 80%. Furthermore, our commitment to robust 
validation methodologies is evident in applying a rigorous 10-fold 
cross-validation technique designed to further enhance the model’s 
performance and bolster its reliability across the dataset. Integrating 
EEG data with other physiological measurements, such as heart rate 
and movement data, may enhance the accuracy of seizure detection. 
Future research could investigate methods for combining these diverse 

TABLE 11  Precision (%) comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 95 92 91 91

Naive Bayes 96 95 85 85

KNN 92 93 90 89

Logistic regression 85 83 83 80

DNN 98 97 95 90
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FIGURE 14

Visualization of precision comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.
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data types to utilize the unique benefits of each. Additionally 
combining the seizure detection system with electronic health records 
to enhance patient history tracking and care management could also 
be Upcoming research.
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TABLE 12  Recall (%) comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 84 84 83 81

Naive Bayes 87 85 83 82

KNN 84 82 80 79

Logistic regression 86 84 82 80
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FIGURE 15

Visualization of recall comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.
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In the Internet of Things (IoT) healthcare sector, the wireless body area network

(WBAN) is being used to optimizemedical results by tracking and treating patients

as they go about their daily lives. Health insurance has also been one of the

cybercriminal’s main goals. The Systematic Review of IoT Healthcare systems

particularly wireless body area networks is significant, to reach the benefits

and challenges faced by existing methods in the domain. This study provides

a systematic survey of WBAN data protection. Various types of devices are used

in medical science to detect and diagnose diseases. The network is an integral

part of medical science in today’s era. In medical sciences, sensors take data

from a problematic place like cancerous cells. This research discussed a lot

of techniques in the literature review. Most of them are not able to fulfill the

requirements. If an unauthorized person reaches the data that can be a severe

issue, like the diagnosed disease was blood cancer, and after unauthorized

access manipulation can change even the diagnosed issue in the database. A

doctor can prescribe the medication based on provided data that has been

manipulated by unauthorized persons. Several existing schemes are explored in

the literature to determine how the protection of sharing patients’ healthcare

data can be improved. The systematic literature review (SLR) of multiple security

schemes for WBAN is presented in this survey paper.

KEYWORDS

WBAN, data security, encryption decryption, SLR, healthcare

1 Introduction

The security of WBAN (1) is essential and should not be forgotten. It is confidential,

sensitive medical information and must be shielded from unauthorized persons who

can use details that may be harmful to the person (2). By using WBAN with the

use of various varieties of sensors to track the patients to detect any life-threatening

diseases healthcare applications are enhanced. This technology aims to increase the

quality of medical services delivered and reduce certain related costs. BAN has a broad

spectrum of applications, like tracking the medical conditions of patients and optimizing

their response to clinical guidelines, but protection and privacy are some of the main

concerns in BAN-based healthcare systems at the same time medical data must be

kept protected from risk factors and hackers during storage and transmission (3, 4).

Frontiers inMedicine 01 frontiersin.org188

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1422911
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1422911&domain=pdf&date_stamp=2024-07-30
mailto:alia.tabassumcs@gmail.com
https://doi.org/10.3389/fmed.2024.1422911
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1422911/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jian et al. 10.3389/fmed.2024.1422911

The existing literature discusses data privacy and protection (5, 6),

but it doesn’t go into depth about the SLR and the requirements

for collecting data. There is a lot of literature on security strategies,

but it isn’t focused on security research. This study used three

different Databases including IEEE, ACM, and Springers. The

existing literature discusses data privacy and protection, but it

doesn’t go into depth about the SLR and the requirements for

collecting data. There is a lot of literature on security strategies, but

it isn’t focused on security research. This study used three different

Databases including IEEE, ACM, and Springers. Develop a string

by using the objective of all papers and then used 3 synonyms

of each keyword in the string. This research discussed inclusion

criteria in which we have two parts one is included and another

is excluded (not included). The thesis, newspaper, books and are

not included in the inclusion criteria and title-based, abstract-

based, and objective-based research papers are included. After that

design, this study performs objective-based filtering and abstract-

based filtering. Aim objectives and methodologies of each paper are

discussed below. And also provide critical analysis. The conclusion

of this research is to provide an efficient way for data security

in WBAN. Privacy in WBAN is important and should not be

forgotten. Medical data is important and must be shielded from

unauthorized access. The motivation is to compile and research

papers that deal with security issues in depth. In this research papers

were identified after an extensive search using strings in different

databases. The papers were then screened using title and abstract-

based evaluations to determine if the study was appropriate or not.

We present the comparative analysis of data in tabular form in

this section. The study concluded that WBAN is a more effective

approach to exchanging data between doctors and patients by

doing this survey. In Table 1, existing surveys on data security in

WBAN are discussed. This shows the strength of this survey paper

with already existing survey papers using the comparison method.

Compare all survey papers in terms of communication cost, energy

consumption, storage, etc.

1.1 Motivation of the study

The existing literature discusses data privacy and protection,

but it doesn’t go into depth about the SLR and the requirements

for collecting data. Many methods for improving technical

efficiency have already been established in this area, but current

work required more accuracy. Another relevant and high-

quality SLR survey has been rationalized, but it used a limited

amount of established literature, which could impact methodology

comparisons. Additionally, a systematic analysis is based on

comparing and highlighting study gaps; however, this survey

does not include many details regarding current WBAN literature

schemes. The research conducts a systematic literature review,

which is used to support the proposed SLR in the survey. The major

contributions of this study are as follows:

1. To create a taxonomy that covers the security encryption

techniques that are required in theWBAN setting. Existing work

has been addressed in depth in each section of the taxonomy to

address a variety of issues, including time, cost, and predicting

network attacks.

2. From 2017 to 2024, we followed the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (RISMA) flow chart

to search the literature, delete duplicate information, screen,

exclude, and include articles.

3. SLR can be used for very relevant schemes that concentrate on

protecting healthcare data by preventing security threats while

using less memory.

4. To encourage researchers to provide effective solutions to

problems, a security review with criticism is performed.

The rest of the paper is arranged as follows. Section 1 presents

the introduction to WBAN. Section 2 shows the Systematic

literature review (SLR). Section 3 shows the Detailed Literature

Review and Section 4 concludes this work.

2 Systematic literature review

This study chose a year range(2017–2024), selected three

synonyms for each string keyword, searched three databases (ACM,

Springer, IEEE), and then conducted random searches against

strings. This research created a string containing all of the papers’

objectives and then utilized three synonyms for each keyword

in the string. Then this research talked about inclusion criteria,

where one component is included and the other is excluded (not

included). The thesis, newspaper, books and are not included in

the inclusion criteria, and title-based, abstract-based, and objective-

based research papers are included.

2.1 Research selection procedure

The PRISMA (23) flow chart in Figure 1 demonstrates our

survey’s systematic review procedure. In the selection process,

research papers from the years 2017 to 2024 are included.

Currently, 130 papers are being considered. publications that

fulfill the study criteria are selected after searching for similar

publications in various databases. During an initial review, 75

papers were shortlisted, and 30 relevant articles that met the

requirements were included in the survey.

2.1.1 Detailed literature review
WBAN is a multifaceted network that includes a variety of

sensor hubs that track and relay data in real-time in a variety of

situations. Sensor nodes collect vital information and send it to

a medical server for further analysis. Since data includes highly

confidential and important patient information, data security

and safety is a critical challenge. WBAN information security is

being investigated over a long period, from 2017 to 2024. This

research literature focuses on various schemes such as SHA (Secure

Hashing Algorithm), AES(Advanced Encryption Standards), and

many others.

2.1.2 AES based schemes
This research paper’s (11, 24) goal is to build and apply

a safe end-to-end PMS by focusing on the secure wireless
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TABLE 1 Overview of existing research.

References Year Objective Techniques Criticism

Rehman et al. (7) 2020 The specification for storage, the cost of

computing and communication, time, and

cost computational.

Internet protection protocol

and automatic validation

(AVISPA) platform.

The lack of usability features, and different

routing threats, like a privileged insider, user,

and server impersonation, do not provide an

effective password change point.

Jabeen et al. (8) 2020 Complexity of time, key generation

development, computational time algorithm

for encryption.

Novel data protection

genetic-based encryption

scheme, AES.

AES also has disadvantages, like high cost of

calculation for hardware, large in size, use of

CPUs.

Hasan et al. (9) 2020 Reliability, Trust, provide less cost and time. - Execute more slowly, The more complicated

mathematical model.

Jabeen et al. (8) 2020 The study examines a variety of current

strategies to determine how patient health

data protection can be improved.

-

Parvez et al. (10) 2019 Electronic health records (EHR) systems

handle the internet’s most private

information, improve security.

Electronic Healthcare

Repository (EHR).

Changes in workflow temporary loss of

productivity.

Chowdhury et al.

(11)

2018 Portable support in the form of consuming

minimum energy consumption creates a

larger framework for a PMS end-to-end safe

communication way for different

medications.

AES, MQTT AES also has disadvantages, like high costs of

computation, and high specification for

hardware. More difficult, wide footprint, use of

CPUs, high storage and power.

Shanthapriya and

Vaithianathan (12)

2018 Integrity, reliability, medical privacy, and

security.

The polynomial curve and the

Steganography technique are

generated.

The key concept behind these strategies is that

without being found, edges will bear more

variation than smooth areas.

Braham et al. (4) 2018 The energy-efficient system, energy-efficient

protection protocol, reducing the cost of

healthcare.

- No formal syntax or semantic logic is restricted

to authentication protocol analysis. Does not

have proper encryption accounts.

Malik et al. (13) 2018 Resolving variously defined gaps in storage

requirements, enhancing privacy, improving

security.

Internet protection protocol

and application automatic

validation (AVISPA) platform.

Lack of functionality features various known

attacks, such as privileged insider, user, and

server impersonation, do not include.

Anwar et al. (14) 2018 - AES and MQTT Theoretically, file-type attacks are successful

DOS, IoT attacks are not suitable for

high-complexity sensor networks.

Roy et al. (15) 2017 - AES, ECC The implementation of AES and ECC is

challenging. Complex, time-consuming, and

hard to execute.

Hasan et al. (9) 2020 Achieve high throughputs and low latncy for

emergency traffic.

SDN (Software-defined

Networking)

Vulnerabilities in security, inconsistency

SDESW’s flow demands rise as the network

becomes more complex.

Ren et al. (16) 2019 only the designated person has access to the

user’ data.

DVSSA Complexity and Time Consumption.

Zhang and Ma (17) 2018 Improve user privacy at a low cost. A security mechanism that is

aware of the channel

It takes a long time to authenticate each node.

Shanmugavadivel

et al. (18)

2021 In a cloud environment improve data

security using the AES.

AES, Genetic Algorithm for

Task Flow Scheduling.

High complexity.

Singh and Prasad

(19)

2021 Provide detailed study of different systems

and protocols for dealing with energy

efficiency and security.

-

Soni and Singh

(20)

2021 Lower execution cost, calculation time, and

power consumption when compared to other

protocols.

LAKA Lightweight

Authentication and Key

Agreement Protocol.

Higher power consumption.

Sandhu and Malik

(21)

2020 The goal of this article is to efficiently

transmit data based on the priority of the

data.

PAP(Priority aware protocol) As the priority level rises, so does the amount of

energy expended.

Li et al. (22) 2017 The goal of this article is to use physical

channel information to eliminate the need for

additional hardware requirements.

RSSI(Received Signal Strength

Indicator).

An algorithm is difficult to implement because it

is complex.

Frontiers inMedicine 03 frontiersin.org190

https://doi.org/10.3389/fmed.2024.1422911
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jian et al. 10.3389/fmed.2024.1422911

FIGURE 1

The PRISMA flow diagram depicts the procedure by which we searched the literature, removed duplicate records, screened, excluded, and included

articles in our systematic review.

connection gateway sensors with a lightweight encryption protocol

that consumes minimal power. The research goal should be to

provide protection and authorization processes to ensure that

during the entire communication route, the data is not disclosed

to an external observer nor damaged by a malicious sensor

inside or in the vicinity of the WBAN. Lightweight encryption

protocol, low energy consumption, a wider system for different

medications, and an end-to-end safe communication network

for a PMS are some of the key objectives of this study. The

wireless body area network (WBAN) which is also used to

capture the sensitive medical information of the patients is

the access network of the users through a server in which

the data of the patients is processed. In comparison to the

literature approaches, the research work (8) aims to have less

computational time complexity and a cost-effective genetic-based

algorithm. This method also introduces a new algorithm for a

key generation that has fewer steps and fewer computational

methods. After generating the patient’s data, the genetic-based

lightweight encryption algorithm was applied over the nanosensors

units. Genetic-based light encryption algorithm applied after

producing the data of patients and over nanosensors devices. The

encrypted information is then transmitted to the server, which

further transforms it through a wireless network. Patients can

also be tested with remote medical nanosensors nowadays, also

for the collection of ongoing patients records, WBAN includes

connected small sensors that are distributed via the networks for

further processing. Cloud-based WBAN has recently gotten a lot

of interest, but the cloud has many disadvantages in terms of

data management and security. Consider these issues using the

Advanced Encryption Standard (AES) and the Genetic Algorithm,

this (Shanmugavadive) research provides improved data security

and efficient task flow scheduling (GA). WBAN should address

two critical criteria to deliver reliable services data security and

privacy.Fake data and information in medical records can lead

to major problems. If a person alters the values of gathered

information and the physician prescribes medication based on the

changed information, significant health problems and even death

might occur (18).
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2.1.3 Data authentication
An essential component of Wireless Body Area Networks

(WBAN) security and privacy protocols is the authentication

of sensitive health-related data transmitted through the

network. It is essential that both WBAN nodes have data

authentication, and the coordinator must be able to confirm

that the data is being sent from a reliable source and not

a fraudster. Symmetric approaches, which generate the

MAC (Message Authentication Code) of the whole set of

data using a shared key, are used to verify the source of the

data (25).

2.1.4 Data authorization
A user’s identity, role, or permissions determine which data

or resources they can access or cannot access. This process is

known as data authorization. It involves verifying users’ identities

and figuring out if they are authorized to view, edit, or remove

data (25).

2.1.5 Block cipher based schemes
This research work (7) aims to defend from various known

cyberattacks, in particular, the vulnerability attack also on the base

station and the dos attacks on the sensor node. These research

findings and safety review show that in terms of storage needs,

computing, and communication costs, the suggested improved

system has overcome various established gaps. The goal of this

paper is to establish a framework for safeguarding patients’ health

data from all safety difficulties. Requirements for storage, cost

of computing and connectivity, time, and cost of computing.

The suggested security system demonstrates its effectiveness in

protecting against various known cyber-attacks, especially the

compromise attack on the base station and the doc attacks on

the sensor node. This paper’s (15) goal is to propose a cost-

effective framework that prevents unauthorized attackers from

removing data packets or forwarding false data. This paper’s

goal is to present novel data protection mechanisms for WBAN

that are capable of detecting getting into trouble relay nodes or

links. The process refers to the routing algorithm for AOVD.

The non-homogenous pattern of Poisson is used here to describe

the possibility of malicious actions. The protection does not add

any new packets of controls. To access performance, SLR on

AODV is simulated and the results are compared with AODV.

At a low cost, it is used to detect harmful intruders. The

wireless body area networks (WBAN) are common options for

a wide variety of health, sports activities, and recovery current

study applications. In providing secure identification using an

encryption mechanism, some existing WBAN routing protocols

can be found, but they do not provide a lightweight communication

solution. An energy-efficient framework is proposed in this

paper that stops unauthorized intruders by dropping data

packets or forwarding fake data. While it can communicate

with any other reactive WBAN routing algorithm, the algorithm

can be applied on the Adhoc On-demand distance-vector

machine (AODV) protocol. In detecting malicious nodes with

minimal latency, the protocol is simulated and results show its

effectiveness.

2.1.6 ZigBee
This research paper (13) first gives an overview of WBAN,

how it was used for medical surveillance, then highlights its

design, significant security, and privacy specifications, and attacks

on specific network layers in a WBAN, and finally talks about

different encryption protocols and laws to provide WBAN data

protection solutions. Provides WBAN protections sensors are used

to capture a patient’s confidential and valuable medical data, are

they may even be used in sports. WBANs connect with the device

and other applications such as ZigBee, WI-FI, cellular networks,

and applications for the wireless personal area network (WPAN).

The wireless body area network is a series of wireless sensors that

can be mounted in or out of the body of the human or living

person, thus detecting or tracking the body’s functions and adjacent

circumstances.

2.1.7 BAN detection
This paper (4) aims to review BAN communication standards,

security risks, and BAN-based applications weaknesses, as well

as current privacy and security processes. Privacy and security

problems and the internet technology used in a BAN are outlined in

the report. This technology aims to increase the quality of medical

services rendered and reduce certain related costs. BAN has a wide

variety of uses, such as tracking the health conditions of patients

and optimizing the response to treatment plans, but protection

and safety are among the main concerns in BAN-based healthcare

systems at the same time, as medical data must be kept protected

from adverse reactions and threats during stroke and transmission.

Reducing healthcare cost, and energy-efficient climate, protocols

for energy-efficient protection. Many studies have shown that if

diseases are identified in their initial phases, there is a way to detect

them.

2.1.8 Hashing algorithm
This paper (14) aims to design Safe hashing algorithms (SHA)

and encryption techniques used in research reviews to make data

transfer more secure and efficient (14). It creates digital signatures

using a hash method to move patient data more stably and

authentically. This proposed algorithmmakes use of an asymmetric

key generation technique, which uses a pair of public and private

keys, making the algorithms slow and more complex. Protecting

Data Communication in WBAN through Digital Signatures, the

proposed technique is based on a combination of different methods

for securing data in WBAN by using protected keys and digital

signatures. BNC digitally signs each data packet to SK and sends

it to all sensor nodes in the network. WBAN (Wireless Body Area

Network) is a special form of sensor network that connects patients

with medical service providers via the Internet to exchange crucial

health data. WBAN offers several advantages, including location-

independent monitoring, no influence on patients’ movement,

early illness diagnosis and prevention, remote patient support, and

so on. To ensure security, researchers have proposed several health

data transmission techniques. The author (Soni) proposes a low-

cost health authentication and key agreement technique that is

both secure and lightweight. The suggested protocol uses a one-

way hashing algorithm (SHA-256), and the National Institute of
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Standards and Technology (NIST) has determined that it is safe

against the polynomial-time method (20).

2.1.9 Multiple scheme
Mehmood et al. (26) aims to design a framework for the

portable authentication process and session key arrangement

between sensor nodes and health professionals that discuss both

patterns of communication. The safety review shows that required

security features are maintained. The purpose of this paper is

to implement lightweight user security mechanisms that facilitate

internal and external information exchange to build a safe session

key between a health professional and a particular sensor node

linked to the body of the patient. In the future, the scheme will

be applied in an actual system in which the sensor nodes mostly

on the patient’s body communicate with mobile devices, cloud

services, authentic gateway, and health professionals. The wireless

body area network (WBAN) is also an IOT-based health service

that greatly improves health treatment by allowing patients’ health

conditions to be tracked remotely. This paper (12) aim is an attempt

to examine that IOT basedWBAN security infrastructure on a base

of the main security agreement scheme. Key encryption techniques

are extremely inefficient in terms of computing, processing, and

energy usage. In tier 1 of WBAN, this paper mainly focuses on

various primary agreement frameworks. Four different groups

separate the private key agreement schemes, conventional key

framework, physiological key strategy, hybrid scheme, and private

key agreement strategy. The Internet of things (IoT) (27) is one

of the newest technologies these days that has consumed a lot

of possibilities. Wireless body area network (WBAN) also is such

emerging field that provides a remote ability to prevent and collect

patients’ health data using IoT based wearable biosensors. In IoT

devices that are extremely resources constraints, their architectures

are discovered to be ineffective. This study is an attempt to

examine the IoT-based. The goal of this paper (12) is to create

a polynomial-based curve for a safe system that helps the patient

with dignity, authenticity, confidentiality, and privacy. An attacker

can access the medical data of the patients that are stored in

the controller or hack the data while communicating through

wireless communication, without any of the patient’s permission.

An attacker can alter the message produced within the BAN

before they are transmitted to a receiver (such as location, layout,

quality, query, etc.) or change the communication content being

transferred from the BAN to an external entity(e.g doctor). Farooq

et al. (28) proposed a method to secure physical layer (PHY)

transmission. This approach encrypts data without requiring the

keys. Physical Layer Security The sensor nodes inmulti-hopWBAN

use the MTFG (Multi-Hop Topology Formation Game) algorithm

to create a spanning tree for multi-hop communication in the

uplink of the WBAN. This algorithm can be implemented in

a distributed manner, among each sensor being aware of the

presence of its neighbors to choose the best direction. The system’s

performance is evaluated in a variety of situations, and the results

show that the suggested scheme has the best performance, which

can be tailored to meet the competing needs of protection and

latency for different applications. This article offers software-

defined networking (SDN)-based WBAN (SDWBAN) architecture

for application-specific traffic control to address these challenges.

The suggested system achieves high throughput and low latency

for emergency traffic in SDWBANs, according to the results of

the paper’s experiments. The objective of this paper is a scalable

and adaptable SDWBAN framework that allows for dynamic

network control as the number of apps on the network grows

(traffic management) (9). WBAN is a sensor network with nodes

that may be attached outside or within the body. Priority aware

protocol (PAP) was proposed in this (Sandhu) paper to deal

with smart healthcare systems. PAP is made up of three primary

components: sensor, controller, and medical server. The sensor

module detects the data, assigns a dynamic priority to the data

packet based on the estimated values, and then delivers it to the

controller unit according to the data packet’s determined priority.

The major goal of this article is to send data from a node to

a coordinator node and then to a patient database in a timely

and reliable manner (21). Radio waves on the receiving end are

used to calculate the (RSSI). RSSI used 128 bits of size for data.

Implementation of RSSI is complex and requires high memory.

The restricted data density of RSSI-based key generation and

agreement is a major problem. Unlike them, the research presents a

physical layer-based security strategy in this work that uses physical

channel information and eliminates the need for additional

hardware (22).

2.1.10 Blockchain
WBAN provides a quick approach to gathering patient data,

but they also introduces severe issues, the most important

of which is the secure storage of the data obtained. WBAN

devices’ data storage and data security do not fulfill the

demands of WBAN customers. As a result, the (Ren) paper

uses a blockchain database to collect data, which increases

the data’s security. In addition, the research paper solution

proposes a blockchain-based storage architecture for WBAN. The

blockchain’s storage space is limited, and the data it stores is

exposed to unwanted access. To address these issues, the article

presented a sequential aggregate signature method with a specified

verifier (DVSSA), which ensures that a user’s data may only

be read by the authorized person and protects WBAN users’

privacy (16).

2.1.11 Characteristic of the channel
The essential component of many telemedicine applications,

such as customized medicine and home-based smartphone apps

is a wireless body area network (WBAN) that uses wireless media

to offer data transfer services. WBAN is an important field that is

used to transmit patients related important information. Because

of the wide accessibility of media in WBAN, malicious tapping or

tampering attacks can readily occur, stealing personal information

or introducing incorrect data. To avoid this type of attack (Zhang)

proposed a mechanism that is used to channel characteristic aware

privacy protection method for WBAN is suggested to improve

user privacy at a relatively low cost and with great flexibility.

Tempering attacks, malicious node attacks, and inserting fake data

attacks may all be possible as a result of the great accessibility

of resources.
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2.1.12 Survey scheme
The systematic literature review (SLR) of multiple protection

schemes for WBAN is presented in this survey paper. The study

came up with a research question to look at the possibilities of

multiple attacks while keeping memory constraints in mind. The

study used quality valuation to ensure that the schemes were

relevant to the research question. Furthermore, the schemes are

examined from 2016 to 2020 to concentrate on recent work. Several

current systems are investigated in the literature to determine how

the protection of sharing patients’ healthcare data can be improved.

The study degree of confidence and satisfaction required by patients

(29). Also examines the protection of various attack scenarios.

The efficient transmission of data over a wireless channel may be

disrupted by a variety of attacks (29). Existing studies include an

overview of data protection in the medical environment, but the

research concentrated on data security schemes in WBAN that

reduce various attacks to provide the degree of confidence and

satisfaction required by patients (29). WBAN is highly beneficial

in today’s environment, but it faces a variety of issues that must

be overcome before it can be used. This (Singh) research considers

different systems and protocols for dealing with energy efficiency,

security, and privacy in depth. WBAN is a type of Wireless Sensor

Network that comprises tiny bio-medical types of equipment

known as nodes that are dedicated to guaranteeing continuously

patient monitoring based on certain essential criteria. Because

of its benefits, including portability, flexibility, and simplicity of

patient monitoring, smart healthcare has gotten a lot of attention.

WBAN is made up of a variety of heterogeneous devices, thus

the amount of data and bandwidth required varies depending on

their characteristics (19). First, the research discussed the article

title, year, and references in this research Table 1. Then discuss the

objective of each paper and also the technique or methodology.

Finally, critical analyses were discussed for each of them. Gathered

a variety of literary techniques to give us the ability to come up

with new ways to defend against attacks that are vulnerable to

the schemes. Because of their complex algorithms, the majority

of research methods are time and cost-intensive. AES is difficult

to implement on software in a way that is both fast. Table 2

compares the security of various schemes in the literature based

on eavesdropping (30), denial of service (DoS) (31), malicious

nodes (32), and execution time and cost. Several schemes have been

proposed in the literature to examine the strengths of these security

mechanisms to reduce attacks in the WBAN scenario.

3 Research gap

The research gaps according to the literature review are

reported here. In the research Papers (7, 13, 29) uses the AES

algorithm and that is a very complex algorithm. AES is a complex

and costly algorithm and not suitable for sensor networks. This

algorithm is complicated to implement. Encryption is difficult with

large key sizes. Furthermore, decrypting data with this algorithm

takes a longer time. And also these schemes are affected by

DOS and IoT-based attacks. In this research paper (22) RSSI

scheme is presented and this algorithm is difficult to implement

because it is complex. In research paper (21) PAP(Priority Aware

Protocol) as the priority level rises, so does the amount of energy

TABLE 2 Comparative analysis of techniques.

Scheme Time Eavesdropping DOS MN

Chowdhury et al.

(11)

+ + - -

Rehman et al. (7) + - + -

Shanthapriya and

Vaithianathan (12)

- + - +

Braham et al. (4) - - - -

Jabeen et al. (8) + - - -

Jabeen et al. (8) - - - +

Mehmood et al.

(26)

+ + - -

Parvez et al. (10) + - - -

Roy et al. (15) + - + -

Anwar et al. (14) + + - -

Farooq et al. (28) - - + +

Jabeen et al. (29) + + - -

Hasan et al. (9) + - + +

Ren et al. (16) - - - +

Zhang and Ma (17) - + - +

Shanmugavadivel et

al. (18)

+ - - -

Singh and Prasad

(19)

+ - - -

Soni and Singh (20) + - - +

Sandhu and Malik

(21)

+ + - -

Li et al. (22) - - - -

expended. In the paper, Ren et al. (16) DVSSA has proposed it

is a time-consuming and complex technique also data tampering

attack is possible on it. In paper, Roy et al. (15) SDN(Software

Defined Networking) is proposed. This scheme is affected by two

attacks and that is DOS, MINA. Vulnerabilities in security, and

inconsistency SDESW’s flow demands rise as the network becomes

more complex. In this research paper (20) LAKA is presented and

that is increased energy use.

4 Conclusions

The protection of data in WBAN is important and should not

be neglected.WBAN is used for gathering themedical conditions of

patients and is sent to any portable device that is linked to databases

that can store patient details. Because of the critical importance

of the health issue, it must be kept hidden from unauthorized

persons. In addition to highlighting security and privacy problems,

a number of approaches for a WBAN utilizing IoT systems

are thoroughly evaluated. Only a few research methodologies

are considered viable due to the multifaceted nature of WBAN,

and there are some extremely challenging and difficult research

methodologies. This literature focuses on various approaches to
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information security however, only a few are considered to be

superior to others in terms of information security. Various current

strategies are observed in the literature to understand how the

security of patient’s health data is upgraded.

Author contributions

WJ: Formal analysis, Investigation, Methodology, Software,

Supervision, Validation, Writing – original draft. AT:

Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Software, Writing – original draft. JL: Formal

analysis, Funding acquisition, Investigation, Methodology, Project

administration, Resources, Supervision, Validation, Visualization,

Writing – original draft.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work was supported by the National Natural Science

Foundation of China (Grant No. 61370073), the National High

Technology Research and Development Program of China, and

the project of the Science and Technology Department of Sichuan

Province(Grant No. 2021YFG0322).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Priyadarshi R. Energy-efficient routing in wireless sensor networks: a
meta-heuristic and artificial intelligence-based approach: a comprehensive
review. In: Archives of Computational Methods in Engineering. (2024). p. 1–29.
doi: 10.1007/s11831-023-10039-6

2. Kumar R, Mukesh R. State of the art: Security in wireless body area networks. Int
J Comput Sci Eng Technol. (2013) 4:622–30.

3. Pattanayak A, Dhal S, Addya SK. Automatic privacy-preserving contact tracing of
novel coronavirus infection by cloud-enabled wban using blockchain. Cryptology ePrint
Archive. (2020).

4. Braham TG, Butakov S, Ruhl R. Reference security architecture for
body area networks in healthcare applications. In: 2018 International
Conference on Platform Technology and Service (PlatCon). IEEE (2018). p. 1–6.
doi: 10.1109/PlatCon.2018.8472765

5. Oyewole AT, Oguejiofor BB, Eneh NE, Akpuokwe CU, Bakare SS. Data privacy
laws and their impact on financial technology companies: a review. Comput Sci IT Res
J. (2024) 5:628–50. doi: 10.51594/csitrj.v5i3.911

6. El Mestari SZ, Lenzini G, Demirci H. Preserving data privacy in machine learning
systems. Comput Secur. (2024) 137:103605. doi: 10.1016/j.cose.2023.103605

7. Rehman ZU, Altaf S, Iqbal S. An efficient lightweight key agreement
and authentication scheme for WBAN. IEEE Access. (2020) 8:175385–97.
doi: 10.1109/ACCESS.2020.3026630

8. Jabeen T, Ashraf H, Khatoon A, Band SS, Mosavi A. A lightweight genetic
based algorithm for data security in wireless body area networks. IEEE Access. (2020)
8:183460–9. doi: 10.1109/ACCESS.2020.3028686

9. Hasan K, Ahmed K, Biswas K, Islam MS, Sianaki OA. Software-defined
application-specific traffic management for wireless body area networks. Fut Gener
Comput Syst. (2020) 107:274–85. doi: 10.1016/j.future.2020.01.052

10. Parvez K, Zohra FT, Jahan M. A secure and lightweight user authentication
mechanism for wireless body area network. In: Proceedings of the 6th
International Conference on Networking, Systems and Security. (2019). p. 139–143.
doi: 10.1145/3362966.3362981

11. Chowdhury FS, Istiaque A, Mahmud A, Miskat M. An implementation of a
lightweight end-to-end secured communication system for patient monitoring system.
In: 2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT).
IEEE (2018). p. 1–5. doi: 10.1109/EDCT.2018.8405076

12. Shanthapriya R, Vaithianathan V. ECG-based secure healthcare monitoring
system in body area networks. In: 2018 Fourth International Conference on
Biosignals, Images and Instrumentation (ICBSII). IEEE (2018). p. 206–212.
doi: 10.1109/ICBSII.2018.8524714

13. Malik MSA, AhmedM, Abdullah T, Kousar N, Shumaila MN, Awais M.Wireless
body area network security and privacy issue in e-healthcare. Int J Adv Comput Sci
Applic. (2018) 9:433. doi: 10.14569/IJACSA.2018.090433

14. Anwar M, Abdullah AH, Butt RA, Ashraf MW, Qureshi KN, Ullah F. Securing
data communication in wireless body area networks using digital signatures. Tech J.
(2018) 23:50–5.

15. Roy M, Chowdhury C, Kundu A, Aslam N. Secure lightweight routing (SLR)
strategy for wireless body area networks. In: 2017 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS). IEEE (2017). p. 1–4.
doi: 10.1109/ANTS.2017.8384119

16. Ren Y, Leng Y, Zhu F, Wang J, Kim HJ. Data storage mechanism based on
blockchain with privacy protection in wireless body area network. Sensors. (2019)
19:2395. doi: 10.3390/s19102395

17. Zhang P, Ma J. Channel characteristic aware privacy protection mechanism in
WBAN. Sensors. (2018) 18:2403. doi: 10.3390/s18082403

18. Shanmugavadivel G, Gomathy B, Ramesh S. An enhanced data security and task
flow scheduling in cloud-enabled wireless body area network. Wirel Pers Commun.
(2021) 120:849–67. doi: 10.1007/s11277-021-08493-1

19. Singh S, Prasad D. Wireless body area network (WBAN): a review of schemes
and protocols.Mater Today. (2022) 49:3488–96. doi: 10.1016/j.matpr.2021.05.564

20. SoniM, SinghDK. LAKA lightweight authentication and key agreement protocol
for internet of things based wireless body area network. Wirel Pers Commun. (2022)
127:1067–84. doi: 10.1007/s11277-021-08565-2

21. Sandhu A, Malik A. PAP priority aware protocol for healthcare applications in
wireless body area network. Parameters. (2020) 2:3.

22. Li Z, Wang H, Fang H. Group-based cooperation on symmetric key generation
for wireless body area networks. IEEE Internet Things J. (2017) 4:1955–63.
doi: 10.1109/JIOT.2017.2761700

23. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group* t. Preferred
reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann
Internal Med. (2009) 151:264–9. doi: 10.7326/0003-4819-151-4-200908180-00135

24. Derbez P, Fouque PA, Isobe T, Rahman M, Schrottenloher A. Key committing
attacks against AES-based AEAD schemes. IACR Trans Sym Cryptol. (2024)
2024:135–57. doi: 10.46586/tosc.v2024.i1.135-157

25. Narwal B, Mohapatra AK. A survey on security and authentication in wireless
body area networks. J Syst Arch. (2021) 113:101883. doi: 10.1016/j.sysarc.2020.101883

26. Mehmood G, Khan MZ, Waheed A, Zareei M, Mohamed EM. A trust-based
energy-efficient and reliable communication scheme (trust-based ERCS) for remote

Frontiers inMedicine 08 frontiersin.org195

https://doi.org/10.3389/fmed.2024.1422911
https://doi.org/10.1007/s11831-023-10039-6
https://doi.org/10.1109/PlatCon.2018.8472765
https://doi.org/10.51594/csitrj.v5i3.911
https://doi.org/10.1016/j.cose.2023.103605
https://doi.org/10.1109/ACCESS.2020.3026630
https://doi.org/10.1109/ACCESS.2020.3028686
https://doi.org/10.1016/j.future.2020.01.052
https://doi.org/10.1145/3362966.3362981
https://doi.org/10.1109/EDCT.2018.8405076
https://doi.org/10.1109/ICBSII.2018.8524714
https://doi.org/10.14569/IJACSA.2018.090433
https://doi.org/10.1109/ANTS.2017.8384119
https://doi.org/10.3390/s19102395
https://doi.org/10.3390/s18082403
https://doi.org/10.1007/s11277-021-08493-1
https://doi.org/10.1016/j.matpr.2021.05.564
https://doi.org/10.1007/s11277-021-08565-2
https://doi.org/10.1109/JIOT.2017.2761700
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
https://doi.org/10.46586/tosc.v2024.i1.135-157
https://doi.org/10.1016/j.sysarc.2020.101883
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jian et al. 10.3389/fmed.2024.1422911

patient monitoring in wireless body area networks. IEEE Access. (2020) 8:131397–413.
doi: 10.1109/ACCESS.2020.3007405

27. Hasan MK, Weichen Z, Safie N, Ahmed FRA, Ghazal TM. A survey on key
agreement and authentication protocol for internet of things application. IEEE Access.
(2024). doi: 10.1109/ACCESS.2024.3393567

28. Farooq S, Prashar D, Jyoti K. Hybrid encryption algorithm in wireless body area
networks (WBAN). In: Intelligent Communication, Control and Devices: Proceedings of
ICICCD 2017. Springer (2018). p. 401–410. doi: 10.1007/978-981-10-5903-2_41

29. Jabeen T, Ashraf H, Ullah A. A survey on healthcare data security in
wireless body area networks. J Ambient Intell Humaniz Comput. (2021) 12:9841–54.
doi: 10.1007/s12652-020-02728-y

30. Dai HN, Wang Q, Li D, Wong RCW. On eavesdropping attacks in wireless
sensor networks with directional antennas. Int J Distr Sensor Netw. (2013) 9:760834.
doi: 10.1155/2013/760834

31. Welteji BT, Tiwari B, Kebede SD, Gupta S, Tiwari V. DDoS
attack detection using predictive machine learning (ML) algorithms
in wireless body area network environments. In: IoT in Healthcare
Systems. CRC Press (2023). p. 191–216. doi: 10.1201/978100314
5035-11

32. Kumar M. Secured Key Agreement Schemes in Wireless Body Area
Network-A Review. Available at SSRN 4213580. (2022). doi: 10.2139/ssrn.
4213580

Frontiers inMedicine 09 frontiersin.org196

https://doi.org/10.3389/fmed.2024.1422911
https://doi.org/10.1109/ACCESS.2020.3007405
https://doi.org/10.1109/ACCESS.2024.3393567
https://doi.org/10.1007/978-981-10-5903-2_41
https://doi.org/10.1007/s12652-020-02728-y
https://doi.org/10.1155/2013/760834
https://doi.org/10.1201/9781003145035-11
https://doi.org/10.2139/ssrn.4213580
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


TYPE Original Research

PUBLISHED 29 August 2024

DOI 10.3389/fmed.2024.1443151

OPEN ACCESS

EDITED BY

Amin Ul Haq,

University of Electronic Science and

Technology of China, China

REVIEWED BY

Tassadaq Hussain,

King’s College London, United Kingdom

Jan Kubicek,

VSB-Technical University of Ostrava, Czechia

Fatma Elsarkawy,

Suez Canal University, Egypt

*CORRESPONDENCE

Imad Ali

imad.ali@uswat.edu.pk

RECEIVED 03 June 2024

ACCEPTED 06 August 2024

PUBLISHED 29 August 2024

CITATION

Ali I, Saleem N, Alhussein M, Zohra B,

Aurangzeb K and Haq QMu (2024)

DeepCGAN: early Alzheimer’s detection with

deep convolutional generative adversarial

networks. Front. Med. 11:1443151.

doi: 10.3389/fmed.2024.1443151

COPYRIGHT

© 2024 Ali, Saleem, Alhussein, Zohra,

Aurangzeb and Haq. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

DeepCGAN: early Alzheimer’s
detection with deep
convolutional generative
adversarial networks

Imad Ali1*, Nasir Saleem2, Musaed Alhussein3, Benazeer Zohra4,5,

Khursheed Aurangzeb3 and Qazi Mazhar ul Haq6

1Department of Computer Science, University of Swat, Swat, KP, Pakistan, 2Department of Electrical

Engineering, Faculty of Engineering & Technology (FET), Gomal University, Dera Ismail Khan, Pakistan,
3Department of Computer Engineering, College of Computer and Information Sciences, King Saud

University, Riyadh, Saudi Arabia, 4Department of Anatomy, School of Medical Sciences and Research,

Sharda University, Greater Noida, UP, India, 5Department of Anatomy, Noida International Institute of

Medical Sciences, Noida International University, Greater Noida, UP, India, 6Department of

International Bachelor Program in Informatics and Computer Science and Engineering, Yuan Ze

University, Taoyuan City, Taiwan

Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder and the

most prevailing cause of dementia. AD critically disturbs the daily routine, which

usually needs to be detected at its early stage. Unfortunately, AD detection using

magnetic resonance imaging is challenging because of the subtle physiological

variations between normal and AD patients visible on magnetic resonance

imaging.

Methods: To cope with this challenge, we propose a deep convolutional

generative adversarial network (DeepCGAN) for detecting early-stage AD in this

article. The DeepCGAN is an unsupervised generative model that expands the

dataset size in addition to its diversity by utilizing the generative adversarial

network (GAN). The Generator of GAN follows the encoder-decoder framework

and takes cognitive data as inputs, whereas the Discriminator follows a structure

similar to the Generator’s encoder. The last dense layer uses a softmax classifier

to detect the labels indicating the AD.

Results: The proposed model attains an accuracy rate of 97.32%, significantly

surpassing recent state-of-the-art models’ performance, including Adaptive

Voting, ResNet, AlexNet, GoogleNet, Deep Neural Networks, and Support Vector

Machines.

Discussion: The DeepCGAN significantly improves early AD detection accuracy

and robustness by enhancing the dataset diversity and leveraging advanced

GAN techniques, leading to better generalization and higher performance

in comparison to traditional and contemporary methods. These results

demonstrate the ecacy of DeepCGAN in enhancing early AD detection, thereby

potentially improving patient outcomes through timely intervention.

KEYWORDS

GAN, CNN, Alzheimer’s disease, deep learning, cognitive features

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition primarily affecting the

elderly, characterized by memory, behavioral, and cognitive impairments that disrupt

daily life (1). This devastating disease is projected to have a staggering impact on

global health in the coming decades. Epidemiological studies indicate a disturbing trend,

with expectations of a fourfold surge in the worldwide prevalence of AD by 2050,
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potentially exceeding 100 million cases (2). The impending

prevalence of AD raises critical concerns for individuals, families,

and healthcare systems worldwide. The burden of AD extends

beyond the individual, affecting the very fabric of society. Some

studies employ mathematical modeling to forecast the trends

and growth of AD, considering factors such as increasing life

expectancy, shifting mortality patterns, and the prevalence

of cardiovascular diseases. Unfortunately, these projections

collectively suggest a growing proportion of the population will be

impacted by AD in the future (3).

Detecting AD in its early stages is of paramount importance

for effective intervention and treatment. AD diagnosis is a complex

endeavor, demanding the accurate identification of different

dementia subtypes (4). While the challenges are substantial, recent

research highlights the central role of AD in dementia cases,

constituting approximately two-thirds of all diagnoses (5). One

of the pressing issues in AD management is the lack of effective

pharmacological treatments in clinical practice. This shortfall has

prompted a paradigm shift in therapeutic strategies, emphasizing

the early-stage detection of AD as a promising avenue for

intervention (6, 7). Identifying individuals in the early stages of

cognitive decline or Mild Cognitive Impairment, whether stable

or progressive, is pivotal for understanding high-risk populations

and potentially delaying AD progression. The combination of the

increasing prevalence of AD and the complexity of its diagnosis

underscores the urgent need for advancements in early detection

methods and comprehensive care strategies to address the growing

global challenge of AD.

The AD research landscape has shifted significantly due to deep

learning (DL) models, including stacked auto-encoders, recurrent

neural networks, support vector machines, and convolutional

neural networks (CNN). The bi-directional gated recurrent units

(BiGRUs) layers consist of 2,048 units, with 1,024 units in

each direction. The BiGRUs capture long-term temporal cues

from the cognitive data, which is crucial for identifying patterns

and changes indicative of early AD which have emerged as

potent tools in this endeavor (8). However, limitations exist in

feature quality, especially from image processing (9), requiring DL

models adaptable to diverse data types. Simultaneously, generative

adversarial networks (GANs), (which is a class of machine

learning frameworks where two neural networks, a generator, and

a discriminator, compete against each other to produce more

accurate results) originally designed for images, have found their

place in AD classification (9). DL models with GANs are proficient

in classifying AD states and enhancing image-based AD tasks,

like denoising images and precise brain segmentation (10, 11).

These advances drive understanding, detection, and treatment

of AD, a pressing neurodegenerative disease. Although, these

architectures have made sufficient advancement in AD detection;

however, these existing AD detection models have primarily

focused on neuroimaging data, resulting in the underutilization

of critical cognitive features. Moreover, temporal information,

which is highly relevant for understanding AD progression, has

been largely neglected in the literature. Additionally, the well-

known challenge of training instability in these models remains a

significant concern.

Existing models often struggle with limited dataset sizes and

lack diversity, leading to overfitting and poor generalization.

Traditional GAN-based methods, primarily designed for image

data, fail to leverage cognitive data crucial for early AD detection.

This article introduces a groundbreaking method for the early

detection of AD—the deep convolutional generative adversarial

network (DeepCGAN), which is an unsupervised generative model

designed to leverage cognitive (clinical) data for AD detection.

DeepCGAN addresses these issues by using a deep convolutional

GAN framework to expand and diversify the dataset, generating

high-quality synthetic data that improves detection accuracy and

robustness. DeepCGANs generate high-quality synthetic medical

images, crucial for augmenting limited datasets like MRI and PET

scans and enhancing model generalization. They create diverse

synthetic samples, augmenting training data in medical imaging

where labeled data is scarce, improving model performance.

DeepCGANs’ convolutional layers learn complex features for

accurate early Alzheimer’s detection, and their flexibility across

imaging modalities makes them versatile beyond disease detection,

which makes DeepCGANs a powerful and effective choice for early

AD detection.

To address the aforementioned gaps, the proposed model

effectively incorporates and analyzes cognitive data, offering amore

comprehensive understanding of AD. Also, the proposed model

integrates temporal information using BiGRUs to capture long-

term patterns and introduces mechanisms like gradient penalty

and relativistic average loss to stabilize training, thereby enhancing

the stability and reliability of AD detection with GANs. Operating

through a dual structure, the Generator follows an encoder-

decoder framework that takes cognitive data as input, while the

Discriminator mirrors the architecture of the Generator’s encoder.

Moreover, the proposed model employs two distinct loss functions,

Wasserstein and Relativistic loss, ensuring stable training and

improved performance. The pivotal component of the model is the

last dense layer, employing a softmax classifier to detect AD labels.

The proposed DeepCGAN undergoes comprehensive training

using cognitive data, demonstrating promising results in the early

prediction of AD, achieving a remarkable 97.32% accuracy on

cognitively labeled data from the ADNI dataset, surpassing recent

state-of-the-art models. The contributions of this article include:

1. For detecting early-stage AD, this article proposes a

DeepCGAN, an unsupervised generative model that extends the

cognitive features of the data and its diversity by utilizing the

GAN framework.

2. To optimize the detection performance of DeepCGAN, a novel

convolutional encoder-decoder-based GAN is proposed and

trained on the cognitive features.

3. Our comprehensive experiments on the ADNI dataset show

that the proposed DeepCGAN performs better in detecting

early-stage AD compared to start-of-the-art models.

The remainder of this article is structured as follows: Section 2

reviews related work. Section 3 presents the proposed DeepCGAN.

Section 4 describes the experimental setup, and Section 5 discusses

the evaluation of the proposed model. Finally, Section 6 concludes

the article.
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2 Related work

The current gold standard for detecting and prognosing

neurodegenerative AD relies on clinical assessments of symptoms

and their severity. However, early disease detection before clinical

symptoms manifest is critical for effective disease management and

timely therapeutic intervention. Research indicates that analyzing

structural and functional changes in patients during the early

stages of AD can provide valuable insights (12). Machine learning

approaches offer a rapid and robust means to interpret medical

examinations, aiding in the early detection of AD. Early detection

is paramount, allowing for proactive intervention and potentially

improving patient outcomes. Machine learning enhances the

diagnostic process by uncovering subtle patterns and anomalies

that may precede clinical symptoms. It transcends the limitations of

conventional clinical assessments, which often rely on symptomatic

markers that become evident at later disease stages. Integrating

machine learning into AD detection represents a paradigm shift,

emphasizing the significance of early and accurate diagnosis in

transforming AD research and treatment strategies.

CNNs are deep learning models (13) known for their

ability to extract complex patterns (14–16). They excel in

body part segmentation, surpassing traditional methods like

logistic regression and support vector machines (17). CNN-

based computer-aided diagnosis (CAD) systems are effective

in neurodegenerative disease detection (18). In AD detection,

methods combining the dual-tree complex wavelet transform with

neural networks show promise (19). Architectures like GoogleNet

and ResNet deliver strong results in distinguishing healthy

subjects from those with AD and mild cognitive impairment

(20). LeNet-5 has been effectively employed for AD vs. normal

control (NC) brain classification (21). Hosseini et al. extended

previous work by proposing a Deeply Supervised Adaptive 3D-

CNN (DSA-3D-CNN) for AD prediction (22). They trained this

model on the CAD-Dementia dataset without skull stripping

preprocessing and rigorously evaluated its performance through

10-fold cross-validation. In addition to CNNs, ensemble learning

(EL) has proven invaluable in the detection and prognosis of

neurodegenerative diseases. Given the often limited availability

and the inherent 3D nature of medical imaging data, training

classifiers can be a challenge (23). EL offers a promising

solution by combining the strengths of multiple trained models,

making it particularly useful for classification tasks involving

heterogeneous datasets. To harness the power of ensemble learning,

individual classifiers are trained on various subsets of the data

and subsequently combined. EL with bootstrapping techniques

becomes especially beneficial when relevant data is scarce, such

as cognitive features. Additionally, when dealing with limited

data, common practices include data augmentation to enhance

the performance of ensemble models. This combined approach

of CNNs and ensemble learning offers a robust and adaptable

framework for tackling the complexities of neurodegenerative

disease detection and prognosis.

GANs are a prominent method for enhancing imaging data by

creating synthetic data that competes with a discriminator aiming

to distinguish real from synthetic data (24). When generative

networks excel, they can replicate data based on the inherent

structure of real data. In the field of medical imaging, GANs

have found success in tasks like MRI and CT reconstruction and

unconditional image synthesis (25, 26). Furthermore, GANs exhibit

a wide array of applications in AD-related image processing. They

are proficient in denoising low-dose positron emission tomography

(PET) scans to yield high-quality images (10, 11, 27). Accurate

brain image segmentation, facilitated by GANs, aids in locating

features critical for AD diagnosis and research across various

image modalities (28–30). Despite the promise of GANs in AD

image processing, the existing models for detecting AD have

predominantly centered around neuroimaging data, leading to

the insufficient utilization of vital cognitive features. Furthermore,

the valuable temporal dimension, crucial for comprehending the

progression of AD, has been notably overlooked in the existing

literature. Additionally, the persisting issue of training instability

in these models continues to pose a noteworthy challenge.

3 Materials and methods

The DeepCGAN model, proposed in this study, is designed

for AD detection. It leverages a Generative Adversarial Network

architecture, specifically tailored to the analysis of cognitive features

and temporal information, which are often overlooked in existing

AD detection models.

3.1 Generative adversarial networks

GAN is a fundamental architecture in machine learning,

composed of two primary components: the Generator G(z)

and the Discriminator D(x), as shown in Figure 1. The GAN

framework is designed for generative tasks, aiming to produce

synthetic data that closely resembles real data distributions.

The Generator G(z) is responsible for creating new data

samples. It takes random noise N(z) as input, typically

drawn from a uniform or normal distribution. Through

a learned transformation process, the Generator generates

data that mimics real training data. This process relies on

adjusting internal parameters to produce data samples that are

increasingly realistic.

The Discriminator D(x) acts as an adversary to the Generator.

Its primary role is to differentiate between genuine data from

the training set and data generated by the Generator. The

Discriminator evaluates each input and assigns a probability score,

indicating the likelihood of the input being real. If an input is

genuine, D(x) approaches 1, whereas if it is generated, D(x) tends

toward 0. The GAN operates as a two-player minimax game,

optimizing the value function V(G,D). The objective function is

given in Equation 1:

min
G

max
D

V(G,D) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))] (1)

Here, D(·) provides the probability that a given sample belongs

to the training data X. The Generator aims to minimize log(1 −
D(G(z))), making D(G(z)) as high as possible, essentially fooling
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FIGURE 1

GAN framework with generator and discriminator.

the Discriminator into considering G(z) as real data. Conversely,

the Discriminator seeks to maximizeD(X) and 1−D(G(z)), driving

its optimal state toward P(x) = 0.5. In practice, GANs continually

refine the Generator to produce data that is indistinguishable

from real data, representing a powerful framework for generating

synthetic data in various domains.

3.2 DeepCGAN for AD detection

The architecture of our proposed GANmodel for AD detection

is illustrated in Figure 2. This model is carefully designed to

effectively utilize cognitive features in the detection process. The

Generator component of our model is based on an encoder-

decoder framework, optimized for processing cognitive features

as inputs. The encoder in our model is designed to extract

meaningful features from the input data through a series of

convolutional layers. The encoder comprises five 2-D convolutional

layers, strategically placed to extract local correlations within the

input features. A reshape layer is employed to appropriately format

the encoded features. These layers progressively downsample

the input, capturing local correlations and essential patterns.

Each convolutional layer is followed by batch normalization

and Leaky Rectified Linear Unit (ReLU) activation functions

to stabilize training and introduce non-linearity. Positioned in

the middle of the Generator architecture, the BiGRU layers

are crucial for capturing long-term dependencies and temporal

dynamics in the cognitive features. Each BiGRU layer consists

of 2,048 units (1,024 in each direction), enabling the model to

learn bidirectional temporal patterns that are significant for early

Alzheimer’s detection.

The decoder mirrors the encoder’s structure but performs

the inverse operation. It utilizes deconvolutional (transposed

convolution) layers to reconstruct the input data from the encoded

features. The skip connections between corresponding layers of

the encoder and decoder facilitate fine-grained feature integration,

enhancing the model’s ability to preserve important information

during reconstruction. The Generator’s primary function is to

produce synthetic data that closely resembles the real cognitive

feature data. By transforming random noise inputs through the

encoder-BiGRU-decoder pipeline, the Generator learns to create

realistic data samples that help augment the training set and

improve the robustness of the Discriminator. The input to our

DeepCGAN model consists of cognitive features derived from the

ADNI dataset. The input to themodel is a three-dimensional tensor

with a batch size of 32, 50-time steps, and 128 features. Thus, the

input shape is [32, 50, 128], specifically tailored to capture the

temporal and cognitive aspects critical for Alzheimer’s detection.

The data preprocessing steps include normalization and

sequence padding to ensure uniform input dimensions. The

preprocessing steps include: Normalization: The cognitive features

are normalized to ensure consistent scales and improve model

training stability. Padding: Sequences are padded to a fixed length

(e.g., 50 time steps) to ensure uniform input dimensions across

different samples. Handling Missing Values: Features with more

than 40% missing values are removed. For the remaining features,

missing values are imputed using appropriate statistical methods

(e.g., mean imputation). In addition, two BiGRUs layers are

thoughtfully inserted in the middle of the Generator architecture,

which enhances the model’s ability to capture long-term temporal

cues from the cognitive data. This integration addresses a critical

gap in existing models that primarily focus on neuroimaging data,

thereby improving the detection of early AD. The decoder of

our model mirrors the encoder’s structure and consists of five 2-

D deconvolutional layers, also known as transposed convolution

layers. Batch normalization is consistently applied following each

convolutional and deconvolutional operation. ReLU functions are

used as activation functions within the hidden layers, while a

sigmoid activation function is applied to the output layer. To

facilitate fine-grained feature integration, we have incorporated

skip connections within the Generator. These skip connections

concatenate the outputs of each convolutional layer in the encoder

with the corresponding inputs of the deconvolutional layers in

Frontiers inMedicine 04 frontiersin.org200

https://doi.org/10.3389/fmed.2024.1443151
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ali et al. 10.3389/fmed.2024.1443151

FIGURE 2

Proposed CNN-based GAN model (DeepCGAN).

the decoder. This design element enhances the model’s ability to

capture intricate feature cues effectively.

The Discriminator component, denoted as D, shares a

similar structure with the encoder of the Generator. However,

a flattened layer is introduced after the fifth convolutional layer

to streamline feature processing. Finally, a fully connected dense

layer with softmax activation is integrated into the Discriminator

to enable classification tasks. Notably, the Discriminator provides

two types of outputs, D(y) and Dk(y), with D(y) representing

sigmoidal output and Dk(y) signifying linear output, linked by the

sigmoid non-linearity function λ(Dk(y)) = D(y). The proposed

GAN model for AD detection leverages cognitive features and

exhibits a sophisticated architecture, comprising convolutional,

deconvolutional, and recurrent layers, skip connections, and a

dual-output Discriminator. These design innovations collectively

contribute to the model’s efficacy in AD detection. Most AD

detection models predominantly focus on neuroimaging data,

neglecting cognitive features. Our model efficiently incorporates

and exploits these underutilized data sources. By including

BiGRUs, our model accounts for long-term temporal cues, a

crucial aspect often overlooked in AD progression analysis. The

Discriminator’s architecture, featuring dual output types and

skip connections, introduces novel enhancements to improve the

model’s performance in distinguishing real and synthetic data.

The Discriminator is designed to differentiate between real

and synthetic data. It shares a similar structure with the encoder

and includes an additional fully connected layer with softmax

activation for classification. The dual outputs of the Discriminator,

D(y) and Dk(y), provide sigmoidal and linear outputs, respectively,

enhancing the model’s ability to distinguish between genuine

and generated data. The DeeCGAN model is specifically tailored

for Alzheimer’s detection by focusing on cognitive features and

temporal information, which are often underutilized in traditional

models. By leveraging the strengths of DeeCGANs in generating

realistic synthetic data and incorporating bidirectional GRUs for

temporal analysis, our model is able to achieve high accuracy in

early Alzheimer’s detection.

3.3 Loss function

In the realm of GANs, choosing appropriate loss functions

plays a pivotal role in achieving stable training and optimal

performance. Our proposed GAN model incorporates and

thoroughly investigates two distinct loss functions to determine the

one that yields superior results.

3.3.1 Wasserstein loss
The Wasserstein loss, denoted as LD for the Discriminator and

LG for the Generator, offers significant advantages in stabilizing and

enhancing the robustness of GAN models (18). The Wasserstein

loss function is used to train the DeepCGANmodel due to its ability

to provide a smoother gradient, leading to more stable training.

This stability is crucial for AD detection, as it ensures that the

model effectively learns from the subtle and complex patterns in the

cognitive data. These loss functions are defined in Equations 2–4:

LD = −Ey∼P(y)[Dk(y)]+ Ex∼P(x)[Dk(G(x))], (2)
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LG = −Ex∼P(x)[Dk(G(x))], (3)

LGP = Ey∼y,ỹ

[

(∥

∥∇yDk(ỹ)
∥

∥

2
− 1

)2
]

, (4)

where ∇yDk(ỹ) represents the gradient of the Discriminator output

with respect to y.

3.3.2 Relativistic loss
The second loss function incorporated into our GAN model

is the Relativistic loss. It computes the probability of real data

features being classified as real and the probability of synthetic data

features being classified as real. This is achieved by considering

the difference between the Discriminator’s outputs for real and

synthetic input features. The loss functions for the Discriminator

and Generator are given by Equations 5, and 6, respectively.

LD = −E(x,y)∼P(x,y)

[

(x, y)
[

log(υDk(y)− Dk(G(x)))
]]

, (5)

LG = −E(x,y)∼pdata(x,y)

[

log(νkD(G(x))− Dk(y))
]

(6)

However, the the Relativistic loss in Equations 5 and 6

exhibits high variance, primarily when the Generator significantly

influences the Discriminator. To address this, we consider the

average loss functions for the Discriminator and Generator are

given by Equations 7, and 8, respectively.

LD = −Ey∼P(y)y
[

log(Dȳ(y))
]

−Ex∼P(x)x
[

log(1− D ¯G(x)(x))
]

, (7)

LG = −Ex∼P(x)x
[

log(D ¯G(x)(x))
]

−Ex∼P(x)x
[

log(1− Dȳ(y))
]

, (8)

where Dȳ(y) and D ¯G(x)(x) represent the relativistic Discriminator

outputs for real and synthetic data, respectively. Thus, our

GAN model incorporates both Wasserstein and Relativistic loss

functions, each with its distinct advantages. These loss functions

are carefully chosen and utilized to optimize the model’s training

stability and performance in AD detection.

We selected the Wasserstein loss and Relativistic loss due

to their efficacy in stabilizing GAN training and enhancing the

quality of generated data. The Wasserstein loss addresses mode

collapse and provides meaningful gradients for GAN convergence.

The Relativistic loss improves the model’s discriminative power

by comparing real and generated data in a relativistic manner,

aligning with the goal of distinguishing subtle differences in

medical data. These loss functions balance sensitivity and specificity

in Alzheimer’s detection, with the Wasserstein loss ensuring high-

quality synthetic data and the Relativistic loss enhancing the

discriminator’s accuracy and robustness.

4 Experiments

This section provides insights into the dataset, experimental

settings, and an evaluation of the proposed model.

4.1 Dataset

We utilized the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset (20), consisting of three distinct stages. The

ADNI dataset encompasses cognitive test scores and records of

5,013 instances, corresponding to 819 different AD patients. The

cognitive features selected for this study include memory recall

tests, attention assessments, and executive function evaluations,

which are clinically relevant as they have been shown to be

significant indicators of early cognitive decline associated with

AD. Patients visited the clinic multiple times during clinical trials,

resulting in new cognitive test scores generated and stored as

additional records in the dataset for each visit. Among these

records, there are 1,643 belonging to cognitively normal individuals

and 3,370 related to AD patients. However, the dataset exhibited

missing values and underwent initialization through an Iterative

Imputer technique to impute the missing values using a round-

robin method. This ensures that the most clinically significant

features are retained and accurately represented in the dataset.

The irrelevant features were removed during the data cleaning and

preprocessing.

In the ADNI1 dataset, each record comprises 113 features.

The data includes various cognitive assessments (e.g., MMSE

scores, ADAS-Cog scores), biomarkers (e.g., cerebrospinal fluid

biomarkers, amyloid-beta levels), and potentially neuroimaging

features (e.g., MRI and PET scan data). These features are

chosen for their relevance in assessing cognitive decline and AD

progression. The input data is organized as a temporal sequence,

capturing changes in cognitive features over time. This is crucial for

modeling the progression of AD, which involves gradual cognitive

decline. The dataset was divided into 80% for training and 20% for

testing, resulting in 5,000 samples for training and 1,250 samples

for testing. Some of these features had excessive missing values,

prompting the removal of those with more than 40% missing

values. The remaining features underwent initialization through

an Iterative Imputer technique to impute the missing values

using a round-robin method. After preprocessing, the final dataset

comprised 4,500 samples. Additionally, the dataset contained

features with varying value ranges, which were normalized to a

range of 0–1 using the min-max scaling method. Primary filtering

of cognitive features was performed using Pearson’s correlation

coefficient to identify those most correlated with AD diagnosis.

Features with a correlation coefficient above a predefined threshold

were selected for further analysis. Performance evaluation utilized

metrics including Accuracy, Sensitivity, and F1-Score, which are

computed by Equations 9, 10, and 11, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Sensitivity =
TP

TP + FN
(10)

F1− Score =
2TP

2(TP + FP + FN)
(11)

Here, TP represents True Positives, TN stands for True

Negatives, FP is False Positives, and FN represents False Negatives.
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4.2 Network settings

The DeepCGAN model architecture for AD detection

incorporates carefully chosen parameters to optimize performance

across multiple metrics. The feature maps in the Generator’s

encoder are structured with fixed sizes of 16, 32, 64, 128, and

256 in successive convolutional layers, with specific kernel sizes

and strides tailored to enhance feature extraction efficiency. The

kernel size is set to (1,3) for the first 2D-Conv layer and (2,3)

for subsequent layers, all with a stride of (1,2). Convolutional

layers are utilized for their strength in extracting local patterns

and hierarchical features from the cognitive data, which are

essential for distinguishing subtle differences between normal and

AD-affected individuals.Similarly, the BiGRU layers are configured

with 2,048 units, with 1,024 units in each direction, split into

forward and backward directions, operating over a fixed time

step of 50. The BiGRUs were selected for their ability to capture

long-term dependencies and temporal patterns in cognitive data,

which are crucial for accurately modeling the progression of

AD over time. For the Generator’s decoder, these parameters

are inversely set to reconstruct the input features faithfully.

Moreover, the Discriminator (D) employs deconvolutional

layers with gradually increasing feature maps from 4 to 64,

designed to discriminate between real and generated samples

effectively. The proposed AD detection models, incorporating

these two distinct losses, undergo training and optimization

using the Adam optimizer for 1,000 epochs, with a learning rate

of 0.005 and a batch size of 32 samples. The combination of

convolutional layers and BiGRUs in the DeepCGAN architecture

leverages both spatial and temporal features, providing a robust

framework for early AD detection by capturing complex patterns

in cognitive data that simpler architectures might miss. This

setup ensures robust optimization and convergence of the

DeepCGAN model. To assess the performance of our proposed

model, we conducted a comprehensive comparison with several

other models, including DeciTree, RanForest, KNN, Linear

Regression (LR), SVM, DNN, AdaBoost, and Adaptive Voting,

utilizing various metrics such as Accuracy, Precision, Recall,

and F1-Score.

5 Results and analysis

In this section, we present the results of our

experiments and provide a comprehensive analysis of

the findings.

5.1 Model performance comparison

Table 1 displays the results obtained from our proposed

DeepCGAN model along with other DL models trained on

similar cognitive features for detecting cognitive normal and AD.

We measure the model’s performance using Accuracy, Precision,

Recall, and F1-Score as evaluation metrics. Notably, the results

demonstrate that our proposed DeepCGAN outperforms all other

competing models in terms of these metrics. The DeepCGAN

achieved an Accuracy of 97.32%, Precision of 95.31%, Recall of

TABLE 1 Performance analysis using various measures for ADNI cognitive

features dataset.

DL model Acc. (%) Pre. (%) Rec. (%) F1-S. (%)

DeciTree 88.93 88.93 88.93 88.93

RanForest 90.33 90.30 90.33 90.31

KNN 85.14 85.40 85.14 85.24

LR 82.05 81.83 82.05 81.45

SVM 85.84 85.68 85.84 85.71

DNN 90.53 90.67 90.53 90.59

AdaBoost 86.64 86.61 86.64 86.31

AdapVoting 93.92 93.89 93.92 93.89

DeepCGAN 97.32 95.31 95.43 95.61

95.43%, and F1-Score of 95.61%, respectively. In contrast, the

lowest-performing model, linear regression, achieved only 82.05%

Accuracy, 81.83% Precision, and 81.45% F1-Score.

To highlight the improvements made by our proposed model,

we chose linear regression as a reference model. DeepCGAN

substantially improved Accuracy by 15.27%, Precision by 13.48%,

and F1-Score by 14.16% compared to linear regression. Moreover,

when compared to the second-best model, Adaptive Voting,

DeepCGAN showed a 3.40% improvement in Accuracy. It also

outperformed DNN and Random Forest by 6.79 and 6.99% in

Accuracy, respectively, which is a significant performance gain.

Furthermore, our DeepCGAN model demonstrated substantial

improvements in Recall and F1-Score compared to competing

models. The Recall increased from 88.93% (DeciTree) to 95.43%

with DeepCGAN, and the F1-Score increased from 86.31%

(AdaBoost) to 95.61%. These results signify the superior ability of

DeepCGAN to correctly identify AD cases while minimizing false

negatives. The errors are vastly improved over other models. To

highlight the effectiveness of the proposed model, we present the

overall improvements depicted in Figure 3. The linear regression

is the reference model that has achieved the lowest performance

among DL models. Figure 3 indicates the best performance of the

proposed DeepCGAN.

5.2 Loss function analysis

Our DeepCGAN model was trained and optimized using

two different loss functions: Wasserstein and Relativistic loss.

The Wasserstein loss function was chosen for its ability to

provide a smoother gradient, thereby stabilizing the training

process. This stability is particularly important for AD

detection, where the model must accurately learn from subtle

variations in cognitive data. Figure 4 presents the confusion

matrices for both losses, revealing that the Wasserstein loss

function results in better performance. Figure 4A illustrates

the predicted labels when trained with Wasserstein loss, while

Figure 4B shows the outcomes with Relativistic loss. It is evident
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FIGURE 3

Percentage improvements in accuracy, precision, recall, and F1-score with linear regression as reference lowest model.

FIGURE 4

Confusion matrix heat-map for DeepCGAN. (A) Wasserstein loss. (B) Relativistic loss.

that the model trained with Wasserstein loss provides more

accurate predictions.

To further assess the performance, we compared the

model’s Accuracy on training and validation data. The

Wasserstein loss outperformed the relativistic loss by a

significant margin, indicating faster convergence and better

Accuracy. Figure 5 displays the loss curves over 1,000 epochs,

illustrating the superior performance of the DeepCGAN

model in achieving its detection task. We also evaluated

the Area Under the Curve (AUC), which measures the

model’s ability to differentiate between labels. DeepCGAN

exhibited higher AUC values compared to models trained with

relativistic loss, further confirming its superior discriminatory

capability. Figure 6 illustrates the AUC curves for both

loss functions.

5.3 Comparison against state-of-the-art
models

In this subsection, we compare our proposed DeepCGAN

model with state-of-the-art (SOTA) models in the literature,

including AlexNet (31), VGG-16 (32), GoogleNet (33), and

ResNet (34), using cognitive features from the ADNI dataset. This

comparison aims to benchmark the performance of DeepCGAN

under similar experimental settings and datasets. Table 2 presents

the results in terms of Accuracy, Precision, Recall, F1-scores, and

AUC.

DeepCGAN surpassed all SOTA models in terms of Accuracy,

achieving an Accuracy of 97.32%, which is a 5.59% improvement

over GoogleNet. Similarly, Precision improved from 90.20%

(GoogleNet) to 95.31%, reflecting a 5.11% boost in Precision.
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FIGURE 5

Loss curves for DeepCGAN. (A) Wasserstein loss. (B) Relativistic loss.

FIGURE 6

AUC curves for DeepCGAN.

TABLE 2 Performance analysis (in %) for SOTA using ADNI Cognitive features dataset.

Model Accuracy Precision Recall F1-score AUC

AlexNet 93.75 94.98 92.28 93.61 93.68

VGG-16 94.96 94.02 95.43 94.97 94.96

GoogleNet 91.73 90.20 93.50 91.82 91.79

ResNet 94.96 93.00 97.15 95.03 94.98

DeepCGAN 97.32 95.31 95.43 95.61 99.51

When compared to AlexNet, DeepCGAN demonstrated a 3.57%

increase in Accuracy. Furthermore, DeepCGAN achieved the

highest AUC among all models, with a 99.51%AUC, outperforming

ResNet by 4.53% and VGG-16 by 4.55%, highlighting its

superior discriminatory power. Regarding Recall, DeepCGAN

exhibited substantial improvements over SOTA models except

for ResNet, where the results were marginally lower. Specifically,

the Recall increased from 92.28% (AlexNet) to 95.43% with

DeepCGAN. The F1-Score achieved with GoogleNet was 91.82%.

DeepCGAN’s superior performance can be attributed to its
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TABLE 3 Performance comparison of the proposed model on ADNI

dataset cognitive features.

Model Records Accuracy AUC

Gill et al. (35) 600 81.80% 79.0%

AdaptiveVoting 5013 93.92% 99.3%

DeepCGAN 5013 97.32% 99.5%

novel architecture, which combines convolutional layers for

effective feature extraction and BiGRUs for capturing temporal

dependencies. This dual approach enables the model to detect

subtle changes and patterns in cognitive data more accurately

than models that rely solely on neuroimaging data or simpler

architectures. Additionally, the use of GANs for data augmentation

increases the dataset’s size and diversity, enhancing the model’s

generalizability and robustness. The core innovation lies in

expanding the cognitive features dataset and enhancing its diversity

through GANs.

DeepCGANs significantly enhance Alzheimer’s detection

due to their ability to generate realistic synthetic images,

crucial for augmenting limited MRI and PET scan datasets.

Their deep convolutional layers extract complex features,

improving diagnostic accuracy by capturing subtle disease

indicators. Adversarial training refines synthetic images iteratively,

ensuring they closely resemble real patient data. DCGANs’

adaptability across imaging modalities and superior performance

in comparative evaluations underline their transformative

role in improving diagnostic accuracy and clinical outcomes

for AD.

5.4 Comparison with existing techniques

In this section, we compare our proposed DeepCGAN model

with a recently reported technique by Gill et al. (35) that used

cognitive features for AD detection. Both studies utilized the

same ADNI dataset, and the results are presented in Table 3. Our

proposed DeepCGANmodel outperformed the model proposed by

Gill et al. (35) and Adaptive Voting using cognitive features from

the ADNI dataset. DeepCGAN achieved the highest Accuracy of

97.32%, representing a 15.52% improvement over Adaptive Voting

and a 3.4% improvement over Gill et al.’s technique for early

AD detection. This improvement is due to its ability to generate

synthetic data that closely resembles the actual cognitive features,

thus reducing overfitting and improving the model’s ability to

generalize to new, unseen data.

6 Conclusion

In this study, we propose a novel convolutional encoder-

decoder-based GAN for early AD detection using cognitive

features. This model leverages a Generator module with Conv2D

and Deconv2D layers in an encoder-decoder architecture to

optimize Accuracy, Precision, Recall, F1-Score, and AUC metrics.

Our experimental results demonstrate the superior performance of

DeepCGAN, which significantly advances early AD detection, and

outperforms several state-of-the-art models and benchmarks across

various measures, achieving an outstanding 97.32% Accuracy

compared to most other DL models in this study’s SOTA

comparison. Moreover, We find that using the Wasserstein loss

is superior for training the proposed GAN. While our GAN

excels, it is important to acknowledge the potential of SOTA

DL models for early AD detection, which offer advantages

over non-DL techniques like Gill’s study. These DL models can

expedite diagnosis, making them valuable tools in the detection

of neurodegenerative diseases like Alzheimer’s. The unique

contribution of DeepCGAN lies in its novel use of GANs to enhance

the dataset’s size and diversity, coupled with a sophisticated

architecture that integrates convolutional layers and BiGRUs. This

approach significantly improves accuracy, precision, and overall

performancemetrics in detecting AD at early stages, demonstrating

the model’s superior capability in distinguishing subtle cognitive

changes indicative of early AD. In the future, we aim to develop

even more robust and streamlined DL models for detecting

early and various stages of AD. Our proposed DeepCGAN

model significantly advances early AD detection by leveraging

a convolutional encoder-decoder-based GAN with Wasserstein

loss, achieving superior performance metrics compared to SOTA

models such as AlexNet, VGG-16, GoogleNet, and ResNet.

This novel approach enhances the diversity and richness of

cognitive features, resulting in a remarkable improvement in

accuracy, precision, and discriminatory power, as demonstrated

through comprehensive comparisons with existing techniques

and models.
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Deep learning infused SIRVD 
model for COVID-19 prediction: 
XGBoost-SIRVD-LSTM approach
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Information Systems (SCORE), Vellore Institute of Technology, Vellore, Tamil Nadu, India

The global impact of the ongoing COVID-19 pandemic, while somewhat contained, 
remains a critical challenge that has tested the resilience of humanity. Accurate and 
timely prediction of COVID-19 transmission dynamics and future trends is essential 
for informed decision-making in public health. Deep learning and mathematical 
models have emerged as promising tools, yet concerns regarding accuracy 
persist. This research suggests a novel model for forecasting the COVID-19’s 
future trajectory. The model combines the benefits of machine learning models 
and mathematical models. The SIRVD model, a mathematical based model that 
depicts the reach of the infection via population, serves as basis for the proposed 
model. A deep prediction model for COVID-19 using XGBoost-SIRVD-LSTM is 
presented. The suggested approach combines Susceptible-Infected-Recovered-
Vaccinated-Deceased (SIRVD), and a deep learning model, which includes Long 
Short-Term Memory (LSTM) and other prediction models, including feature 
selection using XGBoost method. The model keeps track of changes in each 
group’s membership over time. To increase the SIRVD model’s accuracy, machine 
learning is applied. The key properties for forecasting the spread of the infection are 
found using a method called feature selection. Then, in order to learn from these 
features and create predictions, a model involving deep learning is applied. The 
performance of the model proposed was assessed with prediction metrics such as 
R2, root mean square error (RMSE), mean absolute percentage error (MAPE), and 
normalized root mean square error (NRMSE). The results are also validated to those 
of other prediction models. The empirical results show that the suggested model 
outperforms similar models. Findings suggest its potential as a valuable tool for 
pandemic management and public health decision-making.

KEYWORDS

deep learning, extreme gradient boosting (XGBoost), susceptible-infected-recovered-
vaccination-deceased (SIRVD), long short-term memory (LSTM), feature selection, 
COVID-19, prediction

1 Introduction

The COVID-19 epidemic has presented a serious threat to civilization worldwide. The 
virus has killed millions of people and spread quickly. World Health Organization (WHO) at 
the end of 2019 announced COVID-19 as global epidemic disease, since its outbreak 
worldwide. As of November 6, 2023, reported by WHO, there are 775,335,916 confirmed 
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cases and 7,045,569 deaths worldwide (1). Based on WHO data, 
13.59bn vaccine doses have been given as of May 2, 2024. COVID-19 
immensely affected daily life, health, and the economy at the global 
level. Governments and public health experts have put in place a 
number of strategies to prevent the epidemic, including social 
isolation, mask use, and vaccine. However, the transmission of the 
virus has not totally been halted by these precautions. Predicting how 
the pandemic will develop in the future is one of the difficulties in 
combatting COVID-19. This is significant for various reasons. First, 
it can assist governments and public health experts in making choices 
regarding the distribution of resources and pandemic response. 
Second, it can assist organizations and people in making decisions 
regarding how to run and safeguard themselves. The upcoming 
course of COVID-19 transmission is forecasted using various 
techniques. Making use of mathematical models is one strategy. The 
transmission of the virus and its effects on various populations can 
be predicted using mathematical models. Mathematical modeling is 
a crucial device for analyzing epidemic infectious diseases, presented 
in 1927 by Kermack (2). Since the outbreak of the pandemic, various 
mathematical models have been employed in predicting the diseases, 
which are epidemic. The widely used mathematical models include 
SIR (3), which assesses susceptible, infected, and recovered rates (4), 
and SEIR (5), which evaluates based on susceptible, exposed, infected, 
and recovered rates. Furthermore, most of the research studies are the 
enhanced models derived from these two models. However, using 
mathematical models can be challenging and complex.

Machine learning is a different strategy for forecasting COVID-
19’s future trajectory. Machine learning, a form of artificial intelligence, 
possesses the ability to gain information from data and produce 
predictions. The efficacy of models involving machine learning in 
predicting transmission of various illnesses, including influenza, has 
been established through empirical evidence. Many studies are 
available on predicting and transmitting the virus’s spread (6).

This paper introduces a novel deep learning model named 
Extreme Gradient Boosting-Susceptible-Infected-Recovered-
Vaccinated-Deceased-Long Short-Term Memory (XGBoost-SIRVD-
LSTM), which is designed to forecast the quantity of COVID-19 cases. 
The suggested XGBoost-SIRVD-LSTM model operates in four stages: 
(1) Data pre-processing, (2) XGBoost feature importance score feature 
selection, (3) SIRVD epidemic model design, and (4) LSTM 
prediction. The suggested model is tested using datasets from John 
Hopkins University’s CSSE (7) and Our World in Data (8). The dataset 
is first pre-processed using the min-max normalization technique. 
Second, the XGBoost is used for feature selection, which is done using 
the feature importance score. Finally, the optimal features are supplied 
into the SIRVD model to estimate the COVID-19 transmission with 
respect to time. Finally, the LSTM model is applied to the dataset for 
disease prediction. The empirical results suggest that the suggested 
model exhibits superior performance in relation to accuracy for 
predicting outcomes compared to alternative deep learning models.

The following are the research study’s contributions:

	•	 In this study, we introduce a deep learning model that utilizes 
XGBoost-SIRVD-LSTM model to predict COVID-19 
infection cases.

	•	 The outcomes of the suggested model assessed in comparison 
with existing deep learning models and utilizing performance 
measures for prediction.

The remaining sections of the paper are structured as follows: 
Section 2 presents a summary of the current body of literature. Section 
3 delves into background information of the techniques employed in 
the proposed model. Section 4 outlines the methodology proposed in 
detail. Section 5 explores the dataset, presents the experimental 
results, and includes a comparative analysis with other models.

2 Literature review

This section elaborates on numerous models for COVID-19 
prediction found in the literature. A standard SIR model for predicting 
COVID-19 pandemic progression was proposed in Kartono et al. (9). 
The model was tested using the most recent confirmed cases from the 
WHO dashboard. The authors used this approach to forecast instances 
in Singapore, Saudi Arabia, Indonesia, and the Philippines. In their 
study, Kumar et al. (10) employed recurrent neural network (RNN) 
models, including gated recurrent unit (GRU) and LSTM cells, to 
predict the future patterns of COVID-19 cases. The researchers 
utilized the publicly accessible COVID-19 dataset from Johns Hopkins 
University and emphasized the importance of factors such as age, 
population density, healthcare infrastructure, and disease-prevention 
efforts in the rapid progression of the COVID-19 outbreak. To analyze 
the COVID-19 pandemic, the study conducted exploratory data 
analysis using machine-learning techniques, followed by the 
implementation of the SIR model (11). The most popular John 
Hopkins dataset for COVID-19 was used for experiments, with just 
data from the Kingdom of Saudi Arabia used to forecast instances. The 
researchers analyzed three possibilities for anticipating the progression 
of the outbreak and its possible resolution, namely new medicine, 
lockdowns, and no actions. The simulation results demonstrate that 
interventions such as new drugs and lockdowns outperform no-action 
scenarios. To forecast the COVID-19 instances, the MLP with feature 
selection (MLPFS) classification model was presented (12). This study 
was based on the characteristics and symptoms of Electronic Medical 
Records (EMR) patients. Three separate datasets and eight alternative 
models were utilized to evaluate the provided model. According to the 
experimental findings, the suggested MLPFS outperformed the other 
seven models chosen for comparison in terms of accuracy indicators, 
extracted number of features, and time required to implement the 
model. The SIRVD model, an extension of classic epidemiological 
models, incorporates vaccination and time-dependent fatality rates 
(13). Analyzing exact solutions and approximations, it reveals crucial 
insights into epidemic dynamics, offering benchmarks for numerical 
simulations. By applying analytical approximations, particularly 
effective for low cumulative infection rates, it elucidates the impact of 
vaccination and time-varying fatality rates, enabling precise parameter 
extraction from COVID-19 data, essential for pandemic management. 
Babaei et al. (14) explores integrability conditions and exact analytical 
solutions for the SIRV model, crucial for understanding COVID-19 
dynamics, using a partial Hamiltonian approach. Analyzing two cases 
based on model parameters and considering different phase spaces, it 
provides insights into the dynamics of susceptible, infected, recovered, 
and vaccinated populations over time through graphical 
representations. Federico (15) addresses an optimal vaccination 
strategy within an SIRS compartmental model, aiming to minimize 
social and economic costs while reducing susceptibility. Theoretical 
contributions include a non-smooth verification theorem and 

209

https://doi.org/10.3389/fmed.2024.1427239
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alkhalefah et al.� 10.3389/fmed.2024.1427239

Frontiers in Medicine 03 frontiersin.org

conditions for well-posed closed-loop equations, while numerical 
implementations highlight the effectiveness of vaccination policies in 
long-term infection control, particularly with low reproduction and 
reinfection rates.

In an another study, researchers suggested a three-stage 
COVID-19 prediction, namely pre-processing, feature selection, and 
classification (16). Wrapper-based feature selection using Recursive 
Feature Extraction and embedded-based feature selection using Extra 
Tree Classifier were the two methods used. The naive bayes and 
restricted Boltzmann Machine models were employed for 
classification. The proposed approach was implemented using WHO 
data. According to the authors, the model worked well and produced 
better prediction results with feature selection than models without 
feature selection. In their previous work, the researchers put forth 
COVID-19 prediction models utilizing Susceptible_Infected_
Recovered (SIR) and Susceptible_Exposed_Infected_Quarantined_
Recovered (SEIQR) epidemic models for several countries, including 
Australia, United Kingdom, and Italy (3). To enhance parameters in 
these epidemic models (L-BFGS-B), they employed optimization 
algorithms such as Conjugate Gradient (CG), Nelder–Mead, restricted 
memory bound constrained, and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS). The performance of these two models was compared 
to the performance of two machine learning methods, prophet and 
logistic function. The authors discovered that the prophet model 
outperformed the logistic function and provided a superior prediction 
model for Italy and the United  Kingdom than for Australia. The 
prediction accuracy was significantly increased once the models such 
as SIR and SEIQR were optimized. In their findings, the authors 
observed that the prophet model demonstrated superior performance 
compared to the logistic function, particularly in predicting the 
COVID-19 trends for United  Kingdom and Italy, while its 
performance in the case of Australia was relatively less favorable. The 
accuracy of predictions was notably improved by optimizing the SIR 
and SEIQR models. In a separate study conducted by the authors of 
Chandra et al. (17), deep learning-based LSTM models were explored 
for predicting the future trajectory of COVID-19 in specific Indian 
states that experienced a high incidence of the disease. Various LSTM 
models, including LSTM, bidirectional, and encoder-decoder models, 
were developed for disease spread prediction. The authors highlighted 
that the encoder-decoder LSTM model exhibited superior prediction 
accuracy compared to other models. In Alassafi et  al. (18), a 
comparison study was undertaken to assess the efficacy of RNN and 
LSTM models in predicting the spread of the coronavirus. The dataset 
utilized for this analysis consisted of data from Malaysia, Morocco, 
and Saudi Arabia, sourced from the European Center for Disease 
Prevention and Control. The authors examined the models’ 
effectiveness in predicting positive cases, recoveries, and COVID-19-
related mortality rates. Also, estimating the potential quantity of cases 
over the next 7 days. Another research study (19) proposed an 
XGBoost-DNN classifier model for detecting network intrusions. The 
model employed XGBoost feature importance scores to select relevant 
features and utilized DNN for classification of network intrusions.

In a separate study, researchers introduced a feature selection 
based on ensemble approach with LSTM for network intrusion 
classification (20). Their method aimed to improve the accuracy 
of network invasion detection by utilizing LSTM along with 
ensemble-based feature selection. Youssef et al. (4) employed the 
SEIQR model and utilized real data of Saudi Arabia for predicting 

the transmission of COVID-19 cases. The results demonstrated 
the efficiency of the model suggested in analyzing epidemic 
spread, thus providing a basis for framing effective 
government policies.

The COVID-19 pandemic has significantly accelerated 
research on the development of predictive models for the 
pandemic’s future trajectory. Numerous models, including 
mathematical, machine learning, and hybrid models, have been 
put forth. The propagation of the virus can be simulated and the 
effects on various populations can be predicted using mathematical 
models that are based on epidemiological principles. However, 
using mathematical models can be challenging and complex. An 
artificial intelligence that can learn from data and predict the 
future is known as a machine-learning model. It has been 
demonstrated that machine-learning models are useful for 
forecasting the spread of other diseases, such as influenza. 
Nevertheless, machine-learning models can often rely heavily on 
the specific data they were trained on, resulting in potential 
challenges when attempting to generalize to new data. To overcome 
these limitations, hybrid models (21–23) merge the advantages of 
both mathematical models and machine learning approaches. By 
combining these two techniques, hybrid models have the potential 
to offer greater precision and accuracy compared to using either 
method in isolation. However, the development of hybrid models 
can be  intricate and pose significant challenges. Despite the 
extensive research conducted thus far, there remains a need for 
more precise and reliable models to effectively forecast the future 
trajectory of COVID-19. Thus, this study endeavors to fill this 
research void by proposing a novel model that leverages the 
strengths of both mathematical and machine learning methods.

3 Methodology

3.1 Xgboost feature selection

Extreme Gradient Boosting (XGBoost) is a scalable machine 
learning technique used for tree boosting, which falls within the class 
of scalable machine learning approaches (24). This method, known as 
a distributed optimized library for gradient boosting, is capable of 
analyzing the relevance of each feature in the dataset. It has been 
demonstrated as a reliable and practical approach in machine learning 
research (19, 25). In comparison to earlier boosting methods, 
XGBoost excels at selecting a robust classifier from a set of weaker 
classifiers. It offers advantages such as effective handling of missing 
values, avoidance of overfitting, and faster computation times for 
parallel and distributed models. The primary objective of XGBoost 
utilizes an optimized gradient descent approach with versatile 
differentiable loss functions is to employ an optimized gradient 
descent method with arbitrary differentiable loss functions. This is 
achieved by incorporating weak learners to minimize the loss 
function, thus defining and optimizing the overall objective function.

Extreme gradient boosting strives to reduce the objective function 
in the following manner (as shown in Equation 1).

	
obj L y y f f F

i
i i

k
k kθ( ) =









 + ( )∑ ∑ , Ω , 

	
(1)
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The training loss function, denoted as L, quantifies the disparity 
between the predicted value yi



 by the model proposed and actual 
value of yi. Overfitting is prevented thanks to the regularization 
function Ω, which estimates the model’s complexity. The set of all 
possible regression trees is represented by the function f  in the 
functional space F. By using parameters and a greedy search method, 
XGBoost determines the optimal tree structure to minimize the 
objective function.

3.2 SIRVD epidemic model

The SIRVD is derived from the SIR epidemic model (26). This 
model encompasses dynamics of the virus’s interaction during 
transmission with the host and classifies individuals into five 
distinct groups: susceptible, infected, recovered, vaccinated, and 
deceased (27). The SIRVD expands upon the existing SIR 
framework by including the new states of vaccinated and deceased. 
Vaccinated persons are those who have been inoculated against the 
disease, while deceased individuals are those who have died after 
becoming sick in the community (28). The ordinary differential 
equations below represent the mathematical formulation of the 
SIRVD model (Equations 2–7).

	

dS t
d t

l t S t
N

R t S tr i

i

r i i
r i r i

( )
( )

= −
( ) ( )

+ ( ) − ( )β
σ α

	
(2)

	

dI t
d t

l t S t
N

l t I tr i

i

r i r i
r i r i

( )
( )

=
( ) ( )

− ( ) − ( )β
γ δ

	
(3)

	

dR t
d t

I t R tr i

i
r i r i

( )
( )

= ( ) − ( )γ σ
	

(4)

	

dV t
d t

S tr i

i
r i

( )
( )

= ( )α
	

(5)

	

dD t
d t

I tr i

i
r i

( )
( )

= ( )δ
	

(6)

	 N S t dI t R t V t D tr i r i r i r i r i= ( ) + ( ) + ( ) + ( ) + ( )	 (7)

where,
β—Infection rate, encompasses the spread of the infection in a 

susceptible state.
γ—Recovery rate consists of the transferal from the infected to the 

recovered state.
δ—Rate of death, represents the transferal from the infected to the 

deceased state.
α—Rate of vaccination consists of the transferal from susceptible 

to the vaccinated condition.

σ—rate of susceptibility depicts the transferal from recovered to a 
susceptible state.

It is stated that the transference cycle of the virus is characterized 

by 
β Ir ti Sr ti

N
( ) ( )

 depicts the number of individuals per unit of time 

who transmitted from the susceptible individuals (Sr ) to the infected 
individuals (Ir). The five parameters of the SIRVD epidemic model 
such as β ,γ δ, , α , and σ  are considered to be constant, as these are 
dynamic and thereby, this model neglects their time-dependent 
characteristics. To predict the growth of the disease trend efficiently 
and effectively, a time-dependent SIRVD model was proposed, which 
includes these factors of the SIRVD epidemic model with respect to 
time ti. The proposed SIRVD epidemic model can reasonably trace the 
COVID-19 disease transmission and also predicts the future spread 
of the disease.

3.3 SIRVD epidemic time-dependent 
COVID-19 model

The SIRVD model, which is dependent on time, incorporates five 
parameters that change over time: the infection rate β, the recovery 
rate γ, the death rate δ, the vaccination rate α, and the susceptibility 
rate σ as in Liao et  al. (27). These parameters are represented as 
functions of time, denoted as β(ti), γ(ti), δ(ti), α(ti), and σ(ti) (27). The 
differential equations have been adjusted as follows (Equations 8–12):
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N is a constant across the population, then the sum of each 
population’s gain or decrease in the state equals to zero (as shown in 
Equation 13).
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Since the COVID-19 data are updated regularly on daily basis, the 
Equations 8–12 can be changed to differential Equations 14–18.
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	 R t R t t I t t R tr i r i i r i i r i+( ) − ( ) = ( ) ( ) − ( ) ( )1 γ σ 	 (16)

	 V t V t t S tr i r i i r i+( ) − ( ) = ( ) ( )1 α 	 (17)

	 D t D t t I tr i r i i r i+( ) − ( ) = ( ) ( )1 δ δ 	 (18)

Since the human body would create antibodies to the virus, it is 
believed that the COVID-19 reinfection rate during transmission was 
approximately equal to zero (29).

Subsequently, the formula of γ t( ) can be  expressed as 
(Equations 19–21):
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Similarly,
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Once the rate of death and recovery is computed, add up with 
Equation 13. Thus, β ti( ), the time dependent parameter can 
be obtained using Equation 22.

	
β ti

I t I t R t R t D t D t N

I
r i r i r i r i r i r i( ) ( ) ( ) ( ) ( ) ( ) ( )( )

=
− + − + − ×+ + +1 1 1

rr ti Sr ti( ) ( )× 	
(22)

3.4 Long short-term memory

Long Short Term Memory (LSTM) is a specialized deep learning-
based RNN architecture that finds extensive use in practical applications 
of time series models (30). As a subclass of artificial neural networks, 
RNNs display dynamic behavior over time due to their interconnected 
nodes forming a directed graph along a temporal sequence. RNNs can 
process input sequences of varying lengths by leveraging their internal 
state or memory. An RNN can be precisely defined as a collection of 
analogous networks, each transmitting information to a different 
recipient, enabling them to connect prior knowledge with the current 
context. However, as this gap widens, RNNs may struggle to learn to 
establish meaningful relationships in the data, particularly focusing on 
short-term memory over long-term memory’s influence.

To address the challenges of long-term dependencies, LSTM 
networks were introduced by Hochreiter and Schmidhuber (30). 
LSTMs have demonstrated exceptional proficiency in classifying 
and predicting from time series data. These networks are constructed 
as chains of replicated modules, each equipped with a unique 
structure. A typical LSTM unit comprises of memory cell, and three 
gates say, forget, input, and output. The memory cell possesses the 
ability of retaining information across extended time intervals, 
while the three gates discussed earlier controls the information flow 
in the cell. The output gate determines which value should be stored 
as the expected output, the input gate decides which additional 
information to record, and the forget gate selectively discards certain 
information from the cell state. Figure  1 illustrates the LSTM’s 
structure, where lines connect entire vectors from one node’s output 
to another node’s input. The circles represent pointwise operations, 
while the yellow boxes denote the layers of the previously trained 
neural network.

The output of LSTM gates, which use sigmoid activation 
functions to process information, is either 0 or 1. “0” indicates 
that the gates are blocking everything, and “1” indicates that 
everything is able to pass past the gates. In the LSTM, the 
equations of gates are:

	 f w a z bt f t t f= [ ] +( )−σ . 1, 	 (23)

	 i w a z bt i t t i= [ ] +( )−σ . 1, 	 (24)

	 o w a z bt o t t o= [ ] +( )−σ . 1, 	 (25)

From Equations 23–25, it, ot and (30) represents three gates say, 
forget, input and output. The sigmoid function is denoted by the 
symbol σ , and x , represents the relevant weight for each LSTM block. 
at−1 represents the preceding output at t −1, timestamp, while zt
denotes the current input vector at timestamp, t and bx represents bias 
neurons for gate z. The formulas for the final output, candidate cell 
state, and cell state are given as follows:

	 c w a z bt c t t c= [ ] +( )+tanh . 1, 	 (26)

	 c f c i ct t t c t= ∗ + ∗−1 	 (27)

	 a o tana ct t t= ∗ ( )	 (28)

From the Equations 26–28, ct  and ct−1 depicts the current and 
preceding cell states or memory at t  and t −1 timestamps, respectively. 
The term ct  expresses to the output of the tanh function, which 
represents the potential cell state at timestamp t . The symbol ∗ denotes 
element-wise multiplication between vectors.

3.5 Proposed XGBoost-SIRVD-LSTM model

Figure  2 shows the suggested model’s workflow details. The 
proposed XGBoost-SIRVD-LSTM model works in four phases: (1) 
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Data preprocessing, (2) Feature selection using XGBoost feature 
importance score, (3) SIRVD epidemic model construction, and (4) 
Prediction using LSTM. This model focuses mainly on the 
prediction of the recent trends of the epidemic based on the 
evaluation of the parameter changes in the epidemic. The remainder 
of this section explains the various stages of the suggested 
prediction model.

The steps for the proposed XGBoost-SIRVD-LSTM model are 
as follows:

Input: COVID-19 dataset containing confirmed 
cases, susceptible cases, recovered cases, deceased cases, 
and vaccination.

Output: estimating/predicting the COVID-19 infection rate.
Algorithm steps:

	 1	 Implement data pre-processing techniques on the 
COVID-19 dataset.

	 2	 Utilize the Min-Max approach to normalize the dataset.
	 3	 For feature selection, use XGBoost feature importance score.
	 4	 Develop the SIRVD epidemic model with the selected features 

from step 3.
	 5	 Using step 4, the quantity of COVID-19 infection cases using 

LSTM are predicted.
	 6	 Evaluate the proposed model using predictive 

performance metrics.

This section discusses the detailed steps involved in the proposed 
XGBoost-SIRVD-LSTM model for prediction.

3.5.1 Data pre-processing
The min-max normalization suggested in this paper to pre-process 

the COVID-19 data. Using below Equation 29, the feature values are 
normalized between [0, 1].

	
min max ,

min

max min
− =

−
−

normalization y y
i

i

	
(29)

Where max  denotes the highest value and min denotes the 
least value.

3.5.2 Feature selection using XGBoost feature 
importance score

The dataset pre-processed after step  1 used for feature 
optimization in this step. XGBoost feature importance score 
computed for the optimal selection of features from the 
COVID-19 dataset (19). Feature importance scores are normalized 
so that they sum up to 1 across all features. Higher scores indicate 
more important features relative to others in the dataset. Feature 
importance scores are useful for feature selection and 
understanding which features contribute most to the predictions 
made by the model.

3.5.3 SIRVD epidemic model construction
In this stage, the reduced-feature dataset obtained from 

step 2 is employed to construct the SIRVD epidemic model. The 
model incorporates five parameters: (infection) β, (recovery) γ, 
(death) δ, (vaccination) α, and (susceptibility) σ, which varies 

FIGURE 1

LSTM architecture.
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over time represented by t (27). The dataset is prepared 
and formatted according to the specifications of the SIRVD 
model. The construction of the suggested SIRVD occurs once; 
dataset has been processed and transformed into the 
desired format.

3.5.4 Prediction using LSTM
The SIRVD model from step 3 is used for prediction using LSTM 

in this stage. In this study, single day prediction is computed for 
predicting the COVID-19 infection, and the model is tested with 
third, seventh, fourteenth, twenty-first- and twenty-eighth-days’ 
prediction to evaluate the developed model’s efficacy.

4 Results

This section describes the dataset in depth, including the 
evaluation metrics and efficacy evaluation of the suggested model.

4.1 Dataset

Extreme Due to the outbreak of COVID-19, multiple governments 
worldwide have made public their actions or measures and undertaken 
real-time data analysis to determine the disease’s up-to-date trends. In 
this research study, two research data, which are publicly available are 
collected for experimentation of the proposed model, namely CSSE 
from Johns Hopkins University (7) and Our World in Data (8). The 
John Hopkins dataset comprises cumulative cases, including 
confirmed, recovered, and deceased at a global level. This dataset 
includes country, province, longitude, latitude, and total affected 
patients on a specified date as its features.

The data source from Our World in Data includes potential features 
of interest, namely confirmed and deceased cases, hospitalizations, 
vaccinations, and testing. The vaccination data obtained from this data 
source includes various information such as the country name 
(location), country code (iso_code), date of observation (date), total 
number of administered doses (total vaccinations), and the count of 

FIGURE 2

The workflow of the proposed XGBoost-SIRVD-LSTM model for COVID-19 prediction.
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TABLE 2  Results depicting prediction for a single day with the proposed 
model as well as other models.

Model R2 MAPE RMSE NRMSE

Bidirectional LSTM 0.92 3.66 145,200 0.05

GRU 0.96 1.89 89,782 0.03

Stacked LSTM 0.96 2.15 92,065 0.03

Vanilla LSTM 0.92 3.29 151,580 0.05

SIRVD-DL 0.99 0.92 38,519 0.01

XGBoost-SIRVD-LSTM 0.99 0.90 35,025 0.01

vaccinated individuals (people_vaccinated). These data, in combination 
with the data from John Hopkins University, are utilized to implement 
and assess the proposed model.

4.2 Evaluation metrics

The performance of the XGBoost-SIRVD-LSTM model’s 
performance involves comparing the observed and forecasted values. 
The evaluation metrics employed in this study include R2 
(determination coefficient) (Equation 32), normalized root mean 
square error (NRMSE) (Equation 31), root mean square error (RMSE) 
(Equation 30), and mean absolute percentage error (MAPE) 
(Equation 33) (31). The validation of the suggested model computed 
with the following formulas for calculating these metrics.
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4.3 Performance evaluation

The evaluation of the proposed model involves the utilization of 
datasets mentioned above. The experiments are conducted using 
Python, with deep learning libraries: numpy, pandas, keras, and 
tensorflow. The experimentation is performed on hardware with the 
following specifications: Intel (R) Core i7-8750H CPU @ 2.20 GHz, 
64-bit operating system, RAM of 8.00 GB, and with GPU.

The architecture of deep learning models is determined by their 
hyper-parameters, which play a crucial role in achieving high-
quality models. In this study, the optimal hyper-parameters are 
determined using a grid search approach. Table  1 presents the 
hyper-parameters utilized in the developed model. The dataset is 
split as training and testing sets in the ratio of 70:30 and 
implemented in training and testing the proposed COVID-19 
infection case prediction model. The evaluation metrics described 
in the equations above are used in this study, and Table 2 compares 
the single-day prediction results of the developed model with 
existing models in literature.

The effectiveness of the proposed model is assessed by comparing 
its outcomes with those of existing literature on recurrent deep learning 
models, including bidirectional LSTM, GRU, Stacked LSTM, Vanilla 

LSTM, and SIRVD-DL (27). The unique combination of machine 
learning and mathematical modeling makes the XGBoost-SIRVD-
LSTM model better than others. First, using XGBoost for feature 
selection helps the model find and prioritize key variables, enhancing 
prediction accuracy. Second, adding the SIRVD model captures 
COVID-19 transmission dynamics between susceptible, infected, 
recovered, vaccinated, and deceased populations. Thirdly, LSTM’s 
sequential data learning allows it to capture COVID-19 temporal 
patterns and trends. Our comprehensive strategy combines the benefits 
of each component, resulting in improved prediction accuracy in 
empirical data. This integrative approach yields more accurate estimates 
than machine learning or epidemiological models. The experiments 
were specifically conducted to predict outcomes for the third, seventh, 
fourteenth, twenty-first, and twenty-eighth days. The experimental 
results are presented in Figures 3–7. To evaluate the performance of the 
proposed model, the obtained results are compared to those of other 
recurrent deep learning models, such as bidirectional LSTM, GRU, 
stacked LSTM, vanilla LSTM, and SIRVD-DL (27). The experiments 
were accurately performed to predict outcomes for the third day, seventh 
day, fourteenth day, twenty-first day, and twenty-eighth day. The 
experimental findings are displayed in Figures  4–7. Similarly, the 
proposed model resulted with the R2 score of 0.999 on the 3-day, 0.997 
on the 7-day, 0.956 on the 14-day, 0.64 on the 21-day, and 0.19 on the 
28-day. When compared to other models that were taken into 
consideration for evaluation, the R2 score grows comparatively as the 
number of predicting days’ rises, demonstrating the effectiveness of the 
suggested model. The other models consequently displayed negative 
values as the number of days increased, indicating that the fitting 
function’s prediction error was higher than the mean function. As a 
result, the prediction models’ performance when combined with other 
models is ineffective.

From the preceding discussion, the contributions of the proposed 
model can be summarized as follows:

	 1	 A new XGBoost-SIRVD-LSTM model is introduced for 
predicting COVID-19 infection cases. This model combines 
XGBoost for feature selection and integrates the SIRVD 
epidemic model with LSTM for disease prediction.

TABLE 1  Hyper-parameters for the proposed model.

Hyper-parameter Test values

Optimizer {SGD, ADAGRAD, Adam}

Learning rate {0.01, 0.1, 0.5}

Batch size {64, 128, 256}

Epochs {1,000, 2,000, 3,000}
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	 2	 SIRVD-DL and other recurrent deep learning models were 
used to compare the efficacy of the suggested model.

When compared to previous models, the performance of the 
proposed XGBoost-SIRVD-LSTM produced improved predictions.

5 Conclusion

This research work introduces an innovative model that merges 
mathematical and machine learning methodologies to forecast the 
future trajectory of COVID-19. The XGBoost-SIRVD-LSTM model 

FIGURE 3

Comparison analysis of prediction results of the suggested model with other models for a 3-day duration.

FIGURE 4

Comparison analysis of prediction results of the suggested model with other models for a 7-day duration.
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FIGURE 6

Comparison analysis of prediction results of the suggested model with other models for a 21-day duration.

represents a significant advancement in forecasting the course of 
COVID-19, offering a solution to the critical challenge of precise 
prediction in the face of a dynamically evolving pandemic. By 
harmonizing the strengths of XGBoost for feature selection with the 

SIRVD model’s capacity to track COVID-19 transmission over time, 
this research provides a comprehensive approach for pandemic 
forecasting. The dataset is processed using LSTM to provide disease 
predictions. The model is evaluated using the Our World in Data and 

FIGURE 5

Comparison analysis of prediction results of the suggested model with other models for a 14-day duration.
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CSSE datasets from John Hopkins University. The experimental 
findings illustrate that the suggested model surpasses alternative deep 
learning models in terms of performance, exhibiting superior 
prediction accuracy and precision. These findings suggest that the 
model proposed will be one of a valuable resource for forecasting the 
future course of COVID-19. It has the potential to assist governments 
and public health experts in making informed decisions and 
formulating effective strategies to combat the pandemic.

Here are some specific potential future research trajectories:

	 1	 Increase the model’s precision and accuracy. More data, more 
advanced machine learning algorithms, or a mix of the two 
may be used to achieve this.

	 2	 Improve the model’s usability. This could be  achieved by 
creating a user interface that makes it simple for users to enter 
data and generate predictions.

	 3	 Predict the efficacy of various therapies using the model. 
Governments and public health professionals may utilize this 
information to assist in choosing which actions to prioritize.
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Utilizing deep learning models in 
an intelligent spiral drawing 
classification system for 
Parkinson’s disease classification
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Saudi Arabia

Introduction: Parkinson’s disease (PD) is a neurodegenerative illness that 
impairs normal human movement. The primary cause of PD is the deficiency 
of dopamine in the human brain. PD also leads to several other challenges, 
including insomnia, eating disturbances, excessive sleepiness, fluctuations in 
blood pressure, sexual dysfunction, and other issues.

Methods: The suggested system is an extremely promising technological 
strategy that may help medical professionals provide accurate and unbiased 
disease diagnoses. This is accomplished by utilizing significant and unique traits 
taken from spiral drawings connected to Parkinson’s disease. While PD cannot 
be cured, early administration of drugs may significantly improve the condition 
of a patient with PD. An expeditious and accurate clinical classification of PD 
ensures that efficacious therapeutic interventions can commence promptly, 
potentially impeding the advancement of the disease and enhancing the quality 
of life for both patients and their caregivers. Transfer learning models have been 
applied to diagnose PD by analyzing important and distinctive characteristics 
extracted from hand-drawn spirals. The studies were carried out in conjunction 
with a comparison analysis employing 102 spiral drawings. This work enhances 
current research by analyzing the effectiveness of transfer learning models, 
including VGG19, InceptionV3, ResNet50v2, and DenseNet169, for identifying 
PD using hand-drawn spirals.

Results: Transfer machine learning models demonstrate highly encouraging 
outcomes in providing a precise and reliable classification of PD. Actual results 
demonstrate that the InceptionV3 model achieved a high accuracy of 89% 
when learning from spiral drawing images and had a superior receiver operating 
characteristic (ROC) curve value of 95%.

Discussion: The comparison results suggest that PD identification using these 
models is currently at the forefront of PD research. The dataset will be enlarged, 
transfer learning strategies will be investigated, and the system’s integration into 
a comprehensive Parkinson’s monitoring and evaluation platform will be looked 
into as future research areas. The results of this study could lead to a better 
quality of life for Parkinson’s sufferers, individualized treatment, and an early 
classification.
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1 Introduction

Parkinson’s disease (PD) is a chronic deteriorating illness that 
primarily affects the motor system of the central nervous system. Its 
indications often manifest gradually, and as the disease progresses, 
non-motor indications become more prevalent. The primary 
indications are tremors, stiffness, bradykinesia, and gait disturbances. 
PD may also result in dysphoria, apprehension, sleep disturbances, 
sensory impairments, and alterations in behavior. Environmental 
factors and genetic inheritance are significant contributors to the 
development of PD (1, 2).

In 2019, a World Health Organization research reported that 
approximately 8.5 million individuals are diagnosed with PD (3). The 
prevalence of this condition increases with age, with only 4% of 
afflicted persons younger than 50 years old. PD is a highly prevalent 
neurological disorder worldwide, ranking as the second most common 
condition after Alzheimer’s disease. It affects a significant number of 
people, as evidenced by the data from sources (4, 5). Currently, 
therapists have limitations in effectively treating the symptoms of this 
condition as interventions are still in their early stages (6). The main 
tool used to determine a PD classification (PDD) is the patient’s 
medicinal past; however, such classification remains uncertain (3). 
Thus, it is critical to offer a simple and reliable method for detecting 
this disease in order to save time and money on invasive classification 
and treatment (7, 8).

Patients with PD may exhibit a broad variety of non-motor 
symptoms, including mood disorders and depression, among others. 
These symptoms, including language and other relevant aspects, may 
manifest in the patient’s facial expressions (9). The present study aims 
to analyze the effect of PD on both motor and non-motor abilities by 
applying handwriting modeling methodologies, with a special focus 
on spirals. This study seeks to fill a current knowledge gap by exploring 
the potential of spiral drawing as a tool for PD assessment.

Spiral drawing is a sophisticated and intricate motor skill that 
requires coordination. Consequently, it is regarded as an accurate 
evaluation of motor function. The Motion Rating Scale and its 
subcategory, The Unified PD Rating Scale (UPDRS-III), are the 
predominant and universally acknowledged rating scales for assessing 
PD. PD impacts a range of bodily processes, including speaking, 
handwriting, walking, and coordination, all of which are classified as 
motor functions. Various methods for measuring motor decline and 
non-motor biomarkers have been proposed to assess the severity of 
PD, which is considered a motor condition resulting from 
neurodegeneration. Both the classification and intensive care of PD 
are expensive and challenging because of two primary factors: (1) the 
inconvenience faced by caregivers in transporting the patient to the 
clinic and (2) the need for skilled medical professionals to conduct 
physical examinations and make diagnoses based on their 
observations. Clinical invasive techniques are only accessible at the 
early stage of the disease, and they carry risks and require considerable 
resources, especially in underdeveloped regions of the world. These 
techniques are only beneficial if early classification is achieved (10, 11).

At present, there is no accurate standard for making an objective 
finding of PD. When a non-specialist makes the classification, the 
likelihood of a mistake increases dramatically. There is a 20% chance of 
making a wrong classification in such instances (12). The accuracy of 
the classification is improved by carefully analyzing the main indications, 
which include tremors, bradykinesia, and stiffness. Having said that, 

physician bias may creep into clinical assessments. Medical choice 
support systems are attracting interest for their capability to enhance 
objectivity and facilitate early classification. An early identification of 
PD will enable the development of tailored interventions for people with 
PD (13, 14). A crucial objective in the study of neurodegenerative 
illnesses is to discover precise biomarkers (15). Within the literature, 
several research have been conducted to diagnose PD by analyzing 
speech. These studies (16–18) mostly use sustained vowels and natural 
speech for diagnostic purposes. Motor symptoms may also be identified 
and monitored by analyzing patients’ motions and gait (19, 20).

Several techniques have been created to examine the handwriting 
of patients with PD (21). Both static and dynamic characteristics are 
intriguing, including factors such as speed and the lowering of pen 
pressure throughout the handwriting (22). Numerous recent review 
studies have been published (23, 24). The legibility of an individual’s 
handwriting is influenced by their visual acuity, writing technique, and 
linguistic proficiency, resulting in significant differences across 
individuals. A viable substitute for handwriting is the use of illustrations. 
Deep learning (DL) models have greatly revolutionized biomedical and 
medical image analysis (25). DL approaches have been applied in 
different domains, including segmentation, detection, classification, 
and classification (11), owing to their exceptional capability to extract 
sophisticated features, leading to enhanced accuracy in illness 
categorization. This may mostly be ascribed to their remarkable ability 
to generalize. Convolutional neural networks (CNNs) have been crucial 
in promoting the progress of the medical imaging field, achieving 
notable success in several medical image classification tasks (19, 20).

1.1 Main contribution

Spiral drawing is a sophisticated and intricate motor skill that 
requires coordination. Accordingly, it is regarded as an accurate 
evaluation of motor function and an initial examination for early 
indications of PD. This article proposes a method for PDD by 
analyzing spiral drawings and employing transfer learning models. 
The method categorizes an individual as either healthy or diagnoses 
them with PD based on their spiral drawing. A spiral drawing 
produced by a healthy individual will closely resemble a typical spiral 
form. By contrast, a spiral created by an individual with PD will 
exhibit significant deviation from a flawless spiral form and appear 
twisted because of the individual’s sluggish motor movements and 
diminished synchronization between the hand and the brain.

2 Related works

Drotar and colleagues planned the utilization of a feature selection 
algorithm and support vector machine (SVM) approach to analyze the 
handwriting of patients with PD (26, 27). Their study is one of the first 
efforts to analyze the results of hand motions in the air or on a surface 
for diagnosing motor disorders associated with neurodegenerative 
illnesses. The findings revealed that these motions have a significant 
influence on the evaluation of handwriting and achieve a prediction 
accuracy of 85.61% (26). The work featured the PaHaW handwriting 
database, which was created by having individuals with PD complete 
eight distinct handwriting challenges, one being the Archimedean 
spiral. Basnin et al. (27) demonstrated their approach by using deep 
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transfer learning, achieving a testing accuracy of 91.36%. The research 
only used a dataset consisting of 800 hand-drawn spiral pictures. Das 
et al. (28) investigated a sophisticated technique for identifying PD using 
pictures that were hand-drawn by the patients. The authors combined 
discrete wavelet transform coefficients with histograms of oriented 
gradient data to enhance the accuracy of detection rate. They revealed 
the effectiveness of integrating these methods to extract pertinent 
information and identify vital coefficients, resulting in improved 
accuracy in disease detection using machine learning techniques. They 
specifically highlighted the efficacy of random forest (RF) and SVM 
approaches when applied to spiral pattern features of images.

Researchers have discovered that studying handwriting or hand 
drawings is a more efficient method for identifying PD (29). Shaban (30) 
advocated for the use of a meticulously adjusted VGG19 model that 
applies spiral and wave handwriting patterns to diagnose conditions. 
The dataset used was of limited size and comprised 102 wave photos and 
102 spiral images. Data augmentation, such as applying picture rotation, 
was used to alleviate the problem of model overfitting. After 
implementing 10-fold cross-validation, the CNN model demonstrated 
impressive accuracies of 88 and 89% for the wave and spiral pictures, 
respectively. Megha Kamble et  al. (31) proposed a comprehensive 
examination of the static and dynamic spirals created by people with 
Parkinson’s disease. To do this, we extracted kinematic characteristics 
related to movement in the air and on the surface from data files created 
for 25 patients and 15 healthy controls. We utilized mathematical models 
for this purpose. Gil-Martín (32) this study contributes to the ongoing 
endeavor by examining a convolutional neural network (CNN) for the 
purpose of detecting PD based on drawing gestures. The analysis was 
conducted with a publicly available dataset: Digitized graphics are 
utilized to create spiral drawings for Parkinson’s disease. Donalto 
Impedovo et al. (33) have proposed handwriting as a robust indicator 
for the development of a diagnostic tool for Parkinson’s disease. The 
authors have applied a machine learning classification framework to the 
PaHaW dataset and achieved high specificity performance scores. Marta 
San Lucianol et al. (34) proposed the utilization of spiral drawing for 
computerized analysis of PD, as digitized spirals demonstrate a 
correlation with motor scores. The indices that are generated or 
calculated that have a correlation with the overall execution of a spiral 
include severity, shape, and kinematic irregularity. Kinematic irregularity 
includes second order smoothness and first order zero crossing. Other 
indices include tightness, mean speed, and variability of spiral width. 
Theyazn H. H. Aldhyani et  al. (10) study makes a contribution by 
utilizing deep learning models to diagnose PD using photos of spiral and 
wave drawings. Manju Singh et al. (35) aims to provide a method for 
detecting PD utilizing spiral sketching and convolutional neural 
networks (CNN). The core concept is to examine an individual’s spiral 
drawings and categorize them as either indicative of good health or 
indicative of Parkinson’s disease. The spiral doodles produced by 
individuals in good health bear a striking resemblance to conventional 
helical forms. Table 1 presents a concise summary of the key attributes 
of prior studies on PD identification using drawings and other datasets.

3 Materials and methods

This section details the planned methodology applied to develop 
a PDD system based on DL techniques, specifically designed to detect 
PD from features extracted from spiral drawing images. This 
methodology includes dataset collection, data preprocessing, DL 

classification models, evaluation metrics, and results analysis. The 
framework of this methodology is shown in Figure 1.

3.1 Dataset collection

For our experimental study, we  employed a dataset of spiral 
drawing images obtained from the Kaggle platform. This dataset, 
which was created by Adriano et al. (36) based on the NIATS of the 
Federal University, includes digital records of 102 spiral image 
samples, with 51 from Parkinson’s disease patients (PDP) and 51 from 
healthy persons. The images have been pre-split into a training set and 
a testing set (Figure 2).

3.2 Data preprocessing

For our experimental work on PDD using drawn spiral images, 
we utilized a comprehensive dataset from the Kaggle platform. This 
dataset includes digital drawings from 51 PDPs and 51 healthy 
individuals. The processing steps are presented in Figure 3.

3.2.1 Data loading and preparation
The dataset was divided into two classes: “healthy” and 

“parkinson.” Each image was resized to 100 × 100 pixels and converted 
to array format for consistency. Labels were encoded into binary 
format, where “healthy” was labeled as 0 and “parkinson” as 1. This 
preparation step ensured uniform input data for the model.

3.2.2 Data augmentation
To increase the diversity and robustness of the training dataset, 

we  applied data augmentation techniques using the Image Data 
Generator module, including rotation, shifting, and flipping of images. 
We  likewise introduced variations that prevent overfitting and 
enhance the model’s capability to generalize to novel, unnoticed 
image data.

3.2.3 Data splitting
In this step, we split the dataset into a training set and a testing set 

using an 80-20 split ratio. This stratification ensures a balanced 
representation of both classes in the training and testing phases.

3.2.4 Normalization and label encoding
The pixel values of the images were standardized to the range [0, 

1] to expedite the training process and improve model performance. 
Additionally, the labels were one-hot encoded to facilitate 
categorical classification.

3.3 Diagnoses and classification models

For the classification and classification of drawn spiral images into 
the “Parkinson” and “healthy” classes, we applied several advanced 
CNN architectures, including VGG19, InceptionV3, ResNet50v2, and 
DenseNet169. These models were pre-trained on the ImageNet 
dataset, which comprises over 14 million images across 1,000 
categories. ImageNet provides a robust foundation for transfer 
learning due to its diverse range of visual concepts, although it does 
not inherently include clinical images.
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FIGURE 1

Framework of the proposed methodology.

3.3.1 VGG19 model
We employed a CNN using the pre-trained VGG19 model to 

identify PD (37). The input layer accepts images resized to 100 × 100 
pixels with three color channels. The model, pre-trained on the 
ImageNet dataset and excluding its top categorization layer, assists as 

a feature mining with average pooling. This is followed by a custom 
dense layer with 64 units and ReLU activation to introduce 
nonlinearity. The final layer is a dense output layer with 2 units and 
softmax activation, designed for binary classification between healthy 
individuals and PDPs. The model is compiled with the Adam 

TABLE 1  Overview of the current state of the art in employing various types of publicly available datasets based on artificial intelligence techniques.

Authors Datasets Approaches Object of study

Vanegas et al. (42) Parkinson’s dataset in 

EGG

Decision tree 

approaches

For this study, authors employed machine learning techniques to create a model that can accurately 

detect the most significant indicators from the EEG spectra during visual stimulation. The purpose 

of this model is to aid in the classification of PD.

Oh et al. (43) Parkinson’s dataset in 

EGG

CNN model This study utilized the electroencephalogram (EEG) data of twenty individuals with PD and twenty 

individuals without PD. An established CNN architecture consisting of thirteen layers effectively 

eliminates the requirement for traditional feature representation stages.

Prasuhn et al. (44) Parkinson’s dataset in 

using MRI images

SVM approach The proposed work suggests utilizing computer-aided methods and a highly reproducible method, 

as opposed to manually segmenting Substantia nigra (SN) to enhance the dependability and 

precision of Diffusion Tensor Imaging (DTI) of the measurements employed for categorisation.

Rasheed et al. (45) Parkinson’s dataset in 

using voice

BPVAM This study presents two classification algorithms aimed at enhancing the accuracy of identifying PD 

cases based on voice measures. Initially, implemented the BPVAM algorithm, which is a variable 

adaptive moment-based backpropagation algorithm of artificial neural networks (ANN).

Gunduz et al. (46) Parkinson’s dataset in 

using voice

GB model This study presents two frameworks utilizing CNNs method to accurately classify PD by analyzing 

sets of vocal (voice) data. Both frameworks are used to combine different feature sets, but they differ 

in how they combine these sets.

Pdisher et al. (47) Parkinson’s dataset 

collected using sensor 

device

CNN model Employed DL techniques to categorize motion data obtained from a solitary IMU sensor worn on 

the wrist, which was recorded in unstructured settings. In order to validate the results, patients were 

followed by a specialist in movement disorders, and their motor condition was assessed regularly 

and without active participation every minute.

Taliki et al. (48) Parkinson’s dataset in 

using sensory

Random forest This article explores instances of misclassification and presents a proposed system for obtaining a 

second opinion. The system relies on wearable sensors and artificial intelligence. To address this 

issue, authors developed several standardized tasks and collected movement data using wearable 

sensors worn by persons diagnosed with PD other extrapyramidal illnesses.

Shaban et al. (30) Parkinson’s dataset 

using hand drawing

DL-based VGG16 This work explores the application of a fine-tuned VGG-19 model to screen for PD using a Kaggle 

handwriting dataset. The study involves conducting experiments to test the effectiveness of this 

approach. The dataset consisted of 102 wave and 102 spiral handwriting patterns.

Robin (49) Parkinson’s dataset 

using hand drawing

RestNet50 Developing RestNet50 to detect PD using of 102 of 102 wave and 102 spiral

Stpete_ishii (50) Parkinson’s dataset 

using hand drawing

CNN model Developing online for classification of PD by using spiral images

Shaban et al. (30) Handwriting dataset 

(same dataset)

CNN model Developing online for classification of PD by using spiral images

Adrian (36) Parkinson’s dataset 

using hand drawing

CNN model Developing online for classification of PD by using spiral images
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optimizer, where categorical cross-entropy is the loss function and 
accuracy is the assessment metric. The data training process was 
conducted over 50 epochs with a batch size of 16 samples in each 
iteration, utilizing augmented training data. Figure  4 shows the 
VGG19 model architecture. The parameters of the VGG19 model are 
presented in Table 2.

3.3.2 InceptionV3 model
We also employed the pre-trained InceptionV3 model (38), whose 

inception modules are well known for their effective multi-scale 
feature extraction capabilities for PD detection by analyzing spiral 
drawing image features. Images with three color channels and a 
resizing of 100 × 100 pixels are accepted by the input layer. With 
average pooling, the InceptionV3 model functions as the feature 
extractor, omitting its top classification layer. To add nonlinearity, a 
bespoke dense layer with 128 units and a ReLU activation function is 
applied. The last layer is a dense output layer for binary classification 
among individuals without PD and those with the condition. Figure 5 
depicts the Inception model structure.

InceptionV3 has two units in the output layer to represent the 
dataset classes, namely, Parkinson and Healthy, as well as softmax 
activation applied for the classification task. The Adam optimizer is 

used to create the model. Model training is carried out using a batch 
size of 32 utilizing augmented training data across 50 epochs. Table 3 
summarizes the inception model parameters and their values used to 
develop and implement the model.

3.3.3 DenseNet169 model
We also applied the pre-trained DenseNet169 (39, 40) model for 

PD detection and classification based on spiral drawing image 
features. This model is known for having a dense pattern of 
connectivity that promotes improved feature reuse and maximum 
information flow across layers. Images with three color channels and 
a resizing of 224 × 224 pixels are accepted by the input layer. With 
average pooling, the pre-trained DenseNet169 model functions as 
the feature extractor, omitting its top classification layer. A bespoke 
dense layer with 128 units and a ReLU activation function is applied 
to add nonlinearity. Figure  6 illustrates the DenseNet169 
model structure.

The final layer is a dense output layer used for binary classification 
between individuals without PD and those with the condition. Also 
known as the output or last layer, this layer has two units to represent 
the dataset classes and uses a Softmax activation function to calculate 
the probability of each sample being either PPD or Healthy. The model 

FIGURE 2

Samples of spiral drawing images dataset.

FIGURE 3

Preprocessing steps.

224

https://doi.org/10.3389/fmed.2024.1453743
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Farhah� 10.3389/fmed.2024.1453743

Frontiers in Medicine 06 frontiersin.org

TABLE 2  Summary of the VGG19 model parameters.

Layer Parameters

Input Layer (100, 100, 3)

VGG19 Base Model Pre-trained on ImageNet, include_top = False, average 

pooling

Dense Layer 64 units, ReLU activation

Output Layer 2 units, Softmax activation

Optimizer Adam

Loss Function Categorical Cross-entropy

Metrics Accuracy

No. of Epochs 50

Batch Size Used 16

utilizes accuracy as the evaluation measure, categorical cross-entropy 
as the loss function, and the Adam optimizer for training. Table 4 
presents the summary of the model parameters used.

3.3.4 ResNet50v2 model
A DL framework called residual network (ResNet) was presented 

by Kaiming He  et al. (41). The capability of this architecture to 
effectively train deep neural networks has attracted huge interest. The 
main breakthrough in ResNet is the use of residual connections, or 
skip connections, which improve gradient flow and lessen the problem 
of vanishing gradients. The residual blocks make up the bulk of the 
ResNet architecture. These blocks are made up of multiple 
convolutional layers, an activation function (usually ReLU), and batch 
normalization. The skip link, which enables the direct addition of the 
block’s input to its output, is what distinguishes a residual block. This 
method enhances gradient flow during backpropagation and helps the 
network learn residual functions. We applied the ResNet50v2 model 
structure in our experimental work for PD detection and classification 
based the features of spiral drawing images. The images were scaled to 

224 × 224 pixels with three color channels an can be loaded into the 
input layer. The feature extractor with average pooling is the 
pre-trained ResNet50v2 model without its top classification layer. 
Nonlinearity is added by adding a customized dense layer with 128 
neurons and a ReLU activation function. Figure  7 depicts the 
model architecture.

The final layer is an output layer with two neurons and softmax 
activation function for binary classification of patients with PD and 
healthy people. Categorical cross-entropy is used as the loss function, 
accuracy is the assessment measure, and the model is assembled based 
on the Adam optimizer. Using supplemented training data, the 
training process was run across 50 epochs with a batch size of 32. 
Table 5 outlines the model parameters used.

To evaluate the models’ performance on our current dataset, 
we first trained these pre-trained models on the spiral image dataset 
before testing them. We  recorded performance metrics such as 
accuracy, precision, recall, and F1-score.

3.4 Evaluation metrics

Assessing the performance and testing results obtained by the 
proposed DL models, namely, VGG19, DenseNet169, Inception, and 
ResNet50v2, are crucial for gauging the effectiveness of the models. 
Several metrics are used to quantify performance, including precision, 
recall, accuracy, F1-score, and ROC curve, which are calculated from 
the confusion matrix. The evaluation measures provide an alternative 
perspective on the advantages and disadvantages of the model.
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FIGURE 4

Structure of the VGG19 model.
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4 Experimental results

This section reports the findings obtained from various experiments 
carried out for PD recognition and classification using various DL 
models, namely, VGG19, ResNet50, InceptionV3, and DenseNet169. 
Each model was assessed based on its ability to accurately categorize 
spiral drawn images from patients with PD and healthy individuals.

4.1 Testing results of the VGG19 model

As revealed in Table 6 below, an overall accuracy of 72% is shown 
in the testing classification results for PD recognition utilizing the 

VGG19 model. With a recall of 86% and precision of 60% for 
Parkinson’s cases, the model successfully recognized the majority of 
Parkinson’s cases with a small number of false positives.

Recall was 64% and precision was 88% for healthy persons, 
indicating a higher classification accuracy for healthy cases but with 
some false negatives. For Parkinson’s patients, the F1-score was 71, 
while for healthy cases it was 74. The macro averages for precision, 
recall, and F1-score were 74, 75, and 72%, respectively. These findings 
point to areas where the model might be  improved to lower 
classification mistakes while also demonstrating how well it detects 
PD. Figure 8 shows a graphical representation of the performance 
results for the VGG19 model.

Figure 8A illustrates the validation and training accuracies of the 
model over 50 epochs, presenting how well it learned to distinguish 
between Parkinson’s and healthy cases. Figure 8B presents the model’s 
loss over the training period, indicating the reduction in prediction 
error as training progressed. Figure 8C depicts the area under the 
curve (AUC) of the VGG19 model, providing a quantity of the model’s 
capacity to distinguish between the two classes with an AUC value of 
81% The AUC is a valuable metric for evaluating the overall results of 
the classification model.

4.2 Testing results of the inception v3 
model

The testing classification findings utilizing the InceptionV3 model 
for PD identification are given in Table 7. The InceptionV3 model 
attained an overall accuracy of 89%. For Parkinson’s cases, the model 
achieved a precision of 78% and a recall of 100%, indicating it 
accurately recognized all true Parkinson’s occurrences but included 
some false positives. For healthy individuals, the precision was 100% 
and the recall was 82%, showing exceptional precision but missing 
some real healthy examples. The F1-score for PD was 88%, and for 
healthy persons, it was 90%.

FIGURE 5

Inception model structure.

TABLE 3  Summary of the Inception model parameters.

Layer Parameters

Input layer (100, 100, 3)

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical Cross-entropy

Metrics Accuracy

No. of epochs 50

Batch size used 32
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TABLE 4  Summary of the DenseNet169 model parameters.

Layer Parameters

Input layer (224, 224, 3)

DenseNet169 base model Pre-trained on ImageNet, include_

top = False, average pooling

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical cross-entropy

Metrics Accuracy

No. of epochs 50

Batch size used 16

The overall averages of the metrics are 91% for precision, 89% for 
recall, and 89% for F1-score, demonstrating the balanced performance 
of the model across both classes. These results suggest that 
InceptionV3 is highly effective for PD detection, particularly excelling 
in correctly identifying true cases of the disease. Figure 9 shows a 
graphical representation of the performance results for the 
Inceptionv3 model.

Figure 9A shows the validation and training accuracies, which 
started at 55% and ended at 79% for training and the validation started 
at 45% and ended at 89%. The significant improvement from the 
initial to the final epoch indicates effective learning. Figure  9B 
illustrates the model’s loss over the training period, with a notable 
reduction from an initial loss of 1.2840 to a final loss of 0.4486 for 
training and 0.3879 for validation, indicating the increased ability of 
the model to make accurate predictions. Figure 9C depicts the AUC 
of the InceptionV3 model, which reached an impressive value of 95, 

demonstrating the robust discriminative ability of the model between 
Parkinson’s and healthy cases.

4.3 Testing results of the ResNet50v2 
model

This subsection presents the outcomes of our experiments 
utilizing the ResNet50v2 model for the detection and classification of 
Parkinson’s Disease (PD). The model achieved an overall accuracy of 
80%. For instances of Parkinson’s, the ResNet50v2 model exhibited a 
precision of 79% and a recall of 92%. This indicates that the model 
correctly identified 92% of Parkinson’s cases within the testing set, 
though it produced some false positives. In contrast, for healthy 
individuals, the model attained a precision of 83% and a recall of 62%, 
signifying a reasonable accuracy in classifying healthy cases but 
missing some true healthy instances. The F1-scores were 85% for 
Parkinson’s cases and 71% for healthy cases. The testing classification 
performance of the ResNet50V2 model is summarized in Table 8.

The macro average precision, recall, and F1-score were 81, 77, and 
78%, respectively. These metrics underscore the model’s efficacy in 
distinguishing between PD and healthy individuals, although there 
remains room for improvement, particularly in increasing the recall 
for healthy cases. Figure 10 graphically represents the performance of 
the ResNet50V2 model over 50 epochs.

Figure 10A shows the validation and training accuracies, which 
improved significantly from 40% initially to 90% for training and 85% 
for validation by the final epoch, indicating effective learning. 
Figure 10B illustrates the model’s loss over the training period, with a 
reduction from a preliminary loss of 1.20 to an ending loss of 0.20 for 
training and 0.40 for validation, reflecting good enhanced prediction 
accuracy of the model.

FIGURE 6

DenseNet169 model structure.
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4.4 Testing results of the DenseNet169 
model

The testing classification results for the DenseNet169 model in 
detecting PD using spiral drawing images are summarized in Table 9. 
The DenseNet169 model achieved an overall accuracy of 85%, 
indicating a high level of performance in distinguishing between PD 
patients and healthy individuals based on their spiral drawing patterns.

The model showed 80% precision and 100% recall for Parkinson’s 
cases. This implies that there were no false negatives in the model’s 
identification of all actual cases of PD. However, as the precision score 
shows, the model did generate some erroneous positives. For 
Parkinson’s cases, the F1-score was 89%, indicating a fair trade-off 
between recall and precision for this class.

The model’s precision for healthy individuals was 100%, meaning 
that it was always accurate when it projected a case to be healthy. The 

recall rate for healthy patients was 62%, indicating that some genuine 
healthy instances were overlooked by the algorithm, leading to 
misleading negative results. Compared to the Parkinson’s class, the 
F1-score for healthy persons was 77%, indicating a reduced but still 
acceptable balance between precision and recall. The macro averages 
of 81% for recall, 83% for F1-score, and 90% for accuracy show how 
well the model performed generally in both classes. The recall macro 
average shows that there is still need for growth in accurately 
recognizing every instance across both classes, but the high precision 
macro average shows how well the model can make positive 
predictions. Figure  10 shows a graphical representation of the 
performance plots of the DensNet169 model.

As seen in Figure 10, the training accuracy of the model started at 
50% and steadily increased to 89% by the last epoch. Simultaneously, 
there was an upward trend in the validation accuracy, starting at 60% 
and reaching 83%. The training loss was reduced significantly from 90 
to 20% in terms of model loss. In a similar vein, the validation loss 
significantly decreased, going from 100 to 55%. Collectively, these 
indicators show how the model’s performance and capacity for 
generalization have increased during the training phase.

5 Discussion of the results

PD is a neurodegenerative condition that progresses over 
time and is characterized by both motor and non-motor 
symptoms. Accurate identification of PD is essential for timely 
intervention. Conventional diagnostic methods often rely on 
subjective neurological exams and clinical evaluations, leading to 
potential inaccuracies. Therefore, there is growing interest in 
leveraging advanced computational and machine learning 
methods to enhance diagnostic precision. Figure  11 shows 
performance of DenseNet169.

FIGURE 7

ResNet50 model architecture.

TABLE 5  Summary of the ResNet50 model parameters.

Layer Parameters

Input layer (224, 224, 3)

ResNet50v2 base model Pre-trained on ImageNet, include_

top = False, average pooling

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical Cross-entropy

Metrics Accuracy

No. of epochs 50

Batch size used 32
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TABLE 7  Testing classification results of the InceptionV3 model.

Precision % Recall % F1-score% Support Accuracy%

Parkinson 78 100 88 7 89

Healthy 100 82 90 11

Macro average 91 89 89 18

FIGURE 8

(A) Validation and training accuracies of the model, (B) model loss, and (C) AUC of the VGG19 model.

In this study, we assessed the performance of several deep 
learning models VGG19, InceptionV3, ResNet50V2, and 
DenseNet169 in identifying PD from spiral drawing tests. The 
results highlight the strengths and limitations of each model. The 
VGG19 model achieved a total accuracy of 72%, demonstrating 
the lowest performance in detecting PD cases and a higher rate 
of false positives and false negatives compared to the 
other models.

The DenseNet169 model demonstrated an accuracy rate of 
85%, whereas the InceptionV3 model achieved a higher accuracy 
of 89%, both surpassing the performance of the ResNet50V2 
model. The InceptionV3 model, in particular, exhibited excellent 

sensitivity and minimal false positives, making it highly effective 
in identifying both Parkinson’s disease (PD) and healthy cases. In 
contrast, ResNet50V2 achieved an accuracy of 80%, with notable 
precision in identifying PD cases but less efficacy in classifying 
healthy individuals. Collectively, these findings indicate that 
transfer learning models based CNN architectures have capability 
to classify Parkinson’s disease status using intelligent spiral 
drawings features, especially InceptionV3 and DenseNet169, that 
showed substantial potential for enhancing PD classification. 
Future research should focus on optimizing these models further, 
exploring additional data sources, and validating these findings in 
real-world clinical settings. Figure  12 displays the ROC of the 

TABLE 6  Testing classification results of the VGG19 model.

Precision % Recall % F1-score% Support Accuracy%

Parkinson 60 86 71 7 72

Healthy 88 64 74 11

Macro average 74 75 72 18

TABLE 8  Testing classification results of the ResNet50v2 model.

Precision % Recall % F1-score % Support Accuracy %

Parkinson 79 92 85 12 80

Healthy 83 62 71 8

Macro average 81 77 78 20
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proposed models, where the InceptionV3 model is found to 
achieve a high percentage of 91%.

This subsection highlights the variations in accuracy outcomes by 
providing an analysis of several techniques used on the same dataset 
of 102 spiral images. The authors reported a 67% accuracy rate using 

the RF technique in (38). According to Haq et al. (39), lightning CNNs 
achieved an accuracy of 63.33%, while in Huang et al. (41), a standard 
CNN approach demonstrated a significant increase with an accuracy 
of 83%. By comparison, the InceptionV3 model we  used in our 
investigation produced the best accuracy of 89%. This better 

FIGURE 9

(A) Validation and training accuracies of the model, (B) model loss of the InceptionV3 model.

TABLE 9  Testing classification results of the DensNet169 model.

Precision % Recall % F1-score % Support Accuracy %

Parkinson 80 100 89 12 85

Healthy 100 62 77 8

Macro average 90 81 83 20

FIGURE 10

(A) Validation and training accuracies of the model, (B) model loss of the ResNet50v2 model.
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performance highlights the potential of sophisticated DL architectures 
above more conventional machine learning and simpler neural 
network approaches, proving their effectiveness in correctly detecting 
PD using spiral drawing images. Table 10 displays the comparative 
analysis between our study results and existing ones based on the 
same dataset and accuracy metric.

6 Conclusion

The timely detection of PD is of utmost significance. The 
complexity of identifying PD necessitates the development of 
effective diagnostic instruments. In this work, PDD was determined 
by examining the Parkinson’s spiral test. In contrast to other 
investigations in the literature, this study regarded the Parkinson’s 
spiral test as an issue of recognition. Furthermore, pattern 
recognition approaches can yield favorable outcomes when used in 
the analysis of spiral images in PD. This strategy can enhance the 
effectiveness of diagnosing PD, a condition that is challenging to 
detect in its early stages. The proposed approach utilized a 
standardized dataset of 102 spiral samples obtained from 
individuals diagnosed with PD. The implementation involved the 
use of VGG19, InceptionV3, ResNet50v2, and DenseNet169 models 
for the detection of PD utilizing spiral drawings. The aim of this 

work was to improve the diagnostic process of PD by utilizing 
transfer learning models. The approach shows promising results in 
diagnosing PD by analyzing the movement patterns of patients with 
PD. The classifier, trained on photos of the spiral drawing challenge, 
achieved an accuracy of 89% and an ROC score of 91% using the 
InceptionV3 and ResNet50v21 models. The use of DL-based 
analysis can enhance the efficiency and accessibility of spiral 
drawing assessment in clinical and research contexts due to its 
automated and scalable nature. Creating a deep learning system that 
utilizes spiral drawing images to detect PD can be  a valuable 
method for aiding clinical decision making and advancing drug 
research. It can improve the diagnostic process, assist in selecting 
and monitoring patients in clinical trials, and offer objective 
measures of outcomes, ultimately leading to better patient care and 
the progress of PD research. The limitation of this research is that 
it did not investigate the possibility of use spiral drawings to identify 
other associated movement disorders; instead, it concentrated on 
utilizing them to create a system for diagnosing PD. The study 
showed that spiral image analysis is a useful tool for diagnosing PD, 
but it did not look into whether the technique can distinguish PD 
from other disorders that can similarly impair motor function, such 
essential tremor. Another key limitation is that the data utilized was 
based on previously diagnosed PD participants, thereby making it 
more challenging to apply this AI approach as PD diagnostic 
criteria, given that the classification is already known. However, this 
research demonstrates that more sophisticated transfer learning 
architectures can improve on previous deep learning approaches for 
PD classification. As additional study data becomes available, 
especially spiral drawing data that can be collected in a general 
population of prodromal PD or those displaying motor symptoms, 
such architectures can be readily adapted.

Overall, although spiral image analysis for PD classification shows 
promise in the current research, more investigation is required to 
examine the approach’s more extensive prospective applications and 
prove its efficacy for a larger range of movement disorders and patient 
demographics. Future research addressing these limitations may result 
in an even more potent and therapeutically valuable tool to aid in the 
differential classification and early detection of PD and associated 

FIGURE 11

(A) DensNet169 model training and validation accuracy and (B) model loss.

TABLE 10  Comparison of the contribution of the present study with 
existing research.

Reference ID Approach Dataset Accuracy

Prasuhn et al. (44) RF Same dataset 102 

spiral images

67%

Rasheed et al. (45) Lightning 

CNNs

Same dataset 102 

spiral images

63.33%

Pfister et al. (47) CNNs Same dataset 102 

spiral images

83%

Our study InceptionV3 Same dataset 102 

spiral images

89%
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disorders. In Future studies will try to solve this issue for improving 
the system.
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Neurodegenerative disorders such as Alzheimer’s Disease (AD) and Mild 
Cognitive Impairment (MCI) significantly impact brain function and cognition. 
Advanced neuroimaging techniques, particularly Magnetic Resonance Imaging 
(MRI), play a crucial role in diagnosing these conditions by detecting structural 
abnormalities. This study leverages the ADNI and OASIS datasets, renowned for 
their extensive MRI data, to develop effective models for detecting AD and MCI. 
The research conducted three sets of tests, comparing multiple groups: multi-
class classification (AD vs. Cognitively Normal (CN) vs. MCI), binary classification 
(AD vs. CN, and MCI vs. CN), to evaluate the performance of models trained 
on ADNI and OASIS datasets. Key preprocessing techniques such as Gaussian 
filtering, contrast enhancement, and resizing were applied to both datasets. 
Additionally, skull stripping using U-Net was utilized to extract features by 
removing the skull. Several prominent deep learning architectures including 
DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 were 
investigated to identify subtle patterns associated with AD and MCI. Transfer 
learning techniques were employed to enhance model performance, leveraging 
pre-trained datasets for improved Alzheimer’s MCI detection. ResNet-101 
exhibited superior performance compared to other models, achieving 98.21% 
accuracy on the ADNI dataset and 97.45% accuracy on the OASIS dataset in multi-
class classification tasks encompassing AD, CN, and MCI. It also performed well 
in binary classification tasks distinguishing AD from CN. ResNet-152 excelled 
particularly in binary classification between MCI and CN on the OASIS dataset. 
These findings underscore the utility of deep learning models in accurately 
identifying and distinguishing neurodegenerative diseases, showcasing their 
potential for enhancing clinical diagnosis and treatment monitoring.

KEYWORDS

deep learning, Densenet, EfficientNet-B0, Resnet, skull stripping, healthcare, 
clustering, decision making

OPEN ACCESS

EDITED BY

Hikmat A. M. Abdeljaber,  
Applied Science Private University, Jordan

REVIEWED BY

Gaurav Gupta,  
Shoolini University, India
Arwa Mashat,  
King Abdulaziz University, Saudi Arabia
Adarsh Kumar,  
University of Petroleum and Energy Studies, 
India
Dayananda Pruthviraja,  
Manipal Institute of Technology Bengaluru, 
India

*CORRESPONDENCE

Purushottam Kumar Pandey  
 purushottam9999@manavrachna.net  

Saeed Alsahrani  
 salhariri@ksu.edu.sa

RECEIVED 07 June 2024
ACCEPTED 20 August 2024
PUBLISHED 20 September 2024

CITATION

Pandey PK, Pruthi J, Alzahrani S, Verma A and 
Zohra B (2024) Enhancing healthcare 
recommendation: transfer learning in deep 
convolutional neural networks for Alzheimer 
disease detection.
Front. Med. 11:1445325.
doi: 10.3389/fmed.2024.1445325

COPYRIGHT

© 2024 Pandey, Pruthi, Alzahrani, Verma and 
Zohra. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  20 September 2024
DOI  10.3389/fmed.2024.1445325

235

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1445325&domain=pdf&date_stamp=2024-09-20
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1445325/full
mailto:purushottam9999@manavrachna.net
mailto:salhariri@ksu.edu.sa
https://doi.org/10.3389/fmed.2024.1445325
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1445325


Pandey et al.� 10.3389/fmed.2024.1445325

Frontiers in Medicine 02 frontiersin.org

1 Introduction

Neurodegenerative illnesses like AD affect brain cognitive 
function. It is one of the most common cause of Dementia. The exact 
cause of disease is still not fully discovered and so the cure. It is 
believe that it happens due to a combination of genetic, environmental, 
and lifestyle factors. The protein accumulation in the brain which is 
Amyloid Plaques is the main cause. The plaques accumulates between 
the neurons because of which the death of neuron starts. 
Inflammation in the brain and oxidative damage to neurons are also 
believed to play roles in the development and progression of 
Alzheimer’s disease. These processes can further contribute to 
neuronal dysfunction and death. These disorders cause problems with 
brain function and impair cognition (1). Progressive decline in 
cognitive function, including memory loss and diminished cognitive 
ability, characterizes AD, the most prevalent form of dementia. 
Conversely, MCI is a transitional stage between typical cognitive 
aging and AD, distinguished by observable deterioration in cognitive 
functions that do not significantly impede routine tasks (2). These 
conditions impose a burden on healthcare organizations as well as 
society at large, in addition to endangering the health and safety of 
those affected.

The efficient detection of AD and MCI has become a crucial area 
of interest in medical research. The progress in neuroimaging 
methods, including magnetic resonance imaging (MRI), has improved 
the ability to diagnose these conditions. MRI scans are used to 
diagnose Alzheimer’s and MCI by examining structural abnormalities, 
which often require advanced image processing to increase clarity and 
extract relevant features (3).

The ADNI (4) and OASIS (5) datasets are renowned for their 
efficacy in diagnosing Alzheimer’s and MCI, both used in this analysis 
and recognized for their vast human macroscopic MRI data. These 
datasets cover healthy and AD/MCI patients. MRI images from both 
datasets are used to identify anatomical changes connected to 
neurodegenerative illnesses, such as brain volume and cortical 
thickness (4, 5).

Multiple methods are utilized to preprocess MRI data to increase 
AD and MCI diagnosis accuracy and comprehension. A Gaussian 
filter reduces noise and decreases artifacts and electrical noise to 
improve visual clarity (6), contrast-limited responsive Histogram 
Equalization (CLAHE) enhances contrast, the image is resized to 
224×224 pixels for consistency (7), and CNN model compatibility and 
intensity levels are normalized across scans (8). Skull stripping 
eliminates non-brain tissues to focus further investigations on the 
importance of brain regions, and then Tissue segmentation segments 
the brain into gray matter, white matter, and cerebrospinal fluid, 
providing more precise data for study (9). In ADNI additional 
preprocessing, we  performed skull stripping using U-Net (10) to 
remove the cranium. The brain is cut cross-sectionally along three 
axes—axial, coronal, and sagittal. The slices are evaluated for quality, 
and three are selected to show the most essential MRI imaging areas 
while reducing noise (9, 11, 12).

Many research’s have been working in the area however the work 
done so far has limitation that this paper is trying to address. The work 
done by researcher’s is focused on one dataset, where as we have used 
the multiclass dataset for the research. The improvised preprocessing 
model that can work on MRI from different datasets and the 
prediction model provides the consistency accuracy while predicting.

This investigation offers several substantial improvements to the 
existing Research on the identification of Alzheimer’s and MCI:

	•	 To extract and preprocess the renowned datasets, ADNI and 
OASIS, from the neuroimaging discipline for the investigation.

	•	 To propose a framework model for early detection of AD using 
different deep learning techniques such as DenseNet-201, 
EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 for the 
classification of MCI detection

	•	 To evaluate and analyze the performance of prominent deep 
learning using performance metrics for making 
recommendations in healthcare organizations.

The complexity of MRI images for AD and MCI identification 
highlights cutting-edge deep learning processes. This work contributes 
to neuroimaging studies and AD/MCI diagnosis as the 
discipline progresses.

The paper not only addresses binary classification but also 
emphasizes multiclass classification. The predictive model extends 
beyond determining whether a subject has AD or not; it also predicts 
the stage of the disease, such as AD, CN, or MCI.

In binary classification, the model’s output provides a 
straightforward yes or no answer regarding the presence of AD or 
another condition. However, in multiclass classification, the model 
distinguishes between different stages of the disease, offering a more 
nuanced understanding of the individual’s cognitive health status. This 
approach is crucial for clinical applications as it allows healthcare 
providers to not only diagnose the presence of AD but also to 
categorize the severity or progression of the disease. Such detailed 
predictions can significantly aid in early intervention, personalized 
treatment planning, and monitoring of disease progression over time.

The paper is structured around the materials and methods 
outlined in Section 3, encompassing preprocessing techniques, 
transfer learning, and notable CNN architectures. Section 4 presents 
the dataset details and outcomes of the proposed approach. Lastly, 
Section 5 encapsulates the conclusion and outlines future avenues for 
the model’s development.

2 Literature review

The analysis of the research done so far is represented in 
this section.

Modern deep-learning architectures are used to identify subtle 
patterns from the datasets to create powerful AD and MCI detection 
applications/models. These architectures ensure and advance 
neurodegenerative condition research. Most prominent advanced 
deep-learning architectures such as DenseNet-201 (13), 
EfficientNet-B0 (14), ResNet-50, ResNet-101, and ResNet-152 (15) 
have been investigated to develop efficient models for detecting 
Alzheimer’s and MCI. The architectures often extract detailed patterns 
from complicated datasets and are used with transfer learning.

The DenseNet-201 design operates by establishing dense 
connections between each layer and all subsequent layers in a feed-
forward manner to recycle features efficiently. The connection 
mentioned above improves the transmission of features and promotes 
the reuse of features, resulting in more effective use of parameters (13). 
EfficientNet-B0 prioritizes enhancing model efficiency by scaling the 
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network in many dimensions (depth, breadth, and resolution) to 
achieve an optimal trade-off (14). ResNet-50, ResNet-101, and ResNet-
152 belong to the ResNet (Residual Network) family. This network 
family includes skip connections, also known as shortcuts, which 
enable bypassing one or more layers. This technique helps to address 
the vanishing gradient issue and facilitates the training of intense 
networks. These skip connections further enhance the propagation of 
gradients during backpropagation, enabling the model to learn more 
efficiently (15). Each of these designs offers distinct methods for 
extracting features and optimizing parameters, making them suitable 
for various elements of Alzheimer’s MCI detection in MRI datasets.

A 3D-CNN model was trained using ADNI MRI data to distinguish 
AD from CN. An AD brain mask was found using a genetic algorithm-
based Occlusion Map technique, and Backpropagation-based explain 
ability methods. The recommended model had 87% accuracy in 5-fold 
cross-validation, mirroring prior findings, whereas an updated 
3D-CNN model with 29 brain regions achieved a high validation 
accuracy using the lrp_z_plus_fast explain ability technique (16). The 
assessment process exploits shallow CNN architecture on 2D 
T1-weighted MR brain images. This pipeline rapidly and accurately 
identifies normal, MCI, and AD. The technique is labeled MCI 
prodromal AD. They tested it against DenseNet121, ResNet50, and 
EfficientNetB7 (17). A unique ensemble deep-learning AD classification 
technique was developed. Soft-NMS consolidates candidate data and 
improves detection in the Faster R- CNN architecture. Enhanced 
ResNet50 extracts more complicated visual data. For sequence data 
processing, the feature extraction network employed Bi-GRU. Improved 
Faster R–CNN did the classification well (18). Researchers created 
EfficientNetB2 for AD, MCI, and NC. Front-end Global Attention 
Mechanism (GAM) in EfficientNetB2 took crucial features. 
Coordination Attention helped get channel and location data from 
two-dimensional slice data for appropriate diagnosis. Micro-designing 
using the ConvNeXt network reduced model complexity and improved 
categorization. The recommended method outperformed CNNs on 
AD/NC, AD/MCI, and MCI/NC dichotomous data (19). Investigators 
created an integrated automated method for guided machine learning-
driven selection using K-Means++. A sophisticated deep learning 
framework using EfficientNetV2S transfer learning and learned 
features. Trials utilized ADNI and OASIS benchmark datasets. In 
research and validation, the integrated design outperformed all other 
models. Model validation was 20-fold. On the ADNI dataset, CN 
showed 83.64% accuracy against AD, 82.69% against MCI, 71.40% 
against MCI, and 91.54% on the OASIS dataset (20).

3 Materials and methods

The research approach used in this study centers on utilizing the 
ADNI and OASIS datasets, which are well-known for their extensive 
human macroscopic MRI data. These datasets include people who are 
in good health as well as those who have been diagnosed with AD and 
MCI (4, 5).

3.1 Methodology

MRI data is preprocessed using Gaussian filters (6), CLAHE for 
contrast enhancement, standardized image dimensions, and 

normalizing intensity levels (7, 8). U-Net removes the cranium for the 
ADNI dataset, and the brain is sliced along three axes for cross-
sectional slices. These slices undergo a quality evaluation to provide 
the best depiction while minimizing noise and highlighting significant 
regions of MRI imaging (9–13). State-of-the-art deep-learning 
architectures like DenseNet-201, EfficientNet-B0, ResNet-50, ResNet-
101, and ResNet-152 extract intricate patterns from the datasets, 
hence aiding in creating effective models for AD and MCI 
identification. This mechanism guarantees the strength and 
dependability of the analysis performed on the ADNI and OASIS 
datasets, enabling progress in comprehending and identifying 
neurodegenerative disorders (13–15). Figure  1 presents the 
methodology for detecting AD and MCI using ADNI and 
OASIS datasets.

During the implementation the steps followed will be explained 
in the paragraph. The dataset will be provided to preprocessing model. 
The preprocessing model will make sure each image goes through 
Gaussian filter, Clahe and resizing. The ADNI images will go through 
additional two steps which are skull stripping and slicing. Once the 
data is preprocessed the images will be split in training and testing 
data in 80:20 ratio. For the model training the training dataset will 
be provide to the model. In the model image features will be extracted 
through different models and post that it will go through the transfer 
learning models. Once the model is trained the images from the test 
dataset will be provided and the prediction will be done by model. The 
efficacy of the model will be judged on F1 score, accuracy, recall value 
and precision. The model will categorize the images in the three 
buckets as CN, AD & MCI.

3.2 Data preprocessing

The preprocessing approaches explored for identifying AD and 
MCI include noise reduction, CLAHE, Image resizing, and 
normalization. Noise reduction in MRI scans is achieved by using a 
Gaussian filter. This filter effectively reduces noise caused by different 
sources, better depicting the images for analysis. Gaussian filtering 
reduces intensity fluctuations and maintains structural information, 
enhancing MRI data quality (6). CLAHE improves the contrast of 
specific areas by adjusting the intensity levels according to local 
histograms. This leads to a more detailed representation of the 
essential structural features of AD research (7). Resizing an image to 
a defined dimension, such as 224×224 pixels, guarantees consistency 
and compatibility with CNN models. This process maintains the 
structural data of the image for analytical purposes. Normalization is 
a process that makes intensity levels similar across MRI scans. This 
helps in accurate and comparative analysis by guaranteeing that 
intensity distributions are the same (8).

The designated preprocessing techniques enhance the accuracy 
and comprehensibility of MRI data in identifying AD and MCI in 
both the ADNI and OASIS datasets. In addition, some prominent 
steps of preprocessing involved for the ADNI dataset:

Skull Striping: The U-Net architecture has an encoder-decoder 
structure incorporating skip links, similar to ResNets (10). Regarding 
skull stripping, the network takes a 3D MRI image as input and 
produces a binary mask that identifies the brain area. During learning, 
the network can divide the brain into distinct segments by predicting 
which pixels are part of the brain and which are not. The encoder 
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component of the U-Net collects features from the input image at 
various scales, while the decoder component increases the resolution 
of these features to produce a segmentation mask that matches the 
resolution of the input image. Spatial information is using skip links 
that facilitate conserved and accurate localization. The neural network 
is taught using a dataset consisting of MRI images and their matching 
manually generated skull-stripped masks (11). After training, the 
U-Net may automatically perform skull stripping on newly acquired 
MRI images, making it a significant asset in neuroimaging research 
and clinical practice (9, 12).

Slicing: After removing the skull, slice the brain along the three 
axes (axial, coronal, and sagittal) to get cross-sectional slices. This 
procedure entails segmenting the three-dimensional (3D) pictures 
into two-dimensional (2D) slices, which record distinct brain 
structure viewpoints. After getting the slices, visually assess their 
quality. Select three slices for a better qualitative representation than 
the rejected ones. This reduces noise and highlights the most essential 
areas of MRI imaging (11).

The images in Figure 2 show cross-sectional views before and after 
skull stripping, demonstrating the effects of the preprocessing method.

3.3 Prominent CNNs

ResNets: Residual Networks (ResNets) utilize shortcut connections 
between layers to facilitate residual learning. The residual learning 
approach entails acquiring knowledge about the residual mapping rather 
than the direct mapping of the input data, thereby enabling the efficient 
training of intense networks. Shortcut connections facilitate the 
propagation of gradients across layers and effectively address the 
disappearing gradients often seen in deep neural networks. ResNet 
comprises numerous residual blocks, including several convolutional 
layers and shortcut connections. This design enables the network to 
capture intricate input data aspects effectively (15).

ResNet can employ shortcut connections, bypassing one or more 
layers. The shortcut connections merely execute identity mapping; the 
results of these connections are aggregated with those of the layered 
layers. When many layers are appended, vanishing gradient issues 
frequently arise, preventing backpropagation from updating the 

weights of the initial layers. The problem might be remedied through 
the incorporation of an identity link. The ResNet architecture 
facilitates the direct propagation of gradients in the opposite direction, 

FIGURE 1

Methodology for the AD and MCI detection.

axial plane slice 

A

B

C
coronal plane slice 

sagittal plane slice 

FIGURE 2

Slices of pre (Left) and post (Right) skull stripping (4). (A): axial plane 
slice, (B): Coronal plane slice, (C): Sagittal plana Slice.
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allowing them to traverse from the later layers to the initial filters via 
an identity link. By incorporating residual learning, the method 
improves the CNN architecture and renders it more applicable to the 
training of deep networks. A plain and simple network with a more 
significant number of layers tends to have more errors, but ResNet, 
which has specific layer configurations such as 50 and 101, has a 
superior capacity to handle deeper networks (15, 21, 22). Figure 3 
presents the concept of shortcut connections.

ResNet familiarizes the conception of residual learning, where the 
layer transforms the input into a layer, and a shortcut connection 
bypasses one or more layers. Equation 1 presents the residual learning 
through Shortcut connection, understanding the basic building blocks 
of ResNets and how they are combined to form the architecture. This 
is expressed mathematically as:

	 Output Y F Input X Input X( ) = ( )( ) + ( )	 (1)

Here, F(input(X)) represents the transformation performed by 
the layer.

A ResNet block typically consists of two convolutional layers 
followed by a shortcut connection. Let us denote input to the block as 
X, output as Y, and the residual function as F(X) (15). In Equation 2 
the output y is computed as:

	 Y F X W Xi= { }( ) +, 	 (2)

where Wi are the weights of the convolutional layers.
ResNet has several layers, and these basic blocks are stacked 

together. The architecture consists of convolutional layers, batch 
normalization, ReLU activations, and residual blocks.

Let us consider a single convolutional layer within the residual 
function to simplify and derive this equation. Equation 3 calculates 
the output Y1 of the convolutional layer is given by:

	 Y W X b1 1 1= ∗ +( )σ 	 (3)

Here, W1 is the weights, b1 is the bias, σ is the activation function 
(commonly ReLU), and ∗ denotes convolution.

Now, let us consider another convolutional layer with output Y2 
which can be calculated as Equation 4:

	 Y W Y b2 2 1 2= ∗ +( )σ 	 (4)

The residual function F(X) can be represented as the composition 
of these two layers:

	 F X W W X b b( ) = ∗ ∗ +( )( ) +( )σ σ2 1 1 2 	 (5)

Substituting the expression for F(X) of Equation 5 into the 
Equation 1, we get:

	 Y W W X b b X= ∗ ∗ +( )( ) +( ) +σ σ2 1 1 2 	 (6)

Equation 6 represents the forward pass through a single 
residual block.

The beauty of ResNet architecture lies in the ability to learn the 
identity mapping (i.e., Y = X) if needed. If the optimal transformation 
for a block is close to the identity mapping, the weights of the 
convolutional layers can be adjusted to approach the identity function, 
allowing for easier optimization during training (15, 23).

Each ResNet network consists of numerous convolutional layers, 
pooling layers, and fully connected layers with varying output sizes and 
numbers of filters. The advantages include improved accuracy with 
increased depth and overcoming the degradation problem observed in 
shallower networks. The disadvantages may include higher 
computational complexity, as indicated by the increase in floating-point 
operations (FLOPs), which measures the number of floating-point 
operations a neural network performs during inference or training with 
deeper networks (15).

ResNet-50: ResNet-50 uses residual learning to solve the degradation 
issue of deeper neural networks by creating skip connections or shortcuts 
that enable information to move directly across layers. The model 
consists of 50 layers, which include convolutional, pooling, and fully 
linked layers, using residual blocks as the fundamental components. 
Each residual block has many convolutional layers and a shortcut link to 
help the network learn abstract features (15).

ResNet-50 can train deeper networks without the vanishing 
gradient issue, improving performance on complex datasets. ResNet-
50’s skip connections simplify training optimization, speeding 
convergence and improving generalization. ResNet-50 can be helpful 
for image classification and feature extraction because of its novel 
design and efficient training processes (18, 21).

ResNet-101: ResNet-101 is a CNN composed of precisely 101 layers. 
The construction of this architecture utilizes bottleneck blocks, which 
consist of three layers. It entails laying out various convolutional blocks 
with unique weights and additional elements, such as batch 
normalization and ReLU activations. The method employs residual 
learning to tackle degradation issues and enhance accuracy by leveraging 
higher depth. The network incorporates shortcut connections to 
facilitate residual learning, offering the choice between identity mapping 
or projection shortcuts. The model is trained using batch normalization, 

FIGURE 3

Shortcut connection used by ResNet.
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stochastic gradient descent (SGD), weight decay, and dropout. This 
approach achieves high accuracy and successfully addresses 
optimization challenges encountered in regular networks. ResNet-101 
consists of recurring blocks with different filter quantities and other 
properties. The design guarantees that the number of parameters, depth, 
breadth, and computing cost remain identical to those of plain networks 
(15, 24).

ResNet-152: Its 152 layers make ResNet-152 one of the deepest 
convolutional neural networks. Multiple convolutional layers and 
identity mappings in residual blocks enable feature extraction at 
various abstraction levels. Skips in ResNet-152 let information flow 
directly from previous layers to subsequent ones, maintaining gradient 
flow and simplifying training optimization. Deep and skip connections 
improve this architecture’s image recognition performance, including 
accuracy, convergence during training, and the ability to handle 
vanishing gradient issues in deep neural networks (15, 24).

DenseNet-201: The Dense Convolutional Network (DenseNet) is 
characterized by a dense connection structure, which enables effective 
feature reuse and rapid model generation. The DenseNet-201 connects 
layers feed forwardly by utilizing feature maps from previous levels as 
inputs and producing feature maps for subsequent layers. The network 
has a total of a(a + 1)/2 direct connections for nodes, i.e., a, which 
successfully alleviates the vanishing-gradient problem, improves 
feature propagation, encourages feature reuse, and decreases 
parameter count. The architecture comprises many compact blocks, 
including convolutional layers alternated with transition layers, which 
reduce dimensionality and regulate the complexity of the model. This 
architectural design facilitates extracting features and propagating 
gradients, effectively tackling the issue of disappearing gradients in 
deep neural networks (13).

The main benefits of this approach are eliminating unnecessary 
features, less computational burden, and increased understanding of 
the model’s behavior due to dense connections. These advantages 
result in enhanced accuracy and efficiency while performing deep-
learning tasks (11).

EfficientNet-B0: EfficientNet-B0 uses compound scaling to adjust 
the network’s depth, breadth, and resolution equally. This leads to the 
creation of smaller and more precise models. The fundamental idea is 
to attain the best possible performance within computing limitations 
by carefully managing the model’s depth, breadth, and resolution. The 
design incorporates inverted bottleneck blocks, squeeze-and-
excitation blocks, and movable inverted bottleneck blocks, which 
optimize the use of parameters and processing resources. 
EfficientNet-B0 demonstrates exceptional performance, increased 
precision, reduced processing requirements, and adaptability, making 
it suitable for resource-limited settings such as mobile devices and 
edge computing (14).

3.4 Transfer learning

Transfer learning is a potent approach in ML that entails adjusting 
a pre-trained model from one task to another associated task, thereby 
capitalizing on the information acquired during the initial training. 
This strategy dramatically enhances the model’s performance while 
decreasing the need for extensive datasets in the target domain (25). 
Transfer learning allows researchers to optimize specific tasks by 
refining pre-existing CNN models such as ResNet-50, ResNet-101, 

ResNet-152, DenseNet-201, and EfficientNet-B0. These models have 
been extensively trained on datasets like ImageNet (11).

Fine-tuning, an essential component of transfer learning, is 
modifying the model’s characteristics to match the patterns and 
correlations of the target problem. For example, ResNet and EfficientNet 
topologies sometimes improve by including extra dense layers, usually 
256 and 128 units. This method allows models to specialize in activities 
beyond their initial training goals. Transfer learning allows models to 
use the information from pre-training on extensive datasets, enabling 
quicker convergence and enhanced generalization when fine-tuned on 
particular datasets. This strategy simplifies the process of developing 
models and improves performance in different applications (25, 26). The 
demonstration of the employment of transfer learning on ResNet-101 is 
presented in Figure 4, which removes the top layer and adds a new layer.

4 Results and discussion

The experiment was conducted utilizing a system including 
quadruple NVIDIA RTX A6000 GPUs, each equipped with 32 GB of 
memory, resulting in a combined processing capability of 194.8 
TFLOPS. The system also included 64 GB of RAM and an AMD EPYC 
7232P Octa Core CPU.

4.1 Dataset

The ADNI and OASIS datasets comprise human macroscopic MRI 
data, encompassing both individuals in good health and those who 
have received a diagnosis of Alzheimer’s and MCI disease. The ADNI 
and OASIS datasets employed in the investigation, renowned for their 
unrestricted access, provide researchers with invaluable resources for 
examining the human brain’s structural characteristics via MRI 
imaging. These datasets enable inquiries into both typical brain 
anatomy and pathological alterations that are linked to Alzheimer’s 
and MCI disease. The robust prediction model can be integrated with 
the MRI system so that it act as a helpful resource to the doctors.

ADNI: The ADNI dataset, a vast resource for AD progression 
research, uses MRI images to reveal deep brain anatomy. The ADNI 
longitudinal study uses MRI, PET, and other biological markers to 
identify biomarkers for early detection and tracking of AD. It allows 
in-depth analysis of brain area using bottom-to-top brain scanning 
axial visuals, with T1-weighted images improving anatomical 
structure analysis and problem detection. The ADNI incorporates 
several methods for participant and phantom scans. Participants 
undergo scanning utilizing a variety of sequences, including axial T2 
STAR, axial 3D PASL, accelerated sagittal MPRAGE, sagittal 3D 
FLAIR, axial DTI, field mapping, axial rsfMRI with eyes open, and 
HighResHippocampus. The specific sequences may differ depending 
on the scanner’s manufacturer, for example, GE Systems for axial DTI 
scans and Philips Systems for resting-state fMRI and axial T2-FLAIR 
scans. This overview offers essential information on the imaging 
procedures and sequences used in the ADNI dataset. The dataset 
includes MRI scans from over 1,200 participants, each having multiple 
scans over time (4).

The age cohort-specific Alzheimer’s disease progression analysis 
is possible from 20 to 90. Further processing involved extracting 2D 
slices from the original T1-weighted MRI scans and a processed 
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collection after skull stripping. The distribution of these slices across 
different anatomical planes was recorded as follows and given in 
Tables 1, 2.

This breakdown provides detailed insight into the composition 
of the dataset, which is crucial for understanding the distribution of 
data for training and testing purposes across different classes and 
anatomical planes (4). When working with MRI images many 
computational complexity’s need to be considered like image size and 
resolutions. Data augmentation need to be applied so that model has 
good number of images for the training. The preprocessing and 
feature extraction should be robust so that noise can be handled. 
Optimizing these factors is crucial for achieving efficient and effective 
analysis of MRI data in medical applications.

This investigation focused on three classes: CN, AD, and MCI, 
which had corresponding MRI scan counts of 159, 123, and 100, 
respectively. The dataset was partitioned into training and testing sets 
to facilitate deep learning tasks, wherein training comprised 80% of 
the data and testing included 20%. The CN group allocated 127 scans 
for training and 32 scans for testing, whereas the AD group utilized 
99 scans for training and 24 scans for testing. For assessment 
purposes, there are 20 scans for testing of the MCI and 80 scans 
for training.

OASIS: The OASIS dataset is accessible to the public for 
investigation. It comprises cross-sectional MRI data from 416 people 
aged 18 to 96 years. Among these individuals, 100 have been 
diagnosed with AD at a very low to moderate stage. The dataset 
comprises T1-weighted MRI images for each participant, enabling a 

broad spectrum of analytical methodologies. The dataset has 
undergone de-identification, meticulous quality screening, and post-
processing to provide standardized anatomical measurements. The 
inclusion of measures such as estimated total intracranial volume 
(eTIV) and normalized whole-brain volume (nWBV) offers valuable 
insights into the structural changes in the brain associated with aging 
and AD (5, 27). Table  3 shows the train-test (80–20%) split and 
quantity of MRI images for AD, MCI, and CN.

4.2 Performance metrics

Performance metrics quantify deep learning model performance. 
Many performance indicators include accuracy, precision, recall, and 
F1 score. Accuracy is the ratio of real positives and negatives to data 
points. Predicting the majority class may give the model high 
accuracy with imbalanced datasets, which may be misleading. The F1 
score is a metric that combines recall and precision (26). On these 
metrics, precision, and recall calculations are predicated. Recall is the 
percentage of positive instances from the overall count of positive 
cases. At the same time, precision denotes the ratio of accurate 
optimistic predictions to the overall count of positive predictions. 
Incorporating false positives and false negatives, the F1 score is an 
exceptionally effective metric for assessing the performance of 
datasets containing unbalanced classes (28).

The specified CNN model employs the following Hyperparameters:
Although RMSprop is renowned for its capability to modify 

learning rates and manage sparse gradients, a learning rate of 0.02 
may be excessively high and could be improved. The detection of AD 
and MCI are examples of multi-class classification tasks amenable to 
categorical cross-entropy. The batch size 64 frequently balances 
model stability and computational efficiency. Although 50 training 
epochs are a reasonable starting point, the validation loss must 
be closely monitored to prevent overfitting, and early halting should 
be considered.

FIGURE 4

Transfer learning with ResNet-101.

TABLE 1  ADNI axial and coronal planes slices (4).

Class Train Test Total

AD 4,980 1,244 6,224

MCI 4,162 1,040 5,202

CN 6,605 1,651 8,256
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TABLE 4  AD vs. CN vs. MCI (multi-class classification).

CNN Accuracy Precision Recall F1 Score

A O A O A O A O

ResNet-50 83.45 80.12 82.56 79.34 82.34 80.45 82.65 80.23

ResNet-101 98.21 97.45 94.67 93.12 94.89 93.67 94.78 93.45

ResNet-152 97.89 96.91 92.01 90.89 91.78 91.45 91.89 91.23

DenseNet-201 78.23 76.56 78.45 76.34 77.89 76.78 78.01 76.45

EfficientNet-B0 89.67 88.56 89.23 88.45 89.45 88.67 89.34 88.56

4.3 Analysis

This investigation included three types of classification: first, 
multi-class classification in the AD vs. CN vs. MCI classes. The second 
is the Binary classification of AD and CN, and the third is MCI and 
CN. Comparing the predicted and observed labels yielded the 
accuracy of classification.

4.3.1 Multi-class classification (AD vs. CN vs. MCI)
Table 4 compares employed CNNs onto the specified two datasets 

in the investigation of multi-class classification, i.e., AD, MCI, and 
CN. The outcomes presented in Table  4 demonstrate the model’s 
remarkable capacity to differentiate between cases of AD and MCI. The 
experimental results for the three-class classification experiment 
revealed that models become increasingly proficient in handling multi-
class problems, as evidenced by their superior performance.

Quantification was performed on three cerebral components—
white matter, gray matter, and cerebrospinal fluid—as part of the 
assessment of malady severity. The findings presented in Table  5 
illustrate that the group comparing AD to CN to MCI attained 
exceptional levels of ResNet-101 Accuracy, Precision, Recall, and F1 
Score. The findings show significant variations in performance across 
the CNN models in the multi-class classification test for AD, CN, and 
MCI. ResNet-101 scored the maximum accuracy and F1 score across 
both datasets, 98.21 and 94.78% for ADNI and 97.45 and 93.45% for 
OASIS, respectively, proving its ability to discriminate between the 
classes. ResNet-152 followed closely, achieving 97.89% accuracy for 
ADNI and 96.91% for OASIS. EfficientNet-B0, despite performing 
satisfactorily and scoring 89.67% for ADNI and 88.56% for OASIS. The 
F1 scores, which consider both accuracy and recall, reflected the 
patterns found in the individual measures, with ResNet-101 getting 

the most significant F1 scores for both datasets, followed by ResNet-
152 and EfficientNet-B0. These findings indicate that ResNet-101 is 
the best model for this multi-class classification job, followed by 
ResNet-152, with EfficientNet-B0 trailing behind in performance. 
ResNet-101 has the highest accuracy level, meaning it can correctly 
put cases into each class. ResNet-152 and EfficientNet-B0 have lower 
accuracy measurements and fewer correct results. ResNet-101 did 
better than the others in memory to catch more true positives. ResNet-
152 and EfficientNet-B0 had lower scores, which means they missed 
more false positives. Figure 5 illustrates the confusion matrix of the 
ResNet-101.

4.3.2 Binary classification (AD vs. CN)
The outcomes of the binary classification test, distinguishing 

between AD and CN individuals, demonstrate diverse degrees of 
performance and are presented in Table 6. The AD versus CN group 
exhibited the subsequent categorization for the assessment primarily 
because of notable disparities in brain tissue region. The AD versus 
MCI group indices showed a reasonably high value but somewhat 
lower than the AD versus CN group. This observation aligns with 
predictions since MCI is pathologically more similar to AD than 
CN. Consequently, distinguishing between MCI and AD may 
be slightly more challenging. The findings indicated that the ResNet-
101 model attained a notable level of accuracy in accurately 
categorizing the AD. The approach had a 92.34% accuracy in 
differentiating normal controls from AD patients. Again, ResNet-152 
closely follows as the second-highest achiever, exhibiting robust 
performance across all criteria. DenseNet-201 has commendable 
performance but could be a lot better than ResNet-152. Conversely, 
EfficientNet-B0 has the least favorable performance compared to the 
other models. Figure 6 illustrates the confusion matrix of the ResNet-
101 with the ADNI dataset.

4.3.3 Binary classification (MCI vs. CN)
The outcomes of the binary classification of MCI and CN 

individuals demonstrate diverse degrees of performance and are 
presented in Table 7. In the endeavor of classifying MCI from CN, the 
efficacy of CNN models varied across metrics and datasets. ResNet-
152 demonstrated the most exceptional overall performance among 
the assessed models, attaining an accuracy of 90.11% on the OASIS 
dataset and 89.56% on the ADNI dataset. Furthermore, the model 
exhibited high precision, recall, and F1 Score values across both 
datasets, signifying its resilient capability to differentiate between cases 
of MCI and CN. ResNet-101 demonstrated commendable 
performance. According to these findings, deeper CNN architectures, 
namely ResNet-152 and ResNet-101, exhibit notable efficacy in 

TABLE 2  ADNI sagittal planes slices (4).

Class Train Test Total

AD 4,644 1,160 5,804

MCI 3,522 1,200 4,402

CN 3,912 978 4,890

TABLE 3  OASIS class wise instances (27).

Class Train Test Total

AD 390 98 488

MCI 4,800 1,200 6,000

CN 4,800 1,200 6,000
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distinguishing between MCI and CN. Figure 7 illustrates the confusion 
matrix of the ResNet-152 with the OASIS dataset.

The investigation found that ResNet-101 is best performed in the 
multi-classification and binary classification for the ADNI dataset; it 
is also well achieved with the OASIS dataset. The ResNet-101 model’s 
accuracy and loss were used to track and assess the training and 
validation process and presented through Figure  8. ResNet-101’s 
multi-class classification performance improves with time, as shown 
in Figures 8A,B, by showing training and validation accuracy and loss 
throughout epochs.

The training and validation accuracy consistently rises, while the 
training and validation loss consistently decreases, indicating that the 
model successfully integrates information from the training data.

4.4 Ablation study

The present investigation leverages the ADNI and OASIS 
datasets, which include comprehensive human macroscopic MRI 
data on healthy people and Alzheimer’s MCI patients. The ADNI 
dataset uses U-Net to remove the skull and brain, slicing along three 
axes for cross-sectional slices. These slices are quality-checked to 
minimize noise and highlight important MRI imaging areas. 
Prominent deep learning architectures like DenseNet-201, 
EfficientNet-B0, ResNet-50, ResNet-101, and ResNet-152 extract 
complex patterns to identify AD and MCI. The approach allows 
reliable ADNI and OASIS dataset processing, improving 
neurodegenerative condition comprehension and detection. The 
research examined how preprocessing techniques, deep learning 
architectures, and transfer learning methodologies affect the 
performance of models and compared their effectiveness. While 
Gaussian filters are frequently employed to reduce image noise, they 
might not be  the most optimal approach to accentuate critical 
features in MRI data, especially when identifying Alzheimer’s and 
MCI. However, transfer learning is a highly effective method in deep 
learning, the results obtained from fine-tuning with specified 

pre-trained models and their effectiveness. While these models have 
been extensively trained on datasets like ImageNet, the performance 
of the transfer learning approach may have needed to be improved. 
The research examined the effects of incorporating dense layers of 
256 and 128 units into each specified deep learning architecture after 
transfer learning from ImageNet-trained models to the ADNI and 
OASIS datasets. By comparing the efficacy of each architecture with 
and without additional layers, the research seeks to identify the 

TABLE 5  Hyperparameters.

Sr No Parameter Value

1 Optimizer RMSprop

2 Learning Rate 0.02

3 Loss Function Categorical Cross-Entropy

4 Batch Size 64

5 Number of Epoch 20

TABLE 6  AD vs. CN (binary classification).

CNN Accuracy Precision Recall F1 Score

A O A O A O A O

ResNet-50 87.45 85.32 86.78 88.23 86.23 89.45 86.78 87.89

ResNet-101 92.34 90.12 90.02 92.89 90.01 91.34 90.17 91.89

ResNet-152 89.67 88.23 88.78 90.45 88.34 91.23 88.78 89.67

DenseNet-201 85.67 84.12 84.78 86.23 84.45 87.12 84.78 85.67

EfficientNet-B0 78.23 77.45 77.78 79.56 77.89 80.12 77.78 78.23

Predicted

AD CN MCI

AD 2277 127 2

CN 94 1824 2

MCI 1 135 2494

FIGURE 5

Confusion matrix of the ResNet-101 with ADNI dataset.

Predicted

AD CN

AD 2227 179

CN 191 2439

FIGURE 6

Confusion matrix of the ResNet-101 with ADNI dataset.

Predicted

AD CN

AD 1033 167

CN 168 1032

FIGURE 7

Confusion matrix of the ResNet-101 with OASIS dataset.
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TABLE 7  MCI vs. CN (binary classification).

CNN Accuracy Precision Recall F1 Score

A O A O A O A O

ResNet-50 75.23 69.45 80.34 74.56 75.34 68.23 78.45 71.23

ResNet-101 86.57 79.45 92.34 85.23 86.87 78.99 88.76 81.23

ResNet-152 89.56 90.11 93.12 86.12 87.34 79.45 89.23 82.34

DenseNet-201 84.32 77.89 90.45 82.67 84.45 76.78 87.34 79.56

EfficientNet-B0 82.45 76.23 89.12 81.34 82.56 74.93 85.12 78.32

A, ADNI; O, OASIS.

structure that positively influences the distinction between CN, AD, 
and MCI groups the most. It can be deduced from the analysis that 
ResNet-101 exhibited the highest performance among the CNNs, 
with ResNet-152 following suit, whereas EfficientNet-B0 
demonstrated the lowest performance. Across both datasets, ResNet-
101 consistently attained the highest accuracy and F1 score, 
showcasing its efficacy in identifying AD and MCI. In the same way 
that ResNet-101 outperformed ResNet-152, albeit marginally, 

EfficientNet-B0 demonstrated subpar performance, suggesting 
limitations in its ability to classify data, particularly when coupled 
with transfer learning and preprocessing utilizing Gaussian filters.

Table  8 depicts an empirical comparison of AD and MCI 
identification using prominent deep-learning architectures, showing 
that our investigation achieved the maximum efficacy on both datasets.

The analysis of deep learning architectures shows differing degrees 
of performance across various deep learning models. Table 8 presents the 
number of classes, the deep learning architecture used, and the attained 
accuracy. EfficientNet-B2 and 3D-CNN both demonstrated excellent 
accuracy in binary classification tests, suggesting their usefulness in the 
task. DenseNet demonstrated superior performance in a multi-class 
classification job with three classes, highlighting its resilience in 
addressing intricate classification challenges compared to other models. 
ResNet-18 obtained lower accuracy in a different multi-class classification 
scenario, indicating its shortcomings in hard classification tasks 
compared to other models. While in our investigation, the employed 
ResNet-101 obtained the highest accuracy in the multi-class classification 
challenge, showcasing enhanced performance. The findings emphasize 
the significance of choosing a suitable deep learning architecture 
according to the particular classification problem and the intricacy of the 
dataset. The research highlights the subtle variations in performance 
across different deep learning architectures, stressing the need to make 
well-informed choices to enhance model performance for specific tasks.

5 Conclusion

The investigation highlights the crucial use of modern 
neuroimaging and deep learning approaches in diagnosing and 
comprehending neurodegenerative disorders like Alzheimer’s and 

FIGURE 8

ResNet-101 training and validation accuracy (A) and training and 
validation loss (B) on multiclass classification.

TABLE 8  Comparative analysis.

# Classes Deep learning architecture Acc. 
(%)

Ref.

2 3D-CNN 93.00 (16)

2 EfficientNet-B2 93.30 (19)

3
ResNet18, AlexNet, SqueezeNet, 

VGG16, InceptionV3 & DenseNet

82.53 (21)

2 DenseNet 96.51 (30)

3 ResNet-18 69.10 (31)

3 VGG-16 & 19 95.35 (32)

3
DenseNet-201, EfficientNet-B0, 

ResNet-50, ResNet-101, and ResNet-152

98.21 Our
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MCI. The extraction of valuable insights from complicated brain 
imaging using employed datasets ADNI and OASIS, which provide 
comprehensive MRI data, and implementation of advanced 
preprocessing techniques like skull stripping and segmentation 
on ADNI.

The U-Net architecture performed skull stripping on MRI 
images, successfully eliminating non-brain tissues. Specific deep 
learning models, such as DenseNet-201, EfficientNet-B0, ResNet-50, 
ResNet-101, and ResNet-152, were assessed for their ability to detect 
AD and MCI. Transfer learning is a powerful method for improving 
models, especially in situations with little datasets. Performance 
research shows that ResNet-101 regularly outperforms other models, 
followed closely by ResNet-152 with the datasets. ResNet-101 stands 
out as the best performer, attaining the most significant Accuracy 
levels and F1 Score on both datasets. This demonstrates its ability to 
effectively differentiate between people with AD, MCI, and CN 
instances, highlighting its resilience. ResNet-152 performed most in 
distinguishing between MCI and CN instances in a binary 
classification exercise with the OASIS dataset. The findings indicated 
that the CNN models performed well in this multi-class (29) and 
binary classification.

The study yielded promising results, yet several constraints and 
areas for future research remain to be addressed. Variations in model 
performance could stem from dataset characteristics and preprocessing 
methods. Further exploration of diverse preprocessing techniques and 
datasets is crucial to achieving a more comprehensive evaluation of 
model efficacy. While the research focused on a limited range of deep 
learning architectures, investigating additional structures and ensemble 
techniques may further enhance performance. Moreover, delving into 
model architecture choices and identifying biomarkers specific to 
Alzheimer’s and MCI could deepen our understanding of the underlying 
mechanisms of these disorders. Integrating clinical data with 
neuroimaging holds potential to improve diagnostic accuracy and 
prognostic predictions for Alzheimer’s and MCI. Future studies could 
benefit from combining these complementary sources of information 
to develop more robust and reliable predictive models. In the future 
research the research should focus on incorporating multimodality 
images like PET Scan with MRI for the more precise prediction and 
should try to use generative AI models on generating future brain 
images and use if for prediction.
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Comparing circular and 
flexibly-shaped scan statistics for 
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The accuracy of spatial clustering detection is crucial for public health policy 
development and identifying etiological clues. Circular and flexibly-shaped scan 
statistics are widely used for disease cluster detection, but differences in results 
arise mainly due to parameter sensitivity and variations in the scanning window 
shapes. This study aims to analyze the impact of parameter settings on the results 
of these methods and compare their performance in disease clustering detection. 
Using tuberculosis data from Wuhan, China (2015–2019), the study identified the 
optimal parameter settings—MSWS and K-value—for each method to ensure 
accurate clustering. A comprehensive comparison was made using two quantitative 
indicators, the LLR value and cluster size, as well as clustering visualizations. The 
results show that the optimal MSWS parameter for SaTScan is determined through 
a Gini coefficient-based stepwise-threshold-reduction approach, while a K-value 
of 30 is ideal for FleXScan. SaTScan tends to produce more regular clusters, while 
FleXScan often generates more irregular clusters. FleXScan detects fewer clusters 
but with higher LLR values and larger average cluster sizes, although the maximum 
cluster size is smaller. These findings provide valuable insights for optimizing 
disease clustering detection methods and enhancing public health interventions.

KEYWORDS

spatial scan statistics, disease cluster detection, SaTScan, FleXScan, Gini coefficient, 
log-likelihood ratio (LLR), cluster size

1 Introduction

The purpose of spatial cluster detection of diseases is to identify whether clustering disease 
exists and to locate the areas where these clusters occur. This information can provide clues 
for further etiological investigation. Spatial scan statistics have been widely used as a technique 
for detecting disease clusters (1–4). This method was first introduced by Kulldorff, along with 
the freely available SaTScan software, and has since been extended with several different 
statistical models. The method utilizes a likelihood ratio test statistic to evaluate a large number 
of different and overlapping scanning windows. The test statistic is formulated based on a 
probability model depending on the data type, such as the Poisson model for count data. 
However, this method is limited to circular scan windows for detecting compact clusters, 
which may struggle to accurately identify non-circular clusters. Consequently, other 
researchers have proposed alternative approaches that employ different scanning window 
selection schemes, such as elliptical (5–7) and flexibly-shaped windows (8–10).

A popular alternative for detecting clusters with arbitrary shapes is the flexibly shaped 
spatial scan statistic proposed by Tango and Takahashi, which is implemented in the FleXScan 
software. This method employs an adjacency expansion search, scanning adjacent units in the 
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spatial region to detect irregularly shaped clusters (8–10). However, 
the selection of scanning windows in FleXScan is dependent on an 
exhaustive search strategy, which leads to exponential runtime scaling 
as the K-value increases. Here, the K-value is a constant that indicates 
the maximum number of sub-regions allowed within a preset window, 
severing as a crucial parameter in the implementation of the FleXScan 
method. Due to computational constraints, the K-value is typically 
limited to 30, with a default of 15. To address these limitations, Tango 
and Takahashi (10) proposed a restricted version of the flexibly-
shaped scan statistic that focuses exclusively on regions with elevated 
risk. This modified approach offers improved computational efficiency 
and enables the use of a K-value up to 30 (10, 11).

In addition, Speakman et  al. (12) developed the GraphScan 
method for detecting connected clusters of arbitrary shapes in graph 
or network data. This method improves search efficiency by 
incorporating a branch-and-bound depth-first search approach, which 
enhances the brute force algorithm used in FleXScan. Cadena et al. (13) 
presented a framework for network anomaly detection based on scan 
statistics that outperforms existing methods in terms of performance 
and scalability. Meysami M et al. (6) proposed the flexible–elliptical 
scan method, which combines the flexible and elliptic scan methods to 
address their respective limitations and leverage their advantages. 
However, for non-statistical users such as epidemiologists and public 
health researchers, user-friendly software may be more practical than 
introducing new algorithms. Currently, the most commonly used 
methods are still circular and flexibly-shaped scan statistics, which can 
be directly implemented in SaTScan and FleXScan, respectively.

However, both methods face the challenge of parameter setting 
during implementation, as the cluster results are highly sensitive to 
these parameters. For example, the performance of circular spatial scan 
statistics is influenced by the selection of the maximum scanning 
window size (MSWS) (14–16). If the MSWS is too large, the detected 
clusters may be overly large and may include areas with non-elevated 
risk. Conversely, if it is too small, numerous small clusters may 
be  detected. Different MSWS values yield varying cluster sizes, 
locations, and numbers within the same dataset. Although it is 
common to use 50% of the total population as the default setting for 
MSWS in SaTScan, this may result in an overly large cluster. Therefore, 
determining the optimal MSWS value is crucial for the SaTScan 
method. Performance indicators such as sensitivity, specificity, positive 
predictive value (PPV), and Youden’s index (YDI) are typically used to 
select the optimal MSWS (16), but these metrics are often only available 
in simulation studies. Han et al. (17) proposed the Gini coefficient as 
an effective criterion for determining optimal cluster reporting sizes, 
which helps avoid unnecessarily large and less informative clusters. 
This approach has been implemented in SaTScan version 9.3 and has 
shown success with both simulated and real data (18, 19). Another 
indicator, called the maximum clustering heterogeneous set-proportion 
(MCHS-P), was introduced by Wang et al. (16) for selecting suitable 
MSWS. However, the Gini coefficient remains widely used due to its 
direct application through SaTScan, despite some limitations pointed 
out by Li et al. (15) and Wang et al. (16).

The FleXScan method suggests that setting K = 30 theoretically 
helps achieve the optimal maximum likelihood clustering (MLC). 
However, it is important to understand the impact of different 
K-values on the final clustering results. For example, if we set K = 15, 
can we still achieve a good MLC, and what are the differences between 
the two clustering results? Evaluating the influence of K-value requires 
practical analysis and comparison.

The accuracy of spatial cluster detection results is of great 
significance for the formulation of prevention and control policies in 
the region and the detection of further etiology. Spurious cluster 
results, however, may have unnecessary negative impacts on the socio-
economic development of that region (20). Therefore, selecting the 
appropriate parameter settings is important for accurate cluster 
identification. Unfortunately, there is currently no standard reference 
criterion for parameter selection.

Previous studies have demonstrated that different research 
purposes require different parameter combinations for analysis. 
However, most previous studies are based on simulated data with 
specific assumptions, and the conclusions drawn may not be fully 
applicable to real data, which has certain limitations. The optimal 
parameter combination varies with different data, and the conclusions 
of simulation research are often difficult to extend to more complex 
and variable real-world scenarios without sufficient prior knowledge.

Therefore, the purpose of our study is to compare the differences 
between the two different scanning window methods, and to 
determine the optimal parameter settings for each method. This will 
clarify the impact of parameter settings on the results and provide a 
reference for other researchers. We  will utilize real pulmonary 
tuberculosis disease data (at the township level) from Wuhan, 
spanning 2015 to 2019, as our research dataset. We  will provide 
optimal parameter settings for the two scanning window types in 
different years and compare the spatial clustering results obtained 
from these methods.

2 Study area and data

Our study area is Wuhan City, the capital of Hubei Province, 
located in central China. Known as “the River City,” Wuhan is situated 
at the confluence of the Yangtze River and the Han River the largest 
tributary of the Yangtze. This strategic location has made Wuhan a 
crucial transportation hub, connecting various parts of China through 
its extensive network of railways, highways, and waterways. Wuhan 
City comprises 13 county-level units and 164 town-level units, with a 
total area of 8,569.15 square kilometers. As of the end of 2021, according 
to official information, Wuhan had a permanent population of 12.3265 
million, with its population spatial distribution shown in Figure 1. It 
can be observed from the figure that the central urban area is densely 
populated, while the peripheral rural areas are sparsely populated.

The case information for pulmonary tuberculosis in this study was 
obtained from the National Tuberculosis Management Information 
System, specifically the registered and managed medical records of 
pulmonary tuberculosis patients based on their initial diagnosis 
locations from 2015 to 2019. A total of 30,486 pulmonary tuberculosis 
patients were included in the study. We first employed geocoding 
techniques to spatially encode the addresses of the cases and then 
combined this with population demographic data to obtain the 
incidence rate at the township level. Thus, the final research data used 

Abbreviations: LLR, Log-Likelihood Ratio; RR, Risk Ratio; MSWS, Maximum Scanning 

Window Size; MLC, Maximum Likelihood Clustering; MCHS-P, Maximum Clustering 

Heterogeneous Set-Proportion; PPV, Positive Predictive Value; YDI, Youden’s index.
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in this study consisted of the pulmonary tuberculosis incidence ratesin 
Wuhan at the township level from 2015 to 2019.

3 Methods

The study involved determining optimal parameters, visualizing 
incidence and disease clustering results, and conducting a comparative 
analysis. We assessed and compared the performance of both methods 
in detecting disease clusters by evaluating LLR values and cluster size. 
To facilitate comparability, both methods were implemented using the 
same statistical model, specifically the Poisson statistical model.

3.1 Evaluation metrics for comparison

3.1.1 The LLR value
The LLR value quantifies the deviation of observed data from 

random spatial distribution. A higher LLR value suggests a higher 
likelihood of non-random clustering, indicating the presence of 
genuine spatial clusters. Comparing LLR values allows us to assess the 
strength and significance of detected clusters, helping to identify 
meaningful and informative clusters in the analysis.

3.1.2 The cluster size
The cluster size represents the number of sub-regions contained 

within a cluster. Restricting the cluster size may help reduce the 
likelihood of misclassifying random noise as clusters. Tango et al. (8) 
pointed out that it is unlikely for the size of a true cluster to be larger 

than 10–15 percent of the total number of regions. However, this is 
not a fixed rule and may vary depending on the specific research field 
and data characteristics.

3.2 MSWS settings for the circular scan 
statistic

Initially, we attempted to use the same MSWS value for different 
years within the same spatial region. However, this approach proved 
to be  unreasonable, as the spatial distribution of diseases varied 
significantly across different years. To address this issue, we utilized 
Gini coefficients to assist in identifying the optimal clusters. The Gini 
coefficient is a statistical measure of data inequality, which helps 
evaluate the quality of clustering results under different MSWS values. 
A higher Gini coefficient indicates a more uneven spatial distribution 
of the clustering result, suggesting that the clustering results achieved 
at that particular MSWS value possess greater distinctiveness and 
significance in terms of differentiation.

In this study, we tested MSWS values of 5, 10, 15, 20, 25, 30, 40, 
and 50% for each year from 2015 to 2019.We then calculated the 
corresponding Gini coefficients for each MSWS value. The MSWS 
value associated with the highest Gini coefficient was selected as the 
optimal choice. Our analysis revealed that even within the same 
spatial region, the optimal MSWS values varied due to differences in 
the spatial distribution of diseases across different years.

However, we have found in practice that simply using the Gini 
coefficient as a criterion for determining MSWS is insufficient. 
According to the Gini coefficient, the optimal MSWS in 2018 should 

FIGURE 1

Study area.
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be 25%, However, the spatial clustering result at this value includes too 
many sub-regions, with the most likely cluster (MLC) containing 31 
sub-regions and the secondary cluster containing 39 sub-regions. 
Together these two clusters cover nearly 50% of the total number of 
sub-regions. Clearly, the clusters are too large and may contain 
non-clustered areas. Therefore, we predetermined the MSWS value to 
be  10% when the Gini coefficient was the second largest. At this 
MSWS value, the MLC is divided into two small clusters and 
non-cluster regions, resulting in a significant reduction in the number 
of intra-cluster sub-regions. Although the LLR value of the MLC 
decreased, the LLR values of other clusters increased. The results are 
presented in Table 1 and Figure 2.

Finally, considering both the Gini coefficient and the number of 
sub-regions included in the clusters, we  determined the optimal 
MSWS values for this study, as shown in Table 2.

3.3 K-value setting for the flexibly-shaped 
scan statistic

Theoretically, a larger K-value increases the number of candidate 
scan windows that need to be calculated, but it also enhances the 
likelihood of identifying clusters with higher LLR values, indicating a 
higher probability of detecting true clusters. From this perspective, a 
K-value of 30 is ideal. However, to assess the effect of the K-value on 
the final results, we compared the results for K = 15 and K = 30. These 
results are presented in Table  3, and the spatial clusters are also 
presented on the map in Figure 3.

The results indicate that the spatial distribution of clusters is 
roughly the same when K = 15 and K = 30, but there are differences in 
cluster levels, as ordered by descending LLR values. Notably, there are 
variations in the spatial distribution of the MLC and the number of 
sub-regions included. When K = 30, the MLC contains more 
sub-regions and has a higher LLR value. Due to the limitation of the 
K-value, when K = 15, clusters 3 and 5 are identified as two separate 
clusters, with the LLR values of 29.72 and 16.27, respectively. However, 
these two clusters merge into a single, larger cluster when K = 30, with 
the LLR value increasing to 50.02.

3.4 Cluster visualization

To facilitate understanding of the results, we visualize the cluster 
analysis results on the map, using the color brightness to indicate the 

magnitude of the LLR statistical value. Darker colors correspond to 
higher LLR values, suggesting a greater likelihood of true clustering. 
Additionally, we  employ different color lightness on the map to 
represent the incidence rates of townships and streets as a reference 
for the spatial clustering results.

4 Results

4.1 Comparison of SaTScan and FleXScan in 
evaluation metrics

Tables 4–8 present detailed comparison results of the SaTScan and 
FleXScan methods from 2015 to 2019. These tables include 
information on cluster level (ordered by descending LLR values), 
number of sub-regions (i.e., cluster size), number of cases, expected 
number of cases, population, RR value, LLR value, and p value.

By comparing the relevant information of the two methods in 
Tables 4–8, particularly the LLR values and cluster sizes, we find that 
FleXScan identifies fewer clusters than SaTScan, but generally with 
higher LLR values. This suggests that the FleXScan method applies 
stricter criteria for defining clusters, reducing the likelihood of falsely 
identifying non-cluster areas as clusters. Consequently, while 
FleXScan may detect fewer true clusters, it is likely more accurate in 
identifying statistically significant clusters. The higher LLR values 
associated with FleXScan indicate stronger clustering signals, 
reflecting a greater probability of detecting true clusters.

In addition, we measure cluster size by the number of sub-regions 
covered. Tables 4–8 show that FleXScan identifies clusters with a 
larger average size but a smaller maximum size compared to the 
SaTScan method. This suggests that FleXScan tends to recognize 
larger, more consistent clusters but with a less extreme maximum size. 
In contrast, SaTScan produces results with greater variability in cluster 
sizes, indicating more dispersed and variable cluster sizes. 
Consequently, FleXScan demonstrates higher stability in cluster size 
compared to SaTScan, as it produces more consistent cluster sizes 
across different datasets.

Both methods generally produce MLCs of similar sizes, typically 
containing fewer than 16 sub-regions, representing less than 10% of 
the total 164 sub-regions. However, 2017 is an exception, with 
SaTScan’s MLC size reaching 31 sub-regions, compared to 20 
sub-regions for FleXScan. This discrepancy is mainly due to SaTScan’s 
higher MSWS value of 20% in 2017, which was larger than in other 
years and resulted in a larger MLC size.

TABLE 1  Comparison of cluster results with different MSWS values in SaTScan.

MSWS = 25% (2018) MSWS = 10% (2018)

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

MLC 31 1,270 1,861,018 38.70 <0.001 MLC 12 614 815,615 32.70 <0.001

2 39 1,517 2,398,624 22.66 <0.001 2 4 242 279,704 23.58 <0.001

3 2 143 181,846 9.00 <0.001 3 3 111 111,182 17.33 <0.001

4 1 69 60,229 15.43 <0.001

5 13 586 895,986 10.76 0.002
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This difference in performance arises from FleXScan’s use of an 
exhaustive algorithm, which evaluates all potential scan windows to 
pinpoint those with the highest LLR values. This approach allows 
FleXScan to be more precise in detecting clusters and identifying 
significant clustering patterns, as it thoroughly assesses a wide range 
of possible cluster configurations. By contrast, SaTScan utilizes a 
circular scanning window, which can constrain its ability to capture 
irregularly shaped or more complex clustering patterns. The circular 
window’s limitations can result in less accurate cluster detection and 
higher variability in the sizes of detected clusters. Furthermore, the 
SaTScan method, which involves scanning regions with progressively 
larger circles, might miss clusters that are not well-aligned with the 
circular shape or that have non-uniform spatial distributions. This can 
lead to less consistent results and a greater variability in cluster sizes, 
as observed in the data.

4.2 Comparison of SaTScan and FleXScan 
in cluster visualization

Figures 4–8 show the clustering results generated by the SaTScan 
and FleXScan methods in Wuhan from 2015 to 2019 on maps. 
Additionally, pulmonary tuberculosis incidence maps are provided for 
comparison and reference.

To accurately represent the cluster areas, we used the cluster regions 
comprising all polygons whose centroids are enclosed by the cluster 
circle, rather than directly using the cluster circles generated by SaTScan. 

Furthermore, since certain years have numerous cluster levels with only 
a few regions per level (e.g., in 2016, SaTScan identified a total of 10 
cluster levels, many of which included only one sub-region). To improve 
the legibility of the visualization, we categorized the original clustering 
regions into four categories based on LLR values and the number of 
included sub-regions. The legend specifies the number of sub-regions 
in each category, and the MLC was assigned a single distinct category. 
This classification converted the original data into ordinal data, 
represented by different lightness of color in Figures 4–8. The color 
intensity in each map corresponds to the clustering area level determined 
by the LLR value, with darker colors indicating higher likelihoods.

From Figures  4–8, it is evident that the clusters obtained by 
SaTScan are more regular in shape, whereas those identified by 
FleXScan exhibit excessive irregularity. Clusters with highly irregular 
shapes may be less meaningful, as they complicate the assessment of 
geographical significance for practitioners (9, 17).

Overall, the clusters identified by SaTScan and FleXScan generally 
align with the spatial distribution of high-incidence areas, primarily 
located in the suburban districts of Wuhan, which are sparsely 
populated and economically underdeveloped. However, some high-
incidence areas were not identified as clusters, suggesting that the 
elevated incidence rates in these regions may be random. Although the 
spatial coverage of clusters identified by both methods is largely similar, 
there are significant differences in the LLR values and the specific 
sub-regions included. Notably, the spatial distribution of MLCs 
identified by the two methods from 2015 to 2019 differs considerably, 
with the exception of 2017, where the distributions are similar.

5 Discussion

In this study, we undertook a detailed comparative analysis of the 
SaTScan and FleXScan methods for disease clustering using real data 

FIGURE 2

Clusters detected with different MSWS value in SaTScan. (A) MSWS is 25%, (B) MSWS is 10%.

TABLE 2  The selected optimal MSWS value in different years.

Year 2015 2016 2017 2018 2019

MSWS 15% 10% 20% 10% 15%
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from 2015 to 2019. This comparison aimed to explore the strengths 
and limitations of each method in accurately detecting disease clusters.

5.1 Real disease data

Unlike most previous studies that relied on simulated data, our 
research utilized real disease data. Although this limited our ability to 
use common quantitative metrics, such as sensitivity, specificity, PPV, 
and YDI, to determine the optimal parameter settings and compare 
method performance, using LLR values and cluster size as our analysis 
metrics is still appropriate, albeit not entirely comprehensive. 
Nevertheless, real disease data better reflect actual disease distribution 
and trends, enhancing the realism and generalizability of our results 
and providing more reliable support for public health decision- 
making.

5.2 Parameter settings

The Gini coefficient, traditionally used to determine the MSWS in 
SaTScan, has been validated as effective by some researchers (17, 18). 
However, our findings align with those of Li et al. (15), who identified 
limitations in this approach. Specifically, the Gini coefficient measures 
overall distribution uniformity across the entire region and may not 
capture the nuances of smaller, individual clusters when multiple 
clusters are present. This may lead to multiple small clusters being 
combined into one large cluster, resulting in distorted results, as 
confirmed in our study illustrated in Section 3.2. To address this issue, 
we  recommend combining the Gini coefficient approach with a 
gradual reduction in the threshold to accurately identify and separate 
individual clusters, thereby obtaining more reliable clustering results.

FleXScan identifies clusters using LLR values. While setting 
K = 30 is theoretically optimal, our study reveals that focusing solely 

TABLE 3  Comparison of cluster results with different K-values in FleXScan.

2015 (K = 15) 2015 (K = 30)

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

MLC 8 455 477,903 46.16 0.001 MLC 11 645 688,811 62.79 0.001

2 7 314 314,546 37.30 0.001 2 19 738 856,888 50.02 0.001

3 11 490 577,467 29.72 0.001 3 1 70 46,702 22.71 0.001

4 1 70 46,702 22.71 0.001 4 2 72 57,870 15.75 0.003

5 7 215 240,358 16.27 0.001 5 1 72 58,570 15.30 0.004

6 1 72 58,570 15.30 0.001 6 4 111 105,171 15.04 0.004

7 5 223 257,809 14.40 0.001 7 5 223 257,809 14.40 0.006

FIGURE 3

The clusters detected with different K-value in FleXScan. (A) K = 15, (B) K = 30.
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TABLE 4  Comparison of SaTScan clusters and FleXScan clusters in 2015.

SaTScan-2015 (MSWS = 15%) Restricted FleXScan-2015 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Populationin 
risk

RR LLR p - 
value

MLC 12 529 351.0 591,071 1.56 41.78 <0.0001 MLC 11 645 409.0 688,811 1.64 62.79 0.001

2 7 324 214.9 361,950 1.54 24.93 <0.0001 2 19 738 508.8 856,888 1.51 50.02 0.001

3 29 1,035 841.7 1,417,641 1.28 24.225 <0.0001 3 1 70 27.7 46,702 2.54 22.71 0.001

4 1 70 27.7 46,702 2.54 22.70 <0.0001 4 2 72 34.4 57,870 2.11 15.75 0.003

5 1 41 14.8 24,884 2.79 15.68 <0.0001 5 1 72 34.8 58,570 2.08 15.30 0.004

6 1 72 34.8 58,570 2.08 15.29 <0.0001 6 4 111 62.5 105,171 1.79 15.04 0.004

7 5 224 164.7 277,338 1.37 9.89 0.006 7 5 223 153.1 257,809 1.47 14.40 0.006

TABLE 5  Comparison of SaTScan clusters and FleXScan clusters in 2016.

SaTScan-2016 (MSWS = 10%) Restricted FleXScan-2016 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

MLC 8 431 264.5 432,035 1.67 46.21 <0.0001 MLC 9 566 348.3 568,916 1.69 61.09 0.0005

2 1 91 36.4 59,445 2.52 29.02 <0.0001 2 6 388 227.5 371,545 1.75 48.79 0.0005

3 17 604 459.2 749,933 1.35 22.54 <0.0001 3 7 357 245.3 400,657 1.48 23.30 0.0005

4 3 169 109.2 178,290 1.56 14.31 <0.0001 4 4 200 135.9 221,932 1.49 13.53 0.01

5 1 59 27.8 45,394 2.13 13.28 0.0001 5 1 59 27.8 45,394 2.13 13.29 0.01

6 1 14 2.7 4,407 5.20 11.76 <0.0007 6 1 14 2.7 4,407 5.20 11.77 0.03

7 4 248 186.2 304,145 1.35 9.58 0.005

8 1 63 35.8 58,518 1.77 8.44 0.01

9 1 34 25.6 25,420 2.19 8.16 0.02

10 1 52 29.0 47,400 1.80 7.39 0.03
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TABLE 6  Comparison of SaTScan clusters and FleXScan clusters in 2017.

SaTScan-2017 (MSWS = 20%) Restricted FleXScan-2017 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

MLC 31 1,374 1048.8 1,829,721 1.40 56.64 <0.0001 MLC 20 1,126 768.4 1,340,576 1.57 85.03 0.0005

2 3 111 62.7 109,295 1.79 15.34 <0.0001 2 11 511 340.5 594,032 1.55 39.53 0.0005

3 4 215 145.1 253,094 1.50 15.07 <0.0001 3 4 188 128.4 223,975 1.48 12.40 0.02

4 1 64 33.9 59,207 1.90 10.61 <0.0001

5 5 214 163.2 284,795 1.32 7.40 <0.0001

TABLE 7  Comparison of SaTScan clusters and FleXScan clusters in 2018.

SaTScan-2018 (MSWS = 10%) Restricted FleXScan-2018 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

MLC 12 614 441.7 815,615 1.44 32.70 <0.0001 MLC 13 703 495.0 913,950 1.48 42.75 0.0005

2 4 242 151.5 279,704 1.62 23.58 <0.0001 2 11 504 337.7 623,635 1.54 38.05 0.0005

3 3 111 60.2 111,182 1.86 17.33 <0.0001 3 10 509 355.2 655,898 1.47 31.51 0.0005

4 1 69 32.6 60,229 2.13 15.43 <0.0001 4 7 336 228.1 421,252 1.50 23.28 0.0005

5 13 586 485.2 895,986 1.23 10.76 0.002 5 3 213 150.2 277,388 1.43 11.95 0.03
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on the highest LLR values can lead to clusters with highly irregular 
shapes (21–23). Duczmal et  al. (21, 22) have noted that such 
irregular shapes can complicate geographic interpretation and 
suggest that both LLR values and cluster shapes should be considered 
together to achieve clusters that are both statistically significant and 
meaningful. Irregular cluster shapes may arise from specific 
geographic features, population distribution, or data noise and 
might not accurately reflect the actual disease distribution. 
Therefore, considering the regularity of cluster shapes is important 
to avoid misleading interpretations and ineffective public health 
interventions. The current version of FleXScan lacks features to 
control or modify cluster shapes, highlighting the need for further 
developments in this area.

5.3 Computational efficiency

Although both methods can be implemented through software, it 
is essential to discuss their computational efficiency to gain a deeper 
understanding of the differences in their results. The efficiency 
primarily depends on the number of scanning windows that need to 
be calculated.

In the SaTScan method, let the entire study area contain m 
sub-regions. For each region, the scanning radius varies 
systematically from 0 to a predefined maximum (MSWS value), 
centered on each region. If each region has T concentric circular 
windows, the maximum number of windows that need to 
be calculated is m × T.

In contrast, the FlexScan method requires calculating a greater 
number of scanning windows. The process is as follows:

Let iZ  represent region i (1 ≤ i ≤ m), and ikZ  denote the scanning 
window formed by sub-region iZ  and its k-1 connected neighboring 
sub-regions. The basic method for determining these k-1 
sub-regions is:

	(1)	 Calculate the K-1 nearest neighboring sub-regions of iZ  (which 
may not necessarily be adjacent to iZ ).

	(2)	 From these K-1 neighboring sub-regions, select k-1 (noting 
that 1 ≤ k ≤ K) while ensuring that they form a “connected” 
scanning window with iZ .

For example, with k = 4, this means that the scanning window 
consists of iZ  and three neighboring sub-regions. In the worstcase, 
the selection of these three sub-regions can result in 3

1KC −  
combinations. Therefore, theoretically, the FleXScan method may 
need to calculate 12Km −∗ windows in the worst case. Although the 
requirement for “connectivity” among sub-regions means that the 
actual number of scanning windows calculated will be  lower, it 
remains substantial. This is why the FleXScan software typically 
recommends that the value of K should not exceed 30, with a default 
value of 15.

From a computational efficiency perspective, the SaTScan method 
demonstrates higher efficiency, while the FleXScan method is 
comparatively less efficient. Thus, enhancing the computational 
efficiency of the FleXScan method presents a valuable area for further 
research. Both classic methods can currently be implemented directly 
through software, allowing researchers to focus less on their 
computational efficiency. However, any optimizations or T
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improvements based on these methods must inevitably consider 
computational efficiency.

5.4 Result visualizations

This study employed a map visualization method to display the 
spatial distribution of disease clusters, using color brightness to 
indicate risk levels. However, differences in cluster distributions 
from the SaTScan and FleXScan methods are not intuitively 
discernible. Introducing interactive visualization tools would 
enhance the comparison of distribution differences among clusters 
with varying risk levels, improving the clarity and practicality of 
the analysis.

5.5 Limitations

Despite the in-depth comparison and analysis of the SaTScan and 
FleXScan methods, our study has several limitations:

	(1)	 Before applying FleXScan, obtaining a complete spatial 
adjacency matrix for the specific geographic area is crucial. 
Missing spatial adjacency relationships can bias clustering 
results, making preliminary topological checks essential to 
ensure the integrity of the adjacency matrix. In this study, 
we defined the spatial adjacency matrix using queen adjacency, 
which considers shared vertex connections. This may explain 
the irregular cluster shapes produced by FleXScan. Since queen 
adjacency only considers regions sharing a vertex as neighbors, 

FIGURE 4

Spatial distribution map of tuberculosis in Wuhan in 2015. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.

FIGURE 5

Spatial distribution map of tuberculosis in Wuhan in 2016. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.
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it may lack precision, especially for irregular or complex cluster 
shapes. To enhance the accuracy and interpretability of 
clustering results, future research could explore alternative 
adjacency definitions, such as rock adjacency (shared edge 
adjacency) or bishop adjacency (considering both shared 
vertices and edges).

	(2)	 Although our study used multi-year disease data, the cross-
sectional nature of the data limited the use of space–time scan 
statistics, restricting a full assessment of SaTScan and 
FleXScan’s spatiotemporal sensitivity and precision. 
Additionally, our analysis was limited to Wuhan City and did 
not include data from broader scales like Hubei Province. 
Future research should assess these methods across different 
geographical scales, such as provincial or national levels, to 

provide a more comprehensive evaluation and increase the 
generalizability of the results.

	(3)	 Our comparison focused on circular and flexible-shaped scan 
windows. However, elliptical scan windows, which can adjust 
their radii in two directions to better fit non-uniform spatial 
distributions (6), warrant further exploration and evaluation in 
future research.

6 Conclusion

In this study, we  concentrated on determining the optimal 
parameter settings for circular and flexible-shaped scan statistics and 
their effects on clustering results. We also explored the characteristics 

FIGURE 6

Spatial distribution map of tuberculosis in Wuhan in 2017. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.

FIGURE 7

Spatial distribution map of tuberculosis in Wuhan in 2018. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.
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of these two methods and the influence of different scan window 
shapes on accuracy and reliability, offering valuable insights for 
future research.

While the FleXScan method may offer advantages in terms of 
result accuracy, disease spatial clustering patterns are highly complex. 
To mitigate the limitations of a single method, it is advisable to use a 
combination of methods to determine the final clustering results. 
Furthermore, the exploration of disease spatial clustering 
characteristics should be  integrated with the study of influencing 
factors. Investigating clustering patterns not only aids in developing 
more effective prevention and control strategies but also reveals the 
factors and dynamics that influence disease occurrence and spread. By 
integrating these research methods, a more comprehensive 
understanding of disease transmission and its impact can be achieved, 
leading to more targeted and effective intervention measures.
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