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Benggang, an erosional phenomenon located in southern China, exhibits distinctive characteristics that can have profound ecological and agricultural consequences as well as pose risks to human life. Previous investigations have primarily focused on elucidating the relationships between the physical and chemical attributes of soils collected from Benggang. However, the precise role of free iron oxides in the surface properties of Benggang soil and its contribution to the formation of Benggang remains largely unexplored. In this study, we aim to investigate the role of free iron oxides in Benggang soil by removing them and subsequently introducing goethite to evaluate their impact on the soil’s surface properties. Our results reveal a decrease in the surface charge density of soil colloidal particles with increasing soil depth. Specifically, the uppermost red soil layer exhibits the highest value, followed by the sandy soil and the lowermost clastic layer. Upon removing free iron oxide, we documented reductions of 44.28% (red soil), 20.62% (sandy soil), and 8.70% (clastic layer) in the surface charge density of colloidal particles. The red soil layer presented an over 18-fold increase compared to the initial linear shrinkage, followed by the sandy soil and clastic layer. Notably, the addition of goethite to the iron oxide-free soil layers resulted in the recovery of approximately 81.93%, 121.13%, and 104.35% of the initial surface charge density, respectively. Moreover, significant changes in volume shrinkage were observed, with approximately 97.54% (red soil), 94.75% (sandy soil), and 89.72% (clastic layer) of the initial values being influenced. These findings underscore the substantial influence of free iron oxide on the physicochemical properties of Benggang soil and contribute to a comprehensive understanding of the erosive mechanisms underlying Benggang formation.
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1 INTRODUCTION
Benggang is a unique erosional phenomenon in southern China that forms where sloping soil- and stone-rich horizons become fragmented, collapse, and are further scoured away due to the combined actions of water and gravity (Xu, 1996). Benggang formation can severely impact agricultural production and cause the loss of human life, as well as can hinder the development of the social economy in affected regions (Zhong et al., 2013). Therefore, it is important to comprehensively understand the occurrence and the development of Benggang over time to prevent their formation in the future and/or control their influence when they occur.
Many studies have focused on the macroscopic erosive driving forces that contribute to Benggang formation, and it is widely believed that this type of collapse is influenced by multiple factors, including geomorphology (Chaplot, 2013), vegetation cover (Gyssels et al., 2005; Wang et al., 2014), water flow (Xu and Zeng, 1992; Jiang et al., 2014; Lin et al., 2017), and soil characteristics (Six et al., 2004). Extensive research has been conducted on the physicochemical properties of soil in Benggang, encompassing dry density, water content, clay mineral composition and content (Chen et al., 2018; Wang et al., 2018; Wei et al., 2018; Xia et al., 2019; 2021; Zhang et al., 2022). During periods of rainfall, soil swelling is induced as a result of a rapid influx of water content. Subsequent to the rainfall event, gradual evaporation of soil moisture occurs, leading to soil shrinkage as the water content diminishes. The repetitive cycles of wet and dry conditions exacerbate the development of cracks initiated by soil swelling and shrinkage, ultimately expediting soil erosion processes (Zhang et al., 2023). However, the specific triggers for Benggang formation remain unclear due to the multitude of influential factors.
Charged soils, which contained particles with negative and/or positive charges, are widespread in nature. Phyllosilicates typically exhibit a net negative surface charge under normal pH conditions, whereas iron oxides carry a net positive surface charge (Yu, 1997; Qafoku et al., 2004). Previous studies have demonstrated that the presence of iron oxide can induce a shift in the zeta potential of soil towards positive values (Hou et al., 2007; Jiang et al., 2010; Wang et al., 2013), resulting in corresponding alterations in physicochemical properties such as the linear shrinkage ratio and cation-exchange capacity (Zhang and Kong, 2014). Importantly, the soil surrounding Benggang contains a substantial amount of iron oxide and kaolinite, distinguishing it from other charged soils like purple soil and loessal soil. When this charged soil is dispersed in water, electrical double layers form on both kaolinite and iron oxides. These oppositely charged particles interact with each other by overlapping diffuse layers of electric double layers (Qafoku and Sumner, 2002; Qafoku et al., 2004), thereby altering the surface charge density and subsequently impacting the stability of the soil aggregates (Gao et al., 2019). However, the influence of iron oxides on the surface properties of Benggang soil and their contribution to the formation of Benggang remains largely unexplored despite extensive research in this area.
Moreover, the soil collected in and around Benggang exhibits a distinct layering pattern based on depth, consisting of red soil, sandy soil, and clastic layers. The presence of varying mineralogical compositions within these horizons can lead to significant modifications in their physicochemical properties (Chen et al., 2018). Furthermore, a comparison between Benggang soil and soil collected prior to its formation reveals a decrease in iron oxide concentrations within the red soil layers following the erosive event, while the opposite trend is observed in the sandy soil and clastic layers (Huang et al., 2019). This raises a pivotal question regarding the role of iron oxide content as the primary factor triggering Benggang formation.
To address this issue, we conducted soil sampling in the vicinity of a Benggang in southern China, removing free iron oxide and subsequently introducing goethite to examine the resulting changes in soil properties. Through the analysis of surface charge density and shrinkage characteristics of the red soil, sandy soil, and clastic layers, we aim to elucidate the role of free iron oxides in influencing the surface properties of each soil type and their impact on Benggang formation.
2 STUDY AREA
The undisturbed soil samples used in this study were collected from Benggang located at Yangkeng Village in Longmen Town, Fujian Province, China, (118° 05′E, 24° 57′N), which corresponds to the same site as documented in Huang et al. (2019). A multi-point sampling approach was adopted (Figure 1), wherein three soil samples were collected within a defined area of each layer (approximately 0.5 hm2) to create a composite sample representative of that particular horizon.
[image: Eroded landscape showing three distinct soil layers: red soil at the top, sandy soil in the middle, and clastic material at the bottom. Green vegetation grows sporadically on the slopes.]FIGURE 1 | Photograph of a typical Benggang at Yangkeng Village in Longmen Town, Fujian Province, China. The layered soil structure and associated sampling sites are labeled.
3 MATERIAL AND METHODS
3.1 Soil physicochemical properties and pretreatment
The bulk density, pH (using a solution-to-soil ratio of 5:1), cation-exchange capacity, and mineralogical compositions of the red soil (Soil-A1), sandy soil (Soil-A2), and clastic layers (Soil-A3) in the undisturbed soil samples were measured in accordance with the methodology outlined in our previous study (Zhang et al., 2023). Subsequently, the undisturbed soil samples were naturally air-dried and ground to achieve a particle size smaller than 2 mm. Approximately 50 g of each soil sample was mixed with 25 mL of a 30% H2O2 solution in a 500-mL beaker, which was then subjected to heating at 75°C while simultaneously being mechanically agitated until no bubbles were observed. This process effectively removed all organic matter present in the soil samples. All reagents utilized in the experiment were of analytical grade, and ultrapure water sourced from a Milli-Q Labo apparatus (Nihon Millipore Ltd.) was used for the preparation of solutions. Unless specifically noted, all experiments in this study were replicated three times and all results are expressed as means ± standard deviation (n = 3).
3.2 Removal and addition of iron
The removal of free iron oxides from the undisturbed soil samples in each layer (labeled as Soil-B1, Soil-B2, and Soil-B3) was conducted through a series of meticulous steps (Wu et al., 2017; Chen et al., 2018). Initially, a beaker containing pretreated soil was subjected to a stepwise addition of 40 mL of a sodium citrate solution (0.3 M), 5 mL of a sodium bicarbonate solution (1 M), and 2 g of sodium dithionite. This process was carried out at a temperature of 80°C and repeated until the color of the soil transitioned from red to gray. Subsequently, the gray soil was subjected to three consecutive rinses with deionized water through centrifugation at 4,000 rpm for 20 min per rinse. The resulting precipitate was then freeze-dried for a duration of 10 h and subsequently sieved using a 2-mm sieve. The concentration of free iron oxides present in the supernatant was determined using phenanthroline colorimetry.
The introduction of iron into Soil-B was accomplished through the following procedure (Ma et al., 2007). Firstly, the initial moisture content of Soil-B was measured using conventional drying techniques. Subsequently, 53.94 g, 45.75 g, and 35.83 g of goethite was separately added to 1,000 g of the Soil-B1, Soil-B2, and Soil-B3 layers, respectively. These goethite additions were thoroughly mixed with deionized water until homogeneity was achieved, ensuring the absence of any agglomerations. The resulting prepared soils, designated as Soil-C1, Soil-C2, and Soil-C3, were sealed overnight and subsequently placed in an uncovered plastic box to cultivate at room temperature for a period of 1 month. The water content of each soil sample during this process was maintained at 20% ± 1%. Finally, each soil sample was air-dried and passed through a 2-mm sieve.
3.3 Soil shrinkage ratio test
Each pretreated soil sample was diluted with deionized water to achieve a bulk water content of 15% ± 1%. The mixture was thoroughly mixed until homogenized and subsequently sealed, allowing it to sit undisturbed overnight. After that, a ring-knife sample (diameter, 61.8 mm; height, 20 mm) was prepared from this soil using conventional geotechnical test methods. This process was repeated three times for each soil sample to ensure reliability. To determine the linear shrinkage rate, a soil constrictor (TKA-SSY-1, Nanjing Teco Technology Co., LTD, China) equipped with a data acquisition box (TKA-Dai-8D) and data acquisition and processing software V2.1 was employed. After performing these experiments, the height, diameter, and weight of each soil sample was determined to obtain their water content and longitudinal and transverse shrinkage rates.
3.4 Soil surface property
3.4.1 Collection of soil colloidal particles
Each pretreated soil sample (i.e., Soil-A, Soil-B, and Soil-C) was subjected to a sequential addition of approximately 300 mL of deionized water and 10 mL of a 5% sodium metaphosphate solution. The mixture was then placed in a high-speed mixer and stirred for a duration of 10 min at a speed of 500 rpm. The well-stirred soil liquid was subsequently transferred into a 1-L measuring cylinder and further stirred 30 times using a stirring rod. After allowing the suspension to settle for a period of 20 h, the uppermost 7 cm of the suspension within the measuring cylinder was carefully collected. This collected suspension was then subjected to centrifugation and freeze-drying processes to obtain soil colloidal particles with a size of less than 1,000 nm. The crystalline components of all the soil colloidal particles were analyzed using an automated Rigaku Utimal X-ray diffractometer (XRD) equipped with Cu kα radiation. The XRD analysis was performed under the following operating conditions: 40 kV × 40 mA and a 2θ degree angle ranging from 10° to 90° at a scan rate of 4° min−1.
3.4.2 Determination of surface charge density
The surface charge properties of the soil colloids were determined following the combined method of Li et al. (2011), which involved multiple steps. Firstly, 10 g of the colloidal particles from each soil sample (as previously described) were carefully placed in a 500-mL centrifuge bottle, ensuring a soil-to-liquid ratio of 1:5. Subsequently, 50 mL of 0.1 M HCL solution was added to the bottle, and the mixture was subjected to centrifugation for a duration of 12 h. After that, the supernatant was discarded, and this procedure was repeated three times, after which it was finally freeze-dried. Next, 2 g of the freeze-dried soil colloid particles were transferred into another 500-mL centrifuge bottle and were oscillated for 12 h during the addition of 15 mL of 0.02 M Ca(OH)2 solution. Following this, another 24 h period of oscillation was carried out, during which 15 mL of 0.02 M NaOH was added. The pH value of the mixture was adjusted to a range of 6.0–8.0 after the oscillation. This process continued for at least 12 h until the pH reached a neutral value. Finally, the mixed solution was subjected to centrifugation at a speed of 4,000 rpm to obtain the supernatant. The concentrations of Ca2+ and Na+ in the supernatant were measured by atomic absorption spectrometry (PerkinElmer, PinAAcle900F, United States of America) and flame photometry (FP640, Shanghai Precision and Scientific Instrument Co., Ltd., China). The surface charge density (σ0) and surface potential (φ0) in the mixed system were calculated as follows (Li et al., 2011):
[image: The formula depicts \( \sigma_0 = \frac{(N_{\text{Na}^+} + 2N_{\text{Ca}^{2+}}) \times F \times 10^{-5}}{S} \).]
[image: Equation showing the steady-state binding of sodium ions, represented as S equals k times N Na plus, divided by m times C zero Ca, times e raised to the power of beta chi a times F phi zero, divided by two R T.]
[image: The equation shows phi subscript zero equals the fraction two RT over open parenthesis beta subscript Ca minus beta subscript Na close parenthesis F, multiplied by the natural logarithm of the fraction C subscript Ca times N subscript Na superscript plus over C subscript Na times N subscript Ca superscript two plus.]
[image: Equation showing beta sub Ca equals two minus beta sub Na equals negative 0.0213 times the natural log of rs plus 1.2331.]
[image: Equation showing the formula for kappa: kappa equals the square root of open parenthesis eight pi F squared C superscript zero close parenthesis divided by open parenthesis epsilon R T close parenthesis.]
Where [image: The chemical notation "C" with subscript letters "Na" and a superscript "0".], [image: The image shows the mathematical notation for the binomial coefficient, represented as C with subscript variables a and b, in italic serif font.], [image: Text showing the element symbol for sodium, "N" in bold representing the symbol for sodium (Na) with a superscript plus sign indicating a positive charge, forming the ion Na⁺.], and [image: Stylized text showing "N" with "Ca^{2+}" in subscript, representing a notation commonly used in chemistry or physics to denote specific ions or concentrations.] are the bulk concentrations and the adsorbing capacities of Na+ and Ca2+, respectively. βCa and βNa are the relative charge coefficients of Na+ and Ca2+, respectively. I0.5 is the square root of the ionic strength in the bulk solution. R, T, F, and S represent the gas constant, absolute temperature (Kelvin), Faraday constant, and the specific surface area of charged soil particles, respectively. κ, m, and ε denote the Debye–Hückel parameter, the modification factor ([image: Equation showing \( m = 0.5259 \cdot \ln \left( \frac{C_{\text{Na}^0}}{C_{\text{Ca}^0}} \right) + 1.992 \).]) and the dielectric constant of water, respectively.
3.5 Statistical analysis
Data analysis was conducted using IBM SPSS statistics, employing the least significant difference approach. Specifically, One-way ANOVA with Dunnett’s T3 method was utilized for analyzing the shrinkage rate following the removal and subsequent introduction of iron, while the Pearson method was applied to assess the correlation between the soil swelling rate of different soil layers and the shear plane thickness of colloidal particles.
4 RESULTS
4.1 Physical properties of the pretreated soils
The undisturbed soil comprised three distinct types: red soil (Soil-A1), sandy soil (Soil-A2), and clastic layers (Soil-A3). These soils exhibited bulk densities of 1.31, 1.32, and 1.49 g·cm−3, respectively. The pH values of these soils, measured using a solution to soil ratio of 5:1, was determined to be 5.06, 4.82, and 4.65 g·cm−3, respectively. The cation-exchange capacity for Soil-A1, Soil-A2, and Soil-A3 was found to be 8.25, 3.33, and 2.67 cmol·kg−1, respectively. The content of free iron oxide in the red soli was the highest, with a value of 48.57 g·kg−1, followed by the sand soil with 41.19 g·kg−1 and debris layers with 32.26 g·kg−1.
Figure 2 displayed the XRD spectra of soil colloidal particles extracted from the pretreated soils. These spectra were carefully compared to relevant references (Chen et al., 2018; Huang et al., 2019) for identification of crystalline types within soil before and after the addition of goethite. The XRD analysis revealed that the red soil and sandy soil layers within Soil-A demonstrated distinct reflection peaks at 6.1°, 8.8°, 12.3°, 18.2°, 24.8°, and 26.6° (Figure 2A), indicating the presence of hydroxy-interlayered vermiculite, illite and kaolinite. Similarly, the clastic layers exhibited characteristic diffraction peaks of illite and kaolinite at 8.8°, 12.3°, 24.8° and 26.6°. These findings align well with previous studies (Huang et al., 2019; Zhang et al., 2023). Notably, the removal of free iron oxide from the undisturbed soil had negligible impact on these XRD reflection peaks, as shown in Figure 2B. Upon the introduction of goethite to Soil-B, the reflection peaks at 8.8°, 12.3°, 18.2°, 24.8°, and 26.6° remained unaltered, while the peak at 6.1° was not observed due to its significantly lower relative intensity (Figure 2C). A new distinct characteristic diffraction peak emerged at 28.4° in Soil-C (Figure 2C). Through a comparative analysis of these spectra with those of Soil-A, Soil-B, and the standard data JCPDS 29-0713 and 54-0489, it was determined that the emergence of this new peak could be attributed to the presence of Fe2O3, which originated from the introduction of goethite.
[image: X-ray diffraction patterns of soils: Graph A shows patterns for Soil-A₁, Soil-A₂, and Soil-A₃, with peaks at 12.3°, 18.2°, 24.8°; Graph B for Soil-B₁, Soil-B₂, and Soil-B₃, with peaks at 18.2°, 26.6°; Graph C for Soil-C₁, Soil-C₂, and Soil-C₃, displaying similar peaks. Intensity variations indicate differences in mineral composition like kaolinite, illite, and HIV.]FIGURE 2 | XRD spectra of soil colloidal particles collected from (A) undisturbed soil (Soil-A), (B) undisturbed soil without free iron oxides (Soil-B), and (C) Soil-B with the addition of goethite (Soil-C). The inset in part (C) shows an enlargement of the spectra. Numbers are as follows: 1, red soil layers; 2, sandy soil layers; 3, clastic soil layers. HIV: hydroxy-interlayered vermiculite.
4.2 Shrinkage characteristics
As shown in Figure 3A, it could be observed that the clastic layer of the undisturbed soil exhibited the highest linear shrinkage rate (0.40%) during the 96-h measurement period, while the sandy and red soil layers in the undisturbed soil experienced minimal changes, with linear shrinkage rates of 0.32% and 0.13%, respectively. Upon the removal of free iron oxides (Figure 3B), the red soil layer (Soil-B1) demonstrated the most pronounced linear shrinkage rate, reaching a magnitude of 2.38%. This value presented an over 18-fold increase compared to the initial linear shrinkage. Subsequently, the sandy soil layer and the clastic layer followed suit with linear shrinkage rates of 1.15% and 0.42%, respectively. Furthermore, upon the addition of goethite (Figure 3C), the corresponding red soil layer (Soil-C1), sand soil layer (Soil-C2), and clastic (Soil-C3) layers experienced a degree of restoration, resulting in linear shrinkage rates of 1.65%, 0.85% and 0.45%, respectively. We also conducted a significance test on the linear shrinkage rate following the removal and subsequent addition of iron. As a result, significant changes (ρ < 0.05) were noted in the red soil and sandy soil; however, no statistically significant change (ρ > 0.05) was observed in the clastic layer.
[image: Three line graphs labeled A, B, and C show the linear shrinkage ratio over time for different soil types: red soil, sandy soil, and caustic layers. Graph A (Soil-A) shows the red soil layer with the lowest shrinkage, sandy soil with moderate shrinkage, and caustic layer with the highest shrinkage. Graph B (Soil-B) demonstrates the red soil layer with the highest shrinkage, followed by sandy soil and caustic layer. Graph C (Soil-C) displays the red soil layer with the highest shrinkage, with sandy and caustic layers showing lower levels. Each graph plots time in hours on the x-axis and shrinkage ratio percentage on the y-axis.]FIGURE 3 | Linear shrinkage ratio of (A) undisturbed soil (Soil-A), (B) undisturbed soil without free iron oxides (Soil-B), and (C) Soil-B with the addition of goethite (Soil-C).
To further evaluate the impact of free iron oxide on the soils, we followed the established guidelines outlined by Mishra et al. (2020), wherein we calculated the volume shrinkage of ring-knife samples subsequent to shrinkage. As illustrated in Figure 4, the red soil layer exhibited the most substantial disparity in volume after the removal of free iron oxide, with a magnitude of 14,592.19 mm3. The sandy soil layer followed suit with a volume difference of 9,343.09 mm3, while the clastic layer displayed a comparatively minor volume difference of 550.14 mm3. Subsequently, in the case of Soil-B, when subjected to goethite cultivation, the volume shrinkages of Soil-C1, Soil-C2, and Soil-C3 were determined to be approximately 97.54%, 94.75%, and 89.72% of the initial value of the corresponding undisturbed soil layers, respectively.
[image: Bar chart showing volume shrinkage for three soil types: Soil-A, Soil-B, and Soil-C across three layers: Red soil, Sandy soil, and Clastic layer. Volume shrinkage values range from 30000 to 80000 with variations across soil types and layers.]FIGURE 4 | Volume shrinkage of undisturbed soil (Soil-A), undisturbed soil without free iron oxides (Soil-B), and Soil-B with the addition of goethite (Soil-C).
4.3 Surface charge density of the pretreated soil colloidal particles
Table 1 demonstrated that the surface potential of soil colloidal particles from each soil layer ranged from −67.77 ± 4.73 mV to −82.01 ± 4.88 mV, which correlated with findings reported for purple soil (Ding et al., 2015). For the undisturbed soil (Soil-A), the surface potential of red soil colloidal particles (Soil-A1) was more negative at −79.78 ± 3.55 mV compared to sandy soil (Soil-A2) at −76.52 ± 2.03 mV and the clastic (Soil-A3) layer at −70.94 ± 3.84 mV. Similarly, the calculated surface charge density of the red soil colloidal particles (Soil-A1, 3.32 ± 0.33 × 10−2 C·m−2) was considerably higher than for the sandy soil (Soil-A2, 1.94 ± 0.04 C·m−2) and the clastic (Soil-A3, 1.61 ± 0.31 C·m−2) layer. Upon removing free iron oxides from the undisturbed soil, the cation-exchange capacity for the red soil, sandy soil, and clastic layer changed by 6% each. Most importantly, reductions of 44.28%, 20.62%, and 8.70% were observed in the surface charge density of colloidal particles collected from the red soil (Soil-B1), sandy soil (Soil-B2), and clastic layer (Soil-B3), respectively. Subsequently, upon the introduction of goethite into Soil-B, the initial surface charge density increased by approximately 81.93% (Soil-C1), 121.13% (Soil-C2), and 104.35% (Soil-C3) in comparison to the corresponding layers in the undisturbed soil. Furthermore, the surface potential of the red soil experienced a reduction after the removal of free iron oxides, which was subsequently reversed by the addition of goethite. In contrast, opposite trend was observed for sandy soil. Notably, the surface potential of the clastic layer did not show significant influence through this process.
TABLE 1 | Surface properties of colloidal particles for all pretreated soils.
[image: Table comparing different soil types labeled A1, B1, C1, A2, B2, C2, A3, B3, and C3. It lists values for $C_{\text{Na}^+}$, $C_{\text{Ca}^{2+}}$, adsorbing capacity for Na\(^+\) and Ca\(^{2+}\), surface area (S), electric potential (\(\phi_0\)), and surface charge density (\(\sigma_0\)). Footer notes identify soil characteristics for A, B, and C types.]4.4 Pearson correlation between the content of free iron oxide and soil properties
Table 2 presented the Pearson correlations between the content of free iron oxide and various soil properties. The analysis revealed that the content of free iron oxide in all soil layer exhibited a consistently low negative correlation with the linear shrinkage rate, and no significant change in this relationship was observed. Furthermore, the analysis indicated the absence of any significant positive correlation between the content of free iron oxide and volume shrinkage. Additionally, no statistically significant correlation was estimated between the content of free iron oxide and surface potential. In contrast, the content of free iron oxide demonstrated moderate and statistically significant negative correlations with the specific surface area of charged soil particles (ρ < 0.05), and surface charge density (ρ < 0.05).
TABLE 2 | Pearson correlation between the presence of free iron oxide and soil properties.
[image: Table showing correlation and two-tailed test results for iron content versus different parameters. Significant negative correlations at the 0.05 level marked with an asterisk include \( S \) (−0.771) and \( \sigma_0 \) (−0.702). Other correlations for \( \phi_0 \), linear shrinkage rate, and volume shrinkage are provided.]5 DISCUSSION
Previous studies have extensively documented the profound influence of clay minerals on the physicochemical and surface properties of soil (Hou et al., 2007; Jiang et al., 2010; Wang et al., 2013). In this study, we conducted a designed experiment to investigate the role of free iron oxide in Benggang soil layers, including red, sandy and detritus soil layers. To achieve this, we employed a rigorous methodology, which involved the systematic removal of free iron oxide from all soil layers and the subsequent introduction of goethite into the respective soil layers. Our analysis of the XRD spectra revealed that the removal of free iron oxide did not exert a significant influence on the presence of characteristic reflection peaks. However, upon the addition of goethite, a distinct change manifested in the XRD spectra, specifically the emergence of a well-defined diffraction peak at 28.4° (Figure 2). It is crucial to note that this peak was attributed to Fe2O3 rather than goethite. This distinction arises from the fact that goethite in the soil, with the passage of 1 month of cultivation, underwent a process of remodeling after and was ultimately transformed into iron oxide.
The shrinkage characteristic of soil is a fundamental parameter that plays a crucial role in assessing its mechanical properties. Upon removing free iron oxide from Benggang soil, we observed a remarkable increase in the initial linear shrinkage of the red soil and sandy soil layers, with magnitudes exceeding 18-fold and 3.5-fold, respectively. However, no significant change occurred in the clastic layer (Figure 3B). In contrast, upon the introduction of goethite, a substantial decrease in the linear shrinkage rates was observed. Specifically, the red and sandy soil layers exhibited reductions of over 12-fold and 2.6-fold, respectively (Figure 3C). These phenomena could be attributed to the fact that soil physical properties, including soil cohesion, were directly influenced the presence of free iron oxide (Zhang and Kong, 2014). The rapid escalation of soil shrinkage rate directly contributed to the instability of the soil structure, potentially leading to soil erosion. In particular, loose subsoil, such as sandy or detritus soil layer, with low Fe-oxide contents disintegrated first after rainfall, followed by the collapse of the structurally stable red soil with high Fe-oxide contents, ultimately resulting in soil erosion. When goethite was introduced into the corresponding soil layers in the absence of free iron oxide, a significant volume shrinkage of approximately 97.54%, 94.75%, and 89.72% of the initial value was observed in the undisturbed red, sandy and detritus soil layers, respectively. These results clearly established a direct correlation between the presence of free iron oxide content in the soil and the magnitude of shrinkage it underwent.
The removal of free iron oxide and the introduction of goethite possess the inherent capabilities to induce alterations in both the surface charge density and surface potential, which, in turn, have the potential to exert a profound influence on the overall stability of a soil aggregate (Gao et al., 2019). Our measurements of the surface charge density of soil colloidal particles collected from the undisturbed Benggang soil revealed a range of values, ranging from −67.77 ± 4.73 mV to −82.01 ± 4.88 mV (Table 1). These values were consistent with previous findings of −82.8 ± 5.2 mV reported for acidic purple soil with a pH of 4.65 (Ding et al., 2015). However, they slightly differed from the values of −82.79 ± 4.73, −63.45 ± 5.39, and −90.55 ± 13.73 mV obtained in our previous study (Zhang et al., 2023), possibly due to variations in soil physicochemical properties, such as pH value. The removal of free iron oxide (Soil-B) resulted in a decrease in the surface charge density with increasing soil depths, indicating that the presence of free iron oxides had the most significant influence on the surface charge density. Subsequently, upon adding goethite into the corresponding soil layers in the absence of free iron oxide (Soil-C), the surface charge densities reached approximately 81.93%, 121.13%, and 104.35% of the initial surface charge density. Obviously, the impact of free iron oxide varied among soil layers, consistent with the observed variation in soil shrinkage mentioned earlier. The relationships between the content of free iron oxide and soil properties (Table 2), including surface potential, surface charge density and shrinkage, further confirmed the aforementioned results. Nevertheless, the absence of a substantial correlation between shrinkage and free iron oxide content, might be attributed to the fact that alterations in the levels of free iron oxides directly affect soil cohesion, thereby indirectly influencing soil swelling and shrinkage dynamics.
6 CONCLUSION
Our experimental results show that the surface charge density of undisturbed soil colloidal particles in a Benggang decreases with depth: specifically, the red soil layer has the highest surface charge density, and the debris (clastic) layer has the lowest surface charge density. After the removal of free iron oxide from each layer, this effect did not change, and reductions of 44.28%, 20.62%, and 8.70% were determined for surface charge density of the colloidal particles for red soil, sandy soil, and clastic layers, respectively. After the addition of goethite, the soil colloidal particles recovered approximately 81.93%, 121.13%, and 104.35% of their initial surface charge density, respectively. Furthermore, free iron oxide has an impact on soil shrinkage characteristics, which is especially pronounced for the red soil layer. Approximately 97.54% (red soil), 94.75% (sandy soil), and 89.72% (clastic layer) of the initial volume shrinkage can be achieved by the addition of goethite into the iron oxide-free soil layers, respectively. These results indicate that free iron oxide has the maximum influence on the surface charge density of soil colloidal particles and shrinkage characteristics in red soil layers, followed by sandy soil and clastic layers.
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Semiarid regions play a pivotal role in global ecosystem and environmental governance. Changing environment (climate and land use variation) has led to the disruption of hydrology in semi-arid regions and ecological degradation in some area. Understanding their hydrological response to changing environments is crucial for ecological rehabilitation and optimal water resource allocation. This research, conducted in a Chinese semiarid watershed, integrates multi-field models about hydrology, meteorology and geography to investigate hydrological processes in typical hydrological years. The results indicate that the climate in this region is drying, and the likelihood of extreme weather events is increasing with global warming. Projecting changes from 2010 to 2060, 9.21% of grassland converting to 5.63% of forest and 3.58% of gully built-up land. As a result, the flood peak increases by 22.99% in typical drought years, while it decreases by 36.77% in normal years. Based on our analysis of the rainfall-runoff process in typical drought and normal years, we identify two distinct effects: the “local rainfall-runoff effect” and the “global rainfall-runoff effect”, respectively. However, in typical wet years, the streamflow state is primarily controlled by intense and concentrated precipitation. This research provides insights into the effect of ecological restoration and typical climate variations on hydrological cycle in semiarid regions, thus contributing to more informed decision-making in environmental management and water resource planning.
Keywords: hydrological processes, land use variation, climate change, SWAT model, the Loess Plateau

1 INTRODUCTION
The semiarid regions, as transition zones between wet and dry, are vital regions for ecological management (Zeng et al., 1999; Rotenberg and Yakir, 2010), covering 15% of the world’s territory (Li et al., 2015). These regions are particularly sensitive to climate shift and land-use variation due to the infertile soils and fragile ecosystems (Li et al., 2016; Zhou et al., 2016; Huang et al., 2017). Field observations and model simulations alike indicate that semiarid regions respond more significantly to global warming (Huang et al., 2016). For instance, during the boreal cold season from 1901 to 2009, the warming observed in global semiarid regions exceeded the global average 1.13°C, reaching 1.53°C (Huang et al., 2012). With the projected increase in precipitation and potential evapotranspiration in drylands, these regions face significant challenges (Bates et al., 2008; Scheff and Frierson, 2014; Zhao et al., 2014; Zhao and Dai, 2017). Additionally, their vulnerability to human activities is compounded by water scarcity and sparse vegetation. The rapid population growth and intensifying human activities further strain the ecosystems of semiarid regions, making them a critical focus for ecological management and restoration efforts (Nyamadzawo et al., 2012; Hoover et al., 2015).
The Loess Plateau (LP), renowned for severe soil erosion, occupies a significant portion of China’s north-central region. The arid, semiarid, and semi-humid zones constitute 15%, 53%, and 32% of the LP, respectively, based on the aridity index. Historically, the LP was a lush plain, boasting abundant water resources, lush grasslands, dense forests, and fertile soil (Zhao et al., 2013). However, by the late 20th century, soil erosion and intense human activities had transformed over 70% of the region into hilly-gully landscapes, with natural vegetation coverage dwindling to just 31.6% (Shi and Shao, 2000; Tsunekawa et al., 2014). Alarmingly, the erodible loess soil contributes ∼90% of the sediment in the Yellow River (Yu et al., 2020), posing a great threat to the lives and property of downstream communities. To address these challenges, the Chinese government has embarked on a series of environmental rehabilitation initiatives since 1999. These include the “Grain for Green Program” (GFGP) (DELANG and Yuan, 2015), the “Gully Land Consolidation Project” (Kang et al., 2021), and land evaluation and replanning efforts (Chen et al., 2003). These measures have obviously altered the land use patterns in the LP. Specifically, agricultural land has shrunk by 28.3%, while grassland and forestland have expanded by 12.4% and 5.0%, respectively. Additionally, urban development areas have grown by 10.8% (Yu et al., 2020). These rehabilitation efforts have effectively mitigated soil erosion and restored some ecological functions in the LP. However, the increased vegetation cover has also altered the hydrological cycle of the region. The expanded vegetation has resulted in increasing rainfall interception and infiltration, reducing surface runoff (McVicar et al., 2007; Zhao et al., 2017). Coupled with global warming, changes in rainfall patterns and temperature have further influenced evapotranspiration, water yield, and soil moisture in the LP. These interconnected processes pose complex challenges for sustainable water resource management and ecological rehabilitation in the semiarid regions of the LP (Zhao et al., 2018; Ge et al., 2020).
Extreme weather and climatic events were relatively rare, but they have become increasingly frequent and devastating in the context of climate variation and population growth (IPCC, 2023). Numerous studies analyzing extreme indices have revealed a global trend towards a rise in the occurrence of extremely wet days, along with notable increases in rainfall intensity, particularly in semiarid regions (Barry et al., 2018; Di Capua and Rahmstorf, 2023; Otto, 2023). Intermittent flooding or prolonged drought events have profound impacts on sustainable socio-economic development and efforts towards regional vegetation restoration (Mokrech et al., 2008; Adhikari et al., 2010; Zhao et al., 2011; Hao et al., 2012). On the LP, even in areas with seemingly successful ecological restoration, extreme precipitation has triggered severe soil erosion. For instance, the prolonged and intense rainfall during July 2013 in the Yanhe watershed (study area in this research) caused flooding hazards, resulting in 6,645 injuries and property damage worth 27 million. Additionally, water scarcity poses a significant obstacle to environmental restoration efforts in the LP. The formation of a soil dried layer is a negative consequence of the GFGP (Jia et al., 2019). In some man-made mature forest, trees growing to only 20% of their regular height due to water scarcity (Chen et al., 2015). The imbalance between water surplus and deficit also significantly impacts streamflow patterns, influenced by climate shifts and land-use variations.
To investigate the hydrological effect of climate variation and land-use modification in semiarid regions, this study focused on the Yanhe watershed, a representative semiarid area within the LP, as the study area. Firstly, we analyzed the temperature, precipitation and streamflow in the last 50 years by Mann-Kendall trend test. Besides, the standard precipitation evapotranspiration index (SPEI) was utilized to categorize the hydrologic years. And then, the Cellular Automata Markov chain (CA-Markov) was employed to forecast the spatial distribution of landscapes in 2060 (China’s carbon-neutral target year). By leveraging the classified representative hydrological years and the predicted land-use layout for 2060, the Soil and Water Assessment Tool (SWAT) was engaged to evaluate the influence of vegetation restoration and urban sprawl on streamflow patterns across a range of hydrological conditions. This comprehensive approach provides a profound insight into the hydrological characteristics under varying climatic and land-use conditions, serving as a crucial reference for environmentally sustainable and economically viable development strategies in semi-arid regions.
2 MATERIALS AND METHODS
2.1 Study area in a semiarid region
The Yanhe watershed, situated in the western reaches of China’s LP, serves as a representative semiarid region (Figure 1). Spanning an area of 7,634 km2, it exhibits a remarkable altitudinal range, varying from 495 to 1,793 m. Within this vast territory, approximately 45% of the landmass comprises gentle slopes ranging from 0 to 25°, while the remaining 55% features steeper slopes exceeding 25°. Over the period of 1970–2019, the Yanhe watershed received an average annual precipitation of 477 mm, with a significant concentration of 60% of this rainfall occurring during the flood season, which spans from July to September. The region’s land-use pattern is diverse, encompassing farmland, grassland, forest, urban areas, and waterbodies. Notably, the Ganguyi gauging station, positioned downstream, oversees a significant portion of the watershed, encompassing approximately 77% of its total area. Drawing from extensive long-term observation data, it is recorded that the mean annual streamflow at the Ganguyi station has been 1.83 × 108 m3 over the past 50 years.
[image: Map showing the Loess Plateau region in China with elevation ranging from 495 to 1793 meters. Key features include streams, weather stations marked with green dots, and the Ganguyi gauging station marked with a red triangle. The map situates the plateau in China, highlighting nearby regions like the Yellow River basin and semi-arid and semi-humid zones.]FIGURE 1 | Site of the Yanhe watershed and its hydrometeorological stations.
2.2 Data sources and processing
The daily meteorological data during 1970–2019 were collected from five weather stations situated within the Yanhe watershed. This data contained precipitation, temperature, solar radiation, humidity, and wind speed. The climate data can reflect the characteristics of climate change during the study period and drive the hydrological model. Additionally, the observed monthly streamflow data from the Ganguyi gauging station, crucial for trend analysis and SWAT model calibration and validation, were accessed from the National Earth System Science Data Center (http://www.geodata.cn) and the Geographic Data Platform of Peking University (https://geodata.pku.edu.cn). Furthermore, to predict land-use patterns and power the SWAT model in the Yanhe watershed, a digital elevation model (DEM) with a high resolution of 30 m × 30 m was procured from the Geospatial Data Cloud (http://www.gscloud.cn). Land-use raster data, also at a resolution of 30 m × 30 m, for the years 1990, 2000, and 2010, were provided by the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn). Additionally, soil properties data with a resolution of 1,000 m × 1,000 m were sourced from the Harmonized World Soil Database (HWSD). This database offers an extensive investigation of global soil attributes at a depth of 1.0 m, including soil texture, organic carbon content, bulk density and others, and the soil properties data can provide a foundation for the localized SWAT model. Utilizing these comprehensive datasets, the hydrological processes in representative hydrologic years within the Yanhe watershed were researched, leveraging territorial data and multi-field coupling models (Figure 2).
[image: Flowchart depicting hydrological analysis. It includes climate and flow data analysis using the Mann-Kendall test and trend analysis. GIS map shows geographical elements. Land-use data from 2000, 2005, and 2010 are used for change predictions via CA-Markov. Soil properties and DEM data are employed in SWAT for hydrological years identification. Outputs detail hydrological processes in drought, normal, and wet years.]FIGURE 2 | Data analysis and model building processes in the Yanhe watershed.
2.3 Research methods
2.3.1 Mann-Kendall test
The Mann-Kendall test is a widely utilized and globally recommended non-parametric approach by the World Meteorological Organization for trend analysis in hydrology and meteorology. Its popularity stems from the fact that it does not assume any specific distribution of samples and is insensitive to seasonality (Van Belle and Hughes, 1984; Nalley et al., 2013). In conducting this test, the null hypothesis (H0) assumes that the test variables exhibit no trend during the specified period. Conversely, the alternative hypothesis (H1) rejects H0 in the presence of a monotonic trend within the test period. The statistical procedures involved in the Mann-Kendall test are outlined as follows (Mann, 1945; Da Silva et al., 2015):
[image: Mathematical formula showing a summation: S equals the double summation from i equals one to n minus one, and j equals i plus one to n, of the sign function of the difference between X sub j and X sub i.]
where the target statistics S is to assess trends in a time series, n denotes the total number of data points in the series, ranging from 1 to n; Xj and Xi represent the respective values at positions j and i within the time series (i < j); sgn (Xj−Xi) indicates the difference between Xi and Xj:
[image: Mathematical equation showing the sign function for the difference between \(X_j\) and \(X_i\). It equals \(+1\) if \(X_j - X_i > 0\), \(0\) if \(X_j - X_i = 0\), and \(-1\) if \(X_j - X_i < 0\).]
The solution to the series data variance is:
[image: Variance formula \( \text{Var}(S) = \frac{n(n-1)(2n+5) - \sum_{i=1}^{p} t_i(t_i-1)(2t_i+5)}{18} \).]
where Var(S) represents the normalized measure of the variance of S; p means the total group of nodes; ti is the time range at the i node. When the number of samples are over 30 (n > 30), the standard normal statistical variable ZS is:
[image: Mathematical expression showing a piecewise function for \( Z_S \). It includes three cases: \( (S-1) / \sqrt{Var(S)} \) for \( S > 0 \); \( 0 \) for \( S = 0 \); and \( (S+1) / \sqrt{Var(S)} \) for \( S < 0 \).]
In the bilateral trend test, if |ZS| is greater than Z1−α/2 within a given confidence level of α, it indicates the sample data have a significant trend in the testing period, which rejects the null hypothesis. If ZS > 0, it means that the sample data have a significant growth trend in testing period, while if ZS < 0, the sample data exhibit a significant downward trend during the testing time. When the |ZS| is greater than 1.64 and 2.32, which means the variable is significant monotonicity at the 95% and 99% levels, respectively.
2.3.2 Standard precipitation evapotranspiration index
The SPEI, as a widely employed method for assessing drought conditions, relies on the trade-off between precipitation and potential evapotranspiration (Vicente-Serrano et al., 2010). Consequently, it effectively mirrors the consequences of global warming on drought patterns (Vicente-Serrano et al., 2010). Furthermore, the SPEI exhibits flexibility in adapting to the diverse time scales characteristic of drought events. (Bohn and Piccolo, 2018).
The SPEI possesses a mean value of 0 and a standard deviation of 1, serving as a reliable metric for analyzing drought characteristics. Based on factors such as intensity, magnitude, duration, and frequency, water surplus and deficit are categorized into seven distinct groups (Tan et al., 2015; Bohn and Piccolo, 2018). For the purpose of studying hydrological processes across various hydrologic years, these seven categories are further consolidated into three representative types (Table 1).
TABLE 1 | Standard precipitation evapotranspiration index (SPEI) classification.
[image: Table displaying the Standardized Precipitation-Evapotranspiration Index (SPEI) categories and reclassification. SPEI ranges are categorized from extremely dry (SPEI ≤ -2) to extremely wet (SPEI ≥ 2). Reclassification labels include typical drought, normal, and typical wet.]2.3.3 Cellular Automata Markov chain
The CA-Markov model integrates the Cellular Automata (CA) and Markov Chain (MC) models, both being discrete dynamic models that operate in terms of time and state. The Markov Chain, as a stochastic model, characterizes the transition probabilities of a sequence of random variables across discrete time intervals (Sang et al., 2011; Du et al., 2012). On the other hand, CA performs spatial operations where each cell’s state at time t + 1 is influenced by its neighboring cells at time t (Ye and Bai, 1969; Mohamed and Worku, 2020). In landscapes encompassing multiple land-use categories, land-use changes exhibit the Markov property. Therefore, a land-use transition matrix is constructed to capture the probabilities of each land-use type transforming into any other type. This matrix serves as a valuable tool in predicting future land-use changes.
However, the Markov chain model ignores the significant influence of geomorphology on land use and lacks the ability to effectively capture the dynamics of land-use alternation. In contrast, the CA-Markov model leverages the spatial operation capabilities of CA and the transition probability analysis of the Markov chain, enabling it to forecast spatially explicit land-use variation over a specified period. This combined approach provides a more comprehensive and accurate understanding of land-use dynamics, considering both the spatial context and the probabilistic nature of land-use transitions (Mondal and Southworth, 2010).
The hybrid CA-Markov model was implemented using the IDRISI software platform (Eastman, 1999). Prior to predicting the land use in the Yanhe watershed for the year 2060, the model’s accuracy was rigorously tested by comparing real and simulated land-use layouts for the year 2010. Initially, a Markov transition matrix was constructed using land-use maps from 1990 to 2000. This matrix captured the probability of each land-use type transitioning to any other type. Additionally, ancillary images depicting highways, motorways, railways, waterbodies, slopes, and altitudes were employed as part of a multi-criteria decision-making process to generate a transition suitability image collection. This collection provided a spatial representation of the suitability of each land-use type. Subsequently, leveraging the real land-use layout of 2000, the CA-Markov model was utilized to generate a simulated land-use map.
2.3.4 Soil and water assessment tool
SWAT is a semi-distributed, basin-scale hydrological model that incorporates various data sources to simulate the hydrological processes within a research watershed (Gassman et al., 2007; Kang et al., 2021). It relies on daily meteorological data, along with land-use maps and soil attribute data. The model divides the entire watershed into multiple subbasins and further subdivides them into hydrological response units, which share similar land-use categories, management practices, and soil properties (Neitsch et al., 2011). This localized SWAT model is capable of simulating hydrological conditions over extended periods, providing valuable insights into the watershed’s water balance and dynamics.
[image: Equation representing a water balance model: SW subscript t equals SW subscript 0 plus the summation from i equals 1 to l of the quantity R subscript day minus Q subscript surf minus E subscript a minus W subscript seep minus Q subscript gw.]
where SWt represents the ultimate soil moisture content, indicating the final state of soil water after considering various inputs and outputs over a defined period; SW0 denotes the initial soil moisture content, serving as the starting point for the model’s calculations; t signifies the time phase, specifically measured in days, and encompasses the duration of the simulation; Rday, Qsurf and Ea are key components that represent daily rainfall, surface runoff, and evapotranspiration, respectively; Wseep represents the cumulative amount of water that percolates from the topsoil into the aeration zone on a specific day, marking the downward movement of water within the soil profile; Qgw stands for return flow, referring to the water that recirculates from deeper soil layers or groundwater back to the soil surface.
3 RESULTS AND DISCUSSION
3.1 Climate and streamflow alterations in recent 50 years
3.1.1 Temperature change
Temperature serves as the most prominent indicator of climate change. Utilizing the mean annual temperature data from five weather stations, we conducted a Mann-Kendall test to analyze the temperature trend (Figure 3). The results revealed that the temperature Zs statistic stood at 5.24 for the period 1970–2019, exceeding the Z statistic threshold of 2.32 for a 99% confidence interval. Consequently, it is evident that the Yanhe watershed experienced a significant increase in temperature over the past 50 years (p < 0.01). Furthermore, the rate of increase was 0.37°C per decade, and a notable abrupt change occurring in 1996. Specifically, the average annual temperature was 10.56°C during 1970–1996, whereas it rose to 11.80°C from 1997 to 2019. Notably, the peak temperature was recorded in 1998.
[image: Line graph showing annual temperatures from 1970 to 2020, with a fitted line and a 95% confidence interval. Temperatures gradually increase from around 10°C to over 12°C. Multi-year average temperatures are also plotted.]FIGURE 3 | Inter-annual temperature variation in the Yanhe watershed from 1970 to 2019.
Over the past century (1905–2005), China experienced two distinct warm periods: the 1940s–1950s and the 1980s–1990s. Notably, 1998 marked the warmest year recorded in China since the inception of meteorological records (Tang and Ren, 2005). Consequently, the Yanhe watershed, influenced by global warming, exhibited similar warming trends and temperature fluctuations.
3.1.2 Precipitation and streamflow variation
The Mann-Kendall test was utilized to ascertain the trends in precipitation and streamflow within the semiarid Yanhe watershed during 1970–2019 (Figure 4). The Zs statistic for average precipitation in five stations stood at 0.73, falling within the range of zero to 1.64 (the threshold for a 95% confidence interval). Consequently, we observed a slight increased rate of 1.16 mm/yr inter-annual precipitation. Conversely, the Zs statistic for streamflow was −3.09, indicating a negative trend. Its absolute value exceeded the Z statistic threshold of 2.32 for a 99% confidence interval. Therefore, it is evident that the streamflow has decreased significantly with a rate of 1.60 million m3/yr over the past 50 years.
[image: Two line graphs show trends from 1970 to 2020. The top graph displays precipitation in millimeters with a slight upward trend and a green 95 percent confidence interval. The bottom graph illustrates streamflow in cubic meters with a declining trend. Both graphs include fitted lines.]FIGURE 4 | Inter-annual precipitation and streamflow variations in the Yanhe watershed during 1970–2019.
Besides, the average streamflow in the period of 2005–2012 was only half of that with the similar precipitation during 1989–1994. It can be ascribed to ecological restoration, because runoff is the synthesis of precipitation and land surface condition. The restored vegetation from GFGP reduced the rainfall-runoff conversion and increases the infiltration of surface runoff during confluence processes. Moreover, the runoff reduction increased with the age of trees planted (Huang et al., 2003). Our findings reveal that ecological restoration lasting between 4 and 7 years can lead to a reduction of half the streamflow in the Yanhe watershed, except for extreme rainfall conditions.
3.2 Hydrologic year classification
SPEI index was utilized at five stations to identify the typical hydrologic years within the Yanhe watershed during 1970–2019. The findings revealed that drought, normal, and wet years comprised 6%, 88%, and 6% of the total, respectively (Figure 5). Notably, a significant climatic shift occurred in the Yanhe watershed in 1996 (Kang et al., 2020). Consequently, we divided the study period into two distinct phases of 1970–1996 and 1997–2019. During the first phase (1970–1996), typical drought, normal, and wet years accounted for 1%, 93%, and 6%, respectively. However, in the second phase (1997–2019), the frequency of typical drought years increased significantly, accounting for 11% of the period, while normal and wet years constituted 83% and 6%, respectively. This increase in drought frequency during the later period underscores the changing climatic patterns in the Yanhe watershed.
[image: Bar chart showing the Standard Precipitation Evapotranspiration Index from 1970 to 2019 for five regions: Ansai, Ganqiuji, Huaziping, Yanan, and Zaoyuan. Each region is represented by different colored bars. The horizontal axis depicts the years, while the vertical axis shows index values. Periodic spikes and troughs indicate variations in precipitation and evapotranspiration over time.]FIGURE 5 | Hydrologic years classification by standard precipitation evapotranspiration index; The negative dotted line is the demarcation from normal years to typical drought years and the positive dotted line is the boundary from normal years to typical wet years.
The preceding analysis clearly indicates that the frequency of drought years has escalated in recent decades. According to the former studies, the arid area will be drier and the humid area will be wetter influenced by global warming (Durack et al., 2012; Scott et al., 2016). Therefore, the climate in the Yanhe watershed, situated in a semiarid region, tends to dry, and the extreme weather is most likely to increase.
3.3 Model calibration and validation
3.3.1 CA-Markov
To evaluate the precision of the hybrid CA-Markov, the Kappa spatial correlation—a highly regarded metric for accuracy assessment in IDRISI—was employed to contrast the actual and predicted land-use maps for 2010 (Figure 6). The analysis revealed a Kappa spatial correlation of 0.91 between the real and simulated maps, indicating a strong agreement. Drawing from the research conducted by Yang et al. (2021), a Kappa value exceeding 0.75 signifies a high degree of consistency and minimal discernible differences between the two land-use maps. Furthermore, Li and Zhou (2015) used the same method to simulate and predict the land use distribution patterns in the Yanhe watershed for 2010 and 2020, reaching similar conclusions as in this study. Consequently, the hybrid CA-Markov model, with its optimized parameters, exhibits excellent performance in predicting land-use patterns.
[image: Two maps labeled A and B show land use categories in green, brown, yellow, red, and blue, representing grass, farmland, forest, build, and water respectively. Map A includes a scale bar, while map B contains a compass rose indicating north.]FIGURE 6 | Comparison of actual and simulated land use in 2010. (A) Represents the actual land-use state in 2010; (B) depicts the simulated land-use state in 2010.
3.3.2 SWAT
There are 27 parameters that influence runoff in the SWAT model (Ahn and Merwade, 2016). To localize the general SWAT, we utilized the SWAT-CUP calibration uncertainty program to identify six runoff-sensitive parameters in the Yanhe watershed. Subsequently, the optimal values for these sensitive parameters were determined through Latin hypercube sampling, ensuring a precise and customized model for the watershed (Table 2). Besides, statistical metrics including R2, Nash-Sutcliffe coefficient (NSE), and percent bias (PBIAS) were employed to assess the accuracy of the SWAT (Gassman et al., 2007; Arnold et al., 2012). The results revealed that during the calibration period (1973–1997), the R2, NSE, and PBIAS values were 0.73, 0.60, and 18%, respectively (Figure 7). Similarly, in the validation period (2000–2019), these metrics were 0.71, 0.51, and 24%, respectively (Figure 8). According to SWAT accuracy evaluation research, a model is considered acceptable when NES exceeds 0.50 and PBIAS is less than 25% for streamflow predictions (Moriasi et al., 2007). Even though the localized SWAT could satisfy the model accuracy, there exists a discrepancy between the simulated and the observed streamflow. The one possible reason of this discrepancy is that the SWAT model’s simulation of snow and ice melt is simple based temperature (Devia et al., 2015), overlooking the impacts of the land use, slope aspect and gradient. The other possible is that the precipitation in the Yanhe River Basin, located in a semi-arid region, exhibits significant interannual variability, and the study period spans a relatively long duration, which leads to the basis between the simulated and observed streamflow. This research focuses on the impacts of land-use change on hydrological processes during the flooding seasons, and selects consecutive typical hydrological years to drive the localized SWAT model. Therefore, the calibrated model is able to reflect the characteristics of the impact of land-use variation on hydrology during typical hydrological years.
TABLE 2 | Sensitive parameters on runoff in the Yanhe watershed.
[image: Table showing parameters with fitted values, calibrated ranges, and physical meanings. Parameters include CN2, ALPHA_BF, GWQMN, GW_DELAY, ESCO, and SOL_K. Fitted values range from -17% to 0.59. Calibrated ranges include a variety of minimum and maximum values, indicating changes in percentages or specific numerical values. The physical meanings describe hydrological factors such as initial SCS CN II value and baseflow alpha factor. A note explains that "+" or "-" symbols indicate relative changes.][image: Line graph comparing observed and simulated discharge rates, measured in cubic meters per second, from 1973 to 1997. Both datasets show peaks, with significant spikes around 1979, 1984, 1991, and 1994. Observed data is marked in black, and simulated data in red.]FIGURE 7 | SWAT calibration in the Yanhe watershed during 1973–1999.
[image: Graph showing river discharge from 2000 to 2018, comparing observed (black) and simulated (red) data. Both data sets have similar fluctuations with a significant spike in 2012, reaching approximately 70 cubic meters per second.]FIGURE 8 | SWAT validation in the Yanhe watershed during 2000–2019.
3.4 Land-use variation and prediction
3.4.1 Land-use variation
According to the SWAT land-use classification system, the Yanhe watershed’s land use was reclassified into grassland, farmland, forest, urban/built-up land, and water body. An analysis of land-use changes from 1990 to 2010 revealed several notable trends (Table 3). Specifically, the areas of grassland, forest, and built-up land increased by 9.38%, 1.54%, and 0.40%, respectively, while farmland and water areas decreased by 11.17% and 0.16%, respectively. When comparing the land-use changes between 1990 and 2010 in greater detail, it was observed that from 1990 to 2000, the areas of grassland, forest, built-up land, and water body increased by 0.70%, 0.13%, 0.18%, and 0.01%, respectively, while farmland decreased by 1.03%. However, from 2000 to 2010, the changes were more significant, with grassland, forest, and built-up land continuing to expand, while farmland continued to decline. Overall, the most prominent land-use changes in the Yanhe watershed from 1990 to 2010 were the increasing trend in grassland, forest, and built-up land areas and the decreasing trend in farmland.
TABLE 3 | Changes in land use within the Yanhe watershed from 1990 to 2010.
[image: Table showing land use changes from 1990 to 2010 across five categories: Grass, Farmland, Forest, Build, and Water. In 1990, Grass dominated at 52.38 percent, reducing Farmland and Forest. By 2010, Grass increased to 62.46 percent, with a decreased Farmland percentage. Forest showed slight growth, while Build and Water remained minimal.]3.4.2 Land-use prediction
Using the calibrated IDRISI model with a land-use transition matrix derived from data between 2000 and 2010, predictions were made regarding the land-use layout anticipated for 2060 (Figure 9). When comparing the predicted land-use state of 2060 with the actual state of 2010, it is evident that the most significant change would involve the transformation of 9.21% of grassland. This grassland would primarily be converted into 5.63% of forest and 3.58% of built-up land. Notably, the expansion of forestland is expected to occur primarily in the midstream and downstream regions of the basin. Conversely, the growth of built-up areas is predicted to be concentrated in gullies with flatter terrain and more favorable urban habitat environments.
[image: Two maps labeled A and B show land cover changes over time. Map A primarily depicts grassland in green, farmland in yellow, and forest in dark green. Map B shows increased urban development in red, along with remaining grassland, farmland, and water bodies in blue. A scale bar indicates distances in kilometers, and a compass rose is present on map B.]FIGURE 9 | Land-use prediction and comparison in the Yanhe watershed. (A) Shows the actual land-use state in 2010, and (B) depicts the predicted land-use state in 2060.
3.5 Hydrological fluctuations in different hydrological years
3.5.1 Streamflow variation in typical drought years
SWAT models were constructed utilizing five consecutive, representative drought years (comprising two warm-up years and five simulation years) alongside land-use maps from 2010 to 2060 within the Yanhe watershed. The findings revealed that the impact of arid climatic conditions on streamflow was primarily concentrated during flooding periods. Specifically, the mean discharge rates during these periods were 5.05 m3/s and 6.69 m3/s for the 2010 and 2060 scenarios, respectively. Furthermore, the average flood peak in the 2060 landscape scenario exhibited a notable increase of 32.49% compared to that of 2010 (Figure 10A). Overall, during these typical drought years, the Yanhe watershed exhibited low discharge levels and rapid fluctuations in flood peaks.
[image: Graph A shows discharge in cubic meters per second from 2000 to 2006, compared for land use in 2010 (black line) and 2000 (red dotted line). Graph B presents precipitation in millimeters and runoff in cubic meters per second by month, highlighting negative precipitation values and runoff, with shaded areas indicating recharge levels.]FIGURE 10 | Hydrological fluctuations with land-use variation in drought years. (A) Is the interannual variation of streamflow, and (B) is the innerannual distribution of precipitation, runoff and baseflow.
The significant land-use alteration from 2010 to 2060 is the grassland converted to the forest and built-up land. The transformed forest is primarily located on hilly slopes, situated far from the Yanhe River. Conversely, the converted built-up land is situated in proximity to the river, occupying a broad and flat area. Consequently, the surface runoff generated by limited precipitation on the built-up land drains into the river, leading to a rapid response of low streamflow to rainfall during typical drought years. We refer to this phenomenon, where low streamflow promptly reacts to limited precipitation in close proximity to the land surface, as the “local rainfall-runoff effect".
Utilizing the 2060 landscape as a basis, we conducted a thorough analysis of the intra-annual characteristics of precipitation, runoff, and baseflow to further elucidate the “local rainfall-runoff effect” during typical drought years (Figure 10B). Our findings revealed that rainfall was the primary determinant of surface runoff in these drought-prone years, especially during flooding periods. Specifically, total precipitation amounted to 319.75 mm, with 56.74% of this precipitation occurring exclusively during flooding periods. Notably, 64.66% of this precipitation was converted into surface runoff, serving as the principal mechanism for the rapid increase in streamflow during flooding periods. On the other hand, baseflow contributed 50.72% to streamflow, becoming the primary source of recharge for the river during non-flooding periods.
The aforementioned analysis clearly illustrates the “local rainfall-runoff effect”. This effect refers to the phenomenon where a significant portion of limited precipitation generates surface runoff on impermeable or weakly permeable surfaces. This runoff subsequently recharges nearby streams and rivers, resulting in a rapid increase in discharge. Therefore, the local landscape characteristics play a pivotal role in influencing the streamflow patterns during typical drought years.
3.5.2 Streamflow variation in normal years
According to the classification of SPEI, we selected five consecutive normal years (consisting of two warm-up years and five simulation years) to forecast hydrological variations within the Yanhe watershed. Our findings revealed that the influence of a normal climate on surface runoff was primarily concentrated from June to October. When comparing the average discharge based on the landscapes of 2010 and 2060, we observed a decrease from 19.42 m3/s and 12.40 m3/s. Notably, during these normal years, the flood peak with the 2060 land use scenario decreased by 36.15% compared to that with the 2010 land use (Figure 11A). Nevertheless, it is worth mentioning that the flooding discharge in normal years is approximately twice as high as that observed during typical drought years.
[image: Panel A shows a line graph comparing discharge over years 2000 to 2004 based on land use in 2010 and 2000. Panel B is a bar and area chart depicting monthly precipitation, runoff, and baseflow. Bars indicate precipitation, while shaded areas show runoff and baseflow from January to December.]FIGURE 11 | Hydrological fluctuations with land-use variation in normal years. (A) Is the interannual variation of streamflow, and (B) is the innerannual distribution of precipitation, runoff and baseflow.
When comparing the land-use state in 2010 with that of 2060, we observe that the prolonged restoration of forests and grasslands in 2060 effectively limits upstream and local surface runoff generated by relatively abundant precipitation during normal years. This, in turn, reduces the runoff flows into the river. Although the expansion of built-up land (accounting for 4.49% of the entire watershed) converts a significant amount of rainfall into surface runoff, the peak flow in 2060 remains lower than that in 2010. This is attributed to the fact that the surface runoff restricted by restored vegetation outweighs the runoff generated by the built-up land. Furthermore, given the high discharge rates during normal years, the limited surface runoff generated on the relatively small percentage of built-up land has minimal impact on streamflow. Consequently, when compared to the landscape of 2010, the peak flow in 2060 is lower. We refer to this phenomenon as the “global rainfall-runoff effect".
Utilizing the land-use map of 2060, we conducted a thorough analysis of the intra-annual distribution of precipitation, runoff, and baseflow during normal years to elucidate the “global rainfall-runoff effect” (Figure 11B). Our findings revealed that precipitation, streamflow, and baseflow exhibited smooth transitions throughout the normal years, with the timing of peak flow lagging behind the period of maximum precipitation. Notably, the peak volume of precipitation occurred in July, whereas the peak discharge was delayed until early August. On average, the total precipitation amounted to 479.66 mm, with only 3.99% of this precipitation converting into surface runoff and subsequently entering the stream during these normal years.
There are two primary reasons for the observed lag between the flood peak and the maximum precipitation time. Firstly, the smooth fluctuations in rainfall distribution throughout the year maintain the discharge within a consistently high range, rendering it less susceptible to the “local rainfall-runoff effect”. Secondly, the well restored vegetation on the slope effectively intercepts surface runoff, and the homogeneous loess soil has high infiltration capacity in the normal hydrological years (Jin et al., 2020). Consequently, when rainfall is relatively abundant and the river maintains a stable discharge, the rainfall-runoff process is primarily influenced by the spatial distribution of major land-use types across the entire basin, giving rise to the “global rainfall-runoff effect”.
3.5.3 Streamflow variation in typical wet years
For a comparative analysis with typical drought years and normal years, the SWAT models were driven using data from five consecutive typical wet years. These models were based on the land-use layouts of 2010 and 2060 in the Yanhe watershed. The results indicated that climate was the primary determinant of streamflow in flooding periods of wet years. Specifically, the flood peaks were virtually identical for both the 2010 and 2060 land-use scenarios. During the typical wet years, the discharge was high, and the peak flow was predominantly concentrated in July (Figure 12A).
[image: Graph A displays desertification trends from 2000 to 2004, comparing land use data from 2010 and 2020. Graph B shows monthly precipitation and sand flux, with an inset highlighting data for June and July.]FIGURE 12 | Hydrological fluctuations with land-use variation in wet years. (A) Is the interannual variation of streamflow, and (B) is the innerannual distribution of precipitation, runoff and baseflow.
Previous studies indicated that vegetation (forest and grass) has a good function of soil and water conservation (Jin et al., 2020; Lyu et al., 2023). The area of vegetation in the Yanhe watershed accounts for 82.00% and 78.43% of the entire watershed in 2010 and 2060, respectively. However, it has limited capacity to restrict surface runoff during intense rainstorms or prolonged rainfall. The aggressive surface runoff resulting from extreme rainfall is scarcely intercepted and infiltrated by the forest and grassland. This was evident during the “7.26” rainstorm event in the Wudinghe River basin of the LP on 26 July 2017. Despite decades of ecological restoration efforts, where the area of grassland and forest has exceeded 50% of the watershed, the rainstorm still generated significant flood peaks and caused severe soil erosion (Tang et al., 2020; Wang et al., 2020). Consequently, in typical wet years, the aggressive surface runoff rapidly flows into the river, significantly increasing the peak discharge.
To gain a deeper understanding of the hydrological processes during typical wet years, we analyzed the intra-annual distribution of rainfall, runoff, and baseflow (Figure 12B). The results indicated that the average precipitation in these wet years was 624.01 mm, with significant variations within the year. Notably, approximately 55.38% of the total precipitation occurred primarily in July and August. Concurrently, the surface runoff showed a marked increase during the concentrated rainstorms in July, accounting for a substantial 79.11% of the total surface runoff. During this period, the flood discharge was particularly high and declined rapidly following the intense rainfall. As approximately 90% of the Yanhe watershed comprises hilly-gully regions (Wang et al., 2016), the occurrence of rainstorms frequently triggers infiltration-excess overland flow (Jin et al., 2020), and the resulting stormflow responds promptly to precipitation.
4 CONCLUSION
Ecological restoration (afforestation and grass planting) can effectively reduce streamflow during the drought and normal years in the semiarid regions. The hydrological processes exhibit distinct response patterns in different hydrologic years. In typical drought years, the streamflow regime primarily follows the “local rainfall-runoff effect”, where the landscape in proximity to streams and rivers plays a pivotal role in determining streamflow patterns. Conversely, in normal years, the streamflow is influenced by the “global rainfall-runoff effect”, meaning that the major land-use types across the entire basin contribute significantly to the overall flow. However, in typical wet years, the streamflow is primarily controlled by climatic factors. Even under conditions of significant vegetation restoration, land use has a limited impact on surface runoff. This underscores the need for a balanced approach in managing land use and ecological restoration efforts to mitigate the effects of climate change on streamflow patterns in semiarid regions.
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Expansive soils are widely distributed around the world. They have significant characteristics of both hygroscopic expansion and water-loss shrinkage, which have caused serious damage to road paving, construction of low-rise houses, and construction of slopes along the banks of rivers. Similarly, the implementation of low impact development measures can cause considerable difficulties in the distribution area of expansive soil. The entire urban area of Hefei is situated on expansive soil. Although Hefei city has developed a sponge city plan, it has not been carried out on a large scale for implementation of low impact development technical measures. Experimental studies have shown that exposed expansive soils produce fissures that run up and down during wet and dry cycles. These fissures are extremely unfavorable to the infiltration of surface runoff formed by short-term heavy rainfall. This is also one of the reasons for short-term rainfall in Hefei city, resulting in serious flooding in low-lying areas with a poor drainage system. At the same time, initial rainfall is ineffective in cleaning up surface source pollution. Therefore, we can enhance the characteristics of expansive soil, keep the expansive soil unexposed, and maintain a certain level of humidity. These approaches can play a better role in the control of rainfall runoff and surface source pollution. The characteristics of expansive soils can be enhanced by mixing them with weathered sand, a physical improvement, to meet the technical requirements for infiltration, interception, and purification. It is recommended to carefully select low impact development measures in the distribution area of expansive soil to avoid the occurrence of wasteful investment and poor results.
Keywords: low impact development, technical measure, expansive soil, distribution area, selection

1 INTRODUCTION
Expansive soil is a kind of special clay widely distributed on the land surface. The clay particles in the soil are mainly composed of hydrophilic minerals, including montmorillonite, illite, and kaolinite. It is a cohesive soil with significant characteristics of water-absorption expansion and water-loss shrinkage. Because of its remarkable properties of expansion and contraction, it often causes serious damage to engineering construction in the expansive soil area. Expansive soil is widely distributed in more than 40 countries across the world (Zhang, 2005).
The hazard and risk due to expansive soils is often overlooked when tabulating natural hazard risk, vulnerability, and resilience (Bin Mostafiz et al., 2021). The randomly distributed fissures and repeated expansion and contraction deformation in the soil mass cause great harm to engineering construction, which is often referred to as disastrous soil in engineering (Jones and Holtz, 1973). Worldwide, the annual economic losses caused by this are up to 15 billion U.S. dollars or more, with China being one of the most seriously affected countries, where the distribution of expansive soil is extremely wide, throughout Anhui, Guangxi, Yunnan, Hunan, Henan, and in more than 20 other provinces and autonomous regions (Figure 1) (Ye, 2010).
[image: Map of China showing expansive soil distribution areas shaded diagonally. Major cities like Beijing, Shanghai, and Guangzhou are marked. Hefei is highlighted in blue. A compass rose indicates north.]FIGURE 1 | China’s expansive soil regional distribution map (Ye, 2010).
From 1959 to 1977, the United Kingdom, the United States, Romania, the former Soviet Union, and Japan have successively added provisions on expansive soil to the officially issued geotechnical and railway specifications and other documents (Sun et al., 1995). In 1987, China officially issued the Technical Code for Buildings in Expansive Soil Regions (GBJ 112-87), and in 2013, it was revised to the Technical Code for Buildings in Expansive Soil Regions (GB 50112-2013). The current methods of dealing with expansive soils are mainly chemical modification, such as stabilization of expansive soils by mixing lime, cement, fly ash, sodium chloride, calcium chloride, and phosphoric acid. Among chemical modifications, the treatment of expansive soils with lime is the most common and effective method. It has been widely reported that the addition of an appropriate amount of lime to an expansive soil improves the workability of the soil by causing a reduction in the soil’s swelling potential (Locat et al., 1990; Rao and Thyagaraj, 2003; Khattab et al., 2007; Al-Mukhtar et al., 2011; Al-Mukhtar et al., 2012; Obuzor et al., 2012).
Low impact development (LID) is an ecologically based stormwater management approach favoring soft engineering to manage rainfall on a site through a vegetative treatment network. The LID aims to sustain a site’s pre-development hydrologic regime by using techniques that infiltrate, filter, store, and evaporate stormwater runoff close to its source. Contrary to the conventional “pipe-and-pond” conveyance infrastructure that channels runoff elsewhere through pipes, catchment basins, and curbs and gutters, LID remediates polluted runoff through a network of distributed treatment landscapes (Low Impact Development, 2010). In developed countries, such as the United States, Australia, and Germany, LID technology has been widely used in rainfall control and utilization projects, renovation of old towns, planning of new towns, and regional development design, and corresponding design standards have been formed. LID technology is the core idea of sponge city planning, which has been well-developed in China in recent years, and it is mainly used to manage urban flooding and to improve urban water treatment methods and water recycling capacity. Future research should include comprehensive and systematic research on the LID technology, research on the effectiveness of removal of difficult-to-detect pollutants, and research on the structure and materials in LID facilities.
In October 2014, Housing and Urban–Rural Development of the People’s Republic of China issued the Technical Guidelines for Sponge City Construction—Low Impact Development Stormwater System Construction (Trial), which clarifies that the total runoff control pathway includes reduction of infiltration and emission of rainwater and direct storage and utilization. LID technologies mainly include infiltration, storage, regulation, transfer and interception, and purification technologies (Beijing University of Civil Engineering and Architecture et al., 2014).
The city of Hefei is located in the central-eastern part of China (Figure 1), and the entire main urban area of Hefei is situated on top of expansive soils. Therefore, the study of both the nature of the expansive soils and their engineering treatment is very significant for the selection of technical measures for LID.
2 MAIN CHARACTERISTICS OF EXPANSIVE SOILS IN THE STUDY AREA
2.1 Main mineral composition of expansive soil
According to the regional data, the expansive soils of the Upper-Pleistocene Xiashu Group are widely distributed throughout the urban area of Hefei. The expansive soils contain a large number of hydrophilic clay mineral components, of which 35%–43% are hydroclays, 4.6%–6.8% are kaolins, and 2%–2.7% are montmorillonites (Anhui Engineering Investigation Institute, 2008). These mineral components have strong hydrophilicity and have significant characteristics of both water-absorbing expansion and water-losing contraction with change in water content. The change in soil volume, i.e., expansion or contraction, causes damage to engineering structures or slopes.
2.2 Water content of expansive soil
According to regional data, the natural water content of expansive soils widely distributed in the main city of Hefei is 21%–28% (Anhui Engineering Investigation Institute, 2008). Relevant studies show that when the water content of the expansive soil body increases by 1%, the volume of the soil body can increase by 2%–5%. Dry expansive soil has a high swelling potential, and conversely, it has low swelling potential. The soil body has a dry and wet cycle and constantly develops soil fissures, which will have an impact on the LID measures. Therefore, the selection of LID measures should take into account the water content of the soil body of the expansive soil. The “Sponge City Construction Technical Guidelines—Low impact Development of Stormwater System Construction (Trial)" pointed out that when applying the permeable paving LID measures in the distribution area of expansive soil, necessary preventive and control measures should be taken to prevent the impact of geologic hazards of expansive soil deformation (Shi et al., 2002; Xie, 2009; Beijing University of Civil Engineering and Architecture et al., 2014).
2.3 Free swelling ratio of expansive soil
According to the Technical Code for Buildings in Expansive Soil Regions (GB50112-2013), the free swelling ratio of expansive soils should be calculated by the following formula (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012):
[image: Formula representing relative error: delta sub f equals open parenthesis v sub w minus v sub o close parenthesis divided by v sub o, multiplied by one hundred. Equation one.]
where δef is the free swelling ratio of expansive soil (%), vw is the volume of the soil sample after swelling and stabilization in water (mL), and v0 is the original volume of the soil sample (mL).
IS 1498 (BUREAU OF INDIAN STANDARDS, 1970) gives a criterion to predict the expansivity of soils, based on the free swell index (BUREAU OF INDIAN STANDARDS, 1977).
[image: Formula for the Filtration System Index (FSI), represented as FSI equals open parenthesis V subscript d minus V subscript k close parenthesis divided by V subscript k, times one hundred, equation two.]
where Vd is the sediment volume of 10 g of oven-dried soil passing a 425 μm sieve placed in a 100 mL graduated measuring jar containing distilled water and Vk is the sediment volume of 10 g of oven-dried soil passing through a 425 μm sieve placed in a 100 mL graduated measuring jar containing kerosene.
Equations 1 and 2 show that the formula for calculating the free swelling ratio for expansive soil is the same for China and India, but the method of measurement is different. In this paper, the free expansion rate is determined based on the Chinese Technical Code for Buildings in Expansive Soil Regions (GB50112-2013).
In May 2008, Anhui Engineering Investigation Institute completed collection of 50 soil samples (Figure 2) and testing work in the Hefei city area and collected and utilized data of soil samples testing of 158 boreholes in geotechnical engineering survey projects in the Hefei city area (Figure 2). The soil samples were extracted without disturbance.
[image: Map showing the boundaries and layout of Idofi City, marked by a bold blue line. The map includes roads, highways, railways, rivers, and lakes, with a compass rose at the top. A legend indicates various symbols used, including town names and locations, as well as soil sampling points.]FIGURE 2 | Map of the sampling sites in the distribution area of expansive soils in Hefei, China (Anhui Engineering Investigation Institute, 2008).
The 30%–40% free swelling ratio is 28%. The 40%–50% free swelling ratio is 20%. The greater than 50% free swelling ratio is more than 50% (Table 1). These indicated that clays in the Xiashu group of the Upper Pleistocene distributed in the area generally have a weak potential for expansion (Figure 3) (Anhui Engineering Investigation Institute, 2008).
TABLE 1 | Statistical table showing free swelling ratio results for soil samples in the Hefei urban area (Anhui Engineering Investigation Institute, 2008).
[image: Table displaying free swelling ratio data for three ranges: 30-40%, 40-50%, and over 50%. For 30-40%, there are 58 samples (28%). Maximum ratio: 76%, minimum: 30%, average: 54%. For 40-50%, there are 42 samples (20%). Over 50% has 108 samples (52%). Note mentions determination methods by the Test Center of the 327 Geological Team.][image: Map of Hefei City highlighting expansive soil distribution. Areas with a free swelling ratio of forty to fifty percent are marked in white, and areas with greater than fifty percent in green. Includes district and town names, with Chao Lake indicated.]FIGURE 3 | Area distribution of expansive soils in Hefei, China (Anhui Engineering Investigation Institute, 2008).
2.4 Climate effects of expansive soils
2.4.1 Humidity coefficient of expansive soils
The humidity coefficient of expansive soil is the ratio of the minimum value of soil moisture content that may be reached at 1 m depth to its plastic limit value under the influence of natural climate.
According to the Technical Code for Buildings in Expansive Soil Regions (GB50112-2013) (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012), the humidity coefficient of the soil can be calculated according to the following formula based on the relevant meteorological data of Hefei:
[image: Equation three is shown: Ψᵥʷ equals 1.152 minus 0.726 times α minus 0.00107 times c.]
where ψw is the humidity coefficient of expansive soil, α is the ratio of the sum of the local evaporation power from September to February to the annual evaporation power, and c is the sum of the difference between the evaporation power and precipitation in the months, with dryness greater than 1.00 in the whole year (mm).
2.4.2 Climate-influenced layer and markedly climate-influenced layer of expansive soils
According to Equation 3, the humidity coefficient (ψw) of expansive soil is calculated as 0.868 (Table 2). The thickness of the climate-influenced layer as calculated by the interpolation method is 3.34 m Table 3. The thickness of the markedly climate-influenced layer is 1.50 m, calculated by multiplying the thickness of atmospheric influence by 0.45 (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012). The deformation disaster of expansive soil will be more serious at this depth, i.e., the LID measures need to consider the climate-influenced layer of 3.34 m and the markedly climate-influenced layer of 1.50 m, which will directly affect the implementation of the LID measures.
TABLE 2 | Values of the humidity coefficient of expansive soils (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012).
[image: Table showing monthly data for evaporation power, precipitation, and dryness from January to December. Evaporation power ranges from 18.5 mm in December to 150.0 mm in July. Precipitation ranges from 31.5 mm in December to 181.5 mm in July. Dryness values vary between 0.51 in February and 1.37 in June and October. Additional parameters: α = 0.258, c = 90.20, ψw = 0.868. Data is sourced from the Technical Code for Buildings in Expansive Soil Regions (GB50112-2013).]TABLE 3 | Climate-influenced layer thickness (Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012).
[image: Table showing the relationship between the humidity coefficient of expansive soil (\(\psi_w\)) and the thickness of the climate-influenced layer. Values: 0.6 correlates with 5.0, 0.7 with 4.0, 0.8 with 3.5, and 0.9 with 3.0.]3 TEST SIMULATION SYSTEMS AND METHODS
3.1 Test simulation system
A laboratory small-scale multi-nozzle, under spray tank-type artificial rainfall simulation system was built. Spraying was controlled by controlling the switch of the solenoid valve. The pressure of the nozzles was controlled by a pipe pressure gauge, which ultimately enabled the simulation of different rainfall intensities (Figures 4, 5). The main equipment components of the laboratory artificial rainfall simulation system consisted of the expansive soil trough surrounded by rain curtains (Figure 6A), the expansive soil trough support frame (Figure 6B), the top wide-angle cone nozzle (Figure 6C), the pressure gauge and solenoid valve (Figure 6D), the control cabinet (Figure 6E), and the submersible pump (Figure 6F).
[image: Diagram of an expansive soil trough with dimensions and labeled components. It includes surface and underlying runoff outlets, a flowmeter, and a designated area for placing soil 25 centimeters deep. Water-flow direction is indicated. Total dimensions are two thousand millimeters by fifteen hundred millimeters.]FIGURE 4 | Expansive soil trough layout plan.
[image: Diagram showing a water irrigation system with components labeled: tap water, angle valve, submersible pump, water tank, pressure reducing valve, pressure gauge, magnetic valves, ball valve, flowmeter, and sprinkler head. Arrows indicate the water flow direction through these components.]FIGURE 5 | System diagram of the simulated rainfall device above the expansive soil trough.
[image: A series of labeled images depict an experimental setup for studying expansive soil. Image A shows expansive soil under rain curtains. Image B features an expansive soil trough with a support frame. Image C highlights a wide-angle cone nozzle. Image D presents a pressure gauge and solenoid valve. Image E displays a simulation systems control cabinet with various controllers. Image F shows a submersible pump inside a plastic bucket.]FIGURE 6 | Main equipment components of the laboratory artificial rainfall simulation system.
The purpose of establishing this test simulation system was to study the infiltration capacity and runoff generation characteristics of expansive soils under different rainfall intensities. In addition, the test simulation system also studied the infiltration capacity of expansive soils and the characteristics of runoff generation under different levels of initial water content in expansive soils.
According to Chinese meteorology data, rainfall of 16 mm or more per hour is called “torrential rain.” Rainfall intensities of 0.25 mm/min, 0.44 mm/min, 0.57 mm/min, 0.67 mm/min, and 1.04 mm/min were designed for simulation tests in combination with historical rainfall statistics from Hefei meteorological stations.
3.2 Test methods
The test expansive soil was taken from the bare expansive soil excavated from the longitudinal section of the local newly repaired road in order to simulate the natural compaction of the real expansion soil body. The test fill thickness was 25 cm (Figure 6A). The expansion soil body was wetted by rainfall three times, with an interval of 3 days. Each time, the wetting was to be stopped by the production of streams, and it was covered with a rain cloth until the expansion soil body was sufficiently settled and sinked (Figure 6A). The surface soil was sampled and observed, and the average dry bulk weight was 1.41 g/cm3, which was close to the bulk weight of the expansive soil after natural consolidation.
Before the beginning of the test, the water content of the surface layer of the expansive soil body was maintained at 23% (±0.3%) to ensure that the water content of the soil body itself does not affect the generation time of rainfall runoff and runoff volume, respectively, in the rainfall intensity of 0.25 mm/min, 0.44 mm/min, 0.57 mm/min, 0.67 mm/min, and 1.04 mm/min; the surface of the expansive soil body was stimulated to produce the runoff process.
3.3 Test results
3.3.1 Infiltration capacity of expansive soils
It was found that at rainfall intensities of 0.25 mm/min and 0.44 mm/min, no runoff was generated from the surface of the expansive soil mass within 1 h. Under the rainfall intensities of 0.57 mm/min (Figure 7A), 0.67 mm/min (Figure 7B), and 1.04 mm/min (Figure 7C), the time to start generating runoff was 44 min, 30 min, and 17 min, respectively, and the time to reach the maximum runoff was 47 min (Figure 7A), 33 min (Figure 7B), and 19 min (Figure 7C), respectively. The time intervals between the start of generation of runoff and reaching the maximum level of runoff were 3 min, 3 min, and 2 min, respectively. The maximum runoff intervals are similar for rainfall intensities of 0.57 mm/min (Figure 7A), 0.67 mm/min (Figure 7B), and 1.04 mm/min (Figure 7C). The test results show that the exposed expansive soil has a rapid infiltration capacity and a short time interval to reach the maximum runoff volume under higher rainfall intensity, which is not very effective in reducing surface runoff.
[image: Three graphs labeled A, B, and C show cumulative water volume over time for different rainfall intensities. Graph A has 0.57 millimeters per minute, B has 0.67 millimeters per minute, and C has 1.18 millimeters per minute. Each graph shows a rapid increase and then stabilizes, indicating a leveling trend. The x-axis is time in minutes, and the y-axis is cumulative water volume in liters. A fitted curve is present in each graph.]FIGURE 7 | Runoff curves under different rainfall intensities.
Relevant studies have shown that with the continuation of rainfall, the infiltration potential gradient of expansive soils decreases after water absorption, and the surface cracks of land with expansive soils are closed due to soil expansion, resulting in a decrease in soil infiltration capacity. When encountering strong rainfall, due to the expansion, the cracks in the soil will be rapidly closed. This leads to a rapid decline in soil infiltration capacity (Lei et al., 2020).
3.3.2 Initial water content of expansive soils
It was found that the simulated surface layer of expansive soil was operated under the initial water content of 21.6%, 24.8%, 26.3%, and 27.5%, and the time for starting generating of runoff was 49 min (Figure 8A), 31 min (Figure 8B), 22 min (Figure 8C), and 16 min (Figure 8D), respectively. The time taken for reaching the maximum runoff was 66 min (Figure 8A), 48 min (Figure 8B), 40 min (Figure 8C), and 33 min (Figure 8D), respectively. The time interval of arriving at maximum runoff was 17 min (Figure 8A), 17 min (Figure 8B), 18 min (Figure 8C), and 17 min (Figure 8D), respectively. It can be seen that the four simulated water content rates were similar to the natural water content of local expansive soil. The time interval for producing maximum runoff was similar as well, indicating that there is a certain effect of abatement of runoff generated by rainfall under the natural water content of expansive soils. This further demonstrates that maintaining the natural water content of expansive soils can reduce the occurrence of geologic hazards and surface runoff from rainfall.
[image: Four graphs labeled A, B, C, and D depict runoff volume versus time with varying water content: A shows a sharp rise at 21.6% water content, B indicates a gradual increase at 24.8%, C displays fluctuations before rising at 26.3%, and D exhibits a steady increase at 27.5%. Each graph has a similar general shape, illustrating how water content affects the runoff curve.]FIGURE 8 | Runoff curves under different water contents.
4 SELECTION OF LID TECHNICAL MEASURES
Low impact development technologies can generally be categorized into several types according to their main functions, such as infiltration, storage, regulation, transfer, interception, and purification.
In October 2014, the Technical Guidelines for Sponge City Construction—Construction of Low Impact Development Stormwater System (Trial) listed the relevant LID technical measures (Table 4).
TABLE 4 | Comparison of low impact development facilities (Beijing University of Civil Engineering and Architecture et al., 2014).
[image: A table categorizing technologies by type and single facilities with their functions marked. Categories include infiltration, storage, regulation, transfer, and sewage interception technologies. Functions listed are rainwater collection, supplementary groundwater, peak flow reduction, rainwater purification, and transfer, with strength indicated by symbols: ● (strong), ◎ (stronger), ○ (weak),– (little). Pervious pavement, green roof, bioretention facility, rainwater tank, impoundment, wet pond, stormwater wetland, regulating pool, regulating pond, grassed swales, infiltration pipe/ditch, vegetation buffer strips, initial rainwater split-flow facility, and artificial soil infiltration are included.]Some of the low impact development technical measures listed in Table 4, such as infiltration, sewage interception, and purification, are not suitable to be selected in expansive soil development areas. If necessary, infiltration and decontamination measures can be selected after enhancement of expansive soil properties, but this implies an increase in the cost. This is a particular concern for our municipal, environmental, and landscape design engineers.
At present, the treatment for enhancing the properties of expansive soil roadbeds all over the world generally adopts the mixing of lime, cement, fly ash, and other mineral cementing materials. First of all, all the above materials are in powder form, and it is difficult to mix the expanded soil sufficiently. Second, the cost of improvement is high, and it also has a greater impact on the surrounding environment and the health of the construction workers (Chen et al., 2006; Yang et al., 2014).
The characteristics of expansive soils can be enhanced by mixing them with weathered sand, which is a physical improvement. The weathered sand particles have a certain particle size, and adding it to the expansive soil can result in better mixing and homogeneous nature. Second, the surrounding environment and the health of the construction workers will face a smaller impact. In addition, the low price of weathered sand can vastly reduce the cost related to improvement. Therefore, the improvement strategies involving the mixing of weathered sand compared with the traditional means of improvement have the advantages of simple construction process, environmental protection, and low cost (Chen et al., 2006; Yang et al., 2014).
Bouassida et al. (2022) proposed a new method for characterizing expansive clays after barometer test results on intact saturated clay specimens. Oedometer tests performed on a 53% thickness clay specimen overlaid by a 47% thickness of sand showed a significant reduction in the swelling pressure compared to that measured on a full expansive clay specimen. The mitigation solution reduced the swelling effect by placing a compacted granular layer as an interface between the expansive clay and the foundation (Bouassida et al., 2022).
In summary, the mixing of weathered sand can effectively inhibit the expansion of expansive soil. This ensures the implementation of LID techniques.
5 CONCLUSION
The selection of the LID technical measures in the expansive soil distribution area cannot be generalized, and the following points should be paid attention to in particular:
To carry out the technical measures of infiltration, sewage interception, and purification, it is necessary to enhance the expansive soil properties. Weathered sand is easy to pick up and is inexpensive; hence, mixing of weathered sand in the improvement treatment of expansive soil should be prioritized, which is a means of physical improvement. It can meet the technical requirements of infiltration, sewage interception, and purification.
The depth of atmospheric influence and the depth of the acute layer of atmospheric influence directly affect the selection of the LID technical measures; for example, the depth of atmospheric influence in Hefei city is 3.34 m, and the depth of the acute layer of atmospheric influence is 1.5 m. When LID facilities are constructed, the adopted LID technical measures must take into account the impact of these two depths on the LID facilities. Otherwise, the expansive soils will cause damage to the LID facilities.
The continuous cycle of drying and wetting of expansive soil causes cracks to develop continuously, resulting in the surface cracks of expansive soil extending deeper. When encountering strong rainfall, the cracks close rapidly due to soil expansion, which leads to a rapid decrease in soil infiltration capacity. Therefore, maintaining the natural water content of the expansive soil can not only better inhibit the expansion of the soil body to produce cracks, which can reduce the frequency of expansion of the soil rise and fall, but also help reduce the surface runoff generated by rainfall.
The results of the test simulation system show that the exposed expansive soil has a fast infiltration capacity and a short time interval to reach the maximum runoff volume under larger rainfall intensity, which is not very effective in reducing surface runoff. In addition, maintaining the natural water content of expansive soils can reduce the occurrence of geologic hazards and surface runoff from rainfall.
Therefore, the natural water content of expansive soil can be maintained by avoiding exposing expansive soils to vegetative cover. Granular materials can be used to mitigate swelling when LID techniques such as infiltration, filtration, and water storage are used. More research studies must be carried out on granular materials to alleviate the swelling phenomenon in the distribution area of expansive soil so as to provide technical support for the upcoming Special Plan of Hefei City Sponge City.
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Manure application is a recommended method to improve soil quality and mitigate global warming via soil carbon (C) sequestration. However, such application can significantly increase ammonia (NH3) volatilization loss and cause secondary environmental problems, such as acidification, eutrophication, and particulate matter formation. To investigate the potential of reducing NH3 emissions in flooded rice paddies, three types of stabilized swine manure amendments (fresh, composted, and biochar) were applied at a rate of 12 Mg ha−1 (dry weight) under standard fertilization (N–P2O5–K2O = 90–45–57 kg ha−1), and NH3 emission was characterized using the static chamber method. Regardless of manure management practices, NH3 fluxes increased significantly immediately after application of an inorganic nitrogen (N) fertilizer (urea). The manure was applied completely as the basal fertilizer before rice transplanting, but the NH3 emission rates increased more dramatically following urea application in the manure treatments. Fresh and composted manure applications significantly increased seasonal NH3 volatilization losses compared to the control but the biochar did not. Compost manure significantly increased rice grain productivity owing to the higher N content, while fresh and biochar manures did not increase rice productivity because of fewer panicles per hill and fewer grains per panicle. Consequently, biochar application resulted in lower NH3 flux intensity and seasonal NH3 flux per grain yield, whereas fresh and compost manures substantially increased this intensity. Therefore, biochar manure may be a more reasonable organic amendment than fresh and composted manures for reducing NH3 emission impacts on rice paddies.
Keywords: ammonia emission intensity, compost, swine manure, grain yield, biochar

1 INTRODUCTION
Livestock manure is considered to be a practical organic amendment for enhancing soil productivity as substitutes to chemical fertilizers in croplands (Du et al., 2020; Hua et al., 2020). However, improper application of livestock manure can create various environmental problems. Manure-derived nitrogen (N) can be lost through leaching, runoff, volatilization, denitrification, and other processes. Significant proportions of N are often lost via ammonia (NH3) emissions from manure-amended soils. For instance, an average of 12.8% and 17.9% of the applied N was reported to have volatilized as NH3 gas in Chinese upland and paddy fields, respectively (Zhang et al., 2013). The emitted NH3 can lead to increased N deposition and contribute to soil acidification, water eutrophication, and particulate matter (PM) formation (Wu et al., 2016; Ehrnsperger and Klemm, 2021).
Primary PM comprise mixed liquid droplets and solid particles in the air (e.g., soot, dust, smoke). However, secondary PM₂.₅ having diameters less than 2.5 μm may be formed through reactions of NH3 with other gaseous acidic precursors (e.g., NOx, SOx). NH3 is a reactive gas that readily combines with sulfate (SO₄2⁻) and nitrate (NO₃⁻) components in acidic cloud droplets to form particulates (Asman et al., 1998). When PM₂.₅ is inhaled, it penetrates deep into the lungs to impair respiration by irritating and corroding the alveolar walls (Xing et al., 2016). Globally, over 4.2 million premature deaths and 103 million disability-adjusted life years have been attributed to PM₂.₅ pollution (Cohen et al., 2017).
Global N losses via NH3 emissions are estimated to be 51–54 Tg N year⁻1 (Bouwman et al., 1997). Approximately 10%–20% of these emissions originate from natural sources, while the remaining 80%–90% are from anthropogenic sources (Zhang et al., 2018). Among the anthropogenic activities, agriculture contributes to about 80%–90% of NH3 emissions, with 63% from livestock feeding and 37% from crop cultivation (Bouwman et al., 1997; Piwowar, 2020). In soils, NH₃ emission intensities are influenced by several factors, such as N fertilization level and soil conditions (e.g., temperature, moisture content, pH) (Kang et al., 2016; Klimczyk et al., 2021). Compared to upland soils, flooded rice paddies may provide more favorable conditions for higher NH3 emissions. Applied N in soils can mineralize into ammonium (NH₄⁺) and then be aerobically nitrified into nitrate (NO₃⁻) (Sah and Mikkelsen, 1983). However, the nitrification rate is strongly regulated by oxygen availability (Jechalke et al., 2011; Yang et al., 2016), which generally results in the prolonged presence of inorganic NH₄⁺ in flooded rice paddies and increased volatilization into NH3 gas (Buresh et al., 2008).
Hypothetically, stabilized organic amendments (e.g., biochar, compost) may be more effective at reducing NH3 emissions than fresh manures. In compost, inorganic N is predominantly available in the form of NO₃⁻, which does not revert to NH₄⁺. Stabilized organic matter can slow mineralization and thereby decrease NH3 emissions (Lü et al., 2013; Agyarko-Mintah et al., 2017). Similarly, biochar contains less inorganic N owing to the expulsion of labile compounds during the pyrolysis process (Bruun et al., 2011; Buss et al., 2022). The organic C and inorganic N in biochar are hence more stable and resistant to decomposition (Haider et al., 2020). However, there are no readily available reports on the potentials of these stabilized organic amendments to reduce NH3 emissions in flooded rice paddy soils.
To investigate the feasibility of stabilized manure amendments in reducing NH3 emissions in rice paddies, three types of manures (fresh, composted, and biochar) were selected as the main treatments. The NH3 emission losses and rice yield properties were characterized during rice cultivation to identify the organic amendment with the lowest NH3 flux intensity.
2 MATERIALS AND METHODS
2.1 Preparation of manure amendments
To evaluate the impacts of manure amendments on NH₃ emissions during rice cultivation, three types of swine manures were prepared: fresh, compost, and biochar. Fresh swine manure was collected from a medium-scale pig farm in Jinju, South Korea; this manure was combined with sawdust in equal proportions (50% kg kg⁻1) and air-dried inside a greenhouse. The air-dried manure mixture had a neutral pH (6.7 with H₂O) and contained 44.8% total C and 1.8% total N (Table 1).
TABLE 1 | Chemical properties of the manure amendments used.
[image: Table comparing soil properties over two years across fresh, compost, and biochar treatments. Properties include pH, electrical conductivity, total carbon, total nitrogen, carbon-nitrogen ratio, and inorganic nitrogen (NH4+ and NO3-). Values fluctuate slightly between first and second years, with biochar generally exhibiting higher pH and lower electrical conductivity, while compost shows consistent carbon and nitrogen content improvements.]To prepare the compost, 1 Mg of the manure mixture was moistened to 60% (wt wt⁻1) and placed in a 1.2 m³ (1 m (width) × 1 m (length) × 1.2 m (height)) box covered with Styrofoam to retain heat. The manure pile was periodically mixed for aeration and adequately moistened during the 45-day composting period; the pile temperature increased sharply to 65–75°C immediately after piling and was maintained for approximately 3 weeks before gradually declining to the background temperature. The compost had an alkaline pH (7.4 with H₂O) and contained 43.4% total C and 2.2% total N.
To prepare the biochar, the dried manure mixture was pyrolyzed using a muffle furnace under closed conditions at 400°C for 4 h; the mixture was then placed inside the furnace and gradually heated at a rate of 10°C per minute before being stabilized at 400°C. The biochar had an alkaline pH (8.2 with H₂O) and contained 42.2% total C and 1.2% total N.
2.2 Experimental plot preparation for rice cultivation
A typical mono-rice paddy field was selected at the Gyeongsang National University experimental station (latitude 35° 8′56.73″ N, longitude 128° 5′46.27″ E) in the Republic of Korea. The paddy field has been exclusively used for rice farming for over 50 years, and the soil is classified as belonging to the Jisan series (fine silty, mixed, non-acid mesic Typic Endoaquepts). Before the experiments, the soil had a slightly acidic pH (6.0 in H₂O) and low fertility, with total C and N contents of 18.9 and 1.4 g kg⁻1, respectively.
A total of four treatments (control, fresh, compost, and biochar) were assigned with three replications each. The experimental plots (10 m × 10 m in size) were arranged in a randomized complete block design (RCBD). Irrigation inlets and outlets were prepared in each plot to control the flooded water levels; a metal barrier was deeply installed around each plot to avoid lateral water flow and fertilizer treatment mixing. In South Korea, the general recommendation for organic amendment application is 12 Mg ha⁻1 (RDA, 2017). One day before transplanting in the manure treatment plots, 12 Mg ha⁻1 of each of the manure amendments (on a dry weight basis) were manually mixed into the surface layers of the corresponding plots. The recommended levels of chemical fertilizers for rice cultivation (N–P₂O₅–K₂O = 90–45–57 kg ha⁻1) were applied to all the treatment plots (RDA, 2017). Based on the recommended rates, 50% of N, 100% of P₂O₅, and 70% of K₂O were applied as the basal fertilizers. The remaining fertilizers were side dressed on the 15th day (20% of N) and 45th day (30% of N and K₂O) after transplanting.
Twenty-five-day-old Dongjinbyeo cultivar (Japonica) rice seedlings were used in this study. Three to five seedling plants were manually transplanted per hill, with distances of 15 cm each between the hills and 30 cm each between the rows. The irrigated water in each plot was maintained at 5–7 cm above the surface soil layer. The floodwater was drained 4 weeks before rice harvesting. At the harvesting stage, 10 representative rice plants were collected from each plot. The plant samples were air-dried for a week in the greenhouse, and the seeds were detached from the panicles before counting. Finally, the harvest index was determined as the ratio of grain yield to total aboveground biomass.
2.3 Evaluation of ammonia volatilization loss
To assess the influences of manure amendment applications on NH₃ emissions during rice cultivation, the static chamber method was used. The chamber (inner diameter: 12 cm; height: 25 cm) was inserted into the soil to a depth of 15 cm without the rice plants. Two acid-impregnated sponges (diameter: 12 cm; height: 2 cm) were placed inside the chamber to trap the NH₃ gas from the soil and outside air separately. Phosphoric acid was used to trap the NH₃ gas, and 4% glycerin was used to maintain the moisture in the sponge. NH₃ samples were collected daily for 1 week after N fertilization, followed by collection at 2- to 3-day intervals for 2 weeks, and finally once per week during the rest of the rice cultivation period.
During sampling, the lower sponges were collected and placed in an icebox for preservation. They were then completely immersed in a 2 M KCl solution and shaken using a rotating shaker for 1 h. Subsequently, the sponges were squeezed by hand, and the NH₄⁺–N concentration was quantified using the indophenol blue method (Novamsky et al., 1974). The NH₃ emission rate was estimated from the amount of NH₃ trapped per unit area over a specific sampling interval:
[image: NH3 emission rate in milligrams of nitrogen per square meter per day equals mass divided by the product of area and duration.]
where M (mg) is the NH₄⁺–N collected in the chamber, A (m2) is the chamber area, and D (day) is the duration for NH₃ sampling.
The seasonal NH₃ flux was calculated using the daily NH₃ emission rate and sampling interval:
[image: Equation for seasonal ammonia flux in kilograms of nitrogen per hectare equals the sum of R subscript i multiplied by D subscript i, from i equals one to n.]
where Ri is the daily NH3 emission rate (kg N ha−1 day−1) in the ith sampling interval, Di is the number of days between the ith and (i−1)th sampling, and n is the number of samplings.
2.4 Analysis of manure amendment, soil, and water characteristics
The manure amendments were sampled and their chemical properties analyzed for pH and electrical conductivity (EC) (1:10 wt v−1, sample: H2O); total C and N contents using an automated true macro element analyzer; and inorganic NH₄⁺ and NO₃⁻ contents using 2 M KCl extraction and measurement with the indophenol blue and brucine methods, respectively. During rice cultivation, the soil temperature and redox potential (Eh) changes were continually recorded using an automatic sensor at a soil depth of 15–20 cm. The floodwater and surface soil were sampled periodically to monitor changes in pH and NH₄⁺ concentration following the same analysis procedures as noted above.
2.5 Statistical analysis
The Statistical Tool for Agricultural Research 2.0.1 (STAR) software was used for the statistical analyses. The data were analyzed using one-way analysis of variance (ANOVA) for the RCBD; the statistically significant results were subjected to comparison of means using the honestly significant difference (HSD) test at the 5% significance level.
3 RESULTS
3.1 Changes in soil temperature and Eh values
During rice cultivation, the soil temperature and Eh values were continuously monitored at the surface layer (Figure 1). The soil temperature fluctuated similarly to the air temperature but showed no significant differences among the treatments or years; the temperature increased gradually after rice transplantation, reached a peak value during the reproductive stage, and declined gradually thereafter. The soil Eh values exhibited a typical pattern throughout the entire rice cultivation period, with no marked differences among the various manure treatments. Within 2 weeks of submerging for rice transplanting, the Eh value declined sharply to –200 mV, indicating a highly reduced soil environment that persisted throughout the flooded cropping period. Following water drainage 1 month before rice harvesting, the soil Eh value increased rapidly, but no significant differences were observed among the different fertilizer treatments.
[image: Two graphs compare soil and air temperature, and soil Eh levels over 120 days after transplanting, for two consecutive years. The top graphs show fluctuating temperatures, while the bottom graphs depict a decrease and subsequent increase in soil Eh, measured in millivolts, with similar patterns across both years.]FIGURE 1 | Changes in soil and air temperatures, as well as soil Eh values, during rice cultivation.
3.2 Changes in NH3 emissions
Irrespective of the manure types and investigation years, NH₃ gas was emitted in a similar pattern (Figure 2). The recommended levels of chemical fertilizers were applied in all the treatments; the NH₃ emission rates increased sharply immediately after the addition of N fertilizer (urea). The total urea was split into three applications as the basal (50%) fertilizer 1 day before rice transplantation, at tillering (20%) 15 days after transplantation, and at panicle initiation (30%) 45 days after transplantation. However, manure addition significantly increased the NH₃ emission rates.
[image: Line graphs showing NH₃ volatilization over days after transplanting for two years. Both graphs compare treatments: Control, Fresh, Composted, and Biochar. The y-axis measures NH₃ volatilization, and x-axis shows days. Peaks occur around 20-60 days in both years.]FIGURE 2 | Changes in NH3 emission rates of rice paddy supplied with different types of manure amendments. The arrows indicate split N fertilization days, while the vertical bars indicate standard deviations (n = 3).
In the no-manure treatment (control), a total of 70–97 kg N ha⁻1 of NH₃ gas was emitted over the entire rice cultivation period, but the addition of 12 Mg ha⁻1 (dry weight) of fresh manure largely increased this seasonal flux by 42%–80% over the control (Figure 3). Stable manure types, such as the biochar and compost, were effective at reducing the increased NH₃ fluxes. Compost manure reduced the seasonal NH₃ flux by approximately 16%–21% compared to fresh manure. However, biochar exhibited even greater efficacy, reducing the seasonal NH₃ flux by 36%–46% compared to fresh manure. Furthermore, biochar showed a 4%–9% lower seasonal NH₃ flux than the control, although no statistically significant difference was observed between the two treatments.
[image: Bar charts showing the effects of different manure treatments (Control, Fresh, Compost, Biochar) on three variables: Seasonal \( \text{N}_2\text{O} \) flux, grain yield, and \( \text{NH}_3 \) intensity over two years. The Fresh treatment shows the highest \( \text{N}_2\text{O} \) flux and grain yield, while Biochar shows the lowest \( \text{NH}_3 \) intensity. Letter annotations indicate statistical significance. Bars are compared for the first year (black) and second year (white).]FIGURE 3 | Seasonal NH3 fluxes, grain yields, and NH3 flux intensities during rice cultivation when supplied with different types of manure amendments. The vertical bars indicate standard deviations (n = 3).
3.3 Changes in floodwater and soil chemical properties
The floodwater pH and NH₄⁺ concentrations fluctuated similarly during the 2 years of rice cultivation (Figure 4). Regardless of manure application, these two properties increased sharply after urea addition and then decreased gradually. Manure treatments had more pronounced influences on these properties. Fresh manure application significantly increased the water pH and NH₄⁺ concentration during the early rice cropping season, but these changes were less evident in the late cropping season.
[image: Graph showing pH and NH₄⁺-N(μg/g) levels over 100 days after transplanting for control, fresh, compost, and biochar treatments. Two-year data is presented, with the first year on the left and the second year on the right.]FIGURE 4 | Changes in the pH and NH4+ concentrations in rice paddy floodwaters supplied with different types of manure amendments. The arrows indicate split N fertilization days, and the vertical bars indicate standard deviations (n = 3).
In contrast to the floodwater changes, the soil properties (pH and inorganic NH₄⁺ concentration) remained relatively stable during rice cultivation (Figure 5). The soil pH was initially low when the soil Eh value was higher; as the soil condition became highly reduced, the soil pH increased. Manure application enhanced soil pH during the early rice-growing season, with biochar proving more effective than fresh and compost manures in this regard. Regardless of the fertilization background, the soil NH₄⁺ concentration increased slightly over time. Manure application comparably increased the inorganic NH₄⁺ contents in the soils. Among the manure treatments, biochar application significantly increased the soil NH₄⁺ level throughout the cropping period, although the differences were comparable among the various manure treatments.
[image: Four line graphs show soil pH and NH4-N levels over time for different treatments across two years. Treatments include control, fresh, compost, and biochar. The first year's graphs (top left for pH, bottom left for NH4-N) and the second year's graphs (top right for pH, bottom right for NH4-N) depict variations in measurements at specific days after transplanting. Each treatment is represented with distinct markers and lines.]FIGURE 5 | Changes in the pH and NH4+ concentrations in rice paddy soils supplied with different types of manure amendments. The vertical bars indicate standard deviations (n = 3).
3.4 Rice productivity and ammonia flux intensity
The rice yield properties differed between the cropping years, but the organic amendment application increased rice productivity consistently (Figure 3). The average grain yield was 7.2 Mg ha⁻1 for the control treatment. Compost application significantly increased grain productivity owing to the higher panicle numbers per hill and number of seeds per panicle, whereas the fresh and biochar manure applications increased rice productivity slightly without any statistically significant differences (Table 2). The NH₃ flux intensity, indicating the seasonal NH₃ flux per grain yield, was approximately 9.5 kg NH₃–N Mg⁻1 grain for the control treatment (Figure 3). The fresh and compost manure applications significantly increased the average NH₃ flux intensities by 69% and 38% over the control, respectively; however, biochar manure application did not increase the flus intensity over that of the control.
TABLE 2 | Rice yield properties in different types of manure-amended soils.
[image: Table comparing agricultural amendments over two years: first and second. It includes control, fresh, compost, and biochar treatments. Metrics include panicle number per hill, number of grains per panicle, percent ripened grains, thousand grain weight in grams, straw yield in megagrams per hectare, and harvest index percent. Note on significance determined by HSD method with p less than 0.05.]4 DISCUSSION
The N losses via NH₃ emissions from the field-applied amendments have garnered significant attention, owing to their impacts on reduced fertilizer effectiveness and more environmental problems (Misselbrook and Powell, 2005; Monaco et al., 2012). Flooded rice paddies possess soil conditions that are particularly conducive to NH₃ volatilization compared to upland conditions owing to the reduced oxygen levels and higher pH during the flooded cropping season (Ventura and Yoshida, 1977; Zhao et al., 2009; Zhang et al., 2013). Urea-N applied to the soil is rapidly converted to NH₄⁺ ions, which can either volatilize into NH₃ gas or undergo biological nitrification to form NO₃⁻ ions (Saggar et al., 2013; Barth et al., 2019). However, the rate of nitrification is influenced by oxygen availability (Jechalke et al., 2011; Hsiao et al., 2014). In flooded rice paddies, NH₄⁺ ions can persist due to the low-oxygen environment, leading to higher NH₃ volatilization losses.
In the present study, soil Eh values indicating the oxidation and reduction states decreased rapidly from 150 mV to –260 mV immediately after flooding (Figure 1). This decrease signifies a significant reduction in the soil oxygen concentration after flooding, creating favorable conditions for NH₃ volatilization loss. The low-oxygen environment inhibits the activity of the nitrifying bacteria, which normally convert NH₄⁺ to NO₃⁻. Consequently, the NH₄⁺ ions accumulate in the soil and are more prone to volatilization as NH₃ gas (Cui et al., 2021). Furthermore, this soil reduction increases the soil pH to 7.5–9.0, which is another favorable condition for NH₃ emission that persists throughout the flooded period (Figure 4).
In the field study, similar levels of chemical fertilizers were applied to all treatments, and the N fertilizer (urea) was split into three application times (basal, tillering, and panicle initiation stages) during rice cultivation. Regardless of the manure management conditions, the NH₃ gas emissions fluctuated in similar patterns (Figure 2), sharply increasing within 2–3 days after urea application and then rapidly decreasing to the background levels. The results indicate that the NH₃ emission rates were highly correlated with NH₄⁺ concentrations in the floodwaters rather than in the soils (Figure 6). Unlike the general notion that NH₃ volatilization loss is influenced by inorganic NH₄⁺ content in the soil (Du Plessis and Kroontje, 1964), inorganic NH₄⁺–N concentration in the floodwater was found to be the most influential factor determining NH₃ flux in the rice paddy (Figure 6).
[image: Scatterplots show NH₃ emissions in relation to floodwater NH₄⁺-N and soil NH₄⁺-N concentrations. The left graph has a quadratic trend line with an equation and R² value of 0.56. Data points are marked for first and second-year measurements.]FIGURE 6 | Relationship between NH3 emission rates and NH4+ concentrations in floodwaters and soils supplied with different types of manure amendments. The vertical bars indicate standard deviations (n = 3).
Interestingly, while the entire manure amendment was incorporated into the surface soil as the basal fertilizer before transplanting, the addition of urea through side-dressing significantly increased NH₃ volatilization loss in the manure treatments. This suggests that the added urea may have stimulated microbial activity (Xiang et al., 2023). Under favorable conditions, the soil microorganisms can metabolize urea and organic matter more rapidly, leading to increased NH₃ production as a metabolic byproduct (Lee et al., 2021; Li et al., 2022).
For example, the same amounts of urea N were applied in all treatments at the tillering stage (15 days after transplanting), but this addition increased NH₃ emission rates from tillering to panicle initiation fertilization by an average of 60% and 12% in the fresh and compost treatments, respectively. However, under biochar manure treatment, the NH₃ emissions were comparable to those without manure (Figure 2). The applied urea-N might boost microbial activity in the soil, accelerate the decomposition of organic amendments and soil organic matter, and subsequently increase NH₃ volatilization under anaerobic and high-pH conditions (He and Suzuki, 2004; Wang et al., 2021).
Among the selected manure amendments, the fresh and compost applications significantly increased the average seasonal NH₃ fluxes by 58% and 29% over no manure application, respectively (Figure 3). Biochar had an alkaline pH (8.4 ± 0.2 in water suspension) (Table 1), but its application did not increase NH₃ volatilization loss during the cropping season; instead, it decreased the seasonal NH₃ flux by approximately 7% compared to no manure application. Biochar is a C-rich solid product produced by the low-temperature pyrolysis of biomass (Lehmann and Joseph, 2015; Tomczyk et al., 2020); it contains oxygen functional groups, such as carboxyl and keto groups, which are responsible for NH₄⁺ adsorption through hydrogen bonding and electrostatic interactions (Cai et al., 2016). The reduction in NH₃ emission loss may be related to biochar’s high negativity (Gundale and DeLuca, 2007) and low inorganic N content (Table 1). Labile N in the biomass could volatilize during pyrolysis, resulting in biochar having very low inorganic N content (Ohtsuka et al., 1994; Clark et al., 2017). Some studies have shown the effectiveness of biochar in reducing N leaching losses (Major et al., 2012), with a high C/N ratio enhancing N immobilization (DeLuca et al., 2015).
However, compost contains higher concentrations of inorganic N (NH₄⁺ and NO₃⁻) compared to fresh manure (see Table 1), which makes it a less-effective application for reducing NH₃ volatilization losses. Rice grain productivity significantly increased with compost manure application (Figure 3), likely due to the higher N content (Table 1). However, fresh and biochar applications increased the average rice productivities by 5% and 11% over the control, respectively, although this was not a statistically significant difference compared to the control. The NH₃ intensity, indicating seasonal NH₃ flux per grain yield, was 12 kg NH₃–N Mg⁻1 grain for the control treatment. Fresh and compost manure applications significantly increase this intensity by approximately 50% and 12% over the control, respectively (Figure 3), primarily due to the higher NH₃ emissions. However, biochar application decreased NH₃ intensity during rice cultivation by around 16% compared to that of the control.
5 CONCLUSION
Regardless of the organic amendment management condition, NH₃ gas was mainly volatilized immediately after application of the chemical N fertilizer (urea). However, manure-based amendments, when incorporated as basal fertilizers before rice transplantation, can significantly increase NH₃ emission rates following urea application. Both fresh and compost manures, which are characterized by high contents of inorganic N, notably increase NH₃ volatilization during rice cultivation. In contrast, biochar having high material pH but low inorganic N content, does not elevate NH₃ emission loss over that of the control. Notably, NH₃ emission rates are primarily governed by the NH₄⁺ contents in the flooded waters, rather than those in the soils. Although compost manure application significantly boosts rice grain yield, fresh and biochar manure applications result in slight productivity increments without statistical significance. Consequently, the application of fresh and compost manures can markedly increase NH₃ emission intensities, indicating the seasonal NH₃ flux per grain yield, whereas biochar manure does not exhibit such intensity. In summary, biochar as an organic amendment is a more viable option compared to fresh and compost manures for mitigating NH₃ emissions and enhancing soil productivity in rice paddies.
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Background: Phytogenic mounds are a type of microtopography formed under perennial plants canopies in water erosion areas. However, the function of phytogenic mounds in seed assemblages and their ecological consequences remain poorly understood in semiarid areas with water erosion. Thus, understanding the characteristics of seed banks on mounds is crucial for ecosystem conservation and management in water-eroded areas.Methods: We compared the quantity and composition of soil seed banks on the upslope and downslope parts of mounds and intercanopy surfaces along four slope gradients. We also explored the relationships among the soil seed bank, aboveground vegetation, and environmental factors. Furthermore, the species similarity between the soil seed bank and aboveground vegetation was analyzed to clarify the important ecological consequences of phytogenic mounds for plant community construction in serious soil erosion area.Results: For slopes with α ≤ 46.6%, the intercanopy surfaces had greater soil seed bank species composition, density, and diversity than did the phytogenic mounds, and these characteristics showed no significant differences between the upslope and downslope parts of the mounds. As the slope increased, the soil seed bank density and species composition increased on the upslope part of the mound, and reached a maximum for slopes with α > 70%, while the downslope part of the mound negatively effected on seed aggregation. The sediment accumulation rate, soil moisture, particle size distribution, pH, organic matter carbon, and hardness were significantly correlated with the soil seed bank density and diversity in the study area. For slopes with 0 < α ≤ 26.8%, the species similarity coefficient between the soil seed bank and aboveground vegetation was the highest for the intercanopy surface. This species similarity on the upslope part of the mound showed an increasing trend with increasing slope gradient, while the downslope part of the mound had the opposite trend. For slopes with α > 70%, the upslope part of the mound did not only have more species in the soil seed bank but also had more species in aboveground vegetation than did the downslope part of the mound and intercanopy surface.Conclusion: For slopes with α ≤ 46.6%, phytogenic mounds had barely impact soil seed bank accumulation and conservation in semiarid and eroded areas. For slopes with α > 46.6%, the mounds (particularly on the upslope part of the mound) showed seed assemblage functions, which are coupled with improving edaphic conditions and decreasing microhabitat stress; thus, phytogenic mounds, or areas of microtopography, can be used to promote restoration success in semiarid eroded areas.Keywords: soil seed bank, phytogenic mound, vegetation restoration, sediment accumulation rate, water erosion, microtopography
1 INTRODUCTION
Perennial plants can be physical barriers, accumulating runoff sediments from uphill areas, and their canopy can protect the underlying soil from erosion in arid and semiarid eroded areas. These effects lead to a microtopography called phytogenic mounds (Bochet et al., 2000). These mounds cause spatial heterogeneity in biotic or abiotic resources, which may be important in determining soil biological activity and plant community structure in harsh environments (El-Bana et al., 2007). Thus, understanding the ecological consequences of phytogenic mounds has become a popular topic in semiarid and arid ecosystems (Venier et al., 2023).
Phytogenic mounds, or areas of microtopography, are important in promoting important ecosystem functions in arid and semiarid regions. First, phytogenic mounds can act as “fertility islands” by capturing nutrient-rich surface runoff and sediment eroded from uphill positions (Goudie, 2022); thus, the soil on phytogenic mounds has a higher water content and more nutrients than surrounding interplant spaces (Escudero et al., 2004). This improvement in soil physicochemical properties also enhances soil biological activity, such as high soil enzymatic activity and microbial biomass (Deák et al., 2017). Second, the host plants of mounds can act as “nurse plants,” providing more suitable habitats for understory plant establishment and development (Ba et al., 2022). For example, the host plant canopy can decrease soil temperature (da Silva et al., 2024), and underlying litter can improve water infiltration, which is important for improving microhabitats for flora in semiarid zones (Du et al., 2017). Therefore, phytogenic mounds have generally been regarded as “safe sites” that can create, modify and maintain habitats by improving and conserving soil water availability and accumulating and conserving soil nutrients, thus increasing the productivity and biodiversity of plants in arid and semiarid lands. However, studies have shown that the host plants of mounds may compete with other plants for resources such as water, nutrients, and sunlight, potentially limiting the growth and survival of neighboring plant species, this can negatively impact the diversity and abundance of plant species in the area (Bennett and Klironomos, 2019). Additionally, the continuous accumulation of sediment in mounds negatively impacts plant growth because these processes disturb seedling establishment (Huang et al., 2018). Therefore, the ecological consequences of phytogenic mounds in improving soil properties and maintaining biodiversity need further study.
Phytogenic mounds also represent a “species pool” for many species by altering seed capture processes, especially on eroded land (Melnik et al., 2018). Soil erosion leads to recurrent superficial soil loss and seed removal through runoff or windflow on barren interplant spaces (Bochet et al., 2000). Moreover, mounds and their host plants can restrict seed loss by reducing runoff or wind velocity within or around the canopy, and can trap seeds and propagules carried by runoff or wind from nearby areas (Vulliet et al., 2024). Thus, mounds have greater soil seed banks than adjacent area (Farrell et al., 2012). Moreover, improving soil quality on mounds and enhancing habitats under the host plant canopy may affect seed viability and longevity, which is conducive to long-term conservation and prolonged seed life (Shang et al., 2016). This seed aggregation effect, coupled with rich soil water and nutrient resources, enables the seeds on mounds to germinate and grow efficiently (Braz et al., 2014), which leads to more plant species on mounds than the surrounding areas. Moreover, it seems that mound are important in structuring the plant community through the growth of some keystone plant species, which in turn influence long-term vegetation dynamics and ecosystem processes (Pongen, 2024). On the other hand, research has shown that the host plant canopy can prevent anemophilous seeds from falling on mounds (Bohrer et al., 2008), thereby reducing the seed accumulation on mounds. Therefore, both the positive and negative effects of phytogenic mounds occur simultaneously and shift with environmental conditions, which seems to be more complex than previously assumed. Information regarding seed assemblages on phytogenic mounds or “nebkhas” and their ecological consequences is available mainly for arid desert regions, while there is little evidence about which of these seed trapping affect in semiarid soil erosion areas. The relative importance of trapping seeds and prolonging seed life induced by the mound and its host plants is not clear and requires further investigation.
In a study (Du et al., 2013; Du et al., 2017; Du et al., 2020), we experimentally demonstrated that phytogenic mounds in water erosion areas are formed due to water erosion on bare soil and sediment accumulation under plants; thus, these mounds maintain high soil quality and plant diversity, especially on steep slopes. As a result, we hypothesized that sediment accumulation on mounds is accompanied by seed trapping. However, seed trapping has not been sufficiently researched in water erosion areas. Understanding composition and quantity of seed banks on phytogenic mounds and their influencing factors not only enables us to theoretically predict the ecological resilience of the seed bank, which is an important indicator of ecosystem resilience (Ma et al., 2019) but also enables us to assess the potential of the seed bank for natural restoration processes in eroded areas because the seed bank could represent the local species pool for restoration (Ludewig et al., 2021).
In this paper, we investigated soil seed bank on phytogenic mounds to determine whether they can trap seeds eroded from uphill positions to build a large seed bank. Therefore, the quantity and composition of soil seed banks on the upslope and downslope areas of mounds and intercanopy surfaces at four slope gradients were analyzed. The relationships among aboveground vegetation, soil factors, and the soil seed bank were analyzed to explore the ecological functions of seed bank on phytogenic mound in semiarid areas with water erosion. We addressed the following hypotheses: (I) Seed trapping effects lead to greater density and diversity of the soil seed bank on phytogenic mounds than on intercanopy surfaces, especially on the upslope side of the mound. (II) The spatial heterogeneity of soil sediment accumulation and environmental factors may be vital in determining soil seed bank structure. (III) There is a high level of species composition similarity between the soil seed bank on the mound and the surrounding aboveground vegetation, therefore, phytogenic mounds should have important effects on the natural restoration of soil erosion-disturbed areas.
2 MATERIALS AND METHODS
2.1 Study site description
Five small watersheds with an area of 32 km2 in the Yanhe watershed in northern China (109 15′N, 3644′E) were selected for this study (Figure 1). The study area is a typical loess area with hills and gullies, and the soil type is dominated by loessal soil (FAO). The rainfall is distributed unevenly throughout the year, and the annual precipitation is mainly concentrated in summer. The area has a semiarid climate, with an average annual precipitation of 542.5 mm, an average annual temperature of 8.8°C, an average elevation of 1010–1430 m (average topographic slope of 54%), and an average aridity index of 1.5. The area is characterized as a forest-grassland vegetation zone, and the vegetation consists mostly of Gramineae, Asteraceae, Leguminosae and Rosaceae species (Wang et al., 2020).
[image: Map showing the Yanhe Watershed region with a contour representation of the landscape. An inset zooms in to display a detailed view of the terrain featuring vegetation and rocky formations.]FIGURE 1 | Location of the study area in the Yanhe Watershed, Loess Plateau (top left) and the five small watersheds sampled in this study (filled white squares, bottom left image); the vegetation distribution pattern of the study area is also shown (images taken during sampling).
2.2 Plot selection
The sample plot selected in this study was in a loess gully area, where the vegetation has been naturally restored for 40 years. The sampling plots was arranged on the southern slope where vegetative coverage is approximately 10%–25%. The vegetation was discontinuous, with isolated plants growing in bare soil, and mounds always developed under plant canopies (Figure 2A). The phytogenic mound was approximately 0.15–0.50 m high, with an area of 0.4–1.5 m2. To compare the changes in soil seed bank characteristics on phytogenic mounds across slope gradients, four slope gradient classifications were established according to the Soil Erosion Classification and Gradation Standard set forth by the Ministry of Water Resources of the People’s Republic of China (MWR, 2008), i.e. 0 < α ≤ 26.8%, 26.8 < α ≤ 46.6%, 46.6 < α ≤ 70%, and α > 70%. Fifteen phytogenic mounds were randomly selected and sampled from each slope class.
[image: Panel A shows a desert shrub on arid terrain. Panel B depicts a diagram of a phytogenic mound with marked upslope and downslope areas. Panel C illustrates a cross-section of the soil with plant roots and water flow direction. Panel D focuses on soil sedimentation layers and an erosion pin used to measure height of sediment accumulation.]FIGURE 2 | Development of a phytogenic mound under a plant canopy in the Yanhe Watershed, Loess Plateau, China. Phytogenic mound under an isolated plant (A); schematic top view of a mound and the sampling sites (B, C); and erosion pin (D) for measuring sediment accumulation rates.
2.3 Sampling method
2.3.1 Vegetation survey on phytogenic mounds
For each phytogenic mound, two parts were set up based on the slope runoff direction: the upslope and downslope parts (Figure 2B). Before soil seed bank sampling, vegetation surveys were first conducted on each part of the mound and intercanopy surface. The full upslope and downslope parts of the mound were included in the vegetation survey area. The number, coverage, crown width, and height of each plant species were recorded separately. After the vegetation survey, the radius of the base of the mound and the height of the mound were measured to calculate the vegetation survey area (Du et al., 2020).
2.3.2 Soil seed bank sampling method
After the vegetation survey, the soil seed banks on the upslope and downslope parts of the phytogenic mound were sampled. Ten soil cores were collected from each part, and each core had a depth of 10 cm and dimensions of 5 cm in both width and length. They were later mixed to form a single representative soil sample. After manually removing the gravel and incidental debris, the soil samples were placed in fabric bags, transported to the laboratory, and subsequently subjected to an air-drying process.
2.4 Experimental methods
2.4.1 Seed germination
The seedling emergence method was used in this study to determine the species composition and abundance of the soil seed banks (Thompson and Grime, 1979). First, the air-dried soil samples were concentrated following the method of Ter Heerdt et al. (1996). Briefly, soil with particle sizes less than 0.2 mm was screened through a soil sieve to remove fine soil material without seeds. The concentrated samples were spread evenly into germination trays with sterilized sand (115°C–120°C for 48 h), and the soil layer was kept maintained at 2 cm depth. Germination experiments were carried out in a temperature- and light-controlled greenhouse at which the temperature was maintained at 20°C–30°C. Four hundred-watt high-pressure sodium lamps provided growth illumination, with a light regime of 10 h of darkness and 14 h of light. The resulting 180 trays and 5 additional sample-free control trays (to recognize potential airborne seed contamination) were randomly arranged within the greenhouse.
From early April until early October, trays were irrigated daily or every other day, as necessary, to preserve soil moisture. Germinated seedlings were regularly counted and identified, while seedlings that were challenging to identify were transferred to separate containers to promote continued growth until identification became feasible. When there was no seedling emergence within 2 weeks, the soil sample was stirred and persistently observed for germination until plant emergence ceased. When no more seedlings emerged after the second germination period, a gibberellin solution (1 g L−1) was sprayed on the soil samples to prevent seed dormancy. The germination experiment was finished when there was no seedling emergence for 4 weeks.
2.4.2 Analysis of soil physical and chemical properties
To explore the relationships among the soil seed bank, aboveground vegetation, and environmental factors, soil samples were collected at a depth of 0–10 cm on each part of mound and intercanopy surface. The soil hardness was directly assessed from the profile wall using a TF-3 measuring device. The soil bulk density was measured for the soil cores using a cutting ring with dimensions of 50.46 mm in diameter and 50 mm in height (volume:100 cm3). The soil water content was determined through a 24-h drying process at 105°C. The soil samples used for other physical and chemical property analyses were air-dried before analysis. The pH levels were assessed using a pH meter. A Bettersize 2000 E laser particle size analyzer was utilized for particle size determination. Soil organic carbon was measured using the dichromate oxidation method. The above soil properties were analyzed following the methods of Jones (2018).
To measure surface light intensity, a Vantage Pro 2 handheld mini-automated weather station was used. Measurements of sediment accumulation rates were carried out over 1 year, from July 2020 through July 2021. The sediment accumulation rates were recorded using erosion needles laid out on a 5 cm × 5 cm grid on the UP and DN and on the IS (Figures 2C, D). The erosion needles indicated changes in the soil surface level over time. Sedimentation was recorded every year, and the annual rates were calculated as following Eq. 1; (Du et al., 2020):
[image: The formula shown is: SA equals the sum from i equals one to n of h sub i, divided by n, over A, multiplied by A times BD, which simplifies to the sum from i equals one to n of h sub i, divided by n, multiplied by BD. It is labeled as equation 1.]
where SA is the sediment accumulation rate (SA, g cm−2 year−1), n is the number of erosion needles, hi is the increase or decrease in the soil surface height (cm), i is monitoring grid i, A is the upslope or downslope mound area (cm2) and BD is the average soil bulk density (g cm−3).
2.5 Statistical analysis
Seed density was 4 calculated as the average number of emerged seedlings per square meter from the soil samples. Species diversity indices of the soil seed banks were measured based on the following Eqs 2–5 (Begon and Townsend, 2021):
The Margalef index:
[image: Mathematical formula depicted as "R equals open parenthesis S minus one close parenthesis divided by the natural logarithm of N."]
Shannon‒Wiener index:
[image: Formula for entropy: \( H = -\sum (P_i \ln P_i) \).]
Simpson index:
[image: Mathematical formula: \( D = 1 - \sum P_i^2 \) followed by the number 4 in parentheses.]
Pielou index:
[image: Equation representing E equals H divided by the natural logarithm of S, labeled as equation five.]
where S represents the number of plant species, N represents the total number of individuals of all plant species in one quadrat, and Pi represents the relative abundance of plant species i in one quadrat. Pi was calculated as follows: Pi = ni/N.
The species similarity between the soil seed bank and standing vegetation was calculated using the following Eq. 6 (Hopfensperger, 2007):
[image: Mathematical expression for S sub k equals two c divided by the sum of b and a, labeled as equation six.]
where Sc is Sorensen similarity index, a is the number of species in the soil seed bank, b is the number of species in the standing vegetation, and c is the number of species shared by both.
The comparison of plant community attributes on distinctive mound sections with diverse slope gradients was performed using one-way analysis of variance (ANOVA) and least significant difference (LSD) multiple comparisons at a significance level of p < 0.05. These analyses were performed utilizing IBM SPSS statistics software package 24.0. Canoco 5.0 software was used to conduct a redundancy analysis (RDA) of the impact of environmental variables on the plant community composition within the soil seed banks present on the mounds. To explore the similarity between the soil seed banks and aboveground vegetation species, the Sorensen similarity index was calculated using Excel 16.0, and the UpSet R v1.4.0 package was used to visualize the intersecting species between soil seed banks and aboveground vegetation in different sampling plots (Conway, et al., 2017).
3 RESULTS
3.1 Characteristics of the soil seed bank
3.1.1 Density
Overall, the soil seed bank densities on the intercanopy surfaces and downslope part of the mound decreased as the slope increased, but the density in the upslope part of the mound increased with increasing slope (except for slopes with α > 70%). The soil seed bank density on the intercanopy surfaces was 99% greater than that on the mounds with slopes showing 0<α ≤ 26.8% (p < 0.05) (Figure 3), and it was significantly greater on the intercanopy surfaces and upslope part of the mounds than on the downslope part of the mounds at 26.8 < α ≤ 46.6% (p < 0.05). However, the soil seed bank densities on the upslope part of the mound increased by 307% and 152% compared with those on the downslope part of the mound and intercanopy surface for slopes with α > 46.6%, respectively. There was no significant difference in the soil seed bank density between the intercanopy surface and downslope parts of the mound for slopes with α > 46.6% (P < 0.05).
[image: Bar chart showing the density of soil seed banks across four sample gradients. The intercanopy surface bars (red) are highest in all categories, especially the first gradient. Upslope (green) and downslope (purple) parts of mounds vary, with the upslope often exceeding downslope. Each bar is labeled with letters indicating statistical significance.]FIGURE 3 | The seed density of the soil seed bank on phytogenic mounds and intercanopy soil surfaces at different slope gradients. The values are denoted as the mean ± SD, and the differences among means were determined by ANOVA and LSD. Different letters denote significant differences on the upslope and downslope parts of the mounds and intercanopy surfaces at different slope gradients (P < 0.05).
3.1.2 Species composition
A total of 44 species were identified from seeds germinated from all soil seed banks collected from the four slope gradients on phytogenic mounds. The top three families were Compositae (11 species), Fabaceae (8 species), and Poaceae (8 species) (Supplementary Table S1). Overall, annual and perennial herbs constituted a large proportion of the seed bank (Figure 4). For slopes with 0 < α ≤ 46.6%, the proportion of annual plants accounted for 52% on average. Moreover, it decreased by 36% and 55% on mounds and intercanopy surfaces, respectively, for slopes with α > 46.6%. Except for 46.6 < α ≤ 70%, the proportion of annual plants did not significantly differ among the parts of the mound for 26.8 < α ≤ 46.6% and α > 46.6%. In contrast to annual plants, the proportion of perennial plants in the seed bank increased with increasing slope gradient and increased from 31% on slopes with α ≤ 46.6%–63% with α > 46.6%. The shrub and tree seeds appeared only on the upslope part of the mound at α > 46.6%, and the proportion was approximately 2%.
[image: Bar chart showing the relative abundance of life forms in the soil seed bank across various sample gradients. Categories include trees, shrubs, herbaceous perennials, and annuals & biennials. Each gradient (IS, UP, DN) across different conditions displays varying proportions, with herbaceous perennials and annuals & biennials dominating.]FIGURE 4 | Relative abundance of different growth forms for the soil seed bank on phytogenic mounds and intercanopy soil surfaces at different slope gradients. IS: intercanopy surfaces, UP: upslope part of mounds, DN: downslope part of mounds.
3.1.3 Species diversity
The Margalef richness index, Shannon-Wiener diversity index, Simpson dominance index and Pielou evenness index did not significantly differ among the intercanopy surface and upslope and downslope parts of the mound for slopes with α ≤ 70%, even though the Simpson index did not significantly differ for slopes with α > 70% (Figure 5). At α > 70%, the Margalef index in the upslope part of the mound increased by 41% and 46% (Figure 6A), the Shannon‒Wiener index increased by 25% and 32% (Figure 6B), and the Pielou index decreased by 46% and 55% (Figure 6D), respectively, compared to those on the intercanopy surface and downslope parts of the mound.
[image: Four box plots labeled A, B, C, and D show results for different sample gradients. Each plot displays variations in specific measurements, with significant differences indicated by letters and p-values. Color-coded boxes (red, green, purple) represent different conditions for precise comparisons across gradients.]FIGURE 5 | The Margalef index (A), Shannon‒Wiener index (B), Simpson dominance index (C), and Pielou index (D) of soil seed bank on phytogenic mounds and intercanopy soil surfaces at different slope gradients. Two different lowercase letters indicate statistically significant differences concerning the index (significance level P < 0.05). IS: intercanopy surfaces, UP: upslope part of mounds, DN: downslope part of mounds.
[image: Four RDA (Redundancy Analysis) plots labeled A, B, C, and D compare data partitioned by different alpha ranges: 0 to 26.8%, 26.8 to 46.6%, 46.6 to 70%, and over 70%. Each plot shows vectors radiating from the center representing variables, with colored points representing samples. Axes are labeled with RDA1 and RDA2, and percentage variance explained by both axes is noted on each plot. Colors vary across the plots, indicating different data groups or categories.]FIGURE 6 | Biplot of the two axes for the RDA (redundancy analysis) for soil factors and soil seed bank on phytogenic mounds and intercanopy soil surfaces at 0 < α ≤ 26.8% (A), 26.8 < α ≤ 46.6% (B), 46.6 < α ≤ 70% (C), and α > 70% (D) slope gradients. [image: A large red circle with a soft, blurred appearance, set against a white background.]Intercanopy surfaces; [image: Green circle on a white background.]Upslope part of mounds; [image: A solid pink circle on a white background.]Downslope part of mounds. The red arrows represent soil factors and the blue arrows represent plant species. Note:X1, Aster altaicus; X2, Bothriochloa ischaemum; X3, Ixeris polycephala; X4, Cleistogenes hancei; X5, Melilotus officinalis; X6, Cleistogenes squarrosa; X7, Astragalus scaberrimus; X8, Corispermum mongolicum; X9, Robinia pseudoacacia; X10, Lespedeza davurica; X11, Viola philippica; X12, Euphorbia humifusa; X13, Androsace umbellata; X14, Syringa oblata; X15, Elymus kamoji; X16, Sibbaldianthe bifurca; X17, Oxytropis racemosa; X18, Saussurea japonica; X19, Glycyrrhiza uralensis; X20, Periploca sepium; X21, Setaria viridis; X22, Scorzonera albicaulis; X23, Clematis fruticosa; X24, Bidens pilosa; X25, Oxybasis glauca; X26, Artemisia giraldii; X27, Potentilla tanacetifolia; X28, Ixeris sonchifolia; X29, Sophora davidii; X30, Erodium stephanianum; X31, Taraxacum mongolicum; X32, Rubia cordifolia; X33, Artemisia gmelinii; X34, Gueldenstaedtia verna; X35, Dracocephalum moldavica; X36, Cirsium setosum; X37, Linum stelleroides; X38, Poa sphondylodes; X39, Polygala tenuifolia; X40, Stipa bungeana; X41, Cleistogenes hackelii; X42, Salsola collina; X43, Artemisia scoparia; X44, Stenosolenium saxatile; OC, soil organic carbon; SW, soil water content; SH, soil hardness; SA, sediment accumulation rate; LI, surface illumination intensity; PC, Soil silt particle; SC, Soil sand particle; CC, Soil clay particle; SP, soil porosity.
3.2 Relationships between the soil seed bank and soil factors
In general, the sediment accumulation rate, soil water content, particle size distribution were the most critical soil environmental factors affecting the soil seed bank species composition (Table 1). For slopes of 0 < α ≤ 26.8%, the upslope and downslope parts of the mound were clustered on the left side of Axis 1, indicating that there was no difference in the soil physiochemical properties or seed bank species composition on the different parts of the mound. The species richness of the soil seed bank was greater on intercanopy surfaces than on the upslope and downslope parts of the phytogenic mounds, and the species richness was mostly positively correlated with the sediment accumulation rate, soil hardness, and soil water content (Figure 6A). For slopes with 26.8 < α ≤ 46.6%, the species richness was greater on the intercanopy surfaces and the upslope part of the mound. Species richness was positively correlated with the soil clay content, soil particles, soil organic carbon content, and surface illumination intensity (Figure 6B). At α > 46.6%, the species composition of the seed banks had similar distribution patterns according to the RDA ordination diagram (Figures 6C,D). The intercanopy surfaces and downslope part of the mound clustered to the left of Axis 1, and the seed bank species richness was relatively low. The species richness on the upslope part of the mound clustered to the right of Axis 1, where most of the seed bank species were included. Species richness was positively correlated with sediment accumulation rate, soil organic carbon, soil water content, soil clay, and soil porosity but negatively correlated with soil sand, soil bulk density, and soil hardness.
TABLE 1 | Importance and signification level of soil factors affecting the soil seed bank species composition.
[image: Table showing top six soil factors of importance at different slope ranges. For slope 0 to 26.8%, SA explains 21.9%, SH 12.9%, SW 17.6%. Slope 26.8 to 46.6%, SA explains 13.5%, pH 15.5%. Slope 46.6 to 70%, SA explains 43.4%. Slope above 70%, SA explains 45.1%. Factors include SA, SH, SW, pH, CC, PC, OC, SP.]3.3 Relationships between the soil seed banks and aboveground vegetation
On the upslope part of the phytogenic mound, the species similarity between the soil seed bank and aboveground vegetation showed an increasing trend with increasing slope, while the downslope part of the mound had the opposite trend. For slopes with 0 < α ≤ 26.8%, the species similarity coefficient between the soil seed bank and aboveground vegetation was the highest on the intercanopy surface, and the species similarity on the mounds decreased by 22% compared with that on the intercanopy surface (Figure 7). Along this slope gradient, there were 5 overlapping species between the soil seed bank and aboveground vegetation, including Potentilla tanacetifolia, Artemisia scoparia, Taraxacum mongolicum, D. moldavica, and Polygala tenuifolia (Figure 8A). For slopes with 26.8 < α ≤ 46.6%, the species similarity between the soil seed bank and aboveground vegetation ranged from 0.41 to 0.47, and there was no difference between the intercanopy surface and different parts of the mound (Figure 7). The overlapping species between the soil seed bank and aboveground vegetation included Stipa bungeana, P. tanacetifolia, D. moldavica, A. scoparia, Melilotus suaveolens, and Poa sphondylodes (6 species) (Figure 8B). For slopes with α > 46.6%, the species similarity between the soil seed bank and aboveground vegetation on the upslope part of the mound increased by 36% and 32%, respectively, compared with that on the downslope part of the mound and intercanopy surface (Figures 7, 8C). For slopes with α > 70%, the upslope part of the mound not only had a greater number of aboveground vegetation species but also had a greater number of specific species in the soil seed bank than did the downslope part of the mound and intercanopy surface, such as the arbor Robinia pseudoacacia; shrubs Ocimum gratissimum, Clematis fruticosa, and Sophora davidii; and herbs Agropyron ciliare and Salsola collina (6 species) (Figure 8D).
[image: Bar chart depicting the Sorensen similarity index for different sample gradients. It shows values for intercanopy surfaces (red), upslope part of mounds (green), and downslope part of mounds (purple) across four gradient ranges. The upslope parts consistently have higher index values, peaking at 0.69 in the steepest gradient range, whereas downslope and intercanopy values range from 0.41 to 0.58. The chart highlights the variation in similarity across landscape positions.]FIGURE 7 | The species similarity matrix of aboveground vegetation and soil seed bank on phytogenic mounds and intercanopy soil surfaces at different slope gradients.
[image: Four bar charts labeled A, B, C, and D compare species representation percentages across different ranges of alpha values: 0 to 26.8%, 26.8% to 46.6%, 46.6% to 70%, and over 70%. Each chart shows species categorized by colors: red, green, pink, black, purple, and yellow. The y-axis represents the number of species representations. Each chart reflects differences in the prominence of certain species across the alpha value ranges.]FIGURE 8 | UpSet plot of seedling bank and aboveground vegetation species at 0 < α ≤ 26.8% (A), 26.8 < α ≤ 46.6% (B), 46.6 < α ≤ 70% (C), and α > 70% (D) slope gradients. The horizontal bar on the left represents the number of seedling bank and aboveground vegetation species in sampling plots of different parts of mounds and intercanopy surface. Dots and lines represent two plot associations. Vertical histogram represents the number of intersecting species between these associative plots. Note: I: 0 < α ≤ 26.8%, II: 26.8 < α ≤ 46.6%, III: 46.6 < α ≤ 70%, IV: α > 70%, S, soil seed bank species; V: aboveground vegetation species; IS: intercanopy surfaces, UP: upslope part of mounds, and DN: downslope part of mounds.
4 DISCUSSION
4.1 Accumulation of soil seed banks on phytogenic mounds
Our results indicated that phytogenic mounds exhibit large variations in soil seed bank size across slopes in semiarid and water erosion regions. The soil seed bank density and species number on the phytogenic mounds are significantly lower than those on intercanopy surfaces for slopes with 0 <α ≤ 26.8%, while these soil seed bank characteristics on the upslope part of the mound increase with slope and reach the highest values on slopes with α > 46.4%. This observation confirms Hypotheses I and II in which sediment and seed trapping effects lead to soil seed banks formation on phytogenic mounds. In a previous study, we showed that mounds on gentler slopes are formed due to differences in rain splash erosion beneath plant canopies and surrounding bare surfaces (Du et al., 2013). Thus, only small amounts of sediment and litter that are rich in plant propagules accumulate on the mounds. Moreover, the dense plant canopy blocks windborne seeds from dropping on the mound (Miri et al., 2021). Consequently, mounds seem to negativly effect seed trapping on slopes with α < 46.6%. In contrast, mounds on slopes with α > 46.4% are formed due to sediment accumulation under plants. The topsoil and litter enriched in plant propagules on intercanopy surfaces are removed by slope flow due to the high carrying capacity of surface runoff (Liu et al., 2020), which causes low soil seed bank density and species diversity on slopes with α > 46.6% (Figure 9). The washed material is intercepted by plants and deposited on phytogenic mounds, and the upslope part of the mounds is the main area of seed accumulation (Peralta et al., 2016). This can explain the formation of high soil seed bank density on the upslope part of the mounds. A counterexample of the effects of seed trapping on soil seed bank formation is the characteristics of the seed bank on the downslope part of the mound on slopes with α > 46.6%, which cannot directly block or intercept sediments in runoff from higher slope positions. Thus, the downslope part of mounds with α > 46.6% have the lowest seed bank density and diversity.
[image: Illustration of soil processes on sloped terrain, depicting gentle and steep slopes. Arrows indicate water direction and processes such as runoff, sediment movement, and water infiltration. Labels include key factors: shrub canopy, surface characteristics, and soil properties. Legends denote seed, runoff types, and water infiltration.]FIGURE 9 | Effects of aboveground vegetation and environmental factors on soil seed bank on a phytogenic mound in water erosion area. Note: The red arrow indicates that the external environment positively effects the accumulation and preservation of soil seed banks. The yellow arrow indicates that the external environment does not significantly effect the accumulation and preservation of soil seed banks. Green arrows indicate that the external environment negatively impacts the accumulation and preservation of soil seed banks.
Analysis of the seed bank composition revealed that annual plants predominate in the soil seed bank on intercanopy surfaces and on mounds with different slopes. This is consistent with several studies conducted on the Loess Plateau of China and those conducted in other regions of the world (Rago et al., 2020). Annual plants always produce many seeds, which enables annual plants to quickly colonize disturbed or vacant areas by seed rain or slope runoff, and their seeds can accumulate in the soil over time. In this study, the arbor and shrub seeds appeared only on the upslope part of the mound on slopes with α > 46.6%. These seeds, such as Sophora viciifolia, R. pseudoacacia, and C. fruticosa, commonly have relatively large masses (20–40 mg per seed) and nearly circular shapes (Wang et al., 2011). These seed masses resist water erosion and seed removal processes on slopes with α < 46.6%. However, the transporting power of runoff can move large, round seeds on steep slopes (Janeau et al., 2022), and the mounds intercept slope runoff and intercept these seeds. Moreover, larger seeds are less likely to be incorporated into the soil because they have a lower chance of passively entering through cracks and are more vulnerable to environmental determinants on intercanopy surfaces (Bekele et al., 2022). Moreover, the runoff sediments on the upslope part of mounds can bury seeds and prevent their inactivation from the severe external environment in arid zones. Moreover, mound host plants are nurse plants, reducing soil water evaporation, decreasing thermal stress (Pugnaire et al., 2004), and improving soil quality under the plant canopy, which reduces damage to seed activity from the external environment on steep slopes (Li et al., 2022). This suitable habitat is important for shrubs and trees, which otherwise may fail to establish in more hostile environments (Varela et al., 2021). The emergence of trees and shrubs is not only essential in maintaining species diversity on steep slopes in semiarid areas but also benefits the positive succession of plant communities on steep slopes because trees and shrubs are considered late-stage species in plant community succession (Kalacska et al., 2004). Therefore, our results reaffirmed that phytogenic mounds not only promote seed bank density and diversity but are also refuges for seeds, which can determine plant community dynamics during natural vegetation restoration in areas disturbed by soil erosion (Figure 9).
4.2 Relationships between soil seed banks, soil factors and aboveground vegetation
Contrary to Hypothesis III, our results showed that the species occurring in the seed banks on the mounds had low similarity to the aboveground vegetation except for those on the upslope part of the mounds with slopes at α > 46.6%. These results were consistent with studies on perennial grasslands showing a low correspondence between the species composition of the seed bank and aboveground vegetation (Birhanu et al., 2022). The main reason for this pattern in this research may be that the density of the mound host plant canopy hinders the settlement of seeds on mounds, while the open area of the intercanopy surface can accept seeds from the surrounding area and from distant regions or ecosystems (Witkowski and Garner, 2000). These seeds are also not easily carried away by slope runoff on slopes with α < 46.6%. Another reason for the low level of species similarity between aboveground vegetation and the soil seed bank is that the soil seed bank contains seeds that disappear from aboveground vegetation early in succession and that can survive underground according to their opportunistic species strategy (Amiaud and Touzard, 2004), such as Linum usitatissimum, S. collina, Stenosolenium saxatile, and Androsace umbellate, in this study. However, analysis indicated that the similarity of the seed bank and aboveground vegetation is greater on the upslope part of the mound on slopes with α > 46.6%. This strong similarity between vegetation and the seed bank is attributed to the interception of seed-rich runoff sediments and litter at this site, which, coupled with improving soil physicochemical properties on the upslope part of the mound, may be beneficial for seed viability (Leicht-Young et al., 2009; Wang et al., 2023). Our results indicated that the species composition of the soil seed bank is positively correlated with the soil sediment accumulation rate, soil water content, and particle size distribution. These results are different from those in humid areas where excessively moist soil may reduce seed respiration leading to more seed rot or deterioration (Ma et al., 2017; Zhong et al., 2019), and indicate that good soil aeration and appropriate soil moisture are beneficial for soil seed banks conservation in semiarid areas. In contrast, the intercanopy surfaces and downslope parts of mounds on steep slopes are exposed to strong surface light intensity and excessively dry soil, which potentially accelerate seed inactivation (Figure 9).
The seed bank is generally considered a crucial parameter for plant communities community regeneration in ecologically disturbed areas (Dölle and Schmidt, 2009). Our resluts demonstrated that phytogenic mounds barely impact soil seed bank accumulation and seed bank activity on slopes with α < 46.6%, where plant habitats are less disturbed by soil erosion. The mounds (particularly on the upslope part) maintain greater soil seed bank density and species diversity than do the intercanopy surface on slopes with α > 46.6%, where severe soil erosion interference makes it difficult to renew vegetation (Zuazo and Pleguezuelo, 2009). In this situation, the soil seed bank on the upslope part of the mound serves as a “species pool” for plant propagules accumulation, which provides the necessary foundation for future vegetation restoration and renewal. However, it appears that this promoting effect of plant establishment and growth needs to be accompanied by improved edaphic conditions and decreased microhabitat stress, as in the upslope part of phytogenic mounds. The number and diversity of grass and shrub species established on mounds are evidence that the upslope part of phytogenic mounds on slopes with α > 46.6% is important for natural vegetation restoration in ecosystems degraded by erosion. These results showed that small microtopography, such as phytogenic mounds, can concentrate nutrients and seed resources, which increase seed survival and plant establishment in in severely disturbance areas. Thus, mounds, or areas of microtopography, can be used to promote restoration success in arid and semiarid eroded areas.
5 CONCLUSION

	(1) Phytogenic mounds for slopes with α < 46.6% barely impact soil seed bank accumulation in semiarid and eroded areas, while mounds (particularly those on the upslope part) intercept and preserve plant propagules, leading to high soil seed bank density and species diversity compared with those on intercanopy surfaces for slopes with α > 46.6%.
	(2) The sediment accumulation rate, soil water content, and particle size distribution have been suggested as crucial determinants of soil seed bank density and species composition in semiarid regions.
	(3) Phytogenic mounds, or small areas of microtopography, can trap runoff, nutrients, and plant seeds. Such simultaneous improvements in abiotic and biotic resources create different habitats that promote the recruitment of species with different growth forms on the mound, which is not only essential in maintaining species diversity in semiarid areas but also benefits the positive succession of plant communities in environments disturbed by severe soil erosion.
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The Loess Plateau is an important region for soil and water conservation and ecological construction in China. Exploring the spatio-temporal variations in soil conservation and water conservation services and their relationships in Loess Plateau under the background of land consolidation projects is of great significance for ecological protection and quality development in the Yellow River Basin. Taking Yan’an city as the research area, this paper used the InVEST model to quantitatively evaluated spatio-temporal variation characteristics and trade-off/synergy relationship of the soil conservation and water conservation services from 2010 to 2018. According to the implementation data, the relationship between the gully control and land consolidation (GCLC) project in various counties of Yan’an city and soil conservation and water conservation service was analyzed. The results showed that the total amount of soil conservation services in Yan’an City were 4.07 × 106 t and 3.75 × 106 t in 2010 and 2018 with a decrease of 7.76%, and with low spatial clustering characteristic. The total amount of water conservation services were 2.01 × 1010 mm and 2.03 × 1010 mm in 2010 and 2018 with a increase of 0.56%, and with high spatial clustering characteristic. There is a synergistic relationship between soil conservation and water conservation services in most area of Yan’an city. From 2010 to 2018, the effect of the GCLC projects on soil conservation and water conservation services in Yan’an city is not significant. The GCLC project can effectively alleviate the situation of sharp decline of cultivated land area and insufficient food production capacity.
Keywords: soil conservation, water conservation, gully control and land consolidation, spatiotemporal variations, trade-offs, Yan’an city

1 INTRODUCTION
Ecosystem services refer to the biological resources, natural environmental conditions and utility provided for human survival through ecosystems and ecological processes (Costanza et al., 1997). Ecosystem service assessment plays an important role in regional development, ecological protection and human wellbeing. Ecosystem services are mainly divided into four types: supply, regulation, support and cultural services (Costanza et al., 1997; Ouyang and Wang, 2000). Among them, soil conservation and water conservation are two ecosystem service functions, which play important regulating and supporting roles in precipitation storage, runoff regulation, soil erosion prevention and groundwater replenishment, etc. (Costanza et al., 1998; MEA, 2005). It also plays an important role in the energy flow and material circulation of the ecosystem (Li et al., 2013). As different types of ecological services have different emphases on human well-being, and their spatial distribution is unbalanced, there are competition or mutually beneficial relations between ecological components and natural resources, and there are synergistic or tradeoff relations of mutual influence (Jopke et al., 2015). Therefore, exploring the temporal and spatial characteristics of soil conservation and water conservation ecosystem service functions and their relationships can provide scientific basis for the formulation of ecological protection policies and the implementation of ecological projects. A number of scholars have analyzed the characteristics of soil conservation and water conservation services changes and their relationships in different regions. Turner et al. (2014) studied the spatial distribution and interaction of 11 ecosystem services in Denmark, and analyzed the relationship between them and the cultural landscape of Denmark. Mousavi et al. (2023) regarded soil conservation and water conservation services as the two main ecosystem services provided by the rangeland ecosystem, and studied the external costs caused by the loss of rangeland ecosystem services in the central part of Iran. Gao and Zuo (2021) used models to evaluate and simulate the functions of soil conservation and water conservation at various scales in Beijing, China, and analyzed the trade-offs among them.
The Loess Plateau located in the middle of the Yellow River Basin, and it is the region with most serious soil and water loss in the world. According to the “Bulletin on Soil and Water Conservation in the Yellow River Basin (2021)” (Yellow River Conservancy Commission, 2022), the soil and water loss area of the Loess Plateau is 231,300 square kilometers, accounting for 89.2% of the soil and water loss area of the Yellow River Basin. It is also an important area of soil and water conservation and ecological construction in China, which plays a very important role in the ecological protection and high-quality development strategy of the Yellow River basin. Yan’an city is the most representative city on the Loess Plateau in northern Shaanxi province. As the key and demonstration area of “Grain for Green” (GFG) project, the largest ecological environment construction project in China in the 21st century, the vegetation area of the Yan’an city has been greatly increased during this period, effectively curbing soil erosion, greatly improving the natural ecological environment and the value of regional ecosystem services (He, 2015; Han et al., 2021). However, with the further advancement of the project, problems such as the reduction of cultivated land, the tension between people and land, and the prominent contradiction between people and grain in some areas have emerged (Chen et al., 2015). In view of the special geomorphology in the hilly and gully region of the Loess Plateau, in order to increase the cultivated land area and ensure food security, Yan’an city has carried out the The Gully Control and Land Consolidation (GCLC) project, which is a new management model that includes dam system construction, old dam restoration, saline-alkali land transformation, development and utilization of waste and unused land and ecological construction (Han et al., 2021). The comprehensive remediation of mountains, water, forests, fields, trees and villages aims to increase the cultivated land area in the Loess Plateau, ensure food security and solve the contradiction between people and land (Li et al., 2016).
At present, the research on the ecosystem service value in the Loess Plateau and Yan’an city mainly focuses on the period of the GFG projects, which is manifested as the improvement of regional ecosystem service value, such as the increase of soil conservation (Deng et al., 2020) and the synergistic development of relations (Wang et al., 2021). There are also some studies on ecological and environmental changes under the background of the GCLC projects, mainly focusing on soil fertility (Ma et al., 2020), hydrological changes (Jin et al., 2019) and vegetation cover changes (He et al., 2020). However, there are few quantitative studies on ecosystem services of soil conservation and water conservation.
Therefore, taking Yan’an city as the study area, this study used InVEST model and ArcGIS to quantitatively analyze the temporal and spatial distribution and variation characteristics of regional water conservation and soil conservation ecosystem service functions before and after the GCLC project from 2010 to 2018, and revealed their tradeoff/synergy relationship. On this basis, the study analyzes the relationship between the project and the change of two ecosystem services. The aim is to provides scientific basis and decision support for the ecological benefit evaluation, the formulation of ecological protection policy and the implementation of ecological projects of the Loess Plateau.
2 MATERIALS AND METHODS
2.1 Study area
Yan’an city (35°20′39′−37°53′31′N, 107°38′59′−110°34′46′E) is located in the hinterland of the Loess Plateau, in the middle reaches of the Yellow River, and is 256 km wide from east to west and 236 km long from south to north, with a total area of 37,037 km2 (Figure 1). It is characterized by a semi-humid and semi-arid continental monsoon climate, with cold and dry winters and hot and rainy summers. The average annual precipitation is 562.1 mm, and is relatively concentrated in summer (July–September). The annual average temperature is 9°C, and the average frost-free period is 179 days. There is more than one crop but less than two crops a year. Yan’an city is a loess hilly and gully region, with high terrain in the northwest and low terrain in the southeast. The north is dominated by loess hills and gullies, accounting for 72% of the total area. The south is dominated by loess plateau gullies, accounting for 19% of the total area and stone mountains account for 9% of the total area. The main feature of the river system distribution in Yan’an city is a deep trunk with dense branches. There are 20,889 channels over 1,000 m in the territory. The terrain in the area is fragmented, with various gullies and ravines. The gully is strongly cut down by a large slope and serious soil erosion. Yan’an city has 1 district and 12 counties, 16 street offices, 84 towns and 12 townships, with a total population of 2.19 million.
[image: Map of a county in Shaanxi Province, showing elevation with a gradient from green (low) to red (high). An inset map locates Yan’an city within the province. Legends provide elevation data and key locations.]FIGURE 1 | Location and elevation of the study area.
The GCLC project of Yan’an city was first piloted in Baota District, Zichang County and Yanchuan County in 2010. In September 2012, it was listed as a major national land consolidation project and given support. In November 2013, it was officially approved (Liu, 2013). The project involved 13 counties and districts of the city, with a total of 197 subprojects, which were implemented intensively from 2013 to 2017. The construction scale was 36,986.22 hm2, the new farmland area was 7,848.72 hm2, and the high-standard farmland area was 28,233.29 hm2, with an investment of 3.664 billion yuan (Table 1). At the same time, the GFG project in Yan’an city has entered the consolidation stage in 2010. The forest coverage rate of the city reached 36.6%, and the regional ecological environment was greatly restored. In 2013, Yan’an city carried out a new round of the GFG project, planning to gradually return all sloping farmland above 25° to forest, and achieve full afforestation of steep slopes and full forest and grass cover.
TABLE 1 | Implementation scale of GCLC project in various counties of Yan’an city.
[image: Table listing projects by district in terms of project number, construction scale (in hectares), new cultivated land, high-standard farmland, investment amount (in ten thousand yuan), and implementation time from 2010 to 2019. Total values are provided at the bottom.]2.2 Data sources
The basic data used in this study include land use data, elevation data, meteorological data, soil data, and data on the GCLC project. The land use data in 2010 and 2018 are from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn), with a spatial resolution of 30 m. According to the land use/land cover change (LUCC) classification system established by Liu (1996), land use types were divided into 6 primary classifications and 18 secondary classifications. Elevation data were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn) (ASTER GDEM data product) with a spatial resolution of 30 m. The DEM was used to fill the depressions, calculate the flow direction, calculate the cumulative amount of convergence and other operations in ArcGIS to extract the vector map of sub-basins. Meteorological data were obtained from the National Scientific Data Center for the Tibetan Plateau (tpdc.ac.cn) -China 1 km resolution Monthly Precipitation Dataset (1901–2020), with a spatial resolution of 1 km. The soil data were from the Harmonized World Soil Database (HWSD) soil dataset (v1.2) of the National Scientific Data Center for the Tibetan Plateau (https://data.tpdc.ac.cn), which included soil texture, soil organic carbon content, vegetation available water content, root depth and other data, with a spatial resolution of 1 km. The data on the GCLC project are from The GCLC project leading group office of Yan’an city.
2.3 Research method
2.3.1 Soil conservation
The SDR (sediment transport ratio) module of the InVEST model is used to calculate potential soil erosion based on terrain, climate and soil data, and actual soil erosion based on the cover-management factor and soil and water conservation factor. The difference between the two is the soil conservation amount on the raster unit. The calculation formulas are Equations 1–3:
[image: Equation depicting the calculation for RKLS, where RKLS equals the product of R, K, and LS, labeled as equation 1.]
[image: The Universal Soil Loss Equation (USLE) is displayed: USLE equals R times K times LS times C times P subscript i.]
[image: The formula displayed is \( SR = RKLS_i - USLE_i \), labeled as equation (3).]
where, RKLSi is the potential soil erosion of pixel i (t/hm2) and USLEi is the soil erosion amount of pixel i under the action of cover-management factors and soil and water conservation factors (t/hm2). SRi is the actual soil retention on pixel i(t/hm2); Ri is the rainfall erosivity factor, calculated by Wischmeier’s monthly scale formula (Wischmeier and Smith, 1958). Ki is the soil erodibility factor estimated by EPIC model (Williams, 1990); LSi is the slope length-gradient factor, which is calculated from DEM data; Ci is the cover-management factor and Pi is the soil and water conservation factor.
2.3.2 Water conservation
Based on the principle of the water cycle, the water conservation module of the InVEST model obtains water yield by calculating parameters such as precipitation, plant transpiration, surface evaporation, root depth and soil depth. The calculation formulas are Equations 4–10:
[image: The formula displays variables for calculating \( Y_{xj} \), where \( Y_{xj} = P_x \times \left( 1 - \frac{AET_{xj}}{P_x} \right) \). The formula is labeled as equation 4.]
[image: The equation shown is \( \frac{\text{AET}_{xj}}{P_x} = \frac{1 + w_x R_{xj}}{1 + w_x R_{xj} + \frac{1}{R_{xj}}} \).]
[image: The formula shown is \( w_x = z \times \frac{AWC_x}{P_x} + 1.25 \), labeled as equation (6).]
[image: Formula for available water capacity (AWC) is shown as: \(AWC_x = min(max\,Soil\,Dep_{flux}, Root\,Dep_{flux}) \times PAWC_x\). It is labeled as equation seven.]
[image: Equation expressing PAWC as a function of soil composition: \(PAWC = 54.509 - 0.132 \times SAN - 0.003 \times SAN^2 - 0.055 \times SIL - 0.006 \times SIL^2 - 0.738 \times CLA + 0.007 \times CLA^2 - 2.688 \times C + 0.501 \times C^2\).]
[image: The equation shown is \( R_{xj} = \frac{k_{xj} \times ET_{0x}}{P_x} \) with a reference number \( (9) \) next to it.]
[image: Equation labeled as number 10: \( ET_{0x} = 0.0013 \times 0.408 \times RA \times (T_{avg} + 17.8) \times (TD - 0.0123P_x)^{0.76} \).]
where, Yxj is the annual water yield (mm) in pixel x of land use type j; PX is the annual precipitation in pixel x (mm); AETxj is the annual actual evapotranspiration in pixel x (mm). ωX is the ratio of annual water requirement to annual precipitation on vegetation; Rxj is the Budyko dryness index in pixel x of land use type j, and represents the ratio of potential evaporation to precipitation. Z is the seasonal constant between 0 and 30; AWCX is the available water content of vegetation (mm). PAWCx is vegetation available water; SAN, SIL, CLA, and C are the contents of sand, silt, clay and organic carbon (%), respectively. kxj is the evapotranspiration coefficient of vegetation, representing the ratio of vegetation evapotranspiration ET and potential evapotranspiration ET0x at different growth stages. RA is the radiation from the top layer of the atmosphere (MJ/m2/d); Tavg is the average of the mean daily maximum temperature and the mean daily minimum temperature (°C). TD is the difference between the mean daily maximum temperature and the mean daily minimum temperature (°C).
2.3.3 Spatial autocorrelation analysis
Spatial autocorrelation is a quantitative description of the similarity degree and spatial correlation pattern of the attribute values of spatially adjacent regional units, which is used to reveal the spatial distribution characteristics of a certain geographical phenomenon between adjacent regions and the aggregation degree of variables. It is divided into global spatial autocorrelation and local spatial autocorrelation. This paper uses these two methods to further explore the spatial distribution of soil conservation and water conservation services in Yan’an city.
Global spatial autocorrelation analysis can identify the spatial correlation of regional overall ecological quality, which can be used to describe whether soil conservation and water conservation services has agglomeration effect in the whole region. In this paper, Moran’s I index is used to explore the spatial correlation, and the calculation formula is Equation 11 (Moran, 1950):
[image: Mathematical formula for \( I \): \( I = \frac{n}{\sum_{i=1}^n \sum_{j=1}^n W_{ij}} \times \frac{\sum_{i=1}^n \sum_{j=1}^n W_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} \). Equation (11).]
where xi and xj are the observed values of coordination efficiency; [image: It seems there was an issue with the image upload or link. Please try uploading the image again or provide a URL. You can also add a caption for additional context if needed.] is the weight connection matrix of i and j; The value of Moran’s I is between −1 and 1. A value greater than 0 indicates a positive correlation of spatial unit attributes, otherwise it indicates a negative correlation, and a larger value indicates a higher degree of correlation. If it goes to 0, it indicates that the spatial units are randomly distributed.
Local autocorrelation can identify the association patterns of elements and attributes between local adjacent regions. In this paper, LISA (Local indicators of spatial associations) proposed by Anselin (1995) was used to identify the spatial difference degree and significance level between the soil conservation and water conservation services of each grid and its surrounding grid in Yan’an city, and reveal the agglomeration and dispersion characteristics of the same attribute value in space. The calculation formulas are Equations 12–14:
[image: Mathematical equation showing \( I_i = z_i \sum w_{ji} z_j \), labeled as equation twelve.]
[image: Formula showing \( z_i = \frac{n(x_i - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})} \), labeled as equation 13.]
[image: Mathematical expression showing \( z_j = (x_j - \bar{x}) \), labeled as equation 14.]
where: zi and zj are the standardization of the observed values in regions i and j, respectively.
LISA clustering analysis divided the spatial pattern of soil conservation and water conservation services into five types: H-H (high-high cluster), H-L (high-low outlier, high value surrounded by surrounding low value), L-H (low-high outlier, low value surrounded by surrounding high value), L-L (low-low cluster) and NS (not significant, there is no significant spatial clustering phenomenon). Among them, H-H and L-L are positive correlation types, while H-L and L-H are negative correlation types.
2.3.4 Ecosystem service trade-offs and synergies
To further explore the trade-offs and synergistic relationships among the ecosystem services in the study area, correlation analysis was applied to calculate the amount of ecosystem service changes in each pixel between 2010 and 2018 to identify the interrelationships among the two ecosystem services. The formula is Equation 15:
[image: The image displays the formula for the Pearson correlation coefficient, \( R_{xy} = \frac{\sum_{i=1}^{n}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i} - \bar{x})^2 \sum_{i=1}^{n}(y_{i} - \bar{y})^2}} \), labeled as equation (15).]
where, Rxy is the correlation coefficient of two ecosystem services; xi, yi are the ith pixel values of ecosystem services x, y; ‾x, ‾y are the mean values of ecosystem services x, y; n is the time series of raster data. When the correlation result is positive, it indicates that there is a synergistic relationship between the two kinds of ecosystem services, that is, the increase of one kind of ecosystem service will promote another kind of ecosystem service, whereas there is a trade-off relationship, that is, the increase of one kind of ecosystem service will lead to the decrease of the supply of another kind of ecosystem service.
3 RESULTS
3.1 Spatio-temporal variation characteristics of soil conservation service
3.1.1 Spatio-temporal variation
From the perspective of spatial distribution, the spatial differentiation characteristics of soil conservation service in 2010 and 2018 were relatively large. In 2010, the unit soil conservation amount in the eastern and southwestern regions was higher than that in the northwest (Figure 2A). It was higher in Yanchuan, Yanchang, Yichuan, and Huanglong counties in the east and Huangling county in the southwest, while it was lower in Wuqi, Zhidan, Ansai, and Zichang counties in the north. In 2018, the amount of soil conservation in Wuqi, Zhidan, Ansai, and Zichang counties in the northwest was higher than that in other areas (Figure 2B), and the gap between the highest and the lowest amount of soil conservation showed a trend of narrowing.
[image: Maps depicting soil lead concentrations in a region over different years: Panel A shows levels in 2010, Panel B in 2018, and Panel C compares 2010-2018. Color gradients from red to blue indicate lead concentrations, with red representing higher levels and green to blue indicating lower levels. Each map includes a scale bar and a legend illustrating the concentration ranges.]FIGURE 2 | Spatial distribution of soil conservation services of Yan’an city in 2010 (A), 2018 (B) and the change (C).
From 2010 to 2018, the total amount of soil conservation in Yan’an city showed a decreasing trend. In 2010, the total amount of soil conservation in Yan’an city was 4.07 × 106 t, with an average value of per unit area was 109.86 t/hm2. In 2018, the total amount of soil conservation in Yan’an city decreased to 3.75 × 106 t, with an average value of per unit area was 101.33 t/hm2. That is a decrease of 7.76%.The basic trend of soil conservation value change was increasing in the northwest and decreasing in the southeast. According to grid statistics, 7.57% of the areas where soil conservation value increased by more than 50 t/hm2, 37.76% of the areas where soil conservation value decreased by more than 50 t/hm2, and 54.68% of the areas had small changes between 50 t/hm2. Except for Wuqi, Zhidan, Ansai, and Zichang counties, the amount of soil conservation decreased in all districts and counties. The area with the largest decrease was Huangling County, which decreased by 66.87 t/hm2, and the area with the largest increase was Wuqi County, which increased by 79.03 t/hm2 (Figure 2C).
3.1.2 Clustering characteristics
Moran’s I index of soil conservation service in the study area was calculated by ArcGIS software. The Moran’s I index of soil conservation service in Yan’an in 2010 and 2018 was 0.1047 (p = 0, Z = 443) and 0.0707 (p = 0, Z = 359.17). This indicates that soil conservation service has a small positive spatial correlation, and there was a certain clustering characteristics in Yan’an city. The Moran’s I index in 2018 showed a decrease compared to 2010, indicating a dispersed trend in the spatial clustering of soil conservation.
According to the LISA clustering analysis (Figure 3), in 2010, the area of soil conservation service“H-H” accounted for 1.40% of the city’s area. The proportion of “H-L” area was very small, only 0.04%. The “L-H” area accounted for 5.19%, which was relatively concentrated in the eastern part of Yan’an city and Huangling County. The area of the “L-L” area accounted for 1.94%. More than 90% of the city has no significant clustering effect. From the perspective of time changes, from 2010 to 2018, the “H-H” area decreased by 0.43%, while the “H-L” area increased by 0.20%. The “L-H” area decreased by 0.21%, and the area shifted from the southeast to the northwest. The “L-L” area increased by 1.6%, with a increase in the northern counties.
[image: Maps of a region from 2010 (A) and 2018 (B) showing changes in soil concentration. The maps use color coding: dark red for extremely high, red for high, orange for medium, yellow for low, green for very low, and blue for no significant soil concentration. Noticeable changes in concentration patterns are visible over the eight-year span, particularly in the northern areas where blue increases and southern areas where green decreases.]FIGURE 3 | LISA clustering of soil conservation services of Yan’an city in 2010 (A) and 2018 (B).
3.2 Spatio-temporal variation characteristics of water conservation service
3.2.1 Spatio-temporal variation
The spatial distribution of water conservation service in Yan’an city is greatly affected by rainfall, and the water yield is larger in areas with relatively abundant rainfall. In 2010, the amount of water conservation showed a decreasing trend from south to north (Figure 4A), which was higher in Huanglong, Huangling and Luochuan counties in the south and lower in Wuqi, Zichang and Yanchuan counties in the north. In 2018, the spatial distribution of water conservation service in Yan’an city underwent significant changes, showing a trend of being higher in the southwest and lower in the northeast (Figure 4B). From 2010 to 2018, the amount of water conservation in Yan’an city showed an upward trend. In 2010, the total amount of water production was 2.01 × 1010 mm, with an average value of 489.52 mm per unit area. In 2018, the total amount increased to 2.03 × 1010 mm, with an average value of 492.30 mm per unit area, with an increase of 0.56%. In terms of spatial distribution, it mainly increased in the north and decreased in the south, and the gap between the highest and lowest tended to narrow. According to grid statistics, 25.97% of the areas have increased their water conservation service by more than 50 mm, mainly distributed in the northern counties of Wuqi, Zhidan, Ansai, and Zichang, with the largest increase of 82.46 mm in Wuqi. The decrease area accounted for 22.85%, mainly distributed in the south, and Huanglong County was the most significant, with a decrease of 90.60 mm. 51.18% of the regional change was between 50 mm (Figure 4C).
[image: Three colored maps labeled A, B, and C show water yield variations in a region for the years 2010 and 2018, and the change between these years. Map A and B use shades from yellow to blue indicating different water yield levels for 2010 and 2018 respectively. Map C shows the change in water yield from 2010 to 2018 using a scale from red to blue.]FIGURE 4 | Spatial distribution of water conservation services of Yan’an city in 2010 (A), 2018 (B) and the change (C).
3.2.2 Clustering characteristics
The Moran’s I index of water conservation service in Yan’an in 2010 and 2018 were 0.8044 (p = 0, Z = 379) and 0.6849 (p = 0, Z = 294.83), indicating a positive spatial correlation in the amount of water conservation in Yan’an city and a high spatial clustering feature. The Moran’s I index in 2018 was lower than that in 2010, indicating a dispersed trend in spatial clustering of water conservation service.
According to the LISA clustering analysis (Figure 5), water conservation service in Yan’an city was dominated by “H-H″ cluster and “L-L” cluster. In 2010, the “H-H” area and the “L-L” area accounted for 36.93% and 36.57% of the city. “H-H” was located in Huangling, Fuxian, Luochuan, and Huanglong counties in the southern while “L-L” was located in Zhidan, Zichang, Ansai, Yanchuan, and Yanchang counties in the northern of Yan’an city. The proportion of “H-L” and “L-H” areas was very small, only 0.04% and 0.006%, and the remaining 26.5% area has no significant cluster effect. From the perspective of time changes, the “H-H” area increased by 14.3%, while the “L-L” area decreased by 16.16% from 2010 to 2018, mainly due to the transformation from “L-L” area to “H-H” area in the northwest of Zhidan, Ansai counties, and Baota District. The changes in the “H-L” and “L-H” areas were not significant.
[image: Two maps labeled A and B show water conservation zones in 2010 and 2018, respectively. Areas are color-coded: gray for the county area, blue for significant soil erosion, red for high-level erosion, orange for middle-level erosion, yellow for light-level erosion, and green for slight soil erosion. The maps indicate a noticeable reduction in high-level erosion areas from 2010 to 2018, with more regions transitioning to lower erosion categories.]FIGURE 5 | LISA clustering of water conservation services of Yan’an city in 2010 (A) and 2018 (B).
3.3 Trade-off and synergy relationship analysis
At the spatial pixel scale, the trade-off and synergistic relationship between soil conservation and water conservation services in Yan’an city were quantitatively analyzed. As shown in Figure 6, the area of the synergy relationship accounts for 77.05%, and that of the trade-off relationship is 22.95%. The synergy area is much larger than the trade-off area. In terms of spatial distribution, the trade-off relationship is mainly distributed in the northern of Yanchuan, Yanchang and Baota districts, while the synergy relationship are mainly distributed in other areas of Yan’an city.
[image: Map showing a region divided into counties, with blue areas indicating general county areas and orange areas marking tradeoff or synergy zones. The legend explains the color coding, with specific counties like Bazhou District and Guangzong County highlighted in orange. A scale and north arrow are provided for orientation.]FIGURE 6 | Distribution of trade-offs between soil conservation and water conservation services of Yan’an city.
3.4 Correlation analysis between ecosystem service change and implementation data of the GCLC project
Based on Pearson correlation coefficient, SPSS18.0 software was used to analyze the correlation between the implementation scale data of GCLC projects in 13 districts and counties of Yan’an city (Table 1) and the change values of soil conservation and water conservation. The results showed (Table 2) that from 2010 to 2018, there was a positive correlation between soil conservation services and the number of the projects, as well as the newly added cultivated land area. There was a negative correlation between soil conservation services and the construction scale, the construction scale of high-standard farmland, and the investment amount. There was a positive correlation between water conservation and the GCLC projects, but all correlations were not significant.
TABLE 2 | Correlation between implementation index of GCLC project and soil conservation and water conservation service change.
[image: Table comparing implementation index of GCLC project for soil and water conservation. It includes columns for projects number, construction scale, newly increased cultivated land, high standard farmland, and investment amount. Soil conservation values are 0.033, -0.066, 0.030, -0.157, -0.083; water conservation values are 0.316, 0.295, 0.475, 0.204, 0.289.]According to the change values of soil conservation and water conservation in 13 districts and counties of Yan’an city (Figure 7), from 2010 to 2018, due to different natural conditions and habitat characteristics, each district and county in Yan’an played different roles in ecological protection, food security and economic development, and the implementation priorities of GCLC projects and their impacts on soil conservation and water conservation services changes were also different.
[image: Bar chart showing soil and water conservation changes across various counties. Blue bars represent soil conservation change in tons per hectare, while red bars represent water conservation change in millimeters. Positive changes are seen in counties like Zidian and Ganquan, while negative changes are evident in Luochuan and Yichuan.]FIGURE 7 | The soil conservation and water conservation services variations in different districts and counties of Yan’an city.
As the municipal government of Yan’an city is located, The rapid urbanization makes a large amount of cultivated land in Baota District occupied by construction land, so it is necessary to implement the GCLC project to develop agriculture intensively and improve the economic and population capacity. Baota District has the largest area of construction scale, and the newly added cultivated land in Yan’an city. The implementation of the project and urban construction made the the amount of soil conservation in Baota District has decreased.
In the east, Zichang, Yanchuan and Yanchang counties have low terrain, which is more suitable for the development of agriculture. Therefore, the implementation of GCLC projects covers a large area. Except for Zichang County, there was a slight decreased of soil conservation in Yanchuan and Yanchang counties.
The southeast and southwest of Yan’an city, especially, Huangling and Huanglong counties are important ecological protection and water conservation areas in the province. So the amount of water conservation and soil conservation has decreased due to the impact of the project. Although the scale and the new cultivated land of the project is small, the human disturbance and landscape fragmentation still cause a large degree of decline in water conservation and soil conservation.
Wuqi, Zhidan and Anseh counties in the north have poor ecological environment background conditions, high altitude and wide distribution of grassland. Although the scale of GCLC projects implemented is not large, they can effectively improve the level of agricultural infrastructure, fully guarantee and improve people’s livelihood, and play a positive role in the restoration of ecological environment. Therefore, the service functions of soil conservation and water conservation have been slightly improved.
4 DISCUSSION
4.1 Changes and synergistic relationship between soil conservation and water conservation services in Yan’an city
From 2010 to 2018, the total amount of soil conservation in Yan’an city decreased by 7.7%, while the water conservation increased by 0.56%. The general trend of both is a decrease in the south and an increase in the north. Studies have shown that large-scale ecosystem service changes and their synergies and trade-offs are mainly caused by climate factors such as temperature and precipitation, while small-scale changes are caused by human activities and land use changes (Wang et al., 2021).
Precipitation is the biggest influencing factor of water conservation services (Wang X. et al., 2022). The spatial variation of water conservation services in Yan’an City was basically consistent with the variation trend of precipitation in Yan’an City during this period (Xu and Zhang, 2020), but the total amount of water conservation in Yan’an City remained stable. It may be that the increase in vegetation cover increased plant transpiration, so the total amount of water conservation did not increase much. In addition to precipitation, soil conservation is also closely related to topography and land use type, which affect soil conservation function by affecting rainfall erosivity (Xu and Zhang, 2020). The overall change of soil conservation service in Yan’an city is greater than that of water conservation service, which may be because human activities have changed the topography and land use types on a small scale, so the amount of soil conservation has decreased to a certain extent.
On the whole, there is a synergistic relationship between soil conservation and water conservation services, which is consistent with the research results of other scholars in the Loess Plateau region (Ren et al., 2022; Lan et al., 2023). Due to the consistent impact of precipitation, land use types, and vegetation cover, as well as relatively similar biophysical linkages and soil hydrological processes, the two services exhibit synergy (Li and Zhang, 2021; Wang S. et al., 2022). However, in the study area, Yanchuan, Yanchang and the northern part of Baota districts in the east of Yan’an city show a certain tradeoff. According to Table 1, the largest area of GCLC projects was implemented in this three areas. Therefore, this may be related to human disturbance. Xue et al. (2024) research in the Loess Plateau region also shows that places with low elevation are more susceptible to human disturbance. The higher the elevation, the stronger the synergistic effect between soil conservation and water conservation services (Xue et al., 2024).
4.2 Effects of the GCLC project on soil conservation and water conservation services
The results showed that the effect of the GCLC projects on soil conservation and water conservation services in Yan’an city is not significant. Many studies have shown that land consolidation has a negative impact on soil and water loss and significantly increases the amount of soil erosion (Evrard et al., 2010; Chartin et al., 2013). On the other hand, the change of slope gradient in land leveling projects can increase infiltration, reduce runoff rate and soil erosion intensity (Gao et al., 2012; Liu et al., 2013; Liu et al., 2015). In terms of ecosystem services, most studies have shown that land consolidation improves food production services of ecosystems while weakening other services and total value (Zhao et al., 2004; Kindu et al., 2016). The Loess Plateau is vulnerable to erosion due to its broken topography and poor impact resistance, and the implementation of land consolidation project has a certain negative impact on soil conservation. Meanwhile, compared with the forest and grass ecosystem, the vegetation coverage of farmland is relatively lower, so the soil conservation service is relatively low (Sun et al., 2014). However, engineering measures such as hydraulic engineering effectively reduced the occurrence of drought and flooding events, promoted the protection of vegetation in the whole basin, and thus prevented soil and water erosion. Therefore, in general, the negative impact of the project on soil conservation is not large, and the changes of soil conservation and water conservation services in Yan’an city during the GCLC project are relatively stable.
Yin’s research shows that Nature-based Solution (NCS) practices can improve multiple ecosystem services. However, unsustainable NCS implementation such as over-afforesting may result in a trade-off of reduced water supply, grassland and farmland (Yin et al., 2023). The GCLC project implemented in Yan’an city after the GFG project can not only increase the quantity and quality of cultivated land, and ensure food security, but also provide relatively stable and coordinated soil conservation and water conservation services in Yan’an city during this period, achieving the effect of “expanding ecosystem area” to “improving ecosystem management efficiency.”
4.3 Limitations and prospects
Based on the InVEST model, this study analyzed the temporal and spatial evolution of soil conservation and water conservation services in Yan’an city under the background of GCLC project. It could not only obtain quantitative analysis results, but also visually analyzed the results of ecosystem service value, providing a basis for the benefit assessment of regional GCLC project. However, the research on its impact mechanism was not deep enough in this paper. In addition, the scale of the study can also affect the results. Due to the influence of climate, terrain, land use and other conditions, the trade-offs among ecosystem services are spatial-heterogeneous and temporal-dynamic, and change with the passage of spatial-temporal scales (Ren et al., 2022). In the next step, on the basis of obtaining the spatial information of the project, the relationship between land consolidation at different scales and ecosystem service function should be further obtained by means of spatial analysis, and the influence mechanism and law of long-term comprehensive benefits after the implementation of the project should be revealed through reasonable model simulation. It provide a more effective theoretical basis for land consolidation technology innovation and ecological protection of the Loess Plateau.
5 CONCLUSION
The total amount of soil conservation decrease of 7.76% in Yan’an city between 2010 and 2018, and the basic trend of spatial variation was an increase in the northwest and a decrease in the southeast. The spatial clustering of soil conservation was relatively low. The total amount of water conservation in Yan’an city remained relatively stable, increasing by 0.56% in 8 years, with the basic trend of increasing in the north and decreasing in the south. There is a high spatial clustering feature in water conservation service. There is a synergistic relationship between soil conservation and water conservation services in most area of Yan’an city. From 2010 to 2018, the effect of the GCLC projects on soil conservation and water conservation services in Yan’an city is not significant. Due to the different natural conditions and habitat characteristics, the implementation focus of GCLC project and its impact on soil conservation and water conservation services are also different.
These results show that the GCLC project can effectively alleviate the situation of sharp decline of cultivated land area and insufficient food production capacity under the condition of maintaining relatively stable and coordinated regional soil conservation and water conservation services, ensure the red line of cultivated land and food security, and balance the conflict between ecological protection and farmers’ livelihood. The balanced between ecological security and food security, high-quality development and ecological protection has been achieved. Our work could be cited as a reference for other comprehensive ecological control projects in the Loess Plateau.
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Introduction: Soil erosion plays a crucial role in soil and water conservation management, as well as in ecological construction planning. This study focuses on the slopes of three planting patterns (uniform distribution, aggregation distribution, and random distribution), along with bare slopes, in the Baojiagou watershed of the Pisha Sandstone area, based on soil erosion intensity grade maps after rainfall from 2021 to 2023.Methods: A method combining Multi-Criteria Evaluation (MCE) and the CA-Markov model is used to analyze the spatial variation of soil erosion intensity types on different slopes. This approach integrates multiple influencing factors and generates a suitability map for the conversion of soil erosion intensity types. Ultimately, the dynamic characteristics of soil erosion in 2023 are simulated under various slope conditions.Results: Results indicated: (1) The spatial distribution of simulated soil erosion intensity grade maps for different slopes largely aligned with actual maps, and regions with soil erosion depth greater than 3 cm were resistant to transitioning to lower erosion zones. (2) The Kappa coefficients for simulated soil erosion intensity in uniform distribution, random distribution, aggregate distribution, and bare control slopes were 65.24%, 73.62%, 75.88%, and 69.06%, respectively, confirming the feasibility of the CA-Markov model for simulating soil erosion dynamics. (3) The simulation of soil erosion intensity on different slopes in 2023 revealed that erosion intensity on uniformly distributed, aggregated, and bare control slopes remained predominantly in the erosion zone with a depth of 1–2 cm, while randomly distributed slopes experienced a shift from mild erosion area to slight erosion area.Discussion: This study improves the understanding of soil erosion across different vegetation patterns and demonstrates the applicability of the CA-Markov model for simulating dynamic erosion on slopes. The findings contribute to the development of broader ecological models and offer insights into vegetation management and erosion control strategies for similar landscapes.Keywords: soil erosion, slope stability, vegetation patch pattern, CA-Markov model, erosion simulation
1 INTRODUCTION
Erosion is a continuous natural process occurring on the Earth’s surface, especially in arid and semi-arid regions (Zhang et al., 1996; Grazhdani and Shumka, 2007; Liu et al., 2016). Soil erosion depletes land resources, worsens ecological degradation, and threatens human survival and development (Nurlina et al., 2022; Porto et al., 2022). In the Pisha sandstone region of the Yellow River Basin, water and soil loss has led to desertification of one-third of fertile soil, severely impacting agriculture and the environment (Yeh et al., 2006; Liu and Zhang, 2015). Research has shown that vegetation plays a critical role in slope soil erosion, making it central to erosion control and watershed management (BriniImen et al., 2021). However, vegetation on slopes in this region often fails to provide sufficient coverage. More commonly, vegetation appears in patchy or strip patterns, resulting in a fragmented vegetation structure (Pajouhesh et al., 2020; Eigentler and Sherratt, 2020). This pattern of vegetation influences the redistribution of runoff and sediment during hydraulic erosion on slopes. Therefore, simulating soil erosion dynamics under the influence of vegetation patterns is essential.
With the advancement of quantitative analysis of vegetation pattern indices, combined with remote sensing and geographic information systems, various mathematical models have been applied to studying soil erosion and vegetation patterns. Among them, the cellular automata (CA) model effectively utilizes vegetation pattern characteristics to explain key processes influencing soil erosion (Xiang et al., 2019; Fazlolah et al., 2018; Zhang et al., 2017). CA (cellular automata), as a tool for studying complex spatial phenomena, offers excellent simulation capabilities and has been widely recognized in the geographic research community (Qun et al., 2019). Currently, many scholars have applied CA for spatio-temporal dynamic simulation and prediction of various geographical phenomena. For instance, Yuan et al. (2008) used the CA model to develop a small watershed erosion and sediment production process model, CASEM, and explored its application in simulating soil erosion processes. Ma et al. (2003) utilized the CA model, supported by GIS technology, to analyze the spatial evolution of soil erosion under different land-use models and predict erosion development trends based on various land-use plots. Chase Clement, 1992 developed a CA model to simulate rainfall spatter erosion and runoff on slopes using simple rules, achieving notable results. D'Ambrosio et al. (2001) developed SCAVATU, a CA-based model to simulate hydraulic soil erosion, and obtained favorable simulation results. Although the CA model has been successfully applied to simulate the spatial development of soil erosion in large watersheds, building a dynamic slope soil erosion model based on CA remains in the exploratory phase. Slope erosion, as a typical nonlinear dynamic system, involves highly complex internal development and evolutionary processes, characterized by significant uncertainty and chaos. Therefore, it is imperative to develop a slope soil erosion model capable of simulating complex spatio-temporal dynamics and the spatial evolution of erosion. The CA-Markov model, based on transition probability matrices and suitability maps, leverages CA’s spatial transformation capability to simulate complex systems and utilizes Markov’s strengths to predict future trends in soil erosion intensity. In CA-Markov model simulations, complex spatio-temporal processes and interactions occur between various erosion intensity levels, necessitating a simulation model for transforming different soil erosion intensities and expanding its application scope. Vegetation patterns regulate and redistribute runoff and sediment during slope hydraulic erosion (Crompton and Thompson, 2020). Thus, investigating the relationship between vegetation patterns and soil erosion at the slope scale is crucial for comprehensive soil and water conservation.
While much research has explored soil erosion in various contexts, few studies have focused on simulating slope erosion under different vegetation patch patterns. Unlike earlier models that predominantly consider uniform vegetation distributions, this study investigates the impact of varied vegetation patterns, such as random and aggregated distributions, on erosion dynamics. This approach provides a more nuanced understanding of the role of vegetation in regulating runoff and sediment flow, offering valuable insights for erosion control in challenging environments. Therefore, this study focuses on the slopes of three planting patterns (uniform distribution, random distribution, and aggregation distribution) and bare control slopes in the Baojiagou Watershed of the Pisha Sandstone area. Starting with the rainfall-soil-erosion relationship at the slope scale, field monitoring experiments were conducted using runoff plots under natural rainfall conditions. Based on soil erosion intensity maps of slopes with varying vegetation patterns over a 3-year rainfall period, the spatial variation and intensity of soil erosion types were analyzed across slopes with different vegetation patch patterns. The CA-Markov model in IDRISI software was used to examine the conversion rules of soil erosion intensity types, integrating various influencing factors. A suitability map for soil erosion intensity conversion was developed to simulate the dynamic characteristics of erosion on slopes with different vegetation patch patterns, further verifying the ecological benefits of vegetation and providing valuable references for soil and water conservation management in the Pisha sandstone region.
2 RESEARCH METHODOLOGY AND METHODS
2.1 Study area
The study area is located in Nuanshui Town, Zhungeer Banner, Ordos City, Inner Mongolia (110°31′–110°35′E, 39°46′–39°48′N) (Figure 1). The elevation ranges from 1,145 to 1,330 m, with higher terrain in the north and lower in the south. The main zonal soil is chestnut-calcium soil, which has low organic matter content. The study area can be divided based on the type of surface cover and the degree of bedrock exposure into sand-covered sandstone areas, soil-covered sandstone areas, and exposed sandstone areas, with the exposed sandstone area having the harshest ecological environment. This area has a typical continental climate, with an average annual temperature of 6–9°C, a large diurnal temperature range, cold and dry winters with long seasons, and hot summers with short seasons. The average annual rainfall is 400 mm, and the rainfall is mainly concentrated in the summer (July-August). The average annual rainfall in summer is 256.4 mm, accounting for 64.1% of the total annual rainfall. Most of the rainfall is rainstorm (more than 50 mm), and the rainfall erosivity is high (489.87 MJ mm hm−2 h−1 a−1). The frost-free period is 100–140 days, with abundant sunshine and an average annual wind speed of 2–4 m/s. The main vegetation includes Pinus tabuliformis Carr., Caragana korshinskii, Hippophae rhamnoides, Leymus chinensis, Salsola collina, as well as other psammophytes, swamp meadows, and degraded grasslands.
[image: Map illustrating the Beiguojia watershed, located in China. The main map shows elevation with colors: red for high and green for low areas. Inset maps detail geographical location within China and a topographic 3D view, alongside an arid landscape photograph. A legend indicates elevation ranges in meters.]FIGURE 1 | Location map of the study area.
2.2 Determination of vegetation pattern and plot layout
Based on ecological principles, three vegetation distribution patterns are identified: uniform, clustered, and random. Uniform distribution is typically observed in undisturbed wastelands, where vegetation is evenly spread across the surface. Random distribution patterns are often seen in areas with degraded surfaces or sparse vegetation. Clustered distribution is common in semi-arid or degraded ecosystems. These three vegetation patterns reflect the spatial distribution characteristics of vegetation within the study area. Due to the harsh ecological conditions, high rainfall intensity, and erosion-prone soils in the region, a comparison of these patterns reveals their differential impacts on soil and water conservation. When selecting sampling plots, it is ensured that the soil structure of the three types of plots is consistent, the vegetation species and coverage are similar, the slope gradient and aspect are the same, the slope length is greater than 20 m, and there is no human interference. At the same time, a slope with natural conditions identical to the research plots was selected, and all vegetation on the slope was removed to serve as a control plot (bare ground). After selecting the slope, adjacent 1 m × 1 m grid plots were delineated on the slope, for a total of 60 plots, and each plot was surveyed for plant community characteristics in sequence.
The study uses the variance-to-mean ratio method (Equations 1, 2) (Elias and Schindler, 2015) to determine the vegetation distribution patterns. This method is based on statistical principles and reveals the distribution characteristics of a sample by comparing the degree of dispersion (variance) of the data with its average level (mean). The ratio of variance to mean is relatively simple and can quickly identify and explain the distribution pattern of vegetation in a specific ecological environment. If S2/m = 0, it indicates a uniform distribution; If S2/m = 1, it indicates a random distribution; If S2/m is significantly greater than 1, it indicates an aggregated distribution (Table 1). The calculation formula is:
[image: M equals the sum from i to N of M sub i divided by N, equation one.]
[image: The image shows the equation for the sample variance: \( S^2 = \sum_{i}^{N} (M_i - \bar{M})^2 / (N - 1) \), labeled as equation (2).]
TABLE 1 | Vegetation distribution patterns determined by the variance-to-mean ratio method.
[image: Table showing data from three sample areas, each with 20 quadrats. Area one has a variance of 0.15, mean value of 0.81, and a uniform distribution pattern with 32.6% coverage. Area two has a variance of 0.64, mean value of 0.56, and a random distribution pattern with 30.5% coverage. Area three has a variance of 3.46, mean value of 0.33, and a gather distribution pattern with 31.1% coverage. Vegetation types include Asparagus cochinchinensis, Kali collinum, Artemisia stechmanniana, Sophora davidii, and Melilotus officinalis in various combinations.]In the formula, N represents the number of basic plots, and Mi represents the number of individuals in the ith plot.
This experiment is a field runoff plot natural rainfall in-situ monitoring experiment, preparation began on 30 June 2021, and the observation period is the three rainy seasons (June-August) from 2021 to 2023. Based on the local topographic conditions, stainless steel plates were used to establish a runoff plot with dimensions of 10 m (length) × 2 m (width) on the slope (Figure 2). The plot boundaries are perpendicular to the contour lines and are driven 30 cm into the ground with a rubber mallet, leaving 20 cm above ground to block external runoff. The soil texture in the runoff plot is mainly composed of silt particles, accounting for 50.86%, followed by sand particles at 43.86%, and the smallest proportion is clay particles at 5.35%. A fixed rainfall monitoring point was set up next to the runoff plot, using a siphon-type automatic rain gauge to record atmospheric precipitation, and rain gauges were used for cross-validation to measure basic data such as rainfall amount, rainfall intensity, and duration of rainfall (Table 2).
[image: A hillside erosion study setup with metal dividers leading into collection boxes is shown. On the right, three black-and-white graphic panels depict soil erosion patterns at different times.]FIGURE 2 | The layout of the runoff plot. Notes: In the figure, the vegetation patterns from left to right are uniform distribution, random distribution, and aggregated distribution.
TABLE 2 | Statistical table of rainfall characteristics.
[image: A table displaying 22 records of rainfall events detailing number, rainfall time, duration in minutes, rainfall amount in millimeters, I₃₀ in millimeters per hour, and rainfall intensity in millimeters per hour. Each record corresponds to different dates and varies in duration and amount of rainfall.]2.3 Determination of soil erosion intensity
The Austrian-made RIGEL-400 3D laser scanner is used. This instrument uses a near-infrared laser beam with a rapid scanning mechanism to obtain 3D point cloud data and is characterized by high speed, non-contact, and high precision. The laser emission frequency is 300,000 bit/s, and the scanning accuracy (for a single 100 m measurement) is 3 mm (horizontal accuracy) × 2 mm (vertical accuracy). The instrument’s vertical scanning range is 270°, and the horizontal range is 360°. Scanning one slope takes about 1 min.
At both the bottom and top of each observed runoff plot, a fixed concrete stake is placed as a scanning station, and 5 to 8 fixed reference points are selected as stitching reference points for the scanned data of each station. Before the rainfall starts, an initial scan of the runoff plot is conducted to obtain the original slope point cloud data. After each rainfall, the slope is scanned again after the water has fully infiltrated, capturing the data on slope morphology changes. Before each scan, high-definition video equipment is used to record the process. The instrument is set up at the same position and tripod height for each scan, and reflective sample markers are placed along the plot boundaries to facilitate data trimming and overlay.
After completing data collection before and after rainfall, the “Camera” function of the 3D laser scanner is first used to inspect the scanned slope, ensuring that the surface is within the camera’s visible range and that the laser line’s visibility is optimized. Then, RiCAN PRO software is used to ensure that the input scan range allows the laser line’s intensity to fully pass through. The laser scan dataset is initially filtered through binarization, followed by point cloud registration and coordinate system transformation using the “Plane Surface Filter” and “Backsighting Orientation” functions in the software on the 668,431 scanned points. Since all data captured by the laser line are retained, there may still be non-terrain noise, such as vegetation, leading to a significant amount of redundant point cloud data. Therefore, further denoising and vegetation removal are performed using the “Filtering” and “Multi-Station Processing” functions in RiCAN PRO software, while controlling the standard deviation to ensure the quality of the point cloud data. After collecting elevation point cloud data from the slope, the point cloud data is converted into raster data using the “Data Conversion Module” in the ArcGIS software platform. Ultimately, an M-DEM with a resolution of 2 mm × 2 mm can be generated (Figure 3).
[image: Drone and three-dimensional laser scanner monitor an observed runoff plot. The drone and scanner point to the plot from above and the side, respectively, illustrating data collection methods.]FIGURE 3 | Schematic diagram of scanning runoff plot.
By subtracting the post-rainfall M-DEM from the pre-rainfall M-DEM, the difference can quantitatively describe the changes in the slope’s microtopography. In the ArcGIS spatial analysis module, spatial overlay analysis combined with the raster calculator is used to perform raster overlay subtraction and complete the calculation analysis. If the microtopography model after rainfall (M-DEM after) minus the microtopography model before erosion (M-DEM before) results in ∆M-DEM being negative, it indicates that the corresponding area is an erosion zone; if it is positive, it indicates that the corresponding area is a deposition zone. Specifically, erosion zone = (M-DEMafter)—(M-DEMbefore) < 0; deposition zone = (M-DEMafter)—(M-DEMbefore) > 0. Based on this calculation rule, the slope erosion intensity is classified according to the magnitude of ∆M-DEM.There are five levels of classification: >0 cm is a deposition zone; 0 to (−1) cm is slight erosion; (−1) to (−2) cm is mild erosion; (−2) to (−3) cm is moderate erosion; and <(−3) cm is severe erosion (Wan et al., 2022).
2.4 CA-Markov modeling method
CA-Markov modeling was performed using IDRISI Selva version 18.0. In the Markov model, the system’s state at a given time is only related to the previous state, and thus the Markov chain is realized by calculating the transition matrix of soil erosion intensity type changes over a certain period. This refers to the area of mutual conversion between soil erosion intensity types or the state transition probabilities (Zhang et al., 2021). The prediction formula for the probability of soil erosion intensity type changes is (Aguejdad, 2021):
[image: Mathematical formula representing a transition equation, where \( S_{t+1} = P_t S_t \), labeled as equation (3).]
[image: Please upload the image so I can provide the appropriate alt text.] and [image: It seems like the input provided is not an image. Please upload the image file or provide a URL to the image for which you need alternate text.] represent the soil erosion intensity types at time t and t + 1, respectively.
[image: If you could provide or upload the image you'd like described, I can help create the alternate text for it.]—the transfer probability matrix of soil erosion intensity types, i.e., the transfer probability of the soil erosion intensity type [image: Please provide the image or the URL, and I will help generate the appropriate alternate text.] to type [image: It looks like there was an error with the image upload. Please try uploading the image again or provide a URL. If there's any additional context you want to add, feel free to include it.].
Pij was obtained by overlaying data from two consecutive periods. Since the time interval between the two datasets is difficult to control, the transition probabilities need to be adjusted to match the predicted time length, which works well when simulating relatively uniform spatial changes (Yi et al., 2021). However, soil erosion is intense and varies greatly across time scales. If time length is used to adjust the transition probabilities, it becomes difficult to reflect the characteristics of soil erosion, resulting in low accuracy in the simulation results. Soil erosion is caused by hydraulic erosion, with the primary hydraulic force coming from surface runoff scouring after rainfall. Therefore, rainfall plays a decisive role in soil erosion. Therefore, this study uses rainfall to adjust the transition probabilities, and the formula is as follows:
[image: Mathematical expression showing \( P'_{ij} = 1 - e^{t^k \ln(1 - p_{ij})} \), with the condition \( i \neq j \).]
[image: Equation for \( P_{ij} \) is shown where \( P_{ij} \) equals one minus the sum from \( j \) equals one to \( n+1 \) of \( P'_{ij} \), when \( i \) equals \( j \). Equation number four.]
Where [image: Mathematical notation showing a matrix element \( P'_{ij} \), where \( i \) and \( j \) likely represent row and column indices.] stands for the transfer probability after transformation, (%); [image: Please upload the image or provide a URL so I can help create the alt text for it.] and [image: Please upload the image you want me to provide alternate text for.] denote the rainfall before and after transformation, respectively, (mm).
In Cellular Automata (CA), each variable only takes a finite number of states, and the rules governing state changes are local in both time and space (Zhang et al., 2023). Therefore, the CA model has strong spatial computing capabilities. The expression formula for the CA model is:
[image: It seems the text you provided is in mathematical notation commonly used in equations. If you intended to describe an image that contains this equation, could you provide a bit more context or upload the image file? This way, I can create accurate alt text for it.]
Where [image: Please upload the image or provide a URL, so I can help you create the appropriate alt text.] and [image: The image shows a mathematical notation for \( A_{t+1} \), indicating a variable or function indexed by \( t+1 \).]—finite and discrete state sets at time t and t + 1, respectively.
[image: A large, bold letter "N" styled in a serif font.]—size of cellular filter.
f —cellular transformation rule in local space.
The CA-Markov model combines the features of two models, integrating them to complement each other’s strengths. It fully utilizes the powerful spatial simulation capabilities of the CA model and the long-term prediction ability of the Markov model. In this paper, the specific process of using the CA-Markov model to simulate and predict the spatial evolution of soil erosion intensity is as follows (Figure 4):
	(1) Create a suitability map set. The paper sets the variation patterns between vegetation patterns and soil erosion intensity types as limiting factors based on the variation rules of soil erosion intensity types on slopes with different vegetation patterns. Slope, elevation, and the conditional probability images of various soil erosion intensity transfers are used as constraints, in combination with the influence of constraints and limiting factors on the transformation of soil erosion intensity types. Evolution rules or standards are defined based on the suitability map set generated by the MCE and COLLECTION EDIT modules, and the state of a cell at the next time step is determined based on the suitability map set.
	(2) Define the size of the cells and construct a cell filter. The cell size is the same as the raster image size, and in this study, the raster size is set to 2 mm × 2 mm.
	(3) Determine the starting time and the number of CA cycles. The post-rainfall slopes with different vegetation patterns from the first period are used as the initial data, and the number of CA cycles is set to 1. Combined with the soil erosion intensity transfer probability matrix for different periods, the suitability map set is obtained based on the transformation rules. This allows the simulation of soil erosion intensity grade maps for slopes with different vegetation patterns after the third period of rainfall.

[image: Flowchart illustrating a process for soil erosion simulation. It begins with data preprocessing, followed by vector and raster data processing using ArcGIS and IDRISI Selva. The soil erosion transfer matrix and suitability mapping are then used with models like Markov, MCE, and CA-Markov. The process includes testing the accuracy and verification of simulations using rainfall data from traditional and improved models. Adjustments and tests involve MCE-adjusted CA-Markov intensity change and Crosstab test of Kappa.]FIGURE 4 | Flowchart of the soil erosion intensity change simulation method.
2.5 Evaluation of simulation accuracy
The Kappa consistency test is a method for verifying the accuracy of model results. This coefficient is a commonly used indicator to measure the accuracy of predicted results (Cai and Wang, 2020), which allows the analysis of simulation results from both quantitative and spatial perspectives. The formula for calculating the validation accuracy of simulation results is as follows:
[image: Kappa equals the fraction with numerator \( P_0 \) minus \( P_e \) and denominator one minus \( P_e \). Equation six.]
Where Kappa—verification accuracy.
[image: The image shows a mathematical expression: "Pe P subscript 0."]— overall simulation accuracy and theoretical simulation accuracy.
Kappa coefficient = 0-0.20 represents extremely low simulation accuracy; Kappa coefficient = 0.20–0.40 indicates ordinary simulation accuracy; Kappa coefficient = 0.40–0.60 denotes moderate simulation accuracy; Kappa coefficient = 0.60–0.80 stands for high simulation accuracy; Kappa coefficient = 0.80–1.00 reflects very high simulation accuracy.
2.6 Data processing
Statistical analysis of soil erosion intensity levels on slopes, under various vegetation patch patterns, was performed using ArcGIS 10.7.0.10450 software. Spatial overlay analysis of vegetation pattern and soil erosion intensity maps was conducted to determine the distribution of soil erosion in vegetation and non-vegetation areas on each slope. The classified micro-slope map and soil erosion intensity map were subsequently analyzed through spatial overlay to identify soil erosion distribution patterns at different slopes and reveal the micro-slope characteristics of soil erosion at varying gradients. Finally, the actual results were compared with the simulated data in ArcGIS to validate the accuracy of the simulated soil erosion intensity map under different vegetation patterns.
3 RESULTS
3.1 Change analysis of slope soil erosion intensity
3.1.1 Analysis of area variation of soil erosion intensity on slope
As shown in Figure 5, following erosion on slopes with varying vegetation patch patterns, the eroded area is larger than the deposition area.
[image: Four sets of panels show erosion intensity from 2021 to 2023 under different distribution and control methods. Colors indicate erosion levels: blue for non-erosive, yellow through red for slight to severe erosion. Uniform, random, and gather distributions, along with bare slope control, illustrate variations in erosion over time.]FIGURE 5 | Grade map of slope soil erosion intensity in 2021–2023.
As shown in Figure 6, on the uniformly distributed slope, the areas of the non-erosive zone and slight erosion area both show an upward trend. Slight erosion area saw the most significant increase, rising from 3.22 m2 in 2011 to 3.76 m2 in 2023, an increase of 0.54 m2 or 3.10%. The areas of the mild erosion, moderate erosion, and severe erosion are all decreasing. On the randomly distributed slope, the areas of mild erosion and moderate erosion area both show an increasing trend. The moderate erosion area saw the most pronounced increase, rising from 3.08 m2 in 2021 to 4.08 m2 in 2023, an increase of 1.00 m2 or 5.73%. However, the areas of the non-erosion zone, slight erosion area, and severe erosion area are all decreasing.
[image: Four bar charts compare soil erosion intensity types for the years 2021 and 2023 across different distributions: uniform, random, aggregated, and bare slope control. Each chart displays data in paired bars, with purple representing 2023 and blue representing 2021.]FIGURE 6 | Area changes of soil erosion intensity on different slopes from 2021 to 2023. Note: 1, 2, 3, 4 and 5 are respectively non-erosive zones, slight erosion area, mild erosion area, moderate erosion area and severe erosion.
On the aggregate distribution slope, the areas of the non-erosive zone, moderate erosion area, and severe erosion area all exhibit an increasing trend. The severe erosion area saw the most significant growth, increasing from 1.67 m2 in 2021 to 2.16 m2 in 2023, an increase of 0.49 m2 or 2.81%. However, the areas of the slight erosion and mild erosion are decreasing. On the bare slope control surface, the areas of the slight erosion and moderate erosion area both increased, with slight erosion area showing the most significant growth, rising from 2.22 m2 in 2021 to 4.15 m2 in 2023, an increase of 1.93 m2 or 11.08%. However, the areas of the non-erosion zone, mild erosion area, and severe erosion area are all decreasing.
3.1.2 Analysis of the change of slope soil erosion intensity transfer direction
Figure 7 illustrates the changes in the transfer directions of soil erosion intensity on different slopes from 2021 to 2023. It provides a quantitative explanation of how the types of soil erosion intensity shift across slopes with varying vegetation patterns.
[image: Four circular chord diagrams compare different distribution types: uniform, random, aggregated, and bare slope control. Each diagram links segments representing different time intervals from 2020 to 2023, with varied colors highlighting the distribution patterns.]FIGURE 7 | Transfer direction of soil erosion intensity.
As shown in Figure 7, on slopes with uniform vegetation distribution, the non-erosive zone and the mild erosion area can only transition to slight erosion area or moderate erosion area. Slight erosion area can transition to any other zone, whereas the moderate erosion area can only transition to the non-erosive or mild erosion area. The severe erosion area transitions solely to the mild erosion area.
On slopes with random vegetation distribution, the non-erosive zone and the severe erosion area can only transition to slight erosion area or moderate erosion area. mild erosion area can transition to any zone, while the mild erosion area transitions only to the non-erosive, slight erosion area, and moderate erosion area. The moderate erosion area can only transition to the mild erosion area and severe erosion area.
On slopes with aggregate vegetation distribution, the non-erosive zone can only transition to the mild erosion area, moderate erosion area, or severe erosion area. Slight erosion area transitions only to the non-erosive, mild erosion area, or moderate erosion area, whereas the mild erosion area can transition to any zone. The moderate erosion area and severe erosion area transition only to slight erosion area or mild erosion area.
On the bare slope control surface, the non-erosive zone, mild erosion area, and severe erosion area can transition to any other zone. Slight erosion area can transition only to the non-erosive, mild erosion area, or moderate erosion area, while the moderate erosion area can transition only to slight erosion area, mild erosion area, or severe erosion area.
3.2 Analysis of influencing factors of slope soil erosion intensity
3.2.1 Superposition analysis of vegetation pattern and soil erosion intensity
Vegetation patterns can effectively impede sediment movement, thereby influencing slope soil erosion. Based on the vegetation distribution characteristics of each slope, areas are classified into vegetated and non-vegetated zones, and the patterns and characteristics of soil erosion in these zones are analyzed. As shown in Figure 8, on the uniformly distributed slope, the non-erosive zone and slight erosion area have the largest areas within the vegetated zone, measuring 2.87 m2 and 3.01 m2, respectively. The mild erosion area, moderate erosion area, and severe erosion area are largest in the non-vegetated area, at 2.88 m2, 1.79 m2, and 3.04 m2, respectively. On the randomly distributed slope, the non-erosive zone and slight erosion area have the largest areas in the vegetated region (2.87 m2, 3.01 m2), while the mild erosion area, moderate erosion area, and severe erosion area are largest in the non-vegetated region (2.88 m2, 1.79 m2, 3.04 m2). On the aggregate distribution slope, the non-erosive zone and the moderate erosion area have the largest areas in the vegetated region (2.87 m2, 3.01 m2). Slight erosion area, mild erosion area, and severe erosion area are largest in the non-vegetated region (2.88 m2, 1.79 m2, 3.04 m2).
[image: Three bar graphs compare soil erosion intensity under vegetated and unvegetated conditions across different distributions: uniform, random, and aggregated. Each graph presents soil erosion rates on the vertical axis and erosion intensity on the horizontal axis, with vegetated conditions typically showing lower erosion rates than unvegetated conditions.]FIGURE 8 | Soil erosion distribution in vegetated and non-vegetated areas.
3.2.2 Superposition analysis of micro-slope and soil erosion intensity
As shown in Figure 9, on the uniformly distributed slope, the largest areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area occur on micro-slopes of 20°–30°, 0°–10°, 20°–30°, 40°–50°, and 40°–50°, respectively, with areas of 1.20 m2, 1.12 m2, 1.38 m2, 1.23 m2, and 0.87 m2. On the randomly distributed slope, the largest areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are found on micro-slopes of 20°–30°, 30°–40°, 10°–20°, 10°–20°, and 30°–40°, respectively, with areas of 1.25 m2, 1.38 m2, 1.12 m2, 0.96 m2, and 0.82 m2. On the aggregate distribution slope, the largest areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are found on micro-slopes of 30°–40°, 10°–20°, 20°–30°, 0°–10°, and 40°–50°, respectively, with areas of 1.52 m2, 1.58 m2, 1.06 m2, 0.60 m2, and 0.50 m2. On the bare slope control surface, the largest areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are on micro-slopes of 10°–20°, 20°–30°, 0°–10°, 30°–40°, and 40°–50°, respectively, with areas of 1.18 m2, 0.92 m2, 1.77 m2, 1.58 m2, and 1.33 m2.
[image: Four bar graphs compare soil erosion rates across slopes with different soil distributions: uniform, random, gather, and bare slope control. Each graph displays variations in soil loss over time intervals of 0-10, 10-20, 20-30, 30-40, and 40-50 years, using colored bars.]FIGURE 9 | Micro slope characteristics of soil erosion distribution.
3.2.3 Superposition analysis of micro-slope direction and soil erosion intensity
The micro-slope directions were reclassified into four ranges: north to northeast (337.5°–22.5°), east to southeast (22.5°–67.5°), south to southwest (157.5°–202.5°), and west to northwest (247.5°–337.5°). As shown in Figure 10, on the uniformly distributed slope, the largest upward distribution areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are found in the north-northeast, east-southeast, east-southeast, west-northwest, and south-southwest, respectively, with areas of 1.38 m2, 1.05 m2, 1.47 m2, 1.32 m2, and 0.77 m2. On the randomly distributed slope, the largest upward distribution areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are found in the west-northwest, south-southwest, east-southeast, north-northeast, and south-southwest, respectively, with areas of 1.25 m2, 1.43 m2, 1.22 m2, 0.99 m2, and 0.91 m2. On the aggregate distribution slope, the largest upward distribution areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are found in the north-northeast, west-northwest, east-southeast, east-southeast, and south-southwest, respectively, with areas of 1.36 m2, 1.77 m2, 1.81 m2, 1.00 m2, and 0.72 m2. On the bare slope control surface, the largest areas of the non-erosive zone, slight erosion area, mild erosion area, moderate erosion area, and severe erosion area are found in the east-southeast, south-southwest, north-northeast, west-northwest, and south-southwest, respectively, with areas of 1.19 m2, 0.77 m2, 1.63 m2, 1.34 m2, and 1.37 m2.
[image: Four bar charts comparing soil erosion in cubic meters across different slopes and distributions. Each chart represents microslope types: Uniform, Random, Gather, and Bare slope control, comparing eight directional slopes. Various colors denote different depths, with a visible trend of differing erosion rates between the types and directions.]FIGURE 10 | Micro-slope characteristics of soil erosion distribution.
3.3 Simulation and precision inspection of slope soil erosion intensity
3.3.1 Markov transfer probability matrix
In this study, rainfall is very important as an indicator of the corrected transfer probability. The rainfall corresponding to the 3-year soil erosion data (29 August 2021–10 August 2023) was recorded by a siphon self-counting rain gauge. Firstly, the transfer probability matrix of 29 August 2021 and 3 September 2022 is calculated, and the conversion is carried out according to the rainfall during this period and the rainfall from 3 September 2022 to 10 August 2023. The transfer probability matrix for 29 August 2021 and 3 September 2022 is converted into the transfer probability matrix for 3 September 2022–10 August 2023, as shown in Table 3 (Equations 3, 4).
TABLE 3 | Type transfer probability matrix of slope soil erosion on slopes (m2).
[image: A table showing distribution modes and numerical values for two periods, 2021/2022 and 2022/2023, across five categories labeled one to five. Distribution modes include Uniform, Random, Gather, and Bare slope control. Each mode lists numeric values under both periods for each category.]3.3.2 Analysis of suitability rules of slope soil erosion intensity types
Soil erosion intensity types, vegetation distribution areas, micro-slope, and micro-aspect are key factors that influence the soil erosion process. These factors interact according to specific rules and mechanisms, determining both the intensity and spatial distribution of soil erosion in different regions. When formulating suitability rules, it is important to consider the protective effect of different vegetation types and distribution patterns on areas with varying erosion intensities. Erosion intensity types are classified according to slope steepness, while changes in micro-slope lead to variations in local erosion intensity. Micro-aspect, referring to the orientation of the slope surface, directly affects water flow direction, sunlight exposure, and rainfall distribution. Therefore, variations in micro-aspect must also be considered when developing soil erosion intensity suitability rules. Therefore, these factors are treated as constraints, and to ensure objectivity in evaluation, Boolean mapping (where areas outside the scope of consideration are assigned a value of 0, and areas to be considered are assigned a value of 1) is employed in MCE (Multi-Criteria Evaluation). For each type of soil erosion intensity, locations where transformation is not possible are set to 0, while those where transformation is possible are set to 1. This process involves analyzing the suitability rules for soil erosion intensity on different slopes and generating suitability maps for different soil erosion intensity types (Figure 11). Taking the uniform distribution of vegetation pattern as an example:
	 (1) Rules for the conversion of non-erosive zones.
	  ① Limitations: Restrict conversion to >3 cm erosive zones (0 for >3 cm, 1 for others).
	  ② The area with a slight slope of 20°–30° is designated as a suitable development area for non-erosion areas (1 for this range, 0 otherwise).
	  ③ The area with a micro-slope direction of north to northeast is designated as a suitable development area of non-erosion area (1 for these directions, 0 otherwise).
	  ④ The area with vegetation distribution is designated as a non-erosion area suitable for development (1 for vegetated, 0 otherwise).
	 (2) Rule of 0–1 cm erosion zone (slight erosion area) conversion.
	  ① Conversion Flexibility: No restrictions on conversion (all zones set to 1).
	  ② The area with a slight slope of 0°–10° is designated as the suitable development area of the erosion area of 0–1 cm (1 within this range, 0 otherwise).
	  ③ The area with micro-slope direction from east to southeast is designated as the suitable development area of slight erosion area (1 within this range, 0 otherwise).
	  ④ The area with vegetation distribution is designated as the suitable development area of slight erosion area (1 within this range, 0 otherwise).
	 (3) Conversion rules of 1–2 cm erosion zone (mild erosion area).
	  ① Limitations: Restrict conversion to >3 cm zones (0 for >3 cm, 1 for others).
	  ② The area with a slope of 20°–30° is designated as a suitable development area of mild erosion area (1 within this range, 0 otherwise).
	  ③ The area with micro-slope direction from east to southeast is designated as the suitable development area of mild erosion area (1 within this range, 0 otherwise).
	  ④ The vegetation distribution area is designated as the suitable development area of mild erosion area (1 within this range, 0 otherwise).
	 (4) Conversion rules of 2–3 cm erosion zone (moderate erosion area).
	  ① Limitations: Restrict conversion to slight erosion area and >3 cm zones (0 for these, 1 for others).
	  ② The area with a slight slope of 40°–50° is designated as a suitable development area of moderate erosion area (1 within this range, 0 otherwise).
	  ③ The area with micro-slope direction from west to northwest is designated as the suitable development area of moderate erosion area (1 within this range, 0 otherwise).
	  ④ The non-vegetation distribution area is designated as the suitable development area of moderate erosion area (1 within this range, 0 otherwise).
	(5) >3 cm erosion zone (severe erosion area) conversion rules.
	  ① Limitations: Restrict conversion to non-erosion, slight erosion area, and moderate erosion area (0 for these, 1 for others).
	  ② The area with a slight slope of 40°–50° is designated as the suitable development area of the erosion area of >3 cm (1 within this range, 0 otherwise).
	  ③ The area with a micro-slope direction of south to southwest is designated as the suitable development area of the erosion area of >3 cm (1 within this range, 0 otherwise).
	  ④ The non-vegetation distribution area is designated as the suitable development area of the erosion area of >3 cm (1 within this range, 0 otherwise).

[image: Diagram depicting erosion levels ranging from non-erosive to severe across four categories: non-erosive, slight (zero to one centimeter), mild (one to two centimeters), moderate (two to three centimeters), and severe (greater than three centimeters). Each category features images with varying densities of red markings representing erosion, alongside a legend indicating red for level one and black for level zero. A compass rose is visible at the top right.]FIGURE 11 | Suitability atlas of evenly distributed soil erosion intensity types.
3.3.3 Simulation of slope soil erosion intensity
Based on the data preparation outlined above, the simulation of the 2023 soil erosion intensity grade charts for different slopes was conducted, with the resulting charts displayed in Figure 12 (Equation 5). As shown in Figure 12, the spatial layout of the actual soil erosion intensity grade diagram generally aligns with that of the simulated diagram. The uniformly distributed slope remains dominated by the mild erosion area, while the randomly distributed slope primarily transitions from the mild erosion area to the moderate erosion area. The aggregate slope shifted from the mild erosion area to slight erosion area, while the bare slope continues to be dominated by the moderate erosion area.
[image: Six vertical maps compare real and simulated erosion under different conditions: uniform, random, gather distribution, and bare slope control. Color coding indicates erosion intensity: blue for non-erosive regions, then yellow, beige, orange, and red representing increasing erosion severity. A compass rose is included for orientation.]FIGURE 12 | Simulation of soil erosion intensity levels.
The simulated results were further compared with the actual areas of soil erosion intensity types (Figure 13). As shown in Figure 13, on the uniformly distributed slope, the simulated areas of slight erosion area, mild erosion area, and severe erosion area all increased, with the severe erosion area showing the largest increase (0.71 m2). Conversely, the areas of the non-erosive zone and moderate erosion area decreased, with the moderate erosion area experiencing the most significant decrease (0.9 m2). On the randomly distributed slope, the simulated areas of the non-erosive zone, slight erosion area, moderate erosion area, and severe erosion area all increased, with the moderate erosion area showing the greatest increase (0.42 m2). Meanwhile, the area of the mild erosion area decreased by 1.15 m2. On the aggregate distribution slope, the simulated areas of slight erosion area, moderate erosion area, and severe erosion area all increased, with the moderate erosion area experiencing the largest increase (0.69 m2). In contrast, the areas of the non-erosive zone and the mild erosion area both decreased significantly (0.72 m2). On the bare slope control surface, the simulated areas of the non-erosive zone and severe erosion area increased, with the severe erosion area showing the greatest increase (0.73 m2). In contrast, the areas of slight erosion, mild erosion area, and moderate erosion area zone decreased, with the moderate erosion area experiencing the largest decrease (0.49 m2).
[image: Four line graphs compare real and simulated soil erosion intensity areas across different types of soil erosion intensity (values one to five). The distributions shown are: uniform in the top-left, random in the top-right, gather in the bottom-left, and bare slope control in the bottom-right. Each graph has red lines for real data and blue lines for simulated data, displaying varying patterns of increase and decrease.]FIGURE 13 | Comparison of simulated area of soil erosion intensity.
3.3.4 Simulation accuracy test
The soil erosion intensity grade map of different slopes in 2023 was simulated, and the accuracy of the simulation was tested by using the measured data of soil erosion intensity of different slopes in 2023. As shown in Table 4, the Kappa coefficients for soil erosion intensity simulation (Equation 6) on the uniformly distributed slope, randomly distributed slope, aggregate distributed slope, and control slope were 65.24%, 73.62%, 75.88%, and 69.06%, respectively. These values indicate a good fit and suggest that the simulated data effectively represents the mutual transformation trends among various types. This indicates that the model can predict future changes in soil erosion intensity.
TABLE 4 | Simulation and accuracy test of slope soil erosion intensity on slopes.
[image: Table displaying soil erosion intensity data across different slope distributions, including uniform, random, gather distribution, and bare slope control. Columns show real and simulated area in square meters, area difference, precision in percentage, and Kappa coefficient percentage. Data is presented for non-erosive, slight, mild, moderate, and severe erosion types, with varying values for each distribution method.]The accuracy of slight erosion area is high at 92.02%, while the accuracies of the moderate erosion area and severe erosion area are lower at 68.42% and 59.89%, respectively. The simulation accuracies for the non-erosive zone, moderate erosion area, and severe erosion area were higher, reaching 91.41%, 90.69%, and 96.11%, respectively. In contrast, the accuracies of slight erosion area and mild erosion area are lower, at 87.86% and 73.98%, respectively. The simulation accuracies for the non-erosive zone, slight erosion area, and severe erosion area are notably high, reaching 99.02%, 98.75%, and 99.07%, respectively. In contrast, the accuracies of the mild erosion area and moderate erosion area are lower, at 83.41% and 75.87%, respectively. The simulation accuracies for the non-erosive zone, slight erosion area, mild erosion area, and moderate erosion area are higher than those for the bare slope, reaching 91.8%, 96.39%, 92.11%, and 89.83%, respectively. Conversely, the accuracy of the severe erosion area is lower, at only 56.55%.
4 DISCUSSION
4.1 Applicability of MCE-CA-Markov model
Slope is a fundamental component of soil erosion control and research within a basin or region. The occurrence, development, and evolution of soil erosion on slopes are complex phenomena, with vegetation being the primary factor influencing the erosion process. However, current research on soil erosion on slopes with vegetation patterns primarily focuses on post-event control measures. Relatively few studies have been conducted on simulating soil erosion on slopes with vegetation patch patterns (Chen, 2006). Typically, soil erosion intensity is simulated using the RUSLE equation as a variable. He et al. (2014) analyzed the soil erosion status of three experimental plots and two control plots under three rainfall conditions, applying the CA-Markov method to simulate soil erosion across five plots (Sun and Deng, 2015). The results were very close to the observed outcomes. This approach not only offers a novel idea and method for simulating slope soil erosion but also serves as a reference for vegetation management in controlling slope erosion.
The CA-Markov model is empirical, predicting changes in the subsequent period based on prior changes. This model treats the simulated ecological process as uniform, with rainfall serving as the primary driving force for soil erosion, which varies significantly over time. Consequently, this study employs a method to fit the characteristics of runoff, sediment yield, and rainfall for different slopes. The results indicated that rainfall, runoff, and sediment yield had the most significant effects. Therefore, rainfall was chosen to replace the time step in the modified transfer probability matrix (Ji et al., 2019), and the multi-criteria evaluation method in IDRISI was utilized to integrate various influencing factors, completing the simulation of the spatial evolution of soil erosion intensity changes across different vegetation patch patterns on slopes.
The Kappa coefficients for the simulated maps of soil erosion intensity for uniform distribution, random distribution, aggregate distribution, and bare slope control were 65.24%, 73.62%, 75.88%, and 69.06%, respectively. These results demonstrate that the MCE-CA-Markov model is effective for simulating the evolution of soil erosion, with high simulation accuracy. However, when simulating slopes under 3 years of erosion conditions, the model assumes that the effects of slope length and soil erodibility (K value) are uniform across all slopes. It only considers several factors, including rainfall, soil transformation status, vegetation patch patterns, micro-slope, and micro-slope orientation. Among these factors, soil transformation status pertains to the transfer of various soil erosion intensity types. Internal transfers are frequent, and the vegetation patch pattern, micro-slope, and micro-slope direction interact with soil erosion intensity to establish rules based on the most suitable areas for each type of soil erosion intensity. Consequently, the naming rules are somewhat subjective, introducing a degree of instability into the simulation. This leads to relatively large errors in the simulation results of the CA-Markov model (Sun and Deng, 2015).
Since simulation research on slope soil erosion is still in an exploratory phase, some theoretical methods remain underdeveloped. The Pisha sandstone area is characterized by unique eroded soil and semi-arid climate, providing a unique test site. However, due to differences in soil erodibility, cohesion and hydraulic properties, the performance of the model in other environments (e.g., wet, clay-rich soils or dry sandy land) may vary. For example, in areas with high clay content, the soil is not easily moved by rainfall immediately, but may experience slow and continuous erosion under saturated conditions. Integrating soil composition factors (such as clay and organic matter content) in the model can improve adaptability and enable more accurate erosion simulation in different landscapes. To address these shortcomings, the author plans to use MCE to spatialize additional data and integrate it into conversion rules for creating suitability maps in future research. Adjusting the cell size to the most appropriate grid dimension could significantly enhance the accuracy of the simulation (Zhao et al., 2013).
4.2 Difference analysis of simulation accuracy of soil erosion intensity on slopes
The simulation revealed that the erosion area of severe erosion increased the most on both the uniformly distributed slope (0.71 m2) and the bare control slope (0.73 m2). In contrast, the simulated erosion area of moderate erosion increased the most on the randomly distributed slope (0.42 m2) and the aggregated distributed slope (0.69 m2). Generally, the simulated areas of different slopes show the most significant increase in the >2 cm erosion zone. This trend occurs because, during model simulation, as rainfall causes erosion, the model tends to simulate a transformation from lower to higher erosion zones. Consequently, the simulated area of the higher erosion zone is much greater than the actual area.
The results indicate significant differences in the simulation precision of soil erosion intensity across different slopes. In comparison to other slopes, the Kappa coefficient for the soil erosion intensity grade simulation map of uniformly distributed slopes is relatively low at 65.24%. This is attributed to the more frequent internal transfers occurring on uniformly distributed slopes during the third phase of rainfall (Nikolaos et al., 2020). This introduces some instability into the simulation, leading to reduced accuracy in the simulated soil erosion intensity grade map. Table 4 shows that the simulation accuracies for slight erosion area on uniformly distributed, randomly distributed, clustered distributed, and bare control slopes are 92.02%, 87.86%, 98.7 5%, and 96.39%, respectively. Overall, the simulation accuracy of slight erosion area across different slopes is generally high. This is because slight erosion area represents a low-intensity erosion zone, which typically does not transform into a lower intensity zone after erosion (Mohamed et al., 2021). As a result, it remains relatively stable, whereas other zones can simultaneously transform into erosion zones with varying degrees of intensity after different erosion levels, leading to scattered cellular state changes and added uncertainties. Consequently, its interaction with other erosion areas is more complex, resulting in lower simulation accuracy.
In addition to the factors considered in the model, there may be other influences. The accuracy of the model may be affected by root structure, as plants with deeper roots can significantly reduce erosion, even on slopes with minimal vegetation coverage (Feng et al., 2018; Yu et al., 2019). Further investigation into root density and structure as anti-erosion factors could improve the model, particularly in areas with more variable root systems, such as aggregated and random vegetation patterns. Moreover, the Pisha sandstone region exhibits complex soil dynamics, influenced by the composition of sand and silt, which vary in their resistance to erosion. Incorporating soil composition parameters, such as clay content or organic matter, may enhance the accuracy of simulations for areas with high erosion intensity (Rodrigo-Comino et al., 2018; Gong et al., 2023). In conclusion, although the MCE-CA-Markov model successfully simulates erosion trends for different slope types, addressing the aforementioned factors could improve the accuracy of predictions for high-erosion intensity areas and provide a more detailed understanding of soil erosion dynamics under varying environmental conditions. Future research could integrate these factors to provide a more comprehensive erosion simulation framework, applicable to complex landscapes such as the Pisha sandstone region.
4.3 Effects of vegetation patch pattern on soil erosion on slope
The patch pattern of vegetation has a significant impact on the soil erosion process on slopes. Different vegetation distribution patterns regulate soil erosion by altering the flow paths of water and the movement of sediments. In this study, soil erosion intensity is lower on slopes with uniformly distributed vegetation patches. This may be due to the changes in the hydrological connectivity of the slope surface. The uniform distribution pattern is more evenly distributed and more dispersed than the aggregated and random distribution patterns. The hydrological connectivity of vegetation in this pattern is the weakest, meaning that the uniform distribution of vegetation fragments the slope more, making it easier for water and sediment flow to be intercepted by vegetation patches (Tang et al., 2021). As a result (Figure 5), the effective space for erosion on the slope is reduced, leading to increased soil accumulation. This results in a higher soil infiltration rate and a significant reduction in runoff and sediment production during the erosion process. This effectively reduces the transport of coarse sediments and obstructs the direct flow paths of water. In contrast, vegetation patches in random distribution are more likely to form irregular flow channels, leading to increased erosion intensity in localized areas. During heavy rainfall, water flow converges between randomly distributed vegetation patches, resulting in uneven distribution of erosion patches and potentially forming localized areas of high erosion intensity (Huang et al., 2017). Compared to the previous two vegetation patterns, aggregated vegetation communities typically consist of larger patches. These larger patches increase water retention time and promote downward water infiltration, thereby reducing erosion rates. Therefore, aggregated vegetation patches effectively trap larger particles, reducing the downslope movement of sediments (Zhao et al., 2020; Liu et al., 2018). Consequently, this characteristic makes the optimized layout of aggregated distribution highly significant for the practical application of soil and water conservation.
Additionally, this study found that after rainfall, the terrain factors on uniformly distributed slopes showed the smallest changes, while the bare slope control surface showed the greatest changes in micro-topographic factors. However, regardless of the vegetation patch pattern, individual plants, clusters, or patches of vegetation on the upslope direction will form raised soil mounds that intercept soil. Due to the different spatial distribution patterns of plants, there will still be soil deposition, leading to significant variations in micro-topographic changes on the slope. Minor variations on the slope, such as differences in gradient and aspect, influence the convergence and divergence of water flow, thereby altering the role of vegetation in blocking or guiding water flow (Tuo et al., 2023). Particularly on slopes facing south or southwest, where there is sufficient sunlight, vegetation grows more effectively, and soil erosion is relatively minimal.
5 CONCLUSION
This study focuses on three typical vegetation patch patterns (uniform, aggregated, and random distribution) on slopes and bare slope control surfaces in the Baojia Gou watershed of the Pisha sandstone region. The CA-Markov model was used to simulate the dynamic characteristics of soil erosion conditions on different slopes in 2023, exploring the transfer patterns of soil erosion intensity types on the side slopes under different vegetation patterns, and simulating the spatial evolution of soil erosion intensity types. The results show that: (1) Different vegetation distributions lead to different erosion intensity patterns. In the uniformly distributed, aggregated, and bare control slopes, the erosion intensity is predominantly within the mild erosion area. However, on the side slopes with random distribution, the soil erosion intensity shifts from the mild erosion area to slight erosion area. (2) Rainfall is a key driving factor for soil erosion, influencing runoff and sediment yield. The erosion dynamics are the result of the combined effects of vegetation patch patterns, slope gradient, micro-topography, and slope aspect. The CA-Markov model achieved high simulation accuracy, with Kappa coefficients for different vegetation patterns ranging from 65.24% to 75.88%. The spatial layout of the simulated soil erosion intensity maps for different side slopes closely matched the actual soil erosion intensity maps, demonstrating the model’s effectiveness in simulating the soil erosion processes on vegetated slopes. This study provides new insights into the dynamic interactions between vegetation patterns and slope soil erosion, emphasizing the value of optimizing vegetation management to mitigate erosion risks. Future research may improve the model by integrating other influencing factors (e.g., soil mechanical composition, vegetation root density) to enhance simulation accuracy and the practical relevance of soil and water conservation efforts.
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Understanding the characteristics of the soil water content and preferential flow is critical for a thorough comprehension of soil nutrient loss in Karst slopes/ecosystems. We monitored the soil water content and soil temperature at 0–20, 20–40, and 40–60 cm depths on a typical Karst dolomite slope at a high frequency to determine the water distribution characteristics and confirm the occurrence of preferential flow from 2018 to 2021. The soil properties and nutrients in different soil layers during the rainy and dry seasons were determined along the slope (from upper to lower slope positions, with a total of 9 sampling sites). The results revealed that the saturated hydraulic conductivity of the soil at the upper slope position was significantly (p < 0.05) greater than that at the middle and lower slope positions. The soil water content at the down slope position was greater than that at the middle and upper slope positions, further more, coupling monitoring of the soil water content and temperature revealed obvious preferential flow in the Karst dolomite slope. In addition to the spatial variability in the water content, the soil nutrients exhibited regular spatial variations. The dissolved organic carbon (DOC), dissolved organic nitrogen (DON), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) contents were the lowest at the upper slope position and the highest at the down slope position, whereas the difference in nutrients between the rainy and dry seasons was the greatest at the upper slope position. Our results demonstrated that the patterns of the soil water content and surface nutrient loss are consistent along the Karst dolomite slope and are related to the occurrence of preferential flow. Furthermore, the results suggested that, compared with those in previous studies, which focused only on soil properties in the Karst regions of Southwest China, the variation in the soil water content and occurrence of preferential flow may be more important than previously assumed.
Keywords: water distribution, preferential flow, nutrient loss, Karst region, dynamic monitoring

1 INTRODUCTION
Karst landforms constitute one of the main types of landforms worldwide, accounting for approximately 12% of the Earth’s land area, and occur primarily in the Mediterranean Sea area, Eastern Europe, the Middle East, Southeast Asia, Southeast America and the Caribbean region (Peng and Wang, 2012; Lu et al., 2014; Hartmann et al., 2015). Owing to notable development and severe soil erosion, the soil in Karst regions is thin and scattered (Herman et al., 2012; Li et al., 2019; Liu et al., 2020; Zhang et al., 2021).
Notably, total nitrogen (TN) and total phosphorus (TP) in soil are the major limiting nutrients of ecosystem productivity and play key roles in ecosystem restoration or succession (Zhang et al., 2015; Wen et al., 2016). The ecological problem of soil nutrient degradation in Karst regions has attracted the attention of many researchers (Turrión et al., 2009; Albaladejo et al., 2012). Li et al. (2017) studied the impacts of agricultural abandonment on soil C and N contents and reported that the soil C and N contents increased following agricultural abandonment. Moreover, the significant effects of the lithology and land cover type on soil nutrients have been reported in a few studies (Kooijman et al., 2005; Karchegani et al., 2012; Hoffmann et al., 2014; Rossel et al., 2014). In addition, relevant studies have noted that water is the main driving force of soil erosion, as well as the carrier and driving force of nutrient loss (Peng and Wang, 2012). In the absence of significant differences in the lithology, human factors, vegetation coverage, and other conditions, soil erosion may be the main factor leading to nutrient depletion in Karst regions.
At present, studies on the impact of soil erosion on nutrient migration on Karst slopes have focused mostly on surface water movement. Song et al. (2017) reported that runoff erosion directly affects the process of soil nutrient depletion, especially under heavy rainfall conditions, and that an excessive water input can cause a reduction in the soil nutrient content. Wang et al. (2016) analyzed the impact of runoff on soil nutrients on Karst slopes. Yao et al. (2021) studied the effects of rainfall intensity and underground fracture gaps on nutrient loss in karstic sloping farmland and reported that the effect of underground cavities on the loss of sediment nutrients was greater than that of runoff. Owing to the chemical and physical weathering on Karst slopes, the weathering degree of bedrock is high, macropores are obviously developed, the water holding capacity of the soil layer is low, and the permeability is high. Previous research has shown that the surface runoff coefficient on Karst slopes is less than 5% and that almost all of the rainfall infiltrates ( Chen et al., 2012; Fu et al., 2015). Fissures and sinkholes distributed on Karst slopes are important water and nutrient leakage channels, and surface water and soil easily seep into the ground along holes (cracks), resulting in notable nutrient loss (Jiang et al., 2014). In contrast to surface runoff, subsurface flow is the primary mechanism of soil nutrient loss in Karst areas. Subsurface flow determines the infiltration and redistribution of precipitation in soil and affects the soil water content in different soil layers. Further more, due to the presence of cracks, they affect soil water distribution, facilitate rapid infiltration of water, and may lead to more frequent occurrence of preferential flow during water infiltration during rainfall (Sheng et al., 2009; Hardie et al., 2011). The subsurface flow that bypasses part of the soil matrix through macropores and does not follow Darcy’s law is referred to as preferential flow (Clothier et al., 2008). Soil preferential flow is not an individual phenomenon. Moreover, this process is common at various spatial scales (from pores to watersheds) and time scales (from 10 s to 10 years) and can occur in soils with different textures and structures (Nimmo, 2012; Liu et al., 2005). The existence of preferential flow enhances the infiltration depth and infiltration area, accelerates the downward movement of water, and provides a preferential flow path for water infiltration. Water is the main carrier of soil nutrients, and the content of soil nutrients is affected by water content changes (Korkanc and Dorum, 2019), preferential flow may accelerate the loss of surface soil nutrients during rainfall (Hopp and McDonnell, 2009). In summary, preferential flow significantly affects soil nutrient levels, which can promote or inhibit the ability of soil to filter nutrients, thereby enhancing or harming the functionality of ecosystems (Clothier et al., 2008; Wei et al., 2024). Therefore, it is essential to account for the characteristics of preferential flow in Karst soil and understand the relationship between preferential flow and slope water distribution characteristics in slopes, which is conducive to elucidating the impact of preferential flow on soil nutrient loss.
The geological structure and soil characteristics in Karst areas are unique, leading to differences in the water infiltration process compared with those in other regions, and preferential flow may occur more frequently. Although the importance of preferential flow in the process of soil nutrient loss in Karst areas has been recognized, research on the development status of preferential flow in Karst slope soils is lacking, whereas research on the impact of preferential flow on soil nutrients has also been relatively slow. Notably, methodological and technical difficulties are encountered in studying the developmental characteristics of preferential flow on Karst slopes and its impact on nutrient distribution. Previous studies on preferential flow changes have usually been performed via tracer and staining methods. Different methods present distinct advantages and focuses, and it is currently difficult to unify them. In addition, onsite measurement methods are destructive, with limited experimental samples and a lack of monitoring and analysis of preferential flow under natural rainfall conditions (Gerke et al., 2015; Hencher, 2010; Allaire et al., 2009). Therefore, evaluating the impact of preferential flow in soil on nutrient loss within those soils is difficult. Obviously, studying preferential flow on Karst slopes via appropriate methods is important for distinguishing whether preferential flow in soil on Karst slopes has developed and for determining its impact on the distribution of soil nutrients within those slopes. With improvements in experimental and numerical research methods, preferential flow has been analyzed through synergistic observations of the soil water content and temperature (Li et al., 2014; Gharabaghi et al., 2015; An et al., 2017). In alignment with previous studies, this study aimed to analyze preferential flow on Karst slopes through long–term high–frequency monitoring of the soil water content and temperature at different slope positions.
The Karst region in southwestern China is one of the three major areas with concentrated Karst distributions in the world (Jiang et al., 2014; Hu et al., 2021). Dolomite [CaMg(CO3)2] is a widely distributed carbonate rock in this region with favorable porosity and permeability. Therefore, it is realistic to choose a Karst dolomite slope in this region to analyze the impact of preferential flow on soil nutrient loss. The main objectives of this study were to (1) explore the characteristics of preferential flow on Karst slopes under natural rainfall conditions and its relationship with water distribution on those slopes and (2) analyze the characteristics of nutrient loss on Karst slopes and its potential relationship with preferential flow. The results could provide useful information on the conditions under which the spatial characteristics of nutrient loss on Karst slopes are beneficial for the restoration and management of degraded slopes. This study offers a theoretical basis for the prevention and control of rocky desertification and for ecological governance.
2 MATERIALS AND METHODS
2.1 Study area and sample collection
The experimental site is located in the Mulian Comprehensive Experimental Demonstration Zone of Ecosystem Observation of the Chinese Academy of Sciences, Huanjiang County, Guangxi Autonomous Region (24°43′59″–24°44′49″N, 108°18′57″–108°19′58″E). It is a typical Karst landscape unit (Figure A1). This county features a subtropical monsoon climate, with an average annual temperature of 19.9°C. The annual precipitation reaches 1,389.1 mm, with abundant rainfall but an uneven seasonal distribution. The rainy season (April to September) accounts for more than 70% of the annual rainfall, and the greatest amount occurs from June to July. The dry season lasts from October to March of the following year.
The soil in the study area is derived from dolomite residues, the main types of clay minerals are illite (2:1 non expansive clay mineral), montmorillonite (2:1 expansive clay mineral), and kaolinite (1:1non expansive clay mineral), with montmorillonite having a higher content. Except for the mountaintop, the research area is almost continuously covered by shallow soil. The thickness of the soil layer gradually increases downwards along the slope, and the degree of soil development gradually increases. Along the slope direction, clay particles mainly gather at the down slope, while gravel is concentrated on the upper slope. Meanwhile, the soil organic matter content gradually increases from the upper to the down of slope, the soil organic matter content was significantly higher at the down slope (26.96 ± 1.53b) than for the upper slope (22.06 ± 1.84a) and middle-slopes (23.58 ± 1.23a). To eliminate the impact of vegetation on the erosion process, we conducted experiments on slopes where the vegetation and species diversity levels were not significant, and where the main vegetation types included herbs and shrubs. To clarify the physical properties of different soil layers in the vertical profile of the study slope, soil samples were collected in the exact same location from the surface to the deep soil layer in the vertical profile according to the geomorphological characteristics of the dolomite slope. A total of nine sampling points were established along the slope direction in the upper slope (sites 1, 2, and 3), middle slope (sites 4, 5, and 6), and down slope (sites 7, 8, and 9) sections, with two profiles arranged for each sampling point as duplicates. The soil layers on the dolomite slope at the test site were further divided into three layers according to their color and texture (from top to bottom): the A layer, AC layer and C layer. The “A” layer is black surface layer. “AC” is a yellow illuvial horizon and “C” is a white dolomite strongly weathered layer. To clarify the physical properties and nutrient contents in the different soil layers within the vertical profile of the Karst dolomite slope, soil samples were collected from the surface layer to the deep soil layer along the vertical profile according to the abovementioned soil layer division. We collected undisturbed soil samples from these layers with a ring knife to quantify the soil bulk density (BD) and saturated hydraulic conductivity (Ks). Disturbed soil samples were used to determine the soil mechanical composition and soil nutrients, with samples for soil nutrient measurement collected at the same sites in March 2022 and October 2022.
2.2 Soil sample analysis
The soil bulk density (BD) and porosity were determined via the ring knife method (Cerda and Doerr, 2010), The soil mechanical composition was analyzed by the pipette method, and the samples were classified in terms of their sand (0.05–2 mm), silt (0.002–0.05 mm) and clay (<0.002 mm) compositions on the basis of the American standard classification system (Duan et al., 2021). The basic conditions of the soil samples are shown in Figure 1.
[image: Graph displaying soil characteristics and particle size distribution across A, AC, and C layers. The top chart (a) tracks porosity percentages and bulk density (BD) with lines for CP, AP, TPOR, and BD. The bottom chart (b) shows a bar graph of particle size distribution with clay, silt, and sand percentages.]FIGURE 1 | The soil physical properties of various layers in different sites: (A) Bulk density (BD) and total porosity (TPOR), capillary porosity (CP) and non-capillary porosity (AP); (B) Soil mechanical composition.
The total nitrogen (TN) content was analyzed via the semimicro-Kjeldahl-flow injection method (HGCF-200, China), the total phosphorus (TP) content was determined via NaOH fusion-molybdenum-antimony anticolor development-UV spectrophotometry (UV-2600, China), and the total potassium (TK) content was obtained via the NaOH melting atomic absorption flame photometry method (AA320CRT, China) (Bao, 2000). Dissolved organic carbon and dissolved organic nitrogen (DOC and DON, respectively) levels were analyzed via extraction with 0.5 M K2SO4 (Xiao et al., 2020). The constant-head method was used to measure the soil saturation hydraulic conductivity, Ks (mm/min), which can be calculated as follows:
[image: Equation for \( K_s \) equals \(\frac{10QL}{A \Delta HT}\), where \( QL \) is the product of Q and L, \( A \) is area, \( \Delta H \) is change in height, and \( T \) is temperature.]
where Ks (mm/min) is the saturated hydraulic conductivity, Q (mL) is the outflow within time t, L (cm) is the linear distance of the water flow path, A (cm2) is the water flow cross-sectional area, ΔH (cm) is the total head difference between the beginning and end of the seepage path, and T (min) is the outflow time.
2.3 Monitoring of the soil water content on a karst slope
To obtain the change in the soil water content on the test Karst slope, three soil water monitoring sites were established at three slope sites (upper, middle, and down slope sites). One soil moisture sensor (Hydra II) was installed horizontally to obtain the soil profiles at depths of 0–20 cm on the upper slope, and three soil moisture sensors were installed horizontally to obtain the soil profiles at depths of 0–20 cm, 20–40 cm, and 40–60 cm at the middle and down slope sites. The sensors were calibrated before installation. Rainfall and air temperature data were obtained from meteorological stations within the Mulian catchment. The soil water contents at all the sites were recorded at 30–min intervals beginning in January 2018.
2.4 Data processes
The statistical analyses were performed via the SPSS 21.0 for Windows statistical software package. Additionally, the tests included the normality test, homogeneity test of variance, t-test (significance: 0.05), and one-way analysis of variance (ANOVA) of the soil properties among the different soil layers and sites. Correlation analysis was performed, and related charts were constructed via Origin 21 software.
3 RESULTS AND ANALYSIS
3.1 Soil physical properties and Ks distributions along the slope
As shown in Figure 1, the clay content (particle size<0.002 mm) among the slope positions (sites 1–9) gradually increased from the upper to down slope positions, with the lowest clay content at site 1 and the highest at site 9 for the same soil layer. In addition, the change in the soil BD gradually decreased from the upper to lower slope positions with increasing slope. The lowest BD at site 9 was 1.10 g/cm3, and the maximum BD at site 1 was 1.26 g/cm3. This difference may be due to the higher content of coarse particles at the upper slope position than at the down slope position. The aeration porosity (>0.015 mm) at the upper slope position was obviously greater than those at the middle and down slope positions, and the value ranged from 3.59% to 13.23% from sites 1 to 9. Although the total porosity at the down slope position was high, the aeration porosity was lower than that at the upper slope position. A comparison of the same slope sites in the different soil layers revealed that the sand content (particle size range 0.05–2 mm) and BD significantly increased and that the soil aeration porosity gradually decreased from the A layer to the C layer.
Figure 2 shows that the Ks of the dolomite slope exhibited significant spatial heterogeneity. The Ks decreased gradually from sites 1 to 9, and the Ks of the soil at the down slope position was significantly lower than that at the upper and middle slope positions (p < 0.05). Moreover, the difference in the Ks between the different test sites at the same slope position was not significant. The difference in Ks among the different slope positions was greatest in layer A. For layer A, the average Ks at site 1 was 52.34 mm/min, whereas that at site 9 was 25.24 mm/min. At the same slope position, the Ks values of the different soil layers also significantly differed, and the Ks values of the A layer were significantly higher than those of the AC and C layers. As indicated in Table 1, the differences in Ks among the down, middle and upper slope positions in the A, AC and C layers were significant (p < 0.05). In summary, the Ks values of Karst dolomite slopes exhibit consistent spatial variability.
[image: Bar graphs comparing saturated hydraulic conductivity across three layers: A, AC, and C. Each layer has three positions: Up, Mid, and Down. Different treatments are indicated by color, with variations in conductivity values and letters above bars denoting statistical differences.]FIGURE 2 | Vertical variation of saturated hydraulic conductivity of soil profiles at different slope positions. Different uppercase and lowercase indicated significant differences at 0.05 level between different slope positions.
TABLE 1 | Test for saturated hydraulic conductivity of different slope sites (upper slope, middle slope and lower slope) in the test Karst slope different soil layer (A layer, AC layer and C layer).
[image: A table showing statistical data for different soil layers and slope positions. Columns are headed "Soil layer," "Slope position," "t," "Df," and "Sig." Data is presented for A Layer, AC Layer, and C Layer with various slope positions. All "t" and "Sig" values are significant, indicating differences between slope positions within each layer.]3.2 Variation characteristics of nutrients at different sites on the karst slope during the rainy and dry seasons
As shown in Figure 3, the DOC, DON, TN, TP and TK contents along the slope during the rainy and dry seasons were the lowest at the upper slope position and the highest at the down slope position. In addition, the difference in soil nutrients between the rainy and dry seasons gradually decreased from the upper slope position to down slope position. The soil nutrient levels at each site were lower during the rainy season than during the dry season. Notably, soluble nutrients in the soil were lost after the rainy season. This phenomenon was most evident at the upper slope position, and the decrease in soil nutrients at the upper slope position was greater than that at the middle and down slope positions after the rainy season. In the vertical profile, the soil DOC, DON, TN, TP, and TK contents gradually decreased with increasing soil layer depth. Notably, these values were highest in the A layer and lowest in the C layer. In addition, the analysis of nutrient changes at different soil depths during the rainy and dry seasons revealed that the loss of soil nutrients after the rainy season mainly occurred in the A layer. The loss of nutrients in the A layer was greater than that in the AC and C layers after the rainy season, and the DOC, DON, TN, TP, and TK contents in the A layer at the upper slope position significantly differed between the rainy and dry seasons (p < 0.05). Compared with those before the rainy season, the soil nutrient levels in each layer basically decreased, but the nutrient levels in the deep layers (AC and C layers) at the down slope position slightly increased. Thus, after the rainy season, the DOC, DON, TN, TP, and TK migrated under the influence of water infiltration, resulting in a significant decrease in nutrients in the topsoil layer.
[image: Bar charts compare soil nutrient levels under rain and drought conditions across three soil layers: A, AC, and C. Metrics include DOC, DON, TP, TK, and TN, with bars indicating variability in nutrient concentration and labeled with significant differences.]FIGURE 3 | Rainy and dry season variations of soil nutrient content in different slopes and soil horizons on karst dolomite slopes.
The correlations between the changes in soil nutrients and the basic properties during the rainy and dry seasons are shown in Figure 4. The results revealed that the correlations between the soil nutrient changes and soil properties were consistent across the upper, middle and down slope positions, indicating that the losses of soil DOC, DON, TN, TP, and TK were consistent. Further analysis of the correlations between the changes in soil nutrients and soil properties revealed a significant positive correlation between the changes in soil nutrients and Ks at the three slope positions (p < 0.01).
[image: Correlation heatmaps for upslope, mid slope, and downslope showing relationships between variables: BD, TPOR, CP, NCP, Sand, Silt, Clay, and Ks with ADDOC, ADDON, ΔTOP, ΔTN, ΔTP, and ΔTK. Color gradient from blue to red indicates correlation strength, with significance levels marked by asterisks.]FIGURE 4 | Correlation analysis between soil nutrient content variation and soil properties at different slope locations on karst dolomite slopes.
Further analysis of the correlation between the soil nutrient change rate and basic soil properties revealed that the change in soil nutrients at the three slope positions was significantly positively correlated with Ks (p < 0.01) and significantly positively correlated (p < 0.05 or p < 0.01) with the noncapillary porosity (NCP). In addition, there was a significant negative correlation (p < 0.01) between the changes in soil nutrients and BD at the upper and middle slope positions. Therefore, soil nutrient loss is related to soil properties, especially NCP and Ks.
3.3 Monitoring results for the soil water content in the karst test slope
As indicated in Table 3, the rainy and dry seasons are very distinct in the Karst dolomite area. The rainfall amount in December 2018 was only 7.0 mm, but in September, it reached 228.0 mm. Similar variation patterns were also observed in 2019, 2020, and 2021. The minimum rainfall during the monitoring period was 0.4 mm (January 2019), and the maximum rainfall was 740.4 mm (September 2020). Due to the significant difference in nutrients between the rainy and dry seasons, mainly concentrated in the surface layer, the dynamic trend of soil moisture content in the surface layer (0–20 cm) of different slope positions was analyzed (Figures 5, 6). As shown in Figure 5, during the monitoring period from 2018 to 2021, the average soil water contents at the upper, middle and down slope positions were 0.14, 0.09 and 0.39 cm3/cm3, respectively. Notably, the soil water content gradually increased from the upper to down slope positions in general, and the down slope position presented a higher soil water content than that at the upper and middle slope positions. Additionally, the coefficient of variation (CV) of the soil water content at the different slope positions was analyzed during the monitoring period. The CV is the ratio of the standard deviation to the average value, which reflects the degree of statistical dispersion of the sample values. The CV values of the soil water content at the upper, middle and down slope positions were 50.23%, 36.76% and 17.49%, respectively. The CV of the soil water content was greater at the upper slope position than at the middle and down slope positions, indicating that the fluctuation in the soil water content at the upper slope position was the greatest.
[image: Violin plot showing volumetric soil water content percentages across upper, middle, and down slope positions. Median values are marked, with the 25 to 75 percent range highlighted. Down slope shows higher variability.]FIGURE 5 | Descriptive statistics of soil water content on the different slope positions during the observation period.
[image: Four line graphs show soil water content over time at upslope, midslope, and downslope sites, with upslope in black, midslope in red, and downslope in blue. The x-axis covers dates from 2018 to 2021. Below, a bar graph depicts corresponding rainfall data, with varying rainfall peaks throughout the period.]FIGURE 6 | Temporal variation of daily average soil water content on the different slope positions during the observation period.
Furthermore, as shown in Figure 6, the variation characteristics of the soil water content and the response to rainfall at the three slope positions were basically consistent. The soil water content is generally high during rainfall, and the maximum soil water contents at the upper, middle and down slope positions are 0.38, 0.43 and 0.57 cm3/cm3, respectively. The maximum soil water content occurs during rainfall. Moreover, the difference in the soil water content between the upper and middle slope positions was small, whereas the difference between the upper and down slope positions was notable. In general, the characteristics of the soil water content on the Karst dolomite slope during the monitoring period were as follows: down slope > middle slope > upper slope. In addition, the variation trends in the soil water content and CV were opposite. That is, the soil water content at the upper slope was low, with a relatively large variation range and a relatively dispersed distribution. In contrast, the soil water content at the down slope position was high, with a small variation range and a relatively concentrated distribution, and the response to rainfall was not as obvious as that at the upper slope position.
3.4 Characteristics of the moisture and temperature changes in the preferential and substrate flow processes on karst slopes
The changes in soil water and temperature during the monitoring period when typical preferential and matrix flow processes occurred in the slope are shown in Figures 7, 8, respectively. Figure 7 shows that the soil water content gradually increased from depths of 0–20 cm, 40–60 cm and 20–40 cm. During preferential flow, water directly infiltrated from the surface to depths of 40–60 cm, and the deep soil water content changed rapidly. Moreover, temperature analysis revealed that because the air temperature (20.9°C) was lower than the topsoil temperature (25.8°C and 24.7°C) and heat exchange between rainwater and soil was greater, resulting in the topsoil temperature gradually decreasing with increasing rainfall. The 20–40 cm layer exhibited soil matrix flow, and because the soil temperature at 0–20 cm was greater than that at 20–40 cm and 40–60 cm, the soil temperature at 20–40 cm first increased but then decreased. The preferential flow caused the soil temperature at depths of 40–60 cm to decrease prior to the other layers. Moreover, during the infiltration process, the rainwater temperature increased due to the heat exchange with the high-temperature soil, resulting in the soil temperature at depths of 40–60 cm gradually rising later.
[image: Graphs depicting soil water content and temperature at midslope and downslope, with different depths (0-20 cm, 20-40 cm, 40-60 cm) over time. Rainfall is shown as bars and air temperature as a line graph below. The x-axis represents time from 04:30 to 12:00. Soil water content and temperature are plotted for midslope and downslope, showing variations at different soil depths, with rainfall peaking between 06:00 and 07:30. Air temperature decreases from 04:30, reaching a low around 10:30.]FIGURE 7 | Trends of the soil water content and temperature during preferential flow.
[image: Graphs depict soil water content and temperature at different depths (0-20 cm, 20-40 cm, 40-60 cm) at midslope and downslope locations, alongside rainfall and air temperature data from 03:00 to 12:00. Soil water content is higher in downslope areas. Rainfall peaks around 06:00. Air temperature rises gradually throughout the morning.]FIGURE 8 | Trends of the soil water content and temperature during typical substrate flow.
The changes in the soil water content and temperature during matrix flow differed from those during preferential flow (Figure 8). In particular, with rainfall infiltration, the soil water content at depths of 0–20 cm, 20–40 cm and 40–60 cm increased in turn. During rainfall, the temperature within the 0–20 cm soil layer gradually decreased because the rain temperature was lower than the surface soil temperature. However, due to the difference in temperature among the three soil layers, the soil temperature at 0–20 cm was greater than that of the deeper soil, so water replacement occurred with rainfall infiltration. That is, before the rainfall arrives, the water in the surface soil infiltrates into the deeper soil, causing the soil temperature to rise at the depth at 40–60 cm, however, when the rainfall arrives, the temperature begins to decrease.
4 DISCUSSION
4.1 Characteristics and mechanisms for water distribution in slopes
During the monitoring period, the soil water content in the Karst slope varied among different slope positions under the same climatic conditions, as shown in Figures 5, 6. The soil water content at the down slope position was significantly greater than that at the middle and upper slope positions. The CV of the soil water content was the lowest at the down slope position, which was the opposite of the trend in the soil water content. Cui and Zhi (2018) noted that the main controlling factors affecting soil hydrological processes and water distributions differ at different regional scales. On a small scale, when there are no significant differences in the slope topography or vegetation, factors including the soil BD, texture, and cracks, more greatly impact soil hydrological processes.
We consider that the low soil water content at the upper slope position during the monitoring period may be related to the large number of aeration pores and the high Ks of the soil at that position. The distribution of pores in the Karst slope is evident, and the content of aeration pores is high at the upper slope position, which notably affects the process of soil water infiltration (Hincapie and Germann, 2009). Zhang et al. (2014) noted that soil with more aeration pores and a denser macropore distribution exhibited greater soil connectivity and greater Ks. This may be the main reason why the Ks at the upper slope position is significantly (p < 0.05) greater than that at the middle and down slope positions (Figure 2; Table 2). In addition, soil with more aeration pores can provide favorable infiltration channels for surface water (Sheng et al., 2009; Krisnanto et al., 2016). Therefore, preferential flow occurs easily in the surface soil later because soil water content is less concentrated in that soil layer, the depth of the wetting front is significantly greater than that in soil with fewer aeration pores, and the subsurface flow process is fast, so preferential flow easily occurs (Liu et al., 2005; Abaci and Papanicolaou, 2009).
TABLE 2 | Dynamic variation characteristics of rainfall during 2018–2021.
[image: A table displaying rainfall data from 2018 to 2021, including columns for time, precipitation in millimeters, rainfall duration in hours, maximum rainfall intensity for thirty and sixty minutes in millimeters per hour, and rainfall event frequency. The data covers various months and shows fluctuations in precipitation and intensity across the years.]An analysis of the monitoring results of the soil water content revealed that preferential flow occurs on Karst slopes during rainfall (Figure 7). We speculate that the frequency of soil preferential flow varies among the different slope positions and that the frequency of soil preferential flow at the down slope position is lower than that at the middle and upper slope positions. This may be due to the significant difference in the soil Ks among the different slope positions, as shown in Figure 2 and Table 2.
The soil at the upper slope position exhibits a higher water permeability than that at the down slope position, and the Ks is significantly greater than that at the down slope position. Therefore, the resistance of the soil water content on the down slope in the process of infiltration is high, and resulting in a lower possibility of preferential flow at the down slope position. In addition, when the soil water content at the lower slope position is the highest, but the CV is the lowest, as shown in Figures 5, 6. Bodner et al. (2013) pointed out that the frequency of preferential flow is lower for soils with high water content and low CV values, and the transport capacity of soil water is lower, which is consistent with our view. Moreover, the close relationship between the occurrence frequency of preferential flow and the soil water content has also been widely recognized. The main principle is that water easily infiltrates soil with a high frequency of preferential flow, resulting in a low soil water content in the surface layer (Greve et al., 2010; Hardie et al., 2011; Tao et al., 2017; Wei et al., 2024).
In addition to the porosity and Ks, the difference in the soil mechanical composition affects the frequency of preferential flow (Hincapie and Germann, 2009; Beven and Germann, 2013). As shown in Figure 1, the soil mechanical composition at the different slope positions on the Karst slope exhibits obvious spatial variability, and the soil sand content at the upper slope position is significantly greater than that at the down slope position. Tao et al. (2020) noted that on granite Benggang slopes, an increase in the sand content promotes the formation and development of preferential soil flow, and the amount of preferential flow in the sand layer is three times greater than that of matrix flow. This is consistent with the analysis of preferential flow and texture in this study. The occurrence frequency of preferential flow at the upper slope position with a higher sand content is greater than that at the down slope position with a lower sand content. The reason for this phenomenon may be that the specific surface area of sand particles is smaller than that of clay particles, and the adsorption capacity for soil water content is low. Therefore, under the same porosity, water is more likely to be discharged from pores in soils with higher sand contents (Carbajal-Morón et al., 2017), which improves the soil water infiltration capacity, and thus the degree of preferential flow is greater.
4.2 Characteristics and influencing factors of soil nutrient loss in karst dolomite slopes
We found that the soil DOC, DON, TN, TP, and TK contents in the dolomite Karst slope exhibited obvious spatial heterogeneity. Along the slope direction, the soil nutrient content gradually increased from the upper to down slope positions. In addition, the degree of nutrient loss at the different slope positions varied, and the difference in soil nutrients between the rainy and dry seasons gradually decreased at the nine test points from the upper to down slope positions. Along the vertical profile direction, the DOC, DON, TN, TP, and TK contents in the A layer during the rainy and dry seasons significantly differed, whereas the nutrient contents in the AC and C layers slightly changed (the difference was not significant). As shown in Figure 4, the soil aeration porosity and Ks significantly affected the changes in soil nutrients during the rainy and dry seasons. From the upper to down slope positions, the soil sand content, aeration pore content and Ks gradually decreased, and the loss of soil nutrients between the rainy and dry seasons was low. The significant effects of the lithology and soil properties on the loss of soil nutrients have been reported in a few studies (Albaladejo et al., 2012; Hoffmann et al., 2014; Rossel et al., 2014; Turrión et al., 2009). Teixeira and Misra (2005) noted that the magnitude of the soil nutrient loss was affected by the distribution of macropores. In addition to the soil properties, this difference may be related to subsurface flow. Soil physical properties and lithology affect the soil nutrient loss by influencing the distribution and development of subsurface flow.
Soil water–nutrient seepage is the primary mechanism of soil and water loss in Karst areas (Perakis and Hedin, 2002), and soil nutrients migrate mainly through hydrodynamic forces, which are closely related to water infiltration (Fu et al., 2016; Dai et al., 2017). Combined with Figures 3, 5 the trends in nutrient loss are consistent with the variation characteristics of the CV of the soil water content, with a high CV of the soil water content associated with an increase in the migration rate of soil nutrients. These findings indicate that soil water infiltration due to rainfall is the most direct factor influencing soil nutrient loss on Karst slopes.
Moreover, owing to the pronounced development of surface Karst features and the dense distribution of underground fissures in the Karst area of Southwest China, there is obvious underground seepage in this area (Zhang et al., 2011; Yuan et al., 2012). The results of this study also revealed a preferential flow phenomenon on the Karst slope (Figure 7). We considered that the existence of preferential flow further caused differences in nutrient loss along the slope direction. Preferential flow is an important component connecting the aboveground and underground systems in Karst areas and provides seepage and storage spaces for soil, water, and nutrients. Preferential flow can lead to water displacement, and some of the collected upper soil water moves to the deeper soil to replace the original water (Ma et al., 2016). Soil nutrients, especially DOC and DON, are active components of soil nitrogen and exhibit notable mobility, which can be lost by runoff or leaching with water transport (Perakis and Hedin, 2002; Teixeira and Misra, 2005). Combined with the theory of water replacement, these findings indicate that soluble nutrients may directly reach the deep layer via preferential flow channels. Soil water infiltration at the upper slope position progressed rapidly, and preferential flow frequently occurred, resulting in underdeveloped slope surface runoff, which could easily result in a reduction in the nutrient content in the soil through subsurface flow during rainfall. The rapid infiltration of soil water at the upper slope position and frequent preferential flow contribute to the rapid infiltration of surface water into deep layers, resulting in underdeveloped slope surface runoff and soil nutrient loss during rainfall. This finding is similar to the results of Yan et al. (2019), who reported that fissures with poor connectivity have better soil nutrient and fertility conditions. With decreasing slope position, the soil type on Karst dolomite slopes transitions from lithologic and shallow soils to Alfisols (Meng et al., 2022). The high clay content of Alfisols at the down slope position and the low frequency of preferential flow are helpful for maintaining the relative stability of nutrient levels. The existence of preferential flow easily leads to the direct downward migration of nutrients without interactions with upper soil organisms, which notably impacts the regional nutrient distribution (Allaire et al., 2009). The rate of nutrient loss at the upper slope position was greater than that at the down slope position, indicating that the preferential flow area at the upper slope position was the main zone of rapid soil nutrient loss.
In addition, the variation in TP between the rainy and dry seasons was the lowest among all soil nutrients. This may be due to the intense transformation reaction of phosphorus in soil and the high ability of the soil to adsorb and retain phosphorus, which makes it difficult to transport phosphorus in the soil. In conclusion, preferential flow in Karst dolomite rock leads to nutrient migration, resulting in significant differences in soil surface nutrient changes between the rainy and dry seasons at different slope positions.
5 CONCLUSION
The Ks of the Karst dolomite slope exhibited clear heterogeneity along the slope, the Ks at the upper slope position is significantly (p < 0.05) greater than that at the middle and down slope positions. Owing to the low hydraulic conductivity at the down slope position, the soil water content was greater than that at the middle and upper slope positions. Coupling monitoring of the soil water content and temperature revealed obvious preferential flow on the Karst dolomite slope, and the water content and temperature changes in the soil layer with preferential flow occurred earlier than those in the other soil layers without preferential flow. The patterns of the soil water content and surface nutrient loss on the Karst dolomite slope are consistent across the various positions and are related to the occurrence of preferential flow. There are significant differences in the changes between the different slope positions during the rainy and dry seasons. The average water content at the lower slope position is the highest, and the CV values of the soil water content and nutrient loss are the lowest. Our results demonstrate that the preferential flow area at the upper slope position is the main zone of soil nutrient loss. Therefore, in Karst areas with rocky desertification and ecological management, we should first analyze the occurrence of preferential flow in surface Karst zones and then explore nutrient migration mechanism. Moreover, soil and water conservation measures should be implemented based on the preferential flow and nutrient characteristics of different slope positions. Seal off on the upper and middle slopes to avoid human disturbance, while coverage and no tillage measures should be carried out on the down slope to reduce nutrient loss.
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APPENDIX
To better describe and more clearly show the sampling sites for karst slope, we added the photographs of actual peak-cluster depression karst landscape, and marked the sampling sites of slope shown in Figure A1.
[image: A mountainous landscape with three labeled sections marked by dots: "Upper slope," "Middle slope," and "Down slope." The terrain is covered in lush green vegetation, and misty mountains are visible in the background.]FIGURE A1 | The photographs of actual peak-cluster depression karst landscape in Mulian catchment in Huanjiang county, Guangxi, China.
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Introduction: Soil erosion is a critical issue faced by many regions around the world, especially in the purple soil hilly areas. Rainfall and slope, as major driving factors of soil erosion, pose a significant challenge in quantifying their impact on hillslope runoff and sediment yield. While existing studies have revealed the effects of rainfall intensity and slope on soil erosion, a comprehensive analysis of the interactions between different rainfall types and slope is still lacking. To address this gap, this study, based on machine learning methods, explores the effects of rainfall type, rainfall amount, maximum 30-min rainfall intensity (I30), and slope on hillslope runoff depth (H) and erosion-induced sediment yield (S), and unveils the interactions among these factors.Methods: The K-means clustering algorithm was used to classify 43 rainfall events into three types: A-type, B-type, and C-type. A-type is characterized by long duration, large rainfall amounts, and moderate intensity; B-type by short duration, small rainfall amounts, and high intensity; and C-type is intermediate between A-type and B-type. The Random Forest (RF) algorithm was employed to assess the impacts of these factors on runoff and sediment yield, along with a feature importance analysis.Results: The results show that rainfall amount has the most significant impact on runoff and sediment yield. Under different rainfall types, the ranking of the effects of rainfall amount and I30 on H and S is as follows: rainfall amount (C>A>B), I30 (A>B>C). The impact of slope follows a trend of first increasing and then decreasing, with varying degrees of influence on H and S depending on the rainfall type.Discussion: The novelty of this study lies in combining machine learning techniques to systematically evaluate, for the first time, the interactions between rainfall type and slope and their impact on hillslope runoff and sediment yield in purple soil hilly areas. This research not only provides a theoretical basis for soil erosion control but also offers scientific support for the precise prediction and management of soil conservation measures in purple soil regions.Keywords: purple soil, random forest, clustering algorithm, slope scale, soil erosion
1 INTRODUCTION
Purple soil was formed from purple rocks of the Jurassic and Cretaceous periods (Xiao et al., 2024), and is widely distributed in the middle and lower reaches of the Yangtze River in China (Zhang et al., 2004). It is rich in mineral nutrients, making it an important agricultural natural resource in the region (Chen et al., 2024). Purple soil is the main soil type in the sloping farmland of the Sichuan Basin, characterized by thin soil layers, low permeability, high hydrophobicity, and susceptibility to weathering (Zhang et al., 2023). Additionally, purple soil has low resistance to soil erosion, leading to severe soil erosion and nutrient loss in the area (Chu et al., 2020). Sediment deposition reduces reservoir storage capacity and increases the risk of flooding. Additionally, nutrient transfer leads to eutrophication of water bodies in the upper and middle reaches of the Yangtze River, exacerbating regional water environmental pressures (Gao et al., 2023; Xiao et al., 2024).
Slope is one of the primary contributors to hydraulic erosion, dynamic transport, and sediment transfer (Sun et al., 2022; Yan et al., 2024), and surface runoff plays a decisive role in the soil erosion process (Admas et al., 2022). Surface runoff is the driving force and carrier for sediment, nitrogen and phosphorus transport (Tapas et al., 2024), which on one hand leads to substantial loss of topsoil, and on the other, causes the loss of soluble and readily available nutrients during vegetation growth (Jia et al., 2007), reducing soil fertility. The purple soil distribution area receives abundant rainfall year-round, and most of the sloping farmlands in this region have steep slopes (≥10°), which causes severe soil and water loss. Yan et al. (2023) quantified the effects of five different crop types and rainfall conditions on slope runoff and soil erosion, and the results indicated that rainfall and runoff characteristics have a greater impact on runoff depth and soil loss rate than crop coverage. Chen et al. (2022) evaluated the impact of slope on runoff and sediment yield based on simulated rainfall methods and terrain models, revealing that slope gradient has a significant effect on both runoff and sediment yield. Therefore, rainfall and slope are two key factors influencing the soil erosion process in purple soil distribution areas. Based on a study of microtopographic dynamics in response to erosion processes on cultivated slopes in China’s Shaanxi Loess Region, Rao et al. (2024) revealed critical findings: Erosion and deposition predominantly occurred in the middle-lower slope segments, with 70% of the slope surface exhibiting elevation fluctuations below 10 mm, while topographic alterations reached 25 mm in remaining areas. Investigations on purple soil slopes demonstrated that soil profile thickness significantly modulates hydrological processes. The soil’s elevated clay fraction and permeability, combined with effective crop canopy coverage during rainy seasons, synergistically suppressed surface runoff generation (Liu et al., 2024). Notably, vegetation systems exert dual mechanisms in soil-water conservation: Canopy architecture enhances rainfall interception and dissipates raindrop kinetic energy, while root networks optimize soil porosity (particularly non-capillary pore development), thereby improving infiltration capacity, attenuating flow intensity, and intercepting sediment transport (Zhang et al., 2025).
For a long time, scholars have studied the mechanisms of runoff and sediment yield on purple soil slopes by adopting methods such as field monitoring, laboratory experiments, or a combination of both (Wang et al., 2024). Ma et al. (2017) analyzed the effects of different rain types on runoff and sediment yield on sloping farmland with different gradients, and the results showed that short-duration, high-intensity rainfall is the main type responsible for soil erosion. Sun et al. (2018) analyzed the impact of different rainfall intensities on runoff and sediment yield on purple soil slopes, pointing out that rainfall intensity and slope runoff were significantly positively correlated. Han et al. (2021) assessed the impact of slope gradient and rainfall intensity on runoff and sediment yield, and the results showed that, under the same rainfall intensity, the reduction in runoff decreases as slope increases, while soil erosion rates increase with steeper slopes.
Rainfall intensity and slope are key factors influencing soil erosion on hillslopes. The characteristics of rainfall, variations in slope, and their interactions play a decisive role in runoff, erosion, and sediment transport processes. While previous studies have explored the individual effects of rainfall intensity and slope on soil erosion, most have not thoroughly examined the complex interactions between rainfall type and slope, particularly under different rainfall types, where the impact of slope on runoff and sediment yield remains unclear. Furthermore, machine learning algorithms have been proven to be highly effective in spatial modeling analysis (Ahmed et al., 2024), yet their application in assessing the impact of soil erosion factors on soil erosion remains scarce. As such, existing research has yet to provide an effective framework for uncovering the specific mechanisms of the interaction between rainfall and slope in hillslope soil erosion, limiting our comprehensive understanding of the erosion process. At the same time, although machine learning methods can offer high prediction accuracy, especially in “black-box” systems, they lack transparent explanations of the model outcomes, making it difficult for researchers to understand the contribution of each predictor variable to the model output. Explaining model results is crucial for enhancing the model’s credibility and applicability (Abdollahi et al., 2024).
To fill this research gap, this study employs machine learning methods, combining the K-means clustering algorithm for rainfall type classification and the Random Forest (RF) algorithm to assess the effects of rainfall and slope on hillslope runoff and sediment yield. We propose that machine learning-based analytical methods can effectively reveal the interactions between rainfall type and slope, providing more precise scientific support for soil erosion control in purple soil hilly areas. This study aims to provide scientific data to support soil erosion control under different rainfall types and slope conditions, ultimately offering more targeted management measures for regional soil conservation.
2 MATERIALS AND METHODS
2.1 Research area
The Wanan small watershed is located in Wanan Village, Yunxi Township, Yanting County, Sichuan Province (Figure 1A), with a total area of about 12.36 km2, situated in the fourth tributary area of the Jialing River in the central Sichuan hilly region (Liu et al., 2022). The region has a mid-subtropical humid monsoon climate (Li et al., 2020), with an average annual temperature of 17.3°C, an annual precipitation of 836 mm, an annual evaporation of 604 mm, and an annual sunshine duration of 1,104 h (Chen et al., 2024). The main soil types include calcaric regosols, cumulic anthrosols, and calcaric fluvisols (Figure 1D). The soil profile typically extends to depths of 20–70 cm, with exceptional cases demonstrating thickness exceeding 100 cm in localized areas. Particle size analysis revealed a granulometric composition dominated by silt (86.91%), followed by clay (11.56%) and sand (1.51%). The pedochemical characteristics showed alkaline conditions (mean pH 8.2), moderate organic matter content (20.12 g kg−1), and favorable water retention properties with field capacity measured at 28.3%. Land use is mainly composed of cropland and forestland (Figure 1C). The primary crops are corn, wheat (Li et al., 2020). The main tree species are alder and cypress, which are gradually succeeded by pure cypress stands (Chen et al., 2024).
[image: Four-panel graphic depicting geographical data. Panel (a) shows a map of China highlighting the Yangtze River basin. Panel (b) illustrates the Yahekou sub-basin with elevation. Panel (c) presents land use categories such as cropland and forests. Panel (d) shows areas prone to soil erosion with calcic thresholds and deposits. Each panel includes a legend and compass rose for orientation.]FIGURE 1 | Map of the geographical location of the study area, (a) The location of the Wan’an small watershed in Sichuan Province, China; (b) The location of Yanting Hydrological Station in the Wan’an small watershed and the elevation map of the Wan’an small watershed; (c) The land cover map of Wan’an small watershed; (d) The soil type map of the Wan’an small watershed.
2.2 Data source
The data for this study were obtained from the Wanan Small Watershed Comprehensive Observation Station in Yanting County, Sichuan Province (Figure 2), covering meteorological and hydrological measurements from 2015 to 2019, including key indicators such as rainfall, runoff, and sediment yield. The Yanting Station established runoff plots with different slope gradients of 6.5°, 10°, 15°, 20°, and 25°. All runoff plots used a crop rotation system of winter wheat and summer maize to simulate local agricultural practices. In terms of cultivation management, sowing and fertilization followed traditional local practices, and no additional irrigation or fertilization was applied during the crop sowing period. Each runoff plot consists of three subplots, each with an area of 20 m × 5 m. To ensure the hydrological independence of the runoff systems, the plots are enclosed by concrete embankments to prevent lateral leakage. Additionally, in accordance with the structural characteristics of purple soil, a 60 cm thick concrete layer is poured at the lower end of the soil profile to simulate an impermeable interface between the soil and underlying rock. The backfilled soil follows the natural stratification of the original soil profile. At the base of each subplot, a collection trough is installed, and runoff from the trough is directed through a drainage pipe into a connected runoff pool for the collection of both runoff and sediment. The outlets and collection pools are kept fully independent to maintain hydrological independence. Furthermore, the plots are designed with varying slopes and soil types to simulate the spatial variability of soil and terrain in real-world conditions, enabling an in-depth investigation of the effects of these factors on slope runoff and erosion. The soil type, soil depth, farming practices, and fertilization methods were generally consistent across all runoff plots (Table 1). In total, 43 rainfall events with precipitation, runoff, and sediment during 2015–2019 were recorded.
[image: A lush field with vibrant green crops is sectioned by a narrow path. A mountain and forested area are visible in the background under a cloudy sky. A wooden sign stands near the path, partially visible.]FIGURE 2 | Runoff plot, in which wheat is planted.
TABLE 1 | 2015–2019 overview of runoff plot.
[image: Table displaying details of 15 plots, categorized by plot number, slope in degrees, slope length in meters, slope width in meters, soil type, soil thickness in meters, soil conservation measure, crops, and plant density per hectare. All plots have slopes ranging from 6.5 to 25 degrees, a slope length of 20 meters, slope width of 5 meters, purple soil of 50 meters thickness, and use crop rotation. Crops are wheat with 22,770 plants per hectare and corn with 500 plants per hectare.]2.3 Methods
2.3.1 Clustering algorithm
The K-means clustering algorithm is a hard clustering algorithm under unsupervised learning (Mondal et al., 2016), which measures data object similarity using Euclidean distance, assuming that the smaller the distance, the greater the similarity (Guan et al., 2024). Before clustering, the number of clusters k is pre-set, and k initial cluster objects are then randomly selected from the dataset, with each representing the mean or center of a cluster. The remaining objects are then calculated based on their distances from all cluster centers and assigned to the nearest cluster, after which the mean of all clusters is recalculated as the new cluster center. This process is repeated until the cluster centers no longer change. The sum of squared errors is as follows (Guan et al., 2024):
[image: Mathematical formula representing the sum of squared distances to cluster centers: \( E = \sum_{i=1}^{k} \sum_{x \in C_i} \| x - \bar{x_i} \|^2 \).]
Here, E represents the sum of squared errors within the cluster, and [image: The image contains the mathematical notation for a vector \(\vec{x}_i\), with a subscript "i" and an overline indicating it is a vector representation.] represents the mean value of the cluster [image: Please upload the image or provide a URL so I can generate the alternate text for you.]. The clustering result should ensure that the data objects within the same cluster are as close as possible, while the data objects in different clusters are as distant as possible. This study used the R language for data analysis and applied unsupervised machine learning clustering algorithms to perform clustering analysis on 43 rainfall events.
2.3.2 Mann-Kendall rank order correlation trend test
H.B. Mann and M.G. Kendall introduced the Mann-Kendall test, commonly referred to as the M-K test (Mann, 1945; Kendall, 1948). Due to its robustness in handling extreme values, the Mann-Kendall test is widely adopted in hydrological studies (Chen and Grasby, 2009; Liu et al., 2021). In the MK test, the statistical variable S is:
[image: Mathematical equation showing S equals the double summation of the sign function of x subscript j minus x subscript k over j equals k plus one to n, k equals one to n minus one, labeled as equation two.]
where [image: It appears there was a misunderstanding; no image is provided. Please upload the image or share a link to it, and I will help create the alt text.] and [image: It seems there is no image provided. Please upload the image or provide a URL, and I will create the alt text for you.] are the values of the tested factor in years k and j, respectively; n is the year of the study series.
When n ≥ 10, the statistical variable S follows a normal distribution with variance Var(S):
[image: Mathematical formula: Variance of \( s \) is expressed as \( \text{Var}(s) = n(n - 1)(2n + 5)/18 \).]
The standardized statistic Z is calculated by the following equation:
[image: Equation for variable Z is defined piecewise as follows: For S greater than zero, Z equals fraction of S minus one over the square root of Var(S). For S equal to zero, Z equals zero. For S less than zero, Z equals fraction of S plus one over the square root of Var(S). Equation referenced as number four.]
If the value of Z is greater than 0, the time series shows an upward trend; if the value of Z is less than 0, the time series shows a downward trend. Meanwhile, the significance of the upward or downward trend is categorized into three categories according to the ab-solute value of the statistic Z value: when |Z| > 1.65, i.e., P < 0.05; when |Z| > 1.96, i.e., P < 0.01; and when |Z| > 2.58, i.e., P < 0.001.
2.3.3 Random forest algorithm
Random Forest is an ensemble learning method that improves model accuracy and robustness by constructing multiple decision trees (Breiman, 2001). Each tree is generated using the Bootstrap Sampling method, which involves randomly selecting samples from the original dataset with replacement (Li et al., 2024). This means that each tree is trained on a different sub-set of samples, reducing the risk of model overfitting. During training, Random Forest us-es the Bootstrap Sampling method to generate training sets for each decision tree, and the unselected samples are referred to as Out Of Bag (OOB) data (Nie et al., 2022). OOB data is used to assess model error, providing an unbiased estimate of the model’s generalization ability.
Random Forest provides a method to evaluate feature importance. By calculating the contribution of each feature to the classification performance of the decision tree ensemble, its importance in the model is quantified. The Feature Importance Measures (FIM) represent the contribution of each feature, and the Out Of Bag (OOB) Error Rate is used as an evaluation metric to more accurately reflect the feature’s impact on the overall model (Zhao et al., 2022). The indicator function is defined as (Zhao et al., 2022):
[image: Piecewise function \( I(x, y) \) is defined as equal to one if \( x \) equals \( y \), and zero if \( x \) does not equal \( y \). Labeled equation (5).]
The [image: Mathematical expression showing "FIM" with superscript "OOB" and subscript "km".] of the mth feature [image: Please upload the image or provide a URL so I can create the alt text for you.] in the k-th tree is represented as (Zhao et al., 2022):
[image: The formula represents FIM with an out-of-bag (OOB) notation, showing the expression as the sum from \( n = 1 \) to \( N_k \) of an indicator function \( I(Y_p, Y_p^k) \) divided by \( n_0^k \), subtracted by the sum from \( n = 1 \) to \( N_k \) of another indicator function \( I(Y_p, Y_{p_{\neg m}}^k) \) also divided by \( n_0^k \). Equation number six is indicated.]
Here, [image: Mathematical expression showing the symbol "n" with a subscript "0" and a superscript "k".] is the number of observation samples for the k-th tree; [image: Please upload the image or provide a URL, and I will create the alt text for you.] is the true classification label for the p-th sample. [image: Mathematical expression displaying uppercase Y with subscripts p and superscript k.] is the predicted classification result for the p-th observation of the OOB data by the k-th tree before the random permutation of [image: It seems there was an issue with your request. Please upload the image or provide a URL, and I would be happy to help create the alt text for you.]. [image: Mathematical expression showing \( Y^k_{p, \pi_m} \).] is the classification result of the k-th decision tree for the p-th sample after the random permutation of [image: It seems there is an issue with the image upload or link. Please try to upload the image again, or provide a link or context for the image you need described.], during which the k-th decision tree needs to be retrained after permuting [image: It seems there was a mistake in your request. Please upload the image or provide a URL so I can assist you better.]. When feature [image: Please upload the image or provide a URL, so I can help create alt text for it. If you want, you can also add a caption for additional context.] does not appear in the k-th tree, [image: The formula shows "FIM" with subscript "km" and superscript "OOB" in parentheses.] = 0. The importance score of feature [image: Certainly! However, it seems you've tried to insert an image directly in the text, which did not upload properly. Please use the image upload feature, and if you would like, include any specific context or caption for better assistance.] in the entire random forest is defined as (Zhao et al., 2022):
[image: Equation showing the out-of-bag feature importance measure: FIM superscript OOB subscript km equals the summation from k equals one of FIM superscript OOB subscript km, divided by K times sigma. Labeled as equation seven.]
Here, [image: Please upload the image or provide a URL, and I will create the alternate text for it.] represents the number of decision trees in the random forest; [image: Please upload the image or provide a URL, and I will generate the alt text for you.] is the standard deviation of the [image: Mathematical notation showing "FIM subscript km superscript OOB."]. The importance score [image: Mathematical notation displaying the term "FIM" with superscript "OOB" and subscript "km".] of feature [image: It seems there is no image provided. Please upload an image or provide a URL for me to create the alt text.] represents its contribution to classification accuracy. The feature importance score is evaluated by calculating the mean and standard deviation of the Out Of Bag (OOB) error rate, which reflects each feature’s contribution to model performance. The number of decision trees is dynamically adjusted based on the training results, with the number of split nodes set to 3. The calculations were conducted using R programming.
2.3.4 Model performance evaluation
To assess the predictive capability of the model, this study employed various evaluation metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency (NSE). Among them, smaller MAE and RMSE values indicate lower prediction errors and higher accuracy, while a NSE value closer to 1 suggests a higher degree of agreement between the predicted and observed values, reflecting a stronger predictive ability of the model. The formulas are as follows:
[image: Equation showing Mean Absolute Error (MAE): MAE equals one over n times the sum from i equals one to n of the absolute difference between y sub o sub i and y sub a sub i.]
[image: Equation for the Nash-Sutcliffe Efficiency (NSE) is shown. NSE equals one minus the ratio of the sum of squared differences between observed values \(y_{o,i}\) and simulated values \(y_{s,i}\), to the sum of squared differences between observed values \(y_{o,i}\) and the mean of observed values \(\bar{y}_o\).]
[image: Root Mean Square Error (RMSE) formula is displayed as the square root of the sum of squared differences between observed values (y_sub_o_i) and predicted values (y_sub_x_i), divided by the number of observations (n).]
where yo,i and ys,i represent the observed and predicted values, respectively; n represents the total number of samples; and i indicates the i sample, ranging from 1 to n.
2.3.5 Statistical analysis
In this study, the Random Forest (RF) algorithm was implemented using the random Forest package in the R software environment. A regression tree-based RF approach was chosen, as the objective was to predict continuous variables, specifically runoff depth and sediment yield, rather than to address classification problems. In the Random Forest model, each decision tree independently generates a prediction, and the final result is obtained by averaging the predictions of all trees. This ensemble technique effectively reduces the risk of overfitting and enhances the overall predictive accuracy of the model. To prevent overfitting or underfitting, 5-fold cross-validation was used in this study to evaluate the model’s performance. Graphical outputs were generated using Origin 2021.
3 RESULTS
3.1 Determination and classification of erosive rainfall
3.1.1 Determination of erosive rainfall
A total of 43 erosive rainfall events (>12.7 mm) were selected during the 2015–2019 study period (Yang et al., 2025). Erosive rainfall mainly occurred from May to September each year (Figure 3), with average monthly occurrences of 1.5, 2.5, 2.75, 2, and 1.6 events, respectively. The average annual erosive rainfall was 493 mm, accounting for 57.57% of the average annual total rainfall of 856 mm. Erosive rainfall in the study area was mainly concentrated in the rainy season.
[image: Bar chart comparing monthly average rainfall and erosion rainfall from May to September. The chart shows rainfall in millimeters and erosion percentages. Each month features two bars: blue for average rainfall and orange for erosion rainfall, with percentages labeled on top.]FIGURE 3 | Statistics of erosive rainfall in months with frequent rainfall from 2015 to 2019.
3.1.2 Classification and characteristics of erosive rainfall types
The K-means clustering algorithm was used to perform cluster analysis on 43 erosive rainfall events, and the results were evaluated using a discriminant clustering method. In the analysis, rainfall amount (P), rainfall duration (D), and maximum 30-min rainfall intensity (I30) were selected as rainfall characteristic indicators. The study results categorized these 43 rainfall events into three rainfall types.
The scatter plots of the clustering functions for the three rainfall types are concentrated in different regions (Figure 4). The significance test value of the clustering function for Type B rainfall is P < 0.05, indicating that the group centroids of this type show significant differences, with clear clustering boundaries. Type B and Type C rainfall show greater dispersion along function 2 and function 1, while Type A rainfall is more concentrated. Type C rainfall shows the most significant variation in rainfall characteristics, while Type B has strong independent characteristics, and Type A is relatively stable in its rainfall features.
[image: Scatter plot illustrating three clusters labeled A, B, and C, represented by green, blue, and red circles, respectively. Clusters are plotted along two axes labeled Function 1 and Function 2. Each cluster contains a distinct centroid marked with filled squares.]FIGURE 4 | Scatter plot of erosive rainfall discrimination classification.
Table 2 shows the clustering results of the 43 rainfall events. The results show that the distribution of rainfall types is as follows: Type A accounts for 8.84%, Type B accounts for 68.7% (the main type), and Type C accounts for 37.2%. Type A rainfall has the longest average duration (46.29 h), the highest average rainfall amount (94.38 mm), and the lowest average maximum 30-min rainfall intensity (19.48 mm/h). Its individual event erosion intensity (S) ranges from 0.092 to 0.882 t/hm2, and the runoff depth (H) ranges from 1.99 to 21.61 mm. Type B rainfall has the shortest average duration (0.65 h), the lowest average rainfall amount (37.94 mm), and the highest average maximum 30-min rainfall intensity (39.01 mm/h). Its individual event erosion intensity (S) ranges from 0.0095 to 0.361 t/hm2, and the runoff depth (H) ranges from 0.782 to 4.846 mm. The Type C rainfall pattern exhibited intermediate characteristics between Type A and Type B, with mean values of rainfall duration (26.28 h), maximum 30-min intensity (24.78 mm/h), and total precipitation (63.08 mm) falling between those of the two established rainfall types.
TABLE 2 | Rainfall characteristics of different types of rain.
[image: Table showing rainfall characteristics. Types A, B, and C have 6, 21, and 16 events respectively. Columns display mean, 25th (V25), and 75th (V75) quantiles for various indexes: I30, P, D, Im, S, and H. Notes clarify quantile values and index meanings.]3.2 The relationship between rainfall characteristic indicators and runoff depth, erosion and sediment yield
3.2.1 Importance analysis of rainfall factors on runoff depth and erosion sediment yield
The clustering results identified three rainfall patterns: A, B, and C. Combined with the data from the 15 selected runoff plots, a total of 645 data points were obtained. This data will be consolidated according to different slopes (6.5°, 10°, 15°, 20°, and 25°) and used as input for the Random Forest model, with 75% randomly selected as the training set and 25% as the testing set.
We predicted runoff depth and sediment yield under different slope conditions and assessed the model’s performance accordingly (Table 3). At a 6.5° slope, the model’s prediction of runoff depth was less than ideal, with a Nash-Sutcliffe Efficiency (NSE) of only 0.58. However, under other slope conditions, the model demonstrated high accuracy in predicting both runoff depth and sediment yield, with NSE values exceeding 0.75.
TABLE 3 | Prediction evaluation of random forest model for hillslope runoff depth and sediment yield under different rainfall patterns.
[image: Table comparing runoff depth and sediment yield as predictor variables across different slope classifications (6.5°, 10°, 15°, 20°, 25°) with metrics: MAE, NSE, RMSE. Values vary, e.g., runoff depth MAE at 6.5° is 3.69, and sediment yield is 0.11.]Based on the model we developed, the feature importance scores from the Random Forest model were used in this study to identify the contributions of various rainfall factors and slope conditions to runoff depth and sediment yield. Rainfall characteristics are the main driving factors of runoff and erosion (Dos Santos et al., 2017). In this study, five rainfall factors were selected: rainfall duration (D), rainfall amount (P), maximum 30-min rainfall intensity (I30), average rainfall intensity (Im), and rainfall erosivity (F). Additionally, two compound rainfall factors were considered: the product of rainfall amount and average rainfall intensity (PIm), and the product of rainfall amount and maximum 30-min rainfall intensity (PI30), to comprehensively analyze the impact of rainfall on soil erosion. The importance of each factor on runoff depth (H) and sediment yield (S) was evaluated using the Random Forest (RF) algorithm (Zhu et al., 2020). For runoff generation, the number of decision trees for each slope was 380, 200, 400, 250, and 600; for sediment production, the number of decision trees for each slope was 500, 800, 400, 460, and 500. The number of split nodes for all models was set to 3.
As shown in Figure 5, PI30 has the highest importance for runoff generation, reaching a maximum of 40.85% at a slope of 5°, with P accounting for a large proportion, while I30 is less important and D has the lowest impact on runoff generation (2%). P has the greatest impact on sediment yield, reaching 41.87% at a slope of 20°. The importance of Im and I30 for sediment yield is as low as 5% and 3%, respectively, at their lowest. It can be concluded that P is the primary factor affecting runoff and sediment yield on slopes, and Type A rainfall with high rainfall and low intensity has the greatest erosive impact on corn slopes, which is consistent with previous findings.
[image: Heatmap comparing two variables: \(H/\text{mm}\) and \(S/t/\text{hm}^2\) against slope (0-25). Values range from 0% to 42%, indicated by varying shades of red. Darker shades represent higher values.]FIGURE 5 | Rainfall factor to H, S importance score.
3.2.2 The influence of rainfall on slope runoff depth and erosion sediment yield
The Random Forest calculation results show that P has a significant influence on H and S. Under different rainfall types, the effect of P on H and S shows a linear increasing trend (Figure 6). Linear fitting results indicate that the slope of H with increasing P is 0.23, 0.22, and 0.33 for Type A, B, and C rainfalls, respectively, while the slope of S with increasing P is 0.08, 0.04, and 0.1, respectively. The results indicate that the erosive effect of rainfall on purple soil slopes varies across the three rainfall types. Based on the overall trend and fitting results, the order is Type C > Type A > Type B.
[image: Two scatter plots comparing rain type data. (a) Shows Hr(mm) vs. P(mm) with rain types A (dotted), B (red dashed), and C (blue solid), depicting linear regression equations and high R-squared values, indicating strong correlations. (b) Displays x/G1(hpa) vs. P(mm) with similar rain types, also showing strong correlations through regression equations. Data points are color-coded according to rain type.]FIGURE 6 | The relationship between P and H and S, (a) The impact of rainfall on slope runoff for different types of rainfall; (b) The effect of rainfall of different rainfall types on slope erosion and sediment yield.
3.2.3 The impact of maximum 30 min rainfall intensity on slope runoff depth and erosion sediment yield
As shown in Figure 7, there is a clear correlation between I30 and H, S. As I30 increases, a breakpoint is observed in the relationship for all three rainfall types. Before I30 reaches 17.3 mm/h and 23.4 mm/h, H and S increase slowly with I30, and the slope of the fitted line is close to zero. After I30 exceeds 17.3 mm/h and 23.4 mm/h, H and S increase rapidly, with a noticeable rise in the slope of the fitted line. To further confirm these critical points of I30, the Mann-Kendall test was used to evaluate the significance of the changes in slope. This test is particularly useful for detecting monotonic trends and was applied here to assess whether the slopes of H and S with increasing I30 are significantly different across the three rainfall types. The Mann-Kendall test identified the intersection points for runoff and sediment yield at 17.3 mm/h and 23.4 mm/h, respectively. Furthermore, to evaluate whether the slopes were significantly different, the confidence intervals for the slopes of H and S with increasing I30 for each rainfall type were compared. The slopes of H with increasing I30 for Type A, B, and C rainfall were 1.91, 0.32, and 0.064 mm, respectively, while the slopes of S with increasing I30 were 0.13, 0.036, and 0.004 t/km2, respectively. If the confidence intervals for two slopes did not overlap, it was concluded that the slopes were significantly different. Based on this analysis, the impact of I30 on runoff and sediment yield follows the order: Type A > Type B > Type C.
[image: Two scatter plots compare rain type impact. Plot (a) shows rainfall intensity (H) versus one-hour maximum rainfall (I), with lines for types B and C, and regression equations indicating strong correlations. Plot (b) shows rainfall amount (S) versus the same variable, with similar trends and correlations for the same rain types.]FIGURE 7 | The relationship between I30 and H and S, (a) The effect of maximum 30 minute rainfall intensity on slope runoff depth under different rainfall types; (b) The effect of maximum 30 minute rainfall intensity on slope erosion and sediment yield under different rainfall types.
3.3 The impact of rainfall and slope on runoff and sediment production on slope surfaces
3.3.1 The influence of different rainfall types on slope runoff and sediment yield
Slope has a significant effect on soil erosion on purple soil slopes (Yang et al., 2023). The relation-ship between runoff depth, sediment yield, slope, and rainfall in the study area is shown in Figure 8.
[image: Two bar charts labeled (a) and (b) display data on slopes with types A, B, and C. Chart (a) shows "H Slope" on the y-axis, while chart (b) shows "S Slope". Both charts have varying heights for different bar groups marked as 6.5, 10, 15, 20, and 25 on the x-axis. The legend indicates colors for types.]FIGURE 8 | Characteristics of H and S under different rain patterns and slopes, (a) The influence of different rainfall patterns on slope runoff depth at different slopes; (b) The impact of different rainfall patterns on slope erosion and sediment yield at different slopes.
With changes in slope, the variation pattern of runoff depth on the slopes of runoff plots shows certain differences. Under Type A rainfall, H increases with the slope initially, reaches a peak at a slope of 15°, and then gradually decreases, forming a convex shape. Under Type B rainfall, H peaks at 15°, then decreases, and rises back to the peak at 25°. Based on Figure 9, this occurs because, under low rainfall, the influence of slope and rainfall on runoff generation is similar, causing fluctuations in runoff at 25°. Under the influence of Type C rainfall, the trend of H increasing with slope is similar to that under Type A rainfall, peaking at 15° with an increase of 8.57%, and then gradually decreasing.
[image: Four line graphs labeled (a) to (d), each showing relationships between different variables with varying data points. Graph (a) and (c) depict variable P against specific measurements; Graph (b) and (d) show I<sub>g</sub> against different metrics. Curves are color-coded for different datasets or conditions. Overall trend shows an increase in values as variables rise.]FIGURE 9 | Under different slope changes, (a) The effect of rainfall on slope runoff depth; (b) The effect of maximum 30 minute rainfall intensity on slope runoff depth; (c) The effect of rainfall on slope sediment yield; (d) The effect of maximum 30 minute rainfall intensity on slope sediment yield.
The variation pattern of S with slope differs under each rainfall type, but overall, it shows an initial increase followed by a decrease as the slope increases. Under Type A rainfall, S increases with the slope and reaches a peak at 20°. Under Type B rainfall, S continues to increase with the slope, reaching its maximum at 25°. Under Type C rainfall, the erosion amount peaks at a slope of 15°, with an increase of 37.95%, and then gradually decreases, forming a convex shape.
3.3.2 The influence of slope and important rainfall factors on slope runoff depth and erosion sediment yield
As shown in Figure 9, when rainfall is between 45.1 and 54.2 mm, the impact of rainfall on runoff generation increases significantly, with the maximum growth rate reaching 97.8%, and the influence of slope on runoff also increases simultaneously. When rainfall is between 54.2 and 102 mm, the influence of rainfall begins to decrease, while the influence of slope on runoff increases rapidly and reaches its maximum. At 100–185.8 mm, the effects of both rainfall and slope on runoff generation begin to decrease. When I30 is between 20.95 and 71.62, the impact of I30 and slope on runoff generation is minimal, but beyond this range, the influence increases significantly, with the maximum growth rates reaching 136.52% and 1498.14%, respectively. The larger the I30, the greater the impact of slope on sediment yield.
When rainfall is between 17.4 and 52.7 mm, the impact of rainfall and slope on sediment yield is relatively small. Between 52.7 and 54.2 mm, the impact of slope on sediment yield starts to increase and continues to rise, becoming significant when rainfall reaches 102 mm, and peaking at 185.5 mm. When the I30 value exceeds the critical threshold, the impact of slope on sediment yield is considerable in the range of 17.7–51.4. When I30 reaches 89.5, the effect of slope on sediment yield decreases significantly, while the effect of I30 on sediment yield increases substantially.
4 DISCUSSION
The main goal of this research is to utilize machine learning methods to investigate the effects of different rainfall types and slope conditions on hillslope runoff and sediment yield. By employing techniques such as the K-means clustering algorithm for rainfall classification and the Random Forest algorithm for impact assessment, this study aims to provide a comprehensive analysis of how rainfall characteristics and slope interact to in-fluence soil erosion processes in purple soil hilly areas. This approach not only addresses existing gaps in the literature regarding the complex interactions between these factors but also offers valuable insights for effective soil erosion control and management strategies.
According to this study, Type A rainfall is characterized by low frequency, long duration, high rainfall amount, and low rainfall intensity. Despite the low intensity, its large rainfall amount and extended duration result in higher soil erosion intensity. Type B rainfall, with high frequency, short duration, small rainfall amount, and high intensity, has a moderate erosion effect on soil and should be a priority for soil and water conservation measures. Type C rainfall has a duration and rainfall amount between those of Type A and Type B, and its impact on soil erosion is the smallest. The erosion capacity of these rainfall events is ranked as: Type A > Type B ≥ Type C. This result emphasizes that there are differences in the impact of different types of rainfall on soil erosion. From this perspective, rainfall is an important factor in predicting or indicating the degree of soil erosion in the research area. Other previous studies have also confirmed that rainfall plays a crucial role in the process of soil erosion (Berndtsson and Larson, 1987; Dunne et al., 1991; Fang et al., 2012).
It is noteworthy that the sediment yield caused by B rainfall type is at a moderate level, but as the main rainfall type in the study area, characterized by short-duration heavy rainfall, its impact on soil erosion cannot be underestimated. Previous studies have shown that rainfall intensity is closely related to soil erosion. Cao et al. (Cao et al., 2020) have pointed out that rainfall intensity has a significant impact on surface soil erosion. During the interaction process between rainfall and the soil surface, high-intensity rainfall facilitates the formation of surface crusting and sealing, which can reduce infiltration and increase surface runoff (Vandervaere et al., 1997). The development of surface sealing promotes soil erosion because it increases sediment transport by accelerating surface flow (Assouline, 2004). The research results differ from those of the indoor simulated rainfall experiments (Geng et al., 2010). The study found that the canopy of corn plants can effectively buffer the kinetic energy of rainfall, reducing its ability to convert into erosive energy. As a result, rainfall mainly turns into stemflow and throughfall, which have less erosive energy, thereby mitigating soil erosion (Shou et al., 2016). However, the tall stalks of corn plants also have negative effects. Raindrops regain erosive energy at the edges and tips of corn leaves, intensifying splash erosion under the canopy and in-creasing the turbulence of slope runoff (Ma et al., 2015).
The influence of rainfall factors varies across plots with different slopes. For example, as the slope increases from 20° to 25°, the influence of P on runoff and sediment yield de-creases to 28.47% and 21.32%, while PI30 increases to 39.23% and 29.48%. The main rea-son is that the rainfall-receiving area of the 25° slope decreases, reducing the amount of rainfall on the slope, which causes the influence of I30 and Im on runoff to increase rap-idly. This result is consistent with the study by Chen et al. (2022), which found that under fixed conditions of terrain height and rainfall intensity, the total amount of slope runoff continuously decreases with an increase in slope gradient.
Overall, rainfall amount and compound rainfall factors have a significant impact on runoff and sediment yield, consistent with the statistical analysis results of other scholars on the relationship between rainfall characteristics and sediment yield (Foster et al., 1982; Zhang et al., 2021). As the slope increases, the importance of I30, average rainfall intensity, and duration decreases, but their importance gradually increases again beyond 20°. In general, most factors show significant changes in importance around a slope of 20°, indicating the presence of a critical slope at approximately 20° (Hu and Jin, 1999).
The importance of slope for runoff generation under each rainfall type is ranked as follows: Type B > Type C > Type A. For sediment yield, the effect of slope change is ranked as Type C > Type A > Type B across the three rainfall types. Under different rainfall types, H reaches its peak at a slope of 15°, while sediment yield peaks between 20° and 25°, de-pending on the rainfall type. This may be related to the critical slope in the erosion process (Jin, 1995). Figure 8 confirms that slope significantly influences runoff generation across the three rainfall types, and the peak runoff depth at corresponding slopes further validates the existence of a critical slope effect. The influence of slope on runoff generation first in-creases and then decreases with increasing rainfall, while it increases with I30 after reaching the critical values. The impact of slope on sediment yield also shows a trend of first increasing and then decreasing with rising I30, which is similar to the conclusion of Geng et al. (2010). The influence gradually increases as rainfall increases.
Although this study effectively analyzes the impact of rainfall and slope on surface runoff and sediment transport, we also recognize that erosive rainfall and sediment transport are complex processes influenced by multiple interacting factors, including soil properties, land use, vegetation cover, and other climatic variables. Therefore, this study simplifies erosive rainfall into three types (Type A, Type B, and Type C rainfall), without considering the potential interactions between these factors or the broader climatic context. For example, soil permeability, soil moisture content, and land use patterns can all significantly affect surface runoff and sediment processes, yet these factors were not individually considered in this study. Although we effectively classified rainfall types using the K-means clustering algorithm, the simplicity of this method may not have captured the complex nonlinear relationships between rainfall variables, especially the interactions between rainfall amount, duration, and intensity. Thus, the K-means clustering method may, in some cases, limit the accuracy of rainfall type classification. To improve classification accuracy, future research could consider using more advanced clustering methods, such as spectral clustering or deep learning models, which are better equipped to capture nonlinear relationships and patterns within rainfall data. Finally, this study primarily focuses on surface runoff and sediment transport processes in the purple soil hilly region. The applicability of the results and conclusions may be limited in other geographical are-as or under different soil types. Therefore, we recommend that future work incorporate field data from different regions to conduct broader validation and expansion studies, providing more comprehensive soil and water conservation management recommendations.
5 CONCLUSION

	1) In the southwestern purple soil hilly region, erosive rainfall can be classified into three types: Type A (long duration, large rainfall, moderate intensity), Type B (short duration, high intensity, small rainfall), and Type C (moderate duration and rainfall, moderate intensity). Type B rainfall occurs frequently and with high intensity, contributing the most to slope erosion, while Type A rainfall significantly impacts slope erosion, despite its lower frequency. Type C rainfall has a relatively small effect on slope erosion.
	2) Rainfall amount is the primary factor affecting slope water and sediment dis-charge, and the composite rainfall factor PI30 plays the most important role in runoff and sediment production. Under different rainfall types, the influence of rainfall amount on runoff depth and sediment discharge is as follows: Type C > Type A > Type B. With in-creasing slope, the impact of rainfall characteristics on water and sediment shows an initial increase followed by a decrease.
	3) Slope significantly affects the water and sediment discharge of purple soil slopes. Under different rainfall types, the impact of slope on runoff and sediment varies, but generally shows an increasing-then-decreasing trend. The influence of slope on water and sediment is strongest under Type B rainfall, while the impact on sediment discharge is most significant under Type C rainfall.

Developing a model to explain the complexity and abrupt variations in observed trends remains an important challenge, but the current research has provided substantial insights into the relationship between rainfall characteristics and slope response. While numerous unanswered questions persist in this field, the findings significantly advance our understanding of these complex interactions.
The significance of this study lies in revealing the impact of rainfall and slope on slope water and sediment processes, particularly providing scientific support for soil and water conservation management and ecological protection. The findings can offer decision-making assistance to urban planners, land use managers, and hydrological designers, helping them develop more effective soil and water conservation measures, reduce soil erosion, and promote regional sustainable development.
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Soil erosion has led to land degradation, which affects the environmental and economic sustainability of agricultural land systems. This study aims to assess the annual soil loss potential to prioritize land risk areas in the Sala watershed for conservation planning. Soil sampling and topographic data were the primary sources of data. The secondary sources were satellite imagery and meteorological data. The Revised Universal Soil Loss Equation (RUSLE) model, integrated with GIS and remote sensing (RS) techniques, was used to formulate optimal soil erosion management plans and assess erosion hotspot areas in the study area. The results showed that the distribution of annual soil loss ranged from 1 to 1,875 t/ha/year, and the mean annual soil loss was 312.6 t/ha/year. The findings also revealed that the watershed was classified as having low soil erosion rates (1–162 t ha/year) (31.91%), moderate soil erosion rates (162–405 t ha/year) (39.67%), high soil erosion rates (405–805 t/ha/year) (20.78%), and very high soil erosion rates (800–1875 t/ha/year) (7.64%). 28.42% of the watershed was classified as having high to very high erosion severity, primarily found on steeper slopes and in areas with inappropriate land use practices. In the Sala watershed, soil and water conservation measures have important implications for improving soil fertility and productivity. Thus, effective land management planning should be implemented to achieve sustainable agricultural land use in the study watershed area.
Keywords: soil erosion, RUSLE, land risk, prioritization, Sala watershed

1 INTRODUCTION
Soil erosion is currently a significant environmental and economic concern worldwide (Benavidez et al., 2018; Chuenchum et al., 2019; Pimentel and Burgess, 2013; Ozsahin et al., 2018), endangering freshwater, land, and marine environments (Borrelli et al., 2020). It is one of the environmental problems that hinder the implementation of the first (No poverty) and second (Zero hunger) Sustainable Development Goals by the year 2030 due to declining soil fertility (Moisa et al., 2022). Globally, one-third of agricultural soils are being affected by soil degradation (Hurni and Meyer, 2002), of which water and wind erosion account for 56% and 28% of the observed damage, respectively (Blanco-Canqui and Lal, 2008; Gelagay and Minale, 2016). Assessment of tectonic evolution and fluvial system anomalies in water streams and river basins is crucial for understanding the landscape changes (Ghosh and Kundu, 2025). Soil erosion negatively impacts agricultural production, water resource quality, and the ecosystem’s sustainability (Fayas et al., 2019). The erosion process is influenced by numerous factors, primarily anthropogenic, such as urbanization and mining, and natural causes, such as flash floods and rainstorms (Koirala et al., 2019; Hategekimana et al., 2020). Natural and man-made factors have the potential to accelerate soil erosion (Alexandridis et al., 2015), but it is clear that human activity is the primary cause of soil erosion, accounting for 60%–80% of all soil erosion and degradation (McNeill, 2001). In addition to soil degradation, other difficulties caused by soil erosion include removal of soil nutrients, a decline of crop yields, reduction of soil fertility, and contamination of surface and groundwater supplies by fertilizer nutrients, sediment, and insecticide residues (Hategekimana et al., 2020).
Soil erosion not only decreases soil quality in the detachment area (on-site effect) but also causes significant sediment-related problems in the sedimentation area (off-site effect) (Liu et al., 2020; Mekonnen et al., 2015), with an assessed 15 to 30 billion tons of yearly sediment taken by the world’s water erosion to reservoirs and lakes (Thomas et al., 2018b). A recent estimation of land degradation due to soil erosion costs shows that the global economic impact is highly uncertain, from 40 to 490 billion US$, and varies from country to country (Nkonya et al., 2016), with an estimated 24 billion tons of highly productive soil being lost from croplands worldwide (Kassaye and Abay, 2019). In agricultural areas, soil erosion is 10–100 times faster than soil formation (Amundson et al., 2015) and affects 10 million hectares of arable land each year (Gachene et al., 2020). Soil loss resulting from erosion is a universal issue that affects agricultural production and natural resources (Ighodaro et al., 2013; Koirala et al., 2019). The acceleration of soil erosion occurs due to human activities such as intensive agriculture, poor land management, deforestation, and cultivation on steep slopes (Molla, 2017; Alemu and Melesse, 2020; Jayasekara and Kadupitiya, 2018). Additionally, soil erosion is proportional to population growth, overuse of natural resources, degraded land, and poor water management plans (Reichmann et al., 2013; Ozsahin et al., 2018; Deb et al., 2019). Food insecurity, poverty, and unsustainability of land productivity are the results of the factors of soil erosion (Adimassu et al., 2014; Yesuph and Dagnew, 2019).
A recent application to the African continent estimates the annual loss of crop yield to be about 280 million tonnes (Wolka et al., 2018). Over 40% of the extra food required to meet the growing food demands by 2025 will have to come from intensified rain-fed farming in the sub-Saharan Africa region (Bekele, 2021). Especially in East Africa, where Ethiopia shows the highest erosion rates (Gessesse et al., 2015; Lanckriet et al., 2014). The annual rate of soil loss (over 1.5 billion tons) in the nation is much greater than the rate of soil formation on an annual basis (1.5 million tons) (Tamene et al., 2006) with an associated cost of close to one billion Ethiopian birrs each year (Alemu, 2005; Bekele et al., 2019). Sheet and rill erosion mainly affected the highlands of Ethiopia (Gashaw et al., 2019; Yesuph and Dagnew, 2019), with annual soil losses of 200–300 t/ha/year (Gelagay and Minale, 2016). Soil erosion degrades agricultural land by removing nutrient-rich topsoil, increasing runoff from increasingly impermeable subsoils, and reducing the amount of water available to plants (Ettazarini and Mustapha, 2017; Ganasri and Ramesh, 2016). 50% of the country’s agricultural area and 88% of its population remain negatively affected by soil loss and resulting sedimentation (Sonneveld et al., 2011). The annual productive capacity in Ethiopia’s highlands is decreasing by 2.2% (Tesfahunegn et al., 2014). This threatens agricultural production and productivity (Mihara et al., 2005), ecosystem degradation, increased sedimentation, and increased flood risk (Chuenchum et al., 2019; Pham et al., 2018). Additionally, soil erosion continues to cost the country $1 billion annually and affects 50% of the country’s arable land and 88% of its population (Bekele et al., 2019). Because smallholder farmers in the area primarily rely on the land for their livelihood, the resultant severe soil degradation in Ethiopia’s highlands has threatened both current and future generations’ food security by resulting in lower yields or higher input costs (Teferi et al., 2016). The sustainability of Ethiopian agricultural production is seriously threatened by soil erosion, depletion of organic matter, and soil nutrient removal (Haile, 2012; Elias, 2017; Gelagay and Minale, 2016).
The estimation of human and natural factors is crucial to grasp the individual impact of the factors and establish the decisive watershed for proper management and conservation measures to be planned to mitigate erosion (Ganasri and Ramesh, 2016). Productive land and adequate water availability are crucial for sustainable development and increased food production in those countries whose livelihoods are based on agriculture. Due to this, numerous methods are available for quantifying soil erosion to sustain land and water productivity. Scientists have developed different models, ranging from physical-based models to empirical models, to study soil erosion at various spatiotemporal scales (Karydas et al., 2014). The RUSLE model is developed as an empirical model representing the main factors controlling soil erosion processes, namely climate (rainfall erosivity), soil characteristics (soil erodibility), topography (slope length and slope steepness), cropping and cover management, and conservation practice factors (Abdo HG., 2022; Okenmuo and Ewemoje, 2023; Richi, 2025; Renard, 1997). However, the RUSLE model is the most frequently applied model for predicting the long-term average annual soil loss rate due to raindrop, sheet, and rill erosion, but not from gully and channel erosion (Koirala et al., 2019; Molla and Sisheber, 2017; Renard, 1997; Taye et al., 2018).
Numerous studies have been conducted in Ethiopia that have quantified the potential for soil erosion and identified areas at risk of erosion at various watershed levels by integrating the revised universal soil loss equation (RUSLE) with geographic information systems (GIS) and remote sensing techniques (Belayneh et al., 2019; Gashaw et al., 2018; Moisa et al., 2021; Negash et al., 2021; Mohammed et al., 2022; Tessema et al., 2020; Haregeweyn et al., 2017; Hurni et al., 2015), which is effective in quantifying the magnitude of the issue. As a result, soil loss values in Ethiopia vary significantly due to differences in measurement scales, applied methods, variations in climate, land use, and soil types. Due to the severity and consequences of soil erosion, research was conducted on different watersheds in Ethiopia; however, it did not include the current study area. Thus, no study has been done on the quantification of soil loss potential prioritization risk analysis in the study of the Sala watershed area. A prerequisite of soil conservation is the reversal of land desertion and the enhancement of the agricultural production, the provision of food sanctuary, and sustainability, thereby requiring identification of critical erosion-prone areas. Therefore, the spatial assessment of soil erosion risks is a fundamental approach to natural resource management and planning in river basins (Ansari et al., 2024).
In the Sala watershed, rill and sheet erosion resulting from unsustainable land use and land management practices, steep slopes, rugged topography, climate change (erosive rainfall), and other anthropogenic activities are the main causal factors. The severity and impacts of soil erosion are leading to the formation of gully erosion, siltation, and sedimentation, which are intensively increasing and causing loss of agricultural productivity due to the depletion of soil fertility and productivity in the current study area. Soil loss carries productive topsoil off-site, leading to decreased soil fertility and crop productivity in the study watershed area. Though soil erosion leading to soil loss is a natural phenomenon, intricately dependent on natural factors such as rainfall intensity, duration and amount, slope gradients and length, soil texture, soil organic matter and soil hydraulic properties, anthropogenic factors such as tillage and soil covers could control it in managed cropping systems (Ochoa-Tocachi et al., 2016; Zhang et al., 2017).
Assessment and mapping of soil erosion rates in a watershed is vital for the identification of critical hotspot areas for a targeted implementation of appropriate land management and rehabilitation measures (Aneseyee et al., 2020; Ganasri and Ramesh, 2016). It is argued that identifying and prioritizing soil erosion risk-prone areas by using the RUSLE model is essential for implementing appropriate soil and water conservation measures for sustainable land use (Azimi et al., 2019). Accordingly, the RUSLE model was combined with GIS and remote sensing techniques to estimate and prioritize spatial soil erosion risk areas in the study watershed. Hence, the present study aimed to estimate the potential mean annual soil loss for prioritization of land risk areas using the RUSLE model in the Sala watershed of the Ari Zone in South Ethiopia. The results of this assessment represent an important basis for decision-makers in improving the performance of soil erosion protection measures and implementing mitigation strategies to prevent the acceleration of erosion in high and very high-risk areas.
2 MATERIALS AND METHODS
2.1 Study area
The study was conducted in the Sala watershed of North Ari woreda in the Ari Zone, South Ethiopia. The study area is found between 6°7′30° and 6°12′30 N latitude and 36°40′0° and 36°45′0 E longitude. It covers a total area of 7,919.71 ha (ha). An elevation range of 1,391–3,210 m above sea level (Figure 1). The study area is located 585 km south of Addis Ababa. The topography of the study area is characterized by a flat to steep hillside landscape. Most of the study areas are under high mountains with very steep slopes. In the area, Orthic Acrisols (a very deep, well-drained, dark brown clay soil) are the predominant soil type. Average monthly temperatures range from 11°C to 22°C. The mean annual rainfall of the watershed ranges from 753.95–1,552.53 mm per year. The least amount of rainfall occurs during the summer (Bega) season, which is from December to February. The dominant rainy season is the Winter (Kiremt), which runs from June to August. Acacia abyssinica, Cordia africana, Hagenia abyssinica (also called Koso in Amharic), and bamboo (also called kerka) were the indigenous trees found in the study watershed.
[image: Topographic map of an area in South Ethiopia, depicting elevation in meters. High elevations are marked in shades of red and brown, while lower elevations are shown in green. Inset maps illustrate the location within Ethiopia and a closer view of the South Ethiopia region. A legend indicates elevation scale from 1,376.9 to 3,226.6 meters.]FIGURE 1 | Location map of the study area.
The watershed study had a total population of about 39,646, of which 21,024 (53.03%) were female and 18,622 (46.97%) were male. Mixed farming is the main source of income for the communities. Cattle, donkeys, goats, sheep, and mules are the most common livestock productions in the watershed. Some of the dominant seasonal and perennial crops grown in the watershed are teff (Eragrostis tef), sorghum (Sorghum bicolor), banana (Musa mesta), potato (Solanum tuberosum), taro (Colocasia esculenta), cassava (Manihot esculenta), barley (Hordeum vulgare), wheat (Triticum vulgare), bean (Phaseolus vulgaris), and others. In the study, crops such as korerima (Aframomum corrorima or Ethiopian cardamom) and coffee (Coffea arabica) are also grown in the watershed. Ensete (Ensete ventricosum) is one of the major perennial crops in the study area. It is used as a main staple food crop for the communities in the Sala watershed.
2.2 Data sources and methods of acquisition
The RUSLE model variables are estimated from various sources. This method evaluates the influence of climate, soil, topography, and land use factors on soil erosion (Mete and Bayram, 2024). Both primary and secondary data were used for the RUSLE parameters of the study watershed. Soil sampling and topographic data were the sources of primary data. The secondary source was generated from satellite imagery and meteorological data. The rainfall erosivity factor (R-factor) was derived from annual rainfall data for 15 years (2006–2021) obtained from the Ethiopian National Meteorological Agency. Slope length and slope gradient factor (LS-factor) were determined using a digital elevation model (DEM) from a 1:50,000 scale topographic map with 30 m contour lines of varying heights. The Landsat image was used for the conservation practices (P-factor) and crop management (C-factor).
The soil erodibility factor (K-factor) was determined from field-estimated organic matter, texture, structure, and permeability of the soil of the study area. Three random strata were selected from the watershed elevation, and the major adjacent land use types in each stratum were identified across elevation gradients, of which four were at the top (cultivated land, grazing land, shrubland, and forest land), three in the middle (cultivated land, grazing land, and forest land), and three at lower altitudes (cultivated land, grazing land, and shrubland), with one depth and three replicates per sample field (4 × 3 × 3 × 3 elevations × 1 depth × 3 replicates). Soil samples were collected at three elevations: upper (2,500–3,210), middle (1,900–2,500), and lower (1,391–1900), followed by identifying land use types across elevation gradients. A total of 30 composite soil samples were collected from different current land use types and altitudinal gradients using a zigzag sampling technique at a constant depth of 0–20 cm from upland (12), midland (9), and lowland (9) to calculate the soil erodibility factor (K-factor).
2.3 Determination of the RUSLE model factors
Scientists have developed several methods to estimate soil erosion through experimental, statistical, and physical methods (Beck et al., 2018; Fredj et al., 2024; Wischmeier and Smith, 1965; Williams, 1975; Renard, 1997). RUSLE is an empirical predictive model used to estimate average annual soil loss. The RUSLE model is a widely used, low-cost, non-data-intensive predictive model for agricultural and forestry watersheds (Renard, 1997). This model for estimating soil erosion from sheets and rills has been developed (Yesuph and Dagnew, 2019; Kulimushi et al., 2021a; Kulimushi et al., 2021b) to prioritize areas at risk of soil erosion (Tessema et al., 2020). The RUSLE model was computed using five erosion parameters to calculate the yearly average soil loss in the Sala watershed (Equation (1)) (Renard, 1997):
[image: Equation showing: A equals R times K times LS times C times P, labeled with number one in parentheses.]
where A is the mean annual rate of soil loss tonne/hectare/year (t/ha/y), R is the rainfall erosivity factor (MJ mm/ha/hr/year), K is soil-erodibility (t/ha/MJ mm), LS is slope length and slope steepness, C is land-cover management and P is land management factors, respectively.
2.3.1 Rainfall erosivity (R-factor)
The rainfall erosivity factor (R-factor) represents the aggressiveness of rainfall and is related to the amount and rate of runoff that has the potential to cause erosion. Rainfall can remove and transport detached materials in a specific area, and the RUSLE model uses this factor as input in soil loss determination (Hategekimana et al., 2020). The R-factor is strongly influenced by the storm volume, energy, duration and intensity, raindrop shape, precipitation distribution, and subsequent runoff velocity (Farhan and Nawaiseh, 2015; Amellah and Karim, 2021). This factor can be estimated as a function of kinetic energy/raindrops/and their 30-min maximum intensity (I30) (Renard, 1997). However, measurements to generate these variables are not available for Ethiopia as a whole. Therefore, the empirical formula developed by (Hurni, 1985b) was applied to estimate the R-factor for the Ethiopian condition, which has been derived from spatial regression analysis (Helldén, 1987) (Equation 3). The R-factor was developed using the average annual precipitation (P) of the precipitation data of five stations from 2006 to 2021 collected by the Ethiopia National Meteorological Agency (Equation 2).
[image: Equation labeled as number two: "R equals negative eight point one two plus open parenthesis zero point five six two times P close parenthesis".]
where R; is the rainfall erosivity factor in MJ mm ha/h/year, and P is the mean annual rainfall (mm/year).
However, to validate the average rainfall, a standard linear regression equation using DEM was used:
[image: The equation for Mean Rainfall displayed as: Mean Rainfall equals alpha plus beta times DEM, labeled as equation three.]
Where [image: Please upload the image or provide its URL so I can generate the alternate text for you.] stands for mean rainfall intercept (constant), [image: It seems there was an error in displaying the image. Please upload the image file or provide a URL to the image, so I can help generate the appropriate alt text.] The slope coefficients for the predictor (DEM) values of the regression model and DEM for the digital elevation model.
The spatial distribution of the rainfall erosivity factor (R-value) over the study’s Sala watershed area is shown in Figure 2. The spatial distribution of different precipitation amounts increases in the mountainous areas of the studied watershed compared to the lowlands, as indicated by the R-factor results of the linear regression model (Table 1; Figure 2). Precipitation and the digital elevation model (DEM) showed a strong correlation (−0.425) (Table 1). Elevation rises by one unit, and precipitation variability is expected to increase by a factor of −0.425 if all other variables stay the same (Table 1). According to Figure 3, the R factor in the study area ranges from 753.95 to 1,552.53 MJ mm/ha/hr/year, with an average value of 1,153.24 MJ mm/ha/hr/year. The results show that the Sala watershed has high rainfall erosivity, which may lead to soil erosion. A higher R-value indicates higher kinetic energy of rainfall and surface runoff, which contributes to higher soil erosion (Balasubramani et al., 2019).
[image: Map of Ethiopia showing average rainfall by region in millimeters. Color gradients from red to blue indicate decreasing rainfall levels, with specific ranges detailed in a legend. Coordinates and a scale are included.]FIGURE 2 | R-factor map of the Sala watershed.
TABLE 1 | Correlation between rainfall and elevation in the Sala watershed.
[image: A table displays statistical data. The first part presents Pearson correlation values: rainfall and elevation correlation is -0.425 with a significance of 0.127 across nine samples. The second part shows a regression model with rainfall as the constant at 171.284 and elevation coefficient at -0.005. Elevation's standardized coefficient is -0.425 with a t-value of -1.242 and significance of 0.254. The 95% confidence interval for elevation is between -0.015 and 0.005.][image: Map showing different K-Factor values in a geographic region with three color-coded areas. Pink indicates a K-Factor of negative 0.05615, green indicates 0.00151, and orange indicates 0.05869. Compass and scale are included.]FIGURE 3 | K-factor map of the Sala watershed.
Spatially, the rainfall erosivity distribution was not uniform in the study area due to variations in rainfall shown in Figure 2). The R-value is lower, indicating the low erosivity of rainfall to erode the soil (Asmamaw and Assen, 2019) and low rainfall intensity in the study area (Devatha et al., 2015). The highest elevation in the southern part of the watershed corresponds to the highest annual rainfall values, while the northern part, which is closest to the outlet, has the lowest rainfall values, as shown in Figure 2. This result is supported by the findings of (Belay et al., 2019), who found a strong relationship between elevation and mean annual precipitation. The major problem of soil loss may occur due to high rainfall as the southern part of the study watershed receives high average annual rainfall (Das et al., 2022). Thus, Figure 2 shows that rainfall-induced erosion rates vary across the watershed.
2.3.2 Soil erodibility (K-factor)
Soil erodibility (K-factor) is the soil’s susceptibility to erosion, ease of silt removal, and expected runoff per rainfall contribution (Kayet et al., 2018). K-factor is an assessment of the impact of soil properties on soil loss and the vulnerability of soil to erosion as well as the potential susceptibility of soil to the detachment and transport caused by rainfall and runoff (Alemu and Melesse, 2020; Haile and Fetene, 2012). The influence of soil quality and profile characteristics on soil loss is reflected in the K-factor component (Molla and Sisheber, 2017; Pham et al., 2018; Renard, 1997). Soil texture, organic matter, soil structure, drainage, soil profile depth, and permeability are the primary soil properties that alter the K-factor (Ayalew and Selassie, 2015; Ettazarini et al., 2017; Haregeweyn et al., 2017; Koirala et al., 2019; Molla and Sisheber, 2017; Mohammed et al., 2020; Prasannakumar et al., 2012; Saha, 2018). The K factor was calculated from estimated soil properties, namely texture, organic matter, and structural and permeability (Foster et al., 1981; Panagos et al., 2015). In this study, the K-factor was calculated by the formula of (Equation 4).
[image: The image shows a mathematical formula: \( K = (27.66/m^{1.1} \times 10^{-3} (12-a)) + (0.0043 \times (b-2)) + (0.0033 \times (c-3)) \) marked as equation four.]
where; m = (silt (%) + very fine sand (%)) (100−clay (%)); a = organic matter (%); b = structure code: (1) very structured or particulate, (2) fairly structured, (3) slightly structured and (4) solid, and c = profile permeability code: (1) rapid, (2) moderate to rapid, (3) moderate, (4) moderate to slow, (5) slow and (6) very slow.
The soil erodibility factor shows the mean long-term soil and soil profile response to the erosive power associated with rainfall and runoff (Millward and Mersey, 1999). The K factor indicates the sensitivity of soil to erosion (Kayet et al., 2018). For soil erodibility estimations, soil type and color methods were adapted from (Hurni, 1985a) as indicated in Table 2). Through laboratory analysis, the study area’s soil textures and organic matter values were assessed to estimate the soil erodibility factor (K-value). Figure 3 shows the spatial prediction map of soil K-factor based on Table 2. The results range from −0.056 to 0.058 t/ha/MJ mm, and the average K-factor value is −0.035 t/ha/MJ mm, which is close to 0, indicating low sensitivity to soil erosion (Figure 3). K-value was also negatively correlated with soil permeability (−0.056). These correlations corroborated the general understanding of the soil erodibility vis-à-vis soil texture, organic matter, and permeability (Olaniya et al., 2020). The lowest erodibility was observed in the study area due to the higher organic matter content, which allowed soil fractions to exhibit more excellent aggregate stability (Olaniya et al., 2020). The current findings are in line with earlier research reported on the K-values of tropical soils that range from 0.06 to 0.48 (El-Swaify et al., 1992), and the majority of Ethiopian soils have K-values between 0.05 and 0.6 (FAO–UNDP, 1984).
TABLE 2 | Soil properties and their respective K-factor in the Sala watershed.
[image: Table comparing soil properties across upper, middle, and lowland areas. Silt: 14%, 22.5%, 22%; Very fine sand: 22.9%, 25.6%, 28.5%; Clay: 48.95%, 37.73%, 42.7%; Organic matter: 2.71, 3.3, 4.68; Structure: 3, 2, 1; Permeability: 4, 3, 2; K-value: -0.056, 0.001, 0.058.]The lower value of the K factor is associated with the soils having low permeability and low antecedent moisture content. Higher K-values indicate higher erodibility and vulnerability to soil erosion, which could be attributed to low clay and organic matter contents as less aggregation of soil colloids (Bartoli et al., 1992). Soils with good soil structure, high organic matter content, and high permeability are more resistant to erosion. In general, the highest K-value soil is highly affected by erosion and intrinsically susceptible to the erosive force of rainfall, and also intrinsically less resistant to the eroding power of rainfall, whereas the lowest K-value has low soil erodibility and less susceptible to the detaching power of raindrop, and therefore high-resistance to rainfall force (Figure 3).
2.3.3 Slope length and steepness (LS) factor
The LS factor describes the impact of the topographic factors on the rate of soil erosion (Fayas et al., 2019; Wischmeier and Smith, 1978; Haan et al., 1994; Shreevastav et al., 2022; Song et al., 2011). This factor has an impact on the transport capacity of surface runoff (Mandal, 2017; Karna et al., 2021). The steepness gradient affects the flow velocity, whereas the gradient length identifies the distance between the points where erosion begins and the deposition (Renard et al., 1997). The flow velocity on the rate of erosion between the origin and termination of inter-rill processes is influenced by the combined LS factor. The velocity of water flowing over the ground and the slope of the ground surface are dependent parameters (Karna et al., 2021). As slope length increases, soil erosion by water increases due to increased runoff water accumulation. The steeper the slope, the more susceptible it is to soil erosion and vice versa (Ostovari et al., 2017; Wang et al., 2020).
The LS factor was initially suggested and determined by direct slope measurements (Renard, 1997); this method was not suitable for studies conducted at the watershed scale. Accordingly, the S-factor is the actual slope divided by the experimental slope (9%), and the L-factor is obtained by dividing the actual horizontal slope length by the experimentally measured slope length of 22.13 m (Arekhi, 2008; Renard, 1997; Wischmeyer and Smith, 1978). Consequently, the topographic factor raster calculator tool in the ArcGIS environment was utilized in conjunction with a digital elevation model (DEM) to produce a combined LS factor (Atoma, 2018):
[image: Formula for L as the power of m of the fraction lambda over 22.13, labeled as equation 5.]
Where L is the slope length factor, λ is the slope length (m), and m is the slope–length exponent.
[image: The mathematical equation shows \( m = \frac{F}{1 + F} \), labeled as equation (6).]
[image: \( F = \frac{\sin{0.896}}{3(\sin{0.8}) + 0.56} \) equation labeled as (7).]
Where F = ratio between rill erosion and inter-rill erosion, [image: Please upload the image or provide a URL so I can assist you in creating the alt text.] = slope angle (0).
In this study, the steepness factor derived from the slope map of the study area was calculated for high-slope (>9%) and low-slope (<9%) lands, as shown below (Mccool et al., 1987; McCool et al., 1997; Renard, 1997):
[image: Equation showing \( S = 10.8 \times \sin \theta + 0.03 \), applicable when \( \sigma \leq 9\% \), labeled equation number eight.]
[image: The formula shown is \( S = 16.8 \times \sin \theta - 0.50 \), for \( \sigma > 9\% \), referenced as equation (9).]
Where θ is the slope angle in degrees and σ is the slope gradient in percentage.
The LS factor indicates the impact of topography on the soil erosion process. It is the combined effect of the slope length (L) factor and the slope steepness (S) factor (Figure 4). There is a direct relationship between slope length and erosion rate (Wischmeier and Smith, 1978). As a result, erosion increases as slope length increases. The LS is the ratio of observed soil loss related to the soil loss of a standardized plot (22.13) as indicated in (Schmidt et al., 2019). The LS value is considered to have values between 0.02 and 48 for the Ethiopian condition (Hurni, 1985b), and the study watershed area ranges from 2.86 m at the bottom to 380.15 m at the top (Figure 4). The combined slope LS factor has a greater influence on soil loss in the southern part of the watershed, whereas the northern and central parts of the watershed also contribute less to soil erosion due to the existing slope (Figure 4). As a result, longer slopes see larger accumulations of runoff from a larger area, which raises flow velocities and causes soil loss to increase with slope. As the watershed is mountainous with a steep slope, it inherits a high slope length factor and consequently high overland flow with high velocity (Das et al., 2020). Thus, as the slope length increases, this leads to high overland flow and increases soil erosion and sediment yield in the study area.
[image: Map illustrating LS Factor distribution in a region, with varying colors indicating different factor values. A legend on the right shows color-coded ranges, with rivers and contour lines marked for reference. North is oriented upwards.]FIGURE 4 | LS-factor map of the Sala watershed.
2.3.4 Cropping and cover management (C-factor)
According to (Hategekimana et al., 2020; Renard, 1997) the C-factor shows how vegetation or plant cover and management interventions contribute to soil loss. The ratio of soil loss from a particular vegetated area to the equivalent soil loss from a fallow area with the same rainfall is known as the cover and management factors (Wolka et al., 2015). This establishes how successful crop and soil management strategies are in preventing soil loss. Cover management (C-factor) is used to associate the relative impact of management strategies on conservation plans (Renard, 1997; Fayas et al., 2019). The vegetation cover of the land use class is used to calculate the C-factor value based on land cover management measures (Karna et al., 2021; Zeleke, 2000) states that the dimensionless C-factor value establishes the proportion of soil loss in distinct regions with varying land cover conditions. Four land use/land cover types were identified as cultivated, forest, grazing, and shrublands (Table 3). The Landsat image was used for the classification and mapping of land use/land cover types using Remote Sensing (RS) and Geographic Information Systems (GIS) techniques.
TABLE 3 | Cropping and cover management C-factor values of the study area.
[image: Table showing land-use and land-cover types with their respective C-factor values. Cultivated land has a C-factor of 0.18, grazing land 0.15, shrub land 0.05, and forest land 0.02.]A C-factor map for the study area was made using changes in land use/land cover, which have a significant impact on soil erosion (Kidane et al., 2019). The Sala watershed was classified into four land use/land cover categories, and the C-factor value was assigned (Table 3; Figure 5) for the Ethiopian condition based on the existing literature (Fayas et al., 2019; Olika and Iticha, 2019; Yesuph and Dagnew, 2019; Amsalu and Mengaw, 2014; Girma and Gebre, 2020; Bewket and Teferi, 2009; Wischmeier and Smith, 1978; Hurni, 1985b).
[image: Map depicting C-Factor distribution in an area, with colors illustrating different values: blue for water bodies, green for 0.02, yellow for 0.05, pink for 0.1, and orange for 0.15. Features include rivers and contour lines.]FIGURE 5 | C-factor map of the Sala watershed.
Cover control (C-factor) values in the study watershed range from forest land (0.02) to cultivated land (0.18) (Table 3; Figure 5). The findings demonstrated that from the classified land use/land cover classes, cultivated land predominated (Table 3). The C values show that the maximum amount of cultivated land generates high runoff and is vulnerable to erosion, whereas shrub and forest lands receive the lowest values and are resistant to soil erosion and runoff (Table 3; Figure 5). Among the four land use/land cover classes, cultivated land is the most vulnerable, while forest land use is the least vulnerable to soil erosion (Table 3; Figure 5). Soil is highly eroded, especially when other LULC is converted to cultivated land. The result is in line with the findings of (Negassa et al., 2020). Soil erosion is significantly affected by the land use/land cover conditions of the watershed, according to the present land/land cover analysis findings (Table 3). This conclusion is consistent with prior findings showing that vegetation significantly decreased soil loss and sediment yield (Ebabu et al., 2019; Kidane et al., 2019; Thomas et al., 2018a).
2.3.5 Erosion control practices (P-Factor)
According to (Renard, 1997; Fayas et al., 2019) the erosion control practices factor (P) is also known as the support and conservation practices factor. The support and conservation practices factor (P-factor) measures how conservation practices affect the quantity and rate of soil erosion and runoff (Ayalew and Selassie, 2015; Koirala et al., 2019; Renard, 1997) states that the conservation practice (P-factor) measures the degree to which soil erosion is slowed by support methods such as terracing and contour tillage. On-site, inappropriate physical land management practices were observed. Determining the P-factor is difficult due to the lack of long-term conservation measures and the inconsistent application of conservation practices across the complex and rugged terrain of the study watershed. For these reasons, we computed the P-factor output map using a different estimation method that took into account the type of land use/land cover (Figure 6).
[image: Map displaying land use categories in a region, with color codes indicating water bodies, settlements, bare land, cultivated land, grazing land, and forests. Includes rivers and contour lines. Orientation is indicated with a north arrow.]FIGURE 6 | P-factor map of the Sala watershed.
P-factor values varied accordingly, with variations found in the 0.52 to 0.9 range (Table 4; Figure 6). The P-values range from zero (0) to one (1), whereby the values close to zero indicate a good conservation practice and erosion resistance facility, and the values close to one indicate poor conservation practices and no manmade erosion resistance facility (Ganasri and Ramesh, 2016; Olorunfemi et al., 2020; Renard et al., 1997; Wischmeier and Smith, 1978). A value close to forest land (0.52) denotes good conservation practices, while a value close to cultivated land (0.9) denotes poor conservation practices that need soil and water conservation measures (Table 4). The cultivated and barren lands had a maximum p-factor value, which indicated that they are highly vulnerable to soil erosion due to the weakness of soil conservation practices, whereas forest land is resistant to soil erosion and runoff (Table 4; Figure 6).
TABLE 4 | P factor with corresponding LULC type in the Sala watershed.
[image: Table showing land use types and corresponding P-values: Waterbody with no P-value, forest with P-value 0.52, cultivated land 0.9, barren land 0.73, grazing land 0.62. Sources cited from studies by Olika and Iticha, Fayas et al., and Prasannakumar et al.]3 RESULTS AND DISCUSSION
3.1 Soil erosion potential assessment for prioritization of land risk areas using the RUSLE model
The potential soil loss in the Sala watershed was calculated by integrating GIS and remote sensing techniques with the RUSLE soil loss parameters (Figure 7). Erosion loss estimation results showed that the annual soil loss rates in the study area range between 1 and 1875 t/ha/year, with a mean annual soil loss of 312.6 t/ha/year (Table 5; Figure 7). The mean annual soil loss was determined by a cell-by-cell analysis of the soil loss surface by multiplying the RUSLE factors. Based on estimated annual soil loss, soil erosion risk areas were classified into four categories ranging from low to very high risk (Table 5), which was adopted, as noted by (Haregeweyn et al., 2017; Woldemariam et al., 2018). According to the findings, 31.91% of the land was categorized as a low-risk area because it had low erosion rates (1–162 t/ha/year). The remaining areas fall into three categories: medium-risk areas (162–405 t/ha/year) (39.67%), high-risk areas (405–205 t/ha/year) (20.78%), and very high-risk areas (800–1875 t/ha/year) (7.64%) (Table 5). The soil erosion rates have led to a decline in soil fertility, water-holding capacity, and crop productivity (Beek et al., 2016; Haregeweyn et al., 2008; Haileslassie et al., 2005). The watershed area with high soil erosion hotspots requires immediate soil and water conservation planning and implementation measures to reduce further soil loss and the development of gullies on those sites.
[image: Map showing soil erosion values in a region, with colors from green to red indicating low to high erosion rates, respectively. A legend and coordinate grid are included.]FIGURE 7 | Soil risk areas map of the Sala watershed.
TABLE 5 | Soil loss severity classes in the Sala watershed.
[image: A table showing soil loss potential categories in tons per hectare per year, risk class, priority classes, and corresponding areas in hectares and percentages. Four categories range from low risk (1-162 ton/ha/y) to very high risk (800-1875 ton/ha/y). The total area is 7,919.71 hectares, with percentages ranging from 7.64% to 39.67%.]71.58% of the watershed area is classified as having low to moderate erosion severity (the majority of the study area is the low to medium soil erosion category (Table 5). From the total area of the watershed, 28.42% is grouped under high to very high erosion severity, which needs high soil and water conservation measures (Table 5). The watershed risk map shows that some topographically rugged central locations and most of the southwestern and southeast portions of the watershed are more affected by soil erosion than others (Figure 7). Field observation verified that the high vulnerability of the study watershed to soil erosion is associated with the areas cultivated, barren, and degraded lands with steep slopes. Similar findings were reported (Bekele et al., 2022; Kidane et al., 2019), that the variation in soil erosion rate is due to land use, topography, soil type, and various soil and water management activities. These factors collectively contributed to the decline in soil fertility and crop productivity in the study area. Thus, the developed soil erosion risk map is one of the key inputs to decision-support systems in soil resource management and can have an impact on future land use planning in the study area.
The results of this study regarding the spatial location of soil erosion showed that soil loss classes were high to very high in areas with steep slopes, high drainage density, variation in climate, land use, and soil types, and susceptibility to soil erosion. Soil erosion events result from the spatial integration between the physical geographical factors (topography, precipitation, vegetation cover, and soil properties) (Khallouf et al., 2021; Abdo and Salloum, 2017; Djoukbala et al., 2019). Moreover, human activities accelerate soil erosion, inferior maintenance measures, agricultural intensification, population growth, urban expansion, and military actions (Mokhtar et al., 2021; Zubkova et al., 2021; Abdo, 2018; Abdo HazemG., 2022). Soil loss tolerance is a valuable criterion for evaluating the potential for production decline and associated economic repercussions, formulating soil erosion control measures, and implementing soil conservation activities (Stefano et al., 2023). As a result, the quantified mean annual soil loss for the entire watershed was 312.6 t/ha/year, which was larger than the tolerable soil loss of 5–11 t/ha/year that was estimated to ensure agricultural and economic sustainability (Morgan, 2009; Renard et al., 1996). Hence, to maintain soil fertility and agricultural productivity, appropriate soil and water conservation measures should be implemented in the study of the Sala watershed, considering areas of topographic differences to prioritize and minimize the risk of soil erosion.
4 CONCLUSION
Soil erosion is one of the main challenges to agricultural sustainability that affects people’s livelihoods due to the sustainable land management practices in the study’s Sala watershed. It has huge potential to affect food security by declining agricultural land productivity. In this study, the RUSLE model was used in combination with ground measurements and remote sensing data in a comprehensive spatial assessment of the soil’s sensitivity to erosion. The spatial annual soil loss distribution of the watershed ranges from 1 to 1,875 t/ha/year, and the average annual soil loss rate is 312.6 t/ha/year. Based on the assessment of soil erosion severity, 28.42% of the watershed is classified as having high to very high levels of soil erosion, which require special priority and control measures. To prioritize land management options for the study watershed, all RUSLE parameters were integrated to estimate the distribution of soil erosion potential using an erosion risk area map. Thus, based on soil erosion priority levels, integrated soil and water conservation measures should be implemented in the study area to minimize the soil loss risk. Furthermore, estimating soil erosion risk under the spatial and temporal dynamics of different land uses/land covers should be a focus of future research. In addition to this, further studies should be focused on quantifying gullies in the Sala watershed to advance the precision of soil loss and sediment yield estimation.
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Drip irrigation, a widely adopted water-saving technique, has received limited attention regarding its indirect effects on soil erosion. This study investigates soil erosion characteristics at varying intervals following drip irrigation using simulated rainfall experiments and an unirrigated control (S0) subjected to identical rainfall simulation procedures. The results showed significant hydrological differences between drip-irrigated and unirrigated treatments. Irrigated soils exhibited reduced runoff (mean reduction = 23.19%; p < 0.05) and sediment yield (mean reduction = 24.33%; p < 0.05) compared to S0, except for runoff in S24. Erosion mitigation was attributed to enhanced rainwater retention via surface irrigation-formed crusts and desiccation cracks generated during extended drying periods. These results highlight a previously under-characterized interaction between water-saving irrigation practices and soil erosion processes. The temporal evolution of soil surface characteristics following drip irrigation appears to influence hydrological responses during subsequent precipitation events, providing new insights for optimizing irrigation strategies in erosion-prone situations.
Keywords: drip irrigation, soil crusting, desiccation cracks, runoff, sediment

1 INTRODUCTION
Drip irrigation is a water-saving irrigation technology that provides precise and highly efficient delivery of water and nutrients to crops (Evans and Zaitchik, 2008; van Donk and Shaver, 2016). It is commonly assumed that drip irrigation does not generate surface runoff, thereby mitigating soil erosion. To a significant extent, this method has addressed the issue of water scarcity for crops in arid and semi-arid regions (Yahyaoui et al., 2016; Zhang et al., 2017). Furthermore, drip irrigation has been employed in various regions to resolve the spatial and temporal imbalances between natural precipitation and crop water requirements (Khan et al., 2008; Beser et al., 2016; Yang et al., 2023). For example, it has been utilized to counteract seasonal droughts in agriculture (Xiao et al., 2008; Singh et al., 2009; Stark et al., 2013) and support vegetation rehabilitation and restoration in degraded lands and extremely arid environments (Li et al., 2015; Al-Ghobari and Dewidar, 2018). As such, drip irrigation offers a valuable means of optimizing the use of agricultural land and water resources (Najafabadi et al., 2023).
Although drip irrigation differs from rainfall in that it avoids generating surface runoff and thus does not directly induce soil erosion, its implementation introduces unique surface characteristics. During drip irrigation, a wet circular area forms on the surface soil (Figure 1a). Upon drying, this creates physical crusts on the soil surface. Over time, prolonged drying leads to the formation of ring-shaped desiccation cracks surrounding these crusts (Figure 1b). These cracks and crusts may alter the physical properties of the topsoil layer, potentially influencing soil erosion dynamics on slopes during subsequent rainfall events compared to those in untreated slopes (Laker and Nortje, 2019). However, whether these crusts and cracks modify the hydrological response of the soil surface to rainfall-runoff processes and consequently lead to different erosion patterns compared to those in surfaces without drip irrigation remains uncertain. Despite this intriguing possibility, no studies have yet explored this aspect in the existing literature (Chamizo et al., 2012; Hardie and Almajmaie, 2019).
[image: Panel a shows a row of young plants with drip irrigation, creating wet spots in the soil. Panel b displays two circular wet patches on a sandy surface.]FIGURE 1 | Pictures of drip irrigation (a) and soil crusts and desiccation cracks (b) (note: picture “a” provided by T.W. Lei).
Soil crusts play a significant role in influencing soil erosion. Previous studies have demonstrated that soil crusts reduce water infiltration, increase surface runoff, and decrease sediment yield during rainfall events (Bradford et al., 1987; Wang et al., 2016). Ries and Hirt (2008) highlighted the relationship between rill erosion and soil crusts on fallow lands, attributing this connection to the hydrodynamic forces induced by crust formation. Furthermore, based on research conducted in the Loess Plateau of China, Algayer et al. (2014) emphasized that soil inter-rill erodibility is significantly influenced by the presence of soil crusts. They recommended integrating soil crust characteristics into soil erosion models to enhance the accuracy of erosion predictions. However, the soil crusts examined in these studies were formed under simulated or natural rainfall conditions, leaving a critical gap in understanding crust formation under drip irrigation conditions. The formation mechanisms of crusts under rainfall involve the impact of raindrops on soil particles, which disrupt soil aggregates and reduce soil structure stability (Robinson and Woodun, 2008; Han et al., 2016). In contrast, under drip irrigation, soil particles are not exposed to the erosive force of raindrops, resulting in less disturbance to soil structure. Instead, crust formation under drip irrigation is primarily attributed to the evaporation of soil water (Chamizo et al., 2013; Zhang et al., 2013; Jia et al., 2021). Specifically, the soil within the drip irrigation zone typically retains higher moisture content than the surrounding areas. As the soil water evaporates, the surface layer hardens, leading to the development of circular crusts and desiccation cracks (Figure 1b). These features may exhibit distinct hydrological responses to subsequent rainfall compared to crusts formed under rainfall conditions.
The preceding discussion underscores a notable research gap: the potential impact of circular crusts and desiccation cracks formed after drip irrigation on soil erosion remains unexplored. This study aims to address this gap by conducting rainfall simulation experiments to quantify soil erosion rates at different drying intervals following drip irrigation. The primary objective is to investigate how drip irrigation-formed crusts and cracks influence soil erosion dynamics and provide insights into the broader implications of drip irrigation practices on soil conservation.
2 MATERIALS AND METHODS
2.1 Study area
This study was conducted in the Huaxi district (26°26′18.23″N, 106°39′45.32″E) located in Guizhou province, China. The region exhibits a subtropical humid climate characterized by a mean annual temperature of 14.9°C. The mean annual precipitation is approximately 1,100 mm, which is unevenly distributed throughout the year. Most rainfall occurs between July and September, while the period from April to June often experiences a rainfall shortage during the growing season. Additionally, the study area is part of a karst landscape, where the extensive development of underground river networks results in low groundwater retention capacity at the surface. These climatic and geomorphological characteristics contribute to frequent seasonal drought in the region (Wang et al., 2012). Consequently, the adoption of water-saving drip irrigation technology presents an effective solution to address agricultural water scarcity.
2.2 Soils
The experimental soils were collected from sloping land and classified as yellow soil according to the Chinese soil taxonomy system. According to the World Reference Base for Soil Resources (WRB) classification system, this soil type corresponds to Xanthic Ferralsols, characterized as silty clay loam. The soil exhibits a granular structure with a very loose texture, which makes it highly susceptible to erosion. This area experiences significant annual soil loss, leading to severe land degradation and rocky desertification (Wang et al., 2004). The fundamental physicochemical properties of the soil are presented in Table 1.
TABLE 1 | Physical and chemical properties of soil.
[image: Table showing soil composition: Organic matter is 9.34%, Total Nitrogen is 0.351 g/kg, Total Phosphorus is 0.086 g/kg. Soil particle sizes: less than 0.002 mm is 38.5%, 0.002–0.02 mm is 45.5%, 0.02–0.2 mm is 11.0%, 0.2–2 mm is 5.0%, greater than 2 mm is not applicable.]2.3 Experimental setup and equipment description
2.3.1 Soil box configuration
The experiments were conducted in a controlled rainfall simulation laboratory, and the experimental setup and associated equipment are illustrated in Figure 2. The soil boxes were constructed with dimensions of 1.0 m (length) × 0.5 m (width) × 0.12 m (depth). Since land with a slope greater than 15° accounts for more than 70% of the study area, the soil box surface was sloped at a 15° angle to simulate realistic field conditions. A V-shaped drainage outlet was installed at the downslope end of the box to facilitate the collection of surface runoff and sediment transport. Additionally, eight drainage holes (5 mm in diameter) were positioned at the base of the soil box to allow for free drainage of infiltrating water during rainfall events.
[image: Diagram showing a soil box setup with droppers and a water tank for irrigation. Water flows from the tank through a connecting pipe and flow regulator to the droppers, irrigating the soil. Runoff sediment is collected below.]FIGURE 2 | Schematic diagram of the drip irrigation simulation system and the experimental soil box.
2.3.2 Rainfall simulator
The rainfall simulation apparatus was equipped with two side-spray nozzles, which generated raindrops with a kinetic energy impact rate equivalent to 80% of that observed during natural rainstorms at comparable intensities. This simulator has been extensively used for soil erosion studies across multiple research institutions over several decades, and its detailed specifications have been documented in previous studies (Zhao et al., 2018). Before starting the experiments, the rainfall intensity of the simulator was calibrated to match the target intensity of 90 mm/h, which is commonly used in simulated rainfall experiments to create fast runoff and sediment on the surface. The position of the rainfall simulator was maintained consistently throughout all tests to preserve the uniformity of rainfall conditions.
2.3.3 Drip irrigation simulation apparatus
The drip irrigation system consisted of a water tank, a connecting pipe, and several drippers (Figure 2). For this study, the drippers were replaced with an infusion set to better replicate real-world conditions. During the experiments, needles were vertically inserted into the soil, and water was pumped from the water tank through the connecting pipe. The drip discharge rate was regulated using a flow regulator attached to the connecting pipe. Notably, the process of simulating drip irrigation closely resembled clinical transfusion techniques. In this study, each “wetted circle” was created using 500 mL of water, with a drip discharge rate of approximately 25 mL/min per needle.
2.4 Experiment treatments and procedures
2.4.1 Experiment treatments
To investigate the effects of drip irrigation on soil erosion, this study employed three rainfall treatments applied to soils following drip irrigation: 1) rainfall was applied 24 h after drip irrigation (S24); 2) rainfall was applied 48 h after drip irrigation (S48), and 3) rainfall was applied 72 h after drip irrigation (S72). A surface without prior drip irrigation served as the control measure (S0). Specifically, the S0 treatment was not pre-wetted, thereby preventing the formation of crusts and cracks on the surface prior to conducting the rainfall experiments. This allows for a more accurate comparison with drip irrigation treatments in order to emphasize the effects of drip irrigation on erosion.
2.4.2 Soil preparation
The soil samples were air-dried under ambient conditions in the laboratory and adjusted to maintain a moisture content of approximately 7%. Aggregated soil clods were manually crushed using a spade, and plant residues and gravel were removed using a 5-mm sieve to ensure particle homogeneity. The soil density within the soil boxes was maintained at 1.15 g/cm3, with a uniform soil depth of 10 cm. After filling the boxes, the soil surface was carefully leveled using a wooden board to ensure consistency across all experimental setups.
2.4.3 Drip irrigation simulation
The drip irrigation simulation apparatus was positioned above the soil boxes, with six dripping devices arranged at intervals of 25 cm × 25 cm across the soil surface. Each device was equipped with a needle inserted into the soil, and a flow regulator was used to maintain a constant water infiltration rate of approximately 25 mL/min. An amount of 500 mL of water was introduced into each bottle, and the system was allowed to operate until complete infiltration occurred. Following the completion of the drip irrigation simulation, the soil boxes were undisturbed for 24, 48, or 72 h depending on the treatment.
2.4.4 Rainfall simulation and data collection
Rainfall simulations were conducted in a controlled environment for a total rainfall duration of 60 min for all treatments to ensure the attainment of a steady state for runoff measurements. During the rainfall event, surface runoff and sediment were collected at 2-min intervals using 1-L plastic buckets. Immediately following the cessation of rainfall, the weights of the collected samples were recorded. The buckets were then stored at an indoor temperature for approximately 24 h to allow the settling of sediment. After this period, the supernatant water was decanted, and the sediment was transferred to steel cups for further processing.
The sediment samples were oven-dried at 105°C for 8 h to achieve complete desiccation. Once dried, the sediments were weighed to determine their final mass. These data were subsequently used to calculate runoff volume and sediment yield for each treatment.
2.4.5 Statistical analysis
Each experimental trial was repeated three times to ensure the reliability and reproducibility of the results. The differences in runoff and sediment yields among the treatments were statistically analyzed using Fisher’s least significant difference (LSD) test to identify significant variations between treatments.
3 RESULTS AND DISCUSSION
3.1 Surface runoff
The temporal variation in runoff rates across the four rainfall treatments is shown in Figure 3. Compared to that in the S0 treatment, the initial runoff time was delayed by 3–5 min for the S24, S48, and S72 treatments. Analysis of the runoff dynamics revealed minor differences between the S0 and S24 treatments, whereas major discrepancies were observed between the S0 and both the S48 and S72 treatments. For all experimental conditions, the runoff rate achieved a steady state approximately 10 min after the initiation of runoff. The corresponding steady-state runoff rates of the S0, S24, S48, and S72 treatments were 6.64, 6.59, 4.53, and 4.71 g/s, respectively. Notably, the steady-state runoff rates for the S48 and S72 treatments were significantly lower than those observed for the S0 and S24 treatments. These results suggested that the duration of soil drying following drip irrigation significantly influences the soil’s hydrological response to subsequent rainfall events. Specifically, longer periods of soil desiccation appear to alter the water infiltration, potentially impacting rainfall-runoff processes.
[image: Line graph showing runoff rate versus rainfall duration in minutes for four samples: S0, S24, S48, and S72. Initially, all samples start at zero. S0 and S24 rapidly increase to peak around 15 minutes, while S48 and S72 rise more gradually, plateauing after 30 minutes.]FIGURE 3 | Temporal variation in runoff rates under different experimental treatments during a 60-min rainfall event (S0, surface without drip irrigation; S24, rainfall applied 24 h after drip irrigation; S48, rainfall applied 48 h after drip irrigation; S72, rainfall applied 72 h after drip irrigation).
To further investigate the effect of drip irrigation on rainfall-runoff processes, the total runoff yields were quantified for the four rainfall treatments during a 60-min rainfall event (Figure 4). Significant differences in the total runoff yields were observed among the treatments. The S24 treatment had the greatest total runoff yield (16.88 kg), followed closely by the S0 treatment (15.16 kg). The total runoff yields for the S48 and S72 treatments were notably lower at 11.45 kg and 11.84 kg, respectively. Statistical analysis revealed no significant differences (p > 0.05) in the total runoff yields between the S48 and S72 treatments. These patterns observed in the total runoff yields are consistent with the trends in steady-state runoff rates reported in Figure 3, highlighting a strong relationship between soil drying duration and rainfall-runoff dynamics. These findings demonstrate that the timing of rainfall application relative to prior drip irrigation significantly influenced the total runoff yields. The greater total runoff yields observed for the S0 and S24 treatments may reflect differences in soil moisture content and soil crust properties formed by the varying durations of drying following drip irrigation. On the other hand, the lower runoff yields for the S48 and S72 treatments suggest that prolonged soil desiccation after irrigation altered the soil’s hydrological behavior, potentially reducing its runoff-generating capacity during subsequent rainfall events. These results emphasize the importance of considering antecedent soil moisture contents when evaluating hydrological responses to rainfall events in agricultural systems.
[image: Bar graph showing total root yield in grams across different drying time treatments: 50, 524, 548, and 572 hours. The yield is highest at 524 hours and lowest at 548 hours. Vertical bars indicate standard deviation, and treatments labeled with the same letter are not significantly different.]FIGURE 4 | Total runoff yields under different experimental treatments during a 60-min rainfall event (S0, surface without drip irrigation; S24, rainfall applied 24 h after drip irrigation; S48, rainfall applied 48 h after drip irrigation; S72, rainfall applied 72 h after drip irrigation; bar represents standard deviation (n = 3); different letters indicate significantly different means based on Fisher’s least significant difference F test at p < 0.05).
The observed results may be attributed to water evaporation from the soil surface following drip irrigation. As illustrated in Figure 1, drip irrigation supplies water directly to crop roots, resulting in localized infiltration within a small circular area around the root zone. Over time, evaporation causes soil moisture loss in the drip-irrigated area, leading to soil hardening and the formation of a physical crust (Wang et al., 2016). Furthermore, as time progresses, desiccation cracks begin to develop around the hardened soil area. These soil changes significantly influence the hydrological response of the entire surface during rainfall-runoff processes. Specifically, after 24 h of drip irrigation, soil moisture has not yet been fully lost, and no desiccation cracks have formed in the drip-irrigated area. Consequently, the soil surface remains relatively intact, facilitating runoff generation during rainfall. This explains the high total runoff yield observed in the S24 treatment. In this case, the initial soil moisture content within the drip-irrigated area is sufficiently high to reduce the average infiltration rate and increase the runoff rate during rainfall events. However, after 48 h of drip irrigation, the soil becomes dry, and a soil crust of moderate intensity forms in the drip-irrigated area. Simultaneously, desiccation cracks begin to develop around the drip-irrigated zone due to soil shrinkage caused by water loss. During rainfall, a significant portion of rainwater infiltrates into the soil through these desiccation cracks, resulting in reduced total runoff. This explains why the total runoff yields for the S48 and S72 treatments are lower than those for the S0 and S24 treatments. These findings align with a previous study on the effects of soil drying on runoff and sediment dynamics on crusted soils (Zhang and Miller, 1993). On the other hand, many studies have demonstrated that soil crusts can significantly reduce soil infiltration rates, thereby enhancing runoff production (Bradford et al., 1987; Magunda et al., 1997; Wang et al., 2016). Based on these studies, one might expect that the S48 and S72 treatments would exhibit lower runoff yields than the S0 treatment. However, this expectation is not entirely consistent with our observation. We did not consider this a contradiction because soil crusts formed under rainfall conditions are primarily caused by the impact of raindrops, which disperse soil particles to disperse and compact the soil surface, creating a thin and dense layer (Jakab et al., 2013). In contrast, under drip irrigation conditions, soil particles are not subjected to raindrop impact, meaning that the soil structure remains undisturbed. Additionally, the crusts formed by drip irrigation are more easily rehydrated upon subsequent water supplication, allowing for greater infiltration and reduced generation. Therefore, in the case of soils with prolonged drying periods following drip irrigation, the presence of desiccation cracks facilitates increased infiltration and reduces surface runoff during rainfall events. This observation is consistent with the findings reported by Cheng and Cai (2013), who noted that the reduction in infiltration caused by soil crusts is out-weighted by the increase in filtration due to desiccation cracks.
3.2 Sediment
The sediment rates and total sediment yields are critical indicators for evaluating soil erosion dynamics across various experimental treatments. Sediment transport is facilitated by surface runoff, with sediment generation occurring nearly simultaneously with runoff initiation. Unlike the relatively straightforward evolution of the runoff dynamic curves, the sediment production process is more intricate and dynamic. As depicted in Figure 5, the sediment rate exhibits continuous fluctuations throughout the rainfall period once surface runoff begins, reflecting the complex interplay of hydrological and erosional processes. This phenomenon is primarily due to the nonlinear nature of sediment generation and transport processes (Esteves et al., 2000; Kuhn and Bryan, 2004). In other words, the sediment rate does not necessarily increase with an increase in surface runoff, but it depends on near-surface characteristics such as micro-reliefs (Darboux and Huang, 2005; Zhao et al., 2026). Crusts and cracks in drip-irrigated and unirrigated areas have different responses to water infiltration and rainfall-runoff processes, leading to variations in the anti-erosion ability of the entire surface (Ben-Hur and Lado, 2008; Robinson and Woodun, 2008; Han et al., 2016).
[image: Line graph depicting sediment rates over a rainfall duration. Four lines represent different conditions: S0 (blue), S24 (red), S48 (green), and S72 (purple). S72 shows a significant peak at 18 minutes, with fluctuating patterns across all lines up to 60 minutes.]FIGURE 5 | Sediment rate curves under different experimental treatments during a 60-min rainfall event (S0, surface without drip irrigation; S24, rainfall applied 24 h after drip irrigation; S48, rainfall applied 48 h after drip irrigation; S72, rainfall applied 72 h after drip irrigation).
For the S0 treatment, the sediment rate exhibits an initial increase, followed by a subsequent decrease, and ultimately stabilizes after approximately 50 min of rainfall. During this period, a single notable decrease in the sediment rate occurred at approximately the 38-min mark. In contrast, for the other three treatments involving drip irrigation (S24, S48, and S72), the sediment rate experienced multiple fluctuations throughout the rainfall duration, and no clear steady state was observed until the conclusion of the rainfall event. This discrepancy suggests that the mechanisms governing sediment production differ significantly between soils with drip irrigation-formed crusts and those without such crusts (Kuhn and Bryan, 2004).
As illustrated in Figure 6, the total sediment yields varied considerably among the four treatments. Compared to the S0 treatment, the sediment yields for the S24, S48, and S72 treatments were reduced by 37.59%, 19.71%, and 15.70%, respectively. This reduction can be attributed to the lower surface runoff observed in the S48 and S72 treatments relative to the S0 treatment. Interestingly, despite the S24 treatment having the highest runoff rate among all treatments, it exhibited the lowest sediment yield. This phenomenon can be explained by the presence of a soil crust within the drip irrigation area, which mitigated soil erosion during runoff events, consequently reducing the sediment yield compared to that of the S0 treatment. The elevated sediment yields observed for the S48 and S72 treatments compared to the S24 treatment may be linked to the influence of desiccation cracks on the soil erosion process. Post-rainfall observations revealed the formation of circular rills around the drip irrigation area in these treatments (Figure 7). These rills, characterized by relatively low heights compared to their surroundings, were absent in the S24 treatment. For the S0 treatment, an obvious flow path was formed after rainfall, whereas no such flow paths were observed on the surface of the S48 and S72 treatments due to the impact of the desiccation cracks. This indicates that the presence of desiccation cracks can influence both runoff dynamics and sediment transport pathways, ultimately affecting the total sediment yields.
[image: Bar chart showing total sediment yield in grams for different drying time treatments: S0 (12g, marked 'a'), S24 (8g, marked 'c'), S48 (10g, marked 'b'), and S72 (11g, marked 'b'). ]FIGURE 6 | Total sediment yields under different experimental treatments during a 60-min rainfall event (S0, surface without drip irrigation; S24, rainfall applied 24 h after drip irrigation; S48, rainfall applied 48 h after drip irrigation; S72, rainfall applied 72 h after drip irrigation; bar represents standard deviation (n = 3); different letters indicate significantly different means based on Fisher’s least significant difference F test at p < 0.05).
[image: Two soil images are labeled "a" and "b". Image "a" shows a highlighted flow path outlined in yellow. Image "b" displays a circular area with cracks, marked by yellow arrows pointing towards them.]FIGURE 7 | Surface change under different experimental treatments during a 60-min rainfall event: (a) soil surface without drip irrigation application before rainfall facilitates the production of a flow path; (b) soil surface with drip irrigation application before rainfall, and a dotted yellow line showing signs of desiccation cracks.
4 CONCLUSION
Drip irrigation is a highly effective method for conserving water in agricultural practices. Over the past several years, research into the effects of drip irrigation on soil infiltration and vegetation reconstruction has flourished. However, no study has systematically investigated its impact on soil erosion as it is generally assumed that drip irrigation does not directly contribute to soil erosion. In this study, we conducted a preliminary investigation and concluded that drip irrigation can reduce soil erosion due to the formation of soil crusts and desiccation cracks. Interestingly, if rainfall occurs shortly after drip irrigation, it leads to increased surface runoff. Conversely, after 48 h of drip irrigation, a greater amount of rainwater infiltrates into the soil. These findings highlight the dual role of drip irrigation in both conserving water and influencing soil erosion dynamics, emphasizing the need for further research to provide a deeper understanding of the mechanisms underlying soil erosion in drip-irrigated soils. In this study, only one level of rainfall intensity and slope degree is applied, and the range of rainfall intensity should be expanded in future experiments to make the research results more representative. Furthermore, to better explain the mechanisms between drip irrigation-formed soil crusts and water erosion, it is necessary to quantitatively analyze the physical properties of soil crusts, such as thickness, compaction, and infiltration.
In summary, these findings highlight the complex interplay between soil crust formation, desiccation cracking, and sediment production under varying antecedent soil moisture conditions induced by drip irrigation. The results underscore the importance of considering soil structural changes when evaluating erosion processes in agricultural systems.
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District Projects Construction New High- Investment Implementation
number scale/hm? cultivated standard amount/ten time
land/hm? farmland/ thousand yuan
hm?

1 Baota 34 773474 1,1908 618323 80,892.24 2010-2019
district

2 Yanchang 16 3,403.09 83110 2,698.84 34277.77 2013-2018
county

3 Yanchuan 14 3,561.59 80165 2795.02 3875482 2010-2018
county

4 Zichang 29 491954 81747 321424 50370.23 2010-2019
county

5 Ansai 20 240595 631.72 191032 2122954 2013-2018
county

6 Zhidan 3 33095 95.94 13413 337571 2014-2017
county

7 Wagi 10 215959 838.22 124478 19,880.75 2013-2018
county

8 Ganquan 19 327888 529.10 262558 30,824.60 2013-2018
county

9 Fu county 16 3,070.66 42847 246037 28,438.50 2013-2017

10 Luochuan 13 2,191.04 61659 178251 22917.90 2013-2018
county

1 Yichuan 8 187335 61162 142352 1628926 2013-2017
county

12 Huanglong 7 82093 15738 707.20 751875 2013-2018
county

13 Huangling 8 123591 297.66 105355 11,637.61 2013-2018
county
Total 197 36,986.22 7.847.72 2823329 366,407.68
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Property

First year

Fresh

Compost

Second year

Fresh

Compost

pH (1:5 with H;0) ‘ 67402 75+02 8103 68+02 73403 84+02
Electrical conductivity (dS™) ‘ 29401 77£02 05 %00 2401 72402 06+00
Total C (g C kg™) ‘ 455+ 16 37+12 426+ 15 441+ 12 43216 71
Total N (g N kg™) ‘ 17406 23+06 12+ 04 19505 21508 13503
CIN ratio ‘ 27410 1905 3613 23506 21207 32:08
Inorganic N (g N kg™)
NH ‘ 4202 52+0.1 0100 50 %01 55402 02400
NO;~ 15401 61+02 004 £ 00 19+01 6402 003 £ 00
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Year (A) First year Second year

Amendments (B) Control Compost Control Fresh Compost Biochar
Panicle number per hill 136 139 146 1440 1316 13.6% 1644 ‘ 1518
Number of grains per panicle iz 126.1° 1273 i 1027 o8t 14.7% ‘ 106.3*
Ripened grains (%) N 905 9L1® 916" 9354 9LIM 9234 ‘ 92.7*
1,000 grain weight (g) 26 21 27 25 2424 2324 274 ‘ 23.0%
Straw yield (Mg ha™) |86 9.4 116 1z 8.2¢ 9.2% 1.2 ‘ 1074
Harvest index (%) 46" 45 42 4 46* 44 e ‘ a2

Note: Different letters indicate significant differences, as determined by the HSD method with p < 0.05.
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Slope (%) The top six soil factors of importance

0<as<268 Soil Factor [ SA SH I sw PC oc
Explains % 219 [ 129 176 [ 80 59 54
pseudo-F 31 | 20 33 16 I 12 12
P 0.018 | 0122 0016 0.16 029 0396
268 < a <466 Soil Factor SA pH | cc sw sp PC
Explains % 135 [ 155 | 138 [ 106 85 68
pseudo-F 17 22 22 18 16 13
B 0.088 [ 0.034 0.036 | 007 0.162 0268
466 <a<70 Soil Factor SA sw sC PC pH cc
Explains % 434 [ 124 105 47 42 42
pseudo-F 8.4 28 28 13 12 12
P | 0.002 0.008 0.006 0254 0344 0284
a>70 Soil Factor ‘ SA oc sw PC pH SH
[ Explains % 45.1 [ 128 74 [ 70 40 | 35
pseudo-F [ 9.0 30 19 20 12 L1
P 0.002 [ 0012 [ 0.066 0.046 0366 0432

Note: This table shows only the top six soil factors of importance; SA, sediment accumulation rate; SH, soil hardness; SW, soil water content; PG, soilsilt particle; OC, soil organic carbon; SC, soil
sand particle; CC, soil clay particle; SP, soil porosity.
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Soil erosion Risk class

Priority classes

Area

Hectare (ha)

1-162 tonhaly Low v 252776 3191
162-405 ton/haly Moderate m 314132 39.67
405-800 ton/haly High 1 164512 2078
800-1875 ton/haly Very High 1 60551 761
\
Total Area 791971
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Source: Olika and Iticha (2019); Fayas et al. (2019); Prasannakumar et al. (2012).
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Elevation

Rainfall

Pearson Correlation
Elevation -0425
Sig. (1-tailed) Rainfall 0.127

Elevation 0.127

N Rainfall 9

Elevation

Unstandardized Standardized coefficients i 95.0% confidence interval for B

coefficients

B Std. Error Beta Lower bound Upper bound
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Type of soil erosion Real Simulation Contrast of area Kappa

intensity coefficient %
Area/  Area/m? Area Precision
m? difference/m? %
Uniform Non-erosive region 442 364 -078 8235
distribution T

Slight erosion 376 406 030 9202

Mild erosion [ 531 067 I 65.24

Moderate erosion [ 285 1.95 -0.9 [ 6842 |
Severe erosion 177 248 [ 071 T
Random Non-erosive region 291 3.16 025 91.41
distribution 1 | |

Slight erosion 346 388 042 87.86

Mild erosion 442 327 -115 | 7398 7362
Moderate erosion 408 446 | 038 | e
Severe erosion 257 267 010 9611
Gather distribution Non-erosive region 408 404 004 99.02
Slight erosion 400 405 005 | wrs

Mild erosion 434 362 -072 8341 75.88
Moderate erosion T 355 0.69 | e
Severe erosion 216 218 002 99.07
Bare slope control Non-erosive region 2 285 024 L a8
Slight erosion 415 400 015 [ e

Mild erosion s 385 -033 T 69.06
Moderate erosion 482 433 I 049 TS
Severe erosion 168 241 073 | 5655
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Distribution

Uniform distribution

Random distribution

Gather distribution

Bare slope control

de  2021/2022 2 2022/2023 2 3
1 0168 | 0287 0159 0217 = 0.000 1 0329 | 0226 | 0000 = 0.000 0.154
2 0290 | 0407 = 0155 | 0.116 = 0213 2 0324 | 0194 | 0242 | 0174 0224
3 0430 | 0336 0121 0085 = 0.000 3 0257 | 0268 | 0293 0215  0.000
4 0398 | 0000 0119 = 0088  0.000 4 0000 | 0256 | 0000 & 0169 = 0.127
5 0000 | 0000 0115 0000 0165 5 0000 0000 = 0319 0229 0044
1 0137 | 0193 0000 0189  0.000 1 0089 | 0274 | 0310 0238  0.000
2 0146 | 0249 | 0279 0245 0143 2 0074 | 0150 = 0000 = 0291 = 0.88
3 0148 | 0242 0254 0252 0.000 3 0000 0283 | 0254 0232 0.000
4 0000 | 0000 0270 = 0203 0263 4 0174 | 0000 & 0344 0131  0.009
5 0000 | 0000 0217 0136 0152 5 0264 | 0386 = 0204 0000 0021
1 0137 | 0193 0261 = 0000 0237 1 0081 | 0234 | 0243 | 0271  0.000
2 0146 | 0249 0279 0245 0211 2 0043 | 0192 | 0280 | 0.000 0.186
3 0148 | 0242 0254 0252 0269 3 0182 | 0215 | 0259 | 0295  0.000
4 0000 | 0229 0270 = 0203  0.000 4 0153 | 0234 | 0330 0223 0144
5 0151 | 0265 = 0000 = 0.000 = 0.152 5 0000 | 0000 & 0306 0360 0159
1 0261 | 0000 0116 0372 0356 1 0207 | 0112 | 0314 | 0420  0.000
2 0391 | 0331 0086 0135 0000 2 0000 0127 | 0355 | 0390  0.114
3 0020 | 0303 0107 = 0000 = 0.192 3 0000 0280 & 0324 0285 0175
4 0017 | 0135 = 0000 0269 0203 4 0135 | 0353 | 0324 | 0141  0.000
5 0000 | 0000 0100 = 0.197 0687 5 0145 | 0343 | 0200 | 0.000 0.124
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Number fall time Duration of rainfall (min) Rainfall amount (mi o (mm/h) Rainfall intensity (mm/h)

RI 2021.08.15 253 2260 1420 536
R2 2021.08.18 | 297 23.60 1520 477
R3 20210829 207 16.50 1620 478
R4 20220629 16 580 0.80 2175
RS 2022.07.05 15 | 10.50 120 42,00
R6 | a0 313 [ 17.00 [ 6.80 326
R7 20220726 247 [ 15.00 12.40 364
R§ 2022.08.06 93 18.60 31.60 12,00
RO 2022.08.12 41 15.80 [ 30.40 2312
RI10 2022.08.13 14 740 14.40 3171
RI1 2022.08.14 164 36.60 30.00 13.39
RI2 20220818 446 96.60 2200 13.00
RI13 20220821 258 30.80 16.80 398
R14 2022.09.03 | 196 [ 1240 [ 440 3.80
RI5 ‘ 2023.07.20 | 48 320 520 4.00
RI6 e 45 [ 4.00 640 533
R17 oo 115 10.60 [ 12,00 553
RIS 20230727 95 2260 21.60 1427
RI19 20230731 9 10.00 6.00 645
R20 2023.08.03 21 [ 17.60 16.00 478
R21 2023.08.04 147 2160 28.80 8.82
R22 20230810 81 [ 1620 2920 12,00
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Sample

area

Quadrat
number (N)

Variance
(s?)

Mean
value (M)

Pattern of
vegetation

Coverage of
vegetation

Type of vegetation

1 20 0.15 0.81 0.18 < Uniform 32.6% Asparagus cochinchinensis, Kali
1 distribution collinum, Artemisia stechmanniana,
Sophora davidii, Melilotus officinalis
2 20 0.64 0.56 114=1 Random 30.5% Asparagus cochinchinensis, Kali
distribution collinum, Artemisia stechmanniana,
Sophora davidii
3 20 346 033 2.6>1  Gather distribution 31.1% Asparagus cochinchinensis, Kali

collinum, Artemisia stechmanniana,
Sophora davidii, Melilotus officinali
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expansive soil (y,) influenced layer
06 50
07 40
08 35
09 30
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Technology types  Single Function

facilities
Rainwater Supplementary Peak flow Rainwater Transfer
collection groundwater reduction purification
utilization
Infiltration technology Pervious pavement | O . ® ® o
Green roof o o © ® o
Sunken green space | O . ® ® o
Bioretention o . ® ® o
facility
Infiltration pond | O . [} ® o
Percolation well | O ® ® o
Storage technology Rainwater tank . o [} [} o
Impoundment . o ® ® o
Wet pond . o . ® o
Stormwater ° o ° ° o
wetland
Regulation technology Regulating pool o o . o o
Regulating pond | O o ° ® o
Transfer technology Grassed swales [} o o o
Infiltration pipe/ | O ) o o .
ditch
Sewage interception and | Vegetation buffer | O o o . -
purification technology strips
Initial rainwater [} o o . -
split-flow facility
Artificial soil . o o o -
infiltration

Note:
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Predictor variables

Runoff depth

Sediment yield

MAE NSE
65 3.69 058 527
10° 123 094 117
15 07 082 132
20 121 099 2.06
25 091 087 213
65 011 076 0.22
10° 0.15 092 025
15" 011 081 029
200 0.15 091 0.24
25 021 087 023
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Type of rainfall Number of events Characteristic indexes

130/mm/h P/mm  D/h Im/mm/n S/t/hm?

A 6 Mean 1948 9438 630 | 3.10 055 1765
Vas 560 4250 3942 120 000 1o
Vis 384 1858 5212 470 088 2161

B | 21 Men 39.01 37.94 065 690 0u | e
Vas 7.20 s 100 460 o1 | oz
Vs | 89.50 10200 1100 8.00 03 | ass

(g 16 Mean 2478 63.08 2628 190 0 | 2e
Ve | 120 1740 1683 140 TS 061
Vis 649 1858 35.67 280 008 259

Note: V25 and V75 represent the 25% quantile value and 75% quantile value respectively; 130, P, D, Im, S and H represent the maximum 30 min rainfall intensity, rainfall, duration, average
rainfall intensity, runoff depth, and soil loss.
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Slope/* Slope Slope Soil Soil conservation  Crops Plant

length/m width/m thickness/m measure density/hm?
L,23 65 20 5 Purple 50 Crop rotation Wheat 22770
soil
Corn 500
4,56 10 20 5 Purple 50 Crop rotation Wheat 22770
soil t
Corn 500
7.8,9 15 20 5 Purple 50 Crop rotation ‘Wheat 22,770
soil T
Corn 500
10,11, 12 20 20 5 Purple 50 Crop rotation Wheat 2770
soil
Corn 500
13,4,15 25 20 5 Purple 50 Crop rotation Wheat 2770
soil
Corn 500






OPS/images/fenvs-13-1580149/fenvs-13-1580149-g009.gif
@

©






OPS/images/fenvs-13-1580149/fenvs-13-1580149-g008.gif
R o

@ o





OPS/images/fenvs-12-1410918/math_qu2.gif
xpv(X,fX,):{ 0(X, X)) =0
C1(X, - X)) <0





OPS/images/fenvs-13-1580149/inline_14.gif





OPS/images/fenvs-12-1410918/math_qu3.gif
n(n=1)@n+5) - Th(t-1)(2t+5)

Ty





OPS/images/fenvs-12-1410918/math_qu4.gif





OPS/images/fenvs-12-1410918/math_qu5.gif
W, = Wi+ Y (Ru - Q.






OPS/images/fenvs-12-1410918/fenvs-12-1410918-t001.jpg
Range

SPEI < -2 Extremely dry Typical drought
‘ -2 < SPEI < -15 Very dry
‘ ~1.5 < SPEI < -1 Moderately dry Normal
-1 < SPEI <1 [ Normal
‘ 1< SPEI <15 Moderately wet
‘ 15 < SPEI <2 ‘ Very wet Typical wet

‘ SPEI 22 Extremely wet
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Parameters Fitted value Calibrated range  Physical meaning

Min Max
N2 -15% -20% +20% Initial SCS CN II value ‘
ALPHA_BF Lo Lom 0.80 Baseflow alpha factor (day)
GWQMN -1 -20% +20% Threshold depth of water in the shallow aquifer required for return flow to occur (mm)
GW_DELAY [ 388 | 30 [ 450 Groundwater delays (day) ‘
ESCO Los N 1 Soil evaporation compensation factor ‘
SOL_K -17% Lo s Saturated hydraulic conductivity (mm/h) ‘

a0k =" bl indichtes & rlatv ciance, Th "0 aenihos indoslving Whe atal valos by (Libind vilus), whils usncal valisos wabihit 565 M rocosct sibintecs valies:
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1990 ‘ Area (ki)

‘ Percent (%)

2000 ‘ Area (km?)
‘ Percent (%)
2010 | Area (k)

| Percent (%)

Farmland

222153

29.10
1,369.08
17.93
1,290.40

16.90

1,364.40
17.87
1,481.74
19.41

1,491.74

19.54

2472

032

55.50

073

69.62

091

2481

032

1278

017

1381

018
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