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Cannabis sativa L. is an industrially valuable plant known for its cannabinoids, such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), renowned for its therapeutic and psychoactive properties. Despite its significance, the cannabis industry has encountered difficulties in guaranteeing consistent product quality throughout the drying process. Hyperspectral imaging (HSI), combined with advanced machine learning technology, has been used to predict phytochemicals that presents a promising solution for maintaining cannabis quality control. We examined the dynamic changes in cannabinoid compositions under diverse drying conditions and developed a non-destructive method to appraise the quality of cannabis flowers using HSI and machine learning. Even when the relative weight and water content remained constant throughout the drying process, drying conditions significantly influenced the levels of CBD, THC, and their precursors. These results emphasize the importance of determining the exact drying endpoint. To develop HSI-based models for predicting cannabis quality indicators, including dryness, precursor conversion of CBD and THC, and CBD : THC ratio, we employed various spectral preprocessing methods and machine learning algorithms, including logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB). The LR model demonstrated the highest accuracy at 94.7–99.7% when used in conjunction with spectral pre-processing techniques such as multiplicative scatter correction (MSC) or Savitzky–Golay filter. We propose that the HSI-based model holds the potential to serve as a valuable tool for monitoring cannabinoid composition and determining optimal drying endpoint. This tool offers the means to achieve uniform cannabis quality and optimize the drying process in the industry.
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1 Introduction

Cannabis sativa L. is a valuable industrial plant used as a raw material for producing various products including seed, oil, drugs, medicine, and fiber. Notably, cannabis plants contain cannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), which possess medicinal and psychoactive properties (Amin and Ali, 2019). In the cannabinoid biosynthesis pathway, both cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA) serve as precursors for these active compounds. These acidic forms are synthesized from a single compound, cannabigerolic acid (CBGA), which are catalyzed by oxidocyclase enzymes (Tahir et al., 2021). Nonenzymatic thermal decarboxylation during heat exposure converts CBDA and THCA into their neutral forms CBD and THC, respectively. Typically, these end products are not present in growing cannabis but are typically formed through postharvest drying processes.

Drying is a crucial postharvest step in cannabis processing. Cannabis flowers contain approximately 80% water, and the drying process primarily prevents microbial growth and facilitates long-term storage (Lazarjani et al., 2021). Decarboxylation of cannabinoids is heat-induced; thus, the drying temperature and conditions, including humidity and pressure, are critical determinants affecting product quality (AL Ubeed et al., 2022). Turner and Mahlberg (1984) found that decarboxylation occurred when the leaves dried at 60°C, while at 37°C only cannabinoid acids were detected. According to Chen et al. (2021), hot-air drying increased CBDA conversion rate and decreased drying time as the temperature increased from 40°C to 90°C. The conventional drying method involves hanging and air drying in well-ventilated rooms, maintaining a temperature range of 18–21°C and a relative humidity of 50–55% (Challa et al., 2021). These conditions were designed to mitigate unwanted alterations in cannabis composition during the post-harvest process. However, current practices result in longer processing times, unnecessary expenses, and an increased risk of contamination (Das et al., 2022). Unfortunately, there are no established or predictive models for determining drying endpoints or total drying times. Moreover, even with identical drying conditions, dryness may vary considerably based on factors such as drying facility, flower size, and overall conditions. The adoption of real-time diagnosis technology for cannabinoid quality could potentially resolve issues related to drying endpoints and durations.

Hyperspectral imaging has emerged as a powerful tool for monitoring plant physiology and evaluating food quality in agriculture (Lu et al., 2020). Using the technologies, Jin et al. (2017) developed a model for predicting leaf water content, one of the important parameters for photosynthesis and biomass efficiency in Miscanthus plants. Jung et al. (2022) developed a diagnostic model for gray mold disease, including identification of asymptomatic infection sites on strawberry leaves. In particularly, the technologies for postharvest quality control have been developed, such as diagnosis of senescence status in broccoli plants during storage (Kabakeris et al., 2015), prediction of dietary fiber contents in fresh-cut celeries during storage (Yan et al., 2017), and prediction of anthocyanin content in purple sweet potato slices during drying process (Liu et al., 2017). In previous studies on cannabis, hyperspectral imaging has been utilized for plant identification (Pereira et al., 2020) and predict CBD and THC content (Lu et al., 2022).

The advantages of hyperspectral imaging, such as its speed, reliability, and non-destructiveness, broaden its potential use as a quality control technology for plant products (Kiani et al., 2018). However, extracting valuable information from high-dimensional data laden with redundant information and undesired noise owing to the measurement conditions is a significant challenge in hyperspectral image analysis (Saha and Manickavasagan, 2021). Therefore, the use of efficient algorithms and data-processing techniques is essential. Several spectral preprocessing techniques, including the Savitzky–Golay filter (SG filter), derivative (Der), and multiplicative scatter correction (MSC), have been utilized to address scattering, reduce noise, and enhance spectral features (Vidal and Amigo, 2012; Yoon et al., 2023). Machine learning algorithms provide an opportunity to establish classification or regression models that utilizes an extensive range of predictors in hyperspectral imaging, including logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB) (Saha and Manickavasagan, 2021).

Our study aims to confirm the hypothesis that CBD and THC concentrations change as drying progresses, regardless of consistent moisture content and weight. We developed a nondestructive method to evaluate the quality of cannabis flowers during drying using hyperspectral imaging and machine learning. To achieve this objective, we collected data on cannabinoid levels in flowers subjected to different drying conditions and durations. Several spectral preprocessing techniques, such as the SG filter, 1st Der, 2nd Der, and MSC, have been applied with several machine-learning algorithms, such as LR, SVM, KNN, RF, and GNB. The resulting model has the potential to monitor cannabis quality, optimize drying endpoints and duration, and enhance drying processes in the cannabis industry.




2 Materials and methods



2.1 Plant material and growth conditions

For this study, we utilized medical cannabis plants (C. sativa L.), specifically the ‘Cherry Blonde’ cultivar (Blue Forest Farms, NY, USA). The seeds were germinated in 40-mm peat pellets (Jiffy International, Kristiansand, Norway) using tap water in an indoor farming system. The growth conditions consisted of an air temperature of 24 ± 2°C/18 ± 2°C (day/night), relative humidity of 60 ± 5%, light intensity at a photosynthetic photon flux density (PPFD) of 200 µmol m–2 s–1, and 16-h photoperiod. After two weeks, the emerged seedlings were transferred to a cocopeat (chip: peat = 1:1) growbag (CocoGrow Cube 8.4 L, SJ Corp., Damyang, Korea). Irrigation was carried out using a drip irrigation system with a Hoagland nutrient solution. During the vegetative phase, all plants were grown under the identical conditions, except for the light intensity (PPFD of 400–450 µmol m–2 s–1) reaching the top of the plants. Cannabis flowers were induced by a short-day photoperiod, reducing light exposure from 16 h to 12 h during the reproductive phase. After 8 weeks of short-day conditions, we collected approximately 1 kg of fully matured female flowers for experimental and data-tracking purposes.




2.2 Drying conditions

Cannabis flowers were dried in six open plastic trays each under two drying and relative humidity conditions: hot-air drying (59 ± 3.6°C and 10 ± 3.7%) and cool-air drying (19 ± 1.2°C and 44 ± 8.2%). The cool-air drying conditions were similar to the traditional air-drying conditions (Challa et al., 2021). The air temperature and relative humidity were measured and recorded at 20-min intervals using a temperature and humidity data logger (RC-51H; Elitech Technology, Inc., Milpitas, CA, USA). The changes over time under these drying conditions are shown in Supplementary Figure S1. The flowers in each tray were weighed before drying and at 2, 4, 7, and 9 days post-drying. The relative weight change and relative water content (RWC) were calculated as follows:

[image: Relative weight change in percentage is calculated using the formula: \( w_f / w_0 \times 100 \), where \( w_f \) is the final weight and \( w_0 \) is the initial weight.]	

[image: Formula for Relative Water Content (RWC) shown as RWC (%) = ((wt - wo × DM) / wt) × 100.]	

where wt is the weight at time t, w0 is the fresh weight at harvest, and DM is the ratio of dry matter (DM = 0.21894) measured from flowers of the same cultivar. Flower samples were collected twice from five trays per treatment to obtain hyperspectral images and cannabinoid data for model development. For tracking data, weight and hyperspectral imaging data were collected from a single tray under each of the two drying conditions.




2.3 UHPLC analysis for cannabinoids

Flower samples were collected prior to drying and at 2, 4, 7, and 9 days after drying. Subsequently, the samples were promptly immersed in liquid nitrogen and were freeze-dried at –80°C. The lyophilized samples were ground finely, and the powder (1 g) was extracted using methanol (16 mL) under sonication at 50°C for 20 min. The extracts were centrifuged, filtered through a 0.22 µm membrane filter (Whatman, Maidstone, UK), and concentrated using a nitrogen gas evaporator. These concentrated extracts were then re-dissolved in DMSO to achieve a concentration of 10 mg/mL and stored at –80°C before analysis. The samples were diluted to 0.1 mg/mL with methanol before injection into an ultra-high-performance liquid chromatography (UHPLC) system. To quantify the target compounds, four standards (CBDA, CBD, THCA, and THC) were purchased from Cerilliant (Cerilliant Corp., Round Rock, TX, USA) and dissolved in acetonitrile at a concentration of 1 mg/mL. UHPLC analysis was performed using a Shimadzu Nexera X3 UHPLC system (Shimadzu Corp., Kyoto, Japan), equipped with two pumps (LC-40B), a column oven (CTO-40C), an autosampler (SIL-40C), and a photodiode array (SPD-M40). Separations were achieved on a YMC-Triart C18 column (100 × 2.0 mm, 1.9 µm; YMC Co., Ltd., Kyoto, Japan), with a mobile phase composed of 0.2% formic acid in both water (A) and acetonitrile (B). The gradient elution was set as follows: 75% B for 0–4 min, linear increase to 90% B in 4–10 min, decreased to 75% B within the next 0.5 min and re-equilibrated to initial gradient 75% B until 13 min. The column temperature was 30°C. The sample injection volume was 5 µL.




2.4 Hyperspectral image collection and processing

The hyperspectral imaging system consisted of a hyperspectral imaging camera (MicroHSI 410 SHARK, Corning, NY, USA) and eight 20 W halogen lamps placed within a movable stage in a dark chamber (Figure 1). The camera captured line-scan images with 150 spectral bands in the 400–1,000 nm range at a rate of 100 mm/s. The hyperspectral images were obtained at a spatial resolution of 682 × 1,540 pixels. Each round of scanning involved five samples for the experimental data and one tray for the tracking data. Hyperspectral data were examined within Python 3.9 environment (Python Software Foundation, Wilmington, DE, USA) using the Spectral Python (SPy) library.

[image: Diagram of a hyperspectral imaging setup and data processing. Panel A shows a hyperspectral camera in a dark box with motors on the x and y axes, light sources, and a sample. Panel B illustrates data acquisition and analysis: a grayscale image of a sample, a 3D spectral data cube labeled with "150 bands" and "spatial pixels," and a selection of regions of interest (ROI) with color differentiation.]
Figure 1 | Hyperspectral imaging system (A) and description of hyperspectral data processing (B) in this study. The regions of interest (ROI) were selected through a threshold technique.

A threshold technique was used to eliminate the background from the hyperspectral cube data. A normalized band difference (NBD) was calculated using reflectance values at 764.74 and 684.69 nm, where NBD = (R764.74 – R684.69)/(R764.74 + R684.69) and R denotes the reflectance values at the wavelength in a single pixel. A threshold was applied to the images to enhance the contrast between the plants and background, and pixels with NBD > 0.3 were selected as regions of interest (ROI) (Figure 1B). Classification data were collected by extracting multiple ROI from 90 hyperspectral images. Only regions with 20 × 20 pixels covering more than 70% of the ROI were selected without overlapping were selected, resulting in 27–73 data points for each sample. An average spectrum was extracted from each data point, and a total of 4,707 spectral data were used to develop the classification model.




2.5 Model development for quality classification

Four quality characteristics, namely dryness, CBDA conversion, THCA conversion, and CBD : THC, were categorized into two or three classes based on RWC and cannabinoid content (Table 1). To determine the classes of each characteristic, we conducted a sensitivity analysis for each range using the raw spectrum and a logistic regression model (Supplementary Figure S2).

Table 1 | Classification class for quality of cannabis flowers during drying process.


[image: Table displaying data on quality classes of plant materials with columns for total, calibration, and prediction. Dryness includes Extreme Dried, Dried, and Fresh. CBDA conversion and THCA conversion are categorized by low, middle, and high percentages. The CBD to THC ratio features High and Extreme High C:T classes. Total, calibration, and prediction numbers are presented for each class. Definitions: RWC (Relative Water Content), C/TC (CBD percentage of total CBD), T/TT (THC percentage of total THC), C/T (ratio of total CBD to total THC).]
To predict and classify the quality traits of harvested cannabis flowers, we compared combinations of different spectral preprocessing methods and machine learning algorithms. Five spectral preprocessing methods were used: raw spectrum, SG filter with a third-order polynomial fit with five data points: 1st Der, 2nd Der, and MSC. The pre-processed average spectra are shown in Supplementary Figure S3. Five machine learning algorithm classifiers were used: LR, SVM, KNN, RF, and GNB. We applied the one-vs.-rest method to binary classification algorithms, such as LR and SVM, for multiclass classification. The model implementation was programmed in Python 3.9 based on SciPy and the scikit-learn package.




2.6 Model evaluation and statistical analysis

For model development and evaluation, the dataset was randomly divided into calibration and prediction sets in a ratio of 8:2. The calibration set was used to train the models and determine the spectral preprocessing method and classifier based on the highest accuracy using 10-fold cross- validation. The final model was subsequently evaluated using the prediction set, and the results were presented as a confusion matrix and receiver operating characteristic (ROC) curve. The four evaluation metrics were computed from the confusion matrix values, as follows:

[image: Equation for accuracy: Accuracy equals the sum of true positives (TP) and true negatives (TN) divided by the sum of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).]	

[image: Formula depicting precision in machine learning: Precision equals true positives divided by the sum of true positives and false positives, represented as TP over TP plus FP.]	

[image: Formula for recall in machine learning, expressed as Recall equals True Positives divided by the sum of True Positives and False Negatives.]	

[image: F1-score formula: F1-score equals two times precision times recall divided by the sum of precision and recall.]	

where TP is true positive; FP, false positive; TN, true negative; and FN, false negative. Accuracy is the ratio of correct estimates to all predictions, and precision is the ratio of correct estimates to all positive predictions. The F1-score is defined as the harmonic average of recall and precision, indicating the overall accuracy of the classification. The ROC curve represents the changes in the true positive rate (recall) and false positive rate by the threshold. The area under the curve (AUCROC) was calculated from the ROC curve to evaluate the predictive performance of the models. To confirm the applicability of the final model for monitoring, we tested it on tracking data.

The weight and cannabinoid content of the cannabis flowers were compared using two-way ANOVA and Tukey’s honestly significant difference (HSD) test to assess the effects of the drying method and period. Statistical analyses were performed using R software (R 4.2.2; R Foundation, Vienna, Austria).





3 Results



3.1 Changes in weight and water content of cannabis flowers during drying process

The relative weight and water content of the cannabis flowers decreased rapidly during the initial two days of drying under both hot- and cool-air conditions (Figure 2). In particular, flowers subjected to hot-air conditions were completely dried after two days, with no significant changes observed in weight and RWC. During the nine days of the drying period, RWC declined from 78.1% to 12.7 ± 0.9% under cool-air conditions and 3.6 ± 1.4% under hot-air conditions.

[image: Two line graphs depict changes over a drying period. The top graph shows relative weight change (%) and the bottom graph shows relative water content (%). Both graphs compare hot air (red line) and cool air (blue line) treatments. Initially, both treatments show a sharp decline in values, stabilizing around day two. Hot air results in lower final values than cool air across both graphs. Each data point is labeled with letters, indicating statistical significance.]
Figure 2 | Relative weight change and water content of cannabis flowers during the drying period according to drying method: hot-air and cool-air drying. Circle and vertical bars indicate mean ± SD (n = 6). Different letters indicate significant differences among drying method and period at p< 0.05 by two-way ANOVA and Tukey’s HSD test.




3.2 Spectrum and color changes of cannabis flowers during drying process

The average spectra of the hyperspectral images revealed the spectral reflectance of cannabis flowers, and the variations were more closely associated with the drying method than to the drying duration (Figure 3). The drying-induced changes in reflectance were categorized into four ranges, and representative spectral images are shown in Figure 4. The reflectance at wavelengths below 552.61 nm was lower after hot-air drying compared to other drying conditions. In contrast, higher values were observed in the range of 556.61–612.65 nm after cool-air drying in comparison to alternative conditions. For spectra within the wavelength range of 616.65–708.7 nm, the highest values were observed after cool-air drying, followed by hot-air drying, with the lowest levels prior to drying. Notably, reflectance in the range of 720.71–884.81 nm experienced a rapid decrease under both drying conditions, with the most pronounced decline observed after only two days of hot-air drying. Conversely, cool-air drying resulted in gradual decrease over a longer drying period.

[image: Line graphs show spectral reflectance over wavelength for hot air (A) and cool air (B) conditions over time intervals of 0, 2, 4, 7, and 9 days. Reflectance ranges from 0 to 80% across wavelengths of 400 to 1000 nanometers, with noticeable changes across time in both conditions.]
Figure 3 | Spectral changes of cannabis flowers during the drying period (0, 2, 4, 7, and 9 days) according to drying method (A, hot-air drying; B, cool-air drying). Solid lines and shaded areas indicate mean ± SD (n = 10).

[image: Spectral imaging of plant material at different wavelengths: 548.61 nm, 600.64 nm, 660.67 nm, and 800.76 nm. Images show material before drying and after nine days of hot and cool air drying. Color scale indicates reflectance percentage from 0 to 15 for the first three wavelengths and 0 to 80 for 800.76 nm and photographic images.]
Figure 4 | Spectral images of cannabis flowers before and after 9 days of drying by hot-air and cool-air drying. Color indicates spectral reflectance at 548.61, 600.64, 660.67, and 800.76 nm, respectively.




3.3 Changes in cannabinoids of cannabis flowers during drying process

Cannabinoids, such as CBDA, CBD, THCA, and THC, underwent significant changes during the drying process (Figure 5). The results of the two-way ANOVA revealed that the drying method, drying period, and their interaction considerably influenced cannabinoid content (p< 0.01), except for total CBD. Total CBD concentration was significantly affected by the duration of drying, whereas the drying method (p = 0.065) and their interaction (p = 0.098) were not significant. Under hot-air conditions, CBDA gradually declined between days 4–9 of drying, resulting in a 65.4% decrease at day 7 compared to the initial value. However, the CBD content rapidly increased after hot-air drying, surging by a 20.1-fold after 7 days of drying compared to the initial value. The total CBD content peaked at 48 h post hot-air drying, with a 59.1% increase from the initial value. After 7 days of hot-air drying, THCA, THC, and total THC concentrations reached their highest levels, increasing by 1.7-, 41.1-, and 2.7-fold, respectively, compared to their pre-drying levels. Meanwhile, under cool-air conditions, CBDA and THCA reached their maximum values after 4 days of exposure, showing increases of 62.3% and 81.2%, respectively, compared with their levels before drying. However, no significant differences were observed in CBD and TCH levels during the cool-air drying period. After 4 days of exposure to cool-air drying, the total CBD and total THC levels increased by 64.8% and 87.2%, respectively, compared to their initial levels before drying.

[image: Six bar graphs depict the effects of hot and cool air on cannabinoid content during different drying periods. Graphs A (CBDA), B (CBD), and C (Total CBD) show cannabinoid levels in red for hot air and blue for cool air. Graphs D (THCA), E (THC), and F (Total THC) depict similar comparisons. The y-axis represents cannabinoid concentration in micrograms per milligram of dry weight (µg mg⁻¹ DW), while the x-axis shows drying periods from zero to nine days. The graphs include error bars and labeled significance groups.]
Figure 5 | Cannabinoid concentration in cannabis flowers during the drying period according to hot-air and cool-air drying methods: CBDA (A), CBD (B), total CBD (C), THCA (D), THC (E), and total THC (F). Bars and vertical bars indicate mean ± SD (n = 10). Different letters indicate significant differences among drying method and period at p< 0.05 by two-way ANOVA and Tukey’s HSD test.




3.4 Cannabis quality assessment models based on hyperspectral imaging

As a result of the 10-fold cross-validation (CV), the spectral preprocessing method and machine learning model were determined for each quality characteristic (Figure 6). The LR model had the highest overall accuracy when coupled with the MSC, SG filter, or raw reflectance, followed by the RF model with 2nd Der. Regarding the classification of dryness, THCA conversion, and CBD : THC, the LR model with MSC preprocessing achieved the highest 10-fold CV accuracies of 0.9979, 0.9450, and 0.9570, respectively. To classify the CBDA conversion, the LR model with the SG filter method was selected owing to its CV accuracy of 0.9862.

[image: Bar charts display model accuracy for different spectral pre-processing methods across four conditions: A) Dryness, B) CBDA conversion, C) THCA conversion, D) CBD:THC. Models include LR, SVM, KNN, RF, GNB. Pre-processing methods are raw reflectance, SG filter, first derivative, second derivative, MSC, with accuracy ranging from zero to one.]
Figure 6 | Accuracy of 10-fold cross validation results for dryness (A), CBDA conversion (B), THCA conversion (C), and CBD : THC (D) according to spectral data pre-processing methods and machine learning models.

The selected models were evaluated using five metrics, and they demonstrated high accuracy in predicting each quality characteristic (Table 2). The prediction accuracy closely aligned with the CV accuracy of each model. All confusion matrices and ROC curves used to calculate these metrics are detailed in the (Supplementary Figures S4, S5). Only the THCA conversion model exhibited precision, recall, and F1-score values lower than the accuracy values, indicating an imbalance among the classes. Among the THCA conversion classes, the high THC% class contained a relatively small amount of data (10% of all data), which consequently led to lower precision, recall, and F1-score values (Table 1, Supplementary Figure S4).

Table 2 | Prediction performance of the selected model for cannabis quality in the test set.


[image: Table showing prediction performance for quality metrics. Metrics include dryness, CBDA conversion, THCA conversion, and CBD:THC. Spectral pre-processing uses MSC or SG filter. Logistic regression (LR) model results: dryness has 99.7% accuracy, CBDA conversion 98.1%, THCA conversion 94.7%, CBD:THC 95.8%. AUC values are 1.00 for dryness and CBDA conversion, 0.99 for others.]



3.5 Application for cannabis quality assessment during drying process

The dryness level did not significantly change following hot-air drying, whereas other quality aspects, particularly the CBDA conversion, and CBD : THC ratio, showed variations (Figure 7). A prediction model based on hyperspectral imaging can be extended from single-pixel-level classification to visualize the distribution of each class. The developed models were used to monitor the cannabis quality during the drying process. This model facilitated the continuous tracking of cannabis quality through changes in compounds during the drying process.

[image: Predicted maps display the dryness and conversion rates of CBDA and THCA under hot and cool air drying over nine days. Dryness, CBDA conversion, and THCA conversion are color-coded: fresh (blue), dried (orange), extreme dried (red), low percentage (blue), middle percentage (orange), and high percentage (red). Hot air drying shows rapid dryness and conversion changes, while cool air drying results in slower changes. The bottom row presents predicted CBD:THC ratios, with high and extreme high ratios indicated by orange and red, respectively.]
Figure 7 | Application for quality monitoring of cannabis flowers in drying method and period: dryness (A), CBDA conversion (B), THCA conversion (C), and CBD THC (D). Colors represents the predicted class. Percentage values indicate the proportion of the class occupied by plant pixels.





4 Discussion

We investigated the changes in cannabis quality during the drying process and devised a nondestructive method for evaluating the quality of cannabis flowers using hyperspectral images with machine learning algorithms. Although the weight and RWC remained constant during the drying process, the concentrations of CBD, THC, and their precursors varied depending upon the drying conditions. Therefore, cannabis quality is inevitably determined by drying endpoints and conditions.



4.1 Changes in cannabinoid composition in cannabis plants

Major cannabinoids, including CBDA, CBD, THCA, and THC, share a biosynthetic pathway that connects to the precursor molecule, CBGA (Tahir et al., 2021; Govindarajan et al., 2023). This biosynthesis predominantly occurs within the trichomes of cannabis plants (Livingston et al., 2020; Tanney et al., 2021), which develop in various parts of female cannabis flowers. While trichome development may vary among different genotypes, it typically begins gradually after the onset of flowering, with a significant increase observed at approximately 3–4 weeks as female flowers take form. As the trichomes continue to mature, they synthesize and accumulate cannabinoids. However, the senescence phase begins at approximately 8 weeks after flower anthesis, and resin secretion gradually decreases (Punja et al., 2023).

Cannabinoid trichomes can be categorized into four types: non-secretory, sessile capitate, pre-stocked capitate, and stocked-capitate trichomes (Hammond and Mahlberg, 1973). The heads of the stocked-capitate trichomes are protected by a cuticle layer. Within the lower part of these trichome heads, 12–16 disc cells can be found where cannabinoid synthesis occurs (Hammond and Mahlberg, 1973; Small and Naraine, 2016; Livingston et al., 2020). In contrast, the upper part of the resin accumulated various secondary metabolites, including cannabinoids, terpenes, organic acids, and polysaccharides (Jin et al., 2020; Livingston et al., 2021; Tanney et al., 2021). Cannabidiolic acid synthase (CBDAS) and Δ9-tetrahydrocannabinolic acid synthase (THCAS), responsible for the synthesis of THCA and CBDA, respectively, from CBGA, are equipped with secretory signal peptides that guide them to the resin. CBDAS and THCAS, once secreted into the extracellular space, catalyze the conversion of CBGA to Δ9-THCA and CBDA (Taura et al., 2007).

Remarkably, trichomes maintain their physical integrity even after the drying process owing to the protective cuticle layer covering their heads. This preservation of trichome heads suggests that no spatial limitations hinder the catalytic activity of THCAS and CBDAS during the drying period (Taura et al., 2007; Meija et al., 2022). This study provides limited evidence to support the preserved functional capacity of cannabinoid synthesis (Figure 5). Further research is needed to understand the relationship between trichome preservation and precursor turnover during drying.

Cannabinoid acids, such as CBDA and THCA, are readily decarboxylated and stabilized by heat during the drying process (Tahir et al., 2021; Govindarajan et al., 2023). Excessive heat can lead to the loss of the synthesized cannabinoids. Although the drying temperatures applied in this experiment were not high enough to cause significant cannabinoid loss (Wang et al., 2016; Das et al., 2022), prolonged drying can cause such loss (Addo et al., 2021; Chen et al., 2021). Therefore, determining the drying endpoint supports a smooth and stable transition to the next step.




4.2 Cannabis quality in industrial processes

The industrial decarboxylation process is crucial for extracting the active components, CBD and THC, through heating at a relatively high temperature, approximately 100°C, for a short reaction duration (Wang et al., 2016). In this study, CBDA conversion gradually increased with longer drying times, reaching 83.2% after 9 days of hot-air drying (Figure 5). CBD chemotype plants with a CBD : THC ratio of approximately 25:1 are commonly used in medical-grade products (Chandra et al., 2017). The ‘Cherry Blonde’ cultivar used in this study is a CBD chemotype cannabis with low THC levels, with a CBD : THC ratio of 36:1 at harvest. Under hot-air conditions, the ratio increased to 55:1 at 2 days after drying and subsequently decreased to 22–15:1 at 4–9 days after drying (Figure 5). The THCA conversion followed a similar pattern, peaking at 62.5% 2 days after hot-air drying and subsequently decreasing to 41.5–33.5% during days 4–9. In contrast, under cool air conditions, the conversion rates of CBDA and THCA and the CBD : THC ratio remained below 6% and in the range 29–36:1, respectively. These findings suggest that cool air can effectively maintain the conversion rates and desired ratios. Although additional decarboxylation process is required for medical-grade cannabis production, preservation is a suitable postharvest strategy, particularly for extended transportation and storage, ensuring a longer shelf life (AL Ubeed et al., 2022).

Each class of the four qualities in the present study was determined as the range that could be best classified through sensitivity analysis (Supplementary Figure S2). A criterion for classifying the industrial quality of cannabis is required to accelerate the development of quality control technologies.




4.3 Hyperspectral imaging analysis with spectral pre-processing and machine learning

We established a hyperspectral imaging-based model for evaluating cannabis quality during the drying process, including dryness, CBDA conversion, THCA conversion, and CBD : THC ratio. Extracting valuable information from hyperspectral data is challenging because of high dimensionality, redundancy, and noise (Saha and Manickavasagan, 2021). To make hyperspectral imaging applications more adaptable for real-time use, efficient algorithms and data processing techniques are necessary.

The most common practices of spectral preprocessing used in this study were derived from chemometric techniques, including the SG filter, 1st and 2nd derivatives, and MSC (Supplementary Figure S3). The SG filter is one of the most well-known smoothing methods for denoising, such as instrumental noise or extreme band rejection. It is also used to interpolate spectral data that can be used for other transformations, such as derivatives. In particular, the hyperspectral imaging of plants requires additional correction techniques because of the variability arising from these complex geometries (Mishra et al., 2017). Derivative techniques effectively reduce the additive effects as a constant offset and linear baseline shift. These techniques not only emphasize spectral features but also increase noise levels in the data (Vidal and Amigo, 2012). MSC is widely used to compensate for additive or multiplicative effects, i.e., both light scattering and baseline shift corrections. In this study, preprocessing methods, except for the SG filter, significantly affected the accuracy of the models (Figure 6, Supplementary Figure S3). The similarity in model accuracy between the SG filter and the raw spectrum may be attributed to the stable conditions in the dark chamber, which indicate minimal noise from the measurement environment (Figure 1).

Among the various machine-learning algorithms, we used common supervised classification methods, including LR, SVM, KNN, RF, and GNB. In this study, LR models exhibited the highest accuracy in predicting the four qualities when coupled with the MSC or SG filters (Figure 6). LR is a probability-based algorithm based on a logistic (sigmoid) function that calculates the probability of a binary outcome (Saha and Manickavasagan, 2021). The probability (P) with multiple variables has the following general form:

[image: The formula depicts the logistic regression equation: P equals one divided by one plus e raised to the negative power of the sum of beta zero plus beta one times X one plus beta two times X two, and so on, up to beta n times X n.]	

where X1 to Xn are distinct independent variables; β0 to βn are the regression coefficients. When the number of samples or predictors is limited, e.g., in the field of clinical prediction models (Christodoulou et al., 2019; Nusinovici et al., 2020), LR is considered more suitable than other machine learning models. However, the predictor variables in the hyperspectral image-based model were wavelength bands, and the number was not small (150 in this study). Because of the assumption of a linear relationship between the features and class labels, LR may not effectively capture complex nonlinear relationships. For instance, LR models have limitations in inferring relationships between gene expressions in large-scale profiling (Chen et al., 2016). In this study, the accuracy of the LR model was low only when combined with the 2nd Der pre-processing, likely due to the increased feature complexity (Figure 6). In contrast, the accuracy of the SVM, KNN, RF, and GNB models increased when combined with 1st or 2nd derivatives compared with other preprocessing methods (Figure 6). These models are appropriate for handling non-linear relationships. SVM is an algorithm that determines the hyperplane that maximizes the distance between different classes in the data. It was designed to resolve overfitting issues when dealing with high-dimensional data (Noble, 2006). KNN is an instance-based algorithm that assigns data to the major class among its k nearest neighbors, where k = 5 in this study (Rehman et al., 2019). RF is a bagging algorithm that constructs multiple decision trees and combines their predictions (Breiman, 2001). In previous studies using hyperspectral data, SVM and RF models were more accurate than the KNN model in predicting nitrogen accumulation in legume plants (Flynn et al., 2023). GNB uses Bayes’ theorem with the assumption of feature independence and the Gaussian distribution of each class and classifies data based on probability (Frank et al., 2000). These results might be attributed to the linear relationship between spectral features and cannabis quality, or because the preprocessing makes the data more linear or removes nonlinear variations that better match the assumption of LR.




4.4 Industrial quality assessment techniques based on hyperspectral imaging

Non-destructive analytical technique using spectroscopy, include Fourier transform infrared (FT-IR), near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (Xu et al., 2023), ensure rapid and accurate analysis, and qualitative and quantitative evaluation. In addition to its advantages, hyperspectral imaging allows the extension of spectral analysis results of one pixel to a spatial distribution level. If there is no priority among the qualities, the spatial homogeneity of the components can be evaluated using the coefficient of variance (Yoon et al., 2022). For cannabis products, the quality priority depends on the purpose of the drying process. Traditional drying methods, such as the cool-air conditions used in this study, aim to reduce disease or damage and increase shelf life (Challa et al., 2021). As the conversion rates of CBDA and THCA or the CBD : THC ratios were preserved under these conditions, it would be more appropriate to monitor the quality based on dryness or absolute content (Figure 7A). Although the cannabinoid content can vary depending on the cannabis cultivar or developmental characteristics, the accuracy of the binary classification was high (Supplementary Figure S6). Therefore, caution should be exercised when using the cannabinoid content as a criterion. The classification model for the total CBD content was predicted with an accuracy of 0.741 by the RF model combined with 2nd Der, and the model for the total THC content was predicted with an accuracy of 0.833 by the LR model without spectral preprocessing. The thresholds for defining CBD and THC levels were 90 µg mg−1 and 3 µg mg−1, respectively, according to a previous study (Lu et al., 2022). Consequently, the developed model for dryness- or variety-specific cannabinoid content based on hyperspectral imaging can serve as a supporting technology to reduce unnecessary time and enhance quality control for conventional and large-scale drying processes. Conversely, industrial decarboxylation process is an essential step for extracting the active components, CBD and THC, through heating at a relatively high temperature around 100°C and a short reaction time (Wang et al., 2016). The endpoint of drying was determined when the samples with a high CBDA conversion rate occupied more than 80% of the image, corresponding to 9 days of hot-air drying (Figure 7B). Accordingly, the developed models for the conversion rate or ratio of cannabinoids enable the monitoring of cannabis quality and determination of the drying endpoint, regardless of the nonuniform environment within the drying facility, contributing to optimizing the industrial drying process.





5 Conclusion

Our study analyzed the dynamic factors affecting cannabis quality during the drying process and introduced a nondestructive quality assessment approach using hyperspectral imaging and machine learning. Despite the constant weight and water content throughout the drying process, the cannabinoid content varied with drying conditions. Thus, our findings emphasize the importance of determining a precise drying endpoint to maintain consistent cannabinoid levels. Drying processes can be performed for two different purposes: to preserve cannabinoid composition at relatively low temperature or to induce decarboxylation of the acid form through heat treatment. Both purposes require monitoring techniques for uniform quality, which can be accurately predicted through the integration of hyperspectral imaging and machine learning techniques.

The results of this study indicate that the hyperspectral imaging model can be used as a valuable tool for monitoring the quality of cannabis in industrial products. This tool not only facilitates the evaluation of the uniformity of cannabis quality but also aids in the identification of the optimal drying endpoint, even in the context of large-scale and non-uniform conditions. We anticipate that our findings will catalyze future investigations aimed at improving drying processes, and thereby contributing to the advancement of the cannabis industry and the development of cutting-edge quality control technologies.
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Citrus fruits are extensively cultivated fruits with high nutritional value. The identification of distinct ripeness stages in citrus fruits plays a crucial role in guiding the planning of harvesting paths for citrus-picking robots and facilitating yield estimations in orchards. However, challenges arise in the identification of citrus fruit ripeness due to the similarity in color between green unripe citrus fruits and tree leaves, leading to an omission in identification. Additionally, the resemblance between partially ripe, orange-green interspersed fruits and fully ripe fruits poses a risk of misidentification, further complicating the identification of citrus fruit ripeness. This study proposed the YOLO-CIT (You Only Look Once-Citrus) model and integrated an innovative R-LBP (Roughness-Local Binary Pattern) method to accurately identify citrus fruits at distinct ripeness stages. The R-LBP algorithm, an extension of the LBP algorithm, enhances the texture features of citrus fruits at distinct ripeness stages by calculating the coefficient of variation in grayscale values of pixels within a certain range in different directions around the target pixel. The C3 model embedded by the CBAM (Convolutional Block Attention Module) replaced the original backbone network of the YOLOv5s model to form the backbone of the YOLO-CIT model. Instead of traditional convolution, Ghostconv is utilized by the neck network of the YOLO-CIT model. The fruit segment of citrus in the original citrus images processed by the R-LBP algorithm is combined with the background segment of the citrus images after grayscale processing to construct synthetic images, which are subsequently added to the training dataset. The experiment showed that the R-LBP algorithm is capable of amplifying the texture features among citrus fruits at distinct ripeness stages. The YOLO-CIT model combined with the R-LBP algorithm has a Precision of 88.13%, a Recall of 93.16%, an F1 score of 90.89, a mAP@0.5 of 85.88%, and 6.1ms of average detection speed for citrus fruit ripeness identification in complex environments. The model demonstrates the capability to accurately and swiftly identify citrus fruits at distinct ripeness stages in real-world environments, effectively guiding the determination of picking targets and path planning for harvesting robots.




Keywords: citrus, ripeness identification, deep learning, image processing, LBP feature




1 Introduction

Citrus fruits possess high nutritional and economic value and are widely cultivated globally (Wang et al., 2022). As the largest citrus-cultivating country, China currently relies predominantly on manual harvesting, leading to significant labor and time costs (Pei et al., 2022). In the context of Agriculture 4.0, the development of fruit-picking robots has emerged as a crucial research direction (Wang et al., 2022
). The identification of distinct ripeness stages in citrus is instrumental in achieving intelligent sorting and harvesting, thereby enhancing orchard productivity and fruit quality (Sun et al., 2019).

During the ripening process of citrus fruits, the accumulation of sucrose leads to a reduction in chlorophyll and an increase in carotenoids. Consequently, the peel transitions from green to orange in color (Iglesias et al., 2001). Simultaneously, the synthesis of epicuticular wax on the fruit peel gradually occurs, increasing the smoothness of the peel (Romero and Lafuente, 2020). Based on its visual characteristics, citrus fruits with an orange area covering more than 80% of the total peel surface area are generally defined as ripe; otherwise, they are considered unripe. However, citrus fruits within the same orchard often exist at distinct ripeness stages (Gupta et al., 2021). Therefore, harvesting robots need to rapidly and accurately identify citrus fruits at distinct ripeness stages.

The color, shape, texture, and other features of the fruits are commonly used as criteria for ripeness identification. Image processing methods are widely applied in the field of citrus fruit ripeness identification. By combining the color difference map of citrus fruits under normal conditions with the brightness map under illumination, and utilizing color characteristics for threshold segmentation, Lu effectively solves the impact of illumination on citrus ripeness identification (Lu et al., 2014). Regarding the orange features in citrus images, which are predominantly manifested in the Cr channel of the YCbCr color space, Peng employed an improved fuzzy C-means clustering threshold segmentation method (FCM) to achieve accurate identification of ripe citrus fruits (Peng et al., 2014). Under complex weather conditions, the color features of citrus images are variable. Qiang utilized the morphological features of citrus fruits and employed a multi-class support vector machine based on morphological operations to effectively identify ripe citrus fruit (Qiang et al., 2014). Xu applied the Otsu adaptive thresholding method to the V component of the YUV color space. The Canny edge detection algorithm was employed to obtain the morphological features of citrus fruits, enabling a more accurate identification in the environment (Xu et al., 2020). Texture features are also among the essential characteristics of citrus fruits. In addressing the issue of green, unripe citrus fruits being close in color to the background, Zhao combined the results of the Adaptive Red-Blue color map (ARB) and Histogram Equalization for Hue (HEH). By utilizing five selected texture features to eliminate false positives, accurate identification of green, unripe citrus fruits was achieved (Zhao et al., 2016).

In recent years, deep learning models have been widely applied in harvesting robots, achieving high automation and effectively improving the accurate classification of complex ripeness features. Xiong proposed a Des-YOLOv3 network, which accurately identifies small and occluded citrus fruit targets (Xiong et al., 2020). Based on the YOLOv5s network, the BCAM (bidirectional cross attention mechanism) attention mechanism was added by Yang, resulting in enhanced identification accuracy for various fruits, including citrus (Yang et al., 2022). Regarding the differences in characteristics among citrus fruits at distinct ripeness stages, Lu utilized a Resnet backbone structure that integrates deep and shallow features to construct the Mask-Rcnn network. This approach precisely identified citrus fruits at distinct ripeness stages (Lu et al., 2022). For real-time identification of citrus fruits, Chen combined the Canopy algorithm and K-Means++ algorithm to automatically determine the input image size. Additionally, the Scientific Control of Pruning (SCOP) algorithm was applied to prune the YOLOv4 network, enabling real-time identification of citrus fruits (Chen et al., 2022). The improved deep learning model can effectively detect the maturity of citrus fruits.

Modern harvesting robots need to accurately identify unripe and ripe citrus fruits during the harvesting process, avoiding picking unripe ones and ensuring the precise harvesting of ripe ones (Yang et al., 2020). However, the green color of unripe citrus fruits is similar to the background color of leaves, resulting in significant detection omissions; Some partially unripe citrus fruits exhibit both orange and green characteristics, making it challenging to differentiate them from ripe citrus fruits with similar color features, leading to issues of misidentification (Lu et al., 2018). This study proposed an R-LBP (Roughness-Local Binary Pattern) algorithm, an improvement upon the LBP algorithm. By computing two sets of coefficients of variation in grayscale values in eight different directions around the current pixel, one including the grayscale value of the current pixel and the other excluding it, the R-LBP algorithm determines encoding based on the difference in the degree of variation between the two sets of coefficients. The citrus fruit images processed by this algorithm are added to the training dataset to better facilitate the learning of texture and morphological features of citrus fruits; Furthermore, a YOLO-CIT (You Only Look Once-Citrus) model, an improvement upon YOLOv5s, is proposed. The backbone network of this model combines the C3 model with the CBAM (Convolutional Block Attention Module) attention mechanism, leveraging both channel and spatial features to enhance the model’s capability to extract characteristics of distinct ripeness stages in citrus. In the neck network of the model, a Ghostnet structure is utilized, transforming some regular convolutions into linear mappings to reduce computational complexity and improve the model’s inference speed. Multiple experiments were conducted to verify the effectiveness of the proposed R-LBP algorithm and the performance of the YOLO-CIT model.




2 Materials and methods



2.1 R-LBP algorithm

The LBP algorithm is a method that reflects the local texture features of an image by describing the texture variations around a pixel. Common texture features include roughness, directionality, contrast, and so on (Ojala et al., 2002). In the ripening process of citrus fruits, the synthesis of epicuticular wax leads to a noticeable change in the roughness of the peel. In digital images, the roughness of fruit peel can be represented by the degree of variation in pixel grayscale values. The calculation process of peel roughness for citrus fruits at distinct ripeness stages is illustrated in Figure 1.

[image: Process diagram of fruit inspection, showing three steps. Step 1: Four stages of fruit ripeness are illustrated. Step 2: Analyzes fruit surface with grid patterns and directional vectors (D1-D8). Step 3: Evaluates surface roughness using multiple points (P1-P8).]
Figure 1 | Calculation process for peel roughness of citrus fruits.

In Step 1, citrus fruits at four distinct ripeness stages are sequentially selected and converted into grayscale images. In Step 2, for each grayscale image, the longer and shorter sides of its bounding rectangle are divided into four equal parts successively to obtain intersection points, defining nine sampling regions. In each sampling region, the average pixel difference in eight directions is calculated sequentially, as shown in Equations 1, 2.

[image: Mathematical formula for the average absolute deviation: \( D_i = \frac{\sum_{i=1}^{N} |x - \bar{x}|}{N} \), labeled as equation one.] 

[image: Equation showing \( p_i = \frac{\sum_{t=1}^{T} D_t}{8} \), labeled as equation (2).] 

Where [image: To give you the alternate text, please upload the image or provide a URL to the image.]  represents the grayscale value of the pixel at position [image: A footballer in an orange and white uniform controls a soccer ball on a grassy field. Spectators are visible in the background.] , [image: Please upload the image or provide a URL, and I can help create the alt text for you.]  represents the number of pixels in that direction, [image: Mathematical notation depicting the variable \( X' \), indicating the variable X with a prime symbol as a modifier.]  represents the average value of N pixels, and [image: It looks like there is an issue with the image upload. Please try uploading the image again, or provide a URL or description.]  represents the mean difference of pixel grayscale values in that direction.

In Step 3, the roughness of the fruit peel is obtained by calculating the average of the nine sampling regions. The results for distinct ripeness stages of the fruit are illustrated in Figure 2.

[image: Line graph showing the peel roughness of citrus fruits across four ripeness stages. The roughness values decrease from 1023.12 at stage 1 to 650.7 at stage 4.]
Figure 2 | Peel roughness of citrus fruits with distinct ripeness stages.

Figure 2 shows that there is a decreasing trend in the roughness of citrus fruit peel as it matures. Based on this characteristic, the R-LBP algorithm, which utilizes peel roughness for encoding, is proposed. The method’s workflow is illustrated in Figure 3.

[image: Flowchart illustrating a four-step process. Step 1: A grid with a yellow center and red dots in a circular pattern. Step 2: Grid with red numbers around a yellow zero. Step 3: Grid with additional numbers forming a rectangle. Arrows indicate sequence; labels "a" and "b" highlight changes. Step 4: Binary conversion of central numbers to "00110101" equals 53.]
Figure 3 | R-LBP algorithm process.

The R-LBP algorithm processes each pixel in the image sequentially to calculate its final grayscale value. In Step 1, the encoding relies on the eight pixels surrounding the target pixel, which are named reference pixels. In Step 2, the reference pixels are numbered sequentially in a clockwise order. In Step 3, The coefficient of variation reflects the fluctuation in a set of data, and the variation in pixel grayscale values can represent the roughness of the peel. Taking reference pixel 1 as an example, the coefficient of variation ([image: The image shows the mathematical symbol "C V subscript a".] ) is calculated for the array formed by pixels 1, 9, and 10 in its direction. Additionally, the coefficient of variation ([image: Mathematical expression showing the letters "C V" followed by subscript "b".] ) is calculated for the array formed by adding the target pixel to the aforementioned array (pixels 0, 1, 9 and 10). The calculation process is shown in Equations 3, 4.

[image: Equation showing the coefficient of variation \( CV_a \), calculated as the square root of the sum of squared differences between measured \( x_i \) and estimated \( x^* \) values divided by three, all over \( x^* \), multiplied by one hundred percent.] 

[image: Coefficient of Variation (CV) formula depicted: CV sub b equals the square root of the sum from i equals one to n of x sub i minus x bar squared, divided by X bar, all multiplied by one hundred percent. Equation labeled as four.] 

Where [image: Please upload the image or provide a URL, and I will help create the alt text for it.]  represents the grayscale value of the pixel at coordinate [image: It seems there is no image visible. Please upload the image or provide a URL so I can help generate the alt text for it.] , and [image: The image displays the mathematical notation for \( X' \), indicating a variable \( X \) with a prime mark.]  represents the mean value within the array.

If the difference between [image: Text displaying the letters "CV" followed by a subscript lowercase "a".]  and [image: Text in the image shows "C V subscript b".]  is greater than 15% of [image: Text showing "C V sub a".] , it indicates that the addition of the target pixel significantly affects the roughness between the existing reference pixels in that direction (Brown, 1998). Moreover, the texture features in that direction are strong. In such cases, the encoding of the current reference pixel is set to 1; otherwise, it is set to 0. The specific encoding process is shown in Equation 5.

[image: Mathematical expression with a bracket and two conditions: the first condition shows CV within minus CV between divided by CV within greater than fifteen percent equals one. The second condition shows CV within minus CV between divided by CV within less than or equal to fifteen percent equals zero. Equation labeled as five.] 

In Step 4, the encoding results from the eight reference pixels are combined in the order of their numbering to obtain a binary outcome. This binary result is then converted to decimal and serves as the new grayscale value for the current pixel. The same process is applied to other pixels, and the final result of the R-LBP algorithm processing is obtained.




2.2 Dataset construction of citrus images



2.2.1 Image acquisition of citrus data

There are citrus orchards located in Zengcheng District, Guangzhou City, Guangdong Province, China (23°16′N, 113°51′E) for dataset collection. The Canon 200D Mark II DSLR camera, equipped with an 18-55mm lens set to fully automatic mode, is used for capturing images of citrus fruits. Take images every two days, a total of 5 times, from 10 am to 12 am. A total of 1533 raw image data were collected, and saved in.jpeg format, with a resolution of 4032×3024 pixels. The collection information for the initial data is presented in Table 1.

Table 1 | Initial dataset composition table.


[image: Table displaying data with columns: Order, Date, Weather, and Num. The orders from one to five correspond to dates from October ninth to October seventeenth, two thousand twenty-two. Weather alternates between cloudy and sunny, with numbers ranging from two hundred eighty-five to three hundred thirty-four.]
The collected data underwent preliminary screening, removing images with out-of-focus, motion blur, or severe distortion. Some images from the initial dataset were augmented through random flips, tilts, and other operations. The initial dataset can be divided into several categories based on lighting intensity and shooting distance, as shown in Figure 4. The specific composition is detailed in Supplementary Table 2.

[image: A collage of six images of citrus trees.  A: Citrus tree branch with small, round yellow-orange fruits.  B: Green foliage with small green fruits.  C: Tree with numerous green fruits against a clear sky.  D: Close-up of a single yellow fruit among dark green leaves.  E: Single small orange fruit hanging on a branch.  F: Green fruit surrounded by glossy leaves.]
Figure 4 | Sample image of initial dataset: (A) Medium distance exposure citrus image; (B) Medium range natural light citrus image; (C) Medium distance backlight citrus image; (D) Close range exposure citrus image; (E) Close range natural light citrus image; (F) Close range backlight citrus image.




2.2.2 R-LBP–based citrus images texture enhancement

The R-LBP algorithm primarily processes the fruit segment of citrus images. Therefore, in this study, artificially synthesized images were obtained to enhance the texture features of the fruit segment at distinct ripeness stages in citrus images. The synthesized images are added to the training dataset to enhance the features that the model can learn. The processing workflow for artificially synthesized images is illustrated in Figure 5.

[image: Flowchart illustrating the process of segmenting citrus fruits from the background. It begins with separating the fruits, applying the R-LBP algorithm, and then separating the background. The background is converted to grayscale. Finally, the fruit and background images are combined. Arrows labeled with process steps connect each stage.]
Figure 5 | Image synthesis process.

By using Photoshop, the citrus fruit area and background area are separately extracted. The citrus fruit undergoes processing with the R-LBP algorithm to enhance its texture features. The background region is converted to a grayscale image to remove its color characteristics. The two processed results are then combined to create the final image.

The additional training set consists of synthesized images based on close-range citrus images with clear texture features. It is used to test the effect of adding images processed by the R-LBP algorithm to the training set on model performance. The sample images of the additional training set are shown in Figure 6, and the specific composition of the additional dataset is shown in Supplementary Table 1.

[image: Three-panel black and white image showing oranges on a tree. Panel A displays natural oranges; Panel B shows the same oranges with a texture overlay; Panel C presents an enhanced texture overlay, emphasizing surface details.]
Figure 6 | Sample image of additional dataset: (A) Grayscale citrus image; (B) Synthetic citrus images based on LBP; (C) Synthetic citrus images based on R-LBP.





2.3 Construction of YOLO-CIT model



2.3.1 Backbone network of the YOLO-CIT model

The YOLO-CIT model proposed in this paper is built upon the YOLOv5s model. The backbone network structure of the YOLO-CIT model is formed by combining the CBAM attention mechanism with the C3 module. The computational process is illustrated in Figure 7.

[image: Diagram of the C3+CBAM model architecture, showing the flow of data through CBS modules and CBAM Bottleneck. It features channel and spatial attention mechanisms, maxpool and avgpool operations, and shared MLP. After attention processes, outputs are concatenated and passed through another CBS module. Arrows indicate data flow direction.]
Figure 7 | C3+CBAM module calculation process.

The feature maps are entered into the CBAM Bottleneck, where maximum pooling and average pooling features are computed. These two features are then input into a Multi-Layer Perceptron (MLP), and channel attention is calculated. The computation process is depicted in Equation 6.

[image: Mathematical expression describing a function, \( M_{t}(F) = \sigma(W_{1}(W_{0}(F_{avg}))+W_{1}(W_{0}(F_{max}))) \), labeled as equation 6.]

Where [image: A lowercase Greek letter sigma, resembling an "o" with an extending tail on the top right. It is commonly used in mathematics and statistics.]  represents the sigmoid function, [image: Mathematical expression displaying \( W_0 \in \mathbb{R}^{c/f \times c} \).]  and [image: \( W_1 \in R^{C \times C / r} \)]  represent the shared weights of the MLP, [image: A black and white image shows a close-up of a lowercase letter "r" in a serif font against a blurred background.]  represents the reduction ratio, [image: It seems there is no image visible. Please upload the image file or provide a URL so I can help you create the alt text.]  represents the length of the feature map, [image: Mathematical expression showing "F sub avg" with a superscript tilde over the F.]  represents the average pooling feature, and [image: The image shows a mathematical notation, \( F_{\text{max}} \), representing a maximum force.]  represents the maximum pooling feature.

Channel attention and feature maps are broadcasted, and the intermediate feature output F ‘is calculated, as shown in Equation 7.

[image: Mathematical equation: \( F = M_r(F) \otimes F \), labeled as equation 7.] 

Average pooling and maximum pooling operations are applied along the channel axis of the middle feature map, the two results are connected through standard convolutional layers and spatial attention is generated. The calculation process is shown in Equation 8.

[image: Mathematical expression showing \( M_{i}(F) = \sigma (f^{(2)}(f^{(1)}(F_{avg}^{i} + F_{max}^{i}))) \), labeled as equation (8).] 

Where [image: Equation displaying the term "F" with superscript "s" and subscript "avg".]  represents the two-dimensional average pooling feature, [image: Mathematical expression showing "F subscript max superscript s".]  represents the two-dimensional maximum pooling feature, and [image: Mathematical expression showing "f" raised to the power of seven and asterisk.]  represents the convolution operation with a filter size of 77.

Spatial attention further aggregates with the middle feature map through broadcasting, and the final output [image: The image shows the mathematical notation "F double prime," represented as \( F'' \).]  of the module is calculated, as shown in Equation 9.

[image: Equation with terms: F prime equals M subscript l in parentheses G subscript r parentheses tensor product F prime. It is labeled as equation nine.] 




2.3.2 Neck network of the YOLO-CIT model

In the neck network of the YOLO-CIT model, Ghostconv is used instead of regular convolution. The structure of Ghostconv for processing input content is shown in Figure 8.

[image: Diagram illustrating the Ghostconv process in machine learning. It depicts the input of an image of oranges transformed through preliminary convolution into layered feature maps, followed by a mapping process resulting in the output.]
Figure 8 | Ghostconv module calculation process.

In the context of citrus fruit image processing, the initial features of the input image are extracted through an initial convolution process using convolution kernels. The outcomes of the initial convolution are divided into two segments, where one segment undergoes mapping, and the other segment, including α1, α2, …, αn initial convolutional feature maps, undergoes additional convolutional operations. The outputs from these two segments are then merged to generate the final output feature map.




2.3.3 YOLO-CIT model

The specific composition structure of the YOLO-CIT network is shown in Figure 9. The initial image of citrus fruit is input into the backbone network and processed by modules such as C3-CBAM to generate a feature map that combines channel attention and spatial attention; The feature map is further input into the neck network, and through lightweight convolution and up sampling operations in the GhostConv module, a prediction box is generated. Citrus fruits with distinct ripeness stages are identified.

[image: Diagram of the YOLO-CIT architecture featuring three sections: Backbone, Neck, and Output. The Backbone includes a sequence of Conv layers, C3-CBAM blocks, and ends with an SPPF block. The Neck has concatenation, C3Ghost, GhostConv, and up-sampling layers. The Output section ends with Anchors.]
Figure 9 | YOLO-CIT Network Architecture.





2.4 Experiments

To validate the effectiveness of the YOLO-CIT model and R-LBP algorithm in this study, three sets of experiments were conducted sequentially.

In the first set of experiments, 200 close-range images of citrus fruits were selected. These images were divided into 50 groups, with each group containing four images representing distinct ripeness stages of the citrus fruit. Various algorithms, including grayscale processing, LBP algorithm, and R-LBP algorithm, were applied to the fruit segment of the citrus fruit images respectively. The difference in surface roughness, as introduced in Section 2.1.1, was used to evaluate the enhancement effects of different algorithms on surface roughness. The average difference in roughness values between adjacent stages within each group of images after processing by different algorithms was recorded and analyzed.

In the second set of experiments, the YOLO-CIT model was trained on the basic training set, supplemented with additional datasets processed using grayscale conversion, LBP algorithm, and R-LBP algorithm respectively. The performance parameters of the model were recorded and analyzed.

In the third set of experiments, the YOLO-CIT model proposed in this study, along with several common deep learning network models such as models of YOLOv4, YOLOv5s, YOLOv7, YOLOX, YOLOv8s, and faster-RCNN, was trained using the basic dataset. A comparative performance analysis of the models was conducted.

The experimental hardware setup primarily involves a computer system featuring an Intel i5-13600kf processor, 32 GB RAM, and a GeForce GTX 4080 GPU. The computer is configured with CUDA 11.2 parallel computing architecture and utilizes the NVIDIA cuDNN 8.0.5 GPU acceleration library. The software simulation environment is built on the PyTorch deep learning framework (Python version 3.10). The data pre-processing involved the utilization of Labeling, Photoshop 2018, and Matlab2020b. For configuring and managing the virtual environment, Anaconda was employed, and program compilation and execution were carried out using Pycharm. Model performance metrics mainly include P (precision), R (recall), F1 (harmonic average), AP (average precision), and mAP@0.5 (mean average precision) shown in Equations 10–14.

[image: Precision formula depicted: precision equals the number of true positives divided by the sum of true positives and false positives. Equation labeled as equation ten.] 

[image: The image shows the formula for recall in machine learning: recall equals true positives divided by the sum of true positives and false negatives. Equation labeled as one.] 

[image: The formula for F1 score is shown as F1 equals two times precision times recall divided by precision plus recall, labeled equation twelve.] 

[image: Mathematical formula for average precision (AP) shown as: AP equals the sum of precision divided by N, labeled as equation thirteen.] 

[image: The formula depicted is "mAP at 0.5 equals the sum from i equals 1 to N of API over Nr," with the equation labeled as (14).] 

where [image: The image shows a lowercase letter "t" with a subscript "p", often used in mathematical or scientific contexts to denote a specific variable or parameter.]  represents the number of citrus fruits correctly identified, [image: The text shows the mathematical notation "F" with a subscript "p".]  represents the number of citrus fruits incorrectly identified, [image: The image displays the mathematical notation "F" with a subscript "N".]  represents the number of missed citrus fruits, [image: Uppercase letter "N" in black serif font on a white background.]  represents the total number of images, and [image: Text "N" is shown with a subscript "C".]  represents the number of categories of citrus fruit ripeness stages. [image: Text "A P" in italics on a white background.]  representing the integral of accuracy rate to recall rate is equal to the area under the P-R curve. [image: Text reading "mAP at 0.5".]  is the average of the average precision of all categories.





3 Results



3.1 Performance analysis of citrus fruit texture enhancement

In the first set of experiments, distinct ripeness stages of citrus fruits were processed using grayscale conversion, LBP algorithm, and R-LBP algorithm respectively, as shown in Figure 10. The differences in peel roughness between citrus fruits at different maturity stages are depicted in Figure 11.

[image: Four rows labeled a, b, c, and d show fruit images processed in different formats: Initial image, Grayscale, LBP, and R-LBP. Each row shows a fruit undergoing these transformations from left to right, displaying how textures and details are accentuated in each processing stage.]
Figure 10 | (A–D) Different ripening stages of citrus fruits.

[image: Box plot comparison of texture differences across three techniques: Grayscale, LBP, and R-LBP. Grayscale has a median of 122.3, LBP at 162.8, and R-LBP at 220.7. The variability, shown by brackets, is 26.9 for Grayscale, 41.5 for LBP, and 33.6 for R-LBP.]
Figure 11 | Citrus fruit epidermal roughness difference across ripening stages.

The median in peel roughness difference of images processed by grayscale conversion is 122.3, with an upper quartile of 138.1, a lower quartile of 111.2, and an interquartile range of 26.9. The dispersion of peel roughness in different images is relatively small; The median in peel roughness difference of images processed with the LBP algorithm is 162.8, with an upper quartile of 184.3, lower quartile of 142.8, and an interquartile range of 41.5. The results show a higher level of dispersion among different images in this case. The median peel roughness difference of images processed with the R-LBP algorithm is 220.7, which is respectively 98.4 and 57.9 higher than the results obtained with the grayscale conversion and LBP algorithm. The interquartile range of peel roughness for images processed with the R-LBP algorithm is 33.6, which is 6.7 higher than the grayscale conversion and 7.9 smaller than the LBP algorithm. The data dispersion is relatively stable. Images processed with the R-LBP algorithm exhibit more distinct and relatively stable texture features compared to images processed with grayscale conversion and the LBP algorithm, which are useful for distinguishing distinct ripeness stages of citrus fruits.




3.2 Comparison of identification performance of YOLO-CIT model trained with different datasets

In the second set of experiments, the YOLO-CIT model was trained using the same base dataset but with different additional datasets. The variation of map@0.5 during the training process is illustrated in Figure 12, and the performance parameters of the model are listed in Table 2.

[image: A line graph depicting MAP@0.5 over 300 training epochs. Four lines represent different datasets: red for the original dataset, cyan for images processed by LBP, black for grayscale images, and yellow for images processed by R-LBP. The yellow line shows higher fluctuations, while the other lines display more consistent performance, with MAP@0.5 values ranging between 60 and 85.]
Figure 12 | Change in YOLO-CIT model’s mAP@0.5 trained on different datasets.

Table 2 | Performance of models trained on different datasets.


[image: Table comparing dataset metrics: mAP@0.5, Precision, Recall, and F1 score. Original dataset has mAP@0.5 of 83.52, Precision 87.50%, Recall 90.01%, F1 score 88.74. Adding grayscale images: mAP@0.5 84.17, Precision 86.42%, Recall 91.31%, F1 score 88.79. Adding LBP images: mAP@0.5 83.39, Precision 88.70%, Recall 91.63%, F1 score 90.14. Adding R-LBP images: mAP@0.5 85.88, Precision 88.73%, Recall 93.16%, F1 score 90.89.]
By observing Figure 12, it can be seen that the four curves exhibit significant differences during the training process mAP@0.5 The value rapidly increases and remains relatively stable after the epoch reaches 100. Among them, when the model uses the additional dataset with R-LBP or LBP, the fluctuation of the curve is smaller, and the mAP@0.5 value is more stable. The YOLO-CIT model trained with the R-LBP additional dataset exhibits a higher stable mAP@0.5 curve, indicating the best detection accuracy among the curves. According to Table 2, the YOLO-CIT model trained with the R-LBP additional dataset achieves mAP@0.5 values that are 2.36, 1.71, and 2.49 higher than the YOLO-CIT models trained with the base dataset, additional grayscale image dataset, and additional LBP dataset, respectively. Its Precision is slightly higher than other results, and its Recall is approximately 2% higher than the others. The F1 score of the YOLO-CIT model trained with the additional R-LBP dataset is 2.15, 2.1, and 0.75 higher than the other results, respectively. The YOLO-CIT model trained with the additional R-LBP dataset exhibits the best overall performance.




3.3 Performance comparison among various network models

In the third set of experiments, different deep-learning models were trained using the base dataset. The variation of mAP@0.5 during the training process is illustrated in Figure 13, and the model performance parameters are shown in Table 3.

[image: Line graph comparing the mean Average Precision (mAP@0.5) across training epochs for different models: YOLOv4, YOLOv5s, YOLOv7, YOLOX, YOLOv8s, YOLO-CIT, and Faster-RCNN. Key performance peaks are marked: YOLOv4 at 78.34, YOLOv5s at 81.31, YOLOv7 at 79.81, YOLOX at 70.38, YOLOv8s at 82.60, YOLO-CIT at 83.52, and Faster-RCNN at 71.88.]
Figure 13 | Variation of mAP@0.5 during training across different models.

Table 3 | Performance of models trained on different datasets.


[image: Comparison table showing performance metrics for different models. YOLOv4 has a mAP@0.5 of 70.83, YOLOv5s 79.81, YOLOv7 78.34, YOLOX 71.88, YOLOv8s 82.60, YOLO-CIT 83.52, and Faster-RCNN 81.31. Precision, Recall, and F1 scores vary, with YOLO-CIT achieving the highest recall at 90.01% and a high F1 score of 88.73.]
Figure 13 shows that the mAP@0.5 curves of YOLO-CIT, YOLOX, and YOLOv4 models gradually increase during the training process and tend to stabilize after reaching epoch 150. This indicates that the models can effectively learn features of citrus fruits at distinct ripeness stages, resulting in a relatively stable improvement in accuracy in citrus fruit identification. The mAP@0.5 curves of the YOLOv5s, YOLOv7, YOLOv8s, and Faster-RCNN models show a rapid initial rise during training. However, between epochs 100 and 150, there is a declining trend, and after reaching epoch 150, there is a noticeable fluctuation. This indicates that these models exhibit differences in feature learning during the training process, leading to temporary decreases in detection accuracy and insufficient stability in the models. The YOLO-CIT model achieved its best mAP@0.5 value of 83.52 during training, significantly surpassing the mAP@0.5 values of the YOLOv4 and YOLOX models, and slightly outperforming the YOLOv5s, YOLOv7, YOLOv8s, and Faster-RCNN models. The YOLO-CIT model exhibits the highest detection accuracy. Observing Table 3, it can be seen that the YOLO-CIT model has Precision values higher than other models by 0.49% to 11.29%, Recall values higher by 2.08% to 11.97%, and F1 scores higher by 1.26 to 11.62. The YOLO-CIT model demonstrates the best performance.

The average detection time of the YOLO-CIT model compared to other experimental models map@0.5 The distribution is shown in Figure 14.

[image: Scatter plot comparing object detection models by detection time and mAP at 0.5%. Models like YOLOv4-tiny, YOLOv5s, YOLOX, Faster-RCNN, and YOLO-CIT are represented with different symbols and colors, ranging from 65% to 85% mAP and 5 to 20 milliseconds detection time.]
Figure 14 | Detection time and mAP@0.5 across various models.

According to Figure 14, the YOLO-CIT, YOLOv5s, YOLOv7, and YOLOv8s models exhibit high average detection accuracy while maintaining a fast detection speed. The average detection speed for these models ranges from 5ms to 7ms, meeting the requirements for real-time detection. The detection speed of the YOLO-CIT model is slightly lower than that of the YOLOv5s, but it achieves higher average detection accuracy than the YOLOv5s model.

To validate the ripeness identification capability of the YOLO-CIT model in real-world environments, the model was trained using the base dataset and an additional dataset processed with R-LBP. The trained model was then utilized to identify citrus fruit ripeness stages in diverse environmental conditions, encompassing both images and videos. Results are shown in Figure 15 and Table 4.

[image: Citrus fruits on trees with ripe and unripe labels indicating ripeness probability. Letters A through H represent different images with fruits, each labeled with a pink or red box and a ripeness score. Ripe fruits are marked with higher scores and red boxes, while unripe ones have pink boxes. Each image shows numerous fruits in varying states of ripeness and foliage surrounding them.]
Figure 15 | YOLO-CIT model: citrus ripeness identification in varied environments: (A, B) Backlight environment; (C, D) Exposure environment; (E, F) The situation where leaves cover the fruit; (G, H) The dense distribution of citrus fruits.

Table 4 | Performance of the model on video detection.


[image: Comparison table showing data for the YOLO-CIT model on two devices. With the GPU (RTX-4080super), accuracy is eighty-six point five four percent, video processing time is four point five one seconds, and FPS is seventy-six point three six. With the CPU (i5-13600KF), accuracy is eighty-six point one seven percent, video processing time is thirty point zero two seconds, and FPS is eleven point four seven.]
According to Figure 15, it can be noted that YOLO-CIT accurately identifies the ripeness stages of citrus fruits under varying lighting conditions. For citrus fruits exposed to strong light or significant shadow coverage, the identification confidence reaches 0.8 or higher. In cases of dense growth or occlusion of citrus fruits, for those close and with complete shapes, the confidence in ripeness identification ranges from 0.88 to 0.94. For those farther away with incomplete shapes, the recognition confidence is above 0.76. The above results show that the YOLO-CIT model is capable of accurately and confidently identifying the ripeness of citrus fruits within the robot’s picking range under various environmental conditions. According to Table 4, it can be seen that the YOLO-CIT model achieves an accuracy of 86.54% and an FPS of 76.36 when detecting videos on GPU devices. Beyaz & Gül deployed a YOLOv4-tiny model similar to this one on the NVIDIA Jetson TX2 AI board, achieving an FPS of over 12 during the detection process (Beyaz and Gül, 2023). The parameter count of the YOLO-CIT model is smaller than that of the YOLOv4-tiny model. Applying this model to the same type of AI board can also achieve similar performance. It has a fast processing speed and can effectively connect cameras for real-time detection tasks.





4 Discussion

The green unripe citrus fruits have a similar color to the background, making it challenging to identify them using color features alone. This study additionally investigates from the perspective of texture features. The R-LBP algorithm proposed in Experiment 1 effectively amplifies the differences in peel roughness of citrus fruits at different ripeness stages. This increases the feature disparity between green citrus fruits and the green background, significantly improving the accuracy of identifying green citrus fruits and reducing instances of missed recognition. At the same time, it also enhances the recognition ability of the model for citrus fruits with different maturities. Enhancing the differences in features between various identification targets is beneficial for target identification, a conclusion that aligns with findings in other research (Sharan et al., 2013).

In Experiment 2, different types of additional datasets were added to the basic training set to train the YOLO-CIT model. The performance of the model trained with added grayscale and LBP images did not show improvement and even slightly decreased. For grayscale images, this may be because the color features of grayscale images interfere with the model’s feature learning, leading to a decrease in recognition accuracy. For LBP images, this may be because the texture features provided by the images processed by LBP are not sufficient to improve the performance of the model. On the other hand, the model trained with the additional dataset using the R-LBP algorithm exhibited improved performance. This improvement is attributed to the fact that the training set, while containing color images providing color features, also includes additional images that offer roughness texture features. This enhancement contributes to the model’s learning effectiveness. Including samples in the training set that possess characteristics relevant to the application domain can effectively improve identification performance. Similar conclusions can be found in related studies (Liu, 2020; Han et al., 2021).

In Experiment 3, the YOLO-CIT model demonstrated the best Precision and mAP@0.5, indicating its ability to accurately identify citrus fruits at distinct ripening stages. The model also exhibited the best Recall, suggesting that it has a lower tendency to miss detections, providing comprehensive detection of the ripeness of all citrus fruits within the images. Due to the clear citrus color and texture features in the training set, the YOLO-CIT model incorporates the CBAM attention mechanism into the C3 module. The structure of C3 and CBAM uses more computation to extract texture features of citrus. The computational complexity is focused on the backbone network to learn the texture features. In the model’s neck, where the feature maps have already been initially formed, a lightweight Ghostconv module is utilized to reduce computational complexity. This not only avoids a loss in identification accuracy but also enhances the model’s detection speed. The above experiments concluded that introducing attention mechanisms in the backbone network while reducing computational complexity in the neck network can enhance the overall performance of the model. Similar conclusions can also be found in other research (McCool et al., 2017; Xu et al., 2023). In the identification results of citrus ripeness in different environments, the model accurately identifies citrus fruits at distinct ripeness stages. When the YOLO-CIT model is applied to GPU devices, its FPS exceeds 60 and detection accuracy exceeds 80%, indicating that the improved model can be combined with high frame rate cameras to provide real-time position information of different detection targets (Fang et al., 2019; Gündüz and Işık, 2023). It can be effectively applied to citrus harvesting robots, laying the foundation for their efficient harvesting operations. This aids in guiding the harvesting robot to avoid unripe citrus fruits, facilitating subsequent tasks in path planning for harvesting ripe citrus fruits (Ning et al., 2022; Yi et al., 2024). There were instances in the experimental results where some citrus fruits at a distance were not identified. These fruits were located beyond the operational range of the harvesting robot, rendering their ripeness identification irrelevant, and therefore, they can be disregarded.




5 Conclusion

This article first proposes an improved R-LBP algorithm based on LBP, which can amplify the peel roughness characteristics of citrus fruits with distinct ripeness stages. The synthesized images processed by the R-LBP algorithm are added to the training set, which can improve the identification accuracy of the model for citrus fruits with distinct ripeness stages. This article also proposes an improved YOLO-CIT model based on YOLOv5s, which can accurately and comprehensively identifies the ripeness stages of citrus fruits in complex environments, The specific conclusion is as follows:

	1. An R-LBP algorithm based LBP, is proposed. This algorithm utilizes the grayscale value coefficient of variation for encoding, enhancing the differentiation in peel roughness among citrus fruits at distinct ripeness stages.

	2. The fruit segment of citrus images is processed using the R-LBP algorithm, while the background is subjected to grayscale conversion to create synthetic images. Adding these images to the base training set enhances the model’s performance, effectively improving the accuracy of identifying green citrus fruits against a green background. Simultaneously, it reduces the misidentification rate for partially green and partially orange unripe citrus fruits.

	3. The backbone network of the model is constructed using the C3+CBAM structure, and the traditional convolution in the neck network is replaced by Ghostconv. Thus, the YOLO-CIT model is established. The YOLO-CIT model, trained using the base dataset combined with the additional dataset processed with R-LBP, achieves a Precision of 88.13%, Recall of 93.16%, F1score of 90.89, and mAP@0.5 of 85.88%. It demonstrates comprehensive identification of the ripeness stages of citrus fruits in complex environments, including exposure, backlight, and occlusion.



These findings validate that the proposed YOLO-CIT model, in conjunction with the R-LBP algorithm, can comprehensively and accurately identify citrus fruits at distinct ripeness stages in complex environments. This provides accurate data for obtaining target coordinates and robotic arm parameters for the fruit-picking robot. In the future, we will study a harvesting path planning algorithm that comprehensively considers both mature and immature fruits, avoiding rotten citrus fruits and jointly planning the harvesting path.
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Common object detection and image segmentation methods are unable to accurately estimate the shape of the occluded fruit. Monitoring the growth status of shaded crops in a specific environment is challenging, and certain studies related to crop harvesting and pest detection are constrained by the natural shadow conditions. Amodal segmentation can focus on the occluded part of the fruit and complete the overall shape of the fruit. We proposed a Transformer-based amodal segmentation algorithm to infer the amodal shape of occluded tomatoes. Considering the high cost of amodal annotation, we only needed modal dataset to train the model. The dataset was taken from two greenhouses on the farm and contains rich occlusion information. We introduced boundary estimation in the hourglass structured network to provide a priori information about the completion of the amodal shapes, and reconstructed the occluded objects using a GAN network (with discriminator) and GAN loss. The model in this study showed accuracy, with average pairwise accuracy of 96.07%, mean intersection-over-union (mIoU) of 94.13% and invisible mIoU of 57.79%. We also examined the quality of pseudo-amodal annotations generated by our proposed model using Mask R-CNN. Its average precision (AP) and average precision with intersection over union (IoU) 0.5 (AP50) reached 63.91%,86.91% respectively. This method accurately and rationally achieves the shape of occluded tomatoes, saving the cost of manual annotation, and is able to deal with the boundary information of occlusion while decoupling the relationship of occluded objects from each other. Future work considers how to complete the amodal segmentation task without overly relying on the occlusion order and the quality of the modal mask, thus promising applications to provide technical support for the advancement of ecological monitoring techniques and ecological cultivation.




Keywords: amodal segmentation, image segmentation, transformer, occlusion recover, ecological monitoring




1 Introduction

Currently, the global increase in food demand, coupled with a shortage of labor and insufficient food supply, has posed significant challenges (Tian et al., 2021). The use of automation-based growth detection systems and intelligent harvesters has emerged as a primary solution in modern agriculture. For production control and biomass detection, the morphological information of plant fruits is indispensable. Monitoring the yield and size of crops is crucial for refining seeding and fertilization strategies. Information about the appearance of fruits can aid mechanical equipment in precisely determining the position and shape of the fruits. Traditional machine vision systems encounter difficulties in accurately estimating the dimensions of obscured objects during the image collection process. Similarly, laboratory equipment based on three-dimensional image reconstruction (Wang et al., 2017) also poses challenges when applied to agricultural production activities. Tomatoes play a vital role as a global economic crop. Numerous countries engage in the cultivation and export of tomatoes and their various products, such as sauce, canned goods, juice, and dried tomatoes. This has profound implications for agricultural economies and trade, establishing tomatoes as a key agricultural product across fields worldwide. With the emergence of deep learning, computer vision-based crop detection systems have gained extensive application in various agricultural tasks, including tomato harvesting (Guan et al., 2022), disease identification (Dhaka et al., 2021), and growth monitoring. Kanna et al. (2023) utilized CNN models to train and predict on a dataset consisting of four types of cauliflower diseases, achieving the highest accuracy in validation tests across multiple transfer models. Their work emphasizes the crucial role of advanced CNN models in automating the detection and classification of cauliflower diseases. Kundu et al. (2021) proposed a framework that combines Internet of Things (IoT) with deep transfer learning for detecting and classifying rust and blight diseases in pearl millet, demonstrating excellent accuracy. However, most methods used in detection systems are primarily suitable for tasks such as crop counting (Dolata et al., 2021), leaf counting (Wang et al., 2023), providing limited information about the fruits.

Recently, we have come across several deep learning models focused on tomato detection and recognition. Wang et al. (2022) applied MatDet, introducing a path aggregation network to address issues related to inaccurate bounding box localization and tomato ripeness detection. Patil and Manohar (2022) utilized an enhanced radial basis function neural network (ERBFNN) to improve the efficiency and accuracy of tomato crop leaf disease segmentation. Shinoda et al. (2023) used the Transformer and CNN models as the backbone of Mask R-CNN (He et al., 2018) to determine the location and ripeness of tomatoes with high accuracy. However, for the models mentioned above, both learning and prediction rely on visible objects in the image. These models demonstrate a weakness in predicting the invisible parts and lack the capability to measure the size information of the fruits. The ability to perceive the complete shape of occluded objects is referred to as amodal prediction. Currently, amodal segmentation has become a crucial method for recovering the shape of occluded regions. AmodalMask (Zhu et al., 2017) is a deep neural network that predicts amodal masks using image patches. It serves as a focal point in the research on amodal instance segmentation and represents an extension and improvement of the SharpMask model (Pinheiro et al., 2016). ORCNN (Follmann et al., 2019) is built upon the Mask R-CNN framework, introducing two additional segmentation branches for separately predicting masks of the visible and occluded regions. Subsequently, it calculates the difference between these two masks to generate the prediction for the amodal mask.

Previously, amodal segmentation techniques were primarily applied in the fields of autonomous driving (Qi et al., 2019) and scene understanding (Mohan et al., 2022). In automated agricultural systems, the use of amodal segmentation technology aids in accurately detecting and identifying plants, even when partially occluded by other plants, by recognizing complete plant contours. For detecting and categorizing plant diseases, amodal segmentation technology assists in identifying infected plant portions. Automated agricultural systems require counting fruits and leaves for yield estimation or disease monitoring, and amodal segmentation technology provides an effective solution for this. In the agricultural realm, Chen et al. (2022) leveraged the robust feature extraction and reconstruction capabilities of convolutional autoencoders to recover pixels in obscured regions. To address the challenge of reduced accuracy in detecting obscured citrus fruits, the convolutional autoencoder skillfully extracted meaningful features from the surrounding background information, restoring the integrity of the original image. Gené-Mola et al. (2023) implemented an approach that integrates modal and amodal segmentation based on convolutional neural networks (CNN) in RGB-D images. They proposed a resilient method for estimating fruit size and visibility, specifically tailored for the amodal segmentation of apples. Blok et al. (2021) utilized ORCNN to segment both the visible and amodal regions of broccoli heads, enhancing the size estimation of occluded broccoli heads. Chen et al. (2021) proposed a machine vision approach to locate and grasp ripe tomatoes in complex environments. Kim et al. (2023) introduced a U-Net-based reconstruction network for cucumber segmentation and occlusion recovery. The model exhibited accuracy, with an average precision (AP) of 49.31 and an average precision with intersection over union (IOU) of 0.5 (AP50) at 82.39. Gan et al. (2022) introduced a novel structure based on Attention Graph Convolutional Networks (AGCS) for piglet contour and amodal mask prediction.

The semantic labels for the amodal dataset proposed by Qi et al. (2019) are generated through imagination by multiple annotation experts. These labels lack authentic information about the true shapes of objects and entail significant human labor costs. For amodal labels, PCNet (Zhan et al., 2020) achieved the completion of amodal masks through self-supervised training of a segmentation network. The model takes only the modal masks (visible masks) as input and introduces occluders on these masks. The goal is to restore the previously occluded modal mask. However, during the completion process, the model becomes excessively reliant on the occlusion order of objects in the image. ASBUNet (Nguyen and Todorovic, 2021) replaced the occluders’ masks used in PCNet with occlusion boundaries, thus eliminating the need for occlusion order. Huang et al. (2023) introduced a semi-supervised generative adversarial network (GAN) for amodal segmentation. This is an AIS (Amodal Instance Segmentation) method designed for piglets in farrowing pens, relying exclusively on a modal dataset. The model attained a mean Intersection over Union (mIOU) of 0.823 for the segmentation of occluded piglets.

In this study, our goal is to decompose the target objects in greenhouse, explore the potential occlusion relationships among highly similar objects, reassemble the scene order, and complete the shapes of occluded objects.The primary contributions of our work are as follows: 1) we synthesized a tomato dataset with occlusion using the mean-value cloning technique and provided detailed amodal label annotations for this dataset. 2) we pioneered the combination and application of Swin Transformer and amodal segmentation for plant fruit images. 3)we proposed a self-supervised partial completion network that acquires the ability to fill in the invisible parts of tomatoes with training solely using the modal mask. 4) we utilized a segmentation loss method combined with GAN loss to enhance the quality of predicted amodal masks.

We proposed an amodal segmentation model based on Swin Transformer (Liu et al., 2021) and boundary estimation. Building upon the improved Swin Transformer UNet (Cao et al., 2023), we adopted a partial completion approach and trained a partial completion network, thereby reducing reliance on a large number of artificial amodal annotations for training. Additionally, we incorporated ideas from occlusion boundary estimation in ASBUNet and adversarial generative learning. We redesigned the prediction weights for occluded and visible regions within our model. This enabled us to enhance the accuracy of occlusion boundary prediction and increase the realism of the resulting amodal segmentation masks. Finally, we used the predicted amodal mask results from our proposed model as pseudo-amodal annotations and fed them into Mask R-CNN for training. This process allows us to evaluate the ultimate quality of the generated pseudo-amodal annotations.




2 Materials and methods



2.1 Data acquisition

We selected tomatoes (variety: 325) in the greenhouse as the subjects for our study. To minimize the impact of lighting conditions and shadows, we utilized an additional fill light panel to provide supplementary lighting when necessary. To ensure the dataset includes significant occlusion relationships, we opted for ripe tomatoes as our objects and captured images at various positions and orientations in space. As illustrated in Figure 1, to enhance the clarity of occlusion relationships in the image, we intentionally chose scenes with a higher degree of occlusion on the tomato fruits.

[image: Panel A shows a cluster of green tomatoes on a vine with lush green leaves. Panel B depicts another group of green tomatoes beginning to ripen among vibrant and slightly yellowing leaves.]
Figure 1 | Occlusion scenes in the natural growing environment of tomatoes; (A) is obtained from the top view angle; (B) is obtained by the slanted side angle.

We employed an Azure Kinect depth camera to capture tomato RGB image data at a resolution of 1280 x 720 and above. Developed by Microsoft, Azure Kinect is a depth camera device capable of automatically selecting per-pixel gain, facilitating a wide dynamic range that cleanly captures both near and far objects. Azure Kinect primarily relies on structured light technology and utilizes time-of-flight (TOF) techniques to obtain depth information. Additionally, it incorporates other sensors such as an RGB camera and a microphone array to provide a comprehensive perception of data. This technology allows us to acquire both color and depth information of the scene simultaneously in the same space-time.




2.2 Amodal annotation and datasets construction

Unlike other image segmentation tasks, which typically require pixel-level masking of visible objects, amodal segmentation incorporates scene structures with semantic labels for both visible and invisible parts. The publicly available amodal datasets cocoA and Kinst use ground truth annotated by artificial hypotheses, which would lack the true full shape of the occluded instance. We used a mean-value coordinate fusion algorithm (Farbman et al., 2009) to seamlessly clone the source image patches into the target image, as shown in Figure 2. The purple ROI in Figure 2A, as the image patch to be cloned, was seamlessly synthesized into the left side of the target image instance B. The image patch was then cloned into the target image. The core idea of this technique is to use the coordinate mapping relationship between the source and target images to interpolate pixel values. An adaptive triangular grid is constructed over the selected image patches, and the interpolated pixel values depend on calculating the mean coordinates of the vertices of each grid, and then sampling the boundary pixels hierarchically so that the number of these vertices is roughly linear to the number of boundary pixels, which translates into solving Poisson’s equation to make a smooth interpolating membrane. This interpolation method maintains the smoothness of the image and is able to handle scale and deformation differences between different images.

[image: Three images labeled A, B, and C show tomatoes on plants. Image A has a tomato edited to appear purple. Image B shows two red tomatoes on the vine. Image C features three red tomatoes, labeled A and B, growing on the plant.]
Figure 2 | Cloning of source image patches to target image using mean coordinate fusion technique; (A) the purple ROIs in the image are the image patches to be cloned; (B) target image; (C) cloning of the finished image.

We removed all incomplete masks of the masked instances, then combined the patch-synthesized images, and finally removed the images in the dataset that did not have masks, and selected 1000 images. We used the amodal semantic labels of 100 images as a test set, while the modal semantic labels of 900 images were divided into training and validation sets in a ratio of 9:1. To ensure the diversity of the training samples, we used data augmentation techniques such as flipping, panning, and random cropping to triple the number of training samples. After data augmentation, a total of 2,430 augmented training images were accepted.




2.3 Amodal segmentation model

The focus of this study is on how to obtain contextual information between occluding objects and decouple the overlapping relationships between them. We aim to consider both the relationship between occluders and occluded objects and estimate the masks for occluders and occluded objects separately.

The overview of ACBET (Amodal Completion Network with Boundary Estimation and Swin Transformer Unet) architecture is depicted in Figure 3. We used the occlusion boundaries and the primary masks of the visible parts as the inputs of model. It initially processes them with a 4x4 convolutional kernel, resulting in a tensor with 96 channels. Then, we applied a linear layer to transform the dimensionality in the model. After linear mapping, image becomes a series of segmented primary features that are further fed into the encoder. The encoder and decoder in the model utilize a symmetric and improved version of the Swin Transformer Block, based on the Swin Transformer Unet architecture. We modified the Swin Transformer Unet to act as the backbone of the entire network and as the basic segmentation module. The encoder gathers shallow-level features through four sampling layers. These features are then fused with the deep-level features collected by the decoder using skip connections.

[image: Diagram illustrating a Swin Transformer U-Net framework for generating a predicted amodal mask and uncertainty boundary. A tomato image is input with concatenated visible and occlusion boundary masks, processed through convolution and linear projection. It passes through an encoder, generating feature maps that undergo decoding, weighted adjustment, and discrimination to produce the final outputs.]
Figure 3 | The overview of our approach; F denotes the feature map extracted from the model input by the encoder.

In decoding process, we applied a partial completion algorithm to complete the amodal mask. We have improved the partial completion algorithm by introducing joint weights for the occluded region masks and visible region masks. This enhancement strengthens the attention to the interaction between the two parts of information and facilitates the prediction of the entire amodal mask. Finally, through the discriminator learning, the model generates predicted uncertainty boundary maps and improved amodal masks.



2.3.1 Swin Transformer Unet

The Swin Transformer architecture is suitable for both general vision backbones and downstream learning tasks. This architecture, by introducing a hierarchical window mechanism, addresses the computational inefficiency issue faced by traditional CNN networks when processing large images. Swin Transformer Unet is primarily composed of Swin Transformer Blocks and designed as a U-shaped symmetric structure (Ronneberger et al., 2015). The architecture can be visualized in Figure 4. Swin Transformer Unet first divides the input image into a series of non-overlapping patches, each patch having a size of 4 x 4. Since each pixel has RGB channels, each patch has a dimension of 4 x 4 x 3. Then, each patch is passed through a linear embedding layer to undergo a linear transformation and be transformed into a dimension of C. The input features are then sequentially passed through four stacked modules. In the Patch Merging layer, the network concatenates the patches within a neighboring 2 x 2 range to obtain a feature map with a dimension of 4C. Then, a linear layer is applied to reduce the dimension to 2C. After 4 downsampling modules, the network obtains the feature map F.

[image: Diagram of a Swin Transformer architecture. It shows stages of processing starting from images, going through a patch partition and linear embedding, followed by Swin Transformer blocks with patch merging and expanding. Stages include increasing channel dimensions and transformations, concluding with bottleneck processing and pixel class output. Skip connections are indicated by blue arrows.]
Figure 4 | Improved swin transformer Unet structure.

When the Swin Transformer Block serves as the decoder, it performs upsampling on the deep features extracting from the previous layer. We add a 1x1 convolutional layer on top of the skip-connected expansion layer to transform the feature size again. Each Patch Expanding layer performs upsampling to restore the feature map to twice its original size.

However, the final Expanding layer upsamples the feature map to four times the input size. As shown in Figure 5, the Swin Transformer Block is composed of two types of structures. Each Swin Transformer Block consists of a relative position encoding layer, a multi-head self-attention layer, an MLP layer, a fully connected feed-forward network layer, and a residual connection.

[image: Diagram showing two processing blocks in a neural network. The top block has components labeled LN, W-MSA, and MLP, with loop connections between them. The bottom block is similar, with LN, SW-MSA, and MLP. Each block shows data flow with arrows and combines inputs and outputs using addition nodes.]
Figure 5 | Swin transformer block structure.

These blocks can be computed in parallel, improving computational efficiency and significantly enhancing the performance of the model. For each window composed of patches, the W-MSA calculates its Query(Q), Key(K), and Value(V) vectors, following the Self-Attention algorithm. The algorithm can be represented in Equation 1. The Q, K, and V vectors of each window are multiplied by the matrix to obtain the Attention matrix for each window.

[image: Equation for attention mechanism: Attention(Q, K, V) equals softmax of (Q multiplied by K transpose, divided by the square root of d sub k) multiplied by V.] 

The Attention matrices of all windows are concatenated to obtain the final Attention matrix. To facilitate information interaction between windows, SW-MSA employs a sliding window where each window is shifted to the left or right by a certain distance, allowing for a certain overlap between adjacent windows. Therefore, the information from neighboring windows can be take into account when computing self-attention in the model.




2.3.2 Partial completion algorithm

In previous supervised methods, it was common to incorporate an amodal prediction branch to handle the task of predicting the occluded masks, while another branch focused solely on the visible region’s mask features. Indeed, the completion of the amodal mask requires similar feature information from both the occluded and visible regions. In this study, the training strategies used are partial completion, which is based on the idea of allowing the model to autonomously recover the occluded mask. During the training phase, the images undergo preprocessing, and random sampling is performed to extract the instances of occluders and occluded instances. As shown in Figure 6, we randomly selected two images that have an occlusion relationship, denoting the image containing instance A as [image: Text "Image" in a stylized font with a subscript "A".]  and the other image as [image: Blurred image showing the text "Image" with a subscript "B".] . Using existing instance segmentation models or manual annotation, we obtained the visible mask [image: Text displaying the letter "M" with a subscript "A".]  for instance A and the visible mask [image: The image shows the letter "M" with a subscript "B".]  for another instance B. The partial completion algorithm randomly places the visible mask of one instance on top of the visible mask of the other instance, which can lead to two possible scenarios. The first scenario is that instance A is occluded by instance B. We denoted the mask of the occlusion as [image: The image shows the mathematical expression "M subscript A divided by M subscript B".] , and the RGB image of instance A occluded by the mask as [image: Text displaying the mathematical expression "I subscript A over M subscript B".] . They are combined as input and fed into the network with a hourglass architecture to perform segmentation.

[image: Diagram illustrating a machine learning process for image segmentation using Swin Transformer Unet. Two images of tomatoes labeled as Image A and Image B are shown. These images undergo mask processing to create segmented images. The process involves masks \( M_A \) and \( M_B \), generating intermediate and final outputs through the Swin Transformer Unet. A discriminator \( D_m \) is included to refine the target output.]
Figure 6 | Partial completion of the algorithm’s process. The visible mask of instance A is represented as [image: The image shows a serif capital letter "M" with a subscript capital letter "A".] , and the visible mask of instance B is represented as [image: The image shows the letter "M" in a serif font with a subscript "B" on the bottom right.] . When object A occludes object B, it’s denoted as [image: Equation displaying the ratio of M sub A to M sub B.] , and when object B occludes object A, it’s denoted as [image: Ratio of subscript capital letter B to subscript capital letter A.] .

The training objective is to complete the visible mask [image: The image shows the letter "M" with a subscript "A".]  of instance A. To prevent the model from excessively completing pixels of mask [image: "Capital letter M with a subscript letter A."] , the second case is that instance B is occluded by instance A, denoted as [image: \( M_B / M_A \)] . The model combines the mask [image: The text shows a mathematical expression: M subscript B divided by M subscript A.]  and [image: The image shows the formula: \( I_A / M_B / M_A \).]  as inputs and the objective remains the same, which is to complete the visible mask [image: The image shows the symbol "M" with the subscript "A".]  of instance A. Thus, the model learns to determine whether completion should be performed, achieving the goal of regularization in learning. Subsequently, we introduced a discriminator to improve the quality of the recovered masks. The whole process can be described as follows (Equations 2–4):

[image: A mathematical equation shows \( M_{A}, M_{B} = N(A, B) \), followed by the number (2) on the right side.] 

[image: Equation depicting a mathematical model: \( M_{\text{pred}} = D_{m}(PCM_{\theta}(M_{A} / M_{B}, I_{A} / M_{B})) \), labeled as equation (3).] 

[image: Mathematical formula for \( M_{\text{pref}} \) is shown: \( M_{\text{pref}} = D_m(\text{PCM}_{\Theta}(M_B/M_A, I_A/M_B/M_A)) \). The equation is labeled as number four.] 

In the above equations, N represents the segmentation model or manual annotation, PCM refers to the partial completion module, and [image: Please provide the image or a URL, and I will help create the alt text for it.]  represents the parameters of the partial completion module.




2.3.3 Boundary uncertainty estimation

In instance segmentation, applying uncertainty estimation allows quantifying the model’s uncertainty in recognizing instance boundaries in an image. The principle is to introduce a probabilistic model to handle fuzzy and uncertain boundary positions. In the aforementioned partial completion task, when the model recovers occluded instances, the content of the occluded regions may have different pixel fillings due to the uncertainty of the boundaries. As shown in Figure 3, the model takes the original image, the mask of the occluded object, and the occlusion boundaries as inputs to the hourglass network module. It then provides a mask branch to handle the occlusion boundaries. The boundary uncertainty map output by the model serves as another boundary for the occluded object, and if the uncertainty is estimated to be high, the uncertainty map with the original occlusion boundary can help the model to capture reasonable shapes and sizes. The modal mask, with a size of 224 x 224 x 2, serves as input to the Swin Transformer Unet. It generates a feature map of size H x W x 2, where H represents the height and W represents the width. The feature map has two dimensions: one channel is used for amodal segmentation prediction, and the other channel is used for estimating the uncertainty of the boundaries. The model calculates confidence intervals to determine the range of predictions. The uncertainty map generated by the model results in lower segmentation loss in regions with higher uncertainty. Additionally, the shape priors obtained from the uncertainty map help the model better understand spatial distribution information. This uncertainty-based boundary estimation optimizes the amodal mask completion task and significantly improves the model’s performance.




2.3.4 Infer paired occlusion order for instances

Humans can intuitively perceive the sequential order of overlapping objects in natural scenes. If we only consider the occlusion of regions of interest (ROI) without incorporating sequential reasoning, it would be insufficient to handle complex scenes with a large number of overlapping objects. Zhu et al. (2017) and Ehsani et al. (2018) considered the depth ordering of instances in the image for the recovery of amodal masks. However, when it comes to handle scenes with cyclic occlusions by ordering the objects, the performance is not satisfactory.

However, when it comes to handle scenes with cyclic occlusions by ordering the objects, the performance is not satisfactory. Zhan et al. proposed a pairwise occlusion relationship sorting approach, where adjacent instance pairs consisting of two connected visible masks represent the occlusion between adjacent objects. However, this method failed to address situations where two objects occlude each other.

We drew inspiration from the occlusion boundary estimation method ASBUNet and combined it with the partial completion network to fill in the pixel values of different objects belonging to the boundaries. The combination of these two techniques reduces the errors caused by the partial completion network’s inability to follow consistent object geometry and missing boundaries. We show the relationship between instances using a directed graph of paired occlusion order in Figure 7.

[image: Panel A shows an image of tomatoes on a plant with numbered blue bounding boxes around each fruit. Panel B is a directed graph with numbered nodes colored in different hues and arrows indicating connections between them.]
Figure 7 | Occluded scene and corresponding sorting graph; (A) occluded scene (B) corresponding sorting graph.

[image: Mathematical notation depicting a graph represented as \( G = (Y, T) \), indicating a structure with vertices \( Y \) and edges \( T \).]  is used to represent directed graphs with occlusion order. Y denotes the set of all instances in the image with a total of N instances. T is an N x N matrix, where [image: The expression "T" with subscript "i, j" is shown, likely representing a matrix element in mathematical notation.]  represents the occlusion relationship between the adjacent pair of instances [image: Mathematical expression with a capital letter T followed by a subscript lowercase letter i.]  and [image: Mathematical formula showing the letter "T" with a subscript "j", possibly representing a variable or matrix element in a mathematical context.] . The calculation formula is as follows Equation 5.

[image: Equation for \( T_{ij} \) with three conditions: \( 0 \) if \( |M_i^a - M_i| = |M_j^a - M_j| = 0 \); \( 1 \) if \( |M_i^a - M_i| < |M_j^a - M_j| \); and \(-1\) if \( |M_i^a - M_i| \geq |M_j^a - M_j| \).] 

Where [image: Mathematical notation showing the symbol "M" with a superscript "A" and subscript "i".]  and [image: Mathematical notation showing the symbol M with subscript j and superscript A.]  represent the completed amodal masks for instances i and j. [image: Capital letter "M" with a subscript "h" slightly blurred.]  and [image: Mathematical expression of the letter "M" with a subscript "j," typically used in algebraic or scientific contexts to denote a matrix or set element.]  represent the visible masks, and [image: Mathematical expression showing the absolute difference between \( M_i^A \) and \( M_i \).]  and [image: \(| M_{j}^{A} - M_{j} |\)]  represent the pixel value increments for the completed amodal masks. If the increments generated by the mask completion network for instances i and j are equal to 0, it indicates that there is no occlusion between the two instances and they belong to the same layer. In this case, the [image: The image shows the mathematical representation "T subscript i j", likely denoting an element in a matrix or tensor with indices i and j.]  in the matrix would be 0. If the increment of the former is smaller than the latter, it means that I occludes J, and the value of [image: The image shows a bold uppercase letter T with subscripts i and j in smaller font, typically representing a matrix element notation.]  is 1. If the increment of the former is not smaller than the latter, it means that J occludes I, and the value of [image: The image shows the mathematical notation "T" with subscript "i,j".]  is -1. Considering the pairwise occlusion order, we can gradually infer the object order in the entire scene, providing clear prior information and interpretability for amodal mask completion.




2.3.5 Loss function

The output of the model consists of two parts: the predicted amodal mask and the predicted boundary uncertainty map. The result of the amodal mask is obtained by element-wise addition and activation using Sigmoid function (Equation 6), ensuring that the values are within the range of [0,1]. The boundary uncertainty map is obtained by calculating the boundary uncertainty. A higher value of boundary uncertainty indicates greater uncertainty in the model’s predictions of boundary positions, while a lower value indicates greater confidence in the model’s predictions. By generating the boundary uncertainty map, we can quantitatively assess the reliability of the model’s boundary predictions in the image. Therefore, it needs to be non-negative. The result is smoothed and output using Softplus non-linear function (Equation 7).

[image: Sigmoid function equation: sigmoid of x equals one divided by one plus e raised to the power of negative x. Equation labeled as six.] 

[image: Softplus function formula: \( \text{softplus}(x) = \log(1 + e^x) \), equation 7.] 

Therefore, after introducing the occlusion boundary estimation, we use the loss function:

[image: Mathematical equation labeled (8) reads: \( I_{\text{in\_mask}} = \frac{1}{N} \sum_{i=1}^{N} Y(m_i^f = 1)L_i \).] 

[image: The image shows a mathematical equation: \( L_{\text{out\_mask}} = \frac{1}{N} \sum_{i=1}^{N} (m_i^f = 0) L_i \), labeled as equation (9).] 

[image: The formula shown is L sub i equals one half times the square of the fraction containing m sub i prime minus m sub i over u sub i, plus u sub i squared. The equation is labeled as equation ten.] 

In the above equations, N represents the total number of pixels in the image, and [image: The image shows the mathematical notation "m" with a subscript "i".]  represents the mask of the occluder. In Equation 8, [image: The image depicts the mathematical expression "L subscript in underscore mask."]  represents the loss generated during the mask prediction inside the occluding object, and [image: Greek lowercase letter gamma, represented by the symbol resembling a cursive "v".]  represents the weight assigned to it. Based on experimental results, we set [image: Lowercase Greek letter gamma (γ) displayed in a serif font.]  to a constant value of 5. In Equation 9, [image: Text showing "I_{out\_mask}".]  represents the loss for predicting the visible mask outside the occluded region. In Equation 10, the first term of [image: Mathematical notation of the letter "L" with a subscript "i".]  aims to minimize the weighted discrepancy between the predicted amodal mask and the ground truth amodal mask. [image: Mathematical expression showing a prediction of the next observation "m subscript t plus one", indicating the next time step in a sequence or series.]  represents the ground truth amodal mask, while [image: It seems like the image did not upload correctly. Please try uploading the image again or provide a URL. If there is a caption you'd like included, feel free to add that as well.]  represents the predicted amodal mask. The second term serves as a regularization term for the predicted uncertainty map. Higher values indicate higher levels of uncertainty in the corresponding regions. To improve the quality of amodal mask completion, we also introduced adversarial learning by using a discriminator to minimize the discrepancy between the generated amodal mask and ground truth. The binary cross-entropy loss function was modified as the original method. Its loss function is shown in Equation 11. [image: Stylized letter "E" with subscript "m" in a serif font.]  and [image: The text shows the notation "E subscript m superscript c".]  represent the mathematical expectation in the equation.

[image: Equation showing adversarial loss: \( L_{\text{adv}} = \mathbb{E}_{m}[\log(1 - D_{m}(m_{i}))] + \mathbb{E}_{m'}[\log D_{m}(m'_{i})] \). This is labeled as equation eleven.] 

The overall loss function L is represented as follows (Equation 12):

[image: Equation showing a formula: \( L = L_{\text{in\_mask}} + L_{\text{out\_mask}} + L_{\text{adv}} \), labeled as equation 12.] 





2.4 Training and parameters setup

The training consists of three stages. In the first stage, the model is trained with low-resolution images. This stage allows for faster training by using a larger batch size and fewer iterations. In the second stage, the model is trained with high-resolution images in a smaller learning rate. This stage involves a longer training time to ensure better convergence and accuracy on the higher-resolution data. The Swin Transformer has already been pre-trained on ImageNet-1K, and it is recommended to load the pre-trained weights at the beginning of training. Utilizing transfer learning allows the model to more effectively adjust to downstream tasks with limited datasets, particularly when dealing with small fruits. In the third stage, we used Mask R-CNN to test the model’s ability to complement the modal mask. Subsequently, we conducted experiments to evaluate the performance of PCNet, ASBUNet, and our proposed model on the amodal mask completion task. We also compared the accuracy of the respective models on the amodal instance segmentation task. The mask input size of the model is 224 x 224. To accommodate constraints in physical memory and learning adjustments, we conducted 50,000 iterations with an initial learning rate of 5. The batch size was set to 32. For optimization, we employed the SGD optimizer (Stochastic Gradient Descent) with a momentum of 0.9. During backpropagation to optimize the model, a weight decay of 0.0001 was applied. The learning rate schedule includes a learning rate multiplier of 0.1, which adjusts the learning rate for different layers. Every 2000 iterations, predictions are made on the validation set, and the loss is evaluated for validation purposes.

Mask R-CNN is deployed using the open-source framework Detectron2 and PyTorch. We initialized the Mask R-CNN network using the pre-trained weights of the feature extraction network ResNet50 [31]. The parameters of the bounding box regression and fully convolutional networks are randomly initialized. We froze the weights of the feature extraction network and set the learning rate to 0.002 for training the backend network. Training and testing of all models in this study were conducted on one experimental platform to ensure consistency in comparison conditions. The main hardware configuration of the platform includes an Intel(R) Core i9–10980XE CPU with a frequency of 3.0 GHz, 128GB of RAM, and an NVIDIA GeForce RTX 3090 GPU with 24GB of memory. The main software environment includes the Ubuntu 20.04 operating system, PyTorch 1.10 deep learning framework, CUDA 11.7 for general-purpose parallel computing, and cuDNN 8.3.4 for GPU acceleration.




2.5 Metrics of evaluation

We used manually annotated amodal masks as the ground truth for verification and testing. For the occlusion order task in inference scenes, we compared the predicted occlusion order diagram with the ground truth occlusion order diagram. We evaluated the accuracy of the entire scene’s pairwise order and the accuracy of pairwise occlusion order using AP-ACC (All Pairwise Accuracy) and OP-ACC (Occlusion Pairwise Accuracy), respectively. In order to evaluate the occlusion order prediction made by the experiments on valid instances, we introduced a strategy where the predicted instances are only evaluated if their IOU (Intersection over Union) with the ground truth mask exceeds a threshold of 0.5. AOP (Average Occlusion Precision) quantifies the accuracy of sequence prediction across various threshold levels. To assess the completion of amodal masks, we compared the predicted amodal masks against the ground truth mask and computed the mean Intersection over Union (mIOU). For pixel classification tasks, we utilized Pixel Accuracy (P-ACC) to evaluate the segmentation model’s quality. For the prediction of invisible mask regions, we also used inv-mIOU as an evaluation metric to measure the accuracy of the predicted masks for occluded regions compared to the ground truth. In the task of amodal segmentation, we used Average Precision (AP) to represent the average precision at different IOU thresholds. AP evaluation is commonly used with IOU thresholds of 0.5 and 0.75, using Average Recall (AR) as an additional evaluation metric. The equation of OP-ACC and IOU are defined as follows (Equations 13, 14):

[image: OP-ACC equals the sum over AB of O sub AB equals 1 and O hat sub AB equals 1, divided by the sum over AB of O fore sub AB equals 1, as shown in equation 13.] 

[image: Intersection over Union (IOU) is represented as the formula: IOU equals the area of the intersection of M subscript pred and M subscript GT, divided by the area of the union of M subscript pred and M subscript GT.] 

where [image: Circle labeled \( O \) with subscript \( AB \).]  and [image: Illustration of an O blood type symbol and “AB” text, representing a concept related to blood types.]  denote ground truth and predicted occlusion order.





3 Results



3.1 Training performance of different models

Swin Transformer includes three network architectures that are designed to adapt to different datasets and tasks based on differences in network depth and the number of attention heads. In this experiment, we have selected three architectures and labeled them with Swin-Tiny-Unet, Swin-Small-Unet, and Swin-Base-Unet. We show the loss profiles of the 3 different architecture models during the training process. As shown in Figure 8, the loss curves of the three models exhibit a clear decreasing trend, indicating that all three models have converged during the training process.

[image: Three line graphs labeled A, B, and C display loss values over iterations for Swin-Tiny, Swin-Small, and Swin-Base Unet models. Each graph shows a steep decline in loss values initially, stabilizing as iterations increase. The x-axis represents iterations up to fifty thousand, and the y-axis represents loss values with varying initial peaks for each model.]
Figure 8 | Training loss graphs of the three models; (A) Swin-Tiny-Unet (B) Swin-Small-Unet (C) Swin-Base-Unet.

Compared to Swin-Tiny-Unet, Swin-Small-Unet and Swin-Base-Unet have a deeper network architecture and a larger number of parameters. However, they converge faster, reaching convergence at approximately 22000 iterations with final loss values of 0.1437 and 0.1448, respectively. Swin-Tiny-Unet converges relatively slower, reaching convergence at approximately 25000 iterations with a final loss of 0.2087. In summary, all three models are capable of completing the learning task. After converging the models to the global optimum using SGD, we selected the best network model based on the performance metrics evaluated on the validation set.




3.2 Inferring of occlusion order

Our baseline for the ordering inference task is established based on the Area and Y-axis algorithm (Zhu et al., 2017). The Area algorithm sets a separate heuristic method for the dataset. Since our tomato dataset was captured from various angles and distances, we applied an optimization heuristic that sorts larger instances as foreground instances based on the area of their masks.

The Y-axis algorithm focuses on the bounding boxes of the image instances and sorts them in the order of the detection boxes. Typically, instances with bounding boxes closer to the bottom of the image are placed at the front. In Table 1, we presented the results of different methods for the occlusion pairwise sorting task. ACBET achieved higher accuracy in occlusion pairwise sorting compared to PCNet-M and ASBUNet, with an improvement of 5% and 3.3%, respectively.

Table 1 | Order inference results of different methods (%).


[image: Table comparing methods based on their input type and accuracy metrics. The methods include Area, Y-axis, PCNet-M, ASBUNet, and ACBET. Inputs are categorized as mask and image, with check marks indicating the input type. Accuracy metrics include AP-ACC, OP-ACC, and AOP50, with values provided for each method except for AOP50 in PCNet-M.]
Compared to the performance of the previous baseline in occlusion pairwise sorting, our model demonstrates higher metrics and performance, with an accuracy of 96.07%. The model achieves an order prediction accuracy of 96.67% for the entire scene. Additionally, at an IOU threshold of 0.5, the sorting accuracy of adjacent instances in the occluded regions reaches a significantly high level of 95.18%, indicating that the model performs better adaptability to the morphology of tomato fruits.




3.3 Amodal mask completion

For PCNet and ASBUNet, the occlusion pairwise sorting threshold was set to 0.2. The threshold of amodal mask prediction was also set to 0.2. To ensure a fair comparison, we adjusted the training and testing of both comparative models on this dataset to achieve their best performance. We used the visible masks as the input for ACBET. The evaluation results of amodal mask completion are presented in Table 2.

Table 2 | Amodal mask completion results for different models (%).


[image: Table comparing different methods and their corresponding backbone segmentation networks, mIOU, P-ACC, and inv-mIOU metrics. Methods include PCNet and ASBUNet using Unet, and ACBET using Swin-Small-Unet, Swin-Base-Unet, and Swin-Tiny-Unet. Results: PCNet: mIOU 90.62, P-ACC 91.36, inv-mIOU not available; ASBUNet: mIOU 92.47, P-ACC 94.19, inv-mIOU 38.99; ACBET (Swin-Small-Unet): mIOU 92.76, P-ACC 94.06, inv-mIOU 35.91; ACBET (Swin-Base-Unet): mIOU 93.56, P-ACC 94.89, inv-mIOU 43.37; ACBET (Swin-Tiny-Unet): mIOU 94.13, P-ACC 97.83, inv-mIOU 57.79.]
Compared to Swin-Small-Unet and Swin-Base-Unet, Swin-Tiny-Unet shows an improvement in mIOU accuracy of approximately 1.4% and 0.6% respectively. The accuracy of inv-mIOU has improved by approximately 21.8% and 14.4% respectively. Additionally, Swin-Tiny-Unet has significantly fewer parameters both Swin-Small-Unet and Swin-Base-Unet, so it has faster computation and inference speed. In comparison to PCNet and ASBUNet, ACBET with Swin-Tiny-Unet also demonstrates improved mIOU by 3.5% and 1.7% respectively, showcasing better segmentation performance. Moreover, our model achieves an accuracy of 97.83% on the pixel classification task on the test set. Our model outperforms other methods in completing more reasonable amodal shapes when facing similar shapes and colors, as well as moderate to severe occlusions. We visualized the results of the amodal mask completion task in Figure 9.

[image: Five rows of images compare segmentation results for tomatoes. Column A shows original images with ripe and unripe tomatoes on plants. Columns B, C, and D display segmentation masks using GT, PCNet, and ASBUNet models against the original in Column A. Column E shows results using "ours" method, highlighting different segmentation techniques.]
Figure 9 | Results of each method for amodal mask completion; The first column from top to bottom, the pictures are recorded as number 1–5 respectively (A) GT, (B) PCNet, (C) ASBUNet, (D) ours.

ASBUNet demonstrates reasonable shape recovery for image 1 and image 2. In images 3 to 5, the occluder is placed at the forefront of the image and there is a larger pixel ratio (ratio of pixels between occluder and occluded object), indicating that ASBUNet does not perform well in handling heavy occlusion. While PCNet exhibits varying degrees of pixel missing in all completed amodal masks. Furthermore, our model even predicts amodal shapes that are more interpretable than the manually annotated ground truth. However, the edges around the completed amodal masks are irregular and jagged. That may be caused by pixel stacking resulting from the recombination of pixel blocks after the pixel segmentation by the moving window algorithm.




3.4 Results of amodal segmentation

Amodal segmentation task that involves detecting instances from a given image and predicting masks for those instances. The masks represent the complete shape of objects under occlusion perception. We applied the prediction ability of ACBET network in the amodal completion task to our tomato training set, thus We applied the prediction ability of ACBET network in the amodal completion task to our tomato training set, thus obtaining amodal segmentation results and an automatically generated pseudo-amodal annotated dataset.

We trained Mask R-CNN using both the pseudo-amodal annotations generated from ACBET network and the manual amodal annotations. It flanked the quality of the amodal segmentation results and pseudo-amodal annotations generated by our study. Table 3 presents the comparative results of our experiments. Comparing the mask AP results in the table, our model outperformed PCNet and ASBUNet by nearly 10% and 7.3%, respectively, achieving a score of 63.91%. The AP50 and AP75 were also closer to the results trained with manual annotations, which was significantly better than PCNet and ASBUNet. However, since the dataset consists mostly of close-up images, small objects were not included in the training by default, which also explains the mediocre performance of the APm (AP for medium objects: [image: Mathematical expression indicating that the square of thirty-two is less than the area, which is less than the square of ninety-six.] ) metric.

Table 3 | Amodal segmentation results of pseudo-amodal annotations generated by different models trained on Mask R-CNN (%).


[image: Comparison table of training data sources: manual amodal, PCNet amodal, ASBUNet amodal, ACBET amodal. Metrics include Box AP, AP50, AP75, APL, APm, mask AP, and AR10, with varying precision and recall values.]
Figure 10 showed the amodal segmentation results derived from PCNet, ASBUNet and our study. In image 1, all three models are trying their best to complete the full shape of the obscured tomato No. 2, but our model completes a more regular shape. It demonstrates that our model has better performance. In image 2, the tomato labeled as 2 is occluded by the tomato No.1 on the left and tomato No. 3 on the right. Both PCNet and ASBUNet accurately predicted the right side region of the occluded tomato No. 2. When it comes to the No. 2 tomato’s left side region, PCNet chose to ignore it, while ASBUNet had a lower completion rate. Our model is capable of reasonably completing the occluded masks for both sides. In image 3, there are two tomatoes No. 2 and No. 3 occluded by the same object No.1. Our model can simultaneously restore the shape of both targets, while the previous two models tend to complete the mask restoration for only one target and ignore the other.

[image: A series of images showing tomatoes on plants. Each row compares different segmentation techniques. The first column displays the original images with numbered labels on the tomatoes. Subsequent columns, labeled GT, PCNet, ASBUNet, and ours, show segmented images highlighting tomatoes using different contour methods. The background, which includes foliage and stems, remains consistent across comparisons.]
Figure 10 | Results of amodal segmentation obtained from PCNet, ASBUNet and ACBET; the first column from top to bottom, the pictures are recorded as number 1–3 respectively; a to d are the results obtained from training and validation of the corresponding models (A) GT, (B) PCNet, (C) ASBUNet, (D) ours.

We further tested the ACBET model on the tomato testing set and obtained additional results, as shown in Figure 11. In the first row Figure 11A, most of the results demonstrate high-quality predictions of amodal complete shapes. However, there are some results in Figure 11 that are not as satisfactory.

[image: Tomatoes growing on vines in various stages of ripening, each outlined and segmented, with different colors indicating stages or parts. Images A, B, C, and D show close-ups of tomatoes in diverse environments showcasing variations in maturity and coloration.]
Figure 11 | More modal segmentation results obtained by ACBET. (A) Results with better amodal segmentation. (B–D) Results with poor amodal segmentation.

In Figure 11B, we observe that although the occluded tomato instance on the right side is detected accurately, its small visible mask closely resembles that of the leaf. This similarity leads the model to refrain from completing the mask. The occurrence depicted in Figure 11C can be attributed to the scarcity of content within the occluded region, causing the model to overly scrutinize pixel completion during training with a substantial dataset. The presence of irregular branches and leaves, coupled with tomatoes from the same class causing occlusion, results in significant obstruction, leading to irregular occluded and visible masks. This complexity compounds the challenge of predicting the scenario depicted in Figure 11D.





4 Discussion

The occurrence of hidden tomatoes in a greenhouse significantly impacts the precision of tomato detection and counting. Accurate estimation of tomato yield and ongoing monitoring of their growth play a pivotal role in enhancing the economic returns for farmers involved in tomato cultivation. Considering market preferences for fruit freshness, size, and appearance, it becomes imperative to discern the distinct morphology of every tomato during harvesting, even those that are partially obstructed. Mask R-CNN is a standout method in the realm of image instance segmentation, with its primary focus on the visible regions of objects. In a study conducted by Afonso et al. (2020), 123 images were captured using cameras mounted on a rail-guided vehicle. The researchers utilized Mask R-CNN with the RestNext-101 backbone network to segment red and green tomatoes within a greenhouse. The obtained detection metrics reveal an F1-Score of 0.93 for red tomatoes and 0.94 for green tomatoes. Benavides et al. (2020) collected 175 images using a fixed RGB camera. They employed the Sobel operator for tomato edge detection, followed by segmentation based on both color and size (without considering occlusion). The resulting clustered tomato detection rate was 79.7%. Zu et al. (2021) utilized an RGB camera mounted on a mobile robot to capture images, expanding their dataset to 3180 images through the use of data augmentation. They employed the Mask R-CNN with the RestNet-50-FPN backbone network to effectively segment mature green tomatoes, achieving an impressive F1-Score of 0.9284. We integrated the amodal masks predicted by the ACBET model with the images for training the Mask R-CNN featuring ResNet-50-FPN backbone network. This integration aimed to enhance the system’s capability to detect and segment tomatoes of different colors in the images. The outcomes demonstrate that, at an IOU of 0.5, the average segmentation precision on the test set achieved 90.01%. Detailed findings from the mentioned research are presented in Table 4.

Table 4 | Results shown from different studies on tomato fruit detection.


[image: Comparison table of algorithms for tomato detection. Authors and methods include Afonso et al. (Mask R-CNN, ResNext-101), Benavides et al. (Sobel operator), Zu et al. (Mask R-CNN, ResNet-50-FPN), and Ours (ACBET + Mask R-CNN, ResNet-50-FPN). Image counts range from 100 to 3180. Reported metrics include F1-Scores and detection accuracy, with values like 0.93 and 90.0%.]
The primary contribution of this study lies in restoring the shape of tomatoes under specific occlusion conditions. We introduce an amodal segmentation network based on the Swin Transformer Unet and boundary estimation. By addressing tasks such as occlusion order recovery, amodal mask completion, and amodal segmentation, the model has demonstrated the ability to restore the complete shape of occluded tomato fruits. Currently, datasets containing amodal annotations are scarce, and manual annotation comes with a high cost. For instance, annotating each image in the COCOA dataset (Zhu et al., 2017) takes approximately 18 minutes, while annotating each image in the BSDS dataset (Arbeláez et al., 2011) takes around 15 minutes. To address this issue, we trained a partial completion network to autonomously learn the completion of object pixels without the need for manual amodal annotation during the training process.

In a study by Gené-Mola et al. (2023), amodal segmentation was applied to obscured apples, and diameter estimation and fruit visibility (the ratio of visible pixels to total apple pixels) were based on the predicted amodal masks. The results indicate that, at a confidence level of 0.2, the average precision (AP) for fruit amodal mask prediction is 0.51. Given the model’s inability to directly incorporate depth information from RGBD cameras in greenhouse-captured images, this approach encounters practical limitations. Moreover, the amodal ground truth annotations for the dataset were obtained from 3D tree models generated using Structure from Motion (SfM) and Multi-View Stereo (MVS). Estimation errors might affect the accuracy of the ground truth, rendering it less precise compared to painstaking manual annotations. We provided a test set synthesized through image patching, incorporating the full shapes of tomatoes before they are obscured. This enables us to obtain genuine amodal ground truth, even though the annotations still depend on careful manual labeling. The Swin-Tiny-Unet network utilized in the model incorporates a mobile window-based attention mechanism algorithm, effectively enhancing feature extraction and feature fusion capabilities. The testing results of the ACBET segmentation model on the tomato dataset reveal an average Intersection over Union (mIOU) of 94.13% and a pixel classification accuracy of 97.83%. The average Intersection over Union (mIOU) for invisible mask segmentation reached 57.79%. Introducing uncertainty estimation for occlusion boundaries and incorporating prior information about tomato shapes enhances the accuracy of predicting occlusion order in scenarios with boundary confusion. The average accuracy for predicted pairs of occlusion orders has risen to 96.07%. Additionally, the discriminator in adversarial generative learning, along with its corresponding loss function, contributes to the model generating higher-quality amodal masks.

In Figures 10 and 11, our approach presents more convincing prediction images and boundaries when compared to other models. We trained Mask R-CNN on the pseudo-amodal annotated data generated by ACBET, using the validation results on the test set to assess the quality of the pseudo-amodal annotations, and comparing them with manually annotated amodal annotations. Using pseudo-amodal annotations generated by ACBET as the training set, the average precision for mask segmentation reached 63.91%. Evaluation metrics AP50 and AP75 showed a decrease of approximately 2.21% and 1.15%, respectively, compared to the results with manually annotated amodal annotations. This suggests that our model’s predictions for amodal masks closely align with the actual amodal masks. Farming conditions can be intricate, and shadows may be cast on obscured tomatoes due to varying angles of illumination. Furthermore, irregular branches may act as occluders for tomatoes, potentially leading to less distinct boundaries calculated by the model. In our future work, we will concentrate on tackling challenges presented by irregularly shaped occluders. Although our model doesn’t necessitate amodal masks during training, it still depends on modal masks throughout the training process. As emphasized in the work by Zheng et al. (2021), the quality of modal masks significantly influences the completion results of amodal masks. Therefore, improving the quality and accuracy of modal masks will also be a crucial aspect of our future research efforts.

Based on the experiments of amodal mask prediction and segmentation in tomato, it can be applied to other fruit and vegetable crops such as apple, maize seedlings and cucumber in the future to further study the plant phenotypes, such as calculating the surface area and volumetric dimensions, which will be beneficial for fruit detection and fruit grading. We estimated the visibility by calculating the ratio of visible pixels (modal mask area) to the total pixels of the tomato (amodal mask area). Figure 12 shows the experimental results of tomato visibility estimation, with most tomatoes having visibility values in the 15% to 40% and 50% to 90% bins. The amount of data, if large enough, can be an important reference for determining the growing season of tomatoes.

[image: Scatter plot showing ground truth visibility percentage versus predicted visibility percentage with a red regression line, equation \(y = 0.97x + 0.3\), and \(R^2 = 0.91\). Data points are scattered around the line, indicating a strong correlation.]
Figure 12 | Linear relationship between true and predicted tomato visibility estimate.




5 Conclusion

Our research aims to assist farmers in monitoring the growth stages of tomatoes or provide decision support for robotic fruit harvesting. We have the capability to predict the complete form of obscured objects and estimate tomato sizes even in complex environments. The paper introduces an amodal segmentation network based on Swin Transformer and boundary estimation. Initially, we opted for the Swin Transformer Unet as the segmentation network and subsequently modified the network’s depth and attention mechanisms. This can reduce the model’s complexity. Then, we embedded partial completion network modules and a boundary estimation algorithm into the segmentation network. It aids the model in self-supervised learning to predict and complete amodal masks. Subsequently, we integrated GAN loss into the cross-entropy loss to form a new loss function. We selected undisguised tomatoes from the original dataset and used the mean coordinate cloning algorithm to synthesize obscured tomatoes. Subsequently, we integrated GAN loss into the cross-entropy loss to form a new loss function. We selected undisguised tomatoes from the original dataset and used the mean coordinate cloning algorithm to synthesize obscured tomatoes. This method enabled us to acquire amodal ground truth for tomatoes, as opposed to artificially assumed ground truth. The conclusive experimental results revealed that the model attained an impressive average Intersection over Union (mIOU) of 94.12% for predicted amodal masks, along with a pixel classification accuracy of 97.83%. This study offers valuable insights into advancing fruit harvesting systems and monitoring crop growth status in agriculture. By delving into the complex relationship between plant occlusion and visibility, improvements can be made in automated fruit harvesting technology to enhance efficiency and accuracy. Additionally, the ability to monitor crop growth status aids in timely identification and management of plant health issues, ultimately promoting increased agricultural yield and quality.
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The timely and accurate acquisition of crop-growth information is a prerequisite for implementing intelligent crop-growth management, and portable multispectral imaging devices offer reliable tools for monitoring field-scale crop growth. To meet the demand for obtaining crop spectra information over a wide band range and to achieve the real-time interpretation of multiple growth characteristics, we developed a novel portable snapshot multispectral imaging crop-growth sensor (PSMICGS) based on the spectral sensing of crop growth. A wide-band co-optical path imaging system utilizing mosaic filter spectroscopy combined with dichroic mirror beam separation is designed to acquire crop spectra information over a wide band range and enhance the device’s portability and integration. Additionally, a sensor information and crop growth monitoring model, coupled with a processor system based on an embedded control module, is developed to enable the real-time interpretation of the aboveground biomass (AGB) and leaf area index (LAI) of rice and wheat. Field experiments showed that the prediction models for rice AGB and LAI, constructed using the PSMICGS, had determination coefficients (R²) of 0.7 and root mean square error (RMSE) values of 1.611 t/ha and 1.051, respectively. For wheat, the AGB and LAI prediction models had R² values of 0.72 and 0.76, respectively, and RMSE values of 1.711 t/ha and 0.773, respectively. In summary, this research provides a foundational tool for monitoring field-scale crop growth, which is important for promoting high-quality and high-yield crops.




Keywords: crop growth monitoring, portable snapshot multispectral imaging crop-growth sensor, wide band co-optical path imaging system, mosaic filter spectroscopy, field experiments, prediction models




1 Introduction

Real-time and accurate estimations of crop growth conditions provide fundamental agricultural information for crop growth diagnosis and precise management, playing a crucial role in enhancing crop yields and quality (Karthikeyan et al., 2020; Berger et al., 2022). Traditional methods of obtaining crop growth information have relied on subjective observations by agricultural experts or destructive sampling combined with physical and chemical experiments in the laboratory. However, these methods have several disadvantages, such as their poor timeliness, time-consuming processes, and labor-intensive procedures (Zou et al., 2001; Yuan et al., 2022). In recent years, crop growth monitoring technologies based on spectral imaging have been developed; these technologies are non-destructive, provide data in real time, and are highly efficient. These technologies have found widespread applications in estimating the nitrogen content in rice leaves (Zhou et al., 2018), monitoring wheat biomass (Jia et al., 2019), and detecting powdery mildew in wheat (Xuan et al., 2022). Spectral imaging sensors, which can serve as an implementation platform for spectral imaging technology, are foundational tools for crop growth monitoring (Sun et al., 2022).

Agricultural scientists demand crop growth monitoring at various scales, and different types of spectral imaging sensing devices offer possibilities for fulfilling this need. Portable spectral imaging devices, characterized by their portability and ease of operation, have demonstrated significant advantages in acquiring information on crop organs and canopies at the field scale (Pallottino et al., 2019; Kim et al., 2023). Jia et al. (2019) utilized a commercial hyperspectral imaging device, the GaiaField-V10E (400−1000 nm), to estimate wheat leaf biomass. They used the synergistic interval partial least squares (SIPLS) and successive projection algorithm (SPA) to select eight feature wavelengths and construct a wheat leaf biomass prediction model based on partial least squares regression (PLSR) (R²=0.79, RMSE=0.059 kg/m2). While this type of device enables rich spectral information acquisition, data processing relies on specialized remote sensing personnel, and it cannot directly output crop growth information. Shao et al. (2023) used a portable pole-mounted commercial multispectral camera, RedEdge, for acquiring multispectral images of maize. After offline cropping, registration, and radiometric correction of the obtained images, they achieved maize leaf area index (LAI) prediction (accuracy R²=0.816, RMSE=0.399). However, the multi-channel multispectral camera used in this study was affected by field-of-view differences between lenses in near-ground applications, and the process from crop spectral information acquisition to agricultural parameter interpretation relied on a multi-step offline processing approach.

In comparison with commercial spectral imaging devices, some research institutions have developed agriculture-specific spectral imaging devices. Wang et al. (2020b) designed a handheld corn hyperspectral imaging system that included a commercial hyperspectral camera, a leaf scanner, a lightbox, and a controller. Using the normalized difference vegetation index (NDVI) combined with PLSR, they constructed models to predict corn leaf nitrogen content and relative water content. However, the device is relatively large, and efficient imaging requires moving the hyperspectral camera for the push-broom acquisition of corn leaf images. The development of prediction models for multiple crop growth parameters is still ongoing. Tang et al. (2022) developed a portable wheat chlorophyll detector using a commercial mosaic multispectral camera (700−900 nm) with 25 bands. This instrument, which comprised a spectral camera, a control module, and a network module, could construct a wheat chlorophyll content prediction model by selecting optimal feature bands. Although this device provided direct interpretation of wheat chlorophyll, its bands were concentrated in the near-infrared and red-edge spectra, offering a limited wavelength range, and the output indicators were relatively singular. Wang et al. (2020a) also created a portable soybean leaf multispectral imaging device consisting of a monochrome camera, different wavelength light-emitting diodes (LEDs), and a controller. This device captured multispectral images of soybeans by pressing the soybeans flat and then constructed NDVI images. However, research findings did not present a prediction model specifically for soybean chlorophyll content.

To address the aforementioned typical issues, this study introduces a novel portable snapshot multispectral imaging crop growth sensor (PSMICGS) capable of real-time interpretation of rice and wheat aboveground biomass (AGB) and leaf area index (LAI). In contrast to previous work, this study offers the following significant contributions:

	A design approach for PSMICGS using mosaic filters (MFs) in conjunction with dichroic mirrors (DMs) to achieve wide-band integrated co-optical imaging is proposed. This method enables the real-time acquisition, processing, and interpretation of crop spectral information across a broad wavelength range.

	Assembly and adjustment methods for a wide-band co-optical front imaging system incorporating DMs for beam separation were explored, as well as methods for the registration of multispectral images. This method included strategies for real-time online image registration and multispectral image fusion, enhancing capabilities for crop analysis.

	A processor system that integrated sensor data with crop growth monitoring models based on an embedded control module was developed. This addressed the limitation of existing devices that struggle with real-time crop growth interpretation. Field experiments were conducted in rice and wheat fields using the PSMICGS, resulting in the construction of prediction models for rice and wheat AGB and LAI.






2 Materials and methods

In this section, we detail the design process of the PSMICGS and the construction of the models for estimating AGB and LAI in rice and wheat fields. Specifically, we outline the design approach of a wide-band co-optical path imaging system based on MFs combined with DMs for spectral separation. Additionally, we describe the experimental design for monitoring AGB and LAI in rice and wheat using the PSMICGS, along with the process used to construct prediction models.



2.1 Design of the PSMICGS for wide band integrated co-optical path imaging



2.1.1 Selection of crop growth-sensitive spectral bands

After solar radiation interacts with crops, spectral information is formed through absorption, transmission, and reflection. This information reflects canopy structure, growth conditions, and physiological and biochemical characteristics of crops, with reflection spectra being commonly used in crop growth monitoring (Xue et al., 2003; Zhu et al., 2007a). To develop a PSMICGS capable of direct crop growth interpretation, it is necessary to carefully select crop growth-sensitive bands. Based on our unit’s research on crop growth monitoring (Zhu et al., 2007b; Wang et al., 2012; Li et al., 2022) and diagnostic equipment development (Ni et al., 2018; Yao et al., 2020; Yuan et al., 2022) at the National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, China, it was found that canopy reflectance in rice and wheat is closely related to specific spectral ranges: 413–434 nm, 517–538 nm, 553–577 nm, 660–680 nm, and 700–770 nm for nitrogen content (Wang et al., 2012; Yao et al., 2013); 706–738 nm and 806–816 nm for biomass (Yao et al., 2018; Jia et al., 2019); and 590–710 nm and 745–1130 nm for wheat leaf dry weight and LAI (Feng et al., 2009). Considering these studies, we selected 458, 487, 527, 558, 644, 716, 737, and 813 nm as characteristic bands for the PSMICGS.




2.1.2 Design of the PSMICGS control system

The hardware architecture of the PSMICGS consisted of a front imaging system, primary control module, auxiliary cameras, power module, and control display. The front imaging system, which is crucial for capturing crop information across different spectral bands integrated a lens (AF Nikkor 50 mm F/1.8D, Tochigi Nikon Precision Co., Ltd., Japan) with a minimum focusing distance of 0.45 meters and a diagonal field of view of 46°. It utilized DMs for spectral separation and two mosaic multispectral cameras (MMC1 and MMC2) equipped with mosaic filters (MF1 and MF2). To capture crop light information at preset wavelengths, we used MF for spectral splitting. This spectral splitting technique can deposit different bands on the same mosaic template. However, due to manufacturing constraints, the eight preset bands were divided between MF1 and MF2, each fabricated using a narrowband Fabry-Pérot microcavity array method to ensure over 95% light transmittance at each central wavelength. Figures 1A, B show the specific band settings and transmittance curves, with MF1 containing the first four and MF2 the last four of the selected characteristic bands.

[image: Diagram with multiple sections detailing an optical setup and camera components. Sections A and B show wavelength filters and transmittance graphs for different nanometer ranges. Section C illustrates a system with detectors, lenses, and a main control module labeled NVIDIA Jetson TX2. Sections D and E depict a camera, identifying parts like the switch button, touch screen, housing, capture button, auxiliary camera, and lens.]
Figure 1 | Portable snapshot multispectral imaging crop growth sensor (PSMICGS) hardware system. (A) MF1 band settings and transmittance curves for each band. (B) MF2 band settings and transmittance curves of each band. (C) Schematic diagram of the PSMICGS hardware system architecture. (D) Three-dimensional model of the entire PSMICGS machine structure. (E) Physical diagram of the entire PSMICGS machine structure.

The MMC1 and MMC2 detectors were complementary metal oxide semiconductor (CMOS) image sensors with a spectral response range of 400−1000 nm, used for capturing and converting crop light information. To minimize field of view differences, a DM was employed to separate crop light information, with a reflecting wavelength range of 380−580 nm and transmitting wavelength range of 610−880 nm. The DM was positioned at a 45° angle in the system (Figure 1C). The primary control module of the PSMICGS utilized an NVIDIA Jetson TX2 (NVIDIA Corporation, USA), which was responsible for the real-time control of MMCs, and auxiliary cameras to collect and process crop spectral information. Communication and power supply to MMC and the auxiliary camera were facilitated using universal serial bus (USB) 3.0 and USB 2.0 technology, respectively. The auxiliary camera, a five-megapixel driver-free module, captured crop red-green-blue (RGB) images and monitored sensor field of view status in real-time. A 14.8-V lithium battery powered the primary control module, while a 5.5-inch capacitive touchscreen served as the control display for interactive sensor information processing. Data storage utilized a 256-GB high-speed TransFlash (TF) memory card (Western Digital Corporation, USA) inserted into the Secure Digital (SD) card slot on the development board. Figures 1D, E depict the three-dimensional model and physical appearance of the PSMICGS, respectively, with a black coating applied to the housing to minimize external light interference.

The PSMICGS software system was developed using the Qt development platform in conjunction with the detector software development toolkit (Figure 2). The software workflow is illustrated in Figure 2A and comprises three primary steps: initial sensor setup, spectral image acquisition and processing, and data storage. Figure 2B shows the graphical user interface (GUI), featuring five main sections: camera parameter settings, acquisition control, information prompts, single-band image display, and analysis result display.

[image: Flowchart and software interface for crop multispectral imaging. The flowchart (A) outlines steps from initializing and capturing images to processing and interpreting agronomic data. The interface (B) has labeled areas for camera settings, acquisition control, and an information prompt. A grayscale image displays in the single-band area and a vibrant NDVI image in the analysis results area.]
Figure 2 | PSMICGS software system. (A) Workflow of the software system and (B) diagram of the software interface.





2.2 Research on spectral image processing methods of the PSMICGS

A dual-detector integrated co-optical path imaging system was designed to achieve real-time acquisition of wide-band crop spectral information and improve device miniaturization and integration, as illustrated in Figure 3A. However, achieving precise alignment of the field of view for the two cameras posed challenges due to machining tolerances in mechanical components and assembly errors, and required calibration. Figure 3B shows the system calibration process, which involved using black-and-white checkerboard patterns. Initially, MMC1 and MMC2 were focused by adjusting them to clearly display registration reference lines, checkerboard patterns, and hybrid images. Subsequently, we adjusted MMC2 laterally or longitudinally using the second fixed adjusting piece’s square slot and second hexagon socket set screws with cup points until the registration reference line and checkerboard patterns were aligned both horizontally and vertically in their respective real-time views. MMC1 was then rotated using the circular slot of the first fixed adjustment component until the checkerboard patterns were perfectly aligned along the edge direction, and it was then secured with the first hexagon socket set screws with cup points. Finally, fine-tuning of MMC1 and MMC2 was conducted using the first and second hexagon socket set screws with cup points until the checkerboard patterns in all directions were aligned, thereby concluding the assembly and adjustment process of the front imaging system.

[image: Diagram A shows a labeled cutaway view of a mechanical device, with ten parts numbered. Image B depicts a photography setup in a room, including a halogen lamp, a checkerboard backdrop, a front-mounted imaging system on a tripod, and a computer.]
Figure 3 | Assembly and adjustment of the PSMICGS. (A) Three-dimensional diagram of the front imaging system: 1. Lens, 2. Front panel, 3. Component fixing device, 4. DM and mounting fixing device, 5. Second hexagon socket set screws with cup point, 6. Second fixing adjustment piece, 7. MMC2, 8. First hexagon socket set screws with cup point, 9. First fixing adjustment piece, and 10. MMC1. (B) On-site image of the front imaging system assembly and adjustment.

Upon completing the assembly and adjustment of the front imaging system, we utilized the scale-invariant feature transform (SIFT) algorithm for image registration between the two fields to further enhance co-field of view imaging accuracy (Lowe, 2004). Additionally, an affine transformation was applied for image fusion. For the specific application scenario, images were captured at a height of 70 cm above the canopy. Post-registration, fusion and the root mean square error (RMSE) were employed to assess registration accuracy, as expressed in Equation 1. If the RMSE value exceeded four, the image registration was deemed unsuccessful (Gong et al., 2013; Ma et al., 2016). To distinguish it from RMSE below, we used the RMSEr here to denote the RMSE.

[image: The image shows a mathematical formula for RMSE subscript r, which represents the Root Mean Square Error. It is calculated as the square root of the sum over i from 1 to m of the squared differences between the predicted values, x subscript i superscript star, and true values, x subscript i, plus the squared differences between the predicted values, y subscript i superscript star, and true values, y subscript i, divided by m.] 

where m represents the total number of pixels and [image: Mathematical notation showing a point in a Cartesian coordinate system, represented as an ordered pair \((x_i, y_i)\).]  and [image: \( (x'_i, y'_i) \) representing a point in a transformed coordinate system with prime notations indicating modifications.]  represent the pixel coordinates of the reference image and the image to be registered, respectively.




2.3 Research on calibration methods for the PSMICGS



2.3.1 Spectral calibration of the PSMICGS

To characterize the response of each spectral channel of the PSMICGS, we used a spectral calibration system based on an adjustable monochromatic light source (Zolix Instruments Co., Ltd., China). As shown in Figure 4A, this system was composed of an integrating sphere, an adjustable monochromatic light source, a spectrometer, and a computer. The monochromatic light source covered a spectral range of 350−1000 nm, which was sufficient to cover all bands used by the PSMICGS in this study. During calibration, the sensor lens was initially aligned with the integrating sphere’s light port. The exposure time and gain of the MMC were set to 100 ms and 6 dB, respectively. The monochromator was adjusted to each of the eight MF bands to determine the band with the highest digital number (DN) response, which served as the reference band. Using this reference band as a benchmark, the monochromator was tuned to corresponding bands. When the DN reached approximately 60−80% of its maximum value, the exposure time and gain settings were recorded as benchmark parameters. Subsequently, the spectrometer bands of the monochromatic light source system were adjusted in 2-nm increments, and internal images of the integrating sphere were captured and stored for each increment. The wavelength adjustment ranges for MMC1 and MMC2 were 350−700 nm and 500−900 nm, respectively. Finally, DN values corresponding to each band were extracted based on MMC band settings, followed by fitting analysis.

[image: Panel A shows a laboratory setup with a computer, integrating sphere, monochromator, light source, and its power supply. Panel B presents a flowchart illustrating the process, including components like the integrating sphere, slit, halogen light source, fiber spectrometer, and computer. Panel C provides a close-up of the integrating sphere and MMC.]
Figure 4 | Spectral and radiometric calibration system of the PSMICGS. (A) On-site image of the spectral calibration. (B) System block diagram of the radiation calibration. (C) Site diagram of the setup for radiation calibration.




2.3.2 Radiometric calibration of the PSMICGS

Since the original pixel values obtained by the PSMICGS were in DN (a dimensionless unit), it was necessary to convert these values into meaningful radiance or reflectance units for interpreting crop growth parameters. Thus, we investigated the linear relationship between sensor DN and radiance, which is crucial for improving the quality and accuracy of crop multispectral images. The radiometric calibration system used in this study is illustrated in Figures 4B, C, and it primarily consisted of a 4-inch aperture integrating sphere (USLR-V12F-NMNN, Labsphere Inc., USA). The spectrometers used in the system were the Maya2000 Pro, with a spectral range of 165−1100 nm, and the NIRQuest, with a range of 900−1700 nm (Ocean Optics, USA). In the specific calibration procedure, four exposure time levels were set: 60, 80, 100, and 120 ms. For each exposure time, seven radiance levels were adjusted, and ten images were acquired for each radiance level. The average DN values of these images were calculated, and the DN values corresponding to each band were extracted for the fitting analysis.





2.4 Design of the performance test experiment based on the PSMICGS



2.4.1 Signal-to-noise ratio testing experiment

The signal-to-noise ratio (SNR) is a key indicator for assessing the performance of spectral imaging sensors, and a high image SNR is a prerequisite for effective crop-growth monitoring (Li et al., 2023). In this study, we used an adjustable monochromatic light source system (Figure 4A) to capture images of a uniform surface light source. Initially, we set the exposure time and gain values determined during the spectral calibration process as benchmark parameters. Subsequently, the monochromator was set to 0 nm, and the exposure time and gain values of the MMC were adjusted to these benchmark parameters to avoid image overexposure. The adjustment was then halted, and the MMC captured 10 images within the integrating sphere. Finally, pixel values from the corresponding channels were extracted based on the defined positions of the reference bands on the MF, and the SNR was calculated using the following formula (Zaunseder et al., 2022):

[image: Signal-to-noise ratio SNR as a function of lambda equals D of lambda over N equals the sum from i equals one to n of D sub i of lambda divided by n, over the square root of the sum from i equals one to n of D sub i of lambda minus the sum from i equals one to n of D sub i of lambda divided by n, squared.] 

where [image: The mathematical expression shows "D" followed by the Greek letter lambda in parentheses.]  represents the mean value of the DN from multiple acquired spectral images, indicating the signal value, and N represents the RMSE of the DN from multiple acquired spectral images, representing the noise value.




2.4.2 Radiometric response accuracy testing experiment

Accurate radiometric response is essential for quantitative monitoring of crop growth using the PSMICGS. We tested the PSMICGS with eight standard diffuse reflectance panels: A1−A7 (Labsphere Inc., North Sutton, NH, USA) and A8 (Changhui Electronic Technology Co., Ltd., China) (Figures 5A, B). The reflectance values of panels A1−A7 were 5%, 10%, 20%, 40%, 60%, 75%, and 99%, respectively, while the reflectance of panel A8 ranged from 20% to 30%.

[image: Panel A shows eight metallic square devices labeled A1 to A8 arranged on grass. Panel B depicts a person standing on grass with buildings in the background, positioning similar devices on the ground.]
Figure 5 | Radiometric response accuracy test of the PSMICGS. (A) Standard diffuse reflective panels with varying reflectivities, and (B) test site.

During the experiment, the hyperspectral sensor ASD FieldSpec 4 (Analytical Spectral Devices, Boulder, CO, USA) was used to measure the actual values of each panel, with the values obtained using the PSMICGS considered as the test values. The distance between the PSMICGS device and each panel was maintained at 70 cm during data collection, and image reconstruction by the PSMICGS used a bicubic interpolation algorithm (Keys, 1981). Due to an integration gap between the MF and the detector, crosstalk between different bands can occur, affecting data accuracy. Therefore, correcting crosstalk in each reconstructed band image is fundamental for sensor data analysis. In this study, spectral crosstalk correction was achieved using Equation 3, which corrected crosstalk information within each macro-pixel region using a linear combination of crosstalk correction coefficients, [image: The text shows "C" with a subscript "i j".]  (provided by the MMC manufacturer; see the Supplementary Material) and the original pixel response values, [image: The text "P O subscript j" is shown in a serif font.] .

[image: Equation showing "P sub i equals the summation from j equals 1 to n of C sub j times PO sub j". It is labeled equation 3.] 

where [image: Subscript notation with capital letter "P" and lowercase letter "i" underneath.]  is the crosstalk-corrected response value; [image: Text "PO" in a serif font on a plain background.]  is the original response value within the macro-pixel region before crosstalk correction; [image: The image shows the mathematical notation “C” with subscripts “i” and “j”.]  is the crosstalk correction coefficient matrix; and i and j are the pixel indices within the reconstructed and original macro-pixel regions, respectively.

To control for errors, both the ASD and PSMICGS underwent radiometric calibration using panel A7 with a reflectance of 99% prior to actual testing. The reflective values of the target measured using the PSMICGS were calculated using Equation 4. Post data collection, ENVI 5.3 software (Environment for Visualizing Images, Research Systems Inc., Boulder, CO, USA) was used to select regions of interest (ROI) to obtain the reflectance values of each panel. Due to inconsistent wavelength ranges and spectral resolutions between the two devices, Equation 5 was employed to convert the ASD test data to equivalent PSMICGS data, as suggested by Luo et al. (2023). Finally, by analyzing the test values of each panel, relative error values were calculated using Equation 6.

[image: Formula showing the equation: \( R = \frac{D_r - D_a}{D_w - D_a} R_w \), labeled as equation (4).] 

where R is the target reflectance value; [image: Mathematical notation showing the symbol "D" with a subscript "r".] , [image: The image depicts the mathematical symbol "D" with a subscript "d."] , and [image: The image shows the mathematical expression "D" with a subscript "w".]  are the image DNs of the target, the dark background (obtained using the lens cap to cover the lens), and the 99% reflectance calibration plate, respectively; and [image: The image shows the mathematical notation "R" with a subscript "w".]  is the reflectance value of the 99% reflectance plate, set to 0.99 for this calculation.

[image: Equation representing a formula for \( R_{r}(b_{s}) \), with integrals from \( \lambda_1 \) to \( \lambda_2 \). The numerator is the integral of \( R_{r}(\lambda) SRF(\lambda) d(\lambda) \), and the denominator is the integral of \( SRF(\lambda) d(\lambda) \). Labeled as equation (5).] 

where [image: Mathematical expression showing "R subscript r of b subscript i".]  is the equivalent reflectance of the i-th band; [image: Stylized letter "L" with a subscript "1".]  and [image: Lowercase letter "l" followed by a subscript number two.]  are the band ranges, which here are 350−700 and 500−900 nm, respectively; [image: The image shows the letter "R" with a subscript "r".] ([image: Lowercase italic letter "l" in a serif font style.] ) is the spectral reflectance of the target panels measured by the ASD; and [image: Text displaying "SRF(I)" in italics.]  is the spectral response function at wavelength l (obtained using through spectral calibration).

[image: Formula for the calculation of percentage difference, denoted by delta, is shown as delta equals the absolute value of x minus D divided by D, multiplied by one hundred percent.] 

where x is the measured value; D is the true value; and δ denotes the relative error.





2.5 Rice and wheat growth monitoring experiment based on the PSMICGS



2.5.1 Experimental design

The wheat growth monitoring experiment was conducted from March to May 2023 at the Baipu Experimental Station in Rugao City, Jiangsu Province, China (32°26′N, 120°75′E) (Figure 6A). The experiment included three sowing periods: October 25, 2022 (sowing period 1), November 10, 2023 (sowing period 2), and November 25, 2023 (sowing period 3). The wheat varieties used were V1 (Yangmai 23) and V2 (Jimai 22). Four nitrogen levels were applied: N0 (0 kg/ha), N1 (52 kg/ha), N2 (104 kg/ha), and N3 (156 kg/ha). Three seeding densities were implemented: D1 (125 plants/m2), D2 (225 plants/m2), and D3 (325 plants/m2), with a row spacing of 30 cm. Each treatment had three replicates. Wheat was sown manually in rows, totaling 80 plots, with each plot covering an area of 18 m2 (4.5 m × 4 m). Spectral images and agronomic parameters were simultaneously collected during the tillering, jointing, and booting stages of wheat growth, and the total sample size was 190.

[image: Map showing Rugao in China with a detailed farming area layout, including plots labeled with different sowing times and nitrogen treatments. A farmer stands in a green field holding a camera.]
Figure 6 | Research location and field experimental layout. (A) Layout of the wheat trial site. (B) Layout of the rice trial site. (C) Layout diagram of the PSMICGS collection of crop spectral images.

The rice growth monitoring experiment was conducted from July to September 2023 at the Baipu Experimental Station in Rugao City, Jiangsu Province, China (32°26′N, 120°75′E) (Figure 6B). The experiment used seven rice varieties: V1 (Yingxiang 1), V2 (Nanjing Yinggu), V3 (Taixiangjing 1402), V4 (Sidao 20), V5 (Yangxiangyu 1), V6 (Sidao 17), and V7 (Yanjing 23). Three nitrogen levels were considered: N0 (0 kg/ha), N1 (150 kg/ha), and N2 (300 kg/ha). Two planting row spacings were used: D1 (60 cm) and D2 (30 cm). Rice planting was conducted using a machine transplanting method, totaling 72 plots. Spectral images and agronomic parameters were simultaneously collected during the rice jointing, booting, and heading stages of the rice growth, and the total sample size was 126.




2.5.2 Test equipment and methods

After assembling the hardware system of the PSMICGS as designed in this study and finalizing the software packages, the PSMICGS was comprehensively prepared for field growth monitoring of rice and wheat (Figure 6C). To obtain crop reflectance values, radiometric calibration was performed using a 40% reflectance Lambertian diffuser prior to the experiment. The reflectance was then calculated online using the control module in the system combined with Equation 3, where [image: The image shows the mathematical symbol \( R_w \).]  was set to 0.4. During the collection of rice and wheat multispectral images, the PSMICGS was positioned at a height of 70 cm from the canopy, and data collection was conducted under clear weather conditions between 10:00 a.m. and 2:00 p.m.

To obtain the required agronomic parameters for rice and wheat, in the wheat experiment, five representative wheat plants were selected from each plot. In the rice experiment, three representative rice plants were selected from each plot. The rice and wheat samples were then separated into stems, leaves, and panicles. The Li–3000c leaf area meter (Li–Cor., Lincoln, NE, USA) was used to measure the leaf area of the rice and wheat samples, and the LAI of the population was calculated by multiplying the number of plants by the tillers per square meter. After dissection, the plants were placed in an oven, blanched at 105°C for half an hour, dried at 80°C to a constant weight, and finally, the AGB per unit land area was calculated based on the sampled area.




2.5.3 Multispectral image processing and VI selection

Following the acquisition of crop multispectral image, the software ENVI was utilized for selecting ROI. The entire field of view was designated as the ROI, and the reflectance values for rice and wheat were averaged from these areas. Vegetation indices (VIs) were computed using Matlab2021 (The MathWorks, Natick, MA, USA). To achieve quantitative monitoring of rice and wheat AGB and LAI, this study calculated six VIs based on the extracted canopy reflectance, as shown in Table 1. These selected VIs have been widely used in previous studies focused on monitoring rice and wheat growth.

Table 1 | VIs for the LAI and AGB estimations in rice and wheat.


[image: Table listing various vegetation indices. Columns include VI, Name, Formulation, and Reference. Indices are GNDVI, NDVI, NDRE, RVI, OSAVI, and RESAVI with respective formulations: GNDVI: (NIR-G)/(NIR+G); NDVI: (NIR-R)/(NIR+R); NDRE: (NIR-RE)/(NIR+RE); RVI: NIR/R; OSAVI: (NIR-R)/(NIR+R+0.16); RESAVI: 1.5*(NIR-RE)/(NIR+RE+0.5). References are Gitelson et al., 1996; Candiago et al., 2015; Fitzgerald et al., 2006; Pearson and Miller, 1972; Steven, 1998; Cao et al., 2013.]



2.5.4 Modeling methods and validation

Before constructing the AGB and LAI prediction models for rice and wheat based on the PSMICGS, the sample set was divided using a random selection method. To prevent model overfitting, we split the data for rice and wheat into modeling and validation sets at ratios of 8:2 and 7:3, respectively. Subsequently, nonlinear regression analysis was conducted to construct models to estimate the AGB and LAI of rice and wheat based on the VIs and agronomic parameters. After model construction, the models were evaluated using the coefficient of determination, R², and RMSE (Lu et al., 2021). A higher R² value closer to one and a lower RMSE indicated a better prediction performance of the model. The calculation equations are as follows:

[image: The image shows the formula for R-squared: \( R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{\sqrt{\sum_{i=1}^{n}(y_i - \bar{y})}} \). It is labeled as equation (7).] 

where n is the number of samples; yi is the actual value of the ith sample; [image: ŷ subscript i; represents a predicted value of y for the i-th observation.]  is the predicted value of the ith sample; and [image: A mathematical notation featuring a lowercase "y" with a hat symbol above it and a subscript "i".]  is the average value of all samples.

[image: Formula for root mean square error (RMSE) defined as the square root of the average of the squared differences between observed values (\(y_i\)) and predicted values (\(\hat{y_i}\)), where \(N\) is the number of observations.] 

where n represents the number of samples; yi represents the actual value; and [image: The image shows the mathematical symbol "ŷᵢ", representing the predicted value of the i-th observation in a dataset.]  represents the predicted value.






3 Results and discussion

This section introduces the structural assembly and calibration of the PSMICGS, along with the results of image registration. It analyzes the PSMICGS performance in terms of SNR and radiometric response accuracy testing. Furthermore, it elaborates on the results of the constructed models for estimating the AGB and LAI of rice and wheat based on the PSMICGS.



3.1 Analysis of the spectral image processing results based on the PSMICGS

Figures 7A−C shows that prior to adjusting the front imaging system, the checkerboard pattern at the middle position of the fields of view for MMC1 and MMC2 was difficult to align accurately, resulting in noticeable misalignment. This indicated that the fields of view of the two MMCs were not in the same position. Figures 7D−F shows that after adjustment, the checkerboard pattern at the middle position of the fields of view for MMC1 and MMC2 achieved accurate alignments in both the horizontal and vertical directions. Further adjustment of the first and second hexagon socket set screws resulted in the alignment of the checkerboard patterns at the four edge positions, indicating that the checkerboard elements in the dual fields of view achieved alignment at the edges, as shown in Figures 7G–J. These adjustments successfully achieved co-optical path imaging of the dual detectors, laying the foundation for crop growth monitoring activities.

[image: Ten panels labeled A to J show a black and white checkerboard pattern at different orientations and lighting conditions. Panels A to F use grayscale and varying shading methods, whereas panels G to J feature green-tinted lighting. Each pattern is fixed in a tilted position with round markers at the corners.]
Figure 7 | Checkerboard pattern status within the fields of view before and after the calibration of the front imaging system. Prior to calibration: (A) MMC1, (B) MMC2, (C) composite image of the checkerboard pattern at the middle position. Post-calibration: (D) MMC1, (E) MMC2, (F) composite image of the checkerboard pattern at the middle position, (G–J) composite images of the checkerboard pattern at the edge positions.

To address image registration errors resulting from mechanical assembly inaccuracies, the results of image registration based on the SIFT algorithm are illustrated in Figure 8. Figure 8A shows the reference image, while Figure 8B shows the image to be registered, with Figure 8B showing the result of the MMC2 image after mirroring. During the algorithm execution phase, the nearest-neighbor distance ratio (NNDR) method identified 939 matching points, which were reduced to 340 after secondary feature point screening (FSC), as shown in Figure 8C. The checkerboard pattern images post-affine transformation of the dual field images, and the corresponding results are shown in Figures 8D, E, demonstrating precise overlap of the image regions. Following the image registration fusion, the RMSEr for the image registration was 0.5829, indicating a favorable outcome of the image registration fusion. This research underscores that the embedded control module and image registration algorithm effectively accomplished online registration of multispectral crop images.

[image: Five images of leaves labeled A, B, C, D, and E show various digital effects. A: Original black and white leaf image. B: Image with horizontal line distortion. C: Image with green horizontal bars obscuring the leaves. D: Image with a checkered pattern overlay. E: Image with vertical line distortion.]
Figure 8 | Image registration based on SIFT: (A) Reference image (MMC1), (B) image to be registered (MMC2), (C) feature matching graph, (D) mosaicked checkerboard image, and (E) image registration fusion graph.




3.2 Analysis of calibration results of the PSMICGS



3.2.1 Analysis of the spectral calibration results of the PSMICGS

When the exposure time and gain values of the MMC1 and MMC2 were set to 100 ms and 6 dB, respectively, the maximum DN spectral channels were 558 nm and 813 nm, respectively. After adjusting the spectrometer bands in the spectral calibration system to the corresponding settings, to prevent overexposure of captured images, the maximum exposure times for MMC1 and MMC2 were 400 ms and 850 ms, respectively, when the DN values ranged between 650 and 970. Under these maximum exposure settings, we extracted and fitted the DN values from the images of each stepped spectral band according to the band arrangement in the MMC. The response DNs of each channel are shown in Figure 9A. The Gaussian curves of each band after further Gaussian fitting of each channel are shown in Figure 9B. The deviation of the central wavelength from the preset band centers remained within ±0.5 nm, with a maximum error of 0.49 nm (channel 4), as detailed in Table 2. This calibration result indicated that the actual central wavelengths of each channel in the PSMICGS met the requirements of the selected characteristic bands. Additionally, Figure 9C shows the curves after correcting the original response data using the crosstalk correction coefficient matrix. The crosstalk information between the channels was effectively corrected, and the average correlation coefficient between the corrected data for each channel and the Gaussian data exceeded 0.98.

[image: Three graphs labeled A, B, and C display spectral emission lines at various wavelengths ranging from 400 to 900 nanometers. Each graph shows several peaks corresponding to different wavelengths: 458 nm, 487 nm, 527 nm, 558 nm, 644 nm, 716 nm, 737 nm, and 813 nm. The y-axis indicates DN (digital number) values from 0 to 1000.]
Figure 9 | Spectral calibration results of the PSMICGS: (A) Original response DN curves of each channel, (B) Gaussian fitted response DN curves of each channel, and (C) DN curves after spectral crosstalk correction.

Table 2 | Spectral calibration results of the PSMICGS.


[image: Table displaying data for channels B1 to B8, including theoretical and actual central wavelengths (in nm), FWHM (Full Width at Half Maximum in nm), and deviations (in nm). Each channel lists corresponding values, showing small deviations between theoretical and actual measurements.]



3.2.2 Analysis of the radiometric calibration results of the PSMICGS

For the radiometric calibration of the PSMICGS, four exposure times were set (60, 80, 100, and 120 ms). The relationship curves between the response DN of the PSMICGS and the different radiance values are shown in Figure 10. The DN of each channel under different exposure times was derived from the average DN values of each channel in images with a uniform light source. As shown in Figure 10, the obtained radiance values ranged from 0 to 0.35 W/sr/m²/nm. Linear fitting of the DN and radiance at different exposure times revealed that the coefficient of determination (R²) was greater than 0.99. The calibration results indicated that the response DN of the PSMICGS had an excellent linear relationship with different radiance values at various exposure times, making it fully suitable for crop growth monitoring.

[image: Four scatter plots labeled A, B, C, and D display the relationship between radiance (W/sr/m²/nm) on the x-axis and DN on the y-axis for eight wavelengths. Data points are represented by various shapes corresponding to specific wavelengths: squares, circles, upward triangles, downward triangles, diamonds, pentagons, hexagons, and stars. Each plot shows linear regression lines with equations and R² values indicating high correlation. The plots cover different radiance ranges and DN values, illustrating consistent linear relationships across the wavelengths.]
Figure 10 | Radiometric calibration results of the PSMICGS: (A–D) Linear fitting graphs of the response DN of the PSMICGS and the different radiance values for exposure times set to 60, 80, 100, and 120 ms.





3.3 Analysis of the performance test results for the PSMICGS

We analyzed the acquired images and found that the DN values for the 558 and 813 nm channels in MMC1 and MMC2 were highest when the exposure time and gain values were set to 100 ms and 6 dB, respectively. Subsequently, adjusting the exposure times to 400 for MMC1 and 850 ms for MMC2 ensured that the DN values fell within a reasonable range, establishing these settings as benchmark parameters. After setting MMC1 and MMC2 to these benchmark values, the tunable monochromatic light source imaging system was adjusted to a wavelength of 0 nm, and uniformly illuminated images were then captured. The DN values for the 558 and 813 nm channels were then extracted, and the SNRs were calculated using Equation 2. Figures 11A, B show that the average SNR for each column pixel exceeded 120 dB. These test results indicated that the PSMICGS exhibited excellent SNR performance, meeting the requirements for quantitative crop growth monitoring.

[image: Four-part figure showing different graphs. Graph A shows SNR in decibels against column number, with values increasing from 120 to 140 dB. Graph B plots another SNR set, peaking around 164 dB. Graph C presents reflectance against wavelength from 450 to 850 nm for several datasets, with values generally below 1.2. Graph D illustrates relative error percentages for multiple datasets within the same wavelength range, with error rates varying widely, peaking at around 7%.]
Figure 11 | Performance test results of the PSMICGS: (A) Signal-to-noise ratio (SNR) statistics for MMC1, (B) SNR statistics for MMC2, (C) test values for panels A1–A8 using the PSMICGS and ASD, and (D) relative error values between the PSMICGS and ASD.

Figure 11C shows the test results for panels A1−A8 using the PSMICGS and ASD, revealing a consistent trend in the reflectance values for the different panels. The relative error values between the PSMICGS and ASD for panels with different reflectances are shown in Figure 11D, with relative errors within 7% across all eight bands. This demonstrates the high accuracy of the PSMICGS in terms of radiometric response.




3.4 Rice and wheat growth monitoring experiment based on the PSMICGS



3.4.1 Sample set division

In this study, we used pre-heading data of rice and wheat to establish the prediction models for AGB and LAI. The dataset encompassed variations arising from different factors such as varieties, nitrogen levels, and planting densities. Table 3 shows that the modeling set and validation set were partitioned using a random selection method. The modeling set exhibited significant data variability, encompassing diverse possible scenarios, suggesting that the dataset was suitable for the development of prediction models for AGB and LAI in rice and wheat.

Table 3 | Descriptive statistics of AGB and LAI in rice and wheat.


[image: Table comparing rice and wheat datasets for above-ground biomass (AGB) and leaf area index (LAI). For rice, modeled dataset shows AGB with mean 4.8396, SD 2.3937; LAI with mean 1.5569, SD 1.612. Validated dataset shows AGB mean 4.2401, SD 1.6492; LAI mean 1.0977, SD 0.9701. For wheat, modeled dataset shows AGB mean 4.796, SD 2.8263; LAI mean 2.9261, SD 1.3127. Validated dataset shows AGB mean 4.2322, SD 2.2259; LAI mean 2.7605, SD 1.3502.]



3.4.2 Relationship between AGB and LAI of rice and wheat and VI

To formulate prediction models for AGB and LAI in rice and wheat based on the PSMICGS, a correlation analysis between the VIs constructed using the PSMICGS and AGB and LAI was conducted. Figure 12 shows that the VI GNDVI exhibited the highest correlation with rice AGB and LAI, with correlation coefficients (R) of 0.76 and 0.654, respectively. Additionally, the VIs, GNDVI, and RESAVI exhibited the highest correlation with wheat AGB and LAI, having correlation coefficients (R) of 0.807 and 0.834, respectively. Subsequent modeling analyses for rice and wheat AGB and LAI were conducted using the selectively optimized VIs.

[image: Heatmap showing correlation coefficients between vegetation indices (RESAVI, OSAVI, RVI, NDRE, NDVI, GNDVI) and agricultural parameters (AGB and LAI) for rice and wheat. Values range from 0.376 to 0.834, with a color gradient from teal to orange representing the correlation strength, as indicated by the side color bar labeled "R".]
Figure 12 | Correlation of the PSMICGS-constructed VIs with rice and wheat AGB and LAI.




3.4.3 Construction of AGB and LAI monitoring model for rice and wheat based on the PSMICGS

Based on the selected VIs, prediction models for AGB and LAI in rice and wheat were established. Figures 13A, B show the models for rice AGB and LAI developed using the VI GNDVI, resulting in determination coefficients R² of 0.7 and RMSE values of 1.611 t/ha and 1.051, respectively. For wheat (Figures 13C, D), the AGB and LAI prediction models were constructed using the VIs GNDVI and RESAVI, yielding R² values of 0.72 and 0.76, respectively, with corresponding RMSE values of 1.711 t/ha and 0.773, respectively. In summary, the prediction models for AGB and LAI in rice and wheat constructed based on the PSMICGS demonstrated satisfactory performance.

[image: Scatterplots A and C depict relationships between AGB (t/ha) and GNDVI with fitted exponential lines, showing R² values of 0.70 and 0.72 and RMSE of 1.611 and 1.711 respectively. Plots B and D display the relationships between LAI and indices (GNDVI and RESAVI), with R² values of 0.70 and 0.76, and RMSE values of 1.051 and 0.773 respectively. Each plot contains various data points and trend lines with equations noted.]
Figure 13 | Prediction models of the rice and wheat AGB and LAI constructed based on the PSMICGS. (A, B) are rice AGB and LAI, respectively, and (C, D) are wheat AGB and LAI, respectively.




3.4.4 Validation of the AGB and LAI monitoring model for rice and wheat based on the PSMICGS

The constructed prediction models for the AGB and LAI in rice and wheat were validated using the validation dataset. Figure 14 shows that the validation determination coefficients, R², for the rice AGB and LAI estimation models based on the PSMICGS were 0.78 and 0.70, respectively, with RMSE values of 1.404 t/ha and 1.287, respectively. For the wheat AGB and LAI estimation models, the validation R² values were 0.68 and 0.79, respectively, with corresponding RMSE values of 1.769 t/ha and 0.861, respectively. Overall, the validation results for the constructed AGB and LAI models in rice and wheat were favorable, indicating the feasibility of the developed estimation models.

[image: Four scatter plots labeled A to D compare measured versus estimated values. Plot A shows an R² of 0.78 for Above-Ground Biomass (AGB) with a root mean square error (RMSE) of 1.404 and 25 samples. Plot B displays LAI with an R² of 0.70, RMSE of 1.287, and 25 samples. Plot C’s R² for AGB is 0.68, RMSE is 1.769 with 57 samples. Plot D shows LAI with an R² of 0.79, RMSE of 0.861, and 57 samples. Each plot has a 1:1 line for comparison.]
Figure 14 | Scatter plots for the validation of the prediction models of rice and wheat AGB and LAI constructed based on the PSMICGS: (A, B) are the rice AGB and LAI, respectively, and (C, D) are the wheat AGB and LAI, respectively.






4 Discussion

Portable spectral imaging devices play crucial roles in real-time and non-destructive crop growth monitoring at the field scale. However, many commercially available sensors do not provide direct output of crop growth parameters (Jia et al., 2019; Shao et al., 2023). Customized devices often lack specific bands tailored for crop growth characteristic, limiting their effectiveness (Tang et al., 2022; Wang et al., 2022; Wang et al., 2020a). To address these challenges and capitalize on the spectral sensing mechanism in crop growth, we developed the PSMICGS using MF spectrometry with a wide band range. This device allows for real-time online acquisition and interpretation of crop spectrum information. However, due to constraints in band settings and associated processes, achieving optimal characteristic bands using a single MF was challenging. Thus, further exploration and refinement of these processes are required.

The online processing of spectral information lays the foundation for real-time crop growth interpretation. By leveraging the structural features of the PSMICGS, we introduced mechanical adjustments and a multi-spectral image registration method using the SIFT algorithm to achieve precise registration of dual-field images and acquire comprehensive crop spectrum data. However, our study on SIFT-based image registration underscored the need for further exploration into optimizing image registration methods tailored to different crops and varying collection heights, especially for monitoring diverse crop growth characteristics.

Real-time interpretation of crop growth information provides reference data for crop growth diagnosis. We constructed estimation models for rice and wheat AGB and LAI based on the PSMICGS and successfully completed the entire data collection and analysis process, from crop spectrum acquisition to growth interpretation. However, the overall accuracy of the constructed models still requires further improvement. Future research should focus on estimating different ecological points and additional agronomic parameters, particularly in complex field environments. Exploring algorithms to remove water and soil background effects will be essential for improving prediction accuracy and stability. Moreover, extending crop growth monitoring studies to include different crops such as soybeans, oilseed rape, and maize will improve the applicability of the PSMICGS.




5 Conclusion

In this study, we developed a novel PSMICGS based on crop spectral sensing mechanisms utilizing MFs. The design included a front imaging system utilizing DMs for spectral splitting, and it used wide-band integrated co-optical path imaging to acquire crop spectral images across a broad range. We explored mechanical adjustment methods for the wide-band range front imaging system and developed image registration fusion algorithms, enhancing the precision of multispectral image registration fusion for crops. Additionally, we integrated sensor information with crop growth monitoring models, enabling the real-time interpretation of multiple agronomic features. Performance tests demonstrated that the device achieved a good SNR (>120 dB) and accurate radiometric response (relative error < 7%). Growth monitoring experiments for rice and wheat validated the prediction models for AGB and LAI and achieved determination coefficients (R²) greater than 0.7, indicating that the models had good prediction accuracy. In summary, this research provides a foundational tool for monitoring crop organs and canopies, with potential applications in advancing agricultural production efficiency.
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Currently, precise spraying of sweet potatoes is mainly accomplished through semi-mechanized or single spraying robots, which results in low operating efficiency. Moreover, it is time-consuming and labor-intensive, and the pests and diseases cannot be eliminated in time. Based on multi robot navigation technology, multiple robots can work simultaneously, improving work efficiency. One of the main challenges faced by multi robot navigation technology is to develop a safe and robust collision avoidance strategy, so that each robot can safely and efficiently navigate from its starting position to the expected target. In this article, we propose a low-cost multi-robot collision avoidance method to solve the problem that multiple robots are prone to collision when working in field at the same time. This method has achieved good results in simulation. In particular, our collision avoidance method predicts the possibility of collision based on the robot’s position and environmental information, and changes the robot’s path in advance, instead of waiting for the robot to make a collision avoidance decision when it is closer. Finally, we demonstrate that a multi-robot collision avoidance approach provides an excellent solution for safe and effective autonomous navigation of a single robot working in complex sweet potato fields. Our collision avoidance method allows the robot to move forward effectively in the field without getting stuck. More importantly, this method does not require expensive hardware and computing power, nor does it require tedious parameter tuning.
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1 Introduction

Sweet potato is an important food crop after rice, wheat, and corn. With the development of large-scale sweet potato cultivation, sweet potato diseases and pests are becoming increasingly serious. Traditional prevention and treatment methods are high in cost and low in efficiency, and there are problems such as prevention and treatment of chemical abuse and overuse. Harmful pesticide chemicals will spread into the air, causing pollution to the environment and sweet potato crops, and may enter farmers’ bodies through the respiratory system (Meshram et al., 2022). Precision spraying technology can solve the problems of pesticide waste and overuse, improve pesticide utilization, and reduce pesticide pollution to the environment (Xiongkui, 2020). However, in the current precision spraying operations, a single robot is mainly used for spraying operations, such as Danton et al., 2020; Baltazar et al., 2021; Oberti and Schmilovitch, 2021, and Liu et al., 2022. A single robot has the disadvantages of limited operating capacity and long operating time. Especially for sweet potato fields with a relatively large area, using a single robot for spraying will take a lot of time (Kim and Son, 2020), and pests and diseases cannot be eliminated in time, causing irreparable economic losses to agriculture. In addition, if the robot fails, the entire spraying operation will be delayed, resulting in greater economic losses. Therefore, applying a multi-robot system to sweet potato spraying can effectively solve the problem of low operating efficiency of a single device, reduce agricultural maintenance costs, and indirectly improve agricultural economic benefits. There are many benefits to using a multi-robot system instead of a single robot (Parker et al., 2016; Jawhar et al., 2018): (1) Multiple robots can perform tasks simultaneously to complete tasks faster. (2) Multiple robots can effectively handle tasks that are essentially distributed over a wide area. (3) When any robot fails, multiple robots that can perform similar processes can be used to compensate.

As the number of agricultural workers continues to decrease around the world, the use of multi-robot systems to perform agricultural tasks has become increasingly common in large-scale fields with fewer people (Carbone et al., 2018), and multi-robot systems have gradually become a hot topic of research. However, one of the main challenges facing multi-robot systems is to develop a safe and robust collision avoidance strategy that enables each robot to navigate safely and efficiently from the starting position to the desired target (Long et al., 2017). The robot’s obstacle avoidance method can be divided into local obstacle avoidance and global path according to the operation requirements (Tang et al., 2024), such as Genetic algorithm (Zhao et al., 2021), dynamic window approach (Chang et al., 2021), RRT* (Hu et al., 2024), A* (Zhang et al., 2024) and other algorithms. However, these obstacle avoidance methods are all for a single robot and are not suitable for multi-robot systems (Cai et al., 2007). At present, the collision avoidance methods of multi-robots are mainly divided into centralized control and decentralized control.

Initially, scholars used a centralized control method to avoid collisions between multiple robots. This approach assumed that the behavior of all robots was determined by a central controller that had comprehensive knowledge of all robots’ intentions (e.g., initial states and goals) and their workspaces (e.g., 2D grid maps). Schwartz and Sharir (1983) proposed to find the continuous motion of two given structures connecting objects within a given region, during which they avoided collisions with walls and each other. He et al. (2016) used the cloud platform to calculate local collision-free paths for each robot, which improved the processing capabilities of the device. However, this method needed to ensure that each robot had networking capabilities. Yu and LaValle (2016); Tang et al. (2018); Matoui et al. (2020) and Cheng et al. (2023) proposed a centralized trajectory generation algorithm to find trajectories that navigate robots from starting positions to non-interchangeable target positions in a collision-free manner by planning optimal paths for all robots. In addition, Keshmiri and Payandeh (2009) used a centralized method to keep multiple robots in formation to avoid collisions between robots, but it was not suitable for the agricultural field and cannot control multiple robots to maintain formation during precise spraying. Centralized approaches can ensure multi-robot system safety, integrity, and near-optimality, but they are difficult to scale to large systems with many robots due to the high computational cost of multi-robot scheduling, heavy reliance on reliable synchronous communication, and low tolerance for failures or interference.

Compared with centralized methods, some existing studies proposed decentralized collision avoidance strategies, where each robot made decisions independently by considering the observable states (such as shape, speed, and position) of other robots. Cai et al. (2007) developed an advanced method for collision avoidance in multi-robot systems based on established techniques of omnidirectional vision systems, automatic control, and dynamic programming. However, each robot in this system must be an autonomous robot, equipped with equipment or systems such as omnidirectional vision systems, target recognition systems, communication systems, and control systems. Claes et al. (2012); Hennes et al. (2012), and Godoy et al. (2016) designed inter-agent communication protocols to share position and velocity information among nearby agents. However, communication systems posed additional difficulties, such as delays or blocking of communication signals due to obstruction by obstacles. Althoff et al. (2012) proposed a probabilistic threat assessment method for reasoning about the safety of robot trajectories. In this method, the trajectories of other dynamic obstacles needed to be sampled and then the global collision probability was calculated. Lacked of possibilities for safe navigation in dynamic multi-robot environments. Sun et al. (2014) proposed a behavior-based multi-robot collision avoidance method in large robot teams inspired by the concept of swarm intelligence, which could solve the coordination problem of multi-robots by using group behavior. Fiorini and Shiller (1998), Van den Berg et al. (2008); Snape et al. (2009); Hennes et al. (2012); Alonso-Mora et al. (2013); Claes and Tuyls (2018), and Zhu et al. (2020) designed a robot collision avoidance strategy based on the speed obstacle framework. This algorithm effectively inferred the local collision-free motion of multiple agents in a chaotic workspace. However, these methods have several serious limitations that hinder their widespread application in practical scenarios. First of all, it is difficult to meet the requirement that each agent has perfect perception of the surrounding environment. This requirement does not hold true in real scenarios. A second limitation is that speed barrier-based strategies are controlled by multiple adjustable parameters that are sensitive to scene settings and therefore must be set carefully to achieve satisfactory multi-robot locomotion.

Inspired by methods based on the speed obstacle framework, Chen et al. (2017b), and Chen et al. (2017a) trained a collision avoidance strategy using deep reinforcement learning. This strategy explicitly mapped the agent’s own state and that of its neighbors to collision-free actions, but it still required perfect awareness of the surrounding environment. Long et al. (2017); Pfeiffer et al. (2017); Wang et al. (2020); Huang et al. (2022); Xiao et al. (2022), and Han et al. (2022) used deep neural network modeling and trained using supervised learning on large datasets. However, there are several limitations to supervised learning policies. First, it requires a large amount of training data, which should cover different interaction situations of multiple robots, and the training time cost is high. Secondly, the expert trajectories in the data set are not guaranteed to be optimal in interactive scenarios, which makes it difficult for training to converge to a robust solution. Third, it is difficult to manually design a suitable loss function to train a robust collision avoidance strategy. Fourth, the hardware requirements required for model deployment on robots are relatively high. When the number of robots increases, the hardware cost increases exponentially. Multi-robot systems based on reinforcement learning or transfer learning require a large amount of data sets for training, which requires relatively high time and economic costs. However, the economic benefits obtained in agriculture are obviously not suitable for the large-scale application of such robots.

Ünal et al. (2023) proposed a robot collision avoidance algorithm for traveling along tangent paths to solve the problem of multi-robot collision avoidance in precision agriculture. However, they only considered two robots and did not introduce the specific application environment. In addition, they did not consider whether the robot would damage the surrounding crops when avoiding collision. Currently, research on multi-robot collision avoidance strategies mainly focuses on confined space scenes or in relatively open and empty spaces, and no scholars have considered how to avoid collisions among multi-robots in large field (Raibail et al., 2022). Due to the special field environment, the robot can only move along the ridges, and can only move forward or backward. It cannot move freely in all directions, otherwise it will damage the crops and the robot, causing unnecessary economic losses. The current multi-robot collision avoidance strategy cannot be directly applied to this situation. In order to overcome the shortcomings of the above method, we propose a low-cost multi-robot collision avoidance method, which uses position and known environmental information to predict the possibility of collision, and changes the robot path in advance to achieve the purpose of robot collision avoidance. The method outperforms existing agent- and sensor-level methods in terms of navigation speed and safety. It can be directly and smoothly deployed on physical robots, without the need for expensive laser radars, cameras, and terminal controllers, and without the need for cumbersome parameter adjustments. Based on this, we propose a multi-robot collision-free method suitable for the special environment of field. The main innovations and contributions are as follows:

	The multi-robot collision avoidance method we proposed only requires the robot to have a communication module, a positioning module and a low-cost control chip. It does not require the robot to have vision, radar and other sensors, nor does it require the ability to deploy reinforcement learning models. Reduce farmers’ purchase costs and field maintenance costs, thereby increasing farmers’ economic income.

	We proposed a rapid robot path generation method suitable for farmland. The global information of the farmland was generated through the two endpoints of the crop rows and the row spacing. The global information included the straight-line equation and the two endpoints of the crop rows, occupying very little storage space. Then based on the requirements of farm operations and the robot’s target location, we could quickly generate a global path for the robot.

	We proposed a robot collision avoidance method that could determine its own direction and working status only based on global information and the robot’s position. Then the robot’s position and global information were used to predict the possibility of collision in advance. Finally, the robot’s local path was adjusted according to the robot’s priority to avoid collisions. This method could quickly find collision-free paths for multi-robot systems and can be safely generalized to other work scenarios.



The rest of this paper is as follows: Section 2 introduces the working environment of multi-robot systems, related definitions and collision types. In Section 3, we discussed in detail how to predict the possibility of robot collision through maps and robot positions, and how to adjust local paths in the special environment of field to avoid collisions among multiple robots. The fourth section introduces the simulation environment and simulation settings of the multi-robot collision avoidance method, and verifies the method proposed in the third section. The final section presents the summary and prospects of this study.




2 Materials and methods



2.1 The working environment of robots

The sweet potato field is simplified to facilitate the description of the robot’s working conditions, as shown in Figure 1. The rectangle [image: Capital letters F and lowercase letters a, b, c, and d are arranged to form F sub a, F sub b, F sub c, and F sub d.]  represents the field, and [image: \( R_n \, (n \in \mathbb{N}^*) \)]  represents the working robots (Figure 1A). The line segments [image: The mathematical expression shows \( A_j B_j \) with \( j \in \mathbb{N}^* \), indicating a product where \( j \) is a natural number greater than zero.] , [image: Mathematical notation featuring capital letter "A" subscript "s", followed by capital letter "A" subscript "u".] , and [image: \( B_s B_u \ ( s \neq u, \ 0 < s \leq j, \ 0 < u \leq j ) \)]  represent the robot’s paths in the field (Figure 1B). The line segment [image: \( A_j, B_j \)]  is called the working path, the points [image: Mathematical notation showing the letter A with a subscript j.]  and [image: The image shows the mathematical notation "B" with a subscript "j".]  are the endpoints of the [image: Mathematical notation depicting italicized uppercase letters A and B, each followed by a subscript j.] , respectively, and [image: Lowercase letter "j" in a serif font.]  is the serial number of the working path. Line segments [image: Formula with two characters, "A" and another "A" with subscripts "s" and "u" respectively.]  and [image: Mathematical notation showing two italicized variables: \( B_s \) and \( B_t \).]  are called the transition path. We set the sweet potato field to be planted in a standardized manner, with working paths running parallel to each other. The distance between each working path is represented by [image: The letter "D" in a serif font.] .

[image: Diagram depicting two layouts of crop fields labeled A and B. Both panels show rows of healthy crops and a few diseased ones. Robots, marked as "R" with arrows, move through the fields. Panel A shows potential robots R1, R2, R3 along rows A1 to A6 and columns B1 to B6. Panel B has paths marked with pn1 to pn6, showing navigation through rows A7 to A14 and B7 to B14 with arrows indicating direction.]
Figure 1 | A simplified diagram of the robot’s working environment. (A) Simplified diagram of field. (B) The working path of the robot.



2.1.1 Definitions of robots

[image: The letter "R" is shown in a serif font, positioned against a light background.]  represents a group of working robots, as shown in Equation 1. [image: The image shows the mathematical notation "R sub n" in italics, representing a variable or function in subscript form.]  has the same dynamic model in vertical and horizontal dimensions. The real-time location of [image: The image shows the mathematical expression \( R_{11} \), with the letter "R" followed by the subscript "11".]  is represented by [image: The image shows the mathematical notation \( P_{R_n} \), with "P" and the subscript "R" and "n".] , and [image: Mathematical notation with a capital letter P, subscript R, and italicized lowercase n.]  is represented by coordinates [image: Mathematical expression displaying a coordinate pair in parentheses: x subscript R subscript EE and y subscript R subscript EE.] .

[image: Mathematical equation defining a set \( R \) as the collection of elements \( R_n \) where \( n \) is a natural number, indicated by \( n \in \mathbb{N}^+ \). Equation is labeled as (1).] 

[image: Stylized text showing the symbol "R" with a subscript "0" (zero).]  represents other robots except for [image: Mathematical notation with the variable \( R_{11} \).] , as shown in Equation 2.

[image: Equation depicted: R subscript zero equals R minus R subscript n, labeled as equation two.] 

A group of target points of robot [image: The mathematical notation "R" with the subscript "11".]  is represented by [image: The image shows the mathematical expression "P sub n".] , as shown in Equation 3. Robot [image: Mathematical notation showing "R" with a subscript "n".]  moves at a constant speed along the target point. After robot [image: Mathematical notation showing \( R_{n} \), with "R" as a capital letter and "n" as a subscript.]  reaches target [image: The text "P" with a subscript "n".] , it stops for 3 seconds and performs precision spraying operations.

[image: Mathematical notation shows a set \( P_n = \{ p_{ni} | p_{ni} \in \mathbb{R}^2, n \in \mathbb{N}^*, i \in \mathbb{N}^* \} \) followed by the number three in parentheses, indicating it is equation number three.] 

where the coordinates of [image: Lowercase letter "p" with subscript "mi".]  are represented by [image: Mathematical expression showing a pair of coordinates: (x sub ni, y sub ni).] , and [image: Mathematical notation showing the variable x with a subscript m i.]  and [image: Lowercase letter "y" with a subscript "mi" written in a serif font.]  are the horizontal and vertical coordinates on a two-dimensional plane, respectively. [image: Greek letter gamma in cursive style with a superscript letter "n".]  represents the global path of the robot, and [image: Equation showing the letter y with subscript j and superscript n, representing a variable or element in mathematical notation.]  represents the local path of the robot, as shown in Equation 4. The local path comprises a series of points, such as [image: Mathematical expression representing \( r_8^n = \{ A_8, p_{n1}, p_{n2}, B_8 \} \).]  and [image: Mathematical expression showing \( r_9^n = \{ B_9, p_{n3}, A_9 \} \).] , as shown in the solid black line in Figure 1B. [image: Greek letter gamma raised to the power of pi.]  comprises a series of local paths, such as all-black paths in Figure 1B.

[image: Mathematical expression showing the set \( r^n = \{ r_{ij} | n \in N^*, j \in N^* \} \), labeled as equation (4).] 

There are two types of paths: the working and transition. In Figure 1B, the solid black lines [image: Capital letters A and B, each with the subscript s.] , [image: The text shows mathematical notation with subscript numbers: capital letter A with subscript nine, followed by capital letter B with subscript nine.] , and [image: Mathematical expression showing the characters A subscript 13 and B subscript 13.]  are the working path, and the dotted black lines [image: Italic uppercase letters "B" subscripted with "8" and "9".]  and [image: Capital letter "A" with subscript "9" followed by another capital letter "A" with subscript "13".]  are the transition path.

The robot has different moving directions on the working and transition paths. When the robot is moving on the working path, the robot’s direction at points [image: Italic letter "A" with a subscript lowercase "j".]  and [image: Mathematical notation showing the letter "B" with a subscript "j".]  are 0 and 1, respectively. When going from point [image: Italic capital A followed by subscript lowercase j.]  to [image: The image shows the mathematical notation "B" with the letter "j" as a subscript.] , the direction of the robot is [image: The image shows the number zero followed by a rightward arrow pointing to the number one.] . When the robot goes from point [image: Mathematical notation depicting the letter B with a subscript j.]  to [image: Subscript notation showing the letter "A" with a subscript "j".] , the robot’s direction is [image: The image shows the number one followed by a right arrow pointing to the number zero.] . Therefore, we can get the direction of the robot only through the two endpoints of the local path without using other sensors. The expression method of the robot’s moving direction in the working path is shown in Equation 5.

[image: Mathematical expressions showing two equations. The first equation is \( r_g^8 = \{A_8, p_{11}, p_{12}, B_8\}(0 \rightarrow 1) \) and the second equation is \( r_g^9 = \{B_9, p_{13}, A_9\}(1 \rightarrow 0) \). Both equations are marked with reference number (5).] 

When the robot moves on the transition path, the direction is determined according to the serial number of the current and last working paths, as shown in Equation 6. The robot’s direction is [image: The image shows a stylized lowercase "u" and "p" in a serif font placed closely together.]  when the [image: The word "sign" is displayed in italicized font.]  is a positive number. When the [image: The word "sign" is displayed in italicized, serif font.]  is negative, the direction of the robot is [image: The word "down" is displayed in lowercase, using a serif font.] . The direction on the transition path is only judged by the [image: Lowercase letter "j" in a serif font.] , and no other sensors are needed.

[image: Equation showing "sign" equals "j sub c" minus "j sub i", labeled as equation six.] 

where [image: Lowercase letter "j" with a subscript "c".]  represents the serial number of the current working path, and [image: The image shows the mathematical notation "j_i", representing the subscripted variable j with subscript i.]  represents the serial number of the last working path.




2.1.2 The working rules of robots

The width of the working path [image: Subscript notation with the letters A and B, both with the subscript j.]  in the field is relatively narrow, and it does not support operations such as moving side by side or turning; otherwise, the robots will crush or knock down the crops. Therefore, robots with different moving directions cannot simultaneously exist in the working path [image: Subscripted variables \( A_j \) and \( B_j \).] ; otherwise, the robots will collide.

The robots move in a ‘U’ shape in the field (Hameed et al., 2013), and the working method is shown in the black path in Figure 1B. For example, [image: The image shows the mathematical notation "R" with a subscript "11".]  starts from point [image: Stylized text showing the letter "A" with a subscript "s".] , moves along the working path [image: Capital letters A and B each followed by a subscript lowercase s.] , reaches the end point [image: The image shows the italicized letter "B" with a subscript "s".] , and moves along [image: Text showing "B sub 8, B sub 9".]  to [image: The image shows the mathematical expression A subscript 9, B subscript 9.] . In addition, robots start from the garage, go to the field to work, and then return to the garage.





2.2 Collision and conflict scenarios of robots

During the research, we found that the possibility of a robot collision can be judged based on the robot’s path type. When robots move on the same path type, we can determine whether the robots will collide by simply comparing their serial number of the working paths and directions. The path type and serial number are the same, indicating that they are in the same working path. At this time, if they are moving in opposite directions, it means that they are moving toward each other and a collision will inevitably occur. If they are moving in the same direction, as long as their speeds are the same, there will be no collision. Therefore, we divide the robot collision scenarios into four types based on the different positions of [image: The image shows the mathematical notation \( R_1 \), likely representing a variable or component in a formula or equation.]  and [image: Mathematical notation showing "R" with a subscript "2".] : 1) working path and different movement directions; 2) working path and same movement direction; 3) transition path and same movement direction; 4) transition path and different movement directions.

As shown in Figure 2, it describes the possibility of collision when the robot is working. The green line segments represent the working paths, and the two working robots are represented by [image: Text "R" subscript "1" in a stylized font.]  and [image: Mathematical expression showing the letter "R" with the subscript "2".] ; their target points are [image: The text "p" followed by a subscript "1a".]  and [image: Lowercase letter "p" with a subscript "2b".] .

[image: Diagram showcasing six configurations (A to F) of a system with interconnected paths labeled \(A_u\), \(B_u\), \(A_s\), and \(B_s\). Each configuration includes paths \(p_{1a}\) and \(p_{2b}\), with variations in connections \(R_1\) and \(R_2\). Arrows and lines depict the direction and relationship between elements.]
Figure 2 | Types of robot conflicts. (A, B) Working path and different movement directions. (C, D) Working path and same movement direction. (E) Transition path and same movement direction. (F) Transition path and different movement directions.



2.2.1 Working path and different movement directions

Figure 2A describes that robot [image: The image shows the mathematical notation "R" with a subscript "2".]  has been moving in the working path [image: Characters "A sub u" and "B sub u" in italics, indicating mathematical notation with subscripts.] , and robot [image: The image shows the mathematical symbol "R" with a subscript "1".]  is about to enter the working path [image: Mathematical expression showing two variables, A subscript u and B subscript u.] . Robots [image: Stylized letter "R" with a subscript "1".]  and [image: Mathematical notation showing the letter "R" with a subscript "2".]  move in opposite directions. According to section 2.1, there cannot be two robots with different moving directions in the same working path. If robot [image: Mathematical notation showing the letter "R" with a subscript "1".]  continues to enter the working path [image: Mathematical expression with capital letters A and B, each with subscripted lowercase n. ]  without changing its path, it will inevitably collide with [image: \( R_2 \) shown in a mathematical typesetting, with the letter "R" followed by a subscript "2".] .

Figure 2B describes that [image: The image shows the mathematical notation "R" with a subscript "1".]  and [image: The image shows the mathematical symbol \( R_2 \).]  are about to enter the same working path [image: Equation depicting two variables denoted as \( A_i \) and \( B_i \) with subscript \( i \).] . Robots [image: Text showing "R" with a subscript "1".]  and [image: \( R_2 \)]  are moving in opposite directions. If the path of robot [image: The text shows a mathematical expression consisting of the letter "R" with the subscript "1".]  or [image: Mathematical notation showing the letter "R" with a subscript "2".]  is not changed, [image: The text is a mathematical symbol "R" subscripted with "1".]  and [image: The image shows the mathematical notation \( R_2 \).]  will eventually collide together.




2.2.2 Working path and same movement direction

Figure 2C describes that robot [image: The image shows the mathematical notation "R" with a subscript "2".]  is already moving in the working path [image: Variables A subscript u and B subscript u.] , and robot [image: A small, italicized letter "R" followed by a subscript "1".]  is about to enter the working path [image: Mathematical notation showing capital letters A and B with subscripts i and i, respectively.] . Figure 2D describes that the robots [image: Mathematical symbol showing the capital letter "R" with a subscript "1".]  and [image: The image shows the mathematical notation "R" with a subscript "2".]  are already moving in the working path [image: The image shows the mathematical expression \(A_{i} B_{i}\), where \(i\) is a subscript for both variables A and B.] . Robots [image: The image shows the mathematical symbol "R" followed by a subscript "1".]  and [image: The image shows the mathematical symbol "R" with a subscript "2".]  move in the same direction. According to Section 2.1, two arobots with the same moving direction can exist in the same working path. Since the speeds of the robots are the same, there will be a constant distance between robots moving in the same direction. However, when robot [image: Mathematical symbol "R" with a subscript "2".]  arrives at target point [image: The mathematical notation shows "p subscript 2b".] , the spraying operation takes time, and robot [image: Italic capital letter "R" followed by subscript "1".]  is still moving normally. [image: The image shows the mathematical notation "R" subscripted with "1".]  needs to keep a safe distance from [image: The image shows the mathematical notation \( R_2 \).]  to stop moving and then wait for [image: The image shows the letter "R" followed by the subscript "2".]  to complete its work. Otherwise, [image: The image shows the mathematical symbol for \( R_1 \).]  and [image: \( R_2 \) in a serif font style, typically used to denote a variable or parameter with a subscript in mathematical or scientific contexts.]  will collide together.




2.2.3 Transition path and same movement direction

Figure 2E describes that [image: Mathematical expression showing the letter "R" with a subscript "1".]  and [image: Mathematical notation of capital letter "R" subscript "2".]  move in the same direction and go to different working paths. Since [image: The image shows a mathematical symbol "R" followed by a subscript "2", typically representing two-dimensional Euclidean space or plane coordinates.]  and [image: Italicized letter "R" with a subscript "1".]  move in the same direction and speed, they will not collide. However, when [image: The image shows the mathematical notation "R" with a subscript "2".]  goes to the working path [image: Italic letters A subscript s and B subscript s.]  where the target point [image: Mathematical expression showing "p" with a subscript of "2b".]  is located, it will turn around, which takes a certain amount of time. If [image: The image shows the mathematical notation "R" with a subscript "1".]  does not stop moving and waits for [image: Mathematical notation depicting "R" with a subscript "2".]  to complete its turn, [image: The text "R subscript 1" displayed in a serif font.]  and [image: Mathematical notation showing the symbol "R" with a subscript "2".]  will collide.




2.2.4 Transition path and different movement directions

Figure 2F describes that [image: The image shows the mathematical notation "R" with a subscript "1".]  and [image: The image shows the mathematical notation "R" with a subscript "2".]  move in different directions and go to different working paths. When [image: The image shows the mathematical notation "R sub 1", indicating a variable R with a subscript 1.]  goes to the target point [image: Mathematical expression displaying the variable \( p_{1a} \).] , [image: The text "R" with a subscript "2".]  goes to the target point [image: The mathematical expression shows "p" with a subscript of "2b".]  from the opposite direction. If the path of [image: Mathematical notation showing the symbol "R" with a subscript "1" in italics.]  or [image: The image depicts the mathematical notation "R" with a subscript "2".]  is not changed, they will collide at a particular moment.






3 Approach



3.1 Global map generation method

In order to get the serial number [image: Lowercase letter "j" in a serif font, with a dot above the curved stem.]  of working path and the robot’s moving direction, the geographic information is needed. Use straight lines [image: The image shows the mathematical expression \(A_j, B_j\) with subscript \(j\) on both variables A and B.]  and the endpoints [image: The image shows the mathematical notation "A" with a subscript "j".]  and [image: Mathematical notation of a capital letter B with a subscript j.]  to generate a field map. Represent this map as a point-line map ([image: Italicized lowercase letters "p", "l", and "m".] ). Use straight line [image: Capital letters A and B are shown in italics with subscript ones.]  as the baseline to generate other parallel line segment. As described in Algorithm 1, according to the straight-line equation of [image: Uppercase letter A with subscript 1, followed by uppercase letter B with subscript 1.]  and the distance [image: The capital letter "D" in a serif font style.]  between each working path, the straight-line equations of all [image: A subscript j, B subscript j.]  and the coordinates of the endpoints [image: Italic letter "A" is followed by a subscript "j".]  and [image: Mathematical notation showing the symbol "B" with the subscript "j."]  are obtained. Finally, all working paths [image: Mathematical expression with subscript letters: \( A_j, B_j \).]  and endpoints [image: The image shows the mathematical notation "A" with a subscript "j".]  and [image: The image shows the mathematical notation "B sub j," where B is the base character and j is the subscript.]  are stored in the [image: Italic letters "p l m".] .

Algorithm 1 | The plm generation method.

[image: Algorithm pseudocode to calculate \( p_{lm} \) based on input coordinates \((x_{A_1}, y_{A_1})\) and \((x_{B_1}, y_{B_1})\). It outlines steps to initialize variables, update straight-line equations, and coordinates of endpoints \( A_j \) and \( B_j \), iterating for \( j = 2 \) to \( N^* \). The pseudocode concludes with returning \( p_{lm} \).]




3.1.1 Calculating the equation of the working path

As shown in Figure 1, take [image: Mathematical notation with subscript, showing "A sub one" and "B sub one".]  as the baseline, and make [image: Lowercase letter "j" in a serif font, with a distinct dot above the vertical stroke.]  parallel line segments [image: Mathematical notation showing the symbols "A subscript 1" and "B subscript 1".] , [image: Text showing the chemical formula "A₂B₂" with subscript numbers.] ,…,. Suppose the slope of line segment [image: The image shows two letters with subscript numbers: "A" with subscript "one" and "B" with subscript "one".]  is [image: Lowercase "k" with subscript "A, B".] , and the intercept is [image: Mathematical notation showing the variable \( b \) with subscripts \( A_1 \) and \( B_1 \).] , then the straight-line equation of line segment [image: Mathematical notation showing "A sub one, B sub one" in italics.]  is expressed as:

[image: Equation labeled as seven shows \( y_{A,B_1} = k_{A,B_2} x_{A,B_2} + b_{A,B_1} \).] 

The coordinates [image: The image shows a mathematical expression representing a point with coordinates \((x_{A_i}, y_{A_i})\).] , and [image: Mathematical notation showing a coordinate pair \((x_{B_{i}}, y_{B_{i}})\).]  of the two endpoints and [image: Italic uppercase letter B with a subscript 1.]  of [image: The image shows mathematical symbols "A subscript 1, B subscript 1", indicating labeled variables or points, often used in equations or diagrams.]  are obtained through the positioning device. Then the slope [image: The image shows the mathematical notation for a subscripted variable: \( k_{A_1, B_1} \).]  and intercept [image: The mathematical expression "b subscript A, B subscript 1".]  of [image: A subscript image showing "A" with subscript "1" and "B" with subscript "1".]  are expressed as:

[image: Equation showing the slope formula \( k_{A,B} = (y_B - y_A) / (x_B - x_A) \), labeled as equation (8).] 

[image: Equation for \(b_{A,B} = y_A - k_{A,B} \times x_A\) with the number nine in parentheses on the right.] 

Since the straight line [image: Italic uppercase letters A and B with subscript ones.]  is parallel to the straight line [image: The image shows the chemical formula "A subscript 2 B subscript 2".] , the slope [image: The mathematical expression "k subscript A comma B".]  of the straight line [image: The image contains mathematical notation showing variables \( A_1, B_1 \) in stylized font.]  is equal to the slope [image: Lowercase letter "k" with subscript "A₂, B₂".]  of the straight line [image: Chemical formula with subscript: A subscript two, B subscript two.] . According to the distance formula between two parallel lines, the intercept [image: Mathematical expression showing the variable \( b \) with subscripts \( A_2 \) and \( B_2 \).]  of the straight line [image: Chemical formula "A₂B₂" with subscript numbers indicating the composition of a compound.]  is expressed as:

[image: Equation depicting \( b_{A, B_i} = b_{A, B_i'} + D \sqrt{ k_{A, B_i}^2 + 1} \). The condition \( b_{A, B_i} > b_{A, B_i'} \) is included, labeled as equation (10).] 

According to Equation 10, the straight-line equation of [image: Mathematical expression showing "A subscript 2 B subscript 2".]  is expressed as:

[image: Equation displaying variables and constants labeled with subscripts: y_A,B1 = k_A,B1 * x_A,B1 + b_A,B1 + D * sqrt(k_A,B1^2 + 1), labeled as equation 11.] 

The distance from straight-line segment [image: The image shows the mathematical notation "A subscript 3, B subscript 3".]  to straight-line segment [image: The image displays two mathematical variables, \(A_1\) and \(B_1\), each with a subscript one, presented in italicized serif font.]  is 2 [image: Lowercase letter "d" in a serif font, depicted in a slightly blurred, low-resolution manner.] . Then according to Equation 10, the intercept [image: Mathematical expression showing a lowercase italic letter "b" with subscripts "A" and "B".]  of the straight line [image: The image shows the mathematical notation "A subscript 3, B subscript 3".]  is expressed as:

[image: Equation showing \( b_{A,B_{1}} = b_{A,B_{2}} + 2D \sqrt{k^{2}_{A,B_{1}} + 1} \), with the condition \( b_{A,B_{2}} > b_{A,B_{1}} \). Numbered as equation 12.] 

According to Equation 12, the straight-line equation of [image: \(A_3, B_3\)]  is expressed as:

[image: Equation showing \( y_{A,B_s} = k_{A,B_s} x_{A,B_s} + b_{A,B_s} = k_{A,B} x_{A,B_s} + b_{A,B} + 2D \sqrt{k_{A,B}^2 + 1} \) with reference number 13.] 

According to Equations 10-13, the straight-line equation of [image: The image shows the mathematical notation with two variables: A subscript j and B subscript j.]  is expressed as:

[image: The formula shows \( y_{A,B_j} = k_{A,B} x_{A,B_j} + b_{A,B_j} + (j - 1) D \sqrt{k_{A,B_j} + 1} \) with the condition \( j \in \mathbb{N}^{*} \), labeled as equation (14).] 

According to the coordinates of the endpoints [image: Stylized capital letter "A" with a subscript "1".]  and [image: The image shows a mathematical notation with a capital letter B followed by a subscript 1.] , the straight-line equation of [image: "Mathematical notation displaying variables A subscript 1 and B subscript 1."]  is obtained, and then the straight-line equations of all other working paths are obtained according to [image: The letter "D" is shown in a serif typeface, slightly blurred.] .




3.1.2 Calculating endpoint coordinates

According to the straight-line equation of [image: \(A_j B_j\)]  obtained from Equation 14, determine the coordinates of the endpoints [image: Mathematical notation showing the letter "A" with a subscript "j".]  and [image: Mathematical expression with "B" as the base and "j" as the superscript.] . Make perpendicular lines [image: Subscript notation showing the text "A sub one A sub m".]  and [image: Mathematical expression with subscript letters "B" with subscript one and "B" with subscript "m".]  from point [image: Typographic character "A" with the subscript "1" in italic font style.]  and point [image: The image shows the mathematical notation \( B_1 \).]  to line segment [image: Mathematical notation showing "A sub m B sub m".]  [image: \( (1 < m \leq j) \)] , and the foot points are [image: Italic letter "A" with the subscript "mn" in a mathematical style.]  and [image: Mathematical notation showing an uppercase "B" with the lowercase subscript "m" indicating possibly an indexed variable.] . Let the slopes of line segments [image: \( A_1 A_m \)]  and [image: \( B_1 B_m \)]  be [image: Lowercase letter "k" with subscript "A sub one A sub m".]  and [image: Variable \( k_{B_1, B_m} \), with subscript \( B_1, B_m \).] , and the intercepts be [image: The image shows the mathematical notation "b" with subscripts "A1" and "A mx".]  and [image: The expression \( b_{B_1, B_m} \) contains the variable \( b \) with subscripts \( B_1 \) and \( B_m \).] , respectively. Then the straight-line equations of [image: Subscript notation showing the letter A with subscripts 1 and m.]  and [image: The image shows the mathematical expression \( B_1 B_m \).]  are expressed as,

[image: Equation labeled 15 shows a system of equations with subscripted variables. The equations are: y sub A comma A sub m equals k sub A comma A sub m x sub A comma A sub m plus b sub A comma A sub m. k sub A comma A equals k sub B comma B equals negative one divided by k sub A comma B. y sub B comma B sub m equals k sub B comma B sub m x sub B comma B sub m plus b sub B comma B sub m.] 

Substitute the coordinates [image: Mathematical notation of coordinates in a two-dimensional space, represented as an ordered pair \((x_{A1}, y_{A1})\).]  of point [image: Stylized capital letter A with a subscript numeral one.]  into the straight-line equation of [image: Subscript notation showing capital letter A with subscripts one and m.]  to obtain the intercept [image: The image shows the mathematical expression b with subscript A sub one A sub m.]  of [image: Subscript notation showing "A" with subscript "1" followed by "A" with subscript "m".] , as shown in Equation 16.

[image: The formula shows \( b_{A_{i+1}} = y_{A_i} + \frac{x_{A_i}}{k_{A_i}b_i} \), labeled as equation (16).] 

The straight-line equation of [image: Two mathematical symbols: A subscript 1 and A subscript m.]  can be obtained according to the intercept [image: The image shows the mathematical notation: a lowercase letter "b" with a subscript "A sub 1, A sub m".]  and slope [image: Mathematical expression showing the variable k with a subscript A1, Am.] . Then combine the linear equations of [image: Capital letter A followed by a subscript one, and capital letter A followed by a subscript m.]  and [image: Italicized letters "A" and "B" with subscript "m".]  to obtain the coordinates of the foot point [image: Italicized letter "A" followed by the subscript "mn".]  as [image: Mathematical notation showing coordinates in the form of a pair \((x_{A123}, y_{A123})\), with subscripts denoting specific identifiers for both x and y variables.] , as shown in Equations 17, 18.

[image: Equation representing a mathematical formula: \( x_{A_m} = (b_{A_m} A_m - b_{A_m} B_m) / (k_{A_m} B_m - k_{A_m} A_m) \), labeled as equation number seventeen.] 

[image: Equation labeled 18 shows \( y_{A_n} = k_{A, B_n} x_{A_n} + b_{A, B_n} \).] 

The coordinate [image: Mathematical notation of a point with coordinates \( x_{B,0} \) and \( y_{B,0} \).]  of the foot point [image: The image shows the mathematical expression "B sub m", with "B" in uppercase and "m" as a subscript in lowercase.]  is represented as,

[image: Equation showing \( x_{B_r} = (b_{B_r} - b_{A, B_r}) / (k_{A, B_r} - k_{B, B_r}) \), labeled as equation 19.] 

[image: Equation displaying a linear relationship: `y_Bn = k_{A,Bn} * x_{B_n} + b_{A,B_n}`, labeled as equation (20).] 

Finally, according to Equations 14, 17-20 and the coordinates of the endpoints [image: The image shows the mathematical notation "A" with the subscript "1".]  and [image: The image shows the mathematical notation "B" with a subscript "l".] , the coordinates [image: Equation showing coordinates with subscript: \(x_{A_{111}}, y_{A_{111}}\).]  and [image: Mathematical expression showing coordinates in parentheses with subscripts: open parenthesis, x sub B sub m n, comma, y sub B sub m n, close parenthesis.]  of all other endpoints can be obtained.




3.1.3 Fusion of endpoints and lines

The straight-line equation of [image: Subscript notation with two elements, \( A_j \) and \( B_j \).]  and the coordinates of endpoints [image: Italicized letter "A" with a subscript "j".]  and [image: The image shows the mathematical expression "B" with subscript "j".]  are obtained from Sections 3.1.1 and 3.1.2, where the straight-line equation of [image: Subscripted variables \(A_j\) and \(B_j\).]  includes information such as slope [image: Mathematical expression representing the variable \( k \) with subscripts \( A \) and \( B \).] , intercept [image: Lowercase letter "b" with subscripts "A" and "B" respectively.] , and serial number [image: Lowercase letter "j" written in a cursive or stylized font.] . Use [image: Italicized lowercase letters "plm".]  to represent endpoints [image: The image shows a mathematical expression with the symbol "A" and the subscript "j".] , [image: The image shows the mathematical expression "B" subscript "j".] , and working path [image: The expression shown is "A subscript j, B subscript j."] , as shown in Equation 21.

[image: Mathematical expression depicting a set labeled "plm" with elements in the form \(\{A_i, B_i, A_j, B_j\}\) where \(i, j\) are in natural numbers. Equation number 21.] 

The [image: Italicized lowercase letters "p," "l," and "m" in a serif typeface.]  provides detailed field information for the robot, supporting the robot to obtain its own direction, serial number of working paths, and path.





3.2 Robots global path generation method

When a robot detects a work conflict, it needs to re-plan the path for the low-priority robot. In order to quickly plan new paths, we first use [image: Italicized text displaying the letters "p", "l", "m".]  and target points to generate the local path of each working path. Then, all local paths are merged into the global path of the robot, as shown in Algorithm 2. When the robot needs to adjust its path, it only needs to change the order and direction of the local path. Figure 3A shows all target points of the robot. Figure 3B shows global path and all local paths of the robot.

[image: Illustration comparing two crop field layouts labeled A and B. Both fields contain rows of healthy crops marked with green symbols and diseased crops with yellow symbols. Specific points, labeled Pn1 to Pn10, indicate positions within the fields. Solid black lines outline paths through the crops in field B, indicating navigation or travel routes. Surrounding labels (Fa, Fb, Fc, Fd) denote boundaries or sections.]
Figure 3 | Target point and global path. (A) Target point. (B) Global path.

Algorithm 2 | Robots global path generation method.

[image: Flowchart algorithm in pseudocode format for calculating the global path \( r^n \). It involves iterating over variables \( i \) and \( j \), calculating distances \( d_{pn_iA_jB_j} \), identifying minimum values, and merging paths. The process updates and sorts paths based on distance, ending with a return of \( r^n \).]




3.2.1 The local path of the robot

According to the [image: Italic lowercase letters "p l m".]  and target point [image: Mathematical notation showing \( P_n = \{ p_{n1}, p_{n2}, \ldots, p_{nl} \} \).]  of the robot [image: Mathematical notation showing the symbol "R" with a subscript "n".] , plan the local path [image: Mathematical notation showing the variable "y" with subscript "j" and superscript "n".]  of the robot. Let the coordinates of [image: Lowercase letter "p" with subscript "mi".]  be [image: Mathematical notation representing a coordinate pair \((x_{\text{pos}}, y_{\text{pos}})\).] , and calculate the distance [image: Mathematical expression with lowercase "d" subscript "p sub i" followed by "A sub j B sub j".]  from point [image: Italic lowercase letter "p" followed by a subscript "mi".]  to straight line [image: Subscripts are used in the expression "A sub j, B sub j".]  according to Equation 22.

[image: The formula presented is for \( d_{p_{A_i}, B_j} \), calculated as the absolute value of \(\frac{k_{A_i B_j} y_{p_{A_i}} + b_{A_i B_j}}{\sqrt{1 + k_{A_i B_j}^2}}\), where \(A_j, B_j \in plm\) and \(i \in \mathbb{N}^*\). This expression is labeled equation (22).] 

Let [image: The image shows the variable "j" with a subscript "d" and the word "dense" written in italics next to it.]  represent the serial number of the working path when [image: Mathematical expression showing the distance function with subscript \(d_{pni}A_jB_j\).]  takes the minimum value, as shown in Equation 23. When [image: Mathematical expression showing \( d_{p_{ni}A_jB_j} \).]  takes the minimum value, the target point [image: Italic lowercase letter "p" with subscript "ml".]  is in the working path

[image: Mathematical notation showing two variables, \( A \) and \( B \), each with subscripts \( j, \text{max} \) and \( i, \text{min} \) respectively.] .

[image: The mathematical expression shows \( j_{idlm} = \left\{ j \mid \min \left( d_{A_p, A_B} \mid i \in \mathbb{N}^* ; A_i, B_j \in p_{lm} \right) \right\} \) with equation number 23 on the right.] 

The endpoints [image: Mathematical expression with A subscript j and subscript footnote next to it.]  and [image: Mathematical notation showing "B" with subscripts "j" and "transform".]  of the working path [image: Italic letters "A" and "B" with subscripts "ij" where "i" equals minimum and "j" equals maximum.]  and point [image: Mathematical notation showing the symbol "p" with a subscript "mi".]  constitute the local path [image: Mathematical expression showing a variable \( r \) with subscripts \( j \) and superscripts \( i \) and the word "nombre".] , as shown in Equation 24. Put [image: Lowercase mathematical variable "p" with subscript "ni".]  between points [image: Mathematical notation displaying the symbol "A" with two subscript labels "j" and "inverse" written below it.]  and [image: \( B_{ij}^{\text{average}} \)]  because the robot starts from the endpoint [image: The image shows the letter "A" in a large serif font with a subscript "j" and a subscript "max" below it.]  or [image: Mathematical notation displaying the matrix element \( B \) with indices \( j \) and \( l \), where \( j \) is a subscript and \( l \) is a superscript.]  and then passes through the target point

[image: Mathematical notation displaying the variable "p" with the subscript "ni".] .

[image: Mathematical equations showing two sequences: the first is T subscript Imin equals a set with elements A Imin, p init, B Imin; the second is T subscript Jmin equals a set with elements B Jmin, p init, A Jmin. Equation number twenty-four is to the right.] 

Calculate the distance [image: Mathematical expression: \(d_{\text{par}-A_j}(0 < \nu \leq i)\).]  from point [image: Lowercase letter "p" with subscript "mi".]  to [image: Mathematical notation showing the letter "A" with a subscript "j".]  according to Equation 25 when two or more target points are in the same working path.

[image: Distance formula equation: \(d_{p_{tr,A_i}}\) equals the square root of \((x_{p_{tr}} - x_{A_i})^2 + (y_{p_{tr}} - y_{A_i})^2\), with conditions \(0 < v \leq \hat{i}\), \(A_i, B_j\) belonging to \(plm\). Equation is labeled as (25).] 

Sort the target points [image: A set of variables represented as \( \{p_{n1}, p_{n2}, \ldots, p_{nv}\} \).]  according to the size of [image: Mathematical notation showing "d sub p a p r o x A sub j".] , and then update the local path [image: Mathematical notation showing a lowercase "r" with superscript "i" and subscript "j".] , as shown in Equation 26.

[image: Mathematical expressions showing two sets. The first set, \( r^j = \{A_j, p_{n1}, p_{n2}, \ldots, p_{nm}, B_j\} \), follows the condition \( d_{p_{n4}} < d_{p_{n3}} < \ldots < d_{p_{n1}} \). The second set, \( r^{j'} = \{B_j, p_{n1}, p_{n2}, \ldots, p_{nm}, A_j\} \), follows the condition \( d_{p_{n4}} > d_{p_{n3}} > \ldots > d_{p_{n1}} \). Both are labeled 26.] 

In Figure 3A, [image: The image shows the mathematical notation "p sub n l" in italic font.]  and [image: The text "p" followed by a subscript "n2".]  are in the working path [image: Variable names with subscript: A sub one and B sub one.] . Since [image: Mathematical expression showing d subscript p n1 A1 is less than d subscript p n2 A1.] , the path [image: Mathematical expression showing \( r_i^n = \{ A_i, p_{ni1}, p_{ni2}, B_i \} \).]  is obtained.

According to the target point [image: Italic lowercase letter "p" with a subscript "n".] , a series of local paths [image: The image shows a mathematical symbol "gamma sub one" with a superscript of "seven."] , [image: Mathematical notation of a lowercase letter 'r' with subscript '2' and superscript '21'.] , [image: The mathematical expression shows \( r_{3}^{2} \), representing \( r \) subscript three squared.] ,…, [image: Mathematical notation showing the variable \(y\) with a subscript \(j\) and a superscript \(n\).]  are obtained. For example, Figure 3A contains target points [image: The image shows a math expression featuring the letter "R" with a subscript "max," indicating "R sub max."] , and six groups of local paths are obtained, as shown in Equation 27.

[image: Mathematical expressions show sets of elements with arrows indicating transitions from zero to one. Each expression consists of elements labeled A, p, and B with different subscripts. The equation number (27) is indicated on the right side.] 




3.2.2 Robots global path generation method

According to the local path [image: Mathematical expression displaying lowercase y, subscript j, superscript 1.]  of the robot, it is known that the serial number of the working path is [image: Lowercase letter "j" in a serif font, slightly italicized.] . Sort the local paths [image: Mathematical notation showing \( y_j^i \).]  according to [image: Lowercase letter "j" in a serif font style.]  and then get the path [image: Mathematical equation showing the set \( r^n = \{ r_1^n, r_2^n, r_3^n, \ldots, r_j^n \} \).] . For example, the path sorting in Figure 3A results in [image: Mathematical expression showing r double prime equals the set containing r sub 1, r sub 3, r sub 5, r sub 6, r sub 12, and r sub 16, each raised to the power of n.] .

However, the sorted [image: The lowercase Greek letter gamma with a subscript "21".]  cannot be directly used as a robot’s global path because the connection between local paths is not continuous. For example, [image: The image shows the mathematical symbol \( r_1^{11} \).]  to [image: Lowercase italic letter "r" with subscript "3" and superscript "11".]  in Equation 27 is from point [image: Italic letter "B" subscripted with "i".]  to [image: The image shows a capital letter "A" with the number "3" as a subscript.]  and finally to [image: Italic letter "B" followed by a subscript "3".] , which does not conform to the ‘U’ shape path of the robot. The robot cannot go directly from [image: The image shows the mathematical symbol "B" with a subscript "1".]  to [image: The image shows the mathematical notation "A" with a subscript "3".]  but should go from [image: The image depicts the mathematical expression "B" with a subscript "1".]  to [image: The image contains the mathematical expression \( B_3 \).] , then to [image: Text "A" with a subscript "3".] . Therefore, it is necessary to adjust [image: Lowercase letter r with subscript three and superscript twenty-one.]  to [image: Set notation containing the elements \( B_3 \) through \( A_3 \).] , and at the same time, reorder the target points inside [image: Mathematical expression, r subscript 3 superscript 11.]  according to Equation 25 to obtain the updated [image: Mathematical expression: a subscripted term with superscript "f" equals a set containing five elements, labeled B subscript 3, p subscript m5, p subscript m9, p subscript m13, and A subscript 3. Followed by an arrow from 1 to 0.] . Similarly, update [image: The expression shows r subscript five raised to the power of eleven, indicating \( r_5^{11} \).] , [image: Mathematical expression depicting "r" raised to the power of six.] , [image: Mathematical notation combining the Greek letter rho with subscripts one two and a superscript star.] , [image: Mathematical expression: \( r^{12}_{16} \).]  according to this rule, and finally update the six groups of local paths in Equation 27 to get Equation 28.

[image: Mathematical expressions depict sequences of sets labeled \( r_1^1, r_3^1, r_5^1, r_6^0, r_{12}^1, \) and \( r_{16}^0 \), each containing variables with subscripts. Each set notation includes transitions represented as \( 0 \to 1 \) or \( 1 \to 0 \). Equation labeled (28).] 

Therefore, to ensure that the local paths are continuous, the direction between the local paths must satisfy [image: Mathematical expression showing a sequence: (0 → 1) (1 → 0) (0 → 1) repeated, with ellipsis indicating continuation.]  or [image: Sequence of transformations showing binary transitions: one to zero, zero to one, one to zero, followed by an ellipsis indicating continuation.] . [image: A lowercase Greek letter gamma with a superscript 31.]  satisfies Equation 29 or 30.

[image: Mathematical expression stating \( r^r = \{ r^1(0 \rightarrow 1), r^2(1 \rightarrow 0), r^3(0 \rightarrow 1), \ldots, r^r(1 \rightarrow 0) \} \) with equation number (29).] 

[image: Mathematical equation showing \( r^n = \{ r^1(1 \to 0), r^2(0 \to 1), r^3(1 \to 0), \ldots, r^n(0 \to 1) \} \).] 

Combining the six groups of local paths in Equation 28, the global path [image: Greek letter gamma raised to the power of eleven.]  is obtained, as shown in Equation 31. Finally, according to the target point [image: Mathematical expression depicting a set, \( P_n = \{ p_{n1}, p_{n2}, \ldots, p_{n10} \} \).]  of the robot [image: Mathematical expression with the letter "R" and subscript "11".]  in Figure 3A, plan the black path [image: The Greek letter gamma raised to the power of eleven.]  in Figure 3B.

[image: Mathematical expression displaying a function \( r'' \) which is a set of ordered pairs: \( r^1_7(0 \to 1) \), \( r^3_7(1 \to 0) \), \( r^5_7(0 \to 1) \), \( r^6_7(1 \to 0) \), \( r^1_{12}(0 \to 1) \), \( r^6_{12}(1 \to 0) \). It is labeled as equation thirty-one.] 





3.3 Itinerary table with all global information

Based on the [image: Italicized lowercase letters "p," "l," and "m" in sequence.]  and its own position, the robot can calculate the direction of the robot, the number of the current working path, and the type of path. Combined with the global path and priority, the robot can learn all global information. When robot [image: The image shows the mathematical notation "R" with a subscript "n".]  learns its own information, it needs to send its global information to other robots so that other robots can understand the status of [image: Mathematical notation "R" subscript "11".] , thereby judging the relationship between robots and predicting the possibility of collision. We designed an itinerary table (as shown in Table 1) that contains the robot’s serial number, priority, path type, moving direction, real-time position, target position, current serial number of the working path and last serial number of the working path to facilitate the robot’s sending and receive. When robot [image: \( R_{11} \) in a stylized mathematical font.]  is started, it generates an itinerary table [image: Mathematical notation showing an uppercase italic letter H with a subscript of italic R followed by a number 11.] .` [image: A capital letter "H" in a serif font, displayed on a pale gray background.]  represents the itinerary table of a group of working robots, and [image: Mathematical notation showing the letter "H" with a subscript "R" and an additional subscript "n".]  represents the itinerary table of robot [image: \( R_{11} \) written in italics.] , as shown in Equation 32.

Table 1 | The itinerary table of robot [image: Mathematical expression featuring the letter "R" with a subscript "non" below it.] .


[image: Itinerary table with columns listing attributes and values: serial number of the robot (0 to n), priority (0, 1, 2, 3...), path type (working or transition), moving direction (0 to 1, 1 to 0, or up, down), real-time position (P_Rn), target position (P_n), current serial number of the working path (j_c), and last serial number of the working path (j_l).]
[image: H equals set of H sub n, where n is an element of natural numbers, followed by equation number thirty-two in parentheses.] 

[image: \( H_{0} \) indicating the null hypothesis in statistical notation.]  represents other itinerary tables except for [image: \( H_{Rn} \)] , as shown in Equation 33.

[image: Equation showing \(H_O = H - H_R\), labeled as equation 33.] 

Robot [image: Mathematical notation "R" subscript "11".]  constantly updates the data in the itinerary table while working and broadcasts its [image: \( H_{R_t} \)]  to other robots [image: \( R_0 \) represents a mathematical symbol, commonly used to denote the basic reproduction number in epidemiology.] . At the same time, robot [image: "R sub n" in italics, representing a mathematical or scientific variable notation with a subscript.]  receives [image: \( H_0 \) represents the null hypothesis, with "H" followed by a subscript "0".]  and makes decisions.




3.4 Multi-robot collision avoidance method

Based on the point-line map, global path and itinerary table, the robot can understand the global information of the field and the status of other robots. With this information, the robot can make reasonable decisions and avoid collisions with other robots. The multi-robot collision avoidance algorithm is shown in Algorithm 3. We calculate the direction of the robot [image: The image shows the mathematical notation \( R_{11} \), where "R" is a variable and "11" is its subscript, indicating a specific component or element in a series or matrix.]  in different path type through Equations 5, 6. Then obtain the moving direction of other robots through the received itinerary table [image: Subscript notation with the capital letter "H" followed by a lowercase "o".] . Finally, we can compare whether the robots have the same direction.

Algorithm 3 | Multi-robot collision avoidance method.

[image: Pseudocode listing the movement algorithm of robots based on paths and distances. Includes conditional logic for various movement scenarios, like checking direction, calculating distances, determining path type as working or transition, adjusting paths, and handling obstacles. The loop concludes when a target is reached.]



If the direction is the same, query the real-time position of the robot with the same direction in the itinerary table [image: Italicized capital letter H with a subscript lowercase o.] , and calculate the distance [image: Mathematical notation "d" subscripted with "R_n" and "R_e".]  between [image: \( R_{ij} \)]  and [image: Subscript notation with a capital letter "R" followed by a smaller letter "o" positioned lower, often denotes a specific variable or term in mathematics or science.] . When [image: Mathematical expression illustrating that d subscript R1,R2 is greater than or equal to 1.] , [image: \( R_{11} \)]  and [image: Italic uppercase letter "R" with a subscript "0".]  maintain the current moving state. When [image: Mathematical expression showing the distance between \( d_{R_n, R_s} \) is less than one.] , the robot at the rear stops moving, and when [image: Mathematical expression showing \( d_{R, R_s} \geq 1 \).] , the robot at the rear resumes moving.

But if the directions are different, the robot must make different decisions depending on the path type. We determine the path type of the robot based on its local path. If the robot path is from [image: The image shows the mathematical notation "A sub j," with "A" as a capital letter and "j" as a subscript.]  to [image: Subscript notation: uppercase "B" with subscript lowercase "j".]  or [image: Mathematical notation displaying the letter "B" with a subscript "j".]  to [image: The image shows the mathematical notation "A subscript j."] , the path type of the robot is a working path. If the robot’s path is from [image: Mathematical notation showing an uppercase letter "A" with a subscript "s".]  to [image: Capital letter "A" with a subscript "u".]  or [image: Text shows the letter "B" with a subscript "s".]  to [image: The image shows the mathematical notation \( B_{14} \).] , the path type of the robot is a transition path.



3.4.1 On the working path

If the path types of multiple robots are working path, we query the current serial number of the working path of the robot through the local path [image: Mathematical notation showing lowercase letter "r" with superscript "n" and subscript "j".] .If the serial number [image: Lowercase "j" with a subscript "c" in a stylized font.]  is different, [image: Mathematical expression with the letter R followed by the subscript n.]  and [image: The image shows the mathematical expression "R subscript o".]  are not in the same working path, and there is no possibility of conflict. Robots continue to move according to the global path and do not need to do anything.

If the serial number [image: The image shows a lowercase letter "j" with a subscript "c".]  is the same, [image: Equation showing the symbol \( R_{11} \).]  and [image: Text showing the letter "R" with a subscript "0".]  are in the same working path, and conflicts or collisions will occur. There are two conflict cases: The first case is that one robot is moving in the working path, and another robot is moving from the transition path to the working path; The second is that all robots are entering the working path from the transition path.

For the first case, for example, when [image: Italic letter "R" followed by a subscript "O".]  is already moving in the working path [image: Capital letters A and B with subscript s.] , [image: The image displays the mathematical notation \( R_{11} \).]  is moving from [image: \( A_s A_u \) with a subscript on the first letter "s" and on the second letter "u".]  to [image: \( A_s, B_s \)] . Since they are going in different directions, they must collide. We do not consider the priorities of the robots at this time, directly let the robot [image: Mathematical notation of the symbol \( R_{11} \) in italics.]  give up the current working path, and then re-plan the global path. In order not to hinder the robot’s work and quickly generate the remaining path of the robot, we move the current conflicting local path [image: Mathematical expression showing a fraction with \( r^{11} \) in the numerator and \( s \) in the denominator.]  to the end of the global path, as shown in Equation 34. Then, using the content of Section 3.2.2, according to the direction continuity between local paths, modify the target point order of the local path, and then update [image: The image shows the Greek letter gamma with a caret notation, indicating an exponent of thirty-one.] . The robot [image: The image depicts the mathematical notation \( R_{11} \), with "R" followed by a subscript "11".]  continues to move according to the updated [image: Mathematical expression showing the Greek letter gamma raised to the power of 31.] .

[image: Mathematical notation displaying two equations. The first equation is \( r^r = \{r_j^r \mid j \in N^r \} \). The second equation is \( r^{r'} = \{r_j^r, r_i^r \mid j \in (N^r - s) \} \). Both equations are labeled with number 34.] 

For the second case, for example, both [image: The text shows the mathematical notation "R" with a subscript "O".]  and [image: The image shows the mathematical expression \( R_{11} \), indicating an element in a matrix or tensor with row and column indices both equal to eleven.]  are moving on the transition path and have not yet reached the working path. At this time, consider the priority of [image: Subscript notation "R" with a subscript "O".]  and [image: The image shows the mathematical notation "R subscript n".] , assuming that the priority of [image: The image shows the mathematical notation \( R_{11} \).]  is lower than [image: Italic letter "R" with a subscript "0".] . The robot [image: Mathematical notation displaying "R" with a subscript "n".]  with low priority abandons the current working path [image: Variables \(A_s\) and \(B_s\) with subscript \(s\).]  and re-plans the path. The remaining path re-planning rules are the same as in the first case.




3.4.2 On the transition path

If multiple robots are on a transition path, we first query the real-time positions of the robots on the same path type. Then, calculate the distance [image: Mathematical expression \( d_{R_n R_e} \) with subscripts \( R_n \) and \( R_e \).]  between the robots. When [image: Mathematical expression displaying "d sub Rn, Rm is greater than one".] , robots maintain the current moving state. When [image: Mathematical expression showing \( d_{R_i R_j} \leq 1 \).] , the robot with low priority avoids the one with high priority. Since the width of the transition path is generally relatively wide, multiple robots can be accommodated simultaneously in the lateral direction. We can add some extra paths to avoid robot collisions.

In Figure 4A, robot [image: The image shows a mathematical notation, "R subscript 1", representing a variable or component labeled as \( R_1 \).]  goes from point [image: The image shows a mathematical expression with the letter "A" followed by the subscript "s".]  to [image: Variable notation with a capital "P" subscripted by "11".] , robot [image: The image shows the mathematical notation "R" with a subscript "2", typically representing a resistor labeled "R2" in circuit diagrams.]  goes from point [image: Capital letter "A" with a subscript "u".]  to [image: The image shows the mathematical expression "P" with a subscript of "21".] . It is obvious that [image: The image shows the mathematical notation "R" with a subscript "1".]  and [image: The text shows a capital letter "R" with a subscript number "2".]  have different directions. R1 and R2 are close together and are about to collide. Assuming that robot [image: Italicized letter "R" with a subscript "1".]  has a lower priority than robot [image: The image shows the mathematical notation for \( R_2 \), with "R" as the capital letter and the subscript "2" in a smaller font size.] . The low-priority robot translates the current local path a certain distance to the left or right to avoid collision. For example, in Figure 4B, robot [image: Text displaying "R subscript 1" in mathematical notation.]  translates the local path [image: Mathematical expression with \( P \) subscript \( R_n \) and \( A \) subscript \( H \).]  to [image: Mathematical expression showing \( P_a P_b \) with subscripts a and b.]  to avoid collision with [image: The image shows the mathematical notation "R" with a subscript "2", representing a vector space or coordinate plane in two dimensions.] . After translating the local path, the path [image: Mathematical expression with two variables, \( P_a \) and \( P_b \).]  is updated to {[image: Mathematical expression showing variables: \(P_{R_n}\), \(P_a\), \(P_b\), \(A_u\).] } according to the continuity of the path. We set the new path to [image: It appears to be a mathematical expression with the variable "r" raised to the power of a fraction, specifically "r" to the power of one over "t".] , as shown in Equation 35.

[image: Diagrams labeled A, B, C, and D, each depicting pathways between points labeled \(A_s\), \(A_u\), \(B_s\), and \(B_u\) using arrows. Dashed, dotted, and solid lines illustrate relationships and processes such as \(P_{11}\), \(P_{21}\), \(R_1\), \(R_2\), and various nodes like \(P_a\), \(P_b\), \(P_{R_1}\). Arrows indicate directionality between points.]
Figure 4 | Conflict detection for robots on transition paths. (A) [image: The content in the image is a stylized letter "R" followed by the subscript numeral "1."]  and [image: The image shows the mathematical notation "R" with a subscript "2".]  meet at the transition path. (B) [image: Stylized letter "R" with a subscript "1".]  plans a new path. (C) [image: Text depicting "R subscript 1" in a mathematical or scientific context.]  meets [image: Mathematical notation showing the letter "R" with a subscript "3".]  on the new path. (D) [image: The image shows the expression "R subscript 1" in a stylized font.]  plans a new path again.

[image: Equation labeled 35 shows a mathematical expression: \( r^{l}_{t} = \{ P_{R_{t}}, p_{a}, P_{d}, A_{t} \} \), with the condition \( t > j \).] 

The conflict occurs on the transition path [image: Stylized mathematical notation showing the variable \( A \) with subscripts \( s \) and \( u \).] , and [image: \( A_s A_u \) displayed with subscripts.]  is located between the local paths [image: Equation representing the symbol "r" raised to the power of "i" divided by "s."]  and [image: Mathematical expression showing "r" raised to the power of "one" divided by "n".] , so insert [image: Mathematical expression showing the variable \( r \) with a subscript \( t \) and a superscript \( l \).]  between [image: Mathematical notation showing the letter "r" with "s" as a subscript and "l" as a superscript.]  and [image: Mathematical notation showing r to the power of one over w.] , as shown in Equation 36. The moving direction of the robot on the transition path [image: Mathematical expression displaying \( A_s A_u \).]  is [image: The image shows the Greek letter "mu" (μ) followed by the letter "p" in italic font.]  or [image: The word "down" is displayed in italicized, lowercase grey text.] , and it is [image: The image shows the numbers zero and one with an arrow pointing from zero to one, indicating a transition or progression.]  or [image: Number one followed by a rightward arrow pointing to the number zero.]  on the working paths [image: Capital letters A and B with subscripts s.]  and [image: Capital letters A and B with subscripts u.] , so insert [image: Mathematical expression featuring the letter "r" subscripted by "t" and superscripted by "i".]  between [image: Mathematical expression displaying the variables "r" with a subscript of "s" and a superscript of "i".]  and [image: Equation with variable "r" raised to power "one" over "u".] , and the direction between other local paths in [image: Lowercase letter "r" with a superscript "l".]  still satisfies [image: Sequence showing transitions: parenthesis zero arrow one parenthesis, space, parenthesis one arrow zero parenthesis, space, parenthesis zero arrow one parenthesis, followed by ellipsis.]  or [image: Sequences of binary state transitions represented as pairs: one to zero, zero to one, and one to zero, continuing indefinitely.] . Therefore, we only need to simply insert the local obstacle avoidance path [image: Equation with a base \( r \) and exponent \( i \), indexed by \( t \).]  between [image: Mathematical notation showing the letter "r" with subscript "s" and superscript "l".]  and [image: Mathematical notation showing "r" raised to the power of one over "n".]  without doing other operations.

[image: Mathematical notation showing a sequence \( r^{l} = \{..., r_{s}^{l}, r_{u}^{l}, r_{j}^{l}, ...\} \) with constraints \( s \neq u, 0 < s \leq j, 0 < u \leq j \). Labeled as equation (36).] 

When a new robot is detected, the low-priority robot continues to translate the local path left or right. In Figure 4C, robot [image: Mathematical notation showing "R" with a subscript "3".]  is detected on path [image: Mathematical expression with variables \( P_a \) and \( P_b \), where \( a \) and \( b \) are subscripts.]  after [image: The image shows the mathematical notation "R" with a subscript "1".]  passes through point [image: The image shows the mathematical notation \( P_a \), with "P" as the main character and "a" as a subscript.] , and robot [image: The image shows a stylized mathematical character "R" with a subscript "1".]  plans local avoidance path [image: Text showing a fraction with \( r^1 \) as the numerator and \( r_1 \) as the denominator.] , as shown in Equation 37.

[image: Mathematical expression showing a set notation: \( r_{1,t} = \{ \hat{R}_t, P_{c,t}, P_{d,t}, P_{b,t}, A_t \} \) with a reference number (37) on the right.] 

Update [image: Mathematical notation showing "r" raised to the power of "t".]  according to the local avoidance path [image: Mathematical expression showing r subscript one raised to the power of one.] , as shown in Equation 38. Then insert the updated [image: Text showing "r" with superscript "i" and subscript "t".]  into the global path [image: The image shows the letter "r" in lowercase with a small superscript "l" to its upper right.] .

[image: Equation labeled 38: \( r'_t = \{ P_{R_t}, p_{m}P_{R_t}, P_{c}, P_{d_t}, p_{b}, A_t \} \).] 

The updated local avoidance path is shown in Figure 4D. If [image: The mathematical symbol "R" subscripted with "1", representing a variable or constant often used in equations or scientific contexts.]  conflicts with other robots again, plan the local obstacle avoidance path according to this rule and then update [image: Mathematical expression showing a lowercase letter 'r' with a superscript lowercase 'l' and a subscript lowercase 'r'.]  and [image: Mathematical notation showing "r raised to the power of 1".] .






4 Experiment and result



4.1 Simulate initial conditions

In order to verify our proposed multi-robot collision avoidance method, we used Gazebo software to design the robot working environment. The working environment includes field, crops, roads, and four working robots, as shown in Figure 5. Each working robot contains a medicine storage barrel, a medicine spraying device, communication device, positioning device and controller.

[image: A geometric layout featuring a grid of small green plants on brown soil at the right. On the left, a gray pathway with three small blue structures leads vertically upward, surrounded by patches of grass.]
Figure 5 | The robot’s simulation work environment.

In order to facilitate the description of the working process of the robot, a GUI display interface is designed to display the garage, field, crops, and robot, as shown in Figure 6. Set up a group of working robots [image: The mathematical notation shows a set \( R = \{ R_1, R_2, R_3, R_4 \} \).] , with priorities of 0, 1, 2, and 3, respectively. Set the field length to 20 meters and width to 16 meters. The field has 20 rows of crops ([image: Mathematical expression showing the inequality: one is less than or equal to j, which is less than twenty.] ), and the distance between each row of crops is 1 meter ([image: The equation "D equals one".] ). The coordinate system is established with point [image: Lowercase letter "o" in italics.]  as the origin, and the coordinates of the two endpoints [image: Capital letter "A" with a subscript "1".]  and [image: Stylized text of a capital letter B followed by a subscript lowercase letter l.]  of the baseline [image: The image shows the mathematical notation "A subscript 1, B subscript 1", indicating indexed variables or elements.]  are set to (0, -9) and (16, -9), respectively.

[image: Grid diagram with 19 rows and 10 columns, labeled A1 to A19 on the left, and B1 to B19 on the right. The axes are marked as O, X, and Y; the grid is 16 units long and 20 units wide. Points R1 to R4 are marked on the left. Grid spacing is denoted as D.]
Figure 6 | The initial diagram of the robot’s working environment.




4.2 Generating a point-line map

We first generate all working path [image: Subscripts. Letters A sub j and B sub j.]  and endpoints [image: Subscript mathematical notation showing the letter "A" with subscript "j".]  and [image: The image shows the mathematical expression "B sub j", where "B" is a capital letter and "j" is a subscript.]  based on the baseline [image: Mathematical notation showing the letters "A" and "B" with subscripts "1".] . Calculate the slope [image: The text shows "k subscript A,1 comma B,1".]  and intercept [image: Mathematical notation showing the letter "b" with subscripts "A" and "B".]  of the working path [image: Uppercase letters "A" and "B" with subscripts "1", denoting elements or variables in a mathematical or scientific context.]  based on points [image: The image shows the mathematical notation "A" with a subscript "1".]  and [image: The image shows the mathematical expression "B subscript 1".]  and the straight-line equation of [image: Variables A subscript 1 and B subscript 1 are displayed in italic font.] , as shown in Equation 39.

[image: Mathematical equation showing: \( y_{4,B_1} = -9(0 \leq x_{4,B_1} \leq 16), k_{4,B_1} = 0, b_{4,B_1} = -9 \), labeled as equation (39).] 

According to Equations 14, 39, calculate the straight-line equation of the working path [image: Subscript notation showing the variables \(A_j\) and \(B_j\).] , as shown in Equation 40.

[image: Mathematical equation showing y subscript A B subscript j equals negative nine plus open parenthesis j minus one close parenthesis times D, comma k subscript A B subscript j equals zero, comma b subscript A B subscript j equals negative nine plus open parenthesis j minus one close parenthesis times D. Equation forty.] 

Then according to Equations 17-20, the coordinates of points [image: Mathematical notation showing uppercase A with a subscript j.]  and [image: Mathematical notation representing "B sub j."]  are obtained as [image: Mathematical expression: open parenthesis, zero, comma, negative nine plus open parenthesis, j minus one, close parenthesis, times D, close parenthesis.] , ([image: The formula shows: sixteen comma negative nine plus open parenthesis j minus one close parenthesis times D.] . Finally, according to Equations 39, 40, the [image: Italicized lowercase letters "p," "l," and "m" in a serif font.]  is obtained as shown in Equation 41.

[image: Mathematical equation with variables and parameters: \( p_{lm} = \{ A_j, (0, -9 + (j-1) \times D), B_j, (16, -9 + (j-1) \times D) \} \). Constraints include \( y_{A_j, B_j} = -9 + (j-1) \times D \) for \( 1 \leq j < 20, D = 1 \). Equation number is 41.] 




4.3 Generating the global path

We randomly generated the coordinates of 35 diseased crops, and then used them as the target points of the robot (Meshram et al., 2022). The target point is denoted as [image: Mathematical equation showing a set P equal to a series of elements \( p_1, p_2, p_3, \ldots, p_{55} \).] . Then, the coordinates [image: Lowercase italic letter "p".]  are randomly assigned to [image: The image shows the mathematical notation "R" with a subscript "1".] , [image: Mathematical notation showing "R" with a subscript of "2".] , [image: Formula showing the letter "R" with a subscript "3".] , and [image: The mathematical notation "R" with a subscript "4".] , as shown in Figure 7. Randomly divide the targets into four groups: [image: Mathematical expression showing \( P_1 = \{ p_{11}, p_{12}, \ldots, p_{18} \} \).]  is represented by orange, [image: \( P_2 = \{ p_{29}, p_{210}, \ldots, p_{216} \} \)]  is represented by black, [image: Mathematical expression showing \( P_3 = \{ p_{317}, p_{318}, \ldots, p_{324} \} \).]  is represented by blue, and [image: \( P_4 = \{ p_{424}, p_{425}, \ldots, p_{435} \} \).]  is represented by purple.

[image: A grid map with various points labeled p1 to p35. Points are marked with different colors and symbols: black circles, purple circles, orange circles, and blue circles. A legend on the left side indicates R1 to R4, corresponding to the different colors. The grid is filled with small green markers, and the arrangement seems to represent specific areas or categories.]
Figure 7 | Random distribution of target points.

According to Section 3.2, use the target points and map to generate the robots’ global path, as shown in Equations 42-45.

[image: Equation displaying a mathematical set, V-prime, equals curly brace, r sub fifteen, parentheses zero right arrow one, comma, r sub seven, parentheses one right arrow zero, comma, r sub six, parentheses zero right arrow one, comma, r sub four, parentheses one right arrow zero, comma, r sub three, parentheses zero right arrow one, comma, r sub three, parentheses zero right arrow one, curly brace. Number forty-two is in parentheses.] 

where [image: Mathematical expression showing \( r_{15}^1 = \{ A_{15}, p_{11}, B_{15} \} \).] , [image: Mathematical notation showing \( r^l_9 = \{ B_9, p_{12}, A_9 \} \).] , [image: Mathematical expression depicting a variable \( r_6^1 \) equal to a set containing four elements: \( A_6 \), \( p_{17} \), \( p_{15} \), and \( B_6 \).] , [image: \( r_4^1 = \{ B_t, p_{18}, p_{14}, A_t \} \).] , [image: Mathematical expression showing \( r_3^1 = \{ A_3, p_{13}, p_{16}, B_3 \} \).] .

[image: Equation labeled 43 showing a set for r squared: \( r^2 = \{ r_{2}(0 \to 1), r_{11}(1 \to 0), r_{10}(0 \to 1), r_{15}(1 \to 0), r_{12}(0 \to 1), r_{19}(1 \to 0) \} \).] 

where [image: The expression shows the square of \( r_2 \) equal to the set containing \( A_2 \), \( p_{29} \), and \( B_2 \).] , [image: \( r_{11}^2 = \{ B_{11}, p_{213}, A_{11} \} \)] , [image: The mathematical expression displays \( r_{14}^2 = \{ A_{14}, p_{211}, p_{210}, B_{14} \} \).] , [image: Mathematical formula: \( r_{15}^2 = \{ B_{15}, p_{215}, A_{15} \} \).] , [image: Mathematical expression showing \( r^2_{17} = \{ A_{17}, p_{214}, B_{17} \} \).] , [image: Mathematical expression showing r subscript 19 squared equals a set consisting of B subscript 19, p subscript 212, p subscript 216, and A subscript 19.] .

[image: Set notation showing \( r^3 \) as a set containing elements: \( r_1^2 (0 \rightarrow 1) \), \( r_1^2 (1 \rightarrow 0) \), \( r_3^2 (0 \rightarrow 1) \), \( r_2^1 (1 \rightarrow 0) \); \( r_{10}^1 (0 \rightarrow 1) \), \( r_{11}^1 (1 \rightarrow 0) \), \( r_{12}^1 (0 \rightarrow 1) \). Labelled equation (44).] 

where [image: \( r_{1}^{3} = \{ A_{1}, p_{322}, B_{1} \} \).] , [image: Mathematical expression showing \( r_2^3 = \{ B_2, p_{318}, A_2 \} \).] , [image: \( r_4^3 = \{ A_4, p_{3|17}, B_4 \} \).] , [image: Mathematical expression showing \( r_{7}^{3} = \{ B_{7}, p_{320}, A_{7} \} \).] , [image: Mathematical expression showing r subscript 10 cubed equals the set containing A subscript 10, p subscript 324, p subscript 319, B subscript 10.] , [image: Mathematical expression: \( r_{11}^3 = \{B_{11}, p_{321}, A_{11}\} \).] , [image: Mathematical expression showing \( r_{12}^3 = \{ A_{12}, \rho_{323}, B_{12} \} \).] .

[image: \( r^{4} = \{ r_{3}(0 \rightarrow 1), r_{5}(1 \rightarrow 0), r_{8}(0 \rightarrow 1), r_{10}(1 \rightarrow 0), r_{13}(0 \rightarrow 1), r_{16}(1 \rightarrow 0), r_{17}(0 \rightarrow 1), r_{18}(1 \rightarrow 0) \} \) labeled as equation (45).] 

where [image: \( r^4_3 = \{ A_3, p_{426}, B_3 \} \).] , [image: The mathematical expression shows \( r_5^4 = \{ B_5, p_{433}, p_{432}, A_5 \} \).] , [image: The mathematical expression shows \( r_8^4 = \{ A_8, p_{425}, B_8 \} \).] , [image: \( r_{10}^4 = \{ B_{10}, p_{428}, A_{10} \} \).] , [image: Mathematical expression showing \( r_{13}^4 = \{ A_{13}, p_{427}, B_{13} \} \).] , [image: Mathematical expression showing \( r^{4}_{16} = \{ B_{16}, p_{434}, A_{16} \} \).] , [image: Mathematical expression showing \( r_{17}^4 = \{ A_{17}, p_{435}, p_{431}, B_{17} \} \).] , [image: The mathematical expression shows \( r_{18}^4 = \{B_{18}, p_{429}, A_{18}\} \).] .

Figures 8A–D show the global paths of [image: The image shows the mathematical symbol "R" with a subscript "1".] , [image: The image shows the mathematical notation "R" with a subscript "2".] , [image: Italic capital letter R followed by a subscript three.] , and [image: The image shows the mathematical notation "R" subscript "i".] .

[image: Diagram with four panels labeled A, B, C, and D, each showing different matrix layouts with grid patterns and labeled points. Green lines connect points labeled \(R_1\), \(R_2\), \(R_3\), and \(R_4\) to various matrix positions. Points within matrices are labeled with subscripts (e.g., \(p_{11}\), \(p_{216}\)). Each panel demonstrates different configurations or sections, illustrating a step-by-step process.]
Figure 8 | The global path of four robots. (A) The global path of [image: The image shows the mathematical symbol \( R_1 \).] . (B) The global path of [image: The image shows the mathematical notation "R" with a subscript "2".] . (C) The global path of [image: Mathematical notation displaying "R" subscript "3".] . (D) The global path of [image: The image shows the letter "R" with a subscript "4" and a small dash following it, resembling a mathematical or scientific notation.] .




4.4 Simulation experiment of multi-robot collision avoidance method

After planning the global path, the robots start spraying operations and simultaneously create an itinerary table [image: Uppercase letter "H" in a serif font.] , as shown in Table 1. During the operation, the robot determines the position, path, and direction of moving of other robots by querying their itinerary tables. Then, the robots detect four types of collision and conflict according to section 2.2. Next, the multi-robot collision avoidance method is simulated considering four types of collisions and conflicts.



4.4.1 Working path and different movement directions

When the serial number [image: The image shows the lowercase letter 'j' with a subscript 'c', often used in mathematical notation.]  of the working path is the same, and the moving direction is different, there are two conflict cases: The first case is that one robot is moving in the working path, and another robot is moving from the transition path to the working path; The second is that all robots are entering the working path from the transition path.

Figure 9 shows the first case (The green path represents the path that has not been passed, while the black path represents the path that has already been passed). Robot [image: Mathematical notation showing the letter "R" with a subscript of "2".]  is moving in the working path [image: Mathematical expression representing a chemical formula: A subscript 2 B subscript 2.] , and robot [image: The image shows the mathematical expression "R subscript 3".]  is moving from the transition path [image: The image shows the mathematical notation "B subscript 1, B subscript 2".]  to the working path [image: The image shows the chemical formula A₂B₂, with subscripts "2" for both "A" and "B".] . Figure 9A shows that at 121 seconds, robot [image: The image shows the mathematical notation "R" with a subscript "3".]  is about to leave its current working path [image: "A subscript 1, B subscript 1."]  and move to the next working path [image: Chemical formula A subscript two B subscript two.]  for work. Figure 9B shows that at 125s, robot [image: The image shows the mathematical notation "R" with a subscript "3".]  moves to the transition path [image: The image shows the mathematical notation "B subscript 1, comma, B subscript 2".]  and detects a robot [image: Mathematical notation showing "R" with a subscript "2".]  (At 25 seconds, [image: Mathematical notation "R" with a subscript "2".]  works on working path [image: Chemical formula notation "A subscript two B subscript two".] , as shown in Figure 9C) with a different direction of moving in the working path [image: Mathematical expression showing A subscript 2 B subscript 2.]  according to the itinerary table.

[image: Four panels labeled A, B, C, and D display grid patterns with labeled points and lines in green and black. Each grid contains points marked with blue and red labels such as \(p_{323}\) and \(R_{21,k}^*\). Lines connect some points, forming paths across grids, with variations across panels.]
Figure 9 | The paths of robots moving in different directions on the same working path at different times (the first case). (A) The path of robot [image: Mathematical notation showing "R" subscript "3".]  at 121 seconds. (B) The path of robot [image: The image shows the mathematical expression \( R_3 \), indicating R subscript three.]  at 125 seconds. (C) The path of robot [image: The image displays the mathematical symbol "R" followed by the subscript "2", likely representing resistance in electrical circuits or a similar context.]  at 125 seconds. (D) The path of robot [image: Mathematical notation of \( R_3 \), representing a variable or a point in three-dimensional space or a related context.]  at 522 seconds.

In order to avoid collision, robot [image: The symbol "R" with a subscript "2".]  will abandon the current local path [image: Mathematical expression with variable r raised to the power of three over two.]  and then re-plan the remaining path. We follow the method proposed in Section 3 and first move the current local path [image: r to the power of three over two.]  to the end of the global path [image: The text "r cubed" written in a stylized font, with the number three as a superscript.] , as shown in Equation 46. But in the global path [image: Equation notation depicting "r" raised to the power of three, representing "r cubed."] , [image: The mathematical notation shows \( r_1^3 \).]  and [image: \( r^{3}_{4} \)]  do not satisfy the continuity of direction, and ([image: Number zero with an arrow pointing to the number one, indicating a transition or progression from zero to one.] ) to ([image: The image depicts a numerical sequence with an arrow pointing from zero to one.] ) appear, so we need to change the direction of the remaining path [image: Mathematical expression showing \( r \) raised to the power of three-fourths.] , [image: Mathematical expression showing \( r \) to the power of three-sevenths.] , [image: Mathematical expression showing the variable "r" raised to the power of three, with a subscript of ten.] , [image: Expression showing "r" to the power of three over eleven.] , [image: Mathematical notation showing the variable "r" raised to the power of three, with a subscript of twelve.]  and [image: Mathematical expression showing r raised to the power of three, divided by two.] .

[image: Mathematical expression showing a set designation: \( r^3 = \{ r^3_0 (0 \rightarrow 1), r^3_1 (0 \rightarrow 1), r^3_2 (1 \rightarrow 0), r^3_{10} (0 \rightarrow 1), r^3_{11} (1 \rightarrow 0), r^3_{12} (0 \rightarrow 1), r^3_{21} (1 \rightarrow 0) \} \). Equation number: \( (46) \).] 

where [image: \( r_1^3 = \{ A_1, p_{322}, B_1 \} \).] , [image: \( r_4^3 = \{ A_4, p_{3|17}, B_4 \} \).] , [image: Mathematical expression showing r sub 7 to the power of 3 equals the set containing B sub 7, p sub 320, and A sub 7.] ,
 [image: \( r_{10}^{3} = \{ A_{10}, p_{324}, p_{319}, B_{10} \} \).] , [image: The mathematical expression shows \( r_{11}^3 = \{B_{11}, p_{321}, A_{11}\} \).] , [image: Mathematical equation with cubed term: \( r_{12}^3 \) equals the set containing \( A_{12} \), \( \rho_{323} \), and \( B_{12} \).] , 

We change the direction of the local path by modifying the order of the points of the local path, as shown in Equation 47. The robot continues driving along the updated path [image: The mathematical expression "r" raised to the power of three.] . Figure 9D shows that at 522 seconds, robot [image: The image shows the mathematical notation "R subscript 3", representing the third component or element in a sequence or series.]  moves to the last working path, and the black path in the figure clearly shows the updated new path.

[image: Mathematical equation detailing a set \( r^3 \) consisting of elements \( r_1^1(0 \to 1) \), \( r_1^1(1 \to 0) \), \( r_2^1(0 \to 1) \), \( r_1^0(1 \to 0) \), \( r_{11}^1(0 \to 1) \), \( r_{12}^1(1 \to 0) \), \( r_2^2(0 \to 1) \). Number 47 is positioned to the right.] 

where [image: Mathematical expression showing \( r_1^3 = \{ A_1, p_{322}, B_1 \} \).] , [image: Mathematical expression showing "r sub four to the power of three equals the set containing B sub six, p sub three hundred seventeen, and A sub four".] , [image: Mathematical expression showing \( r_7^3 = \{ A_7, p_{320}, B_7 \} \).] , [image: \( r_{10}^3 = \{ B_{10}, p_{319}, p_{224}, A_{10} \} \).] , [image: Mathematical expression showing \( r_{11}^3 = \{ A_{11}, p_{321}, B_{11} \} \).] , [image: Mathematical expression showing \( r_{12}^{3} = \{ B_{12}, p_{323}, A_{12} \} \).] , [image: Mathematical expression showing \( r_2^3 = \{ A_2, p_{318}, B_2 \} \).] .

Figure 10 shows the second case. Robots [image: The image shows the mathematical notation "R" subscripted with the number "1".]  and [image: The mathematical expression "R" subscript "2," indicating a squared or two-dimensional space notation.]  move to the same working path [image: Mathematical notation showing "A subscript fifteen, B subscript fifteen."]  from other paths. Figure 10A shows that at 10 seconds, robot [image: Mathematical notation showing the letter "R" with a subscript "2".]  is about to leave its current working path [image: The image shows the mathematical expression A subscript fourteen B subscript fourteen.]  and move to the next working path [image: Mathematical notation displaying \( A_{15} B_{15} \), with subscripts 15 next to the letters A and B.] . Figure 10B shows that at 13 seconds, robot [image: Mathematical notation displaying \( R_2 \), representing a variable or resistance value with a subscript "2".]  reaches the transition path [image: Mathematical notation with \( B \) indexed by subscripts fourteen and fifteen.]  and begins to move toward the working path [image: The image shows a mathematical expression with the variables \(A_{15}\) and \(B_{15}\), where both variables have a subscript of fifteen.] . At this time, it is detected that another robot [image: The image shows the mathematical symbol \( R_1 \).]  (Figure 10C shows the operational status of [image: The image shows the mathematical notation "R" with a subscript "1", often used to denote a specific variable or value in equations.]  at 13 seconds) is also moving toward the working path [image: A chemical formula with elements A and B, each subscripted with fifteen.]  according to the itinerary table.

[image: Diagrams labeled A, B, C, and D depicting grid-based configurations with lines and points labeled as \(P_{11}\) to \(P_{26}\) and axes \(A_1\) to \(A_{19}\), \(B_1\) to \(B_{19}\). Green and black connecting paths between points and axes are highlighted, indicating different routes or paths across the grid. Red markings labeled \(R_1\), \(R_2\), \(R_3\), and \(R_4\) appear at intersections. Each panel shows a unique arrangement of pathways.]
Figure 10 | The paths of robots moving in different directions on the same working path at different times (the second case). (A) The path of robot [image: The image shows the mathematical notation "R" with a subscript "2".]  at 10 seconds. (B) The path of robot [image: Subscript notation of the letter R with the number 2 written below it, commonly used in mathematical or scientific contexts.]  at 13 seconds. (C) The path of robot [image: A lowercase letter "r" followed by a subscript "1", resembling the notation for a resistance value in physics or electrical engineering.]  at 13 seconds. (D) The path of robot [image: The image displays the mathematical notation "R" with a subscript "2", typically used to denote the two-dimensional Euclidean space in mathematics.]  at 173 seconds.

Since [image: The alt text for the image is "Symbol R subscript 1, representing a variable or label in mathematical or scientific notation."]  has a higher priority than [image: The notation "R" with the subscript "2" indicates the variable R with the value or category 2, commonly used in mathematical equations or scientific contexts.] , in order to avoid collision, [image: Mathematical notation depicting "R" with a subscript "2".]  abandons the current local path [image: \( r_{15}^2 \)]  and re-plans a new path. The global path update method of [image: Superscript "r" squared, a statistical symbol representing the coefficient of determination in regression analysis.]  is the same as Equations 46, 47. The updated path [image: Lowercase letter "r" followed by a superscript "2", representing "r squared".]  of [image: R subscript two, a mathematical expression.]  is as shown in Equation 48. Figure 10D shows that at 173 seconds, the robot [image: The image shows the mathematical notation "R" with the subscript "2".]  moves to the last working path, and the black path in the figure clearly shows the updated new path.

[image: Mathematical expression showing r-squared equals a set of terms: r sub 2 with transition 0 to 1, r sub 11 from 1 to 0, r sub 14 from 0 to 1, r sub 17 from 1 to 0, r sub 19 from 0 to 1, and r sub 15 from 1 to 0. The equation is labeled as 48.] 

where  [image: \( r_2^2 = \{ A_2, p_{29}, B_2 \} \).] ,   [image: Mathematical expression with r subscript eleven squared equals the set of B subscript eleven, p subscript two thirteen, and A subscript eleven.] , 
 [image: The mathematical expression shows \( r_{14}^2 = \{ A_{14}, p_{211}, p_{210}, B_{14} \} \).] ,       [image: \( r_{17}^2 = \{B_{17}, p_{214}, A_{17}\} \)],
 [image: Equation showing: r squared subscript nineteen equals the set containing A subscript nineteen, p subscript two hundred sixteen, p subscript two hundred twelve, and B subscript nineteen.] ,       [image: Mathematical equation showing \( r_{15}^2 = \{ B_{15}, p_{215}, A_{15} \} \).] .




4.4.2 Working path and same movement direction

When the robots have the same serial number [image: The image shows a lowercase letter "j" with a subscript lowercase letter "c".]  and the same moving direction, there are two cases: The robots maintain the current speed and move in the order of one after the other. The second is that when one of the robots stops working at the target point, the other robots at the back must wait for the front robot to complete the work.

Figure 11 shows the first case. Robots [image: The image shows the mathematical notation "R" with a subscript "2".]  and [image: The image shows the mathematical symbol \( R_4 \).]  maintain a certain speed and distance, and move in a front-to-back sequence. Figure 11A shows the states of robots [image: Mathematical notation showing the capital letter R with a subscript 2.]  and [image: Mathematical notation representing "R" with a subscript "4."]  at 11 seconds. Figure 11B shows that at 31 seconds, robot [image: Mathematical notation displaying the symbol \( R_2 \).]  and [image: Mathematical notation displaying "R" with a subscript "i".]  keep moving forward in this state.

[image: Diagrams A and B illustrate complex network structures with interconnected pathways labeled with points and lines. Both diagrams feature points labeled P and R with subscripts for identification and segmented zones marked with A and B labels. Green and black lines connect the points, with a focus on intersections and pathways among nodes highlighted in black and green. The layout is structured within a grid containing smaller elements marked with x symbols, emphasizing the network's connectivity and hierarchy.]
Figure 11 | The paths of robots moving in the same direction on the same working path at different times (the first case). (A) The path of robot [image: The text shows the symbol "R" with a subscript "2".]  at 11 seconds. (B) The path of robot [image: The alternate text appears to be an unreadable or blurry portion of text, resembling mathematical notation with the character "R" followed by a subscript "2".]  at 31 seconds.

Figure 12 shows the second case. Robot [image: \( R_4 \)]  stops moving and performs the spraying operation after reaching the target point [image: Italic lowercase letter "p" followed by the subscript "four three one".] . Robot [image: The text "R" with a subscript "2", representing a mathematical notation or variable.]  stops moving, waiting for robot [image: The image shows the mathematical notation "R" subscript "t", possibly representing a variable or a parameter in a mathematical equation or model.]  to complete the operation. Figure 12A shows that at 33 seconds, robot [image: The image shows the mathematical notation "R" with a subscript "2".]  moves toward [image: The image depicts the mathematical notation "R" with a subscript "4".]  along the path. As depicted in Figure 12B, robot [image: The capital letter "R" followed by a subscript numeral "2".]  detects the halt of [image: Stylized capital letter "R" with the subscript "4".]  at 36 seconds, and [image: The image shows the mathematical symbol "R" with the subscript "2".]  maintains a safe distance from [image: The image shows the mathematical symbol "R" with a subscript "4".]  when it stops. Figure 12C shows that at 36 seconds, robot fpls.2024.1393541 stops at the target point [image: The text shows a lowercase letter "p" with the subscript "431."] . Figure 12D shows that at 39 seconds, robot [image: The image contains the mathematical symbol \( R_2 \), representing a variable with a subscript.]  stops moving until [image: \( R_4 \), representing a variable or quantity, often used in mathematical or scientific contexts.]  completes the work.

[image: Diagrams A, B, C, and D depict circuit layouts with labeled nodes and paths represented by lines and letters. Each diagram shows connections between points A1 to A19 and B1 to B19 with specific nodes, such as P211, P212, and R. Green and black lines illustrate different routing paths, and each layout varies slightly in the connection sequence and points highlighted.]
Figure 12 | The paths of robots moving in the same direction on the same working path at different times (the second case). (A) The path of robot [image: Formula representing electrical resistance labeled as \( R_2 \).]  at 33 seconds. (B) The path of robot [image: The image contains a mathematical notation representing "R" with a subscript "2".]  at 36 seconds. (C) The path of robot [image: Equation displaying "R sub 4" followed by an ellipsis, indicating an incomplete expression or continuation of a mathematical sequence.]  at 36 seconds. (D) The path of robot [image: Text displaying \( R_2 \), where \( R \) is superscripted with a subscript 2.]  at 39 seconds.




4.4.3 Transition path and same movement direction

When the robot is on the transition path and moves in the same direction as other robots, there are two cases: One is that the robot keeps the current speed and follows the others. The other is that when one of the robots turns to the working path, the robots behind stop at a safe distance and wait for the turn to finish.

The first case is the same as the first case in 4.4.2. As long as the safe distance between robots is ensured, no other operations are performed.

Figure 13 shows the second case, robots [image: The mathematical notation "R subscript 2".]  and [image: Mathematical symbol "R" with a subscript "3".]  are moving on the transition path. Figure 13A shows that at 11 seconds, robot [image: Mathematical notation "R" with a subscript "2".]  detects that [image: Mathematical notation showing "R" with a subscript "3".]  is moving from the working path to the transition path [image: The image shows the expression "B subscript two, B subscript eleven" using mathematical notation.] , and [image: The image shows the mathematical notation "R" with a subscript "2".]  stops moving and waits for [image: The text "R subscript 3" is displayed, indicating a mathematical or scientific variable or notation.]  to complete the turn. Figure 13B shows that at 15 seconds, after [image: The mathematical notation "R" with a subscript "3".]  completes its turn, [image: Mathematical notation showing the letter "R" with a subscript "2".]  and [image: Mathematical notation showing the letter "R" with a subscript "3".]  maintain a certain safe distance and move along the transition path [image: Mathematical notation with two variables: \( B_2 \) and \( B_{11} \).] . Figure 13C shows that at 22 seconds, robot [image: Mathematical notation of the letter "R" with a subscript "2".]  maintains a safe distance from [image: The image shows the mathematical notation \( R_3 \).]  and moves in the same direction. Figure 13D shows that at 30 seconds, robot [image: Capital letter R with a subscript 3.]  switches from the transition path [image: Mathematical expression showing "B subscript 2 B subscript 11".]  to the working path [image: The image shows the mathematical expression \( A_7B_7 \), with the letter A followed by the subscript 7 and the letter B also followed by the subscript 7.] , and robot [image: Mathematical notation showing the letter "R" with a subscript "2".]  stops at a safe distance, waiting for robot [image: The image shows the notation "R subscript 3," which typically represents a three-dimensional Euclidean space in mathematics and vector calculations.]  to finish the turn.

[image: Four panels labeled A, B, C, and D illustrate different network topologies. Each panel features a grid with labeled points (P216, P212, etc.) connected by green and black lines, showing paths between nodes. Each panel depicts varying connection patterns among nodes A1 through A19 and B1 through B19, with resistors labeled R1, R2, and R34 in different positions. The distinctions highlight different routing configurations within the network.]
Figure 13 | The paths of robots moving in the same direction on different working paths at different times. (A) The path of robot [image: The text "R" is followed by a subscript "2".]  at 11 [image: A white and blank square, indicating an absence of visible content or features.]  seconds. (B) The path of robot [image: The image shows the mathematical notation "R" with a subscript "2", typically representing a vector space of two-dimensional real numbers.]  at 15 seconds. (C) The path of robot [image: The image shows the mathematical notation "R" with a subscript "1".]  at 22 seconds. (D) The path of robot [image: The image shows the mathematical notation "R" with a subscript "2", commonly representing a two-dimensional Euclidean space in mathematics.]  at 30 seconds.




4.4.4 Transition path and different movement directions

Figure 14 shows that robots [image: The image shows the mathematical notation "R" subscript "1".] , [image: The image shows the mathematical notation R with a subscript 2.] , and [image: Italic letter "R" with a subscript "3".]  are moving on the transition path. The [image: The image shows the mathematical notation "j sub c" in italicized lowercase.]  and [image: The image shows two lowercase italic letters, "j" and "l", next to each other.]  of [image: The image shows the mathematical symbol "R" with a subscript "1".]  are 4 and 6 respectively. The [image: The image shows a lowercase letter "j" followed by a subscript "c".]  and [image: The image shows the mathematical variables "j" and "i" in italics, indicating index or vector notation in mathematical expressions.]  of [image: The image shows the mathematical notation "R" with a subscript "2".]  are 11 and 2 respectively. The [image: Lowercase letter "j" with a subscript "c" in italic font.]  and [image: The characters "j" and "i" displayed in a serif font.]  of [image: Mathematical notation showing "R" with a subscript "3".]  are 4 and 6 respectively. According to Equation 6, their directions on the transition path are down, up, and down respectively. The moving direction of [image: The image displays the mathematical notation "R" with a subscript "2", representing two-dimensional Euclidean space.]  is different from that of [image: Mathematical notation depicting \( R_1 \), representing a subscripted variable or parameter, possibly in a series or equation.]  and [image: The image shows the mathematical notation \( R_3 \), representing a variable or a specific parameter indexed by three.] . Change the priority of [image: Italic letter "R" subscripted with the number "1".] , [image: The image shows the mathematical symbol "R" with a subscript "2".] , and [image: The image shows the mathematical notation \( \mathbb{R}_3 \), representing the three-dimensional real coordinate space.]  to 0, 2, and 1, respectively.

[image: Diagram showing five subfigures labeled A to E, each depicting different configurations of a network or pathfinding scenario. Lines, nodes, and intersections are marked with various labels like "A", "B", "R", and "P", indicating connections and positions. Each subfigure uses green and black lines with different highlighted paths and varying node positions.]
Figure 14 | The paths of robots moving in different directions on different working paths at different times. (A) The path of robot [image: Italic letter "R" with a subscript "2".]  at 31 [image: A white square with no visible content or features.]  seconds. (B) The path of robot [image: The image shows a mathematical symbol "R" with a subscript "1".]  at 31 seconds. (C) The path of robot [image: Mathematical notation showing the letter "R" with the subscript "2".]  at 47 seconds. (D) The path of robot [image: The image shows the mathematical notation "R" subscript "3".]  at 47 seconds. (E) The path of robot [image: The image shows the mathematical notation "R subscript 2."]  at 56 seconds.

Figure 14A shows that at 31 seconds, robot [image: The image shows the mathematical notation "R" with a subscript "2".]  detects that [image: The image shows the mathematical notation "R sub 1," indicating a variable or parameter labeled as R with a subscript of one.]  (Figure 14B shows the global path of [image: The image shows the letter "R" followed by a subscript "1".]  at 31 seconds) is approaching from the opposite direction. Since the priority of [image: The image shows the mathematical notation "R" with a subscript "2".]  is lower than that of [image: The image displays the mathematical symbol "R" with a subscript "1," typically representing a variable or a specific resistor in a circuit.] , [image: The image shows the mathematical symbol \( R_2 \) with a subscript numeral two.]  plans the obstacle avoidance path according to Section 3.4.2. [image: The text "R" with a subscript "2" in a stylized serif font.]  translates the current local path a certain distance to the right and adds a new obstacle avoidance path [image: The expression shows the mathematical fraction where the letter "r" is the numerator and "t" is the denominator.] , as shown in Equation 49.

[image: Mathematical expression showing a set of variables \( r'_{t} = \{ R_{x}, P_{x}, P_{b}, B_{1} \} \) with the number forty-nine in parentheses.] 

Then, we directly insert [image: The image shows a lowercase letter "r" with a subscript "i" and superscript "t".]  between [image: \( r_2^2 \)]  and [image: The image shows the mathematical notation \( r_{11}^2 \).]  in [image: The mathematical expression "r squared" is shown.] , as shown in Equation 50. [image: The image shows the letter "R" followed by the subscript number "2".]  moves according to updated [image: The image shows a mathematical expression with the letter "r" followed by the number two as a superscript, indicating "r squared".] . Figure 14C shows the new path of [image: \( R_2 \) indicates a variable or value labeled with a subscript two, often used in mathematics or science to denote the second item in a series.] .

[image: Mathematical equation showing \( r^{*2} = \{r^{2}(0 \rightarrow 1), r_{1}r_{2}^{-1}(1 \rightarrow 0), r_{1}(0 \rightarrow 1), r_{2}^{-1}(1 \rightarrow 0), r_{2}^{*}(0 \rightarrow 1), r_{1}^{*}(1 \rightarrow 0)\} \) with equation number (50) on the right.] 

where [image: Mathematical expression showing r squared subscript two equals the set containing A subscript two, p subscript twenty-nine, and B subscript two.] , [image: Mathematical expression showing \( r^1_t = \{ P_{R_2}, P_{a}, P_{b}, B_{11} \} \).] , [image: The equation shows \( r_{11}^2 = \{ B_{11}, \rho_{213}, A_{11} \} \).] , [image: \( r_{14}^2 = \{A_{14}, p_{211}, p_{210}, B_{14}\} \).] , [image: Mathematical expression showing \( r_{15}^2 = \{ B_{15}, p_{215}, A_{15} \} \).] , [image: \( r_{17}^2 = \{ A_{17}, p_{214}, B_{17} \} \)] , [image: Mathematical expression showing \( r_{19}^2 = \{ B_{19}, p_{212}, p_{216}, A_{19} \} \).] .

[image: Mathematical notation showing the symbol "R" with a subscript "2".]  detects a new robot [image: The mathematical notation "R" with a subscript "3".]  (Figure 14D shows the global path of [image: Capital letter "R" with a subscript "3".]  at 47 seconds) approaching from the opposite direction at 47 seconds in Figure 14C. Since [image: Mathematical notation showing the letter "R" with a subscript "2".]  has a lower priority than [image: Uppercase letter "R" with a subscript "3".] , [image: The image shows the mathematical expression \(R_2\), where "R" is followed by a subscript "2".]  plans an obstacle avoidance path to avoid colliding with [image: The image shows the mathematical notation "R" with a subscript "3".] . Just like the rules for avoiding [image: Text showing "R" with a subscript "1".] , move the current local path [image: Equation showing the fraction r over t.]  a certain distance to the right, and then update the local path [image: Equation representation showing a fraction with a variable "r" in both the numerator and the denominator, and a superscript "i".] , as shown in Equation 51.

[image: Equation showing a set denoted as \( T' = \{ P_{R_5}, P_{R_\alpha}, P_{R_2}, P_{\alpha}, P_{\beta}, B_1 \} \).] 

Then, we directly insert the updated [image: Equation in which a variable \( r \) is raised to the power of \( \frac{1}{t} \).]  between [image: Mathematical expression showing r-squared subscript two.]  and [image: \( r_{11}^2 \)]  in [image: The symbol "r" with a superscript "2".] , as shown in Equation 52. [image: The text "R subscript 2" in serif font, representing a mathematical notation.]  moves according to updated [image: R squared symbol, indicating a statistical measure of how close the data are to the fitted regression line.] . Figure 14E shows the new path of [image: The image shows the mathematical notation "R" with a subscript "2".]  at 56 seconds.

[image: Equation labeled as (52) showing a mathematical expression: \( r^2 = \{ r_2(0 \rightarrow 1), r_7r_{11}(1 \rightarrow 0), r_{14}(0 \rightarrow 1), r_7^2(1 \rightarrow 0), r_9(0 \rightarrow 1), r_{15}(1 \rightarrow 0) \} \).] 

where [image: Mathematical expression showing a set: r subscript l equals open brace P subscript R subscript t comma P subscript a comma P prime subscript R subscript t comma P subscript c comma P subscript d comma B subscript l l close brace.] .





4.5 Analysis of experimental results



4.5.1 Analysis of multi-robot collision avoidance results

We recorded the number of times the multi-robot system avoided collisions and the time spent executing tasks for various numbers of target points, as shown in Table 2. We randomly generated sets of 15, 25, 35, and 45 target points and conducted 10 experiments for each set, with target points randomly generated in each experiment. For the multi-robot system, we recorded the total number of collisions avoided and the total time spent on task execution for each robot. For a single robot, we recorded only the total time spent on the spraying task.

Table 2 | Experimental results (The total number of collisions avoided and the total time spent on the task for each robot).


[image: Table comparing multi-robot and single robot systems across different target points (15, 25, 35, 45). For each target point, it shows time in seconds and number of collisions avoided by four robots (R1, R2, R3, R4) in the multi-robot system. The single robot system provides time but no collision data. Multi-robot times are shorter and list collision avoidance, while the single robot times are longer without collision data.]
As shown in Table 2, under different numbers of target points, the time taken by the multi-robot system to complete the task is much shorter than that of a single robot. Specifically, for 15 target points, the multi-robot system avoids collisions 119 times in total, saving 55.6% of the time compared to a single robot. For 25 target points, the multi-robot system avoids collisions 130 times in total, saving 57.9% of the time compared to a single robot. For 35 target points, the multi-robot system avoids collisions 140 times in total, saving 48.9% of the time compared to a single robot. For 45 target points, the multi-robot system avoids collisions 145 times in total, saving 40.7% of the time compared to a single robot. The experimental results show that under the same number of target points, the multi-robot system can complete the spraying task while avoiding collisions or conflicts between robots, and the completion time can be reduced by more than 40%.




4.5.2 Comparison experiment with other methods

To evaluate our method, we compare it with the classic Reciprocal Velocity Obstacles (RVO) (Van den Berg et al., 2008) and Optimal Reciprocal Collision Avoidance (ORCA) (Niu et al., 2021) algorithms. In terms of time complexity, the time complexity of RVO and ORCA algorithms is O(n2). As shown in Algorithms 1–3, their time complexity are O(n), O(n2), and O(n), respectively. Therefore, the overall time complexity of our algorithm is O(n2).

Since the width of the working path in the field is relatively narrow, it cannot support two robots moving side by side. When two robots move toward each other on the working path (as shown in Figure 2B), if the low-priority robot performs an evasive action, it will inevitably collide with the crops. Therefore, we made some modifications to the RVO and ORCA algorithms. If they are detected to be moving in opposite directions on the working path, the low-priority robot stops and waits for the other robot to complete the work before continuing the work. Under the same settings, ten spraying tests with the same number and the same order are conducted for each collision avoidance method with different numbers of target points. The completion time mainly reflects the efficiency of different methods, and the number of collisions avoided reflects the performance from the side.

The experimental results are shown in Table 3, demonstrating that the proposed collision avoidance algorithm outperforms the RVO and ORCA algorithms. Specifically, for 15 target points, the completion time of our algorithm is reduced by 5.2% and 2.9% compared with RVO and ORCA, respectively. This is because when the number of target points is relatively small, the probability of collision or conflict between robots in a large field is relatively small, so the total completion time is not much different. For 25 target points, the completion time is reduced by 9.8% and 3.8% compared with the RVO and ORCA algorithms, respectively. For 35 target points, the completion time is reduced by 14.9% and 8.2% compared with the RVO and ORCA algorithms, respectively. For 45 target points, the completion time is reduced by 16.8% and 9.5% compared with the RVO and ORCA algorithms, respectively. As the number of target points increases, the likelihood of collisions or conflicts between robots also increases. Our proposed algorithm demonstrates better performance, with a greater reduction in completion time compared to RVO and ORCA. In addition, the number of collision avoidance of our proposed algorithm is less than that of RVO and ORCA. This is because our collision avoidance algorithm can pre-judge potential collisions or conflicts on the working path, thereby reducing their occurrence. In summary, our proposed algorithm can complete the spraying task on large-scale fields in a timely and efficient manner, exhibiting high operational efficiency.

Table 3 | Experimental results of different collision avoidance methods.


[image: Table comparing three methods—RVO, ORCA, and Ours—across different numbers of target points (15, 25, 35, 45). Each method displays time in seconds and the number of collisions avoided. RVO shows times of 2935, 4012, 5255, 6432 seconds, and collisions avoided of 142, 158, 192, 211. ORCA has times of 2864, 3761, 4872, 5917 seconds and collisions avoided of 140, 152, 180, 185. Ours displays times of 2782, 3619, 4473, 5353 seconds and collisions avoided of 119, 130, 140, 145.]




4.6 Summary

We designed a simulation environment for precise spraying of sweet potato fields, and then experimentally verified the collision avoidance method we proposed against four types of collisions or conflicts that may occur between multiple robots in the field. We demonstrate that our multi-robot collision avoidance method can be well deployed on robots even though they only have communication modules, positioning modules and low-cost control chips. We validate the collision avoidance strategy in various collision or conflict scenarios and show that our method can run robustly for long periods of time without collisions.





5 Conclusion

In this article, we propose a multi-robot collision avoidance method that only uses point-line maps and real-time robot positions to determine the relationship between robots, make reasonable decisions, and avoid collisions between robots. We evaluate the performance of our method through a series of comprehensive experiments and demonstrate that the collision avoidance method is simple and efficient in terms of success rate, safety, and navigation efficiency. For the current situation where only a single robot is used to complete the operation, the method we proposed can greatly improve the efficiency of farmland robot operations. At the same time, the method we proposed has extremely low requirements for robot hardware performance, which greatly reduces the cost of each robot, thereby reducing farmers’ farmland management costs and labor intensity, and indirectly increasing farmers’ economic income. It provides the theoretical basis and technical support for reducing the cost of multi-robot systems and accelerating the promotion and application of multi-robot systems in agriculture.

Our work is a first step toward reducing robot costs, avoiding robot collisions, and improving the efficiency of multi-agricultural robots. Although we are fully aware that as a local collision avoidance method, our approach cannot completely replace reinforcement learning-based multi-robot path planners when scheduling. Our future work will be how to extend our method to larger-scale robot systems at low cost and apply this method to real field environments to achieve a safe and efficient multi-robot collision avoidance method.
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Seed germination vigor is one of the important indexes reflecting the quality of seeds, and the level of its germination vigor directly affects the crop yield. The traditional manual determination of seed germination vigor is inefficient, subjective, prone to damage the seed structure, cumbersome and with large errors. We carried out a cucumber seed germination experiment under salt stress based on the seed germination phenotype acquisition platform. We obtained image data of cucumber seed germination under salt stress conditions. On the basis of the YOLOv8-n model, the original loss function CIoU_Loss was replaced by ECIOU_Loss, and the Coordinate Attention(CA) mechanism was added to the head network, which helped the model locate and identify the target. The small-target detection head was added, which enhanced the detection accuracy of the tiny target. The precision P, recall R, and mAP of detection of the model improved from the original values of 91.6%, 85.4%, and 91.8% to 96.9%, 97.3%, and 98.9%, respectively. Based on the improved YOLOv8-ECS model, cucumber seeds under different concentrations of salt stress were detected by target detection, cucumber seed germination rate, germination index and other parameters were calculated, the root length of cucumber seeds during germination was extracted and analyzed, and the change characteristics of root length during cucumber seed germination were obtained, and finally the germination activity of cucumber seeds under different concentrations of salt stress was evaluated. This work provides a simple and efficient method for the selection and breeding of salt-tolerant varieties of cucumber.




Keywords: cucumber seed, phenotype acquisition system, target detection, YOLOv8 improvement, seed germination vigor assessment




1 Introduction

At present, climate change, land degradation, and other environmental problems have brought great challenges to food security in China and the world. An in-depth analysis of crop genes to the phenotype of the environmental regulatory network, as well as the selection and breeding of novel high-yield, high-quality, green, and anti-stress varieties, can ensure the security of the national seed industry and food security. Cucumber (Cucumis sativus L.) is an annual climbing herbaceous plant of the Cucurbitaceae family, which is rich in nutritive value and adaptable; it is one of the widely grown vegetable crops in the world (Alsaeedi et al., 2019). Salt stress is one of the main factors leading to abiotic stress on plant growth and yield and one of the ecological crises facing agricultural production (Abdel-Farid et al., 2020). In China, the promotion of facility-based vegetable cultivation, especially greenhouse and greenhouse cultivation area, has expanded dramatically. However, given that soils in these facilities are seldom subject to rainfall, coupled with over-application of chemical fertilizers and long-term continuous cropping, soil secondary salinization (Li et al., 2014) has become a widespread problem, greatly affecting the efficiency of facility utilization and the sustainable development of facility vegetables. Salinity is becoming an increasingly prominent problem in modern agricultural production (Zhao et al., 2022). Salt stress can lead to excessive accumulation of salts in plants, causing ion toxicity, damaging the plant body, and leading to plant death (Zhou et al., 2021), which can seriously affect crop yield and quality.

Therefore, breeding salt-tolerant varieties that can grow and develop normally in saline environments has become a pressing issue in today’s agricultural production to improve the salt tolerance of crops. Seed germination vigor detection is crucial for the selection of superior varieties, and traditional seed germination vigor detection mostly relies on manual counting, manual measurement, and visual inspection, which feature low work efficiency, strong subjectivity, large error, and seed destruction; unfortunately, these methods are unable to satisfy the needs of modern breeding technology (ElMasry et al., 2019; Halcro et al., 2020; Hong et al., 2015; Nguyen et al., 2018). In recent years, image recognition has been continuously developed and widely used. The development and advantages of image recognition have been a significant focus in recent research. Yang et al. (2020) applied the ResNet50 algorithm to identify surface damage on wind turbine blades, showcasing the benefits of deep learning classification methods in image recognition. Mengbei et al. (2021) delved into image super-resolution reconstruction algorithms based on deep learning, demonstrating the satisfying effects of incorporating deep learning ideas into image processing. In recent years, the application of machine learning (ML) as a non-destructive testing technique has been widely used in the field of agricultural breeding (Rahman and Cho, 2016). Joshua Colmer et al. (2020) designed the SeedGerm system, which combines image acquisition and ML analysis modules to extract morphological features such as seed size, width, length, extent, and roundness to gain insight into the physiological process of seed germination, thereby enabling automated seed imaging and high-throughput germination analysis. Silva et al. (2020) utilized Fourier transform near-infrared spectroscopy and X-ray imaging to merge data for nondestructive seed detection and accurate quality classification. Stajnko et al. (2015) used six ML classification algorithms such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) to identify germinating tomato seeds and accurately calculate the germination rate. Lurstwut and Pornpanomchai (2017) developed a rice seed germination evaluation system (RSGES) based on ANN to achieve an accurate assessment of the germination status of rice in Thailand. Traditional ML is suitable for small-scale dataset processing and specific shallow feature information extraction tasks. However, it has difficulty in adapting to feature recognition in different environments and meeting the extraction of complex phenotypic gesture feature recognition in the seed germination process.

In recent years, deep learning techniques have become an effective method for feature detection; they have made significant breakthroughs in the field of target detection and have been applied to agricultural detection in a large number of applications (Yang et al., 2021). The YOLO series model, as a convolutional neural network, is widely used in target detection and localization due to its advantages such as real-time detection and high accuracy. Touko Mbouembe et al. (2024) realized the detection of tomato fruits in the natural environment using an improved SBCS-YOLOv5s model based on YOLOv5; Li et al. (2024) proposed a weed detection model, YOLOv7-FWeed, which provides an accurate and efficient solution for weed detection in soybean fields; Zhang et al. (2023) proposed a new model, MDY7-3PTB, that combines the fast detection capabilities of DeepLabv3+ and YOLOv7; it realizes the process of segmenting the tea buds, detecting them, and localizing them to accurately identify the tea buds’ picking points. Although the YOLO algorithm is widely used in agriculture, there are few studies on seed germination vigor detection, and the deep learning technique greatly reduces the modeling process of seed discrimination by eliminating the need for feature extraction and morphological processing of the image during detection (Wei et al., 2023). Fu et al. (2022) evaluated the germination vigor and salt tolerance of wheat seeds using the YOLOv4 model; Jiang et al. (2023) developed the YOLOv8-Peas model to realize the determination of drought resistance of different varieties of pea seeds. Rapid identification and localization of seed germination by deep learning can provide a new solution for seed germination vigor detection. In this study, using the improved YOLOv8 algorithm YOLOv8-ECS based on the seed germination phenotype collection system, we carried out a cucumber germination test in a salt-stressed environment and successfully extracted the phenotypic characteristics of cucumber seed germination. Moreover, we analyzed the characteristics of the changes in the germination parameters, such as the germination rate, germination index, and root length, and evaluated the vigor of the cucumber seed germination under the environment of different concentrations of salt stress. According to the pre-test, cucumber seeds begin to sprout their embryonic roots around 24 hours of incubation, and young leaves sprout after about 48 hours, in order to reduce the recognition difficulty of the algorithm, we are currently only investigating the cucumber seed sprouting phenological feature extraction within the first 48-hour time period. The system consisted of three main areas:

	The seed germination phenotype acquisition system was equipped with the growth conditions required for seed germination, and could realize the complete cycle image information acquisition and automatic storage of the whole process of seed germination.

	The cucumber seed germination test under salt stress environment was carried out in the collection system, and NaCl aqueous solution was used to provide the salt stress environment. Five concentrations of NaCl solution (i.e., 30, 60, 90, 120, and 150 mmol/L) were selected for the test, and deionized water was used as the control (CK). Images of the germination of cucumber seeds under different concentrations of NaCl solution were acquired, and the cucumber seed germination dataset was constructed.

	Based on the YOLOv8-n model, the original model loss function CIOU_Loss was replaced by the ECIoU_Loss loss function The CA mechanism was added to the model head, and a small target detection head was added to obtain the YOLOv8-ECS model for the detection of cucumber seed germination, which greatly enhanced the accuracy of phenotypic micro-target feature recognition and extraction in the process of cucumber seed germination. The improved model was used to detect the germination status of cucumber seeds under different concentrations of salt stress environments, and further calculated and analyzed germination vigor indexes such as germination rate, germination index and root length.






2 Materials and methods



2.1 Phenotype acquisition system

The seed germination phenotype acquisition system is shown in Figure 1, which consisted of three parts: seed germination culture bin, image acquisition system, and human–computer interaction module. The incubator was equipped with temperature adjustment and light adjustment functions, which could adjust the temperature (15 °C-50 °C) and light in the incubator in real time according to the environmental status, thereby maintaining a relatively stable environment for seed germination. Three incubation trays were placed in the incubator, which could be used to carry out three concentration stress tests simultaneously. The transmission mechanism equipped with Hikvision RGB camera (MV-CS060-10GC) could move back and forth along the linear guideway to dynamically collect sprouting images at a fixed point. Software control enabled the timed collection of sprouting images. The collected images were saved to the corresponding folder through PLC program control, and the collected sprouting images were preprocessed and the dataset was produced. A suitable target detection algorithm was selected to train the produced dataset, and the optimal model was obtained by comparing the detection accuracy and other indexes of each model. Thus, an accurate and rapid detection result of seed sprouting vitality was obtained, and an automatic analysis of the seed sprouting phenotypic data could be realized.

[image: Seed germination phenotyping system showing a human-computer interaction interface, image acquisition interface, collected images, and testing results. The system includes a main control unit, camera setup, and seed cultivation trays. Red arrows indicate features and trajectories within each section.]
Figure 1 | Seed germination phenotype acquisition system.




2.2 Data collection and dataset construction

The experiment was conducted at Nanjing Agricultural University, and the test variety was ZhiLv 0135 cucumber seed purchased from Nanjing Green Collar Seed Industry Co. Full, intact, and uniformly sized cucumber seeds were selected for salt stress pre-tests in 16 small compartments of culture trays before the formal test, in which three layers of black filter paper were spread in the culture trays. The concentrations of 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, and 300 mmol/L NaCl were applied. To create an aqueous solution, we soaked the seeds in deionized water for 6 h. After absorbing the water on the surface of the seeds, the cucumber seeds were spotted in a culture plate, and 16 (4×4) seeds were placed in each small cell and placed into the germination system for seed germination cultivation. The temperature of the system was maintained at 26°C (± 1°C). The mass of the culture trays was weighed at regular intervals during the germination process using the weighing method, and the corresponding solution was replenished according to the change in mass in order to ensure that the concentration of NaCl in the stress solution was relatively stable. The pre-tests were carried out for 72 h. The NaCl concentration in the 160 mmol/L solution was lower than that in the 160 mmol/L solution in the pre-tests. Moreover, seed germination was not observed in the 160 mmol/L concentration and above. Finally, we chose five NaCl concentrations of 30, 60, 90, 120, and 150 mmol/L for the formal test. The formal test seeds were treated in the same way as the pre-test seeds. A total of 81 (9×9) seeds were placed in each culture plate, and deionized water was used as the control (CK). Each concentration was repeated three times. The test parameters are shown in Table 1, and the specific test steps are shown in Figure 2A.

Table 1 | Parameters of emergence test.


[image: Table displaying experimental parameters and their numerical values. Number of test seeds: 1458, Temperature: 26 degrees Celsius plus or minus 1 degree, Concentration of NaCl: 0, 30, 60, 90, 120, 150 millimoles per liter, Number of replicates per concentration: 3, Time of germination: 48 hours, Image acquisition interval: 30 minutes, Number of acquired images: 1728.]
[image: Flowchart and images detailing cucumber seed germination. Section A shows a process sequence from seed pretreatment to experiments, image annotation, and classification into seed, short root, and long root categories. Section B illustrates the germination process across different timeframes from 26 to 48 hours, showing progressive sprouting and root development.]
Figure 2 | Experimental procedures and dataset construction.

During the germination process, the camera was set to collect images every 30 min, and some of the germination images collected are shown in Figure 2B, which were observed as the phenotypic gesture changed during the germination of cucumber seeds. A total of 1,728 germination images were collected by applying the phenotypic collection system. Since the cucumber seed sprouting phenomenon was not obvious before 24 hours, we eliminated the images where the sprouting phenomenon was not obvious in the first 24 hours and selected 500 images among the remaining images to construct the dataset for the model. We took the root length elongation to half of the seed length as the germination standard and used LabelImg software to label the information in the images into three types: seed, S root (root length not reaching half of the seed length), and L root (root length more than half of the seed length), and some of the labeling examples are shown in Figure 2A. The file marked with LabelImg is stored in xml format, which cannot be used for training directly. In order to meet the training requirements of the model, we use the relevant python script to convert the xml file into a txt file, which contains the normalized width, height, and center coordinates of the bounding box, as well as the category labels. After labeling, to enhance the recognition ability and adaptability to complex environments, prevent overfitting of the model, and improve the robustness of the model, we performed image enhancement operations such as horizontal flipping, rotating, scaling, and adding noise (Figure 3). We processed 100 images with each enhancement to get 500 processed images. Finally, 1000 images were obtained, which were classified into the training set, validation set, and test set according to the ratio of 7:2:1. After dividing the dataset, the training set, validation set and test set have 700, 200 and 100 images respectively.

[image: Five-panel comparison of an image depicting rows of small red objects. Panels show: original image, horizontally flipped, rotated, zoomed in, and fog-effect applied. Each transformation alters the original image's appearance.]
Figure 3 | Data set enhancement.



2.2.1 Design of the YOLOv8-ECS algorithm

The You Only Look Once (YOLO) family is a well-known single-stage target detection network. Since Redmon et al. (2016) first proposed YOLOv1, the YOLO family has established an important position in the field of target detection. Released in 2023, YOLOv8 represents the current state-of-the-art in target detection, image classification, and instance segmentation. As the latest version of the YOLO series, it offers five different scale models, namely, YOLOv8-n, YOLOv8-s, YOLOv8-m, YOLOv8-l, and YOLOv8-x, to accommodate diversified inspection needs. In constructing its backbone network and Neck part, it draws on the design concept of YOLOv7 ELAN, which enhances the gradient flow by adopting the C2f structure instead of the C3 structure, while adjusting the number of channels according to the different scales of the model, which significantly improves the performance. In the Head section, YOLOv8 introduces a novel decoupled head structure, which is a significant change compared with YOLOv5. It treats classification and regression tasks separately using two different loss functions: the classification task uses binary cross entropy (BCE loss), whereas the regression task combines distribution focus loss (DFL loss) and complete intersection union loss (CIoU loss).

Although the YOLOv8 network demonstrates excellent performance in terms of accuracy and speed of target detection, it still faces some challenges when detecting tiny targets in complex environments. To enhance the ability of the model in identifying and extracting tiny phenotypic features during cucumber seed germination, we chose YOLOv8-n as the base model. We customized and improved it to obtain a model specifically designed for the detection and identification of tiny targets during the germination stage of cucumber seeds; this model was named YOLOv8-ECS. The structure of the model is shown in Figure 4. The YOLOv8-ECS model mainly consisted of five components: Input, Backbone, Neck, Head, and Output. First, we replace the original CIoU loss function with the ECIoU loss function, which facilitated the adjustment of the prediction frames and accelerated the regression rate. Second, we added a CA mechanism in the Neck part, which strengthened the localization and recognition capability of the model for specific targets. Lastly, for the recognition of tiny phenotypic features in the germination of cucumber seeds, we added a small-target detecting head, which effectively improved the model’s detection accuracy.

[image: Diagram of a neural network architecture with three main sections: Backbone, Neck, and Head. The Backbone consists of Conv and C2f layers. The Neck features Concat and Upsample operations, with CA and SPPF modules. The Head includes Conv layers producing outputs of various resolutions (160x160, 80x80, 40x40, 20x20). Input and output images are shown at the top.]
Figure 4 | Structure of the YOLOv8-ECS model.




2.2.2 EfficiCIoU-Loss loss function

In the field of target detection, the detection process usually consists of two key components: localization and recognition. The accuracy of localization mostly relies on the modulation of the loss function, and several novel loss functions have been proposed (Zheng et al., 2020; Vakili et al., 2023; Sun et al., 2020). Intersection Over Union (IoU) is widely used in bounding box regression as a mainstream metric to measure the similarity between predicted and real bounding boxes. The IoU loss function was developed to improve the effectiveness of IoU; however, the IoU loss function may fail when the prediction frame does not overlap with the true frame. To address this challenge, researchers have developed various IoU-based evaluation mechanisms to improve the limitations of the original IoU loss function and significantly enhance its robustness. Among these methods, including loss functions such as Generalized IoU (GIoU) (Rezatofighi et al., 2019), Distance Intersection over Union (DIoU), and Complete Intersection over Union (CIoU) (Zheng et al., 2020), all of them have achieved remarkable results in the field of target detection. However, there is still room for optimization. In particular, CIoU_Loss is one of the best-performing boundary regression loss functions, which integrates three key geometric factors, namely, overlap area, centroid distance, and aspect ratio. It combines the IoU, the Euclidean distance, the corresponding aspect ratio, and the angle to evaluate the degree of overlap between the target and the real frame, which is calculated by the following formulas:

[image: Mathematical formula for R sub C L o U equals the fraction of rho squared times the function b of u, theta divided by epsilon squared plus alpha v.] 

[image: Mathematical equation: \(\nu = \frac{4}{\pi^2} \left( \arctan \frac{\omega'}{h'} - \arctan \frac{\omega}{h} \right)^2\).] 

[image: \( L_{\text{CIoU}} = 1 - \text{IoU} + \frac{\rho^2(b, b^g)}{c^2} + \alpha v \) (Equation 3)] 

The width and height of the prediction box during regression cannot be increased or decreased at the same time. In cases where the width–height differences and their confidence levels are not real, once the model converges to a line-to-line ratio between the width and height of the predicted and real frames, it sometimes prevents the model from optimizing the similarity effectively. To solve the problem of CIOU_Loss, we calculate the loss function EIOU_Loss by splitting the aspect ratio influence factor on the basis of CIOU_Loss to ensure that the aspect of the predicted and real frames can be optimized effectively. When distant edges are present, the computation of EIOU_Loss may slow down but will not converge prematurely. To cope with this problem, we propose a new augmented loss function, ECIOU_Loss, which facilitates the adjustment of prediction frames and accelerates the regression rate. ECIOU_Loss is based on two loss functions: CIOU_Loss and EIOU_Loss. First, the predicted aspect ratio is adjusted by CIOU_Loss until it converges to a suitable range. Each edge is then carefully tuned by EIOU_Loss until it converges to the correct value. ECIOU_Loss is calculated as follows.

[image: The formula depicted is for ECIoU loss: ECIoU_loss equals one minus IoU plus alpha times v plus the sum of squared terms, involving distances and dimensions of bounding boxes and their respective scaling factors.]	(4)




2.2.3 CA mechanism

Attention Mechanism (AM) (Niu et al., 2021; Guo et al., 2022) is an approach inspired by studies of human vision. In the field of cognitive science, as a result of the limitations of information processing, humans selectively focus on a portion of information while ignoring others. To rationally utilize the limited visual information processing resources, humans need to select specific regions and focus their attention on these regions (Sun et al., 2021). AM consists of two main aspects: selecting the parts that require attention and allocating limited information processing resources to the important information. Currently popular in deep learning networks is the SE (Hu et al., 2018) attention mechanism, which achieves a significant performance improvement by computing channel attention on top of 2D pooling, and the computational cost is relatively low. However, SE attention only considers the coding of information between channels and ignores the importance of location information. To solve this problem, Hou et al. (2021) proposed the Coordinate Attention (CA) mechanism, which is able to encode horizontal and vertical location information in the channel attention, thereby enabling the network model to focus on a wide range of location information without adding excessive computational cost. The network structure of the CA mechanism is shown in Figure 5.

[image: Flowchart of a Coordinate Attention mechanism. Input goes through a residual block, creating two paths: Y Avg Pool and X Avg Pool, each reshaped. These are concatenated and processed by Conv2d, Batchnorm, and Non-linear layers. Outputs are separately convolved and pass through sigmoid functions, then re-weighted to produce the final output.]
Figure 5 | Coordinate attention mechanism.




2.2.4 Small-target detection head

The original YOLOv8 has three detection heads: P3/8 corresponds to a detection feature map size of 80×80, detecting targets with a size of 8×8 or more; P4/16 corresponds to a detection feature map size of 40×40, detecting targets with a size of 16×16 or more; and P5/32 corresponds to a detection feature map size of 20×20, detecting targets with a size of 32×32 or more. Problems such as missed detection or poor results can occur in the detection of tiny targets for seed germination. As shown in Figure 4, we added a P2/4 detection head to the original model, which corresponded to a 160×160 detection feature map, and it could be used to detect more than 4×4 targets to enhance the detection accuracy of tiny targets. This improvement slightly increased the amount of model computation. However, by obtaining additional feature information from tiny targets, it greatly improved the detection ability of small targets and effectively reduced the misdetection and omission of objects at different scales.





2.3 Model training parameter setting

In this study, the environment configuration used was as follows: we chose an Intel(R) Xeon(R) Gold 6248R @ 3.00GHz processor equipped with an NVIDIA GeForce RTX3090 graphics card. The deep learning modeling framework used was Pytorch 2.0.0 and Python 3.8, the CUDA version chosen was 11.7, and the operating system was Windows 11. To ensure fairness and comparability of model effects in the study, we did not use pre-trained weights for model training in all ablation and comparison trials. In the training phase, we resized the input image to 640 × 640 pixels and set the total number of iterations to 300. Table 2 provides details about the important parameter settings during the training process.

Table 2 | Model training parameters.


[image: A table with two columns titled "Parameters name" and "Parameters value." Rows list parameters: Epoch (300), Batch size (8), Image size (640x640), NMS IoU (0.7), Learning Rate (0.01), Momentum (0.937), Weight Decay (5×10^-4).]



2.4 Model evaluation indexes and cucumber seed germination vigor evaluation indexes

We chose Precision, Recall, Average Precision (AP), and mean Average Precision (mAP) as the evaluation indexes of model detection accuracy, and their formulas were as follows:

[image: The equation shows "Precision equals TP divided by TP plus FP," with TP representing true positives and FP representing false positives, followed by equation number six.] 

[image: Formula for recall is shown as \(\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}\), where TP stands for true positives and FN stands for false negatives. Equation (7) is indicated.] 

[image: The formula for average precision (AP) is shown as the integral from zero to one of P(R) with respect to R.] 

[image: The formula shows mean Average Precision (mAP) calculated as the sum of Average Precision (AP) for each item \( n \) from 1 to \( N \), divided by \( N \). Equation number \( 9 \).] 

where True Positive (TP) denotes the number of correctly identified cucumber seed and radicle samples, False Positive (FP) denotes the count of incorrectly identified positive cucumber seed and radicle samples, and False Negative (FN) denotes the number of missed cucumber seed and radicle samples.

We chose seed root length elongation to half of the seed length as a marker of cucumber seed germination. We utilized germination rate, germination index, and root length as indicators of germination vigor.

[image: Formula for germination rate as a percentage: Germination rate (\%) equals (\(N_s\) divided by \(N\)) multiplied by one hundred percent, where \(N_s\) represents the number of seeds germinated, and \(N\) is the total number of seeds.] 

[image: Mathematical formula for the germination index percentage, expressed as the sum of the ratio of germination count \( G_t \) to the number of days \( D_t \).] 

[image: Mean root length is calculated by dividing the total root length by the number of germinated seeds.] 

where NS denotes the number of germinated seeds in s hours, N denotes the total number of seeds, Gt is the number of germination in t hours, and Dt is the time of germination.





3 Results



3.1 Ablation test

To verify the effectiveness of the improved model, we conducted an ablation test, using the model detection accuracy as a measure of the index price, and the test results are shown in Table 3. First, the original loss function CIoU_Loss was replaced by ECIoU_Loss, and the model mAP improved by 0.5%. The CA mechanism was added to the head, and mAP was further improved to 93.4%. Finally, the small-target detection head was added to obtain the YOLOv8-ECS model, and mAP reached 98.9%. To further highlight the visualization advantages of the improved model, we chose five images of different sprouting periods (Figures 6A–E) for detection analysis, where the part circled in green indicates leakage detection, and the part circled in yellow indicates repetitive detection. No leakage was detected in the seeds. However, for the detection of the roots, in the beginning of the sprouting period (b), YOLOv8-n had a high number of missed detections, and the number of missed detections decreased slightly after adding the ECIoU loss function and the CA mechanism. The addition of the small-target detection head strengthened the ability to capture tiny targets, with no missed detections. The number of missed detections decreased in each model at mid-emergence (c) and (d), but missed detections still occurred in the first three models. No missed detections occurred in YOLOv8-ECS. In the later stages of germination (e), the models essentially stopped missing detections. The ablation test clearly showed that our improved YOLOv8 model had high accuracy for cucumber seed germination phenotypic feature recognition, which verified that our changes were effective.

Table 3 | Comparison of ablation test parameters.


[image: Table comparing different YOLOv8 models with three metrics: Precision, Recall, and mAP50, all in percentages. YOLOv8-n scores 91.6 for Precision, 85.4 for Recall, and 91.8 for mAP50. YOLOv8-n+ECIoU scores 92.1, 85.5, and 92.3 respectively. YOLOv8-n+ECIoU+CA scores 92.2, 88.2, and 93.4. YOLOv8-ECS achieves the highest scores with 97.2, 97.4, and 98.9.]
[image: Comparison of object detection results using different YOLOv8 configurations across five rows labeled (a) to (e). Each row features multiple red shapes with varying detection results marked by green circles. Columns represent different YOLOv8 variants: YOLOv8-n, YOLOv8-n + ECIOU, YOLOv8-n + ECIOU + CA, and YOLOv8-ECS. Differences in detection accuracy and circle placement are evident across the configurations.]
Figure 6 | Comparison of ablation test effects.




3.2 Comparative tests

Using the same training environment and experimental parameters, we compared the detection results of different network models. Table 4 shows the performance differences exhibited by the detection models using various modules, which mainly examined the mAP values of the models. The mAP50 value of detection using YOLOv8-n as the training model was higher than that of the other base models, so we chose YOLOv8-n as the base model and improved it to obtain the YOLOv8-ECS model.

Table 4 | Comparison of detection performance of different models.


[image: Table comparing different models by their precision, recall, and mean Average Precision (mAP50) percentages. Faster R-CNN: 89.5, 86.3, 89.3. YOLOv3: 85.1, 78.9, 86.7. YOLOv4: 88.7, 89.1, 89.6. YOLOv5s: 93.4, 92.1, 90.9. YOLOv7-tiny: 94.2, 88.3, 90.1. YOLOv8-n: 91.6, 85.4, 91.8. YOLOv8-ECS: 97.2, 97.4, 98.9.]
To show the performance of the models in these evaluation metrics, we plotted the histograms of the detection accuracy of the different models, and the results are shown in Figure 7. Among the tested models, YOLOv8-ECS had the highest Precision, Recall, and mAP50 (%). Thus, the YOLOv8-ECS model demonstrated good accuracy and applicability in cucumber seed germination state detection.

[image: Bar chart comparing detection accuracy of various models: Faster R-CNN, YOLOv3, YOLOv4, YOLOv5s, YOLOv7-tiny, YOLOv8-n, and YOLOv8-ECS. Metrics shown are precision, recall, and mAP50%, with values ranging mostly between 80% and 95%.]
Figure 7 | Histogram of comparison of different models.




3.3 Evaluation of seed germination vigor of cucumber under different concentrations of salt stress environment

Salt stress is one of the main factors leading to abiotic stress on plant growth and yield and one of the ecological crises facing agricultural production (Song et al., 2023). We carried out a cucumber seed germination test under salt stress environment, according to the pre-test germination environment. We set five concentrations of NaCl solution at 30, 60, 90, 120, and 150 mmol/L, and deionized water was used as a control (CK). We obtained a continuous image of the complete cycle of cucumber seed germination in different salt solutions. Figure 8 shows the characteristics of cucumber seed germination in different concentrations of NaCl solution over time. The acquired images of the germination cycle were used for target detection with the YOLOv8-ECS model. The germination rate and germination index patterns and trends of cucumber seeds in different concentrations of NaCl solution were calculated, as shown in Figures 8 and 9.

[image: Grid of seed germination at different time points: 20, 24, 28, 32, 36, 40, 44, and 48 hours, under three conditions labeled CK, 30 mmol/L, and 60 mmol/L. Each condition shows changes in seed sprouting over time in a dark background.]
Figure 8 | Images of the germination process of cucumber seeds in deionized water and different concentrations of NaCl solution(0, 30, 60mmol/L).

[image: Grid of images showing time-lapse growth of samples at concentrations of ninety, one hundred twenty, and one hundred fifty millimoles per liter. Rows represent different concentrations, and columns display time intervals ranging from twenty to forty-eight hours. Each image shows rows of small, red samples on a dark background, illustrating growth progression over time.]
Figure 9 | Images of the germination process of cucumber seeds in different concentrations of NaCl solution(90, 120, 150mmol/L).

Figure 10A demonstrates the germination rate of cucumber seeds sprouting in deionized water (CK) as well as in different concentrations of NaCl solution over time. The germination rate gradually decreased at each time point with the increase in the concentration (60, 90, 120, and 150 mmol/L) of NaCl solution. However, the germination rate was significantly higher than that of other concentrations and higher than that of the control group at 28–36 h at 30 mmol/L. Figure 10B shows the results of the cucumber seed germination index in deionized water (CK) and different concentrations of NaCl solution over time. At each time point, the germination index in the 30 mmol/L NaCl solution was higher than those in the other concentrations and CK. As the concentration of NaCl solution increased, the germination index gradually decreased. In general, NaCl solution has an inhibitory effect on the germination of cucumber seeds. The higher the concentration, the more pronounced the inhibitory effect, but at a certain germination time period, a certain concentration of NaCl solution could promote the germination of cucumber seeds.

[image: Figure A shows multiple bar charts illustrating germination rates over time at different concentration levels: 0, 30, 60, 90, 120, and 150 mmol/L. The rates generally increase over time but decrease as concentration increases. Figure B is a 3D chart showing the germination index for the same concentrations and times, indicating a declining trend as concentration increases.]
Figure 10 | Trends of germination rate and germination index in deionized water and different concentrations of NaCl solution.

Extract all L root targets detected by the YOLOv8-ECS model targets as shown in Figure 11A, approximate the root length characteristics during cucumber seed germination with the diagonal length of the detection frame, converted the pixel points into lengths proportionally, and added the extracted root length data. We then divided them by the number of sprouted seeds to obtain the average root lengths of seed germinated under different concentrations of NaCl solution and determine the characteristics of the changes over time. A 3D histogram is shown in Figure 11B. The characteristics of root length and germination rate of cucumber seed germination under different concentrations of NaCl solution were consistent with the role of promoting root elongation under 30 mmol/L NaCl solution. High concentrations of NaCl solution could inhibit root elongation; as the concentration increased, the inhibition of root elongation became more obvious.

[image: Germinating seeds with emerging roots are arranged in a grid with a ruler for scale, and one seed is highlighted to show detailed root measurement. Below, a 3D bar graph titled (B) displays average root length over time with varying molarity levels of a solution, showing diminishing growth as concentration increases.]
Figure 11 | (A) Schematic diagram of root length measurement (B) Changes in root length of cucumber sprouting in different concentration solutions.





4 Discussion

To explore the germination vigor of cucumber seeds under salt stress environment and solve the drawbacks of traditional manual monitoring of seed germination vigor index, we carried out a germination test on cucumber seeds under salt stress environment based on the seed germination phenotype collection system and obtained the germination images. Based on the YOLOv8-n model, the YOLOv8-ECS model applicable to the detection of cucumber seed germination state was proposed, and the germination state detection was carried out on the captured images of cucumber seed germination, and the germination vitality index of cucumber seed germination was analyzed to obtain the cucumber seed germination vitality index under the salt stress environment, which provides a convenient and fast new method for selecting and breeding salt-tolerant cucumber varieties. The main tasks of the model were as follows:

	Based on the seed germination phenotype acquisition system, the system mainly consisted of three parts: seed germination culture bin, image acquisition system, and human–computer interaction module, which realized the function of phenotypic dynamic acquisition of the complete cycle of seed germination in three stations. The cucumber seed germination test was carried out in the system under the stress environment of five concentrations of NaCl solution. The images were collected once every 30 min during the germination process. A total of 1728 germination images were obtained, and a continuous process dataset of cucumber seed germination was constructed.

	By comparing the detection accuracy of different models, YOLOv8-n was selected as the base model, and the original loss function was replaced by ECIoU_Loss loss function. CA mechanism was added to the head, and small-target detection head was added for tiny targets. The YOLOv8-ECS model was obtained. The precision P, recall R, and mAP of the improved model increased from the original 91.6%, 85.4%, and 91.8% to 96.9%, 97.3%, and 98.9%, respectively. Compared with the original model, the model volume increased slightly, which effectively improved the model’s ability to recognize the phenotypic features of cucumber seed germination.

	The germination rate, germination index, and root length as the germination vigor index were detected. We analyzed the germination images through the YOLOv8-ECS model. The cucumber germination rate, germination index, and root length were obtained under different salt solution environments. A graph of the change in each parameter over time was drawn to determine the characteristics of cucumber seed germination in a salt solution environment. The data showed that a low concentration of salt solution could promote the germination of cucumber seeds, and the seed germination vigor gradually decreased with the increase in salt concentration. Thus, a high concentration of salt solution had an inhibitory effect on the germination of cucumber seeds. The higher the concentration, the stronger the inhibitory effect.



Through the comparative experiments we have done above, it can be seen that the detection accuracy of the YOLOv8-ECS model developed by us is higher than that of other models, and its mAP reaches 98.9%, which greatly improves the detection performance and reduces missed detections and repeated detections. At the same time, compared with the methods used by Fu et al. (2022) and Jiang et al. (2023) cited above, our method can roughly calculate the root length characteristics of the seed germination process, and use more seed germination vigor characteristics to evaluate the germination vigor of seeds, making our seed germination vigor assessment method more realistic and reliable.

However, the model we developed has some limitations. The model will have a small amount of misjudgment for the detection of long and short roots, probably because the model is not sensitive enough to the length information and cannot well understand the sprouting judgment criteria in terms of length; on the other hand, we focused on the detection accuracy of the model when choosing the model evaluation index, which resulted in the increased size of the improved model, which is not conducive to the deployment of the practical application in the later stage.

In the future, we will further improve the performance of the seed germination phenotype collection system, embed the model into the germination system, realize the real-time monitoring and recording of the germination vigor of seeds, and explore the other phenotypic characteristics in the germination of cucumber seeds. Such work will allow us to provide an accurate, efficient, and quick method for the selection and breeding of good varieties.
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Introduction

Crop height and above-ground biomass (AGB) serve as crucial indicators for monitoring crop growth and estimating grain yield. Timely and accurate acquisition of wheat crop height and AGB data is paramount for guiding agricultural production. However, traditional data acquisition methods suffer from drawbacks such as time-consuming, laborious and destructive sampling.





Methods

The current approach to estimating AGB using unmanned aerial vehicles (UAVs) remote sensing relies solely on spectral data, resulting in low accuracy in estimation. This method fails to address the ill-posed inverse problem of mapping from two-dimensional to three-dimensional and issues related to spectral saturation. To overcome these challenges, RGB and multispectral sensors mounted on UAVs were employed to acquire spectral image data. The five-directional oblique photography technique was utilized to construct the three-dimensional point cloud for extracting crop height.





Results and Discussion

This study comparatively analyzed the potential of the mean method and the Accumulated Incremental Height (AIH) method in crop height extraction. Utilizing Vegetation Indices (VIs), AIH and their feature combinations, models including Random Forest Regression (RFR), eXtreme Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRT), Support Vector Regression (SVR) and Ridge Regression (RR) were constructed to estimate winter wheat AGB. The research results indicated that the AIH method performed well in crop height extraction, with minimal differences between 95% AIH and measured crop height values were observed across various growth stages of wheat, yielding R2 ranging from 0.768 to 0.784. Compared to individual features, the combination of multiple features significantly improved the model’s estimate accuracy. The incorporation of AIH features helps alleviate the effects of spectral saturation. Coupling VIs with AIH features, the model’s R2 increases from 0.694-0.885 with only VIs features to 0.728-0.925. In comparing the performance of five machine learning algorithms, it was discovered that models constructed based on decision trees were superior to other machine learning algorithms. Among them, the RFR algorithm performed optimally, with R2 ranging from 0.9 to 0.93.





Conclusion

In conclusion, leveraging multi-source remote sensing data from UAVs with machine learning algorithms overcomes the limitations of traditional crop monitoring methods, offering a technological reference for precision agriculture management and decision-making.





Keywords: unmanned aerial vehicle, vegetation indices, accumulated incremental height, crop height, above-ground biomass




1 Introduction

Wheat, as one of China’s three major cereal crops, plays a pivotal role in agricultural production. Given the impact of global population growth and climate change, monitoring the growth status of wheat and achieving stable growth in wheat production are imperative for realizing sustainable agricultural development, ensuring national food security and meeting market demands (Zhu et al., 2023a). Crop height and above-ground biomass (AGB) are considered crucial indicators reflecting the wheat growth status and essential components of grain yield. Real-time and accurate estimation of winter wheat crop height and AGB at various growth stages is paramount importance for guiding fertilizer application, managing irrigation, estimating crop yield and informing national macro-level decision-making (Huang et al., 2016).

Traditional methods for collecting AGB typically involve the destructive acquisition of crops in the field. While the measurement results are relatively accurate, there are drawbacks such as time-consuming, laborious, elevated costs and poor timeliness. At the same time, the random sampling in the manual data collection process lacks spatial variability, which may result in data that does not adequately represent the different characteristics and conditions within the small planting area (Meng et al., 2016). In recent years, remote sensing as a novel technological approach, has provided a fresh alternative for estimating AGB in crops, owing to its non-contact, convenient, efficient and flexible characteristics. Remote sensing technology, with its ability to capture the spectral reflectance characteristics of vegetation, offers extensive and high spatiotemporal resolution surface information. Therefore, it demonstrates significant potential in various studies such as crop growth monitoring, pest and disease prediction (Pinto et al., 2020), AGB estimation (Yue et al., 2019), yield and quality prediction (Maimaitiyiming et al., 2019; Chen, 2020). The large-scale estimation of AGB based on satellite remote sensing has been widely applied in the fields of forests and grasslands (Chen, 2015; Wang et al., 2019). However, for the retrieval of AGB in small-scale agricultural fields, higher spatial and spectral resolution is required. In recent years, unmanned aerial vehicle (UAV) remote sensing technology has rapidly developed, providing the possibility for precise monitoring and large-scale applications due to its advantages of high resolution, flexibility, and low cost (Sagan et al., 2019). Currently, UAV remote sensing employs various sensors for crop phenotyping analysis, including RGB, multispectral, hyperspectral and Light Detection and Ranging (LiDAR) sensors. Hyperspectral sensors offer detailed spectral information but widespread adoption are hindered by high costs and complexity. On the contrary, multispectral sensors are affordable, easy to handle and encompass several key bands commonly used for crop growth monitoring (Kross et al., 2015). Compared to hyperspectral sensors, multispectral sensors are more widely used in crop phenotyping analysis (Feng et al., 2020). The single-band reflectance of a spectrum provides information only about a specific wavelength range, which may limit a comprehensive understanding of crop canopy features. In contrast, vegetation indices are simple mathematical combinations or transformations of reflectance in two or more spectral channels to represent vegetation status conditions, capable of highlighting specific features or details of crops. Several vegetation indices are widely used to assess information such as the growth status, coverage, biomass and productivity of crop (Wei et al., 2021). Wang et al. utilized multispectral images to construct 44 vegetation indices and employed three machine learning algorithms to predict the AGB of winter wheat (Wang et al., 2022). Despite biomass estimation based on spectral features being a hot topic in remote sensing crop phenotyping analysis, spectral saturation is a common issue during the later stages of crop growth. This phenomenon often leads to lower accuracy in biomass estimation models (Fu et al., 2014). To address such issues, previous studies have tackled the overreliance on spectral data in inversion models by incorporating texture features (Xu et al., 2022), canopy coverage (Lee and Lee, 2013) and elevation data (Tilly et al., 2015). By incorporating these additional features, the accuracy of inversion models is improved, and stability is enhanced.

Crop height and AGB are crucial indicators of crop growth status. Previous studies have found that integrating crop height has a positive impact on improving the accuracy of AGB estimation and addressing spectral saturation issues (Malambo et al., 2018). With the advancement of remote sensing technology, the methods for measuring crop height have shifted from traditional manual approaches to extraction utilizing UAV images. However, nadir photography often captures only limited canopy information, lacking highly accurate crop height details. Utilizing UAVs equipped with visible light cameras for oblique photogrammety offers significant advantages, including the capture of color information, higher point cloud density in the horizontal direction, lower cost and greater flexibility. Methods for measuring crop height values using the UAV-mounted RGB cameras primarily involve the mean method and the accumulated incremental height (AIH) method. In a statistical unit, the AIH is calculated by sorting all normalized point clouds by height and computing the accumulated height of all points. The accumulated height percentile of X% of the points within each statistical unit represents the percentile of accumulated height for that unit. Li et al. established a crop height retrieval model based on the mean crop height and the 50% and 90% AIH, comparing with field measurements (Li et al., 2016). They found that mean height value and the 90% AIH can effectively represent crop height in the crop height model. Jimenez-Berni et al. utilized point cloud data to construct various AIH and found that the 95.5% AIH exhibited the smallest error, demonstrating a strong correlation with the true values (Jimenez-Berni et al., 2018). Therefore, due to the high degree of alignment between the predicted values obtained based on the accumulated incremental height method and the actual values. It is anticipated that coupling AIH and spectral features will further enhance the accuracy of estimating crop phenotypic parameters. Previous studies have already confirmed the correlation between height indicators and crop biomass (Madec et al., 2017). Crop height indicators, such as AIH, obtained from drone imagery, have been identified as key variables for estimating crop biomass (Li et al., 2016; Kotivuori et al., 2020; Lu et al., 2021).

With the advancement of digital photogrammetry, multi-view stereo vision technology and other advanced techniques, it has become feasible to reconstruct the 3-Dimension (3D) point cloud based on multi-view images (Jayathunga et al., 2018). Building upon the acquisition of two-dimensional images through oblique photography, the structure from motion (SFM) algorithm autonomously seeks and connects matching points to derive relative depth information in three-dimensional space, establishing a high precision 3D point cloud. Currently, one of the most widely used methods for obtaining crop height is to utilize the UAV equipped with RGB camera to perform three-dimensional reconstruction of images and generate point cloud. The canopy structure information derived from point clouds generated through oblique photography has found extensive application in estimating tree biomass (Wallace et al., 2017). Lu et al. combined vegetation indices (VIs) with crop height to enhance the accuracy of wheat AGB prediction (Lu et al., 2019). Maimaitijiang et al. captured RGB images and employed oblique photography to construct point cloud, assessed the potential of the vegetation index weighted canopy volume model (CVMVI), which integrates canopy spectral and volume information, in estimating AGB for soybeans (Maimaitijiang et al., 2019).

With the increasing maturity of artificial intelligence, machine learning, and other algorithms, various machine learning algorithms have been extensively applied in crop monitoring (Singh et al., 2023). By coupling remote sensing data from different periods with machine learning algorithms, it is possible to more accurately reveal the growth patterns of winter wheat. Ridge regression (RR) is suitable for handling the linear relationship between remote sensing variables and crop biochemical parameters, aiming to enhance the stability of the model. In comparison to linear regression algorithms, non-linear regression algorithms such as Random Forest Regression (RFR), Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost), and Gradient Boosting Regression Trees (GBRT) can handle high-dimensional data and non-linear relationships. Studies have demonstrated that machine learning regression algorithms exhibited higher accuracy in biomass estimation compared to traditional regression algorithms, yielding superior regression results (Li et al., 2016). The RFR algorithm, initially proposed by Leo Breiman, Adele Cutler and others, falls under the ensemble learning method Bagging and is applicable to both classification and regression tasks. By combining multiple weak classifiers, the model achieves high accuracy and generalization performance (Ehlers et al., 2022). GBRT is a type of ensemble learning, specifically belonging to Boosting. It comprises Regression Trees (RT) and Gradient Boosting (GB). It is an iterative ensemble algorithm for regression decision trees. It uses gradient descent to iterate over new learners. The core idea is that each tree learns the conclusions and residuals of all the previous trees. The objective is to minimize the difference between the true values and predicted values, and the conclusions of all regression trees are accumulated to obtain the final result (Wen et al., 2022). XGBoost is an abbreviation for eXtreme Gradient Boosting, which is a decision tree ensemble regression algorithm that combines base functions with weights to enhance data fitting. It demonstrates increased efficiency when dealing with large-scale datasets and complex models. The algorithm follows the gradient boosting approach by iteratively training a series of weak learners (typically decision trees) to correct the residuals from the previous iteration. Through iterations, it continually enhances the overall performance of the model, ultimately combining these weak learners into a strong learner. In comparison to the GBRT algorithm, XGBoost introduces regularization terms in the loss function (L1: alpha, L2: lambda). As some loss functions pose challenges in computing derivatives, XGBoost utilizes the second-order Taylor expansion of the loss function as a fitting, which helps mitigate the impact of overfitting (Zhang et al., 2022). SVR is founded on the vapnik-chervonenkis dimension theory and the principle of structural risk minimization. It addresses the challenge of function approximation and is grounded in ordered risk minimization, forming a small-sample statistical theory. SVR exhibits the capability to alleviate overfitting to some extent, providing good stability and generality. It has found widespread applications in various fields such as computer vision, data analysis and mining (Abdollahpour et al., 2020; Li et al., 2021). Ridge Regression is a regression method employed for the analysis of collinear data, offering biased estimates to tackle issues such as multicollinearity in regression analysis. It essentially serves as an improved method of the ordinary least squares estimation, aiming to alleviate the adverse effects of multicollinearity. The concept behind RR is that when multicollinearity is present in the data, a small ridge parameter k (0<k<1) is introduced and added to the main diagonal elements of the matrix [image: Mathematical notation showing the fraction x prime over x.] . This adjustment makes the degree of singularity approached by [image: \( x'x + k \)]  is much smaller than the degree of singularity approached by [image: Mathematical expression showing "x prime over x".] , leading to enhanced stability in parameter estimation (Li et al., 2023). Zhang et al. utilized Landsat imagery along with five machine learning algorithms, namely SVR, RFR, k-Nearest Neighbors (k-NN) and Artificial Neural Network (ANN), for predicting grass biomass (Zhang et al., 2018). The research results indicated that ANN and SVR produced similar outcomes in estimating biomass. Simultaneously, the stability of different algorithms is significantly affected by the number of features. An excessive number of features can lead to overfitting and the curse of dimensionality, while a small number of features may easily result in underfitting. Therefore, conducting correlation analysis or feature selection can enhance the accuracy and stability of the algorithms (Zhai et al., 2023).

While the inversion of crop physiological parameters based on UAV RGB and multispectral images has been extensively utilized (Yue et al., 2019; Sun et al., 2021), there is limited research on integrating crop height indicators and spectral information provided by UAV remote sensing with machine learning to estimate winter wheat AGB. Additionally, relying solely on spectral information for AGB inversion is susceptible to spectral saturation phenomena. In summary, the primary objectives of this study are as follows: (1) To quantify the potential of the mean method and AIH method in extracting wheat crop height. (2) To analyze the impact of AIH, VIs and their feature combinations on AGB estimation at different growth stages of wheat. (3) To explore the performance of different machine learning algorithms in winter wheat AGB estimation, providing references and support for precision agricultural management.




2 Materials and methods



2.1 Study area and experimental design

The study area is situated at the Xinxiang Comprehensive Experimental Base of the Chinese Academy of Agricultural Sciences (35.2°N, 113.8°E), with an annual average temperature of 14°C and precipitation of approximately 573.4 mm, it was suitable for the growth of winter wheat. Daily irrigation was carried out using moving lateral irrigation machines. The experiment designed six different nitrogen fertilizer treatments (N1: 300 kg/ha, N2: 240 kg/ha, N3: 180 kg/ha, N4: 120 kg/ha, N5: 60 kg/ha, N6: 0 kg/ha). Each treatment encompassed 30 plots, totaling 180 plots. Each plot measured 1.4m×4m, with a planting row spacing of 15 cm, and the basic seedling density was around 150,000 plants per mu, as illustrated in Figure 1. Nitrogen fertilizer was administered to wheat during the jointing and heading stage, with a 2:1 ratio for fertilizer distribution. Other field management practices adhered to the local conditions of winter wheat production (Yang et al., 2020). To ensure data quality, a total of 21 ground control points were set up in the study area, and precise coordinates for these control points were obtained using Global Navigation Satellite System technology.

[image: A series of maps and an aerial image showing the study area in China. The world map highlights China in green with Henan province in red. A detailed map of Henan outlines Xinxiang in yellow, with a red dot indicating the study area. The aerial image shows fields divided into six sections labeled N1 to N6, with scale bars indicating distances.]
Figure 1 | Location and experimental design of the study area. The red boxes represent different treatment.




2.2 Data acquisition



2.2.1 Field data acquisition

Since the jointing stage, heading stage and grain filling stage represent key transition points in wheat growth, they can comprehensively reflect the growth status and yield potential of wheat at different developmental stages. This study conducted experiments during the jointing stage, heading stage and grain filling stages, primarily collecting data on the crop height and AGB of winter wheat. The crop height was measured using a ruler with millimeter precision. Six random measurements were taken within each experimental plot, and the average value was used as the true height of winter wheat. For above-ground biomass assessment, six representative wheat plants were selected as samples in each plot. After measuring the fresh weight, the samples were placed in paper bags and baked at 105°C in a drying oven for 30 minutes. Subsequently, the temperature was adjusted to 75°C, and the samples were baked until a constant weight was reached (approximately 24-48 hours). After the dry weight of each sample was determined, the winter wheat AGB (t/hm²) per unit area was calculated based on population density and sample dry weight. Table 1 summarizes the statistical information of winter wheat crop height and AGB parameters.

Table 1 | Statistics of crop height and AGB parameters at different growth stages.


[image: Table displaying data on crop height and above-ground biomass (AGB) across three growth stages: jointing, heading, and grain filling. Each stage has a sample size of one hundred and eighty. Crop height and AGB are presented with minimum, maximum, mean values, and coefficient of variation (CV%).]



2.2.2 Acquisition and preprocessing of UAV remote sensing data

In this study, DJI Mavic 3M and DJI Mavic 3T (SZ DJI Technology Co., Shenzhen, China) were utilized for UAV data acquisition (Figure 2). To mitigate the impact of changes in solar zenith angle, images were collected between 11:30 a.m. and 12:30 p.m. on sunny days. The RGB sensor on the DJI Mavic 3M had 20 MP effective pixels and 24 mm format equivalent. The multispectral sensor had 5 MP effective pixels and 25 mm format equivalent, and a total of four bands: green (G, 560 ± 16nm), red (R, 650 ± 16nm), red edge (RE, 730 ± 16nm) and near infrared (NIR, 860 ± 26nm). For capturing RGB and multispectral images in the study area, DJI Mavic 3M was utilized for the flight. The flight routes were planned using DJI Pilot 2 (SZ DJI Technology Co., Shenzhen, China), with a photography mode set to time interval shot. The UAV’s camera was maintained vertical to the ground, and the relative flying height was set to 30 meters. The forward overlap rate and the side overlap rate were both set at 80%. Oblique photography data were collected using the RGB sensor equipped on DJI Mavic 3T. The RGB sensor had 48 MP effective pixels and 24 mm format equivalent. To generate point cloud data for winter wheat through 3D reconstruction, a five-way oblique photography mode with a tilt angle of 45 degrees (vertical downward, forward oblique, backward oblique, left oblique and right oblique) was employed. To determine the bare ground height, images of the bare soil were immediately captured after the completion of wheat planting.

[image: (A) and (B) show a drone with red lights on a reflective surface. (C) features a four-quadrant calibration board on rocky soil. (D) illustrates a UAV route with colored paths indicating different oblique angles, including forty-five and ninety degrees.]
Figure 2 | The UAV and working principles. (A) DJI Mavic 3T. (B) DJI Mavic 3M. (C) ground control points. (D) oblique photography principle.

After completing the UAV’s flight mission, the RGB and multispectral images were aligned and stitched using Pix4Dmapper 4.5.6 (Pix4D, Lausanne, Switzerland), resulting in the generation of orthomosaic. The processing workflow included key steps such as importing ground control points (GCPs), georeferencing, image alignment, building dense point clouds and radiometric correction. Subsequently, utilizing ArcGIS 10.6 (Environmental Systems Research Institute, Inc., Redlands, CA, USA), georeferencing was applied to UAV images taken at various growth stages, and vegetation index maps were generated. VIs were extracted by drawing polygon vectors for each plot. Building upon an analysis of existing research literature, this study extracted 18 vegetation index features based on the spectral information from RGB and multispectral imagery, as shown in Table 2.

Table 2 | Vegetation indices used in this study.


[image: A table displaying various vegetation indices, their formulas, and references. Indices included are Chlorophyll Index-Red Edge, Two-Band Enhanced Vegetation Index, Excess Green Index, and others, each with specific mathematical formulas. References are noted alongside, such as Gitelson et al. 2003 and Jiang et al. 2008. Additional notes indicate reflectivity definitions and constants used in the formulas.]



2.2.3 Crop height extraction

Utilizing DJI Terra software (SZ DJI Technology Co., Shenzhen, China) for three-dimensional reconstruction of images obtained through oblique photography, the reconstructed point cloud data was imported into LiDAR360 (V. 5.2, Green Valley, Co. Ltd. Beijing, China) for preprocessing. This preprocessing encompassed essential tasks, including clipping, denoising, filtering and normalization of the point cloud data. Based on the normalized point cloud data, the point cloud was sorted in ascending order of height to generate the AIH. The Canopy Height Model (CHM) was commonly used for estimating crop height. Digital Surface Model (DSM) with a resolution of 0.5 meters and Digital Elevation Model (DEM) were generated through Kriging interpolation. CHM was obtained by subtracting DSM from DEM. For each research plot, the mean estimated crop height was computed by summing all pixel values in the CHM and dividing by the total number of pixels. The AIH method selected the height value at a lower AIH as the baseline and the height value at a higher AIH as the upper boundary of the vegetation. The difference between these two height values yielded the estimated crop height for the study area. In this study, 99%, 95%, 90% and 80% AIH were individually used for crop height prediction, aiming to identify the optimal AIH. To accurately predict wheat AGB and explore the impact of AIH features on AGB estimation, this study evaluated and analyzed the model’s estimation performance using extracted 5%, 20%, 40%, 60%, 80% and 95% AIH features. The crop point cloud distribution for the planting plot is shown in Figure 3.

[image: (A) Depicts a 3D point cloud with colored points on a grid, showing varying elevations. (B) Shows a vertical scatter plot of point heights against distance, colors indicating height levels. (C) Presents a histogram of point heights, with height on the vertical axis and the number of points on the horizontal axis.]
Figure 3 | Crop height variables. (A) Point cloud distribution in a single plot. (B) Profile point cloud in a single plot (the red line represents 95% AIH, and the purple line represents ground height). (C) Number of point clouds at different heights in the profile.





2.3 Methods



2.3.1 Machine learning algorithms

Machine learning regression algorithms have the capability to handle both linear and nonlinear relationships between remote sensing variables and crop biochemical parameters. Compared to other regression algorithms, machine learning algorithms exhibit superior performance in regression predictions that involve multiple input variables. This study developed wheat aboveground biomass (AGB) estimation models using five machine learning algorithms: RFR, GBRT, XGBoost, SVR and RR.

K-fold cross-validation is a statistical method that divides data samples into smaller subsets (Figure 4). It can be employed as a method for accuracy testing and hyperparameter selection when dealing with small sample sizes (Shah et al., 2019).In this study, the data were divided into five folds through five-fold cross-validation. During each iteration, four folds are sequentially used as the training set, while the remaining fold serves as the validation dataset. Through five iterations, the model performance could be effectively evaluated. This approach was beneficial for improving overfitting and underfitting. The experiment encompassed 180 samples, including canopy feature data collected by different sensors and winter wheat AGB. These samples were divided into a training set and a test set in a 7:3 ratio. To ensure each model achieved optimal biomass prediction performance, the grid search algorithm was employed to determine the optimal parameters. The parameters set for the grid search algorithm include the model to be optimized, a dictionary of hyperparameter combinations for the model, 5-fold cross-validation, and the evaluation metric of root mean square error. Iterating through all parameter combinations, the optimal set of parameters for the highest accuracy model was determined. The RFR, GBRT, XGBoost, SVR and RR models, optimized with parameters, were utilized to predict the biomass of winter wheat at different growth stages in the region.

[image: Diagram illustrating the process of K-fold cross-validation. All data is split into five subsets. Each subset is used as a test set once, while the remaining data forms the training set. This process repeats for all five splits. For each fold, a model is learned from the training set and tested. Metrics are calculated, and final evaluation occurs after all folds are completed.]
Figure 4 | Overview of k-fold (5-fold) cross-validation for model evaluation.




2.3.2 Evaluation metrics

The model accuracy is evaluated using three metrics: R2, root mean square error (RMSE) and normalized root mean square error (nRMSE). The R2 value ranges from [0,1], with a higher value indicating better estimation performance of the model. Smaller values for RMSE and nRMSE improved predictive performance of the model.

[image: R-squared equals one minus the sum from i equals one to n of the squared difference between x sub i and y sub i, divided by the sum from i equals one to n of the squared difference between x sub i and y-bar. Equation labeled as one.] 

[image: Formula for Root Mean Square Error (RMSE): RMSE equals the square root of the sum from i equals one to n of the squared differences between x subscript i and y subscript i, divided by n.] 

[image: Formula for normalized root mean square error: nRMSE equals RMSE divided by \(\bar{y}\), multiplied by one hundred percent. Equation number three.]

In the formula, [image: Subscripted variable "x" with the subscript "i".]  represents the measured value of AGB; [image: A mathematical expression showing the variable \( y \) with a subscript \( i \).]  represents the estimated value of AGB; n is the number of samples; [image: Lowercase letter "y" with a rightward arrow above, indicating a vector symbol.]  is the average value of the measured values. In order to understand the experiment more intuitively, the experiment flowchart (Figure 5) was created based on the experiment design, data collection and processing.

[image: Flowchart showing UAV imagery acquisition and processing for agricultural feature extraction. The process includes oblique photography and RGB/multispectral image acquisition using DJI Mavic 3T/3M drones. Point clouds and orthomosaics are generated and used to extract features. CHM (Canopy Height Model) and VI (Vegetation Index) data feed into AGB (Above Ground Biomass) estimation using machine learning algorithms like RFR, XGBoost, GBRT, SVR, and RR. AGB is validated through cross-validation. Performance comparison assesses different prediction methods and impacts. Tools mentioned include ArcGIS and Pix4D.]
Figure 5 | Experimental flowchart. (UAV, Unmanned Aerial Vehicle; DSM, Digital Surface Model; DEM, Digital Elevation Model; CHM, Canopy Height Model; CH, Crop Height; AIH, Accumulated Incremental Height; AGB, Above-Ground Biomass; VIs, Vegetation Indices; RFR, Random Forest Regression; XGBoost, eXtreme Gradient Boosting; GBRT, Gradient Boosting Regression Trees; SVR, Support Vector Regression; RR, Ridge Regression).






3 Results



3.1 Winter wheat crop height estimation

This study conducted the estimation of winter wheat crop height using both the mean method and the AIH method. To determine the optimal AIH for estimating crop height, crop height estimation was conducted using 80%, 90%, 95% and 99% AIH. Figure 6 shows that the 95% AIH had the smallest error, with R2 ranging from 0.768-0.784. Figure 7 illustrated the regression plots for crop height estimation during the jointing, heading and grain filling stages of winter wheat. It was observed that both methods exhibited good accuracy across different growth stages. The R2, RMSE and nRMSE values during the different growth stages follow similar changing trends, with ranges of 0.699-0.784, 2.49cm-4.61cm and 3.83%-5.98%, respectively. In the crop height extraction based on the mean method, the heading stage boasted the highest R2, with a value of 0.744, followed by the jointing and grain filling stages. The RMSE reached the minimum during the jointing stage, at 2.89 cm, while the nRMSE achieved the minimum during the grain filling stage, at 5.51%. In contrast, in the crop height extraction based on the 95% AIH, R2 reached its maximum during the heading stage, at 0.784. The RMSE attained its minimum during the jointing stage, at 2.49 m, which was relatively small. The nRMSE reached its minimum during the grain filling stage. Compared to the mean method, the AIH method exhibited higher R2 in all growth stages. The difference in R2 was particularly notable during the jointing stage, with a 7% gap, while the differences in the heading and grain filling stages were relatively small. Meanwhile, the RMSE and nRMSE values were slightly lower than those for the mean method. The RMSE and nRMSE showed the greatest variation during the grain filling stage, with changes of 1.41 cm and 1.68%. During the jointing and heading stages, changes were relatively small. In summary, compared to the mean method, the AIH method selected in this study for estimating winter wheat crop height demonstrated higher accuracy.

[image: Bar and line charts compare different stages: jointing, heading, and grain filling. The bar chart shows R² values across stages, with green (heading) having the highest consistently. The line chart displays RMSE trends, with orange (jointing) decreasing across AIH values (H₈₀, H₉₀, H₉₅, H₉₉). Pink (grain filling) remains constant at higher RMSE values.]
Figure 6 | Performance of different AIH in estimating crop height.

[image: Six scatter plots compare measured and estimated plant heights at different growth stages using two methods. Plots A, C, and E use the Mean method, showing R² values of 0.699, 0.744, and 0.711, respectively. Plots B, D, and F use the AIH method, with higher R² values of 0.769, 0.784, and 0.768. Each plot includes RMSE and nRMSE values, indicating accuracy. The AIH method generally provides better correlation and lower error rates across all stages: jointing, heading, and grain filling.]
Figure 7 | Scatter plot of estimated crop height based on CHM and 95% AIH. The first column displays variables for crop height estimation based on CHM, and the second column displays variables based on 95% AIH estimation. (A, B) Jointing stage. (C, D) Heading stage. (E, F) Grain filling stage. The dashed lines indicate the expected 1:1 relationship.




3.2 Estimation of AGB based on different features

In order to prevent overfitting during the model training process and reduce the number of feature variables, this study utilized the feature importance analysis algorithm integrated into RFR. Feature importance analysis was conducted for both VIs and AIH features, as illustrated in Figure 8. RTVI-CORE, LCI, RDVI-REG, H80, OSAVI, and H60 exhibited relatively high feature importance, all exceeding 6%, with RTVI-CORE having the highest feature importance at 14.14%. Among the AIH features, except for H20 and H40, the other AIHs demonstrated relatively high feature importance. ExG, NGBDI, CVI, H20, VARI, H40, CH and GBRI had feature importance below 1%. Therefore, to prevent model overfitting, features such as ExG, NGBDI, GBRI, CH and H40 were excluded.

[image: Bar chart illustrating feature importance percentages. RTVI-CORE, LCI, and RDVI-REG are the most important features, each over 14%. Other features like H\(_{80}\), OSAVI, and VDVI range between 6% to 11%, with NGBDI and ExG being the least important at below 1%.]
Figure 8 | Feature importance analysis.

The estimation results for wheat AGB using AIH features, VIs features and their combinations were presented in Table 3. When predicting wheat AGB solely based on AIH features, the accuracy was relatively low, with R2 ranging from 0.416 to 0.632, RMSE ranging from 0.523 to 0.885 t/hm2 and nRMSE ranging from 9.11% to 31.23%. Estimating AGB based on VIs features showed better performance compared to using only AIH features, with R2 ranging from 0.694 to 0.885, RMSE ranging from 0.314 to 0.694 t/hm2 and nRMSE ranging from 7.28% to 17.23%. By coupling AIH and VIs features, the highest accuracy was achieved in estimating winter wheat AGB. The R2 increased to 0.728-0.925, indicating that the model fitting performance was good. Simultaneously, the RMSE decreased to 0.197-0.617 t/hm2 and nRMSE decreased to 4.58%-16.58%. This indicated that the addition of AIH features played a positive role in improving the accuracy of the AGB estimation model, reducing estimation errors.

Table 3 | Estimation accuracy of wheat AGB with different features and their combinations.


[image: Table comparing performance metrics of different models (RFR, XGBoost, GBRT, SVR, RR) at various growth stages (jointing, heading, grain filling). It lists R², RMSE, and nRMSE(%) for AIH, VIs, and VIs+AIH across each stage.]
Figure 9 displays the scatter plot distributions of regression predictions on different growth stages in the test set, considering both individual VIs features and feature combinations. The figure distinctly reflected the consistency between the predicted values of wheat AGB and the measured values. In comparison to the relatively scattered distribution of sample points in SVR and RR models, the sample points of RFR, XGBoost and GBRT models were concentrated around the 1:1 regression line, indicated its superior regression performance. The red circles in the figure indicated that at different growth stages, as the measured AGB values increased, the predicted values exhibited slow growth and lower than the measured values, suggesting the occurrence of spectral saturation. In AGB estimation based on the fusion of multiple features, it was discovered that the model accuracy improved, mitigating the spectral saturation phenomenon to some extent.

[image: Scatter plots display estimated versus measured above-ground biomass (AGB) at different growth stages: Jointing, Heading, and Grain Filling. Each row represents a different regression model: RR, SVR, GBRT, XGBoost, and RFR. Points are color-coded by data type (Vis or Vis+AHI), with circles highlighting data clusters. Each plot includes R², RMSE, and nRMSE values for model accuracy, displaying linear fit lines and goodness of fit metrics.]
Figure 9 | The scatter plots depicted the AGB estimates obtained through five machine learning algorithms (RFR, XGBoost, GBRT, SVR, and RR) at various growth stages. The corresponding columns represented the regression scatter plots for the jointing stage, heading stage and grain filling stage. (A–C) RR. (D–F) SVR. (G–I) GBRT. (J–L) XGBoost. (M–O) RFR. The dashed lines indicate the expected 1:1 relationship.




3.3 Performance evaluation of different machine learning algorithms

For evaluating the performance and generalization effects of different machine learning algorithms, a comparative analysis was conducted on the accuracy of five algorithms: RFR, XGBoost, GBRT, SVR and RR (Figure 10). The results clearly demonstrated that machine learning algorithms based on decision tree methods exhibited higher accuracy and smaller errors compared to the other two algorithms. This reflected the significant advantage of decision tree based regression algorithms in handling non-linear relationships without the need for feature scaling. The median values of R2 were consistently higher than 0.80, RMSE median values were consistently lower than 0.49t/hm2, and nRMSE median values were consistently lower than 12%. Among machine learning algorithms, the RFR algorithm was considered the best, slightly outperforming the XGBoost algorithm. The R2 median for the RFR algorithm was 0.835 and the RMSE median was 0.452 t/hm2. The least performing algorithm was RR, a traditional machine learning algorithm, with R2 median was 0.728 and RMSE median was 0.617 t/hm2. Overall, RMSE and nRMSE exhibited relative stability across the five machine learning algorithms, indicating that the differences between the original and estimated values of biomass during various growth stages show no significant variations.

[image: Box plots comparing five models (RFR, XGBoost, GBRT, SVR, RR) on three metrics: (A) R-squared, (B) RMSE, and (C) nRMSE. Each plot shows the median, mean, and data distribution with colored lines and symbols.]
Figure 10 | Accuracy of AGB estimation using different machine learning algorithms. (A) R2. (B) RMSE. (C) nRMSE.





4 Discussion



4.1 Extraction of winter wheat crop height

As a critical growth parameter for crops, the extraction of crop height, especially for winter wheat, has been the focus of numerous studies (Jia et al., 2022; Ma et al., 2022). In comparison to orthophoto map, oblique photography technology has revolutionized the limitations of capturing images only from a vertical perspective. Based on the planning of five flight paths, oblique photography technology tilts the camera at a specific angle to comprehensively capture target images. With its features of extensive coverage, high accuracy, and high resolution, it provides an intuitive representation of crop texture, location, height and other information, making it highly favored among surveying and mapping professionals. However, the widespread adoption of LiDAR has faced constraints due to its expensive cost and limitations, such as the inability to capture color information of objects (Zhang et al., 2021). Grüner et al. successfully estimated crop height in grassland vegetation using a UAV equipped with an RGB camera (Grüner et al., 2019). In previous studies (Kawamura et al., 2020; Bhandari et al., 2023), the use of CHM for extracting crop height has been quite common. However, there is limited research on the comparative analysis of the accuracy of different crop height extraction methods. The mean method for extracting crop height may result in less accurate crop height extraction due to issues such as image matching, the sparse nature of wheat, the high resolution of the crop DSM images, and the influence of bare soil. This is consistent with the findings of Chang et al (Chang et al., 2017). The AIH method involves normalizing the point cloud of vegetation points with absolute elevations. The AIH values are then employed as the crop height for wheat plants, mitigating the impact of variations in wheat density. Moreover, different AIH exhibit varied performance in crop height extraction. In a study based on four different AIH values—80%, 90%, 95% and 99%—it was observed that as the AIH increases, the accuracy of crop height extraction shows a trend of initially increasing and then decreasing. The highest accuracy is achieved at the 95% AIH (Hütt et al., 2023). This differs from the findings of Lu et al (Lu et al., 2021), possibly attributed to their study focus on summer maize crop height extraction. The differences in the shape of the canopy top, where the canopy top of summer maize is more spike-like, could be a contributing factor.




4.2 Contribution of different features in AGB estimation

In previous studies on winter wheat AGB estimation, the utilization of VIs for AGB estimation has become widespread. However, different features may have varying impacts on AGB estimation, and relying solely on VIs extracted from RGB images may result in suboptimal accuracy (Lu et al., 2019; Wang et al., 2022). Su et al. (Su et al., 2024a) have demonstrated that spectral features in the near-infrared band can accurately capture the spectral differences of SPAD during the growth period of winter wheat in SPAD estimation based on UAV multispectral imagery. To enhance estimation accuracy, this study employed VIs extracted from RGB and multispectral imagery as features. The study indicates that during various growth stages, VIs associated with the NIR band exhibit higher feature importance in AGB estimation. Which reflects that the NIR band enhances the contrast of vegetation vitality, aligning with prior research findings (Tilly et al., 2014; Wang et al., 2023). In the random forest variable importance analysis of vegetation index features, it was found that the importance of RTVI-CORE, RDVI-REG, LCI and OSAVI all exceeded 8.5%. These sensitive vegetation indices are closely associated with the NIR band, further confirming the significance of the NIR band in monitoring wheat growth. The NIR wavelength region is strongly correlated with the internal structure and biochemical composition of crop leaves. Crop cell structures reflect a high proportion of NIR spectra, making this wavelength region highly sensitive to crop health conditions (Su et al., 2024b). With the progression of the growth stages, the predicted values are slightly lower than the actual values, indicating the occurrence of spectral saturation. Neumann et al. contend that the occurrence of spectral saturation limits the accuracy of AGB estimation in densely vegetated areas (Neumann et al., 2020). During the jointing and early grain filling stage, wheat exhibits robust growth with high leaf overlap, leading to the manifestation of vegetation spectral saturation. Furthermore, in the later stages of wheat growth, AGB is composed of leaves, stems, and spikes. The spectral information of the canopy is primarily influenced by both leaves and spikes. Relying solely on spectral information obtained from the canopy for AGB estimation may introduce some bias (Lu et al., 2019).

Crop height provides an intuitive representation of the vertical structure distribution of crop plants. Previous studies have demonstrated that crop height for wheat (Lu et al., 2019; Walter et al., 2019) and maize (Shu et al., 2023) exhibit correlation with AGB. Over 90% AIH reflects the point cloud distribution of the vegetation canopy, offering a relatively accurate representation of crop height. AIH and AGB exhibit a moderate correlation (Walter et al., 2019). In the feature importance analysis, the majority of AIH features exhibit high importance in the AGB estimation models, with only 40% AIH features having lower importance. This phenomenon may be attributed to the fact that 40% AIH is located roughly in the middle of the vertical distribution of the crop. Due to the higher density of canopy leaves, there is a lower point cloud count in that position, making it less accurate in representing crop height. By coupling VIs and AIH features, the limitations of spectral saturation can be mitigated. Zhu et al. (2023b) developed a three-dimensional conceptual model (3DCM) based on plant height and vegetation coverage to mitigate the spectral saturation effect in wheat AGB estimation. They found that the 3DCM model outperformed traditional vegetation index models and conventional multi-feature combination models, with the highest accuracy at the wheat nodulation stage, verifying the feasibility of synergistic use of UAV height information with VIs. In practical applications, integrating features extracted from multiple remote sensing data sources can better address the characteristics of different regions and vegetation types, enhancing the applicability and accuracy of AGB estimation. The addition of AIH features had a positive impact on all five models during various growth stages, mitigating spectral saturation. This indicates that crop height is a crucial indicator of wheat growth and development. The dynamic changes in AIH provide an intuitive reflection of the growth status of wheat (Niu et al., 2019). Furthermore, multivariate features incorporating spectral and spatiotemporal information of the wheat population exhibit superior predictive capabilities for AGB compared to single-variable features (Liu et al., 2018). By delving into the multi-dimensional information of vegetation, a better understanding of the growth patterns of vegetation can be achieved, providing robust support for agricultural production and ecological environment monitoring.




4.3 Comparison of AGB modeling methods

This study evaluated the performance of five machine learning regression algorithms—RFR, XGBoost, GBRT, SVR and RR in estimating AGB, all of which achieved satisfactory accuracy. Non-linear regression models, specifically RFR, XGBoost and GBRT, exhibited superior accuracy compared to linear regression models SVR and RR. This discrepancy was attributed to the intricate non-linear relationship between remote sensing data and biomass. Relying solely on linear regression models was highly susceptible to the influence of outliers, rendering it incapable of producing accurate predictive results (Lu et al., 2019; Tatsumi et al., 2021). Among the five machine learning algorithms, the RFR model outperformed others, displaying the highest coefficient of determination and the lowest errors. This could be credited to the model’s aggregation of multiple decision trees, effectively mitigating the impact of noise and outliers. However, the RFR model has some drawbacks, such as high computational demands and a lack of interpretability. Moreover, introducing extra randomness in sample extraction and feature selection during model construction reduced the risk of overfitting, enhancing model stability and estimation capabilities. RFR, XGBoost and GBRT, all constructed based on multiple decision trees, achieved high accuracy in estimating wheat AGB. XGBoost and GBRT showed slightly lower estimation performance compared to RFR (Wang et al., 2022). Regression algorithms based on decision trees can achieve higher estimation accuracy due to its continuous iteration to reduce errors, autonomous feature selection capabilities for handling high-dimensional data, strong generalization ability and robustness (Liu et al., 2022; Poudyal et al., 2022). Due to the interdependence among weak learners, GBRT is challenging to train in parallel and may not perform as well as neural networks when handling high-dimensional data. Therefore, employing some local parallelization techniques within decision trees during training can improve the model’s training speed. As an efficient implementation of GBRT, XGBoost introduces feature subsampling, which reduces overfitting and computational load. However, during node splitting, it still needs to traverse the dataset, and storing the feature values and their corresponding sample gradient statistics requires twice the memory. However, SVR is not well-suited for handling large-scale datasets, is sensitive to parameter tuning, has high computational demands, and has lower accuracy in the presence of high sample noise. In contrast, RR exhibited the lowest estimation accuracy in this study. RR was highly sensitive to noise and outliers in the data, and the decrease in estimation accuracy could be attributed to the presence of data noise and nonlinear relationships. Therefore, constructing accurate and compact decision tree machine learning algorithms lays a solid foundation for agricultural production and growth monitoring (Ji et al., 2023). This method provided a quantitative means to evaluate the AGB of wheat with a simple and efficient operation and had the potential to be used on a large scale.




4.4 Limits and significance of the study

UAVs with their advantages of maneuverability, convenience and speed, were widespread applications in agricultural crop information monitoring, providing real-time and accurate decision support for agricultural production (Ji et al., 2019). The crop height serves as a crucial indicator of crop growth status, and the real-time and accurate prediction of crop height is essential for monitoring the overall crop development. The utilization of AIH extracted from point cloud data has achieved considerable accuracy in crop height estimation. However, RGB point clouds obtained through oblique photogrammetry mainly capture the top of the vegetation canopy, with limited penetration ability and susceptibility to significant environmental influences (Li et al., 2016). In future research, the approach of low-altitude cross-circular hovering oblique photography can be adopted to construct a three-dimensional point cloud, achieving precise acquisition of three-dimensional point cloud data (Hütt et al., 2023). When estimating AGB using VIs extracted from RGB and multispectral imagery, spectral saturation occurred during the grain filling period. However, by incorporating multiple AIH features into the model, the issue of spectral saturation was alleviated (Zhang et al., 2023). Therefore, coupling feature extraction from multiple remote sensing data sources can enhance AGB estimation accuracy. In future research, exploring the impact of other features on estimation accuracy could be considered.

A gradual increase in AGB was observed as the crop progressed through growth and development. The complete growth cycle of winter wheat spans from seed germination to the production of new mature seeds, encompassing multiple growth stages. However, this experiment focused solely on crop height and AGB estimation during the jointing, heading, and grain filling stages of winter wheat, potentially resulting in AGB changes is localized. Future research should systematically investigate crop height and AGB variations across all growth stages of the wheat lifecycle to uncover the rhythms in wheat growth (Zhai et al., 2023). Previous studies have indicated that estimating corn AGB by multiplying Leaf Area Index (LAI) with crop height performs well (Shu et al., 2023). Due to the lush foliage and higher plant density in the later stages of winter wheat growth, LAI shows little variation and was not studied in this experiment. Moreover, this experiment was conducted in a small-scale farmland in the north of Henan, which may limit the model’s applicability. Variations in factors such as temperature, soil type, entropy, precipitation, and daylight length in different regions, there are limitations in extending the wheat crop height and AGB estimation model to other areas. In future research, a comprehensive consideration of ground conditions and meteorological data, collection of more extensive data, and conducting cross-validation experiments on data from different regions should be performed to enhance the model’s generalization ability (Sun et al., 2020).





5 Conclusions

This study aims to evaluate and analyze the effectiveness of the mean method and AIH method in extracting crop height for winter wheat. Additionally, the accuracy of winter wheat AGB estimation was assessed using AIH, VIs and their combinations. Ultimately, the estimation performance of the five machine learning algorithms was compared and analyzed. The following conclusions were drawn:

	(1) Crop height extraction methods based on UAV remote sensing data reveal that the crop height extraction method based on AIH is more accurate than the mean method across various growth stages. When comparing the performance of different AIH values in crop height extraction, it was discovered that the 95% AIH accurately represents crop height.

	(2) In comparison to NDVI, kNDVI exhibited more higher feature importance. VIs correlated with the NIR band were more sensitive in monitoring crop growth conditions and demonstrated higher feature importance. Coupling VIs and AIH features for AGB estimation achieved higher accuracy compared to estimating AGB with a single feature. Additionally, embedding AIH features into the estimation model mitigated spectral saturation to some extent.

	(3) Various machine learning algorithms showed different performance in estimating wheat AGB. Ensemble learning algorithms based on decision trees, represented by RFR, XGBoost and GBRT, consistently demonstrated higher accuracy compared to other linear machine learning algorithms. Among the five machine learning algorithms, RFR achieved the best estimation results at different growth stages.



In summary, the use of point cloud data obtained through the oblique photography technique provides an intuitive representation of crop height information. The coupling of multiple features and robust machine learning algorithms offer a new reference for estimating AGB in wheat. Leveraging multi-source remote sensing technology with UAVs meets the demand for convenient and efficient acquisition of crop growth information. This provides technical support for precision agriculture and decision-making in agricultural fields.
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Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for potential influence by rootstock and breeding. However, leaf specific direct measurement of these photosynthetic parameters is time consuming, limiting the information scope and the number of individuals that can be screened. This study aims to overcome these limitations by employing hyperspectral imaging combined with artificial intelligence (AI) to predict these key photosynthetic traits at the canopy level. Hyperspectral imaging captures detailed optical properties across a broad range of wavelengths (400 to 1000 nm), enabling use of all wavelengths in a comprehensive analysis of the entire vine’s photosynthetic performance (Vcmax and Jmax). Artificial intelligence-based prediction models that blend the strength of deep learning and machine learning were developed using two growing seasons data measured post-solstice at 15 h, 14 h, 13 h and 12 h daylengths for Vitis hybrid ‘Marquette’ grafted to five commercial rootstocks and ‘Marquette’ grafted to ‘Marquette’. Significant differences in photosynthetic efficiency (Vcmax and Jmax) were noted for both direct and indirect measurements for the six rootstocks, indicating that rootstock genotype and daylength have a significant influence on scion photosynthesis. Evaluation of multiple feature-extraction algorithms indicated the proposed Vitis base model incorporating a 1D-Convolutional neural Network (CNN) had the best prediction performance with a R2 of 0.60 for Vcmax and Jmax. Inclusion of weather and chlorophyll parameters slightly improved model performance for both photosynthetic parameters. Integrating AI with hyperspectral remote phenotyping provides potential for high-throughput whole vine assessment of photosynthetic performance and selection of rootstock genotypes that confer improved photosynthetic performance potential in the scion.
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1 Introduction

Most of the commercial grapevines are grafted to improve their growth, physiology, and sustainability in diverse soil types. Many studies have indicated that it can lead to changes in source-sink relations, modifying carbon dynamics that can impact the overall performance of the vine (Di Filippo and Vila, 2011; Jones et al., 2009). Nevertheless, the literature on the physiological and molecular influence of rootstock mediated influence is very dependent on the rootstock and scion genotypes and environmental conditions of the studies.

Carbon gain is an outcome of plants leveraging photosynthesis to transform carbon dioxide (CO2) and water into organic compounds. Various studies have shown that the interaction between rootstock and scion has a significant impact on photosynthesis (Koundouras et al., 2008; Nimbolkar et al., 2016; Zhang et al., 2016). In grapevines, the rootstock is found to impact carbon gain through regulation of stomatal conductance in stress conditions (Shinozaki and Yamaguchi-Shinozaki, 2007). The rootstock is also found to impact photosynthetic rate by increasing carboxylation efficiency and net CO2 assimilation rate (Düring, 1994; Koundouras et al., 2008). Consequently, the underlying mechanisms through which rootstock affects photosynthesis remain ambiguous, necessitating research at both the molecular and physiological levels to enable the effective choice of rootstock for optimizing photosynthetic efficiency to enhance carbon gain in grapevine.

Selection of rootstocks for an improved conferred photosynthetic capacity phenotype is a complex and lengthy process (Cousins, 2005). Therefore, high-throughput measures are required to effectively select rootstocks that confer enhanced photosynthetic capacity in the scion. Direct measurement of photosynthesis using infrared gas analyzers (IRGA), can be employed to estimate light and CO2 curves that are used to gain photosynthetic mechanistic information (Farquhar et al., 1980; Von Caemmerer and Farquhar, 1981). Indeed, photosynthetic system derived biochemical kinetic metrics like 1) maximum rate of carboxylation of RuBP (Vcmax) and 2) maximum rate of electron transport driving RuBP regeneration (Jmax) together with biochemical modeling is extensively used to understand photosynthetic performance in plants (Long and Bernacchi, 2003). However, direct gas exchange measurements require a long leaf acclimation time inside the measuring cuvette and accurate regulation of cuvette environment, which is best achieved under relatively constant ambient environments (Haworth et al., 2018). Thus, to maintain similar environments across measures, the gas-exchange measurements are typically performed for only a small portion of the day. Rapid A/Ci response curves (RACiR) plotting the relationship between net photosynthetic rate and CO2 concentration has been introduced, yet the technique is still lengthy and unsuitable for high-throughput of large sample numbers (Stinziano et al., 2019). In addition, grapevine photosynthesis is better understood as a characteristic at the vine canopy level, rather than at a single leaf level as found with IRGA measurements (Fu et al., 2022). Therefore, it is important to explore other remote or proximal sensing technologies that indirectly assess photosynthesis at the canopy level.

Hyperspectral imaging features from visible to near-infrared spectrum, for each pixel within the canopy area can be used as proxy for photosynthetic efficiency (Watt et al., 2020; Zarco-Tejada et al., 2016). Few studies have used hyperspectral information to estimate grapevine canopy level Vcmax and Jmax parameters, highlighting the need for validation experiments to investigate the relationship between grapevine leaf and canopy level photosynthesis measurements (Asner et al., 2015; Barnes et al., 2017; Camino et al., 2022). As shown in aspen, cottonwood and other crops, hyperspectral reflectance measures may be integrated with several AI-based modelling approaches to predict ground based photosynthetic parameters (Fu et al., 2020; Serbin et al., 2012). Indeed, recent trends show a significant use of deep learning algorithms for the prediction of photosynthetic parameters using hyperspectral imagery (Furbank et al., 2021; Yu et al., 2022). However, a major challenge while implementing deep learning algorithms in physiological trait prediction is the limitation of ground-truth data samples. A hybrid model incorporating feature extraction using deep learning and classification/regression tasks with traditional ML algorithms is often employed to address this (Nguyen et al., 2021). The convolutional neural network (CNN) is extensively used for extracting spatial-spectral features, for predicting plant photosynthetic pigments and parameters (Deng et al., 2024; Prilianti et al., 2021; Zhang et al., 2022). Use of 1D-CNN and 2D-CNN for extraction of patterns in the hyperspectral signal have shown a higher prediction accuracy of photosynthetic parameters than traditional machine learning algorithms (Prilianti et al., 2019; Prilianti et al., 2021; Zhang et al., 2022). Another approach to address the issue of limited ground-truth data samples, is to use transfer learning algorithms as a feature extractor (Tan et al., 2018; Weiss et al., 2016). This method uses a pre-trained model to transform unprocessed data into a collection of features that can be comprehended by a machine learning model to extract pertinent patterns or characteristics. These machine learning models demonstrate superior generalization across networks and rapid convergence speeds (Alzubaidi et al., 2021).

The challenge of effectively extracting and utilizing both spectral and spatial information found in hyperspectral data persists. Our study addresses this challenge through a proposed hybrid model that blends the strength of both deep learning and machine learning techniques to unlock the potential of dimensional hyperspectral data for photosynthesis prediction. The hybrid approach used here is based on powerful feature extraction algorithms to extract significant information from the hyperspectral data for one- and three-dimensional datasets. This study leverages models like principal component analysis (PCA) (Wold et al., 1987), autoencoders (Bank et al., 2023) and 1D-CNN as feature extraction algorithm for 1-D hyperspectral data. For 3-D hyperspectral data, the approach incorporates several transfer learning algorithms such as VGG16 (a widely used feature extractor in computer vision applications (Pardede et al., 2021; Simonyan and Zisserman, 2014; Tammina, 2019)) and Inception-ResNet (which combines inception modules and residual connections (Ferreira et al., 2018)) and two-dimensional convolutional neural networks (2D-CNN). In addition to performing feature extraction, the hybrid model integrates XGBoost (eXtreme Gradient Boosting) (Chen and Guestrin, 2016) to tackle regression tasks, leveraging decision trees as base learners in a boosting technique where models are sequentially added until the error is minimized (Chen and Guestrin, 2016).

The scope of this research is to assess the influence of rootstocks on scion photosynthetic parameters and determine the accuracy of hyperspectral imagery in predicting these phenomena. Accordingly, the study sets forth the following specific objectives: 1) to conduct a comparative study of photosynthetic efficiency in various rootstocks using both direct (ground-truth) and indirect (spectral) methods; 2) to confirm the effectiveness of hyperspectral remote sensing in accurately measuring photosynthesis by incorporating AI-based algorithms for feature extraction of hyperspectral data. This study uses a ground based remote phenotyping hyperspectral system to capture the vines’ extensive vertically distributed canopy rather than an aerial system that only captures the smaller top portion of the grapevine canopy. Further, the measurements were made throughout the season to capture photosynthesis during the natural declining daylength. Evaluation of the hybrid model here uses all wavelengths measured instead of specific wavelengths that have been related to photosynthetic parameters in other remote sensing studies.




2 Methods



2.1 Plant materials

Vitis hybrid ‘Marquette’ grafted to five commercial rootstocks 1103 Paulsen (1103P), 3309 Couderc (3309 C), Teleki 5C (5C), Freedom (FREE), Selection Oppenheim 4 (SO4), and ‘Marquette’ grafted to ‘Marquette’ (homograft) (Table 1) were used to measure rootstock influence on photosynthetic parameters. Vines were custom grafted in 2018, using same aged dormant cane materials, by Double A Vineyards (Fredonia, NY, USA) and grown for one year prior to planting. The Marquette homograft provides the inherent photosynthetic characteristics of the ‘Marquette’ genotype in a grafted vine so that the conferred influence from the commercial rootstocks on the Marquette scion can be determined in direct comparison of grafted vines. There were four replicates for each graft combination, organized in four complete blocks that were randomly placed within four rows (1 block per row) of a larger experimental vineyard.

Table 1 | Rootstock genotypes pedigree and characteristics.


[image: Table listing rootstocks, their pedigrees, and characteristics. Rootstocks include 1103 Paulsen, 3309 Couderc, Teleki 5C, Freedom, Selection Oppenheim 4, and Marquette. Each entry details its pedigree and features such as resistance to phylloxera, vigor, soil tolerance, graft compatibility, and disease resistance. Marquette, used as a control, is noted for cold hardiness and disease resistance.]
Vine photosynthetic and hyperspectral profiles were measured in the field at the South Dakota State University research vineyard in Brookings, SD (44.3114 °N, -96.7984 °W). A high cordon management system was imposed on vines in 2020. The vines had a 1.828 m spacing within the row and 3.048 m between rows. Vines were maintained with fruit during measurement years (2022 and 2023). The vineyard used an automated irrigation system to supplement natural precipitation when less than 5.08 cm/month from the flowering stage until grape maturation. Both direct photosynthetic measurements and hyperspectral profiling was carried out post-summer solstice in 2022 and 2023, targeting daylengths of 15 h, 14 h, 13 h, and 12 h. These time points were chosen as summer solstice, the longest day of year (June 20, 15 h 31 min), occurs about 2 weeks after flowering and subsequently daylength begins decreasing, the sampling period was chosen to cover photosynthetic activity during fruit development and ripening period. Measurements were taken between 9:00 am and 12:00 pm to minimize the potential influence of large environmental fluctuations.




2.2 Direct measurement of photosynthesis attributes using infrared gas analyzer

The ground-truth data was acquired using a LI-COR (Li-6800, LICOR Biosciences, Lincoln, NE, USA) portable photosynthesis system. The LI-COR settings were fixed for the temporal measurements: Flow rate of 600 μmols-1, temperature and relative humidity set closest to ambient conditions, reference CO2 to 400 μmol mol-1, and saturating light of 1800 μmolm-2 s-1. One leaf from mid-shoot for each vine was chosen for measurement, providing four replicate samples per genotype (six genotypes), totaling 24 samples (6 genotypes x 4 replicates) for each sampling date. The selected leaves were fully developed, healthy middle leaves, adapted to sunlight conditions to ensure uniformity in photosynthetic measurements and minimize potential variability due to leaf development stages or environmental factors. The Rapid A/Ci curves (RACiR, net CO2 assimilation rate A, versus calculated substomatal CO2 concentration, Ci) was measured to derive photosynthetic parameters from a clamped leaf area of 6 cm².The Farquhar-Berry-von Caemmerer model was used to fit A/Ci curve to derive photosynthetic capacity in the vines in terms of maximum rate of carboxylation of RuBP (Vcmax) and maximum rate of electron transport driving RuBP regeneration (Jmax) (Farquhar et al., 1980). The R package ‘racir’ (Stinziano et al., 2019) was used to perform calibration fits which allowed to select appropriate polynomial fit based on AIC criterion. Selected fit was used to derive Vcmax and Jmax using package in R ‘plantecophys’ (Duursma, 2015).




2.3 Indirect measurement of photosynthesis using hyperspectral remote sensing

The hyperspectral sensor SPECIM IQ (Specim, Spectral Imaging Ltd., Oulu, Finland) was used to collect canopy reflectance measure to predict photosynthetic parameters Vcmax and Jmax (Behmann et al., 2018; Deng et al., 2024). The operation hardware of the Specim IQ sensor utilizes push broom technology where it simultaneously captures a single spatial line of the image with the entire wavelength spectrum, then moves to the next line. It acquires reflectance for 204 narrow wavelength bands with a spectral range of 397nm to 1000nm with a spectral resolution of 7nm. This sensor acquires spectral information in line scanning of 512 pixels, resulting in static image size of 512 by 512 pixels. The viewing area is 0.55 m by 0.55 m., which achieves a spatial resolution of 1.07 mm when placed at one meter from the object. For this study, the hyperspectral sensor was placed one meter from the trellis wire used for the vines. A Spectralon white reference panel (Specim, Spectral Imaging Ltd., Oulu, Finland) was placed next to the vine to ensure calibration of radiance image. The sensor built-in function was used for digital number to reflectance conversion. Hyperspectral data was collected using the default recording option for saving hyperspectral data cubes, to generate the unprocessed reflectance data. The images were processed using ENVI software (L3Harris Geospatial Solutions Inc., Broomfield, CO, USA). First, the canopy surfaces consisting only of leaves, were extracted as the region of interest (ROI) and background pixels were omitted. The radial basis kernel function in support vector machine (SVM) classifier was used to create binary layer that eliminated shadow and background pixels from the imagery. The accuracy of SVM in this process was found to range from 96 to 98.12%. The end bands were eliminated thereby reducing background noise and resulted 187 total wavelengths for further analysis. Images were subsequently resized to a 250x250 dimension to decrease the computational time required for the modeling algorithms. Similarly, one-dimensional spectral data were extracted from the leaf ROI (Region of Interest) areas, which were used as input features in some models.




2.4 Environmental and chlorophyll features

Additional meteorological parameters and leaf chlorophyll values were measured for use in modeling photosynthetic parameters in combination with the hyperspectral features. Chlorophyll levels were measured at the same time as the LI-6800 photosynthesis measurements using the MC-100 Chlorophyll Concentration Meter (Apogee Instruments, Inc., UT, USA) for the ground-truth data collection (Parry et al., 2014). For these measurements, the instrument was configured to the ‘GRAPE’ option in its selection menu. Three fully grown middle leaves were sampled from each genotype, and the average value was calculated. The temperature, solar radiation (SR), and relative humidity (RH) were recorded by SDmesonet station situated at the vineyard site in South Dakota State University (SDmesonet, 2023). The real time weather data corresponding to the time when CO2 assimilation curves were measured for each genotype were retrieved for each sampling date. The mean of temperature, solar radiation (SR), and relative humidity (RH) were determined by averaging the maximum and minimum values recorded during the specified sampling hour. These averages were used as model input parameters during the second phase of model analysis.




2.5 Statistical analysis



2.5.1 Data exploration of direct and indirect photosynthetic measures

Ground-truth photosynthetic data was normalized by z-score transformation and then a two-way ANOVA was performed to determine whether there were significant differences between genotypes and measurements taken at specified daylengths (15, 14, 13, and 12 h) (Abdi and Williams, 2010). The ‘ggplot’ package in R was employed to create visual representations, using violin plots to demonstrate the genotypic differences across both years, as well as line plots to depict the trend of photosynthesis in relation to changes in daylength (Wickham et al., 2016). A principal component analysis was conducted to determine genotypic differences based on their spectral signature using built-in ‘stats’ package in R (Team et al., 2018). This method was also applied to determine if spectral signature varied based on environmental settings.




2.5.2 Prediction model development

For the model development, the focus was solely on development of integrated/hybrid model. To predict Vcmax and Jmax independently, both one-dimensional hyperspectral data and three-dimensional data in image format were used. Multiple of algorithms were employed to extract features, these were combined with the XGBoost algorithm for prediction purposes, resulting in the formation of an advanced hybrid model (Chen and Guestrin, 2016). For one-dimensional hyperspectral data (spectral), the algorithms included principal component analysis (PCA), autoencoders, and proposed one-dimensional convolutional neural network (VIT-CNN1D) (Wold et al., 1987). For three-dimensional hyperspectral data (spectral-spatial), different transfer learning techniques such as VGG16, Inception-ResNet, and a proposed two-dimensional convolutional neural network model (VIT-CNN2D) was applied (Simonyan and Zisserman, 2014).

For model assessment, the complete dataset of both years measured was split into two parts: 80% for training and 20% for testing. During the training of all the models, a resampling strategy employing 10-fold cross-validation was implemented (Fushiki, 2011). Additionally, hyperparameter optimization was conducted to select the most suitable parameters for each model. To evaluate the performance of the models, three important evaluation metrics were used to analyze both the training and testing predictions. These metrics were Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R²).

[image: Formula for root mean square error (RMSE) displayed as: RMSE equals the square root of the sum from i equals one to n of the squared differences between actual values (y sub i) and predicted values (ŷ sub i), divided by n.]	

[image: The image shows a mathematical formula for Mean Absolute Error (MAE): MAE equals one over n times the summation from i equals one to n of the absolute difference between y sub i and y-hat sub i.]	

[image: The formula represents the coefficient of determination, \( R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i \left( y_i - \frac{1}{n} \sum_{j=1}^n y_j \right)^2} \), measuring the goodness of fit in regression analysis.]	





2.6 Model feature extraction and prediction assignment algorithms



2.6.1 Principal component analysis

Fifteen PC components, that captured more than 99% of total variation of spectral features were selected for this study to predict photosynthetic parameters. PCA implementation was done in Python using the scikit-learn library (Pedregosa et al., 2011).




2.6.2 Autoencoders

The autoencoder models used in this study were built using a set of hyperparameters, allowing for the broad assessment of various architectural configurations. Two dense layers with the activation function Rectified Linear Input (ReLU) were designed for encoders (Agarap, 2018). Hyperparameters were used to specify the units for these layers. For the decoder, a single dense layer followed by the final output layer, units were set at 50. The parameters for the model compilation were the mean squared error (MSE) as the loss function and Adam as the optimizer (Kingma and Ba, 2014). Similarly, the ‘kerastuner’ package from TensorFlow was used to optimize an autoencoder model’s hyperparameters (Table 2) (Abadi et al., 2016).

Table 2 | Hyperparameters and specifications for each model selection using random search cross validation.


[image: Table listing models, hyperparameters, and specifications. Autoencoders have units with a range of thirty-two to two hundred fifty-six. VIT-CNN1D and VIT-CNN2D list filters, kernel size, learning rate, optimizer as Adam, epoch set to one hundred, and mean squared error. XGBoost includes maxdepth, learning rate, n_estimators, min_child_weight, and reg_alpha, with respective ranges provided for each hyperparameter.]



2.6.3 VIT-CNN1D model

The 1D-CNN models were implemented to derive pattern(s) or information across the spectral dimensions of hyperspectral data for prediction of photosynthetic parameters. This algorithm is defined as VIT-CNN1D, which was specifically designed for feature extraction from one-dimensional hyperspectral data. To meet the modeling goals of this research, the 1D-CNN was employed with hyperparameter optimization, utilizing the Tensorflow modules ‘kerastuner’ (Abadi et al., 2016; Pon and KK, 2021). The CNN framework consisted of three convolutional layers and two pooling layers as shown in Figure 1. The Rectified Linear Input (ReLU) was employed as the convolutional output activation function (Agarap, 2018). The flattened layer was then connected to the output layer, derived with linear function. The hyper parameters i.e., filter size, kernel size and learning rate were selected using RandomSearch that operates in hyperparameter combinations at random in attempt to discover the best effective set for a given model (Table 2) (Bergstra and Bengio, 2012; Li and Talwalkar, 2020). Using 15 trials, the model with the smallest validation mean squared error was selected and flattened layer were extracted as features. The resultant spectral features were then passed on as input for prediction task for estimating photosynthetic parameters.

[image: Diagram of a VIT-CNN1D model used as a feature extractor, followed by a regression model. The flow includes an input layer, three convolution layers, two maxpooling layers, and a flattened layer. It then connects to an XGBoost model for predicting Vcmax and Jmax.]
Figure 1 | Schematic representation of two-stage machine learning model with components: a feature extraction module VIT-CNN1D (consists of three convolution layers and two pooling layers) and a regression model as XGBoost to predict Vcmax and Jmax.




2.6.4 Transfer learning approaches (VGG16, Inception-ResNet)

The VGG16 architecture was used only as a feature extraction technique, such that top layers were omitted and pre-trained weights were excluded, to implement the model from scratch on our dataset (Simonyan and Zisserman, 2014). The input dimensions of 250*250*187 were used which indicated that the model was modified to process data with more channels. The custom VGG16 configuration was used to retrieve features from original images, which were then used to feed XGBoost algorithm for the regression task (Chen and Guestrin, 2016). Similarly, the InceptionResNetV2 model (Inception-ResNet) was altered to specifically operate for this study by excluding top classification layers and pretrained weights (Szegedy et al., 2017).




2.6.5 VIT-CNN2D

The VIT-CNN2D architecture defined in this study was used for extracting features from hyperspectral data cube. Since the ground-truth data size was very small, the architecture was kept fairly simple, like the VIT-CNN1D with 3 convolutional layers and 2 pooling layers as shown in Figure 2. Similar to the previous scenarios, the Rectified Linear Input (ReLU) was used as the activation function for the convolutional output (Agarap, 2018). The hyperparameters, such as filter size, kernel size, and learning rate, were determined using RandomSearch (Table 2) (Bergstra and Bengio, 2012; Li and Talwalkar, 2020).

[image: Flowchart depicting a VIT-CNN2D model as a feature extractor for a regression model. The process starts with an image, followed by Convolution Layer 1, Maxpooling, Convolution Layer 2, Convolution Layer 3, another Maxpooling, and a Flattened Layer. The final step uses XGBoost (eXtreme Gradient Boosting) for predicting Vcmax and Jmax.]
Figure 2 | Schematic representation of two-stage machine learning model with components: a feature extraction module as VIT-CNN2D (consists of three convolution layers and two pooling layers) and a regression model as XGBoost to predict Vcmax and Jmax.




2.6.6 XGBoost

After the hyperspectral feature extraction, XGBoost was used in this study for the regression task incorporating regularization to prevent overfitting (Chen and Guestrin, 2016). Model training was performed optimizing the hyperparameters such as learning rate, tree depth, number of trees used in model and regularization terms as described in Table 2 using RandomSearch (Bergstra and Bengio, 2012). The scikit-learn library was used to implement the model workflow, consisting of 10-fold cross validation technique to ensure the robustness and generalizability of the trained model (Pedregosa et al., 2011). These parameters were used to prevent overfitting and assess the true predictive performance of the model before applying it to the test data.





2.7 Analysis with environmental data

Following the identification of the top-performing hybrid model during the initial phase analysis, chlorophyll concentration (CC) and weather parameters (temperature, SR, and RH) were incorporated to test their ability to improve model performance. To predict Vcmax and Jmax, the model was tested in two ways: first by incorporating chlorophyll values with the spectral data, and second by incorporating weather variables with the spectral data.





3 Results



3.1 Ground-truth measures for main factors of rootstocks genotype and daylength

The distribution pattern of Vcmax and Jmax varied between grafted rootstock genotypes for 2022 and 2023 (Figures 3A, B). ‘Marquette’ on 3309C showed higher values compared to other combinations, including the homograft of ‘Marquette’ for both photosynthetic parameters. The main effects of genotype and daylength on Vcmax were significant and indicated the scion maximum rate of RuBP carboxylation differed significantly as influenced by rootstock genotypes (Table 3). Post-hoc analysis revealed that ‘Marquette’ on 3309C rootstock had the greatest average value for Vcmax. ‘Marquette’ on 5C and SO4 had the lowest Vcmax and differed considerably from the other graft combinations. A similar trend was observed for Jmax, both the main effects for rootstock genotype and daylength were significant and the greatest average was observed for ‘Marquette’ on 3309C and 1103P, while the lowest average was observed for ‘Marquette’ on 5C.

[image: Box and violin plots compare data from 2022 (green) and 2023 (purple). Panel A shows Vcmax values, and Panel B shows Jmax values for six different conditions: M_1103P, M_3309C, M_5C, M_FREE, M_M, and M_SO4. Both panels indicate variability and distribution differences between years.]
Figure 3 | Distribution of Vcmax (A) and Jmax (B) for all rootstocks in field conditions. The measures for each genotype are the cumulative measures for four different replicates of each graft combination sampled over different daylength conditions. Year of measure 2022 (green) and 2023 (purple), V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom (FREE), SO4 and homografted to ‘Marquette’.

Table 3 | Photosynthetic parameter ANOVA.


[image: Table displaying data on rootstock genotype and daylength effects on measurements \(V_{\text{cmax}}\) and \(J_{\text{max}}\).   **A. Rootstock Genotype**: - M_1103P: \(V_{\text{cmax}} = 0.31\text{ab}\), \(J_{\text{max}} = 0.17\text{ab}\). - M_3309C: \(V_{\text{cmax}} = 0.35\text{a}\), \(J_{\text{max}} = 0.51\text{a}\). - M_5C: \(V_{\text{cmax}} = -0.32\text{c}\), \(J_{\text{max}} = -0.28\text{bc}\). - M_Freedom: \(V_{\text{cmax}} = -0.16\text{bc}\), \(J_{\text{max}} = -0.16\text{bc}\). - M_SO4: \(V_{\text{cmax}} = -0.19\text{c}\), \(J_{\text{max}} = -0.28\text{c}\). - M_Marquette: \(V_{\text{cmax}} = -0.02\text{abc}\), \(J_{\text{max}} = 0.0\text{bc}\).  **B. Daylength**: - 15h: \(V_{\text{cmax}} = 0.73\text{a}\), \(J_{\text{max}} = 0.91\text{a}\). - 14h: \(V_{\text{cmax}} = 0.63\text{a}\), \(J_{\text{max}} = 0.51\text{b}\). - 13h: \(V_{\text{cmax}} = -0.34\text{b}\), \(J_{\text{max}} = -0.46\text{c}\). - 12h: \(V_{\text{cmax}} = -1.02\text{c}\), \(J_{\text{max}} = -0.96\text{d}\).]
A decrease in Vcmax was detected for ‘Marquette’ on all genotypes including the homograft as the daylength hours progressed from 15 h to 12 h (Figure 4A). Similarly, a decrease in Jmax was observed with daylength hour progression (Figure 4B). Post-hoc analysis also revealed that significant differences were observed across the different daylengths (Table 3).

[image: Line graphs comparing data from 2022 and 2023, displayed in two sets titled A and B. Each set contains six panels showing different trends in Vcmax and Jmax in relation to daylength across varieties: M_1103P, M_3309C, M_5C, M_FREE, M_M, and M_SO4. Green lines represent 2022, and purple lines represent 2023. The graphs depict a general decrease in values as daylength decreases from 15 to 12 hours. Error bars indicate variability.]
Figure 4 | Temporal trend of Vcmax (A) and Jmax (B) across the decreasing daylength in field conditions The measures for each rootstock combination in year 2022 (green) and 2023 (purple); mean values calculated for each daylength interval with standard error of the mean; M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, SO4 and homografted to ‘Marquette’.




3.2 Rootstock genotype induced hyperspectral response differences

The genotypes showed different spectral signatures in response to a declining daylength (Figure 5). The genotype response is identified as reflectance on the y-axis in relation to the spectral bands measured on the x-axis. The variability around the central tendency is observed as the shaded region around the mean response for each wavelength (solid line) band. The greater the variability around the mean suggested that the response varied more across replicates or daylength conditions. The red-edge region, which is typically associated with chlorophyll absorption, is characterized by a substantial increase in reflectance that starts at approximately 700 nm across all genotypes. The spectra exhibit typical plant reflectance patterns, with peaks and troughs that correspond to specific absorption features, and their structure is consistent across genotypes. Nevertheless, there was genotype variation in wavelength reflectance patterns observed in 2022 (Figure 5A) and 2023 (Figure 5B). Also, there was a greater variation range for 2022 than in 2023. Vines of ‘Marquette’ grafted to 5C had wider regions (greater variation) than the other rootstocks for both years. The PCA (Figure 6A) revealed first principal component (PC1), explaining 75.25% of the variance in the data, while the second principal component (PC2), explaining 17.66% of the variance. The PCA space showed that the spectral characteristics of genotypes like ‘Marquette’ on 1103P and ‘Marquette’ on FREE were significantly different from those of other genotypes. On further analysis, variation associated with the first two principal components was primarily attributable to fluctuations in the 580 nm and 710 nm regions as shown by loading plots (Figure 6B). The variations in the spectral signature (Figures 6C, D) were significantly influenced by daylength. In both years, data for 15 h was in the lower right quartile of the PCA plot separated from the other daylengths (Figures 6C, D).

[image: Nine spectral reflectance graphs labeled A and B showing six genotypes: M_1103P, M_3309C, M_5C, M_FREE, M_M, and M_SO4. Each graph plots reflectance against wavelength (400 to 1000 nm) with color-coded lines for different genotypes. Variations in reflectance patterns among genotypes are visible.]
Figure 5 | Average spectral signature for each rootstock combination in field at different daylengths. The hyperspectral reflectance derived for each rootstock combination in 2022 (A) and 2023 (B); M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, SO4 and homografted to ‘Marquette’.

[image: Four-panel image displaying data visualizations. Panel A shows a scatter plot with labels like M_3309C and M_1103P against PC1 and PC2 axes. Panel B presents two line graphs, PC1 and PC2, showing values across wavelengths from 410 to 960 nm. Panel C, labeled 2022, features a scatter plot with data points labeled similarly to panel A. Panel D, labeled 2023, displays another scatter plot with shifted positions of the same labels. Each scatter plot shows variations in data points over time.]
Figure 6 | Principal component of spectral signature response as influenced by rootstock. (A) Data from all daylengths in 2022 and 2023; (B) PCA loadings from PC1 and PC2 derived from PCA in panel A; (C, D) PCA of 2022 and 2023 grafted rootstock response for all daylengths, 15h (black), 14 h (green), 13 h (blue), 12 h (pink). M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103P, 3309C, 5C, Freedom, and SO4 and homografted to ‘Marquette’.




3.3 Prediction of photosynthetic parameters



3.3.1 Prediction of Vcmax and Jmax using different feature extraction algorithms

Of the feature extraction algorithms,VIT-CNN1D model acquired the highest R² value of 0.91 on the training set for predicting Vcmax (Table 4) This indicated that the model accounted for 91% of the variability in the data. VIT-CNN1D demonstrated the lowest Root Mean Square Error (7.23) and Mean Absolute Error (5.92) on the test set, indicating a robust prediction capability and a high level of generalization to test data. Figure 7 displays a comparison between the measured Vcmax, and the predictions made by various algorithms for both training (Figure 7A) and test performance (Figure 7B). Likewise, for Jmax estimation, the VIT-CNN1D model performed best in terms of test RMSE (14.79) and exhibited a competitive test MAE (12.09), reinforcing its robustness across different types of predictions (Table 4 and Figure 8). Considering the test R2 among the various algorithms showed that VIT-CNN1D had the highest value for both Vcmax (0.59) and Jmax (0.60) predictions.

Table 4 | Model performance for training and test dataset used for the prediction of maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax).


[image: Table comparing model performance metrics for \( V_{cmax} \) and \( J_{max} \) prediction. Metrics include \( R^2 \), RMSE, and MAE for both training and test phases. Models include PCA, Autoencoders, VIT-CNN1D, VGG16, InceptionResNet, and VIT-CNN2D. Performance varies across models, with higher \( R^2 \) values indicating better fit, and lower RMSE and MAE values indicating more accurate predictions. Each model type acts as a feature extractor integrated with XGBoost.]
[image: Two panels (A and B) each with six scatter plots comparing predicted and measured Vcmax using different models: PCA, Autoencoders, VIT-CNN1D, VGG16, Inception-ResNet, and VIT-CNN2D. Panel A shows stronger correlation with R-squared values around 0.9, while Panel B shows weaker correlation with R-squared values below 0.6. All plots include RMSE values and a diagonal reference line.]
Figure 7 | Actual Vcmax versus predicted Vcmax that were retrieved for different feature extraction algorithms. Training performance (A) and test performance (B) for each model type. The green dashed line represents the ideal prediction where predicted values perfectly match the measured ones. Evaluation metrics R2 and RMSE are on top left of each model graphic.

[image: Graphs comparing predicted versus measured Jmax values for different models.   In 8(A), six plots display data for PCA, Autoencoders, VIT-CNN1D, VGG16, Inception-ResNet, and VIT-CNN2D, showing strong correlations with R-squared values around 0.87 to 0.91 and RMSE values ranging from 8.17 to 9.93.  In 8(B), six plots show weaker correlations with R-squared values from 0.37 to 0.60 and higher RMSE values from 14.79 to 21.92. Each plot features a green dashed line indicating the trend.]
Figure 8 | Actual Jmax versus predicted Jmax retrieved for each feature extraction algorithms. Training performance (A) and test performance (B) for each model type. The green dashed line represents the ideal prediction where predicted values perfectly match the measured ones. Evaluation metrics R2 and RMSE are on top left of each model graphic.

Comparison of other feature extraction algorithms used for one dimensional hyperspectral data, indicated that PCA showed a strong ability to explain variance in training data but did not perform well in test data in contrast to Autoencoders and VIT-CNN1D. Autoencoders showed some improvement over PCA, but VIT-CNN1D had the lowest RMSE for test performance indicating the best overall predictive capability for both Vcmax and Jmax.

The transfer learning algorithms (VGG16 and InceptionResNet) used for feature extractions from images had greater RMSE and MAE for the test set than VIT-CNN1D, PCA, and Autoencoders (Table 4). This showed that, while they are effective for image recognition, they may not be the best fit for this specific feature extraction task. Also, VIT-CNN2D model showed improvement over transfer learning approaches but it did not perform as well as the VIT-CNN1D algorithm.




3.3.2 Integration of additional chlorophyll and weather features with the best performing VIT-CNN1D model

The ground-truth photosynthetic parameter and hyperspectral data were collected across the growing season which included a gradually decreasing daylength, temperature, SR, and variable RH. Chlorophyll concentration was relatively similar in concentration across the ‘Marquette’_rootstock combinations (Supplementary Figure 1A), although it appeared to decrease at 12h daylength (Supplementary Figure 1B). Solar radiation (SR) was lower in 2023 than 2022 at 12h daylength and RH was greater at the 12 h daylength in 2023 than in 2022 (Supplementary Figures 3, 4). Addition of these parameters into the best performing model VIT-CNN1D resulted in small changes in model performance (Figure 9). The Vcmax prediction increased the training and test performance slightly with R2 values of 0.91 to 0.92 and 0.60 to 0.62, respectively across the spectral + chlorophyll, and spectral + temperature + RH + SR feature sets (Table 5). The test RMSE and MAE for Vcmax were comparable or lower with the addition of chlorophyll and slightly higher with the addition of weather parameters. The performance of VIT-CNN1D with consideration of chlorophyll and weather parameters for Jmax exhibits a comparable pattern. The training R2 values for model are similar for both the spectral and spectral plus chlorophyll and spectral plus weather feature sets (Table 5). Test performance however showed an increased R2 with variable RMSE and MAE that were greater or less than the spectral input alone. The variability of RMSE and MAE in training and testing for these additional features suggested the possibility of overfitting and indicated the importance of refining the model or collecting more data to enhance its ability to make accurate predictions for both Vcmax and Jmax.

[image: Four scatter plots comparing predicted vs. measured Vcmax and Jmax values. In (A), the first row uses spectral and chlorophyll data with R-squared values of 0.91 and 0.92. The second row includes temperature, RH, and SR data, slightly improving the R-squared. In (B), similar plots with lower R-squared values (0.60 to 0.65), showing a weaker correlation and higher RMSEs. All graphs feature purple data points and a green dashed line.]
Figure 9 | Actual versus predicted plots retrieved for Vcmax and Jmax using VIT-CNN1D + XGBoost. Training performance (A) and test performance (B) for each model type. The green dashed line represents the ideal prediction where predicted values perfectly match the measured ones. Evaluation metrics R2 and RMSE are on top left of each model graphic.

Table 5 | Model performance for training and test dataset used for the prediction of maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax).


[image: Table comparing training and test performance of four prediction models using different features. Metrics include R², RMSE, and MAE for both training and test phases. Vcmax Spectral + Chlorophyll shows R² of 0.91 and 0.60; RMSE of 4.00 and 7.14; MAE of 3.02 and 6.08. Vcmax Spectral + Temperature + RH + SR has R² of 0.92 and 0.62; RMSE of 3.75 and 7.62; MAE of 3.03 and 6.40. Jmax Spectral + Chlorophyll shows R² of 0.92 and 0.62; RMSE of 7.59 and 14.39; MAE of 5.86 and 12.25. Jmax Spectral + Temperature + RH + SR presents R² of 0.91 and 0.65; RMSE of 7.66 and 15.15; MAE of 6.26 and 11.66. Each set of results reflects different model input features.]





4 Discussion

‘Marquette’_3309C and ‘Marquette’_1103P had the highest average value for both Vcmax and Jmax, while ‘Marquette’_5C and ‘Marquette’_SO4 had the lowest average value and indicated differences in photosynthetic performance. The results from post-hoc analysis was particularly meaningful and indicated differences in rootstock genotype influence on scion photosynthesis. The rootstock genotypes displayed different levels of photosynthetic efficiency representing a conferred rootstock impact on the structure and function of the photosynthetic machinery in the scion. In accordance with these findings, when comparing other physiological measures like stomatal conductance to water vapor and net assimilation rate among these genotypes in the same settings, there was significant difference between their performances. It was observed in another study, that Marquette on 3309C and 1103P exhibited the highest net assimilation rate and stomatal conductance, which are direct measurements of the physiological processes associated with photosynthesis (Sharma et al., 2024). Many studies of grapevine rootstock’s influence on photosynthesis are based on stress treatment conditions in comparison to an unstressed control (da Silva et al., 2018; Prinsi et al., 2021). Rootstocks are found to alter the plant’s response to physiological stress conditions which possibly leads to reduction of photosynthetic efficiency through stomatal and non-stomatal limitations (Dinis et al., 2018; Tombesi et al., 2019). In this study with no intentional stress treatments, the rootstock genotypes conferred significant differences in scion’s photosynthetic efficiency. This implied that there is a genetic basis underlying rootstock influence on photosynthetic parameters. Similarly, Pou et al. (2022) show in V. vinifera ‘Tempranillo’ 30-year-old vines, on four different rootstocks, that gas exchange parameters, vine vigor, and chlorophyll content is influenced by rootstock genotype. Like these findings, our results suggested that the rootstocks with a V. rupestris X V. riparia pedigree (1103P and 3309C, Table 1) had significantly increased photosynthetic performance over those with a V. berlanderi x V. riparia pedigree (5C and SO4). In this study, it is not possible to determine whether it is V. rupestris, V. berlanderi, V. riparia, or an interaction of the different species in the rootstocks genetic makeup that resulted in the conferred photosynthetic difference. Thus, it is crucial to conduct comprehensive, locale-specific, long-term research due to the complex chain of interactions among the rootstock, the scion cultivar, and the environmental conditions before recommending a specific rootstock for a given set of soil and climatic conditions.

The PCA results demonstrated the effectiveness of hyperspectral imaging in distinguishing genotypes according to their photosynthetic efficacy (Figure 6). Through distinct clustering, the PCA score plots for different years highlighted the variability in photosynthetic responses across genotypes and environmental conditions. The detailed spectral information and subtle differences in their signature patterns obtained through hyperspectral imaging helped to differentiate genotypes. Despite extensive research, the precise physiological signals captured by hyperspectral reflectance for predicting Vcmax remain poorly understood (Meacham-Hensold et al., 2020). So far, Predictive models developed have consistently identified significant wavelengths in the visible (400–700 nm) and red-edge (700–740 nm) regions, areas typically associated with pigment content (Barnes et al., 2017; Ely et al., 2019; Meacham-Hensold et al., 2019). Similar to these finding, the loadings plot (Figure 6B) offered an insight into the specific wavelengths that were most indicative of these differences; the peaks corresponding to the spectral features of chlorophyll (approximately 710 nm) and carotenoids (approximately 460 nm) (Falcioni et al., 2023) as well as the NIR region at 760 nm, which is indicative of other physiological properties related to photosynthetic efficiency (Sexton et al., 2021). The changes in PCA plots from 2022 to 2023 showed how hyperspectral imaging can record changes in photosynthetic efficiency over time. These changes could be caused by environmental factors or changes in the scions’ development.

Research related to validation of hyperspectral data as indirect measure of photosynthesis is very limited in grapevines (Yang et al., 2022). Validation analysis of indirect measures of photosynthesis in this study indicated that there was a relationship between hyperspectral data and direct measured photosynthetic parameters. The best performing model VIT-CNN1D was able to explain around ~60% variation in test dataset for both parameters. In contrast, estimation of Vcmax and Jmax for Populus species using leaf-level hyperspectral data show that the best model had R2 value of 0.51 and 0.54, respectively (Kyaw et al., 2022). Meacham-Hensold et al. (2020) show that the hyperspectral data retrieved from sunlit section of Nicotiana tabacum, yielded an R2 0.79 for Vcmax and an R2 of 0.59 for Jmax using partial least square regression model. However, the Nicotiana tabacum study used transgenic lines with genetically altered photosynthetic pathways, thus were able to capture greater photosynthetic variability, in contrast to our common scion grafted grapevine research. Developing trait values with intentionally modified photosynthetic qualities in an ungrafted plant offers the models a potentially more simplified prediction goal. In this study, the vines although fruiting were relatively young and might still be undergoing changes, as the vine structure continues to mature in their site, that may affect the influence of its rootstock on photosynthesis. However, it is noted that vineyards with 30-year-old ‘Tempranillo’ vines grafted on 1103P show higher net photosynthetic rate than other less vigorous rootstocks (Pou et al., 2022). Similarly, we show a greater Vcmax and Jmax in ‘Marquette’ on 1103P than ‘Marquette’ on 5C, SO4 or Freedom rootstocks. Further studies through time will be needed to determine if differences identified will remain through the life a vine and to increase confidence of the use of hyperspectral imagery to measure photosynthesis in long- lived perennial plants in diverse geographical locations.

A comparison of the PCA, autoencoders and VIT-CNN1D algorithms, all having one-dimensional hyperspectral data as input indicated that VIT-CNN1D had the best model performance in both training and test dataset as compared to PCA and autoencoders. The working approach of a 1D-CNN includes a convolutional filter (or kernel) moving across the one-dimensional input data where at each position it executes a multiplication of elements and then combines the results into a single output value. As the convolutional filters move across the input, they can extract important features (such as specific patterns) from the data. In our analysis, the VIT-CNN1D architecture, with the potential to detect sequential patterns in the hyperspectral data, gave it an advantage over PCA and autoencoders which do not account for the inherent order of data points. Deep learning models like CNN are shown to have better prediction accuracies as compared to traditional machine learning approaches (Kumar et al., 2020). 1D-CNNs can learn a hierarchy of features, in contrast to PCA, which takes a linear approach, and Autoencoders, which are usually shallow in comparison to deep CNNs. This implies that 1D-CNNs are able to identify intricate patterns across various scales, identifying both local and global characteristics in sequential data (Kiranyaz et al., 2021). Likewise, VIT-CNN1D outperformed other transfer learning models and the VIT-CNN2D algorithm, used for image-based feature extraction, in this study. Two-dimensional deep convolutional neural networks (2D-CNNs) are specifically effective in addressing computer-vision issues, directly using the raw image as input without any manual preprocessing. The convolutional layer in 2D-CNN performs feature extraction through a combination of several linear and nonlinear algorithms applied using activation function. To spatially compress the input volume, the pooling layers determine the maximum (max pooling) or average (average pooling) value in the neighborhood pixels. This helps to decrease the dimensionality of the maps, thus decreasing the complexity of their computation. However, in order to achieve robust performance for 2D-CNN requires an extensive number of training samples (Alzubaidi et al., 2020, 2021). One of the our study’s limitations lies in the lower number of ground-truth samples, as biological data for direct physiological measures are very time-consuming to acquire and hence difficult to gather in a given timeframe (Haworth et al., 2023). VIT-CNN1D had fewer parameters compared to other 2D-CNN based algorithms making it more efficient with limited training samples (Kiranyaz et al., 2019; Wang et al., 2017). An additional reason for superior performance of VIT-CNN1D over VIT-CNN2D could be that the photosynthetic measures in this case are more correlated to the spectral features rather than the spatial features.

In this study, the ground-truth photosynthetic parameter and hyperspectral data were collected across the growing season; therefore, it was important to consider chlorophyll concentration and environmental factors. The model metrics and additional parameters (chlorophyll concentration or temperature, HR, and SR), did not drastically alter the model’s performance. Many studies use chlorophyll content as proxy for photosynthetic activity parameter (Mandal and Dutta, 2020; Prilianti et al., 2021; Shi et al., 2022). The test R2 prediction increased slightly for Vcmax and Jmax with a decrease in RMSE with the addition of chlorophyll. The addition of weather parameters to the VIT-CNN1D model provided more mixed results with the test R2, RMSE and MAE varying little for Vcmax and Jmax. Several studies (Bassow and Bazzaz, 1998; Serbin et al., 2012), show that “biophysical” parameters measured at leaf level are directly associated with photosynthesis. The emphasis of our research was on broad physical parameters associated with weather conditions. Although these parameters are noteworthy, they do not cover the entire range of factors that impact the phenomena of photosynthesis. To attain greater comprehension, prospective research should attempt to integrate measurements of leaf-level biophysical parameters. These factors encompass internal leaf structure, stomatal density, and leaf temperature, as well as incoming photosynthetically active radiation, among others.




5 Conclusions

The effect of rootstock mediation on the photosynthesis of scion is an important topic in viticulture due to the opportunity it offers for selection and identification of rootstocks that can improve scion response to a changing climate. This study investigated common scion photosynthetic measures with different rootstock combinations, leveraging two different methodological approaches: direct measures through IRGA and indirect measures using hyperspectral remote sensing. The study also examined the efficacy of indirect measurements in different environments and verified its validity through the integration of multiple AI/computer vision algorithms. Comprehensively, the following are significant findings derived from this research: 1. Across two growing seasons, substantial variation in photosynthetic efficacy (Vcmax and Jmax) was observed for six distinct ‘Marquette’_rootstock combinations across four daylengths. This suggested that the rootstock genotype exhibits a significant influence on the scion physiological response related to photosynthesis. Similarly, substantial variation in hyperspectral signature was observed among graft combinations relative to the rootstock genotypes. Both direct and indirect measures were hugely influenced by daylength conditions in all graft combinations. 2. To derive spectral and spatial features, numerous feature extraction algorithms were evaluated and VIT-CNN1D demonstrated the greatest potential with an R2 of 0.60 for both parameters. Spatial feature extraction models, namely VGG16, Inception-ResNet, and VIT-CNN2D, exhibited subpar performance due to their restricted training samples and the lack of association between response variables and spatial relationships. 3. Incorporating additional input features of chlorophyll gave a small improvement in training and test performance in contrast to the weather parameters. This study highlights the substantial impact of rootstock genotype on the photosynthetic efficacy of scion plants, indicating that the selection of suitable rootstocks can improve the resilience of vineyards to climate change. By utilizing AI algorithms to validate hyperspectral remote sensing, the research reflects the potential for nondestructive, efficient monitoring techniques in viticulture. The substantial influence of daylength on photosynthetic measures shows the necessity of considering whole growing season environmental factors when selecting rootstocks. Future recommendations include the following: conducting thorough rootstock trials, optimizing hyperspectral imaging and AI models, integrating environmental data, and leveraging chlorophyll and pigment data to continuously improve the nondestructive assessment of photosynthesis.
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Fine classification and phenological information of rice paddy are of great significance for precision agricultural management. General compact polarimetric (CP) synthetic aperture radar (SAR) offers the advantage of providing rich polarimetric information, making it an important means of monitoring rice growth. Therefore, in response to the current challenges of difficulty in rice type classification and the small differences in phenological polarimetric characteristics, a novel strategy for fine classification and phenological analysis of rice paddy is proposed. This strategy thoroughly explores the polarimetric information of general CP SAR data and the target scattering characterization capabilities under different imaging modes. Firstly, the general CP SAR data is formalized using the standard CP descriptors, followed by the extraction of general CP features through the ΔαB/αB target decomposition method. optimal CP features are generated to achieve fine classification of rice paddy. Finally, 6 phenological stages of rice are analyzed based on the general CP features. The experiment results of rice classification show that the classification accuracy based on this strategy exceeds 90%, with a Kappa coefficient above 0.88. The highest classification accuracies were observed for transplanting hybrid rice paddy (T-H) and direct-sown japonica rice paddy (D-J), at 80.9% and 89.9%, respectively. The phenological evolution rule of the two rice types indicate that from early June (seedling stage) to late July (elongation stage), the CP feature variation trends of T-H and D-J are generally consistent. However, from October (mature stage) to November (harvest stage), the variation trends of the CP features for T-H and D-J are significantly different. The study found that from the booting-heading stage to the harvest stage, the linear π/4 mode outperforms circular and elliptical polarimetric modes in distinguishing different types of rice. Throughout the entire phenological period of rice growth, CP SAR of linear π/4 mode is surpasses that of other linear modes in discriminating different type of rice. The proposed strategy enables high-precision fine classification rice paddy, and the extracted general CP αB parameter effectively reflects the phenological change trends in rice growth.
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1 Introduction

Rice is the primary staple crop worldwide, covering approximately 15% of the world’s total arable land. Furthermore, over 50% of the global population depends on rice as their primary food source (Maclean et al., 2002). Accurate information on the fine classification of rice paddies can enable precise and periodic estimation of rice yields. This information directly influences the government’s ability to formulate appropriate policies for grain production, distribution, storage, and transportation. Consequently, it serves as a crucial foundation for scientifically predicting and managing grain prices. Furthermore, rice phenology estimation is an important part of rice field management system (Mosleh et al., 2015). It not only helps field managers plan and implement different field management activities (such as irrigation, fertilization, etc.) in a timely manner, but also provides essential timing and crop growth references for yield estimates. In recent years, remote sensing technology has gradually replaced the traditional field observation method with its wide coverage and short revisiting period. Moreover, all-day and all-weather radar remote sensing has become an effective means of monitoring and estimating rice yield (Lopez-Sanchez et al., 2014). Fine classification and phenological analysis of rice paddies utilizing SAR data are particularly advantageous due to SAR’s capability to penetrate clouds and fog, enabling continuous monitoring of rice growth in all weather conditions. Furthermore, the characteristic parameters of polarimetric SAR are highly sensitive to the morphological structure and water content of the rice canopy, enhancing the accuracy of classification and analysis of rice paddies.

At present, the research on rice mapping based on fully polarimetric (FP) SAR data has gradually matured (Zhang et al., 2009; Yang et al., 2008; Li et al., 2014; Bouvet and Toan, 2011). As a new imaging radar system, CP SAR has emerged as one of the crucial development trends in the next generation of earth observation SAR systems. It transmits a polarization wave and receives two orthogonal polarization waves, which effectively reduces the complexity and energy consumption of SAR system and reduces the sensor volume. Currently, the most widely used CP SAR modes are π/4 mode (Souyris et al., 2005; Souyris and Mingot, 2002), DCP (Raney, 2006) and CTLR (Stacy and Press Austra, 2006; Raney, 2007). In agricultural radar remote sensing, rice classification and phenology estimation using CP SAR data is becoming a hotspot of current research (Yang et al., 2014; Deepika et al., 2015; Guo et al., 2021, Guo et al., 2022). However, all these studies are based on a single CP mode. Nowadays, there is no study in fine classification and phenology estimation of rice paddies based on the general CP mode. At present, there is a paucity of research focused on the fine classification and phenology estimation of rice paddies utilizing the general CP mode. Fortunately, our recent work (Yin et al., 2019) introduced a novel formalism for general CP SAR, paving the way for exploring the potential of CP SAR data from arbitrary electromagnetic wave transceiver modes in rice classification and phenology estimation.

Complex land-cover classification for FP SAR and CP SAR data primarily relies on intensity and polarimetric information. Various polarimetric decomposition methods are commonly employed to extract polarimetric characteristic parameters, enhancing the use of polarimetric information in classification tasks. Numerous polarimetric decomposition methods for the FP SAR data, have been developed based on target complexity. These methods include the two-component decomposition method based on Kennaugh matrix (Huynen, 1990; Holm and Barnes, 1988; Yang et al., 2006), decomposition methods using covariance matrix C3 or coherence matrix T3 based on scattering models (Freeman and Durden, 1998; Yamaguchi et al., 2005, Yamaguchi et al., 2006), eigenvector or eigenvalue analysis methods based on covariance matrix C3 or coherence matrix T3 (Cloude, 1985; Cloude and Pottier, 1996; van Zyl, 1993) and coherent decomposition methods based on scattering matrix S (Krogager, 1990; Cameron and Leung, 1990; Cameron and Rais, 2006; Touzi and Charbonneau, 2002). These decomposition methods are used to extract polarimetric features for land classification. Currently, there are two main polarimetric decomposition methods for CP SAR data. The first method involves reconstructing CP SAR into pseudo fully polarimetric SAR, followed by polarimetric decomposition using FP decomposition methods to extract polarimetric parameters. The second method involves directly performing polarimetric decomposition on the CP SAR data. Recently, few polarimetric decomposition methods have been developed for CP SAR, and most of them apply only to a single mode of compact polarization, such as m-χ decomposition (Raney et al., 2012), m-δ decomposition (Raney, 2007; Charbonneau et al., 2010) and m-αS decomposition (Cloude et al., 2012). However, these decomposition methods are only applicable to CP SAR of circular mode, and cannot be directly applied to CP SAR data in other modes without incident wave-based modification. We (Yin and Yang, 2020) developed a αS-ϕsdecomposition method, which expanded the m-αS decomposition method from circular polarization mode to π/4 mode. Therefore, we note that currently, few polarimetric decomposition methods can be directly applied to CP SAR of different modes as well as FP SAR data. We (Yin et al., 2016) developed a decomposition method applied to FP SAR data, achieving good results in identifying and separating target scattering mechanisms. Subsequently, we (Yin et al., 2019) modified the ΔαB/αB target decomposition method, enabling its application to CP SAR data in general CP mode.

Given the universality and robustness of ΔαB/αB method in both FP SAR and multi-mode CP SAR data, we introduced this method into the fine classification of multi-temporal rice paddy and phenological analysis of rice. Moreover, we the first time explored the ability of CP SAR data of arbitrary electromagnetic wave transceiver modes in rice classification and phenological analysis. We also extracted and analyzed the six temporal ΔαB and αB parameters of T-H and D-J based on FP SAR and general CP SAR. For fine classification of rice paddy, ΔαB and αB parameters were analyzed for distinguishing of T-H and D-J based on FP SAR data, CP SAR data of π/4 and CTLR modes. The Support Vector Machine (SVM) method was used to carry out a classification experiment based on the optimal ΔαB and αB parameters under the three kinds of SAR data (FP SAR, CP SAR of CTLR mode and π/4 mode). The classification results were then verified and evaluated. For phenological analysis of two types of rice, we analyzed the ΔαB and αB of general CP SAR across multiple phenological periods, including four CP modes: circular mode, linear π/4 mode and two kinds of ellipse modes. And we obtained the change rule of ΔαB and αB of two types of rice paddies in the phenological periods under multiple CP modes.




2 Study area and data

Our research area is located around Jinhu, Huai ‘an, Jiangsu, China, covering approximately 40 km × 30 km (Figure 1). The central geographic coordinate of this area is 33°07 ‘05 “N, 118°59′55.14″E. The climate of the study area is classified as a subtropical temperate monsoon climate zone, with an average annual precipitation of 1085 mm. In terms of crops, the main crop in this area is rice with planting pattern once a year. Due to different planting methods, planting habits and rice varieties, this area mainly includes two types of rice paddies, namely, transplanting hybrid rice paddy (T-H) and direct-sown japonica rice paddy (D-J). In terms of transplanting paddy, rice seedlings need to be cultivated in nursery in advance, and then transplanted by artificial or mechanical transplanting. Besides, the row and pier spacing are approximately 30 cm and 15 cm. And, most of these rice seedlings are hybrid rice (e.g. ‘LIANGYOU-898’ and ‘XIEYOU-9308’) with growth cycle of about 120 days. In 2015, the T-H rice growth cycle spanned from mid-June to mid-October. For sowing paddy, rice seeds or small seedlings are directly sowed. Compared with the transplanting paddy, the rice seedlings had no obvious row-column rule with random uniform distribution. Meanwhile, these rice seeds or small seedlings are mostly japonica rice. (e.g. ‘HUAIDAO-5’ and ‘NANJING-9108’) with growth cycle of about 150 days. In 2015, the T-H rice growth cycle spanned from mid-June to early November. Figure 2 shows field photos of two types of rice. We can see the difference between the two types of rice in the field photo in two phenological stages. In addition to the two types of rice paddies, the study area includes three other land cover types: urban, water and shoal naked land (SNL). Since the growth cycle of rice spans from June to November, we selected six temporal RADARSAT-2 C band FP SAR data. The FP SAR data parameters are shown in Table 1.

[image: Map of China highlighting a specific region in red. The right panel shows a detailed satellite image of the highlighted area, with grids and a river running through it. Coordinates are marked around the image.]
Figure 1 | The color composite images [FP SAR VV (Red), VH (Green), and HH (Blue)] of the backscattering coefficients of FP SAR data on July 30, 2015.

[image: Panel a shows young rice plants growing in flooded rows. Panel b displays mature rice plants densely packed in water. Panel c features sparse rice growth on dry, patchy soil. Panel d shows dense, lush rice plants growing on damp soil.]
Figure 2 | Field photos of two types of rice (A) Seedling stage of T-H; (B) Early tillering stage of T-H; (C) Seedling stage of D-J; (D) Early tillering stage of D-J).

Table 1 | FP SAR data parameters of multi-temporal RADARSAT-2.


[image: Table detailing rice phenology stages with corresponding data acquisition dates, day of year (DoY), imaging mode, pixel spacing, and incidence angles. Dates range from June 12, 2015, to November 3, 2015. The imaging mode is FQ20W with pixel spacing of 5.2 by 7.6 meters and incidence angles from 38 to 41 degrees. Phenology stages progress from seedling to harvest.]
Ground experiments were conducted as the satellite passed over the study area. High-precision GPS was used to collect the geographic coordinates of 42 rice parcels, including 28 T-H and 14 D-J parcels. Each parcel covers an area of more than 100 m × 100 m, ensuring sufficient pixel coverage. In addition, we also collected the geographic information of 8 water, 8 urban and 8 SNL parcels. In this study, the T-H, D-J, urban, SNL, and water parcels were divided into two groups: training and verification samples, based on their geographic coordinates. And the training and verification sets each accounted for 50% of total samples, with no overlap between the two.




3 Methodology

First, six temporal FP RADARSAT-2 data were preprocessed, including radiometric correction, geometric correction and filtering. Next, utilizing the SVM method with FP SAR data, the study area was classified into four classes: rice, water, SNL, and unban. At the same time, we used general compact polarimetric descriptors to simulate the FP SAR data in the rice area, thereby obtaining general CP SAR data. Since our study focuses on the two types of rice paddies, we masked the rice class using the classification results of the SVM method. Then, the ΔαB/αB target decomposition method was introduced to carry out polarimetric decomposition for six temporal FP SAR data and general CP SAR data. Afterwards, using ΔαB/αB target decomposition method on general CP SAR data, we performed fine classification and phenological analysis of rice paddies. For fine classification of rice paddy, ΔαB and αB parameters were analyzed for distinguishing of T-H and D-J based on FP SAR data, CP SAR data of π/4 and CTLR modes, and the SVM method was used to carry out a classification experiment based on the optimal ΔαB and αB parameters under the three kinds of SAR data (FP SAR, CP SAR of CTLR mode and π/4 mode). Finally, the classification results were verified and evaluated. Moreover, for phenological analysis, we analyzed the ΔαB and αB of general CP SAR, including four CP modes (circular mode, linear π/4 mode and two kinds of ellipse modes) across multiple phenological periods for both types of rice paddies. We then obtained the change rule of ΔαB and αB for two types of rice paddies throughout the phenological periods under multiple CP modes. Figure 3 shows the specific flow chart of the methodology.

[image: Flowchart of rice paddy classification using RADARSAT-2 data. The process involves data preprocessing, SVM classification, and compact polarimetric SAR data simulation. It includes geometric, radiation, and noise corrections, classification of rice and other classes, parameter optimization, and evaluation of results. The diagram highlights phenological analysis and ground experiments to distinguish rice types.]
Figure 3 | The specific flow chart.

Specifically, for preprocessing work (radiometric correction, geometric correction and filtering), the detailed parameters information of radiometric correction provided by the header file of FP SAR data are used for radiometric correction. Then the SAR image is speckle filtered using a 7×7 Lee filter. For all RADARSAT-2 FP SAR data, we extract the complex scattering matrix S based on PolSARpro software (version 6.0, https://step.esa.int/main/toolboxes/polsarpro-v6-0-biomass-edition-toolbox/). And, the preprocessing work is carried out in ENVI image processing software (version 5.3, https://www.cnblogs.com/enviidl/p/16275745.html) and PolSARpro v6.0. For SVM method, the algorithm parameters used in this study are introduced in detail in Section 3.3. Moreover, the general compact polarimetric SAR descriptors and ΔαB/αB target decomposition method are programmed in matlab software (version R2021b, https://ww2.mathworks.cn/en/products/matlab.html).



3.1 Polarimetric features



3.1.1 π/4 mode and CTLR mode

We simulated CP SAR data using FP SAR data based on π/4 mode and CTLR mode respectively. For π/4 mode, this mode transmits linear polarization waves in a 45°C direction, receiving horizontal and vertical polarization echo signals (Souyris et al., 2005; Souyris and Mingot, 2002; Wang et al., 2018). [image: Vector notation with an arrow above the letter "k" and a subscript of "π/4".] , scattering vector under π/4 mode, is expressed as

[image: Equation showing \( \bar{K}_{i/4} = \frac{1}{\sqrt{2}} [S_{HH} + S_{HV}, S_{VV} + S_{HV}]^T \).] 

where, SHH, SHV and SVV are three elements of Sinclair matrix.

For CTLR mode, this mode transmits right circular polarization and receives horizontal and vertical polarization echo signals (Raney, 2006, Raney, 2007; Cloude et al., 2012; Wang et al., 2018). [image: A vector notation with a lowercase k, overlined with an arrow, labeled with the subscript "CTLR".] , scattering vector under CTLR mode, is expressed as

[image: Equation showing \( \vec{k}_{\text{circ}} = \frac{1}{\sqrt{2}} [S_{HH} - iS_{HV}, S_{HV} - iS_{VV}]^T \), labeled as equation (2).] 

The Jones coherency matrix (C2) of CP SAR, that is, the second-order statistic of the scattering vector, can be expressed as follows:

[image: The equation is \( C_2 \equiv (k_p \cdot k_n \cdot k_r)^{(3)} \), with subscripts p, n, and r under the variables k.] 

where, [image: Vector notation representing \(\vec{k_{cp}}\), with a subscript "cp" and an arrow above the "k".]  is scattering vector of CP SAR.

For full polarimetric SAR, the radar transmits horizontal and vertical polarization waves, and receives horizontal and vertical polarization waves. In the single-station backscattering system, the three-dimensional target vector k is expressed as

[image: Mathematical expression displaying a formula: \( \bar{e} = \frac{1}{\sqrt{2}} [S_{\text{HH}} + S_{\text{VV}}, S_{\text{HH}} - S_{\text{VV}}, 2S_{\text{HV}}]^T \) labeled as equation (4).] 

The full polarization coherence matrix T can be expressed as

[image: Matrix equation depicts \( T_3 \) as a \( 3 \times 3 \) matrix with elements \( T_{11} \), \( T_{12} \), \( T_{13} \), \( T_{21} \), \( T_{22} \), \( T_{23} \), \( T_{31} \), \( T_{32} \), and \( T_{33} \). It equals the expression \( (-\mathbf{k} \mathbf{k}^T) \). Number \( (5) \) is on the right side, referencing an equation.] 

where, T* is element of coherence matrix T.




3.1.2 General compact polarimetric descriptors

The electromagnetic field is usually expressed in the form of a polarization ellipse, which contains two parameters, namely, the ellipticity angle χ and the orientation angle θ of the ellipse.

[image: \(\mathbf{E}(\theta, \chi) = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\chi \\ j\sin\chi \end{bmatrix} = \begin{bmatrix} \cos\theta\cos\chi - j\sin\theta\sin\chi \\ \sin\theta\cos\chi + j\cos\theta\sin\chi \end{bmatrix}\).] 

where, a and b are transmitting wave elements and [image: The equation shows the sum of the squares of the absolute values of \( a \) and \( b \) equaling one: \(|a|^2 + |b|^2 = 1\).] . For the arbitrary transmitting wave [image: The image shows the mathematical expression \( \vec{E}_i(\theta, \chi) \) with a vector symbol over \( E \) and variables \( \theta \) and \( \chi \) in parentheses.] , the received wave [image: Symbol with a subscript "r," followed by variables theta and chi in parentheses.]  can be expressed as follows:

[image: Equation illustrating the transformation of vector \(\tilde{E_i}(\theta, \chi)\) into \(\tilde{E}(\theta, \chi)\) using matrix \(S\). Matrix \(S\) has elements \(S_{HH}\), \(S_{HV}\), \(S_{VH}\), and \(S_{VV}\), transforming into \(aS_{HH} + bS_{HV}\) and \(bS_{VV} + aS_{VH}\). Equation labeled as number \(7\).] 

In the Equation 7, [image: Expression representing the electric field vector \( \vec{E}_r \) as a function of angles \( \theta \) and \( \chi \).]  is the representation of H/V polarized basis [image: Mathematical expression showing \( \vec{E}_r(\theta, \chi) = \begin{bmatrix} E_{HC} & E_{VC} \end{bmatrix}^T \).] , including [image: Equation showing \( E_{HC} = aS_{HH} + bS_{HV} \).] , [image: The equation shown is \(E_{VC} = bS_{VV} + aS_{VH}\).] . T is matrix transpose. [image: Mathematical notation showing "E" with a subscript "HC".]  contains [image: The image contains the mathematical expression "S" with a subscript "HH".]  and [image: The image contains the mathematical notation "E" with a subscript "v c."]  contains [image: Mathematical notation showing the letter "S" with a subscript of "vv".] . The backscattering characteristics of the target are mainly retained in the co-polarization ratio. When a≠0 and b≠0, the backscattering vector can be described

[image: Matrix equation showing two matrices and their product. The first matrix has elements: column one, row one is \( a^{-1} \), row two is \( 0 \); column two, row one is \( 0 \), row two is \( b^{-1} \). This is multiplied by \(\tilde{E}_i(\theta, \chi)\). The result is a matrix with elements \( S_{HH} + \frac{b}{a} S_{HV} \) in row one and \( S_{VV} + \frac{a}{b} S_{VH} \) in row two. Equation number eight is marked on the right.] 

where E1 and E2 are normalized elements of [image: Mathematical expression showing vector \( \mathbf{E}_r \) as a function of two variables, \( \theta \) and \( \chi \).]  to represent the characteristics of backscattering waves. From Equation 8, we can form two new CP vectors ([image: Lowercase letter "k" with a horizontal line above it, subscript "1".]  and [image: The image shows a mathematical expression with the letter "k" divided by two, and an arrow or vector symbol above it, indicating a vector quantity.] )

[image: Mathematical equation showing a vector \(\bar{\xi}_k\) equal to the transpose of the matrix consisting of elements \(E_1\) and \(E_2\). Labeled equation number nine in parentheses.] 

[image: Ket vector \(|\xi_-\rangle\) expressed as the combination \([E_1 + E_2, E_1 - E_2]^\top\) divided by the square root of two, equation ten.] 

The corresponding second-order statistic of the scattering vector, namely the covariance matrix C2 and coherence matrix T2 of the normalized vector, are used to describe the partially polarized scattered waves

[image: Mathematical notation showing C₂ equals k kₛᵀ, represented by a 2x2 matrix. The matrix contains ⟨E₁, E₁⟩ in the top left, ⟨E₁, E₂⟩ in the top right, ⟨E₂, E₁⟩ in the bottom left, and ⟨E₂, E₂⟩ in the bottom right. Equation numbered 11.] 

[image: Matrix \( T_z = \frac{{\mathbf{k} \mathbf{k}^T}}{2} \) is shown as a two-by-two matrix. The first row contains \(\frac{{(|E_+|^2)}}{2}\) and \(\frac{{(|E_+|^2)(E_- E_+)^*}}{2}\). The second row contains \(\frac{{(|E_-|^2)(E_+ E_-)^*}}{2}\) and \(\frac{{(|E_+|^2)}}{2}\). Equation (12).] 

where [image: Please upload an image or provide a URL, and I can help create the alternate text for it.]  denotes the ensemble average. *T represents matrix conjugate transpose. The general CP SAR descriptor vector in Equation 8 (or the covariance C2 and coherence matrix C2 defined in Equations 11, 12) provides a unified method for scattering analysis of CP SAR data.





3.2 ΔαB/αB target decomposition method based on FP SAR and CP SAR



3.2.1 ΔαB/αB target decomposition method based on FP SAR

The ΔαB/αB target decomposition method is mainly based on the average physical scattering mechanism to solve the scattering inconsistency and dominant scattering mechanism. We defined a new parameter, which is rotation invariant (Yin et al., 2016).

[image: αB equals the arctangent of the fraction with numerator T22 plus T33 and denominator T11. Equation number 13.] 

where T11, T22, T33 are the main diagonal elements of an arbitrary backscattering coherence matrix T (see Equation 5). αB is a function of the co-polarized channel ratio and the co-polarized channel correlation. For the single look case, αB is only related to the co-polarized channel ratio. Thus, in order to measure the randomness inherent in the multi-look case, another parameter ΔαB is expressed as

[image: Equation showing the change in resistivity, denoted as Delta R sub alpha, equals alpha R sub T minus alpha R sub zero, labeled as equation fourteen.] 

where,

[image: The equation shows theta subscript zero equal to arctan of the quantity in absolute value of rho subscript r minus one squared, divided by the absolute value of rho subscript r plus one squared, denoted as equation fifteen.] 

with,

[image: Equation formulation showing total reflectivity, denoted by a complex number \(\rho_T\), with modulus \(|\rho_T|\) and phase \(\phi\) represented as \(\rho_T = |\rho_T| e^{i\phi}\). It includes expressions with terms \(SVV\), \(SHH\), and phase differences \(\phi_{VV}-\phi_{HH}\), alongside averaging notation \(\langle \cdot \rangle\). Equation labeled as number \(16\).] 

where |ρr | and |ϕr |are the average copolarization amplitude ratio and the average copolarization phase difference, respectively. ϕVV and ϕHHare the phases of VV and HH polarization, respectively. αB is used to describe the physical scattering mechanism, and ΔαB describes the scattering randomness.




3.2.2 ΔαB/αB target decomposition method based on CP SAR

For the CP SAR data, from the T2 matrix, the parameter αBCP was defined as (Yin et al., 2019)

[image: The formula shown is \(\theta_{BCP} = \text{arctan}\left(\frac{|E_1 - E_2|^2}{|E_1 + E_2|^2}\right)\), labeled as equation 17.] 

where, [image: \(\alpha_{\text{BCP}} \in [0^\circ, 90^\circ]\)] , is used to describe the average scattering mechanism. E1, and E2 are the formalized elements of [image: The mathematical expression shows \( \vec{E}_r (\theta, \chi) \), representing a vector field function dependent on the angles theta and chi.]  to characterize the backscattered wave. For the general compact polarization, [image: Mathematical equation showing \( E_{1} = S_{HH} + \frac{k}{a} S_{HV} \).]  and [image: Mathematical equation showing \( E_2 = S_{VV} + \frac{a}{b} S_{VH} \).]  (see Equation 8).

In deterministic scattering without rotation, the cross-polarization quantity SHV is typically smaller than the co-polarization quantity. In surface scattering region, such as the water surface, αBCP is close to 0°. In regions dominated by double-bounce scattering, αBCP approaches 90°while in areas characterized by volume scattering, αBCP around 45°.

Since αBCP can be expanded further,

[image: Mathematical expression showing the formula for theta sub QCP. Theta sub QCP equals arctan of the fraction. The numerator is the absolute value of one minus rho sub CP squared plus two times the absolute value of rho sub CP times cosine phi times one minus the absolute value of rho sub CP. The denominator is the absolute value of one plus rho sub CP squared minus two times the absolute value of rho sub CP times cosine phi times one minus the absolute value of rho sub CP. Equation labeled as eighteen.] 

where, functions of channel ratio ρcp, channel correlation coefficient rcp, and phase difference ϕcp was defined as

[image: The image shows mathematical equations related to circular polarization. It defines \( \rho_{CP} \) as the square root of \( \frac{(|E_2|^2)(|E_1|^2)}{(|E_1|^2)(|E_2|^2)} \) times \( e^{j \angle (E_2E_1^*)} \). \( r_{CP} \) is defined as \( -\frac{(E_2E_1^*)}{\sqrt{(|E_1|^2)(|E_2|^2)}} \), and \( \phi_{CP} \) is the angle of \( (E_2E_1^*) \). Equation number 19 is noted on the right.] 

|rcp| is the main index to describe the random backscattering process. When the |rcp| is close to 1, it indicates that a coherent scattering and αBCP is determined by channel ratio ρCP. When the |rcp| is close to 0, it indicates that backscattering comes from randomly distributed scattering objects. Meanwhile, αBCP is close to 45°.

Besides, similar to ΔαB, a physical parameter is defined to describe the scattering incoherence of the target. ΔαBCP is expressed as

[image: Mathematical equation displaying delta alpha sub RCP equals alpha sub RCP minus sigma sub CL sub RCP, with the reference number twenty in parentheses.] 

where,

[image: The formula displays \(\alpha_{0CP} = \arctan{\left(\frac{{(\rho_{CP} - 1)^2}}{{(\rho_{CP} + 1)^2}}\right)}\). This is labeled as equation (21).] 

[image: Greek lowercase letter "alpha" with subscript "B C P".]  is used to describe the average scattering mechanism. α0CP can be regarded as an ideal scattering mechanism determined only by the average polarization ratio. And ρCP is channel ratio.

In general, ΔαB and ΔαBCP can describe the scattering randomness of the target, with their symbols determined by the phase difference in the co-polarization channel. If in a resolution cell, all scattering objects have the same scattering mechanism and the orientation angle is consistent with the dielectric constant, the co-polarization correlation coefficient rcp and rc is high, resulting in ΔαB and ΔαBCP close to 0°. For the double-bounce scattering process, because their physical models are mainly described by the characteristics of phase difference (±π) of the co-polarization channel, the values of ΔαB and ΔαBCP should be less than 0°. In contrast, for single scattering and volume scattering, because their physical models are mainly described by the characteristics of phase difference (±π/2) of the co-polarization channel, the values of ΔαB and ΔαBCP should be greater than 0.





3.3 SVM classification method

The SVM is a powerful machine learning algorithm used for various applications, including classification analysis, regression analysis, and pattern recognition (Suykens and Vandewalle, 1999; Huang et al., 2012). The idea of the SVM classification method is to enable the optimal hyperplane to have the maximum classification interval. For this study, we used the Radial Basis Function (RBF) kernel in the SVM classifier. Meanwhile, the parameter of RBF kernel function (Gamma) controls the influence distance of a single training point. A small Gamma results in a smaller influence, while a large Gamma increases the influence range. In our experiments, we set the Gamma parameter as the reciprocal of the input parameter. Besides, the penalty parameter (C) is the penalty parameter, the tolerance for error. The higher C is, the less error is tolerated and the easier it is to overfit. The smaller C is, the less fit it is. If C is too large or too small, the generalization ability becomes worse. In the experiment, C is set to 100. It should be noted that the spatial resolution of the original image is used for classification, and the classification probability threshold is 0.





4 Experiment and discussion

First, we used FP SAR data to divide the study into 4 classes based on SVM classification method, namely rice, water, urban and SNL classes. We then focused exclusively on the rice regions for further analysis. Next, we utilized FP SAR, as well as CP SAR in π/4 and CTLR modes, and general CP SAR data to extract the six temporal ΔαB and αB parameters of rice paddy using ΔαB and αB method.

The experiment is conducted on a computer equipped with an Intel Core i7-9750H processor (6 cores, 2.60 GHz), 16 GB of DDR4 RAM, an NVIDIA Quadro GPU, and running Windows 10. The image pixel size in this study is 2000 × 2000, and the area covered by the study region is approximately 1200 square kilometers. Based on the proposed method, we obtained experimental results and recorded the algorithm’s running time (approximately 38 minutes and 16 seconds). Therefore, under this research scenario (pixel size: 2000 × 2000), the computational efficiency for rice classification and phenological analysis is acceptable. In addition, the present parallel computing method can also improve the computational efficiency of the proposed method to a certain extent.



4.1 ΔαB and αB parameters analysis of two types of rice paddies based on FP SAR data, CP SAR data of π/4 and CTLR modes

According to CP SAR theory in Sections 3.1.1 and 3.1.2, CP SAR data of π/4 and CTLR modes are two typical and widely applied CP mode. Therefore, we first carried out ΔαB and αB parameters analysis of two types of rice paddies based on FP SAR data, CP SAR data of π/4 and CTLR modes. Figure 4 shows ΔαB and αB parameters of rice region based on FP SAR data, CP SAR data of π/4 and CTLR modes on June 12. As noted in Section 3.2, the αB range spans from 0° to 90°, indicating regions predominantly influenced by surface scattering, volume scattering and double-bounce scattering respectively. Figures 4A–C show that there are essentially two states of αB in the rice region: one greater than 45° and the other less than 45°. On June 12, the two types of rice were basically in the seedling stage, and the paddy in the seedling stage showed more information about the underlying surface of the paddy on the SAR image. Besides, the underlying surface of T-H is water surface, which is prone to surface scattering. In contrast, the underlying surface of D-J is moist soil. Therefore, it is obvious that the surface scattering component of D-J is smaller than that of T-H. Furthermore, most regions with high αB values are D-J paddy, while the region with low αB values area T-H paddy. In addition, there is one situation. Since T-H has a shorter growth period than D-J, it is possible that some farmers have not completed transplanting in this period, leading to the bare land in this area. Consequently, in addition to D-J paddy, some areas with high αB values might be T-H paddy where transplanting was not yet completed.

[image: Six false-color images arranged in a grid show spatial data with different scales. The top row images (a, b, c) display similar patterns using blue to yellow color gradients indicating higher values, marked as \(\alpha\) with different subscripts. The bottom row images (d, e, f) use red to blue gradients illustrating variance, marked as \(\Delta\alpha\) with corresponding subscripts. Each image includes a color bar on the right indicating values.]
Figure 4 | ΔαB and αB parameters of rice region based on FP SAR data, CP SAR data of π/4 mode and CTLR mode on June 12 (A) is αB and (D) is ΔαB based on FP SAR data; (B) is αB and (E) is ΔαB based on CP SAR data of π/4 mode; (C) is αB and (F) is ΔαB based on CP SAR data of CTLR mode).

For ΔαB parameter, when ΔαB is greater than 0, it shows more surface scattering and volume scattering of ground objects. Conversely, when ΔαB is less than 0, it shows more double-bounce scattering. Furthermore, as shown in Figures 4D–F, ΔαB in the rice region is basically less than 0. In some areas, the ΔαB based on CP SAR data of CTLR mode exceeds 0, indicating predominant double-bounce scattering. These regions are more likely to be D-J.

With the growth of rice plants, the underlying surface information is covered, which results in representing more vegetation information in radar images. on June 12 and August 23, the ΔαB and αB are relatively uniform in the rice region. Therefore, ΔαB and αB parameters based on FP, CP of CTLR and CP of π/4 SAR data respectively, could not distinguish between T-H and D-J in these two periods.

Figure 5 shows ΔαB and αB parameters of rice region based on FP SAR data, CP SAR data of π/4 mode and CTLR mode on September 16. On September 16, the phenology stage of rice is Heading–Flowering stage (Table 1). Therefore, the information of ear of rice is presented in this period. Due to the short period of T-H, the ear of rice of T-H grow earlier and are thicker than that of D-J, which makes the surface scattering of T-H larger than that of D-J. Additionally, D-J is larger than T-H in αB parameter. Comparing Figures 5A–C, we can find that in distinguishing the two types of rice paddies, CP SAR data of π/4 mode data is better than CP SAR data of CTLR mode data and FP SAR data in this period. For ΔαB parameters (Figures 5D–F), it’s almost impossible to see the difference between the two types of rice paddies. On October 10, the phenology stage of rice is Dough–Mature stage (Table 1). In this period, the rice ears of both T-H and D-J had mostly developed and begun to mature, leading to similar radar signatures for the rice panicles. Therefore, surface scattering, volume scattering and double-bounce scattering are similar.

[image: Six color-coded data maps labeled a to f, showing spatial variations. Top row (a, b, c) displays values from 0 to 80 using a blue to red scale. Bottom row (d, e, f) shows variations from -40 to 60 in blue to red. Each map has distinct patterns of color distribution indicating different data sets.]
Figure 5 | ΔαB and αB parameters of rice region based on FP SAR data, CP SAR data of π/4 mode and CTLR mode on September 16 (A) is αB and (D) is ΔαB based on FP SAR data; (B) is αB and (E) is ΔαB based on CP SAR data of π/4 mode; (C) is αB and (F) is ΔαB based on CP SAR data of CTLR mode).

Figure 6 shows ΔαB and αB parameters of rice region based on FP SAR data, CP SAR data of π/4 mode and CP SAR data of CTLR mode on November 3. On November 3, the phenology stage of rice is Harvest stage (Table 1). Since the growth cycle of T-H is shorter than that of D-J, most of T-H had been harvested during this period. Therefore, the underlying soil of T-H is exposed naked, which shows soil characteristics in radar images. However, D-J has a long growth cycle. In this period, rice is in the mature stage and has not been harvested. Thus, the radar images capture the characteristics of the rice plants. Therefore, ΔαB and αB images show obvious differences between the two types of rice paddies. As shown in Figures 6A–C, that the values of αB of D-J are larger than those of T-H. Similarly, for Figures 6D–F, the values of ΔαB of D-J are also significantly different from those of T-H. However, the ΔαB and αB images show that αB is more stable than ΔαB.

[image: Six-panel graphic with heatmaps showing spatial data across an area. Panels (a), (b), and (c) display intensity levels in blue to red gradients for different variables: \(\alpha_{BFP}\), \(\alpha_{B2/4}\), and \(\alpha_{BCTLR}\). Panels (d), (e), and (f) show differences \(\Delta\alpha\) with different scales. Each panel includes a legend indicating values, with spatial coordinates along axes.]
Figure 6 | ΔαB and αB parameters of rice region based on FP SAR data, CP SAR data of π/4 mode and CTLR mode on November 3 (A) is αB and (D) is ΔαB based on FP SAR data; (B) is αB and (E) is ΔαB based on CP SAR data of π/4 mode; (C) is αB and (F) is ΔαB based on CP SAR data of CTLR mode).        

In order to analyze the discrimination ability of six temporal ΔαB and αB parameters based on FP SAR data, CP SAR data of π/4 mode and CTLR mode to distinguish between the two types of rice paddies in detail, we extract the ΔαB and αB parameter values of T-H and D-J training areas, and draw the scatter diagram. Figure 7 shows αB and αB parameters scatter diagram of T-H and D-J based on FP SAR data, CP SAR data of π/4 mode and CP SAR data of CTLR mode on June 12, July 30, August 23, September 16, October 10 and November 3. As can be seen from Figures 7A–C on June 12, July 30 and August 23, three kinds of SAR data based on ΔαB and αB methods cannot effectively distinguish D-J and T-H. And the ΔαB and αB of D-J and T-H are confused on the scatter diagram.

[image: Eighteen scatter plots arranged in six rows and three columns, labeled a1 to f3. Each plot compares Torsion Angles Phi (φ) vs. Psi (ψ) with data points in red and blue, representing DJ and T4H categories. Red and blue triangles highlight specific regions in each plot. The x-axis is Δώg in degrees, and the y-axis is Δώμ in degrees. A legend indicates colors for DJ and T4H.]
Figure 7 | ΔαB and αB parameters scatter diagram of T-H and D-J based on FP SAR data, CP SAR data of π/4 mode and CTLR mode (The x-coordinate is ΔαB and the y-coordinate is αB; a1, b1, c1, d1, e1 and f1 are αB and ΔαB scatter diagram of T-H and D-J based on FP SAR data on June 12, July 30, August 23, September 16, October 10 and November 3 respectively; a2, b2, c2, d2, e2 and f2 are αB and ΔαB scatter diagram of T-H and D-J based on CP SAR data of  π/4 mode on June 12, July 30, August 23, September 16, October 10 and November 3 respectively; a3, b3, c3, d3, e3 and f3 are αB and ΔαB scatter diagram of T-H and D-J based on CP SAR data of CTLR mode on June 12, July 30, August 23, September 16, October 10 and November 3 respectively.).

Figures 7D, E show ΔαB and αB parameters scatter diagrams of T-H and D-J based on FP SAR data, CP SAR data of π/4 mode and CTLR mode on September 16 and October 10. Compared with Figure 7 
d1, d2 and d3, we can find that ΔαB and αB of Figure 7 
d2 are better than Figure 7 
d1 and d3 in distinguishing the two types of rice paddy. That is to say, on September 16 (Heading–Flowering stage), CP SAR data of π/4 mode was better than FP SAR data and CP SAR data of CTLR mode in distinguishing the two types of rice paddies. However, on October 10 (Dough–Mature stage), the rice ear of T-H and D-J have basically grown well, and their scattering characteristics are similar. As shown in Figure 7 
e1, e2 and e3, ΔαB and αB of two types of rice paddies in this period are not as different as those of September 16. Figure 7 
f shows ΔαB and αB parameters scatter diagram of T-H and D-J based on FP SAR data, CP SAR data of π/4 mode and CTLR mode on November 3. As shown in Figure 7 
f1, f2 and f3, ΔαB and αB of the two types of rice paddies are significantly different. And in the ordinate (αB), αB based on CP SAR data of π/4 mode is better than FP SAR data and CP SAR data of CTLR mode. As shown in Figure 7 f2, the αB value of T-H is between 5° and 25°, and the αB value of D-J is between 25° and 50°. The two types of rice paddies can be well distinguished by this parameter. For αB based on FP SAR data and CP SAR data of CTLR mode, although αB value of most D-J is larger than T-H, there is confusion. Regarding ΔαB, the values based on FP SAR data and CP SAR data of CTLR mode range from -40° to 50°, which is a broader range than that observed for ΔαB based on CP SAR data of π/4 mode. In terms of the discrimination effect, the ability of αB based on FP SAR data and CP SAR data of CTLR mode to distinguish between the two types of rice paddies is superior to that of CP SAR data of π/4 mode.

Overall, ΔαB and αB showed the best performance in distinguishing between the two types of paddies on November 3, which is closely related to the differences of scattering characteristics between the two types of paddies during this phenological stage. The second-best performance was observed with αB based on CP SAR data of π/4 mode on September 16, which reflects the differences of rice ear between the two types of paddies. However, ΔαB and αB based on FP SAR data and CP SAR data of CTLR mode showed no difference between the two types of rice paddies on September 16. For the ΔαB and αB parameters in other periods, the distinction between the two types of rice paddies is not obvious.




4.2 ΔαB and αB parameters analysis of two types of rice paddies based on general CP SAR

In section 4.1, we conducted a differential analysis of ΔαB and αB parameters of two types of rice paddies based on FP SAR data, CP SAR data of π/4 mode and CTLR mode in six phenological periods. To explore CP SAR differences of two types of rice paddies under arbitrary transmit wave, we calculated six temporal ΔαB and αB parameters of two types of rice paddies based on general CP SAR data (Section 3.1.2). Based on the theory of general CP descriptors in Section 3.1.2, for a fixed scattering matrix S, the widely accepted CP signal depends entirely on θ and χ (or a and b). For the two parameters, χ ranged from -π/4 to π/4, and θ ranged from -π/2 to π/2. For linear π/4, left circular, right circular, the horizontal and vertical polarization transmit wave, the values of [image: Text displaying Greek letters theta and chi enclosed in parentheses.]  correspond to [image: Mathematical notation displaying the coordinate \((\pi/4, 0)\).] , [image: Mathematical expression showing an interval and a number: \([-π/2, π/2]\) and \(π/4\).] , [image: Mathematical expression showing an interval notation: open interval from negative pi over two to pi over two, combined with negative pi over four.] , [image: It seems like there's an issue with the image upload. Please try uploading the image again, or provide a URL or description so I can help with the alt text.]  and [image: Graph of the cosine function from zero to \(\pi\), starting at one and decreasing to zero at \(\pi/2\), then continuing to negative one at \(\pi\). Point labeled \((\pi/2, 0)\).]  respectively. Circular polarization is not affected by wave orientation angle, so [image: Theta is an element of the interval from negative pi over two to pi over two.] .

Therefore, we set one variable of θ and χ (or a and b) unchanged and change the other variable to extract six temporal ΔαB and αB parameters of two types of rice paddies, so as to explore the difference of two types of rice paddies under arbitrary transmitting mode of CP. Figure 8 shows the curves of αB and ΔαB parameters of T-H and D-J for varying transmitting polarizations (a fixed θ=π/4 and variable [image: \(\chi \in [-\pi/4, \pi/4]\)] ) respectively. And, Figure 9 show the curves of αB and ΔαB parameters of T-H and D-J for varying transmitting polarizations (a fixed χ=0 and variable [image: Theta is an element of the interval from negative pi over two to pi over two.] ) respectively.

[image: Twelve graphs in a 3x4 grid display angular data with error bars plotted against x-values in degrees. Each graph compares two datasets, labeled "DJ" and "T-H," using blue and red lines respectively. Graphs labelled (a) to (f) in the top two rows and (a1) to (f1) in the bottom two. The y-axes range from 15 to 65 degrees for the top row and -15 to 45 degrees for the bottom.]
Figure 8 | Variations of αB and ΔαB parameters of T-H and D-J for varying transmitting polarizations (a fixed θ=π/4 and variable [image: The mathematical expression shows chi belonging to the interval from negative pi over four to pi over four.] ), (A–F) are variations of αB parameter on June 12, July 30, August 23, September 16, October 10 and November 3 respectively. a1-f1 are variations of ΔαB parameter on June 12, July 30, August 23, September 16, October 10 and November 3 respectively).

[image: Twelve graphs labeled a to f1 show angular dependency of \( L_{g}(\theta) \) in degrees versus \( \theta(\text{in degrees}) \). Each graph has two lines: blue for D-J and red for T-H, with error bars. The y-axis scales differ across graphs, ranging from 25 to 100 degrees. The x-axis spans from -90 to 90 degrees.]
Figure 9 | Variations of αB and ΔαB parameters of T-H and D-J for varying transmitting polarizations (a fixed [image: Please upload the image or provide a URL for me to generate the alternate text.]  =0 and variable [image: Theta is an element of the closed interval from negative pi over two to pi over two.] ), (a, b, c, d, e and f are variations of αB parameter on June 12, July 30, August 23, September 16, October 10 and November 3 respectively. a1, b1, c1, d1, e1 and f1 are variations of ΔαB parameter on June 12, July 30, August 23, September 16, October 10 and November 3 respectively).

As shown in Figures 8A–F, the values of αB of T-H and D-J decreased significantly with χ approaching 0. However, as shown in Figures 8A, B on June 12, July 30, with the change of χ, difference value of αB of T-H and D-J showed little difference. These results indicated that CP SAR of different polarization modes shows little difference in αB characterization between the two types of rice paddies at seedling stage and initial growth stage. However, from August 23 to November 3, when χ is close to 0°, the αB values of T-H and D-J are significantly different, and when χ=0°, the difference was the largest. Since θ=π/4 is fixed, the closer to the linear π/4 mode, the more obvious the difference between the two types of rice paddies, especially September 16 and November 3. In accordance with the analysis results in Section 4.1, from August 23 to November 3, the linear π/4 mode of αB is better than the circular and elliptic polarization modes for discriminating between the two types of rice paddies.

Different from Figures 8A–F, it can be seen from Figure 8 a1-f1that the difference value of ΔαB of T-H and D-J changed with the change of χ. For example, in Figure 8 f1, when χ is ±π/4, corresponding to the circular polarization mode, the difference in ΔαB between T-H and D-J is most pronounced. As the absolute value of χ decreases, the difference value of ΔαB of T-H and D-J also decreases, indicating that the ΔαB parameter of circular polarization mode can show the difference of T-H and D-J better than that of elliptic polarization mode. As the absolute value of χ continues to decrease, when it is closer to 0, that is to say, closer to the linear polarization mode, the difference between T-H and D-J gradually becomes larger. This indicates that the circular polarization mode and linear π/4 mode show the most obvious differences between the two types of rice paddies in Harvest stage (on November 3).

As shown in Figures 9A–F, when χ is 0, that is, CP polarization mode was linear polarization mode, θ changed from -π/2 to π/2, αB parameter of T-H and D-J changed significantly. As shown in Figures 9A–F, αB parameter has the same variation trend in different stages. When θ is ±π/4 (linear π/4 mode), the difference value between the two types of rice paddies is most obvious compared with other linear polarization modes. Combined with Figures 8A–F, it can be seen that the αB of the linear π/4 mode in six phenological periods is obviously better than that of the other mode in distinguishing between the two types of rice paddies.




4.3 Rice paddy classification based on SVM method using ΔαB and αB parameters

To quantitatively evaluate six temporal ΔαB and αB parameters in distinguishing between T-H and D-J, as shown in Figure 10, we made the difference histogram for T-H and D-J of ΔαB and αB based on FP SAR data, CP SAR data of π/4 and CTLR modes respectively.

[image: Two bar charts comparing values across six dates. Chart (a) shows data for FP SAR, π/4 mode, and CTLR mode, with highest values on 1103 for all categories. Chart (b) shows differences Δα for the same modes, again peaking on 1103, particularly in CTLR mode.]
Figure 10 | Difference histogram for T-H and D-J of ΔαB and αB based on FP SAR data, CP SAR data of π/4 mode and CTLR mode respectively (A) is difference histogram for T-H and D-J of αB; (B) is difference histogram for T-H and D-J of ΔαB).

As shown in Figure 10A that difference degree for T-H and D-J of αB is greater on November 3 than in other periods. Besides, the difference degree for T-H and D-J of αB based on CP SAR data of π/4 mode is bigger than that based on FP SAR data and CP SAR data of CTLR mode on August 23, September 16, October 10 and November 3. Compared with other periods, the difference degree for T-H and D-J of αB on November 3 was the largest. Therefore, compared with other periods of αB, αB is the best parameter to distinguish between two types of rice paddies, which is consistent with the conclusions of the analysis in section 4.1. As shown in Figure 10B that difference degree for T-H and D-J of ΔαB based on CP SAR data of CTLR mode is greater on November 3 than in other periods. Additionally, in other periods, the difference degree based on FP SAR and CP SAR data of CTLR mode is similar, which is larger than the difference degree based on CP SAR data of π/4 mode.

As shown in Table 2, we selected the optimal parameters of ΔαB and αB for distinguishing two types of rice paddies based on difference degree of Figure 10. We used the optimal parameters of ΔαB and αB under three kinds of SAR data to carry out the SVM classification to realize the fine classification of two types of rice paddies. Figure 11 shows the classification results based on FP SAR data, CP SAR data of CTLR mode and π/4 mode, respectively. As can be seen from the classification results, towns and cities are mostly distributed in the south of the study area, rivers in the middle of the study area, and SNL classes are mostly distributed on both sides of the river. In addition, D-J is mostly distributed in the northwest of the study area. And T-J is mostly distributed in the southeast. The classification results were consistent with the actual distribution of rice cultivation in the study area. Compared with the three classification results, the classification results are generally consistent, but there are differences in details. To better evaluate the three classification results, we used the validation data to verify the classification results.

Table 2 | The optimal parameters of ΔαB and αB for distinguishing two types of rice paddies.


[image: Table showing optimal parameters for different SAR data modes. FP SAR lists parameters: α_B_1103, α_B_0612, α_B_0730, Δα_B_0823, Δα_B_0823, Δα_B_0916, Δα_B_1010, Δα_B_0730. CP SAR π/4 mode includes: α_B_1103, α_B_0916, α_B_0823, α_B_1010, α_B_0612, α_B_0730, Δα_B_1103, Δα_B_0730. CP SAR CTLR mode includes: α_B_1103, α_B_0612, α_B_0823, α_B_1103, Δα_B_0612, Δα_B_0823, Δα_B_0916, Δα_B_1010.]
[image: Six-panel diagram showing various land cover maps with distinct colors representing different categories. Panels a, c, and e on the left highlight P-J, P-H, and Others in shades of green and yellow. Panels b, d, and f on the right include additional categories such as Water, Soil, and Urban, represented in blue, gray, and red. Each map has a compass rose and legends indicating scale and category meanings, showing geographic data changes across different regions.]
Figure 11 | Classification result (A) is classification result of T-H and D-J and (B) is the overall classification result including 5 classes based on FP SAR data; (C) is classification result of T-H and D-J and (D) is the overall classification result including 5 classes based on CP SAR data of π/4 mode; (E) is classification result of T-H and D-J and (F) is the overall classification result including 5 classes based on CP SAR data of CTLR mode).

Table 3 shows the accuracy indexes of the classification results based on FP SAR data, CP SAR data of CTLR mode and π/4 mode, respectively. This study focuses on distinguish two types of rice paddies based on ΔαB and αB parameters, so we discuss only the classification accuracy of the two types of rice paddies and the overall accuracies of the classification results. By comparing accuracy of classification results based on FP SAR data, CP SAR data of CTLR mode and π/4 mode, classification of rice paddy using CP SAR data of π/4 mode shows the best classification results with overall accuracy of 95.5% and kappa of 0.938. Based on ΔαB/αB target decomposition method, the classification result using CP SAR data of π/4 mode is higher than that of using FP SAR data and CP SAR data of CTLR mode. Specifically, the overall accuracy of CP SAR data of π/4 mode is 4% higher than that of using CTLR mode, and the Kappa coefficient is greater than 0.05. For rice paddy, in the classification results based on CP SAR data of π/4 mode, the average accuracy of T-H and D-J is 80.9% and 90.0%, respectively. In the classification results based on CP SAR data of CTLR mode, the average accuracy of T-H and D-J is 63.8% and 75.4%, respectively. In the classification results based on FP SAR data, the average accuracy of T-H and D-J is 77.7% and 86.0% respectively. Therefore, we can see that the classification results using CP SAR data of π/4 mode are better than those of using CP SAR data of CTLR mode, and the results are similar to those of using FP SAR data.

Table 3 | Accuracy table of classification based on FP SAR data.


[image: Table comparing classification methods based on SAR data. Shows Producer's Accuracy (PA), User's Accuracy (UA), and overall accuracy (OA) for different classes: Water, Urban, SNL, T-H, and D-J. Methods include FP SAR and CP SAR data of π/4 and CTLR modes. Highest OA is 95.51% for CP SAR π/4 mode, and lowest is 91.62% for CTLR mode. Kappa values are 0.925, 0.938, and 0.884, respectively.]



4.4 Phenological analysis of ΔαB and αB parameters of T-H and D-J

With the growth of rice plants, rice morphology will be different under different phenological periods, which results in different expressions of CP parameters at different phenological periods. Therefore, it is of great significance to analyze the CP parameters under different phenological periods for rice phenological recognition. In this section, we analyzed the ΔαB and αB of four CP modes of general CP SAR in multiple phenological periods of two types of rice paddies respectively, so as to obtain the change rule of ΔαB and αB of two types of rice paddies in the phenological periods under multiple CP modes. Figures 12A, B show variations of αB parameter of rice paddy (T-H and D-J) for four transmitting polarization modes in six phenological periods. In the seedling stage, the vegetation is small and the scattering component is mainly surface scattering. The αB parameter values of both kinds of rice paddy are low. Due to the different planting methods and varieties of rice, the scattering component of T-H is more abundant than that of D-J in seedling stage, so the αB of T-H is larger than that of D-J. With increasing growth of rice plants, both plants have increased volume and double-bounce scattering, resulting in greater αB value of T-H and D-J at elongation stage than at seedling stage. As the rice ear grows, the volume scattering of rice continues to increase. Since the plant is denser, this results in a lower amount of double-bounce scattering. Therefore, at the Booting stage, αB of T-H and D-J decreased slightly. As rice ears continue to grow from heading stage to mature stage, the scatterings of T-H and D-J tend to be stable, and αB do not change significantly. Until the Harvest stage, the growth cycle of D-J is longer than that of T-H, so on November 3, T-H has been harvested, while D-J is still in the mature stage and has not been harvested. Therefore, during this period, the αB of T-H has a significant decrease compared with October 10. However, D-J has no such trend in Harvest stage (November 3). Therefore, the variation trend of αB parameters of two types of rice paddies is different under the phenological period of rice growth due to the difference of two types of rice varieties.
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Figure 12 | Variations of αBand ΔαB parameter of rice paddy for four transmitting polarization modes in six phenological periods (A, B) are variations of αBparameter of D-J and T-H respectively. (C, D) and d are variations of ΔαBparameter of D-J and T-H respectively. And the ordinates 1-6 represent 6 phenological periods (on June 12, July 30, August 23, September 16, October 10 and November 3).

For different transmitting polarization modes, αB parameters gradually increase from linear polarization to circular polarization mode, which is similar to Figures 8A–F results are consistent. In addition, the variation trend of αB parameters of T-H and D-J is basically the same for different transmitting modes, which could show the variation rule of the CP parameters in each phenological period.

Figures 12C, D show variations of ΔαB parameter of rice paddy (T-H and D-J) for four transmitting polarization modes across six phenological periods. In the seedling stage, the vegetation is small and the scattering component is mainly surface scattering. The ΔαB parameter values of the two types of rice paddies are greater than 0. As rice grows into Elongation stage, the double-bounce scattering increases. Therefore, the ΔαB of T-H and D-J at Elongation stage is lower than that at seedling stage. From October 10 to November 3, the changes of ΔαB of T-H and D-J were different because T-H was harvested on November 3, while D-J was still in the mature stage. As a result, the variation trends of ΔαB are quite different. In addition, the variation trend of ΔαB curves for T-H and D-J shows that ΔαB under the circular mode exhibits a much more obvious difference in the characteristics of each phenological period of rice compared to other modes.

In general, there was a certain difference in the variation trend of αB parameters between the two types of rice paddies with the growth of rice plants. From Seedling to Elongation stage, the variation trend of the T-H and D-J is basically the same, but the degree of change differs, which is related to the planting methods and varieties of the two types of rice. However, from mature stage to harvest stage, the variation trend of αB parameters differs significantly, mainly due to the length of growth cycle of the two types of rice. For the ΔαB parameter, with the growth of rice plant, ΔαB changes dramatically, and the variation trends of the two types of rice differ. Taking the circular mode as an example, the most obvious difference is from mature stage to harvest stage, and the ΔαB parameter variation trend of the T-H and D-J is just the opposite. In addition, from seedling stage to harvest stage, changes degree of ΔαB under circular mode were more obvious than other mode, which also showed the difference between the two types of rice paddies.

This paper mainly studied the classification and phenological analysis of rice based on the optimal polarimetric parameters that characterize the scattering characteristics of rice plants. However, environmental factors also affect rice classification and phenological analysis to a certain extent. The specific influencing factors mainly include the following three aspects. 1. Topography factors: The study area is a plain region with flat terrain, so the topography has little impact on this study. However, in mountainous and hilly areas where rice is grown, radar side imaging may cause overlay and shadow effects in paddy fields. Consequently, polarimetric SAR parameters may not effectively characterize rice scattering characteristics in these regions. In future work, we will acquire SAR data of paddy fields in mountainous and hilly areas to study the influence of topography on rice classification and phenological analysis. 2. Soil factors. In SAR images, soil moisture is the main factor affecting polarimetric scattering characteristics of crop. Since our research focuses on rice, the underlying surface environment varies with different rice phenological stages. For example, during the Seedling, Elongation, Booting, Heading, and Flowering stages, the rice fields are completely covered by water. However, in the Milky and Mature stages, the underlying surface is wet soil layer. Therefore, the underlying surface of rice varies across different phenological stages, leading to distinct responses in polarimetric parameters in radar images. For rice phenological analysis, the variations in the underlying surface at different phenological stages of rice lead to improved characterization of these stages by polarimetric parameters. 3. Agricultural Management Factors: Agricultural management also has a certain impact on the classification and phenological analysis of rice. For example, this study distinguishes between two types of rice (T-H and D-J), which differ not only in variety but also in cultivation management practices. T-H rice is sown for transplanting, with row and pier spacing of approximately 30 cm and 15 cm, respectively. In contrast, D-J rice, which is planted directly in paddies, shows a random uniform distribution during the seedling stage. This results in significantly different polarimetric characteristics between the two types of rice, allowing them to be effectively distinguished.





5 Conclusion

In this study, we proposed a strategy for fine classification and phenological analysis based on general CP SAR data. Based on FP SAR data and general CP SAR data, ΔαB/αB methods were introduced into rice fine classification and phenological analysis of rice paddy under multiple phenological periods. And the main research conclusion has two aspects.

On the one hand, based on ΔαB and αB parameters, the fine classification results of rice paddy using FP SAR and CP SAR of data of π/4 mode and CTLR mode were obtained and the three results were verified and evaluated. Additionally, we explored the ability of ΔαB and αB parameters to distinguish between the two types of rice paddies across multiple phenological periods and extracted the optimal parameters. We found that the ΔαB and αB based on the general CP SAR data on November (Harvest stage) are the best parameters for distinguishing between the two types of rice paddies. Moreover, CP SAR data of π/4 mode is better than CP SAR data of CTLR mode and FP SAR data on September 16 (Heading–Flowering stage) in distinguishing between the two types of rice paddies. Additionally, αB based on CP SAR data of π/4 mode reflects the difference of rice ear between the two types of paddies in this period. Furthermore, we found that CP SAR of different modes had little difference in αB characterization between the two types of rice paddies at seedling stage and initial growth stage. However, from August 23 (Booting–Heading stage) to November 3 (Harvest stage), π/4 mode of αB is better than circular and elliptic polarization mode in discrimination ability for two types of rice paddies. In addition, using SVM classification method based on optimal parameters of ΔαB and αB, we get high precision classification results of rice paddy. The experimental results show that the classification accuracy is above 90%, and the Kappa coefficient is above 0.88. The highest accuracy of T-H is 80.9%, and the highest accuracy of D-J is 89.9%. Moreover, classification results using CP SAR data of π/4 mode data are better than those using CP SAR data of CTLR mode data, and the results are similar to those of using FP SAR data.

On the other hand, we studied the phenological evolution rule of the two rice types under general CP modes. There was a certain difference in the variation trend of αB parameters between the two types of rice paddies with the growth of rice plants. From Seedling to Elongation stage, the variation trend of the T-H and D-J is basically the same, but the degree of change is different. From mature stage to harvest stage, the variation trend of αB parameters is significantly different for two types of rice paddies, which is mainly due to the length of growth cycle of the two types of rice.
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Path planning is one of the key elements for achieving rapid and stable flight when unmanned aerial vehicles (UAVs) are conducting monitoring and inspection tasks at ultra-low altitudes or in orchard environments. It involves finding the optimal and safe route between a given starting point and a target point. Achieving rapid and stable flight in complex environments is paramount. In environments characterized by high-density obstacles, the stability of UAVs remains a focal point in the research of path planning algorithms. This study, utilizing a feature attention mechanism, systematically identifies distinctive points on the obstacles, leading to the development of the RFA-Star (R5DOS Feature Attention A-star) path planning algorithm. In MATLAB, random maps were generated to assess the performance of the RFA-Star algorithm. The analysis focused on evaluating the effectiveness of the RFA-Star algorithm under varying obstacle density conditions and different map sizes. Additionally, comparative analyses juxtaposed the performance of the RFA-Star algorithm against three other algorithms. Experimental results indicate that the RFA-Star algorithm demonstrates the shortest computation time, approximately 84%-94% faster than the RJA-Star algorithm and 51%-96% faster than the Improved A-Star. The flight distance is comparable to the RJA-Star algorithm, with slightly more searched nodes. Considering these factors collectively, the RFA-Star algorithm exhibits a relatively superior balance between computational efficiency and path quality. It consistently demonstrates efficient and stable performance across diverse complex environments. However, for comprehensive performance enhancement, further optimization is necessary.




Keywords: precision agriculture, RFA-star algorithm, plant protection UAV, feature attention mechanism, path planning




1 Introduction

Over the past few years, with continuous advancements in science, technology, and productivity, UAV have successfully integrated into various industries (Fang et al., 2023b). Especially in agriculture and forestry (de Castro et al., 2021; Jurado et al., 2022; Raparelli and Bajocco, 2019), geological exploration (Giordan et al., 2020; Ren et al., 2019), wildfire detection (Bouguettaya et al., 2022; Ghali et al., 2022), disaster rescue (Wang et al., 2019), and military (Xiaoning, 2020), the use of UAVs is increasingly widespread, including the study of single UAVs or UAV formations (Fang et al., 2023a; Fang and Xie, 2023). As a crucial component of precision agriculture, crop inspection and monitoring research is of significant importance (Castro et al., 2023). Utilizing various sensors to acquire diverse plant characteristics provides a key information foundation for real-time or future decision-making in plant management (Su et al., 2023; Zhang et al., 2022). UAVs equipped with various sensors can capture multiple crop features, which are used to monitor planting areas and crop growth conditions, assess biological and physical characteristics, predict yields, and detect stress levels. UAV-based crop monitoring has become a critical tool for aiding agricultural producers and improving agricultural management (Gao et al., 2023; Li et al., 2024; Su et al., 2023). However, UAVs often encounter various obstacles during ultra-low-altitude flights for crop monitoring (Wang et al., 2022; Zhu et al., 2023). In environments such as orchards, where plant inspection and monitoring occur, trees and flocks of birds are the primary obstacles for UAVs (Ghaddar and Merei, 2020; Yu et al., 2022). UAVs often operate in environments characterized by high-density obstacles, especially in orchards. Consequently, a key challenge in UAV technology is how to adeptly navigate around these hindrances during task execution. To tackle this issue, numerous researchers have delved into a variety of path planning, formation control, and obstacle avoidance algorithms (Fang et al., 2020b, 2020a). Encompass ant colony algorithms (Gao et al., 2021), Dijkstra's algorithm (Dhulkefl and Durdu, 2019), A-star algorithm (Cai et al., 2019), and artificial potential field methods (Pan et al., 2021), among others. The A-star algorithm has gained widespread usage due to its simple principles and computational convenience (Zhang et al., 2021). However, traditional A-star algorithms exhibit certain limitations. The A-star algorithm necessitates traversing a substantial number of nodes, leading to computational complexity and inefficient pathfinding. As the map area expands, the computational load experiences an exponential growth (Wang and Sun, 2023). In response to these challenges, scholars both domestically and internationally have undertaken extensive research endeavors aimed at optimizing and enhancing these algorithms.

In the realm of A-star algorithm improvement, Zhang et al. introduced a global A-Star path planning algorithm, enhancing the A-Star algorithm based on a bidirectional search strategy. This innovative approach successfully achieved a significant improvement in computational speed, ranging from 47.6% to 52.4%, while substantially reducing the number of traversed nodes by 68.2% to 75.4% (Zhang et al., 2023). Shang et al., utilizing key points around obstacles, introduced a variable step-length A-star to reduce the algorithm's computation time (Erke et al., 2020). He et al. addressed the multi-ship encounter problem in complex scenarios by proposing a dynamic collision-avoidance A-star algorithm. This algorithm is designed to prevent collisions in the presence of known moving obstacles (He et al., 2022). Mandloi et al. introduced a time cost function to overcome computational challenges of A-star in three-dimensional space (Mandloi et al., 2021). By integrating and enhancing the A-star algorithm, To better align the path planning of unmanned aerial vehicles (UAVs) with real operational scenarios, Zhang et al. combined A-star with artificial potential field methods and improvement (Zhang et al., 2021). Rostami improved the repulsive function in the artificial potential field method by introducing an adjustment factor (Rostami et al., 2019). In order to enhance the flexibility of unmanned surface vessels and alleviate computational burdens, Yan et al. integrated virtual structures with the artificial potential field method (Yan et al., 2021). In scenarios characterized by high obstacle density, Andriy et al. proposed a decentralized algorithm designed to manage UAV swarms in environments with high obstacle density. This approach integrates local planning loops with bio-inspired swarm rules to guide the compact UAV swarm within the operational workspace without relying on external infrastructure. By introducing a specially designed on-board UVDAR system, mutual localization among team members is achieved around each UAV, ensuring the stability and coherence of the entire swarm (Dmytruk et al., 2021). Ahmad et al. presented a fully decentralized bio-inspired control method that relies solely on on-board sensor data to safely organize UAV swarms in the environment without the need for communication with other agents. The feasibility and performance of the proposed method were validated and assessed through multiple experiments in both a realistic robot simulator and a natural forest setting (Ahmad et al., 2021).

However, the aforementioned UAV studies primarily focus on flights above the obstacle space (Radoglou-Grammatikis et al., 2020). Although this simplifies operations, it significantly limits the scope of measurements. Relying solely on overhead data makes it difficult to accurately assess the size and health of individual fruits or measure tree diameters. UAVs capable of flying beneath the canopy can overcome these limitations by achieving a good balance between coverage and sensor resolution. Nevertheless, developing a UAV system that can fly at multiple altitudes in large-scale environments and autonomously navigate between tree rows or even beneath the canopy remains a significant challenge (Liu et al., 2022). Therefore, one of the core issues for UAVs flying beneath the canopy is how to effectively avoid these high-density obstacles during task execution. The ability to navigate to a predetermined destination while avoiding obstacles in the path is a fundamental element of autonomous flight. However, UAVs operating at low altitudes often encounter unexpected obstacles, requiring an obstacle avoidance system that is both quick and effective. This often leads to a reduction in operating speed, necessitating a specially designed obstacle avoidance system to ensure safety (Butt et al., 2024). In scenarios characterized by high-density obstacles, the computational time and complexity of the A-star significantly escalates in 3D environments, potentially hindering the smooth attainment of the target position. To address this issue, this study, grounded in a three-dimensional context, introduces an improved algorithm named RFA-Star (R5DOS Feature Attention A-star plus). Leveraging the R5DOS(Regions Connection Calculus-5 Direction Octant Strongly-exists) model for the abstract representation of simple objects, this algorithm incorporates a feature attention mechanism around obstacles based on the perceived obstacle information by the UAV, the RFA-Star algorithm is employed for obstacle avoidance. Built upon the matrix representation of the R5DOS model and integrating a feature attention mechanism, this model enhances the search efficiency of the A-star algorithm in complex environments. It addresses the challenge of safely navigating through high-density obstacles, thereby averting potential safety issues.

The main emphasis of this research centers on enhancing the A-star within three-dimensional settings by employing a topological relationship matrix. The efficacy of the RFA-Star algorithm in environments with high obstacle density and its enhanced capabilities are substantiated through simulation experiments based on models. The subsequent section delineates the contributions and novel aspects presented in this manuscript.

	Addressing the path planning challenges in complex environments with high obstacle density, such as UAVs needing to inspect and monitor plant information beneath the canopy in orchards, this study improves the A-Star algorithm based on a spatial topological relationship model and proposes the RFA-Star algorithm.

	Upon detecting obstacles, the RFA-Star algorithm selectively searches for feature points, reducing interference from irrelevant obstacles to the UAV.

	In scenarios with complex and high obstacle density maps, the RFA-Star algorithm incorporates an improved local A-star algorithm and a feature attention mechanism to guide the UAV successfully around obstacles.



This paper’s organization is structured as follows: Section 2 presents a detailed elaboration of improvements to the A-star and the overarching architecture of the RFA-Star algorithm. In Section 3, the effectiveness of the RFA-Star in path planning is comprehensively validated through simulation and comparative experiments. Section 4 delves into a comprehensive discussion of the experimental results and scrutinizes the limitations of the RFA-Star algorithm. The concluding Section 5 encapsulates the findings of this study and probes potential future research directions.




2 Materials and methods



2.1 Abstraction of UAV

Li et al. proposed an R5DOS model based on the region connection calculus (RCC) theory in 2020, demonstrating the model's completeness and mutual exclusivity, the model can represent 11,038 possible topological directional relationships among three simple regions in three-dimensional space. Subsequently, they improved and applied it in UAV swarm algorithms and UAV path planning algorithms, providing detailed insights into the improvements made to the R5DOS model (Li et al., 2020, 2022, 2023). This study adopts the improved R5DOS model to define UAVs and obstacles, dividing UAVs into the body region and detection region. The UAV's body region represents the area that ensures absolute safety during flight, while the detection region is responsible for detecting obstacles and target points. As indicated by reference (Li et al., 2022), there are five types of topological relations: Discrete (DR), Partial Overlap (PO), Proper Part (PP), Equal (EQ), and Proper Part Inverses (PPI). The corresponding topological situations are illustrated in Figure 1. Among them, RCC-8 is a boundary-sensitive topological relation model (Jonsson et al., 2021).

[image: Diagram illustrating spatial relations from RCC-8 and RCC-5 logic. RCC-8 relations: DC, EC, PO, TPP, NTPP, EQ are shown with overlapping and nested circles representing different spatial relationships between X and Y. Arrows connect each RCC-8 relation to a corresponding RCC-5 relation: DR, PO, PP, EQ.]
Figure 1 | Mathematical expressions and abstract representations corresponding to topological relations.

According to the R5DOS model, this study provides the following definitions. For the detection region B, it must contain the UAV body A, satisfying the PP topological relation, denoted as PP(B, A). As for the relationship between obstacles, the UAV, and the detection region, three possible scenarios are most likely to occur, as illustrated in Figure 2.

[image: Three diagrams labeled (a), (b), and (c). Diagram (a) shows non-overlapping circles B1 and C1. Diagram (b) shows B1 and C1 slightly overlapping, creating a striped intersection. Diagram (c) shows a larger overlap, with a more prominent striped area between B1 and C1. Circle A is inside B1 in each diagram.]
Figure 2 | Topological situations between the UAV, detection region, and obstacles: (A) No intersection among the three; (B) Obstacle within the detection region; (C) Obstacle intersects with the UAV.

In the figure, A represents the UAV body region, B1 represents the detection region, and C1 represents the obstacle. Figure 2A illustrates the scenario where the obstacle does not intersect with the detection region or the UAV, indicating that the UAV has not detected any obstacles and is in a relatively safe state. The corresponding topological relation matrix is denoted as [image: Matrix equation showing \( R5_a \) equal to a two-by-four matrix with the first row as zero, one, zero, zero, and the second row as zero, one, one, one.] . Figure 2B depicts the scenario where the obstacle is within the detection region but has not yet intersected with the UAV. In this case, the obstacle is inside the detection region but has not collided with the UAV, placing the UAV in a relatively dangerous situation. The corresponding topological relation matrix is denoted as [image: Matrix representation labeled \( R5_b \), consisting of two rows and four columns. The first row contains 0, 1, 0, 0, and the second row contains 1, 1, 1, 1.] . Figure 2C illustrates the scenario where the obstacle is within the detection region and intersects with the UAV. In this case, the UAV collides with the obstacle, posing a dangerous situation. The corresponding topological relation matrix is denoted as [image: Matrix labeled \( R5_{c} \) with two rows and four columns. The first row contains the elements one, one, zero, zero. The second row contains the elements one, one, one, one.] .




2.2 Modification of the R5DOS spatial topological relationship model

To better represent the spatial relationships between UAVs and obstacles, an improvement to the R5DOS model is essential. The induction matrix of the R5DOS model is divided into the R5 layer and the DOS layer, which are used to express topological and spatial relationships, respectively. For detected obstacles, the UAV needs to store their information to determine the location of the obstacles and their corresponding topological spatial relationships. However, the R5DOS model can only express the topological relationships of three simple objects, which is evidently impractical for high-density obstacle maps. To better express and store the topological spatial relationships between multiple obstacles and UAVs, we have modified the DOS layer of the R5DOS model to be a 4×4 matrix, defined as follows.

[image: Matrix labeled "DOS" with four rows: First row, 1NE, 2NE, 3NW, 4NW; second row, 1EN, 2EN, 3NW, 4NW; third row, 5ES, 6ES, 7WS, 8WS; fourth row, 5SE, 6SE, 7SW, 8SW. Numbered as equation (1).] 

The spatial relationships corresponding to each matrix element are as follows.

[image: A list of directional conditions is presented, each labeled with a number and a directional code (e.g., 1NE). The conditions specify constraints on variables \(x, y, z, \) and \(\theta \) within certain sub-ranges. This includes comparisons with zero and intervals for \(\theta \), such as \([0, \frac{\pi}{4}]\) and \([\frac{7\pi}{4}, 2\pi]\). The list covers sixteen directional categories covering combinations of north, south, east, west, upward, and downward orientations.] 

Wherein, 1-8 represent the eight hexagram limits in three-dimensional space, and “c” represents an obstacle. [image: Greek letter theta with subscript letters "a" and "c".]  represents the dihedral angle between the UAV (a) and the obstacle (c). Therefore, regardless of the number of obstacles, as long as an obstacle appears in any octant, it can be recorded in the matrix. Thus, irrespective of how many obstacles are present in a particular octant, we can provide the following definitions.

[image: Mathematical expression defining \( \mathcal{E}(DOS) \). It equals 0 if there are no obstacles in the area, and \( n \) obstacles if \( n \) is a positive integer, with \( n \) belonging to the range from 1 to infinity.] 

Through the improvements made to the R5DOS model, we gain the capability to articulate the spatial relationships between UAV and any number of obstacles. Consequently, the refined R5DOS model allows for a comprehensive representation of the spatial topology including UAVs, obstacles, and target points. Building upon the improvements introduced in the D5DOS model, we can further refine the node selection process of the A-Star algorithm.




2.3 Introduction to A-star algorithm and corresponding improvements

The space complexity of the traditional A-star exhibits exponential growth, showing a noticeable increase in computational requirements as the map size expands (Li et al., 2022). This issue primarily manifests during the execution of the A-star algorithm, where a substantial number of nodes are visited without considering whether these nodes are relevant to the final path. Consequently, this further increases the algorithm’s runtime. To address this challenge, this study introduces a custom feature attention mechanism to enhance the A-star algorithm. In the A-star algorithm, its cost function, typically denoted as ‘[image: Mathematical expression "F subscript cor of n".] ’, is commonly expressed through the expression ‘[image: Mathematical equation: \( F_{cor}(n) = H(n) + G(n) \).] ’. In this study, we employed Euclidean distance to calculate the movement cost, which is particularly suitable for the representation of three-dimensional space using the grid-based approach. Here, ‘[image: Mathematical notation showing "H" followed by an open parenthesis, the variable "n", and a closing parenthesis.] ’ represents the cost function for estimating the path from the nth feature point to the target, while ‘[image: Text displaying "G(n)" in a serif font.] ’ denotes the movement cost function for the shortest path from the starting point to the nth feature point. For the grid-based representation of three-dimensional space, the formula for calculating the movement cost ‘[image: Text "f of n" written in a mathematical style.] ’ is given by Equation 4.

[image: The equation represents a function \( f(n) = \sqrt{(x_n - x_{n-1})^2 + (y_n - y_{n-1})^2 + (z_n - z_{n-1})^2} \), indicating the Euclidean distance formula in three-dimensional space.] 

Here, ‘[image: Mathematical expression showing coordinates in a three-dimensional space: \((x_n, y_n, z_n)\).] ’ and ‘[image: Variables in parentheses: \(x_{n-1}\), \(y_{n-1}\), and \(z_{n-1}\).] ’ represent the coordinates of nodes ‘n’ and ‘n-1’, respectively. This study redefines the nodes for UAV path search. In three-dimensional space, the number of nodes that a UAV can choose for its next move is significantly greater than the cardinal directions available in two-dimensional space. To better apply the A-star algorithm, this study redivides the space into 16 regions based on the R5DOS model. However, this partitioning method is not very friendly to the node evaluation of the A-star algorithm. To improve this, this study is based on eight octants, assuming the orange point represents the UAV’s position. In this case, all vertices of the neighboring octants can be considered as neighboring nodes for the current node, resulting in a total of 26 potential search nodes. Having too many nodes can impact the efficiency of the algorithm. Therefore, based on the UAV’s next move direction, the study filters out the closest four nodes (yellow points). After the first round of searching does not yield the optimal node, it then searches for the neighbors of the yellow nodes (blue points), as illustrated in Figure 3.

[image: A 3D grid diagram depicts node positions in a search pattern. An orange node, representing a UAV, is at the center. Yellow nodes indicate optimal search paths, blue nodes show secondary search paths, and black nodes are ignored. Labels with corresponding colors identify node types.]
Figure 3 | Search mechanism of the improved A-star algorithm.

Simultaneously, based on the definition of the improved DOS layer, we can further enhance the search mechanism. By retrieving the spatial topology matrix of the current UAV, the R5 layer is divided into two scenarios.

In case [image: Matrix \( R5 \) is shown as a two-row, four-column matrix: first row has elements zero, one, zero, zero; second row has elements zero, one, one, one.]  is satisfied, employ the search method illustrated in Figure 3 to filter nodes.

In case [image: Matrix labeled \( R5 \) with two rows and four columns. The first row is \( 0, 1, 0, 0 \) and the second row is \( 1, 1, 1, 1 \).]  is satisfied, indicating the detection of an obstacle, under the search mechanism depicted in Figure 3, proceed to eliminate nodes with non-zero DOS. By redefining the method for searching nodes, it is possible to significantly reduce unnecessary node searches, thereby enhancing the search efficiency of the improved algorithm in three-dimensional environments. This approach facilitates the more effective identification of the optimal path.




2.4 Feature attention mechanism

Although the R5DOS model-based search mechanism defined in Section 2.2 can eliminate most unnecessary nodes, there are still a significant number of invalid nodes in three-dimensional space that cannot be filtered out using this method. Therefore, this study incorporates a feature attention mechanism module into the A-Star algorithm, which is activated when the UAV detects obstacles. After integrating this module, the UAV focuses more on the local features of obstacles during path planning. The dual-node filtering algorithm, combining the R5DOS model with the feature attention mechanism, effectively removes a large number of unnecessary nodes, as shown in Figure 4.

[image: Diagram showing a grid with a target point at the top marked in orange, a UAV point in green, and path feature points in blue. A black area represents obstacles. The grid's movable area is depicted in white.]
Figure 4 | The custom feature attention mechanism governs the process of selecting feature points.

In the illustration, green nodes represent the UAV [image: \( (x_{\text{UAV}}, y_{\text{UAV}}, z_{\text{UAV}}) \) displaying a coordinate set labeled UAV, representing three-dimensional spatial positions.] , orange nodes represent the target point [image: The text shows a mathematical expression representing a 3D coordinate: \((x_T, y_T, z_T)\).]  and black blocks represent obstacles. When a UAV needs to avoid obstacles in a three-dimensional space, it must focus on the primary characteristics of the obstacles, particularly the vertices and special points along the edges. By concentrating on these features and ignoring other insignificant nodes, the UAV can significantly reduce its computational load, thus alleviating much of the processing burden. For obstacles in three-dimensional space, their features include vertices and edges. Therefore, based on these features, the following definitions are made. The obstacle grid representation is denoted as Gobs(n) [image: Coordinates labeled as \(x_G, y_G, z_G\).] , with a value of 1 for obstacle grids, and the non-obstacle grid representation is denoted as GN-obs(n), with a value of 0. This study defines a feature attention estimation function, A(n), which represents the number of adjacent obstacles to the nth node. Typically, a node has 8 adjacent grids, and A(n) is expressed as formula 5.

[image: Mathematical expression showing A of n equals the sum of G sub d of s comma n, with A of n being a subset of the range from zero to eight. Equation is labeled as number five.] 

For feature points, the following definitions can be obtained:

	The evaluation function for the characteristic points at the vertices is: [image: Mathematical expression: A(n) equals 1.] .

	2.The evaluation function for the characteristic points located along the edges of the obstacles is defined as: [image: Mathematical expression showing A of n is an element of the interval two to seven intersecting with the minimum of function G subscript U of n.]  or [image: Mathematical expression showing \( A(n) \subseteq [2,7] \cap \min(f_{T-G}(n)) \).] .



‘[image: Mathematical notation "f" subscript "G minus U" and parenthesis "n".] ’ represents the path cost function between obstacles and the UAV, while ‘[image: The mathematical expression \( f_{T-G}(n) \).] ’ denotes the path cost function between the target point and obstacles. According to the above definitions, the feature points that can be filtered by this attention mechanism include the vertices of obstacles and the points on the edges of obstacles that are closest to the UAV or the target point. The characteristic points that meet the conditions are stored in List [image: Mathematical expression displaying "A subscript l of n".] . By employing this filtering method, the UAV can focus on the critical features of the obstacles that need to be avoided, thereby reducing the interference of irrelevant nodes in the algorithm. During path planning, the characteristic points in List [image: Mathematical expression "A subscript l (n)".]  are prioritized for visitation. First, the R5DOS model filters out most of the nodes, followed by the feature attention mechanism, which further filters the nodes around the obstacles. This approach allows the UAV to focus on the key features of obstacles that need to be avoided, thereby reducing the interference of irrelevant nodes in the algorithm.

Finally, we conduct a two-sample t-test on the algorithm results to analyze the simulated experimental outcomes, considering whether the differences between the proposed algorithm and other algorithms are significant. The formula for the t-test statistic for independent samples is shown below:

[image: Formula for the t-statistic in a two-sample t-test: \( t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \left( \frac{1}{n_1} + \frac{1}{n_2} \right)}} \).] 

In which, [image: \( S_1^2 \) is the mathematical notation displayed in a small font size, representing a squared term with a subscript.]  and [image: The mathematical notation shows a lowercase "s" with a subscript "2" and a superscript "2".]  represent the sample variances of two sets of data, while [image: The text "n sub 1" in a serif font, possibly representing a mathematical variable.]  and [image: The text “m subscript 2” is displayed in italics.]  denote the sample sizes.




2.5 RFA-star algorithm

Building on the preceding definitions, this paper provides the definition of the RFA-Star algorithm. Detection is performed within the exploration area, and the environmental and obstacle detection results are stored in the feature matrix of R5DOS. If the UAV detects an obstacle, a custom feature attention mechanism is introduced to search for the feature points of the obstacle. This scenario is defined as condition A.

[image: Condition A is expressed as the sum from one to capital E of the degrees of separation, denoted DOS, is greater than or equal to four. An equation number is indicated as seven.] 

‘[image: Greek letter epsilon followed by parentheses containing the letters D, O, S.] ’ represents the DOS layer of the R5DOS model (Li et al., 2023). When the UAV encounters conditions corresponding to Condition A, the local map of the detection area is gridded. An improved A-star algorithm and a feature attention module are then utilized to filter feature points. Subsequently, guiding the UAV through obstacle avoidance involves a process outlined by the RFA-Star algorithm, as illustrated in the following steps.

	Initialize the map.

	Detect the topological relationships of the R5 layer to determine the presence of obstacles. If obstacles are detected, check if condition A is satisfied.

	If Condition A is met, a feature attention mechanism is introduced to visit the characteristic points in List [image: Mathematical expression displaying "A" subscript "l" of "n".] .

	Repeat steps 2-4 until the UAV has searched all characteristic points or has escaped from the minimum value trap.

	Calculate the cost function for all nodes and select the optimal path.

	The UAV moves according to the nodes until it reaches the target location.



Based on the above process, the corresponding pseudocode of the algorithm is provided in Table 1.

Table 1 | Pseudocode of the Algorithm.


[image: Pseudocode listing the steps in the RFA-Star algorithm. It initializes a map and enters a loop until the search is complete. It detects topological relationships, checks for obstacles, and determines conditions. If conditions are met, it continues; otherwise, it identifies feature points, updates search status, calculates cost functions, selects an optimal path, and moves a UAV along the path.]
Figure 5 illustrates the flowchart of the algorithm.

[image: Flowchart depicting a decision-making process for guiding UAVs. Begins with "Start" and "Initialize Map." Evaluates topology relationship of R5 as situation 1 or 2. Situation 1 uses improved node search; Situation 2 further filters based on DOS layer. Checks if condition A is met. If yes, features are filtered; if no, checks if UAV reached the target point. Ends with "Use RFA-Star algorithm" or "End."]
Figure 5 | Flowchart of PARA-Star algorithm.





3 Results



3.1 Experimental details

To assess the efficacy of the RFA-Star algorithm in path planning within high-density obstacle environments and to compare its performance with other algorithms, this study designed two experiments:

	In a randomly generated map with dimensions of 90m × 90m × 15m, five different obstacle densities were deployed, ranging from 0.4 to 0.8 obstacles per square meter (obs./m²). Figures 6 (A–E) illustrates the projections of these maps on the xy-plane at varying obstacle densities.

	For the second experiment, five maps with varying lengths and widths but the same height were created, all with a fixed obstacle density of 0.8 obs./m². The specific details of these maps are provided in Table 2.



[image: Five maps showing obstacle distribution, each increasing in density from Map 1 to Map 5, with densities ranging from 0.4 to 0.8 obstacles per square meter. X and Y axes denote positions. Blue rectangles indicate obstacles, with density increasing visibly across maps.]
Figure 6 | Projections of maps on the xy-plane at varying obstacle densities: (A) 0.4 obs./m²; (B) 0.5 obs./m²; (C) 0.6 obs./m²; (D) 0.7 obs./m²; (E) 0.8 obs./m².

Table 2 | Detailed settings information for different maps.


[image: Table displaying map details: Map 1 size 50m×50m×15m, Map 2 size 60m×60m×15m, Map 3 size 70m×70m×15m, Map 4 size 80m×80m×15m, and Map 5 size 90m×90m×15m. Obstacle density for all maps is 0.8 obs./m². Target points are (50,50,15), (60,60,15), (70,70,15), (80,80,15), and (90,90,15) respectively.]
This study undertook a comparative analysis of the RFA-Star algorithm against other state-of-the-art spatial reasoning-based path planning methods, namely RJA-Star (Li et al., 2023) Improved A-Star (Li et al., 2022)., and the A-Star. The RJA-Star integrates an enhanced jump point search algorithm into the A-Star, effectively diminishing the number of nodes, computation time, and computational complexity. In contrast, the Improved A-Star algorithm enhances the A-Star by incorporating the R5DOS model to reduce search nodes. Furthermore, given the similar path-searching approaches employed by the RFA-Star and RJA-Star algorithms, this study extends the comparison to include A-Star, RJA-Star, and RFA-Star across five distinct map sizes. Detailed map information is available in Table 2.

For better comparison, this study set the obstacle density of the map to 0.8 obs./m2, with the starting point designated as (0, 0, 0). MATLAB was employed in this research to randomly generate obstacle maps, and all simulations were conducted on a 13th Gen Intel(R) Core(TM) i5-13600KF 3.50 GHz CPU and NVIDIA GeForce RTX 4080 GPU.




3.2 Results Comparison for Different Obstacle Densities

For each obstacle density level, this simulation experiment generated 10 distinct maps randomly, with the recording of three experimental outcomes: average flight distance, computation time, and the number of search nodes. To maintain variable consistency, this study set the starting coordinates at (0,0,0) and the target coordinates at (90,90,15).

As illustrated in Figure 7, the RFA-Star algorithm’s flight distance is only 0.06% to 0.49% longer than that of the RJA-Star algorithm, but 3.88% to 6.83% shorter than that of the Improved A-Star algorithm. The number of explored nodes is 19.42% to 36.51% higher than that of RJA-Star, while it accounts for only 0.59% to 1.17% of the nodes explored by Improved A-Star. The computation time for RFA-Star ranges from 84% to 94% of that required by RJA-Star, and from 51% to 96% of that required by Improved A-Star. While RFA-Star shows minimal differences from RJA-Star in terms of flight distance and explored nodes, it significantly outperforms RJA-Star in computation time. For UAVs, the ability to quickly and efficiently generate safe paths is crucial. Compared to the other three path planning algorithms, RFA-Star demonstrates the capability to swiftly generate high-quality paths while maintaining relatively shorter routes.

[image: Three line graphs compare A-star, RJA-star, Improved A-star, and RFA-star algorithms based on density:  (a) Flight distance versus density: RFA-star shows the highest increase, while A-star remains stable. (b) Calculating time versus density: Improved A-star shows significant increase, with RFA-star also rising. (c) Search nodes versus density: Improved A-star requires fewer nodes at lower densities; the gap widens as density increases.  Graphs indicate performance differences in various conditions.]
Figure 7 | Results of four path planning algorithms in maps generated with different obstacle densities.

This study presents distribution plots of the experimental results for flight distance, computation time, and search nodes. It is important to note that, due to the significantly higher computation time and search nodes associated with the A-Star and Improved A-Star algorithms compared to the RJA-Star and RFA-Star algorithms, corresponding distribution plots for A-Star and Improved A-Star were not generated for clarity, as shown in Figure 8. The box plots of the experimental results reveal that the RFA-Star algorithm demonstrates more concentrated outcomes across various obstacle densities compared to the other three path planning algorithms, with less fluctuation in results due to changes in the environment. However, as observed in Figure 8A, the A-Star algorithm maintains a nearly consistent flight distance across maps of the same size. Although it does not achieve the shortest distances in this study, its stability is one of the reasons why the A-Star algorithm has become a classic.

[image: Three box plots display different algorithms' performance against obstacle density. (a) Shows flight distance with A-star, RJA-star, Improved A-star, and RFA-star algorithms, indicating varied distances as density increases. (b) Shows calculation time for RJA-star, Improved A-star, and RFA-star, with time increasing with density. (c) Presents average search nodes for RJA-star and RFA-star, with more nodes as density rises.]
Figure 8 | Comparison of the distribution of experimental results of four path planning algorithms under different obstacle densities.

We conducted a t-test to analyze the search node results of the RJA-Star algorithm and the RFA-Star algorithm, with the findings presented in Table 3. The t-test was performed with a significance level of 0.05 to determine if there were statistically significant differences in the number of search nodes between the two algorithms across various obstacle densities.

Table 3 | T-test results of the RJA-Star algorithm and the RFA-Star algorithm.


[image: Table displaying three columns: Density in observations per square meter, H, and P-value. For densities 0.4 to 0.8, H values are 0, except for 0.7 with H as 1. P-values range from 0.04 to 0.35.]
As shown in Table 3, at obstacle densities of 0.4, 0.5, 0.6, and 0.8, no significant difference was observed (H = 0), indicating that the two algorithms perform similarly in these conditions. However, at an obstacle density of 0.7, a significant difference was detected (H = 1, p = 0.04), suggesting that the algorithms differ in their efficiency or behavior under this specific condition. The t-test thus highlights where the algorithms diverge in performance, particularly in their handling of search nodes.




3.3 Results Comparison for Different Map Sizes

Since the RFA-Star, RJA-Star, and A-Star can all utilize grid maps for search, this study evaluated the effectiveness of these three algorithms under different map sizes. Under the precondition that the obstacle density across all maps is set to 0.8 obs./m², the paper compares the flight distance, computation time, and search nodes of these three algorithms across five different map sizes. Ten maps were randomly generated for each size to conduct experimental comparisons. As depicted in Figure 9, the path planning scenarios for Map 1 and Map 5 are illustrated.

[image: Two 3D graphs displaying pathfinding algorithms: (a) shows paths among numerous vertical bars, with start and goal points connected by A-star, RJA-star, and RFA-star paths. (b) depicts a denser grid of bars with similar paths and points. Legends indicate line and point types.]
Figure 9 | Trajectories of A-Star (blue), RJA-Star (red) and RFA-Star (green) under different map sizes.

In Figure 9, it is shown that among the results of Map1 and Map5, the A-star algorithm produces the longest path compared to the other three algorithms. Additionally, as depicted in Figure 9B, the A-star algorithm generates a wavy path for obstacle avoidance, which is not in line with typical UAV motion patterns. Although the RJA-star algorithm results in the shortest path, it does so by closely hugging obstacles during avoidance. This approach compromises the UAV’s safety in favor of a shorter route. However, in practical UAV operations, this close proximity to obstacles is highly dangerous, increasing the risk of collision. Therefore, considering both safety and flight distance, the RFA-star algorithm offers the most balanced and optimal solution by planning a relatively short path while ensuring safety.

From the t-test results and the findings presented in Table 4, it is evident that influenced by the map size, the values of all three experimental metrics exhibit an increasing trend. Particularly noteworthy is the exponential increase observed in the average computation time and average search nodes for the A-Star algorithm. From the results, it can be observed that the average flight distance of the RFA-Star algorithm proposed in this study is comparable to that of the RJA-Star algorithm. Although the average search nodes for RFA-Star are higher than those for RJA-Star, it outperforms the other two algorithms in the crucial aspect of computation time. Moreover, in different map sizes, the average computation time of the RFA-Star algorithm is 85% to 92% of that of the RJA-Star algorithm, indicating a significant improvement. This suggests that the RFA-Star algorithm, even with an increase in map size, can maintain stable computation performance, providing rapid and stable path planning.

Table 4 | Comparison of three path planning methods.


[image: A table compares three path planning algorithms (A-star, RJA-star, RFA-star) across five maps. For each algorithm, the table lists average flight distance (in meters), average calculating time (in seconds), and average search nodes. A-star shows the longest distances and times, while RFA-star often has the shortest. Each map displays varying results.]




4 Discussion

This paper establishes a UAV path planning model based on spatial topological relationships, offering rapid and stable path planning services for UAVs operating in high-density obstacle environments. Leveraging the R5DOS model, the study improves the A-Star algorithm by introducing a feature attention mechanism to enhance obstacle avoidance capabilities during UAV flight operations. In the path planning process, the map is first initialized. Subsequently, topological relationships are detected in the R5 layer to identify obstacle presence. If obstacles are present, condition A is checked to determine the need for obstacle avoidance. If condition A is satisfied, the feature attention mechanism is introduced, and path planning is conducted by selecting characteristic points. The process continues until the UAV completes the search for all characteristic points. Next, by calculating the cost function for all nodes and considering both the cost of the path and the importance of characteristic points, the path with the minimum cost is chosen as the optimal path. Finally, the UAV moves along the nodes of the optimal path until reaching the destination point. The comprehensive application of topological relationship detection, feature attention mechanism, and A-Star in the RFA-Star algorithm achieves efficient and intelligent UAV path planning. Additionally, it enables the rapid and stable planning of UAV operational paths.

To further validate the proposed path planning algorithm’s capability to achieve rapid and stable target reachability in complex, high-density obstacle environments, this study conducted a series of comparative experiments. The RFA-Star algorithm was compared against the A-Star algorithm and two other state-of-the-art spatial reasoning-based path planning algorithms under five different obstacle density conditions. From the experimental results we can draw the following conclusions: (1) the RFA-Star boasts the shortest computation time, approximately 84%-94% less than the RJA-Star and 51%-96% less than the Improved A-Star. The flight distance is comparable to that of the RJA-Star algorithm, with only a slight difference, while the search nodes are slightly higher than those of the RJA-Star algorithm. However, these three results are significantly lower than those obtained with the Improved A-Star and the A-Star. (2) The RJA-Star has the fewest searched nodes, as it selects only the nodes closest to the line connecting the UAV and the target during the node search. However, this approach still has the potential to fall into the minimum value trap because it places greater emphasis on computing the nearest nodes. (3) The experimental results for the Improved A-Star show a dispersed distribution, indicating that the algorithm is not stable. This instability becomes more pronounced with increasing obstacle density. Although the number of visited nodes is lower than that of the A-Star, it is still significantly higher than that of the RFA-Star and the RJA-Star. (4) The A-Star, being a traditional and classic algorithm, exhibits not the shortest but the most stable flight distance among the four algorithms. In the first 40 random experiments, the flight distance presented by the A-Star remains constant. Only in the random map with an obstacle density of 0.8 obs./m2 did different results emerge, with a highly concentrated distribution of flight distances. However, due to its limitations, the computation time and search nodes of the A-Star algorithm are significantly greater than those of the other three algorithms.

The experimental results demonstrate that the RFA-Star algorithm exhibits strong robustness under varying obstacle densities. Across three key metrics—flight distance, computation time, and the number of search nodes—the RFA-Star algorithm shows relatively stable performance, with minimal impact from environmental changes. Compared to other algorithms, RFA-Star’s results fluctuate less, particularly in high obstacle density scenarios (e.g., 0.8 obs./m²), where both flight distance and computation time remain within reasonable limits, indicating good stability. Experiments conducted on maps of different sizes further validate the robustness of the RFA-Star algorithm. Although all algorithms show an upward trend in average flight distance, computation time, and the number of search nodes as map size increases, RFA-Star maintains a significant advantage in computation time. Even with larger map sizes (as shown in Figure 9B), RFA-Star’s computation time is only 85% to 92% of that of the RJA-Star algorithm. This indicates that the RFA-Star algorithm can maintain stable computational performance as map size increases, ensuring fast and stable path planning. Additionally, the experimental results show that although the average number of search nodes in RFA-Star is slightly higher than in the RJA-Star algorithm, its overall performance still surpasses other algorithms, especially in terms of the critical metric of computation time. This stability and efficiency across various map sizes further confirm the robustness of the RFA-Star algorithm in diverse and complex scenarios.

In summary, the RFA-Star algorithm demonstrates a relatively short computation time, comparable flight distance to the RJA-Star algorithm, with slightly more search nodes. The RFA-Star algorithm exhibits good performance in terms of computational efficiency and the balance between path quality, but further optimization is needed to overcome its drawbacks.



4.1 Comparison with Other Path Planning Algorithms

To further validate the effectiveness and advancement of the RFA-Star algorithm, we conducted a series of comparative experiments with other state-of-the-art path planning algorithms. Although the unique nature of RFA-Star made it challenging to find directly comparable algorithms, this approach allowed us to place RFA-Star within the broader context of modern path planning techniques. By comparing RFA-Star with diverse algorithms designed for different environments and operational requirements, we could better understand its strengths and limitations. This comparison not only highlights the robustness and efficiency of RFA-Star in various scenarios but also provides a comprehensive perspective on its relative performance against other leading methods.

Castro et al. (Castro et al., 2023) combined Rapidly-exploring Random Trees (RRT) with Deep Reinforcement Learning (DRL) to generate and control UAV trajectories during the inspection of olive fly traps. Their proposed solution was tested in a simulated environment with 10 dynamic obstacles within a 300 cubic meter area. The RRT+DQN algorithm achieved an average runtime of 8.2 milliseconds, outperforming traditional algorithms like Genetic Algorithm (GA) and Dijkstra, which had runtimes of 8.7 milliseconds and 2.4 milliseconds, respectively. The pure RRT algorithm had a runtime of 6.5 milliseconds. Souto et al. (Souto et al., 2023) developed a novel reinforcement learning-based method aimed at reducing power consumption during UAV missions in disaster scenarios to mitigate the negative effects of changing wind directions. Compared to simpler heuristic methods, the power-saving effect was reduced by 15.93%. The study showed that Q-learning using an ϵ-greedy decay method was the most efficient, resulting in shorter mission durations compared to SARSA and basic Q-learning. While the main focus of this study was on energy efficiency rather than path planning speed, it highlighted the importance of algorithm efficiency in extending UAV mission life. Xu et al. (Xu et al., 2024) proposed a bionic 3D path planning algorithm for agricultural UAVs, designed to optimize safe flight paths between work plots obstructed by multiple obstacle zones. The algorithm was tested in a 100 cubic meter irregular hilly space with several randomly placed obstacles. The experimental results showed that the bionic 3D path planning reduced path length by 75.15%, and energy consumption decreased by 13.91% to 27.35% compared to other algorithms, including Ant Colony Optimization and Artificial Bee Colony algorithms. The specific results are presented in Table 5.

Table 5 | Comparative Analysis of Path Planning Algorithms for UAVs in Various Environments.


[image: Table comparing path planning algorithms. RFA-Star on a 50x50x15m map with 0.8 obstacle density has a computation time of 4.1 seconds. RRT+DQN operates in a 300 m³ area with 10 dynamic obstacles, taking 8.2 milliseconds. Reinforcement Learning handles 30x30m with 49 obstacles, taking 5.67 to 37.43 seconds. Another RFA-Star test on 90x90x15m with 0.8 density takes 9.17 seconds. Bionic 3D Path Planning on 100x100x100m with 7 obstacles takes 148.99 seconds. Ant Colony algorithm takes 59.52 seconds, and Artificial Colony takes 44.67 seconds, both on the same map size.]
The RFA-Star algorithm integrates the enhanced A-Star algorithm with the R5DOS model and incorporates a feature attention mechanism. Despite the addition of extra computational steps, its time complexity remains at [image: \(O(n \log(n))\)] , demonstrating high computational efficiency and stability in high-density obstacle environments. In contrast, the RRT+DQN algorithm combines Rapidly-exploring Random Trees (RRT) with Deep Q-Network (DQN), making it suitable for path planning in dynamic environments. Its time complexity is [image: The text "O(n log(n))" represents Big O notation commonly used in computer science to describe an algorithm's complexity, specifically indicating logarithmic linear complexity.] , and it shows better flexibility when handling dynamic obstacles.

The Q-learning-based energy-efficient path planning algorithm primarily focuses on reducing computational complexity to extend UAV mission life, with a time complexity of [image: Big O notation expressing a time complexity of O(m⋅n), representing operations proportional to the product of m and n.] , where mmm is the number of states and nnn is the number of actions. This method is appropriate for scenarios requiring high energy efficiency. The bionic 3D path planning algorithm, which simulates krill swarm behavior, achieves dual optimization of path length and energy consumption. Although its time complexity is relatively high (approximately [image: The notation "O(n squared)" represents big O notation indicating that the algorithm's time complexity grows proportionally to the square of the input size.] , it provides superior path planning and energy management in complex terrains.

In contrast, the RFA-Star algorithm consistently demonstrates shorter computation times across various obstacle densities, underscoring its efficiency in handling complex environments. Especially in high-density obstacle scenarios, the RFA-Star algorithm not only maintains a rapid computation speed but also successfully generates stable, safe, and shorter paths, further confirming its exceptional performance in complex settings. Although RFA-Star excels in computation speed, the potential advantages of the RRT+DQN method in dynamic obstacle scenarios should not be overlooked, providing a direction for future improvements in the adaptability of RFA-Star. Additionally, while RFA-Star may not directly compete with the bionic 3D algorithm in terms of energy and path length optimization, its rapid computation and pathfinding capabilities in highly complex environments showcase its robust and stable solution.





5 Conclusions

To address the issue of high obstacle density that UAVs may encounter when collecting plant phenotypic information at ultra-low altitudes. Based on spatial topological relationships, this paper introduces the RFA-Star algorithm by incorporating a feature attention mechanism to enhance the A-Star algorithm, providing rapid and stable path planning services for UAVs in high-density obstacle environments. In the path search process, the obstacles are categorized into two situations using condition A, and the feature attention mechanism is introduced to search for characteristic points, guiding the UAV safely to its destination. The study compares the RFA-Star algorithm with RJA-Star, Improved A-Star and A-Star to validate its effectiveness. Experimental results indicate that the RFA-Star algorithm has the shortest computation time, approximately 84%-94% of the RJA-Star and 51%-96% of the Improved A-Star algorithm. The flight distance is comparable to the RJA-Star algorithm, with slightly more explored nodes than the RJA-Star algorithm. Overall, the RFA-Star algorithm exhibits relatively superior performance in terms of computational efficiency and a balanced trade-off between path quality and efficiency. It demonstrates efficient and stable performance in diverse complex environments. However, further optimization is still required to enhance overall performance.

In future work, we plan to enhance the R5DOS model by introducing the more boundary-sensitive RCC8 model. This improvement involves initiating obstacle avoidance when the UAV detects the boundary satisfying the tangent condition with obstacles, ensuring further safety. Additionally, this study was conducted in a static environment; however, in future research, we will consider further refining our algorithm in dynamic and unknown environments. Finally, future work will involve applying the proposed algorithm to real-world scenarios for testing and evaluation, to further confirm its efficiency, safety, and effectiveness.
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Recent advancements in digital phenotypic analysis have revolutionized the morphological analysis of crops, offering new insights into genetic trait expressions. This manuscript presents a novel 3D phenotyping pipeline utilizing the cutting-edge Neural Radiance Fields (NeRF) technology, aimed at overcoming the limitations of traditional 2D imaging methods. Our approach incorporates automated RGB image acquisition through unmanned greenhouse robots, coupled with NeRF technology for dense Point Cloud generation. This facilitates non-destructive, accurate measurements of crop parameters such as node length, leaf area, and fruit volume. Our results, derived from applying this methodology to tomato crops in greenhouse conditions, demonstrate a high correlation with traditional human growth surveys. The manuscript highlights the system’s ability to achieve detailed morphological analysis from limited viewpoint of camera, proving its suitability and practicality for greenhouse environments. The results displayed an R-squared value of 0.973 and a Mean Absolute Percentage Error (MAPE) of 0.089 for inter-node length measurements, while segmented leaf point cloud and reconstructed meshes showed an R-squared value of 0.953 and a MAPE of 0.090 for leaf area measurements. Additionally, segmented tomato fruit analysis yielded an R-squared value of 0.96 and a MAPE of 0.135 for fruit volume measurements. These metrics underscore the precision and reliability of our 3D phenotyping pipeline, making it a highly promising tool for modern agriculture.
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1 Introduction

Digital phenotypic analysis is increasingly recognized as an essential element in the accurate morphological analysis of crops and is becoming increasingly important in various application areas (Tripodi et al., 2022). It goes beyond simple observations to digitalize and quantify the crop’s genetic trait expressions. In addition, phenotypic analysis is complexly linked to environmental data, promoting an informed decision-making process to optimize cultivation conditions and improve crop yields.

Two-dimensional (2D) imaging is primarily used in computer vision-based phenotyping studies. For example, segmentation algorithms analyze the number of pixels within a segment to calculate the projected area for area analysis (Fonteijn et al., 2021). Methods, such as the convex hull method, have also been employed to analyze the growth state of crops (Du et al., 2021). Moreover, extracted silhouettes can regressively estimate the crop volume (Concha-Meyer et al., 2018). Despite their usefulness, these methods fail to capture the complete complexity of plant morphology. When reducing 3D structures to 2D representations, significant data that aid the comprehensive understanding of plant health and development, such as leaf curvature, area, and overall plant volume, can be lost.

Several methods using RGB-D cameras and key-point detection (Vit et al., 2019) have been proposed to obtain 3D information about crop morphology. For example, structure from motion-based methods extract phenotyping elements of greenhouse crops from RGB photos captured from multiple angles (Li et al., 2020; Wang et al., 2022). Alternatively, laser scanners can obtain more precise 3D plant models (Schunck et al., 2021). Additionally, obtaining the 3D form of crops is essential for future agriculture, as it enables phenotyping and advanced applications, such as light interception analysis (Kang et al., 2019). However, 3D phenotyping in greenhouse environments poses several challenges. First, even with the light-diffusing film in greenhouses, scattered sunlight can still create substantial noise during measurements using active 3D imaging approaches (such as consumer-level depth cameras like Intel RealSense L515, D435, or laser scanners) (Neupane et al., 2021; Maeda et al., 2022; Harandi et al., 2023). Second, focusing on high-interest positions in greenhouse crops, such as tomatoes, results in low productivity for large and heavy measurement equipment. Third, narrow spacing, typical of greenhouses, makes obtaining sensor data from various angles difficult for 3D model acquisition.

The emerging neural radiance field (NeRF) technology (Gao et al., 2022) offers a new direction for 3D phenotyping. NeRF uses a fully connected neural network to model volumetric scene features and render images from various viewpoints, capturing the 3D structure of a scene. NeRF is robust and can represent complex morphological structures with fewer and more sparsely distributed input images, making it suitable for 3D phenotyping. The time incurred in training NeRFs, which was previously tens of hours, has significantly improved to just minutes with the advent of Instant-NGP, applying hash-encoding-based positional encoding (Müller et al., 2022). Moreover, the user-friendly Nerfstudio framework has made the application and training of NeRF more accessible (Tancik et al., 2023). In agriculture, many applications are underway, including applying semantic segmentation techniques to assist robots’ scene understanding in greenhouse (Smitt et al., 2024) or analyzing crops with complex structures (Saeed et al., 2023).

The proposed pipeline encompasses automated RGB image acquisition through a specialized greenhouse robot platform with a 6-degrees of freedom (6-DoF) robot arm. It also includes acquiring dense point-cloud data utilizing NeRF technology, followed by extracting detailed morphological information from the data. A key aspect of this pipeline is adopting a forward-facing capture technique by operating from a fixed position with a limited field of view, which means that the crops are not captured from a full 360-degree angles at ground level. This limitation aligns more realistically with the practical constraints of greenhouse environments. Despite this limitation, the approach provides the noninvasive measurement accuracy of critical crop parameters, such as length, leaf area, and fruit volume. The application of this method was demonstrated through nondestructive measurements of tomato crops in conditions mirroring actual greenhouse environments. The morphological data obtained were then compared with that acquired through traditional human growth surveys, allowing for a thorough evaluation of the measurement accuracy. The main contributions of this study are as follows:

	A system and data processing pipeline were presented to obtain 3D crop models in greenhouse environments based on images automatically collected by unmanned robots.

	The proposed pipeline demonstrates obtaining decent point-cloud data of crop images from limited viewpoints, showcasing a realistic method for greenhouse environments.

	The proposed 3D plant model was used to measure the following: 1D information, such as stem thickness, node length, and flower position height; 2D information, such as leaf area; 3D information, such as fruit volume. These measurements were compared with actual measurements to demonstrate the suitability of the proposed pipeline for use in growth surveys.






2 Materials and methods



2.1 Pipeline overview

A 3D phenotyping pipeline was presented; 3D point clouds based on RGB images obtained from multiple viewpoints were reconstructed using a robot for nondestructive constraint-overcoming measurements in greenhouse environments. The proposed pipeline comprises seven elements, as shown in Figure 1: (A) Acquiring images using a 6-DoF robot from various viewpoints. (B) Acquiring camera poses from images and calibrating these poses to a meter scale. (C) Training NeRF based on the acquired images and camera poses. (D) Extracting and segmenting the point cloud based on the color and depth rendering results from the NeRF. (E) Skeletonizing to identify connections between plant organs and to extract length information. (F) Reconstructing the surface on the segmented leaf part of the point cloud and calculating the area from the obtained surface. (G) Fitting an ellipsoid to the segmented fruit part of the point cloud and estimating the fruit volume by calculating the ellipsoid volume.

[image: Flowchart illustrating a process for plant analysis using 3D reconstruction technology. It includes steps: (A) Image Acquisition, capturing plant images; (B) Calibration using a robot arm; (C) 3D Reconstruction forming a model from images; (D) Point Cloud showing plant structure; (E) Length measurement through skeletonization; (F) Area calculation via surface reconstruction; and (G) Volume determination using ellipsoid fitting. Arrows indicate the sequence, with key processes highlighted like segmentation and point cloud extraction.]
Figure 1 | 3D phenotyping pipeline for tomato crop analysis. The steps are as follows: (A) Image acquisition using a 6-DoF robot, (B) Camera calibration, (C) NeRF training for 3D reconstruction, (D) Point cloud extraction and segmentation, (E) Skeletonization for inter-node length measurement, (F) Surface reconstruction for leaf area measurement, and (G) Ellipsoid fitting for fruit volume estimation.




2.2 Image acquisition

The robot illustrated in Figure 2A was developed in a previous study (Cho et al., 2023) and was employed to facilitate image acquisition in the greenhouse. The base comprises a smart-farm robot platform that controls mobility and provides power. A 6DoF manipulator, UR-5e, with a maximum reach of 850 mm, is mounted on top of this platform. A machine-vision camera, an IDS U3-36L0XC, is attached to the end effector of this robot arm and designed for photographic capture. This camera has a 4200 x 3120-pixel resolution and a frame rate of 20 frames per second. It is connected to a mini-PC via USB to control the image-capturing process. This mini-PC is connected to the robot arm through a LAN and is equipped with integrated software to control the image-capturing process and robot arm.

[image: Robotic system in a greenhouse consisting of a mobile robot with a lift unit, which elevates a robot arm equipped with a machine vision camera and controller mini-PC. The setting shows the robotic system operating among rows of plants.]
Figure 2 | (A) Configuration of the greenhouse unmanned robot platform. (B) Example of a robot taking measurements in a greenhouse.

In addition, the robot arm-based image acquisition system includes a lift unit for transporting along the Z-axis. This allows maneuvering the robot arm to the desired crop and then vertically to the area of interest using the lift. In the greenhouse environment where the validation was conducted, the average distance between crops was 40 cm, and the distance between lanes was 150 cm. As shown in Figure 2B, the robot was deployed in the field to capture images. The image acquisition process, depicted in Figure 1A, involves capturing images from 64 different poses. These poses are arranged on the surface of a virtual sphere with a radius of 60 cm (the average distance between the crop and the robot arm), centered on the target area of interest. The dome is formed by the portion of the sphere that falls within the robot arm’s reach, creating a set of poses that cover the necessary angles.




2.3 NeRF-based 3D reconstruction

NeRF presents a novel approach to 3D scene reconstruction by synthesizing photorealistic images using deep learning. A fully connected neural network is used to model volumetric scene features, rendering complex 3D scenes from 2D image sets. NeRF can interpolate and extrapolate new views from sparse input data, creating highly detailed and coherent 3D reconstructions. The underlying mechanism involves learning the color and density distribution of light in a scene as a function of the position and viewing direction. In NeRF, each pixel is represented as a ray. For each ray, its position information (x, y, z), representing the 3D coordinates in space, and direction (θ, φ), representing the viewing angles, are fed into a multilayer perceptron (MLP). The MLP outputs the RGB value and transparency (σ) for that ray. This process essentially captures the light and color information passing through the scene and the density distribution along the rays, providing the basis for reconstructing a 3D model from 2D images. In other words, the NeRF model can receive a 5-dimensional vector, including position and viewing direction, as input and provide RGB values and depth images as output.

Preprocessing to acquire the pose information of the images during the image-acquisition phase is essential for the NeRF to learn and reconstruct a scene. The pose information (x, y, z, θ, and φ) is obtained using structure from motion software called COLMAP (Schonberger and Frahm, 2016). In our pipeline, the UR-5e robot arm, which supports pose repeatability within 0.03 mm, requires running the COLMAP process only once for each set of pre-defined robot arm’s poses. The calibration process is shown in Figure 1B.

A marker with known physical measurements were used during calibration. Specifically, a 30 cm by 30 cm printed marker was placed 75 cm away from the robot arm’s base to replicate crop measurement conditions. By capturing a single scene with this setup, we were able to obtain the COLMAP results, which provided the marker’s coordinates in the reconstructed scene. These coordinates were then matched with the actual known dimensions of the marker, allowing us to determine the scale factor that converts the displacement output (x, y, z) from COLMAP into a metric scale, but also enabled us to reuse the calibrated camera poses in subsequent image captures. As a result, there is no need to recalculate the poses using COLMAP each time, simplifying the NeRF input process.

The Nerfacto model within the NerfStudio framework (Tancik et al., 2023), chosen for its combination of various NeRF-related research advantages, aligns well with the proposed 3D phenotyping pipeline. Despite the excellent pose repeatability of the robot arm, Nerfacto’s camera pose refinement (Wang et al., 2021) capability is crucial for minimizing potential noise in the results. In addition, hash encoding (Müller et al., 2022) significantly enhances learning speed, which enhances the overall efficiency of the pipeline. The proposal sampler (Barron et al., 2022) in Nerfacto, which focuses sample locations on the regions that contribute the most to the final rendering, particularly the first surface intersection, is essential for capturing complex crop details. This focused sampling approach is integral to accurately depicting the intricate morphological traits for detailed phenotypic analysis.

During training, we employed the Nerfacto model in Nerfstudio version 0.3.4, utilizing the default training parameters. However, because we were solely focused on point-cloud acquisition, we did not partition the validation set, and instead, adjusted the number of iterations to 20,000. The training was conducted on a workstation (AMD Ryzen™ Threadripper™ PRO 5975WX, 256GB RAM, NVIDIA RTX4090), and completed in approximately 5 minutes. After training, NeRF’s RGB render output and depth map output can be mapped for all camera poses included in the training set and sampled as a point cloud. This process utilized the implementation built into the NeRFStudio framework.




2.4 Phenotypic trait extraction

In this study, we extract phenotypic traits from point clouds generated by an earlier pipeline, focusing on inter-node length, leaf area, and fruit volume. We applied Laplacian-based contraction (LBC) (Cao et al., 2010) to the point cloud to extract length information, leading to skeletonization. Skeletonization reduces the point cloud to a more manageable representation and emphasizes the structural aspects of the plants. Because the skeleton resulting from the LBC is a collection of discontinuous points, we applied the minimum spanning tree (MST) algorithm (Meyer et al., 2023) to create a more coherent structure. The MST algorithm transforms the disconnected points into a graph-like structure, effectively representing the plant’s physical structure. Thus, the nodes in the skeleton can be aligned with the actual nodes of the crop stem, accurately representing the plant morphology. The final topology graph, extracted from the point cloud, has nodes whose coordinate system corresponds to the original point cloud. Consequently, the Euclidean distance between two points of interest in this graph represents the distance between the crop nodes.

Extracting leaf area and fruit volume measurements requires preprocessing involving point-cloud segmentation. In this pipeline, we manually carried out this segmentation using CloudCompare (2023), as illustrated in Figure 3. Manual segmentation in CloudCompare allows the precise separation of different components of the point cloud, specifically distinguishing leaves, and fruits from other parts of the plant.

[image: CloudCompare software interface displaying a 3D model of a plant with leaves and gridded segmentation lines. The interface includes a DB Tree panel on the left and a console log with recent actions at the bottom.]
Figure 3 | Manual segmentation of leaves and fruits using CloudCompare. Segmentation is performed by drawing a polygon (green lines) using the clipping tool. Afterward, a point cloud segmented with a yellow cuboid is displayed.

To calculate the leaf area, we first performed surface reconstruction on the segmented point cloud of the leaves. The total area was calculated as the sum of the triangular areas forming the mesh obtained from this reconstruction. However, accurately reconstructing a typically thin leaf structure requires noise removal near the leaf surface. Our pipeline incorporates a moving least squares (MLS) technique to address this (Alexa et al., 2001). MLS effectively converges points near the leaf surface while preserving the natural curvature and shape of the leaves (Boukhana et al., 2022). Next, the ball pivoting algorithm (BPA) was employed to generate the final mesh of the leaf. BPA works by rolling a ball of a specified radius over points to create a mesh, adeptly bridging gaps between points while maintaining the integrity of the leaf’s shape.

Finally, we employed ellipsoid fitting to estimate the volume of the segmented tomato fruits. Our pipeline uses input images captured from limited angles rather than from a full 360-degree view, which inevitably limits the measurement of the rear part of the tomato. However, despite this limitation, the tomato volume can be approximated by fitting an ellipsoid to the point cloud representing the measured portion of the tomato.

Ellipsoid fitting in this context is a simple but practical approach for volume estimation when complete data coverage is not feasible (Sari and Gofuku, 2023). By modeling the visible part of the tomato as an ellipsoid, we extrapolate the unmeasured portion, assuming symmetry and typical shape characteristics of tomatoes.

Fitting minimizes the size of the squared distance from the points to the ellipsoid surface, leading to the estimation of semi-axes a, b, and c. The optimization can be represented by minimizing the following function:

[image: Function \( f(a, b, c) = \sum_{i=1}^{M} \left(\frac{x_i^2}{a^2} + \frac{y_i^2}{b^2} + \frac{z_i^2}{c^2} - 1\right)^2 \).]

where [image: Mathematical notation showing a three-dimensional point with coordinates \(x_i\), \(y_i\), and \(z_i\).]  are the coordinates of the i-th point in the point cloud, and M is the total number of points in the point cloud. Optimization was performed using the least-squares method. Through the optimization, volume V of the ellipsoid fitted to the tomato point cloud can be obtained.




2.5 Ground truth measurement

To evaluate the accuracy of the proposed pipeline, we describe the ground-truth measurement methods conducted alongside image capturing. The results obtained by skilled cultivators using tape measures were used as the ground truth for measuring the node length. However, considering the node extraction based on skeletonization in our study, measurements were centered on the point where the branches diverged as much as possible.

For the leaf area, leaves were cut, affixed to paper, and photographed in a controlled studio environment, with the camera positioned directly above at a distance of 40 cm, ensuring a perpendicular angle. An example of a photographed leaf is shown in Figure 4A. The ruler is included to facilitate the conversion between pixel units and metric scale. Subsequently, binary processing was applied to these images to create silhouettes of the leaves, as shown in Figure 4B. The leaf area was then determined by calculating the pixel area of the silhouette in square centimeters ([image: "cm squared" in italics.] ) using a scale factor obtained from 1 cm pixels on the ruler.

[image: Panel A shows three dark leaves labeled 2-R1, 2-L2, and 2-R2 placed against a white background with a ruler at the bottom. Panel B is a binary image highlighting the leaf outlines in white against a black background.]
Figure 4 | Obtained color-image (A) and background removal (B) for leaf area calculation.

Finally, for volume measurement, we utilized the principle of buoyancy, which calculates the volume of an object based on the weight and force required to submerge it in water (Concha-Meyer et al., 2018). The weight [g] was measured using a scale with a resolution of 0.05 g. A glass beaker filled with water was placed on the scale, and its tare function was used to adjust the reading to zero. The fruit, attached to a wire, was quickly submerged in water and positioned at the center of the beaker. The reading, which reflects the weight of the submerged fruit and the weight when pressed down by the wire, was recorded and represents the volume of the fruit [[image: The image shows the mathematical notation "cm" with a superscript "2", representing square centimeters, a unit of area measurement.] ].





3 Results

For validation, we measured the growth points of 16 tomato crops at the upper parts and the fruit clusters of 16 tomato crops at the lower parts, resulting in 32 image sets, each comprising 64 multi-view images. From these, we measured a total of 47 inter-node lengths, including 1 inter-node length above and 1-2 inter-node lengths below the topmost flower cluster for each plant. In each of the lower part image sets, we measured 2-3 leaves and 1-2 fruits. These selections were based on factors such as size, shape, and proximity to the robot arm to ensure diversity, resulting in measurements of 37 leaf areas and 20 fruit volumes in total. All measurements were conducted concurrently with ground-truth measurement.

Figure 5 shows the extracted point clouds, illustrating two growth points and two fruit clusters. The front-view representation displays a dense formation of the point cloud, as captured from the angle at which the images were captured. However, the side view, representing angles not captured during imaging, shows reduced performance, especially in regions not directly imaged.

[image: Comparison of tomato plants shown in different formats. The left column displays real-life color images of tomato plants. The middle and right columns show computer-generated 3D point clouds of the same plants from front and side views, respectively. The images highlight tomato fruits and foliage in a controlled growing environment.]
Figure 5 | Front and side view appearance of point-cloud created from the input RGB images. The top and bottom two rows represent points near the growing point and fruit cluster, respectively.

Figure 6 presents the skeletonization results performed to measure the node-to-node lengths. In Figure 6A, the skeleton created through LBC is overlaid on the original point-cloud data as blue dots. Figure 6B shows the application of the MST algorithm to this skeleton; the red dots represent nodes, and the connections between them are depicted.

[image: (A) Three-dimensional point cloud model of a plant with detailed branching and leaves in blue. (B) Corresponding skeletal structure represented as a network of red nodes connected by black lines, illustrating the plant's branch architecture.]
Figure 6 | (A) Skeletonization process through applying Laplacian-based contraction to point cloud and (B) applying minimum spanning tree algorithm to the skeleton; blue and red dots indicate skeleton and nodes, respectively.

A comparison between the distances measured among the red dots and the node-to-node lengths measured manually is shown in Figure 7. The results showed an R-squared value of 0.973 and a mean absolute percentage error (MAPE) of 0.089, indicating a accuracy in the skeletonization and subsequent measurements. The error sources can be attributed to fundamental differences in the measurement approaches; the point cloud data measure lengths based on the central coordinates of the plant nodes, while the tape measure records lengths over the plant’s surface. The discrepancy between the two methods may account for the minor measurement variations. Despite these differences, the close correlation demonstrates the effectiveness of the skeletonization process in accurately capturing the crop’s physical dimensions.

[image: Scatter plot comparing inter-node length ground truth with point cloud inter-node length in centimeters. Data points closely follow a diagonal trend line. The plot shows a high R-squared value of 0.973 and a mean absolute percentage error of 0.089.]
Figure 7 | Comparison between inter-node length from NeRF and ground truth.

Figure 8 showcases examples of the segmented leaf point cloud and the meshes reconstructed using MLS and BPA. The top two samples demonstrate instances with minimal error, serving as representative examples of high accuracy, while the bottom two samples exhibit significant discrepancies, highlighting cases with large errors.

[image: Comparison of leaf models demonstrating error levels using point cloud and mesh techniques. The top row shows small error with a detailed point cloud and mesh. The bottom row shows large error with a fragmented point cloud and distorted mesh.]
Figure 8 | Example of leaf point cloud and surface reconstruction. A good example with a small error is at the top, and a bad example is at the bottom.

The variance in accuracy between these two sets of samples is attributed to the image-capturing angle. Samples with greater errors include leaves that were curled or rolled up, resulting in one side not being adequately captured. This lack of complete data led to inaccuracies in the reconstruction process. Figure 9 further illustrates this point, with an R-squared value of 0.953 and a MAPE of 0.090.

[image: Scatter plot comparing point cloud surface area and ground truth surface area, both in square centimeters. Features a dashed line representing the ideal correlation, \(R^2\) value of 0.953, and mean absolute percentage error (MAPE) of 0.090.]
Figure 9 | Comparison of surface area from NeRF and ground truth.

Figure 10 shows examples of segmented tomato fruits. Similar to the previous examples with leaves, the top two samples represent instances with minimal errors, whereas the bottom two samples show substantial discrepancies. The high errors likely resulted from the fruits being partially obscured by leaves or adjacent fruits, leading to fewer data points being captured and, consequently, errors in the fitting process.

[image: Point cloud visualization of apples with different error levels. The top row shows a front-view and side-view with small error, while the bottom row displays a front-view and side-view with large error, appearing more distorted and incomplete.]
Figure 10 | Example of tomato fruit’s point cloud. A good example with a small error is at the top, and a bad example is at the bottom.

In Figure 11, the results are quantified, showing an R-squared value of 0.96 and a MAPE of 0.135. These values indicate a high degree of accuracy in most cases, with errors primarily arising from occluded or partially hidden portions of the fruits.

[image: Scatter plot showing the relationship between volume ground truth and point cloud volume, with data points mostly near a dashed line indicating a strong positive correlation. The R-squared value is 0.96, and the Mean Absolute Percentage Error (MAPE) is 0.135.]
Figure 11 | Comparison between volume from NeRF and ground truth.

The issues encountered, predominantly owing to obscured parts of the fruit, suggest a potential avenue for improvement in future studies. Addressing this challenge may involve fitting parametric geometric models to the fruits or implementing appropriate interpolation methods. Such techniques can help accurately estimate the shape and volume of partially obscured fruits, enhancing the phenotyping precision. This approach is beneficial in complex agricultural environments where occlusion by leaves or other fruits is common.




4 Discussion



4.1 Performance

The 6-axis robotic arm mounted on the SmartFarm robotic platform used in this study can capture images at 64 poses in approximately 240 seconds. Due to its general-purpose design, not specifically optimized for capturing images quickly, the image acquisition process is relatively time-consuming. However, the development of dedicated image acquisition hardware could significantly enhance both image acquisition speed. For example, implementing a system with rails capable of Z-axis movement and a camera unit with Pan-Tilt functionality could be considered. This system can perform multi-angle image acquisition in conjunction with the robot’s movement on the ground. This approach will not only reduce the time required for multi-angle image acquisition but also lower hardware costs.




4.2 Multi-modal point cloud

If an additional camera, such as an IR or multispectral camera, is installed parallel to the RGB camera when acquiring images, it becomes feasible to implement a multimodal point cloud. In the NeRF point cloud construction process mentioned above, the point cloud is sampled by mapping the RGB image and depth image generated as the output of NeRF. By aligning multimodal images taken from the same angle with the generated RGB image, it is possible to obtain a point cloud where the color from RGB is replaced by multimodal values. Specifically Thermal imaging using IR camera can be used to extract physiological indicators from plants (Pradawet et al., 2023). However, when these thermal data are integrated into a 3D structure, enabling the point cloud to include both morphological and physiological information, there is potential to develop more sophisticated indicators for analyzing plant stress or disease, which could lead to more accurate and representative plant physiological assessments.




4.3 Limitations and future work

Our current study, while demonstrating the potential of NeRF-based 3D reconstruction for tomato crop phenotyping, has several limitations that need to be addressed in future research. One limitation is that the process of extracting regions of interest from the point cloud or node graph is currently manual. This manual process introduces the potential for human error and limits scalability. To enable high-throughput phenotyping, it will be essential to incorporate additional technologies, such as AI-driven 3D segmentation (Xie et al., 2020), which could automate this process and significantly improve efficiency.

Another limitation lies in the image acquisition process, which is constrained by the robot’s fixed position, capturing images only from angles within the reach of the robotic arm. While this method has proven effective for capturing the structure of plant nodes in the upper parts of the crops, it struggles with densely vegetated lower parts where leaves and other foliage can obscure key details. The occlusion effects caused by tightly packed leaves can result in sparse point clouds and reduced accuracy in the final 3D model. The fine details of smaller leaves are particularly prone to being smoothed out or lost during the reconstruction process, further complicating accurate representation. To address these challenges, one approach could involve applying models that can efficiently process more numerous and detailed input images (Wang et al., 2022), thereby capturing finer details and reducing occlusion issues. Another potential solution is to integrate autonomous navigation technologies such as SLAM (Simultaneous Localization and Mapping). By using SLAM (Campos et al., 2021), the robot could link image sets captured from different locations, such as combining images taken from the opposite lane of the target crop, to provide a more complete view.

Additionally, the current pipeline is specifically designed for tomato crops in a greenhouse environment, with limitations in accurately measuring fruit volumes in the lower parts of the plants. Expanding the applicability of this pipeline will require more robust 3D data acquisition methods, possibly through enhanced image coverage using autonomous mobility or more sophisticated interpolation techniques, to provide comprehensive volumetric data.

Lastly, we encountered challenges related to crop movement during image capture in real greenhouse environments. Even slight movements of the crops during shooting introduced noise into the 3D reconstruction results, which compromised accuracy. To address this vulnerability, applying dynamic NeRF (Pumarola et al., 2021) that add a time axis to the radiance fields could allow the system to capture the geometry of moving objects. If integrated into 3D phenotyping, this approach could enable the system to operate robustly even in open fields where wind and crop movement are factors, offering a promising direction for future research.





5 Conclusion

By employing a state-of-the-art combination of NeRF technology and autonomous robotic systems, we successfully developed a pipeline capable of capturing comprehensive morphological crop data from limited viewpoints. The precision of our method was validated by the R-squared values above 0.953 and MAPE under 0.96 for length, area, and volume measurements, demonstrating its superiority over traditional growth surveys. However, our study identified challenges, such as occlusion and incomplete data capture due to foliage, indicating areas for future enhancement. Potential improvements could involve integrating parametric geometric modeling or sophisticated interpolation methods for more accurate shape and volume estimations of partially visible fruits. Overall, this research proves the viability of advanced 3D phenotyping in real-world greenhouse scenarios and paves the way for future developments in digital agriculture to optimize crop management and yield through precise morphological assessments.
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Introduction

The accurate and rapid detection of ginseng fruits in natural environments is crucial for the development of intelligent harvesting equipment for ginseng fruits. Due to the complexity and density of the growth environment of ginseng fruits, some newer visual detection methods currently fail to meet the requirements for accurate and rapid detection of ginseng fruits. Therefore, this study proposes the YOLO-Ginseng detection method.





Methods

Firstly, this detection method innovatively proposes a plug-and-play deep hierarchical perception feature extraction module called C3f-RN, which incorporates a sliding window mechanism. Its unique structure enables the interactive processing of cross-window feature information, expanding the deep perception field of the network while effectively preserving important weight information. This addresses the detection challenges caused by occlusion or overlapping of ginseng fruits, significantly reducing the overall missed detection rate and improving the long-distance detection performance of ginseng fruits; Secondly, in order to maintain the balance between YOLO-Ginseng detection precision and speed, this study employs a mature channel pruning algorithm to compress the model.





Results

The experimental results demonstrate that the compressed YOLO-Ginseng achieves an average precision of 95.6%, which is a 2.4% improvement compared to YOLOv5s and only a 0.2% decrease compared to the uncompressed version. The inference time of the model reaches 7.4ms. The compressed model exhibits reductions of 76.4%, 79.3%, and 74.2% in terms of model weight size, parameter count, and computational load, respectively.





Discussion

Compared to other models, YOLO-Ginseng demonstrates superior overall detection performance. During the model deployment experiments, YOLO-Ginseng successfully performs real-time detection of ginseng fruits on the Jetson Orin Nano computing device, exhibiting good detection results. The average detection speed reaches 24.9 fps. The above results verify the effectiveness and practicability of YOLO-Ginseng, which creates primary conditions for the development of intelligent ginseng fruit picking equipment.





Keywords: ginseng fruit, intelligent harvesting, visual detection method, C3f-RN module, model compression




1 Introduction

Ginseng, a precious medicinal herb, is a perennial herbaceous plant belonging to the family Araliaceae. It boasts a long history of cultivation and medicinal use and is acclaimed as the “King of Herbs” in China. Ginseng is widely distributed, being cultivated in various regions, including Northeast China, the Korean Peninsula, Japan, Russia, the United States, and Canada (Shuai et al., 2023b; Yoon et al., 2022). Although ginseng varieties differ across locations, their efficacy remains similar. Research indicates that ginseng exhibits various health benefits, such as lowering blood pressure (Chen et al., 2024), protecting the myocardium (Liu et al., 2023), enhancing immune function, and promoting hematopoiesis (Song et al., 2023).

Ginseng fruit, also known as ginseng berries (Rho et al., 2020), is the mature fruit produced by ginseng plants after several years of growth and serves as the seeds of the ginseng plant (Min et al., 2022). The interior of ginseng fruit contains various functional components, including ginsenosides (Liu et al., 2019b; Liu et al., 2022; Wan-Tong et al., 2023), amino acids, proteins, polysaccharides, and Syringaresinol (Choi et al., 2022; Hwang et al., 2023), which have the same medicinal and economic value as ginseng. When ginseng fruit reaches maturity, its surface color transitions from green to a vibrant red, indicating the opportune time for harvesting. The ginseng fruit generally forms at the top of the ginseng plant, with dozens of oval-shaped ginseng seeds densely clustered on the ginseng stamen, arranged in an umbrella-like structure supported by the ginseng stem, as illustrated in Figure 1A. The ginseng fruit displays a distinct color difference between the mature and immature stages, as depicted in Figure 1B. This study primarily conducts visual detection research on the mature fruits of garden-cultivated ginseng in the Northeast China region. Currently, the harvesting of ginseng fruits has not yet achieved mechanization and automation, still relying on traditional manual harvesting methods. This approach is characterized by low efficiency, high labor strength, and elevated labor costs. Therefore, developing intelligent harvesting equipment for ginseng fruits to replace manual harvesting is a healthy path to promote the sustainable development of the ginseng industry. Building precise and rapid visual detection technology for ginseng fruits is crucial to achieving mechanized harvesting of ginseng fruits, providing essential visual guidance for intelligent harvesting equipment. However, due to the different growth heights of ginseng plants, the growing environment of ginseng fruits is dense and complex, which leads to serious overlap and occlusion problems between ginseng fruits or leaves. Furthermore, due to the unique growth structure of ginseng plants, they are susceptible to disturbances from external environmental factors such as wind direction, resulting in continuous shaking of ginseng fruits or even the lodging of ginseng plants. These circumstances pose challenges for the visual detection task of ginseng fruits. Moreover, the overall growth size of ginseng fruits is relatively small, which also brings a burden to the long-distance viewing of ginseng fruits.

[image: Ginseng plant images: (a) Shows the ginseng stem with clusters of bright red seeds and stamen. (b) Displays two stages of ginseng berries, with a focus on immature green and mature red stages among green leaves.]
Figure 1 | Growth status of ginseng fruit. (A) structure of ginseng fruit. (B) mature and immature ginseng fruit.

Currently, machine vision technology has been widely applied in the field of agricultural engineering, playing a crucial role in various agricultural tasks such as intelligent harvesting of crops (Shuai et al., 2023a), intelligent monitoring and early warning (Pan et al., 2022), and path navigation in complex field environments (Wang et al., 2022; Luo et al., 2016) proposed a grape automatic detection method for accurately detecting grape clusters in dense environments. This method combines grape color components with the AdaBoost classification framework. It is capable of suppressing the influence of complex background conditions such as weather, tree leaf occlusion, and lighting variations to a certain extent. Liu et al. (2019a) proposed a method for navel orange recognition. Initially, they introduced an improved Otsu threshold segmentation method based on the Cr color component and the centroid filling circle algorithm. This approach effectively identifies the overall contour of navel oranges, leading to a noticeable improvement in recognition accuracy. However, the above method is limited to the target’s geometric shape, color space, surface texture and other characteristic information for detection, it is not suitable for solving the detection problem of ginseng fruit.

With the advancement of machine vision technology, deep learning-based object detection methods have demonstrated significant advantages in terms of accuracy, efficiency, data requirements (Zhang et al., 2024b), generalization capability, and stability (Huang et al., 2023; Zhang et al., 2021). Currently, the one-stage detection method YOLO (You Only Look Once) is rapidly evolving (Terven and Cordova-Esparza, 2023), and its advantages of being lightweight, fast, and accurate enable YOLO to meet the requirements of agricultural operational scenarios. Among them (Li et al., 2022), proposed the tea bud detection method YOLOv3-SPP in order to solve the overlapping and occlusion problems of tea bud detection in dense and complex growth environments. This method introduces SPP (Spatial Pyramid Pooling) (He et al., 2015) into the backbone network of YOLOv3 (Redmon and Farhadi, 2018). Simultaneously, channel and layer pruning algorithms are applied to compress the model. As a result, YOLOv3-SPP achieves a mean average precision of 89.61%, with noticeable reductions in model inference time, weight size, parameter count, and computational cost. (Wang et al., 2023b) replaced the backbone network of YOLOv5 with the inverted residual convolutional modules from the MobileNetv2 (Sandler et al., 2018) network and integrated them with a target association recognition method to design a multi-object selection path. Subsequently, the model’s misjudged output results were corrected using the least squares method, ultimately enhancing the recognition speed and accuracy of the apple harvesting robot effectively (Zhu et al., 2021) introduced a small detection layer into YOLOv5x, combined with Transformer encoder block modules and the CBAM (Convlutional Block Attention Module) (Woo et al., 2018) attention mechanism. This enhancement effectively improves the accuracy of long-distance target detection based on remote sensing images (Ma et al., 2023) proposed the YOLOv5-lotus single-target detection method to detect mature lotus seedpods. In this method, the CA (Coordinate Attention) attention mechanism is introduced at the end of the YOLOv5 backbone network. Ultimately, YOLOv5-lotus achieves an average precision of 98.3% (Yu et al., 2023) proposed a strawberry stolon detection method named Stolon-YOLO. In this method, the authors introduced the HorBlock-decoupled head and Stem Block feature enhancement module into YOLOv7 to facilitate the interaction of high-order spatial information and reduce computational costs. As a result, Stolon-YOLO achieved an average precision of 88.5% for stolon detection, with a computational load of 107.8 GFLOPS (Ang et al., 2024) proposed the YCCB-YOLO detection method for effectively detecting young citrus in dense growth environments. To enhance detection precision while maintaining computational efficiency, this method integrates pointwise convolution (PWonv) lightweight network and simplified spatial pyramid pooling fast-large kernel separated attention (SimSPPF-LSKA) feature pyramid into YOLOv8n. Additionally, the Adam optimization function is utilized to further enhance the model’s nonlinear representation and feature extraction capabilities. As a result, the detection precision of YCCB-YOLO reaches 97.32%.

In conclusion, deep learning-based object detection methods are widely applied in the agricultural domain, however, there is relatively limited research on the detection of ginseng fruits. At the same time, there are overlapping and occlusion problems caused by the intricate growth of ginseng fruits and their leaves in the natural environment, unstable detection problems caused by wind interference from the external environment, and low long-distance detection quality caused by the small overall size of ginseng fruits. The problem also brings difficulties to the task of accurate and rapid detection of ginseng fruits. Therefore, in order to solve the above problems, this study proposed the ginseng fruit detection method YOLO-Ginseng from the perspective of the growth environment and biological characteristics of ginseng fruit. The method first conducts comparative experiments and analyses of several advanced detection methods using a ginseng fruit image dataset. Finally, the YOLOv5s detection method is selected as the base network model, considering its highest model inference speed, minimal computational and parameter requirements, and overall stable detection performance; Next, to enhance the overall detection precision of ginseng fruits, improve the distant detection performance, and enhance the quality of target prediction bounding box localization, a deep-level perceptual feature extraction module named C3f-RN with a sliding window mechanism is designed and integrated into the backbone network of YOLOv5s in a plug-and-play manner. Since the C3f-RN module will reduce the inference speed of the model and increase the model size, this article finally uses a mature channel pruning algorithm to compress the model to make up for the defects brought by the C3f-RN module to the model and strengthen the foundation of model application. In this study, the main contributions are as follows:

	A new ginseng fruit image dataset was established. The basic data includes 1,519 ginseng fruit images under different angles, scales, light intensity and other conditions.

	A plug-and-play deep perception feature extraction module C3f-RN with a sliding window mechanism is designed to improve the YOLO-Ginseng backbone network’s feature information extraction capabilities for ginseng fruits and enhance the overall network information transmission efficiency and regression effect.

	Utilizing channel pruning algorithm to compress YOLO-Ginseng, enhancing model inference speed, and reinforcing model applicability.






2 Materials and methods



2.1 Image data acquisition

The image data for this study were acquired in August 2023 at the Ginseng Plantation Base in Sandaohezi Village, Dashitou Town, Dunhua City, Jilin Province, China (latitude 43°18’21”, longitude 128°29’41”), as depicted in Figure 2. The species collected are ginseng fruits grown from garden ginseng, which is the main ginseng species grown in Northeast China. The environmental conditions of the ginseng cultivation base are illustrated in Figure 3A. The ginseng is grown using a wide-ridge shed planting pattern, with a ridge width of approximately 1.60m-1.70m and a ridge height above the ground of approximately 0.16m-0.20m. Figure 3B illustrates the in-field growth conditions of ginseng fruits, with ginseng plants spaced approximately 0.10-0.15m apart and exhibiting varying growth heights ranging from approximately 0.30m to 0.60m. The ginseng fruits grow densely and chaotically, displaying significant disparities in growth height. In summary, ginseng fruit grows in a complex environment, with high density and chaotic distribution, and the landform environment is relatively poor. Despite the protection of the trellis, ginseng fruit is still affected by the intensity of external light. Therefore, in order to accurately collect various types of image data of ginseng fruit in a complex environment and effectively restore its growth state, this puts forward certain requirements for the data acquisition method. It is necessary to try to avoid collecting image data with unclear characteristic information of ginseng fruit, such as image data with overexposure of brightness and blurred pixels.

[image: Map of China highlighting the Heilongjiang province with detailed view of Dunhua city. Two images are linked: one shows a landscape with blue tarps covering outdoor structures, and the other displays red-berried plants under a blue mesh canopy.]
Figure 2 | The geographic locations of data collection.

[image: (a) Black plastic covers rows of crops under a blue sky in a rural landscape. (b) Red berries and green leaves grow under a mesh-covered structure. (c) A camera setup measures distance and angle above plants with marked specifications in a cultivated area.]
Figure 3 | Ginseng planting and image data collection scene. (A) The environmental conditions of the ginseng cultivation base. (B) The in-field growth conditions of ginseng fruits. (C) Data collection platform.

Given the high standards of ginseng cultivation and the complex growth environment of ginseng fruits, in order to effectively enhance the quality of ginseng fruit detection and obtain reliable experimental data, facilitating subsequent research on the efficiency of automatic detection and operational convenience of intelligent ginseng fruit picking equipment, the methods for ginseng fruit image data collection in this study are as follows: As shown in Figure 3C, Data collection work was conducted using the wide-angle camera of an iPhone 11 smartphone. Initially, the image storage format was set to JPEG with a resolution of 4032×3024 or 3024×4032. HDR mode was activated to enhance exposure details, and automatic focus and exposure modes were selected. Turn on the anti-shake function. Start the 3-second delayed shooting or continuous shooting mode when acquiring image data required by special scenes; Secondly, the mobile phone was fixed on the camera stand and adjusted manually within a range of about 0.6m-1.0m from the ground. The rotating joint of the camera stand was adjusted reasonably to ensure that the angle of the optical axis of the mobile phone relative to the horizontal plane of the space was within the range of 0°-90°for data collection. Among them, according to the growth characteristics of ginseng fruit and the needs of mechanical equipment, this study obtained global image data of ginseng fruit at different angles, different scales and different background conditions at shooting angles of 0°, 45° and 90°. In order to ensure the randomness of image data and increase the diversity of data samples, this study also collected image data from other shooting angles. In order to restore the growth conditions and surrounding environment of ginseng fruit as closely as possible, the image data collection work also utilized the data collection method of manual handheld shooting, and also carried out data collection work according to the light intensity conditions in different time periods. Finally, a total of 1664 pieces of image data were collected. After cleaning some of the image data with unclear ginseng fruit characteristic information, 1519 pieces of image data remained.




2.2 Data augmentation and establishment of a ginseng fruit image dataset

In order to enhance the quality of the image dataset and achieve more equitable detection results, this study strictly adheres to annotation principles for annotating the image data. Single-object annotation was performed using LabelImg 1.8.6, designated as “RSZ,” with label files in txt format. It is noteworthy that ginseng fruits posing difficulty for human eye discernment or having occlusion areas greater than 90% were excluded from annotation. Finally, the annotated image data were randomly partitioned according to a 7:2:1 ratio, yielding 1063 images for the training set, 304 images for the validation set, and 152 images for the test set.

Due to the complex growth environment of ginseng fruits, the manually collected data samples cannot effectively replicate the distinctive characteristics of the ginseng fruit’s growth environment. To ensure the integrity and diversity of the data samples and improve the generalization ability of the network model, this study employed data augmentation techniques such as affine transformation, simulated occlusion, and data concatenation on the training set. Through a random combination approach, the dataset was expanded, subsequently, manual means are used to check and delete the incorrectly labeled noise data to ensure the correctness of the expanded data (Zhang et al., 2024a), ultimately yielding 2415 images in the training set. It is worth noting that the image data in all training sets, validation sets, and test sets are distinct from each other. An example of augmented image data is illustrated in Figure 4, and detailed information on the ginseng fruit image dataset is provided in Table 1.

[image: Two panels labeled (a) and (b) each displaying six images of red berries with green leaves. Panel (a) contains varying positions and perspectives. Panel (b) includes different brightness and color adjustments, with some images rotated or cropped, showcasing the same plant from multiple angles.]
Figure 4 | Example of image data augmentation. (A) Example of original image data. (B) Example of augmentation techniques, including random rotation, random translation, brightness adjustment, simulated occlusion, and data concatenation, sequentially.

Table 1 | Detailed information on the ginseng fruit image dataset.


[image: Table showing dataset details for RSZ: raw data has 1,519 entries, augment data 1,352, training set 2,415, validation set 304, and test set 152. Bold values indicate image data count.]



2.3 YOLO-Ginseng

In fact, during the real-time detection process of ginseng fruits, in order to avoid the interference of external environmental changes on ginseng fruit detection and improve the detection effect of ginseng fruit in complex environments, the detection method is required to have a higher model reasoning speed and excellent image data processing capabilities. In other words, the detection network can quickly and accurately obtain and process the global image feature information of ginseng fruit when performing detection tasks. Therefore, for the mechanized harvesting task of ginseng fruits in complex agricultural environments, the ability to be deployed on edge computing devices and possess high detection speed is the primary consideration in this study, this forms an important foundation for real-time detection of ginseng fruits. Secondly, consideration is given to how to improve the overall detection quality of ginseng fruits. Based on the above analysis, this study first conducted preliminary experimental analyses of advanced and typical detection methods, namely YOLOv5s (Jocher et al., 2020), YOLOv7 (Wang et al., 2023a), YOLOv8s (Jocher et al., 2023), and YOLOv9-C (Wang et al., 2024), considering factors such as model inference speed, computational cost, weight size, and detection accuracy. The results show that YOLOv5s has the fastest inference speed and the lowest computational cost and weight size. Although YOLOv5s performs weakly in average precision, its detection effect on ginseng fruits in complex scenes is excellent, which shows that relying solely on average precision cannot fully measure the quality of the model. Given the advantages of YOLOv5s in speed and resource consumption, and its precision has reached a high level, this study finally selected YOLOv5s as the basic network model for ginseng fruit detection research, and finally the average precision of ginseng fruit detection will be improved through technical means. efforts will be made to improve the average precision of ginseng fruit detection through technical means. The YOLOv5s network architecture mainly consists of four parts: the input module, the backbone network, the neck network, and the head network. The input module is used to preprocess the input image data, including data augmentation, adaptive resizing, and adaptive anchor box calculation; The backbone network adopts the CSPDarknet53 structure to extract feature information from the input image data; The neck network utilizes the FPN (Feature Pyramid Network) structure and the PAN (Pyramid Attention Network) structure to integrate the extracted feature information; The head network is responsible for performing simple object classification, position regression, and confidence inference predictions on the final feature information, thereby generating the ultimate detection results. Based on the preliminary experimental analyses, it was found that YOLOv5s is still insufficient to handle the visual detection tasks of ginseng fruits. Therefore, in order to improve the average precision of YOLOv5s in detecting ginseng fruits, enhance the long-distance detection effect of ginseng fruits and the quality of target prediction bounding box positioning, and solve the problem of detection difficulties caused by occlusion or overlap of ginseng fruits and interference from the external environment, this study finally proposes a detection method YOLO-Ginseng (Ginseng, You Only Look Once). In this detection method, the deep-level perceptual feature extraction module C3f-RN, designed in this study with a plug-and-play sliding window mechanism, is integrated into the backbone network of YOLOv5s. Finally, a channel pruning algorithm is employed to compress the model, compensating for the shortcomings introduced by C3f-RN and enhancing the model’s applicability. The model network architecture of YOLO-Ginseng is illustrated in Figure 5.

[image: Flowchart diagram of a neural network model divided into three sections: Backbone, Neck, and Head. The Backbone includes several layers with components like C3f-RN and CBS. The Neck focuses on operations such as Concat and Upsample. The Head section contains Conv2d layers for output. Legend explains CBS variations and C3f-RN configuration details. Connected pathways indicate data flow through the model.]
Figure 5 | YOLO-Ginseng network structure.



2.3.1 C3f-RN

Due to the unique biological structure and growth environment of ginseng fruits, their mature bright red color is easily distinguishable from the background. From a two-dimensional pixel image perspective, the detection of ginseng fruits can be regarded as a binary classification problem, where each pixel is classified into two categories: red representing ginseng fruits and green representing the background. Therefore, this study aims to enhance the feature extraction capability of the YOLOv5s backbone network, enabling it to accurately and effectively process or distinguish these binary pixel points to improve the detection performance of ginseng fruits. As is well-known, deepening and widening the overall hierarchical structure of a network can potentially expand the network’s receptive field and enhance its learning capability. Therefore, this study adopts the design principles of the residual network ResNet (He et al., 2016) and combines them with the advantages of the C3 structure to design a plug-and-play deep-level perceptual feature extraction module named C3f-RN, which incorporates a sliding window mechanism, as illustrated in Figure 6. C3f-RN possesses a unique network structure and introduces the novel Swin Stage module along with the SAC (Switchable Atrous Convolution) convolution (Qiao et al., 2021). It effectively combines with lightweight attention mechanisms, including CA (Coordinate Attention) (Hou et al., 2021) and a simple, parameter-free attention module called SimAM (A Simple, Parameter-Free Attention Module) (Yang et al., 2021), to assist in enhancing the ability of the C3f-RN module to extract both global and detailed features of ginseng fruits. This ultimately achieves the advantages of plug-and-play functionality. The overall workflow and advantages of the C3f-RN module are as follows:

[image: Flowchart of the C3f-RN architecture, detailing two branches: Branch One and Branch Two. The branches split and process input through various modules like CBS, Bottleneck, and Concat. Branch Two includes a SwinStage module. Both branches merge and process through SAC and CA modules before outputting results. A close-up of the Bottleneck process is shown, illustrating configurations with and without shortcuts, incorporating CBS and SimAM modules. Arrows indicate the flow between stages, with parameters and dimensions noted.]
Figure 6 | C3f-RN network structure.

(1) First, the initial characteristic information of ginseng fruits is input and allocated to two main branches, namely branch one and branch two. Among them, multiple Bottlenecks are introduced on two branches respectively in a direct and residual manner, deepening the hierarchical structure of the network and helping C3f-RN to extract ginseng fruit image feature information in more detail. Simultaneously, in both branches, Split operations are applied to set hidden channel branches in the channel dimension and extend the unique feature processing operations of the Swin Stage. This design not only widens the network structure and potentially expands C3f-RN’s field of vision for ginseng fruit feature information, but also increases the diversity of C3f-RN’s processing of ginseng fruit feature information and enriches the flexibility of the network structure. It is worth noting that the combination of branch one and branch two ultimately forms a unique C3 structure.

(2) On branch one, the initial feature information of ginseng fruit is first subjected to a 1×1 convolution for dimensionality reduction, adjusting the number of feature information channels while helping the network learn more complex feature information; Next, the obtained feature information is halved and separated in the channel dimension through Split operation, with one part directly outputted through the residual branch and the other part outputted through n Bottleneck units. A series of Bottleneck units are responsible for conducting certain feature extraction operations on the input feature information through two 3×3 convolutions, enabling the network to learn more, finer, more abstract, and advanced feature information; Finally, the output parts of the two are concated in the channel dimension and undergo a 1×1 convolution again to transform the fused feature information in the channel dimension to facilitate the forward propagation of the fused feature information. Among them, the Bottleneck structure with residual branches is used on branch one, and the SimAM attention module is introduced at the end of the structure to further improve the network’s attention to and retention of the detailed information of the ginseng fruit when extracting feature information in each small step. The SimAM attention module introduces the concept of three-dimensional attention for the first time, as illustrated in Figure 7A. Based on neuroscience theory, SimAM calculates the importance of each neuron by optimizing the energy function to adjust the attention weight distribution shape. The advantage of this module is that there is no need to add redundant parameters to the original network, and the three-dimensional attention weight information of the feature map can be inferred using a small number of parameters. Therefore, based on its advantages, this study embeds the SimAM attention module at the end of each Bottleneck structure in the network, without affecting the overall parameter count of the C3f-RN module. This enables each Bottleneck to automatically learn and dynamically adjust attention weight distribution ratios based on the input feature information of different categories. Consequently, it guides each Bottleneck to focus more on the detailed feature information of ginseng fruits and filter out irrelevant feature information.

[image: Four diagrams labeled (a) to (d) illustrate different neural network components. (a) shows the generation and fusion of 3-D weights. (b) depicts a Swin Transformer Block with linear embedding and patch partition. (c) describes a coordinate attention mechanism with pooling and convolution layers. (d) presents a switchable atrous convolution architecture with pre-global and post-global context consisting of convolution, pooling, and global average pooling operations.]
Figure 7 | (A) Structure of the SimAM. (B) New swin stage structure. (C) Structure of the CA. (D) Structure of the SAC.

(3) On branch two, the initial feature information of ginseng fruit is still subjected to a 1×1 convolution operation; Secondly, the obtained feature information is halved and separated in the channel dimension through the Split operation. One part undergoes N Bottleneck output through the residual branch, and the other part undergoes a 3×3 convolution for feature extraction and is directly input to the Swin Stage module for further processing. Processed in one step. Part of the Bottleneck here has a residual structure, and part of it has no residual structure and is set to a interleaved arrangement. This unique design arrangement is to make the network more flexible when processing feature information, improve the generalization ability of the network, and enhance embeddability of C3f-RN modules.

The Swin Stage module is a novel structural design based on the most crucial component of the Swin Transformer model (Liu et al., 2021). It extracts the primary stage of the Swin Transformer model, encapsulating the Patch Partition operation and Linear Embedding operation within the same stage while eliminating the Patch Merging operation. The overall structure of the Swin Stage module is illustrated in Figure 7B. The module first divides the input ginseng fruit feature information into multiple fixed-size and non-overlapping local feature map blocks through Patch Partition operation, enabling independent processing of each block. This aids in better capturing local feature details; Next, through the Linear Embedding operation, the input feature information is mapped to a lower-dimensional feature space to reduce feature dimensionality and obtain more compact feature information. Finally, the feature information processed by the upper layer is input to the even-numbered stacked core unit Swin Transformer Block for information transformation and interactive operations to achieve the extraction and integration of feature information. The unique Swin Stage structure enables the C3f-RN module to rapidly capture the global feature information of ginseng fruits. Its efficient cross-window information interaction processing capability allows the C3f-RN module to constantly grasp and learn the detailed information of ginseng fruits at different pixel positions, enhancing sensitivity to this information. This effectively addresses detection challenges arising from overlap or occlusion between ginseng fruits or leaves, thereby assisting and improving the quality of target prediction bounding box positioning; Finally, the outputs of both branches are concatenated along the channel dimension and then passed through another 1×1 convolutional layer to transform the fused feature information in the channel dimension, facilitating the propagation of the fused feature information forward.

(4) The processed feature information from branches one and two are separately passed through 1×1 convolutions and then summed up. Subsequently, SAC convolutional operations are employed to assist the C3f-RN module in further enhancing the overall network’s global receptive field for ginseng fruit, ensuring the integrity of information weights, and improving the expressive capability of the C3f-RN module. Among them, SAC consists of Atrous Convolution, Pre- and Post-Context Modules, and is combined with a Switch Mechanism. This module adjusts the dilation rate and switch value of Atrous Convolution to perceive details of targets at different scales, reducing information loss and enhancing the model’s ability to process image data. Its structure is illustrated in Figure 7D. The incorporation of SAC effectively enhances the capability of C3f-RN in handling multi-scale ginseng fruit detection, assisting the backbone network in capturing feature information of distant ginseng fruits. Finally, this study quoted the CA attention mechanism at the end of the C3f-RN module structure to help the C3f-RN module integrate and select the captured and processed ginseng fruit feature information in the final stage, and eliminate redundant information. The remaining information is directly output to the next layer of network, with the ultimate goal of protecting the characteristic information of ginseng fruits. Among them, the CA attention mechanism is a lightweight attention mechanism that enhances feature representation capabilities. Its core idea is to embed positional information in the feature channel dimension, decomposing channel attention into aggregated features along two spatial directions. One direction captures long-range dependencies, while the other preserves precise positional information. Finally, the two are complementarily fused to learn the importance weights of different channels, thereby enhancing interest in complex target features and suppressing redundant or noisy channels. Its structure is illustrated in Figure 7C.

The C3f-RN module, with its flexible and unique network structure, not only deepens and widens the hierarchical structure of the network but also effectively integrates other advanced feature information processing models. Furthermore, the input feature information can be maintained unchanged in size through a series of 1×1 convolutions, Concat, and addition operations, enabling the C3f-RN module to be easily integrated into other networks, achieving the advantage of plug-and-play. However, although the designed C3f-RN module in this study can effectively extract the features of ginseng fruits in complex backgrounds and enhance the overall detection performance of ginseng fruits, its integration into the backbone network of YOLOv5s increases the parameter count and computational burden of the overall YOLO-Ginseng network model, resulting in a reduction in the model’s inference speed, as shown in Table 2. Therefore, this study aims to address this issue by employing mature channel pruning algorithms to mitigate the drawbacks introduced by the C3f-RN module to the overall YOLO-Ginseng network model.

Table 2 | Comparing C3f-RN structural parameters.


[image: Table of experimental results under different network configurations. Columns include Network +C3f-RN, depth, number of heads, window size, AP₀.₅ (percentage), T (milliseconds), size (megabytes), parameters, and GFLOPS. Bold values indicate optimal outcomes per configuration.]



2.3.2 Model compression

To effectively reduce the parameter count and computational burden of the YOLO-Ginseng overall network model, enhance model inference speed, and preserve the significant effects of the C3f-RN module on detecting ginseng fruits, this study utilizes mature channel pruning algorithms (Liu et al., 2017) to compress the YOLO-Ginseng overall network model. The channel pruning algorithm mainly consists of three steps: sparse training, model pruning, and model fine-tuning.

Firstly, sparse training is the initial step in model compression, representing a crucial technique for reducing the model parameter count to optimize both the training and inference processes. This study employs the L1 norm method and iteratively adjusts the sparsity parameter [image: Greek letter lambda in italic style, used frequently in mathematics and physics equations.]  multiple times to strike a balance between the model’s sparsity and accuracy. This process ensures that the scaling factor [image: Greek lowercase letter gamma, commonly used in mathematics and science to represent various constants and variables.]  coefficient of the BN (Batch Normalization) layer converges rapidly to zero. The variation in the [image: Lowercase Greek letter gamma, 𝛾, displayed in a serif font.]  coefficient adjusts the range and degree of change in the BN layer’s output feature information, thereby influencing the changes in BN layer parameter weights and the subsequent learning capacity of the model. Ultimately, it reveals the contribution levels of each channel to the network computations. Specifically, for the input x, weights W, scaling factor [image: Greek letter gamma in lowercase, resembling a stylized "y" with a curved tail extending below the baseline.]  coefficient, and bias term [image: It seems like there might be a formatting issue with your request. If you meant to upload an image, please try again. If you have a specific image URL, you can provide it, and I'll help create alt text for it.]  of the BN layer, the calculation of the BN layer output y is shown in Equation 1:

[image: The equation shows \( y = \gamma \left( \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \right) + \beta \).]

where [image: Please provide the image by uploading it or giving a URL for me to create the alt text.]  denotes the input mean, [image: The Greek letter sigma (σ), often used in mathematics and statistics to represent standard deviation or summation notation.]  represents the input standard deviation, [image: Please upload the image or provide a URL, and I will create the alt text for you.]  is a small constant for numerical stability, and [image: Lowercase Greek letter gamma.]  and [image: It seems there is an issue with rendering an image. Please upload the image directly or provide a URL so I can assist you in creating alt text.]  are learnable parameters. Secondly, model pruning is performed, as illustrated in Figure 8. The basic principle involves utilizing the γ coefficients of BN layers based on the sparse training results to assess the contribution levels of channels to the network. High-contribution channels are retained, while low-contribution channels are pruned, ultimately consolidating the deep network structure to compress the model. Finally, due to the sparse training and pruning of the model, which lead to a decrease in detection accuracy, the model requires fine-tuning. Model fine-tuning involves readjusting the pruning weights, using the compressed model as a pre-trained model for further iterative training until the detection performance of the model is restored.

[image: Diagram showing network pruning in convolutional layers. The initial network (left) has five channels with scaling factors. After pruning (right), only channels with significant scaling factors (C_i1, C_i3, C_i5) are retained, simplifying the network.]
Figure 8 | The principle of model channel pruning, where the blue portion signifies channels with high contribution, and the red portion indicates channels with low contribution.





2.4 Evaluation standard

This study employs seven model evaluation standard to assess the detection performance of YOLO-Ginseng. The evaluation standard consist of precision (P), recall (R), average precision (AP), model weight size (MB), model detection efficiency (evaluated through the model inference time on the validation set (ms), including image data preprocessing time (pre-process), network model inference time (inference), and non-maximum suppression time for processing predicted targets (NMS-per)), model parameter count (parameters), and model computational load (GFLOPS). Where P represents the proportion of the actual positive samples during the model detection process to the total predicted positive samples by the model. R is the proportion of the predicted actual positive samples by the model to the total actual positive samples. AP is the area under the PR curve formed by P and R. The calculations are shown in Equations 2-4:

[image: Equation for precision, represented as "P equals TP over TP plus FP", where TP stands for true positives and FP stands for false positives. The equation is labeled as number two.]

[image: Equation for recall (R) is shown as R equals TP divided by the sum of TP and FN, where TP represents true positives and FN represents false negatives.]

[image: Equation showing average precision (AP) as the integral from zero to one of the precision-recall function P(R) with respect to R. Equation is labeled as number four.]

where TP is the count of samples predicted as positive and are actually positive; FP is the count of samples predicted as positive but are actually negative; FN is the count of samples predicted as negative but are actually positive. The confidence IoU is the overlap ratio between the predicted bounding box and the true bounding box, with a threshold typically set at 0.5. When the network-computed overlap ratio IoU is greater than 0.5, the sample is considered TP; otherwise, the sample is considered FP. This study takes into account the application requirements of YOLO-Ginseng in actual agricultural scenarios, and uses [image: Text showing "AP" with a subscript of "0.5".]  (IoU=0.5) as the average accuracy index of YOLO-Ginseng for ginseng fruit detection.





3 Results



3.1 Experimental setting

This study will evaluate, compare, and discuss YOLO-Ginseng through multiple sets of experiments to verify its effectiveness, stability, and practicality in performing ginseng fruit detection tasks. It is noteworthy that all experiments in this study were conducted on the same PC device and based on the PyTorch framework for training, validation, and testing. The specific experimental environment is presented in Table 3. YOLO-Ginseng will employ transfer learning to enhance training speed. Where the number of epochs is set to 200, batch size is 8, and the image input size is 640×640. The experiment utilized the Stochastic Gradient Descent (SGD) optimizer, with the remaining parts configured with the parameters from hyp.scratch-low.yaml in the official YOLOv5-7.0 version by default.

Table 3 | Experimental environment configuration.


[image: Table listing system configurations and versions: System is Windows, CPU is 12th Gen Intel Core i7-12700H, GPU is NVIDIA GTX3060, Running memory is 32G, Graphics card memory is 6G, CUDA version is 11.7, Python version is 3.10.9, PyTorch version is 2.0.0. Bold values indicate configurations used in experiments.]



3.2 The overall detection performance of YOLO-Ginseng

The YOLO-Ginseng proposed in this study, after training, validation, testing, and compression, demonstrates specific evaluation results and detection performance are shown in Table 4; Figures 9, 10. The results indicate that YOLO-Ginseng achieves precision, recall, and average precision of 93.6%, 91.1%, and 95.6%, respectively. The model inference time is 7.4 ms, with parameters totaling 4,545,903, computational cost reaching 9.3 GFLOPS, and the final model weight size being 10.5 MB. As can be seen from the blue PR curve in Figure 9, YOLO-Ginseng demonstrates excellent average precision performance when trained with pre-trained weights (yolov5s.pt). As shown in Figure 10, YOLO-Ginseng maintains high detection quality in various scenarios, including densely complex scenes in images (a), overlapping and occluded situations in images (b), and varying light intensity conditions in images (c). It exhibits broad detection coverage and accurate localization of object prediction bounding boxes. However, in the dense and complex scene in images (a), the regression confidence of long-distance detection of tiny ginseng fruits is low. This may be due to the fact that the long-distance ginseng fruit targets are small and are obscured by other environmental factors or their own fruits during detection. In summary, YOLO-Ginseng performs excellently in the single-target detection of ginseng fruits in agricultural natural environments.

Table 4 | Evaluation results of YOLO-Ginseng.


[image: Table showing performance metrics for the YOLO-Ginseng network. Precision: 93.6%, Recall: 91.1%, AP₀.₅: 95.6%, Inference Time: 7.4 ms, Size: 10.5 MB, Parameters: 4,545,903, GFLOPS: 9.3.]
[image: Precision-recall curve comparing different methods including "Our method," YOLOv3-tiny, YOLOv5s, YOLOv7, YOLOv8s, and YOLOv9-C. The x-axis shows recall, and the y-axis shows precision. Each method is represented with a distinct line style.]
Figure 9 | PR curves of different models.

[image: Three separate panels depict images of foliage with red berries annotated with RSZ scores:   (a) Shows a densely packed plant area with numerous red berries, each marked with varying RSZ scores in red boxes.  (b) Zooms in on a cluster of leaves with a close-up of red berries, highlighting RSZ scores of 0.95 and 0.93.  (c) Features a plant with bright green leaves and clusters of red berries, marked with RSZ scores such as 0.98 and 0.91.]
Figure 10 | Detection performance of YOLO-Ginseng on ginseng fruits in different scenarios. (A) Dense and complex scenarios. (B) Scene with occlusions. (C) Scenes with varying light intensity.




3.3 Study on the impact of optional parameters in C3f-RN

Given the diversity of content and complexity of the structure in the C3f-RN module, it is essential to investigate its impact on YOLO-Ginseng. Due to the effective integration of the novel Swin Stage module within the C3f-RN module, it is necessary to investigate the impact of the Swin Transformer Block’s quantity (depth), the number of attention heads (n heads), and the size of the local window (win size) in the Swin Stage module on the model. This study will conduct a comparative test analysis based on the official setting experience and training configuration performance of these three parameters and based on the ginseng fruit image data set to determine the best comprehensive parameter value. The parameter comparison results are shown in Table 2. The results demonstrate that the integration of the C3f-RN module with the YOLOv5s backbone enhances the average precision of YOLO-Ginseng. However, this fusion increases the model’s size, parameter count, and computational load, thereby extending the model’s inference time. Among them, test (6) raised the average precision of the model to the highest value, which was 2.6% higher than YOLOv5s in [image: Mathematical notation of \( AP_{0.5} \).] . Therefore, this study finally selected the data in experiment (6) as the final structural parameters of the C3f-RN module: depth is 2, n heads is 8, and win size is 4×4.

The rules for the above parameter settings are as follows: To simplify the model structure and improve computational efficiency, the C3f-RN module primarily adopts the first stage of the Swin Transformer in the Swin Stage module, eliminating the Patch Merging operation; therefore, the parameter depth is set to 2. Secondly, the value of n heads will be reasonably determined based on win size and training configuration performance, as calculated by the following Equations 5, 6:

[image: Equation showing the number of windows: \( \text{num\_wins} = \frac{H \times W}{\text{win\_size} \times \text{win\_size}} \), labeled as equation (5).]

[image: Equation showing "n heads equals the square root of num wins" labeled as equation six.]

Where num wins represents the number of windows into which the input feature information is divided, and H and W represent the height and width of the input feature information, respectively. In this study, H and W are set to the average size of the feature information input into the C3f-RN module from the backbone network. The win size controls the range of the local attention mechanism, where a larger win size helps the model learn longer dependencies but increases computation and memory costs. On the other hand, a smaller win size aids in introducing a local attention mechanism, but excessively small window sizes may limit the model’s ability to capture global dependencies. Therefore, in accordance with the empirical settings provided by the official documentation, this study conducted comparative experiments with three different sizes of local windows: 1×1, 4×4, and 7×7. In principle, the value of n heads should ideally be equal to num wins. However, to reduce the computational cost of the model, enhance feature extraction efficiency, and consider overall training configuration performance, this study sets the value of n heads to be the square root of num wins, thus obtaining a reasonable range of values. Secondly, determine a certain integer through the value range and at the same time take an even multiple of the integer upward until it is 1. Finally, experimental results are used to eliminate outliers, and the remaining values are considered as the appropriate n heads (The calculation formula is derived from multiple comparative experiments and manual parameter adjustment).




3.4 YOLO-Ginseng compression performance

According to the channel pruning algorithm steps, the first step is to determine an appropriate sparsity rate [image: Greek lowercase letter lambda (λ).]  for conducting sparse training on the model. The comparative results of training with different sparsity rates are shown in Table 5. The results indicate that when selecting a sparsity rat [image: The lowercase Greek letter lambda.]  of 0.002, the average precision of YOLO-Ginseng decreases to 91.6%. Figure 11 shows the γ coefficient distribution form of the BN layer. It can be seen that the γ coefficient distribution center gradually and rapidly converges to 0, and becomes stable after 100 rounds of iterative training. In conclusion, selecting a sparsity rate [image: The text "AP subscript 0.5" shown in a stylized font.]  of 0.002 for sparse training is deemed more reasonable for the model.

Table 5 | Comparison of training performance under different sparsity rate.


[image: Table showing the relationship between spares rate (λ) and AP<sub>0.5</sub> (%) values. As spares rate increases from 0 to 0.005, AP<sub>0.5</sub> decreases from 95.8% to 78.9%. Bold numbers indicate the best model results at different sparsity rates.]
[image: Two charts compare the distribution of gamma coefficients over epochs. Chart (a) shows a sharp peak at gamma near one, with the range extending to five and a half. Chart (b) displays multiple smaller peaks with gamma under two, indicating different distribution patterns. Both charts use a color gradient to represent different epochs from zero to ninety-five.]
Figure 11 | Distribution of the γ coefficient in the BN layer. (a) Before sparse training. (b) After sparse training.

After the model is sparsely trained, it is necessary to determine the appropriate pruning coefficient r to prune channels with low model contribution. This study uses 0.1 steps to select appropriate pruning coefficients, the model pruning changes are shown in Figure 12. The results show that after the pruning coefficient is 0.8, the average accuracy of YOLO-Ginseng decreases, while the model parameters change slightly, which shows that when the pruning coefficient is 0.8, the model can achieve the optimal pruning effect. As shown in Figure 12B, a total of 89 network channels in YOLO-Ginseng were pruned, with a cumulative removal of 12,038 channels. This indicates that the channel pruning algorithm employed in this study effectively reduces the model parameter count.

[image: Graph (a) shows two lines: a red line representing AP percentage remains stable as pruning coefficient increases, while a blue dashed line indicating parameters decreases. Graph (b) is a bar chart depicting channels across layers; red bars denote original channels, larger than green bars representing remaining channels.]
Figure 12 | Channel pruning effects of the model. (A) Effects of different pruning coefficient on the model. (B) Changes in the number of channels for each layer before and after pruning.

To ensure that the pruned model maintains a high learning capability and detection performance, fine-tuning of the model is necessary. This is achieved by utilizing the pruned model as a pre-trained model for iterative training, thereby restoring the model’s detection performance. Table 6 presents the variations in average precision, model parameter count, weight size, and inference time of YOLO-Ginseng throughout the entire model compression process. The results indicate that, following fine-tuning, the compressed YOLO-Ginseng model exhibits reductions of 65.3%, 76.4%, and 79.3% in inference time, weight size, and parameter count, respectively, compared to the initial model. Meanwhile, the average precision only experiences a marginal decrease of 0.2%.

Table 6 | Comparison results of the model compression process.


[image: Table comparing four stages of model evaluation: Initial model, Sparse training, Model pruning, and Model fine-tuning. Metrics include AP₀.₅ (Initial: 95.8%, Sparse: 91.6%, Pruning: 91.4%, Fine-tuning: 95.6%), Parameters (Initial/Sparse: 21,994,034, Pruning/Fine-tuning: 4,545,903), Model size in MB (Initial/Sparse: 44.5, Pruning: 13.4, Fine-tuning: 10.5), and Inference in ms (Initial: 21.3, Sparse: 17.8, Pruning: 8.4, Fine-tuning: 7.4). Bold values indicate best results for each metric.]




4 Discussion



4.1 The impact of data augmentation on model performance

In order to evaluate the impact of ginseng fruit image data augmentation on model performance, this study selected two groups of models, YOLOv5s and YOLO-Ginseng (uncompressed), for comparative experiments. The comparison results are shown in Table 7. Among them, data type A represents the original dataset without amplification, data type B represents the final dataset after amplification, that is, the ginseng fruit image dataset finally established in this study, [image: Equation displaying "AP" with a subscript of "0.5".]  represents the average precision difference between the training set and the validation set, and [image: Mathematical symbol for Delta subscript one, depicted as a triangle with the number one as a subscript, often used to denote a specific change or difference in a sequence or series.]  represents the total loss difference between the training set and the validation set. After 200 rounds of iterative training, the total loss of the training set and the validation set continued to decrease and gradually converged. In order to eliminate the impact of fluctuations in the early stage of training and focus on the performance of the model after stabilization, this study selected the average total loss value of the last 20 rounds for loss difference calculation. The results show that there is no significant change in the indicators of YOLOv5s before and after data augmentation; in YOLO-Ginseng, data augmentation improves the average accuracy of the model by 0.7%, and other evaluation criteria do not change much. For the average precision difference and the total loss difference, all difference results are small, indicating that the performance of the model in the training set and the validation set is relatively consistent, and both can maintain a low loss. This further shows that the model has good generalization ability on the two data sets A and B, and there is no over-reliance on the training set. All models perform normally on the two data sets A and B.

Table 7 | Comparison results of data augmentation on model performance.


[image: Comparison table of YOLOv5s and YOLO-Ginseng models on datasets A and B. YOLOv5s has AP0.5 scores of 93.5% (Type A) and 93.2% (Type B), with model sizes of 14.4 million parameters, GFLOPS of 15.8 and 15.9, and Δ₂ scores of 0.016 and 0.023 respectively. YOLO-Ginseng scores 95.1% and 95.8%, with sizes of 42.4 and 44.5 million, GFLOPS of 35.8 and 36.0, Δ₁ scores of 0.1 and 0, and Δ₂ scores of 0.017 and 0.006. Bold indicates the best performance.]
In summary, the ginseng fruit image dataset established in this study is reasonable, and data augmentation has made a certain contribution to the improvement of the average precision of YOLO-Ginseng.




4.2 Effect of different models on ginseng fruit detection

To assess the effectiveness of YOLO-Ginseng in ginseng fruit detection, this section conducted comparative experiments by selecting seven different models for evaluation alongside YOLO-Ginseng. Table 8 presents the comparative results of YOLOv3-tiny (Adarsh et al., 2020), YOLOv4-tiny (Bochkovskiy et al., 2020), YOLOv5s, YOLOv7, YOLOv7-tiny, YOLOv8s, YOLOv9-C, and YOLO-Ginseng. YOLOv3-tiny, YOLOv5s, YOLOv7, YOLOv8s, YOLOv9-C and YOLO-Ginseng were selected for P-R curve comparison. The comparison effect is shown in Figure 9. The results indicate that, compared to YOLOv5s, YOLO-Ginseng exhibits an improvement of 2.4% in average precision; The model inference time is increased by 1.9ms, finally reaching 7.4ms; It has the smallest model weight size, parameter count, and computational load. Compared to the remaining models, YOLO-Ginseng exhibits superior performance across all evaluation metrics. Among them, YOLO-Ginseng surpasses the relatively newer YOLOv7 and YOLOv8s and YOLOv9-C by 1.8% and 1.4% and 0.9% in terms of average precision; It is the fastest in terms of model inference time; It exhibits reductions of 86.0% and 50.9% and 89.8% in model weight size, 87.5% and 59.1% and 91.1% in parameter count, and 90.9% and 67.3% and 96.1% in computational load, respectively. Figure 13 presents the detection performance of YOLO-Ginseng, YOLOv5s, YOLOv7, YOLOv8s, and YOLOv9-C in dense and complex scenes (A) and occluded scenes (B) for ginseng fruit detection. The results indicate that compared to YOLO-Ginseng, the other models exhibit more instances of missed detections when detecting ginseng fruit in dense and complex scenes, particularly in distant detection of ginseng fruit. However, although YOLO-Ginseng can detect most of the ginseng fruits globally, the detection effect of long-distance ginseng fruits is still not ideal, and its regression confidence is low. This may be because the long-distance ginseng fruits are not only small targets, Moreover, it was also caused by other ginseng fruits, leaves or other environmental factors blocking the detection. But overall, YOLO-Ginseng still has better detection results than other models. In the scenario of close-range occlusion of ginseng fruits, all models can detect the occluded ginseng fruits. However, in images (b), (d), and (e), the localization of the predicted bounding boxes is not precise enough, failing to fully capture all features of the occluded ginseng fruits. In image (c), multiple overlapping boxes are detected for the same ginseng fruit target, indicating occurrences of false positives. Additionally, in images (c), (d), and (e), the regression confidence for detecting occluded ginseng fruits at close range is low.

Table 8 | Comparison results of different models.


[image: Table comparing different models on various metrics: P, R, AP_0.5, T, Size, Parameters, and GFLOPS. "Our method" shows the highest P and AP_0.5 with 93.6% and 95.6%, respectively. YOLOv9-C has the highest AP_0.5 of 94.7%, and the largest GFLOPS at 237.6. Bold values indicate the best results across evaluation metrics.]
[image: A series of images labeled A and B show plant identification. Each image (a to e) on the left displays several plants with red rectangles indicating recognition zones, marked with scores. On the right, close-up views depict clusters of red berries within red boxes, each with a recognition confidence score. This illustrates different images of plants being recognized and classified with varying confidence levels.]
Figure 13 | The performance of different models in detecting ginseng fruits in dense and complex scenes (A) and occluded scenes (B). (a) YOLO-Ginseng. (b) YOLOv5s. (c) YOLOv7. (d) YOLOv8s. (e) YOLOv9-C.

In summary, YOLO-Ginseng has the best detection performance for ginseng fruits.




4.3 Comparison results of different models based on a public dataset

To further evaluate the detection performance of YOLO-Ginseng, this section will conduct tests using the public dataset PASCAL VOC2012. Comparative experiments will be carried out with YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv7-tiny, YOLOv8s, and YOLOv9-C under the same PC device and training parameters. The comparative results are presented in Table 9. The results indicate that, on the public dataset, YOLO-Ginseng maintains superior performance across various evaluation standard, achieving an average precision of 70.8%, only below YOLOv7’s 76.7%; The model’s inference time reaches 6.8 ms, slightly inferior to other models. However, YOLO-Ginseng exhibits the smallest model weight size, parameter count, and computational load. In summary, YOLO-Ginseng demonstrates certain advantages in detection performance compared to other models on the public dataset PASCAL VOC2012.

Table 9 | Comparison results based on the PASCAL VOC2012 dataset.


[image: Table comparing various models with metrics: Precision (P), Recall (R), Average Precision (AP₀.₅), Inference Time (T), Size, Parameters, and GFLOPS. Models listed include Our method, YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv7-tiny, YOLOv8s, and YOLOv9-C. Bold values indicate the best results.]



4.4 Deployment experiments of the model

Finally, to validate the practicality and stability of YOLO-Ginseng, this study deployed the model on the Jetson Orin Nano computing device for simulated ginseng fruit detection experiments. The Jetson Orin Nano is equipped with 20 TOPS of computing power and supports a wide range of AI inference frameworks and tools. In this experiment, the RGB lens of the Intel Realsense D435i depth camera is used to capture image data, and the detection results were presented on a 7-inch touch screen. The visual detection system and detection results are depicted in Figure 14. The results demonstrate that YOLO-Ginseng can successfully accomplish ginseng fruit detection tasks on Jetson Orin Nano, achieving an average real-time detection speed of 24.9 fps. This indicates that YOLO-Ginseng possesses excellent practicality, meeting the detection requirements for future intelligent harvesting equipment of ginseng fruits.

[image: Diagram showing a visual detection system process. A Jetson Orin Nano and an Intel RealSense D435i camera feed input to the system, displayed on a screen. The results are two images with red rectangles identifying detected items in a leafy environment.]
Figure 14 | Model deployment platform and test results.





5 Conclusions

This study proposes a ginseng fruit detection method, YOLO-Ginseng, which demonstrates outstanding overall detection performance and can provide visual guidance for ginseng fruit harvesting robots. The main contributions and conclusions of YOLO-Ginseng are as follows:

	From the perspective of enhancing the feature extraction capabilities of the backbone network, this study designed a plug-and-play deep perception feature extraction module C3f-RN with a sliding window mechanism. This module expands the hierarchical structure of the YOLO-Ginseng backbone network, improves the backbone network’s local deep attention and global interactive processing capabilities for ginseng fruit image feature information, expands the network’s deep perception field of view, and can retain more important weight information. In the end, this method improved the localization quality of predicting boundary boxes for closely detected ginseng fruits, significantly reduced the missed detection rate of global ginseng fruit detection, enhanced the detection effectiveness of ginseng fruits at long distances, ultimately resulting in a 2.6% increase in the model’s average precision.

	To mitigate the drawbacks caused by the C3f-RN module and maintain a balance between the detection precision and inference speed of YOLO-Ginseng, this study employed channel pruning algorithms for model compression. The results indicate that compared to the model before compression, YOLO-Ginseng experiences only a 0.2% decrease in average precision after compression. Meanwhile, the inference time, model weight size, parameter count, and computational load decrease by 65.3%, 76.4%, 79.3%, and 74.2%, respectively. This demonstrates the effectiveness of the channel pruning algorithm used for YOLO-Ginseng.

	Finally, YOLO-Ginseng achieves a precision of 93.6%, a recall of 91.1%, an average precision of 95.6%, an inference time of 7.4ms, a model weight size of 10.5MB, 4,545,903 parameters, and a computational load of 9.3 GFLOPS, the detection effect is remarkable. It is noteworthy that YOLO-Ginseng exhibits the best overall detection performance compared to other models. On the publicly dataset, YOLO-Ginseng also demonstrates certain advantages in detection. In the model deployment, YOLO-Ginseng successfully accomplishes real-time detection tasks for ginseng fruits on the Jetson Orin Nano computing device, with an average detection speed reaching 24.9fps. However, YOLO-Ginseng has poor detection results for blocked ginseng fruits in long-distance detection scenarios, which is a problem that needs to be solved in subsequent research. In summary, this study provides effective visual guidance for ginseng fruit intelligent harvesting equipment, builds a bridge for ginseng fruit spatial positioning technology, and promotes the healthy development of the ginseng industry in the future.
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When harvesting bunch tomatoes, accurately identifying certain fruiting stems proves challenging due to their obstruction by branches and leaves, or their similarity in colour to the branches, main vines, and lateral vines. Additionally, irregularities in the growth pattern of the fruiting pedicels further complicate precise picking point localization, thus impacting harvesting efficiency. Moreover, the fruit stalks being too short or slender poses an obstacle, rendering it impossible for the depth camera to accurately obtain depth information during depth value acquisition. To address these challenges, this paper proposes an enhanced YOLOv8 model integrated with a depth camera for string tomato fruit stalk picking point identification and localization research. Initially, the Fasternet bottleneck in YOLOv8 is replaced with the c2f bottleneck, and the MLCA attention mechanism is added after the backbone network to construct the FastMLCA-YOLOv8 model for fruit stalk recognition. Subsequently, the optimized K-means algorithm, utilizing K-means++ for clustering centre initialization and determining the optimal number of clusters via Silhouette coefficients, is employed to segment the fruit stalk region. Following this, the corrosion operation and Zhang refinement algorithm are used to denoise the segmented fruit stalk region and extract the refined skeletal line, thereby determining the coordinate position of the fruit stalk picking point in the binarized image. Finally, the issue of missing depth values of fruit stalks is addressed by the secondary extraction method to obtain the depth values and 3D coordinate information of the picking points in RGB-D camera coordinates. The experimental results demonstrate that the algorithm accurately identifies and locates the picking points of string tomatoes under complex background conditions, with the identification success rate of the picking points reaching 91.3%. Compared with the YOLOv8 model, the accuracy is improved by 2.8%, and the error of the depth value of the picking points is only ±2.5 mm. This research meets the needs of string tomato picking robots in fruit stalk target detection and provides strong support for the development of string tomato picking technology.
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1 Introduction

The country takes the lead in terms of the cultivated area of cluster tomatoes, and its production ranks among the highest in the world. Annual production reaches millions of tons, and this figure continues to rise steadily. According to statistics, China’s total cluster tomato production reached approximately 8 million tons by 2023, representing a significant increase from 6.2 million tons in 2022. And it is expected that by 2024, cluster tomato production will surpass the 11 million ton mark. These figures not only reflect the dynamism of the tomato industry but also indicate the growing market demand for tomato products, including smaller varieties of tomatoes (China Report Hall Network, 2024). In the current agricultural context, cluster tomato harvesting is considered a crucial agricultural activity. Fruit and vegetable harvesting is a labor-intensive component of agricultural production that has traditionally relied on manual operations.This approach is not only inefficient but also vulnerable to seasonal variations and climatic conditions. With the advancement of agricultural modernisation, automation technology has become an important means to improve productivity and reduce labour costs. Among them, computer vision technology plays a key role. Traditional computer vision relies heavily on colour and shape recognition, but these methods are susceptible to light and occlusion in complex environments. To address these issues, AI-driven computer vision technologies, especially deep learning, are becoming mainstream. Convolutional neural networks (CNNs) improve recognition accuracy by processing complex image features. In addition, multimodal data fusion techniques help overcome the shortcomings of single vision systems. However, despite the excellent performance of AI techniques in experimental environments, real-world applications still face challenges such as light variations and environmental complexity, and related studies (e.g., Zhang et al., 2020 and Bergerman et al., 2016) have pointed out that further optimisation of recognition techniques is still the key to achieving full automation. In complex natural environments (e.g., light, shadow, shade, etc.), existing techniques may also suffer from recognition errors or fail to accurately determine the picking point. Moreover, automated equipment needs to consider diverse scenarios and conditions in actual operation, and current technology may be difficult to meet the demand for accurate picking in all situations. Therefore, there is an urgent need to further develop and improve related technologies to achieve accurate identification and guidance of tomato picking points under different conditions. Advanced artificial intelligence and computer vision technologies are used to automatically identify and determine the picking location of ripe bunches of tomato stalks. This approach not only helps to reduce labour pressure and improve productivity for farmers, but also significantly reduces production costs and improves the quality and yield of produce. Simultaneously, picking point identification and positioning technology has a broad range of application areas. It is not only applicable to the picking of crops such as fruits and vegetables but also provides accurate picking guidance for automated equipment. This technology reduces losses in the picking process and improves the utilization of agricultural products, thereby promoting the development of the agricultural industry in the direction of intelligence and efficiency.

The identification and localization of picking points for ripe cluster tomatoes depend on the predictive localization of fruit shape features and the localization of fruit stalk picking points based on the relationship between stalk and fruit position. In a related study, Montoya Cavero proposed a deep learning pepper recognition and pose estimation framework. The framework utilizes high-resolution colour images from an RGB-D based active sensor to detect and segment individual green, red, orange and yellow peppers and their pedicels (which produce stems) on a pixel-by-pixel basis using a mask and a region-based convolutional neural network. Subsequently, the 3D position of the peppers and the z-axis orientation of the camera’s reference system are estimated using depth information from the sensor. The detection accuracy was 60.2% and the position estimation errors obtained by the vision subsystem were x: ±28.75 mm, y: ±21.25 mm, ±15 mm, and the z-axis orientation of the camera’s reference system was ±9.6° (Cavero and Enrique, 2021). Jin Y developed an accurate picking point localization method for horizontally terraced grapes, using a combination of far-view and near-view depth data features. Utilizing depth point cloud data, key points—far-view, near-view, and picking points—were identified based on grape cluster characteristics and the terraced environment. In field experiments focused on near-view localization, the algorithm averaged 0.29 seconds per run, with only 5 out of 100 samples failing in accurate localization (Jin et al., 2022). Kounalakis N employed deep learning to identify ripe tomatoes and their stalks, using depth information to guide the robotic arm in picking point identification. Real-world experiments showed a 65% success rate in recognition and 92.6% accuracy in vision processing for picking point localization (Kounalakis et al., 2021). Sun T proposed a method employing deep learning and active perception for robots in environments with occlusions and varying lighting, achieving a 90% success rate in picking and a 16% average occlusion estimation error after 300 trials (Sun et al., 2023). Paul A utilized YOLO algorithms for pepper detection and a RealSense D455 camera to determine picking point coordinates (Paul et al., 2024). Benavides M explored the YOLOv8s model, achieving a mAP of 0.614 for pepper detection, and developed a CVS for automating stalk recognition in greenhouse tomatoes (Benavides et al., 2020). Suguru Uramoto et al. processed colour images captured by a depth camera with the aim of detecting red ripe large tomatoes and oval mini tomatoes. They then used the depth data captured by the depth camera to calculate the 3D coordinates of the centre of the fruit and the diameter of the fruit. Experiments with tomatoes grown in facility horticulture showed a 96.3 per cent accuracy in their identification (Uramoto et al., 2021). Shuai, L developed a method for detecting tea shoots and keypoints as well as picking point localisation in complex environments. Tea leaves were recognised using the YOLO-Tea model, which improved the mean accuracy (mAP) value of tea shoots and their keypoints by 5.26% compared to YOLOv5. In the inference phase of the model, an image processing method is used to locate the location of the picking point based on the key point information (Shuai et al., 2023). Xiong, J constructed a vision system for lychee image acquisition and proposed a nighttime lychee recognition method and a picking point calculation method. This analysis was first combined with a one-dimensional random signal histogram using an improved fuzzy clustering method (FCM) to remove the background of the nighttime image instead of the lychee fruits and stems. The Otsu algorithm was then used to segment the fruit from the stem base. Harris corners were used for picking point detection. The rate of change in horizontal and vertical position between corner points is analysed to identify picking points. Experiments show that the accuracy of nighttime lychee recognition is 93.75% and the average recognition time is 0.516 s. The highest accuracy of picking point calculation is 97.5% and the lowest is 87.5% at different depth distances (Xiong et al., 2018). In order to address the challenge posed by the similarity in colour between string tomato fruit stalks and their main vines, lateral vines, and branches, coupled with the irregular orientation of the fruit stalks, making it difficult to precisely delineate the fruit stalk area; and considering the limitations of depth cameras in capturing the depth of slender or shorter fruit stalks, leading to significant errors or complete loss of data, a method for identifying and localizing string tomato picking points, based on FastMLCA-YOLOv8 and RGB-D information fusion, is proposed. This method is aimed at preventing the end-effector from erroneously cutting the main or side vines while harvesting bunch tomatoes (Suresh Kumar and Mohan, 2023).

This study focuses on two aspects of identification and localization of bunch tomato fruit stalk picking points.(1) The YOLOv8 model was improved to generate the FastMLCA-YOLOv8 target detection model, facilitating rapid identification of fruit stalks by leveraging the connectivity between bunch tomatoes and their respective stalks.(2) The improved K-means algorithm (using K-means++ to determine the initial clustering centre and Silhouette coefficients to find the optimal number of clusters), morphological corrosion operation and skeletonization zhang refinement algorithm are used to segment, denoise and refine the skeletal lines of the fruit stalk image, so as to further determine the coordinate position information of the picking point on the colour image. Additionally, to address the issue of missing depth values resulting from excessively thin or short fruit stalks, a secondary extraction method is employed to obtain and correct the depth values, thereby acquiring comprehensive location information for the picking points.




2 Materials and methods



2.1 Data collection and labelling



2.1.1 Data collection

The data samples for this study were collected from Gertou Village, Fancun Town, Taigu District, Jinzhong City, Shanxi Province (Latitude: 37.4110°N, Longitude: 112.5625°E), where the Melia tomato variety is cultivated, the map is shown in Figure 1A. The greenhouse, serving as a hub for integrating and demonstrating advanced tomato production technologies, is recognized as the largest independent continuous glass greenhouse in Asia. Due to the close proximity and high density of the shooting environment, specific requirements were mandated for camera resolution and focal length. Consequently, iPhone 13 Pro Max, vivo X60, and Huawei P40pro smartphones were selected for this study. The cameras, boasting a 2778×1284 12-megapixel resolution and a 77 mm telephoto lens, are adept at swiftly capturing high-resolution images of fruiting peduncles in intricate settings (Montoya-Cavero et al., 2022), as well as obtaining high-quality, undistorted data from various perspectives and angles to satisfy the research requirements.

Data were collected from 15 July 2022 to 31 July 2022 and 28 February 2024, when most of the bunch tomatoes in the greenhouse were ripe and ready for picking. To ensure the diversity of bunch tomato peduncle data, peduncles were photographed under different weather conditions (sunny or cloudy), lighting conditions (front or backlight), time periods, and angles. For different angle conditions, a plane parallel to the fruit stalks and perpendicular to the ground was selected as the reference plane, and the fruit stalks were photographed from three different angles, namely 45°, 90° and 135°. The shooting angle diagram is shown in Figure 1B. At the same time, in order to ensure that each fruit stalk can be captured in a complete image, let the camera is facing the fruit stalk to the left and to the right 90° direction to take a photo each, so that each fruit stalk data 5 complete photos, as shown in Figure 2. Make sure that a new fruit stalk is observed in each image. Compare each image with the previously obtained image, if they agree then the fruit stalk is complete, otherwise it means that the fruit stalk is damaged or impaired. The collected images were uniformly stored in JPG format and the size was set at 3000 pixels by 4000 pixels. The size of the dataset was 10180,under different conditions,5320 photographs under sunny days, 4860 photographs under cloudy days, 7640 photographs under smooth light, 2540 photographs under backlight, and 2036 photographs under each angle.

[image: Map of Tamori Tomato Town in Shanxi Tian, highlighting Taiyuan, Jinzhong, and Taigu district with green roads. Adjacent illustration shows angles for photographing tomatoes on a vine including left ninety, forty-five, one hundred thirty-five, and right ninety degrees relative to the horizontal plane.]
Figure 1 | Schematic diagram of string tomato shooting angle.

[image: Five images of cherry tomato clusters viewed from different angles. Image (A) shows a 45-degree angle, (B) a 90-degree angle, and (C) a 135-degree angle. Images (D) and (E) present a leftward and rightward 90-degree rotation, respectively, emphasizing the fruits' arrangement. The background shows a greenhouse setting.]
Figure 2 | Sample diagram of a fruit stalk shot. Panels (A–E) represent the shooting angles 45°, 90°, 135°, left 90° and right 90°.




2.1.2 Data labelling

Following the collection of sample data, images of fruit stalks were systematically sorted, labelled, and utilized to construct a dataset for fruit stalk detection. The open-source LabelImg data annotation tool was employed to label the fruit peduncle data within a bounding box, designating the peduncle as ‘stem’ in accordance with standard annotation standards, with the detailed annotation schematic provided in Figure 3. The annotation file containing comprehensive information on fruit peduncles is automatically generated based on the annotation results once the annotation is completed. During the annotation process, particular attention was given to ensure that excessively short or obstructed fruit stalks were not annotated. If a branch resembled a fruit stalk, it was labeled as such. Images failing to meet the annotation standards were excluded to ensure the dataset’s accuracy.

[image: Close-up images of a tomato plant stem. The left image shows a textured, hairy stem with a red tomato in the background. The right image highlights similar details with another tomato. Both images have green lines and dots indicating a focus on the stem's surface.]
Figure 3 | Demonstration of fruit stem labelling.





2.2 Experimental environment

The configuration parameters of the experimental equipment utilized in this study are delineated in Table 1. The processor is a 13th Gen Intel(R) Core(TM) i7-13700K×24. The graphics card is an NVIDIA GeForce RTX 3090. The graphics card’s driver version is NVIDIA-SMI 535.161.07. The system memory is 64GB DDR5. The operating system employed is Ubuntu 22.04.3 LTS. The depth camera utilized is an Intel RealSense D455. The depth image boasts a resolution of 1280x720 and a maximum frame rate of 90 frames per second. The development language employed is Python 3.9.7. The configuration environment’s CUDA version is CUDA 11.5.r.5. The Anaconda version is 4.10.3.

Table 1 | Configuration parameters of the experimental environment.


[image: Table displaying hardware and software configurations: Processing Unit is 13th Gen Intel Core i7-13700K x24. Display Card is NVIDIA GeForce RTX 3090. Graphics Card Driver is NVIDIA-SMI 535.161.07. RAM is 64G. Development Language is Python 3.9.7. Deep Learning Framework is TensorFlow. Image Acquisition Equipment includes iPhone 13 Pro Max, vivo X60, Huawei P40 Pro. Depth Camera is Intel RealSense D455. CUDA version is 11.5.r.5. Anaconda version is Conda 4.10.3.]



2.3 Experimental process

To address the challenge of identifying and localizing picking points for bunch tomatoes in greenhouse environments, this study introduces an innovative method. This method utilizes the FastMLCA-YOLOv8 target detection algorithm and RGB-D information fusion technology (Arad et al., 2020; Fu et al., 2020) to accurately identify and localize picking points for bunch tomatoes (Klaoudatos et al., 2019), enhancing both the stability and accuracy of the identification process and reducing the risk of the end-effector mistakenly severing the main or lateral vines during the cutting and clamping of bunch tomatoes, thereby improving both the efficiency and quality of the automated picking process (Rong et al., 2022, 2023). The FastMLCA-YOLOv8 target detection model rapidly identifies the minimal rectangular area enclosing harvestable fruit stalks. Subsequently, the viable fruit stalk region of string tomatoes is extracted. The K-means algorithm is then improved by using the K-means++ algorithm to determine the initialized cluster centers. Subsequently, the sum of the squares of the shortest distances from all the remaining samples to the existing cluster centers is calculated, and the next cluster center is selected based on this probability distribution (Solak and Altinişik, 2018). Cyclically try different numbers of clusters k, calculate the Silhouette scores at each value of k, and select the number of clusters with the maximum average Silhouette score as the optimal number of clusters (Shi et al., 2021). Finally, the K-means object is reinitialized and fitted to the data to obtain the labels and then revert them to the shape of the image. This is followed by de-noising and refinement of skeletal lines performed on the segmented image of the improved K-means algorithm using morphological corrosion operations and skeletonisation zhang refinement algorithm, so as to further extract the skeletal lines of the fruit peduncle and to determine the information about the position of the coordinates of the picking point on the colour image. The RGB-D depth camera then determines the picking point’s depth value, with the complete coordinate information obtained following transformation and correction. The algorithmic steps are illustrated in Figure 4.

[image: Flowchart illustrating automated tomato picking, divided into three steps. Step 1: Detecting tomato stems using FastMLCA-YOLOv8 model. Step 2: Positioning picking points by extracting and segmenting the RIO region with modified K-means, followed by image denoising and stalk refinement. Step 3: Obtaining depth and coordinate information using an RGB-D camera and intersection of skeletonized image centers, converting to 3D coordinates for picking. Images of tomato vines are included as references.]
Figure 4 | String tomato picking point identification and positioning process.



2.3.1 YOLOv8 model

The YOLOv8 model is a more advanced SOTA model that builds on the success of previous YOLO versions and incorporates new features and optimizations designed to further enhance its performance and adaptability (Jocher et al., 2023). Specific innovations include the introduction of a new core network YOLO-NAS (Neural Architecture Search), an innovative anchor-free detection header, and a new loss function YOLOv8 Loss.These enhancements enable YOLOv8 to operate efficiently across various hardware environments, including both CPU and GPU, while achieving substantial improvements in target detection accuracy and speed. The SOTA model consists of a target detection network with resolutions of P5 640 and P6 1280, and an instance based on the YOLACT technology segmentation model; with the same models as YOLOv5, these include N/S/M/L/X models to suit different scene requirements (Li et al., 2024).

The YOLOv8 algorithm is a fast object recognition method that consists of input, Backbone, Neck and output segments: the input section is mainly responsible for the processing of mosaic data, adaptive computation of anchors, and adaptive filling of grey scales of the input image. The core architecture of the YOLOv8 network is composed of Backbone and Neck modules together. The input image is co-processed by several Conv and C2f modules for the purpose of extracting feature maps at various scales. The C2f module is actually an optimisation of the original C3 module, which is the module mainly used for residual learning. It incorporates the advantages of the ELAN structure of YOLOv7 by reducing a standard convolutional layer (Li et al., 2024). The Neck layer is designed based on the FPN+PAN architecture, which is done to improve the performance of the model in terms of feature fusion. The structure contains a local region within each layer and establishes connectivity between each layer. This structure allows for the successful merging of the upper and lower feature maps through upsampling and downsampling, and speeds up the transformation between semantic and localised features. Using this technique, the network has the ability to more efficiently integrate the features of objects at various scales, which in turn enhances the detection of objects at various scales. The detection head of YOLOv8 adopts the common practice of separating the classification head from the detection head. It covers loss estimation as well as filtering functions for the target detection frame. For loss estimation, the TaskAlignedAssigner method is used to determine the distribution of positive and negative samples. Positive samples are selected based on a weighted combination of classification and regression scores. The calculation of loss is divided into two main parts: classification and regression, without involving the objectivity branch. In addition, the YOLOv8 model employs a mosaic-free enhancement strategy in the last 10 epochs of the training phase. This practice aims to reduce the interference of data enhancement on model training so that the model can focus more on processing real test data, thus improving the final detection accuracy and performance.

YOLOv8 uses a task alignment distributor to compute a task alignment metric from classification scores and regression coordinates. The task alignment metric combines the values of classification score and joint intersection (IoU), aiming to achieve simultaneous optimisation of classification and localisation while suppressing low-quality prediction frames (Chen et al., 2024). In the field of object detection, the joint intersection (IoU) is a widely adopted metric that is used to distinguish between positive and negative samples and to evaluate the relative distance of the prediction frames from the ground reality. When the value of IoU exceeds 0.5, the object is usually classified as having been detected. The specific formula is shown in Equation 1.

[image: Mathematical formula representing Intersection over Union (IoU), defined as the size of the intersection of sets A and B divided by the size of their union.]

Where A represents the area of the predicted frame and B represents the area of the actual frame. A∩B represents the intersection area of A and B. A∪B represents the area that is the union of A and B.

The algorithm for YOLOv8 comprises inference and subsequent processing steps:

	Converting the integral form from bbox to bbox 4d; converting the bbox branch generated by Head and using operations of softmax and conv to convert the integral pattern to bbox 4d format;

	Dimensionality change: YOLOv8 outputs feature maps in three different scales: 80x80, 40x40 and 20x20. in Head, feature maps are presented in six different scales for classification and regression;

	Decoding recovers the size of the original image: the branches of the classification predictions are computed using sigmoid, and the branches of the prediction frames have to go through a decoding process in order to recover the actual original image in decoded xyxy format;

	Filtering operation for thresholding. Each image is traversed in batch and threshold filtering is performed using the score_thr method. In this process, multi_label and nms_pre are also considered to ensure that the number of filtered detection frames does not exceed nms_pre;

	Restore to the original image size and nms: on the basis of the pre-processing process, the remaining detection frames can be restored to the original graph scale before the network output with nms. The number of detection frames generated at the end must not exceed max_per_img.






2.3.2 Improvements to the YOLOv8s model

In this paper, prior to choosing to improve the YOLOv8 model (Wang, et al., 2023), the YOLOv8 model was compared with other YOLO models under the same rounds of training on the same dataset. The results (e.g., Table 3) indicate that the YOLOv8 model has the following significant advantages over other models and is more suitable for this study. Firstly, it performs well in handling targets with different scales and complex backgrounds, which is compatible with the complexity of the string tomato picking scene. Secondly, its pre-training accuracy is higher than that of other models. Thirdly, the GFLOPS of the YOLOv8 model is smaller than that of other models, and it has a fast recognition speed and good performance. Therefore, this study improves the YOLOv8 model and proposes a FastMLCA-YOLOv8 based feature extraction and classification model. The bottleneck component of the c2f module has been substituted with that of Fasternet, resulting in the c2f-faster module. Fasternet's bottleneck architecture provides superior parameter optimization capabilities, which improve not only network performance and detection precision but also increase the model's training and inference speed, thereby enhancing the system's real-time functionality (Guo et al., 2024). Concurrently, this bottleneck architecture enables more effective integration of disparate layer feature information, thereby providing a more nuanced and precise feature representation capability that improves target detection accuracy.

Based on the c2f module, the MLCA attention mechanism is then added after the backbone network as a way to improve the model’s attention and accuracy to the target. The MLCA attention mechanism enables the model to concentrate more effectively on salient features, thereby enhancing detection performance and decreasing the false detection rate. In this study, the integration of the c2f-faster module and the MLCA attention mechanism allows the YOLOv8 model to more efficiently capture contextual information and detailed target features, thus enhancing the accuracy and robustness of detection. The enhanced structure of YOLOv8 is illustrated in Figure 5.

[image: Flowchart depicting a neural network architecture with Backbone and Head sections. Backbone features input layers with Conv2D, C2f-Faster, and MLCA blocks, connected by various operations like concat and upsample. Head consists of C2f-Faster and final layers. Separate Conv, C2f-Faster, SPPF, and Head modules detail specific operations, including conv layers, channel split, faster blocks, and loss functions.]
Figure 5 | Structure of FastMLCA-YOLOv8.

The specific execution process of the FastMLCA-YOLOv8 model is as follows:

	Prior to being input into FastMLCA-YOLOv8, the image is resized to 640 × 640 × 3. The input image undergoes feature extraction by the backbone network to obtain a series of feature maps at different scales;

	Subsequent feature learning and compression are executed using Fasternet’s bottleneck structure;

	Incorporate the MLCA attention mechanism following the backbone network.;

	Feature maps enhanced by the MLCA attention mechanism are sent to the detection head for target classification and bounding box regression;

	At each scale, bounding boxes are filtered through the non-maximum suppression (NMS) algorithm to eliminate redundant detection results;

	Ultimately, bounding boxes processed by NMS are rescaled to the original image dimensions, and the final target detection results are produced.






2.3.3 FastMLCA-YOLOv8 model to recognize fruit stalks

The FastMLCA-YOLOv8 model environment was established on Ubuntu for training and analysis purposes. The dataset annotations were converted from XML to TXT format, and the annotated dataset comprising 10180 entries was partitioned into training, validation, and test sets at a ratio of 8:1:1. The data utilized for the model comprised sample images varying in resolution, size, saturation, and angle. The model parameters were adjusted before running (Zhaoxin et al., 2022), with epchos modified to 200 and batch-size to 64, and the specific parameter settings are shown in Table 2. Under NVIDIA GeForce RTX 3090, during running, the model training time is only 3.203 hours. Of this, preprocessing takes 0.9 ms, inference takes 2.0 ms, loss calculation is 0.0 ms, and postprocessing per image takes 0.8 ms. The inference speed (FPS) reaches 270.3 fps, which can meet the demand for real-time detection of string tomato picking robots. The results obtained are demonstrated in Figure 6.

Table 2 | Parameter description table.


[image: Table displaying hyperparameters for a model. Classes: stem, Image Size: 640 by 640 by 3, Epochs: 200, Batch-Size: 64, Workers: 16, Stride: 1, Activation-Function: SiLU. Each value has a corresponding clarification.]
[image: Cluster of ripe, red cherry tomatoes hanging from a vine in a greenhouse. The background shows more tomato plants, with vibrant green leaves and additional clusters of tomatoes. A label points to the stem.]
Figure 6 | FastMLCA-YOLOv8 training result plot.




2.3.4 Extraction of fruiting peduncle ROI regions

Following the identification of fruit stalks in the tomato image via the FastMLCA-YOLOv8 algorithm, an extraction algorithm isolates the fruit stalk region as the Region of Interest (ROI) for further processing. The image, post fruit stalk extraction, is depicted in Figure 7.

[image: Close-up collage of plant stems in four panels. Each panel shows textured dark green stems with small spiky protrusions, set against soft-focus backgrounds featuring hues of red, green, and white.]
Figure 7 | Fruit stalk ROI region extraction map.




2.3.5 Refinement of the skeletal line of the fruiting peduncle

After using the ROI region extraction algorithm, the rectangular box where the pickable fruit stalks are located can be extracted, but it still can’t meet the demand of robotic picking, and it needs to be further researched on the fruit stalk region. In comparison to traditional segmentation algorithms like Otsu and Watershed, the convolutional neural network-based segmentation algorithm exhibits good robustness and can adapt to different lighting scenarios, thus this study adopts the improved K-means segmentation algorithm for segmenting the ROI region (Chakraborty et al., 2024).

The K-means algorithm uses distance as a criterion for assessing similarity. In other words, the shorter the distance between data objects, the more similar they are and the more likely they are to belong to the same category. The K-means algorithm operates as follows: in order to form the initial centres of the k groups, k data objects are first randomly selected from the dataset; the relative distance between each data object and the centre of the cluster in which it is located is then computed, and after that, the data objects are classified as being closest to the centre of the cluster; Eventually, the centre of each cluster is redefined by updating the centre of each cluster and adopting the average of all objects in the cluster as the new centre. The previous steps are repeated until the values of both the new and original cluster centres fall below a certain threshold, at which point the algorithm terminates.

In the improved K-means algorithm, K-means++ is used for cluster centre initialisation during cluster initialisation, where K-means++ randomly selects samples as the first cluster centre. Next, the sum of the squares of the shortest distances from all the remaining samples to the existing clustering centres is computed, and the next clustering centre is selected based on this probability distribution. Then, different numbers of clusters are tested in a loop, and Silhouette scores are calculated at each value of k, with the maximum average Silhouette score selected as the optimal number of clusters. The optimal number of clusters is determined by adding the silhouette coefficient to sil_scores + 2. Finally, the K-means object is reinitialized and fitted to the data to obtain the labels and reverts them to the shape of the image. Throughout the clustering process, by setting the parameter n_init to 10, the K-means algorithm will be iterated 10 times and the clustering result that minimises the SSE will be chosen as the output, the segmentation result is shown in Figure 8A.

[image: Segmentation, corrosion, and refinement result graphs are displayed in three columns. Column A shows gray-scale segmentation results. Column B presents black and white corrosion results. Column C displays refinement results with black backgrounds and white contours, highlighting progressively refined areas.]
Figure 8 | Resulting plot of segmentation, erosion and refinement.

After segmenting the fruit stalks using the improved K-means algorithm, there are still some isolated small spots in the image and noise problems such as burrs on the surface of the fruit stalks, internal holes, etc., which need to be processed using the corrosion operation to completely segment the background from the fruit stalks, and the corrosion results are shown in Figure 8B. The corrosion operation shrinks each subset B+A in the image A that corresponds exactly to the structural element B, as shown in Equation 2.

[image: Mathematical expression of a relation: S equals A crossed with B equals the set of ordered pairs (x, y) such that y is a subset of A. Equation number two.]

The corroded fruit stalk images were then refined using the skeletonised zhang refinement algorithm. The zhang refinement algorithm is performed iteratively and all non-zero pixels need to be read each time the algorithm is run. In deciding whether to delete or retain each pixel (P1), close attention must be paid to the specific values of the eight pixels (P2 P3 P4 P5 P6 P7 P8) in its vicinity. Meanwhile, in the refinement process, the endpoint judgement condition is added, if only one pixel point in the 8-neighbourhood of a pixel point is a foreground pixel point except the point itself, i.e., the other 7 pixel points are background pixel points, then this pixel point can be considered as an endpoint, and the result of the refinement is shown in Figure 8C. By judging and deleting these endpoints, the main line strips can be better preserved and the fruit stalks can be refined completely.




2.3.6 Obtaining picking point coordinate information

To prevent end-effector damage to the fruit stalks and main stem, short distances were prioritized during the picking process (Chen et al., 2023). The picking point was designated at the centre of the fruit stalk refinement map. In the skeletonized image, the clustered tomato fruit stalks extend almost from the top to the bottom. The precise location of the picking point is identified by the intersection of the image’s top and bottom centre lines with the fruit stalk’s skeletal line. The skeletonized image is converted to binary format, with pixel values of 1 assigned to the skeletal structures and 0 to others. By analysing pixel values along the centre line, the coordinates of the picking point in the skeletonized image are ascertained, as illustrated in Figure 9.

[image: Four graphs with a dark blue background and yellow lines indicate trends. Each graph displays an axis with numerical markers and a vertical yellow line intersecting a horizontal yellow line. The graphs show different patterns, with varied rising and falling trends across different sections. Yellow dots mark specific points along the lines.]
Figure 9 | Picking point coordinate information map.




2.3.7 Secondary extraction method to obtain depth values

After obtaining the 2D coordinate information of the fruit stalk picking point, the depth value and 3D coordinate information of the picking point (Bai et al., 2023) need to be further determined. Depth information for normally growing fruit stalks can be directly obtained using an RGB-D depth camera. However, in practical applications, fruit stalks may exhibit slender or overlapping characteristics, leading to issues with the depth camera failing to obtain depth information and duplicated identification of fruit stalks during depth acquisition. Consequently, this study introduces a secondary extraction method to address these challenges.

The eroded fruit stalk image is converted into a binary map, where the white regions represent the fruit stalk with a value of 1, and the black background has a value of 0. The binarized image is subjected to dot multiplication with the fruit stalk depth image, facilitating the extraction of depth data from the fruit stalk region, labelled as {n0}. Considering the errors in depth values and the imprecision in fruit stalk region segmentation, the extracted depth set {n0} undergoes validity analysis, excluding depth ranges between 400-1000 mm to derive the residual depth set {n1}. The average value D1 of the depth set {n1} is calculated, designating the initial picking point depth value as D. The absolute difference between D1 and D is compared with the reference value k. If |D1-D|≤k, D is selected as the picking point’s depth value; if |D1-D|>k, D1 is selected instead. The reference value k can be experimentally determined as the maximum value of |D1-D|. Following the transformation and correction of the depth value acquired by the RGB-D depth camera, the 3D coordinate information (Ge et al., 2020) and depth value of the fruit stalk picking point are obtained, as depicted in Figure 10.

[image: (A) Original map showing a cluster of red cherry tomatoes on the vine in a greenhouse setting. (B) The same map with added depth values and coordinate information, including D: 0.72m, X: 0.22m, Y: 0.08m, Z: 0.72m. Both images focus on the ripe tomatoes with a background of greenery and greenhouse infrastructure.]
Figure 10 | Picking points to obtain depth values. panel (A) Original map, (B) Map showing depth values and coordinate information.






3 Results



3.1 FastMLCA-YOLOv8 result analysis



3.1.1 Analysis of training results

The number of training rounds for the dataset using the FastMLCA-YOLOv8 model was set to 200 because the model iterates to 200 rounds to achieve the best results, stopping the training process. The RESULT results produced are shown in Figure 11.

[image: Eight line graphs display training and validation metrics over 200 epochs. The top row shows training box loss, class loss, distribution focal loss, precision, and recall, each decreasing significantly. The bottom row shows corresponding validation losses and mAP metrics, with losses decreasing and mAP increasing. Results and smooth trends are marked by blue and orange lines, respectively.]
Figure 11 | FastMLCA-YOLOv8 result.

Several key parameters for evaluating the model performance in the figure include bounding box loss, classification loss, feature point loss, precision, recall, and mean accuracy (mAP). The bounding box loss (box_loss) measures the positional accuracy of the predicted box by calculating the intersection and concurrency ratio (IOU) between the predicted box and the real box, which is converted into a loss value that reflects the accuracy of the model in locating the object. Classification loss (cls_loss), on the other hand, evaluates the classification performance of the model by comparing the difference between the predicted category distribution and the real category labels and then computing a loss value for classification. Feature point loss (dfl_loss) is employed to measure the disparity between predicted and actual feature points and evaluate the accuracy of feature point prediction. Furthermore, precision indicates the number of objects predicted by the model as positive examples that are actually real objects. This metric is utilized to measure the accuracy of the prediction results. Recall, on the other hand, refers to how many of all the objects that are actually positive cases are correctly detected by the model, reflecting the model's detection capability. mAP50 (mean accuracy at an IoU threshold of 0.5) evaluates the model's overall detection performance at lower IoU thresholds, while mAP50-95 (mean accuracy at IoU thresholds ranging from 0.5 to 0.95) provides model accuracies over a wider range of IoU thresholds, which are typically used to measure the overall performance of a model.

From the figure, it can be seen that the loss functions (Shuai et al., 2023) of both training and testing datasets are decreasing sharply, the loss function curve of val has stabilised at 100 rounds, and the loss function curves of train are all in a gradual process of decreasing. The curves of precision, recall,mAP50, and mAP50-95 are all gradually increasing, and converging to a steady state.




3.1.2 YOLO model training results

Comparative analysis with various YOLO target detection models demonstrates that the FastMLCA-YOLOv8 algorithm excels in terms of recognition speed and accuracy. These comparative results are meticulously documented in Table 3.

Table 3 | Comparison of YOLOv5, YOLOv6, YOLOv7, YOLOv8 and FastMLCA-YOLOv8 training data.


[image: Table comparing recognition models with metrics: Precision, Recall Rate, mAP@.5%, mAP@.5:.95%, and GFLOPs. FastMLCA-YOLOv8 shows the highest scores in Precision (0.902), Recall (0.831), and mAP@.5% (0.913), with the lowest GFLOPs (14.4).]
The table presents mAP@.5 scores for various YOLO target detection models: 0.828 for YOLOv5, 0.878 for YOLOv6, 0.864 for YOLOv7, and 0.885 for YOLOv8s. Remarkably, the FastMLCA-YOLOv8 model achieves an mAP@.5 score of 0.913, signifying a substantial 2.8% accuracy improvement compared to YOLOv8s. Then analyse the results obtained after running these models, as depicted in Figure 12.

[image: Two line graphs comparing the mean Average Precision (mAP) of YOLO versions across epochs. The left graph shows mAP at 0.5, highlighting improvements in FastMLCA-YOLOv8. The right graph shows mAP at 0.5 to 0.95, indicating performance differences among YOLOv5, YOLOv6, YOLOv7, YOLOv8, and FastMLCA-YOLOv8.]
Figure 12 | Comparison of training results. Panel (A) mAP@0.5comparison chart, (B) mAP@0.5:0.95comparison chart.

Comparison of training results using detection model evaluation metrics that include the mAP@0.5 and mAP@0.5:0.95 metrics. The YOLOv5 curve experiences a relatively large decrease between rounds 25-75, before gradually stabilizing after round 75. Similarly, the YOLOv6 curve experiences a small decrease between rounds 75-125 and stabilizes after 125 rounds. In contrast, the YOLOv7 curve shows a substantial decrease up to round 25, with additional significant decreases between rounds 25-50, gradually converging to a relatively stable state after round 50. The YOLOv8s curve exhibits a substantial increase prior to 75 rounds, gradually stabilizing after 75 rounds, while the FastMLCA-YOLOv8 curve shows a gradual increase and stabilizes at 125 rounds (Zhu et al., 2023), reaching a relatively desirable level. In the mAP@0.5 graph, the mAP values for all models range between 0.8 and 1, yet the FastMLCA-YOLOv8s curve distinctly surpasses the other four. So the FastMLCA-YOLOv8 model recognised fruit stalks with higher accuracy and speed than other YOLO models.

To further validate the high accuracy and performance of the FastMLCA-YOLOv8 model, we conducted training sessions with the more advanced SSD algorithm and RT-DETR model on the same dataset for an equal number of epochs. The results are presented in Table 4 and Figure 13. From the table, it can be observed that the SSD model, due to its characteristics of utilizing multi-scale feature maps and predicting multiple prior boxes, achieved a precision (P%) and mAP@.5:.95% of 0.922 and 0.611, respectively, which are 2 percentage points and 13.8 percentage points higher than those of the FastMLCA-YOLOv8 model. However, its recall rate (R%) and mAP@.5% were lower by 48.4 and 22.6 percentage points, respectively, compared to the FastMLCA-YOLOv8 model. Additionally, the SSD model’s computational resource consumption exceeded that of the FastMLCA-YOLOv8 model by 11.5 GFLOPs. Overall comparison reveals that the SSD model exhibits lower recall and precision rates compared to the FastMLCA-YOLOv8 model, and it consumes more computational resources. In comparison to the FastMLCA-YOLOv8 model, the RT-DETR model demonstrates lower precision (P%), recall (R%), mAP@.5%, and mAP@.5:.95% by 10.1, 7.1, 7.2, and 6.6 percentage points, respectively. Furthermore, the RT-DETR model consumes 86.2 more GFLOPs than the FastMLCA-YOLOv8 model. Overall, the RT-DETR model exhibits inferior performance in terms of precision, recall, and average precision, while requiring more computational resources. Therefore, the FastMLCA-YOLOv8 model demonstrates excellent recall and precision performance with lower computational resource consumption, enabling rapid and accurate identification of fruit stems, thus meeting the requirements for robotic detection tasks.

Table 4 | Comparison of FastMLCA-YOLOv8 with SSD and RT-DETR Training Data.


[image: Comparison table of recognition models: FastMLCA-YOLOv8, SSD, and RT-DETR. Key metrics include Precision (P%), Recall Rate (R%), mAP@.5%, mAP@.5:.95%, and GFLOPs. FastMLCA-YOLOv8 scores 0.902 precision and 14.4 GFLOPs, SSD scores 0.922 precision and 25.9 GFLOPs, and RT-DETR scores 0.801 precision and 100.6 GFLOPs.]
[image: Line graph comparing the mean Average Precision (mAP) at 0.5 for three models across two hundred epochs. FastMLCA-YOLOv8 (blue line) performs best, reaching near 0.8, followed by RT-DETR (red line), and SSD (green line), which stabilizes lower.]
Figure 13 | FastMLCA-YOLOv8 with SSD, RT-DETRmap@0.5 results chart.

FastMLCA-YOLOv8 model performs better in terms of mAP@0.5 compared to YOLOv5, YOLOv6, YOLOv7, YOLOv8, and RT-DETR models, with improvements of 8.5, 3.5, 4.9, 2.8, and 22.6 percentage points, respectively. These results highlight the FastMLCA-YOLOv8 model’s superior recognition rate, specifically enabling accurate identification of fruit stalks. Additionally, its GFLOPs (Giga Floating Point Operations Per Second) value of 14.4 is the smallest among the compared models, proving that the FastMLCA-YOLOv8 model requires less computational resources to support its operation compared to other models. However, in the mAP@0.5:0.95% comparison, the FastMLCA-YOLOv8 model shows improvements of 9.3, 5.8, 6.4, 4, and 6.6 percentage points compared to YOLOv5, YOLOv6, YOLOv7, YOLOv8, and RT-DETR, but a decrease of 13.8 percentage points compared to SSD. This indicates certain limitations in the detection performance of the FastMLCA-YOLOv8 model at IoU thresholds. Further enhancements are required to improve the detection performance and submit detection accuracy.




3.1.3 Indicators for model evaluation

The primary metrics used to evaluate the detection model are mAP and FPS. mAP represents the mean average precision, derived from the model’s precision and recall, while FPS indicates the inference speed. In this study, average precision is quantified by an area AP value, encapsulated within a Precision-Recall curve, and the F1 score is determined as delineated subsequently. Precision, or the precision rate, is defined as the ratio of correctly identified positive samples to all samples labeled as positive by the modelRecall, or the recall rate, signifies the proportion of actual positive samples that the model correctly identifies as positive. The accuracy and completeness are defined as Equations 3–5, respectively.

[image: Formula for accuracy rate, labeled as precision, shown as "True Positives divided by True Positives plus False Positives," with an equation label of (3).]

[image: Formula for recall, also known as check all rate, is shown: "Recall equals TP divided by (TP plus FN)" where TP is true positives and FN is false negatives.]

[image: The formula for F1 score is shown as: F1 score equals 2 times the product of Precision and Recall, divided by the sum of Precision plus Recall.]

When the target is classified as positive and others are classified as negative, True Positives (TP) are instances where the target is correctly predicted as positive. False Negatives (FN) occur when a positive target is incorrectly predicted as negative. False Positives (FP) are instances where a negative target is incorrectly predicted as positive. True Negatives (TN) occur when a negative target is correctly predicted as negative.





3.2 Analysis of fruit stalk segmentation results

The application of the K-means algorithm in segmenting fruit stalk images frequently introduces noise into the segmentation outcomes, prompting the adoption of an optimized and enhanced K-means algorithm for image segmentation. The enhanced K-means algorithm more precisely determines the initial clustering centre, mitigating the risk of converging to local optima and thus improving the clustering accuracy. The Silhouette coefficient autonomously identifies the optimal number of clusters, circumventing the subjectivity inherent in manual selection and ensuring greater clustering precision. Figure 14 illustrates the comparative graph between the results processed by the improved and original K-means algorithms. The Cluster Result demonstrates that the improved K-means algorithm effectively differentiates the background from the fruit stalks, as well as the fruit stalks from the fruits. It is observable that while the original K-means algorithm requires multiple iterations to finalize clustering and segmentation, the improved K-means algorithm achieves clustering results in just three iterations. Furthermore, after one iteration, the pixel values of the cluster centre stabilize throughout the iterative process, resulting in improved clustering outcomes.

[image: (A) K-means clustering split plot with a binary image showing cluster results and a line graph indicating pixel value changes over iterations for multiple clusters. (B) K-means++ segmentation plot with a grayscale image displaying cluster results and a line graph illustrating pixel value variations over iterations for three clusters.]
Figure 14 | Comparison of improved K-means processing results with original K-means processing results. Panel (A) K-means result split plot, (B) K-means++ segmentation result plot.

The line graph of the Silhouette coefficient elucidates the variation in the Silhouette coefficient across different cluster counts, with the x-axis representing the number of clusters (k) and the y-axis representing the Silhouette coefficient. In Figure 15, the red dotted line signifies that the optimal cluster count is 3, denoting that the Silhouette coefficient attains its maximum value at this cluster count.

[image: Line graph titled "Silhouette Coefficient for Different Numbers of Clusters" showing silhouette coefficients on the y-axis and number of clusters (k) on the x-axis. The blue line peaks at k equals 3, indicated by a red dashed line labeled "Best k: 3".]
Figure 15 | Silhouette coefficient processing results chart.




3.3 Analysis of results for reference value k

To address the issue of missing depth information in fruit stalks, this study implements a secondary extraction method. Within this method, the reference value k was empirically determined using 10 randomly selected fruit stalks that possessed complete depth data.

The depth value derived from the secondary extraction method is denoted as D1, whereas the initial depth value obtained directly for the picking point is designated as D. Subsequently, the absolute difference between D1 and D is calculated, with the experimental findings summarized in Table 5.

Table 5 | Comparison of depth values D1 obtained by secondary extraction method and original depth values D.


[image: Table showing serial numbers, original depth in millimeters, mean depth in millimeters, and absolute difference between original and mean depth. Data includes ten entries with varying values.]
Data in Table 5 indicate that the maximum value of |D1-D| is 247.89 mm, the minimum value is 174.47 mm, and the mean value is 215.68 mm. Consequently, k can be set to the mean value of 215.68 mm as the reference value. This indicates that the secondary extraction method not only effectively addresses the issue of missing depth values for fruit stalks in the depth map but also discerns the loss of depth information, thereby enhancing the precision of the depth value at the picking point.




3.4 Depth value error analysis

The distance between the fruit stalk and the end-effector’s shear centre point during the shearing process served as an evaluation criterion for assessing the positioning accuracy of the string tomato picking robot (Luo et al., 2018) at the picking point. The depth value of the picking point derived from the image was compared with the actual depth value, revealing an error range of ±2.5 mm. The corresponding error equation is presented in Equation 6. An analysis of the depth error at the picking point is detailed in Table 6.

Table 6 | Depth value error analysis.


[image: Table displaying depth values with three columns: Actual Depth Value (x*/mm), Captured Depth Value (x/mm), and Depth Value Error (ε(x)/mm). Rows list corresponding values: 740.57, 741.63, 1.06; 575.05, 577.14, 2.09; 643.89, 641.86, -2.03; 662.32, 664.21, 1.89; 710.59, 708.65, -1.94; 601.31, 601.32, 0.01; 564.44, 566.92, 2.48; 524.09, 521.63, -2.46.]
[image: Equation showing \( \epsilon(x) = x - x^* \), labeled as equation (6).]

where [image: Greek letter epsilon followed by an open parenthesis, letter x, and a close parenthesis, representing a function of x.]  represents the absolute error, x represents the depth value acquired by the depth camera, and x* represents the actual depth value.





4 Discussion

The growth patterns of tomato fruit stalks in diverse environments result in varied growth attitudes, necessitating considerations of these attitudes, potential obstructions, or insufficient stalk length during the identification of picking points. Such factors can lead to unrecognizable fruit stalks or issues with missing depth values, requiring the formulation of appropriate solutions. This paper delves into the identification and localization of fruit stalks in hanging tomato bunches cultivated in greenhouse settings, providing an in-depth discussion and analysis.

Exploratory experiments aimed at enhancing the recognition rate of the YOLOv8model were conducted. A comparative analysis was performed on the training of the fruit stalk dataset using various YOLO models, leading to the adoption of an improved YOLOv8s target detection model for fruit stalk recognition. In a study to improve the YOLOv8 model and increase recognition rates. Tianyong Wu introduced the lightweight SEConv convolution in place of the standard convolution in the YOLOv8 model, reducing the network’s parameters, accelerating the detection process, and enhancing the algorithm’s performance (Wu and Dong, 2023). Shichu Li proposed the YOLOv8 - AFPN - M - C2f algorithm, which replaces the YOLOv8’s head with the AFPN - M - C2f network, enhancing the model’s sensitivity to smaller objects (Li et al., 2023) Yang G proposed an improved YOLOv8s-based automatic tomato detection method, replacing standard convolution with depth separable convolution (DSConv) and incorporating a DPAG module to enhance detection accuracy in complex environments (Yang et al., 2023). In this study, the YOLOv8 model is enhanced by replacing the Fasternet bottleneck with the C2f bottleneck and integrating the MLCA attention mechanism post-backbone network, thereby developing the FastMLCA-YOLOv8 model. This novel model excels in identifying fruit stalks that closely resemble main stems and leaves within complex scenes. Comparative analysis with other YOLO models, as illustrated in Table 3, reveals that the FastMLCA-YOLOv8 model achieves a recognition rate of 91.1%, successfully balancing speed and accuracy. Nonetheless, the improved model has certain limitations, such as its applicability in specific environments and dataset selection, which require further validation and refinement.

In order to improve the image segmentation accuracy, YanPing Zhao introduced a similarity calculation method addressing the K-means algorithm’s limitations, utilizing weighted and Euclidean distances. Experimental results demonstrate that this new algorithm surpasses the traditional K-means in efficiency, accuracy, and stability (Zhao and Zhou, 2021). Shyr-Shen Yu proposed a hierarchical approach with three-level and two-level K-means algorithms, where a robust set of initial clustering centres mitigates anomalies, enhancing data clustering accuracy (Yu et al., 2018). Chaturvedi E N introduced a novel K-means clustering algorithm that systematically calculates the initial centre of mass, improving both accuracy and processing time (Chaturvedi and Rajavat, 2013). To ensure successful separation of fruit stalks from the fruit stalk image, the K-means++ clustering method is applied to initialize cluster centres. Furthermore, Silhouette coefficients are used to automatically determine the optimal number of clusters for segmenting the fruit stalk region. The results demonstrate that the improved K-means segmentation algorithm not only effectively distinguishes the background from the fruit stalks but also accurately separates the fruit stalks from overlapping fruits, thus enhancing depth accuracy. However, this approach may face challenges when dealing with high-complexity scenes and may exhibit reduced segmentation performance under extreme lighting conditions. These limitations warrant further investigation and resolution in future research.

To solve the problem of missing depth values due to the limited accuracy of depth cameras. The quadratic extraction method in this paper is analysed in comparison with the algorithms proposed by other researchers. Satapathy Sukla addressed missing data in depth maps by employing hyperpixel division on the corresponding RGB image; the method estimates missing information in degraded observations through self-similarity across non-local patches within the hyperpixel search window (Satapathy and Sahay, 2021). Hsu H applied a supervised learning approach to address depth value discrepancies in colour images, effectively predicting depth values within gaps (Hsu et al., 2022). Ali M A used deep metric learning to make Mis GAN for multi-task missing data filling. The semantic representation of an image is extracted using an image feature extraction network and deep metric learning is performed to learn good feature embeddings by maximizing inter-class differences and minimizing intra-class differences. The proposed method is demonstrated to significantly outperform other methods by conducting several experiments on the dataset (Al-taezi et al., 2024). In this study, the secondary extraction method is employed to retrieve effective depth values from binarized images of fruit stalks and compare them with the original depth values of picking points to ascertain accurate depth measurements. This method achieves optimal depth determination for picking points, ensuring precision in depth estimation crucial for tomato harvesting applications. The findings underscore the method’s efficacy in tackling challenges related to the slender nature of fruit stalks and maintaining depth map integrity, thereby enhancing overall accuracy in depth estimation.




5 Conclusions

In this study, we chose the fruit stalks of bunch tomatoes grown by hanging in greenhouses as the research object.Specifically, we conducted an in-depth investigation into the visual localisation of the picking position for bunch tomatoes. To address the challenge of identifying and locating the picking points of bunch tomatoes in complex environments, a picking point identification and localisation method based on FastMLCA-YOLOv8 and RGB-D information fusion is proposed, which initially constructs a FastMLCA-YOLOv8 model for identifying the fruit stalks of bunch tomatoes; subsequently, a cropping algorithm is used to crop the fruit stalks individually out of the bunch tomato image, and then a improved K-means, corrosion algorithm, zhang refinement and other algorithms are used to segment, denoise and refine the skeletal lines of the fruit stalk region to obtain the specific coordinate information of the picking point of the string tomato in the image; finally, the depth value of the fruit stalk is extracted by using the RGB-D depth camera and the secondary extraction method to obtain the three-dimensional coordinate information and depth value of the picking point. The results show that this study achieves 91.1% recognition rate for fruit stalks, which improves the accuracy by 2.8% compared to the YOLv8 model. The improved K-means algorithm is able to completely separate the fruit stalk region from the background region compared to the original algorithm. The error range of the depth value is only ±2.5 mm, which provides the necessary data support for the picking robot. Simultaneously, the identification and localisation method proposed in this study is not only applicable to the picking points of tomato bunches, but also applicable to the identification and localisation of picking points of other bunches of harvested fruits in complex environments. Nevertheless, there are some limitations in this study,future efforts will focus on improving and optimizing the picking point identification and localization method to enhance system performance and stability.

In this study, ripe bunch tomato fruit stalks grown by hanging in greenhouse greenhouses were selected as the research object, and the picking location of bunch tomatoes was studied in depth for visual localisation. In order to solve the problem of identifying and locating the picking points of string tomatoes in complex environments, an improved YOLOv8 and depth camera fusion method for identifying and locating the picking points of string tomato fruit stalks is proposed, which firstly constructs a FastMLCA-YOLOv8 model for identifying the fruit stalks of ripe string tomatoes; after that, a cropping algorithm is used to crop the fruit stalks individually out of the string tomato images, and then an improved After that, the fruit stalk is cropped out from the bunch tomato image using the cropping algorithm; then the fruit stalk is segmented, denoised and the skeletal lines are refined using the improved K-means, corrosion algorithm and zhang refinement algorithms to obtain the specific coordinate information of the picking point of the bunch tomato in the image; finally, the depth value of the fruit stalk is extracted using the RGB-D depth camera and the quadratic extraction method, and then the three-dimensional coordinate information and the depth value of the picking point are obtained. The results indicate that the recognition rate of fruit stalks in this study reaches 91.1%, which represents a 2.8% improvement in accuracy compared to the YOLOv8 model. The improved K-means algorithm can completely separate the fruit stalk region from the background region compared to the original algorithm. The depth value error is limited to ±2.5 mm, providing essential data support for the picking robot. Simultaneously, the identification and localization method proposed in this study is not only applicable to the identification and localization of the picking points of string tomatoes but also to the identification and localization of the picking points of other string-harvested fruits in complex environments.

However, there are some limitations in this study, and subsequently we will further enhance the accuracy and stability of detecting targets at fruit stalk picking points of bunch tomatoes to ensure that the targets can be effectively identified and localized in a variety of complex scenarios. Secondly, the current detection method for fruit stalk picking points has challenges in dealing with the situation where the fruit stalks are occluded, and further research and improvement of the algorithm are 646 needed. In the future, we will focus our research on the study of occluded fruit stalks and fruit stalks that are too short to accurately find the picking point, and reduce the error of the depth camera in acquiring the depth value. Finally, the proposed method will be refined and optimized to enhance the identification and localization of picking points for various fruits and vegetables.





Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.





Author contributions

GS: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Writing – original draft, Writing – review & editing. JW: Conceptualization, Data curation, Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing – original draft, Writing – review & editing. RM: Data curation, Software, Validation, Writing – review & editing. YS: Data curation, Writing – review & editing. YW: Writing – review & editing.





Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by Shanxi Provincial Basic Research Programme Project, grant number 202103021224173, Shanxi Provincial Department of Science and Technology Key Research and Development Project, grant number 202102140601015 and Professor of Fruit and Tomato Wisdom Standardisation Technology Research in Jinzhong National Agricultural Hi-Tech Zone, Doctoral Workstation Grant, grant number JZNGQBSGZZ004.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



References
	 Al-taezi, M. A., Wang, Y., Zhu, P., Hu, Q., and Al-badwi, A. (2024). Improved generative adversarial network with deep metric learning for missing data imputation. Neurocomputing 570, 127062. doi: 10.1016/j.neucom.2023.127062
	 Arad, B., Balendonck, J., Barth, R., Ben-Shahar, O., Edan, Y., Hellström, T., et al. (2020). Development of a sweet pepper harvesting robot. J. Field Robot. 37, 1027–1039. doi: 10.1002/rob.21937
	 Bai, Y., Mao, S., Zhou, J., and Zhang, B. (2023). Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting. Precis. Agric. 24, 727–743. doi: 10.1007/s11119-022-09972-6
	 Benavides, M., Cantón-Garbín, M., Sánchez-Molina, J. A., and Rodríguez, F. (2020). Automatic tomato and peduncle location system based on computer vision for use in robotized harvesting. Appl. Sci. 10, 5887. doi: 10.3390/app10175887
	 Bergerman, M., Billingsley, J., Reid, J., and van Henten, E. (2016). “Robotics in Agriculture and Forestry,” in Springer Handbook of Robotics. Eds.  B. Siciliano, and O. Khatib (Springer International Publishing, Cham), 1463–1492. doi: 10.1007/978-3-319-32552-1_56
	 Cavero, M., and Enrique, L. (2021). Sweet pepper recognition and peduncle pose estimation. Available online at: https://repositorio.tec.mx/handle/11285/648430 (Accessed April 19, 2024).
	 Chakraborty, J., Pradhan, D. K., and Nandi, S. (2024). A multiple k-means cluster ensemble framework for clustering citation trajectories. J. Informetr. 18, 101507. doi: 10.1016/j.joi.2024.101507
	 Chaturvedi, N., and Rajavat, A. (2013). An improvement in K-mean clustering algorithm using better time and accuracy. Int. J. Program. Lang. Appl. 3, 13–19. doi: 10.5121/ijpla.2013.3402
	 Chen, J., Ji, C., Zhang, J., Feng, Q., Li, Y., and Ma, B. (2024). A method for multi-target segmentation of bud-stage apple trees based on improved YOLOv8. Comput. Electron. Agric. 220, 108876. doi: 10.1016/j.compag.2024.108876
	 Chen, K., Yang, J., Jiang, S., and Xiong, C. (2023). Multi-sensor fusion tomato picking robot localization and mapping research. J. Phys. Conf. Ser. 2477, 12057. doi: 10.1088/1742-6596/2477/1/012057
	 China Report Hall Network. (2024). Analysis of the Market Prospect of Cherry Tomatoes in 2024: 669The Output of China’s Cherry Tomato Market Will Exceed 11 Million Tons. 670.Available online at: https://m.chinabgao.com/info/1252151.html.
	 Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., and Zhang, Q. (2020). Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Comput. Electron. Agric. 177, 105687. doi: 10.1016/j.compag.2020.105687
	 Ge, Y., Xiong, Y., and From, P. J. (2020). Symmetry-based 3D shape completion for fruit localisation for harvesting robots. Biosyst. Eng. 197, 188–202. doi: 10.1016/j.biosystemseng.2020.07.003
	 Guo, A., Sun, K., and Zhang, Z. (2024). A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection. J Real-Time Image Proc 21, 49. doi: 10.1007/s11554-024-01431-x
	 Hsu, H., Su, H.-T., Yeh, J.-F., Chung, C.-M., and Hsu, W. H. (2022). “SeqDNet: improving missing value by sequential depth network,” in 2022 IEEE International Conference on Image Processing (ICIP). 1826–1830. doi: 10.1109/ICIP46576.2022.9897561
	 Jin, Y., Liu, J., Wang, J., Xu, Z., and Yuan, Y. (2022). Far-near combined positioning of picking-point based on depth data features for horizontal-trellis cultivated grape. Comput. Electron. Agric. 194, 106791. doi: 10.1016/j.compag.2022.106791
	 Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics YOLO. Available online at: https://github.com/ultralytics/ultralytics (Accessed September 3, 2024).
	 Klaoudatos, D. S., Moulianitis, V. C., and Aspragathos, N. A. (2019). Development of an experimental strawberry harvesting robotic system. ICINCO 2), 437–445. doi: 10.5220/0007934004370445
	 Kounalakis, N., Kalykakis, E., Pettas, M., Makris, A., Kavoussanos, M. M., Sfakiotakis, M., et al. (2021). “Development of a tomato harvesting robot: peduncle recognition and approaching,” in 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 1–6. doi: 10.1109/HORA52670.2021.9461281
	 Li, J., Zhang, Y., Liu, H., Guo, J., Liu, L., Gu, J., et al. (2024). A novel small object detection algorithm for UAVs based on YOLOv5. Phys. Scr. 99, 3. doi: 10.1088/1402-4896/ad2147
	 Li, S., Huang, H., Meng, X., Wang, M., Li, Y., and Xie, L. (2023). A glove-wearing detection algorithm based on improved YOLOv8. Sensors 23, 9906. doi: 10.3390/s23249906
	 Li, Y., Wang, W., Guo, X., Wang, X., Liu, Y., and Wang, D. (2024). Recognition and positioning of strawberries based on improved YOLOv7 and RGB-D sensing. Agriculture 14, 624. doi: 10.3390/agriculture14040624
	 Luo, L., Tang, Y., Lu, Q., Chen, X., Zhang, P., and Zou, X. (2018). A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard. Comput. Ind. 99, 130–139. doi: 10.1016/j.compind.2018.03.017
	 Montoya-Cavero, L.-E., Díaz de León Torres, R., Gómez-Espinosa, A., and Escobedo Cabello, J. A. (2022). Vision systems for harvesting robots: Produce detection and localization. Comput. Electron. Agric. 192, 106562. doi: 10.1016/j.compag.2021.106562
	 Paul, A., Machavaram, R., Ambuj,, Kumar, D., and Nagar, H. (2024). Smart solutions for capsicum Harvesting: Unleashing the power of YOLO for Detection, Segmentation, growth stage Classification, Counting, and real-time mobile identification. Comput. Electron. Agric. 219, 108832. doi: 10.1016/j.compag.2024.108832
	 Rong, J., Wang, P., Wang, T., Hu, L., and Yuan, T. (2022). Fruit pose recognition and directional orderly grasping strategies for tomato harvesting robots. Comput. Electron. Agric. 202, 107430. doi: 10.1016/j.compag.2022.107430
	 Rong, Q., Hu, C., Hu, X., and Xu, M. (2023). Picking point recognition for ripe tomatoes using semantic segmentation and morphological processing. Comput. Electron. Agric. 210, 107923. doi: 10.1016/j.compag.2023.107923
	 Satapathy, S., and Sahay, R. R. (2021). Robust depth map inpainting using superpixels and non-local Gauss–Markov random field prior. Signal Process. Image Commun. 98, 116378. doi: 10.1016/j.image.2021.116378
	 Solak, S., and Altinişik, U. (2018). A new method for classifying nuts using image processing and k-means++ clustering. Journal of Food Process Engineering 41, e12859. doi: 10.1111/jfpe.12859730
	 Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., and Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. J Wireless Com Network 2021, 31. doi: 10.1186/s13638-021-01910-w
	 Shuai, L., Mu, J., Jiang, X., Chen, P., Zhang, B., Li, H., et al. (2023). An improved YOLOv5-based method for multi-species tea shoot detection and picking point location in complex backgrounds. Biosyst. Eng. 231, 117–132. doi: 10.1016/j.biosystemseng.2023.06.007
	 Sun, T., Zhang, W., Miao, Z., Zhang, Z., and Li, N. (2023). Object localization methodology in occluded agricultural environments through deep learning and active sensing. Comput. Electron. Agric. 212, 108141. doi: 10.1016/j.compag.2023.108141
	 Suresh Kumar, M., and Mohan, S. (2023). Selective fruit harvesting: Research, trends and developments towards fruit detection and localization – A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 237, 1405–1444. doi: 10.1177/09544062221128443
	 Uramoto, S., Suzuki, H., Kuwahara, A., Kitajima, T., and Yasuno, T. (2021). Tomato recognition algorithm and grasping mechanism for automation of tomato harvesting in facility cultivation. J. Signal Process. 25, 151–154. doi: 10.2299/jsp.25.151
	 Wang, Z., Liu, Y., Duan, S., and Pan, H. (2023). An efficient detection of non-standard miner behavior using improved YOLOv8. Comput. Electr. Eng. 112, 109021. doi: 10.1016/j.compeleceng.2023.109021
	 Wu, T., and Dong, Y. (2023). YOLO-SE: improved YOLOv8 for remote sensing object detection and recognition. Appl. Sci. 13, 12977. doi: 10.3390/app132412977
	 Xiong, J., Lin, R., Liu, Z., He, Z., Tang, L., Yang, Z., et al. (2018). The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment. Biosyst. Eng. 166, 44–57. doi: 10.1016/j.biosystemseng.2017.11.005
	 Yang, G., Wang, J., Nie, Z., Yang, H., and Yu, S. (2023). A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention. Agronomy 13, 1824. doi: 10.3390/agronomy13071824
	 Yu, S.-S., Chu, S.-W., Wang, C.-M., Chan, Y.-K., and Chang, T.-C. (2018). Two improved k-means algorithms. Appl. Soft Comput. 68, 747–755. doi: 10.1016/j.asoc.2017.08.032
	 Zhang, Y., Song, C., and Zhang, D. (2020). Deep learning-based object detection improvement for tomato disease. IEEE Access 8, 56607–56614. doi: 10.1109/ACCESS.2020.2982456
	 Zhao, Y., and Zhou, X. (2021). K-means clustering algorithm and its improvement research. J. Phys. Conf. Ser. 1873, 12074. doi: 10.1088/1742-6596/1873/1/012074
	 Zhaoxin, G., Han, L., Zhijiang, Z., and Libo, P. (2022). Design a robot system for tomato picking based on YOLO v5. IFAC-Pap 55, 166–171. doi: 10.1016/j.ifacol.2022.05.029
	 Zhu, Y., Li, S., Du, W., Du, Y., Liu, P., and Li, X. (2023). Identification of table grapes in the natural environment based on an improved Yolov5 and localization of picking points. Precis. Agric. 24, 1333–1354. doi: 10.1007/s11119-023-09992-w




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2024 Song, Wang, Ma, Shi and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 03 January 2025

doi: 10.3389/fpls.2024.1474207

[image: image2]


Efficient and accurate tobacco leaf maturity detection: an improved YOLOv10 model with DCNv3 and efficient local attention integration


Yi Shi 1, Hong Wang 2, Fei Wang 1, Yingkuan Wang 3, Jianjun Liu 4*, Long Zhao 5*, Hui Wang 2*, Feng Zhang 2, Qiongmin Cheng 2 and Shunhao Qing 1


1 College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, China, 2 Henan Province Tobacco Company, Luoyang Company, Luoyang, China, 3 Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China, 4 Henan Province Tobacco Company, Zhengzhou, China, 5 College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China




Edited by: 

Zhao Zhang, China Agricultural University, China

Reviewed by: 

Ruiheng Zhang, Beijing Institute of Technology, China

Guoxu Liu, Weifang University, China

Muhammad Hilal Kabir, China Agricultural University, China

*Correspondence: 

Jianjun Liu
 liujianjun20222024@163.com 

Long Zhao
 hkdzhaolong@haust.edu.cn 

Hui Wang
 huiwang0524@163.com


Received: 01 August 2024

Accepted: 05 December 2024

Published: 03 January 2025

Citation:
Shi Y, Wang H, Wang F, Wang Y, Liu J, Zhao L, Wang H, Zhang F, Cheng Q and Qing S (2025) Efficient and accurate tobacco leaf maturity detection: an improved YOLOv10 model with DCNv3 and efficient local attention integration. Front. Plant Sci. 15:1474207. doi: 10.3389/fpls.2024.1474207



The precise determination of tobacco leaf maturity is pivotal for safeguarding the taste and quality of tobacco products, augmenting the financial gains of tobacco growers, and propelling the industry’s sustainable progression. This research addresses the inherent subjectivity and variability in conventional maturity evaluation techniques reliant on human expertise by introducing an innovative YOLOv10-based method for tobacco leaf maturity detection. This technique facilitates a rapid and non-invasive assessment of leaf maturity, significantly elevating the accuracy and efficiency of tobacco leaf quality evaluation. In our study, we have advanced the YOLOv10 framework by integrating DCNv3 with C2f to construct an enhanced neck network, designated as C2f-DCNv3. This integration is designed to augment the model’s capability for feature integration, particularly concerning the morphological and edge characteristics of tobacco leaves. Furthermore, the incorporation of the Efficient Local Attention (ELA) mechanism at multiple stages of the model has substantially enhanced the efficiency and fidelity of feature extraction. The empirical results underscore the model’s pronounced enhancement in performance across all maturity classifications. Notably, the overall precision (P) has been elevated from 0.939 to 0.973, the recall rate (R) has improved from 0.968 to 0.984, the mean average precision at 50% intersection over union (mAP50) has advanced from 0.984 to 0.994, and the mean average precision across the 50% to 95% intersection over union range (mAP50-95) has risen from 0.962 to 0.973. This research presents the tobacco industry with a novel rapid detection instrument for tobacco leaf maturity, endowed with substantial practical utility and broad prospects for application. Future research endeavors will be directed towards further optimization of the model’s architecture to bolster its generalizability and to explore its implementation within the realm of actual tobacco cultivation and processing.
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1 Introduction

The maturity of tobacco leaves is a critical factor that directly influences their quality and, consequently, the taste and value of tobacco products (Cai et al., 2005; Yin et al., 2019). This is of paramount importance for the sustainability of the tobacco industry and the economic well-being of tobacco farmers (Kays, 2011). Achieving consistent and accurate assessments of tobacco leaf maturity is vital, as it enables more precise harvesting and curing methods that optimize both the aromatic profile and minimize harmful chemicals in the leaves (Cakir and Cebi, 2010). Traditionally, farmers have relied on subjective experience to assess leaf maturity, which can lead to inconsistent outcomes and missed opportunities for optimal harvest timing (Chen et al., 2023; Sun et al., 2023b).

Despite the progress in tobacco classification techniques, including the use of hyperspectral imaging and machine learning models, the practical adoption of these methods has been limited due to high equipment costs, complexity, and the need for specialized skills (Chen et al., 2021). These factors highlight a significant technical gap: the need for an accessible, non-destructive method for assessing tobacco leaf maturity in the field.

The advantage of object detection methods in maturity recognition lies in their ability to accurately localize and categorize each target within images, thereby enabling rapid and efficient identification and classification of agricultural products at various stages of ripeness. To meet the practical needs of farmers, our research proposes an innovative solution by leveraging advances in machine vision and object detection for real-time, accurate, and affordable field-based maturity detection of tobacco leaves. Specifically, we develop a lightweight YOLOv10-based algorithm integrated with Deformable Convolutional Networks (DCNv3) and an Enhanced Lightweight Attention (ELA) mechanism. Our approach emphasizes real-time processing, affordability, and accuracy, addressing the challenges in field conditions. The primary contributions of this study are as follows:

	We propose an advanced network structure combining YOLOv10 and DCNv3, enhancing feature aggregation and detection accuracy.

	We introduce the ELA attention mechanism to replace the PSA module in the YOLOv10 backbone, improving feature representation.

	We incorporate the ELA attention mechanism between the backbone and neck networks, further boosting overall model performance.

	We conduct comprehensive experiments analyzing the influence of various network architectures and attention mechanisms on detection efficacy, aiming to optimize the lightweight performance of the model.



The remainder of this paper is organized as follows: Section 2 presents a detailed literature review of recent advancements in tobacco leaf classification and detection technologies. Section 3 describes our proposed method, including the YOLOv10 architecture and the ELA attention mechanism. Section 4 provides the experimental setup and results. Finally, Section 5 concludes the paper and outlines potential directions for future work.




2 Related work

In recent years, significant advances have been made in the use of spectral data and machine learning for the detection and classification of tobacco leaves. These technologies have proven effective in determining the maturity and quality of leaves, though challenges such as high costs and complex implementations remain.

Spectral imaging has emerged as a powerful tool for the classification of agricultural products, including tobacco leaves. Early efforts, such as those by Long et al. (2019), utilized hyperspectral imaging combined with Savitzky-Golay smoothing filters and multiplicative scatter correction, achieving an impressive 99% classification accuracy of tobacco leaves and impurities. Similarly, Lu et al. (2023) refined the maturity assessment of flue-cured tobacco using Partial Least Squares Discriminant Analysis (PLS-DA), obtaining 99.32% accuracy on the validation set.

However, despite their high accuracy, these hyperspectral approaches face notable barriers, including the cost of spectrometers and their limited portability, making them less accessible to the average tobacco farmer. The reliance on specialized technical skills further complicates the wide adoption of such methods in practical farming scenarios (Beć et al., 2021; Hussain et al., 2018).

In response to the limitations of hyperspectral imaging, machine learning models have been increasingly applied to tobacco leaf classification and detection (Zhang et al., 2024). Li et al. (2021) designed a lightweight network based on MobileNetV2 for assessing tobacco leaf maturity. This model balanced accuracy with computational efficiency, making it more practical for real-world deployment. Similarly, Jia et al. (2023) proposed a model based on YOLOv7 and the LWC algorithm for detecting mixed tobacco strands. This model achieved a high detection accuracy (mAP@0.5 = 0.932) and fast processing speed, demonstrating the viability of real-time detection in agriculture. Xiong et al. (2024) introduced the DiffuCNN model, designed for detecting tobacco diseases in complex, low-resolution environments. This model incorporated a diffusion enhancement module and achieved a precision of 0.98 with a processing speed of 62 FPS, outperforming other models in accuracy and efficiency. Meanwhile, He et al. (2023) developed the FSWPNet model, combining pyramid feature fusion with shifted window self-attention for improved classification of tobacco leaves, achieving an average classification precision of 75.8%.

Deep learning models, particularly those based on convolutional neural networks (CNNs), have played a significant role in advancing agricultural object detection (Biradar and Hosalli, 2024; Kang and Chen, 2020; LeCun et al., 2015; Zhao et al., 2022). The You Only Look Once (YOLO) series (Hussain, 2023) and SSD (Liu et al., 2016) exemplify single-stage algorithms, which swiftly localize and classify objects in a unified forward pass, aligning with the needs of real-time detection tasks (Soviany and Ionescu, 2018). Conversely, two-stage algorithms, such as Faster R-CNN (Ren et al., 2016) and Sparse R-CNN (Sun et al., 2023a), initiate with a Region Proposal Network (RPN) to delineate potential object regions, proceeding with classifiers for nuanced classification and localization (Du et al., 2020; Zhang et al., 2023a, 2021). Single-stage algorithms excel in their rapid and efficient processing, well-suited for high-speed application contexts (He et al., 2024). The YOLO series of models, such as YOLOv5, YOLOv6, and YOLOv7, have demonstrated their suitability for real-time detection tasks due to their single-stage nature, which allows for rapid localization and classification (Hussain, 2023). Although two-stage algorithms like Faster R-CNN offer higher precision, single-stage models are better suited for real-time applications due to their speed and reduced computational requirements (Bacea and Oniga, 2023).

Despite these advances, most research has focused on post-harvest tobacco leaf classification, a destructive process that may lead to waste. Few studies have explored non-destructive, field-based methods for detecting tobacco leaf maturity. This represents a critical gap in the literature, as non-destructive methods would allow for more accurate and timely harvesting decisions, ultimately benefiting both the quality of the tobacco and the economic returns for farmers (Zhang et al., 2023b).

Furthermore, the integration of attention mechanisms and deformable convolutions has been limited in the context of tobacco leaf detection. Recent studies have demonstrated the potential of these techniques to improve feature extraction and enhance model performance (Cheng et al., 2024; Du et al., 2025; Qing et al., 2024), suggesting that their incorporation into lightweight models like YOLOv10 could address both the accuracy and efficiency needs of practical agricultural applications.

The existing literature highlights several successful applications of spectral imaging and deep learning in tobacco leaf classification. However, the technical challenges associated with hyperspectral imaging and the lack of non-destructive methods for assessing tobacco leaf maturity underscore the need for new approaches. Our research builds upon these prior studies by introducing a YOLOv10-based lightweight model that incorporates DCNv3 and the ELA attention mechanism, addressing both the accuracy and computational constraints of field-based tobacco leaf maturity detection.




3 Materials and methods



3.1 Data collection and dataset construction

The research utilized a dataset of tobacco leaf maturity images, which was established from the collection of leaves in the tobacco cultivation region of Luoning County, Luoyang City, within Henan Province. For the acquisition of field data, the study employed the rear camera of a Huawei Honor 20 smartphone, featuring a 32-megapixel high-resolution sensor. To minimize the impact of lighting conditions on the leaf maturity recognition, the data was collected exclusively during daylight and under clear skies. To further augment the complexity of the dataset and enhance the robustness of our model, we employed data augmentation techniques such as rotation, scaling, flipping, and the addition of noise. The tobacco leaves were classified into three distinct maturity stages: immature, mature, and over-mature. Immature leaves, characterized by their green color, are not harvest-ready. Mature leaves are identified as the optimal stage for harvesting without compromising the final product’s quality. Over-mature leaves, indicative of an excessive degree of maturity, are prone to significant losses during the harvesting and subsequent processing stages. In this study, the dataset was randomly partitioned following an 8:1:1 ratio into training, validation, and test sets, respectively. The training set consists of 1,752 images, the validation set contains 370 images, and the test set comprises 373 images. Representative images from the developed tobacco leaf maturity dataset are depicted in Figure 1.

[image: Three stages of leaf maturity shown side by side. The first column depicts immature leaves, which are bright green and smooth. The second column shows mature leaves with visible veins and darker green coloration. The third column presents over-mature leaves with a yellowish tint and uneven texture.]
Figure 1 | The sample image of the tobacco maturity dataset.




3.2 Constructing the tobacco maturity detection model



3.2.1 The basic network structure of YOLOv10n

YOLOv10, the state-of-the-art real-time, end-to-end object detection model from the research team at Tsinghua University (Wang et al., 2024), stands as the pinnacle of the YOLO series. It preserves the real-time detection performance while substantially increasing the accuracy and efficiency of detection through a series of innovative advancements. The principal network framework is elegantly portrayed in Figure 2.

[image: Diagram of a complex neural network architecture showing different modules. The structure includes a Backbone, Neck, and Head, with components like Conv, C2f, SCDown, SPPF, and PSA. Connections illustrate data flow, highlighting features such as bottleneck layers, concatenations, and operations like upsampling. Various blocks are color-coded to distinguish between sections and operations.]
Figure 2 | The structure of YOLOv10.

YOLOv10 has discarded the traditional Non-Maximum Suppression (NMS), facilitating an end-to-end training paradigm that forgoes NMS through a coherent dual-task assignment strategy, which in turn minimizes inference latency and expedites detection rates. The architecture of YOLOv10 is distinguished by its refined Backbone, Neck, and Head structures. The Backbone benefits from an advanced Cross Stage Partial Network that amplifies feature extraction prowess, while the Neck adeptly merges multi-scale features via the Path Aggregation Network layer. YOLOv10 introduces the pioneering One-to-Many Head to generate a spectrum of predictions during training, and the One-to-One Head to yield the most refined prediction during inference, all of which contribute to the model’s enhanced performance. In pursuit of superior mobile deployment, YOLOv10n has been designated as the foundational detection model for our endeavors.




3.2.2 C2f-DCNv3

DCNv3 is a sophisticated convolutional core operator that enriches the standard convolutional process with the introduction of learnable offsets, enabling the kernels to adjust their sampling positions and conform to the intricacies of the input feature maps. This adaptive capability significantly improves the network’s ability to discern the contours and shapes of targets within an image (Wang et al., 2023). Evolving from its predecessors, DCNv3 has undergone substantial refinements, offering enhanced performance and efficiency (Zhu et al., 2019). The procedural flow of the DCNv3 module is illustrated in Figure 3. The input feature map is partitioned into g groups, each subjected to a convolutional operation to generate a corresponding set of offsets and modulation factors for the kernels. The final output feature map is then meticulously constructed from these predictive elements. The mathematical expression defining the deformable convolution v3 is articulated in Equation 1.

[image: Diagram illustrating a deep learning architecture with input feature map leading to convolutional layers. Arrows indicate data flow, producing an offset field and intermediate representation. This configuration yields an output feature map.]
Figure 3 | The structure of the DCNv3 module.

[image: Mathematical equation illustrating a function \( y(p_0) \). The expression is a double summation starting at \( g = 1 \) and \( k = 1 \), up to \( G \) and \( K \), respectively. It involves terms \( w_g m_g x_g (p_0 + p_k + \Delta p_{gk}) \) and includes constants or variables such as \( p_0 \), \( p_k \), and \( \Delta p_{gk} \). The equation is labeled as equation (1).] 

Where, [image: Mathematical expression with a variable \( p_0 \) in a subscript.]  is the pixel under consideration, G represents the number of groups, and K is the overall count of sampling points. The matrix [image: The image shows the mathematical notation for \( w_g \), where the letter "w" is accompanied by a subscript "g".]  is defined over RC×C′, where the group dimension is given by [image: Mathematical equation showing "C prime equals C divided by G".] . The modulation scalar [image: The image shows the mathematical notation "m" with subscript "gk".]  for the k-th sampling point in the g-th group is subjected to normalization via a softmax function. The input feature map is denoted by [image: Mathematical expression depicting "x" with a subscript "g".]  in the space RC×H×W. The term [image: The image shows a mathematical expression with the letter "p" followed by the subscript "k".]  corresponds to the k-th position sampled by the network, and [image: Δp₍gk₎ in math notation.]  is the displacement related to the k-th grid sampling location.

In this study, the DCNv3 module is employed to replace the convolutions within the C2f module, capturing spatial and channel information of the targets more effectively during the feature extraction phase, thereby enhancing the performance of the C2f module. The structure of the improved C2f-DCNv3 module is shown in Figure 4.

[image: Diagram of DCNv3-Bottleneck and DCNv3-C2f architectures. The DCNv3-Bottleneck section has two DCNv3 modules followed by an addition operator. The DCNv3-C2f section starts with a convolution layer, splits into multiple DCNv3-Bottleneck modules, and uses a concatenation operator before a final convolution layer. Inputs and outputs are labeled on each section.]
Figure 4 | The structure of the C2f-DCNv3 module.




3.2.3 Efficient local attention

The Efficient Local Attention (ELA) mechanism represents a cutting-edge innovation in attention mechanisms, crafted to escalate the efficacy and exactitude of feature extraction within the purview of deep learning models (Xu and Wan, 2024). Across the disciplines of Natural Language Processing and Computer Vision, attention mechanisms have become instrumental in advancing model capabilities. Despite the substantial computational demands and memory footprints of conventional global attention mechanisms, especially with extensive datasets, ELA offers a sophisticated solution. It harnesses self-attention on localized features, targeting discrete regions within the input feature maps, thereby substantially curtailing the computational and storage requisites.

The essence of ELA’s superiority is its localized approach, as illustrated in Figure 5. By partitioning the input feature map into an array of compact windows and meticulously applying self-attention within the confines of each, ELA narrows its focus to local interactions, considerably attenuating the computational load. Moreover, ELA refines the computational expenditure by leveraging sparse sampling points to approximate the interrelatedness of local features, all without a detrimental impact on performance.

[image: Flowchart illustrating a neural network operation. The process starts with a "Feature" input of dimensions C×H×W. Two branches perform "X Avg Pool" and "Y Avg Pool" operations followed by "Conv1d", "GroupNorm", and "Sigmoid". Both branches merge back to produce an "Output" of dimensions C×H×W.]
Figure 5 | The structure of the ELA attention mechanism.

This research has implemented the ELA attention mechanism in place of the PSA attention mechanism within the YOLOv10n framework, aiming to bolster the model’s efficacy. Additionally, the integration of the ELA attention mechanism at the nexus of the backbone and neck network is intended to augment the model’s overall performance.




3.2.4 Tobacco leaf detection network architecture

In this research, we have engineered a tobacco leaf maturity detection model predicated on the YOLOv10n framework. To amplify the model’s efficacy, we have innovatively combined the DCNv3 with the C2f module, resulting in an enhanced C2f_DCNv3 module. Moreover, we have introduced the ELA attention mechanism as a substitute for the PSA attention mechanism originally present in YOLOv10n. In addition to these modifications, we have strategically integrated the ELA attention mechanism at the interface between the backbone and the neck networks to further augment the model’s performance. The schematic representation of the tobacco leaf maturity detection network crafted in this study is illustrated in Figure 6.

[image: Flowchart depicting a neural network architecture with sections labeled Backbone, Neck, and Head. The Backbone includes processes like Conv, C2f, SCDown, and SPPF. The Neck involves Concat, Upsample, C2f_DCNV3, and SCDown. The Head connects through one2one and one2many layers. Arrows indicate data flow between components.]
Figure 6 | The structure of tobacco maturity network detection.





3.3 Evaluation indicator

The present investigation applies Precision (P), Recall (R), mAP50, and mAP50-95 as the evaluative metrics for the tobacco leaf maturity detection model. Precision delineates the proportion of tobacco leaves that are accurately classified by the model into a specific maturity stage, signifying the model’s trustworthiness in predicting particular maturity levels. Recall measures the model’s effectiveness in identifying all instances of a given maturity stage, representing the ratio of correctly detected leaves to the total actual instances. mAP50 emerges as a holistic benchmark in the evaluation of tobacco leaf maturity, encapsulating the model’s aggregate proficiency in distinguishing among various stages. It is calculated by averaging the AP values across stages, thereby assessing the model’s comprehensive accuracy in classifying tobacco leaf maturity. mAP50-95 expands the IoU threshold scope, pivotal for nuanced visual feature differentiation across maturity stages. This metric furnishes an encompassing view of the model’s efficacy across a spectrum of matching stringencies. The respective computational formulas are articulated in Equations 2-5.

[image: Precision formula shown as Precision equals true positives divided by the sum of true positives and false positives. Labeled as equation two.] 

[image: The image shows a mathematical formula for recall in machine learning: Recall equals the number of true positives (TP) divided by the sum of true positives and false negatives (TP + FN).] 

[image: The formula for mean Average Precision at 50, denoted as mAP subscript 50, equals one over N times the summation from i equals one to N of AP subscript i. It is labeled as equation four.] 

[image: mAP subscript fifty to ninety-five equals one divided by N subscript t equals one multiplied by open parenthesis one divided by nine close parenthesis summation from j equals one to nine of AP subscript ij.] 

Where, TP is the tally of veracious positive instances, FP the tally of fallacious positive instances, and FN the tally of fallacious negative instances. N encapsulates the aggregate number of categories. [image: The image shows the notation "AP" with a subscript "t", commonly used to represent something specific in a mathematical or scientific context, such as a point or variable.]  is the mean precision for the i-th category at an IoU threshold of precisely 0.5. [image: Text showing the expression "AP" with subscripts "i" and "j".]  pertains to the mean precision for the i-th category at an IoU threshold incrementing from 0.5 by increments of 0.05 for each successive j, ranging up to 0.95. The term ‘91’ embodies the methodical computation of AP across this continuum, spaced into 91 uniform intervals for a meticulous assessment of AP.





4 Results and discussion



4.1 Experimental environment

The experimental procedures described herein were undertaken within a Windows 11 environment, leveraging the PyTorch deep learning framework at version 2.0.1, with Python 3.9 serving as the programming language of choice and PyCharm acting as the IDE for coding endeavors. The computational experiments were powered by an Intel Core i5-13500h CPU, complemented by 16 GB of system memory. The GPU designated for this research is the NVIDIA GeForce RTX 4050, endowed with 6 GB of graphics memory and 2560 CUDA cores for parallel processing capabilities. To ensure the reliability of our model, we adopted a consistent set of hyperparameters for all training runs. The hyperparameters for model training were sourced from https://github.com/THU-MIG/yolov10/blob/main/ultralytics/cfg/default.yaml. The specific values are summarized in the Table 1.

Table 1 | Model training hyperparameter values.


[image: Table listing hyperparameters with their values and descriptions. Rows include: lr0, 0.01, initial learning rate; lrf, 0.01, final learning rate; momentum, 0.937, SGD momentum or Adam beta1; weight_decay, 0.0005, optimizer weight decay; warmup_epochs, 3, warmup epochs; warmup_momentum, 0.8, warmup initial momentum; warmup_bias_lr, 0.1, warmup initial bias learning rate.]



4.2 Evaluation of the C2f-DCNv3 integration at distinct phases

In order to better evaluate the impact of C2f-DCNv3 on different parts of the model, this study utilizes C2f-DCNv3 to replace the C2f module in the backbone network and necking network, respectively, in order to enhance the performance of the model. The outcomes from integrating C2f-DCNv3 at these distinct phases are delineated in Table 2.

Table 2 | The accuracy of the model for different stages of applying C2f-DCnv3.


[image: Table comparing performance metrics of different models including YOLOv10n, YOLOv10n+C2f-DCNv3(backbone), YOLOv10n+C2f-DCNv3(head), and YOLOv10n+C2f-DCNv3. Metrics listed are P, R, mAP50, and mAP50-95 for categories: All, Over-Mature, Mature, and Immature. Values vary across models, with high precision and recall scores indicating strong model performance.]
As indicated in Table 2, the overall model accuracy improved from 0.939 to 0.970, marking a 3.3% increase, when the C2f module in the backbone network was replaced in isolation. The mAP50 metric also saw a slight rise from 0.984 to 0.991, amounting to a 0.7% increase. Notably, within the “Immature” category, there was a significant leap in accuracy, with mAP50 and mAP50-95 experiencing boosts of 1.5% and 3.3%, respectively. Following the replacement of the neck network, the overall precision was further enhanced to 0.973, a 3.7% increase. The mAP50 metric mirrored the initial rise, while the mAP50-95 improved from 0.962 to 0.972, reflecting a 1.0% increase. Conversely, replacing the C2f modules in both the backbone and neck networks concurrently resulted in an overall precision of 0.971, yet the mAP50-95 dipped slightly to 0.958.

The incorporation of the C2f-DCNv3 module has notably enhanced the YOLOv10 model’s performance, particularly within the neck network structure. The C2f-DCNv3’s design amalgamates the profound feature extraction capabilities of Convolutional Neural Networks (CNNs) with the adaptability of Deformable Convolutional Networks (DCNs), thus enabling the model to adeptly adjust to the variability in target shapes and spatial configurations. Acting as a conduit between the backbone and detection head, the neck network’s efficacy is pivotal to the detection precision. Replacing the C2f module with C2f-DCNv3 in the neck network has bolstered the model’s target recognition by enriching feature representation. However, the decline in mAP50-95 when both networks are updated with C2f-DCNv3 could be attributed to potential issues. It may stem from overfitting due to heightened model complexity, especially with limited data. Alternatively, suboptimal feature integration strategies between the backbone and neck networks could lead to information loss or redundancy.

In this research, the strategy of replacing the C2f module in the neck network with C2f-DCNv3 has been selected from the outcomes of employing C2f-DCNv3 at various stages, as it demonstrated the most substantial benefit in enhancing model performance. Consequently, the C2f-DCNv3 module is chosen to replace the C2f module in the neck network to augment the model’s capabilities.




4.3 Model results with attention mechanisms added at different stages

In this research, we have made significant improvements to the YOLOv10n object detection model by incorporating the ELA (Efficient Layer-wise Attention) module to enhance the precision and efficiency of tobacco leaf maturation identification. Initially, we substituted the PSA (Pointwise Spatial Attention) mechanism in YOLOv10n with the ELA, creating the YOLOv10n+ELA1 model. Subsequently, we introduced an additional ELA module at the juncture of the backbone and neck networks within the YOLOv10n+ELA model to potentially elevate the model’s performance further. The precision of models with attention mechanisms modified at various stages is detailed in Table 3.

Table 3 | Accuracy of the improved model for different stages of the attention mechanism.


[image: A table comparing performance metrics of three models: YOLOv10n, YOLOv10n+ELA1, and YOLOv10n+ELA. Metrics include precision (P), recall (R), mAP50, and mAP50-95, measured for categories such as All, Over-Mature, Mature, and Immature. YOLOv10n+ELA shows the highest precision and recall across most categories. Values range from 0.905 to 0.995 for precision and 0.949 to 0.998 for recall. mAP50 values range from 0.975 to 0.995, and mAP50-95 values range from 0.946 to 0.972.]
From Table 3, it is clear that the enhanced model has shown significant performance improvements across all maturity categories. Specifically, for the “Over-Mature” category, the YOLOv10n+ELA1 model’s accuracy has increased from 0.905 to 0.95, and the mAP50 has improved from 0.975 to 0.983. In the “Immature” category, both accuracy and mAP50 have reached 0.991 and 0.995, respectively, demonstrating an exceptionally high recognition rate. Moreover, the YOLOv10n+ELA model has achieved an overall precision and mAP50 of 0.972 and 0.992 for the “All” categories, which is a 3.3% and 0.8% increase compared to the original YOLOv10n model.

The incorporation of the ELA module has notably bolstered the model’s capability to capture features indicative of tobacco leaf maturity. The ELA’s design, leveraging inter-layer attention mechanisms, effectively enhances the interconnectivity of feature maps, thus improving the model’s differentiation between tobacco leaves of varying maturities. Additionally, by incorporating ELA at the interface of the backbone and neck networks, we have further strengthened the conveyance and integration of features, enabling the model to sustain high recognition accuracy even when dealing with images of tobacco leaves against complex backgrounds and under diverse lighting conditions.

However, we have also noted a decrease in mAP50-95 for the “Over-Mature” category in the YOLOv10n+ELA1 model compared to the original model. This may indicate that the model’s ability to recognize extreme cases of tobacco leaf maturity has been somewhat compromised during the enhancement process. This could be attributed to the introduction of the attention mechanism, which may have altered the distribution of features, potentially diminishing the model’s generalization capabilities in certain scenarios.




4.4 Enhanced YOLOv10 model results through multi-stage fusion improvements

In this research, a comprehensive set of enhancements has been strategically applied to substantially elevate the performance of the YOLOv10 model. These improvements encompass the innovative replacement of the C2f module with the C2f-DCNv3 within the neck structure, alongside the sophisticated transition from the PSA (Pointwise Spatial Attention) mechanism to the ELA (Efficient Local Attention) mechanism within the backbone network. The seamless integration of an additional ELA attention mechanism at the interface of the backbone and neck networks has culminated in the development of a model that excels in the sophisticated recognition of tobacco leaf maturity. The model accuracy of the multi-stage improved fusion is shown in Table 4.

Table 4 | Model accuracy for multi-stage improved fusion.


[image: Table comparing performance metrics between YOLOv10n and another model. Metrics include Precision (P), Recall (R), mAP50, and mAP50-95 across categories: All, Over-Mature, Mature, and Immature. YOLOv10n scores range from 0.905 to 0.995, while the other model's scores range from 0.97 to 0.995, indicating generally higher values for the latter.]
As demonstrated in Table 4, the enhanced model from this study surpasses the original YOLOv10n model in multiple indicators. In general, the precision (P) of our model across all categories has seen a rise from 0.939 to 0.973, which is a 3.4% increase; the recall (R) has also seen an improvement, increasing from 0.968 to 0.984, a 1.6% increase. The Mean Average Precision at 50% intersection over union (mAP50) has increased from 0.984 to 0.994, a 1.0% improvement; and the mAP50-95 has also shown an increase, moving from 0.962 to 0.973, a 1.1% increase.

In the granularity of specific categories, our model exhibits considerable improvement within the “Over-Mature” classification, with accuracy escalating from 0.905 to 0.973, reflecting a 6.8% enhancement; the recall rate has also witnessed an uptick from 0.949 to 0.969, a 2.0% gain; mAP50 has seen a boost from 0.975 to 0.991, a 1.6% advancement; and mAP50-95 has climbed from 0.946 to 0.970, a 2.4% escalation. Within the “Mature” classification, accuracy has surged from 0.923 to 0.970, amounting to a 4.7% enhancement; the recall rate has spiked from 0.966 to 0.992, a 2.6% augmentation; mAP50 has risen from 0.984 to 0.995, a 1.1% increment; and mAP50-95 has inched up from 0.972 to 0.981, a 0.9% increase. For the “Immature” classification, accuracy has slightly edged from 0.991 to 0.975; the recall rate has marginally improved from 0.989 to 0.991, a 0.2% increment; mAP50 has sustained its level at 0.995; and mAP50-95 has maintained its steadiness at 0.968.

The ELA demonstrates excellent performance in terms of computational efficiency and the enhancement of model capabilities. By adeptly capturing local features and providing advanced feature representation, ELA markedly boosts the model’s precision and generalization ability. Its primary strengths are the efficient capture of local features, optimization of channel dimensions, and a simplified structure, circumventing the redundancy and increased computational complexity inherent in global feature extraction. These attributes render ELA especially fitting for compact models and real-time applications, thus augmenting overall computational efficiency.

The C2f-DCNv3 module, a fusion of DCNv3 and the C2f module, strengthens the model’s adaptability to varied shape changes and spatial configurations. It leverages the adaptability of DCNv3 and the profound feature extraction capabilities of convolutional neural networks to further refine the model’s detection precision and robustness. The integration of the C2f-DCNv3 module into the neck network facilitates superior integration of multi-scale features, enhancing the accuracy of target recognition. Additionally, employing the ELA attention mechanism in conjunction with the C2f-DCNv3 module not only enhances detection precision but also bolsters the model’s robustness and generalization capabilities.




4.5 The results of the model comparison experiment

To better demonstrate the capabilities of our model, this study compared it against four existing YOLO series models (specifically, YOLOv5n, YOLOv6n, YOLOv8n, and YOLOv10n). The comparative accuracy of these models is detailed in Table 5. The results of tobacco maturity detection for different models are shown in Figure 7.

Table 5 | The experimental results of different models.


[image: A table comparing the performance of different YOLO models: YOLOv5n, YOLOv6n, YOLOv8n, YOLOv10n, and "ours." Metrics include precision (P), recall (R), mean average precision (mAP50), and mAP50-95, evaluated on categories: All, Over-Mature, Mature, and Immature. "Ours" shows higher performance with a precision of 0.973, recall of 0.984, and mAP50 of 0.994 for all categories. Other models have varying scores, with YOLOv8n and YOLOv10n showing close performance.]
[image: Five image grids titled "ours," "YOLOv5n," "YOLOv6n," "YOLOv8n," and "YOLOv10n" display leaves with model-generated labels. Each grid contains leaf images with varying detection boxes and confidence scores, illustrating different model results.]
Figure 7 | Tobacco maturity detection results.

As depicted in Table 5, our model exhibited superior performance in the task of recognizing the maturity of tobacco leaves. Specifically, it achieved a P of 0.973, a R of 0.984, and mAP50 and mAP50-95 of 0.994 and 0.973, respectively, indicating exceptionally high detection accuracy. Within the subcategories representing different stages of maturity, our model continued to excel, maintaining mAP50-95 values above 0.968 for Over-Mature, Mature, and Immature categories, thereby highlighting the model’s high accuracy and robustness in identifying tobacco leaves at various stages of maturity.

In the horizontal analysis of the tobacco leaf maturity recognition models, our model demonstrated significant superiority across all four key performance metrics for all categories. For instance, when compared to the YOLOv10n model, our model showed improvements of 3.4% in precision, 1.6% in recall, 0.10% in mAP50, and 1.1% in mAP50-95. The performance gains were even more pronounced when compared to the YOLOv5n model, with increases of 5.4%, 1.8%, 1.1%, and 4.0% in these metrics, respectively. Similarly, when compared to the YOLOv6n model, our model’s improvements were 4.5% in precision, 7.5% in recall, 3.2% in mAP50, and 4.2% in mAP50-95. Although the YOLOv5n and YOLOv6n models showed good performance in certain metrics—YOLOv5n, for example, achieved an mAP50 of 0.995 for the immature category—our model overall exhibited a more outstanding comprehensive performance across all categories. While the YOLOv8n model was comparable to ours in some subcategories, such as a mAP50-95 of 0.945 for the Over-Mature category, our model showed higher consistency and stability across all maturity categories.

To visually represent the performance of the models, a confusion matrix was employed to directly illustrate the detection capabilities. As shown in Figure 8, our model had the fewest misclassifications across the three maturity stages, followed by YOLOv10n, which had a lower total number of misclassifications. The YOLOv6n model performed the poorest, with the highest total number of misclassifications across all categories.

[image: Five confusion matrices compare the performance of different models: "ours," YOLOv5n, YOLOv6n, YOLOv8n, YOLOv10n. Each matrix evaluates predictions for categories: Over-Mature, Mature, Immature, and Background. Color intensity indicates prediction accuracy, with darker shades representing higher accuracy. The numbers represent correct versus incorrect predictions across categories.]
Figure 8 | The confusion matrix of the detection results of different models.

To provide a more comprehensive evaluation of the model, this study employs the PR curve to assess the overall performance of the model in terms of recall and precision. The PR curves for different models are illustrated in Figure 9.

[image: Five line graphs show precision-recall curves for different models: "ours," "YOLOv5n," "YOLOv6n," "YOLOv8n," and "YOLOv10n." Each graph plots curves for "Immature," "Mature," and "Over Mature" classes with various performance scores. The "ours" model reaches a highest mAP50 of 0.998, while YOLO models range from 0.962 to 0.984.]
Figure 9 | Precision-Recall graphs for different models.

As shown in Figure 9, the ours model achieves a mAP50 of 0.994 at all categories, significantly surpassing other models. Specifically, YOLOv10n reaches a mAP50 of 0.984, while YOLOv5n and YOLOv8n achieve a mAP50 of 0.983 and 0.962, respectively. This indicates that the ours model has a distinct advantage in precision and recall, particularly maintaining a high level of precision in the high-recall region. Furthermore, the ours model also demonstrates outstanding performance in specific categories, achieving a mAP of 0.942 in the Over-Mature category, compared to YOLOv10n’s 0.975, suggesting that the ours model is slightly less effective in this category. However, in the immature and Over-Mature categories, the ours model achieves an mAP of 0.995 at a threshold of 0.5, showcasing its robust performance in these areas. Overall, the ours model exhibits excellent performance across multiple evaluation metrics, particularly with its overall performance of 0.994 mAP at 0.5, which is markedly higher than that of other models, underscoring its exceptional capabilities and potential in object detection tasks.

In conclusion, our model offers an efficient and precise solution in the domain of tobacco leaf maturity recognition. Its exceptional performance in key performance metrics, coupled with its clear advantages over existing models, underscores its significant potential for practical applications in agriculture. Future efforts will focus on further optimizing the model to minimize computational resource consumption and exploring its applicability in a broader range of agricultural monitoring tasks.





5 Conclusion

This research successfully developed a lightweight and efficient model for detecting the maturity of tobacco leaves by integrating DCNv3 to enhance the neck network of the YOLOv10 algorithm. We managed to optimize the model’s architecture without sacrificing detection precision, resulting in a reduction of parameter count and computational complexity. The experimental outcomes indicate that the application of the C2f-DCNv3 module in the backbone network elevated the overall precision from 0.939 to 0.970, and the mAP50 score from 0.984 to 0.991. Subsequent integration of the C2f-DCNv3 in the neck network achieved an overall precision of 0.973, with the mAP50 score sustained at 0.991, and a notable improvement in mAP50-95 from 0.962 to 0.972. Moreover, the incorporation of the ELA attention mechanism led to a significant boost in precision and mAP50 for the “Over-Mature” category, and an overall enhancement in the model’s performance across “All” categories, with accuracy and mAP50 scores increasing to 0.972 and 0.992, respectively. This study offers the tobacco industry a potent detection tool that can enhance the precision and efficiency of tobacco leaf harvesting, which is instrumental for improving tobacco leaf quality and the economic returns of tobacco farmers. Future endeavors will concentrate on further refining the model’s architecture to bolster its generalization capabilities and on investigating its practical application in field settings to ensure wider real-world utility and contribute to the sustainable growth of the tobacco industry.
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Tomato (Solanum lycopersicum L.) cultivation is crucial globally due to its nutritional and economic value. However, the crop faces significant threats from various pests, including Tuta absoluta, Helicoverpa armigera, and Leptinotarsa decemlineata, among others. These pests not only reduce yield but also increase production costs due to the heavy reliance on pesticides. Traditional pest detection methods are labor-intensive and prone to errors, necessitating the exploration of advanced techniques. This study aims to enhance pest detection in tomato cultivation using AI-based detection and language models. Specifically, it integrates YOLOv8 for detection and segmentation tasks and ChatGPT-4 for generating detailed, actionable insights on the detected pests. YOLOv8 was chosen for its superior performance in agricultural pest detection, capable of processing large volumes of data in real-time with high accuracy. The methodology involved training the YOLOv8 model with images of various pests and plant damage. The model achieved a precision of 98.91%, recall of 98.98%, mAP50 of 98.75%, and mAP50-95 of 97.72% for detection tasks. For segmentation tasks, precision was 97.47%, recall 98.81%, mAP50 99.38%, and mAP50-95 95.99%. These metrics demonstrate significant improvements over traditional methods, indicating the model’s effectiveness. The integration of ChatGPT-4 further enhances the system by providing detailed explanations and recommendations based on detected pests. This approach facilitates real-time expert consultation, making pest management accessible to untrained producers, especially in remote areas. The study’s results underscore the potential of combining AI-based detection and language models to revolutionize agricultural practices. Future research should focus on training these models with domain-specific data to improve accuracy and reliability. Additionally, addressing the computational limitations of personal devices will be crucial for broader adoption. This integration promises to democratize information access, promoting a more resilient, informed, and environmentally conscious approach to farming.
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Introduction

Tomato (Solanum lycopersicum L.) is a globally significant vegetable crop, essential for both nutritional value and economic stability. However, tomato cultivation faces substantial threats from various pests. Key pests include Tuta absoluta (Lepidoptera: Gelechiidae), which has a significant socioeconomic impact in Eastern Africa due to its widespread distribution and increased costs and pesticide use among farmers (Pereyra and Sánchez, 2006; Shaltiel-Harpaz et al., 2015; Aigbedion-Atalor et al., 2019). Helicoverpa armigera (Lepidoptera: Noctuidae) is another critical pest, highlighting the low adoption of biological control measures and underscoring the need for improved farmer knowledge and extension programs (Balipoor and Ommani, 2014). Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and Bemisia tabaci (Hemiptera: Aleyrodidae) also pose substantial threats. Myzus persicae (Hemiptera: Aphididae), along with Dolycoris baccarum (Hemiptera: Pentatomidae), Phyllotreta spp. (Coleoptera: Chrysomelidae), and Nezara viridula (Hemiptera: Pentatomidae), further complicate tomato cultivation. Additionally, Tetranychus urticae (Trombidiformes: Tetranychidae) is a significant allergen, particularly among greenhouse workers and asthmatics living near orchards (Jee et al., 2000). Frankliniella occidentalis (Thysanoptera: Thripidae) is another pest impacting tomato crops. Insecticide use patterns among tomato farmers in Ghana reveal a mix of recommended and non-recommended, persistent insecticides, highlighting the need for better regulation and education (Danquah et al., 2010).

Efficient and timely identification of pests is essential for maintaining crop health and optimizing yield. Traditionally, this process has relied heavily on human observation, which is labor-intensive, time-consuming, and susceptible to errors (Danquah et al., 2010). Artificial Intelligence (AI) models, which use algorithms and computational power to simulate human intelligence, offer a promising alternative. There are various types of AI models for data processing: some models process images by converting them into matrices (detection models), while others process text by converting characters or tokens into vectors (language models) (Vaswani et al., 2017). Detection models, such as Mask R-CNN, Faster R-CNN, SSD, and YOLO (You Only Look Once), provide rapid and accurate pest detection, significantly reducing the need for manual labor and enhancing precision. They are capable of processing large volumes of data in real-time, thereby greatly improving agricultural efficiency and sustainability (Liu and Wang, 2020; Swinburne et al., 2022; Jin et al., 2022; Wen et al., 2022; Rajamohanan and Latha, 2023).

YOLO excels due to its real-time processing, high detection accuracy, and versatility in both detection and segmentation tasks. Unlike traditional AI-based pest management systems, this study introduces a novel integration of real-time detection with YOLOv8 and language-based decision support via ChatGPT-4, offering both precision in pest detection and actionable, context-specific recommendations for farmers. This combination allows not only for accurate detection but also for informed decision-making, making the system accessible and practical for real-world agricultural applications. By reducing the reliance on manual expertise and providing timely insights, this system improves both the efficiency and sustainability of pest management practices. It is particularly effective for detecting small, densely packed objects like agricultural pests, making it ideal for real-time applications (Redmon et al., 2016). Its adaptability to various scales and high mean Average Precision (mAP) scores further justify its use in training and detecting agricultural pests, effectively managing multiple pest species with diverse morphologies (Yang et al., 2020; Hashimoto et al., 2020). These features make YOLO an excellent choice for pest detection and segmentation in this study.

However, while detection models like YOLO have the potential to analyze pests more accurately and quickly than humans, they lack the capability to interpret the findings and provide actionable recommendations to farmers (Swinburne et al., 2022; Jin et al., 2022). This gap, which requires knowledge and experience, can be filled by language models. Language models, like ChatGPT, are a type of AI designed to understand and generate human language. They process data by converting characters into vectors, which allows the model to recognize and predict patterns in text (Vaswani et al., 2017). ChatGPT-4, developed by OpenAI, was trained on approximately 1.3 trillion tokens, providing it with a vast knowledge base (Rao et al., 2023). Therefore, while YOLO is used for accurate and real-time pest detection, ChatGPT was chosen as the language model for this study due to its extensive training and ability to generate relevant, insightful responses to interpret the detected tomato pests.

Accurate and real-time identification of agricultural pests necessitates education, knowledge, and experience (Swinburne et al., 2022; Danquah et al., 2010). Once pests are detected, it is essential to have detailed information about them to devise effective management strategies (Balipoor and Ommani, 2014; Aigbedion-Atalor et al., 2019). Accessing this information can be time-consuming and costly. However, language models can provide detailed commentary on detected pests in agricultural applications, thus informing farmers who may lack expertise. By facilitating access to accurate information and analyzing large datasets more quickly than humans, these models can save time and costs while enhancing the quality of education. In this study, detection models and language models are integrated through an API (Application Programming Interface, a set of rules and protocols for building and interacting with software applications, allowing different systems to communicate and share data) to analyze and interpret pest data, providing a valuable guide for future similar research endeavors.





Materials and methods




Definition of the research area and dataset

Turkey is one of the top five tomato-producing countries in the world. About 10% of Turkey’s tomato production occurs in Bursa, where tomatoes were the most produced vegetable in 2020, with 13.2 million tons (Kumbasaroğlu et al., 2021). This study was conducted from March 2022 to September 2023 in Bakirköy village, located in the Karacabey district of Bursa province in the northwest of Turkey, lying between latitudes 40°7’17.53”N and 40°10’40.36”N and longitudes 28°21’14.12”E and 28°26’2.37”E. Field campaigns were conducted from June to July 2023. The site covers an area of 47.16 km², and a total of 96 tomato fields were investigated. The identification of pests observed in the field photographs was carried out according to the morphological diagnostic keys available in the literature (Blackman and Eastop, 2000; Hoebeke and Carter, 2003; Desneux et al., 2010; Ashbrook et al., 2022; Li et al., 2023).

Detection models excel in identifying the presence and location of pests quickly and efficiently (Barbedo, 2016). However, segmentation models are more suitable when detailed morphological features or comprehensive damage maps are necessary (Arockia et al., 2023). The YOLOv8 model integrates both detection and segmentation capabilities. In this study, the yolov8s.pt model was employed for detection tasks, while the yolov8n-seg.pt model was utilized for segmentation tasks. The images used for detection and segmentation in this study encompass various pests and damage types affecting tomato crops. These include Dolycoris baccarum (Hemiptera: Pentatomidae), Phyllotreta spp. (Coleoptera: Chrysomelidae), Nezara viridula (Hemiptera: Pentatomidae), Myzus persicae (Hemiptera: Aphididae), Bemisia tabaci (Hemiptera: Aleyrodidae), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), Tuta absoluta (Lepidoptera: Gelechiidae), Helicoverpa armigera (Lepidoptera: Noctuidae), Liriomyza bryoniae (Diptera: Agromyzidae) damage, Frankliniella occidentalis (Thysanoptera: Thripidae) damage, and Tetranychus urticae (Trombidiformes: Tetranychidae) damage. These pests and damage types were systematically photographed and used to train the YOLOv8 model for accurate detection and segmentation tasks, aiming to enhance the model’s ability to identify and manage multiple pest species effectively.

From March 2023 to September 2024, high-resolution images of tomato plant diseases and pests were captured using a Canon EOS 700D camera with a resolution of 768 × 1024 pixels. To ensure consistency in image quality, all photographs were taken using cameras set to identical resolution settings. Images were taken at distances of 1 meter and 0.2 meters from the leaves, from various angles (Yong et al., 2020). A comprehensive dataset of over 1,000 images was compiled for each pest, documenting different angles and features. These images were then divided into three subsets: 80% for training, 18% for validation, and 2% for testing, as outlined in Table 1.

Table 1 | Distribution of the image dataset for model training.


[image: Table showing image data distribution for detection and segmentation methods. Detection includes 7,000 pest adult, 2,000 pest nymph, and 2,000 pest larva images, totaling 11,000. Segmentation includes 5,000 tomato leaf and 4,000 tomato fruit images, totaling 9,000. Each method has percentages for training (80%), validation (18%), and test (2%) sets.]




Data preprocessing techniques and applications

Data preprocessing refers to a series of steps undertaken to prepare raw data for analysis or modeling. It is commonly used in data mining, machine learning, statistics, and data analysis to address data deficiencies, noise, and inconsistencies, thereby enabling more effective analysis (Şahin and Topal, 2016; Atalan et al., 2022; Baştürk and Şahin, 2022). For image processing models, preprocessing the dataset involves three steps: image labeling, resizing, and augmentation. Augmentation provides a large amount of training data to learn features and achieve accurate classification on unseen data, preventing issues like overfitting and poor generalization (Redmon and Farhadi, 2018; Rubanga et al., 2020; Güven and Şahin, 2022).

In this study, Python (version 3.11.8) was used for data preprocessing due to its extensive library ecosystem. To enhance the quality of model training, the original images taken under field conditions were augmented using the OpenCV library. During augmentation, transformations were applied to each image, including rotation, cropping, flipping, adding noise, adjusting lighting, and zooming out (Shorten and Khoshgoftaar, 2019). All images were resized to 600 × 600 pixels as required for model training (He et al., 2017). The analyses were conducted in the Spyder IDE, part of the Anaconda distribution, which offers various libraries for scientific computing and data science (Şahin et al., 2020; Yılmaz et al., 2021). Prior to any augmentation, the dataset was divided into training, validation, and test sets (80%, 18%, and 2%, respectively) to ensure that no data leakage occurred during the augmentation process. Augmentation was only applied to the training set to avoid introducing artificial examples into the validation and test sets, which could result in overly optimistic performance estimates (Shorten & Khoshgoftaar, 2019). Specifically, transformations such as rotation, cropping, flipping, adding noise, adjusting lighting, and zooming out were applied only to the training data after the initial dataset split. Labeling was performed using the LabelMe tool (https://github.com/wkentaro/labelme), with two main approaches: pixel-based segmentation for precise boundary definitions and rectangular bounding for approximate location and size.





Model setup and training

YOLOv8 was selected for this study due to its superior speed and efficiency compared to slower yet more accurate models like Faster R-CNN, making it particularly well-suited for real-time agricultural pest detection, where timely decisions are essential for effective pest management (Tang et al., 2021). The YOLOv8 models were trained using the ultralytics library for model loading and training, and the google.colab library for accessing the dataset via Google Drive. Training parameters included over 100,000 epochs (with patience set to 50 to prevent overfitting), a batch size of 16, and an image size of 640 (Table 2). The model’s hyperparameters, including the number of epochs, batch size, and learning rate, were optimized through an iterative process. Early stopping (patience) was employed to prevent overfitting, while cross-validation was used to fine-tune the learning rate and batch size. The optimal values for these parameters were selected based on the model’s performance on the validation set, ensuring robustness and preventing overfitting. Training was conducted on Google Colaboratory, utilizing an Intel Xeon CPU, 12.68 GB RAM, and a Tesla K80 GPU. Both detection and segmentation models were trained in Python on a custom dataset. Instance segmentation models were chosen to precisely identify damage caused by multiple pest species on tomato plants, which is crucial for accurately identifying specific damages on leaves and fruits (Mirhaji et al., 2021; Zhang et al., 2023a, 2023). The YOLO framework used in this study is illustrated in Figure 1.

Table 2 | Key parameters were set in Google Colab for the training of the Ultralytics YOLOv8.


[image: Table displaying training configurations for segmentation and detection tasks. Both tasks use the "train" mode with one thousand epochs, a batch size of sixteen, image size of six hundred forty, and patience of fifty. The models used are "yolov8s.pt" for segmentation and "yolov8n-seg.pt" for detection.]
[image: Diagram illustrating a plant pest detection model. The process starts with an input image of leaves, progresses through a backbone with stacked layers, moves into a neck for further processing, and ends with predictions showing images with boxes highlighting different pests. Detected classes include Bemisia tabaci, Leptinotarsa decemlineata, Tuta absoluta, Frankliniella occidentalis, and Tetranychus urticae. The output features labeled images with pest identification and confidence scores, such as "Bemisia tabaci" with a score of 0.80 and "Aphid" with a score of 0.71.]
Figure 1 | YOLO Framework used in this study. Input: Raw images fed into the model. Backbone: Extracts features from images. Neck: Combines and enhances features. Prediction: Predicts pests’ presence and location. Output: Provides detection and segmentation results.





Model evaluation methodology and testing process

The model’s generalization capability was assessed using a pre-allocated dataset: 80% for training, 18% for validation, and 2% for testing. Key performance metrics, including precision, recall, mAP50, and mAP50-95, were calculated during training on both training and validation datasets. Detection and segmentation performances were evaluated at various IOU thresholds using precision (P), recall (R), and mean average precision (mAP). The mAP50 metric refers to the mean average precision at a 50% IOU threshold, indicating the accuracy of the model in identifying objects with at least 50% overlap with ground truth labels. On the other hand, mAP50-95 averages precision over IOU thresholds from 50% to 95%, offering a more comprehensive view of the model’s accuracy across different overlap scenarios, which is particularly important in agricultural contexts where pests may be occluded or vary in size (Li et al., 2023). These metrics provide insights into the model’s ability to handle various sizes and overlaps in real-world agricultural environments. Loss metrics—box_loss, cls_loss, and dfl_loss—were analyzed to identify areas for improvement. The confusion matrix summarized predictions across classes, highlighting correct and incorrect classifications. This comprehensive analysis provided a clear understanding of the model’s strengths and weaknesses. Metrics P, R, mAP50, and mAP50-95 are defined by Table 3.

Table 3 | Formulas of key performance metrics for evaluating YOLO models in object detection.


[image: Table showing performance metrics and their formulas:   - Precision (P) is calculated as True Positives divided by the sum of True Positives and False Positives. - Recall (R) is calculated as True Positives divided by the sum of True Positives and False Negatives. - mAP50 is calculated as the sum of precision at various recall levels, divided by the number of query points. - mAP50-95 includes an additional precision and recall summation step across multiple levels.   Definitions: TP - True Positives, FP - False Positives, FN - False Negatives, Q - Number of query points, P(Rq) - Interpolated precision at recall level Rq.]




Prompt creation and OpenAI GPT-4 integration

The study used Python and open-source libraries to integrate detection models with OpenAI’s GPT-4 via an API key. Initially, models identified trained objects, which were then linked to GPT-4. A good prompt should be clear, specific, and provide context to guide the AI’s response. Labels were defined as ‘det_labels_str’ and ‘seg_labels_str’. The prompt used in the study was: prompt_str = f”Could you provide a detailed explanation, in academic English, on the methods for controlling {det_labels_str} or {seg_labels_str} and the potential damage they can inflict on related plants, including preventative measures and integrated pest management strategies?”. Text outputs, limited to 250-400 tokens, were visualized with detection results. A ten-step coding sequence enabled the simultaneous operation of segmentation and detection models (Table 4). The workflow, from image capture to ChatGPT-4 output, is depicted in Figure 2.

Table 4 | Integration of Ultralytics YOLO and OpenAI GPT-4 using API key.


[image: Table describing the process of image analysis using YOLO and GPT-4. It includes ten steps: Model Loading, Image Loading, Segmentation, Application of Masks, Detection, Visualization of Results, Labeling, Integration with Natural Language Processing, Prompt Creation for GPT-4, and Combination and Visualization of Results. Each step outlines specific actions taken, such as loading models, executing segmentation and detection, visualizing outcomes, forming questions with GPT-4, and saving results.]
[image: Diagram showing a plant leaf image as input, processed by YOLOv8 for detecting Myzus persicae, labeled in red. Information is interpreted by GPT-4, highlighting the pest's impact and control methods, and presented as output text.]
Figure 2 | ChatGPT-4 integration process.






Results




Training and validation loss graphs

In this study, significant improvements were observed during YOLOv8 model training for pest detection. For training metrics, the box_loss decreased from 1.84 to 0.54, cls_loss from 3.48 to 0.37, and dfl_loss from 1.54 to 0.86. Similarly, validation metrics showed a decline: val/box_loss reduced from 1.38 to 0.53, val/cls_loss from 3.45 to 0.31, and val/dfl_loss from 1.30 to 0.90. Training was halted at 749 epochs to prevent overfitting, demonstrating effective learning and performance. For segmentation, the train/box_loss decreased from 1.97 to 0.57, train/cls_loss from 4.04 to 0.37, and train/dfl_loss from 1.56 to 0.86, while validation metrics also improved, with val/box_loss reducing from 1.99 to 0.74, val/cls_loss from 2.65 to 0.37, and val/dfl_loss from 1.45 to 0.92. Training stopped at 372 epochs to avoid overfitting, indicating robust model performance (Figure 3).

[image: Four line graphs depicting loss over epochs for detection and segmentation. The top left graph shows training loss for detection, with box loss, class loss, and Dfl loss decreasing over 700 epochs. The top right graph shows validation loss for detection with a similar trend. The bottom left graph displays training loss for segmentation over 400 epochs, and the bottom right graph presents validation loss for segmentation, both showing decreased loss. Each graph includes a legend for line color identification.]
Figure 3 | Changes in training and validation loss values over epochs for the YOLOv8 model trained for pest detection and segmentation.





Performance evaluation metrics

During YOLOv8 model training, significant improvements were noted across key metrics: precision increased from 0% to 98.91%, recall from 0% to 98.98%, mAP50 from 0% to 98.75%, and mAP50-95 from 0% to 97.72%. Training was halted at 749 epochs to prevent overfitting, demonstrating enhanced accuracy and reliability in object detection (Figure 4A). For segmentation, precision improved from 0% to 97.47%, recall from 0% to 98.81%, mAP50 from 0% to 99.38%, and mAP50-95 from 0% to 95.99%, with training stopping at 372 epochs to avoid overfitting (Figure 4B).

[image: Two line graphs compare metrics over epochs for detection and segmentation tasks. Graph A shows metrics for detection, including precision, recall, mAP50, and mAP50-95, with values stabilizing near 1.0 after initial fluctuations over 750 epochs. Graph B displays similar metrics for segmentation, stabilizing around 0.8 over 400 epochs. Both graphs exhibit an upward trend before plateauing.]
Figure 4 | Improvements in performance metrics during YOLOv8 model training for object detection (A) and object segmentation (B).





Confusion matrix analysis

A confusion matrix, essential for evaluating a model’s performance, pinpoints misclassifications and highlights areas for potential improvement. The test set, comprising images of adult insects, nymphs, and larvae across 11 classes, facilitated the computation of the confusion matrix. The YOLOv8 model exhibited high accuracy in detection tasks. Specifically, D. baccarum adults were correctly classified 890 times with 15 misclassifications, N. viridula adults were accurately identified 695 times with 15 errors, and M. persicae adults were correctly classified 998 times. Additionally, B. tabaci adults achieved 1025 correct identifications, and L. decemlineata adults were correctly identified 666 times with no errors (Figure 5). The model’s performance for segmentation on the test set revealed notable outcomes across 8 classes: 550 correct detections of L. bryoniae damage, 345 accurate detections of T. absoluta damage on fruit, 450 precise detections of T. urticae damage on leaves, and 565 correct identifications of healthy tomato leaves (Figure 6).

[image: YOLOv8 confusion matrix for detection, displaying true labels versus predicted labels of various insect life stages. The diagonal shows high accuracy with values such as 890 for D. baccarum adult and 998 for Aphid adult. Darker blue indicates higher counts, with a scale from 0 to 1000.]
Figure 5 | Confusion matrix illustrating YOLOv8 model’s performance in pest detection across 11 classes.

[image: YOLOv8 confusion matrix for segmentation showing predicted versus true labels of plant damages and conditions. Diagonal entries indicate correct predictions, with darker cells representing higher counts. Categories include types of leaf and fruit damage, as well as healthy states. Color intensity varies based on count, with the highest values shown in dark blue.]
Figure 6 | Confusion matrix illustrating YOLOv8 model’s performance in pest segmentation across eight classes.





Prompt creation and real-time textual response to visual data

The integration of YOLOv8 and ChatGPT-4 showcases the powerful combination of computer vision and natural language processing, enabling expert feedback on visual data. This integration was tested on five pictures from the test set, which were not included during the training phase. The responses to the crafted prompt, [prompt_str = f”Could you provide a detailed explanation, in academic English, on the methods for controlling {det_labels_str} or {seg_labels_str} and the potential damage they can inflict on related plants, including preventative measures and integrated pest management strategies?”] are presented in Figure 7. The trained detection and segmentation models processed the test images in approximately 0.10 seconds, while the integration with ChatGPT-4 provided textual responses within 3.5 seconds via the API. Despite being limited to 250-400 tokens, the ChatGPT-4 responses, while not always fully comprehensive, demonstrated the potential to offer key information.

[image: A series of images demonstrates the detection and identification of tomato pests using YOLOv8 and ChatGPT-4. The input column shows various pests and damage on tomato plants. The output column highlights identified items with red boxes and labels, including "Myzus persicae adult," "Tuta absoluta damage," "H. armigera damage," and "Phyllotreta spp." Each output image includes descriptive text about the pests, detailing their effects on plants and control methods. The process illustrates how advanced AI models can assist in agricultural pest management by accurately identifying and providing information about different pests and their impact.]
Figure 7 | Feedback from ChatGPT-4 based on object labels detected by YOLOv8.






Discussion

In the literature, numerous detection models such as Mask R-CNN, SSD, Detectron, and MobileNet are capable of identifying objects in photographs using image processing techniques (He et al., 2017; Liu et al., 2016; Girshick et al., 2014; Howard, 2017). However, among these models, YOLOv8 is preferred in this study due to its superior performance in agricultural pest detection (Redmon et al., 2016; Bochkovskiy et al., 2020). These superior results can be attributed to several factors, including the large and diverse dataset used for training, YOLOv8’s advanced architecture which allows for real-time processing with high accuracy, and the application of optimized hyperparameters specific to agricultural pest detection. For the detection task of the YOLOv8, precision increased to 98.91%, recall to 98.98%, mAP50 to 98.75%, and mAP50-95 to 97.72%. For segmentation tasks, precision increased to 97.47%, recall to 98.81%, mAP50 to 99.38%, and mAP50-95 to 95.99%. These results are consistent with other studies, such as the Pest-YOLO model achieving 69.59% mAP and 77.71% recall, and another study using YOLOv8 for small pest detection in field crops reporting an mAP of 84.7% (Khalid et al., 2023). Additionally, a study on pest detection in strawberries using segmented image datasets achieved a pest detection rate of 91.93% and detection reliability of 83.41% (Choi et al., 2022).

The integration of AI-based detection models with language models like ChatGPT offers significant benefits in pest detection and environmentally friendly pest control (Gu et al., 2021). Traditional methods, such as literature reviews, are resource-intensive, whereas language models provide rapid interpretations within 3.5 seconds, as demonstrated in this research. Researchers emphasize ChatGPT’s potential to train producers and improve information access (Ray, 2023; Siche and Siche, 2023). However, challenges exist regarding output accuracy, which depends on the training data (Gaddikeri et al., 2023). Inaccurate training data can compromise response precision, highlighting the need for training with credible sources.

Open-source language models like LLAMA (Meta) (Touvron et al., 2023), GPT-Neo and GPT-J (EleutherAI) (Black et al., 2022), BERT (Hugging Face) (Devlin et al., 2019), and GPT-2 (OpenAI) (Radford et al., 2019) allow for training on local computers with specific, reliable, and targeted datasets. Nevertheless, even with these advanced models, their effectiveness is contingent upon the quality of the input data and their ability to generalize across diverse agricultural environments. Furthermore, the computational power of personal computers may be insufficient for effectively using these models (Brown et al., 2020). While this study employed the YOLOv8 model integrated with the broadly-informed GPT-4 via an API, utilizing models trained with domain-specific, reliable data could enhance the accuracy and reliability of outputs. Future work should focus on training with domain-specific, trustworthy sources to improve accuracy and applicability across various sectors.





Conclusion

The integration of AI-based detection and language models in this study demonstrates a significant advancement in agricultural practices. By embedding these models into common devices like smartphones, even untrained producers can access real-time expert consultation, enabling immediate pest detection and sustainable pest control. This technology holds the potential to revolutionize agriculture, particularly in remote areas, by reducing costs and facilitating integration with unmanned vehicles for continuous monitoring.

The study’s results, showing substantial improvements in detection and segmentation precision, recall, and mAP metrics, underscore the efficacy of YOLOv8 in agricultural applications. Additionally, integrating language models like ChatGPT enhances the system’s capability by providing detailed explanations and recommendations based on detected pests. This combination allows for rapid, informed decision-making, improving pest management strategies.

Future work should focus on training these models with domain-specific, reliable data to further enhance their accuracy and applicability. Moreover, addressing the computational limitations of personal devices for running advanced models will be crucial for broader adoption. To fully realize the potential of this technology in low-income and remote agricultural settings, future work should focus on the development of energy-efficient models that can run on low-power devices and operate under limited connectivity conditions. Additionally, partnerships with local agricultural cooperatives could facilitate the dissemination and training required for widespread adoption. Ultimately, this integration promises to democratize information access, promoting a more resilient, informed, and environmentally conscious approach to farming.
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The bold values indicate the best results of different models on different evaluation metrics.
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The bold values indicate the best results of different models on different evaluation metrics.
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Model size (MB) 45 445 134 10.5
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Box AP and mask AP stand for box average precision and mask average precision, respectively. APS0 stands for average precision when the IOU threshold is 0.5, while AP75 stands for av area <96%),
and APL represents AP for large-sized objects (area >96%). Finally, AR10 refers to average recall with 10 detections per frame.





OPS/images/fpls.2024.1393541/im33.jpg





OPS/images/fpls.2024.1376138/table2.jpg
backbone

) inv-
Methods segmentation mIOU P-ACC
mIOU
network

PCNet Unet 90.62 91.36 =
ASBUNet Unet 92.47 94.19 38.99
ACBET Swin-Small-Unet 92.76 94.06 3591
ACBET Swin-Base-Unet 93.56 94.89 43.37
ACBET Swin-Tiny-Unet 94.13 97.83 57.79






OPS/images/fpls.2024.1393541/im329.jpg





OPS/images/fpls.2024.1376138/table1.jpg
IR AP- oP-

Methods

mask image ACC ACC
Area y 1833 39.20 20.40
Y-axis Y 4833 39.31 40.81
PCNet-M y V 91.66 90.19 =
ASBUNet v V 9333 92.15 92.25
ACBET y y 96.67 96.07 95.18

The input column is divided into mask input and image input, and the symbol Y represents
the corresponding input item.





OPS/images/fpls.2024.1393541/im328.jpg
Y





OPS/images/fpls.2024.1376138/im9.jpg





OPS/images/fpls.2024.1393541/im327.jpg





OPS/images/fpls.2024.1376138/im8.jpg





OPS/images/fpls.2024.1393541/im326.jpg





OPS/images/fpls.2024.1376138/im7.jpg





OPS/images/fpls.2024.1393541/im325.jpg





OPS/images/fpls.2024.1393541/im324.jpg





OPS/images/fpls.2024.1393541/im323.jpg
B





OPS/images/fpls.2024.1391628/im17.jpg
Am) =1





OPS/images/fpls.2024.1391628/im18.jpg
A(n) € [2,7] N minfg_y(n)]





OPS/images/fpls.2024.1391628/im15.jpg
(xr.yro2r)





OPS/images/fpls.2024.1391628/im16.jpg
(%6, Y61 76)





OPS/images/fpls.2024.1391628/im13.jpg
0100
111





OPS/images/fpls.2024.1391628/im14.jpg
(xuavs Yoavs Zuav)





OPS/images/fpls.2024.1391628/im12.jpg
0100
o111





OPS/images/fpls.2024.1416221/im5.jpg





OPS/images/fpls.2024.1416221/im4.jpg





OPS/images/fpls.2024.1416221/im3.jpg
D(A)





OPS/images/fpls.2024.1416221/im28.jpg
Vi





OPS/images/fpls.2024.1416221/im27.jpg





OPS/images/fpls.2024.1416221/im26.jpg
Vi





OPS/images/fpls.2024.1416221/im2.jpg
&'')





OPS/images/fpls.2024.1416221/im19.jpg





OPS/images/fpls.2024.1416221/im18.jpg
SRF(I)





OPS/images/fpls.2024.1416221/im7.jpg





OPS/images/fpls.2024.1391628/M1.jpg
INE 2NE 3NW 4NW
LEN 2EN 3NW ANW
SES 6ES 7WS 8WS
SSE 6SE 7SW SSW

0]





OPS/images/fpls.2024.1416221/im6.jpg





OPS/images/fpls.2024.1391628/M2.jpg
INEix 205,202 20,0, € [0.f) (SESx 205202 <00.€ (1Y)
W <0y 205200, 0]) [ o <0y 205 00,5
B n bk a8 | Sheaonantent s B
IR M 0 M o
Wi 20 205 <00, € [R) (AN 207, <05 200, € BF.F)

Wik 20 205200, € (1) [ 3N <0 <05 20,0, ()

WSR2 0 <05 <00, € [.5) | 4NWix, 205, <05 20,0, & [.20)

TWSin <0y, <05, <00, € [£.3) | WWix, <0y, <05, 200, € (F.20)






OPS/images/fpls.2024.1391628/table2.jpg
obstacle density

Map name Map size lobs e

Map 1 50mx50mx15m = 0.8 (50,50,15)
Map 2 60mx60mx15m | 0.8 (60,60,15)
Map 3 70mx70mx15m | 0.8 (70,70,15)
Map 4 80mx80mx15m | 0.8 (80,80,15)
Map 5 90mx90mx15m | 0.8 (90,90,15)






OPS/images/fpls.2024.1391628/table3.jpg
Density(obs./m?) H P-value

0.4 0 0.22
0.5 0 0.09
0.6 0 0.25
0.7 1 0.04
0.8 0 0.35






OPS/images/fpls.2024.1391628/M7.jpg
ConditionA: Y e(DOS) = 4 (U]





OPS/images/fpls.2024.1391628/table1.jpg
RFA-Star Algorithm Pseudocode

1 initialize_map()

2 while not search_complete:
3 topological_relationships = detect_topological_relationships(R5_layer)

4 if obstacles_present(topological_relationships):

5 if satisfies_condition_A(topological_relationships):

6 continue

7 else:

8 feature_points = feature_attention_module()
9 update_search_status()

10 calculate_cost_function()

11 optimal_path = select_optimal_path()

12 for node in optimal_path:

13 move_UAV_to(node)
14 end if

15 end if

16 end while
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1 2022/10/09 Cloudy 297
2 2022/10/11 Sunny 305
3 2022/10/13 Sunny 312
4 2022/10/15 Sunny 285
5 2022/10/17 Cloudy 334
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Prediction performance
Spectral pre-

Quality

processing Accuracy Precision Recall Fl-score
(%) (%) (%) (%)
Dryness MSC LR 99.7 99.7 99.6 99.7 1.00
CBDA conversion SG filter LR 98.1 97.2 97.4 97.3 1.00
THCA conversion MSC LR 947 899 895 89.7 0.99
CBD : THC MSC LR 958 95.0 946 94.8 0.99

AUCgoc area under ROC curve.
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Number of data

Quality
Calibration Prediction
Dryness Extreme dried 0< RWC < 10 2,202 1,761 441
Dried 10< RWC < 40 1,839 1,471 , 368
Fresh 40< RWC < 100 666 533 133
CBDA conversion Low CBD% 0< C/TC < 20 2,505 2,004 501
Middle CBD% 20< C/TC < 60 1,001 ‘ 801 200
High CBD% 60< C/TC < 100 1,201 960 ‘ 241
THCA conversion Low THC% 0< T/TT < 20 2,594 2,075 ‘ 519
Middle THC% 20< T/TT < 50 1,631 1,305 326
High THC% 50< T/TT < 100 482 385 97
CBD : THC High CT 0< C/T< 20 1,371 1,097 274
Extreme high C:T 20 < C/T < 100 3336 | 2,668 668

RWC, relative water content; C/TC, CBD percentage of total CBD (CBD + CBDA); T/TT, THC percentage of total THC (THC + THCA); C/T, ratio of total CBD to total THC.





OPS/images/fpls.2024.1365298/M2.jpg
RWC (%) = (w, - wy x DM)/w, x 100





OPS/images/fpls.2024.1365298/M3.jpg
Accuracy = (TP + TN)/(TP + TN + FP + FN)





OPS/images/fpls.2024.1365298/M4.jpg
‘TP/(TP + FP)





OPS/images/fpls.2024.1393541/M25.jpg
L0 <v<AB €plm @)





OPS/images/fpls.2024.1393541/M24.jpg
= {A}‘— punB, } (24)
s {n,‘__ iy }





OPS/images/fpls.2024.1393541/M23.jpg
{ilmin{d, pp i€ N B € pim} | 23)






OPS/images/fpls.2024.1393541/M22.jpg
P L )

b, = A € plmieN® I






OPS/images/fpls.2024.1393541/M21.jpg
pim = {A;, B, A;B;jj = N"} (21)





OPS/images/fpls.2024.1393541/M20.jpg
(20)






OPS/images/fpls.2024.1393541/M2.jpg
)





OPS/images/fpls.2024.1393541/M19.jpg
) (19)






OPS/images/fpls.2024.1393541/im64.jpg
R





OPS/images/fpls.2024.1393541/M48.jpg
7 = {13(0—1), 51, (1-0), 1} (0 1), 135 (1—(

ris(0—1),r]5(1—0) } (48)






OPS/images/fpls.2024.1393541/im639.jpg





OPS/images/fpls.2024.1393541/M47.jpg
r* = {r(0=1), r(1-0), 77(0—1), rig(1—0),

“47)
7L(0-1),7,(1-0), 3 (0—1)}





OPS/images/fpls.2024.1393541/im638.jpg





OPS/images/fpls.2024.1393541/M46.jpg
ri(0—1), r(0—1), r3(1-0),r(0—1),
i (10),r,(0—1),r3(1-0)}

(46)





OPS/images/fpls.2024.1393541/M45.jpg
{r3(0—1),r5(1-0), r§(0—1), rig(1 — 0), )
(01, (10, 1 (0—1), riy(1-0)}





OPS/images/fpls.2024.1393541/M44.jpg
' = {r(0-1),r(1-0), r(0—1),r3(1-0), @
Flo(0—1), %, (1-0), r(0—1)}





OPS/images/fpls.2024.1365298/fpls-15-1365298-g003.jpg
>

Spectral reflectance (%)

Spectral reflectance (%)

801 Hot air
604
40
201
0 |
801 Cool air
604 = 0 day
—— 2day
— 4da
40 Y
— 7 day
9 day
201
0 |
400 600 800 1000

Wavelength (nm)





OPS/images/fpls.2024.1365298/fpls-15-1365298-g004.jpg
548.61 nm 600.64 nm 660.67 nm 800.76 nm

. " . l‘ . " .

IS JRsMe  SESEe gy
0] 5 10 15 0] 5 10 15 0] 5 10 15 40 60 80

Reflectance (%)






OPS/images/fpls.2024.1365298/fpls-15-1365298-g001.jpg
. 1 s
| |

Hyperspectral camera

Dark box

ROI selection





OPS/images/fpls.2024.1365298/fpls-15-1365298-g002.jpg
a
;\3100- .\a -©- Hot air
\ -~ i
% 80+ A Cool air
S .
< A\
© 60+ \
W= A\
R 1\
(O] \
= 40+ ‘\\ b
o &-~-__ C C c
2= 204 P g S |
% d d d d
n'd
O-
/\100-
N
= a
QC) 80 Q5
c »
(o) W
8 60' \\
8 'y
\
S 404 . Y
.GZ) \\ i\\
E 204 \ \\' c c
[0) LR vl BV ---0
d
n'd N i————.d ______ ‘d____.d

o 1 2 3 4 5 6 7 8 9
Drying period (d)






OPS/images/fpls.2024.1365298/fpls-15-1365298-g007.jpg
A  Predicted
dryness

Extreme dried

B Predicted CBDA
conversion

B LowcBD%
Middle CBD%
High CBD%

C Predicted THCA
conversion

B Low THC%
Middle THC%
High THC%

D predicted
CBD:THC

High C:T
Extreme high C:T

Hot air drying Cool air drying

0d 2d 4d 7d 9d 4d 7d
T Y YR
v hfl'l, g ! i'“ *‘:"v“
ﬁf:‘f rJ‘,“ ¥ ‘h\
i R IRV.INEY S NG
87.3% 0.7% 0.3% 0.6% 0.5% 86.9% 3.4% 0.7% 82% 10.9%
9.6% 37.4% 351% 10.2% 7.0% 9.9% 93.7% 97.3% 81.5% 757%
3.0% 61.8% 646% 89.1% 92.5% 3.2% 2.8% 2.0% 10.3% 13.4%

13.1% 8. 3°/o 0.7°/o

94.2% 1.7% 93.9% 90.7% 888% 83.0% 80.9%
46% 655% 53.9% 321% 17.4% 4.8% 7.3% 87% 13.0% 13.4%
12% 21.4% 377% 662% 81.8% 1.4% 1.9% 2.5% 4.0% 5.7%

e g ]

91.3% 26.8% 20. 4% 16.1% 125% 91.8% 822% 746% 76.0% 73.9%
1.9% 353% 50.0% 64.0% 72.9% 1.8% 5.5% 8.4% 8.4% 10.7%
6.8% 37.9% 29.6% 19.9% 14.6% 6.3% 123% 17.0% 15.6% 15.4%

[ ot Y gy
s ! l ‘
.-h‘ * '“‘)’ft!‘} gt "\ {*r“xr
o8 4 : l\ 5 1] ' )
i : M'\ £ ¥ ~-"‘i|\’ t%_u‘v
1.8% 33.5°/o 49.5% 68.7% 80.2°/o 2.0% 5.3% 8.1% 9.3%
98.2% 66.5% 50.5% 31.3% 19.8% 98.0% 94.7% 91.9% 90.7%





OPS/images/fpls.2024.1365298/M1.jpg
Relative weight change (%) = wy/wp x 100





OPS/images/fpls.2024.1365298/fpls-15-1365298-g005.jpg
1601 A CBDA 1 B CBD 1 ¢ Total CBD
. Hot air
120 { B coolair ] ad ae
=
a
‘I_U)
£ 80- cdcd 1 ab a 1
()]
= b
[m) B
2 2
404 4 [ L’ 4
d’did d d d
0 | S - i 1253 4
81 D THCA 1 E THC 1 F  Total THC
a
- Hot air b ab
__ 64 4 .Coolair 4
=
o
T °c W
o bd
54- 1 1 ] cd
= s d m
< bcbc e - dd ;
[ b 20l
2 - R 4 -
04 | 2= = - B ]
z ! : . 3 z . i " 3

Drymg penod (d)

Drying period (d)

Drying period (d)






OPS/images/fpls.2024.1365298/fpls-15-1365298-g006.jpg
A Dryness B CBDA conversion

1.0

0.84 0.84
> >
§06- §06'
= 3
S 0.4 8 0.4
< g

o
N
N
o
N
N

L SVM NB LR SVM F GNB

KNN RF G KNN R
Model Model
C THCA conversion p CBD:THC
1.04 1.0+
0.8+ 0.84
> >
§ 0.6+ § 0.6
3 3
8044 2 6.4
204 go.
0.29 0.24
0.0 0.0
SVM KNN GNB KNN GNB
Model Model

Spectral pre-processing method . Raw reflectance - SG filter . 1st Der . 2nd Der . MSC





OPS/images/fpls.2024.1393541/im646.jpg
o = {A10 P24 P19s Bio }





OPS/images/fpls.2024.1393541/im645.jpg
13 = {By, puo. A7}





OPS/images/fpls.2024.1393541/im644.jpg
r = {Aupun B}





OPS/images/fpls.2024.1393541/M52.jpg
F0—1),r1, 57, (10),r7,(0— 1) 175 (1

Fis(0—1),r75(1—-0) } (52)






OPS/images/fpls.2024.1393541/im643.jpg





OPS/images/fpls.2024.1393541/M51.jpg
(51)





OPS/images/fpls.2024.1365298/crossmark.jpg
©

2

i

|





OPS/images/fpls.2024.1393541/im642.jpg





OPS/images/fpls.2024.1393541/M50.jpg
7= (P30 — 1),rf (1 = 00,71, (0 = 1),75(1 — 0), 70 — 1), ris(1 — 0)} (50)





OPS/images/fpls.2024.1393541/im641.jpg





OPS/images/fpls.2024.1393541/M5.jpg
rs = {As. P> P2 By }(0 — 1)
7y = {By. Py, Ag} (1 — 0) &





OPS/images/fpls.2024.1393541/im640.jpg





OPS/images/fpls.2024.1393541/M49.jpg
(49)





OPS/images/fpls.2024.1393541/M38.jpg
(38)





OPS/images/fpls.2024.1393541/M37.jpg
(e P Pa Py A, }

(37)





OPS/images/fpls.2024.1393541/M36.jpg
T} $2,0<5Sj,0<usj (36)





OPS/images/fpls.2024.1393541/M35.jpg





OPS/images/fpls.2024.1393541/M43.jpg
= {F(0-1), 73, (1-50), £}, (0-1), 5 (1-40), 15 (0—1), iy (1-0)} (43)





OPS/images/fpls.2024.1393541/M42.jpg
{ris(0 = 1), 7(1 = 0),rg(0 — 1),ry(1 = 0),r3(0 — 1)} (42)





OPS/images/fpls.2024.1393541/M41.jpg
pim = {4;(0,-9 + (j~ 1) # D), B;(16,-9 + (j - 1) * D),

(41)
94 (G-1)#D1j<20D=1}

Yan,





OPS/images/fpls.2024.1393541/M40.jpg
Yap, =9+ (j=1)+D,kyp = 0,b,

9+(j-1)+D (40)






OPS/images/fpls.2024.1393541/M4.jpg
r"={r/lneN", jeN"} )





OPS/images/fpls.2024.1393541/M39.jpg
9(0 < xq,5 < 16).ky5 =0.by 5

(39)






OPS/images/fpls.2024.1393541/im661.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g009.jpg
mmol/L

120

mmol/L

150
mmol/L






OPS/images/fpls.2024.1393541/im66.jpg
R





OPS/images/fpls.2024.1447346/fpls-15-1447346-g008.jpg
30
mmol/L

A

L PR SR T N 1 O TSR T
38 s

e
oL
-
-
-
-
-
-
=

gD

60
mmol/L






OPS/images/fpls.2024.1393541/im659.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g007.jpg
Detection accuracy (%)

100

90

80

70

60

50

40

30

20

10

0

Faster R-CNN YOLOv3  YOLOv4 YOLOv5s YOLOv7-tiny YOLOv8-nYOLOVS-ECS

[ ]Precision | Recalll ] mAP50(%)






OPS/images/fpls.2024.1393541/im658.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g006.jpg
YOLOvVS8-n

=T NPT B W=
:_‘_ﬂ’_r. =

© T s o A w

- "_’_’_d—'ﬁ'
TP = =T e e
2l

TOO= = =D :g

=0 N T =

- o T @
T N = ‘_Q_T
T K e e

" ke B ) o

YOLOv8-n +ECIoU YOLOvS8-n+ECIoU+CA

@t”“’tu—@t 10192—@73-_@;
= DT H = =

T T T o

= DO =T PHO =
VP T OF o=
TR ) e

O=>F = P =T =

T e o
O=>F ¥ = = =
T v v w—e = B

—OOF > g

=T ) T e
ﬂ-'_d—._*,'_-—gw
Te=T s o
- = i - :
= ’_’_’_d_’«"-'f‘ L r:—-,—f’g—
T =S = gl =% =T = t
- T G) ) =

W
T o ;

=T = I

TP =5 T e L
TOO=~ O == =

YOLOVS-ECS

T g i
T I g
T ST ‘-p%
he|

T e i e gt

G
B

<~
e e L k. e,
g — =

ﬁ_"ﬂ—,’—”—.

T T
g X = Q_‘_u—

T i
il





OPS/images/fpls.2024.1393541/im657.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g005.jpg
Coordinate Attention

Output

- ClrxIx(W+H) C/rx1>{W+H)

Input
—» Residual






OPS/images/fpls.2024.1447346/fpls-15-1447346-g004.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g003.jpg
Original 1mage = Horizontal flip






OPS/images/fpls.2024.1397816/fpls-15-1397816-g014.jpg
Map@0.5 (%)

100

95

20

85

80

75

70

65

60

55

50

Detection speed and Map@0.5

* +* & 4 P> m

YOLOvA4-tiny
YOLOv5s
YOLOv7
YOLOX
YOLOv8s
Faster-RCNN
YOLO-CIT

10

20

25
Detection times (ms)

30

35

40

45

50





OPS/images/fpls.2024.1397816/fpls-15-1397816-g015.jpg
PSS
Ripe 0.88 , _*
o4 3 <

_Ripe 0.87

> 7\3\‘ Rine_(J.Q_er‘.) .

Ripe 0.90 g
) ;






OPS/images/fpls.2024.1397816/im1.jpg





OPS/images/fpls.2024.1397816/im10.jpg
o





OPS/images/fpls.2024.1397816/fpls-15-1397816-g010.jpg
Initial image Grayscale

c





OPS/images/fpls.2024.1397816/fpls-15-1397816-g011.jpg
260

240

220

N
o
o

Texture differences
>
o

140

120

100

i 26.9{

Es:

138.1

122.3
111.2

Grayscale

R-LBP





OPS/images/fpls.2024.1397816/fpls-15-1397816-g012.jpg
MAP@O0.5

100 —

——— Original dataset
~——Add images processed by LBP
90 — ——Add grayscale image
- Add images processed by R-LBP
80 —
.'\‘“_\ W”‘W |
| ‘”m’."’,;‘/' "‘»/ L\W'i Q"“‘\'j‘ NM\‘! J ‘ ! 1 ML A m”) \ N A L NSNS
’° i “ W' W\ LYWWV VWA !V“’\"\v,‘n" ‘\\Aqv},;\ww IRFFAR AR TSI PR
10
o | | | \ | |
0 50 100 150 200 250 300

Training epochs





OPS/images/fpls.2024.1397816/fpls-15-1397816-g013.jpg
100 —

——YOLOv4
70.38 ——YOLOVSs
~—=YOLOv7
—YOLOX
w—YOLOV8s
=smed YOLO-CIT
--------- Faster-RCNN

10

ol I 1 1 ! ! J
0 50 100 150 200 250 300

Training epochs






OPS/images/fpls.2024.1397816/fpls-15-1397816-g008.jpg
Ghostconv

Feature Map

] mapping [
7 - ol

Preliminary
convolution

—






OPS/images/fpls.2024.1397816/fpls-15-1397816-g009.jpg
Backbone

YOLO-CIT

Archors ‘






OPS/images/fpls.2024.1393541/im666.jpg
AysBys





OPS/images/fpls.2024.1393541/im665.jpg





OPS/images/fpls.2024.1393541/im664.jpg
R





OPS/images/fpls.2024.1447346/M1.jpg
R

p(bY)

cav

[0





OPS/images/fpls.2024.1393541/im663.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g011.jpg
Length of L root/
Number of L root

48h
44h
40h
36h

32h

94
9.21
8.77
8.24
7.64 | SRAT
6.61
7.18 6,g%3 6.44  6.05
6.53 [§2!
6.30 | |1 583
568 531
5.46 | 233
o .6
5-‘9 sq ¢
4.73 4.70 411

Ommol/L

30mmol/

L 60mmol/L 90mmol/L

(B)

Proportion
Tpixels
\‘\
Imm
=

11

10

9
8 g
.58 5.21 =
7 5
97 | #.2P 5
¥ .61 2
23 46 6 o)
=4
.06 .93 5 5
on
<
5]
-
<

N W N

120mmol/L 150mmol/L






OPS/images/fpls.2024.1393541/im662.jpg





OPS/images/fpls.2024.1447346/fpls-15-1447346-g010.jpg
(A) Germination rate

100

Ommol/L (CK) 30mmol/L

90

80

70

60

50

40

Germination rate(%)

30

Germination rate(%)

20

10

0
24h 28h 32h 36h 40h 44h 48h 24h 28h 32h 36h 40h 44h 48h

100
5 60mmol/L
80
70
60
50

40

Germination rate(%)
Germination rate(%)

30

20

10

24h 28h 32h 36h 40h 44h 48h 24h 28h 32h 36h 40h 44h 48h

100

120mmol/L 5 1 150mmol/L

804

;\? ;\? 704
:'g T‘g 60 4
E é 40 : 34.6
3 3 304
20 -.
10 -.
24h 28h 32h 36h 40h 44h 48h ! 24h 28h 32h 36h 40h 44h 48h
(B) Germination index
10.83 12
1000 @
>
@ 10
@ b5
a =
2 539 8 - S
) £
@ 382 6 E
> ] 2.81 &
o ) 1.61
4
? )
48h a J 2
“ion ®)
36h
32h 0
28h o > bo Y
24h /1, 150mmol/L

L 90mmol/L 120mmol

60mmol/
0mmol/L(CK)30mm°VL





OPS/images/fpls.2024.1393541/im650.jpg





OPS/images/fpls.2024.1393541/table2.jpg
Number of 25

: 35 45
target points
Number of Number of Number of Number of
System Robot Time (s) collisions Time (s) collisions Time (s) collisions Time (s) collisions
avoided avoided avoided
R, 2562 27 3617 32 4473 37 4887 32
Multi- R, 2575 33 3282 2 4242 44 4972 40
robot
system Rs 2782 35 3619 25 4468 29 5353 42

Ry 2770 24 3509 31 4157 30 5157 31

Single robot system 6264 § 8589 \ 8765 \ 9024 \





OPS/images/fpls.2024.1393541/im65.jpg





OPS/images/fpls.2024.1393541/table1.jpg
Itinerary table

serial number of the robot 0,1,2,3,..,n
priority 0;; 15253500

path type l working or transition path

moving direction 0—1, 1 — 0 or up, down
real-time position Py,
target position B,
current serial number of the Je

working path

last serial number of the working path 1






OPS/images/fpls.2024.1393541/im648.jpg





OPS/images/fpls.2024.1393541/M9.jpg
9






OPS/images/fpls.2024.1393541/im647.jpg
{By,psar A}





OPS/images/fpls.2024.1393541/M8.jpg
ka g, = (vg, —¥a,)/( (8)






OPS/images/fpls.2024.1393541/M7.jpg
7






OPS/images/fpls.2024.1393541/M6.jpg
(6)





OPS/images/fpls.2024.1397816/im18.jpg





OPS/images/fpls.2024.1397816/im19.jpg





OPS/images/fpls.2024.1397816/im2.jpg





OPS/images/fpls.2024.1397816/im14.jpg





OPS/images/fpls.2024.1397816/im15.jpg
Wy € REI™¢





OPS/images/fpls.2024.1397816/im16.jpg
W, € R/"





OPS/images/fpls.2024.1397816/im17.jpg





OPS/images/fpls.2024.1397816/im11.jpg
LV,





OPS/images/fpls.2024.1397816/im12.jpg
LV,





OPS/images/fpls.2024.1393541/im656.jpg





OPS/images/fpls.2024.1397816/im13.jpg
LV,





OPS/images/fpls.2024.1393541/im655.jpg
o = {Bio. Pa1os Pr2es Ao}





OPS/images/fpls.2024.1393541/im654.jpg
1 = {A7 pno B}





OPS/images/fpls.2024.1447346/fpls-15-1447346-g002.jpg
Seed
pretreatment

- | - -
bt P A B
-—n - o)

— e S—
| Date enhancment ]

| Date set partition |

L vl s s

i

| Train Valid Test

v
Seed

Germination process of cucumber seeds
28h : 30h






OPS/images/fpls.2024.1393541/im653.jpg
i = {Bupaun A}





OPS/images/fpls.2024.1447346/fpls-15-1447346-g001.jpg
Human-computer interaction surface

Display
Interface ‘

sewp |

Interface ‘ Operation button

1/0 Interface Start Automate

Manual
Interface

Chinese;

‘amera movement
trajectory

\

Overall apperance of acquisition system

Image acquisition interface






OPS/images/fpls.2024.1393541/im652.jpg





OPS/images/fpls.2024.1447346/crossmark.jpg
©

2

i

|





OPS/images/fpls.2024.1393541/im651.jpg
Ry





OPS/images/fpls.2024.1393541/table3.jpg
Number of
target 15 25 35 45
points

Number of Number of Number of Number of
Method Time (s) collisions Time (s) collisions Time (s) collisions Time (s) collisions
avoided avoided avoided avoided






OPS/images/fpls.2024.1393541/im461.jpg
Ro





OPS/images/fpls.2024.1393541/im681.jpg





OPS/images/fpls.2024.1437350/fpls-15-1437350-g004.jpg
Split 1

Split 2

Split 3

Split 4

Split 5

Create stratified folds

K-fold cross-validation

Repeat for each fold

Calculate metrics

Learn model Apply model






OPS/images/fpls.2024.1393541/im460.jpg





OPS/images/fpls.2024.1393541/im680.jpg





OPS/images/fpls.2024.1437350/fpls-15-1437350-g003.jpg
(A)

10
08
o6 £
04

02

751563.0 siti

3891639
3891638
3891637 ym

3891636

3891635

7515635
7515640
” 515645

751565.0

3D point cloud

g
=

Height of points
f=]
~

S
o

0.0~
00 02 04

06 08 10 12 14

Distance(m)

1.6 0 100 200 300 400 500 600

Number of points





OPS/images/fpls.2024.1393541/im46.jpg





OPS/images/fpls.2024.1393541/im68.jpg





OPS/images/fpls.2024.1437350/fpls-15-1437350-g002.jpg
Oblique Angle

°

o 45
o 45°
oA 45
45°
o90°






OPS/images/fpls.2024.1393541/im459.jpg
Je





OPS/images/fpls.2024.1393541/im679.jpg





OPS/images/fpls.2024.1437350/fpls-15-1437350-g001.jpg
4.000'0"E 16000'0"E
China ;4 500 3,800
B Henan

C_JHenan
I Xinxiang

112°0'0"E

® Study area

80°0'0"W

0 60120

114°0'0"E

240 360
O km

116°0'0"E





OPS/images/fpls.2024.1393541/im458.jpg
Ro





OPS/images/fpls.2024.1393541/im678.jpg





OPS/images/fpls.2024.1437350/crossmark.jpg
©

2

i

|





OPS/images/fpls.2024.1393541/im677.jpg





OPS/images/fpls.2024.1447346/table4.jpg
Model
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Recall (%)

mAP50 (%)

Faster R-CNN 89.5 86.3 89.3
YOLOv3 85.1 78.9 86.7
YOLOv4 88.7 89.1 89.6
YOLOv5s 934 92.1 90.9

YOLOv7-tiny 94.2 88.3 90.1

YOLOV8-n 91.6 85.4 91.8

YOLOV8-ECS 97.2 97.4 98.9
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Epoch 300
Batch size 8
Image size 640x640
NMS IoU 0.7

Learning Rate 0.01
Momentum 0.937
Weight Decay 5x107™
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Number of test seeds 1458
Temperature 26°C (£ 1°C)
Concentration of NaCl (mmol/L) 0 (CK), 30, 60, 90, 120, 150
Number of replicates 3

per concentration
Time of germination 48h
Image acquisition interval 30min

Number of acquired images 1728
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Rice

Wheat

icators Sample number Min Max Mean SD
Modeled dataset
AGB (t/ha) 101 1.5653 147338 4.8396 23937
LAI 101 0.1322 111145 1.5569 1.6120
Validated dataset
AGB (t/ha) 25 2.0464 8.6708 42401 1.6492
LAI 25 02226 44175 1.0977 09701
Modeled dataset
AGB (t/ha) 133 03730 12.1556 4.7960 28263
LAI 133 04220 7.9354 2.9261 13127
Validated dataset
AGB (t/ha) 57 03784 119300 42322 22259
LAI 57 2.7605 1.3502

0.4568 6.5178
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Gl wavelength (nm) wavelength (nm) Akl A Reviatioplom)
BL 458 457.60 14.12 | 040
B2 487 » 486.63 ‘ 12.71 -0.37
B3 527 527.41 16.15 0.41
‘ B4 558 558.49 16.82 ‘ 0.49
B5 644 644.43 14.12 0.43
B6 716 71591 13.80 -0.09
B7 737 736.74 1294 -0.26

B8 813 812.68 16.61 -0.32
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Vi Name Formulation Reference
GNDVI Green norma..lizec.i difference NIR -G (Gitelson
vegetation index NIR+ G et al., 1996)
N Normalized difference NIR - R (Candiago
vegetation index NIR + R et al., 2015)
NDRE Normalized difference NIR - RE (Fitzgerald
red-edge NIR + RE et al., 2006)
P d
RVI Ratio vegetation index NIR ( .earson b
R Miller, 1972)
Optimizati il-adjusted
OSAVI ptimiza 10{1 so. aduste NIR-R (Steven, 1998)
vegetation index NIR+R+0.16
RESAVI Red edge .soil .adjusted 1.5«(NIR — RE) (Cao
vegetation index NIR+ RE + 0.5 et al., 2013)
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Input: r", Hg,
1: while true do

2: Calculate the directions of robots according to
Equations 5, 6.

3: if the robots move in the same direction then

4: dpr, <« the distance fromrobot R, to Ry
55 if dg g, <1 then

6: The robot at the rear stops moving
7: else

8% The robot keeps moving

9: end if

10: else

11: //According to the local path rf], query the path
type

12: If the robot pathpoints from A; to B;or B; to A;,
the path type is working path.

13: If the robot path points from Ag to A, or Bs to B,
the path type is transition path.

4: if two or more robots have the same path type then
51 if path type is working path then
6: Jje < get the serial number of the working

path based on the local path r]

7: if j, is the same then
18: //Adjust low-priority robot paths
19: r”:{r?\jEN*}-»r":{r?,rQUE(N*—s)}
20: Then, the robot continues to move along the
new path
21 else
22 The robot continues to move along the

global path

23: end if

24: else if path type is transition path then

25: dg,r, < the distance from robot R, to Ry

26: if dgp, <1then

27: //Add obstacle avoidance paths to the r” of

low-priority robot.

28:

r":{r31|jEN*}—>r” ={us B rhrtYjss 20,085 J,0<us g}

29: Then, the robot continues tomove along the
new path

30: else

31: The robot continues to move along the

global path

32: end if

33: end if

34: else

35: The robot continues to move along the global
path

36: end if

37: endif

38: if Pp isthe last point in the target point P, then
39: break
40: endif

41: endwhile
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Input: the target point p, of the robot R,, plm

Output: global path r”

1: for 1=1, 2, .., N*do

2: for j =1, 2,.., N'do

3 dpya8, < the distance from point pn; toworking path
A;B;

4: end for

52 //Get the j and target point when the distance is

the minimum value
6- Ty Prdgg, <MIN{ dp a8, }
70 { A Pron iy, JO =)
8:  //Add local path to global path
9: e F'}dm

10: end for

11: for rg in r" do

12: //Merge local paths with the same j

13: r —{A;.Pn1s Pn2>->Pav>Bj }(0 = 1)

14: end for

15: Update global path r" according to the modified rf

16: for rg! in r" do

17: dp,,4, < the distance frompoint p,, toworking path

18: //Sort the target points {pni, Pn2>-»Pnv} @ccording
to the size of dp 4,

19: 3 «—{Aj.Pn1s PnassPnvsBj }O = 1), dp a) < dpa, < oo <
dpnvA]' 0O<v<i
20: end for

21: Update global path r" according to the modified rf

22://According to the requirements of direction (0 — 1)
(1—>0)(0—1)--, adjust the r"

23: 1" < {rT(o » 1), (1 = 0), (0 >1),...,rg(1—>o)}

24 return r”
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Input: the coordinates (X,,ys), and (xg,ys ) of the two
endpointsA, and B,
Output: pIm

1: Initialize kyg, and by,

2:forj=2,3,., Ndo

35 kg, =Ka,p,

4: bAjB] = by, +(j—1)D,/l<f\l‘,31 +1

Bz //Update straight-line equation of A;B;

6: Yase; = Kass;Xas8; +bass,

7% //Update straight-1line equations of A;A; and B,B;

8: kA,AJ: ke,p, = —1/kusg,

9: Yahy Yoig, =~ Xaa/Ka, +baa; s = Xeg/Kasy +be,s

10 baa,, bss; = Yaa; +Xaa;/Kas; . Y88, +Xs,8,/Ka;s;

11: //Update coordinates of A; and B;

120 Aj(Xa»Ya,) < (baa, —bas; ) /(Kas, —Kaa), KaaXa, +baa;
131 Bj(Xs,»ys,) < (bgs, —bas,)/(Kass, — Ks,8,) . Ks,, X8, + bp,s,
14 : end for

15: pIm < {A;B;,A;,B;|jeN*}

16: return plm
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Average

Classification based on FP SAR data

Classification based on CP SAR data of 1/
4 mode

Classification based on CP SAR data of
CTLR mode

Eake W accuracy
Water 99.85 100.0 99.92
Unban 98.75 98.84 98.79
SNL 97.70 91.78 94.74
T-H 77.65 77.77 77.71
D] 83.01 88.97 85.99
Water 99.85 100.0 99.92
Unban 98.75 98.97 98.79
SNL 97.71 91.73 94.74
T-H 76.41 85.53 77.71
D-J 91.07 88.92 85.99
Water 99.85 100.0 99.92
Unban 98.75 98.12 98.43
SNL 9771 9171 94.71
T-H 61.86 65.70 63.78
D-] 74.32 76.41 75.36

94.58%

95.51%

91.62%

0.925

0.938

0.884
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Data acquisition DoY e aae Pixel Spacing Incidence Phenology
date (Y/M/D) (Day of Year) 9ing (AXR, m) Angle (deg) Stage of Rice

2015/06/12 163 FQ20W* 52x7.6 38 -41 Seedling
2015/07/30 211 FQ20W 52x7.6 38 -41 Seedling-Elongation
2015/08/23 235 FQ0W 52x7.6 38 -41 Booting-Heading
2015/09/16 259 FQ20W 52x7.6 38 -41 Heading-Flowering
2015/10/10 283 FQ0W 52x7.6 38 - 41 Dough-Mature
2015/11/03 307 FQ20W 52x7.6 38 -41 Harvest

'EQW, fine quad-polarimetry wide, 20 is the number of the beam position, which is related to the incidence angles.
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DATA Optimal parameters

P SAR 01103, 0ip_0612, 0ip_0730, Aci_0823, Aog_0823,
A0_0916, Act_1010, Acp_0730
CP SAR data of T/ op_1103, otp_0916, 0i_0823, 0p_1010, 0tp_0612,
4 mode 0730, Ao_1103, Acg_0730
CP SAR data of 1103, 0i_0612, 0p_0823, Aci_1103, Aog_0612,
CTLR mode Aop_0823, Aci_0916, Adg_1010
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RCC-8:DC(X,Y) ECX,Y) POX,Y) TPP(X.Y) NTPP(X.Y) EQXY) TPP(X,Y) NTPPI(X.,Y)

AR

RCC-5: DR(X.Y) PO(X,Y) PP(X, Y) EQ(X,Y) PPI(X, Y)
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Performance metrics Formula

Precision (P) P
(TP + FP)
Recall (R) TP
(TP + EN)
AP50 1
" 9 PR
AP50-95 i .
R GRS, PRy,

TP (True Positives): The count of correct positive predictions. FP (False Positives): The count
of incorrect positive predictions (actual negatives predicted as positives). FN (False Negatives):
The count of incorrect negative predictions (actual positives predicted as negatives). Q:
Number of query points. P(Rq): Interpolated precision at recall level Rq.
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Steps Description

1 Model Loading Pre-trained segmentation and detection models
are loaded using the YOLO framework.

2 Image Loading The image to be analysed has been uploaded.

3 Segmentation The segmentation model is run on the image, and
the predicted masks are obtained.

4 | Application of Masks | The predicted masks are applied to the original
image to identify specific areas.

5 Detection The detection model is executed on the combined
image, predicting bounding boxes and class names
for objects.

6 Visualization Both segmentation and detection outcomes are

of Results visualized and saved for further analysis.

7 Labelling The segmentation and detection results are
converted into labels and formatted as strings.

8 Integration with By connecting to OpenAI's GPT-4 through its

Natural AP, a question is formulated regarding the

Language Processing = detected labels, and a response is
subsequently obtained.
9 Prompt Creation for | prompt_str = f’Could you provide a detailed

GPT-4 explanation, in academic English, on the methods
for controlling {det_labels_str} or {seg_labels_str}
and the potential damage they can inflict on
related plants, including preventative measures
and integrated pest management strategies?”

10 Combination and The detection results and the text response from

Visualization GPT-4 are visualized and saved.
of Results
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Method Image Type otal Images Training % Test %2
Detection Pest adult images 7000 5600 1260 140
Pest nymph images 2000 1600 360 40
Pest larva images 2000 1600 360 40
Total Images 11000 8800 1980 220
Segmentation Tomato leaf images 5000 4000 900 100
Tomato fruit images 4000 3200 720 80

Total Images 9000 7200 1620 180
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Task Mode

el epochs imgsz patience
segment train yolov8s.pt 10000 16 640 50

detect train yolov8n-seg.pt 10000 16 640 50
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OUTPUT (YOLOVS8 + ChatGPT-4)

Aphids, commonly known as plant lice, belong to the family Aphididae within the order
Hemiptera. These small, soft-bodied insects cause damage to a wide range of vegetables and
ornamental plants, including tomatoes. Aphids feed by extracting phloem sap from plants, which
~ | can lead to stunted growth, leaf deformation, and reduced fruit quality. Moreover, they are
vectors for many viral diseases. Effective chemical control of aphids involves the use of active
| substances such as neonicotinoids (e.g., imidacloprid and thiamethoxam), pyrethroids (e.g.,
deltamethrin), and organophosphates. Environmentally friendly and biological control methods
| include parasitoid wasps such as Lysiphlebus fabarum, ladybird beetles from the family
| Coccinellidae, and green lacewings like Chrysoperla carnea. Additionally, predatory flies such
as Aphidoletes aphidimyza are effective in controlling aphids. Ensuring the success and
sustainability of biological control requires the conservation of natural enemies, accurate
identification, and the provision of optimal environmental conditions.

Tuta absoluta, commonly known as the tomato leafminer, is a species of moth that causes
significant damage to tomato plants. The larvae of Tuta absoluta create galleries within the leaf
tissue, which disrupts the leaf structure and results in chlorophyll loss, consequently reducing
the plant's photosynthetic capacity. The reduction in photosynthesis directly affects the growth

i “vayr s and yield of the plant. Chemical control methods effective against Tuta absoluta include active
. { Tuta absoluta damage (on leaf) 0.90 ingredients such as pyrethroids (e.g., deltamethrin), neonicotinoids (e.g., imidacloprid), and
¥ S 4 A s a5 certain biopesticides (e.g., spinosad). Environmentally friendly control methods involve the use

of predator insects such as Nesidiocoris tenuis and Macrolophus pygmaeus, as well as egg
parasitoids like Trichogramma achaeae. To manage the damage caused by Tuta absoluta on
leaves, adopting an integrated pest management (IPM) approach is essential. This approach
necessitates the formulation of strategies that encompass both chemical and biological control
methods.

| Helicoverpa armigera, also known as the cotton bollworm, is a species of moth with a broad
host range. In fruits, particularly tomatoes, this pest is known for the larvae that feed by
tunneling within the fruit tissue. This feeding activity can create internal cavities, necrotic spots,
and rotten areas in the fruits. Such damage not only leads to aesthetic degradation but also
results in postharvest losses. Effective chemical control of Helicoverpa armigera involves active
"l ingredients such as pyrethroids (e.g., deltamethrin), neonicotinoids (e.g., imidacloprid), and
certain biopesticides (e.g., Bacillus thuringiensis formulations). Environmentally friendly control
methods include egg parasitoids like Trichogramma spp., and larval parasitoids such as
Habrobracon hebetor and Campoletis chlorideae. Integrated Pest Management (IPM) strategies
recommend the balanced application of both chemical and biological control methods to
minimize the damage caused by Helicoverpa armigera to fruits.

Phyllotreta are significant insect pests capable of causing serious damage to agricultural crops.
Their damage potential is particularly high in plants belonging to the Solanaceae family, such as
tomatoes. These beetles damage plant leaves, thereby disrupting photosynthetic processes,
which negatively affects the growth and yield of the plants. Chemical control methods typically
employ active substances such as pyrethroids, neonicotinoids, and organophosphates.
However, chemical control methods are not sustainable due to their environmental impact and
the potential for developing resistance. Environmentally friendly control methods include
biological agents. Entomopathogenic nematodes and predatory beetles can effectively control
soil flea beetles. Additionally, increasing plant diversity and implementing IPM can help
minimize the damage caused by soil flea beetles. Therefore, to ensure environmental
sustainability in agricultural practices and develop effective control strategies against soil flea
beetles, greater emphasis should be placed on biological and cultural control methods.

Tuta absoluta, commonly known as the tomato leafminer, is a Lepidoptera species that causes
significant damage to tomato plants. The larvae feed by consuming leaf, stem, and fruit tissues.
At high population densities, the damage rate to tomato fruits can reach up to 100%, leading to
P economic losses. Effective chemical control against Tuta absoluta involves active substances
Tuta absoluta adult 0.98 such as neonicotinoids, pyrethroids, and insect growth regulators. Regarding environmentally
4 friendly and biological control methods, predatory insects such as Nesidiocoris tenuis and
/ Macrolophus pygmaeus are among the natural enemies of Tuta absoluta. Additionally, egg
parasitoid species such as Trichogramma achaeae and Trichogramma pretiosum are effective
against this pest. Furthermore, entomopathogenic bacterial preparations like Bacillus
+| thuringiensis are also used in biological control. To successfully implement these methods, it is
essential to have a good understanding of the pest's biology, ensure the conservation of natural
| enemies, and apply control measures at the appropriate time.
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Myzus persicae, commonly known ss the green peach sphid,
poses s significant threat to varicus cops. This pest causes
direct feecing damsge. transmits plant viruses, and excretes
honeydew, which fadlitstes the growth of scoty mold. Effective
control methods for Myzus persicae indude chemical
trestments with insecticides such s neonicofincids and
pyrethroids.  Additionally, biclogical contral using  natursl
predators like ladybugs and parasitoid wasps, and cultural
practices like crop rotation and the culivation of resistant plant
varieties, sre also utiized. Integrated Pest Mansgement (IPM)
strategies smalgamate these methods to sustsinatly mansge
aphid populations, mitgste cop damsge, and minimize
environmental impact.
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n Model Precision P% Recall Rate R%

YOLOVS 0.861 0.764 0.828 0.380 15.8
YOLOv6 0.845 0.795 0.858 0411 16.7
YOLOv7 0.837 0.807 0.864 0.409 103.2
YOLOv8 0.865 0.794 0.885 0.433 284

FastMLCA-YOLOvS8 0.902 0.831 0.913 0473 144
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Vegetation Indices

Chlorophyll Index-Red
Edge (CI-REG)

Formula

(NIR/EDGE) - 1

Reference

(Gitelson
et al., 2003)

Two-Band Enhanced
Vegetation Index (EVI2)

Excess Green Index (ExG)

ExG-ExR Vegetation
Index (ExGR)

Green Leaf Index (GLI)

(2.5(NIR - R))/(1 + NIR + 2.4R)

2G-R-B

(2G-R-B)—(1.4R-G)

(2G-R-B)/(2G+R+B)

(Jiang
et al., 2008)

(Zhang
et al.,, 2019)

(Meyer and
Neto, 2008)

(Zhang
et al., 2019)

Kernel Normalized
Difference Vegetation
Index (kKNDVI)

Leaf Chlorophyll
Index (LCI)

tanh (NIR-R)/(2 x 0))*

(NIR-EDGE)/(NIR-R)

(Camps-Valls
et al., 2021)

(Xiao
et al.,, 2014)

Normalized Difference
Vegetation Index (NDVI)

(NIR-R)/(NIR+R)

(Li
et al., 2004)

Normalized Green Red
Difference Index (NGRDI)

(G-R)/(G+R)

(Li
et al., 2019)

Optimized Soil-Adjusted
Vegetation Index (OSAVI)

1.6[(NIR-R) /(NIR+R+0.16)]

(Blanco
et al., 2020)

Renormalized Difference
Vegetation Index (RDVT)

(NIR-R)//(NIR+R)

(Roujean and
Breon, 1995)

Renormalized Difference
Vegetation Index - Red
Edge (RDVI-REG)

(NIR-EDGE)//(NIR+EDGE)

(Roujean and
Breon, 1995)

Red Green Blue G2—(RxB))/(G+(RxB (Bendig
Vegetation Index (RGBVI) (G'-(RxB))/(G +HRxB)) et al., 2015)
Core Red E(?ge Triangular (Walsh

Vegetation Index 100(NIR-EDGE)-10(NIR-G) etal., 2018)

(RTVI-CORE) =

Ratio Vegetation NIR/R (Liu

Index (RVI) et al., 2021)
Visible Atmospherically (Huang
-R R+B
Resistant Index (VART) (G-R]/(G£R4E) etal, 2023)
visible-band difference (Li
vegetation index (VDVI) (2G-(R+B))/(2G+(R+B)) et al., 2022)
G/(R*B"™®) (Hague

Vegetative Index (VEG)

et al., 2006)

R, red band reflectivity; G, green band reflectivity; B, blue band reflectivity; NIR, near infrared
band reflectivity; EDGE, red edge band reflectivity. 0:=0.667, 6=0.5(NIR+RED).
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Growth stage Jointing stage Heading stage Grain filling stage

Features Vis Vis+AIH Vis Vis+AlH AlH Vis Vis+AlH
R 0.60 0.89 0.93 051 0.84 0.90 055 0.80 0.90
RER RMSE 0.59 } 032 0.20 0.78 045 0.35 0.86 0.60 0.37
nRMSE(%) 255 13.53 10.64 15.67 8.88 6.96 1057 7.28 4.58
R 058 0.85 091 058 0.81 0.89 0.63 0.78 0.82
XGBoost RMSE ‘ 052 ‘ 031 0.28 0.66 0.40 031 0.63 0.53 0.47
nRMSE(%) 17.67 854 7.40 1373 1015 7.84 1239 10.05 8.92
R 047 0.82 0.89 0.52 0.81 0.84 045 0.75 0.86
GBRT RMSE 0.68 041 031 0.72 049 0.42 0.82 0.56 0.43
nRMSE(%) 194 1142 8.91 1522 1117 10.0 1557 1075 8.00
R* 0.46 0.87 0.88 0.46 0.82 0.86 042 0.71 0.74
SVR RMSE 0.69 035 033 083 044 0.4 0.89 0.64 0.60
nRMSE(%) 29.54 1465 13.29 16.67 881 7.86 1078 7.74 7.43
R 0.42 0.81 0.83 050 0.75 0.77 044 0.69 0.73
RR I RMSE 0.72 041 0.39 I 074 052 0.49 v 0.76 I 0.69 ] 0.62
nRMSE(%) 3123 17.23 16.58 14.66 10.42 9.81 9.11 8.45 7.48
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Crop Height(m)

Growth stages Sample size

Max Mean
Jointing stage 180 0.362 0.588 0.484
Heading stage 180 0.635 0913 0.768
Grain filling stage 180 0.660 1012 1 0.836

CV, coefficient of variation, Used to describe the central tendency and dispersion of data.
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218

4.48
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2167

15.56
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PanelActual PanelCaptured PanelDepth Value

Error e(x)/mm

Depth Value Depth Value

x*/mm x/mm
74057 741.63 1.06
575.05 577.14 2.09
643.89 641.86 2.03
66232 664.21 1.89
71059 708.65 -1.94
601.31 601.32 0.01
564.44 566.92 248
524.09 521.63 2.46
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Recognition Model Precision P% Recall Rate R%

FastMLCA-YOLOv8 0.902 0.831 0.913 0.473 144

SSD 0.922 0.343 0.687 0.611 259

RT-DETR 0.801 0.760 0.841 0.407 100.6
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Original Mean Absolute

nifv:isér Depth Depth Difference

D/mm D1/mm [D1-D|/mm
1 526.32 306.73 219.59
2 472.83 298.36 174.47
3 | 589.73 341.84 247.89
4 610.52 405.79 204.73
5 565.33 364.91 200.42
6 723.46 477.90 245.56
7 534.65 321.50 213.15
8 582.76 351.02 231.74
9 631.78 425.69 206.09
10 574.39 361.25 213.14
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Configuration name Parameters

13th Gen Intel(R) Core(TM)

Processing Unit 17-13700Kx24

Display Card (computer) NVIDIA GeForce RTX 3090
Graphics Card Driver NVIDIA-SMI 535.161.07
Random Access Memory RAM 64G
Development Language Python 3.9.7
Deep Learning Frameworks Tenseflow

iPhone 13 Pro Max, vivox60,

I Acquisition Equi t
mage Acquisition Equipmen Huawei PAlpro

Depth Camera(Getting depth values) Intel RealSense D455

CUDA CUDA 11.5r.5

Anaconda Conda 4.10.3
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Hyperparameterisation

Value

Clarification

Classes stem Category of identification
Image Size 640x640x3 Input Image Size
Epochs 200 Training Round
Batch:Size 54 Amount of data processed
per batch
Controls the number of
Workers 16 working threads of the
data loader
Stride 1 Step Size Setting
ifi f activati
Activation-Function SiLU Specific use of activation

function types
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Rootstock

-

1103 Paulsen

Pedigree

V. berlandieri
Planch. and V.
rupestris Scheele

Characteristics

- expanded, deep branching roots,
high resistance to phylloxera,
adapted to a wide range of soil
conditions

- good grafting aptitude, confers a
high vigor, long vegetative cycle and

delays ripening.

-

3309 Couderc

FONS

Teleki 5C (5C)

V. riparia
Michx. and V.
rupestris
Scheele ‘Martin’

V. berlandieri
Planch. and V.
riparia Michx.

- slow root system generation,
expanded root types, sensitive to
water stress and Mg, N, B and K,
good resistance to phylloxera

- Good affinity to grafts, confer low
to moderate vigor

- Low to medium tolerance to
different soil conditions (drought,
salinity, lime), high resistance to
phylloxera.

- tends to have a low yield-to-
pruning ratio and is well suited for
varieties with poor fruit set.

Freedom

1613 (V. Longii
Prince ‘solonis’ x
V. hybrid
‘Othello’) and

V. champini

- Low to medium tolerance to
different soil conditions (drought,
salinity, lime)

- Susceptible to phylloxera but
resistant to broad spectrum of
nematodes

- Confers high vigor, sensitive to
latent viruses

-

Selection Oppenheim
4 (S04)

Marquette

V. berlandieri
Planch. and V.
riparia Michx.

V. hybrid (MN
1094 and
Ravat 262)

- Highly tolerant to phylloxera,
moderate vigor rootstock (low vigor
in first years of development),
compatible with grafts but limited
radial trunk growth

- impacts on early development and
maturity of scion

- Cold hardy resistant

- Resistant to common grape
diseases (downy and powdery
mildew) and moderate resistant to
foliar phylloxera

- Used as control in this study
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Model

YOLOv10n

YOLOv10n+C2f-DCNv3(backbone)

YOLOv10n+C2f-DCNv3(head)

YOLOv10n+C2f-DCNv3

All

Over-Mature

Mature

Immature

All

Over-Mature

Mature

Immature

All

Over-Mature

Mature

Immature

All

Over-Mature

Mature

Immature

0939

0.905

0923

0.991

0.97

0952

0959

0.999

0973

0.96

0.967

0.991

0971

0952

0.962

0.998

0.968

0.949

0.966

0.989

0.974

0.96

0971

0.991

0.968

0.933

0.972

0.967

0934

0.966

AP50
0.984
0975
0.984
0.995
0991
0.989
0.989
0.995
0.991
0.987
0.991
0.995
0.987
0.98
0.987

0.995

0.962

0.946

0972

0.968

0.962

0.956

0.968

0.961

0972

0.963

0.979

0974

0.958

0.949

0.969

0.957
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General Compact Polarimetric
Descriptors

| Compact
i Polarimetric CTLR mode
i Data SAR Data
| Processing Simulation /4 mode
i Data Preprocessin; .
‘ P s | ) | R . Aoy and a5 parameters analysis
i ¢ for distinguishing T-H and D-J
: based on General CP SAR
i Geometric Radiation Noise
3 Correction Correction Flltering

Ao and ap parameters analysis of two types of
sEEssT T W A rice paddy
| SVM Classifier
3 (Classification of rice, Extraction of rice

B

| | water, SNL and unban classes Parameter optimization
i classes)
[}

for distinguishing T-H and D-J

SVM classifier

Testing sets =
(Classification of T-H and D-J)

The field synchronization (50%)

experiment
(24 T-H plots, 11 D-J plots,
8 water, 8 SNL and 10
unban)

Phenological Analysis

Verification sets
(50%)

Ground Experiments

Fine Classification of Rice
Paddy
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Hyperparameter @ Value Description

1r0 0.01 Initial learning rate

Ief 0.01 Final learning rate (Ir0 * 1rf)
momentum 0.937 SGD momentum/Adam betal
weight_decay 0.0005 Optimizer weight decay
warmup_epochs 3 Warmup epochs (fractions ok)
warmup_momentum 0.8 Warmup initial momentum
warmup_bias_Ir 0.1 Warmup initial bias Ir
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V emax Training Test Performance

Prediction performance
Model R> RMSE MAE R? RMSE MAE
PCA 0.89 4.37 3.21 0.43 8.57 6.73
Autoencoders 0.89 4.45 327 0.50 7.97 5.96
VIT-CNN1D 0.91 4.22 3.03 0.59 723 5.92
VGG16 0.90 4.09 3.09 0.31 10.96 7.32
InceptionResNet 0.88 4.31 3.19 0.31 12.27 7.69
VIT-CNN2D 0.88 4.72 3.59 0.49 8.03 ‘ 6.83
Jmax Prediction Training Test Performance
performance
Model R> RMSE MAE R?® RMSE MAE
PCA 0.90 8.41 6.41 0.52 18.38 14.67
Autoencoders 0.89 8.78 6.68 0.55 15.67 ‘ 12.77
VIT-CNN1D 0.91 | 8.21 | 6.13 | 0.6 14.79 12.01
VGG16 0.90 8.17 6.29 0.37 21.92 18.74
InceptionResNet 0.89 8.28 6.94 0.42 21.13 17.27
VIT-CNN2D 0.87 9.93 7.89 0.42 17.81 14.54

Each of model type mentioned is feature extractor type which was integrated with XGBoost to
retrieve model prediction results. The model performance metrics for both training and test
dataset are provided.
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Prediction Training Test Performance
Model performance

R> RMSE MAE R? RMSE MAE

Vemax Spectral 091 | 4.00 302 060 714 6.08
+ Chlorophyll

Vemax Spectral + 0.92 3.75 3.03 0.62 7.62 6.40
Temperature + RH

+ SR

Jmax Spectral 0.92 7.59 5.86 0.62 14.39 12.25

+ Chlorophyll

Jmax Spectral + 0.91 7.66 6.26 0.65 15.15 11.66
Temperature + RH
+ SR

Each set of results represents differences in model input features: Spectral + Chlorophyll and
Spectral + Temperature + RH + SR and the training and test performance metrics.
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Models Hyperparameters | Specifications
Autoencoders units min:32, max:256, step = 32
VIT-CNN1D Filters min:16, max:128, step = 16

kernel size min:2, max:7

Learning rate min: le-4, max:le-1

Optimizer Adam

epoch 100 per trial

loss function Mean squared error
VIT-CNN2D Filters min:32, max:256, step = 16

kernel size min:2, max:7

Learning rate min: le-4, max:le-1

Optimizer Adam

epoch 100 per trial

loss function Mean squared error
XGBoost maxdepth min:2, max:10, step = 2

Learning rate
n_estimators

min_child_weight

min:0.01, max:0.1

min:100, max:400

min:1, max:4

reg_alpha

min:0, max:0.01
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A. Rootstock Genotype

M_1103P M_3309C M_Freedom M_SO4 M_Marquette
Vemax 031ab 035a -0.32¢ -0.16bc -0.19¢ -0.02abe
Tooas 0.17ab o5 -0.28bc -0.16bc -0.28¢ 0.0bc
15h 14h 13h 12h
Vemax 0.73 0.63a -0.34b Loz
Tonax 091a 051b -0.46¢ -0.96d

Initial measurements of Vcmax and Jmax were recorded in molm™s™ prior to undergoing z-transformation for normalization conformity. A) Rootstock comparisons, B. Daylength comparisons.
Within each row, mean values with common letters indicate no significant variance amongst them, as determined through Tukey’s Honest Significant Difference (HSD) test for multiple
comparisons, n=4. M = V. hybrid ‘Marquette’ common scion heterografted to rootstock 1103, 3309C, 5C, Freedom, SO4 and homografted to ‘Marquette’.
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