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Editorial on the Research Topic
Network learning and propagation dynamics analysis
s

1 Introduction

In a rapidly expanding digital interconnectivity era, understanding how information,
behaviors, and innovations propagate through complex networks has become a central
interdisciplinary challenge. From online social platforms to transportation systems,
scientific collaboration, and cybersecurity, network-driven diffusion processes are shaping
collective decision-making and system performance. The Topic “Network Learning and
Propagation Dynamics Analysis” brings together a diverse set of 13 high-quality studies
that explore themechanisms, structures, and emergent patterns of learning and propagation
within multi-agent, multi-layered, and heterogeneous networks.

The articles we gathered range in subject from the diffusion of diseases and behavioral
modeling of the epidemic, to public opinion governance, recommender systems, edge
caching, and other related fields. These studies show that the theoretical richness and
practical significance of propagation dynamics in contemporary complicated systems are
reflected by the use of tools such as networks theory, data science, physics, and artificial
intelligence.

2 Presentation of the papers

The first paper, titled “Dynamics analysis of epidemic spreading with individual
heterogeneous infection thresholds” (Li) studies the diffusion of epidemics on single-layer
complex networks by analyzing the individual vulnerability of each vertex in relation to
infection spread and modeling it with a logarithmic threshold. It develops novel theoretical
models for epidemic dynamics. This study paves the way for developing vaccination and
containment strategies.

The second paper, titled “The coupled awareness-epidemic dynamics with individualized
self-initiated awareness in multiplex networks” (Zhang et al.), derives a Microscopic
Markov Chain Approach (MMCA) and validates its correctness with Monte Carlo
simulations to provide a joint model of awareness and epidemic propagation while
considering self-induced awareness at an individual level. The probability of an individual
becoming aware is conditional on the number of their aware social links. Individuals’
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knowledge increase reduces the epidemic’s spread, and ametacritical
threshold λc appears as a result of the propagation of this knowledge.

The third paper, titled “Information propagation characteristic
by individual hesitant-common trend on weighted network” (Jia et al.
), proposes a network model with cautious and casual users and
studies the spread of information. They find that different behaviors
have substantial effects on information spread rate and scale. A
transition from first-order and second-order phase transitions is
found. The evidence of the edge-partition theory by simulations
allows us to observe how individual opinions affect aggregate
spreading behaviors of heterogeneous networks.

The fourth paper, titled “The information propagation
mechanism of individual heterogeneous adoption behavior under
the heterogeneous network” (Cui et al.), introduces a two-tiered
heterogeneous network framework that integrates unique hesitant
and standard adoption mechanisms to investigate information
dissemination in intricate networks. Simulations demonstrate
that when one layer is dominant, it results in second-order
continuous phase shifts, whereas balanced layers trigger first-order
discontinuous changes. And elements like hesitation parameters
and the diversity of node degrees impact the spread significantly.

The fifth paper, titled “A novel spreading dynamic based
on adoption against the trend” (Hao et al.), introduces a novel
formulation of the process of opinion diffusion under the influence
of opposing adoption. The simulations on ER and SF networks
indicate that polarized oppositions hinder the diffusion process,
while moderate opposition allows for a smooth second-order phase
transition and leads to rough first-order phase transition. The non-
conformist influence over the patterns of propagation in social
systems is mutually determined together with bounded influence
and susceptibility.

The sixth paper is titled “Communication dynamics of congestion
warning information considering the attitudes of travelers” (Yan et al.
). In this paper, a social network background is incorporated by a
congestion alert system that propagates information spreading using
dynamical systems and optimal control theory. Results show that
sensitivity to reputation and higher propensity to share contributes
to more extensive dissemination and, thus, less congestion.

The seventh paper, titled “Analysis of differences in fossil fuel
consumption in the world based on the fractal time series and complex
network” (Zhang et al.), performs a detailed study of the fossil fuel
usage of 38 countries using fractal times series analysis and complex
network methodologies. The results show that usage is resilient for
a long duration of time, in other words demonstrating high Hurst
exponents.Thevisibilitygraphmethodologyalsoexposes thestructure
of the data, thus underlining the disparities between countries.

The eighth paper, titled “Effect of network structure on the
accuracy of resilience dimension reduction” (Liu et al.), explores the
fidelity of resilience dimensionality reduction with the impact of the
network structure. In these experiments, real-world and synthetic
networks are used; it was shown that high assortativity, clustering,
and a large modularity cause improved performance. Enhanced
fidelity is observed for both social and small-world networks
owing to specific topological properties. Theoretical support from
this work suggests that refining network topology can improve
robustness evaluation, so to enable more effective strategies to
examine complicated systems under disruption.

The ninth paper, titled “Exploring network dynamics in scientific
innovation: collaboration, knowledge combination, and innovative
performance” (Jia et al.), constructs a multilayer framework of
institutions, knowledge components, and innovative outputs to
examine the impact of collaboration and knowledge attributes on
innovation effectiveness and network behavior. Results indicate
that the variety, distinctiveness, and centrality of knowledge in
collaborative networks substantially enhance innovation results.

The tenth paper, titled “SABTR: semantic analysis-based
tourism recommendation” (Li et al.), introduces a tourist attraction
recommendation framework, SABTR, that combines LDA topic
modeling with collaborative filtering to recover latent user
preferences and predict missing ratings. Results on our modified
datasets show that SABTR outperforms conventional models (such
as PLSA or Skip-Gram) when data are sparse. This improves
both the accuracy and coverage of the echo chamber effect,
resulting in a higher selection of diverse and personalized attraction
recommendations to the user.

The eleventh paper, titled “Evolution and governance of
online public opinion during COVID-19: a hybrid approach
using communication visualization, SIR modeling, and simulation
validation” (Ren et al.), uses a two-stage SIR model along with
communication visualization to discuss the dynamics of public
opinion during the COVID-19 pandemic. Their findings reveal the
importance of key opinion nodes to accelerate the process of the
spread of opinion and average nodes to stabilize the situation. Their
simulations reveal that optimal government action should be taken
at the beginning and the climax of the spread. This study sheds light
on the need for personalized guidance and continuous monitoring
to maintain stability in online public discussions.

The twelfth paper, titled “Dynamic analysis of malicious behavior
propagation based on feature selection in software network” (Xue et al.
), introduces an efficient recurrent neural network-based malware
detection framework, MBDFE, which extracts feature selection
based on different feature lengths, specifically n-gram features from
API calls sequences, and ranks them based on the information gain.
It then classifies their behaviors using RNNs. Their experimental
findings illustrate that MBDFE provides a more accurate and faster-
to-train solution than the baselines in high-density data cases.
MBDFE provides an accurate and scalable solution for the detection
and mitigation of malicious activities in software systems.

The last paper, titled “Epidemic dynamics edge caching strategy for
6G networks” (Wang et al.), proposes a 6G edge caching technique
named CDSED which employs epidemic dynamics to build models
of content delivery. The predict genetic-annealing algorithm is
adopted in fine-grained optimizing cache allocation to enhance
hit probability. Through simulations, we demonstrate that CDSED
outperforms LRU, LFU, and MPC schemes in different scenarios,
such as when the cache scale, content number, and user numbers
are different. The model is able to provide a robust real-time edge
content delivery solution for future 6G networks.

Finally, we want to thank all the authors and reviewers who
have participated, worked hard in their efforts to organize this
challenge, and support our efforts. Our results are both a theoretical
and practical contribution toward the comprehension of dynamic
complex systems that may find further applications in real and
complex intelligently monitored systems.
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A novel spreading dynamic based
on adoption against the trend

Jiaqi Hao1, Jinming Ma1*, Siyuan Liu2 and Yang Tian2
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In the spreading dynamics of previous fashion trends, adoption researchers have
neglected to consider that some individuals may behave differently from popular
tendencies, which is called opposite-trend adoption behavior. To explore the
dissemination mechanisms of the behavior, we first establish the adoption-
against-trend model. Additionally, an edge division theory based on the
adoption of opposite trends was proposed to quantitatively analyze this
unique dissemination mechanism. This study presents three different degrees
of opposite trends, each highlighting unique spreading scenarios. In the case of a
strong opposite trend, no spreading occurs. In the case of a weak opposite trend,
limited contact will accelerate information spreading, but it will not alter the
mode of spreading. Nevertheless, in the case of a moderately opposite trend, the
degree of the opposite trend alters the mode of spreading. Meanwhile, a cross-
phase transition occurs. The findings of this paper can be applied to various areas,
including social media and commercial trades.

KEYWORDS

complex networks, information propagation, limited contact network, opposite-trend
adoption, spreading dynamics

1 Introduction

The theory of spreading dynamics can be used to analyze many aspects of life, including
healthy behaviors [1-3], social recommendations [4-9], advertising and promotion [10-11],
and fashion trends. The adoption of popular trends is strengthened by the reinforcement
effect, which can lead to further expansion. Furthermore, investigators have found that due
to the reinforcement effect, individuals showing a higher adoption trend toward certain
behaviors are more likely to adopt those behaviors [12]. Additionally, there appears to be a
connection between the reinforcement and memory effects. Upon receiving information,
individuals accumulate pieces of information, leading to either a full or partial memory
effect, as there are accumulative messages present. Moreover, the memory effect is
characterized by being non-Markovian [13-15]. Apart from the features mentioned
above, investigators discover a lot of elements that affect the infection region, including
group heterogeneity [16], network structure [17], and node preference for connection [18].

To harness information spreading, certain researchers have introduced the threshold
model [19-20]. Individuals only accept information once they have received messages
exceeding a certain threshold. Subsequent studies have proposed the use of a truncated
normal distribution due to the varying adoption probabilities of individuals impacted by
factors such as age and education level [21-22]. Leng et al. discovered that the acceptance of
information by individuals is not only related to the level of intimacy with their neighbors
but also to the degree of nodes in the social network [23]. Similarly, Cui et al. proved that the
adoption of behavior is influenced by individual interest and not merely by the behavior
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itself [24]. Some studies have demonstrated that the acceptance and
adoption of information and behavior are governed by various
influential factors in social networks. Ruan et al. examined the
process by which nodes provide inverse feedback upon the
receipt of messages, influencing vulnerable nodes [25]. Otherwise,
group behaviors should also be observed beyond individual actions.
Investigators have grouped networks into two categories: positive
and negative [26-27]. Researchers have identified imitative
behaviors in society and are studying information propagation
laws in double-layered networks by establishing gate-like
adoption functions [28]. To comprehend the information
dissemination process precisely, Zhu et al. suggested that an
individual can only obtain limited information from their finite
neighbors due to time and energy constraints [29-34].

Hence, it is crucial to establish a network with limited contact. To
date, researchers have rarely studied the dissemination of information
against the fashionable trend, which is called the adoption of behavior
against the trend. People refrain from adopting their neighbors’
behavior when they lack sufficient information. However, if a few
nodes adopt the behavior, individuals are much more likely to adopt it
as well. As the number of individuals displaying the behavior increases,
the likelihood of additional individuals adopting the behavior decreases
significantly. For example, new clothing brands do not immediately
form a trend. Initially, only a few unique individuals will purchase them.
As the clothing becomes more popular, more people will buy it.
However, some individuals may choose to avoid the trend.

Focusing on the aforementioned situation, this paper studies the
spreading mechanism among single-layer network neighbors with
limited contact. A comparable adoption threshold model is
constructed to characterize the spreading characters since the
quasi-right triangle is associated with the adoption qualities
against neighbors, which have a rapidly increasing character at
first and a slowly decreasing character thereafter. Afterward, we
propose a general edge compartmental to quantitatively analyze the
mechanism of propagation. In addition, our acceptable model has
been confirmed through simulations that coincide with theoretical
calculations. We note that there is a phase transition present,
regardless of whether the network is random or scale-free. In
cases of strong opposition, we observe that information is not
transmitted. In the weak scenario, limited contact hastens
transmission but does not convert the spreading mode. In both
networks, the mode of spreading continuously grows with a second-
order transition. In the moderate scenario, the dissemination mode
changes due to the influence of the opposite adaptive parameter.

The remainder of this paper is divided into five sections. Section
2 introduces a model of opposite trend acceptance with limited
contact ability. Section 3 presents evidence to support the validity of
the model. Section 4 examines the process of information
dissemination across two distinct networks, using both inference
and simulation. Section 5 offers a conclusion about the study as
a whole.

2 Model description

To investigate the mechanism of individual information sharing
within a single-layer social network under the influence of opposite
trend adoption and limited contact heterogeneity, a network

containing N nodes was designed. The social network is
comparable to platforms such as WeChat, Microblog, and
Facebook, and thus, a distribution of node degrees p(k)
was obtained.

According to the above description of a single-layer network
model, we use the traditional SAR model to research information-
spreading mechanisms, as shown in Figure 1. In the SAR model,
individuals can be in three different stages. Susceptible individuals
have the zest to receive information. Adopted nodes have already
received information and subsequently transmit it to their
neighbors. On the other hand, recovered nodes have received
information but have no interest in the message, so they will not
participate in the propagation of information.

We introduced limited contact to represent the contact ability of
each node. f(kj) denotes the limited contact of nodes, and kj
represents the degree of node j. If f(kj)≥ kj, adopted nodes can
transmit information to all of their neighbors. However, when
f(kj)< kj, they can only transmit information to their f(kj)
nodes, resulting in a reduced amount of information that
individuals can access. Within a unit of time, the adopted nodes
were converted by susceptible nodes with a probability of λ.
Additionally, the nodes adopted the practice of spreading
messages to all of their neighbors with a probability of λf(kj)

kj
.

We define m as the accumulation of information by nodes.
Information is not transmitted initially, but when a susceptible
node receives information, m increases by 1. We present an
adoption threshold model that exhibits the characteristic of
information spread against trends in a similar manner to a
right triangle as Eq. 1.

h x, b( ) �
0 , 0< x< b
1 − x

1 − b
, b≤ x< 1

⎧⎪⎨⎪⎩ . (1)

Here, x represents the ratio of received information to the degree
of a susceptible node and b denotes the degree parameter of opposite
trend adoption.

• The process of information spreading in a single-layer
network with limited contact is outlined as follows: prior to
transmission, we randomly select the proportion of ρ0 adopted
nodes. The remaining nodes are deemed susceptible.

• Adopted nodes, which are stochastically chosen f(kj) times
from susceptible nodes, transmit messages along edges with a
probability of λf(kj)

kj
.

• As susceptible nodes receive messages, the number of
susceptible nodes decreases by 1.

• The node will reject duplicate information that has been
previously received.

• During a unit of time, the adopted nodes have a probability of
transitioning into recovered nodes. However, if there are no
adopted nodes left, the process will terminate within that
time frame.

3 Theoretical analysis

In accordance with the hole theorem in a single-layer network
with limited contact, we assume the random selection of node i as
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the hole state. In this state, node i can merely receive information
from its adopted neighbors. The probability of nodes not
delivering information to their neighbors is determined as θkj.
We subsequently calculate the probability of node i being unable
to accept messages from its neighbors at time t as

θ t( ) � ∑kj max

kj�0

kjp kj( )
< k> θkj t( ). (2)

At time t, the likelihood of the hole-state node receiving
information from multiple neighbors can be represented by Eq. 3.

Φm ki, t( ) � ki
m

( )θ t( )ki−m 1 − θ t( )[ ]m. (3)

Although node i may receive information, it will not transition
immediately to the adopted state upon gaining such information. The
probability of node i remaining susceptible is defined as
Πm

l�0[1 − h( l
k, b)]. We accumulate the probability of the susceptible

state at time t. The degree of node i is also defined as k = ki. Node i is
defined to be in one of three states: susceptible, adopted, or recovered.
We accumulate the probability of the susceptible state at time t as Eq. 4.

τ ki, t( ) � ∑ki
m�0

Φm ki, t( ) Πm
l�0

1 − h
l

ki
, b( )[ ]

� ∑bki� �

m�0
Φm ki, t( ) + ∑ki

m� bki� �
Φm ki, t( ) ∏m

l� bki� �
1 −

1 − l

ki
1 − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

In addition, the probability of all the susceptible nodes at time t
can be represented by Eq. 5.

s ki, t( ) � 1 − ρ0( ) ∑ki
m�0

Φm ki, t( ) Πm
l�0

1 − h
l

ki
, b( )[ ]

� 1 − ρ0( )τ ki, t( )
. (5)

The probability of susceptible nodes maintaining their current
status is represented by Eq. 6.

η � ∑ki max

ki

p ki( )τ ki, t( ). (6)

Until time t, the ratio of susceptible nodes in the single-layer
network is observed to be as represented by Eq. 7.

FIGURE 1
(A) Dissemination of information in a complex network comprising a single layer. Individual 1 has embraced the information, while individuals 2, 3,
and 4 are still prone to it. Individual 5 has already regained information. Information was effectively disseminated through the blue dashed line, and node
1 that has received the information has conveyed it to its neighbors through this route. To represent the impact of limited contact, the paper sets the
parameters of limited contact at 5 and 20. This means that each node can receive either 5 or 20 pieces of information from its neighbors. (B)Nodes
that have embraced the information disseminate it to susceptible nodeswith a likelihood of λ. When state nodes transition from adopted to recovered, the
probability is represented by γ. (C) Each color represents a dissemination state—red for adopted nodes, blue for susceptible nodes, and green for
recovered nodes. (D) Probability of neighbors adopting the opposite trend. Adoption probability is 0 when 0 < x < b, but as soon as b ≤ x < 1, individuals will
adopt behavior with a probability of 1−x

1−b.
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S t( ) � ∑
k

p k( )s k, t( ) � 1 − ρ0( )η. (7)

The probability of node j being in one of the three states and not
acquiring any information from its neighboring nodes is represented
by Eq. 8.

θkj t( ) � ξS,kj t( ) + ξA,kj t( ) + ξR,kj t( ). (8)
However, the probability of node j gaining information as of

time t is represented by Eq. 9.

Φm kj − 1, t( ) � kj − 1
m

( )θ t( )kj−1−m 1 − θkj t( )[ ]m. (9)

Susceptible nodes will not transition to adopted state nodes until
they receive a certain quantity of messages. Therefore, we define the
probability of a node receiving n messages and remaining in the
susceptible state as ς(kj − 1, t). At time t, the probability of a node j
with degree kj remaining in the susceptible state is calculated.

ζn kj − 1, t( ) � ∑kj−1
n�0

Φn kj − 1, t( ) Πn
l�0

1 − h
l

kj
, b( )[ ]

� ∑bkj� �
n�0

Φn kj, t( ) + ∑kj
n� bkj� �

Φn kj, t( ) ∏n
l� bkj� �

1 −
1 − l

kj
1 − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(10)
where the likelihood of nodes connecting to neighbors via an

edge is determined as kjp(kj)
< kj > . At time t, the probability of susceptible

nodes remaining in their current state as they have not received any
information is

ξS,kj t( ) � 1 − ρ0( )ζn kj − 1, t( ). (11)
Since the impact is limited by contact, the probabilities of an

adopted node j delivering information to its neighbors and
transmitting through edges are determined as f(kj)

kj
and λ,

respectively. Therefore, the probability of a node transmitting
information to its neighboring nodes via edges is established as
λf(kj)
kj , and a function can be obtained as Eq. 12:

dθkj t( )
dt

� −λf kj( )
kj

ξA,kj. (12)

Due to the adopted nodes being converted to a recovered state
with a certain probability γ, it is possible to require the function
about

dξR,kj(t)
dt , which can be expressed as Eq. 13

dξR,kj t( )
dt

� γξA,kj t( ) 1 − λf kj( )
kj

⎛⎝ ⎞⎠. (13)

By combining Eqs 10, 11, we can derive

ξR,kj t( ) � γ 1 − θkj t( )[ ] kj

λf kj( ) − 1⎡⎢⎣ ⎤⎥⎦. (14)

By applying Eqs 11, 14 along with Eq. 10, we derive the following
result: ξA,kj(t). Regarding the initial conditions, information has not
been transmitted yet. As a consequence, we can calculate the probability
of susceptible nodes not receiving any messages using Eq. 15:

θkj 0( ) � 1. (15)

At the same time, the network does not have any recovered
nodes, providing us with the knowledge that

ξR,kj 0( ) � 0. (16)

Overwriting function

dθkj t( )
dt

� −λf kj( )
kj

θkj t( ) − ξS,kj t( )[ ] + γ 1 − θkj t( )[ ]
× 1 − λf kj( )

kj
⎛⎝ ⎞⎠. (17)

When t → ∞, on the basis of Eq. 20, we obtain

θkj ∞( ) � ξS,kj ∞( ) + γ 1 − θkj ∞( )[ ] kj

λf kj( ) − 1⎡⎢⎣ ⎤⎥⎦. (18)

Substituting Eq. 18 into Eq. 2, we obtain Eq. 19

θ ∞( ) � ∑
kj�0

kjp kj( )
< k> θkj ∞( ) � g θ ∞( )( ). (19)

In order to simplify the process, we consider

θ ∞( ) � g θ ∞( )( ). (20)
When Eq. 16 is in tangency with Eq. 17, it can be observed that a

value abruptly changes into another value. The implication is that
R(∞) increases discontinuously with λ. When θ(∞) < 1, the critical
condition for information spreading can be obtained as Eq. 21:

∂g θ ∞( )( )
∂θ ∞( ) � 1. (21)

4 Results and discussion

In this study, the network comprised a set number of total
nodes of 2 × 104 and an average degree of 10. To demonstrate the
parameter, experiments were conducted on both the random
networks (ER) and scale-free networks (SF). The ER network
adheres to a Poisson distribution p(k) � e−<k><k> k

k! for its node
degree, unlike the SF network, which displays a power–law

distribution with values of p(k) = ζk−v and ζ � 1/∑
k

k−v. It was

observed that the heterogeneity of the node distribution was
negatively correlated with the degree exponent v. To
comprehend the complete information transmission process, we
establish γ as 1. The specific critical value is denoted by χ, as
detailed in Eq. 22.

χ � < R ∞( ) − <R ∞( )>( )2 >
<R ∞( )> 2

. (22)

4.1 Analysis of opposite adoption against
neighbors on the ER network

The limited contact that is heterogeneous in nature is
observed to impact the ultimate range of propagation for both
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Figures 2A, B. Additionally, variations in the mode of
dissemination are uncovered. The data suggest that the
increase in λ eventually leads to universal acceptance R(∞). If
in a weak opposite trend condition b = 0.01, the growth mode of
R(∞) continues in a second-order fashion. Notably, R(∞)
remains unchanged, and information is not disseminated
under strong opposite conditions b = 0.15. Under moderate
opposite-trend conditions b = 0.10 with limited contact, the
transition R(∞) is second-order and continuous. However,
under strong limited contact, the transition R(∞) is first-
order and discontinuous. A comparison of the figures reveals
that stronger limited contact has a greater impact on the spread of
the network than weaker contact.

Figures 2C, D indicate the ratio of critical dissemination of
information, including relative errors. The highest point of
relative errors χ, known as the critical point, demonstrates
global adoption. The theoretical (lines) and simulated
(symbols) results coincide.

The growth mode about R(∞) depends on λ and b (Figure 3).
In region I, as λ increases, there is a second-order phase transition
of R(∞) in continuous forms. In region II, there is a first-order

phase transition in discontinuous forms. No information was
reported for region III. The condition for the phase transition
changes with varying degrees of parameter opposition. It is worth
noting that the critical conditions for first- and second-order
phase transitions correspond to the continuous and
discontinuous growth of propagation, respectively.
Additionally, the color temperature chart can elucidate the
mechanisms of spreading and analyze the changes in
spreading modes.

4.2 Analysis of opposite adoption against
neighbors on the SF network

Figures 4A, B demonstrate the relationship between
heterogeneous degree distribution and b influence on global
adoption R ∞( ). With λ growing, R ∞( ) increase to globally
adoption. The findings from Figures 4C, D indicate the ratio of
critical dissemination of information, including relative errors. It
becomes clear that heterogeneous degree distribution has no effect
on the transmission mode of information. In the condition with an

FIGURE 2
Impact of final spreading scope R ∞( ) on distinct opposite trend degree parameters b and heterogeneous limited contact with unit transmission
rates λ in the ER network. Limited contact values of 5 and 20 are shown in (A) and (B) respectively. The ratio of initial infected nodes is also presented ρ0 =
0.00125. Relative mistakes corresponding to (A) and (B) are depicted in (C) and (D) respectively.
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opposite middle b = 0.10, phase transitions vary. In a strong
opposite situation b = 0.15, the growth pattern of R ∞( ) is first
discontinuous. Conversely, in a weak condition b = 0.01, the
increment mode about R ∞( ) is continuously second. The
maximum value of relative error can indicate an explosion in

information propagation at a certain point. Studying the
amplitude of relative error can reflect the scale and pattern of
propagation bursts during propagation.

In Figure 5, the combination effect of (λ, b) on the variable
R(∞) is depicted. In region I, as λ increases, the pattern of R(∞)

FIGURE 3
It can be inferred that there is a shared impact (λ,b) on R(∞) in the ER network. Limited contacts are observed at 5 in (A) and 20 in (B), with the ratio
of initial infected nodes being ρ0 = 0.00125. In region I, the increase in R(∞) follows a second-order continuous pattern, which distinguishes it from
region II, where it increases in a first-order discontinuous pattern. No information propagation is detected in region III.

FIGURE 4
Impact b and heterogeneous limited contact on R(∞) with λ in the SF network. Limited contact is 20, while the heterogeneity of degree v is 2.1 in
(A) and 4 in (B). The impact of these factors on the phase transition in (A) and (B) is evidenced by b. And we set initial infected nodes ρ0 = 0.00125.
(C) and (F) represent relative discrepancies that correspond to (A) and (B).
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represents a second continuous phase transition. In region II, the
mode of increments R(∞) represents a first discontinuous phase
transition. In region III, there is no explosion of information.
Regardless of the scenario shown in Figure 3 or Figure 5, a cross-
phase transition occurs at the junction of a discontinuous (in
region II) or continuous (in region I) phase transition.

5 Conclusion

In this paper, we analyze the mechanism of information
spreading in relation to the adoption of opposing views within
neighboring communities. We investigate the impact of opposite
trend adoption among neighbors in a single-layer network and
find that this behavior influences information dissemination to
varying degrees. Meanwhile, we propose an adoption threshold
function that takes the form of a right triangle with
limited contacts.

The results demonstrate that under a strong opposite trend
condition (b = 0.15), information will not be disseminated.
Moreover, limited contact promotes the dissemination
process, and with the increase in R(∞), the dissemination
scope is second-order continuous under a weak condition
(b = 0.01). Interestingly, there is a cross-phase transition in
the results of the opposite trend condition in the middle (b =
0.10). The growth mode about R(∞) in the ER network shifts
from continuous second-order to discontinuous first-order,
whereas in the SF network, it transits quite contrarily. These
results reveal the significant importance of opposite-
trend adoption.

In future research, researchers could investigate the prevalence
of counter-trend adoption in new settings. For instance,
investigators can study counter-trend adoption in multi-layer
networks and even discover information heterogeneity among
individuals.
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FIGURE 5
It can be inferred that there is a shared impact (λ,b) on R(∞) in the SF network. It demonstrates that in the scale-free network, there is a common
influence about (λ,b) on R(∞) across different heterogeneity parameters, i.e., 2.1 in (A) and 4 in (B), with same limited contact at 20. The ratio of initial
infected nodes is specified ρ0 = 0.00125. In region I, the increase in R(∞) follows a second-order continuous pattern, differing from region II, where the
increase follows a first-order discontinuous pattern. No information spreading occurs in region III.
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heterogeneous adoption
behavior under the
heterogeneous network

Shiru Cui and Xuzhen Zhu*

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China

To explore heterogeneous behavior diffusion in the same population under a
heterogeneous network, this study establishes a dual-layer heterogeneous
network model to simulate the spreading patterns of hesitant individuals and
regular individuals in different networks. It analyzes the influence of to
investigate heterogeneous behavior diffusion within the same population in
a heterogeneous network, this paper establishes a dual-layer heterogeneous
network model to simulate the spreading patterns of hesitant individuals and
regular individuals in different networks. It analyzes the influence of
individuals’ hesitation states and different spreading patterns in
heterogeneous networks on the information diffusion mechanism. In the
propagation of this model, when either layer of the dual-layer network
becomes the dominant spreading layer, second-order continuous
spreading is observed. However, when the regular adoption behavior
serves as the dominant spreading layer, its spreading threshold occurs
earlier than the spreading threshold when hesitant adoption behavior is the
dominant spreading layer. When there is no dominant spreading layer, first-
order discontinuous spreading is observed, and the spreading threshold
occurs later than the threshold in the presence of a dominant spreading
layer. Additionally, the study discovers the existence of cross-phase
transitions during the spreading process. The results of theoretical analysis
align with the simulation results.

KEYWORDS

complex network, nonlinear dynamics, behavioral propagation, heterogeneous network
layer, heterogeneous adoption functions

1 Introduction

In the field of network science, the study of social communication has garnered
widespread attention among researchers [1, 2]. It can be applied to analyze financial
behaviors [3, 4], social information diffusion [5], and emotional contagion [6].
Furthermore, it can be utilized for disaster prediction [7] and risk mitigation [8].
Scholars have explored the mechanisms of social communication through both
theoretical analysis and extensive experimental validation. Research has revealed that
social communication exhibits certain unique reinforcement effects compared to
biological propagation [9, 10].
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In the early stages of research, the most commonly used approach
was the threshold model based on memoryless Markov processes [11].
In this threshold model, a behavior is adopted when the number of
adopting neighbors exceeds a predetermined threshold [12, 13]. Given

the small proportion of initial seeds, the initial infection rate is predicted
using percolation principles [14, 15]. Based on the assumption of
constant thresholds, because of variations in the average degree,
saddle-node bifurcation occurs, leading to a continuous increase and
subsequent discontinuous decrease in the final adoption size with
increasing network average degree. Research has found that factors
such as the initial number of seeds [16, 17], clustering coefficient [18],
multilayer networks [19], network temporal dynamics [20] and time-
varying [21] significantly affect information propagation in the
threshold model.

In the field of complex networks, numerous scholars have
conducted extensive research on propagation behaviors in single-
layer networks. However, studies have shown that multilayer
networks better represent real-world social networks. In the context
of bio-information networks [22], individuals can access various
information in the information network to execute different
strategies in the biological network [23]. For example, during the
COVID-19 pandemic, people could obtain preventive measures
through the internet, leading to improved habits and reduced
chances of contracting the virus in the biological network. In the
case of multilayer information networks, individuals often do not
rely on a single channel to interact with the external world. Each
person has multiple social channels, such as WeChat, Twitter,
Instagram, and more. Thus, in a multilayer network, information
does not propagate solely within a single layer but rather
disseminates through multiple coupled networks. However,
individual information acquisition remains singular [24]. For
instance, on the YouTube platform, users can upload and share
video content, and other users can subscribe to their channels. This

FIGURE 1
(A) shows the connections between individuals and the information dissemination of individuals in a two-layer heterogeneous network. (B) The
probability of an adoptive individual transferring information to a susceptible individual is λ. The probability of an adoptive individual changing into a
recovered individual is γ. (C) shows different colors represent different individual states. (D) shows the individual adoption behavior function image of an
individual at layer A, and (E) shows the individual adoption behavior function image of an individual at layer B.

FIGURE 2
Figure illustrates the intricate connections within a complex
network comprising multiple nodes. The states of the nodes and their
relationships are essentially identical to those described in Figure 1.
Layer A and Layer B represent the social context of the same
node within two distinct social communication networks. While the
node maintains the same status across different social networks, its
connectivity varies. Within each layer, solid lines denote connected
nodes that do not propagate information, while dashed lines indicate
the transmission of information between two nodes connected by
an edge.
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forms a user-user connectivity network. Each video can be viewed,
commented on, and shared by other users, creating a video-user
connectivity network. When a user uploads a video, their
subscribers can see it in their subscription feed. If these subscribers
find the video appealing or valuable, they can choose to share it with
their own audience. Consequently, the video spreads through user-to-
user sharing in the network. In this example, the social network among
users and the video-user connectivity network constitute a multilayer
network. Video content propagates through sharing and viewing
behaviors among users, and this multilayer network structure can
influence the dissemination path, view counts, and impact of videos.
In conclusion, multilayer networks better capture the essence of real-
world networks, allowing us to simulate human behavior in real-life
situations.

With the diversification of information channels and the complexity
of information forms, people are living in an era of fragmented
information, and the adoption patterns of information have gradually
become differentiated and heterogeneous. This is especially true for
differentiating information sources. For information channels with low
trustworthiness, people may encounter a mix of correct and incorrect
information, leading to skepticism towards the information from these

channels. Conversely, for information channels with high
trustworthiness, such as those associated with authoritative sources or
long-standing trust, people are more likely to trust and adopt
information from these channels [25]. Therefore, the two-layer
network model [26] takes into account the more complex
information transmission, which has significant practical implications.
Previous research has not extensively addressed heterogeneous threshold
functions. While some studies have explored two-layer networks, they
often assume the same threshold function for both layers. However, in
real life, due to the heterogeneity between layers, people have different
levels of trust and acceptance for information from different sources.
Consequently, people behave differently after acquiring information
from different platforms. Therefore, adopting heterogeneous
functions for different channels better reflects reality. In this study, a
heterogeneous threshold function is employed in the two-layer model to
capture this phenomenon.

Existing research has shown that individuals exhibit different
adoption attitudes towards the same information on different
network layers, and their attitudes may change as the amount of
information they receive fluctuates [27]. However, there is relatively
limited research on considering heterogeneous adoption in

FIGURE 3
The graph illustrates the impact of the hesitation degree parameter α and the propagation probability λ on the information outbreak size R (∞), the
final adoption range, and the relative variance in an ER-ER network, with a fixed hesitation amplitude parameter β. In graph (A) (β = 0.5) and graph (C) (β =
0.8), the influence of αon the information outbreak size is shown as the propagation probability varies. The symbols represent simulation results, while the
lines depict theoretical predictions. Different values of α correspond to different propagation patterns of information. In graph (B) (β = 0.5) and graph
(D) (β = 0.8), the peak distribution of the relative variance of the adoption range is shown as the propagation probability varies for different α values. The
peaks correspond to the outbreak points in graph (A) and graph (C), respectively. The remaining parameters are set as ρ0 and γ = 1.

Frontiers in Physics frontiersin.org03

Cui and Zhu 10.3389/fphy.2024.1404464

18

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1404464


information propagation within complex networks. In real social
networks, individuals vary in their level of adoption across different
layers of information. Based on the adoption attitudes towards
information on different layers, this study categorizes
heterogeneous adoption in social networks into two types: regular
adoption and hesitant adoption. Regular adoption refers to a linear
increase in the willingness to adopt with the number of received
information or behaviors. Hesitant adoption, on the other hand,
involves a state of hesitation regarding whether to adopt, requiring
repeated verification of information and accumulating more
information before developing the willingness to adopt. For
instance, when a popular piece of information appears on the
internet, an individual is more likely to increase their trust and
adopt it on reliable information platforms, leading to a rapid
saturation of adoption on such platforms. However, when the
same individual encounters this information on an untrustworthy
platform, they may exhibit a hesitant adoption stance, repeatedly
verifying the information before deciding to adopt. As a result, the
propagation speed on such platforms is slower, and it takes some
time for the adoption to reach a relative saturation point. Therefore,
studying the behavioral division of inter-layer adoption
heterogeneity will contribute to a deeper understanding of the
propagation mechanisms in multi-layer social networks.

The paper proposes a heterogeneous threshold adoption function
on a two-layer model and constructs a heterogeneous adoption
behavior network model for the same information on the two
layers. It investigates the heterogeneous information propagation in
a heterogeneous network of the same population. Through extensive
simulation and theoretical analysis, the study reveals that when either
layer dominates, the final outbreak of the adoption range manifests a
second-order continuous phase transition. In contrast, when there is no
clear dominant layer, the outbreak follows a first-order discontinuous
phase transition. The timing and extent of the outbreak are influenced
by various factors such as hesitant adoption parameter, degree
heterogeneity parameter, and propagation probability. In the steady
state, the final propagation range reaches global dissemination.

2 Model introduction

2.1 SAR model and information
adoption mechanism

To investigate heterogeneous adoption behavior in a heterogeneous
network within the same population, this study utilizes the SF network
model and ER networkmodel as the physical network structure models
for the experiments. In each layer, a bipartite network model with N
nodes and a degree distribution of P(k) is constructed. The layersA and
B stand for two different social networks, while the edges between nodes
stand for their social connections. To explain heterogeneous behavior
propagation on the multilayer network, a generalized Susceptible-
Adopter-Recovered (SAR) model is used. At any given time, each
node can only be in one of the following three states: susceptible (S),
adopter (A), or recovered (R). S-state nodes can only obtain behavioral
information from their neighboring nodes and adopt that information
with a certain probability. A-state nodes have already adopted the
behavior and are willing to propagate the behavioral information to
their neighbors. R-state nodes are not interested in the behavioral
information and do not propagate it to other neighbors.

The variables mA and mB are used to accumulate the information
received by nodes in layers A and B, respectively. At each time step,
when a node successfully gets information from neighbors in layer A or
layer B, the corresponding variablemA

i ormB
i will be incremented by 1.

The adoption probability functions for layer A and layer B are denoted
by ha (x, α, β) and hb (x, α), respectively. During the propagation
process, S-state node i adopts information from layerA and layer Bwith
adoption probabilities ha (x, α, β) and hb (x, α), respectively, converting
to the A-state. The states of nodes in the bipartite network are
synchronized, meaning that any node in the A-layer and B-layer has
the same state. Once the state of a node changes in one layer, it will
correspondingly change in the other layer as well.

Figure 2 more intuitively illustrates the relationship between
Layers A and B as discussed earlier. Arrows and directional cues
emphasize the flow of information or influence from Layer A to

FIGURE 4
Graph (A) represents the relationship between the information outbreak size and the hesitation degree parameter α and propagation probability λ in
an ER-ER network, with a fixed hesitation amplitude parameter β = 0.5. Graph (B) represents the relationship between the information outbreak size and
the hesitation amplitude parameter β and propagation probability λ in an ER-ER network, with a fixed hesitation degree parameter α = 0.5. The remaining
parameters are set as ρ0 and γ = 1.
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Layer B, indicating the dynamic relationship between them. This
illustration aims to enhance understanding by providing a visual aid
that complements the textual description, helping to grasp the
complex interactions between the layers more visually.

2.2 Heterogeneous adoption functions

For layer A, Eq. 1 is as follows:

ha x, α, β( ) �
β −0.5 cos 2πx

α
+ 0.5( ), 0≤x< α

−0.5 cos π x − α( )
1 − α

( ) + 0.5, α≤ x< 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

When 0 ≤ x < α (Region I in Figure 1D), the adoption probability
initially increases non-linearly to its maximum value β and then
decreases to 0.When α ≤ x < 1 (Region II in Figure 1D), the adoption
probability increases non-linearly with x from 0 to 1:

For layer B, Eq. 2 is as follows:

hb x, α( ) � −0.5 cos πx

1 − α
( ) + 0.5, 0≤x< 1 − α

1, 1 − α≤ x< 1

⎧⎪⎨⎪⎩ (2)

When 0 ≤ x < 1 − α, as Region I in Figure 1E, the adoption
probability increases with the increase of x until it reaches 1. On the
other hand, when 1 − α ≤ x < 1, as Region II in Figure 1E, the
adoption probability remains constant at 1. When x < 1 − α, the
increase in x enhances the individual’s adoption capability, while
when x < 1 − α, the adoption capability remains stable.

2.3 Propagation process and methods

• The network consists of N individuals, with a portion initially in
state A and the remaining in state S, without any behavioral
information (mX = 0). The quantity ρ0 stands for the initial ratio
of individuals in state A, defined as the proprtion of the number
of individuals in state A to the total number of individuals in
the network.

• The probability of an individual in state S receiving behavioral
information from an individual in stateA is λ.When an individual
receives behavioral information from another individual in stateA,
the information countm of that individual increases by 1. Due to
the non-redundancy of information, an individual cannot receive
the same neighbor’s information repeatedly.

• In layers A and B, individuals in state S adopt behavioral
information with probabilities N and M, respectively. If adopted,
the individual transitions to state A; otherwise, it remains in state S.
Additionally, whenever the state of a node changes in one layer, the
state of the other layer also changes accordingly.

• When an individual in state A transmits behavioral
information to neighboring individuals, there is a possibility
of transitioning to state R with probability γ, ceasing to take
part in the subsequent propagation process.

• Repeat the process from Step 2 to Step 4 until the state of
individual nodes in the network remains unchanged, with only
nodes in states S and R. At this moment, the propagation

reaches a steady state, and the behavioral information
stops spreading.

3 Formula derivation

Based onRef. [28], this study employs an edge-based compartmental
(EBC) method for theoretical analysis of the model. By analyzing the
variation in the number of individuals in different states in a multilayer
network, the study provides a theoretical evaluation of the propagation
mechanism in a heterogeneous adoption behavior network for the same
information in a dual-layer setting.

Inspired by the “Hole Theory” [29], it shows that individual i is
in a “hole” state, meaning it cannot transmit information to its
neighbors but can receive information from them. Let
θXkXj

(t)(X ∈ A, B{ }) represent the probability that an individual
with degree kj has not transmitted information to i until time t.
Then, in different layers, the probability that individual i has not
received any information until time t can be expressed as Eqs 3, 4:

θA t( ) � ∑
kAj �0

kAj P kAj( )
〈kA〉 θAkAj t( ) (3)

and

θB t( ) � ∑
kBj �0

kBj P kBj( )
〈kB〉 θBkBj t( ) (4)

Based on the assumption that
kXj P(kXj )
〈kX〉 (X ∈ A, B{ }) represents the

probability of node j being connected to node i in layer X, it can be
derived that the probability that node i accumulates mX non-
redundant information in layer X at time t as Eq. 5:

ϕX
mX

kXi , mX, t( ) � kXi
mX

( )θX t( )kXi −mX 1 − θX t( )[ ]mX (5)

Therefore, the probability that node i does not adopt any
behavior in layer A and remains in state S is∏mA

l�0[1 − ha(x, α, β)], and the probability that node i does not
adopt any behavior in layer B and remains in state S is∏mB

l�0[1 − hb(x, α)]. It can be then calculated that the probability
that node i remains in state S after receiving mX non-redundant
information in both layer A and layer B until time t as Eqs 6, 7:

τA kAi , mA, t, α, β( ) � ∑m
r�0

ϕA
mA

kAi , t( )∏r
l�0

1 − ha
kAi
l
, α, β( )[ ]

� ∑αkAi
r�0

ϕA
mA

kAi , t( )
× ∏r

l�0
1 − β −0.5 cos 2πk

A
i

αl
+ 0.5( )( )

+ ∑m
n�akAi

ϕA
mA

kAi , t( )
× ∏αki

l�0
1 − β −0.5 cos 2πk

A
i

αl
+ 0.5( )( )

× ∏n
l�akAi

1 − −0.5 cos π x − α( )
1 − α

( )( ) + 0.5( )
(6)
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τB kBi , mB, t, α, β( ) � ∑m
r�0
ϕB
mB

kBi , t( ))∏r
l�0

1 − hb
kBi
l
, α( )[ ]

� ∑1−α( )kBi

r�0
ϕB
mB

kBi , t( )
× ∏r

l�0
1 − −0.5 cos πkBi

1 − α( )l( ) + 0.5( )( )
+ ∑m

n�akBi
ϕB
mB

kBi , t( )

× ∏1−α( )kBi

l�0
1 − −0.5 cos πkBi

1 − α( )l( ) + 0.5( )( )
× ∏n

l�akBi
1 − 1( )

� ∑1−α( )kBi

r�0
ϕB
mB

kBi , t( )∏r
l�0

0.5 + 0.5 cos
πkBi
1 − α( )l( )( )

(7)
So, the probability that node i, with k

.

i � (kAi , kBi ), remains in
state S after accumulatingmA and mBmessages in networks A and B
respectively until time t can be calculated as Eq. 8:

s(k
.

, t) � 1 − ρ0( ) ∑kAi
mA�0

ϕA
mA

kAi , t( )∏mA

l�0 1 − ha
kAi
l
, α, β( )[ ]

× ∑kBi
mB�0

ϕB
mB

kBi , t( )∏mB

l�0 1 − hb
kBi
l
, α( )[ ]

� 1 − ρ0( )τA kAi , mA, t, α, β( )τB kBi , mB, t, α, β( ) (8)

If S(t), A(t), R(t) are used to represent the proportions of nodes
in different states, considering nodes with different degrees, the
proportion of nodes in the susceptible state at time t can be
expressed as Eq. 9:

S t( ) � ∑
k
.

PX k
.( )s k

.

, t( ) (9)

Considering that the neighbors of individual i can be in the
susceptible, adopter, or recovered state, θXkXj

(t) can be further
expressed as Eq. 10:

θXkXj t( ) � ξXS,kXj t( ) + ξXA,kXj t( ) + ξXR,kXj t( ) (10)

In this case, ξXS,kXj (t), xiXA,kXj
(t), xiX

R,kXj
(t) represent the

probabilities of neighbor node j being in the susceptible,
adopter, and recovered states, respectively, and not
having transmitted information to node i until time t. Since
node i is in a “hole” state, it cannot transmit information to
node j. Therefore, the probability that node j accumulates nX
non-redundant information in layer X at time t can be
expressed as Eqs 11, 12:

ζA kAj − 1, nA, t( ) � ∑k
A
j −1

nA�0
ϕA
nA

kAj − 1, nA, t( )∏nA

l�0 1 − ha x, α, β( )[ ]
(11)

ζB kBj − 1, nB, t( ) � ∑k
B
j −1

nX�0
ϕB
nB

kBj − 1, nB, t( )∏nB

l�0 1 − hb x, α( )[ ] (12)

In layer X, the probability that node j remains in the susceptible
state at time t is as Eqs 13, 14:

ξAS,kXj t( ) � 1 − ρ0( ) 1 − 1 − ζA kAj − 1, nA, t( )( ] 1 − τB kBj , nB, t( )( )[ ]
(13)

and

ξBS,kXj t( ) � 1 − ρ0( ) 1 − 1 − ζB kBj − 1, nB, t( )( ] 1 − τA kAj , nA, t( )( )[ ]
(14)

Since the probability of transmitting information through edges
is λ, and the recovery probability of adopter nodes is γ, the equation
for ξXR,kXj (t) as Eq. 15:

dξXR,kXj t( )
dt

� γ 1 − λ( )ξXA,kXj t( ) (15)

At time t, the probability of information being transmitted
through an edge is equal to the probability of an adopter node
transmitting the information to a susceptible neighbor. Therefore,
Eq. 16 is as follows:

dθXkXj t( )
dt

� −λξXA,kXj t( ) (16)

By combining Eqs 12 and 13, Eq. 17 can be obtained:

ξXR,kXj t( ) �
γ 1 − λ( ) 1 − θXkXj t( )[ ]

λ
(17)

By substituting Eqs 8 and 14 into Eq. 13, Eq. 18 can be obtained:

dθXkXj t( )
dt

� −λ θXkXj t( ) − ξXS,kXj t( )[ ] + γ 1 − λ( ) 1 − θXkXj t( )[ ] (18)

Given the initial conditions for θX (0) = 1 and ξXR,kXj (t) � 0, when
t → ∞ the Eq. 15 equals 0, Eq. 19 can be derived the expression for
θXkXj

(t) as:

θXkXj t( ) �
λξXS,kXj t( ) + γ 1 − λ( )

γ 1 − λ( ) + λ
(19)

By substituting the expression for θXkXj (t) into Eqs 2 and 3, Eq. 20
can be obtained:

θX ∞( ) � ∑
kXj �0

kXj P kXj( )
〈kX〉 θXkXj ∞( ) � fX θA ∞( ), θB ∞( )( ) (20)

To simplify the notation, let’s use the function f(x) to
represent θX (∞).

By substituting the obtained equations into (4)–(7), it can be
derived that the proportion of susceptible nodes S (∞). Since the
growth of dA(t)dt is due to the decrease in S(t), so the equations for the
proportions of nodes in different states as Eqs 21, 22:

dA t( )
dt

� −dS t( )
dt

− γA t( ) (21)
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and

dR t( )
dt

� γA t( ) (22)

Based on S (∞), it can be obtained that R (∞) as a complement
to 1, since the proportions of nodes in all states must sum up to 1.

To further investigate the conditions for non-continuous growth
of the function, the situation can be determined when Eq. 17 is
tangent to θX (∞) < 1 by calculating the following Eq. 23:

∂fA θA ∞( ), θB ∞( )( )
∂θB ∞( )

∂fB θA ∞( ), θB ∞( )( )
∂θA ∞( ) � 1 (23)

4 Parameter settings

To ensure simulation accuracy, a minimum of 103 dynamic
realizations are recommended in the network for this study. The

network size is set to N = 104, with an average degree of
〈kA〉 � 〈kB〉 � 〈k10〉 � 10. To investigate the impact of contact
capacity on information propagation mechanisms in ER-ER and
SF-SF networks, the network layer XX ∈ A, B{ } in ER-ER network
follows a Poisson degree distribution pX(kX) � e−〈kX〉〈kX〉

kX

kX!
, while

in SF-SF network, the network layer follows a power-law degree
distribution pX(kX) � ξXkX

−v. Here, ξX � 1∑
kX

kX
−v and ] are

parameters representing the degree exponent of layer A and layer
B, respectively.

The heterogeneity of the network degree distribution is
negatively correlated with the degree distribution exponent ].
When ] is small, the network contains a few high-degree nodes
andmany low-degree nodes. Additionally, to make the process more
convenient, the information transmission probability is set as λA =
λB = λ, and the recovery rate is set as γ = 1.0.

The peak of the relative variance χ curve of the final adoption
range and the corresponding information transmission probability
at the critical points are as Eq. 24:

FIGURE 5
The graph shows the effects of the hesitation degree parameter α and the propagation probability λ on the information outbreak size R (∞) and the
relative variance of the final adoption range in an SF-SF network with a fixed hesitation amplitude parameter β, where the heterogeneity parameter V is set to
2.1. Graphs (A) (β = 0.5) and (C) (β = 0.8) illustrate the influence of α on the information outbreak size as the propagation probability varies. The symbols
represent simulation results, while the lines depict theoretical predictions. Different propagation patterns of information are observed for different values
of α. Graphs (B) (β = 0.5) and (D) (β = 0.8) display the distribution of the relative variance of the adoption range for different α values as the propagation
probability changes. They correspond to the variations observed in graphs (A, C), respectively. The remaining parameters are set as ρ0 and γ = 1.
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χ � N
〈 R ∞( )2( 〉 − 〈R ∞( )〉2

〈R ∞( )〉 (24)

The symbol 〈 . . . 〉 here represents the ensemble average.

5 Simulation and discussion

In this paper, the first exploration is about the propagation of
information on a weighted ER network, where the nodes in the ER
network follow a Poisson distribution, denoted as
[P(k) � e−〈k〉〈k〉k/k!. The simulation results represented by
symbols and the predicted results represented by lines show
consistent trends.

5.1 ER network

From Figure 3A, it can be observed that when the individual
hesitation amplitude is relatively small (β = 0.5), the outbreak of R (∞)
exhibits second-order continuous phase transitions for α = 0.2 and α =
0.8. The propagation outbreak occurs earlier but with a slower growth
rate for α = 0.2 compared to α = 0.8. However, when α = 0.5, the
outbreak point occurs later, and the growth pattern is characterized by
discontinuous growth with a faster rate. In the steady state, the final
propagation size reaches complete spread for all values of α. Figure 3C
indicates that when the individual hesitation amplitude is relatively large
(β = 0.8), the propagation patterns are similar to those in Figure 3A, but
the outbreak of R (∞) occurs earlier, and there are cross-over phase
transitions in the propagation. Additionally, when α = 0.2 and α = 0.8,
the outbreak point for α = 0.2 precedes that of α = 0.8, indicating that
the impact of the hesitation amplitude β on the propagation differs for
different hesitation degrees α.

Figure 3B demonstrates that when β = 0.5, the relative variance
of the adoption range exhibits an earlier outbreak for α = 0.8,
followed by α = 0.2, and finally α = 0.5. The saturation order is

α = 0.8, α = 0.2, α = 0.5. In Figure 3D, when β = 0.8, the relative
variance of the adoption range exhibits an earlier outbreak for α =
0.2, followed by α = 0.8, and finally α = 0.5. The saturation order is
α = 0.2, α = 0.8, α = 0.5.

Figure 4A represents the joint effect of the hesitation amplitude

parameter β and the hesitation degree parameter α on the final

adoption range R (∞) in an ER network. Based on different phase

transition patterns, Figure 4A can be divided into four regions. In

regions I (0.75 < α ≤ 1) and III (0.09 < α ≤ 0.41), as λ increases, a

second-order continuous phase transition is observed. This is

because when α is large (dominance of the ordinary state) or

small (dominance of the hesitant state), both layer A (ordinary

state adoption) and layer B (hesitant state adoption) exhibit single-

layer outbreaks, where the outbreak of one layer leads to the

outbreak of the other layers, resulting in continuous propagation.

In region II (0.41 < α ≤ 0.75), a discontinuous first-order phase

transition is observed as λ increases. This occurs when both layers

simultaneously outbreak, but with a delayed outbreak point,

indicating the absence of a dominant propagation layer. In

region IV (0 < α ≤ 0.09), there is no growth, indicating the

absence of information outbreak in this region.
Figure 3B represents a continuous single-stage process, exhibiting

a continuous second-order phase transition as λ increases. As β

decreases, the propagation becomes slower, indicating a positive
correlation between the hesitation amplitude parameter and the
hesitant population.

5.2 SF network

In a weighted SF network, there is a negative correlation between
the heterogeneity of node degree distribution and the degree exponent
]. Node degrees in this network follow a power-law distribution,
denoted as P(k) � ξk−], ξ � 1/∑

k

k−], where the parameter ]

represents the heterogeneity parameter of the SF network.

FIGURE 6
The graphs represent the relationship between the information outbreak size and the hesitation degree parameter α and the propagation probability
λ in an SF-SF network with ]= 2.1, while the hesitation amplitude parameter β is fixed. In Graph (A), the hesitation amplitude parameter β is set to 0.5, while
in graph (B), it is set to 0.8. The remaining parameters are set as ρ0 and γ = 1.
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• for ] = 2.1

In Figure 5A, it is shown that when the individual hesitation
amplitude is relatively low (β = 0.5), the values of the outbreak
threshold for α = 0.2, α = 0.5, and α = 0.8 are all relatively large,
indicating a first-order discontinuous phase transition. The
outbreaks in these cases are rapid and of short duration. In the
steady state, the final propagation size is fully spread. In Figure 5C, it
is shown that when the individual hesitation amplitude is relatively
high (β = 0.5), the outbreaks for α = 0.2 and α = 0.8 exhibit second-
order continuous phase transitions. The outbreak point for α =
0.2 occurs earlier than that for α = 0.8, which is different from the
case when β = 0.5. This indicates that the impact of changes in the
hesitation amplitude β on the propagation varies depending on the
hesitation degree α. For α = 0.5, the outbreak exhibits a first-order
discontinuous phase transition. Additionally, when the individual
hesitation amplitude is larger, the outbreaks occur earlier, and there
is evidence of cross-contagion.

In Figure 5B, when β = 0.5, the relative variance of the adoption
range first reaches its outbreak point for α = 0.8, followed by α = 0.2,

and finally α = 0.5. The saturation order of the relative variance is α =
0.8, α = 0.2, α = 0.5. In Figure 5D, when β = 0.8, the relative variance
of the adoption range first reaches its outbreak point for α = 0.2,
followed by α = 0.8, and finally α = 0.5. The saturation order of the
relative variance is α = 0.2, α = 0.8, α = 0.5.

Figure 6 represents the joint effect of the hesitation amplitude
parameter α and the hesitation degree parameter β on the final
adoption range R (∞) in an ER network. Based on different phase
transition patterns, Figure 6A can be divided into three regions.
In regions I (0.84 < α ≤ 1) and III (0 < α ≤ 0.32), as λ increases,
there is a continuous second-order phase transition. This is
because when α is large (dominance of ordinary state) or
small (dominance of hesitant state), in layer A (ordinary state
adoption) and layer B (hesitant state adoption), there is a single-
layer outbreak triggered by the outbreak of the other layer,
resulting in continuous propagation. In region II (0.32 < α ≤
0.84), as λ increases, there is a discontinuous first-order phase
transition. This is because both layers simultaneously undergo an
outbreak, and the outbreak occurs relatively late, indicating that
there is no dominant propagating layer. In region III, as λ

FIGURE 7
]= 4, with a fixed hesitation amplitude parameter β, the graphs (A) (β = 0.5) and (C) (β = 0.8) illustrate the effects of the hesitation degree parameter α
and the propagation probability λ on the information outbreak size R (∞) and the relative variance of the final adoption range. Graphs (A) and (C) show the
impact of α on the information outbreak size as the propagation probability varies. The symbols represent simulation results, while the lines depict
theoretical predictions. Different propagation patterns of information are observed for different values of α. Graphs (B) (β = 0.5) and (D) (β = 0.8)
display the distribution of the relative variance of the adoption range for different α values as the propagation probability changes. They correspond to the
variations observed in graphs (A) and (C), respectively.
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increases, there is a continuous second-order phase transition,
similar to region I. Comparing Figures 6A, B, it can be observed
that when the hesitation amplitude is higher, a larger λ is required
to achieve the same adoption range.

• for ] = 4

Figure 7A indicates that when the individual hesitation
amplitude is relatively low (β = 0.5), the outbreaks for α =
0.2 and α = 0.8 exhibit second-order continuous phase
transitions. The outbreaks occur earlier compared to α = 0.5, but
the growth rate is slower for α = 0.2 compared to α = 0.8. For α = 0.5,
the outbreak shows a first-order discontinuous phase transition. The
outbreak occurs later but with a faster growth rate, and in the end,
the propagation is fully spread. Figure 7C shows that when the
individual hesitation amplitude is relatively high (β = 0.8), the
propagation patterns are similar to those in Figure 7A, but the
outbreaks occur earlier. Additionally, there is evidence of cross-
contagion in the propagation. Furthermore, for α = 0.2 and α = 0.8,
the outbreak point occurs earlier for α = 0.2 compared to α = 0.8,
indicating that the impact of changes in the hesitation amplitude β
on the propagation varies depending on the hesitation degree α.

In Figure 7B, when β = 0.5, the relative variance of the adoption
range first reaches its outbreak point for α = 0.8, followed by α = 0.2,
and finally α = 0.5. The saturation order of the relative variance is α =
0.8, α = 0.2, α = 0.5. In Figure 7D, when β = 0.8, the relative variance
of the adoption range first reaches its outbreak point for α = 0.2,
followed by α = 0.8, and finally α = 0.5. The saturation order of the
relative variance isα = 0.2, α = 0.8, α = 0.5.

Figure 8 represents the process of change in four stages. In regions I
(0.75 < α ≤ 1) and III(0.05 < α ≤ 0.41), as λ increases, there is a
continuous second-order phase transition. This is because when α is
large (dominance of the ordinary state) or small (dominance of the
hesitant state), in layer A (adoption of the ordinary state) and layer B
(adoption of the hesitant state), there is a single-layer outbreak triggered
by the outbreak of the other layer, resulting in continuous propagation.

In region II(0.41 < α ≤ 0.75), as λ increases, there is a discontinuous
first-order phase transition. This is because both layers simultaneously
undergo an outbreak, and the outbreak occurs relatively late, indicating
that there is no dominant propagating layer. In region IV(0 < α ≤ 0.05),
there is no growth, indicating the absence of information outbreaks in
this region. Additionally, from the Figures 8A, B, it can be observed that
as β decreases, the propagation becomes slower, indicating a positive
correlation between the hesitation amplitude parameter and the
hesitant population.

6 Conclusion

In real-life, individuals exhibit different social behaviors within
various social networks. To analyze the propagation mechanisms
and investigate heterogeneous adoption behavior in a heterogeneous
network of the same population, this study proposes a dual-layer
heterogeneous adoption information propagation network model
from both simulation and theoretical perspectives. A heterogeneous
threshold function based on realistic psychological research is
designed, and extensive experiments demonstrate the consistent
results between simulations and theory.

This paper focuses on the innovative aspect of heterogeneous
adoption behavior within a dual-layer model and explores the
propagation of heterogeneous behavior within the same population
in a dual-layer heterogeneous network. Through extensive simulation
and theoretical analysis in SF and ER networks, it is observed that when
either layer dominates, the final adoption range exhibits a second-order
continuous phase transition. In the absence of a clear dominant layer, a
first-order discontinuous phase transition occurs with the presence of
cross-propagation phenomena. The propagation process andmodes are
influenced by factors such as hesitation parameters, degree
heterogeneity parameters, and propagation probabilities, ultimately
leading to complete propagation.

The inter-layer adoption heterogeneity in information propagation
networks has a crucial impact, yet there is limited research in this area.

FIGURE 8
The graphs illustrate the relationship between the information outbreak size and the hesitation degree parameter α and the propagation probability λ
in an SF-SF network with v = 4, while the hesitation amplitude parameter β is fixed. In graph (A), the hesitation amplitude parameter β is set to 0.5, while in
graph (B), it is set to 0.8. The remaining parameters are set as ρ0 and γ = 1.
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This paper rigorously models and analyzes the significant influence of
heterogeneous adoption behavior within multi-layer networks on
information propagation. The study also provides a new direction for
information propagation in multi-layer heterogeneous networks.
However, this article has certain limitations. Firstly, it does not use
real datasets, lacks standardized data representing human behavioral
characteristics, and cannot extensively validate the behavior propagation
with real-world data. Secondly, it does not consider several conventional
parameters that may influence the research process, such as weights and
fluctuation-based adoption. To emphasize the influence of
heterogeneous adoption behavior within this model, other parameters
were reduced to better highlight the significance of studying
heterogeneous adoption behavior. It is hoped that more experts and
scholars will pay attention to this field and further expand the research.
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Effect of network structure on the
accuracy of resilience
dimension reduction

Min Liu1, Qiang Guo1 and Jianguo Liu2*
1Business School, University of Shanghai for Science and Technology, Shanghai, China, 2Department of
Digital Economics, Shanghai University of Finance and Economics, Shanghai, China

Dimension reduction is an effectivemethod for system’s resilience analysis. In this
paper, we investigate the effect of network structure on the accuracy of resilience
dimension reduction. First, we introduce the resilience dimension reduction
method and define the evaluation indicator of the resilience dimension
reduction method. Then, by adjusting node connections, preferential
connection mechanisms, and connection probabilities, we generate artificial
networks, small-world networks and social networks with tunable assortativity
coefficients, average clustering coefficients, and modularities, respectively.
Experimental results for the gene regulatory dynamics show that the network
structures with positive assortativity, large clustering coefficient, and significant
community can enhance the accuracy of resilience dimension reduction. The
result of this paper indicates that optimizing network structure can enhance the
accuracy of resilience dimension reduction, which is of great significance for
system resilience analysis and provides a new perspective and theoretical basis
for selecting dimension reduction methods in system resilience analysis.

KEYWORDS

system’s resilience, dimension reduction, network structure, social network,
assortativity, clustering coefficient, modularity

1 Introduction

Resilience describes a system’s ability to retain the basic functionality when errors or
failures occur, which is a fundamental property for complex systems [1–4]. The loss of
resilience in numerous real-world systems could lead to catastrophic consequences, such as
large-scale extinctions in ecological networks [5], and cascading failures in infrastructure
systems [6]. As such, exploring resilience patterns for complex systems, making systems
resilient to environmental changes has been one of the most critical issues in network science.

Resilience is an absolute measure that quantifies the extent to which a system recovers
from instability. For instance, in biological systems, resilience may refer to a population’s
ability to maintain its size and distribution in the face of environmental changes, predation
pressures, diseases, or other disturbances. A population with high resilience can adapt to
environmental changes by regulating birth rates, death rates, immigration, and emigration,
thus maintaining population stability. In some literatures on network analysis, resilience
and robustness are used as interchangeable concepts [7]. Resilience is defined on network
dynamics [1, 8], measuring the ability of a network to maintain its structure and function in
the face of disturbances or attacks, while robustness is related to the static structure of a
network, measuring the ability to maintain its connectivity when a fraction of nodes (links)
is damaged [9]. However, when dealing with complex networks composed of numerous
interconnected components, traditional resilience analysis frameworks may become
inadequate. The multi-dimensional and nonlinear characteristics of these networks

OPEN ACCESS

EDITED BY

Fei Xiong,
Beijing Jiaotong University, China

REVIEWED BY

Qi Xuan,
Zhejiang University of Technology, China
Xiaoke Xu,
Dalian Nationalities University, China

*CORRESPONDENCE

Jianguo Liu,
liujg004@ustc.edu.cn

RECEIVED 20 April 2024
ACCEPTED 28 May 2024
PUBLISHED 19 June 2024

CITATION

Liu M, GuoQ and Liu J (2024), Effect of network
structure on the accuracy of resilience
dimension reduction.
Front. Phys. 12:1420556.
doi: 10.3389/fphy.2024.1420556

COPYRIGHT

© 2024 Liu, Guo and Liu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 19 June 2024
DOI 10.3389/fphy.2024.1420556

28

https://www.frontiersin.org/articles/10.3389/fphy.2024.1420556/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1420556/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1420556/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1420556&domain=pdf&date_stamp=2024-06-19
mailto:liujg004@ustc.edu.cn
mailto:liujg004@ustc.edu.cn
https://doi.org/10.3389/fphy.2024.1420556
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1420556


poses challenges for analysis. As a result, the dimension reduction
method is needed tomap a large number of nonlinear dynamic systems
to one-dimensional dynamic systems, while keeping systems’ key
dynamic characteristics. Gao et al. [1] proposed the dimension
reduction method that decomposes N-dimensional networks into
one-dimensional effective models and uses it to predict the global
activity of the original network. Subsequently, based on the theoretical
tools for large-scale networks and the advanced data analyzing
techniques [10–13], the method has been extended to many aspects
such as noise effects [14–16], reduction methods based on spectral
dimension [17], sequence mean field [18] and degree weighted average
[19], and has been applied to various fields [20–22]. The dynamic
characteristics of a system strongly depend on the underlying network
structure [17]. Understanding the topology or properties of a network
can help us better reveal its inherent behavior from different
perspectives [23–25]. Gao et al. [1] found that density,
heterogeneity, and symmetry are three key structural factors
affecting a system’s resilience. Xu et al. [26] established a dynamic
model of a multi-dimensional Supplier-Manufacturer network by
combining structural information and network parameters. The
results show that the resilience of Supplier-Manufacturer networks
is highly sensitive to network structural characteristics, namely, nesting,
and density. Dong et al. [3] found that community structure can
significantly affect the resilience of a system. Meng et al. [27] used link
density, algebraic connectivity, and aggregation coefficients to measure
the number of links, fault tolerance, and redundancy in a network to
evaluate the resilience of the power system. According to the simulation
experiments, Costa [28] found that applying growth strategies on pre-
existing structures can significantly enhance the resilience of complex
networks. Li et al. [29] proposed a network resilience evaluation
method that considers both network structure and node load, and
then improved the network resilience enhancement strategy based on
optimization theory. Laurence et al. [17] used the dominant eigenvalues
and eigenvectors of the network adjacency matrix to construct a
dimension reduction method based on spectrogram theory.
Therefore, network structure plays an important role in the system’s
resilience analysis. Real networks are usually heterogeneous [30, 31]
and may have certain topological structures or attributes. For example,
interpersonal networks on social networking platforms such as
LinkedIn have high assortativity coefficients, protein-protein
interaction networks in biology [32], and collaborative networks of
jazz musicians have obvious community structures [33]. The
dimension reduction proposed by Gao et al. [1] can be used to
accurately predict the system’s response to diverse perturbations and
correctly locate the critical points, at which the system loses its
resilience. So, what role does network structure play in resilience
dimension reduction?

In this paper, we investigate the effect of network structure on
the accuracy of resilience dimension reduction. First, we
introduce the resilience dimension reduction method and
define the resilience measurement error. Then, by adjusting
node connections, preferential connection mechanisms, and
connection probabilities, we construct TAC model, HK model
and TQmodel, respectively. Based on the TACmodel, HK model,
and TQ model, we generate artificial networks, small-world
networks and social networks with tunable assortativity
coefficients, average clustering coefficients, and modularities,
respectively. We conduct resilience dimension reduction

analysis experiments on gene regulatory dynamics. The
experimental results show that network structures with
positive assortativity, large clustering coefficient, and
significant community can enhance the accuracy of resilience
dimension reduction. Finally, through error analysis of resilience
dimension reduction on the reconstructed social networks, the
results validate our conclusion.

2 Method and models

2.1 Resilience dimension reduction method

In a multi-dimensional system, the dynamics of each component
not only depend on the self-dynamics but also relate to the
interactions between the components and their interacting partners
[34, 35]. The dynamic equation of a multi-dimensional system
consisting of N components (nodes) can be formally written as

dxi

dt
� F xi( ) +∑N

j�1
aijG xi, xj( ). (1)

The first term on the right-hand side of Eq. 1 describes the self-
dynamics of each component, while the second term describes the
interaction between component i and its interacting partners. The
matrix element aij denotes the interactions between node i and j, and
aij = 1 when there are an link between node i and j, and aij =
0 otherwise.

The resilience of multi-dimensional systems can be captured by
calculating the stable fix point of Eq. 1. However, this point may
depend on the changes in any of the parameters of the adjacency
matrix. Moreover, there are maybe different forms of perturbations
bringing changes to the adjacency matrix, for example, node/link
removal, or weight reduction. It means that the resilience of multi-
dimensional systems depends on the network topology and the forms
of perturbations. For large-scale multi-dimensional models, it is
impossible to predict their resilience by direct calculations on Eq. 1.
A framework based on dimension reduction addresses this challenge.

In a network, the activity of each node is governed by its nearest
neighbors through the interaction term ∑N

j�1aijG(xi, xj) of Eq. 1. If
the adjacency matrix aij has little correlation, Gao et al. [1]
introduced an operator.

L y( ) � 1TAy

1TA1
, (2)

where the unit vector 1 � (1, 1, . . . , 1)T, y � (y1, y2, . . . , yN)T, and
yi represents a scalar related to node i, such as the activity of node i.
A � [aij]N×N is the adjacency matrix. The operator L averages the
scalar values of all neighboring nodes of the target node as the
output, and y � (y1, y2, . . . , yN)T as the input. Eq. 2 can be
written as

L y( ) � ∑N
i�1∑N

j�1aijyj∑N
i�1∑N

j�1aij
�

1
N∑N

j�1s
out
j yj

1
N∑N

j�1s
out
j

� 〈soutj yj〉
〈soutj 〉 , (3)

where soutj � ∑N
i�1aij. If yj (xi) = G (xi, xj), when the degrees are

uncorrelated, then the mean of node j is independent of node i. In
other words, assuming that the nearest neighbor mean of i is the
same as the nearest neighbor mean of all other nodes, the interaction
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term in Eq. 1 composed of the sum of the actions of all neighbors j of
i can be written as

∑N
j�1

aijG xi, xj( ) � sini 〈yj xi( )〉nn � sini L G xi, x( )( ), (4)

where sini � ∑N
j�1aij. 〈yj(xi)〉nn represents the mean value of the

neighbor node state yj (xi) of node i. Based on the Eq. 4, the Eq. 1 can
be written as

dxi

dt
� F xi( ) + sini L G xi, x( )( ). (5)

Then, based on the mean field approximation theory, L (G (xi,
x)) ≈ G (xi, L(x)), L (F(x)) ≈ F (L(x)), L (sin◦G (x, L(x))) ≈ L (sin)◦G
(L(x), L(x)). Eq. 5 can be written as

dxi

dt
� F xi( ) + sini G xi, L x( )( ), (6)

dx
dt

� F x( ) + sin◦G x, L x( )( ), (7)

and then this allows us to write Eq. 6 and Eq. 7 as

dL x( )
dt

� L F x( ) + sin◦G x, L x( )( )( ) ≈ F L x( )( )
+ L sin( )◦G L x( ), L x( )( ), (8)

where ◦ represents Hadamard convolution [36].
Finally, based on the Eq. 3, we obtain the average effective state

of the system

xeff � 1TAx

1TA1
� 〈soutx〉

〈s〉 , (9)

and the nearest neighbor weighted degree

βeff �
1TAsin

1TA1
� 〈soutsin〉

〈s〉 , (10)

where sout � (sout1 , sout2 , . . . , soutN )T is the vector of outgoing degrees
with soutj � 1

N∑N
i�1aij. sin � (sin1 , sin2 , . . . , sinN)T is the vector of

incoming degrees with sini � 1
N∑N

j�1aij. 〈soutx〉 � 1
N∑N

i�1souti xi,
〈soutsin〉 � 1

N∑N
i�1souti sini . 〈s〉 = 〈sin〉 = 〈sout〉 is the average

weighted degree.
Based on the Eqs 8–10 and Eq. 1 is simplified into an effective

one-dimensional equation

dxeff

dt
� F xeff( ) + βeffG xeff , xeff( ). (11)

Although the resilience function is uniquely determined by the
dynamical functions F(xi) and G (xi, xj), the actual position of the
system along this curve, capturing its momentary state, is determined
by the network topology aij. So we constructed networks with different
structures to explore the effect of network structure on the accuracy of
the resilience dimension reduction method.

2.2 Models

Networks with different topological structures have different
properties. The section mainly introduces three models for
generating tunable parameter networks.

1) The assortativity coefficient ρ is an indicator that measures the
degree of correlation between adjacent nodes in a network [37].
The Tunable-Assortativity-Coefficient (TAC) model changes
the network’s assortativity by adjusting the node connectivity,
and generates the artificial networks with tunable assortativity
coefficient ρ. The program for an artificial network using the
TAC model can be divided into three steps.

a) Initial condition: Randomly generate a connected network
consisting of n0 nodes and m0 edges.

b) Network growth: Add one new node i at each time step
and connect to m existing nodes, and m ≤ m0.

c) Preferential connection: The probability pj of a new node
being connected to an existing node i and the degree ki of
node i satisfy the relationship pj � kαj /∑ik

α
i (where α is a

tunable parameter) [38].

2) The Holme-Kim (HK) model can construct artificial networks
with tunable average clustering coefficient C [39]. When
generating a network, the HK model will generate a fixed
number of closed triangular adjacency relationships as required
to adjust the average clustering coefficient C of the network.
The program for generating artificial networks using the HK
model can be divided into four steps.

a) Initial condition: Randomly generate a connected network
consisting of n0 nodes and m0 edges.

b) Network growth: Add one new node i at each time
step. At the same time, node i selects m existing nodes
as neighbor nodes through preferential connection or
triangulation, and m ≤ m0.

c) Preferential connection: Calculate the probability Πj (Πj =
kj/∑iki) of node j being selected as a neighbor node by the
new node i based on the degree kj of each existing node j in
the network. The new node i selects the neighbor nodes
based on probability Πj, and the first neighbor node of
node i is selected according to the preferential connection.

d) Triangle formation: Triangle formation is generally executed
with a probability of 1 − Pt after preferential connection. If a
new node i has already selected a neighbor j, then the selection
range for the next neighbor of node i is all the neighbors of
node j, thus forming a closed triangular adjacency relationship.

3) The modularity Q is a parameter used to characterize the
strength of community features. The Tunable-Modularity
(TM) model can adjust the connection probability as needed
to generate the artificial networks with tunable modularity Q.
The program for an artificial network using the TM model
can be divided into three steps.

a) Initialize the network: Create an initial network containing
a small number of nodes that are interconnected to ensure
network connectivity.

b) Gradually add nodes: Gradually add new nodes and
connect them to existing nodes.

c) Reconnect edges: When connecting new nodes, reconnect
some edges according to the required modularity to adjust
the network’s community structure.
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In Addition, by adjusting the reconnection probability, we can
generate small-world networks and social networks [40] with
different average clustering coefficients, assortativity coefficients,
and modularities.

3 Simulation results

3.1 Dynamic equation

The dynamic equation of the gene regulatory network is
governed by Michaelis-Menten [1].

dxi

dt
� −Bxq

i +∑N
j�1

Aij
xh
i

xh
i + 1

, (12)

where the first item on the right-hand side describes the self-
dynamic of each cell, and the second item is intercellular
activity. The Hill coefficient h describes the level of
cooperation in gene regulation [34]. We conduct interference
experiments on three types of different tunable parameter
networks, and explore the resilience reduction performance
of tunable parameter networks. Then we mainly perturb the
network in three different ways, including randomly deleting a
certain proportion of nodes, deleting a certain proportion of
edges, and changing a certain proportion of global weights. The
initial state of all nodes is set to x0 = 2, and it depends on the
dynamic equation to calculate the node state when the system
converges. Conducting 100 removals for each type of
perturbation. Based on the mapping process and Eqs 11, 12
is rewritten as

dxeff

dt
� −Bxq

eff + βeff
xh
eff

xh
eff + 1

. (13)

Based on this, we define the system’s resiliencemeasurement error to
quantify the accuracy of the resilience dimension reduction model.
The parameter settings for the gene regulatory dynamic equation are
B = 1, q = 1, and h = 2.

3.2 Evaluation indicator

In this section, we define the system’s resilience measurement
error Err to quantify the accuracy of the resilience dimension
reduction model. The Err can be expressed as

Err � ∑l
i�1

|xeff i( ) − x βeff i( )( )|, (14)

where xeff(i) − x (βeff(i)) denotes the error between the numerical
value xeff(i) of the system state obtained through Eq. 9 and the
numerical value x (βeff(i)) of the system state obtained through Eqs
10, 13. l represents the total number of perturbations, including
randomly removing a certain proportion of nodes, removing a
certain proportion of links, and changing a certain proportion of
global weights. We conduct 100 experiments on each perturbation.
The smaller the Err value, the better the performance of the
dimension reduction method.

3.3 Result analysis

We analyze the accuracy of the resilience dimension reduction
method on empirical networks, as measured by the error Err (Eq.
14). Table 1 shows the accuracy results of resilience dimension
reduction on empirical networks. We can find that the errors Err of
resilience dimension reduction on Facebook and Twitter networks
are relatively small comparing with other networks (biological and
ecological networks) (bold values in Table 1). For the same
dynamics, the errors Err of resilience dimension reduction on
Polbooks and Jazz networks are smaller than that of E. coli and
S. cerevisiae networks (bold values in Table 1), which indicates that
comparing with other networks, the accuracy of resilience
dimension reduction on social networks is larger, and dynamics
do not affect the accuracy of resilience dimension reduction. As
shown in Figure 1, the error Err of uniform networks is smaller than
that of homogeneous networks, random networks, scale-free
networks, small-world networks, and community networks, while
the error Err of scale-free networks is larger than that of uniform
networks, homogeneous networks, random networks, small-world
networks, and community networks. Hence, we obtain the order of
accuracy of resilience dimension reduction as follows: uniform
networks, small-world networks, homogeneous networks,
community networks, random networks, and scale-free networks.
The dimension reduction method analysis by Gao et al. [1], it can be
concluded that the accuracy of a uniform network reaches the
optimal values, which is shown in Figure 1. In addition, we can
also find that the accuracy of small world networks is smaller than
the one obtained from the uniform networks and larger than the
ones get from other networks. The reason lies in the fact that a
uniform network, each node is connected to the same number of
other nodes. Comparing with other networks, small-world networks
usually have higher homogeneity, meaning that nodes tend to
connect to nodes with similar degrees, while in scale-free
networks, the connection patterns of nodes exhibit high
heterogeneity, meaning that there are a few “hub nodes” with a
large number of connections. The above results indicate that the
dimension reduction method of the resilience has remarkable
performance for social networks.

In Table 1, we find that the error Err of resilience dimension
reduction on Polbooks network is larger than that of Jazz network.
The reason is that the accuracy of the resilience dimension reduction
method varies depending on the size and structure of the network.
So we investigate the accuracy of resilience dimension reduction on
networks with different network sizes. As shown in Figure 2, we find
that the error Err of network with N = 200 is larger than that of
150 and 100, and the error Err of network withN = 150 is larger than
that of 100, which indicates that the network size will affect the
accuracy of resilience dimension reduction, and the larger the size,
the greater the influence. We can also find in Figure 2 that as the
assortativity coefficient ρ increases, the error Err decreases.
Therefore, one can find that the accuracy of resilience dimension
reduction for social networks is large. The question is raised what
kind of structure can enhance the accuracy of resilience dimension
reduction? We generate artificial networks with different structures
(assortativity coefficient, average clustering coefficient and
modularity) and analyze the accuracy of the resilience dimension
reduction method.

Frontiers in Physics frontiersin.org04

Liu et al. 10.3389/fphy.2024.1420556

31

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1420556


Firstly, based on the models in Section 2.2, we generate three sets
of networks with 200 nodes and 800 edges, including assortativity
coefficient ρ ∈ [-0.4,0.4], average clustering coefficient C ∈ [0.1,0.7]
and modularity Q ∈ [0.1,1.0]. Figure 3A shows the accuracy of
dimension reduction on networks with different assortativity
coefficients ρ. As the assortativity coefficient ρ increases, the
error Err decreases, indicating that the network structure with
high assortativity coefficient has larger accuracy of resilience
dimension reduction. The error Err of the network resilience
dimension reduction method with the assortativity coefficient
ρ > 0 is smaller than that of the network resilience dimension
reduction method with the assortativity coefficient ρ < 0, indicating
that the accuracy of resilience dimension reduction is larger for the

network structure with positive assortativity coefficient. Figure 3B
shows the accuracy of resilience dimension reduction under
different average clustering coefficients C. As the average
clustering coefficient C increases, the error Err decreases. The
results indicate that the dimension reduction method could
generate larger accuracy for networks with large average
clustering coefficient. Figure 3C shows the accuracy of resilience
dimension reduction under different modularity Q. As the
modularity Q increases, the error Err decreases. The results
indicate that the accuracy of resilience dimension reduction is
large for networks with high modularity. The clustering
coefficient measures the probability that the neighbors of a node
are also neighbors of each other, reflecting the local clustering

TABLE 1 Network characteristics of empirical networks and accuracy results of resilience dimension reduction.

Networks N E Dynamics C ρ Err

E.coli 1,550 3,244 Gene regulatory 0.0018 −0.3523 0.2764

S.cerevisiae 4,441 12,873 Gene regulatory 0.0001 −0.5580 0.3167

Facebook 539 6,384 SIS [41] 0.2262 0.2227 0.0198

Twitter 148 3,942 SIS [41] 0.4262 −0.0632 0.0254

Polbooks 105 882 Gene regulatory 0.4875 −0.1279 0.1642

Jazz 198 5,484 Gene regulatory 0.2525 0.0196 0.0983

Rain forest-Ants 41 468 Mutualistic [42] 0 1 1.4310

Rain forest-Plants 51 488 Mutualistic [42] 0 1 2.4985

Coral Reefs-Fish 26 140 Mutualistic [42] 0 1 0.2595

Coral Reefs-Anemones 10 108 Mutualistic [42] 0 1 0.2319

FIGURE 1
The resilience dimension reduction performance of different networks.
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property of the network. Assortativity describes the tendency of
similar nodes (such as nodes with similar degrees) in the network to
connect with each other. The community structure network refers to
the clear division of the network into communities, where nodes
within a community are densely connected while connections
between communities are relatively sparse. Networks with large
clustering coefficient often have large modularity, which indicates
that networks with clustering coefficient also exhibit large
modularity, leading to smaller resilience dimension reduction
errors. Networks with large assortativity, similar nodes are more

likely to form tightly connected communities, which suggests that
networks with large assortativity also large modularity, resulting in
smaller resilience dimension reduction errors. Both clustering
coefficient and assortativity are related to the local structure of
the network. The clustering coefficient focuses on connections
between neighboring nodes, while assortativity focuses on
connections between similar nodes. In some cases, large
clustering coefficient may be associated with large assortativity
because a high probability of connections between neighboring
nodes may imply that these nodes are similar in some attribute.

FIGURE 2
The resilience dimension reduction performance of different network sizes.

FIGURE 3
The resilience dimension reduction performance of networks with different structures. The subplots (A–C) show the correlations between the
assortativity coefficient ρ ∈ [−0.4,0.4], average clustering coefficient C ∈ [0.1,0.7], modularityQ ∈ [0.1,1.0], and resilience dimension reduction error Err of
the network. The network size is all 200. We obtain each data value by averaging 10 independent runs of each network.
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This indicates that the more homogeneous the local structure of the
network, the better the performance of resilience dimension
reduction. In summary, for networks with large assortativity,
large average clustering coefficient, and large modularity, the
resilience dimension reduction can result in smaller errors. In
other words, large assortativity indicates the presence of similar
nodes in the network, large average clustering coefficient indicate
high local connectivity between neighboring nodes, and large
modularity indicates the presence of closely related subnetworks
in the network. In such network structures, resilience dimension
reduction can better preserve information about these similar nodes,
closely related subnetworks, and connections between neighboring
nodes, thereby improving the accuracy of resilience
dimension reduction.

Secondly, we investigate the accuracy of resilience dimension
reduction on small-world networks with different structures. The

small-world network is a network structure that lies between regular
networks and random networks, characterized by short average
paths, high clustering coefficients, and community structure. We
generate three sets of small-world networks with 200 nodes and
800 edges, with assortativity coefficient ρ ∈ [0.05,0.45], average
clustering coefficient C ∈ [0.05,0.50], and modularity Q ∈
[0.65,1.0]. As shown in Figure 4, with the increase of ρ, C, and Q
increase, the Err values decrease. The experimental results show that
the larger the assortativity coefficient, average clustering coefficient,
and modularity of the network, the better the accuracy of resilience
dimension reduction.

Social networks have characteristics such as small world
phenomena, node degree distributions that follow power-law
distributions, high clustering coefficients, assortativity that nodes
are more inclined to connect with similar nodes, and community
structures. The above results indicate that the network structure

FIGURE 4
The resilience dimension reduction performance of small-world networks with different structures. The subplots (A–C) show the correlations
between the assortativity coefficient ρ ∈ [0.05,0.45], average clustering coefficient C ∈ [0.05,0.50], modularity Q ∈ [0.65,1.0], and resilience dimension
reduction error Err of the network. The network size is all 200. We obtain each data value by averaging 10 independent runs of each network.

FIGURE 5
The resilience dimension reduction performance of social networks. The subplots (A–C) show the correlations between the assortativity coefficient
ρ, average clustering coefficient C, modularity Q, and resilience dimension reduction error Err of the social network, respectively.
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with positive assortativity, large average clustering coefficient, and
significant community can enhance the accuracy of resilience
dimension reduction.

Finally, we reconstruct the network structures to generate
social networks with different assortativity coefficients, average
clustering coefficients and modularities. As shown in Figure 5,
the error analysis of dimension reduction on social networks
indicates that as ρ, C and Q increase, the accuracy of resilience
dimension reduction on social networks increases. The empirical
results show that the network structure with positive
assortativity, large average clustering coefficient, and
significant community can enhance the accuracy of resilience
dimension reduction.

4 Conclusion and discussions

In this paper, we investigated the effect of network structure on the
accuracy of resilience dimension reduction. First, we introduce the
resilience dimension reduction method and define the resilience
measurement error. Then, by adjusting node connections,
preferential connection mechanisms, and connection probabilities,
we construct TAC model, HK model and TQ model, respectively.
Based on the TAC model, HK model, and TQ model, we generated
artificial networks, small-world networks and social networks with
tunable assortativity coefficients, average clustering coefficients, and
modularities, respectively. We conducted dimension reduction analysis
experiments on gene regulatory dynamics using the generated
networks, and analyzed the effect of tunable parameters on the
accuracy of resilience dimension reduction based on the error
analysis. We found that the error Err of resilience dimension
reduction for social networks is small. The larger the assortativity
coefficient ρ( > 0), the smaller the error Err. The larger the average
clustering coefficient C, the smaller the error Err. As the modularity Q
increases, the error Err decreases. The error values Err of resilience
dimension reduction on small-world networks with large assortativity
coefficient, high average clustering coefficient, and high modularity are
small, which indicates that the resilience dimension reduction method
has remarkable performance for networks with positive assortativity,
large average clustering coefficient, and significant community.

In summary, network structure has a significant impact on the
accuracy of the resilience dimension reduction, which is of great
research importance on practical applications. In this paper, when
the HK model generated a tunable clustering coefficient network,
due to the limitations of structural properties such as sparsity and
average assortativity coefficient, we did not further analyze the
accuracy of the dimension reduction for networks with the
average clustering coefficient C > 0.7. According to preliminary
speculation, if the number of nodes, sparsity, and average
assortativity coefficient of the network remains unchanged, the
average clustering coefficient C will continue to increase from
0.7, and the number of triangles in the network will increase
accordingly. When the total number of edges in the network
remains constant, an increase in the number of triangles should
cause most of the edges of dense nodes to transfer to the adjacency
relationships of other non-dense nodes. The accuracy of the
resilience dimension reduction should increase with the increase
of the average clustering coefficient. In the process of resilience

analysis of artificial networks, although we applied it to gene
regulation dynamics, we can obtain corresponding results by
applying it to SIS propagation dynamics. For example, when
Polbooks, Jazz, E. coli, and S. cerevisiae networks are all applied
in gene regulation dynamics, we found that the error values of
resilience dimension reduction on Polbooks and Jazz networks are
smaller than that of E. coli and S. cerevisiae networks. In addition,
we only studied the effects of assortativity coefficient, average
clustering coefficient, and modularity on the accuracy of the
resilience dimension reduction. However, in real networks, there
often exist motifs [43, 44] or hypernetworks that describe rich and
complex multivariate relationships [45]. So further research is
needed to investigate the accuracy of resilience dimension
reduction for motifs and hypernetworks.
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Epidemic dynamics edge caching
strategy for 6G networks

Xinyi Wang1, Yuexia Zhang2* and Siyu Zhang2

1Key Laboratory of Information and Communication Systems, Ministry of Information Industry, Beijing
Information Science and Technology University, Beijing, China, 2Key Laboratory of Modern
Measurement and Control Technology, Ministry of Education, Beijing Information Science and
Technology University, Beijing, China

By caching popular content on edge servers closer to users to respond to users’
content requests in 6G networks, the transmission load of backhaul links can be
reduced. However, the time-varying characteristics of content prevalence leads
to the issue that the cache content may not match the user’s needs, resulting in a
decrease in cache success ratio. To solve these issues, we proposed a cache
distribution strategy based on epidemic dynamics (CDSED) for 6G edge network.
First, a 6G edge caching contentmodel (6G ECCM) is constructed to establish the
process of cache content propagation among users as an infectious disease
propagation process, analyze the distribution of users’ interest in cache content
and obtain the cache content state probability prediction equation, and use the
cache content state probability prediction equation to predict the cache content
prevalence. Second, based on the predicted prevalence results, a prevalence
predictive genetic-annealing cache content algorithm (PGAC) is proposed with
the optimization objective of maximizing the cache success ratio. The algorithm
designs the selection function of the traditional genetic algorithm as a simulated
annealing selection function based on the cache content success ratio, which
avoids the defect of the genetic algorithm that converges to the locally optimum
cache strategy too early and enhances the cache success ratio. Finally, the
optimum cache content decision is solved by iterative alternation. Simulation
results demonstrate that CDSED strategy can enhance cache success ratio than
the LRU strategy, the LFU strategy, and the MPC strategy.

KEYWORDS

6G edge caching, epidemic dynamics, content caching, content prevalence, genetic
simulated annealing algorithm

1 Introduction

6G mobile communication network will support a variety of applications, for
instance immersive cloud augmented reality, autonomous driving, holographic
communication, smart manufacturing and other new applications [1–3]. These new
applications bring convenience to people’s lives, but also inevitably increase mobile
data traffic. And when popular services are repeatedly requested in a short period of
time, 6G cloud server backhaul is facing tremendous pressure [4–6]. In order to fulfill
the application requirements and reduce the pressure on the cloud server, the edge
caching technology allows for service content caching on edge servers, enabling users to
retrieve content from these edge servers to meet their repetitive requests, so as to cope
with the swift expansion of 6G wireless service load and significantly reduce the
transmission load of 6G cloud server [7–9]. Therefore, the research of edge caching
technology is of paramount importance for 6G.
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Compared with the large-scale user request content, the cache
resources of the edge network are limited. This means that only a
small amount of popular content requested by users can be pre-
cached on the edge of the network. However, a plentiful amount of
content is generated at every moment in real life. How to find
popular content requested by users in a massive content repository is
a very challenging problem. At present, most caching strategies
adopt rule-based content caching methods, such as Least Recently
Used (LRU) [10] and Least Frequently Used (LFU) [11]. Although
these strategies achieve real-time updates of cache content at the
edge network, they do not fully exploit the content request patterns
of users at different time points, leading to an inability to accurately
perceive the prevalence patterns of different content at future
moments, making it difficult to achieve accurate prediction of
content prevalence.

The fundamental purpose of edge caching is to decide what
content to cache in edge servers [12,13], and prediction of content
prevalence is a major issue in existing caching research. Many
researchers have explored the field of content prevalence
prediction and proposed various caching strategies. Wu et al.[14]
introduced a collaborative caching strategy based on a social-aware
graph to minimize content download latency, caching the most
popular content based on weighted content prevalence. Sun
et al.[15] proposed an intelligent gateway-assisted edge caching
strategy, using a predictive algorithm based on heterogeneous
information networks to anticipate end-user preferences for new
content files. Zhu et al.[16] studied multi-layer collaborative edge
caching in integrated space-ground networks, formulating a content
placement problem based on content prevalence to minimize users’
average content retrieval delay. Wang et al.[17] proposed a vehicle-
to-vehicle collaborative caching strategy based on content request
prediction, using historical content request information and a
reinforcement learning method to obtain optimum caching
decisions. Ayenew et al.[18] proposed a collaborative demand-
aware caching strategy based on the separable allocation
problem, solving the cache success ratio maximization problem
using recursive enumeration. Tang et al.[19] modeled user
request behavior and user preferences using MDP and Zipf
distribution, and proposed a new reinforcement learning-based
algorithm to reveal file prevalence and user preferences. Zhu
et al.[20] developed an AoI-based time attention graph neural
network to maximize the accuracy of user interest prediction. Liu
et al.[21] designed a context-aware prevalence learning algorithm to
adapt to the changing trend of content prevalence. However, most of
the aforementioned caching strategies assume that content
prevalence follows a static distribution. In actual scenarios,
content prevalence is time-varying and usually not known in
advance, as user interest in a cache content can spread through
word-of-mouth in social networks, leading to the time-varying
nature of content prevalence in the entire network [22].
Therefore, static prevalence distribution models cannot accurately
describe the dynamic characteristics of content prevalence.

Users’ interests are constantly changing, and new content is
constantly being generated [23,24]. Thus, some researchers have
proposed learning-based caching algorithms to adapt to the
changing prevalence of content. Zhang et al.[25] designed a
learning-based edge collaborative caching scheme, using a
temporal convolutional network to predict the prevalence of

future content. Mehrizi et al.[26] developed a Bayesian dynamic
model of content requests, which can accurately predict prevalence
using spatiotemporal correlation. Nguyen et al.[27] proposed a
caching strategy based on a hierarchical deep learning
architecture to maximize cache success ratio by predicting
networks and user environments. Tao et al.[28] proposed a
prevalence prediction strategy based on a content feature-based
content request probability model, in which model parameters are
learned through Bayesian learning. Li et al.[29] proposed a
similarity-based content popularity prediction method to predict
the popularity of new content by introducing a dynamic content
directory. Jiang et al.[30] proposed a method to guarantee the
accuracy of prevalence prediction by predicting user locations
and analyzing request data of specific users in the next time
period. Gao et al.[31] designed a probability-based content
placement and replacement strategy, aiming to increase cache
success ratio under changing instantaneous content prevalence
and converge to target content cache probability under constant
instantaneous content prevalence. Fan et al.[32] proposed an
evolving learning-based content caching strategy, which can
adaptively learn the changing prevalence of content over time
and determine which content should be replaced when the cache
is full. A caching scheme based on private federated learning is proposed
[33], which uses a federated learning framework and a pseudo-rating
matrix to collect statistical features of user groups by predicting the
prevalence of content. Although the above-mentioned research
considers the time-varying characteristics of content prevalence, they
rarely consider the impact of caching strategies on user content
propagation. In the edge network with limited caching resources,
caching affects the propagation of content among users, thereby
affecting the prevalence of content. Moreover, the above-mentioned
learning-based prevalence prediction algorithms rely on large amounts
of historical data and trained models, resulting in high training
complexity and are not suitable for new popular content.

In summary, although many studies have shown that learning-
based edge caching algorithms significantly improve cache
performance in predicting content popularity, in practical
scenarios, user interests are constantly changing and new content
continues to emerge. The above-mentioned algorithms rely heavily
on a large amount of historical data, which mainly reflects past user
behaviors and interests. However, these data may not capture users’
immediate interest changes in new content, making them unsuitable
for new popular content. Additionally, the allocation of cache
resources can affect the dissemination of content among users,
thereby influencing content popularity. Therefore, optimizing
cache performance based on popularity prediction in scenarios
where content popularity is constantly changing and typically
unknown has become a critical issue that needs to be addressed.

In view of the above problems, this paper proposes a cache
distribution strategy based on epidemic dynamics for 6G edge
network. This strategy studies the influence of cache content
propagation process and content prevalence based on the
epidemic model in 6G edge network. According to the
prevalence prediction results of the content, a genetic simulated
annealing cache content algorithm is proposed to provide the
optimum cache strategy for the 6G edge caching network to
maximize the cache success ratio, thereby improving the cache
performance.
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The primary contributions of this paper can be outlined
as follows:

1) The 6G ECCM is established, and the user’s interest state
distribution of the cache content is analyzed and the user’s
cache content state probability prediction equation is
obtained, and the content prevalence prediction is realized
from the perspective of the user individual.

2) Then this study proposed a prevalence predictive genetic-
annealing cache content algorithm, which redesigned the
selection function based on the traditional genetic algorithm
and incorporated simulated annealing selection, using the
cache success ratio, into chromosome selection, thereby
improving the cache success ratio.

3) In a scenario involving a single edge service base station
network, an experiment was designed to compare the
CDSED, LFU, LRU, and MPC strategies, validating the
cache optimization effect of the CDSED strategy.

The rest of this paper is organized as follows: In Section 2, the
System Model is introduced. In Section 3, Section 4, the
optimization problem and PGAC algorithm are proposed. In
Section 5, the performance of the CDSED strategy is evaluated,
and the simulation results and analysis are given. In Section 6, the
conclusion of this paper is proposed.

2 System model

2.1 6G edge caching network

In this paper, we construct a 6G edge caching network, as shown
in Figure 1, which is composed of a 6G cloud content repository, M

edge service base stations and N users. The 6G cloud content
repository consists of cloud servers that store all the cache
contents. Assuming that there are K contents to be cached within
the edge service base stations, the set of cache contents can be
indicated as f = {f1, f2, . . . , fk, . . . , fK}, fk is expressed as the kth cache
content with size Ck bit. The set of edge service base stations is
indicated by set B = {B1, B2, . . . , Bm, . . . , BM}. Each edge service base
station has a certain storage capacity. However, it can only store
content that satisfies the needs of some users because of the
limitation of the cache capacity of the base station. The set of
cache resources of the edge service base station is represented by set
Cbase � {c1base, c2base, . . . , cmbase, . . . , cMbase}, wherein cmbase represents the
cache capacity of the edge service base station Bm. Considering the
different prevalence of content by users under the service area of
different edge service base stations, edge service base stations adopt
different caching strategies. The set of the edge service base station
caching strategies is S � S1, S2, . . . , Sm, . . . , SM{ }, Sm is the caching
strategy of the edge service base station Bm. There are a total of K
contents to be cached, which can be denoted as Sm = {sm,1, sm,2, . . .
sm,k, . . . , sm,K}, where sm,k indicates the probability that the edge
service base station Bm will cache the kth content, sm,k = 1 indicates
that the cache content fk is being cached by the edge service base
station Bm, and sm,k = 0 denotes that the edge service base station Bm
does not have the cache content fk. Therefore, the set of caching
strategies S of the edge service base station is a M × K matrix,
i.e., S � (sm,k)M×K.

Since the edge service base station has a certain service range, all
users in the 6G edge caching network are divided into M user
subsets, denoted as U = {U1, U2, . . . , Um, . . . , UM}. This means that
all users under the service range of each edge service base station are
categorized into one user set, and each user can only communicate

FIGURE 1
6G edge caching network.
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with the edge service base station within the user set in which it is
located, where Um indicates the set of users who under the service
area of the edge service base station BM,
Um � {u1m, u2m, . . . , unm, . . . , uNm

m }, and Nm is the sum total of users
under the service area of the edge service base station BM. The
locations of all users and edge service base stations obey a Poisson
distribution with distribution density coefficients λα and λβ.

All 6G edge service base stations can serve as edge servers in the
6G edge caching network. These base stations caching content from
the cloud server based on prevalence prediction. Users is curious
about the cache content, they will first expresses its demand by
sending a content request to the 6G edge service base station. If the
requested cache content is already cached, it will be transmitted
directly to the user through the wireless communication link,
completing the download process. If the 6G edge service base
station has not cache the requested content, it must
communicate with the 6G cloud content repository through the
backhaul link and download the requested content from the 6G
cloud content repository.

2.2 6G edge caching content model

An edge service base station caching a particular piece of content
may affect other users in the neighboring area, leading them to
download the same content. This content download can spread
among the user community, creating a process similar to the spread
of an epidemic over time [34,35]. Therefore, the process of spreading
cache content among users can be modeled by the process of
spreading epidemics.

Considering that users who receive content do not immediately
forward it to other users, but rather need some time to contemplate,
understand, or decide whether to forward it, which is closer to the
actual propagation process among users, this paper uses the SEIRD
model to simulate the content propagation process among users and
defines the user’s propagation state about the cache content fk
as follows:

S: the user does not have access to information about the
cache content fk.

E: Users are influenced by cache content commended by other
users and may be curious about that cache content fk. At the same
time, users send requests to the edge service base station and wait to
obtain the cache content. Users may also choose to ignore
commendations from other users regarding cache content.

I: users are curious about cache content fk and have successfully
obtained content fk from the service base station.

D: the user downloads the cache content fk from the edge service
base station BM and commends it to the neighboring users.

R: the user are not curious about cache content fk or users lose
interest in cache content fk after acquiring it. They can neither
influence nor be influenced by others, and they do not actively
commend the cache content fk to other users.

This study supposed that the user is in state S at the initial
moment, and they reaches out to the user in state D through the
social network, it becomes in state E. State E user does next with the
cache content fk is divided into two scenarios: one is that he is not
curious about the cache content fk and transitions directly from the E
state to the R state, and the other scenario is that it is curious about

the cache content fk and stays in the E state. The state is transformed
from E to I when the user acquires fk. Considering the selfishness of
the user, after acquiring the cache content fk, the user may choose
not to commend the content to other users, or it may transform to D
state to give the cache content to other users by word-of-mouth. Finally,
the user may lose their interest in the cache content after acquiring it,
and the user state is transformed from I or D state R state.

By analogizing this state transfer process with the infectious
disease process, a 6G ECCM is established, as shown in Figure 2. In
this paper, we use Skm(t),Ek

m(t), Ikm(t),Dk
m(t), andRk

m(t) to denote the
count of users in the above five states in the service area of edge service
base station Bm at time t Assuming that the sum total of users in the
entire edge network and the sum total of users in the service area of each
edge service base station are kept stable, and the users can only
transition from one state to another in each unit of time, the
propagation state transfer equation for content fk can be established as:

dSkm t( )
dt

� −γm,kS
k
m t( ) I

k
m t( )
Nm

(1)

dEk
m t( )
dt

� γm,kS
k
m t( ) I

k
m t( )
Nm

− χm,k + ηm,k( )Ek
m t( ) (2)

dIkm t( )
dt

� ηm,kE
k
m t( ) − δm,k + ωm,k( )Ikm t( ) (3)

dDk
m t( )
dt

� δm,kI
k
m t( ) − ξm,kD

k
m t( ) (4)

dRk
m t( )
dt

� ξm,kD
k
m t( ) + χm,kE

k
m t( ) + ωm,kI

k
m t( ) (5)

γm,k is the influence rate, the probability that user unm successfully
receives commendations from other users for cache content fk
through the social network, which can be formulated as:

γm,k � ςϕm (6)

where ς is the probability of establishing a social relationship
between user unm and other users under the range of the same

edge service base station; ϕm � ∑Nm

n�1
ϕnm, ϕ

n
m is the probability of the

existence of other users in the neighboring area of user unm,

ϕnm � 1 − e−λαπR2
m,n , Rm,n indicates the physical distance between

user unm and other users to establish communication.
ηm,k is the service rate, the probability that a user in state E can

successfully acquire the cache content fk from the edge service base
station. The channel capacity [36] between edge serving base station
Bm and user unm is calculated as:

Cn
m � Wm log2 1 + Pmh

n
m

N0
( ) (7)

where Wm is the channel bandwidth, Pm is the transmission power
of the edge service base station Bm, and hnm is defined as the channel
gain of the wireless link between the edge service base station Bm and
the user. hnm � σ0R−λ

m,n, σ0 is the path loss when the distance is 1 m; λ
is the path loss index; and N0 is the Gaussian channel noise power.

The ability of a user to access the cache content from the edge
service base station is affected by the backhaul link capacity between
the edge service base station and the cloud content repository, the
channel capacity between the user and the edge service base station,
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and the magnitude of the cache content, and the total count of users
able to access the content from the edge service base station needs to
satisfy a certain requirement, and thus the service rate can be
calculated as:

ηnm,k � p τnm,k ≤ τm,n,k′( ) (8)

where τnm,k is the magnitude of the content that can be transmitted
over the wireless communication link between the user and the base
station. It can be expressed as:

τnm,k �
Cn

m

Ck
� Wm log2 1 + pmh

n
m

N0
( )
Ck

(9)

Then we substitute Eq. 9 into Eq. 8 can be derived:

p τnm,k < τm,n,k′( ) � p Rm,n ≥
N0 2

τm,k′ Ck
Wm − 1( )

Pmσ0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1
λ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

The location of the user obeys the Poisson distribution, and
according to the probability calculation formula of Poisson
distribution, Eq. 10 can be formulated as:

ηm,k � p τm,k < τm,k′( ) � e−λαF (11)

F �
N0

−1
λ 2

τm,k′ Ck
Wm − 1( )−1

λ

Pmσ0( )−1λ (12)

τm,k′ is the maximum amount of content that can be supported for
transmission from the user to the base station. This value takes into
account the transmission limitations from the user to the base
station as well as the limitations of the backhaul link from the
base station to the cloud content repository, τm,n,k′ � Cn

m,max+Cm
core

Ck
,

where Cn
m,max denotes the maximum channel capacity for

transmission between user unm and edge service base station Bm;
Cm
core is the upper limit of the backhaul link capacity from the edge

service base station to the cloud content repository.
Substituting τm,k′ into Eqs 11, 12, we get:

F �
N0

−1
λ 2

Cnm,max+Cmcore
Wm − 1( )−1

λ

Pmσ0( )−1λ (13)

δm,k is the commendation rate, the probability that a user will
commend the cache content fk to other users.

χm,k is refusal rate, the probability that user is not favor of fk.

ωm,k and ξm,k are loss rate, the probability that user loses interest
in fk after acquiring it.

It is difficult to directly solve the specific expressions for Skm(t),
Ek
m(t), Ikm(t), Dk

m(t), and Rk
m(t) in the state transfer differential

equations obtained by bringing Eqs 6–13 into Eqs 1–5. Therefore, we
defined pS

m,n,k(t), pE
m,n,k(t), pD

m,n,k(t), pI
m,n,k(t), and pR

m,n,k(t) as the
probabilities that user unm is in the states S, E, I,D, R at moment t. We
can get the probability that the unm is in each propagation state at the
moment t + 1 based on the Markov chain method as follow:

pS
m,n,k t + 1( ) � 1 − γnm,kp

I
m,n,k t( )( )pS

m,n,k t( ) (14)
pE
m,n,k t + 1( ) � γnm,kp

I
m,n,k t( )pS

m,n,k t( ) + 1 − ηnm,k − χnm,k( )pE
m,n,k t( )

(15)
pI
m,n,k t + 1( ) � ηnm,kp

E
m,n,k t( ) + 1 − δnm,k − ωn

m,k( )pI
m,n,k t( ) (16)

pD
m,n,k t + 1( ) � δm,kp

I
m,n,k t( ) + 1 − ξm,k( )pD

m,n,k t( ) (17)
pR
m,n,k t + 1( ) � χnm,kp

E
m,n,k t( ) + ξnm,kp

D
m,n,k t( ) + ωn

m,kp
I
m,n,k t( )

+ pR
m,n,k t( ) (18)

The right side of Eq. 14 represents the probability that unm will
remain in state S at time t + 1.

The first part of the right-hand side in Eq. 15 indicates the
probability that the user is in the state E at the moment t + 1 after
accessing the cache content; The second part signifies the probability
of the user remaining in state E from moment t to the moment t + 1.

Similarly, the first part of Eq. 16 denotes the probability that
the user unm is in the state E at the moment t and succeeds in
obtaining the content and thus transitions to the state I at the
moment t + 1; the second term indicates the probability that the
user unm exists at the moment t with the probability of pI

m,n,k, and
then remains in this state up to the moment t + 1 with the
probability (1 − δnm,k − ωn

m,k).
The first part of Eq. 17 is the probability that the user turns

into D state with the probability of δm,k and commend the content
to the neighboring users; the second term represents that the user
keeps the original state unchanged with probability 1 − ξm,k at the
moment t + 1.

The first three parts on the right-hand side of Eq. 18 are the
probabilities that the user is known at moment t to turn into state R
by moment t + 1; and the fourth term represents the probability that
the user keeps the state R unchanged from moment t to moment t +
1. χnm,k denotes the probability that the user u

n
m will not be interested

by the commendation of any of its other users (neighbors or friends)
the cache content fk, which can be articulated as:

FIGURE 2
6G edge caching content model.
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χnm,k � ∏Nm

j�1
1 − γm,kp

D
m,j,k t( ) 1 − 1 − ϖjn∑

j
ϖjn

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
κj⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

where ϖjn denotes the closeness between user unm and ujm, κj denotes
the total count of times user ujm forwarded the commended cache
content of interest.

Eqs 14–19 are organized into matrix form, which leads to the
form of the equation expressed as follows:

pS
m,n,k t + 1( )

pE
m,n,k t + 1( )

pI
m,n,k t + 1( )

pD
m,n,k t + 1( )

pR
m,n,k t + 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 − γnm,kp
I
n,k t( ) 0 0 0 0

γnm,kp
I
n,k t( ) 1 − ηnm,k − χnm,k 0 0 0
0 ηnm,k 1 − δnm,k − ωn

m,k 0 0
0 0 δnm,k 1 − ξnm,k 0
0 χnm,k ωn

m,k ξnm,k 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

pS
m,n,k t( )

pE
m,n,k t( )

pI
m,n,k t( )

pD
m,n,k t( )

pR
m,n,k t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

The propagation state probability transition matrix Pn
m,k(t) in

this paper is defined as:

Pn
m,k t( ) �

1 − γnm,kp
I
n,k t( ) 0 0 0 0

γnm,kp
I
n,k t( ) 1 − ηnm,k − χnm,k 0 0 0
0 ηnm,k 1 − δnm,k − ωn

m,k 0 0
0 0 δnm,k 1 − ξnm,k 0
0 χnm,k ωn

m,k ξnm,k 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

In accordance with the state transition matrix in Eq. 21, the user
cache content state probability prediction equation of content fk can
be obtained as follows:

pS
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pS

m,n,k t( ) (22)

pE
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pE

m,n,k t( ) (23)

pI
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pI

m,n,k t( ) (24)

pD
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pD

m,n,k t( ) (25)

pR
m,k t + 1( ) � ∑Nm

n�1
Pn
m,k t( ) × pR

m,n,k t( ) (26)

Therefore, the total count of users in the S, E, I,D, and R states at
time t:

Skm t( ) � Nm ∑Nm

n�1
pS
m,n,k t( ) (27)

Ek
m t( ) � Nm ∑Nm

n�1
pE
m,n,k t( ) (28)

Ikm t( ) � Nm ∑Nm

n�1
pI
m,n,k t( ) (29)

Dk
m t( ) � Nm ∑Nm

n�1
pD
m,n,k t( ) (30)

Rk
m t( ) � Nm ∑Nm

n�1
pR
m,n,k t( ) (31)

unm in state E and I can request to download cache content fk
from the edge service base station, i.e., the caching strategy at the
edge service base station is influenced by Ek

m(t), ηm,k, Ikm(t) and δm,k.
Therefore the prevalence for cache content fk at moment t can be
described as:

Jm,k t( ) � Ek
m t( ) × ηm,k + Ikm t( ) × δm,k (32)

3 Optimization objective

In this paper, we concentrate on caching decisions for edge
service base stations, without considering the case where the user
acquires the cache content directly from the cloud server. The
caching strategy needs to maximize the user’s demand,
i.e., maximize the cache success ratio. However, with the
increasing demand for cache content in the 6G edge caching
network, the edge service base station faces the challenge that the
limited cache capacity cannot meet all users’ demand, so this paper
takes maximizing the cache success ratio as the optimization
objective. Define cache success ratio Pk

cache,hit as the probability
that the demand for content fk by all users in the entire edge
caching network is satisfied, and Pk

cache,hit can be articulated as:

Pk
cache,hit �

∑M
m�1

Ek
m t( ) × ηm,k + Ikm t( ) × δm,k( ) × sm,k

∑M
m�1

1 − χm,k( ) × Ek
m t( )

(33)

where ∑M
m�1(1 − χm,k) × Ek

m(t) indicates the total amount of user
demand for cache content fk in the entire 6G edge caching network,
i.e., the sum total of times all users are curious about cache content fk

and issued access requests; ∑M
m�1

(Ek
m(t) × ηm,k + Ikm(t) × δm,k) × sm,k

denotes the caching scheme for content fk. According to the cache
success ratio definition in Eq. 33, the specific optimization problem
expression is:

max
S

∑K
k�1

Pk
cache,hit

s.t.C1: cmbase ≤ ∑K
k�1

Ck, ∀m ∈ M

C2: ∑K
k�1

sm,kCk ≤ cmbase, ∀m ∈ M

C3: sm,k ∈ 0, 1{ }, ∀m ∈ M

(34)

where constraint C1 indicates that it is not possible to cache all the
cache content in the 6G cloud content repository on the edge service
base station; C2 satisfies the cache capacity limitation of the edge
service base station, and the total magnitude of the cache content
cached in the edge service base station must not exceed the
magnitude of the caching capacity of the edge service base
station; C3 represents the caching decision of the cache content
by the edge service base station, and sm,k is a Boolean variable taking
the value of 0 or 1.

Frontiers in Physics frontiersin.org06

Wang et al. 10.3389/fphy.2024.1410472

42

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1410472


4 Prevalence predictive genetic-
annealing cache content algorithm

The search space in the cache optimization problem in Eq. 34
contains discrete variables and it is an integer linear programming
(ILP) problem. This type of problem is also an NP-hard problem,
which is difficult to solve directly in general. Heuristic algorithms
such as genetic algorithms and simulated annealing algorithms have
convenient properties in solving optimization problems containing
discrete variables [37,38]. Therefore, this paper proposes a PGAC
algorithm, which combines the genetic algorithm and simulated
annealing algorithm to solve the optimum caching scheme.

4.1 Chromosomal gene coding

Chromosome: a chromosome corresponds to an individual object
in a solution in an optimization problem, i.e., a possible solution. In this
paper, a chromosome is represented as a possible caching solution. Each
chromosome is a solution consisting of genes. In this problem, the
length of the chromosome is usually M, because there are M edge
service base stations in this paper, and each gene represents the caching
decision state of the corresponding edge service base station.

Genes: Each gene in the chromosome represents the caching
status of the corresponding edge service base station, i.e., whether or
not the content is cached. Each gene is encoded in binary.
0 represents that the edge service base station has not cached the
content; 1 represents that the edge service base station has cached
the content. In the proposed 6G edge cache propagation model,
there are a total of K cache contents, and each edge service base
station needs to make a decision on these K cache contents. That is
each content can choose whether to be cached within the edge
service base station or not.

The chromosomes and genes are expressed in a matrix form,
where each row represents a chromosome and each column
represents a gene. In the problem of cache allocation using
genetic algorithm in edge caching network, define a matrix of
M × K, where M is the total count of edge service base stations
and K is the total count of cache contents as represented below:

I �
s1,1 s1,2, . . . , s1,k, . . . , s1,K
s2,1 s2,2, . . . , s2,k, . . . , s2,K
..
. ..

. ..
. ..

.

sM,1 sM,2, . . . , sM,k, . . . , sM,K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

Each element of the matrix Eq. 35 may be 0 or 1 indicating
whether the corresponding edge service base station caches the
corresponding cache content. Through this matrix representation, a
chromosome corresponds to a row of the matrix and each gene
corresponds to an element of the matrix. A genetic algorithm is used
to generate a new chromosome by performing crossover, mutation,
and other operations on this matrix.

4.2 The design of the fitness function

The optimization problem Eq. 34 is a maximization problem.
Therefore, for the chromosome in this paper, a larger fitness value

indicates a better solution, suggesting that the solution represented
by this chromosome is closer to the optimum solution. The fitness
function is represented as follows:

fit � ∑K
k�1

Pk
cache,hit (36)

A higher fitness value corresponds to a greater cache success
ratio, indicating that the corresponding caching strategy is
more optimum.

4.3 Selection, crossover and mutation

Crossover: A single point crossover is used to combine two
separate chromosomes to generate a new chromosome in this paper,
and the new chromosome is generated by exchanging some genes of
the selected chromosome based on randomly generated crossover
sites, with an adaptive crossover probability pc:

pc �
k1 fitmax − fit( )
fitmax − fitmin

, fit<fitavg

pc′ fit≥fitavg

⎧⎪⎪⎨⎪⎪⎩ (37)

where fitmax, fitmin and fitavg are defined as the maximum fitness
value, the minimum fitness value and the average fitness value of all
chromosomes in the population, respectively; k1 is a constant in the
interval [0,1]; pc′ takes the value of a fixed constant in general.

Mutation: The chromosomes in the population are mutated with
an adaptive mutation probability pe, where pe can be represented as:

pe �
k2 fitmax − fit( )
fitmax − fitmin

, fit<fitavg

pe′ fit≥fitavg

⎧⎪⎪⎨⎪⎪⎩ (38)

where k2 is a constant in the interval [0,1]; pe′ takes the value of a
fixed constant in general.

In order to enhance the local search capability of the genetic
algorithm, this paper introduces a simulated annealing selection
method instead of the roulette algorithm for chromosome selection.
The simulated annealing selection algorithm utilizes the Metrospolis
criterion [39] to select chromosomes by first randomly selecting
chromosome I1 from the initialized chromosome population P1
generated after the chromosome correction step, which has a fitness
value of fit (I1). Then chromosome I2 is randomly selected from the
newly generated chromosome population P2 generated after the
crossover and mutation step, which has a fitness value of fit (I2).
Setting the temperature of the simulated annealing method as T, the
probability of I2 being selected into the new chromosome result set
P3 with probability P:

P � e
fit I1( )−fit I2( )

T , fit I1( )≥fit I2( )
1 fit I1( )<fit I2( )

⎧⎪⎨⎪⎩ (39)

If the fitness of chromosome I2 in population P2 is greater than
that of chromosome I1 in population P1, I2 will definitely be selected
to be placed in the new result set P3; However, if the fitness of
chromosome I1 is greater than that of chromosome I2, I2 still has a
probability e

fit(I1 )−fit(I2 )
T of being selected to be placed in result set P3.
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Chromosomes that are not placed in P3 will be returned to their
original chromosome population.

4.4 The Chromosome Check method

The Chromosome Check method is used to check if all the
chromosomes are within the constraints and if there are gene points
that are not within the constraints, this check method will correct all
the relevant chromosome gene points based on the cached
parameters of the service base station. This step will be used after
all the steps where new chromosomes need to be generated to ensure
that the newly generated chromosomes meet the constraints.
Chromosome correction is the core of the chromosome test method.

Chromosome correction: the correction of chromosomes that do
notmeet the constraints. The content of sm,k = 1 is sorted from largest to

smallest according to the cache value cacvaluem,k while ∑K
k�1sm,kCk > cmbase.

Then the content is cached sequentially according to the sorting order,
and the corresponding chromosome gene is 1, until it approaches but
does not exceed the cache capacity cmbase of the edge service base station.

The remaining content is then changed from state sm,k � 1 to sm,k � 0,
corresponding to the chromosome gene being changed to 0. The cache
value is expressed by the following equation:

cachevaluem,k � Jm,k t( ) (40)

Figure 3 shows the general flowchart of the genetic simulated
annealing algorithm. First the entire population is generated based
on the total count of chromosomes in the population. Then new
chromosomes are generated using single-point crossover and
mutation, and the chromosome fitness in the population is
calculated separately, and finally the simulated annealing
selection method is used to select chromosomes for the new
population based on the ordering of fitness. In this case, genetic
adjustment of all chromosomes is required after the initialization of
the population and crossover mutation steps to ensure that they do
not fall outside the constraints.

The PGAC algorithm comprises two parts: first, the prevalence
of cache content is predicted based on the probabilistic prediction
equation of cache content state in Eqs 22–26. Then, the genetic
simulated annealing algorithm is used to acquire the optimum
caching scheme based on the predicted prevalence results. In
summary, the specific flow of the genetic simulated annealing
cache content algorithm is shown in Algorithm 1 below.

INPUT: At initial moment t = 0, calculate the influence

rate, service rate, initialize the population size, the

total count of genetic algorithm iterations, initial

temperature of simulated annealing, Cooling

coefficient, adaptive crossover probabilityand

adaptive mutation probability.

Calculate the proportion of users in each state

according to Eqs 20–26, predict the number of users

in each state using Eqs 27–31, and obtain the content

popularity from Eq. 32.

Use the chromosome correction method to correct the

chromosomes in the initial population;

for i = 1 to nGA do:

Mutate and cross all chromosomes in population P1
according to Eqs 37, 38, generating a new population P2
Use the chromosome correction method to correct the

chromosomes in population P2
Calculate the fitness of each chromosome in the initial

population P1 and the newly generated population P2
according to Eq. 36.

Calculate the probability of chromosomes being

selected according to Eq. 39 and place the selected

chromosomes into population P3;

Until the total count of chromosomes in P3 is

equal to num;

P3 = P1, T = θT;

end for;

Calculate the fitness for each chromosome in

population P1;

I* = the chromosome with the highest fitness;

return I*

t = t + 1

end

content cache finished.

OUTPUT: optimum caching scheme

Algorithm 1. PGAC.

FIGURE 3
Flowchart of the genetic simulated annealing algorithm.
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5 Simulation and results

In this paper, the CDSED strategy is simulated and verified
based on Matlab platform. To simplify the processing, the whole 6G
edge caching network consists of a single edge service base station
with several users, the service area of the edge service base station is a
circular area with a radius of 50 m, the users obey a Poisson
distribution with a density of 0.2. The generation and
propagation of all contents are randomized for easy comparison,
with ξk, ωk and χk between 0.01 ~ 0.05 for each cache content [40],
and γk uniformly distributed between 0.1 ~ 0.5 [41]. The primary
simulation parameters are displayed in Table 1:

In the simulation process, the caching performance of CDSED
strategy is compared with LRU strategy [10], LFU strategy [11] and
MPC strategy [42] respectively.

1. Least Recently Used (LRU) caching strategy: if cache content
has been requested in the recent period, then there is a high
chance that the cache content will be requested in the future
period. When the cache space of the base station is full, the
content that has not been requested for the longest time in the
recent period is deleted.

2. Least Frequently Used (LFU): The edge service base station
records the total count of requests for each cache content.
When the total count of requests for an edge service base
station’s uncache content is greater than the total count of
requests for the least cache content, the edge service base
station removes the least requested content and caches it.

3. Most Popular Caching (MPC): The edge service base station
caches the most popular content within the service area until
the cache capacity limit of the edge service base station
is reached.

This paper describes the change in the total count of users in
each interest propagation state during content dissemination when
the sum total of users is 200. The black solid line, pink dotted line,

red dashed line, cyan dotted line and blue dotted line shown in
Figure 4 represent the changes in the total count of S, E, I, D, and R
state users, respectively. From the figure, it can be seen that there are
a large amount of S state users in the 6G edge caching network at the
initial moment, and they are easily influenced by the
commendations of other users to change their state and become
E state users.With the passage of time, the total count of E state users
increases rapidly, and they become I state users after acquiring the
cache content, and the corresponding amount of E state users
decreases. I state users commend the interest of cache content on
their own terms. However, with the increase of time and the
propagation of the cache content, the interest of the user may
gradually weaken, resulting in the user changing from the I state
and the D state to the R state. The total count of the I state and the D
state users are decreasing, and the state of the user remaining
unchanged in the R state. Therefore, the trends of S, E, I, D, and
R curves are consistent with the results in the theoretical analysis.

Figure 5 illustrates the results of content prevalence for
different amount of users. In the figure, the horizontal
coordinate is time and the vertical coordinate is the content
prevalence. In addition, the curves with blue crosses, red
triangles and yellow circles in the figure represent the change in
content prevalence for user numbers of 100, 200 and 300,
respectively. From the figure, it can be seen that the trend of
the curves for all three cases of amount of users is increasing and
then decreasing to zero, which is in line with the pattern of cache
content in 6G edge caching networks. This is because newly
released cache content quickly arouses the interest of
neighboring users, leading to a rapid increase in the total count
of users curious about the cache content across the 6G edge
caching network, and accordingly triggering a significant rise in
requests for that cache content as well as an increase in the
prevalence of the content. After a period of time, the user
interest in the cache content in the 6G edge caching network
gradually becomes saturated and users are no longer curious about
the cache content. This ultimately leads to a gradual decrease in
user interest in the cache content and a corresponding decrease in

TABLE 1 Simulation parameters

Parameters Numerical
values

User density, λα 0.2 m2

Physical distance for communication between
users, Rm,n

10 m

Cache content size, C [50,200]bits

Loss rate, ξk, ωk [0.01, 0.05]

Refusal rate, χk [0.01, 0.05]

Channel bandwidth, Wm 1 MHz

Transmission power of the edge service base station, pm 1.3 W

Channel gain, hnm 10–5

Gaussian white noise,N0 10–13 dm

Population size, num 20

amount of iterations, nGA 200

Initial temperature, T 1000

Cooling coefficient, θ 0.98

FIGURE 4
Amount of users in each state during content distribution.
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the prevalence of the content. As a result, the total count of new
interested users tends to decrease in the next time period and
eventually stabilizes until it reaches zero.

The variation of cache success ratio at different times when
simulating different caching strategies is shown in Figure 6. In the
figure, the horizontal axis represents the time and the vertical axis
represents the cache success ratio. In addition, the graph with circle,
triangle, rectangle and diamond curves represent CDSED strategy,
MPC strategy, LFU strategy and LRU strategy respectively. From the
figure, it is evident that average cache success ratio of CDSED
strategy is 0.645, while the average cache success ratios of LFU,
MPC, and LRU strategies are 0.579, 0.517, and 0.482, indicating that
the cache hit rate of the CDSED strategy is higher than the other
three strategies. This is because, the LFU, MPC and LRU strategies
mainly rely on the user’s previous content requests, which

consequently leads to the challenge of capturing real-time
content prevalence. Specifically, the LFU, MPC and LRU
strategies’ responses to content requests are limited by the total
count of users’ previous access history, making it difficult to adapt to
dynamically changing content prevalence. In contrast, the CDSED
strategy is more flexible in meeting new user interests and needs
through a real-time content update mechanism by comprehensively
considering the real-time nature of user interests and needs. In
addition, the MPC strategy is prone to fall into local optimum
solutions, and the introduction of the simulated annealing selection
algorithm provides the CDSED strategy with a more global search
capability, which enables it to make caching decisions more flexibly
in the face of complex dynamic environments, thus improving the
overall caching success ratio. Therefore, compared with the other
three caching strategies, the CDSED strategy achieves a higher cache
success ratio.

The simulation compares the variation of cache success ratio in
different caching strategies with different cache capacity sizes, as
shown in Figure 7. In the figure, the horizontal coordinate represents
the cache capacity magnitude of the edge service base station and the
vertical coordinate represents the cache success ratio. In addition,
the bar chart shows the CDSED strategy, MPC strategy, LFU
strategy, and LRU strategy from left to right, respectively. From
the figure, it is observable that when cache capacity increases from
1000 to 3000, the cache success ratio of CDSED strategy, MPC
strategy, LFU strategy and LRU strategy increased from [0.636,
0.505, 0.562, 0.482] to [0.673, 0.563, 0.602, 0.535]. This is because the
larger cache capacity provides more cache resources for the 6G edge
caching network, enabling the edge service base station to
accommodate more cache content to better satisfy the increasing
content requests from users in the edge caching network.
Meanwhile, the CDSED strategy can design the caching strategy
according to the cache capacity of the serving base station.
Therefore, the cache success ratio of CDSED is higher than that
of LFU, MPC and LFU with the same cache capacity.

Figure 8 shows the change of cache success ratio in different
cache strategies when the cache capacity of the base station is

FIGURE 5
Content prevalence prediction results.

FIGURE 6
Cache success ratio changes over time.

FIGURE 7
Variation of cache success ratio with cache capacities.
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constant and the total count of content is increasing. In the figure,
the abscissa represents the total count of content, and the ordinate
indicates the cache success ratio. The circles, triangles, rectangles are
represented by CDSED strategy, MPC strategy, LRU strategy and
LFU strategy respectively. It is clear from the figure that as the total
count of content increases, the cache success ratio decreases
accordingly. This is because when the cache content is increasing,
the types of content requested by the user will also increase, while the
cache space of the edge service base station is unchanged. The edge
service base station cannot cache all the requested cache content, so
it is necessary for the remote cloud server to respond to the user’s
content demand, resulting in a decrease in success ratio. In addition,
the average cache success ratio of CDSED strategy is 0.629, while the
average cache success ratios of MPC strategy, LRU strategy and LFU
strategy are 0.491, 0.454 and 0.551, respectively. When the amount
of content is 100, the cache success ratios of CDSED, MPC, LRU,
and LFU strategies are 0.656, 0.507, 0.483, and 0.575. This is because
LRU and LFU strategies mainly make decisions based on historical
behavior or simple frequency information, which cannot effectively
adapt to the large and diverse cache content set. Although the MPC
strategy considers the prevalence of cache content, when the total
count of cache content increases, it may not be able to accurately
select the content suitable for a specific user group due to only
focusing on the global prevalence, which affects the cache success
ratio. By simulating the propagation process of content between
users, the CDSED strategy can more comprehensively understand
the formation and propagation of user interests, and more flexibly
and selectively cache content with potential propagation trends,
thereby improving the success ratio. Therefore, when the total
content number is the same, the CDSED strategy can increase
success ratio than LRU, LFU and MPC strategies.

The simulation compares cache success ratio changes of
different caching strategies with different total count of users, as
displayed in Figure 9. In the figure, the horizontal axis is the total
count of users, and the vertical axis is the cache success ratio. In
addition, the graphs with red circles, pink rectangles, blue hexagons

and green triangular curves represent CDSED strategy, LFU
strategy, MPC strategy and LRU strategy, respectively. From the
figure, it is evident that as the total count of users increases, the cache
success ratio will increase accordingly. This is because LRU and LFU
strategies selectively replace inactive or low-frequency cache content
by monitoring user behavior, thereby effectively satisfying user
interests. The MPC strategy is based on prevalence information
to better retain popular cache content. The CDSED strategy
considers the content propagation process, makes full use of the
interest propagation relationship between users, and improves the
caching effect for popular content. In addition, the average cache
success ratios of the CDSED strategy, MPC strategy, LRU strategy,
and LFU strategy are 0.632, 0.512, 0.451, and 0.573. When the
amount of users is 500, the cache success ratios of the CDSED
strategy, MPC strategy, LRU strategy, and LFU strategy are 0.552,
0.474, 0.405, and 0.527 respectively. This is because the increase in
the total count of users means that the information propagation path
becomes more complex. The CDSED strategy captures the heat
evolution of content more accurately by simulating the propagation
process of information, and can predict future hot content more
accurately according to the influence relationship between users.
Therefore, the CDSED strategy can enhance success ratio under the
same amount of users.

6 Conclusion

This study proposed a cache distribution strategy based on
epidemic dynamics for 6G edge network. First, the strategy
constructs a 6G ECCM, which investigates the time-varying
content prevalence in edge caching networks. The user
propagation process of cache content is modeled as an
infectious disease propagation process, and the distribution of
user interest in cache content is obtained from the content
propagation state prediction matrix. In addition, the CDSED
strategy includes PGAC algorithm, which introduces a simulated

FIGURE 8
Cache success ratio under different content number.

FIGURE 9
Cache success ratio changes under different amount of users.
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annealing selection algorithm derived from GA to improve the
local search capability and maximize the cache success ratio.
Simulation results show that the CDSED can significantly
increase the cache success ratio compared with LFU, LRU and
MPC. In our future work, we will further optimize the
propagation dynamics model based on this work, and consider
more factors such as user behaviors, social relationships, etc., to
improve the accuracy of popularity prediction. We will also
research edge caching strategies based on technologies such as
6G space-air-integrated network (6G SAGIN) and integrated
sensing and computation (ISAC).
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Information propagation
characteristic by individual
hesitant-common trend on
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Within the context of contemporary society, the propagation of information is
often subject to the influence of inter-individual connectivity, and individuals may
exhibit divergent receptive attitudes towards identical information, a
phenomenon denoted as the Hesitant-Common (HECO) trait. In light of this,
the present study initially constructs a propagation network model devoid of
correlation configurations to investigate the HECO characteristics within
weighted social networks. Subsequently, the study employs a theoretical
framework for edge partitioning, predicated on edge weights and HECO traits,
to quantitatively analyze themechanisms of individual information dissemination.
Theoretical analyses and simulation outcomes consistently demonstrate that an
augmentation in the proportion of common individuals facilitates both the
diffusion and adoption of information. Concurrently, a phase transition
crossover is observed, wherein the growth pattern of the ultimate adoption
range, denoted as R(∞), transitions from a first-order discontinuous phase
transition to a second-order continuous phase transition as the proportion of
common individuals increases. An escalation in the weight distribution exponent
is found to enhance information propagation. Furthermore, a reduction in the
heterogeneity of degree distribution is conducive to the spread of information.
Conversely, an increase in degree distribution heterogeneity and a diminution in
the collective decision-making capacity can both exert inhibitory effects on the
propagation of information.

KEYWORDS

complex networks, weighted network, information propagation, individual hesitant-
common characteristics, heterogeneous information adoption model

1 Introduction

With the rapid development of social media platforms such as TikTok, WeChat, and
Twitter, social networks have increasingly become integral to human life. These media
facilitate the swift reception and dissemination of diverse information, greatly enhancing
the convenience of people’s work and daily activities. The communication pathways within
social media constitute a vast network for information dissemination, with the world’s
largest social media platform, Facebook, boasting billions of active monthly users, and the
monthly volume of information flow is incalculable [1]. However, this complexity of
information interweaving also presents challenges: once harmful information spreads
within the network, it can cause significant damage. Beyond the challenges of
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information dissemination, social networks also play a crucial role in
various fields such as healthcare [2, 3], cultural education [4, 5], and
commercial marketing [6, 7]. They are utilized for analyzing
information, signals, and financial communication patterns,
demonstrating their multifunctionality in modern society.
Therefore, an in-depth analysis of the information dissemination
patterns within social networks is of significant importance for
understanding their impact, optimizing information management,
preventing risks, and promoting development in various sectors.

In recent years, numerous scholars have conducted research on
information propagation models, including those based on the
Internet of Things with layered structures [8], models grounded
in game theory [9], and models inspired by heat transfer [10].
Among these, game theory-based models are capable of simulating
decision-making processes of individuals aimed at maximizing their
self-interest. However, these models are predicated on the
assumption of rationality of the individuals, which may not be
applicable to all social network contexts. Meanwhile, research on
information propagation based on complex network theory and
topological structures has emerged as a significant topic within the
field of complex network studies [11–14]. There is an extensive body
of research on the spread of epidemics across complex networks, and
the modes of information propagation within social networks bear
certain similarities to the spread of diseases in physically complex
networks. Adopting and expanding the foundational models of
epidemic propagation in complex networks can facilitate a better
understanding of information dissemination in social networks. For
instance, a modified Sub-Health-Healthy-Infection- Recovery
(SHIR) model with time delays and nonlinear incidence rates has
been established for two susceptible populations across different
topological networks [15]. Guirui Liu and others developed the SIS-
UAU model to describe the dynamics of epidemic and information
propagation within overlay networks [16], by constructing a dual-
layer network consisting of an epidemic dynamic evolution layer
and an information propagation layer to study the dynamics of
information and disease spread in superimposed networks.
Furthermore, some scholars have described information
propagation in complex networks using more refined models.
Guan Gui and others formulated a SIR model with time delays,
forced silence functions, and forgetting mechanisms in both
homogeneous and heterogeneous networks to describe the
dynamic mechanisms of rumor propagation [17]. To investigate
the propagation trends of network rumors, the authors in [18]
detailed the dynamic behavior of a delayed S2IS rumor propagation
model with a saturation conversion function. Rumor propagation, as
a hot topic in information propagation research [19–21], is also a
category within social network dissemination, and such research
aids various researchers in uncovering the underlying mechanisms
of information propagation in social networks.

One of the primary mechanisms for information dissemination
within social networks is through the interconnections among users
[22]. Upon the inception of a piece of information, the originator
initiates its propagation. It is possible that during the initial
dissemination, multiple recipients receive the information
simultaneously. Should a recipient successfully adopt the
information, they then assume the role of a subsequent
disseminator. Concurrently, this process may yield adopters who
do not further propagate the information, as well as non-adopters.

Ultimately, however, the information evolves into a shared resource
among a majority of the network’s participants.

Taking into account the various factors that influence
information propagation, user behavior on social networks
exhibits diversity and heterogeneity, thereby giving rise to
distinct patterns of information dissemination. In real-world
social networks, interactions are more likely to occur among
individuals with similar interests or preferences, and generally,
individuals prefer to receive and share information that aligns
with their interests and preferences. Temporal thematic analysis
of mobile communication systems has revealed homophily
characteristics in social interactions, where communication
between individuals with similar attributes (such as gender and
age) tends to be more frequent [23]. Bakshy et al., based on Facebook
data, observed ideological homophily within friendship networks,
where both conservatives and liberals are more likely to associate
with friends of similar political affiliations [24].

Numerous systems within contemporary society can be
characterized as networks, where the constituent elements are
represented as nodes. If the interactions between nodes are
quantifiable, the interconnecting edges can be assigned weights,
thus forming a weighted network. Consequently, the edge weights
within a weighted network typically serve to denote the individual
relationships between nodes. For instance, in transaction networks,
these weights can signify the proportion of transactions between
financial institutions [25], while in transportation networks, they
may represent the percentage of tourists utilizing different travel
routes [26]. Social networks exhibit complex topological structures
with significant heterogeneity in connection strength and capacity.
Constructing the inter-individual connections as edges with
heterogeneous weight distributions is conducive to uncovering
the impact of edge weight heterogeneity on information
propagation.

Existing research has demonstrated that individual
heterogeneity in adoption manifests as varying receptive attitudes
towards the same information, and individuals’ attitudes may
change as they acquire different amounts of information [27, 28].
In their research presented in Ref. [29], Iyengar R. examined the
propagation of obesity through social networking platforms,
emphasizing the significance of group heterogeneity in the
dissemination of health-related information. Golub B.
investigated the learning processes predicated on individual
heterogeneity within these networks and the subsequent influence
on the collective intelligence of the group [30]. Furthermore, Lerman
K. conducted empirical analyses on the dissemination of news across
social media platforms, including Digg and Twitter, with a particular
focus on the heterogeneity of user behaviors [31]. However, studies
on information propagation in complex networks that consider
group adoption heterogeneity are relatively scarce. Due to the
distinct personalities of each individual in real-world social
networks, the degree of information adoption varies. Based on
the psychology of information adoption, this study categorizes the
population within social networks into two types: common
individuals and hesitant individuals, collectively referred to as
the Hesitant-Common (HECO) model. Common individuals
maintain a liberal attitude towards received information or
behaviors and can adopt them at varying speeds, with an
increased willingness to adopt as more information is received.
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In contrast, hesitant individuals experience a period of
deliberation regarding whether to adopt, repeatedly verifying
the information before reaching a decision to adopt, facilitated
by the acquisition of more information. For example, when a
trending piece of information emerges on the internet, common
individuals are more likely to discover and disseminate it. Among
similar common individuals, the adoption rate is higher, leading to
faster propagation of the trending information and a quicker approach
to relative saturation in the adoption range. On the other hand, hesitant
individuals often receive trending information through common
individuals, adopt it after thorough verification, and thus propagate
itmore slowly, with the adoption range reaching relative saturation after
a period of time. Therefore, categorizing the population in social
networks based on adoption heterogeneity can contribute to a

deeper understanding of the propagation mechanisms within
social networks.

In consideration of the factors previously discussed, this study
investigates the influence of group adoption heterogeneity on
information dissemination within social networks on weighted
networks and explores the HECO characteristics in the context of
information propagation. A model of the information adoption
function is proposed to explain the HECO characteristics.
Subsequently, a set of partitioning principles based on edge
weight and HECO characteristics is formulated to quantify and
analyze the mechanisms of individual information propagation. The
impact of information propagation on group heterogeneity is
validated through simulation results, which are consistent with
theoretical analysis. The structure of the remainder of this paper

FIGURE 1
Subfigure (A) illustrates the schematic of the weighted social network propagation model. Different numerical labels with colors represent various
types of populations, with black denoting the common population, such as 1, 2, 4, and 6. Green represents the hesitant population, such as 3, 5, and 7. The
symbol ε represents the edge weight, which signifies the degree of interaction between two individuals. Blue solid lines indicate that information has not
been disseminated through the connected edge, while green dashed lines signify that information has already been propagated through this edge
and cannot be transmitted further via the same edge. Subfigures 1 (B1,B2) represent the information adoption functions for the hesitant and ordinary
populations, respectively, where x is the ratio of the number of information units received by a node to its degree.
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is as follows: In the second section, an information propagation
model based on group heterogeneity is established on weighted
networks. The third section presents a theoretical analysis of edge
partitioning based on edge weight and HECO characteristics. The
fourth section examines the simulation results, confirming the
propagation process of individual information in line with
theoretical analysis. Finally, a summary is provided in the
fifth section.

2 Information propagation model with
hesitant-common trend

This section aims to construct a two-layer propagation network
model based on an uncorrelated configuration model to investigate
the impact of differences in HECO characteristics among
populations on information dissemination within weighted social
networks. In this model, the network consists of N nodes with a
degree distribution P(k), and the propagation model follows the
susceptible-adopted-recovered (SAR) paradigm. At any given
moment, each node is in one of three states: susceptible state (S),
adopted state (A), or recovered state (R). S-state nodes have not yet
adopted the information and can receive information from
neighboring nodes. A-state nodes have adopted the information
and will pass it on to neighboring nodes. R-state nodes have lost
interest in the information and no longer participate in the
subsequent propagation process (i.e., they will neither adopt nor
disseminate the information). The propagation mechanism is
depicted in Figure 1A. In the weighted social network model
presented in this study, an edge weight distribution is introduced
to represent the degree of interaction between individuals, with
different weight distributions reflecting the heterogeneity in
information reception and dissemination among node
connections. The edge weight between adjacent nodes i and j is
denoted as εij, and the weight distribution function is denoted as
f(ε). When a node i in state A sends information to a node j in state
S, the probability of node j receiving the information is given by
Eq. 1:

βε � β εij( ) � 1 − 1 − λ( )εij (1)

Where λ is the propagation probability of information unit, and
βε gradually monotonically increases with the increase of εij. When
βε � 1, βε � λ, that is, the weight value has no effect on information
transmission.

Let m denote the total number of successfully received
information units by a node in state S. Initially, in the weighted
social network, there is no information propagation, meaning that
for a node j in state S, mj � 0. Subsequently, at each propagation
time step, if node j successfully receives information transmitted via
an edge from a neighboring node i in state A, then the count of
adopted information units by node j increases by 1, such that m
becomes mj → mj + 1.

To characterize the decision-making capacity of a population,
this study introduces a hesitancy parameter, denoted as a. A larger
value of a indicates a stronger hesitancy, which corresponds to a
weaker decision-making ability, and conversely, a smaller a
signifies a stronger decision-making ability. Furthermore, to

represent the impact of group adoption heterogeneity on
information propagation, two functions are introduced to
illustrate individual information adoption decision-making
capabilities, as depicted in Figure 1B. The hesitant population,
initially exhibit a phase of active adoption during the early stages of
information dissemination. The propensity for active adoption
increases with the acquisition of more information. However, due
to their hesitancy, they subsequently enter a phase of passive
adoption. When the number of acquired information units
reaches the optimal decision-making capacity for adoption, they
revert to an active mindset and remain unchanged thereafter. Eq. 2
represents the information adoption function for the hesitant
population:

he x, a( ) �

x

a
, 0< x≤

a

2
−x + a

a
,
a

2
≤ x≤ a

x − a

1 − a
, a≤ x≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

For the general population, there exists a normative reception
and assimilation of information, wherein an increase in the quantity

FIGURE 2
Simulated information dissemination process under weighted
social network.
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of information acquired further enhances the adoption of
information by this demographic. Eq. 3 delineates the
information adoption function of the general population:

hq x, a( ) �
x

1 − a
, 0< x≤ 1 − a

1, x≥ 1 − a

⎧⎪⎨⎪⎩ (3)

In the aforementioned equations, e and q represent the hesitant
and common populations, respectively. The variable x represents
the ratio of the total number m of successfully received messages to
the degree for nodes in state S, which is used to characterize the
collective information reception degree within a network. A higher
value of x indicates a greater quantity of information successfully
accepted by the network. When x = 1, the total number of
successfully received messages is equal to the degree, implying
that all nodes in state S have successfully received the information.

The simulation of information propagation in a weighted social
network is depicted in Figure 2: A complex network with N nodes is
constructed, where the edges between nodes are randomly generated
according to the predefined networkmodel, and all nodes are initially set
to the S-state. A proportion q0 of the nodes in the network is randomly
selected to be common nodes, while the remaining proportion e0 of
nodes are designated as hesitant nodes (from which it follows that
e0 + q0 � 1). Subsequently, a fraction ρ0 of the total nodes is randomly
chosen to be in the A-state, with the remaining nodes defaulting to the
S-state. During information propagation, a node i in state A transmits
information to an adjacent node j in state S via the corresponding edge
with weight εij. The probability that node j successfully receives the
information is β(εij), and upon successful reception, the count of
adopted information units for node j becomes mj → mj + 1. Due to
the non-redundancy of information propagation, the information will
not be disseminated through this edge again. For the group heterogeneity
of node j, the probabilities of adopting information while in the hesitant
and common states are he(x, a) and hq(x, a), respectively, where
x � mj/kj. A node j that successfully adopts the information
transitions to state A; if unsuccessful, it remains in state S. A node i
that has completed the propagation process may lose interest in the
information with a recovery probability γ and transition to the R-state.
The aforementioned propagation process is repeated until no nodes
remain in stateA, atwhich point the information propagation concludes.

3 Theory analysis

Building upon the literature [14, 32], this study examines the
propagation of non-redundant information with group adoption
heterogeneity on weighted networks. On this foundation, the paper
proposes a theory of edge partitioning based on edge weight andHECO
characteristics, thereby analyzing the information propagation
mechanisms of the model. The study introduces nodes in a cavity
state [33], which are capable of receiving information from neighbors
but are unable to transmit information to other nodes. Assuming
that edge weights are randomly distributed, the probability that a
node has not received information from its neighbors by time t is
characterized by Eq. 4:

θ t( ) �∑
ε

f ε( )θε t( ) (4)

Where θε(t) is the probability that the A-state node does not
propagate information to the neighboring nodes in S-state through
the edge with the weight of ε by time t.

By time t, a node i in state S with degree ki has receivedm pieces
of information from its neighbors, an occurrence that can be
represented as in Eq. 5:

φ ki, m, t( ) � ki
m

( )θ t( )ki−m 1 − θ t( )[ ]m (5)

Based on group heterogeneity, differences in HECO characteristics,
and the information adoption function, if node i is a hesitant node in
state S, and after time t, it has received m(m> aki) pieces of
information cumulatively but has not adopted the information and
remains in state S, the probability is articulated by Eq. 6:

ϕe ki, m, t, a( ) �∑m
r�0
φ ki, r, t( )∏r

l�0
1 − he

l

ki
, a( )[ ]

�∑
aki
2

r�0
φ ki, r, t( )∏r

l�0
1 − l

aki
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑aki
r�aki

2

φ ki, n, t( )∏
aki
2
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1 − l

aki
2
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l�aki
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1 −
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ki
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1 − l
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2
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(6)

Similarly, when the received information m satisfies the
conditions m< aki

2 and aki
2 <m< aki, the probability of not having

adopted the information and still being in state S is expressed by Eqs
7, 8:

ϕe ki, m, t, a( ) �∑m
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φ ki, r, t( )∏r
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(8)

Then, for any hesitant node in state S, Eq. 9 can represent the
probability that such nodes have not yet adopted the information by
time t is:

τe �∑
ki

P ki( )ϕe ki, m, t, a( ) (9)

Similarly, if node i is an common node in state S, and after time t,
it has received m pieces of information cumulatively but has not
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adopted the information and remains in state S, the probability is
articulated by Eqs 10, 11:

ϕq ki,m,t,a( ) �∑m
r�0
φ ki,n, t( )∏r

l�0
1−hq l

ki
,a( )[ ]

� ∑1−a( )ki

r�0
φ ki,n, t( )∏r

l�0
1−

l

1−a( )ki −a
1−a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, m> 1−a( )ki( )

(10)
ϕq ki, m, t, a( ) �∑m

r�0
φ ki, r, t( )∏r

l�0
1 − hq

l

ki
, a( )[ ]

�∑m
r�0
φ ki, r, t( )∏r

l�0
1 −

l

1 − a( )ki − a

1 − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, m< 1 − a( )ki( )

(11)
For any common node in state S, the probability of not adopting

the information at the cut-off time t is:

τq �∑
ki

P ki( )ϕ ki, m, t, a( ) (12)

Consequently, the probability that node i in state S, after time t,
remains in state S after having cumulatively received m pieces of
information is given by Eq. 13:

ϕ ki, m, t, a( ) � 1 − ρ0( ) e0ϕe ki, m, t, a( ) + q0ϕq ki, m, t, a( )[ ] (13)

Then, in this weighted network, the proportion of S-state nodes
at time t is delineated by Eq. 14:

Φ m, t, a( ) �∑
k

P k( )ϕ k,m, t, a( ) � 1 − ρ0( ) e0τe + q0τq[ ] (14)

Due to the three states in the SAR model, this study introduces
the term θε(t) for calculation purposes. Initially, θε(t) can be
denoted using Eq. 15 as follows:

θε t( ) � ηS,ε t( ) + ηA,ε t( ) + ηR,ε t( ) (15)

Where ηA,ε(t) represents the probability that a node i in state S, by
time t, has interacted with an adjacent node j in state A via an edge
with weight ε but has not successfully adopted the information. ηS,ε(t)
and ηR,ε(t) are the probabilities that a node i in state S interacts with
an adjacent node j in state S (or R) via an edge with weight ε.

Initially, the cavity node theory is introduced to calculate
ηS,ε(t). A node i in the cavity state is unable to transmit
information to other nodes. Thus, a node j in state S with
degree kj can receive information from the other kj − 1
adjacent nodes. Hence, the probability that node j has
cumulatively received n pieces of information from its
neighboring nodes by time t is articulated by Eq. 16:

φ kj − 1, n, t( ) � kj − 1
n

( )θ t( )kj−2−n 1 − θ t( )[ ]n (16)

Based on the differences in HECO characteristics and the
information adoption function of the population, if node j is a
hesitant node in state S, and after time t, it has received

n(n> a(kj − 1)) pieces of information cumulatively but has not
adopted the information and remains in state S, the probability is
represented as:

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − he

l

kj
, a( )[ ]

� ∑
a kj−1( )

2

r�0
φ kj − 1, r, t( )∏r

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑a kj−1( )

r�a kj−1( )
2

φ kj − 1, r, t( ) ∏
a kj−1( )

2

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∏r

l�a kj−1( )
2

1 −
a − l

kj − 1

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑n
r�a kj−1( )

φ kj − 1, n, t( ) ∏
a kj−1( )

2

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× ∏a kj−1( )

l�a kj−1( )
2

1 −
a − l

kj − 1

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∏r
l�a kj−1( )

1 −
l

kj − 1
− a

1 − a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

Similarly, when the received information m satisfies the
conditions n< a(kj−1)

2 and a(kj−1)
2 < n< a(kj − 1), the probability of

not having adopted the information and still being in state S is
represented as:

ψ kj,n, t,a( )�∑n
r�0
φ kj −1, r, t( )∏r

l�0
1−he l

kj
,a( )[ ]

� ∑
a kj−1( )

2

r�0
φ kj −1, r, t( )∏r

l�0
1− l

a kj −1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑n
r�a kj−1( )

2

φ kj −1, r, t( ) ∏
a kj−1( )

2

l�0
1− l

a kj −1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∏r

l�a kj−1( )
2

1−
a− l

kj −1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − he

l

kj
, a( )[ ]

�∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − l

a kj − 1( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (19)

When node j is a common node in state S, and after time t, it has
received n pieces of information cumulatively but has not adopted
the information and remains in state S, the probability is
represented as:

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏r

l�0
1 − hq

l

kj − 1
, a( )[ ]

� ∑1−a( ) kj−1( )
r�0

φ kj, r, t( )∏r
l�0

1 −

l

1 − a( ) kj − 1( ) − a

1 − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, n> 1 − a( ) kj − 1( )

(20)

ψ kj, n, t, a( ) �∑n
r�0
φ kj − 1, r, t( )∏n

l�0
1 − hq

l

kj − 1
, a( )[ ]

�∑n
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l�0
1 −

l

1 − a( ) kj − 1( ) − a

1 − a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, n≤ 1 − a( ) kj − 1( )

(21)
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Consequently, the probability that a node j in state S remains in
state S after cumulatively receiving n pieces of information by time t
is given by Eq. 22:

ψ kj, n, t, a( ) � 1 − ρ0( ) e0ψe kj, n, t, a( ) + q0ψq kj, n, t, a( )[ ] (22)

The probability that a node i in state S can interact with a node j
in state S via an edge with weight ε is:

ηS,ε t( ) �
∑
kj

kjP kj( )ψ kj, n, t, a( )
〈k〉 (23)

Where kjP(kj)
〈k〉 represents the probability of contact between node

i and node j whose degree is kj, and 〈k〉 is the network
average degree.

Subsequently, analyze ηA,ε(t) and ηR,ε(t). Given that the
probability of a node i in state S successfully adopting
information from an adjacent node j in state A via an edge with
weight ε is βε, then the probability θε(t) can be further evolved as:

dθε t( )
dt

� −βεηA,ε t( ) (24)

In addition, a node in state A may lose interest in information
transmission with probability γ and change to the state R, and ηR,ε(t)
can evolve into:

dηR,ε t( )
dt

� γηA,ε t( ) 1 − βε( ) (25)

By combining the initial conditions θε(0) � 1 and ηR,ε(0) � 0,
Eqs 18, 19 allows for the derivation of Eq. 26:

ηR,ε t( ) � γ 1 − θε t( )[ ] 1
βε

− 1( ) (26)

By substituting Eqs 17, 20 into Eq. 12, one arrives at Eq. 27:

ηA,ε t( ) � θε t( ) − ηS,ε t( ) − ηR,ε t( )

� θε t( ) −
∑
kj

kjP kj( )ψ kj, n, t, a( )
〈k〉 − γ 1 − θε t( )[ ] 1

βε
− 1( )

(27)
Substituting Eq. 21 into Eq. 18, θε(t) evolves accordingly, as

detailed in Eq. 28:

dθε t( )
dt

� θε t( )−
∑
kj

kjP kj( )ψ kj,n, t,a( )
〈k〉 −γ 1−θε t( )[ ] 1

βε
−1( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

� βε

∑
kj

kjP kj( )ψ kj,n, t,a( )
〈k〉 +γ 1−βε( )− γ+βε 1−γ( )[ ]θε t( )

(28)

In the whole network, the density changes of each state can be
represented by Eqs 29, 30:

dR t( )
dt

� γA t( ) (29)
dA t( )
dt

� −dS t( )
dt

− γA t( ) (30)

Therefore, the formula 11, 23, 24 can be iterated together to
obtain each state density S(t), A(t) and R(t) at any time step.

When t → ∞, the status of nodes in the network does not
change, and there are only S-state nodes and R-state nodes in the
network. That is, when dθε(t)

dt |t�∞ → 0, R(∞) is the final information
adoption size. At this time, the probability that the edge with the
weight of ε does not propagate information is articulated by Eq. 31:

θε ∞( ) �
βε∑

kj

kjP kj( )ψ kj, n,∞, a( ) + 〈k〉γ 1 − βε( )
〈k〉γ + 1 − γ( )βε〈k〉 (31)

By combining the formula 11 and 25, the combinatorial iteration
results in S(∞) and R(∞).

Next, focus on the analysis of critical propagation probability,
leading to the introduction of Eq. 32:

Θ βε, ρ0, a, γ, λ[ ] �
βε∑

kj

kjP kj( )ψ kj, n,∞, a( ) + 〈k〉γ 1 − βε( )
〈k〉γ + 1 − γ( )βε〈k〉

+ γ 1 − βε( )
γ + 1 − γ( )βε − βε ∞( )

(32)
θcε(∞) is used to represent the critical probability point of θε(t).
Under the unit critical propagation probability, when t → ∞,
information cannot propagate to node j through the
corresponding edge. At the critical value of θcε(∞),
Θ[βε(∞), ρ0, a, γ, λ] is tangent to the horizontal axis. Thus, the
critical condition can be delineated as shown in Eq. 33:

dΘ
dθε ∞( )

∣∣∣∣
θcε ∞( ) � 0 (33)

4 Simulation and discussion

To validate the theoretical analysis mentioned above, we
conducted numerical simulations and theoretical analysis based
on weighted Erdos-Renyi (ER) networks [34] and weighted Scale-
Free (SF) networks [35].

Firstly, a more comprehensive introduction to the Erdos-
Renyi (ER) network and the Scale-Free (SF) network is provided.
The ER network model is one of the most fundamental models in
the study of complex network theory and holds significant
importance for understanding randomness in networks and
stochastic phenomena within networks. The construction rules
are as follows: (1) There is a fixed number of nodes within the
network; (2) Each pair of nodes is randomly connected with the
same probability p, meaning that the existence of an edge (link)
between any two nodes is independent, and this probability is
identical for all node pairs; (3) The ER network model typically
refers to an undirected graph, where edges have no direction; (4)
The network contains no self-loops (nodes connecting to
themselves) and multiple edges (more than one edge between
the same pair of nodes) [36]. The ER network has practical
applications, including: the ER model can be used to simulate
random friendship formation in social networks [37], in
bioinformatics, it is utilized to model the randomness of gene
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regulatory networks or protein interaction networks [38], and it
can also be applied in transportation networks to simulate
random route selection in urban traffic networks [39].

The SF network is a network model characterized by a power-law
distribution in the connectivity degree of its nodes. The basic steps for
constructing an SF network are as follows: (1) Initial Network: Start
with a small network, typically consisting of a few nodes and the
connections between them; (2) Growth: Over time, the network grows
by adding new nodes. Each new node comes with several edges that
connect to certain nodes in the existing network; (3) Preferential
Attachment: The probability that a new node connects to an existing
node is proportional to its degree (i.e., the number of connections of
the existing node). This means that the more connections a node has,
the higher the likelihood it will attract new connections; (4) Network
Topology: In this manner, the network’s topology evolves over time,
developing a special degree distribution known as a power-law
distribution, which is one of the characteristics of SF networks; (5)
No Self-Loops and Multiple Edges: Self-loops (nodes connecting to
themselves) and multiple edges (more than one edge between two
nodes) are generally not allowed during the construction process; (6)
Network Size: Nodes and edges can continue to be added until the
network reaches the desired scale [40]. Related instances of SF
networks include: Protein interaction networks and metabolic
networks in biological systems are often modeled as SF networks
[41]. Certain parts of power transmission networks can be modeled as
SF networks to study their robustness and vulnerability [42]. In
financial markets, the network of transaction relationships between
companies also exhibits characteristics of SF networks [43].

In the weighted ER network and SF network, 10,000 independent
nodes are set in the network, the average degree of the network
〈k〉 � 10, the weight distribution is fX(ε) ~ ε−αε , εmax ~ 1/(αε − 1),
and the average weight 〈ε〉 � 8. In addition, the probability of the
A-state node returning to the R-state is γ � 1.0.

In this paper, the relative variance X is used to illustrate the
critical unit propagation probability and critical conditions in the
simulation, and is articulated by Eq. 34 as follows:

κ � N
〈R ∞( )2〉 − 〈R ∞( )〉2

〈R ∞( )〉 (34)

Where 〈...〉 is the set mean, and the maximum value of κ is the
critical point of the final adoption scale.

The analysis of information disseminationmodels within this study
relies on the thermodynamic classification of phase transitions. Phase
transitions are categorized based on the mathematical
characteristics—continuous or discontinuous—of the partial
derivatives of free energy with respect to temperature and pressure
at the transition point. This categorization includes first-order, second-
order, and higher-order phase transitions, with the focus of this study
being on the first two types. In the context of thermodynamics, a first-
order phase transition is characterized by equal chemical potentials
between the new and old phases, yet differing first-order partial
derivatives. This type of transition is associated with a discontinuous
change in both entropy and volume. A second-order phase transition is
distinguished by equal chemical potentials and first-order partial
derivatives between phases, but with second-order partial derivatives
that are not equal, resulting in no change in entropy or volume. The
phase transition model is employed to describe the growth rate of the

dissemination range during the process of information dissemination. A
rapid growth in the dissemination range with the unit dissemination
probability, marked by a discontinuous change, is classified as a first-
order discontinuous phase transition. In contrast, a slow growth
exhibiting a continuous change is classified as a second-order
continuous phase transition.

In this section, to conduct a more nuanced examination of the
influence of the HECO characteristic on the propagation of
information within social networks, we focus on two parameters
that are most representative of the HECO trait: the proportion of the
common population q0 and the hesitation parameter a.
Consequently, this section predominantly employs these two
parameters, q0 and a, in our simulation analysis to explore the
distinct dissemination patterns of information across various
proportions of hesitant and common populations within the
network, as well as under different levels of individual decisiveness.

4.1 The propagation process of weighted
ER network

In this paper, the propagation of information on weighted ER
network is discussed first. The nodes in ER network obey Poisson
distribution, that is, P(k) � e−〈k〉〈k〉k/k!.

Figure 3 describes the impact of the unitary propagation
probability λ on the ultimate propagation range R(∞) in a
weighted ER network when the decision-making ability of the
hesitant population is relatively strong (hesitancy parameter
a � 0.2), under different proportions of the hesitant population.
The initial proportion of nodes in state A, ρ0 � 0.001. Subfigures
3(a1) and 3(b1) indicate that as λ increases, the ultimate adoption
range R(∞) gradually enlarges. It can also be observed that at higher
values of λ (λ> 0.5), where the change in the ultimate propagation
range with λ is minimal, the larger the proportion of the common
population, the greater the ultimate adoption range R(∞) at
equilibrium. When the proportion of the common population q0
is large (q0 � 0.8), the information propagation exhibits a first-order
discontinuous phase transition, whereas for smaller or half
proportions of the common population (q0 � 0.2 and q0 � 0.5), it
exhibits a second-order continuous phase transition. Subfigures
3(a2) and 3(b2) present the statistical calculations of the relative
standard deviation for both theoretical analysis and simulation
values, as well as the critical points derived from subfigures 3(a1)
and 3(b1). As the proportion of the common population increases,
the growth in information adoption and the onset of the adoption
explosion threshold are delayed. However, this delay results in a
more rapid attainment of a global adoption state. This suggests that
when the hesitant population possesses a strong decision-making
ability, a smaller proportion of the common population results in
faster propagation and an earlier onset, although the rate of
propagation range growth with unitary propagation probability
remains relatively slow. Conversely, when the proportion of the
common population is large, the onset of information propagation is
further delayed. Yet, the rate of propagation range growth with
unitary propagation probability is more rapid, potentially leading to
a discontinuous phase transition and a swifter achievement of a
global adoption state. Moreover, in comparison to Figures 3A, B, an
increase in the weighted distribution exponent is shown to advance
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the adoption explosion point. However, variations in the weight
distribution do not impact the phase transition mode.

Figure 4 illustrates the impact of the unit propagation
probability λ on the ultimate propagation range in a weighted ER
network when the decision-making ability of the hesitant population
is moderate (a � 0.5), across various proportions of the hesitant
population q0. Subfigures 4(a1) and 4(b1) indicate that under
different weight distributions, the proportion of the ordinary
population q0 does not significantly affect the propagation
pattern of information; that is, the adoption outbreak points are
essentially consistent, and both exhibit a first-order discontinuous
phase transition. However, when the information propagation
outbreak occurs, it is observed that a larger proportion of the
ordinary population q0 results in a larger ultimate adoption
range R(∞) at equilibrium. Subfigures 4(a2) and 4(b2) present
the relative standard deviation calculated from the statistical
simulation values and the critical threshold for the propagation

outbreak as shown in subfigures 4(a1) and 4(b1), respectively. As the
proportion of the common population increases, information
propagation can reach equilibrium at a relatively lower unit
propagation probability λ in the early stages. These observations
suggest that under moderate decision-making ability, regardless of
the proportion of the common population, the outbreak threshold
for information propagation remains the same, but a larger
proportion of the common population leads to a greater jump in
the adoption range during the outbreak and a more rapid
achievement of the global adoption state. Similarly, when the
proportion of the common population q0 is small, the jump in
the adoption range during the outbreak and the ultimate adoption
range at equilibrium are also relatively smaller, failing to reach global
propagation. Additionally, compared to Figure 4A, with Figure 4B,
an increase in the weighted distribution index advances the adoption
outbreak point, but changes in the weight distribution do not affect
the phase transition pattern of propagation.

FIGURE 3
In the weighted ER network, when the decision-making ability of the hesitant population is relatively strong, the variation of the final propagation
range for both adopting populations under different proportions q0 as a function of the propagation probability λ is depicted. Subfigures (A1,B1) illustrate
the impact of different edge weights (ε � 25 and ε � 35) on the propagation patterns, respectively. Subfigures 3 (A2,B2) represent the distribution of the
relative standard deviation of the simulation results and the critical points of the propagation threshold in subfigures 3(a1) and 3(b1), respectively.
Other parameters are set to ρ0 � 0.001 and a � 0.2.
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From Figures 5A1, B1, it can be observed that as the unit
propagation probability λ increases, the ultimate adoption range
R(∞) gradually enlarges, and the larger the proportion q0 of the
common population, the greater the ultimate adoption range R(∞)
at equilibrium. At q0 � 0.8 and q0 � 0.5, the propagation pattern of
the ultimate adoption range exhibits a second-order continuous
phase transition, while at q0 � 0.2, it shows a first-order
discontinuous phase transition. Figures 5A2, B2 indicate that the
larger the proportion q0 of the common population, the smaller the
unit propagation probability threshold at the time of adoption
outbreak. Figures 5A, B demonstrate that when the decision-
making ability of the hesitant population is low, a larger
proportion of the common population can reach the information
adoption outbreak point at a smaller unit propagation probability λ,
and the ultimate adoption range at equilibrium is larger. Conversely,
when there is a smaller proportion of the ordinary population, the
outbreak threshold for information propagation is higher, and the

ultimate adoption range at equilibrium is relatively smaller.
Additionally, compared to Figure 5A, with Figure 5B, the
adoption outbreak point advances with an increase in the
weighted distribution index, but changes in the weight
distribution do not alter the phase transition pattern of propagation.

Figure 6 describes the joint effect of the unit propagation
probability λ and the hesitancy parameter a on the ultimate
adoption range R(∞) in a weighted ER network when the
proportions of the hesitant and common populations are equal
(q0 � 0.5), under different weight distributions (subfigure 6(a) with
ε � 25 and subfigure 6(b) with ε � 35). The initial proportion of
nodes in state A, ρ0 � 0.001. The joint effect plane is divided into
four regions based on different propagation patterns of information,
Region I: With the increase in the unit propagation probability λ and
the hesitation parameter a, the color temperature remains
unchanged and is at its lowest, indicating that no information
propagation phenomenon has occurred. Regions II and IV: With

FIGURE 4
In the context of a weighted ER network, where the decision-making capacity of the hesitant population is moderate, this figure examines the effect
of the unit propagation probability λ on the ultimate propagation range across various proportions of the common population q0. Subfigures 4 (A1,B1)
depict the influence of weight distribution variations (ε � 25 and ε � 35) on the propagation patterns. Subfigures 4 (A2,B2) present the statistical
computation of the relative standard deviation of the simulated values and the critical threshold for propagation outbreak as indicated in subfigures
4(a1) and 4(b1), respectively. Additional parameters are fixed at ρ0 � 0.001 and a � 0.5.
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the increase in the unit propagation probability λ and the hesitation
parameter a, there is a distinct stage of continuous color temperature
change in the color temperature map, signifying that a second-order
continuous phase transition has occurred in these areas. Region III:
Upon With the increase in the unit propagation probability λ and
the hesitation parameter a, there is a distinct moment of abrupt
color temperature change in the color temperature map, indicating
that a first-order discontinuous phase transition has occurred in this
area. In Region I, where the hesitancy parameter is very small,
indicating a very strong decision-making ability of the hesitant
population, no information propagation outbreak occurs. This is
because the hesitant population, with strong decision-making
ability, inhibits the spread of information. In Region II, as the
hesitancy parameter increases (indicating a weakening decision-
making ability), the growth of the ultimate adoption range R(∞)
exhibits a second-order continuous phase transition. This is due to
the hesitant population dominating in the early stages of
information propagation when the decision-making ability is

relatively strong, leading to an outbreak. Subsequently, as λ

increases, the common population continues the propagation on
the basis of the hesitant population. In Region III, with a further
increase in the hesitancy parameter and a continued weakening of
decision-making ability, the growth of the ultimate adoption range
R(∞) exhibits a first-order discontinuous phase transition. In this
region, the decision-making ability of the hesitant population is
moderate, and the adoption capabilities of the hesitant and common
populations are similar, with no dominant side. Both sides have
similar outbreak thresholds and outbreak simultaneously during the
propagation process, leading to a first-order discontinuous phase
transition. In Region IV, where the hesitancy parameter is large and
the decision-making ability of the population is very low, the growth
of the ultimate adoption range R(∞) exhibits a second-order
continuous phase transition. This is the result of the common
population dominating the propagation when the decision-
making ability of the hesitant population is low, hence the
outbreak threshold for this second-order continuous propagation

FIGURE 5
Under the weighted ER network, this figure presents the influence of the unit propagation probability λ on the ultimate adoption range across
different proportions of the common population q0 when the decision-making ability of the hesitant population is relatively weak. Subfigures (A1,B1)
demonstrate the effects of changes in weight distribution (ε � 25 and ε � 35) on the propagation patterns. Subfigures 5 (A2,B2) represent the statistical
computation of the relative standard deviation of the simulated values and the critical threshold for the information outbreak as indicated in
subfigures 5(a1) and 5(b1). Other parameters are set to ρ0 � 0.001 and a � 0.8.
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is smaller than that in Region II. This also illustrates that the
common population has a stronger promoting effect on the
outbreak of information propagation than the hesitant
population. Furthermore, compared to Figures 6A, B indicates
that an increase in the weighted distribution index can promote
the adoption of information.

Figure 7 illustrates the joint effect of the unit propagation
probability λ and the proportion of the common population q0
on the ultimate adoption range R(∞) in a weighted ER network,
under different decision-making abilities of the hesitant population
with a constant weight distribution index. The initial proportion of
nodes in state A, ρ0 � 0.001, with hesitancy parameters a being

0.2 for subfigure 7(a), 0.5 for subfigure 7(b), and 0.8 for subfigure
7(c). In subfigure 7(a), where the hesitant population has a strong
decision-making ability (a � 0.2), the figure can be divided into two
regions based on the phase transition patterns. As the proportion of
the common population q0 increases, there is a transition from a
second-order continuous phase transition in Region I to a first-order
discontinuous phase transition in Region II. Region I: With the
increase in the unit propagation probability λ and the proportion of
the common population q0, there is a distinct stage of continuous
color temperature change in the color temperature map, signifying
that a second-order continuous phase transition has occurred in
these areas. Regions II: With the increase in the unit propagation

FIGURE 6
The joint effect of the unit propagation probability λ and the hesitancy parameter a on the ultimate adoption range R(∞) in a weighted ER network.
Under different weight distributions, subfigure 6 (A) (ε � 25) and subfigure (B) (ε � 35) illustrate the occurrence of information stagnation propagation,
first-order continuous phase transition, second-order continuous phase transition, and first-order discontinuous phase transition phenomena in regions
I, II, III, and IV, respectively. All other parameters are set to ρ0 � 0.001 and q0 � 0.5.

FIGURE 7
The joint effect of the unit propagation probability λ and the proportion of the common population q0 on the ultimate adoption range R(∞) in a
weighted ER network is depicted. Subfigures 7 (A) (a � 0.2), (B) (a � 0.5), and (C) (a � 0.8) represent the influence of λ and q0 on the ultimate adoption
range under different decision-making abilities of the hesitant population. In subfigure 7 (A), Region I exhibits a second-order continuous phase
transition, and Region II exhibits a first-order discontinuous phase transition; in subfigure 7 (B), the entire region shows a first-order discontinuous
phase transition; in subfigure 7 (C), Region I exhibits a first-order discontinuous phase transition, and Region II exhibits a second-order continuous phase
transition. All other parameters are set to ρ0 � 0.001 and a � 0.5.
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probability λ and the proportion of the common population q0,
there is a distinct moment of abrupt color temperature change in the
color temperature map, indicating that a first-order discontinuous
phase transition has occurred in this area. In Region I (q0 < 0.8), the
proportion of the hesitant population gradually decreases with
increasing q0, causing a delay in the outbreak of information
propagation. However, the phase transition mode of propagation
shifts from continuous to discontinuous. This is because the hesitant
population, which is dominant at this stage, determines the outbreak
of information propagation. Therefore, the more the hesitant
population, the easier the outbreak, but due to their slower
propagation speed, the growth of propagation is initially slow
until the threshold of the common population is reached, after
which the propagation range grows rapidly. In Region II
(0.8< q0 ≤ 1), where the common population is in the majority,
the proportion of the hesitant population decreases with increasing
q0, insufficient to support an outbreak of propagation. The outbreak
of information propagation becomes more delayed and approaches
an outbreak that would occur if only the common population were
present, leading to a first-order discontinuous propagation pattern
that reaches a global adoption state. Observing horizontally at lower
unit propagation probabilities (λ< 0.2), Region I has already reached
global adoption, while Region II has not yet begun to propagate,
confirming the above conclusions. In subfigure 7(b), the growth
pattern of R(∞) is a first-order discontinuous phase transition
across all regions. Upon With the increase in the unit propagation
probability λ and the proportion of the common population q0, The
color temperature map exhibits an abrupt change in color
temperature at a fixed unit propagation probability ‘a’, indicating
the occurrence of a first-order discontinuous phase transition in that
region. When the decision-making ability of the hesitant population
is moderate (a � 0.5), the common and hesitant populations have
equal dominance. The proportion of the common population q0
does not affect the outbreak of information propagation; all
propagation outbreaks have consistent thresholds as shown in the
figure. Despite the consistent thresholds across different
proportions, the different adoption phenomena of the hesitant
and common populations lead to an increase in the ultimate
adoption range R(∞) at the time of propagation outbreak as the
proportion of the common population q0 increases. This is because
the common population has a stronger promoting effect on the
propagation process than the hesitant population. Therefore, when
there is a larger common population, the adoption rate during the
propagation outbreak is faster, resulting in a larger adoption range.
Subfigure 7(c) is divided into two regions based on the phase
transition patterns, Region I: As the unit propagation probability
λ and the proportion of the common population q0 increase, the
color temperature map exhibits a distinct moment of abrupt color
temperature change, transitioning from the lowest to the highest
color temperature, indicating that a first-order discontinuous phase
transition has occurred in this region. Region II: With the increase in
the unit propagation probability λ and the proportion of the
common population q0, the color temperature map displays a
less pronounced continuous change in color temperature,
showing a gradual transition from the lowest to the highest color
temperature as compared to Region 1, signifying that a second-order
continuous phase transition has taken place in this region.When the
decision-making ability of the hesitant population is weak (a � 0.8),

the adoption phenomenon of the common population dominates. In
Region I (q0 < 0.2), where the proportion of the common population
is small, there is insufficient dominant population to guide the
outbreak of propagation, making the propagation more closely
aligned with the outbreak threshold of the hesitant population
and exhibiting a discontinuous propagation pattern. As the
proportion of the common population q0 increases and enters
Region II (0.2< qo ≤ 1), the common population takes the lead in
propagation, with the common population initiating the outbreak
first, followed by the hesitant population, showing continuous
characteristics. However, due to the promoting effect of the
common population on information propagation, the continuous
features are not as strong as those when the hesitant population is
dominant in subfigure 7(a). Nevertheless, it can be observed from
subfigure 7(c) that as the proportion of the common population
increases, the ultimate propagation range at equilibrium also
becomes larger.

4.2 The propagation process of weighted
SF network

In the weighted SF network, the degree distribution
heterogeneity of nodes is negatively correlated with the degree
index ], the degree of nodes follows the power distribution

P(k) � ξk−], ξ � 1/∑
k

k−], and the parameter ] represents the

degree index of SF network.
Figure 8 demonstrates the impact of the unit propagation

probability λ on the ultimate adoption range R(∞) for different
proportions of the common population q0 in a weighted SF network,
when the decision-making ability of the hesitant population is
strong (hesitancy parameter a � 0.2). Subfigures 8(a1) and 8(b1)
show the effects of different degree indices ] � 2.1 and ] � 4 on the
propagation patterns, respectively. The initial proportion of nodes in
state A, ρ0 � 0.001, and the edge weight is taken as ε � 25. It can be
observed from subfigures 8(a1) and 8(b1) that as λ increases, R(∞)
gradually enlarges. However, in subfigure 8(a1), an increase in the
proportion of the common population enhances the ultimate
adoption range at equilibrium, while in subfigure 8(b1), the
ultimate propagation reaches global propagation at equilibrium.
It is also noticeable that when the proportion q0 is small
(q0 � 0.2), indicating a larger number of hesitant individuals, the
propagation outbreak threshold occurs earlier compared to when
the proportion is larger (q0 � 0.5 and q0 � 0.8). This is attributed to
the stronger decision-making ability of the hesitant population,
which takes the leading role. Therefore, when the dominant
population is larger, it facilitates the outbreak of information
propagation, aligning with the propagation phenomena and
theories observed in weighted ER networks. Additionally, it is
found that the propagation patterns during the outbreak differ;
when q0 � 0.2 and q0 � 0.5, a second-order continuous propagation
phenomenon is exhibited, but there is a change in the slope of the
propagation trend line, due to the initial outbreak being dominated
by the hesitant population followed by the inclusion of the common
population, leading to a change in the propagation speed.
Furthermore, as the degree index ] increases (indicating a
decrease in degree distribution heterogeneity), making the
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degrees of individuals in the network more similar, the propagation
outbreak threshold does not change significantly. However, the
ultimate adoption range at equilibrium increases, and the
propagation rate becomes faster, eventually reaching global
adoption. Thus, when the decision-making ability of the hesitant
population is strong, reducing the degree distribution heterogeneity
can promote a larger ultimate adoption range and even global
propagation at equilibrium. Subfigures 8(a2) and 8(b2) represent
the relative standard deviation computed from the statistical analysis
of the simulation values and the critical threshold for the
propagation outbreak as indicated in subfigures 8(a1) and 8(b1),
respectively. Moreover, the theoretical analysis (curves) matches
well with the simulation values (symbols), indicating a good fit.

Figure 9 depicts the influence of the unit propagation probability
λ on the ultimate adoption range in a weighted SF network when the
decision-making ability of the hesitant population is moderate,
across different proportions q0 of the common population.

Subfigures 9(a1) and 9(b1) showcase the effects of different
degree indices (] � 2.1 and ] � 4) on the propagation patterns.
The initial proportion of nodes in state A, ρ0 � 0.001, with an edge
weight value of ε � 25. As λ increases, R(∞) gradually enlarges, and
the proportion q0 of the common population has no significant
effect on the outbreak point of propagation. This is because, at this
time, the adoption thresholds of both hesitant and common
individuals are essentially the same, consistent with the
propagation phenomena observed in the aforementioned ER
networks. However, the larger the proportion of the common
population, the greater the ultimate adoption range R(∞)
achieved during the propagation outbreak. Additionally, as the
degree heterogeneity index ] increases (indicating a decrease in
degree distribution heterogeneity), making the degrees of
individuals in the network more similar, the outbreak threshold
for information propagation does not change significantly.
However, the ultimate adoption range at equilibrium increases,

FIGURE 8
In a weighted SF network, when the decision-making ability of the hesitant population is relatively strong, this figure illustrates the impact of the unit
propagation probability λ on the ultimate propagation range across different proportions of the common population q0. Subfigures 8 (A1) (] � 2.1) and
8 (B1) (] � 4) describe the influence of different degree indices on the propagation patterns. Subfigures 8 (A2,B2) represent the statistical computation of
the relative standard deviation of the simulated values and the critical threshold for propagation outbreak as indicated in subfigures 8(a1) and 8(b1),
respectively. The remaining parameters are fixed at ρ0 � 0.001, a � 0.2, and ε � 25.
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and the propagation rate becomes faster, reaching global adoption at
equilibrium. Subfigures 9(a2) and 9(b2) present the statistical
computation of the relative standard deviation of the simulated
values and the critical threshold for the propagation outbreak as
indicated in subfigures 9(a1) and 9(b1), respectively. When the
decision-making ability of the hesitant population is moderate, the
growth pattern of the adoption range R(∞) is discontinuous for
different proportions of the common population q0 and different
degree indices ]. Therefore, reducing the degree distribution
heterogeneity can promote a larger ultimate adoption range in
information propagation when the decision-making ability of the
hesitant population is moderate. Moreover, the theoretical analysis
(curves) matches well with the simulation values (symbols),
indicating a good fit.

Figures 10A1, B1 present the influence of different degree
indices (] � 2.1 and ] � 4) on the propagation patterns, with an
initial proportion of nodes in state A (ρ0 � 0.001) and an edge

weight value (ε � 25). As the unit propagation probability λ

increases, the ultimate adoption range R(∞) gradually enlarges.
From Figure 10A1, it can be observed that when q0 � 0.8, indicating
that the majority of the population is in the common state, the
outbreak threshold for propagation occurs earlier compared to when
q0 � 0.2 and q0 � 0.5. This is attributed to the weaker decision-
making ability of the hesitant population, where the common
population takes a dominant role in propagation. Furthermore,
due to the promoting effect of the common population on
propagation, a higher proportion of the common population
leads to a larger ultimate propagation range at equilibrium. These
conclusions and phenomena are consistent with the theories and
observations derived from weighted ER networks. Comparing
Figures 10A1, B1, it is noted that as the degree heterogeneity
index ] increases (indicating a reduction in degree distribution
heterogeneity) and the degrees of individuals in the network
become more similar, the ultimate adoption range in Figure 10B1

FIGURE 9
In a weighted SF network, this figure examines the influence of the unit propagation probability λ on the propagation range under different
proportions of the common population q0 when the decision-making ability of the hesitant population is moderate. Subfigures 9 (A1) with degree
exponent ] � 2.1 and 9 (B1) with ] � 4 illustrate the effects of different degree indices on the propagation patterns. Subfigures 9 (A2,B2) depict the
statistical computation of the relative standard deviation of the simulated values and the critical threshold for the propagation outbreak as indicated
in subfigures 9(a1) and 9(b1), respectively. All other parameters are set to ρ0 � 0.001, a � 0.2, and ε � 25.
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is larger at equilibrium compared to that in Figure 10A1, although
the outbreak threshold for propagation does not change. Figures
10A2, B2 provide the statistical computation of the relative standard
deviation of the simulated values and the critical threshold for the
propagation outbreak as indicated in Figures 10A1, B1, respectively.
It can be seen from the figures that when the decision-making ability
of the hesitant population is weak, reducing the degree distribution
heterogeneity can increase the ultimate adoption range at
equilibrium for information propagation. Moreover, the
theoretical analysis values (curves) match well with the
simulation values (symbols), indicating a good fit.

Figure 11 illustrates the combined effect of the unit propagation
probability λ and the hesitancy parameter a on the ultimate
adoption range R(∞) in a weighted SF network with a high
degree of heterogeneity in the degree distribution. The initial
proportion of nodes in state A, ρ0 � 0.001, with an edge weight
value of ε � 25 and a degree exponent v � 2.1. Figure 11A (q0 � 0.2),

11(b) (q0 � 0.5), and 11(c) (q0 � 0.8) are each divided into three
regions, the regional division of information propagation patterns is
analogous to that in ER networks, where the delineation is based on
the continuous and discontinuous changes in color temperature.
Transitioning from Region I, representing the second-order
continuous phase transition stage, to Region II, the first-order
discontinuous phase transition stage, and finally to Region III,
another second-order continuous phase transition stage. In
Figure 11A, where the proportion of the common population is
small (q0 � 0.2), the outbreak threshold for information
propagation initially increases and then decreases with the
weakening of the population’s decision-making ability, and the
propagation rate follows a similar pattern. This suggests that in
networks with high degree distribution heterogeneity and a larger
hesitant population, the weakening of decision-making ability
initially leads to a suppressive effect of the hesitant population
on the outbreak of information propagation. Subsequently, as the

FIGURE 10
In a weighted SF network, this figure examines the impact of the unit propagation probability λ on the ultimate propagation range under different
proportions q0 of the common population when the decision-making ability of the hesitant population is relatively weak. Subfigures 10 (A1)with degree
index ] � 2.1 and 10 (B1) with ] � 4 illustrate the effects of different degree indices on the propagation patterns. Subfigures 10 (A2,B2) provide the
statistical computation of the relative standard deviation of the simulated values and the critical threshold for the propagation outbreak as indicated
in subfigures 10(a1) and 10(b1), respectively. The remaining parameters are set to ρ0 � 0.001, a � 0.8, and ε � 25.
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common population becomes dominant, the rate of information
propagation accelerates. When the decision-making ability is very
weak (a≥ 0.8), the suppressive effect of the hesitant population on
information propagation is more pronounced, leading to a slower
propagation rate. Figures 11B, C correspond to scenarios where the
proportions of the common and hesitant populations are equal
(q0 � 0.5) and where the common population has a larger share
(q0 � 0.8), respectively. As the decision-making ability weakens, the
propagationmechanism is similar to that when the proportion of the
common population is small in Figure 11A, with the distinction that
the dividing lines between Regions I and II in Figures 11B, C occur at
a � 0.4 and a � 0.2, respectively. This indicates that when there is a
smaller hesitant population with stronger decision-making ability,
there is a promotional effect on information propagation.

Figure 12: This figure represents the combined effect of the unit
propagation probability λ and the hesitancy parameter a on the
ultimate adoption range R(∞) in a weighted SF network, where the
degree distribution exhibits a relatively lower degree of
heterogeneity. The initial proportion of nodes in state A,
ρ0 � 0.001, with an edge weight value of ε � 25 and a degree
index ] � 4. Figure 12A (q0 � 0.2) and 12(b) (q0 � 0.5) are each
divided into four regions, the regional division of information
propagation patterns is analogous to that in ER networks, where
the delineation is based on the continuous and discontinuous
changes in color temperature. Reflecting the transition of
information propagation from non-propagation to discontinuous
propagation, then to continuous propagation, back to discontinuous
propagation, and finally to continuous propagation as the decision-
making ability of the population weakens. When the network has a
relatively low degree of heterogeneity and the population has a very
strong decision-making ability (a≤ 0.1), but the proportion of the
hesitant population is large or moderate, information propagation is
challenging, transitioning from non-propagation to gradual
propagation. As the decision-making ability decreases, the
propagation mechanisms in regions II, III, and IV of Figures
12A, B are similar to those in Figures 11A, B. Figure 12C
(q0 � 0.8) is divided into two regions. When the common
population constitutes a larger proportion of the network, the

unit propagation probability at the outbreak threshold for
information propagation decreases, and the propagation shifts
from discontinuous to continuous as the decision-making ability
of the population weakens. Due to the dominant role of the common
population, which promotes propagation, the outbreak threshold
decreases. However, when the decision-making ability of the
hesitant population is very weak (a≥ 0.8), there is a suppressive
effect on information propagation, but since the hesitant population
is small, there is a brief phase of continuous propagation.

Figure 13 illustrates the combined effect of the unit propagation
probability λ and the proportion of the common population q0 on
the ultimate adoption range R(∞) in a weighted SF network.
Subfigures 13(a) and 13(b) depict the impact of λ and q0 on the
ultimate adoption range under different degree indices, with ] � 2.1
and ] � 4, respectively. The propagation patterns in Figures 13A, B
are similar; when the population’s decision-making ability is
moderate, an increase in the proportion of the common
population q0 does not significantly affect the information
propagation threshold. However, the larger the degree index ],
indicating less degree distribution heterogeneity, the greater the
ultimate adoption range at equilibrium, and the faster the
propagation rate, eventually leading to global adoption.
Conversely, when the degree index is smaller (] � 2.1), it is only
as q0 increases, and the network is predominantly composed of
common individuals, that information can achieve global adoption.
Thus, a lower degree of distribution heterogeneity more effectively
facilitates information propagation to reach a larger adoption range.

5 Conclusion

This study investigates the propagation of information in social
networks within weighted networks, considering the heterogeneity in
group adoption characteristics. The heterogeneity is characterized by
distinct Hesitant-Common (HECO) traits in information adoption
across different populations. The paper proposes two information
adoption functions to elucidate the impact of group heterogeneity on
information propagation. For common individuals, their adoption

FIGURE 11
This figure illustrates the combined effect of the unit propagation probability λ and the hesitancy parameter a on the ultimate adoption rangeR(∞) in
a weighted SF network. Subfigures 11 (A–C) correspond to different proportions of the coomon population, with (A) for q0 � 0.2, (B) for q0 � 0.5, and (C)
for q0 � 0.8. Each of these subfigures is divided into three distinct regions: Region I represents the second-order continuous phase transition stage,
Region II the first-order discontinuous phase transition stage, and Region III the second-order continuous phase transition stage. The remaining
parameters are set to ρ0 � 0.001, ε � 25, and v � 2.1.
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probability increases with the accumulation of received information.
However, for hesitant individuals, the adoption probability initially
increases similarly to that of common individuals but then declines as
more information is received, eventually stabilizing and no longer
changing once the optimal decision-making capacity is reached. The
study randomly selects a proportion q0 of the population as common
individuals, with the remaining proportion e0 designated as hesitant
individuals. Interactions among individuals are modeled as edge
weights in the social network, leading to the development of a
social network information propagation model based on edge
weights and HECO characteristics. This model is validated within
both ER and SF networks.

Through simulation analysis, this study explores the
information adoption behaviors of different types of individuals
(hesitant and common), and investigates how these behaviors

impact the speed and extent of information dissemination. It also
observes phase transition phenomena during the information
propagation process, particularly the correlation between the
pattern of change in the ultimate adoption range and the
proportion of common individuals. The study examines the
impact of variations in the weight distribution index on the
speed and efficiency of information propagation. It discusses how
the heterogeneity in the degree distribution of nodes within the
network affects information dissemination and how this
heterogeneity interacts with the phase transition patterns of
information propagation. The influence of decision-making
ability on propagation is a focal point of consideration. Findings
align with theoretical analysis, indicating that common individuals
facilitate the spread and adoption of information. Furthermore, a
phase transition crossover phenomenon is observed, where the

FIGURE 12
The joint effect of the unit propagation probability λ and the hesitancy parameter a on the ultimate adoption range R(∞) in a weighted SF network is
depicted. Subfigures 12 (A–C) represent different proportions of the common population, with (A) for q0 � 0.2 and (B) for q0 � 0.5 each divided into four
regions: Region I, the first-order discontinuous phase transition stage; Region II, the second-order continuous phase transition stage; Region III, another
first-order discontinuous phase transition stage; and Region IV, the second-order continuous phase transition stage. (C) for q0 � 0.8 is divided into
two regions: Region I, the first-order discontinuous phase transition stage, and Region II, the second-order continuous phase transition stage. All other
parameters are set to ρ0 � 0.001, ε � 25, and ] � 4.

FIGURE 13
This figure delineates the joint impact of the unit propagation probability λ and the proportion of the common population q0 on the ultimate
adoption range R(∞) within a weighted SF network. Subfigures 13 (A,B) respectively illustrate the influence of λ and q0 on the ultimate adoption range
under different degree indices ] � 2.1 and ] � 4. All other parameters are held constant at ρ0 � 0.001, a � 0.5, and ε � 25.
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growth pattern of R(∞) shifts from a first-order discontinuous
phase transition to a second-order continuous phase transition as
the value of q0 increases. An increase in the weight distribution
exponent promotes information propagation. Furthermore, a
decrease in degree distribution heterogeneity enhances the spread
of information, while an increase in degree distribution
heterogeneity, coupled with a weakening of the population’s
decision-making ability, inhibits information propagation.

The heterogeneity of groups within social networks plays a pivotal
role in the propagation of information, yet there is a paucity of related
research. This paper, through rigorous modeling and analysis, reveals
the significant impact of the Hesitant-Common (HECO) attributes
based on group heterogeneity on information dissemination.
Furthermore, the HECO characteristics hold notable potential in
practical applications, particularly in understanding and forecasting
the dynamics of information propagation within social networks.
Below are some potential applications of the HECO model across
various domains: (1) Social Media Marketing: By understanding the
extent to which users accept advertisements or trending information,
the HECO model can assist marketers in designing more effective
social media strategies to enhance the velocity and reach of
information dissemination; (2) Public Health Campaigns: When
promoting health information or awareness of vaccination
initiatives, the model can predict the rate at which different
demographic groups will accept health-related messages, thereby
aiding health organizations in more accurately targeting their
promotional resources; (3) Crisis Management: In emergency
situations, comprehending the rapid spread of information is
essential for an effective crisis response. The HECO model can
forecast the speed and breadth of information propagation,
assisting in the development of more robust emergency
communication strategies; (4) Online Sentiment Analysis:
Governments and corporations can utilize the HECO model to
monitor and analyze the genesis and evolution of public opinion,
thereby gaining a more profound understanding of the needs and
reactions of the populace; (5) Product Promotion: Businesses can
apply the HECO model to refine their strategies for new product
promotion by identifying consumer groups most likely to rapidly
accept and disseminate information, thus accelerating the market
penetration of their products; (6) Information Security: Within the
realm of cybersecurity, the HECO model can aid in the anticipation
and prevention of the spread of misinformation or rumors by
pinpointing key nodes in the propagation of information to bolster
network defenses; (7) Traffic Planning: In the analysis of traffic
networks, the conceptual framework of the HECO model can be
employed to comprehend and optimize the flow of information, such
as real-time traffic updates, to alleviate congestion and enhance traffic
efficiency. By applying the HECO model in these domains, a deeper
understanding and more effective utilization of the mechanisms of
information propagation within social networks can be achieved,
leading to improved quality and efficiency in decision-making
processes. The research presented herein also offers a new

direction for the study of information propagation in
heterogeneous networks. However, this study only considers
the propagation of group heterogeneity under basic scenarios
and does not account for propagation within multi-layer
networks. Additionally, the influence of parameters such as
limited contact capacity is not considered. It is hoped that
future research will have the opportunity to further explore
this field.
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The outbreak of an epidemic often stimulates the generation of public awareness
about epidemic prevention. This heightened awareness encourages individuals to
take proactive protective measures, thereby curbing the transmission of the
epidemic. Previous research commonly adopts an assumption that each
individual has the same probability of awakening self-protection awareness
after infection. However, in the real-world process, different individuals may
generate varying awareness responses due to the differences in the amount of
information received. Therefore, in this study, we first propose a coupled
awareness-epidemic spreading model, where the self-initiated awareness of
each individual can be influenced by the number of aware neighbors.
Subsequently, we develop a Micro Markov Chain Approach to analyze the
proposed model and explore the effects of different dynamic and structural
parameters on the coupled dynamics. Findings indicate that individual awareness
awakening can effectively promote awareness diffusion within the proposed
coupled dynamics and inhibit epidemic transmission. Moreover, the influence of
awareness diffusion on epidemic transmission exhibits a metacritical point, from
which the epidemic threshold increases with the increase in the awareness
diffusion probability. The research findings also suggest that the increase in
the average degree of virtual-contact networks can reduce the value of the
metacritical point, while the change in the average degree of the physical-
contact networks does not affect the metacritical point. Finally, we conduct
extensive experiments on four real networks and obtain results consistent with
the above conclusions. The systematic research findings of this study provide
new insights for exploring the interaction between individual awareness and
epidemic transmission in the real world.

KEYWORDS

multiplex networks, coupled awareness-epidemic dynamics, self-initiated awareness,
metacritical point, complex networks
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1 Introduction

The spread of infectious diseases poses a significant threat to
human health and can lead to substantial economic losses [1].
Throughout history, human society has repeatedly suffered
devastating impacts from infectious diseases. For example, in the
16th and 17th centuries, the rampant smallpox virus led to a sharp
decline in the population of indigenous peoples in the Americas. The
outbreak of novel coronavirus pneumonia (COVID-19) in 2019 has
caused nearly seven million deaths worldwide [2–4]. It is worth
noting that the large-scale outbreak of an epidemic often effectively
stimulates individuals to develop self-initiated awareness, which can
effectively curb the spread of the epidemic [5–9]. For example, after
the outbreak of the COVID-19 pandemic, information related to it
started diffusing on social networks or community networks,
thereby sparking the development of individual awareness about
epidemic prevention [10, 11]. After developing self-initiated
awareness, individuals will actively take a series of self-protective
measures to reduce the risk of infection, such as wearing masks,
frequent hand-washing, reducing outdoor activities, maintaining
social distancing, and more [12]. These self-protective measures can
effectively interrupt the transmission pathways of the virus, thereby
suppressing further transmission of the disease [13–17]. Therefore,
how to model and analyze the coupled awareness-epidemic
dynamics has long been a subject of significant interest among
scholars from various fields.

In real life, individuals can not only have physical contact with
others, such as shaking hands and sharing meals, which promote the
spread of diseases but also communicate with others to receive
disease-related information and generate awareness of self-
protection [18–22]. Therefore, in recent years, scholars typically
adopt a two-layer multiplex network structure to establish the
coupled awareness-epidemic dynamics in their research, aiming
to explore the interaction between awareness diffusion and
epidemic transmission in the real world [23–27]. In the two-layer
multiplex network structure, the first layer is the physical-contact
network, where nodes represent individuals in the real world, and
edges represent physical contact relationships between individuals;
the second layer (virtual contact) is the network with the same nodes
as the physical-contact network, while edges represent information
interaction between individuals [28–31]. In 2013, Granell et al.
proposed a coupled awareness-epidemic dynamics model with
the multiplex network structure to investigate the real-world
coupled awareness-epidemic dynamics. They identified the
presence of a metacritical point for awareness diffusion rate, and
when the awareness diffusion rate is larger than this point, the
epidemic threshold will increase with it [32]. Subsequently, scholars
have proposed several improved models from different perspectives
to consider the effects of various real-world factors on the coupled
awareness-epidemic dynamics. For instance, Granell et al. further
integrates mass media into the awareness diffusion process,
elucidating that the metacritical point for epidemic outbreaks
vanishes under the influence of mass media [33]. Chen et al.
introduced a resource-epidemic coevolution model on a
multiplex network and discovered an optimal heterogeneity of
self-awareness at which the disease can be suppressed to the
greatest extent [34]. Wu et al. introduce a two-layer network
where the inter-layer coupling is induced by the movement of

traveler individuals between layers, and they find that travelers’
hopping preference for different layers can lead to non-monotonic
changes in the epidemic threshold and spreading coverage [35].
Furthermore, many scholars have delved into the effects of the
spatio-temporal characteristics of networks on epidemic spreading.
Liu et al. proposed a spatio-temporal network model based on co-
location interactions using massive cellphone data. They reveals that
universal laws underlying spatio-temporal contact patterns among
residents is essential for epidemic spreading [36]. Furthermore, Li
et al. introduced a temporal multiplex network consisting of a static
information spreading network and a temporal physical contact
network with a layer-preference walk. They found that the epidemic
threshold decreases with the decrease of the effective information
spreading rate and the increase of the layer [37].

As mentioned above, scholars have made significant progress in
the study of coupled awareness-epidemic dynamics. However, there
is limited research that incorporates individualized self-initiated
awareness into the coupled awareness-epidemic dynamics. In the
real world coupled awareness-epidemic spreading, different
individuals generate varying awareness responses due to the
differences in the amount of information received from their
neighbors. Hence, research on the coupled awareness-epidemic
dynamics that takes into account individualized self-initiated
awareness holds significant importance. In light of this, this study
first proposes a coupled awareness-epidemic dynamics model that
incorporates individualized self-initiated awareness, where the
probability of infected individuals developing self-initiated
awareness is influenced by the number of their aware neighbors.
Subsequently, we develop the Microscopic Markov Chains
Approach to theoretically analyze the aforementioned model and
investigate the effects of crucial dynamics and structural parameters
on the coupled awareness-epidemic dynamics.

The paper is structured as follows: Section 2 provides a detailed
description of the coupled awareness-epidemic dynamics with
individualized self-initiated awareness. In Section 3, we introduce
the Micro Markov Chain Approach to analyze the previous model,
and derive the stationary spread range and transmission threshold of
the epidemic. In Section 4, we explore the effects of different
dynamics and structural parameters on the coupled awareness-
epidemic dynamics. Finally, Section 5 summarizes the entire
work and outlines potential avenues for further study.

2 Model description

In the study, we consider the coupled awareness-epidemic
dynamics on top of a two-layer multiplex networks as shown in
Figure 1. The nodes of the two network layers are one-to-one
correspondence, but the connectivity between them is different.
Awareness of the epidemic diffuses on the second layer of the
multiplex network (namely, the virtual-contact layer), and the
epidemic takes place on the first layer (namely, the physical-
contact network).

In the virtual-contact layer, an unaware-aware-unaware (UAU)
model is adopted to depict the diffusion of epidemic awareness.
Unaware (U) nodes have no epidemic awareness and will take no
precautions against the epidemic, while aware (A) nodes know about
the epidemic and will take certain preventive measures. The
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diffusion of epidemic awareness occurs from the A-state node to the
U-state node with a probability of λ, while the A-state node can
revert to the U-state due to loss of awareness with a probability of δ.
Besides, the moment when the U-state node is infected with the
disease, it will develop a self-initiated awareness with the probability
given by Eq. 1:

σ i t( ) � 1 − 1 − σ0( )ηA t( )+1 (1)
where ηA(t) is the count of neighbors in A-state of node i.

In physical-contact layer, a susceptible-infected-susceptible
(SIS) model is adopted to describe the epidemic-transmitting
process. The susceptible (S) node, both with and without
epidemic awareness, can become infected by its infected (I)
neighbor with the certain probability of β, and βA � γβ,
respectively, where 0≤ γ≤ 1 is an attenuation factor reflecting the
influence of preventive measures taken by A-state nodes.
Additionally, the likelihood of an infected node recovering
spontaneously is represented by μ.

3 Theoretical analysis

3.1 Microscopic markov chain approach

We will provide an analytical derivation based on the
Microscopic Markov Chain Approach (MMCA) for our model in
this section. Denote A � (aij)N and B � (bij)N as the adjacency

matrixes for the virtual-contact layer and physical-contact layer,
respectively, where N represents the number of nodes. Taking both
the virtual-contact layer and physical-contact layer into
consideration, nodes within our model have four possible states,
i.e., unaware-susceptible (US), aware-susceptible (AS), unaware-
infected (UI), and aware-infected (AI). Let PUS

i (t), PAS
i (t),

PUI
i (t), PAI

i (t) denote the probability of node i being in US-state,
AS-state, UI-state, AI-state at time t, respectively. The probability of
node i being in A-state, U-state, I-state, and S-state can be calculated
as PA

i � PAS
i (t) + PAI

i (t), PU
i � PUS

i (t) + PUI
i (t), PI

i � PAI
i (t)

+PUI
i (t), and PS

i � PUS
i (t) + PIS

i (t), respectively. Besides, the
probability of the U-state node i not being informed by any
neighbor at time t can be given by Eq. 2.

θi t( ) � ∏
j

1 − aijP
A
j t( )λ[ ] (2)

The probabilities of node i being in the unaware-susceptible (US)
state and the aware-susceptible (AS) state, and not being infected at
time t, are given by Eqs 3 and 4, respectively.

qUi t( ) � ∏
j

1 − bijP
I
j t( )βU[ ] (3)

qAi t( ) � ∏
j

1 − bijP
I
j t( )βA[ ] (4)

Figure 2 shows the transition probability trees for the four possible
states of nodes in our model. The dynamics governing PUI

i (t),
PUS
i (t), PAS

i (t), and PAI
i (t) are encapsulated in Eqs 5–8, respectively.

FIGURE 1
(Color online) A schematic illustration showcasing the coupled awareness-epidemic dynamics with individualized self-initiated awareness in
multiplex networks. The first layer (physical-contact network) employs a susceptible-infected-susceptible (SIS) model to delineate the transmission of
the epidemic. Within this layer, susceptible (S) nodes can be infected by their infected (I) neighbors. The second layer corresponds to the virtual-contact
network, sharing identical nodes with the physical-contact network. In this layer, an unaware-aware-unaware (UAU)model captures the diffusion of
epidemic awareness. Nodes in the unaware (U) state lack epidemic awareness and consequently take no preventive measures. Conversely, the aware (A)
nodes possess knowledge about the epidemic and implement specific precautionary measures. Additionally, when a node in the unaware state becomes
infected, it has a probability of σ i to develop epidemic awareness autonomously.
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PUI
i t + 1( ) � PUI

i t( )θi t( ) 1 − μ( ) + PAI
i t( )δ 1 − μ( )

+PUS
i t( )θi t( ) 1 − qUi t( )[ ] 1 − σ i t( )[ ]

+PAS
i t( )δ 1 − qUi t( )[ ] 1 − σ i t( )[ ]

(5)

PUS
i t + 1( ) � PUI

i t( )θi t( )μ + PAI
i t( )δμ

+PUS
i t( )θi t( )qUi t( ) + PAS

i t( )δqUi t( ) (6)

PAS
i t + 1( ) � PUI

i t( ) 1 − θi t( )[ ]μ + PAI
i t( ) 1 − δ( )μ

+PUS
i t( ) 1 − θi t( )[ ]qAi + PAS

i t( ) 1 − δ( )qAi (7)

PAI
i t + 1( ) � PUI

i t( ) 1 − θi t( )[ ] 1 − μ( ) + PAI
i t( ) 1 − δ( ) 1 − μ( )

+PUS
i t( ) 1 − θi t( )[ ] 1 − qAi t( )[ ] + θi t( ) 1 − qUi t( )[ ]σ i t( ){ }

+PAS
i t( ) δ 1 − qUi t( )[ ]σ i t( ) + 1 − δ( ) 1 − qAi t( )[ ]{ }

(8)

3.2 Threshold analysis

The epidemic threshold is given by the parameter ρI, i.e., the fraction
of I-state nodes in the system, and is calculated as shown in Eq. 9.

ρI � 1
N

∑N
i�1

PI
i �

1
N

∑N
i�1

PUI
i + PAI

i( ) (9)

In the steady state, by summing Eqs 5, 8, we acquire

PI
i � PI

i 1 − μ( ) + PUS
i θi 1 − qUi( ) + 1 − θi( ) 1 − qAi( )[ ]

+ PAS
i δ 1 − qUi( ) + 1 − δ( ) 1 − qAi( )[ ]. (10)

Near the epidemic threshold, the fraction of I-state nodes is close
to zero, i.e., PI

i � εi ≪ 1. Accordingly, qUi and qAi can be
approximately calculated as

qUi ≈ 1 − βU ∑
j

bjiεj � 1 − ωi, (11)

and

qAi ≈ 1 − γβU ∑
j

bjiεj � 1 − γωi, (12)

respectively, where ωi is given by Eq. 13:

ωi � βU ∑
j

bjiεj. (13)

Substituting Eqs 11, 12 into Eq. 10 leads to

εi � εi 1 − μ( ) + PUS
i θiωi + 1 − θi( )γωi[ ]

+ PAS
i δωi + 1 − δ( )γωi[ ]

� εi 1 − μ( ) + PU
i θi + PA

i δ( )ωi

+ PU
i 1 − θi( ) + PA

i 1 − δ( )[ ]γωi.

(14)

FIGURE 2
Transition probability trees are illustrated for four distinct node states: (A) unaware-infected (UI), (B) aware-infected (AI), (C) unaware-susceptible
(US), and (D) aware-susceptible (AS). The tree roots denote the state of each node at time t, while their possible states at time t + 1 are denoted by
the leaves.
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Since εi ≪ 1 in the stationary state, we should have PUS
i � PU

i −
PUI
i ≈ PU

i and PAS
i � PA

i − PAI
i ≈ PA

i . Thus, removing O(εi) terms in
the stationary state of Eqs 6, 7 we get

PU
i � PU

i θi + PA
i δ (15)

and

PA
i � PU

i 1 − θi( ) + PA
i 1 − δ( ). (16)

Then, substituting Eqs 15, 16 into Eq. 14 leads to Eq. 17:

εi � εi 1 − μ( ) + PU
i ωi + PA

i γωi

� εi 1 − μ( ) + PU
i + PA

i γ( )βU ∑
j

bjiεj, (17)

which can be written as

∑
j

βU 1 + γ − 1( )PA
i[ ]bji − μδij[ ]εj � 0, (18)

where δij are the elements of the identity matrix. Defining matrixH
with elements as given by Eq. 19:

hji � PU
i + γPA

i( )bji � 1 + γ − 1( )PA
i[ ]bji, (19)

the nontrivial solutions of Eq. 18 are eigenvectors of H, whose
largest real eigenvalues are equal to the epidemic threshold

βc �
μ

Λmax H( ). (20)

Equation 20 provides a quantitative representation indicating that
the epidemic threshold is dependent on the spreading dynamics on
both network layers.

4 Simulation results

In this section, we explore the effects of various dynamics and
structural parameters on the proposed coupled awareness-
epidemic dynamics. In reality, the behavior of the same
individual on the virtual-contact network and the physical-
contact network may not be consistent. For example,
individuals who appear active on the virtual-contact networks
may have rare physical contact with others. To imitate the
variability in individual behavior between the virtual-contact
layer and the physical-contact layer, we employ three multiplex
networks with varying inter-layer degree correlation rs, namely,
G−1, G0, and G1, whose rs are set to −1, 0, and 1, respectively. The
physical-contact layers of the three multiplex networks are all sale-
free networks with the number of nodes N � 1000, the average
degree KA � 5, and the degree exponent ε � 5. In addition, the
virtual-contact layers are scale-free networks, sharing identical
node counts and degree exponents with the physical-contact
layers, but with the average degree KB � 10. The setting of
KA >KB on the three multiplex networks is intended to imitate
the real-world phenomenon where the density of virtual-contact
networks is typically larger than that of physical-contact networks.
We obtain the numerical simulation results presented in this
section by averaging the outcomes of over 1,000 independent
simulation experiments conducted on the aforementioned
multiplex networks. Furthermore, we consistently set the initial
infected nodes proportion in the epidemic transmission process
at 0.2.

Firstly, we assess the efficacy of the MMCA method in
describing the coupled awareness-epidemic dynamics proposed in
this study on a group of multiplex networks. Figure 3 compares the
dynamicsal results of the MMCA method and Monte Carlo (MC)
simulation regarding ρI and ρA as a function of β on network G0,
which is a two-layer network with inter-layer degree correlation
rs � 0. In addition, Figure 4 shows the comparison results of ρI as a
function of β and λ on three multiplex networks (that is,G−1,G0 and
G1) with distinct inter-layer degree correlations. It can be observed
that the results obtained by the MMCA method have a good
consistency with MC simulation in both Figures 3, 4, which
verifies the accuracy and suitability of the MMCA method in
solving the coupled awareness-epidemic spreading dynamics we
proposed in this study. Hereinafter, we study the coupled dynamics
proposed by the MMCA method.

Secondly, we conducted an analysis of how two significant
dynamics parameters influence the stationary states of the
proposedawareness-epidemic dynamics, namely, the basic self-
initiated awareness probability σ0 and infection attenuation factor
γ, where σ0 is the basic self-initiated awareness probability and the
parameter γ governs the infection probability among aware
individuals. Figures 5A–C illustrate the change of stationary
I-state individuals fraction ρI with respect to the infection
probability β on the multiplex networks G−1, G0, and G1,
respectively, when different values of σ0 are considered.
Observing the results, it can be concluded that when the value of
σ0 is non-zero, indicating that individuals on the networks

FIGURE 3
(Color online) Results comparisons between the Microscopic
Markov Chains Approach (MMCA) and Monte Carlo (MC) simulations
regarding the stationary fractions. (A) Comparisons between the
stationary I-state individuals’ fraction ρI obtained by MC
simulations (dotted line) and the MMCA (solid line). (B) Comparisons
between the stationary A-state individuals’ fraction ρA obtained by
Monte Carlo simulations (dotted line) and theMMCA (solid line). All the
numerical simulations are performed on top of multiplex network G0

and Additional parameters include μ � 0.5 and γ = 0 in the physical-
contact layer, λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-
contact layer.
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spontaneously generate self-initiated awareness, the stationary
fraction of I-state individuals will be decreased on all the
networks studied. It indicates that individual self-initiated
awareness can suppress the process of epidemic transmission
within the employed networks effectively. Figures 5D–F depict
how the stationary A-state individuals fraction, denoted as ρA,
varies in response to the infection probability βwhen considering
different values of σ0 on the multiplex networks G−1, G0, and G1,
respectively. Conclusions drawn from the results suggest that in
the presence of a non-zero σ0, ρA exhibits an increase across all
the networks studied. Besides, with an increase in the σ0 value,
there is a corresponding rise in the value of ρA. Moreover, Figures
6A–C show the variation of ρI with respect to β on the multiplex
networks G−1, G0, and G1, respectively, when different values are
set to γ. Upon scrutinizing the findings presented in the figures, it
can be deduced that a decrease in the γ value results in a
diminishment of ρI across all the networks studied. This is
because in the proposed model, it is established that βA � γβU.
As the γ decreases, βA also decreases, indicating a lower infection
probability among aware individuals. Therefore, under the same
dynamics conditions, the stationary fraction of ρI decreases with
the decrease in γ.

Thirdly, we further analyzed the effects of three critical
dynamics parameters on the epidemic threshold, namely, the
infection attenuation factor γ, the diffusion probability of
awareness λ, and the forgetting probability of aware individuals

δ. Figure 7 portrays the variation of the epidemic threshold βc
concerning the infection attenuation factor γ on the multiplex
networks with different inter-layer degree correlations. Analyzing
the results from the figure, it can be inferred that a reduction in γ

leads to an enhanced inhibitory impact of awareness on the
epidemic, consequently yielding a larger value for βc.
Moreover, in network G1, the βc increases the fastest as γ

decreases. This indicates that when there is a positive inter-
layer degree correlation within the networks, the highly
connected nodes in the awareness-spreading layer are more
likely to become aware, which can enhance the epidemic
threshold. Figures 8A–C depict how the epidemic threshold βc
varies concerning the awareness diffusion probability λ across the
multiplex networks G−1, G0, and G1, respectively, while
considering distinct values for the awareness forgetting
probability. As depicted in the figures, on all the networks
studied, there is a metacritical point for the effects of
awareness diffusion on epidemic transmission. Only when the
awareness diffusion probability λ exceeds this metacritical point
λc, does the epidemic threshold increase with the increasing
awareness diffusion probability. Additionally, a decrease in the
awareness of forgetting probability δ leads to an increase in βc and
a decrease in λc. This is because a smaller forgetting probability δ
results in more persistent and widespread diffusion, which
promotes the increase of epidemic threshold βc and the
decrease of the metacritical point λc that corresponds to it.

FIGURE 4
(Color online) Results comparisons of the full phase diagrams (λ-β) of ρI obtained byMicroscopic Markov Chains Approach (MMCA) andMonte Carlo
(MC) simulations. Top: the corresponding results of MMCA performed on top of multiplex network (A)G−1, (B)G0, and (C)G1. Bottom: the corresponding
results of MC simulations performed on top of multiplex network (D) G−1, (E) G0, and (F) G1.The Additional parameters include μ � 0.5 and γ � 0 in the
physical-contact layer, λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-contact layer.
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Finally, we investigate the effects of the average degree KA and
KB of the virtual-contact layer and the physical-contact layer on the
epidemic threshold βc. In order to explore the role of KA in the
epidemic threshold, we construct three multiplex networks GKA−5,
GKA−10, and GKA−60 by randomly adding edges in virtual-contact
network of G1. The values of KA in these networks are set to 5, 10,
and 60, respectively, while keeping KB � 5 constant. Figures 9A–C

illustrate the changes of βc concerning the awareness diffusion
probability λ on three multiplex networks under different
combinations of awareness forgetting probability δ and infected
individual recovery probability μ. Comparing the results from the
figures, it can be concluded that on all the networks studied, an
increase in KA not only leads to an increase in βc but also causes a
decrease in the metacritical point λc that corresponds to it. This

FIGURE 5
(Color online) Effects of the basic self-initiated awareness probability σ0 on the stationary I-state individuals fraction ρI and stationary A-state
individuals fraction ρA. Specifically, the stationary infeted individuals fraction ρI versus infection probability βwhen (A) rs � −1, (B) rs � 0, and (C) rs � 1. The
stationary aware individuals fraction ρA versus infection probability βwhen (D) rs � −1, (E) rs � 0, and (F) rs � 1. The results when σ0 � 0, σ0 � 0.2, σ0 � 0.4,
σ0 � 0.6, and σ0 � 0.8 are denoted by red circle lines, blue trilateral lines, magenta square lines, black rhombus lines, and cyan inverted-triangle lines,
respectively. Additional parameters include μ � 0.5 and γ � 0 in the physical-contact layer, δ � 0.6 and λ � 0.15 in the virtual-contact layer.

FIGURE 6
(Color online) Effects of the infection attenuation factor γ on the stationary I-state individuals fraction ρI . Specifically, the stationary I-state individuals
fraction ρI versus infection probability βwhen (A) rs � −1, (B) rs � 0, and (C) rs � 1. The outcomes corresponding to γ � 0, γ � 0.5, and γ � 1 are represented
by red circular lines, blue triangular lines, and magenta square lines, respectively. Additional parameters include μ � 0.5 in the physical-contact layer,
λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-contact layer.
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phenomenon can be explained by the fact that a higher average degree
KA in virtual-contact network facilitates the diffusion of awareness
within the networks, resulting in a stronger inhibition on epidemic
transmitting, thus βc increases and λc decreases. To explore the influence
ofKB on the epidemic threshold, we construct three multiplex networks
GKB−5, GKB−10, and GKB−30, by randomly adding edges in the physical-
contact layer of G1. The values of KB are configured as 5, 10, and 60,
respectively, while maintaining a constant value of KA at 10. Figures
9D–F show the changes of βc concerning the diffusion probability of
awareness λ on three multiplex networks under different combinations
of awareness forgetting probability δ and infected individual recovery

probability μ. Comparing the results from the figures, it can be
concluded that on all the networks studied, an increase in KB leads
to a decrease in βc when λ is constant. However, the change ofKB does
not affect the metacritical point λc.

It should be noted that all the aforementioned results are based
on the configured multiplex networks. To closely align with real-
world scenarios, we conduct extensive experiments on a large
number of real networks. The conclusions drawn from these
experiments align with those from the configured multiplex
networks. For a comprehensive overview of the detailed results,
please refer to the Supplementary Material.

FIGURE 7
(Color online) Effects of the inter-layer degree correlations rs on the epidemic threshold βc . Specifically, the epidemic threshold βc versus infection
attenuation factor γ when rs � −1, rs � 0, and rs � 1 are denoted by red circle lines, blue trilateral lines, and magenta square lines, respectively. The
corresponding colored curves represent the theoretical predictions derived from Eq. 20. Additional parameters include β � 0.5 and μ � 0.5 in the
physical-contact layer, λ � 0.15, σ0 � 0.5, and δ � 0.6 in the virtual-contact layer.

FIGURE 8
(Color online) Effects of the awareness forgetting probability δ on the epidemic threshold βc . Specifically, the epidemic threshold βc versus diffusion
probability of awareness λwhen (A) rs � −1, (B) rs � 0, and (C) rs � 1. The results when δ � 0.2, δ � 0.4, δ � 0.6, and δ � 0.8 are denoted by red circle lines,
blue trilateral lines, magenta square lines, and black rhombus lines, respectively. The corresponding colored curves represent the theoretical predictions
derived from Eq. 20. Additional parameters include β � 0.5, γ � 0, and μ � 0.8 in the physical-contact layer, σ0 � 0.5 in the virtual-contact layer.
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5 Conclusion

The outbreak of an epidemic often stimulates the development of
public awareness about disease prevention, which can effectively curb
the process of epidemic transmission. Individuals generate different
awareness responses due to varying amounts of information received
from their neighbors. Therefore, considering the diversity in individual
awareness responses is of significant research importance in the coupled
awareness-epidemic dynamics. In this study, we first introduce a
coupled awareness-epidemic dynamics model that incorporates the
differences in individual awareness responses, where the self-initiated
awareness probability of individuals is influenced by the number of their
aware neighbors. Subsequently, we develop MMCA method for the
analysis of the aforementioned model and validate the accuracy of the
MMCA method in solving the coupled spreading model through MC
numerical simulations. Next, we analyze the impact of crucial dynamics
and structural parameters on the proposed coupled awareness-epidemic
dynamics. Through abundant simulations and meticulous theoretical
analyses, it has been demonstrated that individual awareness awakening
can elevate the steady-state proportion of aware individuals on the
networks, consequently mitigating epidemic transmission.
Simultaneously, the impact of awareness diffusion on epidemic
transmission exhibits a metacritical point λc. Specifically, when the
awareness diffusion probability λ is larger than λc, the epidemic
threshold βc increases while the λ increases. Furthermore, the
increase in the average degree KA of the virtual-contact networks

reduces the value of λc, while the change in the average degree KB

of the physical-contact networks do not affect λc. Finally, we conduct
extensive experiments on a large number of real networks, yielding
conclusions consistent with the configured multiplex networks. To sum
up, this research comprehensively investigated the coupled awareness-
epidemic dynamics with individualized self-initiated awareness. The
research findings contribute to a deeper understanding of the interaction
between awareness diffusion and epidemic transmission, providing
essential theoretical insights for epidemic prevention and control.
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Evolution and governance of
online public opinion during
COVID-19: a hybrid approach
using communication
visualization, SIR modeling, and
simulation validation

Lin Ren, Jiehua Zhang, Zhongyue Su, Fujun Lai andDeping Xiong*

School of Finance, Yunnan University of Finance and Economics, Kunming, China

Introduction: This study investigates themechanismsof publicopiniondissemination
and governance strategies during public health events, using a two-stage SIR model
informed by the Information Cascade Theory.

Methods: The research employs Gephi visual analysis to identify principal nodes
of public opinion and combines model simulations with dynamic propagation
analysis to verify the model’s precision and applicability.

Results: The findings reveal that pivotal information nodes significantly accelerate
the spread of public opinion, while ordinary nodes contribute to the natural
attenuation of public discourse due to their strong spontaneous recovery
capabilities. The simulation analysis further identifies the optimal timing for
government intervention, particularly during the initial and peak phases of
public opinion dissemination.

Discussion: Based on the results, the study recommends strategies to strengthen
the management of key opinion nodes, enhance public information literacy,
optimize policy implementation, and utilize simulation tools to assist in public
opinion management. These recommendations offer valuable theoretical and
practical insights for managing public opinion during public health events.
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COVID-19, public opinion, visualization, two-stage SIR modeling, simulation

1 Introduction

As indicated in the 53rd Statistical Report on Internet Development in China, published
by the China Internet Network Information Centre (CNNIC) on 22 March 2024, the
number of Internet users in China had reached 1.092 billion by December 2023,
representing a penetration rate of 77.5%1. The pervasive use of the Internet has
facilitated the expression of ideas, but it has also precipitated significant social
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challenges associated with the proliferation of online public opinion.
As indicated in the Global Risks Report 2021, the circulation of
online public opinion on significant adverse occurrences not only
results in economic losses but also endangers social stability and
government credibility. In particular, in the context of COVID-19,
the rapid dissemination of online public opinion has served to
exacerbate social panic and the spread of rumours, thereby
increasing the difficulty of public crisis management2.

The COVID-19 in 2020 had an unprecedented impact on the
public health system, economy and social order of various countries.
In this context, the rapid dissemination of negative online public
opinion may give rise to social panic, policy misunderstanding and
the propagation of rumours, thereby further exacerbating the
complexity and governance difficulty of public crises [1, 2]. It is
becoming increasingly evident from research that the role of digital
technology in public health responses is of paramount importance
[3]. In particular, during the initial phase of an epidemic, the volume
of information exchanged on social media platforms increases
exponentially [4], accompanied by a proliferation of
misinformation and fake news. The confluence of these factors in
the context of information asymmetry had a profound impact on the
public’s trust in and compliance with anti-epidemic measures.

During the epidemic in China, several microblogging hotspots
emerged, including reports of a woman leaving Hanzhou for Beijing,
a patient who failed to report a suspected case in a Wuhan
community who subsequently committed suicide, and the case of
three members of a family of a retired departmental official in Hubei
who were diagnosed with COVID-19 and refused to be quarantined.
The rapid dissemination and fermentation of public opinion on the
Internet has resulted in these incidents having a significant impact
that extends well beyond their immediate consequences. In fact, they
have triggered a greater and more persistent social panic. It is
therefore of particular importance to monitor public opinion,
comprehend the nuances of social opinion and proactively direct
and regulate social opinion during a crisis.

The Chinese government places a significant emphasis on the
management of public opinion on the Internet. At the Fifth Plenary
Session of the 19th CPC Central Committee, the concept of
“strengthening the construction of cybercivilisation” was first
proposed in the “Recommendations of the Central Committee of
the Communist Party of China on the Formulation of the 14th Five-
Year Plan for the Development of the National Economy and Society
and the Vision and Goals for the 23rd Five-Year Plan.” This
document placed considerable emphasis on the importance of the
governance of public opinion on the Internet. In his remarks,
General Secretary Xi Jinping highlighted the growing significance
of the Internet as a key arena for public opinion struggles. He
underscored the critical importance of China’s ideological and
regime security in the context of these ongoing battles in the
digital domain. The implementation of the strategy of “Network
Power” and the concept of “Community of Destiny in Cyberspace”
has served to further highlight the urgency and importance of
cyberspace governance. Consequently, the Chinese government

has enacted a series of policies and regulations, including the
Cybersecurity Law of the People’s Republic of China, the Data
Security Law of the People’s Republic of China, and the Personal
Information Protection Law of the People’s Republic of China, with
the objective of reinforcing the legal and institutional safeguards for
the governance of cyber public opinion.

Online public opinion exerts significant influence on individual
decision-making processes, particularly through the mechanisms of
information asymmetry [5–7], herd behaviour [8], opinion leaders
[9], and emotional contagion [10], among others. These factors,
among others, exert an influence on individual decision-making
processes. The completeness, vividness and relevance of the quality
of opinion information can also exert a significant influence on user
behaviour [11, 12]. During the COVID-19 outbreak, the lack of
comprehensive and accurate information made internet users more
vulnerable to misinformation, which led to irrational behaviors such
as following rumors and disclosing personal information [13].
Therefore, beyond strengthening governance through institutional
constraints, it is crucial for policymakers to understand evolving
public opinion trends and the psychological state of the public. This
understanding can help in making timely adjustments to publicity
strategies and improving public policies, thereby guiding public
opinion more effectively and mitigating adverse effects [14].
Research shows that timely dissemination of official information
and active public involvement can significantly reduce the spread of
rumors and alleviate panic [15, 16]. Effective governance of online
public opinion requires a dual approach: crisis management, which
addresses public opinion during a crisis, and prospective guidance,
which prepares and manages public opinion before a
crisis occurs [17].

The origins of online opinion research can be traced back to the
1990s, when researchers began to apply text analytics techniques
from computer science to the prediction and analysis of opinion
communication [18]. The advent of social media platforms has
precipitated a phase of accelerated development in online opinion
research, with researchers increasingly focusing on the far-
reaching impact of social media on opinion communication
[19, 20]. In terms of research content, studies have primarily
focused on the concept and characteristics of online public
opinion [21, 39], the governance subject and elemental
structure of online public opinion [2, 22], the generation
mechanism of online public opinion [23], and the evolutionary
trend of online public opinion [42]; [24, 25]). Additionally, studies
have explored the prediction and governance of online public
opinion [26]. Notably, significant advancements have been made
in the field of public opinion life cycle research. The information
life cycle theory, proposed by Rogers et al. [27], provides a
comprehensive framework for understanding the evolution of
public opinion. Building on this theory, researchers have used
quantitative analysis to break down the communication of public
opinion into four distinct stages: latency, outbreak, spread, and
dissipation. These studies not only offer empirical evidence for
managing public opinion during emergencies but also provide a
scientific foundation for policymakers to design effective
intervention strategies [28, 29]. Notably, during the COVID-19,
research highlighted the unique characteristics of information
dissemination in crises and its significant impact on social
stability [30].

2 Global Risks Report 2021 | World Economic Forum | World Economic

Forum (weforum.org).
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In terms of research methods, social network analysis methods
[16, 17, 31–33] and improved neural network algorithms [34] have
been employed. Furthermore, mathematical modelling methods for
multi-subject simulation have been employed, including the SIR
improvement models [27, 35], system dynamics models [36], and
other methods which have gradually become popular for public
opinion governance, and have shown a trend of diversification and
disciplinary crossover.

While existing studies have made some progress in
understanding the evolution and governance of online public
opinion, there are still a number of deficiencies that require
further investigation. Firstly, the research methodology employed
is relatively homogeneous and lacks a comprehensive strategy that
combines qualitative and quantitative analyses. This may result in an
incomplete understanding and explanation of the phenomenon of
public opinion. Secondly, there are limitations in the data and
models used. For example, the data sources may be biased, while
the existing algorithms and models may not be able to accurately
capture the dynamics and diversity of public opinion. This limits the
depth and breadth of the research. Moreover, the interdisciplinary
integration is still inadequate, which constrains the capacity of
researchers to delve into the intricacies of online public opinion
from diverse vantages.

This study addresses the limitations of existing research through
the following improvements: Firstly, the utilisation of Gephi
software for the visual analysis of public opinion dissemination is
presented, thereby offering a novel tool and methodology for the
dynamic monitoring and intervention of the dissemination process.
This improvement addresses the shortcomings of existing
methodologies in identifying dissemination pathways. Secondly,
within the context of the pandemic, this study employs a
simulation of the public opinion dissemination mechanism on
Weibo, extending and refining the two-stage SIR model based on
infectious disease modelling. The model incorporates the actual
characteristics of public opinion dissemination, thereby enhancing
the accuracy and comprehensiveness of the analysis of
microblogging network public opinion dissemination.

In conclusion, the contributions of this study can be
summarized as follows: firstly, the study integrates information
life cycle theory with visualisation tools such as Gephi [37] in
order to meticulously characterise the dissemination
characteristics of public opinion on Weibo from both temporal
and structural perspectives. This approach allows for a more detailed
understanding of public opinion propagation during COVID-19.
Secondly, this paper builds upon and enhances the two-phase SIR
model, which is based on the infectious disease model [35, 38]. It
does so by integrating the actual characteristics of public opinion
dissemination. This improves the accuracy and comprehensiveness
of the analysis of microblogging network public opinion
dissemination characteristics, and provides a more effective
model for subsequent research.

The remainder of this study is structured as follows: the second
part introduces the real-life characteristics of online public opinion
communication and conducts visual analysis; the third part
conducts theoretical analysis and modelling; the fourth part
conducts case simulation and model reliability texting; and the
fifth part summarises the findings and puts forward policy
recommendations.

2 A visual analysis of online public
opinion dissemination

In order to align the theoretical analysis with empirical evidence,
this section employs visualisation techniques to illustrate the actual
trajectory and attributes of public opinion dissemination on Weibo.
Firstly, the dissemination of public opinion is mapped out over time by
extracting data on the propagation of different negative events on
Weibo within the same period. This allows the temporal characteristics
of public opinion dissemination to be revealed. Secondly, the life cycle
theory of public opinion propagation is employed to analyse the
propagation characteristics of microblog public opinion. Ultimately,
the Gephi software is employed to distinguish between core and
ordinary nodes in the propagation of public opinion, thereby
elucidating the structural characteristics of the microblog public
opinion propagation path. The aforementioned analysis will furnish
data that will inform the subsequent theoretical modelling and analysis.

2.1 Software introduction and application

Gephi is a network analysis software that enables data
visualisation. It can visually display the nodes (individuals in the
network) and edges (relationships between individuals) of the
network. Its powerful graphical processing capabilities and diverse
analysis algorithms can be employed to solve the problem of difficult
to understand complex network relationships. It is widely used in the
visual analysis of social network data [37]. In this paper, the
dissemination visualisation analysis of microblog opinion
dissemination data was carried out by Gephi. The specific steps
included the importation of data in CSV format into Gephi, the
calculation of the viewable concatenation within the circle of core
nodes, and the multistep filtering, intersection and complementary
processing of the degree values of the nodes. Additionally, the
redundant nodes were deleted. Subsequently, the number of nodes,
the number of edges and the type of graph of the network are
analysed, the network parameters are adjusted and the layout is set.

2.2 Data preparation and event extraction

The data employed in this study were sourced from the Weibo
platform (https://weibo.com). In order to obtain data pertaining to
public opinion on typical negative events related to the COVID-19,
we employed the use of crawler technology to collate relevant
information from this platform. This encompassed user IDs, time
nodes, retweets, comments, likes, comment texts, and location
information. The extraction of events is divided into two stages.

In the initial phase of the investigation, the negative events that
occurred during the early stages of the COVID-19 were identified
through the “zhiweidata” platform (zhiweidata.co). The specific
selection criterion is the Event Influence Index (EII), which
identifies the six most influential negative events in the EII rankings
between 1December 2019 and 30 June 2020. The EII is calculated based
on the cumulative impact of an event’s dissemination on microblogs
and is normalised to range from 0 to 100.

In the second step, data mining was conducted on the selected
negative events. Initially, the crawler technique was employed to
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extract the opinion data pertaining to the negative events from the
microblogging platform. Subsequently, the raw data were subjected
to cleaning procedures, which entailed the removal of hyperlinks,
numbering, and redundant symbols, with the objective of ensuring
the neatness and coherence of the data set. In instances where data
were absent, interpolation or deletion was employed to guarantee
the integrity of the data set. In order to eliminate discrepancies
between the magnitudes of the data, numerical data such as retweets,
comments and likes were normalised.

2.3 A life cycle analysis of online public
opinion dissemination

This paper builds upon the life cycle theory of public opinion [27] to
develop a new typology for the life cycle of online public opinion
communication during the Coronavirus Disease 2019 (COVID-19)
pandemic. The proposed typology categorises the life cycle into five
distinct phases: the incubation period, the outbreak period, the decline
period, the resurgence period and the calm period. Furthermore, the
typology identifies three critical peaks of public opinion intensity. The
initial peak, designated “A,” occurs during the incubation period, the
subsequent peak, designated “B,” occurs during the outbreak period,
and the final peak, designated “D,” occurs during the resurgence period.
The aforementioned framework is illustrated in Figure 1.

As illustrated in the aforementioned figure, the incubation period is
the interval preceding the level of concern reaching the incubation peak,
designated as A. It is possible for there to be one or more incubation
peaks during this phase. The outbreak period is the interval between the
peak of the incubation period (A) and the peak of the outbreak period
(B). It is during this period that public opinion undergoes a rapid
intensification, attracting considerable attention. The decline period is
the period between the peak of the outbreak period B and the
commencement of the resurgence period C, during which there is a
gradual decrease in public opinion attention. The resurgence period is
the period between the conclusion of the decline period (C) and the
peak of the resurgence period (D). During this period, public opinion

may intensify oncemore, and thismay occur again and again in the case
of multiple resurgence periods. The period of calm is the interval
between the peak of the resurgence period and the point at which public
opinion reaches zero, indicating a gradual decline in public opinion.

In order to visually observe the evolution of microblog public
opinion in the time dimension, the six microblog public opinion
hotspot events extracted above were compared with the life cycle of
online public opinion dissemination. This was done with a view to
portraying their temporal public opinion dissemination evolution.
The chart below depicts the evolution of public opinion over time,
with the horizontal axis representing the number of days and the
vertical axis indicating the degree of public opinion attention,
quantified by the number of microblog retweets.

As illustrated in Figure 2, the incidents involving the Huanggang
Health Commission’s inadequate epidemic response and the Dali
Municipal Government’s expropriation of anti-epidemic materials
from Chongqing and Huangshi exhibit a prototypical pattern of
incubation, outbreak, decline, and calm periods. In contrast, the
collapse of the Quanzhou isolation hospital follows a different
pattern, characterised by an additional resurgence period with a
distinct peak. A comparative analysis of six representative microblog
public opinion events during the global COVID-19 pandemic
demonstrates that the life cycle of online public opinion
dissemination effectively captures the evolution patterns. The
duration, intensity and impact of an event are key factors in
determining the presence and prominence of the incubation and
resurgence periods. It is noteworthy that these periods may not
always manifest as a single peak. In instances where a resurgence
period is absent, the decline and stabilisation of public opinion tend
to occur concurrently.

2.4 Visualization and analysis of
public opinion

In order to gain further insight into the communication
structure of microblog public opinion events, this paper selects

FIGURE 1
Weibo public opinion dissemination lifecycle diagram.
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the topic of “Unexplained Pneumonia in Wuhan” on the microblog
platform as the research object. The data from this microblog was
extracted using crawler technology between 31 December 2019 and
3 January 2020. This included information such as user IDs,
comments, retweets and likes. The data regarding retweets,
comments and likes were aggregated in order to ascertain the
influence of different communication nodes. Accordingly, the
following microblog opinion propagation map has been
constructed with the assistance of the opinion visualisation tool
Gephi, as depicted in Figure 3.

Figure 3 shows that, under the topic of “Unexplained
Pneumonia in Wuhan,” key nodes such as “CCTV News,”
“Tokyo Men’s Illustrated Book,” “Xiehe Hand and Foot Surgery,”
“Chen Jianghai,” “Headline News,” and “Qiao Kevin” have
significantly higher influence compared to secondary nodes like
“Between Coming and Going” and “Natsume’s Little Brother.” The
number and area of nodes connected to key nodes are notably
greater than those of secondary nodes. Key nodes attract substantial
attention and drive the event’s dissemination, while secondary nodes
further spread the event. This cascading effect makes the
“Unexplained Pneumonia in Wuhan” incident a highly influential
public opinion event. Using Gephi, we can visualize the
communication structure, showing that transmission is node-
based, with key nodes triggering wider public opinion. Significant
differences in communication impact highlight the crucial role of
key nodes in shaping and influencing public sentiment.

2.5 Key features of online public opinion
dissemination

The analyses reveal that the dissemination of public opinion
during the early stages of the recent COVID-19 outbreak exhibited
sudden and fractious characteristics. While Weibo discussions were
initially low, information spread rapidly, reflecting the inherent
instability of the communication landscape. Netizens often

displayed intense negative emotions, with some users significantly
influencing information spread through extensive retweets and
engagement [30]. Integrating the microblog public opinion life
cycle with Gephi’s visualization analysis, we identify four key
characteristics of public opinion dissemination during the
COVID-19 pandemic:

• Cyclicality: Public opinion dissemination follows distinct
phases—latency, outbreak, decline, warming-up, and
calming-down—each with unique intensity and
propagation patterns.

• Opinion Leaders: Key nodes (opinion leaders) play a crucial
role by quickly attracting public attention and further
spreading opinions through secondary nodes.

• Context Dependence: Dissemination is influenced by the
event’s context and external factors. Changes in anti-
epidemic policies and epidemic data updates can rapidly
alter dissemination direction and intensity.

• Dynamics: The dissemination process is dynamic, with
significant variations in influence among nodes. The
dissemination path and intensity of public opinion may
fluctuate rapidly.

3 Theoretical analysis and modelling

On the basis of the preceding analysis of microblog opinion
dissemination characteristics, this section introduces the Information
Cascade Theory to further explore the generation mechanism of
microblog online public opinion. The explanatory power of the
model is enhanced by the construction of the social utility function
of opinion dissemination amongmicroblog users and the application of
optimal control theory to optimise the analysis of the dissemination rate
of opinions. In conclusion, this paper puts forward amore realistic two-
stage SIRmodel with the aim of providing a comprehensive insight into
the propagation mechanism of microblogging online public opinion.

FIGURE 2
Comparative trend chart of online public opinion spread during public health emergencies.
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3.1 Theoretical analysis

The Information Cascade model, proposed by Bikhchandani
et al. [8], reveals that individuals operating in a decentralised
manner exert influence and are themselves influenced. Individuals’
behaviours may deviate from the principles of popular rationality, yet
they are also susceptible to the influence of the majority group. This
can result in a tendency to neglect one’s own perceptions, a
phenomenon known as the “illusion of group rationality,” and a
proclivity towards blind adherence to the prevailing opinion of the
group. This phenomenon is also referred to as “animal spirits” in the
context of Information Cascade Theory. Anderson and Holt [40]
constructed a general model based on Bayes’ law, which provides a
theoretical framework for the Information Cascade Theory.

The phenomenon of the Information Cascade Theory is
particularly evident in the context of microblog communication,
where the decisions of netizens with regard to their communication
are frequently shaped by a desire to align themselves with prevailing
trends. In this context, microblog users’ communication decisions
are shaped by a combination of rational and irrational factors,
resulting in a range of outcomes, including both positive and
negative effects. The limited nature of microblogging cyberspace
results in a reduction in the rate of public opinion dissemination,
which in turn leads to a gradual weakening of the positive effect. As
time progresses and the number of participants increases, the cost of
dissemination rises, leading to an increase in the negative effect.
Nonetheless, the typical lifespan of network memory is only 7 days
[30], with the negative effect subsequently diminishing over time.

FIGURE 3
Visualization of online public opinion spread regarding the “Unknown Pneumonia Outbreak in Wuhan” incident.
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Accordingly, this paper presents a social utility function for
microblogging users’ opinion dissemination decisions, based on
the trade-off between positive and negative effects, as described
in Equations 1–3:

P � P β( ) P′> 0, P″< 0( ) (1)
N � N β( ) N′> 0, N″> 0( ) (2)

The social utility function for online public opinion
dissemination, as proposed in this paper, is based on a trade-off
between the two effects generated by public opinion dissemination.
The function is constructed as follows:

U � U P,N( ) (3)
where P represents the positive effect, N represents the negative
effect, and U denotes the total social utility.

3.2 Two-stage SIR modeling of microblog
opinion dissemination

The classical SIR infectious disease model is an important
mathematical model used in epidemiology to describe the process of
infectious disease transmission. The model divides the population into
three categories: susceptible (S), infected (I), and immune (R), and
simulates the temporal changes in the number of individuals in these
three categories through differential equations. The SIR model was first
introduced into the analysis of public opinion dissemination by Daley
and Kendall [41] who, with the help of the analogy of the spread of
infectious diseases, revealed the mechanism of the spread of rumours in
society. Building on the SIR model, this study categorises microblog
users into three groups: Potential Opinion Spreaders (S), Opinion
Spreaders (I), and Opinion Immune Users (R). The former denotes
potential information disseminators who have not yet been exposed to
public opinion information; the latter, trusting users who have already
been exposed to and disseminated public opinion information; and the
latter, immunisers, who have ceased disseminating public opinion
information. In order to more accurately reflect the intricacies of
opinion dissemination, we have enhanced the classical SIR model in
two stages, integrating the aforementioned portrayal of dissemination
characteristics.

The parameters used in this study are illustrated in Figure 4:
The symbols for the parameters are defined as follows:
S1: Number of potential opinion spreaders among key nodes;
S2: Number of potential opinion spreaders among

ordinary nodes;
I1: Number of opinion spreaders among key nodes;
I2: Number of opinion spreaders among ordinary nodes;
R: Number of opinion immunizers;
N: Total number of Weibo users affected by the opinion;
a: Growth rate of new followers to the event;
b: Growth rate of followers who lose interest in the event;
β1: Diffusion influence of ordinary nodes;
β2: Diffusion influence of key nodes;
μ1: Recovery rate of diffusion among ordinary nodes;
μ2: Recovery rate of diffusion among key nodes;
λ: Resistance rate of recoverers to the opinion;
1 − λ: Probability of secondary infection.

Furthermore, we propose the following modeling approach for
the two-stage SIR model:

The initial propagation phase is the first stage of the process. In
this phase, the model introduces two key variables: the growth rate of
new followers (a) and the growth rate of followers (b) who are no
longer interested. Furthermore, the spreading influence (β1 and β2)
and recovery rate (μ1 and μ2) of ordinary and key nodes are
distinguished in order to more accurately model the spreading
characteristics of information in a small initial area.

Stage 2: Diffusion spreading stage: As the information
disseminates widely, the model also considers the impact of
official information disclosure and government intervention. This
stage demonstrates a decline in the rate of spread (β) over time, as
well as an increase in the recovery rate (μ), through an analysis of the
utility function in relation to the dissemination of public opinion.
Furthermore, the model incorporates the resistance rate of
recoverers to public opinion (λ) and the probability of secondary
infection of public opinion (1 − λ) to provide a more comprehensive
representation of the intricate propagation mechanisms underlying
public opinion events on microblogs.

In light of the aforementioned enhancements, our proposed
two-stage SIR model is capable of simulating the microblog opinion
dissemination process in a more comprehensive manner,
elucidating the dynamic alterations and attributes of information
dissemination across distinct stages.

3.2.1 Research hypothesis
In fact, four factors merit particular attention: Firstly, the existence

of information asymmetry gives rise to suspicion and speculation
regarding the source of information, which in turn facilitates the
dissemination of false information. Secondly, the tailored
recommendations of information sources reinforce confirmation
bias, thereby exacerbating the phenomenon of digital echo chambers.
Thirdly, the influence of online opinion leaders, the reticence of elite
users and the followers of ordinary users has challenged the theory of
“The Spiral of Silence.” Fourthly, the “rational” decision-making of
dispersed individuals may result in unforeseen distortions of opinion,
thereby giving rise to the formation of the “rabble” effect, which in turn
serves to promote the development of social irrationality. Collectively,
these factors render the phenomenon of the information waterfall
susceptible to the formation of public opinion bias in online public
opinion events, which in turn exerts an influence on public decision-
making. In light of the aforementioned evidence, this paper puts forth
the following four hypotheses:

FIGURE 4
The parameter relationship diagram of the two-stage SIR
segmented model.
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Hypothesis 1. Network Users Have Complete
Information Judgement.

Assuming that for an information set S � s1, s2..., sn{ }, where S is
closed, convex, and 0 ∈ S , for all si and sj in S, either si≻sj or si≺sj.
This implies that Weibo users, as information receivers, possess the
necessary information to evaluate different pieces of information,
thereby having the capability to discern information. Consequently,
information asymmetry is alleviated to some extent, leading to a
reduction in the spread of false information. It’s assumed that the
network subject’s judgement of information is complete.

Hypothesis 2. Information Dissemination Among Network Users
Is Homogeneous.

Assuming that network users have equal dissemination and trust
capabilities, the overall efficiency of information dissemination
remains unchanged despite personalized recommendations.
Homogeneous dissemination can mitigate the impact of
confirmation bias on the overall public opinion and suppress the
intensification of the “digital echo chamber” effect. However, due to
the varying sizes of nodes, the probability of encountering and
disseminating information through different nodes varies, leading to
differences in dissemination effectiveness.

Hypothesis 3. Network Users Are Boundedly Rational, and
Information Transmission Is Imperfect.

Due to the inability of network users to access fully symmetric
information and their bounded rationality, they are more susceptible
to the influence of opinion leaders. This bounded rationality leads
ordinary users to follow opinion leaders, resulting in the “spiral of
silence” phenomenon.

Hypothesis 4. The Total Number of Network Public Opinion
Users, N, Dynamically Changes with External Factors such as
Propagation and Exit Rates.

Network users are categorized into three types: S (potential
disseminators), I (active disseminators), and R (immune
individuals), with S + I + R � N at any given time. The growth
rate a and reduction rate b depend on the type and intensity of
the external public opinion event and vary according to a fixed ratio
throughout the “public opinion dissemination lifecycle.” As the user
population dynamically changes, the phenomenon of opinion
distortion intensifies, contributing to the “mob effect” and
potentially leading to societal irrationality.

3.2.2 First-stage modeling of microblog opinion
dissemination

In the initial phase of the Weibo opinion dissemination
model, the advantages of “following the trend” propagation
are perceived to be positive, leading internet users to engage
in “irrational” following behaviour by disregarding the
information they receive. At this juncture, the number of
disseminators increases exponentially, while the dissemination
rate stabilises and propagates at a constant rate. To more
accurately represent the actual processes occurring in opinion
dissemination, this study employs the well-established SIR model
for its initial modelling of online opinion diffusion on Weibo. In
this model, S, I, and R represent the potential opinion spreaders,
active opinion spreaders, and opinion receivers, or “immune”

opinion recoverers, respectively. The definitions of the remaining
parameter symbols utilized in the first stage are presented in
Table 1, and the proof process is detailed in Equations 4–18.

dS t( )
dt

� aS t( ) − β1S1 t( )I t( ) − β2S2 t( )I t( ) − bS t( )
dI t( )
dt

� β1S1 t( )I t( ) + β2S2 t( )I t( ) − μ1I1 t( ) − μ2I2 t( ) − bI t( )
dR t( )
dt

� μ1I1 t( ) + μ2I2 t( ) − bR t( )
S + I + R � N

S1 + S2 � S

I1 + I2 � I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

Given that S, I,and R are continuous and differentiable functions
of time t, and considering a � b, the model exhibits the following
properties:

Property 1. The number of potential information disseminators S
decreases over time t and approaches a lower bound, while the
number of information trusters R increases over time t and
approaches an upper bound.

Proof:

dS

dt
� −β1S1I − β2S2I≤ 0 (5)

dR

dt
� μ1I1 + μ2I2 ≥ 0 (6)

lim
t→∞

S t( ) � ~S � M (7)
lim
t→∞

R t( ) � ~R � M − ~S � 0 (8)

Property 2. When I reaches its maximum value, the intensity of
public opinion also peaks.

Proof:

qS t( ) + I t( ) + R t( ) � N (9)

Taking the total differential on both sides, we obtain:

∴S′ t( ) + I′ t( ) + R′ t( ) � 0 (10)

According to Property 1 and using the Euler approximation
method, we have:

S t + Δt( ) ≈ S t( ) − β1S1 t( )I t( ) + β2S2 t( )I t( )( )Δt (11)
tI t + Δt( ) ≈ I t( ) + β1S1 t( )I t( ) + β2S2 t( )I t( ) − μ1I1 − μ2I2( )Δt

(12)
R t + Δt( ) ≈ R t( ) + μ1I1 + μ2I2( )Δt (13)

q
dI

dt
< 0 (14)

∴
β1S1 + β2S2
μ1 + μ2

< 1 (15)

Therefore, when β1S1+β2S2
μ1+μ2 < 1, the number of disseminators

begins to decrease, and the intensity of public opinion starts to
decline. Conversely, when β1S1+β2S2

μ1+μ2 � 1 , I reaches its maximum
value, and the intensity of public opinion peaks.
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Property 3. Given the initial value of S, parameters β and μ, and the
proportion of each node, the influence of public opinion can be assessed.

Proof:

dI

dS
� −1 + μ1I + μ2I

β1S1I + β2S2I
(16)

dI

dS
� −1 + μ1κ + μ2γ

β1Sκ + β2Sγ
(17)

dI

dS
� −1 + k

S
(18)

Where κ and γ represent the ratio of key information nodes to
regular nodes, let k � μ1κ+μ2γ

β1κ+β2γ. When S is greater than k, I will
decrease; when S is less than k, I will increase; and when S = k,
I reaches its maximum. Let K � Sn

k be the threshold to determine
whether the public opinion has momentum. WhenK is greater than
1, the public opinion has a strong diffusion force, and whenK is less
than 1, the public opinion does not have significant influence.

3.2.3 Second-stagemodeling ofmicroblog opinion
dissemination

In the second stage of Weibo public opinion dissemination,
individual users face potential negative consequences (such as loss of
personal reputation, account suspension, legal penalties, etc.) due to
official information disclosures and government interventions. As a
result, if users rationally analyze and assess the existing information
before taking action, such rational behavior can lead to an increase
in their overall welfare. The definitions of the parameter symbols
employed in the second stage are set forth in Table 2.

Let S(t) represent the number of potential spreaders at any time
t, and dS

dt represent the rate at which potential spreaders (S) decrease
(i.e., convert to actual spreaders) at any time t, where dS

dt � −β.
Thus, to examine the optimal time path of β over the interval

[0, T], the spread decision of individual users can be described as a
dynamic optimization problem of the social welfare function.
Table 1, and the proof process is detailed in Equations 19–32:

Max∫T

0
U P β( ), N β( )( )dt (19)

s.t.
dS

dt
� −β (20)

S 0( ) � S0, ST ≥ 0, S0, T given (21)
To construct the Hamiltonian function, we have:

H � U P β( ), N β( )( ) − λβ (22)

And assuming U, P, and N are nonlinear differential functions,
the first-order conditions are:

∂H
∂β

� UPP′ β( ) + UNN′ β( ) − λ � 0 (23)

It is easily proven that the first-order conditions maximize the
Hamiltonian function, leading to:

∂2H
∂λ2

� UPPP
′2 + UPP″ + UNNN

′2 + UNN″< 0 (24)

The differential equation for λ is given by: dλdt � −∂H
∂S � 0, where λ

is a constant.
The transversality conditions

are: λ(T)≥ 0, S(T)≥ 0, λ(T)S(T) � 0
When λ(t) � 0, the first-order condition becomes:

UPP′ β( ) + UNN′ β( ) � 0 (25)
yields:

β* t( ) � β* (26)

The termUPP′(β)measures how changes in β affect the positive
effect P, while UNN′(β) assesses how changes in β impact the
negative effect N. Therefore, the equation UPP′(β) + UNN′(β) � 0
guides government agencies in choosing β* based on the principle
that the marginal utility and marginal negative utility of public
opinion dissemination are equal.

Moreover, β* satisfies S(T)≥ 0. Since β is a constant, integrating
themotion equation with respect to t gives S(t) � −βt + k, where k is
an arbitrary constant. Setting t � 0 yields k � S0, thus:

S* t( ) � S0 − β*t (27)
Thus, the number of potential disseminators at any given time

depends on the size of β*. Examining the impact of β* on Weibo
public opinion dissemination under three scenarios,
where β1* < β2* < β3*:

(1) When the dissemination rate is low, β1*, the line is gently
downward sloping, ensuring that S(T) remains positive.

(2) When the dissemination rate is β2*, S*(t) at t � T is zero. At
this point, the government is still within the control limits for
public opinion.

(3) When the dissemination rate is higher, β3* , S(T) does not
satisfy S(T) � 0. Therefore, β* solutions are either β1* or β2*.
For β* � β3* , S(T) must be zero, implying β* � S0

T .

In the model, the dissemination probability β* does not change
over time. Regardless of constraints, β* remains constant. However,
if a discount factor e−ρt is introduced, and λ*(t)> 0), then the path of
β*(t) will be downward, meaning that the dissemination rate should
decrease over time.

Thus, if the dissemination probability β* varies with time, the
Hamiltonian function becomes:

H � U P β( ), N β( )( )e−ρt − λβ (28)

TABLE 1 Relevant parameters of the equations in the first stage.

Nodes Potential spreaders Trustors Spread rate Recovery rate Growth rate Reduction rate

Key nodes S1 (t) I1(t) β1 μ1 a b

Secondary nodes S2 (t) I2(t) β2 μ2 a b
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The first-order condition is:

∂H
∂β

� UPP′ β( )e−ρt + UNN′ β( )e−ρt − λ � 0 (29)

It can be proven that λ is a constant, and when λ(T) � 0, the
solution still satisfies β*(t) � β*. However, when λ(T)> 0 and
S(T) � 0, the first-order condition becomes:

UPP′ β( ) + UNN′ β( ) − ce−ρt � 0 (30)

The path of β*(t) at this time is:

dβ

dt
� ρcept

UPPP′2 + UPP″ + UNNN′2 + UNN″< 0 (31)

Therefore, in reality, the propagation rate of Weibo public
opinion exhibits significant variability as the situation evolves. In
the second stage, the multi-agent dynamics in Weibo public opinion
lead to a continuous decrease in the propagation rate, eventually
converging to zero.

Based on the characteristics of the second stage of propagation,
the following model is established:

dS t( )
dt

� −β t( )S t( )I t( ) + 1 − λ( )R t( )
dI t( )
dt

� β t( )S t( )I t( ) − μ t( )I t( )
dR t( )
dt

� μ t( )I t( ) − 1 − λ( )R t( )
S + I + R � N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(32)

where β(t) is the propagation rate decreasing over time, μ(t) is the
recovery rate increasing over time, λ represents the resistance rate of
recoverers to public opinion, and 1 − λ is the probability of
secondary infection. This model is used to reveal the real-world
situation where many public opinion events involve repeated
interactions between real and false information.

4 Case simulation and model
reliability testing

To verify the effectiveness of the proposed modified SIR model,
this study selects the Weibo event “Questions Raised on the Wuhan
Red Cross Material Usage” as a case. The modified SIRmodel is used
for simulation to validate its effectiveness. Additionally, sensitivity
analysis is conducted to ensure the reliability of the model.

4.1 Case description

On 30 January 2020, Wuhan Renai Hospital, which specializes
in plastic surgery and reproductive health, received

16,000 N95 masks donated by the Hubei Red Cross. In contrast,
Wuhan Union Hospital, a major facility for treating epidemic
patients, only received 3,000 ordinary masks. This discrepancy
attracted significant attention, with mainstream media outlets
such as China Daily and CCTV reporting on the issue, causing
the Weibo public opinion to reach its peak. On February 1, the
Hubei Red Cross responded to the donation distribution concerns,
Wuhan Red Cross adjusted the targeted donation process, and the
Red Cross Society of China dispatched a work team to Wuhan,
leading to a gradual calming of the public opinion.

4.2 Data collection and processing

For the case simulation, we selected the “Wuhan Red Cross
material usage controversy” event, one of the six key public opinion
incidents identified earlier. The study period spanned from
30 January 2020, to 14 February 2020. Data from the
“zhiweidata” platform (zhiweidata.co) indicated that the event
generated 48,759 original Weibo posts. The event lasted for
14 days and 16 h, peaking at a dissemination rate of 993 posts
per hour and an average rate of 21 posts per hour. The peak volume
reached 8,636 posts. Additional data, including likes, comments,
retweets, and view counts, were also considered.

Data filtering and information fitting provided the following
parameters: for key information nodes, S2 � 500, connection
points = 15, initial I0 � 5, dissemination rate β1 � 2.5%,
recovery rate μ1 � 0.02%; for ordinary information nodes,
S1 � 3000, connection points = 5, initial I0 � 3, dissemination
rate β2 � 0.9%, recovery rate μ2 � 0.08%. These parameters were
used to fit the real development trend of the Weibo public opinion
event using conformal interpolation, as illustrated in Figure 5.

4.3 Analysis of simulation results

Following the determination of the initial values and parameters
of the model based on the aforementioned information, this paper
employs Matlab for simulation and analysis. The simulation results
derived from real data are illustrated in Figure 6.

According to the ratio trajectory of the number of key
information nodes to the number of common information nodes
in the initial stage, it can be observed that:

(1) The key nodes exert a strong driving effect on the ordinary
nodes due to their high relevance, exhibiting a high
propagation rate and low recovery rate. They possess the
key “power” characteristics to promote the triggering of
public opinion.

(2) In contrast, the propagation rate of the ordinary nodes is very
slow compared with that of the key nodes, and the

TABLE 2 Relevant parameters of the equations in the second stage.

Nodes Potential
spreaders

Trustors Recovered Spread
rate

Recovery
rate

Resistance rate of
recovered

Probability of
secondary infection

T time S(t) I(t) R(t) β(t) μ(t) λ 1 − λ
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spontaneous recovery rate of public opinion propagated by
the ordinary nodes is high. The propagation process is
equipped with an intrinsic immune system that suppresses
public opinion.

(3) The propagation of different nodes ultimately reaches its
peak, and the ratio of the three types of people can be
stabilised.

In the second stage of public opinion dissemination, the
dissemination rate β is exponentially decayed according to 3.4%
of the initial value, with the decay function y � exp(−ax), while the
recovery rate μ � 0.1 gradually increases with time. The probability
of resistance after recovery by Internet users is set to 5%, based on

the number of repeated alternations of true and false information in
the event. The aforementioned configuration is employed to
simulate the trend of public opinion dissemination in the second
stage, as illustrated in Figure 7. The results demonstrate that as the
intensity of public opinion diminishes and official media outlets
intervene, the propagation of public opinion gradually decelerates,
ultimately leading to a gradual return to a relatively calm state.

4.4 Sensitivity analysis

In order to enhance the reliability of the model, this paper
conducts a sensitivity analysis by modifying the initial propagation

FIGURE 5
Trend chart of online public opinion spread regarding the “Wuhan Red Cross’s Use of Materials Raises Doubts” incident.

FIGURE 6
Simulation diagram of public opinion spread in the first stage.
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rate, the recovery rate, the decay function and the resistance rate of
public opinion information.

4.4.1 Effects of initial propagation rate and
recovery rate on opinion spreading

When the initial propagation rate in the second stage is reduced
to 2.5% while maintaining the initial value of the model and other
parameters, it can be observed that the number of opinion
information trusters converges to zero at a faster rate. Similarly,
an increase in the initial recovery rate to 1.5% while maintaining the
remaining parameters constant can facilitate a more rapid decline in
the number of opinion information trusters. Furthermore,
sensitivity tests with different initial values demonstrate that the
speed of convergence of public opinion trustees increases in a
sequential manner when the initial propagation rate of the
second stage is set to 2%, 1.5%, and 1%, and the initial recovery
rate is set to 2%, 2.5%, and 3.5%, respectively. Figure 8 illustrates that
by reducing the number of pivotal nodes in the initial stages of
public opinion formation and improving the overall quality of public
opinion participants, it is possible to exert greater control over the
direction of public opinion. This allows for adjustments to be made
to the initial dissemination rate and recovery rate in
subsequent stages.

4.4.2 Influence of decay rate on public opinion
propagation

In order to investigate the impact of the decay rate on public
opinion propagation, the initial value of the model and other
parameters were maintained while the exponential decay
function was adjusted to accelerate the decay rate in the
second stage. The resulting propagation paths are illustrated
in Figure 9, which depicts the effect of increasing the decay
speed by a factor of 1 and a factor of 2, respectively. The findings

indicate that the rate of convergence of the microblog opinion
trustees towards zero is markedly accelerated with an increase in
the decay speed of the propagation rate. Consequently, the public
opinion management department may further expedite the
cooling-off period for public opinion through policy measures
such as enhanced supervision and the implementation of a
punitive mechanism, thereby achieving more efficacious public
opinion management.

4.4.3 Impact of information resistance on public
opinion dissemination

In order to reduce the rate of secondary infection of public
opinion by restorers, the second-stage public opinion information
resistance is set at 10% while maintaining the initial value of the
model and other parameters. A review of the collected data indicates
an increase in the prevalence of popular comments such as “think
with the available information” and “stay on the sidelines without
direct evidence.” This indicates that microbloggers have become
more circumspect in their engagement with public opinion,
particularly in light of the repeated instances of factual
manipulation. This is evidenced by the observed increase in the
capacity to resist public opinion information. Figure 10 illustrates
the communication path subsequent to the augmentation of
information resistance.

As information resistance increases, the number of individuals
who trust microblog opinion information decreases rapidly, and the
speed at which public opinion stabilises significantly accelerates. It is
therefore imperative that effective governance of the second stage of
microblog opinion dissemination be established. The ability of
microblog users to screen information and their level of
resistance to public opinion are the key factors influencing the
control and pacification speed of microblog public opinion in
this stage.

FIGURE 7
Simulation diagram of public opinion spread in the second stage.
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5 Conclusion and recommendations

5.1 Conclusion

This study identifies several key aspects of public opinion
communication. Firstly, key information nodes exert a significant
influence on the dissemination of public opinion, due to their high
dissemination rate and low recovery rate. As a result, they are of
critical importance in the rapid spread of public opinion. It is of the
utmost importance to regulate these nodes in order to prevent the
escalation of public opinion. Secondly, while ordinary information
nodes propagate at a slower rate, they demonstrate robust

spontaneous recovery, thereby playing a pivotal role in the
natural suppression of public opinion. Furthermore, public
opinion propagation is a dynamic process, with mechanisms that
reduce dissemination and enhance recovery contributing to the
gradual calming of public opinion, particularly following official
intervention. This serves to validate the model’s reliability and
applicability. Ultimately, the simulation analysis indicates that the
most effective government intervention occurs during the initial and
peak stages of public opinion. It is imperative that prompt responses,
information clarification and strengthened guidance are provided at
these stages in order to effectively control the spread and impact of
public opinion.

FIGURE 8
Comparison of the effects of initial spread rate and recovery rate on public opinion spread.

FIGURE 9
Comparison of the effects of decrease rate of spread rate on public opinion spread.
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5.2 Recommendations

Establish a dedicated public opinion monitoring system to
track and analyze key information nodes in real time. This system
should incorporate data mining and sentiment analysis to
promptly identify content that may trigger widespread public
opinion. Develop and refine an emergency response mechanism
with contingency plans to assess and manage risks associated
with these nodes. Rapidly deploy specialized teams to handle
sudden public opinion events. Strengthen regulations and
enforcement by introducing strict laws and penalties for the
spread of false information related to these nodes and increase
platform oversight to prevent the dissemination of
malicious content.

Adopt adaptive policy measures to manage public opinion at
different stages. In the initial phase, implement a comprehensive
monitoring system to address and clarify false information swiftly to
prevent escalation. Develop emergency response plans for timely
risk assessment and management. During peak periods, enhance
public opinion guidance with positive messaging to control
discourse and reduce negative information spread. Monitor key
nodes closely to prevent malicious content dissemination and
enforce regulations on false information. In the decline phase,
focus on stabilizing public sentiment and addressing residual
issues through continuous updates and communication to restore
social trust.

Optimize official information release strategies to ensure timely
and transparent communication, thus preventing escalation due to
delays. Establish a dedicated platform for regular updates and
information dissemination to build public trust. Create channels
for gathering public feedback on public opinion management to
refine measures and encourage engagement. Collaborate with media

outlets and social platforms to leverage their influence for positive
guidance and to minimize negative information spread.

Integrate information literacy courses into educational
curriculums to develop critical thinking and evaluation skills.
Promote the development and dissemination of tools for
verifying information authenticity in collaboration with
technology companies. Increase public awareness through multi-
channel campaigns, utilizing both social and traditional media, to
educate the public on identifying and addressing false information.

Inhance research and data analysis to improve understanding
and prediction of public opinion events. Support research
institutions and universities in related studies and promote the
development of public opinion analysis technologies. Integrate
artificial intelligence and big data technologies to optimize
monitoring and analysis processes, thereby improving the
accuracy of trend predictions and supporting decision-making.
Implementing these measures will help develop comprehensive
and scientific strategies for effectively managing and controlling
public opinion events.
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Fossil fuels remain indispensable energy resources despite their non-renewable
nature. Understanding the patterns of global fossil fuel consumption is essential
for energy security and policy-making. This study employs complex network
theory and fractal time series analysis to explore the underlying dynamics and
patterns of fossil fuel consumption globally, with a focus on coal, oil, and gas
consumption.The study applies the Hurst index to raw fossil fuel consumption
data to identify fractal characteristics. Additionally, the visibility graph method is
used to convert time series data into complex networks, allowing further analysis
of consumption patterns. The study examines fossil fuel consumption in 38
countries to assess global trends and differences. The analysis reveals that global
fossil fuel consumption follows a fractal time series pattern, with Hurst index
values exceeding 0.9, indicating long-term memory characteristics. The
application of the visibility graph method demonstrates variations in the Hurst
index of degree distribution, enabling the differentiation of consumption patterns
across regions. The method also uncovers distinct features of coal, oil, and gas
consumptionwhen viewed from a network perspective. The findings suggest that
fossil fuel consumption has predictable long-term patterns, which are crucial for
assessing future energy demands. The study highlights the importance of
legislative measures to safeguard fossil fuel resources, especially for countries
like China, where energy security and international competitiveness are
paramount. Understanding these consumption patterns could guide future
energy policies aimed at managing non-renewable resources more effectively.

KEYWORDS

fossil fuel, complex network, fractal time series, hurst index, legal protection,
visibility graph

1 Introduction

Fossil fuel is a type of hydrocarbon or its derivatives, and it is a critical energy resource
supporting the development of the global economy [1]. Especially, in modern society, fossil
energy is still the most important part of energy consumption, which accounts for more than
80% of global disposable energy consumption. Many studies have focused on fossil fuels in
recent decades. In the past half-century, the consumption of fossil fuels has increased
substantially, about eight times since 1950. However, the type of fuel we rely on has also
changed over time, from simple coal to a combination of oil and natural gas. Today, coal
consumption is declining over the world, but oil and gas are still multiplying. Friedemann a J [2].
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found that about 500 million tons of oil and its derivatives were used in
the past year, indicating that fossil fuels have already become
indispensable in human life.

A plethora of studies have been conducted on fossil fuels in
recent decades. For example, the relationship between fossil fuel
consumption and economic development has attracted much
attention. Especially, COVID-19 has a significant impact on
energy transportation [3], i.e., there is a strong relationship
between freight and shipping routes and coronavirus cases, which
affects the cost of oil transportation. By exploiting the data of fossil
fuel consumption, equity price output, and exchange rates, S. L
Vanessa [4] revealed the spatial relationship between COVID-19
and the national economy through the global vector autoregressive
(GVAR) model. Some other studies [5–8] have also found that fossil
fuel consumption directly affects economic development.

Fossil fuel consumption affects not only economic development but
also environmental changes. For instance, FMartins [9] found that there
is high dependence on fossil fuels in 29 European countries. SA Asongu
[10] investigated fossil fuel energy consumption and other indicators of
emissions from natural resources in Africa from 1980 to 2014. By
applying LMDI and MRCI decomposition methods, it was found that
global population growth is the most critical factor driving increased
consumption of fossil products, and this varies from country to country
[11]. Based on econometric models, Li [12] analyzed the relationship
between carbon dioxide and China’s emissions, real GDP, clean energy,
fossil fuel consumption, and trade opening from 1992 to 2020.

Given that fossil fuels have a significant impact on economic
development and environmental protection, it is of great significance
to regulate and protect the rational extraction and utilization of fossil
fuels from a legal perspective. C. Judith [13] believe that the natural gas
power generation industry urgently needs legislation to promote and
protect it. G. Fang [14] discussed the legal regulations on the safety of
offshore oil and gas exploration and development operations in the
EuropeanUnion, and based on this, proposed legislative implications of
the relevant legal regulation of the EU for the safety rules of offshore oil
and gas operations in China. PA Valeryevna [15] advocated that in
order to promote the construction of ecological civilization, it is
necessary to provide legal guarantees for the rational use of
resources. In addition, in combating fossil fuel crimes, practice has

proven that the role of relevant special actions is phased. It is important
to establish the legal relationship of fossil fuel mining rights and the
mining order through law, and establish a sound long-termmechanism
for security prevention.

Fractal time series is a type of time series of Brownian motion.
Fractal Brownian motion is statistically self-similar and has long-
term memory, i.e., a memory effect makes the changing trend in the
future the same as that at present. The Hurst index can characterize
this long-term correlation. N. Dimitrios [16] analyzed the time series
of PM10 in Athens, and it was found that PM10 in Athens had
chaotic and long-term memory. C. Oscar [17] introduced a hybrid
intelligent method that combines fractal theory and fuzzy logic to
predict the COVID-19 time series.

As the field of network science develops, its areas of application
are becoming increasingly broad [18–23]. The visibility graph model
has been used in many fields, including economy, finance,
environment, climate, medicine, psychology, etc. Thomas [24]
applied the visibility graph to analyze the time series of PM10.
Based on the deep learning and the visibility graph, X. Zhang [25]
analyzed the time series of sleep and obtained different classes of
sleep states. Additionally, many studies exploited visibility models to
analyze brain wave data [26–29]. Other studies also applied the
visibility graph to the environment and economic field [30–33].
J. Hu [34] and X. fan [35] employed this model to analyze the U.S.
electricity market and China’s carbon trading market, respectively.

By leveraging the visibility graph, we provide a novel analytical
framework that enhances the ability to detect, interpret, and predict
complex dynamics in fossil fuel consumption. This has significant
implications for network analysis, ultimately contributing to the
advancement of knowledge and technology in this area. This paper
mainly analyzes the internal characteristics of fossil fuel consumption,
excavates much information on fossil fuel consumption, and provides a
research basis for investigating the relationship between fossil fuel
consumption and the economic environment in the future. Compared
with previous research on fossil fuel consumption, this study has three
obvious advantages: 1) Mapping time series to the complex network to
find more hidden information of the series data, which helps to better
understand the characteristics of this sequence; 2) the characteristics of
the time series is represented by the fractal characteristics.However, when

FIGURE 1
The visibility graph and its associated graph.
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the time series are positively correlated, by mapping the time series data
into a network and analyzing it through the Hurst index of the degree
distribution of the network, it can be determined whether the impact of
the time nodes on the future is random; 3) Complex network theory has
high calculation efficiency and is suitable for big data applications. When
applied to time series, complex networks can provide direct results
compared with multi-fractal formalism.

The rest of this paper is organized as follows: Section 2
introduces the model that maps time series to a complex
network, the complex network theory, and the data description
of fossil fuel consumption based on the fractal time series theory.
Then, in Section 3, the topography measles and the Hurst index of
fossil fuel consumption are analyzed. Finally, the results and
conclusion are presented in Section 4.

2 Model and data

2.1 Visibility graph

In this paper, the visibility graph method of time series proposed
by Lacasa et al. [36] was utilized to construct the complex network
for characterization. First, the discrete time series data x(t) was
mapped into one node in the network, and then the link between the
nodes was built according to the visibility rule: any two points
(ta, xa) and (tc, xc) within the series data will have the visibility if
any other data (tb, xb) interpolating between them satisfies the
following condition (Equation 1):

xb <xa + xc − xa( ) tb − ta
tc − ta

(1)

That is, these two points (ta, xa) and (tc, xc) can be connected
by a link in the resulting network. In Figure 1, the height of each

vertical bar in the histogram of panel (a) denotes the data for each
time series, and each bar represents one node in the corresponding
graph in panel (b). Thus, two nodes in panel (b) will be connected,
and a link should be added between them if the top indicated by the
2 bars can be seen in panel (a).

Figure 1 shows how to link the data. If one data bar (e.g., the fifth
bar) is the highest, there are 3 bars between the fifth and the first bar,
and these 2 bars are sheltering from the third bar. In this case, there
is no edge linking nodes 1 and 5; Meanwhile, there are 4 bars
between the fifth and 10th bars, but there is no bar to occlusion these
2 bars, so there is an edge to link them.

FIGURE 2
The flow chart of fossil fuel computation.

FIGURE 3
The line chart of global fossil fuel consumption.
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2.2 The topological characteristics of
visbility graph

2.2.1 Degree
In a graph structure, the number of edges connected to a node is

the degree of the node, and the degree distribution of each node in
the graph is the degree distribution [37].

2.2.2 Average path length
The average path length [38] of a visibility graph is to form

one time node to time node will take an average of L time nodes.
The definition of average short path length is given in
Equation 2.

L � 1
N N − 1( ) ∑i∈V ∑

i≠j∈V
dij, (2)

where N is the total number of nodes for this visibility graph, dij is
the shortest path between the time nodes i and j.

2.2.3 Cluster coefficient
The cluster coefficient is given by Newman [39]. Intuitively, if we

have two friends, they may be friends with each other. Similarly, for
the visibility graph, if time nodes i and j have edges with time node
k, time node i establishes a connection with j, thus the definition of
cluster coefficient (Equation 3) is given below:

Ci � Ei

C2
ki

(3)

if Ei denotes the edges between the neighbors of time node i, and all
the neighbors of time node i have edges, then the total number of
edges is C2

ki
.

For a visibility graph, the average cluster coefficient is the average of
all time-node cluster coefficients. As shown in the Equation 4

C � 1
N

∑N
i�1

Ci, (4)

where N is the number of time nodes in this visibility graph.

FIGURE 4
The map of global fossil fuel consumption in 1965 and 2020.
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2.3 Fractal time series

For a time series T � {t1, t2, . . . , tn}, if T has fractal
characteristics, then T has fractal characteristics of long
correlation and self-similarity. The Hurst index can determine
whether T is fractal time series.

The Hurst index can reflect the auto-correlation of time series,
especially the hidden long-term trend, which is called the long-term
memory in statistics. Many computational approaches can be
adopted for the Hurst index, and this paper used R/S for
calculation. For a time-node degree series x � {x1, . . . , xi}:

(1) Let en(m) be the average error of n time-node degrees. As
shown in the Equation 5

en m( ) � ∑n
i

xi − �x( ); (5)

where, �x is the average degree, 1≤m≤M, and M is the length of
this series.

(2) R(n) as shown in the Equation 6 can be obtained according to
the difference between the maximum and minimum error of
the time-node degree,

Rn m( ) � max1≤n≤men m( ) −min1≤n≤men m( ); (6)

(3) Based on the standard deviation S(m), the ange analysis can
be realized

R m( )
S n( ) � max1≤n≤men m( ) −min1≤n≤men m( )�������������

1
m∑m

n�1 xn − �x( )2
√ ; (7)

(4) Through the exponential relationship between Equation 7
and the first m data nodes,

R m( )
S n( ) � a × mH; (8)

the following results can be obtained. As shown in the
Equation 9:

FIGURE 5
The coal, oil, gas, and fossil fuel consumption from 1965 to 2020 in some countries.
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H m( ) � logm
R m( )
aS n( ), m � 1, 2, . . . ,M. (9)

where,H is the Hurst index, a is the coefficient, and the value ofH is
between 0 − 1.

When H � 0.5, the time nodes have random degree series,
which indicates that the current trends will not affect future
trends; when 0.5<H≤ 1, the time nodes have positively
correlated degree series, which indicates that the current trends
will affect future trends; when 0≤H< 0.5, the time nodes have
negatively correlated degree series, which indicates that the current
trends will affect future trends;

As illustrated in Figure 2, the time series data is mapped to an
adjacencymatrix by the visibility graph,with the calculated degree, cluster
coefficients, diameter, and average path length of the complex network.

2.3.1 Data
Since energy consumption keeps changes, it needs to be

quantified. The quotient between the use of fossil fuels (oil, coal,
and gas) and the inland energy consumption is referred to as fossil
energy consumption [9] (FFC), as shown in Equation 10

FFC � Ecoal+Eoil+Egas

inlandenergyconsumption
. (10)

where Ecoal, Eoil, and EGas are the energy consumption from solid
fuels, oil, and gas, respectively.

The coal, oil, and gas consumption were obtained from the Our
World in Data [40]. Due to the insufficient data in some countries,
this study did not involve the countries with missing data and
obtained the fossil fuel consumption data of 38 countries finally.
From Figure 3, it can be seen that fossil fuel (coal, oil, and gas)
consumption in the world has increased gradually in the given
period. However, in 2020, all fossil fuel consumption decreased
significantly. Meanwhile, as global awareness of environmental
protection increases, more and more countries have begun using
clean energy and replacing oil with natural gases. Besides, coal
consumption is always between oil consumption and natural gas
consumption.

3 Analysis

3.1 Fossil fuel consumption in
different countries

By comparing the total fuel consumption of various countries in
1968 and 2020 in Figure 4, it can be found that Venezuela’s total fuel
consumption decreased from the first in the world to almost no fossil
fuel consumption, while China’s total fossil fuel consumption
ranked from the last in 1968 to the top in 2020. These two maps
show that the consumption of fossil fuels is closely related to
economic development.

FIGURE 6
The characteristic of the visibility graph of coal consumption.
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Figure 5 presents the time series of coal, oil, and gas
consumption from 1986 to 2020 of 13 countries. The coal, oil,
and gas consumption has increased in these 13 countries. Due to the
differences in economy, policies, and resource reserves among these
countries, there are significant variations in fuel consumption.
Specifically, the growth of coal consumption in China is the most
in the world. Since 2000, China’s oil and coal consumption has
increased substantially, becoming our country a major coal
consumer. Meanwhile, the United States is the largest consumer
of oil and gas. However, Figure 5D indicates that China has a high
growth rate in energy consumption, and in 2004, China’s total
energy consumption exceeded the total energy consumption of the
United States, which is highly related to the rapid development of
China’s economy.

3.2 Visibility graph of fossil fuel consumption

Network science provides a new tool for analyzing fossil fuel
consumption data. The visibility network structure can be
exploited to reveal the practical significance of fossil fuel
consumption, and more hidden information about fossil fuel
consumption can be obtained from the degree, degree
distribution, cluster coefficient, average short length, and
diameter of the network structure.

Through the definition of the visibility graph, it can be known
that the degree is the number of other time nodes connected to one
time node, and the average degree is the degree of all nodes on
average. The more significant the average degree, the stronger the
correlation between these data.

The average path length is the number of time nodes to pass
between two time nodes to establish a connection. The average path
length is the average number of time nodes to pass between two
nodes to establish a connection. The diameter is the longest path
among all the shortest paths, indicating the number of time nodes to
pass to establish an edge connection with the weakest correlation
between these two time nodes. A large average path length indicates
a strong correlation between these data.

The clustering coefficient describes the relationship between two
nodes with familiar neighbors, which reflects the relationship
between two time nodes connected to the same time node. A
larger clustering coefficient indicates a stronger attraction of one
node to other nodes.

Figure 6 shows the visibility graph of coal consumption. These
four maps present the average degree, average cluster coefficient,
diameter, and average path length of coal consumption in the
38 countries, respectively. It can be found that India, Indonesia,
Malaysia, and Pakistan are the top four countries in terms of average
degree (all exceed 20). Meanwhile, the average path length in these
four countries is less than 2, indicating that the correlation between

FIGURE 7
The characteristic of the visibility graph of oil consumption.
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the coal consumption data of these four countries is the strongest.
Besides, these five countries, including Algeria, Venezuela, France,
Pakistan, and Australia, are the top five countries in terms of cluster
coefficient, which indicates that these five countries are closely
related to their neighboring nodes in coal consumption.

Figure 7 presents the visibility graph of oil consumption. Similar
to Figure 6, this figure depicts the average degree, average cluster
coefficient, diameter, and average path length of oil consumption in
the 38 countries, respectively. It can be seen from these maps that the
average degree of China and India is over 20. Italy, Czechia, Slovakia,
and Mexico are the top four countries in terms of diameter (all
exceed 10). Besides, Iran, Taiwan (China), Argentina, Romania, and
Pakistan are the top four countries in terms of average cluster
coefficient (all exceeds 0.75), and the average cluster coefficient of
Iran is over 0.8, indicating that Iran is more strongly correlated with
its neighbors in oil consumption. Moreover, Italy, Mexico, Spain,
and Czechia are the top four countries in terms of the average path
length of oil consumption (all exceed 3.5).

Figure 8 depicts the visibility graph of natural gas consumption
in terms of average degree, average cluster coefficients, diameter, and
average path length. It can be seen that China, Iran, Egypt, and Brazil
are the top four countries in terms of average degree (all exceed 20).
Meanwhile, these four countries have the smallest average path
length, indicating that the correlation between the coal consumption
data of these four countries is the strongest. Besides, the diameter of
Austria, Hungary, Bulgaria, Netherlands, and Switzerland is over 9.

Moreover, the average cluster coefficient of Slovakia, Germany,
Hungary, Japan, Czechia, Romania, and Belgium is over 0.75.

3.3 Fractal analyze

Fractal is an essential feature of time series. In this section, the
fractal characteristics of three fossil fuels are analyzed. Through
Table 1, it can be found that the Hurst indices of coal, oil, and natural
gas consumption data are all greater than 0.5. Meanwhile, the Hurst
indices of most fossil fuel consumption exceed 0.9, indicating that
the consumption of these three types of fossil fuels has long-term
memory. When the Hurst index equals to 0.5, the sequence is the
randomized time series. The closer the Hurst index is to 0.5, the
stronger the stochasticity of the effect of the series on the future. In
this paper, when the Hurst index is between 0.4 and 0.6, the series
can be considered stochastic.

In Table 1, the Hurst index is marked in bold when it is between
0.4 and 0.5. The Hurst index of degree (HID) of 10 countries
including Austria, Egypt, India, Indonesia, Iran, Mexico,
Morocco, Poland, Switzerland, and the United States in coal
consumption is in bold, indicating that in coal consumption, the
current time nodes have a stochastic impact on future time nodes.
The HID of the oil consumption of Argentina, Belgium, Egypt,
Germany, Peru, Romania, Switzerland, and the United Kingdom are
the same as that of the 10 countries in coal consumption; the same as

FIGURE 8
The characteristic of the visibility graph of gas consumption.
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TABLE 1 The Hurst of fossil fuel consumption.

Country Coal Oil Gas

Hurst Degree
Hurst

Hurst Degree
Hurst

Hurst Degree
Hurst

Algeria 0.975 0.110 0.981 0.753 0.940 0.461

Argentina 0.845 0.699 0.952 0.550 1.000 0.476

Australia 1.000 0.773 0.976 0.705 0.982 0.622

Austria 0.866 0.513 0.959 0.658 1.000 0.650

Belgium 0.975 0.379 0.962 0.582 0.999 0.661

Brazil 1.000 0.367 1.000 0.701 0.980 0.494

Bulgaria 0.867 0.047 1.000 0.681 1.000 0.627

Canada 0.972 0.239 0.976 0.744 0.987 0.613

Chile 0.942 0.170 1.000 0.731 0.985 0.739

China 0.989 0.657 0.945 0.804 0.826 0.896

Colombia 0.909 0.333 0.978 0.771 0.931 0.387

Czechia 1.000 0.737 0.897 0.730 1.000 0.774

Egypt 0.674 0.508 1.000 0.560 0.969 0.706

France 1.000 0.323 0.886 0.744 1.000 0.422

Germany 0.986 0.677 0.919 0.577 1.000 0.515

Hungary 1.000 0.687 0.978 0.609 1.000 0.469

India 0.948 0.588 0.955 0.653 0.987 0.664

Indonesia 0.911 0.420 1.000 0.656 1.000 0.625

Iran 0.897 0.435 1.000 0.281 0.940 0.555

Italy 0.890 0.621 0.917 0.761 1.000 0.689

Japan 1.000 0.712 0.845 0.692 1.000 0.180

Malaysia 0.903 0.699 1.000 0.796 1.000 0.692

Mexico 1.000 0.494 1.000 0.713 0.965 0.334

Morocco 0.922 0.474 0.995 0.386 0.966 0.552

Netherlands 0.995 0.732 0.969 0.624 0.902 0.574

New Zealand 0.963 0.619 0.985 0.630 1.000 0.506

Pakistan 0.698 0.825 1.000 0.938 0.980 0.745

Peru 1.006 0.657 0.912 0.551 0.940 0.685

Poland 0.988 0.523 0.942 0.632 0.937 0.683

Romania 0.940 0.660 0.995 0.538 1.000 0.546

Russia 1.000 0.702 1.000 0.717 0.987 0.599

Slovakia 0.990 0.614 1.000 0.719 1.000 0.488

Spain 0.917 0.650 1.000 0.720 1.000 0.843

Switzerland 0.927 0.582 0.736 0.423 1.000 0.591

Taiwan (China) 1.000 0.878 1.000 0.723 0.936 0.535

United Kingdom 0.946 0.347 0.944 0.480 1.000 0.772

(Continued on following page)
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the previously mentioned, the countries in natural gas consumption
are Algeria, Argentina, Brazil, France, Germany, Hungary, Iran,
Morocco, Netherlands, New Zealand, Romania, Russia, Slovakia,
Switzerland, Taiwan (China), and Venezuela, respectively.

Since the coal, oil, and gas consumption in these 38 countries are
long-termmemory time series, only analyzing the Hurst index of the
primary data cannot discover new features in the original data.
However, as shown in Figure 9, with the assistance of the Hurst of
degree, new characteristics of fossil fuel consumption can be
obtained. There are fuel consumption differences between
different countries and in the same country.

4 Conclusion

This paper utilizes the Hurst index to analyze fossil fuel
consumption time series data for 38 countries. The analysis reveals
that all fossil fuel consumption data in these countries exhibit long-term
memory characteristics, indicating a significant relationship between
fossil fuel consumption and economic development.

The visibility graph method is employed to uncover hidden
features (such as average degree, average clustering coefficient, and
diameter) of the fossil fuel consumption data. These features help
identify differences in fuel consumption between countries.
Furthermore, fractal and complex network theory are applied to

analyze fossil fuel consumption, revealing significant differences
among the 38 countries. By using the Hurst index of the degree
distribution, this study distinguishes global fossil fuel consumption
patterns and determines whether current fuel consumption affects
future consumption randomly. Additionally, the stable supply and
economic security of national fossil fuel resources depend on the
formulation and improvement of relevant resource protection laws.
Without legal protection, the security of energy resources cannot be
ensured, economic development needs cannot be met, and people’s
needs for survival and development cannot be satisfied.
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TABLE 1 (Continued) The Hurst of fossil fuel consumption.

Country Coal Oil Gas

Hurst Degree
Hurst

Hurst Degree
Hurst

Hurst Degree
Hurst

United States 0.981 0.546 0.935 0.725 0.882 0.318

Venezuela 0.745 0.662 1.000 0.341 1.000 0.524

Bold value means the Hurst index is between 0.4 and 0.6, the series can be considered stochastic.

FIGURE 9
The Hurst of degree.
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Traffic congestion is a serious problem faced by many cities worldwide today.
Congestion warning information is one of the important influencing factors of
urban road congestion; To this end, based on the dynamics of infectious diseases,
a congestion warning information dissemination model considering the attitudes
of travelers and the network structure was constructed. The existence and
stability of the equilibrium points of non congestion warning information and
congestion warning information in the model were analyzed, and the optimal
control strategy of the model was proposed. Numerical simulation was
conducted to verify the results of theoretical analysis, simulate and analyze
the impact of changes in various parameters in the model on the
dissemination of congestion warning information, and perform sensitivity
analysis on several parameters. The results indicate that travelers are more
inclined towards “fast” modes of transportation and have a stronger
willingness to share congestion warning information. The dissemination range
of warning information is wider, which can play a positive role in reducing traffic
congestion pressure.

KEYWORDS

congestion warning information, social networks, communication dynamics, traveler
attitude, optimum control

1 Introduction

With the rapid development of the urban economy, urban traffic congestion has
brought many inconveniences to people’s travel, and alleviating the pressure of urban traffic
congestion has become an important task that urgently needs to be solved in the
development of many cities around the world. The dissemination of road congestion
warning information is an important way to prevent and control urban congestion [1]. The
attitude of travelers toward congestion warning information can affect the dissemination
process of warning information to some extent, thereby affecting the degree of urban traffic
congestion. Therefore, It is necessary to explore the disseminationmechanism of congestion
warning information considering the attitude of travelers and propose corresponding
optimization strategies.

In recent years, urban road congestion warning information has been disseminated
among users through social networks and navigation apps, providing travel plans for
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travelers and alleviating the pressure of urban traffic congestion.
Scholars from different fields have conducted numerous studies on
congestion warning information. Ahmad et al. proposed a novel
detection scheme (IVCD) to support the propagation of congestion
information that is about to occur on all roads in its coverage area
[2]. Many scholars began discussing the application of space supply
chain in transportation many years ago [3–9]. Yilmaz et al. proposed
an urban traffic monitoring system that utilizes participatory sensing
and cloud messaging capabilities and can issue warnings or
suggestions to drivers near congested roads or on the route [10].
Online sharing of congestion warning information is an effective
way to quickly spread congestion information. Travelers can make
timely choices and change routes, which is beneficial for controlling
vehicle diversion. Yang et al. proposed the concept of an event
consistency proof suitable for vehicle networks and introduced two-
stage transactions on the blockchain to send warning messages in
appropriate regions and time periods [11]. Shi et al. proposed a
framework for a physically informed spatiotemporal graph
convolutional neural network (PSTGCN) based on the theory of
physically informed deep learning to estimate congestion warning
information [12]. Ning et al. proposed the traffic warning message
dissemination system (TWMDS) framework, which allows travelers
to quickly rebuild their travel paths to alleviate traffic congestion
[13]. Humayun et al. promotes dissemination by using roadside
message proxies to provide real-time traffic information about traffic
congestion and unexpected traffic events [14]. Jiang et al. proposed
an innovative early traffic congestion warning system to monitor
and plan traffic conditions [15]. The above discussion describes the
research conducted by scholars on how to develop and send a
complete set of congestion warning information, indicating the
importance of congestion warning information for urban traffic
management.

There are lots of studies in transportation areas to discuss the
value of information, Zhang et al. developed a day-to-day route-
choice learning model with friends’ travel information [16]. Chen
et al. presented a model of a social network-based attitude diffusion
system in the context of activity and travel choice behavior [17]. Yu
et al. investigated the welfare effects of inaccurate pre-trip
information on commuters’ departure time choice under
stochastic bottleneck capacity in the morning commute [18]. Han
et al. experimentally investigated how routing advice influenced
strategic uncertainty and analyzed compliance behavior and
decision time that might affect strategic uncertainty [19].

The dissemination of congestion warning information is
strongly influenced by travelers’ psychological perceptions of
congestion status. Many scholars have studied the attitudes of
travelers toward road congestion. Khoo et al. believes that the
choice of travel route is directly related to drivers’ sensitivity to
congestion and that changing the travel route is positively correlated
with the degree of road congestion [20]. Huang et al. quantified
drivers’ response to congestion warning information and the traffic
congestion mitigation effect based on congestion warning
information [21]. Zhou et al. proposed that traffic congestion can
be spread among people or through public media, leading to the
interactive dissemination of warning information in the network
[22]. Huang et al. considered two states in the warning information
network, travelers receiving warning information and travelers not
receiving warning information, and studied the impact of travelers’

behavioral characteristics when facing warning information on the
spread of congestion risk [23]. The warning information is divided
into two types: “fast speed” and “short distance”. These two types of
warning information can lead travelers to make different travel
decisions. The impact of various warning information, such as “fast
speed” and “short distance”, on traffic congestion pressure should be
analyzed [24].

From the perspective of research methods, because the
dissemination process of urban congestion warning information
is similar to that of infectious diseases, infectious disease models can
be widely applied to analyze various transmission mechanism
problems. Saberi et al. (2020) described the dynamic process of
urban traffic congestion transmission and dissipation based on the
susceptibility infection recovery (SIR) model and monitored,
predicted, and controlled the status of urban traffic congestion
[25]. Jia et al. proposed an improved susceptible infected
susceptible (SIS) congestion propagation model to estimate the
probability of congestion risk (RPC) in subway networks [26].
Chen et al. established an urban traffic congestion propagation
model based on the SIS propagation theory to study the
mechanism and characteristics of urban traffic congestion
propagation [27]. For example, Ma et al. established a new UAU-
SEIR (Unaware Aware Unaware Susceptible Exposed Infected
Recovered) model to study the impact of individual and mass
media information dissemination on epidemic transmission [28].
She et al. constructed an SIS model to study the mutual influence
between the spread of epidemics and the spread of opinions on the
network [29]. Nian et al. explored the propagation patterns of public
opinion in social networks based on the susceptible exposed infected
recovered (SEIR) model and conducted empirical research on the
relationships among rumor propagation, user characteristics, and
differences in subject interests. The authors also analyzed the
common effects of individual factors and the social environment
[30]. Ojha et al. developed a model based on epidemiological
methods for detecting and controlling false information
propagation in OSNs [31].

In summary, most of the current research has focused on
developing congestion warning information and controlling the
spread of urban traffic congestion, with little research on the
dissemination patterns of congestion warning information. Some
studies have also considered the impact of congestion warning
information on urban traffic congestion but have considered only
two states: each traveler received or did not receive warning
information. In addition, when network platforms push warning
information, they directly push “fast” and “short distance”messages
without considering that travelers’ attitudes toward congestion
directly affect the dissemination of congestion warning
information. Therefore, to better predict and control the
dissemination process of congestion warning information, it is
necessary to consider the impact of network topology
characteristics and complex user behavior characteristics on the
dissemination process of congestion warning information in the
social network. In view of this, this article divides travelers into
ignorant, negative, positive, disseminator, and immune individuals
based on the classic infectious disease SIR model and considers the
structural characteristics of the congestion warning information
dissemination network to construct a congestion warning
information dissemination model to more accurately and
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reasonably describe the dynamic laws of congestion warning
information dissemination in social networks.

The remainder of this article is organized as follows: In the
section on model construction, a congestion warning information
dissemination model (SPEIR model) is constructed by considering
the attitudes of travelers toward road congestion. In the section on
model analysis, the basic regeneration number of the model is
calculated, and the stability of no congestion warning
information and the presence of congestion warning information
are analyzed. In the section on the optimal control model, the
optimal control model is constructed, and the optimal control
strategy is proposed. In the numerical simulation section, the
stability analysis in the previous section is simulated and verified,
and the impact of parameter changes on the propagation process of
congestion warning information is simulated. A sensitivity analysis
of the parameters is conducted, and numerical simulations are
conducted on the optimal control strategy. The conclusion
section provides a summary of the entire article and highlights
its limitations.

2 Materials and methods

The model constructed in this article is based on the classic SIR
model, assuming that congestion warning information propagates in
a mixed uniform network with nodes, each node represents a user in
the social network, and the total number of nodes is variable. The
information can be divided into 5 categories: (1) Ignorant, which
refers to the group of people who have not been exposed to
congestion warning information but are easily receptive to it,
denoted as S(t); (2) Negative individuals, who receive congestion
warning messages but are not sensitive to congestion and hold a
negative attitude, tend to choose the group with a “short distance”,
remember P(t); (3) Positive individuals, who receive congestion
warning information and are highly sensitive to road congestion,
hold a positive attitude and are more inclined to choose the group
with “fast speed”, denoted as E(t); (4) The disseminator, who
receives congestion warning information and chooses to share it
with other users, denoted as I(t). (5) Immune individuals who are
not interested in congestion warning information are referred to
as R(t).

In a social system, the number of users on social networks
dynamically changes over time. Therefore, this article assumes that
the number of people joining social networks per unit of time is B.
Moreover, considering that ignorant, negative, positive, spreaders,
and immune individuals may all exit social networks for certain
reasons, this article assumes that each type of user has the same
population migration rate μ.

When the ignorant individuals receive the congestion warning
information, if they are willing to share congestion warning
information with other users, they will transform into
distributors with probability λ; if the ignorant person is not
interested in congestion warning information, they will transition
to an immune person based on probability η ; if the ignorant tends to
have a shorter distance due to their sensitivity to traffic congestion,
preference for congestion risk, or other reasons, then probability θ1
becomes a negative factor; if there is a tendency toward “fast speed”,
then the probability θ2 changes to a positive one.

Although passive individuals are not sensitive to traffic
congestion, if they are willing to share congestion warning
information with others, they will transform into distributors
based on probability α; if a negative person gradually becomes
uninterested in congestion warning information, they will
transition to an immune person based on probability γ1. If the
active participants are willing to share congestion warning
information, they will transform into disseminators based on
probability γ2 ; the disseminator will eventually transform into
an immune recipient with a probability of ε. This article assumes
that the immune state is the final absorption state in the network;
that is, the immune recipient will not undergo a state change
at any time.

In addition, the impact of network structure on the
dissemination process of congestion warning information should
be considered. If each social network user is viewed as a node in the
network and the connections between users are viewed as edges
between nodes, then the social network can be represented as a
directed graph � 〈V, E〉. Among them, V represents the set of
nodes, E represents the set of edges, and (u, v) ∈ E represents the
relationship edge to which node u points; that is, node u connects to
node v. Obviously, the more edges a node has in a network, the
closer the connections between nodes are. The more paths
congestion warning information can propagate, the more
conducive it is to the dissemination of congestion warning
information. In graph theory, the degree ki of node vi is defined
as the number of edges connected to that node. The average degree
ki of all nodes vi in a network is called the average degree of the
network, �k � 1

N∑N
i�1ki, where N represents the total number of

nodes in the network. This article uses the average degree to
describe the degree of closeness of the social network structure.

Based on the above assumptions, the state transition process of
social network users during the dissemination of congestion
warning information is obtained, as shown in Figure 1. Table 1
provides the meaning of each parameter in Figure 1, where all
probabilities are positive constants.

(1) As shown in Figure 1, The changes in the states of the
ignorant, negative, positive, spreader, and immune
individuals per unit time are as follows: Within a unit of
time, there are B users who have joined social networks and
are all in an ignorant state; that is, they have not yet received
congestion warning information. The population density of
ignorant individuals who come into contact with distributors
and receive congestion warning information is
�k(θ1 + λ + θ2 + η)S(t)I(t). Similarly, the density of people
who quit social networks for some reason is μS(t). Therefore,
the density of the ignorant population changes by B − �k(θ1 +
λ + θ2 + η)S(t)I(t) − μS(t) per unit time.

(2) The density of people who transform from ignorant to
negative within a unit of time is θ1S(t)I(t)�k. The density
of people who are willing to share congestion warning
information with others and become spreaders is αP(t).
The population density of passive individuals who forget
or are not interested in congestion warning information,
thus transforming into immune individuals. The density of
negative individuals who withdraw from social networks for
some reason is μP(t). Therefore, the change in the density of
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negative individuals per unit of time is θ1S(t)I(t)�k − αP(t) −
γ1P(t) − μP(t).

(3) The density of people who transform from ignorant to
active within a unit of time is θ2S(t)I(t)�k. Similarly, the
density of people who are willing to share congestion
warning information with others and become

distributors is βE(t). Similarly, the population density of
active participants who forget or are not interested in
congestion warning information, thus transforming into
immune recipients, is γ2E(t). Similarly, the density of
active users who withdraw from social networks for
some reason is μE(t). Therefore, the population density

FIGURE 1
The flow diagram of the model.

TABLE 1 The parameters description of SPEIR model.

Parameter Description

S(t) The population density of ignorant individuals at time t

P(t) The population density of negative individuals at time t

E(t) The population density of positive individuals at time t

I(t) The population density of disseminators at time t

R(t) The population density of immunized individuals at time t

B The number of immigrants in the social system per unit time

μ Removal rate per unit time

λ The probability of the ignorant transforming into the disseminator

θ1 The probability of the ignorant transforming into the negative

θ2 The probability of the ignorant transforming into positive

α The probability of the negative transforming into the disseminator

β The probability of the positive transforming into the disseminator

γ1 The probability of the negative transforming into the immune

γ2 The probability of the positive transforming into the immune

ε The probability of the disseminator transforming into the immune

�k Network average
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FIGURE 2
Stability of the equilibrium point of (A) R0 < 1 and (B) R0 > 1

FIGURE 3
Trend of the density of disseminators over time under (A) different λ values, (B) different �k values, (C) different α values and (D) different β values.
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of positive individuals varies by θ2S(t)I(t)�k − βE(t) −
γ2E(t) − μE(t) per unit time.

(4) The population density of ignorant individuals transforming
into disseminators within a unit of time is λS(t)I(t)�k; the
density of the population where negatives transform into
disseminators is αP(t); the population density of positive
individuals transforming into disseminators is βE(t); the
population density of spreaders who forget or are not
interested in congestion warning information and thus
become immune recipients is εI(t); and the population
density of disseminators who withdraw from social
networks for some reason is μI(t). Therefore, the
population density of the spreader varies by λS(t)I(t)�k +
αP(t) + βE(t) − εI(t) − μI(t) per unit time.

(5) The population density of uninformed, passive, active, and
disseminators who become immune due to their neutrality or
lack of interest in congestion warning information per unit of
time is ηS(t)I(t)�k + γ1P(t) + γ2E(t) + εI(t); the population
density of immune individuals who withdraw from social
networks for some reason is μR(t). Therefore, the population
density of immunized individuals varies by ηS(t)I(t)�k +
γ1P(t) + γ2E(t) + εI(t) − μR(t).

Based on the above analysis, this article considers the congestion
warning information dissemination model for the sensitivity of
travelers to traffic congestion as follows:

dS t( )
dt

� B − θ1S t( )I t( )�k − λS t( )I t( )�k − θ2S t( )I t( )�k − ηS t( )I t( )�k − μS t( ),
dP t( )
dt

� θ1S t( )I t( )�k − αP t( ) − γ1P t( ) − μP t( ),
dE t( )
dt

� θ2S t( )I t( )�k − βE t( ) − γ2E t( ) − μE t( ),
dI t( )
dt

� λS t( )I t( )�k + αP t( ) + βE t( ) − εI t( ) − μI t( ),
dR t( )
dt

� ηS t( )I t( )�k + γ1P t( ) + γ2E t( ) + εI t( ) − μR t( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

Satisfy S(t) + P(t) + E(t) + I(t) + R(t) � 1

3 Stability analysis of the model

It is not difficult to determine that the model has a balance point
E0 � (Bμ, 0, 0, 0, 0) without congestion warning information. The
existence of this equilibrium point means that when the
evolution of the congestion warning information dissemination
system reaches a steady state, there will be no individual users
infected by the congestion warning information, that is, the
congestion warning information will no longer spread in the
network. This article uses the next-generation matrix method to
calculate the basic regeneration number R0 [32] of Equation 1. The
specific calculation process is shown in Equations 2–5.

Let X � (I, R, P, E, S)T, then Equation 1 can be written
as dX

dt � F(X) − V(X)

F X( ) �

λSI�k
0
0
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V X( )

�

εI + μI − αP − βE
μR − ηSI�k − γ1P − γ2E − εI
αP + γ1P + μP − θ1SI�k
βE + γ2E + μE − θ2SI�k

θ1SI�k + λSI�k + θ2SI�k + ηSI�k + μS − B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (2)

We can get:

F � λS�k 0
0 0

( ), V � ε + μ 0
−ε μ

( ). (3)

Through calculation, it can be concluded that

FV−1 �
�kSλ

μ + ε
0

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠. (4)

Therefore, the basic regeneration number of system Equation 1
is the spectral radius FV−1, represented by R0, and the calculated
basic regeneration number of the system is:

R0 �
�kBλ

μ μ + ε( ). (5)

Theorem 1. When R0 > 1, there exists an equilibrium point
E*(S*, P*, E*, I*, R*) (Equation 6) for the propagation of
congestion warning information in Equation 1, where (The proof
process can be found in Supplementary Appendix A)

S* � μ + ε( ) μ + α + γ1( ) μ + β + γ2( )
�k θ1α μ + β + γ2( ) + θ2β μ + α + γ1( ) + λ μ + α + γ1( ) μ + β + γ2( )[ ],

P* � I*�kS*θ1
μ + α + γ1

, E* � I*�kS*θ2
μ + β + γ2

,

I* � R0μ θ1α μ + β + γ2( ) + θ2β μ + α + γ1( )[ ]
λ θ1 + θ2 + λ + η( )�k μ + α + γ1( ) μ + β + γ2( ) + μλ R0 − 1( )

λ θ1 + θ2 + λ + η( )�k,
R* � S*η + P*γ1 + E*γ2 + εI*

μ
.

(6)

FIGURE 4
Trend of negative population density over time under different
θ1 values.
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Theorem 2. When R0 < 1, the equilibrium point E0 of the
congestion free warning information is locally asymptotically
stable in the feasible domain. (The proof process can be found in
Supplementary Appendix B)

Theorem 3. When R0 < 1, the equilibrium point E0 of the
congestion-free warning information is globally asymptotically
stable. (The proof process can be found in
Supplementary Appendix C)

Theorem 4. When R0 > 1 occurs, the congestion warning
information at equilibrium point E* is locally asymptotically
stable. (The proof process can be found in
Supplementary Appendix D)

Theorem 5. The congestion warning information has an
equilibrium point E*(S*, P*, E*, I*, R*) that is globally
asymptotically stable. (The proof process can be found in
Supplementary Appendix E)

4 Optimal control model

Convert the four proportional constants λ, θ2, α, β in the model
into control variables λ(t), θ2(t), α(t), β(t)

Therefore, it can be proposed that the objective function is
Equation 7:

J λ, θ2, α, β( ) � ∫T

0
I t( ) + E t( ) − C1

2
λ2 t( ) − C2

2
θ22 t( ) − C3

2
α2 t( ) − C4

2
β2 t( )[ ]dt.

(7)
Satisfy the following state system:

dS

dt
� B − θ1SI�k − λ t( )SI�k − θ2 t( )SI�k − ηSI�k − μS,

dP

dt
� θ1SI�k − α t( )P − γ1P − μP,

dE

dt
� θ2 t( )SI�k − β t( )E − γ2E − μE,

dI

dt
� λ t( )SI�k + α t( )P + β t( )E − εI − μI,

dR

dt
� ηSI�k + γ1P + γ2E + εI − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

The initial conditions of system Equation 8 meet (Equation 9):

S 0( ) � S0, P 0( ) � P0, E 0( ) � E0, I 0( ) � I0, R 0( ) � R0 (9)

Where:

λ t( ), θ2 t( ), α t( ), β t( ) ∈ U

≜ λ, θ2, α, β( ) λ t( ), θ2 t( ), α t( ), β t( )( )
measurable, 0≤ λ t( ), θ2 t( ), α t( ), β t( )≤ 1,∀t ∈ 0, T[ ]

∣∣∣∣∣∣∣∣{ }.
(10)

while U is the admissible control set (Equation 10). The time interval of
control is between 0 andT,C1, C2, C3, C4 are positiveweight coefficients
shown the control strength and importance of four control measures.

Theorem 6. An optimal control pair (λ*, θ2*, α*, β*) ∈ U exists so
that the function is established below (Equation 11) (The proof
process can be found in Supplementary Appendix F):

J λ*, θ2*, α*, β*( ) � max J λ, θ2, α, β( ): λ, θ2, α, β( ) ∈ U{ }. (11)

Theorem 7. For the optimal control pair (λ*, θ2*, α*, β*) of state
System Equation 8, there exist adjoint variables ξ1, ξ2, ξ3, ξ4, ξ5 that
satisfy (Equation 12) (The proof process can be found in
Supplementary Appendix G):

dξ1
dt

� θ1I�k ξ1 − ξ2( ) + λ t( )I�k ξ1 − ξ4( ) + θ2 t( )I�k ξ1 − ξ3( )
+ηI�k ξ1 − ξ5( ) + ξ1μ,

dξ2
dt

� α t( ) ξ2 − ξ4( ) + γ1 ξ2 − ξ5( ) + ξ2μ,

dξ3
dt

� 1 + β t( ) ξ3 − ξ4( ) + γ2 ξ3 − ξ5( ) + ξ3μ,

dξ4
dt

� 1 + θ1S�k ξ1 − ξ2( ) + λ t( )S�k ξ1 − ξ4( ) + θ2 t( )S�k ξ1 − ξ3( )
+ηS�k ξ1 − ξ5( ) + ε ξ4 − ξ5( ) + ξ4μ.

dξ5
dt

� ξ5μ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

With boundary conditions (Equation 13):

ξ1 T( ) � ξ2 T( ) � ξ3 T( ) � ξ4 T( ) � ξ5 T( ) � 0. (13)
In addition, the optimal control pair (λ*, θ2*, α*, β*) of state

System Equation 8 can be given by (Equation 14):

FIGURE 5
Trend of population density of active participants over time
under different θ2 values.
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λ* t( ) � min max
SI�k ξ1 − ξ4( )

C1
, 0{ }, 1{ },

θ2* t( ) � min max
SI�k ξ1 − ξ3( )

C2
, 0{ }, 1{ },

α* t( ) � min max
P ξ2 − ξ4( )

C3
, 0{ }, 1{ },

β* t( ) � min max
E ξ3 − ξ4( )

C4
, 0{ }, 1{ }.

(14)

5 Numerical simulations

In this section, MATLAB R2021a simulation software is used,
and the Runge − Kuttamethod is used to numerically simulate the
differential equation system given in Equation 1. To verify the
theoretical analysis results, the impacts of different λ, θ1, θ2, α, β, �k
parameters in the model on the propagation process of congestion
warning information are analyzed, a sensitivity analysis is
conducted on R0, and the optimal control problem is
numerically simulated. Assuming that congestion warning
information is initially propagated in a mixed uniform network
with N nodes, each node represents the users who can receive
congestion warning information,N(0) � 10000. In the initial state,
there are only 100 propagators, 100 positives, and 100 negatives,
namely, I(0) �P(0) �E(0) � 100

N � 0.01,R(0) � 0, S(0) � 1− I(0)−
P(0)−E(0)−R(0) � 0.97 .

In B � 0.01, �k � 7, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α
� 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, the population density
changes of the uninformed, active, passive, spreading, and
immune users who can receive congestion warning information
in R0 � 0.3< 1 are shown in Figure 2A. In the process of
disseminating congestion warning information, the population
density values of positive, negative, disseminators, and immune
individuals increase first, reaches their peak values, then begin to
decrease, and finally become 0; the density of the ignorant

population rapidly decreases until it reaches equilibrium.
Theorems 2, 3 indicate that when R0 < 1 occurs, congestion
warning information will eventually disappear in the propagation
network, indicating that the equilibrium point of no congestion
warning information is stable. The simulation results shown in
Figure 2A further confirm this conclusion.

When B � 0.1, �k � 10, μ � 0.1, λ � 0.7, θ1 � 0.5, θ2 � 0.6, η �
0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.1, the population
density changes of the ignorant, active, passive, spreading, and
immune users who can receive congestion warning information
in R0 � 35> 1 are shown in Figure 2B. In the process of
disseminating congestion warning information, as shown in
Figure 2B, the population density values of positive, negative,
spreading, and immune individuals in the congestion warning
information first increase, reaches their peak values, and
gradually stabilize. The population density of ignorant individuals
gradually decreases until it reaches equilibrium. Theorems 1, 4, 5
indicate that the congestion warning information of the model
established in this article has a stable equilibrium point at R0 > 1;
that is, it will continue to exist in the network at a certain amount.
The simulation results shown in Figure 2B further verify the above
conclusion.

Figures 3A–D depict the effects of different parameters in the
model on the population density of congestion warning information
disseminators. Figure 3A illustrates the trend of the population
density of spreaders over time when B � 0.01, �k � 10, μ � 0.1, θ1 �
0.5, θ2 � 0.6, η � 0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6 and
λ take different values. Figure 3B illustrates the trend of the
population density of spreaders over time when different values
of B � 0.01, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α � 0.2, β �
0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6 and �k are taken. The results show
that the larger λ is, the greater the probability of ignorant
individuals spreading congestion warning information, the
higher the peak density of the spreader population, and the
shorter the time required to reach the peak. The network
average λ represents the degree of closeness between users. As
�k increases, the disseminator of congestion warning information

FIGURE 6
(A, B) The sensitivity analysis of the basic reproduction number.

Frontiers in Physics frontiersin.org08

Yan et al. 10.3389/fphy.2024.1490499

116

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1490499


will reach a higher peak in a shorter time. Figures 3A, B show that
if ignorant individuals have a greater willingness to share
congestion warning information with others or have closer
contact with users after being exposed to it, this further
promotes the dissemination of congestion warning
information and alleviates traffic congestion pressure.

Figure 3C shows the trend of the population density of
spreaders over time when B� 0.01,μ� 0.1,λ� 0.3,θ1 � 0.5,θ2 �
0.6,η� 0.2,β� 0.2,γ1 � 0.3,γ2 � 0.3,ξ � 0.6, �k� 10 and α take
different values. The results show that the larger α is, the
more willing people who are negative about congestion
warning information are to make changes, realize the adverse
effects of congestion on traffic, and share congestion information
with others. The peak density of the spreader population is
greater, and the time required to reach the peak is shorter.
Figure 3D shows the trend of the population density of
spreaders over time when B� 0.01,μ� 0.1,λ� 0.3,θ1 � 0.5,θ2 �
0.6,η� 0.2,α� 0.2,γ1 � 0.3,γ2 � 0.3,ξ � 0.6, �k� 10 and β take
different values. The results indicate that as the value of β

increases, the willingness of congestion warning information
enthusiasts to disseminate congestion warning information
increases, resulting in a significant increase in the population
density of disseminators.

Figure 4 shows the trend of the density of negative individuals
over time when B � 0.01, μ � 0.1, λ � 0.3, θ2 � 0.6, η � 0.2, α �
0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10 and θ1 take
different values. Figure 5 shows the trend of the density of
positive individuals over time when B� 0.01,μ� 0.1,λ� 0.3,θ1 �
0.5,η� 0.2,α� 0.2,β� 0.2,γ1 � 0.3,γ2 � 0.3,ξ � 0.6, �k� 10 and θ2
take different values. The simulation results show that when
an ignorant individual receives congestion warning information,
if the ignorant individual tends to travel a shorter distance, the
population density of the passive will increase with increasing
congestion; if ignorant individuals tend to travel faster, then the
population density of positive individuals will increase with
increasing θ2 .

6 Discussion

To evaluate the influence of parameters �k, λ, ε on the basic
regeneration number R0, this article conducts a sensitivity
analysis on R0. Based on the previous calculation of R0 � �kBλ

μ(μ+ε), it
can be concluded that (Equation 15)

∂R0

∂�k
� Bλ

μ μ + ε( )> 0 (15)

This means that as �k increases, the basic regeneration numberR0

also increases, as shown in Figure 6A. This indicates that the greater
the closeness between users is, the more conducive they are to the
dissemination of congestion warning information; that is, the more
people there are in contact with the disseminator, the more likely
they are to be to spread congestion warning information.

For parameters λ and ε, it can be obtained that
(Equations 16, 17)

∂R0

∂λ
�

�kB

μ μ + ε( )> 0 (16)

∂R0

∂�k
� −�kBλ
μ μ + ε( )2 < 0 (17)

This means that the basic regeneration number R0 increases
with increasing λ and decreases with increasing ε. As shown in
Figure 6B. From this, it can be seen that when ignorant individuals
are exposed to congestion warning information, they are more
willing to spontaneously spread congestion warning information,
which promotes the dissemination of congestion warning
information. In addition, if the disseminator is more likely to
forget or shift his or her attention to congestion warning
information, the dissemination of congestion warning
information will be suppressed. In fact, the current speed of
updating social information on the internet is extremely fast, and
the attention given to irrelevant congestion warning information is
very limited. Therefore, the forgetting mechanism has a significant

FIGURE 7
Trend of population density of (A) E(t) and (B) I(t) over time under the different control strategies.
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impact on the dissemination process of congestion warning
information.

7 Optimal control simulation

To analyze the impact of the optimal control (λ*, θ2*, α*, β*) on
the propagation process of congestion warning information when
adopting the optimal control strategy, this section simulates the
changes in the active participant E(t) and the disseminator I(t)
during the period from t � 0 to t � 20. The simulation is divided
into the following three situations: (1) no control, (2), control of only
a single variable, and (3) optimal control strategy.

In the uncontrolled strategy, when B � 0.1, μ � 0.1, λ � 0.3, θ1 �
0.5, θ2 � 0.6, η � 0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6,
�k � 10, let B � 0.1, μ � 0.1, λ � 0.3, θ1 � 0.5, η � 0.2, α � 0.2, β �
0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10 to control θ2*, let B � 0.1, μ �
0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α � 0.2, γ1 � 0.3, γ2 � 0.3,
ξ � 0.6, �k � 10 to control β* and the trend of population density
changes among active participants when adopting the optimal
control strategy. As shown in Figure 7A, when the optimal
control strategy is adopted for θ2* and β*, the density of active
participants reaches its maximum value, indicating that the more
people tend to be “fast”, the wider the dissemination range of
congestion warning information, which is beneficial for
alleviating traffic congestion pressure.

When B � 0.1, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α �
0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10, let B � 0.1, μ �
0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, α � 0.2, γ1 � 0.3, γ2 � 0.3,
ξ � 0.6, �k � 10 control β*, let B � 0.1, μ � 0.1, θ1 � 0.5, θ2 � 0.6, η �
0.2, α � 0.2, β � 0.2, γ1 � 0.3, γ2 � 0.3, ξ � 0.6, �k � 10 control λ*, let
B � 0.1, μ � 0.1, λ � 0.3, θ1 � 0.5, θ2 � 0.6, η � 0.2, β � 0.2, γ1 �
0.3, γ2 � 0.3, ξ � 0.6, �k � 10 control α* and change the density of the
spreader population when adopting the optimal control strategy. As
shown in Figure 7B, when λ*, α* and β* adopt the optimal control
strategy, the density of the spreader population reaches its
maximum value. This indicates that the greater the willingness of
the ignorant S(t), the passive P(t), and the active E(t) to share
congestion warning information is, the more conducive it is to the
rapid dissemination of congestion warning information, which is
conducive to the quick response of travelers and thus alleviates
traffic congestion pressure.

8 Conclusion

In this paper, a congestion warning information dissemination
model is constructed by considering the influence of travelers’
attitudes on the dissemination of congestion warning
information. The basic reproduction number is calculated, and
the existence and stability of the equilibrium points of no
congestion warning information and congestion warning
information in the model are analyzed. The existence of the
optimal control of the model is verified, and the optimal control
strategy of the model is proposed. In addition, the basic theorem of
the model and the impact of changes in various parameters in the
simulation model on the propagation process of congestion warning
information are verified through numerical simulation, and

sensitivity analysis and optimization control simulation are
carried out. The research conclusions of this article are as follows:

(1) Based on the combination of two attitudes (positive and
negative) of travelers toward road congestion, the SPEIR
model for both negative and positive individuals is
introduced on the basis of the classic infectious disease
model. Moreover, the dissemination of congestion warning
information is influenced by the topology of social networks.
Therefore, the network average is introduced to characterize
the tightness of the social network structure, increasing the
realism and reasonableness of the model.

(2) Based on the next-generation matrix method, the basic
regeneration number is determined, and the existence and
stability of the equilibrium points of congestion free warning
information and congestion warning information in the
model are evaluated. When the basic regeneration number
R0 < 1 is reached, the congestion warning information
eventually disappears from the system and reaches
stability. When R0 > 1 occurs, congestion warning
information will continue to exist in the system and
gradually stabilize.

(3) By utilizing optimal control theory, establishing and
discussing optimal control problems, and formulating
optimal control strategies that simultaneously increase the
population density of both positive and disseminator,
important reference opinions are provided for controlling
or mitigating traffic congestion.

(4) The sensitivity of travelers to road congestion directly affects
the dissemination process of congestion warning information.
A negative or more inclined attitude toward road congestion
after receiving congestion warning information is not
conducive to alleviating traffic congestion pressure; if
travelers are more sensitive to road congestion, they are
more inclined to choose “fast” modes of transportation
and have a stronger willingness to share congestion
warning information, which is beneficial for preventing
and controlling traffic congestion outbreaks. Therefore,
relevant departments have taken timely measures to
achieve vehicle diversion and real-time push congestion
warning information to improve the sensitivity of traveler
information, providing a reference for using congestion
warning information dissemination models to suppress
practical problems of road congestion.

There are some limitations in this paper. First, the average field
method is used to construct a congestion warning information
dissemination model, without considering the impact of social
network heterogeneity on the process of congestion warning
information dissemination. Therefore, in the future, congestion
warning information dissemination models for different network
structures should be investigated. Second, Only MATLAB was used
for numerical simulation of the model, but the real process of
congestion warning information dissemination is often
more complex.

Therefore, in the future, the effectiveness of the model can be
further verified in a real network environment, taking into account
various individual psychological and behavioral factors, as well as
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the dynamic laws of congestion warning information dissemination
evolution in a dual-layer coupled online and offline social network.
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Online tourism spot recommendations, as a key component of tourism services,
aim to present travel options that align with users’ personal preferences.
However, current recommendation systems often underperform due to the
sparsity of tourism data and the wide variance in user preferences. To address
this challenge, we propose a Semantic Analysis-Based Tourism
Recommendation framework, abbreviated as SABTR (Semantic Analysis-Based
Tourism Recommendation). The framework comprises two stages: Firstly, Latent
Dirichlet Allocation (LDA) models are utilized to deeply mine data between users
and attractions, constructing two corematrices: the user similarity matrix and the
attraction similarity matrix. Secondly, based on the user similarity matrix, similarity
calculation methods are applied to predict ratings for tourism spots that users
have not yet evaluated. Simultaneously, within the attraction similarity matrix,
probability distributions for each attraction across various thematic interests are
calculated. When the system identifies a user’s interest in specific types of
attractions, SABTR can select a series of related attractions from associated
interest tags. Then, these candidate attractions are ranked according to both
known and predicted user ratings, ultimately forming personalized attraction
packages recommended to users. Extensive experiments have demonstrated that
compared to existing tourism recommendation solutions, our method
significantly improves the quality of attraction recommendations and
enhances user satisfaction.

KEYWORDS

LDA, tourism recommendation, semantic analysis, similarity of users, rating prediction

1 Introduction

With the continuous development of tourism resources and the rapid advancement of
information technology, a large amount of tourism resource information can be easily
accessed by users through websites and travel applications. However, confronted with a vast
array of options for tourist attractions, users often feel confused and hesitant when making
choices. To improve the experience of tourists when selecting travel services, various
tourism recommendation solutions have been introduced by both industry and academia.
These aim to provide better travel experiences and intelligent services for tourists.

Hsieh et al. proposed a Bi-LSTM model in [1] to train on user travel time series data,
predicting the migration of users’ interest in tourist attractions through adaptively learned
parameters. Ma et al. in [2] leveraged differential game theory and Bellman’s continuous
dynamic programming theory to generate more personalized low-carbon travel plans for
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tourists, enhancing their environmental awareness and stimulating
low-carbon, efficient, and sustainable development within the
tourism supply chain. Yao et al. proposed a new Neural
Network-enhanced Hidden Markov Structure Time Series Model
in [3]. The model uses a neural network for trends and a hidden
Markov model with four parts for seasonality: cyclical patterns,
unexpected events, event intensity, and random errors. It was tested
on US tourism data from 12 countries to suggest travel packages.

These tourism recommendation schemes have promoted the
development of the tourism industry and enhanced the overall level
of tourism public services. However, these methods do not delve
deeply into the characteristics of tourism recommendations. Firstly,
user-tourism data is quite sparse, making it difficult for traditional
similarity algorithms to uncover the diverse interest distributions of
users. Secondly, user ratings for tourism items are also sparse,
making it hard to determine users’ preferences for tourism items.
Lastly, the temporal context of tourists choosing attractions is also a
factor that needs to be considered in tourism recommendations. In
response to these characteristics of tourism recommendations, we
designed a probabilistic semantic analysis-based tourism
recommendation algorithm called SABTR. This algorithm can
extract user interests from sparse datasets, predict missing ratings
for tourism items by tourists, and finally generate a list of tourism
items that match tourists’ preferences based on their behavior. The
proposed SABTR approach can integrate tourists’ hidden
preferences (such as clicks and favorites) with their direct
preferences (such as ratings and likes), ensuring the accuracy of
tourists’ interests while also ensuring the diversity of user interests.
The specific work is as follows:

• We use a semantic analysis model to obtain the distribution of
tourist interests by training history records of tourists. Based
on this distribution, we design a user similarity algorithm. By
aggregating ratings between similar users, we can infer missing
tourism item evaluations for users.

• We design an online tourism recommendation scheme. When
a tourist clicks on an interesting tourism item, we analyze the
interest distribution associated with the item and its ratings to
recommend high-rated tourism items that align with the
tourist’s interests.

The proposed scheme has been extensively tested on
experimental datasets, and compared to other baseline
algorithms, our method shows better accuracy and recall in
tourism recommendations. Diverse interest-based attraction
recommendations also provide a better service experience for
users. The remaining sections of this paper are organized as
follows: Initially, we will provide a review of the existing
literature, clearly delineating the differences between the
methodologies proposed in this study and those currently
employed. Subsequently, we will present a detailed description of
the framework of the proposed scheme, explaining how it effectively
extracts user interests and predicts missing ratings for tourism
projects. Furthermore, we will evaluate the effectiveness and
efficiency of the proposed scheme through a series of
experiments, summarizing the advantages and shortcomings of
the algorithm in the conclusion section, and providing an
outlook on future research work.

2 Related works

In this section, we review previous research achievements in
tourism recommendation.

Yang et al. conducted an online survey collecting data from
496 users in the Ctrip dataset [4] and performed extensive
experiments using Partial Least Squares Structural Equation
Modeling (PLS-SEM) on the data. They concluded that perceived
personalization, the visual appearance of tours, and the quality of
provided travel information can meet users’ personalized needs.
Gasmi et al. [5] consider itinerary planning and travel
recommendations as crucial tasks in tourism personalization.
Since tourists are typically unfamiliar with points of interest
(POIs) in new cities, They must choose and arrange points of
interest (POIs) that suit their preferences, considering factors like
starting point and travel time. Researchers suggest using Multi-
Objective Evolutionary Algorithms (MOEAs) to find
recommendations that balance two goals. Their experimental
results on a dataset from Flicker demonstrate the efficiency of
the proposed algorithm in generating personalized itinerary
recommendation rules, which can help tourists plan their trips in
unfamiliar towns. Ding et al., in reference [6], considered the travel
itinerary planning problem under a total time constraint and
uncertain travel times. This problem requires making a two-stage
decision: first, selecting tourist attractions from a set of candidates to
maximize the popularity utility for the tourist; second, planning the
visiting sequence of these attractions under random travel times to
maximize the activity utility for the tourist. Therefore, the paper
constructs a two-stage stochastic optimization model with chance
constraints for recommending tourist attractions. Compared to the
benchmark model, the proposed model improves the
recommendation accuracy by nearly 40%. Chen et al., in
reference [7], suggest a model called Dynamic Trust Network-
based Fuzzy Group Recommendation (DTN-FGR). It turns user
ratings into Fuzzy Preference Relations to handle varying evaluation
standards. It also uses a PageRank method to calculate user trust
scores. This DTN-FGR model shows the best consistency compared
to other group recommendation models. Liu et al. [8] suggest using
historical check-ins from Location-Based Social Networks (LBSNs)
to understand user preferences and boost tourism. A new privacy-
focused POI recommendation model is proposed, combining a
simplified Graph Convolutional Neural Network (GCN) with
user privacy settings. This model offers efficient POI suggestions
while safeguarding user privacy. Chen et al. [9] Show through
research that metaverse tourism differs from physical travel.
Experts say that tailor-made travel choices, socializing, immersive
experiences, and getting visitor feedback can significantly improve
the travel experience. Ding et al., in reference [10], sought to
understand what motivates customers to leave positive or
negative feedback. Analyzing over 10,000 Airbnb reviews,
researchers used a structural topic model to uncover hidden
themes linked to recommendation intentions. They found that
positive feedback is mainly driven by the enjoyment of the
experience, whereas negative feedback is linked to practical
concerns and utilitarian value. Gamidullaeva et al., in reference
[11], highlight the importance of combining diverse approaches to
create a universal system for recommending travel information
when customizing itineraries. The research goal is to introduce a
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concept for a system that can suggest personalized travel routes. This
concept includes processes for gathering and preparing data to
create tourism offerings, techniques for tailoring these offerings
to individual preferences, and the key steps to put these techniques
into action. Chen et al., in reference [12], suggest a framework called
GRM-RTrip, which uses graph networks to understand Points of
Interest (POIs) from different angles, calculating the chances of
moving from one POI to another. This information is then used to
predict what users might like. The system treats trip planning like a
game, using smart learning to create trips that give the best
experience. Tests show it does better than other ways of
suggesting trips. Nilashi, in reference [13], claims that Multi-
Criteria Collaborative Filtering (MCCF), which considers various
product features, offers more dependable and efficient
recommendations on shopping sites. The study introduces a new
recommendation agent using MCCF to enhance travel site
recommendation systems. Extensive testing proves this method
can accurately suggest relevant travel options to users, even with
limited data.

Majid et al., in reference [14], examined sustainability and
tourist involvement as key factors for sustainable development in
tourism. They identified 23 AI innovations that could shape future
research in this area. The study points out a current shortfall in AI
solutions that fully address sustainability and tourist interaction. It
also highlights blockchain’s potential to revolutionize tourism and
hospitality due to its transparency and efficiency. Jain et al. [15]
analyzed 56 papers from 2012 to 2022 to uncover gaps in how
technology is viewed in tourism. The research summarized key
issues and proposed future study paths using a TCM framework. It
also positioned tourism as a prime candidate for sustainable virtual
investments in the metaverse. Kou et al., in reference [16], explore
the application of the Balanced Scorecard for evaluating sustainable
investment options in sectors like metaverse tourism. They suggest a
hybrid approach combining quantum, spherical, and fuzzy decision-
making to prioritize sustainable investment opportunities in the
metaverse’s tourism sector. Zheng et al. [17] concentrate on disabled
tourists who are otherwise capable of traveling, recognizing that
tourism could open up new patient-centered care options. The study
discusses the challenges of conducting empirical research with
tourists who have mental health issues. The paper recommends
strategies like setting clear participant criteria, using randomized
controlled trials, and adopting comprehensive health research
methods. The research could guide tourism management and
marketing efforts aimed at these groups. Abbasi-Moud et al. [18]
suggested a tourism recommendation system based on user
preferences. It starts by gathering user reviews from travel social
networks to identify their likes. The reviews are then cleaned up,
grouped by topic, and analyzed for sentiment to understand what
tourists want. For each point of interest (POI), features are extracted
from all the reviews about it. The system then suggests POIs that best
match a user’s preferences by comparing them semantically. This
approach aims to improve on the inaccuracy of standard travel route
recommendation algorithms. Esmaeili et al. [19] suggested a social
commerce-based hybrid recommendation system to tailor tourist
attraction lists to individual tourists, considering their preferences,
trust, reputation, social ties, and communities. The method, which
factors in multiple elements, was found to be superior to standard
collaborative filtering, content-based, and hybrid recommendation

techniques in experiments. Cheng et al., in reference [20], suggested
an algorithm for recommending travel routes that considers users’
interests and the distances between places. It begins by examining
users’ past travel patterns. The algorithm then determines users’
preferences for certain themes and distances based on how long they
spend at each attraction. It calculates the best route considering time
limits, starting and ending locations. Tests using data from Flickr
indicate that this algorithm is more accurate and has better recall
than existing methods.

Previous methods identified similar tourism resources by
calculating similarity, which could potentially lead to the echo
chamber effect, limiting users’ ability to discover potential points
of interest. In contrast, our proposed algorithm, SABTR (Semantic
Analysis Based on User’s Behavioral Traces), aims to identify users’
interests through semantic analysis. By analyzing users’ behaviors
such as clicks, favorites, and ratings on tourism resources, the
algorithm determines users’ preferences for specific types of
tourism resources, rather than simply finding similar resources.
This approach significantly broadens the scope of users’ interests
and enhances the accuracy of the tourism recommendation system
by employing a rating-based sorting mechanism within similar
interest resources, thereby better meeting users’ personalized needs.

3 The proposed SABTR method

3.1 The overview of the SABTR

As shown in Figure 1, the proposed SABTR framework includes
both an offline training component and an online analysis component.
In the offline training phase, records of tourists’ visits to tourist
attractions are input into the SABTR framework for matrix
factorization. The semantic analysis algorithm LDA (Latent Dirichlet
Allocation) within SABTR can decompose the tourist-tourist attraction
data into two matrices using the Gibbs sampling algorithm [21]: the
tourist-interest topic matrix and the interest topic-tourist attraction
matrix. In the tourist-interest topic matrix, the distribution of a tourist’s
interests is considered as the feature vector of the tourist, and then users
with similar interests are clustered based on the similarity of these
feature vectors. In the interest topic-tourist attraction matrix, for each
tourist attraction, the topic distribution is counted and ranked
according to the topic probability values.

For the online recommendation phase, when a user clicks on an
interesting tourist attraction or rates one, based on the topic
distribution of this attraction, several items from each topic are
selected and added to the candidate recommendation list according
to their topic probabilities. Then, the candidate items are sorted by
their predicted ratings, and a suitable recommendation list is
generated and sent to the user. The number of interest topics,
the length of the recommendation list, and how many tourist
attractions are returned for each interest topic will be determined
through extensive experimentation in the experimental section.

3.2 Semantic analysis in the training phase

In real-life scenarios, tourists often select travel destinations
based on their personal travel preferences. From the perspective of
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probabilistic topic models, the process of tourists choosing
attractions can be broken down into two steps: first, tourists pick
out themes from a variety of travel topics that interest them; then,
they select specific attractions to visit within those themes. The goal
of a travel recommendation system is to analyze tourists’ historical
data, uncover their latent interests, and recommend attractions that
align with their preferences.

Since tourists’ interests are a latent variable, in our proposed
Semantic Analysis-Based Tourist Recommendation system (SABTR),
we employ the LDA (Latent Dirichlet Allocation) model to construct
tourists’ interest themes. LDA is a soft-clusteringmodel that allows data
points to be assigned to multiple categories with different probabilities,
which means that attractions belonging to the same category share
similar latent semantic features. Consequently, attractions with similar
semantic features can be recommended to tourists who are interested in
these features. Let the set of tourists be denoted as U, the set of themes as
Z. In the context of travel recommendations, the themes associated with
attractions can be considered as the interests of the users. Let the set of
attractions be denoted as S. Let a user’s attraction record be represented
as a vector �s, and the thematic affiliation of each attraction as a vector �z.
Then, the user semantic analysis in the proposed scheme is how to
derive the thematic interests �z of attractions based on the user’s
attraction record �s, i.e., solving for p( �z | �s). In the scheme, ( �s, �z) is
considered as random variables, and the distribution of the variables is
shown in the following formula:

p �s, �z | α, β( ) � ∏K
k�1

Δ �nk + β( )
Δ β( ) .∏M

m�1

Δ �nm + α( )
Δ α( ) , �nm � �n k( )

m{ }K
k�1 (1)

where �nm refers to the m-th tourist’s topic distribution, and �nk refers
to the distribution of attractions for the k-th topic. �n(k)m represents

the number of attractions in the k-th topic of the m-th tourist, and α
and β are the hyperparameters of the Dirichlet distribution, while
Δ(α) and Δ(β) are the regularization factors in the Dirichlet
distribution.

In the proposed SABTR algorithm, in order to cluster tourists
and attractions, it is necessary to solve for p(zk|um) and p(st|zk)
within the aforementioned probability distribution. p(zk|um) refers
to the probability of the m-th tourist’s the k-th topic, which can be
represented by θmk, and p(st|zk) refers to the probability of the t-th
attraction belonging to topic k, which can be represented by ϕkt.
Since the topic interests are latent variables, it is difficult to directly
estimate parameters p(zk|um) and p(st|zk) using maximum
likelihood estimation. Therefore, this paper employs the Gibbs
sampling algorithm to estimate these parameters.

In the initial step, each attraction is assigned a random topic,
then during the sampling process, the topic transition probability of
the target attraction is obtained using the interest distribution of
other attractions (excluding the target attraction). Assuming an
observed variable for an attraction si � t, where i = (m, n) is a
subscript indicating the travel record of the n-th attraction for
tourist um. Using Bayes’ theorem, we can obtain the sampling
expression for the interest of attractions (i.e., the conditional
probability of the attractions), as shown in the following formula:

p zi
∣∣∣∣∣ �z¬i, �s( ) � p �s, �z( )

p �s, �z¬i( ) �
p �s

∣∣∣∣∣ �z( )
p �s¬i| �z¬i( ).

p �z( )
p �z¬i( )∝

Δ �nz + β( )
Δ �nz,¬i + β( ). Δ �nm + α( )

Δ �nm,¬i + α( )
� n t( )

k,¬ i + β

∑V
t�1

n t( )
k,¬ i + β( ).

n k( )
m,¬ i + α

∑K
k�1

n k( )
m,¬ i + α( )[ ] − 1

(2)

FIGURE 1
The Overview of SABTR Scheme. The SABTR scheme includes two stages: offline training and online recommendation. During the offline training
phase of the model, a probability vector reflecting tourists’ interest preferences was constructed by applying semantic analysis algorithms, and the
distribution probability of attractions corresponding to each themewas analyzed. Based on these two vector matrices, themodel is capable of predicting
themissing ratings for attractions and determining the thematic affiliation of attractions. In the online recommendation phase, themodel utilizes the
thematic probability distribution of attractions and the predicted missing ratings to generate a list of recommended attractions with rating information
for tourists.
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where �z¬i represents the current topic setting of all attractions except
for attraction si, n

(t)
k,¬ i indicates the number of other attractions

(excluding attraction si) that have been assigned interest k, and n
(k)
m,¬ i

indicates the number of times attractions other than si, which belong
to interest k, have been selected by tourists.

The conditional probability of an attraction’s interest can be
obtained from Equation 2, where in each iteration, every attraction is
assigned a new interest through a roulette wheel algorithm. After the
model converges, each attraction in every tourist’s historical record
will be assigned a theme. �θm refers to the topic distribution of the
m-th tourist, and �ϕk refers to the attraction distribution of the k-th
topic. The distributions of �θm and �ϕk follow the Multinomial
distribution, and the prior of these two distribution belong to the
Dirichlet distribution. By leveraging the conjugate property of the
Dirichlet-Multinomial, it can be deduced that the posterior
distributions of �θm and �ϕk follow the Dirichlet distribution. We
can obtain the interest distribution of tourists θmk and the attraction
distribution of interests ϕkt via the expectations ofDir( �θm| �nm,¬i + α)
and Dir( �θm| �nm,¬i + α). The expressions are as follows:

θmk � p zk|um( ) � n k( )
m,¬ i + αk

∑K
k�1

n k( )
m,¬ i + αk( )

ϕkt � p st|zk( ) � n t( )
k,¬ i + βt

∑V
t�1

n t( )
k,¬ i + βt( )

(3)

3.3 The creation of the tourism
recommendation list

When parameters p(zk|um) and p(st|zk) are obtained, candidate
attraction selection and similar user selection can be performed.
Based on the obtained p(zk|um) the tourist’s interest characteristics
are transformed into an interest distribution vector. Let the interest
distribution vector for the m-th user be denoted as �um, then the
interest distribution vector for �um is shown in the following formula:

�um � p z1|um( ), p z2|um( ), ...p zk|um( )[ ] (4)

Based on the cosine similarity formula for vectors, the similarity
between users can be obtained, as shown in the following formula:

Sim val uo, ui( ) � Cos �u0, �ui( ) � �u0 · �ui

�u0‖ ‖ × �ui‖ ‖ (5)

where Sim val(uo, ui) represents the numerical similarity between
the target tourist uo and other tourists ui. ‖�u0‖ and ‖�ui‖ represent the
magnitudes of the interest vectors for the target tourist and similar
tourists, respectively. Tourists are considered valid similar tourists
only after their similarity reaches a certain threshold. The condition
for the similarity between tourists is shown in the following formula:

Sim uo( ) � ui Sim val uo, ui( )| ≥ μ, uo ≠ ui{ } (6)
where μ is the threshold for similarity, and Sim(uo) represents the
similarity that meet the threshold. The ratings of these similar
tourists for attractions can be used to predict missing ratings.
After selecting similar users for each visitor, based on the

attraction ratings from these similar users, the missing rating for
the attraction by the tourist can be obtained. Considering the
different rating styles of tourists, the prediction formula for the
attraction rating is as follows:

r̂uo,st � ~uo +
∑

ui∈Sim uo( )
Sim val uo, ui( ) · rui,st − ~ui( )
∑

ui∈Sim uo( )
Sim val uo, ui( ) (7)

where r̂uo,st indicates the predicted rating for the unrated attraction
st by the tourist uo, ~uo and ~ui represent the average ratings of the
attractions by the tourist uo and the similar tourists ui,respectively.
rui,st denotes the rating of the attraction st by the tourist ui.

After obtaining the ratings of attractions by tourists through the
aforementioned strategy, these ratings can be used to rank the
recommended attractions for tourists. When a tourist clicks on
an attraction, the SABTR scheme calculates the probability of the
theme classification for this attraction based on p(st|zk). Generally,
an attraction may belong to multiple themes. Attractions under
these themes could all be of interest to the tourist. We select multiple
attractions from each theme and sort them according to their
predicted ratings. The top-r attractions from the sorted list are
then added to the recommendation list. The recommendation list
for attractions is shown in the following formula:

Re si( ) � srzk

∣∣∣∣∣∣∣∣∣N ∑R
r�1

∑K
k�1

srzk
⎛⎝ ⎞⎠ � L, si, s

r
zk

( ) ∈ �zk, r
�
s1zk( )≥ r

�
srzk( )⎧⎨⎩ ⎫⎬⎭

(8)
where Re(si) is the recommendation list for the attraction si, and
r
�(s1zk ) represents the attractions that belong to the topic zk and have
the highest ratings or predicted ratings. The variable r signifies the
number of attractions selected from each theme. After an attraction
is bookmarked, clicked, or rated by a tourist, semantic analysis is
conducted on the attraction to determine the probability of its
belonging to certain topics, and then the top r attractions are
selected from each theme based on their ratings to be included in
the recommendation list. The specific values and value ranges for the
aforementioned parameters will be discussed in detail during the
experimental phase.

4 Experiments

This section introduces the experimental dataset, evaluation
criteria, baseline algorithms, algorithm performance comparison.

4.1 Dataset description

In the experimental phase, the required data includes the IDs of
tourists, the tourist attractions they visit, and the ratings given by
tourists to these attractions. Previous tourism datasets, such as
dataset-tourist-attractions.csv and KG-Rec-Sys-Tourism-SG-main,
either only contain information about attractions or have
insufficient records of user visits to these attractions. To more
effectively validate the proposed solution, this paper adapts the
MovieLens (1M) dataset to the tourism recommendation scenario.
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The rating.csv file can be used to simulate the rating data of
attractions, while the movie.csv file can simulate the record of
tourist attraction visits.

4.2 Experimental evaluation criteria

This paper uses Precision, Recall, and F1-measure to evaluate
the performance of tourist attraction recommendations, uses RMSE
(Root Mean Square Error) to measure the error between predicted
and actual attraction ratings, and uses perplexity to assess the
performance of semantic analysis models. The evaluation criteria
are as follows:

Perplexity � exp ∧ − ∑V
t�1
log (p(st))⎛⎝ ⎞⎠/ V( )⎧⎨⎩ ⎫⎬⎭

where p st( ) � ∑K
k�1

∑M
m�1

p st|zk( ).p zk|um( )⎡⎣ ⎤⎦
Precision s( ) � N Re s( ) ∩ Ure,¬s( )

L

Recall s( ) � N Re s( ) ∩ Ure,¬s( )
N Ure,¬s( )

F1 −measure s( ) � 2.Precison.Recall
Precison + Recall

RMSE �

""""""""""""""""""""""∑
ui,sj∈record ui s( )( )

rui,sj − r̂ui ,sj( )2
N record ui s( )( )[ ]

√√

(9)

Where V represents the total number of attractions, and the
lower the perplexity value, the better the model’s performance.
Precision measures the accuracy of the attraction
recommendations, Recall indicates the coverage rate of the
attraction recommendations, and the F1-measure is a
comprehensive evaluation metric of both precision and recall.
Re(s) represents the recommended list generated by the system
after the user selects the attraction s. Ure,¬s represents the record of
attractions visited by tourists (excluding the currently selected
attraction s). rui,sj represents the actual rating of attraction sj by
the tourist ui, and rui,sj represents the actual rating of attraction sj by
the tourist ui.

4.3 The baseline algorithms

In this paper, we utilized high-performance experimental
equipment, including an Intel Xeon 3206R CPU, 32 GB
DDR4 memory, a 2x2 TB RAID hard drive configuration, and an
NVIDIA RTX 3090 GPU, to ensure the accuracy and efficiency of
the algorithm comparison. We conducted a comparative analysis of
the recommendation system performance of the SABTR algorithm
proposed in the paper with PLSA [22], LSI [23], and Skip-gram [24]
algorithms.

PLSA and LSI, as fundamental topic models, can infer the
distribution of users’ interests by analyzing their historical
records. The Skip-gram algorithm, on the other hand, is a
word vector model that can convert attractions into

distributed vector representations, and then recommend
similar attractions to users by calculating the similarity
between vectors.

To comprehensively evaluate the performance of these
algorithms, we designed a series of experiments to measure from
multiple dimensions, including precision, recall, and F1-score.
Through these experiments, we aim to verify the advantages and
limitations of the SABTR algorithm compared to existing algorithms
in terms of recommendation system performance.

4.4 Parameter settings and performance
comparison of the SABTR scheme

When comparing the proposed scheme with the aforementioned
baseline algorithms, we first need to determine the optimal
parameters for our scheme. For the semantic analysis model in
the SABTR scheme (i.e., the LDA model), there are three key
parameters: k (representing the number of attraction topics), α
and β. In the experiment, we first set the number of attraction
topics k to 50 (i.e., k = 50), and set the model’s hyperparameters α
and β to their default values. Next, we vary the number of model
iterations from 500 to 1,350 and calculate the perplexity value after
each iteration. By comparing the perplexity values at different
numbers of iterations, we can find the optimal number of
iterations for model convergence. Finally, we optimize the
hyperparameters using the fixed iteration method (i.e., finding
the optimal values of α and β while keeping other
hyperparameters unchanged and fixing the number of tourist
topics). The values of parameters are shown in Figure 2:

Figure 2A shows that when the number of iterations is 1,250, the
value of perplexity is 3,957.26, which is the lowest during the
iterative training process, indicating that the model has reached a
state of convergence. Figure 2B illustrates the change in the model’s
perplexity value as the number of topic interests increases. It can be
observed from the figure that the optimal number of interest
categories for the model is 90 when the perplexity value is at its
minimum (at this point, the perplexity value is 3,484.1). To find the
optimal value of the hyperparameter α for tourist-interest
distribution, we fix the number of interest categories (i.e., K =
90) and the value of the hyperparameter for interest-attraction
distribution (i.e., β = 1/90), and increase the value of α from
0.010 to 0.024. From the series of perplexity values in Figure 2C,
it can be seen that the optimal value of α is 0.022. Finally, increasing
the value of β from 0.004 to 0.015, the optimal value of β can be seen
in Figure 2D as 0.008. From the values of the hyperparameters, it can
be inferred that the distribution of tourists’ interests is relatively
concentrated, while the topics to which attractions belong are
more diverse.

When a tourist shows interest in an attraction, the
recommendation system needs to determine the interests
associated with the attraction and recommend attractions that
match the tourist’s interests. In terms of recommendation
strategies, we need to focus on the following issues: when an
attraction is associated with many themes, how many themes
need to be considered to accurately meet the user’s needs; among
the selected themes, howmany attractions should be chosen for each
theme to improve the system’s recommendation precision, recall
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rate, and F1-measure. In order to determine the parameters of these
recommendation strategies, experiments were conducted by
increasing the number of topics and the number of attraction
selections to compare the different results of the semantic
analysis algorithm, as shown in Figure 3.

Figure 3A primarily analyzes the number of themes to which an
attraction belongs. The experiment sets the range of themes from
1 to 10, and when making recommendations, five attractions are
selected from each theme to be added to the recommendation list.
The number of themes is continuously increased to compare the
algorithm’s precision, recall, and F1-measure. The results from
Figure (a) show that as the number of themes to which an
attraction belongs increases, the precision of the
recommendations also increases. However, when the number of
themes reaches 4, the accuracy of the recommendations begins to
decline, and the recall does not improve, indicating that when a user
is interested in an attraction, knowing the four main interests to
which the attraction belongs can meet the user’s needs. After
determining the number of interest categories to which an
attraction belongs, a series of experiments analyze how many

attractions should be selected from each theme to improve the
algorithm’s performance. We set the number of attractions selected
per theme to 5, 10, and 15 to compare the algorithm’s performance,
and the performance under different parameters is shown in Figures
3B–D. From the three sub-figures, it can be seen that when
10 attractions are selected from a theme, the algorithm has the
best precision value, which is 0.2098, and at this time, The
appropriate number for the recommendation list is 40.

The method for predicting attraction ratings is to aggregate the
ratings of similar users for prediction. We need to determine two
parameters: one is the similarity between similar users, and the other
is the number of similar users to be selected for rating prediction.
The paper first calculates the average similarity between tourists, and
then identifies the optimal similarity and the optimal number of
similar users based on the calculated Root Mean Square Error
(RMSE) values. Next, we rank the candidate attractions based on
the predicted ratings to form a recommendation list for tourists to
refer to. In addition, we also compared the performance of the
recommendation list obtained from the SABTR scheme with the
recommendation list without ratings. As shown in Figure 4:

FIGURE 2
Parameters of the Semantic Analysis Mode. Figure 2A illustrates the trend of model performance as the number of iterations increases, with the core
objective being to determine the optimal number of iterations for model convergence. Figure 2B presents the variation of model performance with the
increase in the number of topics, aiming to find the topic count that yields the optimal model performance. Figures 2C, D respectively explore the impact
of changes in model hyperparameters α and β on model performance, with the goal of identifying the optimal values for hyperparameters α and β
that maximize model performance. (A) The number of iterations. (B) The number of tourism spot topics. (C) Hyper-parameter α. (D) Hyper-parameter β.
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Figure 4A illustrates the relationship between the number of
similar users and their similarity for tourists. It can be observed that
when the number of similar users is 8, the average similarity of these
users exceeds 0.9; however, when the number of similar users
increases to 24, the average similarity drops below 0.5. Therefore,
the appropriate upper limit for the number of similar users is set to
24. Figures 4B, C use the model’s RMSE to determine the optimal
number of similar users and the similarity value. The results show
that when the number of similar users is set to 12, the model’s RMSE
value is the lowest at 0.892; simultaneously, setting the similarity to
0.7 yields the best performance in rating prediction, further reducing
the RMSE value to 0.861. Figure 4D compares the performance
differences of the SABTR approach with and without rating sorting.
When the recommendation list length is 10, the precision
(precision) of the SABTR approach with rating sorting is
0.21469, while the precision of the SABTR approach without
rating sorting is 0.19576, which is 9.6% higher for the former.
However, as the recommendation list length increases, the
system’s precision decreases while the recall rate rises. When the
recommendation list length reaches 45, the precision of the SABTR

approach without rating sorting is 0.14675, slightly higher than the
precision of the SABTR approach with rating sorting (0.14923). This
indicates that including attractions with lower ratings in the
recommendation list may reduce recommendation effectiveness.

After determining the optimal parameters for the SABTR
approach, we compared its performance with other baseline
algorithms. In this approach, 90 topics were selected, and the
hyperparameters were set to 0.022 and 0.008, respectively. The
length of the recommendation list was set to 40, with 4 topics
chosen and 10 attractions selected within each topic. We divided the
dataset into a training set and a testing set, where the proportion of
the training set gradually increased from 30% to 90%, and
correspondingly, the testing set proportion decreased from 70%
to 10%. The performance comparison results of these algorithms are
described in Table 1.

The data in Table 1 show that when the data density does not
exceed 50%, the proposed SABTR method outperforms PLSA, Skip-
Gram, and LSA. Especially when the data density is low (such as
30%), the precision of the SABTR algorithm is 22% higher than that
of Skip-Gram. As the data density increases, the performance of

FIGURE 3
Recommendation Strategy of SABTR Approach. Figure 3A illustrates the trend of algorithm performance metrics as the number of themes to which
attractions are categorized varies, with the aim of determining the optimal number of themes for achieving the best algorithm performance. Figures
3B–D further explore how algorithm performance fluctuates with the increase or decrease in the number of selected attractions within each specific
theme, with the goal of identifying the optimal number of attractions per theme to maximize the overall performance of the algorithm. (A) The
number of topic. (B) The length of recommendation list (L). (C) The lentght of recommendation list (L). (D) The lengtth of recommendation list (L).
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both SABTR and the baseline algorithms improves; however, when
the data density exceeds 50%, the precision of Skip-Gram surpasses
that of SABTR, particularly when the data density reaches 90%, at
which point the precision of Skip-Gram reaches 0.2502, an 18%
increase compared to SABTR.

While Skip-Gram, as a word vector model, can find similar
attractions by converting them into distributed vectors and using
vector similarity, this does not necessarily mean it provides a better
service experience for tourists. This is because it tends to find the
most similar attractions, potentially leading tourists into an
information echo chamber and causing interest fatigue. In
contrast, SABTR analyzes the interest topic distribution of
attractions through a topic model, helping to expand tourists’
interests and meet their diverse needs. Especially in cases of
insufficient data (e.g., when data density is 30%), SABTR
performs best, effectively alleviating the cold start problem in
recommendation systems, whereas other algorithms (Skip-Gram,
PLSA, and LSA) exhibit overfitting in recommendations.

When the data density is 90%, the recommendation precision of
the PLSA algorithm is 0.2050, close to that of SABTR (which has a

recommendation precision of 0.2107), indicating that PLSA can also
provide good recommendation performance when there is sufficient
data. In contrast, LSA, due to the negative values in the interest
factors it extracts, cannot effectively cluster attractions and tourists,
performing the worst across four different data densities.

5 Conclusion and future work

In this paper, we propose a tourism recommendation scheme
based on semantic analysis, aimed at recommending suitable
attractions to tourists. The scheme primarily leverages semantic
topic modeling for user clustering and attraction clustering. When a
user expresses a preference for a particular attraction on a travel
service website, other attractions similar to it enter the
recommendation candidate list. Subsequently, the ratings for
these candidate attractions are calculated based on the ratings
given by other users who share similarities with this user. After
ranking the candidate attractions according to their scores, a list of
attractions tailored to the user’s interests is generated and sent to the

FIGURE 4
Parameters of the attraction rating prediction scheme and the ordering of attraction ratings in recommendations. Figure 4A describes the
distribution of average similarity among similar users. Figure 4B explores the impact of the number of similar users on the Root Mean Square Error (RMSE).
Figure 4C analyzes the effect of the similarity between tourists on the Root Mean Square Error (RMSE). Figure 4D compares the performance of the
interest recommendation list generated by the SABTR method with that of a recommendation list without rating information.
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user. Experimental results demonstrate that the proposed scheme
not only improves the accuracy and recall of recommendations but
also saves tourists time in selecting travel resources, thereby
enhancing the user’s service experience.

The method we employ requires the use of tourists’ travel
records and rating data. Given the increasing emphasis on
privacy concerns, future recommendation systems will also place
greater importance on protecting user information. Therefore, in
future work, we plan to adopt a federated learning framework, where
instead of directly using individual user records, gradients provided
by users will be utilized to analyze their interests. This approach
allows us to recommend appropriate attractions while safeguarding
user privacy.
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TABLE 1 Performance comparison between SABTR and baseline algorithms.

Evaluation Metrics Methods Matrix
Density = 30%

Matrix
Density = 50%

Matrix
Density = 70%

Matrix
Density = 90%

Precision SABTR 0.1137 0.1412 0.1871 0.2107

Skip-Gram 0.0927 0.1238 0.2325 0.2502

PLSA 0.0943 0.1134 0.1612 0.2050

LSI 0.0794 0.0986 0.1211 0.1413

Recall SABTR 0.1211 0.1537 0.2045 0.2247

Skip-Gram 0.0836 0.1325 0.2258 0.2487

PLSA 0.1132 0.1224 0.1724 0.2106

LSI 0.0886 0.0971 0.1518 0.1753

F1-measure SABTR 0.1173 0.1471 0.1954 0.2175

Skip-Gram 0.0879 0.1280 0.2291 0.2494

PLSA 0.1028 0.1177 0.1666 0.2078

LSI 0.0984 0.0978 0.1347 0.1565

The bolded values in the table denote the most outstanding results in the performance comparison of different algorithms.
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In the era of big data, the propagation of malicious software poses a significant
threat to corporate data security. To safeguard data assets from the
encroachment of malware, it is essential to conduct a dynamic analysis of
various information propagation behaviors within software. This paper
introduces a dynamic analysis detection method for malicious behavior based
on feature extraction (MBDFE), designed to effectively identify and thwart the
spread of malicious software. The method is divided into three stages: First,
variable-length N-gram algorithms are utilized to extract subsequences of
varying lengths from the sample APl call sequences as continuous dynamic
features. Second, feature selection techniques based on information gain are
employed to identify suitable classification features. Lastly, recurrent neural
networks (RNN) are applied for the classification training and prediction of
diverse software behaviors. Experimental results and analysis demonstrate that
this approach can accurately detect and promptly interrupt the information
dissemination of malicious software when such behavior occurs, thereby
enhancing the precision and timeliness of malware detection.

KEYWORDS

recurrent neural networks, information propagation, feature selection, dynamic
analysis, software network

1 Introduction

In the information age, business data has become the lifeblood of enterprises, and one of
the major risks in business operations is the destruction of commercial data by malicious
software. Today, with the high integration of the Internet of Things, big data, and mobile
Internet, malicious attacks pose an unprecedented threat to corporate data information. For
instance, the “Panda Burning Incense” virus in 2006 infected millions of personal computer
users and enterprise local area networks. The Aurora attack in 2010 led to the theft of
information data frommore than 20 companies worldwide. The ransomware virus attack in
2017 prevented the important servers of hundreds of companies from starting. These
malicious software behaviors have stolen or destroyed corporate data assets, causing
immeasurable losses to businesses. Whether enterprise information systems can be used
normally and safely is an important issue that cannot be ignored. To combat the threat
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posed by the explosive growth of malicious software to corporate
data information systems, researchers have studied the detection of
malicious behavior from different perspectives.

Social science researchers mainly conduct qualitative analysis
in the detection of malicious behavior, analyzing various risk
factors that enterprises face in the context of big data from a
macro perspective [1–5]. Natural science researchers mainly
study the behavior and characteristics of malicious software
through methods such as N-gram, graph theory, and Bayesian
classification [6–11], committing to finding a strategy that can
quickly detect malicious software, thereby strengthening the risk
prevention of corporate data assets. Although these schemes have
improved the detection rate of malicious behavior, there are still
shortcomings. Methods based on fixed-length N-grams struggle
to fully describe the behavior of malicious software. On one hand,
different behaviors of malicious software correspond to different
sequences of API calls. Moreover, the number of API calls varies
as the malicious software performs different operations. On the
other hand, malicious software can evade traditional fixed-length
API N-gram malware detection methods by inserting
independent API calls during execution. Malware detection
systems based on graph theory can detect variants of
malicious software and have a high detection accuracy.
However, these feature extraction methods have limitations.
Typically, there are hundreds or thousands of vertices or edges
in a program’s behavioral call graph. Therefore, constructing a
behavioral call graph is relatively difficult.

Based on an in-depth analysis of existing research results, in this
paper, we proposes a malicious behavior detection method based on
feature extraction(MBDFE), aimed at identifying whether the
behavior of software programs contains malicious elements. The
work of this paper mainly includes the following two aspects:

• This paper innovatively proposes a software feature selection
technique that uses the N-gram algorithm to capture
operation codes during the software execution process and
employs an information gain calculation method to select the
most representative software features. When new software
behavior patterns are detected in the enterprise software
information system, this feature selection technique can
accurately extract the code that reflects its behavioral
characteristics.

• This paper transforms the dynamic analysis of malicious
behavior into a classification problem, inputs the extracted
software feature codes into a recurrent neural network model
for processing, and judges whether the software is malicious
based on the classification results of the model’s software
behavior. This method can efficiently identify and warn of
potential malicious behavior, providing timely security
protection measures for enterprises.

The subsequent chapters of this paper are arranged as follows:
Chapter 2 reviews the previous research work in the relevant field;
Chapter 3 elaborates on the framework and specific implementation
details of the proposed plan; Chapter 4 validates the performance of
the proposed plan through extensive experiments; finally, Chapter
5 summarizes the proposed plan and provides a perspective on
future research directions.

2 Related works

In this section, we review previous research achievements in
malicious behavior detection. The identification of malicious
software behavior is an interdisciplinary research direction, where
both social science and natural science researchers have conducted
in-depth studies on this topic. Social science researchers primarily
employ qualitative analysis to examine the various risk factors of
corporate risk in the context of big data [1–5], and subsequently
propose strategies and countermeasures to address these risks.

Meng Fanfei in literature [1] reviews the development history of
the COBIT framework, the concepts and theories related to IT
governance and risk management, and applies the content of the
COBIT framework to IT governance and enterprise risk
management. The paper analyzes the advantages and feasibility
of using the COBIT framework from multiple perspectives and
proposes some techniques andmethods in the application process to
facilitate better integration of the COBIT framework into IT
governance and risk management by enterprises. Peng Chaoran
et al. [2] point out that the construction of domestic enterprise
information platforms is lagging, and there are significant security
risks in placing the data assets of large enterprises on platforms of
foreign giants. They propose from a strategic height the construction
of independent enterprise information resource platforms,
accounting information standard firewalls, and enterprise
information security regulations.

Liu Shangxi et al. in literature [3] use neural network technology
to identify corporate tax risks. The paper uses the financial data of
578 enterprises as training samples, derives the characteristics of
enterprise risks, and validates them with a sample of 386 enterprises,
achieving a final accuracy of 99.8%. Yang Ling [4] constructs a
corporate operation risk monitoring classification and grading index
system based on a “big data platform”. The system obtains real-time
monitoring indicator data through a data asset collaborative
application platform, realizes real-time risk early warning,
emergency linkage, and closed-loop risk management according
to preset thresholds, and regularly forms a business risk health index
analysis report based on the statistical scores and weights of various
indicators, serving as an important reference for leadership decision-
making. Zhang Lizhe believes that corporate data asset management
faces unprecedented risks in the era of big data. Establishing a
comprehensive and reliable financial risk management system and
strengthening the prevention of corporate financial risks should
become a key research issue for enterprise development. In literature
[5], the author analyzes the problems in the development of
corporate financial risk management systems, discusses the
significance of establishing a sound prevention system, and
proposes suggestions for the construction of a financial risk
management system model.

Natural science researchers primarily utilize statistical models or
machine learning methods [6–11] to study the behaviors and
characteristics of malicious software. They are committed to
finding a strategy that can rapidly detect malicious software,
thereby enhancing the risk prevention of corporate data assets.
Wang Rui et al. in literature [6] combine dynamic taint
propagation analysis and semantic analysis at the behavioral level
to extract key system calls of malicious software, dependencies
between calls, and related instruction information, constructing a
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semantic-based malicious software behavior detection system to
detect variants of malicious software.

Sathyanarayan et al. [7] use the static analysis method N-gram to
extract the frequency of key API calls from programs, and by
leveraging the correlation between malicious software semantics
and API calls, construct behavioral signatures for entire families of
malicious software through statistical comparison. Fang et al. [8] use
dynamic analysis methods to extract API calls, return values,
module names, and their frequencies as behavioral features from
programs, and establish an integrated machine learning algorithm-
based malicious software detection model to detect variants of
malicious software. Park et al. [9] construct a Kernel Object
Behavioral Graph (KOBG) for each piece of malicious software,
and then detect new malicious software by clustering to mine the
family’s minimum weight common supergraph (Weighted
Minimum Common Supergraph, WMinCS).

Ding et al. [10] use dynamic taint technology to construct a system
call dependency graph based on the parameter dependency relationships
between system calls, and then extract a commonbehavioral subgraph as
a signature for each family of malicious software based on themaximum
weight subgraph (maximum weight subgraph, MWS) algorithm to
detect variants of malicious software.

Zhang et al. in [11] propose a deep detection method for
malware based on behavior chains (MALDC). This method
monitors behavior points based on API calls and then constructs
behavior chains using the calling sequences of those behavior points
at runtime. Finally, a deep detection method based on Long Short-
Term Memory (LSTM) networks is used to detect malicious
behavior from the behavior chains.

Li et al. in [12]propose a feature fusion, machine learning-based
method to detect malicious mining code. Extracts multi-dim
features via static and statistical analysis. Uses n-gram, TF-IDF
for text feature vectors, selects best via classifier, and fuses with stats
for model training.

Amer et al. in [13] attempted to create universal behavior
models for malicious and benign processes, leveraging statistical,
contextual, and graph mining features to capture API function
relationships in call sequences. Generated models show behavior
contrast, leading to relational perspective models that characterize
process behaviors. Zhan et al. [14] propose an anomaly detection
method for adversarial robustness, analyzing behavior units to tackle
issues. Behavior units, extracted from related actions executing
intentions, hold key semantic info for local behaviors, boosting
analysis robustness. Using a multi-level DL model, it learns
semantics and context of behavior units to counter local and
broad-scale perturbation attacks. Wong et al. [15] use deep
learning to pinpoint API calls linked to malware techniques in
execution traces. APILI sets up multi-attention between API,
resources, and techniques, using a neural net to incorporate
MITRE ATT&CK, tactics, and procedures. It uses fine-tuned
BERT for embedding and SVD for tech representation, with
design tweaks like layering and noise to boost location accuracy.
Chen et al. [16] propose a method for Windows malware detection
uses deep learning on APIs with added parameters. It rates
parameter sensitivity to malware via rules and clustering, then
tags APIs by sensitivity. APIs are encoded by merging native and
sensitivity embeddings to show security relations. These embeddings
are used to train a deep neural network binary classifier for malware.

Pektaş et al. [17] employ the API call graph to depict the full
spectrum of execution routes accessible to malware while it operates.
This graph’s embedding is converted into a compact numerical
vector feature set for integration into a deep neural network.
Following this, the detection of similarities within each binary
function is efficiently trained and evaluated. Streamlining security
analyst tasks, automating Android malware detection and family
classification is crucial. Prior research leveraged machine learning to
tackle these challenges. Yet, the growing app count poses a need for a
scalable, accurate solution in cybersecurity. Here, Sun et al. in [18]
introduce a method enhancing malware and family detection, also
cutting analysis time.

Tharani et al. [19] introduces a range of feature categories and a
streamlined feature extraction technique for Bitcoin and Ethereum
transaction data, considering their interconnections. As per our
awareness, no prior research has utilized feature engineering for
malicious activity detection. These features’ relevance was confirmed
with eight classifiers: RF, XG, Silas, and neural networks.

Zou et al. [20] aim to merge the precision of graph-based
detection with the scalability of social network analysis for
Android malware. We analyze app function call graphs as social
networks to find central nodes, then measure their intimacy with
sensitive APIs. Our IntDroid tool was tested on a dataset with
3,988 benign and 4,265 malicious samples.

3 The proposed method

3.1 The Overview of MBDFE

The solution proposed in this paper is divided into three steps.
The first step is to use variable-length N-gram to extract software
behavior feature codes; the second step is to reduce the
dimensionality of the feature codes through a feature selection
method - information gain; the third step is to train the weights
of the recurrent neural network with the features. The framework of
the solution is shown in Figure 1:

As shown in Figure 1, the framework of the MBDFE method
proposed in this study consists of three core components: feature
extraction, feature selection, and software behavior recognition.
During the feature extraction phase, the n-gram algorithm is
used to extract the software’s operation codes as feature codes. In
the feature selection phase, the information gain algorithm is
employed to select feature codes with higher information content
as classification features. In the behavior recognition phase, after the
classification features are processed through a recurrent neural
network, the resulting software classification probability
distribution is obtained, with the category having the highest
probability being identified as the actual category of the software.
In the proposed MBDFE algorithm, multiple variables are involved,
the specific meanings of which are detailed in Table 1.

3.2 The extraction of variable-length N-
gram features

The N-Gram model is a statistical probability language model
based on the idea of dividing the content of a text into byte-sized
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sliding windows of length N, forming a sequence of byte segments of
length N. In the field of malicious behavior detection, the N-Gram
algorithm extracts the operation codes from the disassembled files of
software behavior and converts them into a set of bytes. Then,
through a sliding window, a series of n-byte sequences are obtained.
These sequences are the feature codes of the software behavior and
are a feature extraction method based on the dynamic analysis of
malicious software. The variable-length dynamic behavior feature
extraction model breaks down the behavioral call sequence of
malicious software into different N-grams, performs feature
selection on each gram, and then combines them into hyper-

grams of varying lengths as the behavioral features of malicious
software. This approach aims to detect variants of obfuscated
malicious software and improve the accuracy of malicious
software detection. The N-Gram primarily utilizes the Markov
assumption, and in the field of software malicious behavior
detection, the model represents the co-occurrence probability of
each byte code and its preceding feature codes. The model is shown
in the following formula:

p mn|mn−1...m2m1( ) � F m1m2...mn( )
F m1m2...mn−1( ) (1)

FIGURE 1
The overview of MBDFE scheme.
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in the formula, p(mn|mn−1...m2m1) represents the conditional
probability of the operation code mn given the preceding
n−1 items, and F(m1m2...mn) and F(m1m2...mn−1) represent
the frequency of co-occurrence of the operation code
sequence. By continuously changing the value of n, the most
suitable feature code can be determined based on the derived
probability values.

The variable-length N-gram algorithm extracts operation code
slices from each software behavior invocation sequence and uses
these slices to construct a set of feature codes for software behavior,
with the following steps:

• Convert the sample program’s invocation behavior into
hexadecimal format and match the program’s features
against a computer virus database.

• Starting from the first position where a match occurs, use a
sliding window method to continuously compare backward
until no identical features are found. Ensure uniqueness while
trying to keep the feature code as short as possible.

• Count the number, or frequency, of features in this byte
stream that are included in the virus feature database.

• Set a threshold; when the count of a certain feature exceeds the
threshold, add this byte stream to the virus database as a
candidate feature code.

3.3 Feature selection by information gain

The feature set obtained through variable-length N-gram
segmentation represents a collection of behavior sequences for
each software. By training the software’s behavior sequences, it is
possible to determine the category to which the software sequence
belongs (i.e., virus, trojan, ransomware, worm, or normal software
access). In this paper, we use recurrent neural networks to classify
the behavior sequences of software. However, the importance of
features in the software behavior feature vector is not the same in the
classification system. To select representative features and improve
classification efficiency, it is necessary to quantify the importance of
software behavior features. This paper uses Information Gain (IG) to
measure the software behavior features. In Information Gain, the
criterion is how much information the feature can bring to the
classification system; the more information it brings, the more
important the feature is.

In the classification system, when a software behavior feature T
can be composed of multiple classes (for example, registry access
behavior, which could be either normal or trojan behavior), the
calculation of conditional entropy needs to consider all its possible
values. In the software system, the specific value of the software
feature behavior T is set as t. Generally, the values of t are t
(indicating that t occurs) and not t (indicating that t does not

TABLE 1 The variable symbols used in MBDFE scheme.

Variable symbol Definition of symbols

T It represents a certain characteristic behavior of the software

t It represents the value of the characteristic behavior T

H(C) It represents the entropy of the overall characteristic behavior of the software

H(C|T) It represents the conditional entropy of feature T

P(t) It represents the proportion of the presence of software behavior T in the entire sequence of software behaviors

P(Ci | t) It represents the proportion of software sequences containing software behavior T and belonging to class c in the entire software system
containing behavior T behavior sequences

U It represents the weight between the input layer and the hidden layer in a recurrent neural network

V It represents the weight between hidden layers

W It represents the weight between the hidden layer and the output layer

ΔU It represents the gradient of weight U

ΔV It represents the gradient of weight V

ΔW It represents the gradient of weight W

zht It represents the value of the hidden layer at time t

aht It represents the activation value of the hidden layer at time t

zot It represents the value of the output layer at time t

aot It represents the activation value of the output layer at time t

δot It represents the gradient of the output layer at time t

δht It represents the gradient of the hidden layer at time t

lr It represents the learning rate in gradient descent algorithm
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occur). At this point, the conditional entropy of the behavior feature
T is as follows:

H C T|( ) � P t( )H C t|( ) + P �t( )H C �t|( ) (2)
in the formula, P(t) represents the proportion of the presence of
software behavior T in the entire sequence of software behaviors,
and indicates the proportion of software sequences that contain
behavior T and belong to class Ci among all software behavior
sequences in the software system that include behavior T. Similarly,
P(�t) represents the proportion of sequences without behavior T in
the entire sequence of software behaviors, and P(Ci | �t) denotes the
proportion of software behavior sequences that do not contain
behavior T and belong to class Ci among all software behavior
sequences in the software system that do not include behavior T. The
entropy of H(C | t) and H(C | t) shown in the following formula:

H C t|( ) � −∑n
i�1
P Ci t|( )log2 P Ci t|( )

H C �t|( ) � −∑n
i�1
P Ci �t|( )log2 P Ci �t|( )

(3)

The information gain of software behavior feature T is the
difference between the entropy of the entire software behavior
and the conditional entropy of software feature T. The formula is
as follows:

IG T( ) � H C( ) −H C |T( )
� −∑n

i�1
P ci( ). log2 P ci( )

+∑n
i�1
P Ci t|( )log2 P Ci t|( ) +∑n

i�1
P Ci �t|( )log2 P Ci �t|( )

(4)

3.4 Utilizing recurrent neural networks for
malicious behavior detection

Before training a neural network, it is necessary to first randomly
generate the three weights of the neural network: the weight U, the
weight W and the weight V. When the behavioral feature vector is
input into the network, the forward propagation is as shown in the
following formula:

zht � xt · U + aht−1 ·W
aht � tanh xt · U + aht−1 ·W( ) (5)

where zht refers to the value of the hidden layer at time t, aht
represents the activation value of the hidden layer at time t, xt
represents the one-hot vector of the API access list at time t, and
tanh() is the activation function of the hidden layer. zot represents
the value of the output layer at time t, aot represents the activation
value of the output layer at time t, and softmax() is the activation
function of the output layer. The forward propagation formula for
the output layer is as follows:

zot � aht · V
aot � softmax aht · V( ) (6)

In this study, the input of RNN network [21] is the sequence
of API accesses for each software, with the API access sequence

length matching the training time series. After each time step’s
forward propagation calculates the output layer’s activation,
these values are collected into a list. Once the forward
propagation for the entire sequence is complete, the cross-
entropy is used to compute the error between the output
layer’s activations and the true output labels at each time
step. This error is then backpropagated through time to each
layer to compute the gradients, which are essential for updating
the weights. The cross-entropy loss function is expressed as:

Loss � −∑L1
i�1
yt i( )p ln aot i( ) (7)

where L1 is the length of the one-hot vector, yt represents the
category to which the input feature sequence belongs at time t, and
the error of the output layer at each moment can be obtained
through Formula 7. The output layer error can be used to calculate
the gradient about the output layer through the chain rule. Define δot
as the gradient of the output layer at time t, δht as the gradient of the
hidden layer at time t, ∂Losst∂aot

as the gradient of the loss function at
time t on the activation value of the output layer, and ∂aht

∂zht
as the

gradient of the activation value of the hidden layer at time t on the
hidden layer. The gradients of U, V, and W are defined as ΔU , ΔV ,
and ΔW , and are solved as follows:

ΔU � ∂Losst
∂aot

· ∂a
o
t

∂zot
· ∂z

o
t

∂aht
· ∂a

h
t

∂zht
· ∂z

h
t

∂U
+ ∂Losst+1

∂aot+1
· ∂a

o
t+1

∂zot+1
· ∂z
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· ∂z
h
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· ∂a

h
t
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h
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∂U

� δht ·
∂zht
∂U

� δht ·
∂ xt · U + aht−1 ·W( )

∂U
� δht · xt

ΔV � ∂Losst
∂aot

· ∂a
o
t

∂zot
· ∂z
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∂V
� δot ·

∂zot
∂V

� δot ·
∂ aht · V( )

∂V
� δot · aht
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∂W

� δht ·
∂zht
∂U

� δht ·
∂ xt · U + aht−1 ·W( )

∂W
� δht · aht−1

(8)
The weight update of the network is the initial weight updated by

the gradient descent method. Before updating, it is necessary to first
calculate the cumulative update value of the weight gradient. The
initial values of ΔU , ΔV , and ΔW are 0 matrices, and the matrix
dimensions are consistent with the dimensions of U, V, and W.
During each time step of the training feature sequence, ΔU ,ΔV , and
ΔW are accumulated and updated, and the cumulative update
equation is as follows:

ΔU � ΔU + δht · xt

ΔV � ΔV + δot · aht
ΔW � ΔW + δht · aht−1

(9)

When the feature sequence is not yet trained, the three weights
are shared throughout the time sequence training process and will
not be updated. Once the feature sequence of the entire software is
trained, U, V, and W can be updated by the gradient descent
method. The weight update equation is as follows:
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U � U − lrpΔU
V � V − lrpΔV
W � W − lrpΔW

(10)

When a software behavior is running, our proposed scheme can
quickly determine the probability of this software belonging to
various categories based on the sequence vector of software
behavior and the weight vector, taking the category with the
highest probability as the true category of this software, thereby
quickly predicting whether the software has malicious behavior.

4 Experiments

4.1 Dataset

The experimental dataset includes 172 benign executable
programs and 457 malicious software samples (across 4 types of
malware: Trojans, worms, script viruses, and system viruses). All of
these samples are Windows Portable Executable (PE) files, including
formats such as EXE, DLL, OCX, SYS, and COM. The malicious
samples were randomly selected from the malicious software sample
set downloaded from the VX Heaven website, while the benign
samples were collected from clean Windows systems and the school
FTP website as good executable programs.

In order to obtain the behavioral characteristics of these
programs, we selected the open-source dynamic analysis tool
Cuckoo Sandbox [22]. The Cuckoo Sandbox mainly analyzes file
types such as Windows executable files, DLL files, MS Office files,
compressed files, etc. It can automatically analyze the dynamic
behaviors of executable programs, including process behavior,
network behavior, and file behavior. In our experiment, the
architecture of the Cuckoo Sandbox primarily involves
running the main Cuckoo program on the host machine (the
host system is Ubuntu Server 16.10), with multiple guest
machines (the environments required for the execution of
malicious and benign programs are Windows series operating
systems) connected to the host via a virtual network. Each guest
machine has a Cuckoo Agent program that acts as a monitoring
agent. For data storage security, we have connected a workstation
to the Cuckoo host to back up the generated analysis reports and
process data. Additionally, analysis can be conducted remotely
via the internet by accessing the host. The structure of the Cuckoo
Sandbox is shown in Figure 2:

4.2 Experimental evaluation criteria

The experiments in the paper evaluate the performance of the
proposed scheme based on accuracy, recall, and F1-measure. For
malicious software behavior prediction, accuracy refers to the
proportion of predicted malicious samples that are truly
malicious, while recall is the proportion of malicious samples in
the dataset that we correctly identify as malicious through our
scheme. We define TP as the number of positive samples in the
dataset predicted as positive, FN as the number of positive samples
in the dataset predicted as negative, FP as the number of negative
samples predicted as positive, and TN as the number of negative

samples predicted as negative. The evaluation criteria are shown in
the following formulas:

Accuacy � TP

TP + FP

Recall � TP

TP + FN

F1 −measure � 2Accuacy*Recall
Accuacy + Recall

(11)

4.3 Experimental results and analysis

In this experiment, the hardware configuration utilized is as
follows: the central processing unit (CPU) is an Intel Xeon Gold
6234, equipped with 32 GB of memory, a 2 TB hard disk drive, and
an NVIDIA GeForce RTX 3080Ti graphics card. In the experiment,
we divided the dataset into two parts, with 80% as the training set
and 20% as the test set. Regarding the parameter settings for our
scheme, we conducted the following experiments:

For the parameter n in the N-gram scheme, the range of values
from 1 to 5 was tested, and the results are shown in the figure below:

From Figure 3, it can be observed that when the value of n is 4,
the predictive performance is optimal, with the F1-measure of the
scheme reaching 0.8627. However, with each increment of n in the
n-gram scheme, the number of behavior features increases
exponentially, and the time cost also rises. We can see in the
chart that when n increases from 3 to 4, the time cost jumps
from 386.24 s to 589.84 s. Considering that when n is taken as 3,
the F1-measure of the proposed scheme for identifying malicious
behavior reaches 0.8435, which is only about 2% less than the
performance when n is 4, we opt for n to be 3 after a
comprehensive assessment.

To validate the efficiency of the proposed solution, we first
determined the parameters of the model, which consist of four
elements: the number of iterations for the model, the learning rate of
the model, the dimensionality of the hidden layer, and the number of
features. By adjusting the aforementioned parameters, the model’s
mean loss and accuracy also continuously change, as shown
in Figure 4.

From Figure 4A, it can be observed that when the number of
iterations reaches 1800, the mean loss of the model is at its lowest,
indicating that the model has converged at this point. Figures 4B, C
show that when the learning rate is set to 0.04 and the
dimensionality of the hidden layer is 220, the model performs
the best, with a mean loss value of 0.23416. Regarding the
selection of features, we defined the range of feature selection
from 40 to 260, increasing by 20 each time, resulting in a series
of accuracy values as depicted in Figure 4D. It can be seen from the
figure that when the number of feature values is 200, the model’s
performance is optimal, with an accuracy value of 94.27%.When the
number of feature values continues to increase, the model’s
performance remains essentially unchanged.

In terms of performance comparison, we compared our
proposed scheme MBDFE with RNN and Naive Bayes. By
varying the density of the dataset, the algorithm’s running time
and performance also change continuously, as shown in Figure 5:
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From Figure 5B, it can be observed that the running times of the
models vary. MBDFE and RNN require training the weights of the
neural network, while the Bayesian method only needs to calculate
the class probabilities for each feature, thus consuming relatively less
time. MBDFE, as an RNN model based on feature selection, has an

advantage in training time over traditional RNNs. As shown in the
figure, when the data density reaches 80%, MBDFE’s training time is
1813.15 s, compared to 2876.56 s for RNN, saving 36.97% in time.

Examining Figure 5A reveals that when the data density is less
than 50%, MBDFE’s performance is inferior to the Bayesian

FIGURE 2
The structure of cuckoo sandbox.
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FIGURE 3
The Parameter of N-gram. (A) Illustrates the impact of the value of n in n-gram on the performance of the algorithm, and (B) shows the effect of the
value of n in n-gram on the training time of the algorithm.

FIGURE 4
The Parameters of MBDFE. (A) Demonstrates the impact of the number of parameter iterations on algorithm performance, (B) shows the effect of
the learning rate on algorithm performance, (C) illustrates the influence of the hidden layer dimensions on algorithm performance, and (D) presents the
impact of the number of feature selections on algorithm performance.
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classifier. This is because at lower data densities, the weights of the
RNN model within MBDFE are not fully trained, leading to
decreased classification performance. However, once the data
density exceeds 50%, MBDFE’s performance begins to surpass
that of the Bayesian classifier. This is due to the Naive Bayes [23]
model’s assumption of feature independence, which is often not the
case in practice, especially with malicious software behaviors that
tend to be sequential, limiting the performance of the Bayesian
model. In contrast, the RNN in MBDFE can handle sequential data,
resulting in better classification performance after full training.
Particularly at a data density of 80%, MBDFE achieves an
accuracy rate of 94.86%, which is a 13% improvement over the
Bayesian model’s accuracy rate of 84.29%.

5 Conclusion and future work

This paper explores how to reduce the risk of corporate data
assets being compromised by malicious activities and proposes a
machine learning technique based on feature selection to identify
malicious behaviors within software. The technique primarily uses
feature selection algorithms to identify key features of software
operation and applies them to a recurrent neural network
classifier to determine whether the software’s behavior is
malicious. Experimental results show that compared to existing
algorithms, this approach has improved accuracy in identification.

Although the proposed solution in this paper provides some
reference value for malicious behavior detection, no technical
solution can predict all malicious behaviors once and for all.
Malware attackers will continuously change their attack methods,
seeking vulnerabilities in defense systems. Future research should
not only enhance the technology for identifying malicious behaviors
but also formulate corresponding strategies at the management level
based on the development trends of malicious behavior prediction
methods. Our future research direction is to combine the
engineering methods of natural sciences with the management

methods of social sciences to propose an integrated solution for
more effective detection and defense against malicious behaviors.
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In the real world, individuals may become infected with an epidemic after
multiple exposures to the corresponding virus. This occurs because each
individual possesses certain physical defenses and immune capabilities at
the time of exposure to the virus. Repeated exposure to the virus can lead
to a decline in immune competence, consequently resulting in epidemic
infection. The susceptibility of individuals to an epidemic is heterogeneous. We
model this characteristic as the individual heterogeneous infection threshold.
Then, we propose an individual logarithmic-like infection threshold function
on a single-layer complex network to reflect the heterogeneity of individual
susceptibility on infecting the virus and the associated epidemic. Next, we
introduce a partition theory based on the edge and logarithmic-like infection
threshold function to qualitatively analyze the mechanisms of virus infection
and epidemic spreading. Finally, simulation results on Erdő–Rényi (ER) and
scale-free (SF) networks indicate that increasing both the epidemic infection
initial threshold and outbreak threshold, as well as decreasing the virus and
epidemic infection probability, can all effectively suppress epidemic spreading
and epidemic infection outbreak. With an increase in the epidemic infection
outbreak threshold, the increasing pattern of the final epidemic infection scale
transitions from a second-order continuous phase transition to a first-order
discontinuous phase transition. Additionally, degree distribution heterogeneity
also significantly impacts the outbreak and spread of diseases. These findings
provide valuable guidance for the formulation of immunization strategies.

KEYWORDS

epidemic spreading, individual heterogeneous infection threshold, transmission
dynamic, complex network, partition theory

1 Introduction

As early as 1760, Bernoulli proposes the first model for the spread of smallpox,
marking the birth of transmission dynamics [1]. In 2001, Pastor-Satorras and Vespignani
were the first to utilize complex networks to describe transmission pathways and explore
the impact of network topology on epidemic spread, subsequently investigating its
implications on transmission dynamics [2]. This work garners widespread attention
from scholars domestically and internationally, signaling the emergence of complex
network transmission dynamics. Virus infection and epidemic spreading is one of the
primary research subjects within this field. In most real-world networks, common
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phenomena such as the spread of computer viruses and epidemics
are interpreted through the lens of epidemic dynamics on complex
networks [3–5]. The epidemic and infectious disease spreading
not only affects public health but also leads to significant
economic losses.

The study of epidemic spreading on complex networks primarily
focuses on “simple” propagation, where the probability of epidemic
infection remains constant across two consecutive contacts. Scholars
have proposed several classic compartmental models tailored to
different types of diseases, including the susceptible–infectious (SI)
model, the susceptible–infectious–recovered (SIR) model, and the
susceptible–infectious–susceptible (SIS) model [6]. [7] offered new
perspectives for establishing a precise theoretical framework for
spreading dynamics on complex networks by integrating the most
commonly utilized theoretical methods which include mean-field
[8], heterogeneous mean-field, quench mean-field [9], dynamical
message-passing, link percolation, and pairwise approximation.

In the era of big data, we have more opportunities to access
relevant data on human behavioral activities, including social
activity data [10]. This authentic big data allow for a greater
possibility of uncovering the true mechanisms behind epidemic
and disease transmission [11]. Through the analysis of real-world
data, researchers have discovered that human behavioral activities
significantly influence epidemic and disease transmission [12].
Some scholars focus on accurately identifying the epidemic outbreak
thresholds as these thresholds are crucial in many real-world
scenarios. When the number of exposures an individual has to
the virus reaches a certain threshold, the individual may become
infected with the epidemic. The epidemic threshold represents the
critical condition under which a system is in an active outbreak
state [13]. A substantial amount of theoretical research has been
conducted to predict the outbreak thresholds of SIRmodels [14–17].

In theoretical terms, accurately determining the epidemic
infection outbreak thresholds can identify the critical conditions
for the emergence of global large-scale epidemics [18]. It also
significantly impacts the study of critical phenomena, including the
determination of critical exponents [19]. In practical applications,
epidemic infection outbreak thresholds can characterize the
effectiveness of immunization strategies [20] and assist in
identifying the optimal initial transmission source [21].

[22] utilized numerical computations based on the SIR epidemic
model to relatively accurately predict the spread of COVID-19
and other pandemics. [23] employed time-varying networks to
simulate the disease transmission process and proposed the most
effective measures for controlling epidemic spread. [24] investigated
the impact of vaccination on the dynamics of epidemic models,
introducing a novel fractional-order discrete-time SIR epidemic
model aimed at illustrating and quantifying the complex dynamics
of the system. [25] considered the influence of individual and mass
media information dissemination on epidemic spread, exploring
the dynamic interactions between information transmission and
susceptible-exposed-infectious-recovered (SEIR)-based epidemic
spread. Additionally, unlike traditional information transmission,
most current studies on epidemic spreading focus on “simple”
propagation, i.e., a fixed infection threshold, overlooking the
threshold heterogeneity [26–28].

From the factors discussed above, it is recognized that epidemic
infection outbreak thresholds are critical in epidemic spreading,

influencing not only the scale of outbreaks and their critical
conditions but also providing effective guidance for the formulation
of immunization strategies. Traditional studies on viral infection
and epidemic transmission often assume that the probability of
epidemic infection from two consecutive exposures is constant,
suggesting that epidemic transmission lacks memory. Although this
simplification facilitates the analysis of epidemic spread, it does
not accurately reflect reality. In fact, human activities lead to a
certain degree of memory and cumulative effects in the viruses and
epidemic infections. As individuals are repeatedly exposed to the
virus, the likelihood of epidemic infection outbreak increases.

Individuals possess certain physical defenses and immune
capabilities. During initial exposure to the virus, factors such
as the distance between individuals, the distribution of medical
resources like masks, and variations in immune response may
prevent the onset of disease. However, with an increasing number
of viral exposures, individual immunity diminishes, significantly
raising the probability of disease infection. Moreover, repeated
epidemic infections can reduce sensitivity to the virus, leading
to a diminishing marginal effect on the likelihood of developing
the disease. Therefore, the individual susceptibility to infection
epidemic is heterogeneous. Based on this understanding, we
propose an individual heterogeneous infection threshold function,
a logarithmic-like function, to explore the impact of individual
characteristics on sensitivity to the virus and disease.

Based on the aforementioned motivations, we introduce
a generalized SIR model on complex networks and propose
an individual heterogeneous infection threshold function, a
logarithmic-like function, to reflect the heterogeneity of individual
susceptibility on infecting the virus and the associated disease.
Furthermore, a partition theory based on the edge and individual
heterogeneous infection threshold is proposed to theoretically
analyze the dynamic processes of epidemic spreading. Finally,
computer simulation results are presented to validate the findings of
disease transmission, which align with the theoretical analysis. This
study aims to leverage complex networks, computer simulations,
and theoretical analyses to reveal the mechanisms and patterns of
epidemic and disease transmission, thereby providing necessary
theoretical support for early warning and control of epidemics and
public sentiment. The rest of this paper is organized as follows: in
Section 2, we build an epidemic spreadingmodel with the individual
heterogeneous infection threshold on complex networks. Section 3
exhibits an edge partition theory. In Section 4, the experimental
results are discussed. Finally, Section 5 describes the conclusion.

2 Epidemic spreading model with
individual heterogeneity

To investigate the impact of heterogeneity in individual
susceptibility to infection epidemic on epidemic spreading
mechanisms, we first construct two types of single-layer artificial
complex network models, called the Erdő–Rényi (ER) networks
[29] and the scale-free (SF) networks [30], for spreading dynamics.
Each network has N nodes which represent individuals and degree
distribution P(k). The edges depict the interactions between
individuals. We then apply a generalized SIR model, where each
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FIGURE 1
Illustration of the individual heterogeneous infection threshold model.
The symbol x represents APIs of an S-state node, a represents the virus
and epidemic infection initial threshold, and b denotes the epidemic
infection outbreak threshold.

node can exist in one of three potential states: the susceptible state (S-
state), where individuals are at risk of disease infection; the infected
state (I-state), where individuals have contracted the disease and
can spread the corresponding virus to their S-state neighbors; and
the recovered state (R-state), where individuals have recovered from
the infection and are no longer able to transition to any other state
for a certain period of time.

Let the probability of one S-state node successfully being
infected by the virus after coming into contact with its I-state
neighbor node be λ. We introduce the concept of accumulated
received infections (ARIs) to describe the infection accumulative
total number of one S-state node by the virus from its I-state
neighbors. Let n be the ARIs successfully received by the S-state
node. Initially, ni = 0 for the S-state node i, i.e., the virus has not
yet spread within the population. At each time step, each I-state
node transmits the virus to its S-state neighbors with a transmission
probability of λ through the corresponding edge. If an S-state
neighbor, denoted as node i, successfully receives the virus from an
I-state node, the APIs of node i increases by 1, that is, ni→ ni + 1.

To investigate the impact of individual susceptibility
heterogeneity to viruses and epidemic infection, an individual
logarithmic-like infection threshold function, as shown in Figure 1,
is proposed:

y (x,a,b) =
{{{{
{{{{
{

0, 0 ≤ x ≤ a,
ln (x+ 1) − ln (a+ 1)
ln (b+ 1) − ln (a+ 1)

, a < x < b,

1, x ≥ b,

(1)

where a represents the virus and epidemic infection initial threshold,
while b denotes the epidemic infection outbreak threshold. The
difference δ = b− a indicates the interval between the disease
infection threshold outbreak and the initial threshold.

Specifically, a indicates that the S-state node is infected with a
certain number of viruses from its I-state neighbors, indicating the
likelihood of converting to an I-state, i.e., the disease breaks out with
a certain probability. δ denotes the interval length of the disease
spreading probability for the S-state node. b indicates that the S-state

node has received a sufficient quantity of viral infections from its I-
state neighbors tomake disease infection outbreak probability 1, that
is, the probability that the S-state node infects epidemic and converts
to I-state reaches 1. In other words, when the APIs of an S-state node
are equal to or greater than b, the node will inevitably experience an
epidemic infection outbreak and transition to the I-state.

The human body possesses immune capabilities and physical
defenses. As individuals are exposed to the virus more frequently,
the probability of epidemic infection outbreak increases. However,
due to the increasing of APIs, individuals’ sensitivity to the virus
decreases, leading to a diminishing marginal effect of epidemic
infection. Therefore, the logarithmic-like infection threshold
function for individual heterogeneous infection is relevant and
meaningful.

Next, we summarize the process of virus and epidemic spreading
within complex networks. Initially, a proportion ρ0 of nodes is
randomly selected to be infected with the epidemic, while the
remaining nodes are in the S-state. S-state nodes may come into
contact with I-state nodes and have a probability of λ to contract
the virus. As APIs of S-state nodes increase, the probability of
an epidemic infection outbreak is y(x,a,b). For I-state nodes,
recovery occurs with a probability of γ due to factors such as
physical isolation, medical treatment, and immune enhancement,
after which they are not susceptible to reinfection for a certain
period. Ultimately, the epidemic spreading ceases when there are
no longer any infections or diseases present in the network. The
proportion of individuals in the R-state at this point characterizes
the final scale of the epidemic transmission process.

3 The analysis of partition theory
based on edge and individual
heterogeneity

To better investigate the epidemic spreading process, we
develop a partition theory incorporating edge and the epidemic
infection outbreak thresholds to analyze the effect of the individual
heterogeneity on epidemic spreading. In this approach, we assume
that nodes with identical degrees are statistically equivalent. The
variables S(t), I(t), and R(t) are employed to derive the evolution
of epidemic spreading and depict the proportions of nodes in the
S, I, and R states at time t, respectively. When t→∞, R(∞) is
the final proportion of individuals in the complex network who
have ever been infected by epidemic. Therefore, we can express the
relationship as

S (t) + I (t) +R (t) = 1. (2)

Let θ(t) be the probability that an S-state node has not been
infected by the virus through a randomly chosen edge by time t. The
probability that the S-state node i of degree k has q APIs from its
I-state neighbors up to time t is

ϕ(ki,q, t) = C
q
ki
θ(t)ki−q[1− θ (t)]q. (3)

By time t, the S-state node i has been infected q-times virus
from its I-state neighbors. The node i does not experience an disease
infection outbreak and remains in the S-state with the probability
∏q

m=0[1− y(m,a,b)].
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FIGURE 2
In the ER network, the impact of the infection probability λ on the final size R(∞) of the viral and epidemic outbreak with different a and δ. (A) illustrates
the effect of δ on R(∞) when a = 1. (B) Combined effects of a and δ on R(∞). The number of seeds is set to 200. Symbols represent the simulation
results, while the curves depict the theoretical results.

According to the logarithmic threshold function for epidemic
spreading, the probability that an S-state node i has been infected by
the virus q times without experiencing a disease infection outbreak
by time t is

s(ki,q, t) =
∞

∑
q=0

ϕ(ki,q, t)
q

∏
m=0
[1− y (m,a,b)]

=
a

∑
q=0

ϕ(ki,q, t) +
b−1

∑
q=a+1

ϕ(ki,q, t)
q

∏
m=a+1
(1−

ln (m+ 1) − ln (a+ 1)
ln (b+ 1) − ln (a+ 1)

)

=
a

∑
q=0

ϕ(ki,q, t) +
b−1

∑
q=a

ϕ(ki,q, t)
q

∏
m=a+1

ln (b+ 1) − ln (m+ 1)
ln (b+ 1) − ln (a+ 1)

.

(4)

The probability that the APIs of a randomly selected S-state
nodes by time t are less than the corresponding epidemic infection
outbreak threshold is

s (k, t) = ∑
ki

P(ki) s(ki,q, t) . (5)

Therefore, at time t, a randomly selected individual is in S-state,
i.e., the proportion of S-state nodes in the network is

S (t) = (1− ρ0) s (k, t) . (6)

Our goal is to solve for the three terms in Equation 2, specifically
to derive the values of S(t), I(t), and R(t). As indicated from
Equations 3–6, it is necessary to calculate θ(t) in order to obtain the
expression for S(t). Consider the neighbor node j of the I-state node
i. The node j can only be in one of three states: S-state, I-state, or
R-state. Let ψS(t), ψI(t) and ψR(t) represent the probabilities of node
j being in the S-state, I-state, and R-state, respectively. Additionally,
θ(t) can be expressed as

θ (t) = ψS (t) +ψI (t) +ψR (t) . (7)

Since node i is in the S-state, its neighbor j can only likely to
be infected by the virus from the kj − 1 neighbors except node i.
Therefore, the probability of node j being infected by the virus u
times at time t is denoted as

ϕ(kj − 1,u, t) = C
u
kj−1

θ(t)kj−1−u[1− θ (t)]u. (8)
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FIGURE 3
In the ER network, (A) illustrates the influence of the infection probability λ on the final epidemic outbreak size R(∞) when a = 0. (B) depicts the effect
of the epidemic outbreak threshold parameter b on R(∞) under the same condition of a = 0. ρ0 = 0.0001. Symbols represent simulation results, while
curves denote theoretical predictions.

According to the logarithmic threshold function for disease
spreading, the probability that an S-state node j has been infected by
the virus u times without experiencing a disease infection outbreak
by time t is

φ(kj, t) =
∞

∑
u=0

ϕ(kj − 1,u, t)
u

∏
m=0
[1− y (u,a,b)]

=
a

∑
u=0

ϕ(ki − 1,u, t) +
b−1

∑
u=a+1

ϕ(ki − 1,u, t)
u

∏
m=a+1
(1− y (u,a,b))

=
a

∑
u=0

ϕ(ki − 1,u, t) +
b−1

∑
u=a+1

ϕ(ki − 1,u, t)
u

∏
m=a+1

ln (b+ 1) − ln (m+ 1)
ln (b+ 1) − ln (a+ 1)

.

(9)

Let ⟨k⟩ be the average degree of the network, the probability that
node i connects to node jwith degree kj is kjP(kj)/⟨k⟩.Therefore, the
probability that the node i connects to the S-state node jwith degree
kj is

ψS (t) = (1− ρ0)
∑

kj
kjP(kj)φ(kj, t)

⟨k⟩
. (10)

Due to variations in the distance between individuals,
differences in individual immunity, and the protective measures

taken by individuals, after the S-state node i comes into contact with
the I-state node j, the node i has a probability of λ to become infected
by the virus. Thus, the variation in θ(t) can be expressed as

dθ (t)
dt
= −λψI (t) . (11)

The I-state node has a probability of λ to infect its neighbors and
a probability of γ to alter to the R-state. Therefore, the variation in
ψR(t) can be expressed as

dψR (t)
dt
= γ (1− λ)ψI (t) . (12)

Combining Equations 11, 12 and the initial conditions θ(0) = 1
and ψR(0) = 0, we can obtain the evolution of ψR(t):

ψR (t) = γ [1− θ (t)](
1
λ
− 1). (13)

Substituting Equation 10 and Equation 13 into Equation 7, we
obtain

ψA (t) = θ (t) −ψS (t) −ψR (t) = θ (t) − (1− ρ0)
∑

kj
kjP(kj)φ(kj, t)

⟨k⟩

−γ [1− θ (t)](1
λ
− 1).

(14)
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FIGURE 4
Joint effects of the infection probability λ and the epidemic outbreak
threshold parameter b on the final outbreak size R(∞) in an ER
network, with other parameters a = 0 and ρ0 = 0.0001.

Substituting Equation 14 into Equation 11, the evolution of θ(t)
can be rewritten as

dθ (t)
dt
= −λ
{{{{
{{{{
{

θ (t) − (1− ρ0)

∑
kj

kjP(kj)φ(kj, t)

⟨k⟩
− γ [1− θ (t)]( 1

λ
− 1)
}}}}
}}}}
}

= (1− ρ0)λ

∑
kj

kjPX (kj)φ(kj, t)

⟨k⟩
+ γ (1− λ) − [λ+ (1− λ)γ]θ (t) .

(15)

Throughout the network, we have the density variation
of each state

dA (t)
dt
= −

dS (t)
dt
− γA (t) (16)

and

dR (t)
dt
= γA (t) . (17)

Equations 2–6; Equations 15–17 provide a comprehensive
description of the transmission dynamics of viruses and diseases. By
combining and iterating these equations, the density of each state
at arbitrary time step, i.e., the values of S(t), A(t), and R(t), can be
calculated.

As t→∞, there are no I-state nodes, leaving only S-state
nodes and R-state nodes in the network. R(∞) is the epidemic
infection outbreak scale. Let dθ(t)

dt
|t=∞→ 0. The viruses and disease

propagation of the network reaches a steady state. We obtain

θ (∞) =

(1− ρ0)λ∑
kj

kjP(kj)φ(kj,∞)+ ⟨k⟩γ (1− λ)

⟨k⟩γ+ (1− γ)λ⟨k⟩
. (18)

In epidemic spreading, the maximum value of the steady-
state fixed point of Equation 18 is of paramount importance
and is denoted by the critical probability point θc(∞). By

determining when the critical probability point appears, the crucial
conditions under which an epidemic infection outbreak occurs can
be derived by

g[θ (∞),ρ0,q,γ,λ] =
(1− ρ0)λ∑

k
kP (k)φ (k,∞)

⟨k⟩γ+ (1− γ)λ⟨k⟩
+

γ (1− λ)
γ+ (1− γ)λ

− θ (∞)

(19)

and
dg

dθ (∞)
|θc(∞) = 0. (20)

From Equation 20, the critical infection probability can be
calculated as

λc =
γ

ε+ γ− 1
, (21)

where

ε = (1− ρ0)
∑
k
kP (k)φ(kj,∞)|θc(∞)

⟨k⟩
. (22)

Combining Equation 8 and Equation 9, we derive the expression
of

dφ(kj,∞)
dθ(∞)

. Numerically solving Equation 18, Equation 21, and
dφ(kj,∞)
dθ(∞)

, we can obtain the critical value of the virus infection
probability λ.

4 Results and discussions

Our paper focus on numerical experiments and theoretical
analyses conducted on artificial ER networks and SF networks. The
network size is N = 104, with an average network degree of ⟨k⟩ =
10. For I-state nodes, measures such as physical isolation, physical
defense, medication, and immune enhancement are implemented,
so let the recovery probability be γ = 1.0. In ER networks, the
degree distribution of nodes follows the Poisson distribution, i.e.,
P(k) = e−⟨k⟩ ⟨k⟩

k

k!
. In SF networks, the heterogeneity of node degree

distribution is negatively correlated with the degree exponent
v, with the heterogeneity decreasing as the degree exponent v
increases. The degree distribution of nodes follows the power-
law distribution P(k) = ξk−v, where ξ = 1/∑kk

−v. The minimum and
maximum degree are kmin = 4 and kmax ∼ 100, respectively. Our
simulation results are the average value by running the simulation
1,000 times.

We use the relative variance V [31, 32] to illustrate the critical
infection probability and critical conditions. The relative variance is

V = N
⟨R(∞)2⟩ − ⟨R (∞)⟩2

⟨R (∞)⟩
, (23)

where ⟨⋯⟩ represents the ensemble average. The peak values of
the relative variance represent the critical point of global epidemic
spreading.

4.1 The epidemic spreading on the ER
network

Figure 2A indicates that when a = 1, an increase in δ slows down
the spread of the virus and the epidemic infection outbreak. The
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FIGURE 5
Influence of the virus infection probability λ on the final epidemic infection size R(∞) in SF networks with different degree distributions v. Specifically,
(A) v = 2.0 and (B) v = 4.0, with ρ0 = 0.0001 and a = 0.

FIGURE 6
Joint effects of the virus infection probability λ and the epidemic outbreak threshold parameter b on the final epidemic size R(∞) in SF networks. Both
scenarios of global epidemic infection outbreaks and localized epidemic infection outbreaks, as well as continuous and discontinuous phase
transitions, are observed in (A) (v = 2.0) and (B) (v = 4.0). The other parameters are set to a = 0 and ρ0 = 0.0001.

outbreak scale exhibits a first-order discontinuous phase transition.
Figure 2B reveals that for the same δ, when a = 0, the epidemic
outbreak scale corresponds to a second-order continuous phase

transition. As a increases from 0 to 1, there is a significant
suppression of virus transmission and epidemic infection outbreak,
with the final epidemic infection outbreak scale transitioning
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from a second-order continuous phase transition to a first-order
discontinuous phase transition. Similarly, an increase in δ also
mitigates the outbreak of the epidemic. Overall, increasing a and
δ, as well as decreasing λ, can all effectively suppress the epidemic
outbreak. Furthermore, Figures 2C, D display the relative variances
of the theoretical analyses and the critical infection probabilities
corresponding to (a) and (b), respectively. At the critical point, a
phase transition occurs, leading to a global disease infection state.
Our theoretical predictions (lines) align well with the simulation
results (symbols).

Figure 3A shows the influence of the infection probability λ on
the final epidemic outbreak size R(∞) when a = 0. As λ increases,
the virus and disease spread more rapidly through the network,
ultimately leading to a global epidemic infection outbreak. An
increase in the epidemic infection outbreak threshold parameter
b suppresses the occurrence of the disease. When b is small, the
epidemic infection outbreak size exhibits second-order continuous
phase transition. As b increases, the epidemic infection outbreak size
transitions from a second-order continuous phase transition to a
first-order discontinuous phase transition. Figure 3B illustrates the
effect of b on the final epidemic infection outbreak size R(∞) when
a = 0. With increasing b, the epidemic outbreak threshold becomes
significantly higher, greatly reducing the likelihood of an epidemic
outbreak. When λ is small, even a small b can effectively suppress
the outbreak. However, when λ is large, variations in b become
less effective in preventing the outbreak. Therefore, a combined
approach of reducing λ and increasing b is necessary to effectively
suppress the epidemic. Additionally, our theoretical predictions
(lines) align well with the simulation results (symbols).

Figure 4 illustrates the joint effects of the infection probability
λ and the epidemic infection outbreak threshold parameter b on
the final scale of the epidemic outbreak R(∞). As shown in the
figure, with an increase in λ, individuals become more susceptible
to infection, leading to a gradual rise in the number of infected
individuals, ultimately resulting in a global individual infection.
Conversely, as b increases, the epidemic infection threshold
probability decreases, resulting in a reduction in the number
of individuals infected. Additionally, as b increases, a crossover
phenomenon emerges in the trend of the graphical representation.
The parameter space (b,λ) can be divided into two regions. In
Region I, as λ increases, the increasing pattern of R(∞) exhibits
characteristics of a second-order continuous phase transition. In
Region II, as λ increases, the pattern of increase in R(∞) displays
traits of a first-order discontinuous phase transition.

4.2 The epidemic spreading on the SF
network

Figure 5 illustrates the effect of the epidemic infection
probability λ on the final epidemic infection size R(∞) in scale-
free networks characterized by heterogeneous degree distributions.
The vertical subplots utilize the same degree distribution exponent,
with the subplots in the first and second columns corresponding to
v = 2.1 and v = 4, respectively. The initial seed density is set to ρ0 =
0.0001. a = 0. When b is small, R(∞) gradually increases to global
infection as λ increases, exhibiting a second-order continuous phase
transition in the growth pattern of the final epidemic infection

size. However, larger values of b suppress epidemic spreading. On
one hand, epidemic spreading only occurs when λ is sufficiently
high. On the other hand, higher values of b inhibit epidemic global
epidemic infection and spreading. Furthermore, when b is large,
the growth pattern of the final epidemic size displays a weak first-
order discontinuous phase transition. Additionally, increasing the
heterogeneity of the degree distribution (i.e., by using smaller values
of the degree distribution exponent) facilitates disease infection.

Figure 6A, B explores the variation in the final epidemic
infection sizeR(∞) in the epidemic spreading parameter space (λ,b)
with v = 2.0 and v = 4.0, respectively.The initial seed fraction is set to
ρ0 = 0.0001.As the epidemic infection outbreak threshold parameter
b increases, the growth pattern of R(∞) exhibits a crossover phase
transition. The epidemic spreading parameter space (λ,b) is divided
into three regions. In Region I, the epidemic spreads globally and
the growth pattern of R(∞) displays second-order continuous phase
transition characteristics. In Region II, the growth pattern of R(∞)
remains a second-order continuous phase transition; however, the
epidemic spreads locally due to the suppression by b on epidemic
spreading. In Region III, the epidemic spreads locally and the
growth pattern ofR(∞) changes to a first-order discontinuous phase
transition. Comparing (a) and (b), when v is smaller, epidemic
spreading begins with lower values of the virus infection probability
λ and the epidemic outbreak threshold parameter b, but it is
challenging for the epidemic to achieve global spread. However,
when v is larger, the epidemic spreads within the population only
when λ and b exceed certain thresholds. However, under the same
parameters, the weak degree distribution heterogeneity facilitates
the occurrence of global epidemic spreading.

5 Conclusion

This paper considers the heterogeneity of individual
susceptibility to infection epidemic and employs transmission
dynamics to investigate the epidemic spreading process on single-
layer complex networks. First, we propose a logarithmic-like
threshold model and thoroughly examine its validity under the
heterogeneity of individual infection epidemic susceptibility.
Subsequently, we enhance the edge partition theory based on
the individual logarithmic-like threshold function to analyze the
epidemic spreading dynamic process. Through theoretical analysis
and numerical simulations on ER and SF networks, we identify
the factors influencing the scale of disease outbreaks and propose
several strategies for mitigating epidemic spread.
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The system of scientific innovation can be characterized as a complex, multi-
layered network of actors, their products and knowledge elements. Despite
the progress that has been made, a more comprehensive understanding of the
interactions and dynamics of this multi-layered network remains a significant
challenge. This paper constructs a multilayer longitudinal network to abstract
institutions, products and ideas of the scientific system, then identifies patterns
and elucidates the mechanism through which actor collaboration and their
knowledge transmission influence the innovation performance and network
dynamics. Aside from fostering a collaborative network of institutions via co-
authorship, fine-grained knowledge elements are extracted using KeyBERT
from academic papers to build knowledge network layer. Empirical studies
demonstrate that actor collaboration and their unique and diverse ideas have
a positive impact on the performance of the research products. This paper also
presents empirical evidence that the embeddedness of the actors, their ideas and
features of their research products influence the network dynamics. This study
gains a deeper understanding of the driving factors that impact the interactions
and dynamics of the multi-layered scientific networks.

KEYWORDS

scientific innovation, complex network, network dynamics, stochastic actor-oriented
model, collaboration network, knowledge network

1 Introduction

The system of scientific development and innovation can be described as a complex,
self-organizing, and constantly evolving multi-layered network [1]. The rapid accumulation
of digital data on the process, as well as the results of scientific innovation, have made it
possible to model the overall structure of this dynamic network system [2]. Scientists and
institutions draw on knowledge resources from collaboration networks, feeding back into
the new creation, recombination, and transmission of knowledge elements, giving rise to
new theories, methodologies, and technologies, sparking widespread interest in exploring
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network dynamics in this system that involves social,managerial and
economic values [3–5].

Existing research on the patterns and dynamics of the scientific
system modeling started with single-layer complex networks. As
the scientific innovation landscape gradually shifts from individual
to collaborative activities, research on the complex system began
to attract extensive attention from the academic community to a
series of topics such as the properties and structure of collaboration
networks [6–8], collaboration patterns [9, 10] and the formation
and evolution mechanism of collaboration network [11, 12]. These
networks mainly built from the co-author articles, co-applicant
patents or jointly undertaken research projects reflecting the formal
or informal collaborations among individuals, organizations or even
countries, are commonly used to reveal patterns of collaboration and
research behaviors [13–15].

Further research then illustrated that the scientific innovation
system may exist in a multiplex structure state, where its elements
are simultaneously embedded in both collaboration networks and
knowledge networks [16, 17]. The multi-layered network has
been proved to be have an “internetwork effect”, meaning that
changes in one network may affect the utility of the other [18].
Knowledge networks in the existing studies are mainly created via
co-occurrences in the substance or core elements of innovation
products, including keywords of scientific papers [19], IPC codes
of patents [20], topics [21], MeSH terms [22], hashtags [23] and so
on, reflect the research theme, knowledge flow and combinatorial
history in research collaboration.

Although multi-layered network frameworks have been
proposed for describing scientific innovation, existing research has
not yet developed a comprehensive model to measure the nodes and
links within the multiplex structure, including actors, innovative
products, and knowledge elements, nor has it fully understood the
dynamics mechanisms. Research on complex networks of scientific
innovation has been limited to either collaboration networks or
knowledge networks, providing only partial views of the systematic
structure, and inadequate understanding of the network dynamics.
Some prior studies have explored the impact of the properties of
knowledge owned by individuals or institutions on the collaboration
dynamics [24, 25], which are generally discussed in a macro
perspective that also includes economic, geographical, cultural
and other factors. Despite the progress that has been made, a more
comprehensive understanding of the interaction of themulti-layered
networks of scientific innovation, and their network dynamics,
remains a significant challenge.

In response to these challenges, we consider the interactions
between actors, their innovative products and knowledge element
exchanges to reveal how collaboration and knowledge transmission
influence the innovation performance and the network dynamics of
scientific innovation. This paper constructs multilayer longitudinal
networks to abstract institutions, products and ideas of the scientific
system, and then elucidate the interaction mechanism among
different layers by answering two questions: what features from
collaboration and knowledge network affect the innovation product
layer and how the embeddedness of the actors, their ideas and
research outcome influence the network dynamics. From empirical
perspective, H1 Connect academic articles recommendation
database is used to perform a case study in the field of protein
structure research. We collected scientific papers published from

year 2014 to year 2022, which have been recommended by
researchers on H1 Connect with associated scores and opinion
tags. To further enhance this dataset, we integrated information
from the bibliographic database Web of Science. Fine-granular
knowledge elements are then extracted using KeyBERT from
scientific papers to build knowledge networks. These networks
serve as the foundation for identifying patterns of knowledge
combination. We finally employ the stochastic actor-oriented
models to uncover the underlying mechanisms governing network
evolution in the field of protein structure. This comprehensive study
gains a deeper understanding of the driving factors that impact the
interactions and dynamics of the multi-layered scientific networks.

2 Literature review

2.1 Multi-layered networks for scientific
innovation system

The scientific innovation system can be abstracted as an evolving
complex system of diverse basic units of science that are dynamically
linked and coupled. The key research question is how to model
and simulate the system. The large-scale scientific publication
datasets have created new opportunities to model and explore
this system. With the development of complex network theory
and methodology, and also their application in the science of
science, the modelling of scientific innovation system has gradually
shifted from single layer to multi-layers networks. The collaboration
and knowledge networks have always attracted the most attention
from scholars, as collaboration reveals innovative behavior, and
knowledge reflects results. For example, Guan and Liu [16] have
constructed the collaboration networks based on joint assignees of
patents and knowledge networks based on the co-application of
IPC codes in each patent, and accordingly studied the impact of
organizations’ doubly network embeddedness on innovation. Graf
and Kalthaus [26] have distinguished the research network into
three levels: co-authorship at the researcher level, the collaboration
between organizations, and international collaboration between
countries. Luo and Zhang [27] have constituted a multi-network
includes the collaboration network of R&D organizations, the
collaboration network of R&D employees and the knowledge
network. Ba,Mao [28] have investigated how city-level collaboration
and knowledge networks influence innovation in the energy
conservation field.

A rich body of literature concerning the multi-layered networks
of the scientific innovation systemhas revolved around the impact of
network embeddedness on innovation. Existing research have long
recognized that the collaboration and knowledge recombination
could affect innovation performance [29–31]. While network
embeddedness, especially multi-network embeddedness offers a
unique and valuable lens to gain deeper insights into innovation.
Network embeddedness reflects the position of the actor and the
connection to other actors in the network [32], which determines
the ability to gather, integrate and allocate resources. Gonzalez-
Brambila, Veloso [33] have examined how embeddedness in the
collaboration network affects the research output and impact of
scientists. Zhang and Luo [34] have explored the relationship
between innovation and the knowledge network capital (i.e.,
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knowledge combinatorial capacity, knowledge stocks, technological
distance and network efficiency).

In summary, most existing literature focus on dual layers
network to model and analyze the mechanism of the scientific
innovation system. However, prior literature has demonstrated
that the scientific innovation system is the evolving set of actors,
artifacts, and activities (relations) [35]. Drawing on this, multi-
layered networks cover innovation entities (a publication of actors),
innovative products (artifacts), knowledge elements (content of
artifacts) and the relations among them need to be constructed
to better abstract the system. Exploration under this framework
warrants further research as well.

2.2 Network dynamics on scientific
collaboration

Scientific collaboration forms the fundamental nexus of sharing
and connection among actors, which gradually evolves into a
collaboration network as the number of entities and connections
increase. The majority of existing studies focus on investigating
static properties of collaboration networks, such as network
structure [36–38] and tie configuration [39–41]. However, the
nature of scientific collaboration is far from static, with innovative
entities constantly establishing and discontinuing partnerships [42].
An increasing number of scholars start to adopt a dynamic
perspective to investigate network generation and evolution. Many
statistical methods have been applied to network dynamics analysis,
such as stochastic actor-oriented models (SAOMs), exponential
random graph models (ERGMs), multiple regression quadratic
assignment programs (MRQAPs) and so on. Ma, Yang [11] have
used the ERGMs to investigate the formation mechanism of
big data technology collaboration networks. Fronzetti Colladon,
Grippa [43] have applied SAOMs to investigate the dynamics of
knowledge sharing in healthcare and explored factors that are likely
to influence the evolution of idea sharing and advice seeking.
Aalbers and Ma [44] have examined the influence of organizational
relationships complexities to a firms’ technological entry and exit
through SAOMs. Empirical analysis on various scales have proved
the feasibility and rationality of applying statistical methods like
SAOMs to the analysis of the internal mechanism of network
generation and evolution, through which the understanding of
successful scientific collaborations can be further improved.

In the context of scientific innovation system, the dynamic
coupling of units of the actors, innovative products and also
knowledge elements affect the ongoing formation and breaking-
up of ties in the collaboration network. Brennecke and Rank
[45] have proved that different structural features of the firm’s
knowledge stock shape the transfer of advice among inventors.
Parreira, Machado [24] have found that similar scientific structure
could affect the international collaboration. Li, Zhang [46] have
found that technological proximity is one of the key factors
that promote international green technological collaboration.
Meanwhile, the actors’ performance is also closely associated with
their scientific collaboration. Publishing high-quality papers could
increase the academic reputation of the organization and attract
more attention from academia and industry, which will lead to
more academic opportunities and attract more partners [25, 47].

However, innovation performance is rarely included in the research
framework of collaboration network dynamics, which may focus
more on geographical, economic, social, cultural, cognitive and
other macro factors.

2.3 Knowledge elements extraction and
representations

The knowledge base of an innovative actor is widely regarded as
an aggregation of its knowledge elements, while the article keywords
or topics and predefined categorizations, such as IPC codes have
been valid proxies for knowledge elements [28, 48, 49]. Although
these identifiers are intuitive and clear, it is often difficult to grasp
the rich context and semantic information of the text when deeply
analyzing and understanding the micro-knowledge structure at the
institutional or individual level [17]. Based on this, how to effectively
extract knowledge elements from scientific texts becomes the key to
further build knowledge networks.

Methods for extracting terms from unstructured text can
be divided into four categories: statistical methods, clustering-
based methods, graph-based methods, and deep learning methods.
Statistical learningmethods use determinedmathematical functions
to identify words with abnormal frequencies and generally do not
require any information other than word frequency statistics from
corpora.The aimof the clusteringmethods is to cluster the candidate
terms, and then select the most representative terms from each
cluster. The graph based methods represent the document into a
graph, and use the graph ranking method to identify key terms
[50]. Knowledge embedding methods based on deep learning have
become a research focus in recent years for knowledge extraction
from unstructured scientific texts [51]. This kind of method
can make full use of the semantic and contextual information
of words and phrases, and realize the accurate localization of
knowledge elements in text. The unsupervised method KeyBERT
uses BERT embedding to extract keywords that best represent
the underlying text. Due to its focus on relevancy in sentences,
contextual information in scientific texts can be taken into account
when extracting knowledge elements, and the extraction results have
been evidenced to be superior to traditional methods in terms of the
similarity of keywords specified by the author [50].

3 Methodology

In this study, we abstract and model the complex scientific
innovation system with innovative entities (actors), innovative
products (artifacts) and knowledge elements, and the relations
among these nodes. As illustrated in Figure 1, the multi-layered
network consists of three layers of collaboration network,
knowledge network and innovative products. The collaboration
network is established through co-publication relationships
among institutions. Here we select institutions, a population of
individual authors, as the agent of actors, as this scale better
captures the actors’ ownership of knowledge. Scientific papers, as
the main form of innovative products, constitute the innovative
product layer. The knowledge network is constructed based on
the co-occurrence of knowledge elements extracted from the
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FIGURE 1
Framework of the multi-layered networks of modeling interactions of institutions, research papers and knowledge elements.

papers. As shown in Figure 1, each institution may produce a
certain number of papers, and these research outcomes consist
of knowledge elements that constitute institutions’ knowledge
base. The knowledge network and collaboration network are
interconnected through the product layer.

Based on the abstract scientific innovation system, this
study introduces a model of multi-layered network to explore
the interaction and dynamics of scientific innovation. The
methodology is comprised of four parts: (1) the multi-layered
network construction, including the process of knowledge
element extraction and construction of the knowledge
network and collaboration network in which the institutions
embedded; (2) the measurement of the actors’ and their
knowledge elements’ embeddedness characteristics in the multi-
layered network; (3) the investigation about how network
embeddedness characteristics of institutions and their knowledge
affect performance of innovation products; (4) the network
dynamics analysis of the actors in the multi-layered network
using SAOMs.

3.1 Multi-layered network construction

Theknowledge elements of an institution, is the core competitive
resources of innovation activities [52]. It has been proven that
knowledge plays an important role in the dynamic changes of the
cooperative relationship [25, 53]. In this study, we extract fine-
granular knowledge elements using KeyBERT to build knowledge
networks. These networks serve as the foundation for capturing
patterns of knowledge combination, through which the deep

structural and relational features can be intuitively represented
and explored.

Knowledge elements refer to the facts, theories or methods of a
certain topic in scientific or technical research, which are commonly
used to represent the dimensions of knowledge areas [19, 54]. To
capture rich information from scientific papers, we use KeyBERT,
an unsupervised keyword extraction algorithm, to extract the set
of terms that are most semantically representative to the content of
the paper. KeyBERT algorithm relies on BERT pre-trained model
to generate vectors of documents and candidate terms, and extracts
terms by comparing the cosine similarity between them [55], which
enables to select high-quality terms in scientific texts [50]. Since
KeyBERT supports many embedding models, we choose SciBERT
[56], which trained on scientific text, to obtain vector representation
with state-of-the-art performance. Figure 2 shows the process of
knowledge element extraction usingKeyBERT, and the specific steps
are as follows:

Step I: Creating the list of candidate terms: Extract N-grams (n =
1,2) phrases form the document (abstract and title of
papers), and then clean the term lists through exclusion of
stop words.

Step II: Word embedding: Apply SciBERT model to generate
embedded representations of the document and candidate
words in the same vector space.

Step III: Selecting the most representative terms of a document:
Calculate the cosine similarity between the word
embedding vectors and document embedding vector to
extract the top N terms with the highest similarity to
best describe the document content. Considering that
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FIGURE 2
Process of knowledge elements extraction using KeyBERT.

documents of different lengths may contain different
amounts of knowledge, the value of N is determined
according to the length of the document. N is set as 5% of
the document length.

This study constructs the knowledge network based on their co-
occurrence relationships in scientific papers. Knowledge elements
are linked through the combination process of scientific innovation
[57], which forms the knowledge networks over time [19, 58]. Then
following the prior studies [17, 27, 59], institutions are extracted
from the datasets as the actors of generating innovation products,
research papers; and ties are created based on their co-publication
relations to form the collaboration network. Institutions and the
knowledge elements they possess are linked through the jointly
published papers, which form the innovation product layer.

3.2 Characteristics of the multi-layered
network

The aim of our study is to investigate how the embeddedness of
the actors and their knowledge transmission in the scientific system
influence the innovation performance and network dynamics.
This requires capturing the characteristics of institutions and
their knowledge embedded in different layers of the multi-
layered network. Indicators at the knowledge network, collaboration
network and innovative product layer are described in Table 1
respectively.

This study measures the knowledge transmission and
recombination features using four indicators, including diversity,
uniqueness, combinatorial capability and knowledge proximity.
The knowledge diversity and uniqueness stands for the variety
and scarcity of the knowledge devoted to innovation activities
[45]. The combinatorial capability relates to the position of an
institution’s knowledge elements relative to other elements [60],
indicating the capability of accessing new information in the
transmission [61]. In the calculation, the degree centrality of
knowledge represents the feasibility and desirability of combination
with other knowledge elements [27], while structural holes in the
network implies non-redundant combination opportunities and
further inventive capacity [16]. Knowledge proximity refers to

the similarity of knowledge base between different institutions.
Higher knowledge proximity reduces adverse selection risk caused
by information asymmetry problems in the partner selection [53,
62]. In this study, we apply the doc2vec algorithm to generate vectors
and then calculate cosine similarity between knowledge elements to
measure knowledge proximity. In the collaboration network, being
in a central position in the collaboration network allows institutions
to access information and resources more effectively [54]. Due to
the preferential attachment mechanism [3, 63], we apply the degree
centrality to evaluate the direct partners of an institution.

The innovation performance of an institution is measured by
the level of its innovative products. High-quality papers improve the
academic reputation and visibility of the institutions, thus attracting
more collaborators. In this study, we estimate the innovation
performance of institutions using theH1Connect innovation scores
of their published papers. These scores are provided by senior
researchers within the H1 Connect database who contribute their
expertise by reading, reviewing, and recommending research papers
on the platform.

3.3 Regression model

The recombination and transmission of existing knowledge are
essential for institutions to achieve outstanding innovative output
[64, 65]. From a network perspective, features from collaboration
and knowledge network may affect the innovation product
layer. Accordingly, we perform regression analysis of innovation
performance and knowledge and collaboration characteristics.

As the innovation system is evolving, we model the evolution
of collaboration networks and knowledge networks into different
stages according to the publication year of the research papers. In
regression analysis, these stages are seen as multiple time windows.
The multi-layered network is constructed in each time window. All
variables described in Section 3.2 have been calculated at the actor
level and normalized respectively1. We then apply ordinary least

1 The knowledge proximity for regression model is calculated by Pit =

∑j∈Ci cos( v⃗it, v⃗jt)/(n− 1), where n is the number of institutions in

collaboration network at period t.

Frontiers in Physics 05 frontiersin.org156

https://doi.org/10.3389/fphy.2024.1492731
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia et al. 10.3389/fphy.2024.1492731

TABLE 1 Indicators in the multi-layered networks.

Layer Indictor and description Measurement

Knowledge network

knowledge_diversity: the variety in knowledge elements possessed
by the institution

Di = |Ki|
Ki is the set of knowledge elements owned by the institution i

knowledge_uniqueness: the scarcity of the knowledge possessed by
the institution

Ui =
∑s∈Ki

1
Ns

|Ki|
Ns is the number of institutions that own knowledge element s.

knowledge_combinatorial_capability: the combination of degree
centrality and structural holes of the knowledge elements possessed
by the institution

CPi =
∑s∈Ki(d(s)+Ss)

|Ki|

Ss = 2−∑
q
(psq +∑

k
pskpkq)

2

d(s) is the degree centrality of knowledge element s in the knowledge
network; psq +∑

k
pskpkq is the proportion of s’s relations that are

directly or indirectly invested in the connection with q.

knowledge_proximity: the similarity of knowledge elements
between different institutions

P (i, j) = cos(v⃗i, v⃗j)
v⃗i and v⃗j represent the vector of knowledge elements owned by

institution i and j respectively

Collaboration network degree_centrality: the number of institution’s partners in the
collaboration network

DCi = |Wi|
Wi is the set of institutions that collaborate with institution i

Innovative product layer innovation_perf ormance: the innovation level of papers published
by the institution

Si =
∑j∈Piscorej
|Pi|

scorej is the innovation score of paper j, Pi is the set of papers
published by institution i

squares (OLS) model with natural logarithm transformation of the
explained variables for our estimation, the regression function is
shown in Equation 1 2.

ln(Sit) = β0 + β1Dit + β2U it + β3CPit + β4Pit + β5DCit+β6Xit + ui + eit
(1)

Where i identifies institutions in t period, β0 is the intercept
and eit is the error term, Xit is thecontrolvariabels. Individual fixed
effects (ui) ensure the individual heterogeneity can be controlled.
In our sample, organizations show individual differences in other
aspects besides the knowledge dimension and papers published by
institutions may have other underlying qualities that have not been
captured, so it is reasonable to adopt fixed effect regression, which
is also statistically proved by Breusch-Pagan test and Hausman test.
We also employ ordinary least squares (OLS) model with robust
standard errors in the robustness check.

To isolate the effects of knowledge and collaboration features on
innovation performance, additional control variables are considered
in the analysis. One of such variables is the number of disciplines,
computed by the number of unique WoS categories of papers
published by the institution, which may affect the innovation
performance. Besides, we measure the innovation input with the
number of authors involved in papers published by the institution,
which can serve as a proxy for the amount of human resources
involved in the innovation activities [66]. For institution i that

2 Although many indicators are related to network density, the main

dependent and independent variables in the regression are calculated

from the institution’ perspective, hencewe have not included the network

density, as it is a fixed value.

published paper j, the human resources involved from institution
i in paper j is calculated as the total number of authors of paper j
divided by the number of institutions involved.

Finally, we perform an additional analysis by using another
indicator of innovation performance, the average number of
citations, to provide a more comprehensive result. Citation are
widely accepted as ameasure of scientific impact and thus as a partial
aspect of innovation performance. We calculate the additional
indicator by dividing the total citations of papers published by
institution i at time t by the number of papers. The citation data
is from the Web of Science database. We log normalize the average
number of citations of each institution to account for its skewed
distribution.

3.4 Modeling network dynamics

We then model the network dynamics from an actor-oriented
perspective, using stochastic actor-oriented model (SAOM). Actor
layer of the multi-layered network, i.e. the collaboration network,
is composed of a set of cooperation relations that are not
independent of each other, and their relational changes (e.g.,
presence/absence of ties) may be the result of the network structure
characteristics among actors or dyads, which is the endogenous
effect difficult to measure in traditional regression models [67,
68]. SAOM is a statistical approach for modeling the process of
network change with longitudinal network data using econometric
discrete choice models and dynamic Markov models, which is
able to capture endogenous effects related to the network and
effectively deal with multicollinearity problems through built-in
model [67, 69], thus enables us to understand which factors and
dynamics could influence actors’ collaboration from the network
perspective.
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TABLE 2 Variables for SAOMs.

SAOM input Effect Variable

Network structure Collaboration network degree_centrality

Individual
characteristics

Knowledge network

knowledge_diversity

knowledge_uniqueness

knowledge_combinatorial
_capability

Innovation
performance

innovation_per formance

Control variable institution_classi fication3

Proximity Proximity knowledge_proximity

SAOM is an actor-based simulation model where the change of
network ties over time is driven by the actor’s choices in accordance
with a set of goals/preferences [68]. These preferences are modeled
as an “evaluation function” (a linear combination of parameters and
local graph statistics) that the actor seeks to maximize, which is
shown in Equation 2. The model incorporate parameters embedded
in network structure that endogenously influence the probabilities
of tie changes and parameters related to characteristics of actors that
exogenously influence the tie formation or termination [70]. Actors
in the model are viewed as making choices one-at-a-time in mini-
steps to maximize the evaluation function and possible changes can
occur across different time points in sequence. The actor-oriented
formulation also offers an explicit lens to gain a direct interpretation
of parameters in SAOM [69].

f i(β,x) = ∑
k
βkski(x) (2)

where fi(β,x) is the value of the objective function for actor i
depending on the state x of the network, ski(x) represent the effects
that affect the selection of the actor’s connected edge, βk are the
statistical parameter estimation representing the effect.

The objective of using SAOM is to investigate which attributes
characterize and affect the dynamic evolution of collaboration
networks. These attributes include the knowledge dimension
characteristics of institutions, their innovation performance and
position in collaboration network. Table 2 summarizes and explains
the indicators of different types required by the SAOM in this
study. We estimate SAOM using the RSiena library, available in R
statistical software [71].

4 Empirical study

4.1 Data

Our empirical analysis is performed on scientific paper data in
the area of protein structure.With the implementation of theHuman

3 1 for academic institutions or 2 for industrial organizations.

Proteome Project as well as the application of artificial intelligence
in protein structure prediction [72], the field of protein structure
research is characterized by rapid knowledge growth, diverse science
linkages and widely existing collaborations. Our analysis mainly
uses data from two primary sources, namely, (1) scientific papers
and their peer-review information from H1 Connect research
articles recommendation database4and (2) bibliographic data of the
scientific papers from Web of Science (WoS) database5. Our final
sample consists of papers published between 2014 and 2022 in the
field of protein structure recommended in the H1 Connect.

Since innovation activities require sufficient time investment,
and the scientific collaboration could last for three to 5 years [73], we
choose a three-year time window to compare the network evolution
in different periods. We divide the dataset into three periods:
2014–2016, 2017–2019, and 2020–2022, and select institutions that
have co-published papers with other institutions within at least two
periods.We then clean and consolidate the institutions in the dataset
to ensure the standardization and consistency of their names6 and
then distinguish them into two categories—industrial organization
and academic institution—the former is identified by the words
“Ltd” (Limited),“Co” (Company) and so on contained in the name
while the latter is identified by the words “University”, “Institution”,
“School”, “College”, “Faculty” and so on [17]. Besides, since the
keyword extraction in this study is based on abstract, papersmissing
abstract are deleted.

The innovation performance of institutions in this study is
measured by the peer review scores in H1 Connect. The reviewers
are experts who are global opinion leaders in the life sciences and
medicine science. Peer experts give higher scores to papers that
show outstanding innovation and importance, and existing research
has proved that better recommendation scores are associated with
higher performing papers [74].

4.2 Descriptive statistics

Figure 3 visualizes the collaboration networks in three periods,
2014–2016,2017–2019 and 2020–2022, respectively. Institutions
are represented as nodes, whereas co-publishing relations are
represented as ties. The descriptive network statistics are presented
in Table 37. The number of institutions participating in the protein
structure research and their ties increase over three periods. The
average number of collaborators for each institution also increased
from 4.056 to 6.678, while the average path length of the network
decreases from 3.220 to 2.929. This phenomenon indicates the
connections between institutions and the efficiency of information
transmission have been enhanced in the collaboration network
layer. In addition, these networks do not show an obvious change
in their density from the first to the third period, which means

4 Last accessed on 15 January 2024.

5 The citation dataset downloaded on 1 October 2024.

6 Due to the limitations of the data itself, “University of California System”

is listed as a single organization, and majority of records from both Web

of Science and H1 Connect do not differentiate between the universities

within the system.

7 The descriptive network statistics are calculated by Gephi.
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FIGURE 3
Collaboration networks for the periods of: (A) 2014–2016; (B) 2017–2019; (C) 2020–2022.

TABLE 3 Descriptive statistics in the collaboration network’s evolution.

2014–2016 2017–2019 2020–2022

Nodes 108 165 174

Edges 219 423 581

Components 12 9 4

Density 0.038 0.031 0.039

Average degree 4.056 5.127 6.678

Average path length 3.220 3.159 2.929

Average clustering coefficient 0.768 0.671 0.666

that the number of realized linkages grows at a similar rate as the
number of actors.

We then select and create co-occurrence networks of knowledge
elements, as illustrated in Figure 4, where the node size represents

the frequency of the terms. Our visualization reveals several
fundamental research topics in the field of protein structure, such
as “protein structure”, “structure prediction”, “protein interaction”
and so on. Moreover, we also recognize the emergence of some hot

Frontiers in Physics 08 frontiersin.org159

https://doi.org/10.3389/fphy.2024.1492731
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia et al. 10.3389/fphy.2024.1492731

FIGURE 4
Co-occurrence network of the top 100 most frequently used keywords for the periods of: (A) 2014–2016; (B) 2017–2019; (C) 2020–2022.

topics, for example, in the third period, 2020–2022, “coronavirus
sars” and “syndrome coronavirus” have received more attention
and effort. Besides, these snapshots also show the tendency of
increasing and strengthening knowledge linkages in the field of
protein structure.

We compute the number of unique knowledge elements for each
period and find an increasing trend, as shown in Table 4. It describes
the descriptive statistical results of variables in knowledge layer and
innovation performance in the product layer. The mean and median
values of knowledge uniqueness and knowledge diversity have
increased distinctly over three periods, which can be interpreted as
a hint of vibrant innovation and knowledge production activities
in the field of protein structure. Moreover, institutions’ innovation
performance, i.e. the average of innovation scores of papers
published by institutions, also present an increasing trend in the
mean and median values over the three periods, showing the vitality
of high-quality research in the field of protein structure. However,
the increase of standard deviation of innovation performance reveals
that the difference of innovation capability between organizations
expands over time.

4.3 Regression results

We present the results of estimating the regression models in
Equation 1 in Table 5, testing what features from collaboration and
knowledge network affect the innovation product performance.
Model 1 reports the baseline OLS regression results, while Model
2 estimates the OLS regression with cluster-robust standard errors
for robustness checks. In Model 1, the estimated coefficient for
knowledge diversity is positive and significant (β = 0.1240,p <
0.01), indicating that institutions with more diverse knowledge
could produce more outstanding innovation outputs. Meanwhile,
knowledge uniqueness has a significant and positive effect
on innovation performance with estimated coefficients of β =
0.5269 (p < 0.01). This result emphasizes the important role of
unique knowledge resources in innovation. The influence of
knowledge combinatorial capability and proximity on innovation
performance is not significant in our estimation. In addition, the
number of collaborators, i.e. degree centrality, proves instrumental
in improving innovation performance (β = 0.3413,p < 0.01). The
regression results of the control variables show that the number

Frontiers in Physics 09 frontiersin.org160

https://doi.org/10.3389/fphy.2024.1492731
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia et al. 10.3389/fphy.2024.1492731

TABLE 4 Descriptive statistics of variables in knowledge network and innovation performance.

2014–2016 2017–2019 2020–2022

Mean Median S.D. Mean Median S.D. Mean Median S.D.

knowledge_uniqueness 0.0451 0.0357 0.0480 0.0575 0.0519 0.0389 0.0533 0.0476 0.0397

knowledge_diversity 6.7018 8.0000 5.8038 9.0000 9.0000 4.6608 9.4128 9.0000 4.6106

knowledge_combinatorial_capability 0.5149 0.4601 0.3613 0.7752 0.8068 0.3642 0.8774 0.9053 0.3941

knowledge_proximity 0.0143 0.0056 0.0143 0.0074 0.0062 0.0113 0.0079 0.0070 0.0125

innovation_per formance 7.5577 5.0000 8.8986 12.9824 9.4000 11.5729 15.5881 10.3000 20.8938

TABLE 5 OLS results.

Variables Model 1 Model 2

knowledge_diversity 0.1240
∗∗∗

(0.0326) 0.1240
∗∗∗

(0.0376)

knowledge_uniqueness 0.5269
∗∗∗

(0.0296) 0.5296
∗∗∗

(0.0302)

knowledge_combinatorial_capability 0.0411 (0.0363) 0.0411 (0.0384)

knowledge_proximity 0.0227 (0.0217) 0.0227 (0.0214)

degree_centrality 0.3413
∗∗∗

(0.0358) 0.3413
∗∗∗

(0.0428)

number_o f_disciplines -0.0897
∗∗

(0.0353) −0.0897
∗∗∗

(0.0323)

innovation_input 0.0581 (0.0417) 0.0581 (0.0485)

Constant 0.0220 (0.0168) 0.0220
∗∗∗

(0.0018)

N 642 642

Adjusted R2 0.7385 0.8264

Notes: 1. Standard errors in parentheses. 2.∗p < 0.10;∗∗p < 0.05;∗∗∗p < 0.01.

of disciplines may negatively affect the innovation performance
of institutions (β = − 0.0897,p < 0.05), which may be a signal that
participating in too many research fields may lead to the dispersion
of resources and the limitation of knowledge depth, thus detrimental
to further innovation. The results of Model 2 are consistent with
Model 1, confirming the validity of our conclusions.

For an additional analysis, we use average citation counts with
natural logarithm transformation as an alternative measure of
innovation performance, and report the regression results in Table 6.
Model 3 presents the baseline OLS regression results, while
Model 4 estimates the OLS regression with cluster-robust standard
errors for robustness checks. Consist with regression results
using peer-reviewed scores as measure of innovation performance,
knowledge diversity, knowledge uniqueness and degree centrality
in collaboration network have a significant and positive effect on
citation performance inmodel 3 andmodel 4. Moreover, knowledge
combinatorial capability shows a significant and positive influence
on average citation counts, and knowledge proximity positively
affects the citation counts. This suggests that the innovation output
of institutions whose research is more closely aligned with others are

TABLE 6 OLS results using citation as measure of innovation
performance.

Variables Model 3 Model 4

knowledge_diversity 0.0910
∗∗

(0.0433) 0.0910
∗∗

(0.0427)

knowledge_uniqueness 0.3536
∗∗∗

(0.0394) 0.3536
∗∗∗

(0.0372)

knowledge_combinatorial_capability 0.1955
∗∗∗

(0.0483) 0.1955
∗∗∗

(0.0431)

knowledge_proximity 0.0933
∗∗∗

(0.0288) 0.0933
∗∗∗

(0.0330)

degree_centrality 0.3372
∗∗∗

(0.0477) 0.3372
∗∗∗

(0.0507)

number_o f_disciplines −0.0822
∗
(0.0470) −0.0822

∗
(0.0434)

innovation_input 0.1293
∗∗

(0.0555) 0.1293
∗∗

(0.0619)

Constant −0.0186 (0.0223) −0.0186
∗∗∗

(0.0019)

N 642 642

Adjusted R2 0.5641 0.7106

Notes: 1. Standard errors in parentheses. 2.∗p < 0.10;∗∗p < 0.05;∗∗∗p < 0.01.

more likely to gain citations and attentions. For the control variables,
in Models 3 and 4, the number of disciplines has a negative impact
on innovation performance in line with Model 1 and 2, but the
coefficient for innovation input is positive and significant, indicating
the number of scholars participating in innovative activities has
expanded the visibility and impact of the research.

To summarize, it can be concluded that the knowledge diversity
and uniqueness, the degree centrality in the collaboration network
positively affect the institution’s innovative performance measured
by both the peer-reviewed scores and citations. Besides, the
knowledge combinatorial capability and proximity have a positive
impact on citations.

4.4 SAOM results

The SAOM estimation results are presented in Table 7.
Convergence is good for the model, since the overall maximum
convergence ratio is less than 0.25 and all convergence t-ratios
are below 0.1. The estimation of the rate parameters shows that
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TABLE 7 Results of SAOM analysis.

Estimate Standard error

Rate constant r rate (period 1) 8.461 0.897

Rate constant r rate (period 2) 17.552 2.242

Degree (density) −2.046
∗∗∗

0.024

Knowledge proximity −0.279
∗

0.134

Knowledge diversity 0.094
∗∗∗

0.015

Knowledge uniqueness −0.994 1.278

Knowledge combinatorial capability −0.383
∗

0.177

Institution classification −0.859
∗∗∗

0.175

Innovation performance 0.093
∗∗∗

0.011

Notes: 1. † p < 0.10;∗p < 0.05;∗∗p < 0.01;∗∗∗p < 0.001; all coverage t ratios <0.08.2. Overall
maximum convergence ratio 0.09.

the tendency of institutions to change collaboration relations
amplifies over time, from approximately 8.5 opportunities per
organization in Period 1 to around 17.5 opportunities per institution
in Period 2. The coefficient of degree (density) is negative and
significant (β = − 2.046), indicating that institutions with more
collaborators are less inclined to form new ties with others. This
model revels different effects of the knowledge characteristics on
the propensity to collaborate, suggesting that there is a higher
tendency for an institution with more knowledge diversity (β =
0.094) to link with more institutions, while a negative propensity
is found for the institution with more knowledge proximity (β =
− 0.279). This phenomenon may be evidence that diverse and
disparate knowledge is a source of collaboration and innovation
in the field of protein structure. The negative parameter of the
knowledge combinatorial capability (β = − 0.383) reflects that
institutions with higher knowledge combinatorial capability prefer
independent research because the knowledge they own already has
combinatorial experience and potential, in that case, they don't
seem to have a strong incentive in seeking further collaborations.
Besides, the institution classification negatively affects collaboration
(β = − 0.859), suggesting that academic institutions play a more
important role in the evolution of collaboration networks than
industrial organizations. The coefficient of knowledge uniqueness
is not significant. As for innovation performance, it has a positive
and significant effect on collaboration (β = 0.093), which shows that
institutions that already have outstanding innovation outputs are
still willing to establish new collaborative relationship.

We conduct robustness tests by altering the random seeds of
the SAOM (Supplementary Table A1, A2). The random seed plays
a crucial role in the iterations and parameter updates of the SAOM.
If the model has converged to a stable state, different random seeds
will produce similar results, indicating that the model outcomes are
robust [71]. Changing random seeds in our model yields the same
results as the initial findings in Table 7, reinforcing the robustness of
our conclusions.

5 Discussion and conclusion

The scientific innovation is a system can be described as a
multilayer network with complex structure, while more substantial
efforts would be required to model the system and explore its
dynamic mechanisms [2]. This paper constructs a multi-layered
network to model scientific innovation system, in which the
collaboration, innovation products and knowledge elements interact
through the actors’ innovation activities. Building on this, we
analyze how social and knowledge network embeddedness of
actors, and their ideas affects the innovation performance and the
network dynamics.

Our empirical analysis is based on a dataset of research articles
with review scores in the research area of protein structure.
The key findings of our study highlight the positive effects of
knowledge uniqueness, knowledge diversity and the number of
partners of institutions influence the innovation performance of
the research outputs. We also find that, in addition to these
factors, knowledge combinatorial capability and proximity have
a positive impact on citations. Second, this paper also presents
empirical evidence that from a dynamic perspective, the institution’s
innovation performance positively affects the network dynamics,
indicate that institutions with outstanding innovation products
pursue establishing new collaboration and keep active in innovation
activities. Besides, the knowledge diversity has a positive impact in
the dynamics of the network, while the knowledge proximity plays
a negative role, suggesting that actors tend to seek various diverse
and distinct knowledge when choosing partners. These findings do
not fully align with existing research [59, 75]. This may be related to
datasets from different fields that were selected for empirical study.
Emerging areas such as protein structure may have actors and links
in the network are incentives to change, as reflected in our data. In
this situation, institutions with more diverse and distinct knowledge
are more inclined to collaborate with others to increase learning
opportunities and thus achieve possible innovations. These reflect
the heterogeneity of the underlying driving mechanisms of complex
scientific systems and require further exploration and investigation.

Our results also indicate that some of the knowledge
characteristics that promote innovation performance also serve
as catalysts for network dynamics. Collaborations serves as the core
driver of innovation [76, 77] and the organizations’ performance is
relevant to the positions they occupy in the collaboration network
[78]. The knowledge fusion fostered in the multi-layer innovation
network positively affects the actors’ innovation output through
collaboration, and the performance continue to influence the
network dynamics, resulting in the creation of new ideas and
findings. Our empirical results demonstrate that the position of
an institution in the collaboration network fosters innovation,
while their innovation performance reciprocally influences the
evolution of scientific collaboration. This interplay elucidates the
co-evolutionary process occurring between various layers within
the scientific innovation system [4]. These results have direct
implication for both innovation organizations and policymakers
to encourage collaboration and incentivize innovation.

This study makes contributions as follows. It contributes to the
existing literature on scientific innovation system by abstracting
and modeling this system via a multi-layered complex network
covering innovation entities (a population of actors), innovative
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products (artifacts), knowledge elements (content of artifacts)
and the relations among them. Besides, this study enriches the
methods of measuring characteristics of the multi-layered network.
Based on this, we investigate the underlying factors that impact
innovation performance and investigate the mechanism through
which the actor collaboration and their knowledge transmission
in the scientific system influence network dynamics. We provide a
framework for future research to study the patterns and evolutionary
mechanism of scientific innovation systems.

This study also has several limitations. First, we explore
the network dynamics of the scientific innovation system from
an actor-oriented perspective. However, economic and social
factors may also play an important role in it, which is hard
to capture in our data. Second, the underlying mechanisms
governing the scientific innovation system are rather complex and
heterogeneous. This study takes the publication data in the field
of protein structure as an example to shed light on it. This is
an inspiring and meaningful attempt, but the complex scientific
innovation system should be further explored in different contexts in
future work.
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