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Editorial on the Research Topic 
Post-translational modifications in human cancer: pharmacological insights and therapeutic opportunities


Human cancer comprises a diverse and complex group of diseases defined by uncontrolled cell growth and proliferation. Among the key molecular mechanisms driving cancer progression, post-translational modifications (PTMs) of proteins play a pivotal role (Geffen et al. 2023; Li et al. 2023; Dutta and Jain, 2023). PTMs, chemical alterations that occur after protein synthesis, profoundly influence protein function, localization, stability, and activity within cells (Duan et al. 2024; Huang et al. 2022; Zhu et al. 2024). Targeting PTMs through pharmacological interventions represents a promising frontier in cancer therapy. Nevertheless, the successful development of such therapies demands a deep understanding of the specific PTMs involved and their roles in the molecular pathways of distinct cancer types. Moreover, personalized medicine is gaining prominence, with treatments increasingly tailored to the unique PTM signatures and genetic mutations of individual tumors. Unraveling the functional consequences of cancer-specific PTMs is essential for advancing precision-targeted therapeutic strategies. Our Research Topic explored PTMs in human cancer, spanning pharmacological insights to therapeutic opportunities, and featured both review articles and original research.Colorectal cancer remains a formidable global challenge (Biller and Schrag, 2021), and the study by Huang et al. brings fresh insight by spotlighting circRNA hsa_circ_0002238 as a potent oncogenic driver. Through rigorous in vitro and xenograft assays, the authors convincingly link elevated expression to accelerated tumor growth, epithelial-mesenchymal transition, and PI3K/AKT activation, while silencing reverses these hallmarks. Equally notable is the diagnostic promise and sex-specific enrichment in women, hinting at personalised screening strategies. Limitations include single-centre sampling and unanswered mechanistic questions on downstream effectors. Nevertheless, this work enriches our circRNA repertoire and paves the way for biomarker-guided therapies in colorectal cancer patients in clinical practice.
Jiang et al. conduct a comprehensive multi-omics analysis of osteosarcoma, integrating WGCNA-guided transcriptomics with robust experimental validation to enhance prognostic assessment. By spotlighting CHMP4C as the fulcrum of a 15-gene risk signature and elucidating its activation of p-GSK3β/β-catenin signaling, the authors bridge bioinformatics prediction and mechanistic proof. The integrated in vitro and xenograft assays convincingly link CHMP4C overexpression to enhanced proliferation, migration, and tumor growth, while knockdown reverses these traits. This work not only refines patient stratification but also nominates CHMP4C as a druggable node within the Wnt axis, inspiring therapeutic innovation against aggressive osteosarcoma in clinical practice and research.
Li and colleagues utilize a multi-omics strategy to reposition the food-derived dipeptide anserine as a vascular defender against deep-vein thrombosis. Integrating untargeted metabolomics, transcriptomics profiling, endothelial assays, and a vena-cava-ligation rat model, the study delineates anserine’s capacity to temper inflammation, restore nitric-oxide signaling, and extend coagulation times. Mechanistic experiments connect these benefits to MYB-centred PI3K/Akt modulation and CARNMT1-boosted anserine biosynthesis, forming a self-reinforcing metabolic loop. This work elevates anserine from nutraceutical curiosity to druggable lead, broadens the anticoagulant landscape beyond heparins and NOACs, and provides a blueprint for metabolite-guided therapy in thrombotic disease and paves paths for clinical translation.
Luo et al. interweave exercise biology and oncology in a data-rich inquiry that positions glycerophosphoinositol as a molecular switch synchronizing muscle adaptation with colon cancer restraint. Through cross-tissue GSVA, pan-cancer PPI, and methylome mining, they elevate FGA/NOTCH3 crosstalk as an exercise-responsive axis whose mis-wiring forecasts poor COAD prognosis. Wet-lab docking, qPCR, CCK-8, and apoptosis assays confirm that glycerophosphoinositol rewires NOTCH3 signaling, dampening growth while re-educating immune infiltration via PI3K/Akt modulation. By uniting omics, computation, and bench validation, the study reveals a metabolite/inflammation/ECM circuit ripe for biomarker deployment and suggests exercise-mimetic interventions that could personalize colon-cancer prevention and therapy in future precision oncology.
Integrating big-data bioinformatics with experimental validation, Shi et al. spotlight placental growth factor (PIGF) as a workout-responsive driver and drug target in head-and-neck squamous cell carcinoma. Their multi-omic pipeline, TCGA mining, single cell mapping, immune infiltrate deconvolution, and functional assays, links high PIGF to advanced stage, immune remodeling and biology, while silencing PIGF curbs proliferation and colony formation. Equally important, exercise-related gene signatures refine prognostication, hinting that lifestyle cues can inform therapy. This elegant synthesis propels PIGF toward precision oncology trials and underscores the translational dividends of coupling computational discovery with mechanistic validation. The study templates leveraging exercise biology to boldly tame tumor heterogeneity.
Feng et al. present a comprehensive genomic analysis of brain-metastatic lung adenocarcinoma, repositioning NLRP7 from an inflammatory sentinel to a metastasis suppressor and identifying the prostaglandin E antagonist AH-6809 as a promising inhibitor of epithelial-mesenchymal reprogramming. By integrating TCGA/GEO bioinformatics, pan-cancer methylome and ATAC-seq analytics with CCK-8, qPCR, colony formation, and immunofluorescence assays, the authors connect NLRP7 downregulation to EMT activation and show AH-6809 restores apoptosis, dampens SUMO1-mediated modification, and curbs metastatic traits. This elegant bench-to-database synergy refines prognostication, broadens the SUMOylation/EMT therapeutic axis, and offers a realistic route toward future clinical translation against brain-seeking LUAD metastasis, and inspires drug-development pipelines worldwide.
Guo et al. perform a comprehensive, multidimensional analysis of SUMOylation in prostate cancer, identifying NOP58 as a key driver of malignancy. Combining TCGA data, single-cell transcriptomics, spatial mapping, and experimental validation, they demonstrate that NOP58 overexpression is linked to poor survival, reprogrammed DNA repair and Myc signaling, and an immunosuppressive tumor microenvironment. Functionally, silencing NOP58 elevates ROS, triggers apoptosis, and reduces colony formation, while forced expression rescues these effects. Importantly, NOP58 overexpression sensitizes tumors to methotrexate, rapamycin, and sorafenib, positioning it as both a prognostic biomarker and a therapeutic target in SUMO-directed precision oncology for aggressive prostate cancer (Li et al., 2025). Furthermore, Min et al. repurpose the antibiotic paromomycin as an epigenetic therapy for glioblastoma. Bioinformatic analyses across cancers highlight SUMOylation machinery as a survival driver, and molecular docking identifies paromomycin as a potent HDAC1 antagonist. In glioblastoma U-251MG cells, paromomycin suppresses HDAC1-PIAS1 expression, reduces SUMO1 conjugation, inhibits colony formation and migration, and induces apoptosis via caspase-3. The drug also blocks IGF1R nuclear translocation, an effect reversible by trichostatin A, confirming HDAC1 dependence. This work repositions paromomycin as a potential glioblastoma therapeutic and underscores SUMO/HDAC crosstalk as a promising target for future drug development. Additionally, Zhang et al. integrate Mendelian randomization of over 1,400 metabolites with multi-omic cancer analyses to identify 57 metabolites causally linked to pulmonary hypertension (PH) and a 12-gene inflammatory/extracellular matrix signature shared across cancers. Functional assays reveal that omega-3 fatty acids mitigate ROS, suppress IL-6/IL-1β, inhibit SUMO1 nuclear transport, and reduce proliferation in diverse cancer cell lines. This study reframes PH as a metabolically modifiable, cancer-adjacent condition and positions metabolite-guided therapies and SUMOylation metrics as novel precision tools for cardio-oncology (Du et al., 2021; Long et al., 2020).
Li et al. provide the first quantitative synthesis showing that GSTP1 promoter hypermethylation serves as a potent molecular marker for hepatocellular carcinoma. By pooling 1,133 participants across ten studies, they show a six-fold enrichment of methylation in tumors and link the epigenetic silencing to advanced stage, recurrence, and inferior survival. Rigorous subgroup and sensitivity analyses bolster robustness, while moderate heterogeneity highlights avenues for methodological harmonization. The work positions liquid-biopsy assays for GSTP1 methylation as imminent companions to ultrasound and AFP, and argues that demethylating therapies could reactivate cellular detoxification defenses. This meta-analysis sets an actionable agenda for precision HCC screening and treatment.
Zhao et al. present a comprehensive overview of the m6A epitranscriptome in liver cancer, detailing how writers, erasers, and readers orchestrate hepatocarcinogenesis, metastasis, drug resistance, and immune remodeling. By integrating mechanistic studies across HCC, ICC, and hepatoblastoma, the authors clarify contradictory roles of METTL3, FTO, and YTHDF paralogues and spotlight context-specific vulnerabilities. The review’s therapeutic section is especially timely, evaluating FTO, METTL3, and ALKBH5 inhibitors, and proposing m6A-guided immunotherapy combinations. This authoritative synthesis will orient researchers, clinicians, and drug developers, and should catalyze the standardization of sequencing methodologies and accelerate the translation of epigenetic RNA editing into precision hepatology, worldwide patient benefit.
SIRT5 has evolved from a metabolic curiosity to a central regulator of onco-metabolism (Fabbrizi et al., 2023), and Ke et al. provide the most comprehensive roadmap to date. Their review traverses structural biology, NAD+ sensing, desuccinylation circuitry, and the Janus-faced roles of SIRT5 across hepatocarcinoma, lung, renal, and gastrointestinal malignancies. Particularly valuable is the integration of proteomic succinylomes with translational insights into quercetin, cyclic peptides, and MC3138, framing realistic drug-development trajectories. The authors also spotlight unanswered questions, contextual determinants of tumor promotion versus suppression, immune crosstalk, and combinatorial therapy that will chart the next wave of discovery. This authoritative synthesis is poised to advance precision metabolic oncology for both researchers and clinical innovators.
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Liver cancer remains as the third leading cause of cancer-related death globally as of 2020. Despite the significant progress made in the field of liver cancer treatment, there is still a lack of effective therapies in patients with advanced cancer and the molecular mechanisms underlying liver cancer progression remain largely elusive. N6-methyladenosine (m6A) modification, as the most prevalent and abundant internal RNA modification in eukaryotic RNAs, plays an essential role in regulating RNA metabolism including RNA splicing, stability, translation, degradation. To date, there is mounting evidence showing that m6A dysregulation is closely associated with the onset and development of many tumors including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and hepatoblastoma (HB). In this review, we summarize the last research progress regarding the functions of m6A-related regulators in liver cancer and its underlying mechanisms. Additionally, we also discuss the therapeutic applications of m6A-based inhibitors in liver cancer treatment.
Keywords: liver cancer, N6-methyladenosine (m6A) modification, HCC, ICC, HB

1 INTRODUCTION
Liver cancer, a disease starting in the cells lining in the liver tissues, represents as one of the most life-threatening events worldwide (Llovet et al., 2016). Also, liver cancer remains as the third leading cause of cancer-related death globally as of 2020, with an estimated 830,000 individuals died from this disease in 2020 (Sung et al., 2021). A literature published in JAMA Oncology suggested that the number of diagnosed cases of liver cancer increased by 75% globally between 1990 and 2015 (Akinyemiju et al., 2017). Moreover, it has been estimated that, by 2025, more than 1 million individuals will be diagnosed with liver cancer annually (Bray et al., 2018). Despite the significant progress made in the field of liver cancer treatment, there is still lacking of effective therapies in advanced patients and the molecular mechanisms underlying liver cancer progression remain largely elusive, thereby warranting a more in-depth exploration (Vogel et al., 2022). Of note, a large body of research documents a high connectivity of epigenetic dysregulation and cancer development including HCC (Cheng Y. et al., 2019). To date, owing to a fast and wide application of next-generation sequencing (NGS) in epigenetic studies, reversible RNA modifications such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-methyladenosine (m6A) as well as N7-methylguanosine (m7G) emerge as critical players of posttranscriptional gene expression, thus exerting remarkably key roles in regulating diverse cellular processes (Shi H. et al., 2020). Among these modifications, m6A modification has attracted great attention in the past years as a result of its significance in regulating gene expression and dictating cell fate (Ji and Chen, 2012; Hori, 2014). Moreover, there is plenty of evidence linking dysregulated m6A modification with tumorigenesis, including liver cancer (Gao et al., 2021). Consequently, a continuous exploration of the roles and molecular mechanisms of m6A modification may facilitate the development of novel therapeutic approaches against liver cancer. Herein, our paper aimed to summarize the recent advancements related to the functions of m6A-related regulators in liver cancer and its associated mechanisms, thus in hope of offering new insights into the potential implications of m6A modification in the diagnosis and treatment of liver cancer.
2 LIVER CARCINOGENESIS
Liver cancer represents as one of the fastest growing cancer types globally, accounting for 4.7% of the total cancer cases in 2020, and its incidence has gradually increasing in the past decades (Sung et al., 2021). HCC, a type of cancer arising from hepatocytes, constitutes nearly 85% of primary liver cancer. Generally, HCC patients are known to have an unfavorable prognosis, with a 5-year survival rate of 20%–40%. Moreover, patients with advanced HCC show worse clinical outcomes (Yang et al., 2019). ICC, a type of primary liver malignancy that originated from the intrahepatic bile ducts, comprises of 10%–15% of all primary liver malignant tumor. Besides, patients with ICC have the worst prognosis of any tumor arising in the liver, with a five-year overall survival of nearly 9% and a high recurrence rate (Blechacz et al., 2011).
Currently, there is evidence of viral hepatitis, high alcohol consumption, smoking, obesity as well as non-alcoholic fatty liver disease (NAFLD) as risk factors for HCC (El-Serag, 2012; Estes et al., 2018). Of note, chronic hepatitis B virus (HBV) infection is well-recognized as the leading cause of HCC globally, particularly in eastern Asia and Sub-Saharan Africa while hepatitis C virus (HCV) is the major risk factor together with heavy drinking in Western and Japan (Global Burden of Disease Liver Cancer Collaboration et al., 2017). Recently, growing evidence suggests that NAFLD is becoming the fastest growing contributor of HCC worldwide, especially in the USA (Estes et al., 2018). Despite that risk factors for ICC remains elusive, several lines of evidence reveal infectious causes such as liver fluke infection, primary sclerosing cholangitis (PSC), and hepatolithiasis can increase the risk of developing ICC (Bagante et al., 2016).
Currently, our understanding of the pathophysiology of HCC explains only a small part of the big picture as HCC pathophysiology is a complex and multiple process that involves the interplay between a variety of factors including cellular microenvironment, gene mutations, epigenetic modification, and so on (Dhanasekaran et al., 2016). Also, malignant transformation of hepatocytes may arise from a sequence of multiple genomic mutations in cancer driver genes (e.g., TP53, RB1, CCNE1, PTEN and AXIN1), activation of several signal pathways such as Wnt/β-catenin and insulin/IGF-1/IRS-1/MAPK, altered microenvironment, and epigenetic variation, which can explain the high heterogeneity of HCC (Thompson and Monga, 2007; Whittaker et al., 2010; Miamen et al., 2012).
Considerable advances have been made over the past decades in the field of HCC treatment. To date, treatment options for HCC include hepatic resection, liver transplantation, alation, embolization, and systemic therapies (Llovet et al., 2016). Barcelona Clinic Liver Cancer (BCLC) staging system, as the most often utilized HCC staging system, can provide specific therapeutic options, depending on the extent of tumor burden, severity of liver function, and performance status. Briefly, according to the BCLC, HCC is categorized into five groups: very early stage (O), early stage (A), intermediate stage (B), advanced stage (C), as well as terminal stage (D) (Llovet et al., 2021). Of note, an analysis conducted by Richani et al. enrolled 223 HCC patients, and 5% patients were assigned in the very early stage, 35% in the early stage, 35% in the intermediate stage, 17% in the advanced stage and 18% in the terminal stage, based on the BCLC staging system (Richani et al., 2016). Generally, patients with very early-stage or early-stage HCC may benefit from resection, liver transplantation, and local alation (Llovet et al., 2016). The standard recommended treatment of patients with intermediate-stage HCC varies based on liver functions and tumor factors. Given the heterogeneity of intermediate-stage HCC, the staging system categorizes patients into 3 substages: B1, B2 and B3 (Bolondi et al., 2012). Treatment guideline recommends transplant and ablation as the treatment options for patients with stage B1. Patients with substage B2 HCC are the preferred candidates for drug-eluting bead transarterial chemoembolization (DEB-TACE) or hepatic arterial infusion chemotherapy (HAIC), while patients at substage B3 may be the candidates for systemic therapies (Kudo et al., 2015). Advanced HCC patients have very few treatment options and are basically treated with systemic therapies. Sorafenib, an oral inhibitor with the activity against vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor-β (PDGFR-β), became the standard initial treatment for advanced HCC patients (Zhang et al., 2010). Despite that nivolumab, an immunotherapy medication targeting programmed death-1 (PD1), cannot significantly prolong overall survival (OS) compared with sorafenib based on CheckMate 040 study, combination therapy of Atezolizumab (Atez) with bevacizumab (Bev) can provide clinical benefits in patients with unresectable HCC. Therefore, therapy with the combination of Atez and Bev has been utilized as a first-line treatment for advanced HCC (Finn et al., 2021). Although these therapies have substantially increased survival of HCC patients at different stages, there are still a variety of challenges ahead such as drug resistance, disease comorbidities, exorbitant costs and a lack of personalized treatment. As a result, further investigations are needed to address these issues.
3 M6A METHYLATION REGULATORS: WRITERS, ERASERS AND READERS
m6A modification, well-recognized as the most prevalent and abundant internal RNA modification in eukaryotic RNAs, is defined as a reversible and dynamic process involving the installation or removal of a methyl (CH3) group to/from the N6 position of adenine (Chen H. et al., 2022). Previously, RNA m6A mainly occurs within the consensus sequence RRACH (R = A or G, H = A, C, or U), which is enriched in the stop codons and in 3′ untranslated regions of mRNA. Accumulating evidence reports the vital role of m6A modification in regulating RNA metabolism including RNA splicing, stability, translation, degradation and so on (He et al., 2019). In nucleus, 2 catalytic components including the methyltransferases (“writers”) and the demethylases (“erasers”) are responsible for the decoration or removal of RNA m6A methylation (Zaccara et al., 2019). Of note, a class of binding proteins (“readers”) can recognize m6A modified RNAs and therefore dictate RNA fate (Xiao et al., 2016; Shi et al., 2017). Currently, there is mounting evidence showing that m6A dysregulation is closely associated with the onset and development of many tumors together with aberrant expression of m6A regulators, including HCC (Qu et al., 2021).
3.1 Writers
m6A methylation is installed by m6A methyltransferases, mainly consisting of methyltransferase like-3 (METTL3) and METTL14. In addition, the newly identified m6A “writers” include METTL16, Wilms’ tumor 1-associating protein (WTAP), RNA binding motif protein 15 (RBM15/15B), vir-Like m6A methyltransferase associated (VIRMA), METTL5, and zinc-fnger CCCH-type-containing 13 (ZC3H13), Zinc Finger CCHC-Type Containing 4 (ZCCH4) (Wang et al., 2016; Ma et al., 2019).
METTL3, a predominantly enzyme of the methyltransferase complex (MTC), is responsible for the transfer of methyl groups to adenosine bases in RNA (Bokar et al., 1997). METTL14 plays an essential structural role to facilitate catalysis and recognize target RNAs though forming a stable heterodimer together with METTL3 (Wang et al., 2016). WATP, another component in the m6A MTC, functions to initiate and guide the localization of the METTL3-METTL14 heterodimer to the nuclear speckle (Schwartz et al., 2014). Similarly, RBM15/15B have no methyltransferase activity, but they can exert vital roles in targeting m6A to specific RNA sites though interaction with METTL3 and WTAP (Patil et al., 2016). VIRMA, also named as KIAA1429, mediates the preferential m6A methylation in the 3′-UTR and near the stop codon region of mRNAs (Yue et al., 2018). Also, it can associate with cleavage and polyadenylation specificity factor subunit 5 and 6 (CPSF5 and CPSF6) in an RNA-dependent manner, thus affecting alternative polyadenylation. METTL5, a newly identified methyltransferase containing a typical S-adenosyl-l-methionine (SAM)-binding motif, catalyzes methylation of 18S rRNA m6A methylation though the formation of a heterodimer with TRMT112 (van Tran et al., 2019). METTL16 emerges as a novel player in the RNA modification landscape of human cells as its significance in the addition of m6A methylation in U6 small nuclear RNA (snRNA) as well as the MAT2A messenger RNA (Pendleton et al., 2017). Several lines of evidence suggest the additional functions of METTL16 as it may affect mRNA splicing and stability (Mendel et al., 2018). By interacting with WTAP, ZC3H13 acts as a vital regulator of m6A modification as its ability to retain the writer complex in nuclear speckles (Wen et al., 2018). ZCCHC4 installs m6A marker in the 28S rRNAs (Ren et al., 2019). Given the fundamental role of METTL3 in m6A addition process, we mainly discuss the effect of METTL3 in m6A modification.
METTL3 is a major mediator of m6A methylation. Accordingly, knockout of METTL3 in mouse embryonic stem (ES) cells can result in near-complete loss of m6A modification in mRNA. Currently, multiple reports have indicated that METTL3, apart from its m6A methylation activities, can promote the translation of targeted RNAs, either dependent or independent on m6A readers. For instance, independent of m6A readers, METTL3 in human lung cancer can promote translation of a large subset of oncogenic mRNAs though recruiting eukaryotic translation initiation factor 3 subunit h (eIF3h) (Choe et al., 2018). Secondly, METTL3 has been documented to enhance translation by interacting with m6A readers. A study conducted by Wang et al. has shown METTL3 can promote maturation and activation of dendritic cell (DC) via promotion of the translation of CD80, CD40 as well as TLR4 signaling adaptor Tirap mRNA. In-depth study revealed METTL3-mediated translational enhancement of CD40 and CD80 is associated with YTHDF1 (Wang et al., 2019). Over the last decade, METTL3 has emerged as a key regulator in a variety of biological processes such as cell proliferation, cell migration and invasion, cell metabolism, and immune response via regulation of several signaling pathways including PI3K/AKT signaling, Wnt/β-catenin signaling or though shaping the epigenetic landscape. It is worthy of note that METTL3 dysregulation is closely associated with the emergence of various diseases ranging from a variety of malignant tumors to immunological and metabolic diseases (Zeng et al., 2020) (Figure 1). Particularly, there is growing evidence showing a close relationship between METTL3 loss and altered hepatocyte homeostasis and liver development defects. Barajas et al. documented that liver-specific METTL3 knockout (M3LKO) mice exhibit abnormal liver microscopic structure. Moreover, genes involved in circadian rhythm control including BMAL1 and CLOCK are dysregulated (Tang et al., 2023). Besides, hepatic Mettl3 knockout in mice can induce apoptosis and steatosis of hepatocytes, thereby eventually resulting in postnatal lethality (Xu Y. et al., 2022). Together, these studies indicated the significance of METTL3 in hepatocyte homeostasis and liver development.
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3.2 Erasers
The m6A erasers, accounting for the demethylation of m6A in RNAs, include fat mass and obesity-associated (FTO) andα-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5) (Jia et al., 2011; Zheng et al., 2013). Despite that two enzymes are mainly localized in the nucleus, strong evidence suggests that these two proteins function independently of each other on the demethylation.
FTO is the first confirmed RNA demethylase and is expressed at high level in brain and muscle tissues. Although it was first found as an obesity-related gene (Church et al., 2010), numerous subsequent studies led to a conclusion that FTO is a key player in m6A RNA methylation owing to its significance in regulating mRNA processing, maturation and translation. Reports related to FTO function suggest m6A is the bona fide substrate of FTO, whereas there is emerging evidence showing FTO might not preferentially demethylate m6A (Mauer et al., 2017). Of note, Mauer et al. showed an obviously higher demethylation activity of FTO toward N6,2′-O-dimethyladenosine (m6Am) compared with that of m6A (Mauer et al., 2019). Despite the robust effects of FTO on m6Am in cells, FTO has been reported to demethylate a series of RNA modifications such as m6A, m1A, m3U, and m3T. Additionally, Zhang et al. have documented m6A is the most favorable substrate of FTO because the total abundance of m6A is at least 10-fold higher than that of m6Am in mRNAs (Zhang X. et al., 2019).
Notably, FTO has been reported to be frequently overexpressed in a wide range of cancer types, including breast cancer, prostate cancers, pancreatic cancer, leukemia, and so on. There is strong evidence showing that silencing of FTO can suppress tumor growth, potentiate immune-promoting response, and attenuate drug resistance, thereby highlighting the bright prospect of targeting FTO in cancer treatment (Li et al., 2022). Notably, accumulated studies have reported the vital role of FTO in hepatic lipid metabolism. Overexpression of FTO results in triglyceride accumulation in hepatocytes and AAV8-mediated FTO overexpression can promote hepatic steatosis in mice. FTO-induced lipid accumulation involves a mechanism through reducing the level of peroxisome proliferator-activated receptor α (PPARα) (Wei et al., 2022). Additionally, Tang et al. suggested the effects of FTO in modulating lipogenesis are mediated by promoting the levels of lipogenic genes including sterol regulatory element binding transcription factor 1 (SREBF1) and carbohydrate responsive element binding protein (ChREBP). Recently, Bravard et al. (2014) highlighted a novel effect of FTO in controlling leptin action via regulation of STAT3 metabolic actions in liver cells.
ALKBH5, discovered as the second m6A demethylase, is highly expressed in the testis and lung. Unlike FTO, ALKBH5 is found to be only demethylate m6A in single-stranded RNAs (ssRNAs). Accordingly, ALKBH5-deficient mice display impaired fertility resulting from abnormal expression of genes controlling spermatogenesis (Zheng et al., 2013). Apart from spermatogenesis, ALKBH5 has been reported to be involved in a wide spectrum of biological processes, including osteogenic differentiation, brain development, immune response and so on. In addition, altered ALKBH5 expression is closely associated with the onset and progression of various tumors and acts either as a tumor suppressor gene or as an oncogene, based on cancer types (Qu et al., 2022). For instance, ALKBH5 is aberrantly expressed in non-small-cell lung cancer (NSCLC) and its abnormal expression is obviously associated with unfavorable patient’s prognosis. ALKBH5-mediated reduction of RNA m6A levels can stabilize a variety of oncogenic drivers including UBE2C, SOX2 and MYC, thus promoting proliferation and invasion of NSCLC cells (Zhang et al., 2021). By contrast, ALKBH5 functions as a tumor suppressor in pancreatic cancer (PC), as described by a positive correlation between high ALKBH5 expression and improved survival in PC patients. Mechanically, ALKBH5 can induce PER1 expression mediated by YTHDF2, thus eventually suppressing PC progression via activation of ATM-CHK2-P53/CDC25C signaling pathway (Guo et al., 2020) (Figure 1). Specially, ALKBH5 can suppress hepatic stellate cell (HSC) activation and ameliorate liver fibrosis by triggering Patched 1 (PTCH1) activation and decreasing Dynamin-related protein 1 (Drp1) methylation in a m6A dependent fashion (Yang et al., 2022; Wang J. et al., 2023).
3.3 Readers
m6A readers, a class of regulators that function to dictate the fate of targeted RNAs by recognizing and interpreting m6A sites, exert a vital role in regulating RNA metabolism, including RNA splicing, export, degradation and translation. To date, m6A readers identified fall into 3 classes, including YT521-B homology (YTH) domain-containing proteins, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs).
The recognized YTH domain family members can be categorized into 2 subgroups, YTH domain-containing family proteins (YTHDF1/2/3, DF family) and YTH domain-containing proteins (YTHDC1/2, DC family) (Li et al., 2014). Despite the high sequence similarity, accumulating studies have shown that YTHDF1/2/3 exert different functions in gene expression. YTHDF2, as the first recognized and the most extensive studied m6A reader, has been documented to induce the decay of m6A-modified mRNAs partially though recruiting the CCR4-NOT complex via interaction with CNOT1 (Du et al., 2016). Accordingly, germ cell-specific depletion of Ythdf2 in mice results in sperm defects. Mechanically, YTHDF2 is in charge of timely clearance of m6A-decorated transcripts in late spermatogenesis (Qi et al., 2022). YTHDF1, on the other hand, is believed to enhance translation of m6A-containing transcripts by recruiting the translation initiation complex. Also, YTHDF1 facilitates ribosome loading of its targeted RNAs, further highlighting a significance of YTHDF1-assisted translation of m6A-modified RNAs (Wang et al., 2015). YTHDF3 not only facilitates translation through cooperation with YTHDF1 but also, in synergy with YTHDF2, mediates decay of methylated mRNA (Li et al., 2017). There is evidence that unveils the critical role of m6A readers including YTHDF1 and YTHDF2 in the progression of NAFLD. For instance, Peng et al. have reported YTHDF1 can interact with m6A-modified Rubicon transcripts and promote its stability, which in turn block the clearance of lipid droplets (Peng et al., 2022). There is strong evidence linking YTHDC1 with alternative splicing, mRNA export and chromatin modification. YTHDC1 can facilitate the binding of m6A-modified mRNAs to serine and arginine rich splicing factor 3 (SRSF3) and nuclear RNA export factor 1 (NXF1), thus promoting the exportation of m6A-containing RNAs from the nucleus to the cytoplasm (Xiao et al., 2016). Accordingly, silencing of YTHDC1 can result in accumulated methylated mRNA in the nucleus. Apart from abnormal mRNA export, deletion of YTHDC1 can lead to widespread alternative splicing defects. YTHDC2, in contrast with YTHDC1, is both nuclear and cytosolic. Kretschmer et al. has suggested that YTHDC2 can contribute to mRNA degradation by binding 5′-3′ Exoribonuclease 1 (XRN1), whereas other studies reported that it can enhance the translation of targeted mRNA in m6A-dependent fashion owing to containing an RNA helicase domain (Kretschmer et al., 2018).
The proteins of hnRNPs family comprise of hnRNPC, hnRNPG and hnRNPA2B1. These proteins are reported to remodel the secondary structure of targeted mRNA according to a “m6A-switch” mechanism, in which m6A induces RNA unfolding and increases the affinity of hnRNPs to ssRNA (Liu N. et al., 2015). Among them, hnRNPA2B1, acted as an RNA binding protein that exerts a vital role in regulating primary miRNA processing as well as alternative splicing, is highly expressed in a variety of human cancer types (Alarcon et al., 2015). Additionally, hnRNPC and hnRNPG are suggested to play a regulatory in mRNA splicing though processing m6A-containing RNA transcripts. IGF2BPs, as a novel family of m6A-readers, include IGF2BP1, IGF2BP2 and IGF2BP3. There is emerging evidence supporting IGF2BP proteins as RNA stabilizers in m6A-dependent fashion (Huang et al., 2018). However, it remains unclear whether these proteins bind to m6A directly as there are studies both in support of and against this idea. To date, accumulating studies document the crucial role of IGF2BPs-mediated m6A modification in a wide range of pathological conditions, especially cancer due to their ability to dictate mRNA fate. For instance, circular CD44 (circCD44) promotes the progression of triple-negative breast cancer (TNBC) via promotion of the stability of Myc mRNA though binding to IGF2BP2 (Li J. et al., 2021). Also, IGF2BPs have been reported to regulate cancer progression by interacting with m6A writers or erasers (Figure 1). Also, IGF2BP2 is a key regulator for hepatic outgrowth as deletion of IGF2BP2 can suppress cell proliferation (Wu et al., 2020).
4 THE IMPLICATIONS OF M6A REGULATORS IN HCC PROGRESSION
4.1 Writers
Given the crucial role of METLL3 in m6A methylation, the biological functions of METTL3 in the process of cancer including HCC have been widely investigated (Pan et al., 2021). To date, accumulating studies have reported that METTL3 can serve as an oncogene in HCC progression though various mechanisms. In vivo studies found that METTL3 can contribute to HCC tumorigenicity and lung metastasis (Chen et al., 2018). In consistent, METTL3 not only increases the proliferation, migration and invasion of HCC cells but also promotes glycolysis and lipogenesis to facilitate HCC progression (Lin Y. et al., 2020; Zuo et al., 2020). Mechanically, Chen et al. have documented METTL3 can promote HCC progression though activating the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In-depth investigations revealed that the promoting effect of METTL3 on the JAK/STAT pathway is mediated by suppressing Suppressor of Cytokine Signaling 2 (SOCS2), a suppressor of the JAK/STAT pathway, in an m6A-YTHDH2-dependent fashion (Chen et al., 2018). Also, METTL3 has been demonstrated to inhibit RAD52 Motif Containing 1 (RDM1) mRNA expression in an m6A-dependent manner, thereby ultimately promoting the growth of HCC cells via repression of p53 signaling pathway (Chen S. L. et al., 2020). Li et al. suggested ubiquitin specific peptidase 7 (USP7) accounts for the oncogenic role of METTL3 (Li Y. et al., 2021). Recently, Chen et al. documented BMI1 and RNF2, two crucial elements of the polycomb repressive complex 1 (PRC1), are direct targets of METTL3. Deletion of YTHDF1 remarkably decreases the expression of BMI1 and RNF2, thereby showing METTL3 facilitates HCC progression though m6A methylation of BMI1 and RNF2 in a YTHDF1-dependent mechanism (Chen W. et al., 2022). Besides, METTL3 serves as a promoting element in the epithelial-mesenchymal transition (EMT) process in HCC by enhancing the translation of Snail mRNA via an m6A-YTHDF1 fashion (Lin et al., 2019). Additionally, several mechanisms concerning the regulatory role of METTL3 in metabolic rewiring of HCC have been discovered. For instance, overexpressing METTL3 has been reported to induce glycolysis of HCC cells via induction of hepatitis B X-interacting protein (HBXIP) expression, enhancement of hypoxia-inducible factor-1 alpha (HIF-1α) level, as well as activation of mTORC1 signaling pathway (Lin Y. et al., 2020; Yang et al., 2021). Moreover, high METTL3 expression increases the stability of long intergenic non-protein coding RNA 958 (LINC00958) and promotes its expression, thus eventually contributing to a more activated lipogenic phenotype by increasing HDGF expression via inhibition of the interaction between miR-3619-5p and HDGF (Zuo et al., 2020). Clinically, patients with a relatively low METTL3 expression exhibit a favorable prognosis than those with high METTL3 expression. Taken together, METTL3 may serve as a promising therapeutic target for HCC treatment. Apart from the HCC-promoting effect, METTL3 has been reported to be closely associated with sorafenib resistance in chemotherapy of advanced HCC patients, described as a reduced expression of METTL3 in sorafenib-resistance HCC. Mechanistically, METTL3 deletion decreases the transcription efficiency of Forkhead box O3 (FOXO3) via a YTHDF1-dependent fashion and thereby promotes autophagy, a crucial process in multidrug resistance in chemotherapy of cancer, thus ultimately resulting in sorafenib resistance (Lin Z. et al., 2020). Given the crucial roles of METTL3 in the progression and drug resistance in HCC, more efforts are required to disclose its functions and the relevant mechanisms in HCC. In contrast, the roles of METTL14 in HCC are controversial. For instance, Ma et al., suggested METTL14 serves as a tumor suppressor in HCC progression. Moreover, METTL14 is remarkably decreased in HCC tissues and acts as a prognostic factor for tumor recurrence in HCC. Consistently, METTL14 suppresses HCC metastasis though enhancing the recognition of pri-miR126 by DGCR8, thus eventually increasing the expression of miR-126 (Ma et al., 2017). Also, Shi et al. reported METTL14 inhibits the invasion of HCC via modulation of the EGFR/PI3K/AKT signaling pathway (Shi Y. et al., 2020). However, Chen et al., suggested the expression of METTL14 is not obviously reduced in HCC (Chen et al., 2018). Of note, they also found a tumor promoting effect of METTL14 in the proliferation and migration of liver cancer cells. Owing to the contradictory findings of METTL14 in previous studies of HCC, Zhang et al., analyzed HCC tissues and paired adjacent samples in multiple microarray datasets. Although the reasons for these contradictions remain as an open question, they indicated the paradoxical expression patterns of METTL14 in HCC samples may be ascribed to the heterogeneity of HCC samples. In addition, the difference in HCC cells, the versatility of METTL3-METTL14 heterocomplex, as well as m6A-independent manner might lead to the contradictory results of the functions of METTL14 on HCC metastasis (Zhang B. H. et al., 2019).
WTAP is highly expressed in HCC samples and is closely associated with unfavorable prognosis of HCC. Similarly, Duan et al., found that patients with a relatively high WTAP expression suffer worse recurrence-free survival (RFS) in HBV-positive Asian small HCC patients (Duan et al., 2022). In consistent, both in vitro and in vivo studies supported an oncogenic role of WTAP in HCC progression. Mechanistically, deletion of WTAP can result in G2/M arrest in HCC in a p21/p27-dependent fashion with the involvement of ETS proto-oncogene 1 (ETS1) (Chen et al., 2019). Second, Chen et al. reported WTAP promotes HCC carcinogenesis by altering the m6A methylation of CircCMTM3, thus suppressing HCC ferroptosis (Chen S. et al., 2022). KIAA1429 is also highly expressed in HCC tissues, and high expression of KIAA1429 indicates the poor outcome of HCC patients. First, Cheng et al. suggested that the oncogenic role of KIAA1429 is mediated by inhibiting inhibitor of DNA binding 2 (ID2) though upregulating m6A-modified ID2 transcripts (Cheng X. et al., 2019). Second, Liu et al. found that KIAA1429 could affect pre-mRNA splicing of cancer-associated genes. Third, KIAA1429 promotes EMT process in sorafenib-resistant HCC in an m6A-dependent manner (Kuang et al., 2023). METTL16 is elevated in HCC tissues and high expression of METTL16 is closely associated with unfavorable prognosis of HCC patients. In consistent, METTL16 can serve as a promoter in the growth and metastasis of HCC. In-depth exploration indicated METTL16 promotes HCC progression via downregulation of lncRNA RAB11B-AS1 though inducing m6A methylation (Dai et al., 2022) (Figure 2).
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4.2 Erasers
To date, the expression and regulatory roles of FTO in HCC are perplexing. Ma et al. reported an obviously decreased expression of FTO in HCC tissues (Ma et al., 2017), whereas Li et al. (2019) suggested that FTO is highly expressed in HCC tissues and cells and can serve as a prognostic marker in HCC individuals. In addition, they suggested that FTO can promote HCC carcinogenesis by inducing the demethylation of pyruvate kinase M2 (PKM2), a key enzyme of glycolysis. In contrast, Liu et al. documented that silent information regulator 1 (SIRT1) acts as an oncogene by inhibiting FTO expression via RANBP2-mediated SUMOylation. Furthermore, silencing of FTO increases the m6A-modified Guanine nucleotide-binding protein G (o) subunit alpha (GNAO1) transcripts and thereby downregulates its expression, thus promoting HCC progression (Liu X. et al., 2020). Similarly, Mittenbuhler et al. (2020) showed a protective role of FTO in chemically-induced HCC tumorigenesis and the tumor-suppressing effect of FTO might be ascribed to the decreased CUL4A protein expression. Third, Liu et al. also proposed FTO serves as a tumor suppressor in HCC development, described as a dramatically decreased FTO expression in HCC tissues and a significant lower in cell proliferation and invasion capability following overexpression of FTO. ALKBH5 is dramatically decreased in HCC tissue samples and a lower ALKBH5 expression implies poor outcomes of HCC patients (Chen Y. et al., 2020). In consistent, high expression of ALKBH5 can restrain HCC metastasis, thus suggesting a tumor-suppressive function of ALKBH5 in HCC progression. Additionally, LINC02551 is negatively regulated by ALKBH5 in an m6A-dependent fashion. Functionally, LINC02551 acts as a tumor-promoting factor though suppressing the interaction between DDX24 and a E3 ligase TRIM27, thus promoting degradation of DDX24 (Zhang et al., 2022). Lastly, Wang et al. revealed ALKBH5 can reduce progestin and adipoQ receptor 4 (PAQR4) expression in an m6A-IGF2BP1 dependent manner, thereby suppressing the PI3K/AKT pathway activity and ultimately promoting HCC progression (Wang W. et al., 2023). Of note, cIARS positively regulates sorafenib-induced autophagy and ferritinophagy via repression of the ALKBH5-mediated autophagy inhibition (Liu Z. et al., 2020).
4.3 Readers
Accumulating studies display strong evidence linking m6A readers with HCC tumorigenesis. YTHDF1 is highly expressed in HCC tissue samples and closely correlated with HCC grade (Zhao et al., 2018). Similarly, YTHDF1 serves as an oncogene in HCC progression, described as a decreased HCC cell proliferation and metastasis resulting from deletion of YTHDF1. Functionally, YTHDF1 can activate the PI3K/AKT/mTOR signaling pathway, thereby contributing to HCC progression (Luo et al., 2021). Additionally, Wang et al. found HIF-1α can promote YTHDF1 transcription under hypoxic conditions. In-depth exploration revealed that YTHDF1 facilitates autophagy-related malignancy of HCC though promoting translation of ATG2A and ATG14 in an m6A-dependent fashion (Li Q. et al., 2021). Currently, the regulatory roles of YTHDF2 are contradictory. For instance, Zhang et al. documented that loss of YTHDF2 can impair the liver cancer stem cell (CSC) phenotype and inhibit cancer metastasis though decreasing the m6A methylation of OCT4 transcript, thereby showing YTHDF2 can act as a major oncogene driver of HCC (Zhang et al., 2020). Moreover, YTHDF2 O-GlcNAcylation is reported to be obviously upregulated in HBV-associated HCC tissues. O-GlcNAcylation of YTHDF2 facilitates HBV-related HCC progression via promotion of the stability of MCM2 and MCM5 transcripts (Yang et al., 2023). In contrast, YTHDF2 might serve as a tumor suppressor in HCC development, as two studies provided evidence for hypoxia-mediated YTHDF2 reduction. The former study showed YTHDF2 can suppress cell proliferation via promotion of the degradation of epidermal growth factor receptor (EGFR) mRNA in HCC (Zhong et al., 2019). In addition, Hou et al. found that deletion of YTHDF2 can fuel inflammation and vascular reconstruction. Functionally, YTHDF2 destabilizes m6A-modified interleukin 11 (IL11) and serpin family E member 2 (SERPINE2) mRNAs, which contributes to the inflammation-mediated malignancy (Hou et al., 2019). Zhou et al. and Guo et al. suggested a tumor-promoting effect of YTHDF3 in HCC. The former study revealed a dramatically increased YTHDF3 expression in HCC tissue samples and loss of YTHDF3 can lead to a decrease of the growth and metastasis of HCC by inducing phosphofructokinase PFKL expression in an m6A-dependent fashion (Zhou et al., 2022). Besides, lysine-specific demethylase 5B (KDM5B) facilitates HCC progress via modulation of miR-448/YTHDF3/ITGA6 axis (Guo et al., 2021). YTHDC1 is remarkably overexpressed in HCC tissue samples. In accordance, high expression of YTHDC1 indicates a poor survival of HCC patients. Mechanistically, YTHDC1 can favor the cytoplasmic output of m6A-modified circHPS5, which can serve as a miR-370 sponge to modulate HMGA2 expression, thereby accelerating HCC tumorigenesis (Rong et al., 2021). Furthermore, YTHDC1 facilitates the back splicing and biogenesis of circ-ARL3 in an m6A-dependent fashion, which in turn promotes HBV-associated HCC progression by sponging miR-1305 (Rao et al., 2021).
There is strong evidence linking IGFBPs with HCC carcinogenesis (Lin et al., 2021). To date, the expression pattern of IGFBP-1 in HCC specimens is controversial, showing either a higher expression of IGFBP-1 in HCC tissues by Gutschner et al. or a decreased mRNA level of IGFBP-1 in HCC specimens. In line with contradictory expression pattern, studies concerning the role of IGFBP-1 in regulating malignant behaviors of HCC have also yielded contrasting results. There is evidence providing that the oncogenic effect of IGFBP-1 is ascribed to its mRNA processing capabilities as it can stabilize c-Myc transcripts (Huang et al., 2018). Also, IGF2BP1 induces SRF expression via an m6A-dependent manner, thus favoring HCC cell proliferation and invasion (Muller et al., 2019). Conversely, IGF2BP1 has been documented to decrease the potential of HCC cells to induce lymphangiogenesis (Geis et al., 2015). IGF2BP2 is overexpressed in HCC tissues and is positively associated with worse histological grade of HCC. Functionally, Liu et al. reported downregulated AKT and ERK pathways contribute to miR-216b-mediated suppression of HCC tumorigenesis (Liu F. Y. et al., 2015). Of note, studies regarding the regulatory roles of IGF2BP3 in HCC development have yielded inconsistent conclusions. Firstly, Nguyen et al. (2014) demonstrated that LIN28B preferentially requires IGF2BP3 to perform tumor-promoting effects. Besides, Gao et al. (2020) suggested IGF2BP3 can enhance miR191-5p-mediated inhibition of ZO-1 signaling, thus acting as a driver of malignancy of HCC. Furthermore, loss of IGF2BP3 obviously induces ferroptosis in HCC cells by decreasing NRF2 mRNA stability in an m6A-dependent manner after sorafenib treatment (Lu et al., 2022). Conversely, another study showed that IGFBP-3 suppresses HCC cell proliferation via inhibition of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) expression (Ma et al., 2016).
Recently, accumulating literature indicated hnRNPC can serve as an oncogene in HCC progression, described as an elevated expression of hnRNPC in HCC tissues and a decrease of tumor growth and metastasis following hnRNPC silencing. Mechanistically, hnRNPC may exert a tumor-promoting effect via mechanisms involving suppression of the Ras/MAPK signaling pathway or IL-6/STAT3 signaling, or reduction of HIF-1α expression (Hu et al., 2021; Liu D. et al., 2022). Regarding hnRNPA2B1, trichostatin A (TSA)-induced lncRNA-uc002mbe.2 can directly bind to hnRNPA2B1 in Huh7 cells, which in turn deactivates ATK activity and promotes p21 expression, thus ultimately suppressing HCC progression (Chen et al., 2017). Additionally, miR503HG serves as a tumor suppressor in HCC progression by decreasing hnRNPA2B1 expression via a ubiquitin-proteasome pathway, thus eventually suppressing NF-κB signaling pathway (Wang et al., 2018).
5 THE IMPLICATIONS OF M6A REGULATORS IN ICC PROGRESSION
The regulatory roles of m6A regulators in ICC have rarely been investigated. To date, Xu et al. reported an elevated expression of METTL3 in ICC tissues and high METTL3 expression indicates an unfavorable survival in ICC patients. METTL3-driven IFIT2 mRNA degradation in a YTHDF2-dependent fashion is demonstrated to facilitate ICC progression (Xu Q. C. et al., 2022). Additionally, METTL3 can upregulate hepatic leukemia factor (HLF) expression in an m6A-dependent manner. HLF accelerates tumor growth and metastasis via modulation of frizzled-4 (FZD4) and forkhead box Q1 (FOXQ1). Meanwhile, FOXQ1 transcriptionally activates METTL3 expression, which in turn activates WNT/β-catenin signaling, thereby ultimately promoting ICC progression (Xiang et al., 2023). VIRMA, as another m6A writer, is closely associated with adverse prognosis of ICC patients and promotes proliferation and metastasis of ICC though inducing SIRT1 expression via a mechanism involving m6A modification (Zhou et al., 2023). Regrading m6A erasers, FTO is downregulated in ICC tissue specimens and a higher expression of FTO predicts favorable prognosis in ICC patients. Moreover, loss of FTO can promote anchorage-independent growth and mobility of ICC cells via destabilization of TEAD2 mRNA (Rong et al., 2019). Lastly, Huang et al. (2022) suggested YTHDF1 serves as an oncogene in ICC progression though regulating the translation of EGFR mRNA via an m6A-dependent manner. Taken together, more efforts are required to further illustrate the regulatory effects of m6A regulators in ICC.
6 THE IMPLICATIONS OF M6A REGULATORS IN HEPATOBLASTOMA PROGRESSION
HB, originated from undifferentiated hepatic progenitor cells, is the most common type of liver cancer in children. Currently, Liu et al. reported an increase of m6A methylation in HB. Moreover, METTL3-induced altered methylation can activate the Wnt/β-catenin signaling pathway, thus promoting CTNNB1 expression and eventually facilitating HB tumorigenesis (Liu et al., 2019). Solute carrier family 7 member 11 (SLC7A11) exerts a tumor-promoting effect via inhibition of ferroptosis. METTL3-mediated m6A methylation can stabilize SLC7A11 mRNA and promote its expression via an IGF2BP1-dependent fashion (Liu L. et al., 2022). In consistent, loss of METTL3 can enhance the sensitivity of HB cells to ferroptosis. In summary, the regulatory roles of m6A modification in HB tumorigenesis are needed further studies.
7 THERAPEUTIC APPLICATIONS OF M6A REGULATORS IN LIVER CANCER
Owing to the vital roles of m6A RNA methylation in modulating liver cancer progression, manipulating RNA methylation may be a promising therapeutic approach for the treatment of liver cancer. To date, m6A regulator-based signature for predicting prognosis in patients with HCC has been documented in a variety of studies. A set of m6A regulators, including METTL3, YTHDF1, YTHDF2, IGFBP1, IGFBP3, WTAP, and so on, are considered as unfavorable prognostic indicators. Meanwhile, ZC3H13 is deemed a favorable prognostic factor. Moreover, there is growing evidence showing a close relationship between m6A RNA methylation and the abundance of infiltrating immune cells (Xu et al., 2021). Han et al. (2019) reported Ythdf1-deficient mice exhibit an enhanced antigen-specific CD8+ T cell anticancer response. Also, the loss of YTHDF1 can improve the therapeutic effectiveness of PD-L1 checkpoint blockade, thus indicating YTHDF1 might be a promising therapeutic target in immunotherapy. Notably, ZC3H13 expression is reported to be positively associated with infiltrating immune cells, thereby facilitating the elimination of HCC cells and eventually improving prognosis (Xu et al., 2021).
Additionally, a considerable progress has been made concerning the development of specific inhibitors that target m6A regulators. Given the vital roles of FTO in tumorigenesis and drug resistance, developing specific inhibitors targeting FTO has attracted much attention. First, rhein, a natural compound that extracted from herbal plants, is reported to inhibit FTO activity and increase cellular m6A levels by competitively binding to the active site of FTO. However, it is not an FTO-specific inhibitor because it also targets ALKBH5 (Chen et al., 2012). Second, Meclofenamic acid (MA), a widely used anti-inflammatory drug, can dramatically increase cellular m6A levels by inhibiting FTO. Yan et al. (2018) suggested MA can override tyrosine kinase inhibitor (TKI) resistance. Based on a structure-guided method, two novel FTO inhibitors, FB23 and FB23-2, were developed. Huang et al. (2019) reported an obviously tumor-suppressing effect of FB23-2 in acute myeloid leukemia (AML) cells and FB23-2 treatment can improve the survival of leukemic mice. Moreover, FB23-2 exhibits a safe toxicity profile in in vivo studies. Notably, owing to the strong evidence showing a close relationship between METTL3 and the initiation and development of multiple cancers, targeting METTL3 might be a promising avenue for cancer treatment. STM2457, a first-in-class catalytic inhibitor of METTL3, can result in a decrease in AML growth and an increase in cellular apoptosis. Mechanistic studies suggested the tumor-suppressing effect of STM2457 is driven by selectively reducing m6A levels on several leukaemogenic mRNAs (Yankova et al., 2021). Therapeutic resistance, a severe obstacle in the field of cancer treatment, can lead to cancer recurrence and progression. As a result, it is of significance to investigate the potential therapeutic approaches to target cancer treatment resistance. Increasing evidence suggests m6A regulators play critical role in regulating therapeutic resistance via multiple mechanisms including promotion of DNA damage repair, modulation of metabolic rewiring, remodeling tumor microenvironment (TME), and so on (Wang D. et al., 2023). Enforced hepatocyte nuclear factor 3γ (HNF3γ) expression can sensitize HCC cells to sorafenib-induced cell apoptosis by promoting OATP1B1 and OATP1B3 expression. Moreover, METTL14 is involved in the HNF3γ reduction in HCC cells, thereby highlighting the clinical potential of m6A regulators in reversing drug resistance (Zhou et al., 2020). Immunotherapy, referred to treatments that exert anti-tumor activities though suppressing immunosuppressive factors including PD-1 or its ligand PD-L1, has shown excellent clinical results in various types of cancer. However, a significant proportion of cancer patients has no response to immunotherapy, therefore, the clinical application of immunotherapy is limited. Currently, accumulating studies documented m6A regulators as significant factors in remodeling TME, thus affecting the treatment response to immunotherapy. Li et al. have reported a critical role of ALKBH5 in controlling the efficacy of immunotherapy as deletion of ALKBH5 changes metabolite contents including lactate in the TME, which can alter immune cell infiltration. Moreover, ALK-04, a small-molecule inhibitor of ALKBH5, enhances immunotherapy outcomes, thereby suggesting that combinatorial therapy with ALKBH5 inhibitors might be an approach to overcome the resistance for immunotherapy (Li et al., 2020). Although several inhibitors targeting FTO or METTL3 are reported, there are quite a few inhibitors targeting other m6A regulators, thus deserving further exploration. Moreover, none of these reported inhibitors have been approved for clinical use. As a result, a series of preclinical and clinical trials should be carried out to investigate safety profiles, therapeutic effectiveness, as well as pharmacokinetics to facilitate the clinical use of inhibitors targeting m6A factors. Additionally, the efficacy of inhibitors targeting m6A regulators in combination with other therapies should be further investigated.
8 CONCLUSION AND PERSPECTIVES
Advances in RNA-sequencing technologies, including single-cell RNA sequencing, facilitate the new understanding of m6A RNA methylation not only of its effects in various diseases but also its potential therapeutic implications. Abundant studies support the essential role of m6A RNA methylation in liver tumorigenesis (Ding et al., 2024). Our review provides an overview of regulatory roles and mechanisms of m6A RNA modification in liver carcinogenesis, showing m6A methylation regulators are frequently aberrantly expressed in liver cancer tissues and are involved in the initiation and progression of liver cancer though various mechanisms including regulation of cell cycle, apoptosis, promotion of cellular metabolism, as well as modulation of TME. Moreover, we also discuss the clinical applications, in hope of providing novel therapeutic strategies for the treatment of liver cancer by targeting the m6A machinery. Overall, considerable and valuable insights have been gained from m6A studies in the field of liver cancer. Yet, the illustrations of m6A dysregulation in liver cancer remain vastly unexplored, especially in ICC and HB. Of note, several studies have yielded contradictory results on the changes of the expression levels of m6A factors as well as their functions. These paradoxical results might be ascribed to the heterogeneity of liver cancer, small sample sizes, the difference in cell background. Therefore, in-depth explorations are needed to ensure the validity of our understanding of m6A methylation in liver cancer progression. It may be useful to address these issues though establishing consensus guidelines for sequencing and analysis methodologies, as well as constructing standard cell/animal models. Additionally, increasing evidence suggests m6A regulators may exert similar functional effects in the initiation and development of liver cancer though regulating distinct sets of genes or the same set of genes via different mechanisms, therefore, the modification specificity of m6A regulators is needed to be clarified.
Despite great progress, there are still a variety of questions that warrant in-depth investigation: 1) reconcile above-mentioned contradictory findings to further illustrate the underlying mechanisms; 2) screen blood-based m6A-related diagnostic and prognostic biomarkers for liver cancer; 3) develop novel specific inhibitors for m6A regulators and clarify their pharmacokinetics and safety profiles; 4) investigate dynamics of m6A RNA methylation during liver carcinogenic process; 5) elucidate context-specific m6A functions in different subtypes of liver cancer. 6) explore the efficacy of therapies that combine m6A-targeting inhibitors and commonly utilized immune checkpoint blockades or other existing anti-tumor approaches. In a word, addressing these limitations is beneficial for deepening our understanding of the m6A involvement in liver cancer progression and the advances of novel therapeutic approaches to improve the life quality of HCC patients.
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Objective: To investigate the immune mechanism of osteosarcoma (OS)-specific markers to mitigate bone destruction in the aggressive OS, prone to recurrence and metastasis.
Methods: Gene expression patterns from the Gene Expression Omnibus (GEO) database (GSE126209) were analyzed using weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, least absolute shrinkage and selection operator (LASSO) modeling, and survival analysis to identify charged multivesicular body protein 4C (CHMP4C). Subsequently, its role in regulating the immune system and immune cell infiltration was explored. CHMP4C expression and signaling molecules in OS were assessed in osteosarcoma cell lines (MG63, U2OS, HOS) and hFOB1.19 cells using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The impact of CHMP4C upregulation and interference on OS-related signaling molecules in MG63 cells was studied. Functional validation of CHMP4C in MG63 OS cells was confirmed through cell counting Kit-8 (CCK-8), transwell, and colony formation assays. In vivo experiments were conducted using Specific Pathogen Free (SPF)-grade male BALB/C nude mice for OS xenograft studies.
Results: Based on the gene expression profiles analysis of six osteosarcoma samples and six normal tissue samples, we identified 1,511 upregulated DEGs and 5,678 downregulated DEGs in normal tissue samples. A significant positive correlation between the “yellow-green” module and OS was found through WGCNA analysis. Expression levels of CHMP4C, phosphorylated Glycogen Synthase Kinase 3β (p-GSK3β), and β-catenin were notably higher in U2OS, HOS, and MG63 OS cells than in hFOB1.19 human osteoblasts. Overexpressing CHMP4C in MG63 OS cells upregulated CHMP4C, p-GSK3β, and β-catenin while downregulating GSK3β, leading to increased proliferation and migration of MG63 cells. Conversely, interrupting CHMP4C had the opposite effect. High expression of CHMP4C significantly accelerated the growth of OS in nude mice, resulting in substantial upregulation of CHMP4C, p-GSK3β, and β-catenin expression and suppression of Glycogen Synthase Kinase 3β (GSK3β) expression in OS tissues.
Conclusion: CHMP4C may serve as a specific immunomodulatory gene for OS. Its activation of the Wnt/β-catenin signaling pathway, mainly by increasing the phosphorylation echelon of GSK3β, promotes the invasion and spread of OS.
Keywords: immunology, osteosarcoma, prognosis diagnosis model, CHMP4C, GSK3β/βcatenin signaling pathway

1 INTRODUCTION
Osteosarcoma (OS) represents a prevalent malignant bone neoplasm, predominantly manifesting in the adolescent demographic. It is characterized by high malignancy, rapid growth, and a tendency to lead to serious issues such as lung metastasis, resulting in poor prognosis (Gianferante et al., 2017). The etiology of OS is substantially influenced by environmental, and epidemiological factors, and genetic damage (Zhao et al., 2014). OS primarily targets the metaphyseal extremities of long bones, including the distal femur, proximal tibia, and proximal humerus, displaying a predilection for distant metastasis, notably to the lungs. The 5-year survival rate for individuals with primary OS fluctuates between 65% and 70%, whereas for those with metastatic OS, it dwindles to a range of 19%–30% (Meyers et al., 2005). Contemporary strategies for managing OS primarily encompass surgical procedures, chemotherapy (both neoadjuvant and adjuvant), radiation therapy, immunotherapy, targeted therapy, and various other modalities (Wu et al., 2016). Despite continuous efforts to explore the pathogenesis of OS and develop new treatment strategies, treatment outcomes remain suboptimal, and overall survival rates have not significantly improved. Therefore, further research is required to elucidate the characteristics of OS, identify effective prognostic markers for accurate prognosis prediction, and select more proactive intervention measures. Unearthing novel prognostic markers holds the potential for advancing innovative treatment modalities.
Gene therapy has surfaced as a promising avenue in the OS treatment landscape, drawing considerable focus in the quest for efficacious therapeutic targets. Anomalous activation of the Wnt/β-catenin signaling pathway is a pivotal player in shaping the biological demeanor of OS. Invasion and migration stand as cardinal traits of OS cells. Besides, the Wnt/β-catenin signaling pathway can expedite pulmonary metastasis, exacerbating the disease by heightening the invasion and migration propensities of OS cells (Wang et al., 2021). Some studies have explored the mechanism by which this pathway functions by inhibiting the Wnt/β-catenin signaling pathway. For example, the Wnt receptor antagonist Dickkopf-related protein 3 (DKK-3) can reduce the invasive ability of OS cells such as SaOS2 cells (Baker et al., 2015). Key molecules in the Wnt/β-catenin signaling pathway include glycogen synthase kinase 3β (GSK3β), phosphorylated glycogen synthase kinase 3β (p-GSK3β), and β-catenin (Hagiwara et al., 2017). Increased nuclear β-catenin content can promote epithelial-mesenchymal transition in OS cells, enhance stem cell formation, and accelerate the invasion and migration of OS cells (Yu et al., 2020). GSK3β serves as a versatile serine/threonine protein kinase, wielding a pivotal influence on the transcription, proliferation, and apoptosis of tumor cells. Its involvement in phosphorylating β-catenin can instigate the activation of E3 ubiquitin ligase subunit β-Trcp, orchestrating the targeting of β-catenin for proteasomal degradation (Li et al., 2017). Moreover, phosphorylation of GSK3β induces its inactivation, triggering the buildup of β-catenin and facilitating its translocation into the cellular nucleus (MacDonald et al., 2009). Hence, GSK3β operates as a negative modulator within the Wnt/β-catenin signaling pathway. While certain studies suggest GSK3β and β-catenin as conceivable therapeutic targets for clinical management of OS, there remains a critical imperative to pinpoint novel diagnostic and prognostic biomarkers, enhancing precision in OS diagnosis and survival prognostication.
In this study, we employed bioinformatic methods to analyze critical gene expression differences between OS and normal tissues using data from the Gene Expression Omnibus (GEO) database. We used weighted gene co-expression network analysis (WGCNA) to identify gene modules associated with the clinical features of OS. Through least absolute shrinkage and selection operator (LASSO) analysis, we selected potential prognostic genes and constructed a model. In conclusion, we validated a notable association between charged multivesicular body protein 4C (CHMP4C) gene expression and the prognosis of individuals with OS. Furthermore, we delved into the biological functionalities of CHMP4C within OS cells and mouse xenografts of OS, aiming to dissect the potential mechanisms underpinning CHMP4C’s operation and discern its plausible role as a therapeutic target in the context of OS.
2 MATERIALS AND METHODS
2.1 Differential gene expression analysis
We performed differential gene analysis between osteosarcoma and normal tissue samples using DEseq2 in R version 4.0.1 (Lucent Technologies Inc., Union, NJ, USA, https://www.r-project.org/). The samples were labeled as “normal” and “tumor.” We calculated the fold change (FC) for genes and subsequently filtered the differentially expressed genes (DEGs) based on the following criteria: adjusted p < 0.05, log2FC > 1, or log2FC < −1. Subsequently, we used the ggplot package (https://cran.rproject.org/web/packages/ggplot2/index.html) and the ‘pheatmap’ package (https://cran.r-project.org/web/packages/pheatmap/index.html) in R to generate volcano plots and heatmaps. Additionally, we performed Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the DEGs with the ‘clusterProfiler’ package in R version 4.0.1, with a significance threshold set at a p-value below 0.05 (Lei et al., 2015).
2.2 Database information retrieval
This study extracted osteosarcoma gene microarray data, including gene expression profiles from six osteosarcoma samples and six normal tissue samples, from the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126209) at the National Center for Biotechnology Information (NCBI) in the United States.
2.3 Weighted gene co-expression network analysis (WGCNA)
We utilized the WGCNA analysis package in R version 4.0.1, with the aim of identifying gene modules that are highly correlated with osteosarcoma (Horvath and Dong, 2008). We computed scale independence (R2) and average connectivity to determine the soft threshold that conforms to an unscaled distribution, which was used for feature gene selection. Following this, we utilized hierarchical clustering and dynamic tree-cutting methods to discern gene modules, employing a substantial merging threshold of 0.25 to amalgamate akin gene modules. Ultimately, we computed both gene significance (GS) and module significance (MS) to evaluate the correlation and significance of genes in relation to clinical information.
2.4 Protein-protein interaction analysis (PPI)
We used the STRING website (https://string-db.org/) to perform PPI analysis on all genes within the green-yellow module. Subsequently, we conducted further analysis and visualization using the Molecular Complex Detection (MCODE) plugin in the Cytoscape software (http://cytoscape.org/).
2.5 Prognostic model construction and validation
In this study, we utilized the ‘glmnet’ package in R for LASSO regression analysis to screen core genes within the ‘greenyellow’ module (Park et al., 2015). LASSO regression analysis identifies variables by detecting the optimal λ value that minimizes classification error. The optimal value of the penalty parameter λ was selected using tenfold cross-validation. Receiver Operator Characteristic (ROC) curves were generated for predictive models via ‘timeROC’ package in R. The Area Under the Curve (AUC) was computed to gauge the predictive efficacy of the prognostic gene model. All statistical analyses were carried out through R software, with significance determined at p < 0.05 for all tests. Optimal cutoff points for risk scores and survival time were determined using the ‘maxstat’ package in R, and the training dataset was stratified into high-risk and low-risk groups based on these cutoff points. We utilized Kaplan-Meier analysis to compare overall survival times between the high-risk and low-risk groups. Survival curves for these groups were constructed with the ‘survminer’ and ‘survival’ packages in R, and inter-group differences were evaluated through chi-square testing.
2.6 Cell cultivation
The cell lines used in this study included osteosarcoma cells (MG63 cells, catalog number CL-0157; U2OS cells, catalog number CL-0236; HOS cells, catalog number CL-0360) and human fetal osteoblast hFOB1.19 cells (CL-0353), all of which were purchased from Procell Technology Co., Ltd. (China). These cells were centrifuged during cultivation and then supplemented with 1 mL of Dulbecco’s Modified Eagle Medium (DMEM) medium (C11995500BT, GIBCO, Thermo Fisher Scientific, Inc., USA) containing 10% fetal bovine serum (FBS) (Peak Inc., USA), 1% penicillin-streptomycin (Beyotime Institute of Biotechnology, China), and 20 ng/mL epidermal growth factor (EGF) (catalog number P00033, Solarbio Science & Technology Co., Ltd., China). All cells were cultured at 37°C in a 5% CO2 incubator.
2.7 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
According to the reagent kit instructions, TRIzol reagent (Thermo Fisher Scientific, Inc.) was used to extract total RNA (Wang et al., 2020). Subsequently, we employed Tsingke Biotechnology Co., Ltd.'s Goldenstar™ RT6 cDNA Synthesis Kit Ver.2 (TSK302M, China) for reverse transcription, with the reaction conditions set at 25°C for 10 min, 55°C for 30 min, and 85°C for 5 min. To assess mRNA expression levels, we used the 2×T5 Fast RT-qPCR Mix (SYBR Green I) reagent kit from Tsingke Biotechnology Co., Ltd. (TSE002, China), with reaction conditions of 95°C for 30 s, followed by 40 cycles of 95°C for 3 s and 60°C for 30 s. We selected human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the reference gene and calculated relative gene expression levels using the 2−ΔΔCt method. Specific primer information for RT-qPCR is presented in Table 1.
TABLE 1 | Primer sequences.
[image: Table listing primers and their corresponding sequences. Primer names include CHMP4C-F, CHMP4C-R, GSK3β-F, GSK3β-R, β-catenin-F, β-catenin-R, h-GAPDH-F, and h-GAPDH-R, each paired with its nucleotide sequence.]2.8 Immunofluorescence assay
In fixed cell cultures, 0.3% Triton X-100 (ST795, Beyotime Institute of Biotechnology, China) was added and incubated at 37°C for 5 min. Goat serum (C0265, Beyotime Institute of Biotechnology, China) was then added and incubated at room temperature for 60 min. Subsequently, the sections were incubated with antibodies against β-catenin (A19657, ABclonal Technology, China), CHMP4C (bs-7744R, Bioss Biotechnology Co., Ltd., China), GSK3β (A2081, ABclonal Technology, China), and p-GSK3β (bs-3161R, Bioss Biotechnology Co., Ltd., China) overnight at 4°C. After washing with Phosphate-Buffered Saline (PBS) (G0002, Sevier Biotechnology Co., Ltd., China), FITC Goat Anti-Rabbit IgG (H + L) (AS024, ABclonal Technology, China) was applied and incubated in the dark at 25°C for 1.5 h. Sections were subjected to 4′,6-diamidino-2-phenylindole (DAPI) staining (C1005, Beyotime Institute of Biotechnology, China), followed by a 5-min incubation in the dark and removal of excess DAPI through PBS wash. Subsequently, these sections were sealed with an anti-fade mounting medium (P0126; Beyotime Institute of Biotechnology, China). Ultimately, an inverted fluorescence microscope (ICX41; Sunny Optical Technology (Group) Co., Ltd., China) was employed to observe and capture images of the sections.
2.9 CHMP4C gene overexpression and lentivirus construction and packaging
The lentiviral overexpression vector pLVX-IRES-puro-CHMP4C and interference vector pLVX-shRNA1-CHMP4C were constructed by Chongqing Biomedicine Co., Ltd. (China). MG63 cells were passaged at a density of 1×105 cells/well in a 24-well plate. After 24 h of incubation with fresh culture medium, the control group received 30 μL of empty viral suspension and 1 μL of polybrene (ZY140621, ZeYe Biotechnology Co., Ltd., China), whereas the experimental group received 30 μL of either overexpression lentivirus or interference lentivirus suspension and 1 μL of polybrene. The cells were then placed in a cell culture incubator for 48 h. Subsequently, the cells were continuously passaged, and the culture medium was changed every 2 days and supplemented with 5 μg/mL puromycin (ST551-10, Beyotime Institute of Biotechnology, China) for selection to obtain CHMP4C overexpressing MG63 cells (OE-CHMP4C), CHMP4C interference MG63 cells (IN-CHMP4C), and their corresponding empty vector control MG63 cells (OE-NC, IN-NC).
2.10 Cell counting Kit-8 (CCK-8) analysis
Cells in the logarithmic growth phase were harvested and plated into 96-well plates. Following that, 10 μL of CCK-8 solution (C0038; Beyotime Institute of Biotechnology, China) was introduced to each well. After a 1-h incubation at 37°C in a cell culture incubator, the absorbance of each well was assessed at 450 nm with a microplate reader (CMax Plus, Molecular Devices Instruments Co., Ltd., USA).
Cell viability (100%) was calculated as follows:
Experimental group: Absorbance of cells overexpressing or silencing plasmids along with CCK-8 solution.
Blank group: Absorbance of wells containing culture medium and CCK-8 solution without cells.
Control group: Absorbance of wells containing empty vector-transfected cells and CCK-8 solution.
[image: Formula for cell viability percentage: \[(\text{experimental group} - \text{blank group}) / (\text{control group} - \text{blank group}) \times 100\].]
2.11 Plate cloning
Logarithmically growing CHMP4C-overexpressing MG63 cells, CHMP4C-knockdown MG63 cells, and their respective empty vector control cells were harvested to prepare the cell suspensions. The cell suspensions were serially diluted and seeded into six-well plates containing the culture medium, followed by a 6-day incubation period. Upon the emergence of macroscopic colonies in the culture dishes, the cultivation process was concluded. The supernatant was removed, and the cells were fixed with 4% paraformaldehyde (DF0135, Leagene Biotechnology Co., Ltd., China) for 20 min. Subsequently, staining with crystal violet staining solution (DZ0053, Leagene Biotechnology Co., Ltd., China) was carried out for 15 min. Ultimately, the clone formation rates were computed.
[image: Equation for calculating clone efficiency: the number of clones divided by the number of seeded cells, multiplied by one hundred.]
2.12 Transwell cell migration assay
CHMP4C-overexpressing MG63 cells, CHMP4C-silenced MG63 cells, and their respective empty vector control cells were adjusted to a density of 5×105/mL cells/mL in serum-free medium and seeded in Transwell chambers (3,421, Corning Inc., USA). The lower chambers were loaded with DMEM medium containing 10% FBS and 1% streptomycin, and then placed in a cell culture incubator for 24 h. Following incubation, Transwell chambers were extracted, and the culture medium was aspirated. The cells were washed twice with calcium-free PBS, fixed with 4% paraformaldehyde for 20 min, and stained with 0.1% crystal violet for another 20 min. The upper layer of the non-migrated cells was gently wiped off with a wet cotton ball. After washing with PBS, cells from three randomly selected fields were counted, and the average was calculated under a 100x microscope (CKX3-SLP, OLYMPUS, Japan).
2.13 Animal grouping and model construction
Thirty-two male specific pathogen free (SPF)-grade BALB/C nude mice, approximately 6 weeks old, were obtained from Chongqing Ensiweier Biological Technology Co., Ltd., China. Mice were randomly divided into four groups (OE-NC, OE-CHMP4C, IN-NC, and IN-CHMP4C), each consisting of eight mice. The mice were acclimated in an animal facility at 25°C and a 12–12 h light-dark cycle for 1 week. MG63 cells overexpressing CHMP4C, MG63 cells with CHMP4C knockdown, and their corresponding control MG63 cells were digested with trypsin (S310KJ, Beyotime Institute of Biotechnology, China) to prepare cell suspensions at a cell density of 3×107 cells/mL. The skin of the mice at the thigh root was disinfected and each mouse was subcutaneously injected with a cell suspension (0.5 mL). After 4 weeks, the mice were anesthetized and tumor images were observed and captured. Tumor dimensions were gauged, and euthanasia of the mice was carried out. The tumors were fully excised and weighed. Following that, RT-qPCR and immunofluorescence techniques were employed to assess the mRNA and protein expression levels. The animal study protocol was approved by the Ethics Committee of Affiliated Hospital of Qingdao University (QYFY WZLL 28188, 2023.11.06).
2.14 Statistical analysis
GraphPad Prism 8.0 (GraphPad Company, San Diego, CA, USA) was used for data analysis. The results are presented as mean ± standard deviation. Each experiment was performed at least three times. Independent sample t-tests were used for comparisons between two groups, and one-way analysis of variance (ANOVA) and Tukey’s post hoc test were used for comparisons among three or more groups. A p-value <0.05 was considered statistically significant.
3 RESULTS
3.1 The selection and enrichment of DEGs
A total of 7,189 DEGs were identified, with 1,511 DEGs upregulated in normal tissue samples and 5,678 DEGs downregulated. Figure 1A presents the heatmap generated from hierarchical clustering analysis. The volcano plot illustrates the differential gene expression between osteosarcoma tissue and normal tissue (Figure 1B). To unveil the potential biological functions of DEGs, we conducted GO and KEGG analyses. Those enriched biological processes in the GO analysis included embryonic organ development, pattern specification process, and axon development. Enriched cellular components comprised the collagen-containing extracellular matrix, actin cytoskeleton, and cell-cell junction. Additionally, enriched molecular functions encompassed DNA-binding transcriptional activator activity, RNA polymerase II-specific, DNA-binding transcription activator activity, receptor ligand activity, and signaling receptor activator activity (Figure 1C). KEGG analysis revealed enrichment in pathways such as axon guidance, cytokine-cytokine receptor interaction, Wnt signaling, Rap1 signaling, and Mitogen-Activated Protein Kinase (MAPK) signaling (Figure 1D).
[image: Four panels display gene expression data analysis. Panel A shows a heatmap illustrating gene expression differences. Panel B is a volcano plot highlighting differentially expressed genes with blue and red dots. Panel C presents a dot plot of the top ten Gene Ontology enrichments. Panel D displays a dot plot of the top thirty pathway enrichments, with dot color indicating the level of significance.]FIGURE 1 | Differential gene expression analysis and enrichment analysis between osteosarcoma and healthy bone tissue. (A) Heatmap. (B) Volcano plot. (C) Top 10 biological processes, cellular components, and molecular functions sorted by p-values in GO analysis. (D) Top 30 pathways sorted by p-values in KEGG analysis.
3.2 Determination of key modules through WGCNA
Through scale independence and average connectivity comparisons, we found that when the soft threshold was set to 17 for gene-to-gene connections (Figures 2A, B), we were able to construct a hierarchical clustering tree containing 10 key modules (Figure 2C). However, it is worth noting that genes within the gray module appeared to lack distinct functional similarities. To ascertain the significance of each module, we conducted correlation analysis between the obtained modules and clinical features. The results revealed a significant positive correlation between the green-yellow module and osteosarcoma (R = 0.82, p = 0.001) (Figure 2D), which encompassed 754 DEGs. To gain a deeper understanding of the biological functions of DEGs within the green–yellow module, we performed GO and KEGG enrichment analyses. GO functional enrichment encompasses biological processes, such as regulation of the response to DNA damage stimulus, regionalization, and positive regulation of protein localization. Concerning cellular components, enrichment was noted in the nuclear membrane, nuclear envelope, and cell leading edge. Molecular functions exhibited enrichment in DNA-binding transcriptional repressor activity, RNA polymerase II-specific DNA-binding transcription activator activity, DNA-binding transcription repressor activity, DNA-binding transcription activator activity, and RNA polymerase II-specific (Figure 3A). Furthermore, in the KEGG enrichment analysis, we identified associations with pathways such as axon guidance, Hippo signaling pathway, hepatocellular carcinoma, Wnt signaling pathway, and MAPK signaling pathway (Figure 3B).
[image: Four-panel figure depicting results from a gene expression analysis. Panel A shows two line graphs for scale independence and mean connectivity. Panel B displays a cluster dendrogram with color-coded dynamic tree cuts. Panel C includes a heatmap with hierarchical clustering of modules. Panel D presents a heatmap illustrating module-trait relationships, with varying shades indicating correlation strength.]FIGURE 2 | Weighted gene co-expression network analysis. (A) Confirmation of the soft threshold (β = 17) through scale independence and average connectivity calculations. (B) Hierarchical clustering tree displaying key modules composed of DEGs. (C) Module correlation analysis. (D) Selection of modules associated with osteosarcoma based on module-trait relationships.
[image: Panel A shows a dot plot of the top ten Gene Ontology (GO) enrichment terms, with dot size representing the count and color indicating significance. Panel B presents a similar plot for pathway enrichment terms. Panel C features a network map illustrating relationships between genes and pathways. Panel D displays a KEGG pathway diagram with colored boxes representing genes involved in specific pathways.]FIGURE 3 | GO and KEGG enrichment analysis of DEGs in the greenyellow module, as well as PPI network analysis. (A) Top 10 biological processes, cellular components, and molecular functions ranked by p-values in GO analysis. (B) Top 30 pathways ranked by p-values in KEGG analysis. (C) PPI network analysis. Nodes of the network represent proteins; the size of each node represents the betweenness centrality of the node; node color represents the size of the degree, blue indicates a high degree, while red indicates a low degree. (D) Top 10 genes calculated by the MCC method. The greater the intensity of red, the higher the degree.
3.3 PPI network analysis
We constructed and analyzed a protein-protein interaction network for the DEGs in the green–yellow module. We imported the DEG information into the STRING database and further analyzed the generated gene interaction network using Cytoscape software (Figure 3C). Utilizing the Maximal Clique Centrality (MCC) algorithm in the “Cytohubba” plugin, we identified the top 10 genes that exhibited the closest interactions within the gene network. These genes were Nucleolar Protein 58 (NOP58), WD Repeat Domain 43 (WDR43), Ribosomal Protein R9 (RPR9), WD Repeat Domain 12 (WDR12), WD Repeat Domain 36 (WDR36), U3 small nucleolar RNA-associated protein 18 (UTP18), Partner of NOB1 homolog (PNO1), Dyskerin Pseudouridine Synthase 1 (DKC1), Nucleolar and Coiled-body Phosphoprotein 1 (NOLC1), and Ribosomal RNA Processing 1 (RRS1) (Figure 3D). The darker color signifies a more significant role of these genes in the occurrence and development of osteosarcoma.
3.4 Construction of osteosarcoma patient prognosis assessment risk model and survival analysis
The optimal λ that produces the smallest classification error was identified in the LASSO model through 10-fold cross-validation. Subsequently, 15 hub genes with non-zero coefficients were identified (ArfGAP with dual PH domains 2, ADAP2; Carbonic Anhydrase III-Antisense RNA 1, CA3-AS1; Charged Multivesicular Body Protein 4C, CHMP4C; Family with sequence similarity 222 member B, FAM222B; FK506 Binding Protein 11, FKBP11; HOXA11 antisense RNA, HOXA11. AS; PiggyBac transposable element derived 5, PGBD5; Phorbol-12-Myristate-13-Acetate-Induced Protein 1, PMAIP1; Proline and serine rich 2, PROSER2; Ring Finger Protein 38, RNF38; SH3 Domain Binding Protein 2, SH3BP2; Small Nucleolar RNA-H/ACA Box 12, SNORA12; tRNA Methyltransferase 1 Homolog, TRMT1; Thioredoxin Like 4B, TXNL4B; Zinc Finger Protein 200, ZNF200) (as shown in Figures 4A, B). To enhance the scrutiny of the risk model’s accuracy in prognosis analysis, we generated ROC curves for the predictive model. The calculated AUC was 0.947, indicating a substantial predictive capability (Figure 4C). This suggests that the risk prognosis model has a high predictive accuracy. To affirm the association between the expression of these 15 genes and OS patients, Kaplan-Meier survival analysis was employed. Patients were stratified into high- and low-expression groups, determined by the median gene expression values. Our outcomes revealed statistically significant differences in survival rates between low- and high-expression groups for the CHMP4C, FAM222B, PROSER2, SNORA12, and ZNF200 genes (p < 0.05) (Figure 4D). Notably, CHMP4C displayed the most substantial difference (p = 0.0094), signifying a robust correlation between CHMP4C expression and the prognosis of OS patients. Individuals in the low-expression group of CHMP4C exhibited a more favorable prognosis with higher survival rates (p < 0.05). The survival curves for the other nine genes are shown in Figure 5.
[image: Graphical analysis showing multiple plots related to statistical or computational data. Panel A displays a graph with lines converging over logarithmic lambda values. Panel B shows a plot with a curve and shaded region. Panel C presents a bar chart with a visible area under the curve value. Panel D consists of six Kaplan-Meier plots labeled PRADICAT, SINKOV2, CHOPHEI, PRABICAT, ZEVITZ, and MADICAT, each showing survival probability over time with distinct color segments.]FIGURE 4 | Risk model and survival analysis for prognostic evaluation of OS Patients. (A,B) LASSO selection analysis plots of OS-related genes within the greenyellow module. (C) The ROC curve. (D) Kaplan-Meier survival analysis results, showing gene survival analysis curves significantly associated with the prognosis of OS patients (including CHMP4C, FAM222B, PROSER2, SNORA12, ZNF200).
[image: Twelve Kaplan-Meier survival plots compare drug treatments in different cancers. Each plot, labeled with a specific cancer name, displays survival probability over time, contrasting two treatment groups shown in red and blue. Vertical lines indicate censoring events.]FIGURE 5 | Survival analysis of 10 genes in OS patients (ADAP2, FKBP11, RNF38, CA3-AS1, PMAIP1, HOXA11. AS, PGBD5, TRMT1, TXNL4B, SH3BP2) via Kaplan-Meier method.
3.5 Expression of CHMP4C and downstream pathway genes in various osteosarcoma cell lines
In this study, we conducted an analysis of CHMP4C and the related proteins GSK3β, p-GSK3β, and β-catenin. CHMP4C is a protein associated with the endocytic pathway and closely linked to processes such as cell division, endocytosis, and signal transduction (Zhang et al., 2022). Research has indicated a significant association between the GSK3β/β-catenin signaling pathway and osteosarcoma proliferation (Ruan and Zhao, 2018). In the RT-qPCR analysis, we observed distinct expression patterns of CHMP4C and β-catenin across the four OS cell lines. Specifically, CHMP4C mRNA expressions were markedly elevated in U2OS, HOS, and MG63 cells compared to hFOB1.19 cells (p < 0.01), with MG63 cells exhibiting the highest expression among them. Conversely, β-catenin mRNA expression levels increased sequentially in hFOB1.19, U2OS, HOS, and MG63 cells, with statistical significance compared to hFOB1.19 (p < 0.01) (Figure 6A). Our outcomes of immunofluorescence staining revealed notable disparities in the protein expression levels of CHMP4C, p-GSK3β, and β-catenin among the U2OS, HOS, and MG63 osteosarcoma cells, with significantly higher expression observed in these cells compared to hFOB1.19 cells (Figures 6B−D).
[image: Four panels display scientific data and images. Panel A shows bar graphs comparing relative expression of COL1 and RUNX2 across different samples, with statistical significance marked. Panel B displays fluorescence microscopy images of DAPI and CHI3L2 staining, highlighting cellular structures. Panel C shows images of DAPI and pGSK3β staining, revealing differences in cell signaling. Panel D includes images of DAPI and β-catenin staining, indicating variations in cell localization and expression. Each image is labeled with cell line names, and fluorescence is indicated in blue and green.]FIGURE 6 | Expression of CHMP4C and β-catenin in hFOB1.19, U2OS, HOS, and MG63 cells. (A) RT-qPCR analysis of CHMP4C and β-catenin mRNA expression. (B–D): Immunofluorescence staining to detect the expression of CHMP4C, p-GSK3β, and β-catenin proteins. The Merge image is on the left side, DAPI (blue) is above on the right side, and FITC (green) is below on the right side. *p < 0.05, ***p < 0.001, ****p < 0.0001 compared with hFOB1..19 group. ##p < 0.01, ###p < 0.001 compared with U2OS group. ^p < 0.05, ^^^p < 0.001 compared with HOS group.
3.6 Impacts of CHMP4C overexpression and interference on the expression of GSK3β, p-GSK3β, and β-catenin in MG63 cells
In our exploration of the biological function of CHMP4C in OS cells, MG63 cells were transfected with a synthetic CHMP4C over-expression vector, CHMP4C interference lentiviral vector, and an empty vector for validation. RT-qPCR results revealed that, in comparison to empty vector group, CHMP4C over-expression notably augmented the mRNA expressions of CHMP4C and β-catenin in MG63 cells (p < 0.0001) and concurrently diminished the expressions of GSK3β (p < 0.001). Conversely, CHMP4C knockdown significantly repressed the expression of CHMP4C and β-catenin in MG63 cells (p < 0.001) while elevating GSK3β expression (p < 0.0001) (Figure 7A). Immunofluorescence staining further validated these findings. CHMP4C over-expression notably heightened the protein expression of CHMP4C (Figure 7B), p-GSK3β (Figure 7D), and β-catenin (Figure 7E) in MG63 cells, while concurrently reducing GSK3β expression (Figure 7C). In contrast, CHMP4C knockdown greatly curtailed the protein expression of CHMP4C (Figure 7B), p-GSK3β (Figure 7D), and β-catenin (Figure 7E) in MG63 cells, while elevating GSK3β expression (Figure 7C).
[image: Three bar graphs and a set of fluorescence microscopy images. The bar graphs compare different conditions, showing significant differences noted with asterisks. The microscopy images labeled as B, C, D, and E display cells stained with DAPI (blue) and other markers (green), with variations across different experimental groups such as OE-NC and IN-CHMP4C. Each group's images include merged views and individual marker channels, with scale bars indicating magnification.]FIGURE 7 | Impacts of overexpression and knockdown of CHMP4C on the expression of GSK3β, p-GSK3β, and β-catenin in MG63 cells. (A) RT-qPCR analysis of CHMP4C, GSK3β, and β-catenin mRNA expression in MG63 cells. (B–E): Immunofluorescence staining to assess the expression of CHMP4C, GSK3β, p-GSK3β, and β-catenin proteins in MG63 cells. The Merge image is on the left side, DAPI (blue) is above on the right side, and FITC (green) is below on the right side. **p < 0.01, ***p < 0.001 compared with OE-NC / IN-NC group.
3.7 Impacts of CHMP4C overexpression and CHMP4C interference on the proliferation and migration of OS cells
Our CCK-8 assay outcomes demonstrated that, in comparison to the control group, CHMP4C over-expression significantly heightened the proliferation of MG63 cells, whereas interference with CHMP4C expression markedly curtailed MG63 cell proliferation (p < 0.0001) (Figure 8A). Findings from the colony formation assay revealed that the number of MG63 cells and cloning efficiency were notably elevated in the CHMP4C over-expression group in contrast to control group (p < 0.001) (Figure 8B). Conversely, the number of MG63 cells and cloning efficiency were substantially reduced in CHMP4C interference group as compared to control group. In Transwell migration assays, compared to control group, CHMP4C over-expression resulted in a significant augmentation in the number of migrating MG63 cells (p < 0.0001), whereas interference with CHMP4C expression led to a notable reduction in the number of migrating MG63 cells (p < 0.001) (Figure 8C).
[image: Bar and line chart illustrating levels of CCK8 expression across different conditions, labeled OE-NC, OE-CHMP4C, IN-NC, and IN-CHMP4C. Two sets of comparison images for colony formation and invasion assays are shown, with corresponding bar charts indicating significant differences in cell behaviors.]FIGURE 8 | Assessment of the impacts of CHMP4C overexpression and knockdown on the proliferation and migration of OS Cells. (A) CCK-8 assay for MG63 cell proliferation. (B) Colony formation assay for quantifying the number and efficiency of MG63 cell colonies. (C) Transwell assay for assessing the migration of MG63 cells. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with OE-NC / IN-NC group.
3.8 Impacts of CHMP4C overexpression and interference on mouse osteosarcoma growth and downstream pathway gene expression
We further investigated the tumor occurrence through subcutaneous tumor experiments in nude mice. Compared to the empty vector group, the CHMP4C overexpression group showed a significant increase in tumor weight and volume (p < 0.0001), while the CHMP4C knockdown group exhibited a significant decrease in tumor weight (p < 0.001), with no significant difference in tumor volume (p > 0.05) (Figures 9A, B). RT-qPCR analysis of mRNA expression in tumor tissues revealed that compared to the empty vector group, CHMP4C overexpression significantly increased the expression of CHMP4C and β-catenin in mouse tumor tissues (p < 0.0001) and significantly decreased GSK3β expression (p < 0.001). Conversely, interference with CHMP4C expression significantly reduced the expression of CHMP4C and β-catenin, and increased GSK3β expression (p < 0.0001) (Figure 9C). Our outcomes of immunofluorescence staining revealed that the protein expressions of CHMP4C, p-GSK3β, and β-catenin were notably elevated in CHMP4C over-expression group compared to empty vector group. Conversely, the GSK3β protein expression was significantly lower in CHMP4C over-expression group. In contrast, in CHMP4C knockdown group, the protein expressions of CHMP4C, p-GSK3β, and β-catenin were markedly lower than those in empty vector group, while the GSK3β protein expression was significantly higher (Figure 9D).
[image: Panel A shows four images of tumor samples labeled OE-NC, OE-CHMP6, IN-NC, and IN-CHMP6. Panel B presents bar graphs comparing tumor weight and volume across these groups, showing significant differences. Panel C features bar graphs depicting expression levels of GSK3β and p-GSK3β, highlighting significant variations. Panel D contains microscopy images stained for DAPI, CHMP6, GSK3β, p-GSK3β, and β-catenin, with merged views for each marker across the groups, demonstrating different expression patterns.]FIGURE 9 | Impacts of CHMP4C overexpression and knockdown on the growth of nude mouse OS and the expression of downstream pathway genes. (A,B): Effects of CHMP4C overexpression and knockdown on the weight and volume of nude mouse OS. (C) RT-qPCR analysis of mRNA expression levels of CHMP4C, GSK3β, and β-catenin in tumor tissues. (D) Immunofluorescence staining analysis of protein expression levels of CHMP4C, GSK3β, p-GSK3β, and β-catenin in tumor tissues. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 compared with OE-NC / IN-NC group.
4 DISCUSSION
Osteosarcoma (OS) is recognized as one of the most aggressive bone tumors, predominantly affecting children and adolescents. Significant risk factors associated with the progression of OS include age, gender, height, exposure to alkylating agents, bone turnover, chromosomal abnormalities such as hereditary retinoblastoma, ionizing radiation, and Paget’s disease (Kanematsu et al., 2010; O'Donovan et al., 2011). OS occurs in any bone throughout the body, although it predominantly occurs in the metaphysis of long bones. The rapid progression and metastasis of OS pose significant challenges for its treatment. Approximately 20% of patients present with lung metastasis at the time of diagnosis, and the majority of recurrent OS cases involve lung metastasis (Pastorino et al., 2023). Current standard treatments for OS include neoadjuvant chemotherapy, surgical resection of the primary tumor, and adjuvant chemotherapy. However, the prognosis for metastatic or recurrent OS has not significantly improved (He et al., 2022). Traditional clinical markers have limited predictive capabilities because the molecular mechanisms underlying OS are unclear. Research has shown that the pathogenesis of OS is closely related to gene expression (Lin et al., 2017). Therefore, it is essential to identify new diagnostic and prognostic biomarkers for more accurate diagnosis and prediction of OS. Transcriptomic data analysis using bioinformatics enables the identification of differentially expressed genes (DEGs) between tumor and normal tissues, offering promising molecular markers for various cancers (Wu et al., 2017; Solinas et al., 2019). Hence, employing high-throughput methods to explore effective molecular markers and potential therapeutic targets for OS patients is of utmost significance. In this study, mRNA expression data from OS patients were extracted from the GEO database and analyzed, leading to the identification of 7,189 DEGs. Among these, 1,511 were upregulated, and 5,678 were downregulated in OS tissues compared to healthy bone tissues. Through a more comprehensive analysis via WGCNA, the green–yellow module was pinpointed, comprising 754 DEGs highly associated with OS. Functional enrichment analysis unveiled the involvement of these DEGs in processes such as the regulation of the response to DNA damage stimulus, regionalization, positive regulation of protein localization, nuclear membrane, nuclear envelope, cell leading edge, RNA polymerase II-specific, DNA-binding transcription activator activity, and DNA-binding transcription repressor activity. Furthermore, KEGG pathway enrichment analysis indicated the signal participation of these DEGs in pathways including axon guidance, the Hippo signaling pathway, hepatocellular carcinoma, the Wnt signaling pathway, and the MAPK signaling pathway.
Recent research has shown that the Wnt signaling pathway plays a crucial role in the growth, proliferation, invasion, and metastasis of OS. It also contributes to OS drug resistance and regeneration, making it a significant player in the development of OS (Singla et al., 2020). The Wnt signaling pathway is a highly conserved growth factor family pathway with biological functions that regulate tumor cell proliferation, differentiation, apoptosis, and invasion. It comprises four distinct pathways: Wnt/β-catenin pathway, Wnt/Ca2+ pathway, Wnt/planar cell polarity pathway, and Wnt/protein kinase A pathway (Wang et al., 2022). Research has confirmed a close association between the Wnt/β-catenin pathway and OS development (Zou et al., 2017). It is believed that the Wnt/β-catenin signaling pathway is activated in OS, and inhibition of this pathway can suppress the proliferation and malignant behavior of OS cells (Xu et al., 2020). Implementing targeted interventions at the upstream level of Wnt proteins to impede the entry of downstream factors into the β-catenin pathway could potentially serve as a preventive measure against the development of OS (Huang et al., 2022). Nevertheless, conflicting findings have been documented, indicating instances where the activation of the Wnt/β-catenin pathway facilitated the osteogenic differentiation of OS cells and concurrently impeded their proliferation. In this scenario, the inactivation of the Wnt/β-catenin pathway might potentially contribute to the development of OS (Cai et al., 2010). GSK3β functions as a crucial negative regulator within the Wnt/β-catenin signaling pathway. Upon activation, GSK3β actively facilitates the phosphorylation of β-catenin, initiating its degradation through ubiquitination. Reduction of GSK3β phosphorylation at serine nine leads to its activation, effectively suppressing the Wnt/β-catenin signaling pathway and thereby impeding the progression of OS (Lu et al., 2023). Therefore, gaining a comprehensive understanding of the mechanisms by which the Wnt signaling pathway functions in OS is of great significance for inhibiting its occurrence and progression.
We further established a prognostic risk model for OS patients through LASSO analysis by selecting 15 core genes (ADAP2, CA3-AS1, CHMP4C, FAM222B, FKBP11, HOXA11. AS, PGBD5, PMAIP1, PROSER2, RNF38, SH3BP2, SNORA12, TRMT1, TXNL4B, and ZNF200). ROC curve analysis showed that the predictive model exhibited good accuracy (AUC = 0.947). Survival analysis confirmed the prognostic relevance of these core genes in patients with OS, with CHMP4C being the most significant (p = 0.0094). Patients with low CHMP4C expression had better prognoses, higher survival rates, and longer survival periods. Therefore, CHMP4C is considered to be the most crucial gene contributing to OS formation. CHMP4C plays a role in cell division by preventing accumulation of DNA damage through delayed abscission (Li et al., 2015). The polymorphism of CHMP4C increases susceptibility to cancer and may promote genomic instability, thereby inducing cancer (Liu et al., 2021). CHMP4C upregulation has been confirmed in cervical cancer tissues, promoting cell proliferation, migration, and invasion (Lin et al., 2020). Silencing CHMP4C can enhance the sensitivity of lung cancer cells to radiation by delaying the S phase of the cell cycle (Carlton et al., 2012). Additionally, Liu et al. found that CHMP4C may be an effective method for the prevention and treatment of lung squamous cell carcinoma (LUSC), and that CHMP4C is overexpressed in LUSC, and its decreased expression leads to an abnormal cell cycle transition in LUSC (Liu et al., 2021). Similar to our results, we found that CHMP4C, p-GSK3β, and β-catenin were significantly overexpressed in U2OS, HOS, and MG63 OS cells compared to hFOB1.19 cells, with MG63 cells showing the highest expression levels. There have been reports suggesting that CARM1 may interact with PELP1, enhance GSK3β phosphorylation, further promote β-catenin signaling, activate the pGSK3β/β-catenin signaling pathway, and facilitate OS cell proliferation (Li et al., 2017). To substantiate the influence of CHMP4C on OS, we conducted both over-expression and silencing experiments in MG63 OS cells. The outcomes demonstrated that CHMP4C over-expression significantly suppressed the expression of GSK3β in MG63 cells, while markedly elevating the levels of CHMP4C, pGSK3β, and β-catenin. Additionally, the over-expression of CHMP4C notably enhanced the proliferation and migration of MG63 cells. Conversely, interference with CHMP4C yielded opposite effects, aligning with the observations reported by Zhang et al. (2022). In addition, we validated the in vivo role of CHMP4C. Over-expression of CHMP4C drastically increased the expression of pGSK3β and β-catenin in xenografted OS in nude mice, while signally decreasing the expression of GSK3β. This resulted in an obvious augmentation in the growth of nude mouse OSs. Conversely, interference with CHMP4C produced the opposite effects. Our study implied that CHMP4C may activate the Wnt/β-catenin signaling pathway by enhancing the phosphorylation of GSK3β, thereby fostering the growth and development of OS. Therefore, CHMP4C may serve as a target gene for the onset and progression of OS and represent a potential therapeutic target.
In conclusion, this study pinpointed CHMP4C as a promising prognostic biomarker for OS. Through its ability to heighten the phosphorylation of GSK3β and activate the Wnt/β-catenin signaling pathway, CHMP4C plays a pivotal role in fostering the invasion and metastasis of osteosarcoma (Figure 10). These discoveries introduce novel biomarkers and therapeutic targets, providing insights for the diagnosis and treatment of osteosarcoma.
[image: Flowchart illustrating a biochemical pathway. CHMP4C is phosphorylated, activating GSK3β, which in turn phosphorylates β-catenin. Phosphorylated β-catenin accumulates in the nucleus, promoting gene transcription leading to cell migration and proliferation.]FIGURE 10 | Diagram of the Molecular Mechanisms underlying CHMP4C CHMP4C within OS cells. CHMP4C inhibits the expression of GSK3β in OS cells, while upregulating the expression of pGSK3β and β-catenin. The phosphorylation of GSK3β further promotes β-catenin signaling transduction, activating the pGSK3β/β-catenin signaling pathway and promoting the proliferation and migration of OS cells.
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Background: This study aimed to explore the regulatory effect of anserine on HUVEC cell injury and thrombosis in deep venous thrombosis (DVT) rats, and to elucidate the underlying molecular mechanisms.Methods: Non-targeted metabolomics data analyses were conducted using an ultra-performance liquid chromatography system Vanquish UHPLC and mass spectrometer to detect plasma metabolism profiles. The transcriptome sequencing and gene intervention experiments were performed to verify the regulatory effect. Further in vivo and in vitro experiments were performed. Enzyme-linked immunosorbent assay was used to detect the levels of P-selectin, E-selectin, and vWF, hematoxylin-eosin (HE) staining was performed to observe thrombotic and inflammatory cell infiltration, flow cytometry and TUNEL assays were performed to detect apoptosis, and qPCR and WB assays were conducted to determine the gene and protein expression.Results: Anserine alleviated HUVECs injury, reduced adhesion molecule expression, and inflammation. It decreased P-selectin, E-selectin, vWF, THBD, TFPI levels, and apoptosis while promoting NOS3, ET-1, and NO release in HUVECs. In DVT rats, anserine reduced P-selectin, E-selectin, vWF, thrombosis, cell infiltration, apoptosis, and promoted NO release. Transcriptome sequencing and gene intervention confirmed anserine’s regulation of the PI3K-Akt pathway and coagulation via MYB. CARNMT1, a regulatory enzyme for anserine metabolism, increased anserine content, inhibiting coagulation, thrombosis, cell infiltration, and promoting NO release in rats.Conclusion: This study confirmed anserine could alleviate DVT by improving the inflammatory response, inhibiting blood agglutination, and promoting vasodilation, providing new potential therapeutic targets, important scientific evidence for the development of DVT management, and new clues for an in-depth understanding of its molecular mechanisms.Keywords: deep vein thrombosis, anserine, multiomics techniques, non-target metabolomics, MYB, CARNMT1
1 INTRODUCTION
Deep venous thrombosis (DVT) is characterized by abnormal coagulation of blood in the deep vein, resulting in venous reflux obstructive disease, which often occurs in the lower limbs. The main causes of venous thrombosis are slow blood flow, damage to the vein wall, hypercoagulability with typical maniffestations (Akgül et al., 2016; Imran et al., 2018) swelling and pain in the lower limbs. If not treated promptly, the thrombus spreads to the deep vein trunk of the limbs. Acute embolus detachment is more likely to cause pulmonary embolism, which seriously affects the life and health of patients (Di Nisio et al., 2016; de Athayde Soares et al., 2019).
Studies have shown that the main reasons for the occurrence of lower-extremity DVT include hypercoagulation, intravenous injury, and slow blood flow, which are more common in patients with a history of major surgery, severe trauma, long-term bedridden status, limb immobilization, and malignant tumor diseases (Kim et al., 2021). Venous stagnation, venous wall injury, and blood hypercoagulation may be the main causes of DVT in the lower extremity. Old age, pregnancy, long-term smoking history, and obesity are also closely associated with DVT in the lower extremities (Myers, 2015; Di Nisio et al., 2016). Surgery or trauma leads to local vascular contusion in the body, which can cause vascular endometrial damage to the patient. DVT may develop under the combined action of endothelin and inflammatory factors. During the operation, due to factors such as cutting blood vessels and anesthesia, the possibility of DVT in patients is also increased (Rabinovich et al., 2015).
DVT has been shown to be closely associated with inflammatory response. After the body is injured, inflammatory factors accumulate, accelerating the hypercoagulable state of the body, causing adverse consequences such as platelet aggregation, endothelial injury, and thrombosis (Halici et al., 2014; Brandt et al., 2018). Thrombotic therapy includes both nonsurgical and surgical thrombectomies. Nonsurgical treatments include thrombolytic therapy, anticoagulant therapy, and deaggregation therapy (Zhang et al., 2021). However, thrombolytic therapy is associated with an increased risk of hemorrhea and does not show a mortality benefit in patients with DVT (Guyatt et al., 2012). Anticoagulant therapy is an important method for preventing DVT, and the main prophylactic drugs used are common heparin, low-molecular-weight heparin, X a factor inhibitory engraving, and vitamin K antagonists. Surgical thrombectomy carries the risks of surgical bleeding, infection, and anesthesia, especially in patients with other underlying conditions or comorbidities (Kakkos et al., 2021). Postoperative complications are also a potential risk for surgical thrombectomy, and although surgical treatment can remove DVT, it cannot solve the problem of patients being unable to prevent new thrombosis due to long-term bed bedridden, tumors, and other potential causes in the body. Therefore, it is of great significance to explore new drugs for DVT treatment and their corresponding regulatory mechanisms to provide a reference for the effective treatment of DVT.
Metabolomics is often used to study potential metabolic pathways, biomarkers, and therapeutic targets of diseases, and functional metabolomics is increasingly used to study systemic effects on hosts by identifying metabolites with specific functions (Yan and Xu, 2018; Liu and Ren, 2024). Examples of applied metabolomics have been found to identify disease biomarkers and therapeutic targets but are rarely reported in DVT. The present protocol used non-target metabolomics to study the differences in blood metabolites between DVT rat models and normal rats, screening potential metabolites that could alleviate DVT, providing new therapeutic targets for disease management, and combining transcriptome sequencing technology to study the molecular mechanism of potential metabolites to alleviate endothelial function damage.
2 MATERIALS AND METHODS
2.1 Constructing a DVT rat model
Sixty male Sprague-Dawley (SD) rats, SPF grade, aged 2 months, weighing 280–300 g were purchased from Chongqing Ensiweier Biotechnology Co., Ltd. Twelve rats were divided into a sham group and a DVT model group using a random number table simple randomization method, six in each group. All rats were fed with food and drinking water freely under the environmental conditions on alternate days and nights for 12 h, constant humidity at 20°C–25°C. Adaptive feeding was terminated after 1 week for subsequent experiments. DVT rat models were induced by ligation of the inferior vena cava. The animals were fasted for 12 h before surgery, but provided drinking water. The weights of the rats were then recorded. Subsequently, the rats were intraperitoneally administered 30 mg/kg of 0.3% pentobarbital sodium (Beijing Zhongheng Science Company, P3761) for anesthesia. The rats were fixed to a bench in a supine position with prepared skin, disinfected in the middle abdominal surgical area, and cut open along the white abdominal line. The small intestine was wrapped with a piece of wet gauze and placed in the right abdominal cavity of the animal to expose the inferior vena cava and its main branches. Ligation of the inferior vena cava and its main branches was performed using a 6-0 nylon suture approximately 1 cm below the left renal vein. Normal saline containing penicillin (McLean, G815743-5G) was sprayed before the abdominal cavity was closed to establish a rat model of DVT. The sham group underwent the same procedure as the model group, except that no veins were ligated. After 24 h of modeling, the rats were anesthetized and the abdominal sutures were removed (the inferior vena cava and its main branch lumen were observed to be thickened, the color was purple-black, and solid substances were formed, indicating that the modeling of DVT rats was successful). Blood from each group was collected and centrifuged to separate the serum. After the serum was aspirated, and the liquid nitrogen was used for quick freezing. Sample storage condition was set at −80°C. All animals received care in compliance with the American, European, or any other Convention on Animal Care, with the comment that the study was approved by Experimental Animal Ethics Committee of Nanjing First Hospital, Nanjing Medical University (approval no. DWSY-20210812).
2.2 Non-target metabolomics analysis
The serum of the rat model was tested for nontarget metabolomics. The groups included a sham group (15 rats) and a DVT model group (15 rats). Non-targeted metabolomic data analyses were performed using an ultra-performance liquid chromatography system (Vanquish UHPLC, Germany) and a Q Exactive™ HF mass spectrometer (Germany). Raw data were imported into the Compound Discoverer 3.1 software for peak alignment, extraction, and identification based on retention time, M/Z ratio, and ion area. For the multivariate statistical analysis, we employed the metaX software for data processing purposes, which facilitated the conversion of data and conducted principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), allowing to the acquisition of VIP values for each metabolite. Fold-changes in metabolites between both groups were computed as FC values. Default criteria for differential metabolite screening were VIP > 1, p < 0.05, and FC ≥ 2 or ≤ 0.5. Metabolite identification and annotation were performed employing KEGG database (https://www.genome.jp/kegg/pathway.html), HMDB database (https://hmdb.ca/metabolites), and LIPIDMaps database (http://www.lipidmaps.org/).
Volcano map was plotted using R package ggplot2, combining VIP values of the metabolite, log2 (FC), and -log10 (p-value), for the screening of metabolite of interest. Meanwhile, the metabolite data normalization was conducted based on z-scores. Bubble maps were plotted using the R package ggplot2; Metabolic functions and pathways were analyzed using the KEGG database. A metabolic pathway was deemed enriched when the ratio of x/n to y/n exceeded a certain threshold. Furthermore, if the p-values associated with the metabolic pathway were less than 0.05, it was considered significantly enriched.
2.3 Culture and treatment of human umbilical vein endothelial cells (HUVECs)
HUVECs (Procell Life Science&Technology Co., Ltd.) (Item No.: CL-0122) were obtained, prepared in a Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium (Gibco, United States, C11330500BT) containing 1% penicillin/streptomycin solution (Beyotime, China, C0222) and 10% FBS (Life-iLab, China, AC03L055), and placed in incubators at 37°C and 5% CO2. Cell growth was observed, and when confluence reached more than 80%, well-grown HUVECs were selected for passages at 1:3. The cells were digested with an appropriate quantity of 0.25% pancreatin solution and adjusted to an appropriate concentration of 1 × 105/mL. HUVECs were seeded in 96-well plates (100 μL/well) and incubated in an incubator for 24 h. Based on the operation procedures, the plates were prepared and added with 500 μL of the solution, 2 mL to the 6-well plates, 3–4 mL to the T25 flask for culture.
To detect the effect of anserine (Yuanye Biotechnology, China, S27475-250 mg) on endothelial cell injury, cells in the model and anserine groups were treated with TNF-α (10 μg/L, GenScript, China, Z01001) for 24 h to induce endothelial cell injury. The anserine treatment groups were treated with two doses (50 and 500 μg/mL) for 24 h, and the blank control group was administered normal saline.
2.4 CCK-8 detection of cell proliferation
At a cell concentration of 1 × 105/mL, the cells were inoculated into a 96-well plate at 100 μL/well and cultured 24 h. Subsequently, 10 μL of CCK-8 solution (Beyotime, China, C0038) was added to each well, followed by incubation. The absorbance value was then detected at 450 nm using a microplate detector (CMax Plus, United States, Molecular Devices), and the cell proliferative viability was analyzed.
2.5 Flow cytometry detection of cell apoptosis
Apoptosis was assessed using flow cytometry, following the manufacturer’s instructions of the Annexin V FITC/PI apoptosis kit (Yeasen Biotechnology (Shanghai) Co., Ltd., 40302ES50). After different treatments in different cell groups, each group was set up with three replicates and centrifuged at 1000 rpm. After removal of supernatant, cells were obtained and resuspended gently in PBS for number calculation. The suspended cells (1 × 106) were centrifuged at 1000 rpm for 3 min; the supernatant was discarded; and 195 μL of Annexin V-FITC-A binding solution was added. Next, 5 μL of AnnexinV-FITC was added, evenly mixed with care for incubation away from light for 10 min. Propidium Iodide (5 μL) was used to fix and stain the cells, CytoFLEX flow cytometry was applied to perform the flow cytometry assays, and the data were processed using FlowJo7.6 software.
2.6 ELISA
Each group of cells were cultured and cell supernatant was collected. Concentrations of von Willebrand factor (vWF), P-selectin, and E-selectin were detected using an ELISA kit, according to the manufacturer’s instructions (Wuhan Fine Biotech Co., Ltd., China, EH1064, EH3818, EH0124).
2.7 Nitric oxide (NO) level detection
The NO levels in the cells and serum were detected using a NO ELISA kit (SaintBio, BA1460, Shanghai, China).
2.8 Gene expression detection
The levels of thrombomodulin (THBD), endothelin 1 (ET-1), tissue factor pathway inhibitor (TFPI), and nitric oxide synthase 3 (NOS3) mRNAs in each group of cells and inferior vena cava tissues of the rats were detected by qPCR assays. The treated cells or tissues were harvested to extract total RNAs using TRIzol. Gel electrophoresis was performed to determine purity, and spectrophotometry (United States, Thermo, NanoDrop One/One C, Thermo Scientific) was used to determine the RNA content. Reverse transcription to cDNA was conducted using reverse transcription kits (Tsingke Biotechnology Co., Ltd., Beijing, TSK302M). Primers were designed according to sequence information based on the NCBI database (Supplementary Table S1), with GAPDH as the internal reference. The effects of THBD, TFPI, ET-1, NOS3, and MYB mRNA expression were detected using RT-qPCR and data analyses were conducted based on a 2−ΔΔCT method.
2.9 Protein expression detection
RIPA lysate was utilized to lyse the cells and extract total proteins, and the protein concentrations were determined using the BCA method. A 5 × buffered loading solution and PBS were provided according to the protein content, and the proteins were boiled in a water bath at 100°C for 5 min to denature. After cooling, the sample was subjected to 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to isolate the target protein. The isolated protein was then transferred to a polyvinylidene fluoride (PVDF) membrane. The current was adjusted to 300 mA, and the membrane transfer time was determined by the weight of the target protein molecule. After the PVDF membrane was fully immersed in 5% skim milk and sealed for 1 h, it was incubated successively with primary antibodies (THBD, TFPI, ET-1, and NOS3) at 4°C overnight with vibration. Subsequently, the membrane was incubated with the secondary antibody (goat anti-rabbit IgG) at room temperature for 60 min. The membrane was placed in a dark room, mixed with luminescent solutions A and B equally according to the required volume, and added to the front membrane to ensure sufficient contact. The membrane was then placed in a nucleic acid protein gel imager (US, Bio-Rad, universal Hood II) to detect and read the relevant band grayscale values using the ImageJ software. The antibodies utilized are listed in Supplementary Table S2.
2.10 Rat blood coagulation function test
The modeling method for DVT rats was the same as that described in Section 2.1. The effect of anserine (Yuanye Biotechnology, China, S27475-250 mg) on the alleviation of DVT formation in vivo was studied by intragastric administration to rats. The animals were categorized into four groups: sham group, DVT model group, DVT model + low-dose anserine group, and DVT model + high-dose anserine group, with six rats in each group. Sham and DVT groups of rats received a daily administration of 2 mL of normal saline, and those in the L-anserine and H-anserine groups were given a daily administration of 2 mL solutions containing L-anserine (3 mg/mL) and H-anserin (15 mg/mL). After 1 week of continuous intervention, blood samples were obtained from the intraorbital vein of anesthetized rats to measure four blood coagulation parameters: prothrombin time (PT), thrombin time (TT), activated partial thrombin time (APTT), and fibrinogen (FIB). Blood was obtained from the abdominal aorta, and the serum was separated. The weight, length, and thickness of the thrombi were measured in each group. The thrombus tissues used for pathological experiments were stored at room temperature in 4% paraformaldehyde solution (Aladdin, C104190–500 g).
2.11 Hematoxylin-eosin (HE) staining
The inferior vena cava segments of each group were routinely fixed, dehydrated using 75%, 80%, 90%, 95%, and 100% ethanol for 1 h, paraffin-embedded, and prepared into 4-μm-thick sections (United States, Thermo, INESSE E E+). The paraffin sections were rehydrated with gradient ethanol, stained with HE staining (Servicebio, G1004; G1002) for 5 min, dehydrated, and sealed, and the histomorphological differences in the venous segment of local thrombosis in each group were observed under a light microscope (Guangzhou Micro-shot Optical Technology Co., Ltd., Mshot MF53).
2.12 TUNEL staining detection of apoptosis
Thrombus tissues were fixed using 4% paraformaldehyde, followed by embedding in paraffin and subsequent sectioning. Subsequently, DAB (SA-HRP) TUNEL Cell Apoptosis Detection Kit (Xavier, G1507) was used for the detection of tissue apoptosis. TUNEL staining was conducted, and after incubation, and the cells were examined under a fluorescence microscope after incubation. Statistical analyses using ImageJ image processing software were performed according to the requirements of the kit.
2.13 Transcriptome sequencing analysis
The cell culture and treatment methods for HUVECs were the same as those described in Section 2.3. The experimental cells were categorized into three groups: the control group (Control), model group (Model), and model + 500 μg/mL anserine treatment group (Model + Anserine). Each group of cell samples was subjected to RNA-Seq, and the resulting sequences were analyzed to identify DEGs. GO and KEGG pathway enrichment analyses were performed. Key genes associated with the treatment mechanism were screened in combination with the effect of anserine on endothelial function in cell experiments.
2.14 MYB gene interferes with lentiviral packaging
The interfering lentiviral vector of MYB was constructed according to the interfering target site sequence (Supplementary Table S3), which was completed by Biomedicine Biotechnology (China). In short, interfering targets were designed from the transcripts of the gene of interest and primer synthesis was conducted. Single-stranded oligo annealing of MYB formed a double-stranded linkage to the linearized pLVX-shRNA1 vector. After transforming the recombinant plasmid with receptor cells, a resistance culture plate was placed, and the recombinant plasmids were uniformly coated with a coater, cultured invertedly at a constant temperature, and multiple positive transformants in the plate were harvested and delivered for sequencing. The correct monoclonal sequences were selected and verified by sequencing. A large quantity of viral target sequence tool vector plasmids (pLVX-shMYB) and auxiliary packaging plasmids (pLV-Helper1.0 and pLV-Helper2.0) were extracted using a de-endotoxin plasmid extraction kit. Their concentration and purity were determined using an ultraviolet absorption method to ensure that the proposed plasmid DNA at A260/A280 was between 1.8 and 2.0.
The MYB gene interfering with lentiviral plasmids and transfection reagents were mixed evenly with serum-free DMEM, followed by an incubation period of 10 min. The mixture was added dropwise to 293T cells and incubated for 6 h. After culturing under normal conditions for 48 h, the cell culture supernatant was collected. After the first collection of cell supernatant, the DMEM was replaced. After 72 h, the DMEM was collected for the second time and mixed with the first supernatant. Following centrifugal concentration and subpackaging in viral tubes, the mixture was frozen at −80°C until use.
2.15 MYB function verification experiment
After HUVECs were subjected to passage culture, the control, NC + model, anserine + NC + model, and anserine + MYB interference + model groups were treated, with the exception of the control group. The HUVECs in the remaining groups were treated with TNF-α (10 μg/L) for 24 h to induce endothelial cell injury. MYB interference/no-load lentiviral infection was performed according to group settings. After 72 h, the groups were subjected to a 24-h treatment of anserine (500 μg/mL), while the blank control group was administered normal saline.
2.16 Overexpression of CARNMT1 interferes with adeno-associated viral preparation
Screening of shRNA interference sequences and construction of viral vectors were performed by Biomedicine Biotechnology. The shRNA interference sequence was designed and synthesized according to CARNMT1 (Supplementary Table S4).
The DVT animal modeling method was the same as that used in Experiment 2.1. The synthetic rate-limiting enzyme, CARNMT1, involved in the production of anserine, was determined utilizing the KEGG metabolic pathway resource (http://www.kegg.jp). After CARNMT1 was identified, CARNMT1 overexpression and interference with adeno-associated viruses were induced. The rats in each group were administered tail vein injection according to the experimental groups (Sham group; DVT + NC group; DVT + OE-CARNMT1 group; DVT + IN-CARNMT1 group). Six rats from each group were sacrificed 1 week later, and the rat blood samples and inferior vena cava tissues were collected.
2.17 Statistical methods
Performing data preprocessing using DecisionLink V1.0 (Team DC, 2023). Duncan’s post hoc test for multiple comparisons was performed using independent samples t-test. One-way analysis of variance (ANOVA) was conducted using GraphPad Prism software (version 9.0). The data were presented as “mean ± SD”, p < 0.01 demonstrated extremely statistical difference, and p < 0.05 demonstrated statistical difference.
3 RESULTS
3.1 Anserine is identified as a differential metabolite in DVT rats
An orthogonal PLS-DA fraction plot illustrated the separation between the DVT and Sham groups (Figures 1A,D). Based on the criteria of VIP > 1 and p < 0.05, A total of 348 metabolites with significant differences were screened between the Sham and DVT groups. Among these metabolites, 54 were found to be upregulated and 138 were downregulated in the cationic mode, while 102 were upregulated and 54 were downregulated in the anionic mode (Supplementary Table S5, Figures 1B,E). Alanine, aspartate, glutamate, and histidine metabolism were the most important biochemical and signal transduction pathways that could be determined by pathway enrichment (Figures 1C,F). Among these differentially expressed metabolites, anserine was found to be enriched in the histidine metabolism pathway. Based on the literature search results, it has been found that serine plays an important physiological role in antioxidant and anti-inflammatory responses (Wu, 2020). This suggests that anserine may have the potential to alleviate DVT and could serve as a promising metabolite for further investigation.
[image: Four panels showing Principal Component Analysis (PCA) plots and volcano plots. Panel A and D show two PCA plots with points distributed along the axes. Panel B and E display volcano plots with points in red, green, and gray, representing different levels of significance and fold change. Panels C and F present dot plots showing various pathways, indicating statistical significance and impact. The color gradient represents the number of pathways.]FIGURE 1 | Non-target metabolomics analysis. (A) PLS-DA diagram in the anionic mode; (B) Volcano map of differential metabolites in the anionic mode; (C) Pathways enriched in KEGG analyses of differential metabolites in the anionic mode; (D) PLS-DA diagram in the cationic mode; (E) Volcano map of differential metabolites in the cationic mode; (F) Pathways enriched in KEGG analyses of differential metabolites in the cationic mode.
3.2 Anserine relieves damage to HUVECs
Studies have shown that the main causes of DVT include blood agglutination and intravenous membrane injury, and are closely related to the inflammatory response. After injury, inflammatory factors aggregate, accelerating the hypercoagulable state of the body, triggering platelet aggregation, endothelial damage, and other adverse consequences, eventually causing thrombosis (Wu and Cheng, 2020). We constructed a model of endothelial injury using TNF-α-treated HUVECs and validated the effects of anserine on endothelial injury, blood agglutination, and inflammatory response of HUVECs at the cellular level using 50 and 500 μg/mL anserine for interventions. Compared with the endothelial injury group, 50 μg/mL and 500 μg/mL anserine-treated cells showed significantly inhibited apoptosis (Figure 2A) and enhanced cell proliferation (Figure 2B). Treatment with 50 and 500 μg/mL anserine promoted NO release from cells (Figure 2C) and inhibited and enhanced the expression of ET-1 and NOS3 genes and proteins, respectively, which might have a positive effect on vasodilation (Figure 2E,F). In addition, 50 μg/mL and 500 μg/mL anserine significantly reduced vWF levels (Figure 2D) and THBD and TFPI gene and protein expression in TNF-α-treated cells (Figures 2E,F). Additionally, cellular levels of P-selectin and E-selectin, which are adhesion molecules involved in the inflammatory response and migration of immune cells, were significantly reduced after anserine treatment (Figure 2D) (Panicker et al., 2017; Purdy et al., 2022).
[image: A set of charts and graphs illustrating an experiment with different ameroid concentrations. Panel A shows flow cytometry plots and a related bar graph comparing control, model, and treated groups. Panels B to E display bar graphs showing levels of SOD, NO, vWF, P-selectin, E-selectin, and adhesion molecules. Panel F includes Western blot images and corresponding bar graphs for ET-1, NO3, THD, and TPH proteins, indicating expression levels across different treatments. Statistical significance is marked with asterisks and hash symbols.]FIGURE 2 | Anserine interventions alleviate HUVECs damage. (A–E) After the HUVECs were exposed to TNF-α (10 μg/L) for 24 h, (A) apoptosis, (B) cell viability, (C) cell NO levels, (D) cell vWF, P-selectin and E-selectin level was determined by ELISA, (E) ET-1, NOS3, THBD and TFPI mRNA, and (F) protein expression were detected after intervention with anserine (50 and 500 μg/mL), respectively. Mean ± SD are shown (n = 3 in each group). **p < 0.01, ***p < 0.001 compared to the Control group; #p < 0.05, ###p < 0.001 compared to the Model group; &p < 0.05, &&p < 0.01, &&&p < 0.001 compared to the 50 μg/mL + anserine group.
3.3 Anserine inhibits vascular damage and thrombosis in inferior vena cava tissues of DVT rats
The effects of anserine on endothelial cell damage, adhesion molecule expression, and inflammation-related molecule expression were explored at the cellular level. To further investigate the effects of anserine on alleviating DVT in vivo, we constructed a rat model of DVT and administered different doses of anserine (3 and 15 mg/mL) to rats for 1 week, followed by four coagulation tests (Figure 3A). Both low- and high-dose anserine reduced serum P-selectin, E-selectin, and vWF levels in DVT rats (Figure 3B). In vivo experiments in DVT rats also showed that low and high doses of anserine inhibited thrombosis in the inferior vena cava tissue (Figure 3C). HE staining revealed the inhibitory effect of anserine on thrombosis in the tissues of inferior vena cava. Additionally, anserine treatment resulted in a reduction in the infiltration of inflammatory cells (Figure 3D). Furthermore, the anserine-treated groups exhibited a decrease in the number of apoptotic cells in the tissue (Figure 3E).
[image: Graphs and panels comparing the effects of different treatments on factors related to deep vein thrombosis (DVT). Panel A shows bar graphs for four inflammatory markers (F4/80, TNF-α, IL-6, and MCP-1). Panel B presents bar graphs for the expression of E-selectin, P-selectin, and VWF. Panel C shows representative images and graphs indicating clot size measurements. Panel D includes histological images. Panel E displays immunohistochemical staining results with a bar graph. Treatments include sham, DVT, L-anserine, and H-anserine, with statistical significance indicated by asterisks and symbols.]FIGURE 3 | Vascular damage and thrombosis of inferior vena cava tissues in DVT rats are inhibited after 1 week of continuous gavage with anserine. (A) Four items of the coagulation tests (PT, TT, APTT, and FIB), (B) ELISA detection of serum P-selectin, E-selectin and vWF levels in each group, (C–E) In the tissues of inferior vena cava of each group, (C) thrombus length, weight and thickness, (D) pathological morphology, and (E) apoptosis are detected. Scale bar = 50 μm. Mean ± SD are shown (n = 3 in each group). *p < 0.05, **p < 0.01, ***p < 0.001 compared to the Sham group; ##p < 0.01, ###p < 0.001 compared to the DVT group; &&&p < 0.001 compared to the L-anserine group.
After 1 week of continuous intragastric administration of anserine, NO release increased in DVT rats (Figure 4A), and ET-1 and NOS3 gene expression decreased and increased, respectively (Figure 4B). In addition, there was a significant increase in the expression of THBD and TFPI genes and proteins. On the other hand, the protein expression of ET-1 decreased, while the expression of NOS3 increased (Figures 4C–E).
[image: A composite image with five panels labeled A to E. Panel A shows a bar graph of nitric oxide concentration, with different groups compared. Panel B displays two bar graphs of relative gene expression for unknown targets, KS3 being one of them. Panel C presents two bar graphs depicting relative expression of unspecified genes. Panel D shows a Western blot for THBD, TFPI, ET1, NOS3, and GAPDH with corresponding bands. Panel E includes three bar graphs detailing data labeled as media intensity, showing different group comparisons. Statistical significance is indicated by symbols such as stars and ampersands.]FIGURE 4 | Continuous gavage with anserine after 1 week promotes vasodilation in DVT rats. (A) NO content determination in each group, (B) mRNA detection for vasoconstriction and relaxation-related molecules, (C) thrombosis-related molecules, and (D, E) expression of THBD, TFPI, ET-1, and NOS3 proteins using WB. Mean ± SD are shown (n = 3 in each group). *p < 0.05, **p < 0.01, ***p < 0.001 compared to the Sham group; #p < 0.05, ##p < 0.01, ###p < 0.001 compared to the DVT group; &p < 0.05, &&p < 0.01, &&&p < 0.001 compared to the L-anserine group.
3.4 Anserine relieves HUVEC damage by regulating MYB
The results of both in vivo and in vitro experiments suggest that anserine mitigates HUVEC damage and DVT in rats. Next, we collected 500 μg/mL anserine-treated cells for transcriptome sequencing to explore the molecular mechanism of anserine in response to endothelial cell damage. Differentially expressed gene analyses after the treatment of HUVECs with TNF-α and anserine are shown in Figure 5A. We performed GO and KEGG analyses on genes differentially expressed in the model group and those in response to anserine treatment, and found that these genes mainly involved glyoxylate and dicarboxylate metabolism, arginine and proline metabolism, and the PI3K-Akt signaling pathway (Figure 5B). At the biological process level, genes were mainly related to the promotion of histone H3-K9 methylation and inhibition of hematopoietic progenitor cell differentiation (Figure 5C). Among these genes, MYB is also a transcriptional regulator of THBD and TFPI. Building upon previous research, it has been found that MYB plays a crucial role in regulating angiogenesis and platelet production (Carpinelli et al., 2004; Zhang et al., 2021). Therefore, MYB might be a key gene of anserine in response to HUVEC damage and DVT. In HUVECs, MYB gene and protein expression was significantly downregulated but significantly upregulated in the model group after anserine treatment (Figures 5D,E).
[image: Multiple panels present scientific data: Panel A shows two volcano plots comparing control versus model and model versus ametrine groups. Panel B features a plot of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, displaying pathways with significance levels. Panel C displays a Gene Ontology (GO) enrichment plot. Panel D shows a bar graph with error bars comparing MYB expression levels across three groups. Panel E includes Western blot images of MYB and GAPDH, accompanied by a bar graph quantifying protein levels. Statistical significance is indicated with asterisks.]FIGURE 5 | Transcriptome sequencing identifies MYB as a possible target gene for anserine in response to HUVEC injury. HUVECs were exposed to TNF-α (10 μg/L) for 24 h in the model group and the anserine treatment group. After the addition of anserine (500 μg/mL) to the culture medium, (A) volcano map of DEG analysis between the two groups, (B, C) overlapped genes that were differentially expressed in the model group and recurrent expression after treatment with anserine, (B) GO enrichment analysis, (C) KEGG pathway enrichment bubble charts, (D) qPCR detection of MYB gene expression (E) WB detection of MYB protein expression. Mean ± SD are shown (n = 3 in each group). ***p < 0.001 compared with the control group; #p < 0.05, ###p < 0.001 compared with the model group.
The MYB interference/empty-load lentivirus infection group was further set up according to the grouping to explore the regulatory effect of MYB on HUVECs injury. In comparison to the Model + NC + Anserine group, the apoptosis of the Model + IN-MYB + Anserine group was significantly increased (Figure 6A), whereas cell proliferation was significantly reduced (Figure 6B). Furthermore, in the IN-MYB group, the levels of cell vWF, P-selectin, and E-selectin were significantly increased (Figure 6C). In comparison to Model + NC + Anserine, NO release was significantly downregulated in the Model + IN-MYB + Anserine group, and ET-1 and NOS3 gene expression were upregulated and downregulated in the Model + IN-MYB + Anserine group, respectively (Figure 6D). In addition, IN-MYB infection significantly reduced THBD and TFPI gene and protein expression, and MYB and NOS3 protein expression, but ET-1 protein expression was significantly increased (Figures 6E–G).
[image: Graphs and a gel electrophoresis image illustrating experimental results. Panel A displays flow cytometry plots of different groups. Panels B to E show bar graphs comparing various protein expressions in different experimental setups. Panel F presents a gel electrophoresis result showing the expression of proteins MYB, MVD, TFPI, ET-1, NOS3, and GAPDH with their corresponding molecular weights. Panel G contains additional bar graphs depicting further data analysis. Each section appears to compare the effects of treatments like NC (negative control) and MYB interference on a model organism. Statistical significance markers are present on several graphs.]FIGURE 6 | Interfering with MYB gene expression inhibits the effect of anserine on mitigating HUVEC injury. Relevant tests were performed in each group 72 h after MYB interference/empty-load lentivirus infection according to the grouping. (A) Apoptosis, (B) CCK8 detection of cell proliferation, (C) vWF, P-selectin, E-selectin assay, (D) detection of vasodilation and contraction-related molecules, (E) MYB, THBD, and TFPI gene expression levels, (F, G) MYB, THBD, TFPI, ET-1, and NOS3 protein expression. Mean ± SD are shown (n = 3 in each group). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Control group; #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the Model + NC group; &&p < 0.01, &&&p < 0.001 compared with the Model + NC + Anserine group.
3.5 CARNMT1 alleviates DVT rats by controlling the metabolic level of anserine
According to the KEGG metabolic pathway database (http://www.kegg.jp), the synthetic rate-limiting enzyme CARNMT1 of the metabolite anserine was used to overexpress CARNMT1 and interfere with adeno-associated viruses. The rats in each experimental group were administered tail vein injections. After 1 week of continuous intragastric administration of anserine, OE-CARNMT1 inferior vena cava tissue cell apoptosis was reduced (Figure 7A). The effect of CARNMT1 on coagulation in rats is shown in Figure 7B. OE-CARNMT1 tail vein injection inhibited thrombosis and tissue inflammatory infiltration in rats (Figures 7C,E). And vWF, P-selectin, and E-selectin levels were significantly reduced (Figure 7D). In addition, in the DVT + OE-CARNMT1 group, NO release increased, ET-1 and NOS3 gene expression decreased and increased, respectively (Figures 8A,B). CARNMT1, THBD, and TFPI gene and protein expression significantly increased, while ET-1 and NOS3 protein expression decreased and increased, respectively (Figures 8B,C). The anserine metabolite content was significantly higher in the DVT + OE-CARNMT1 group (Figure 8D).
[image: Scientific figures showing data from an experiment on deep vein thrombosis (DVT) in different groups: Sham, DVT+NC, DVT+OE-CARNMT1, and DVT+Ni-CARNMT1. Panels A, B, D, and E display histological images and corresponding graphs illustrating cell apoptosis, inflammation markers, and endothelial adhesion molecules. Panel C shows images comparing clot formation among the groups. Each panel includes quantitative analysis represented by bar graphs with statistical significance indicators.]FIGURE 7 | Effects of CARNMT1 on the injury of inferior vena cava tissue cells and thrombosis in DVT rats. (A) Tunel detects histiocyte apoptosis, Scale bar = 50 μm, (B). Four items of blood coagulation tests in each group: PT, TT, APTT, and FIB, (C) Thrombosis morphology in each group of rats, (D) ELISA detects the contents of vWF, P-selectin, and E-selectin, (E) Detection of thrombus length, weight and thickness in each group of rats, Scale bar = 50 μm. Mean ± SD are shown (n = 3 in each group). *p < 0.05, **p < 0.01, ***p < 0.001 compared to the Sham group; ##p < 0.01, ###p < 0.001 compared to the DVT + NC group; &p < 0.05, &&p < 0.01, &&&p < 0.001 compared to the DVT + OE-CARNMT1 group.
[image: Bar graphs and a Western blot image display experimental data. Graphs compare different treatments (D-ARG, L-NAME, D-ARG+CARMN11) on various parameters. The Western blot shows protein expression of CARMN11, THBS1, TFPI, ET-1, NOS3, and GAPDH. Statistical significance is indicated with asterisks and hashtags.]FIGURE 8 | CARNMT1 promotes anserine metabolism in DVT rats. CARNMT1 interfering/overexpressing adeno-associated virus tail vein injection was performed according to grouping, and tissues were collected 1 week later for relevant testing. (A) Detection of molecules related to vasodilation and contraction. (B) CARNMT1, THBD, and TFPI gene expression levels. (C) HPLC detects the metabolic content of anserine in rats. (D, E) CARNMT1, THBD, TFPI, ET-1, and NOS3 protein expression. Mean ± SD are shown (n = 3 in each group). *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Sham group; #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the DVT + NC group; &&&p < 0.001 compared with the DVT + OE-CARNMT1 group.
4 DISCUSSION
DVT refers to abnormal formation of blood clots within the deep vein, leading to venous return obstruction. Common thrombotic diseases include pulmonary thromboembolism, ischemic stroke, venous thrombosis, myocardial infarction, and coronary heart disease, which have high incidences and can be life-threatening (Akers et al., 2019). Patients may experience clinical symptoms such as pain in the extremities, swelling, and excessive epidermal temperature. Once a deep vein thrombus is formed, the embolus is prone to fall off, which may enter the pulmonary artery with blood circulation, causing pulmonary artery embolism and even death of the patient due to pulmonary embolism (McCullough et al., 2018). In addition, if DVT is not treated in a timely and effective manner, it will develop into post-thrombotic syndrome and even lead to disability, which seriously affects the prognosis of patients (Galanaud et al., 2018). As a major emerging research field in systems biology, metabolomics can comprehensively reflect the metabolic state of the body under pathological conditions and deeply understand the mechanism of thrombosis.
In this study, we conducted an analysis of the KEGG pathway of differential metabolites and differential metabolite enrichment between the DVT group and the sham group. The experimental results revealed significant alterations in the serum content of many metabolites in the DVT group. Among these, anserine was identified as a downregulated differential metabolite in DVT when analyzed in the cationic mode. Gu et al. identified reduced levels of metabolites in DVT rats using ultra-performance liquid chromatography based on metabolomics (Gu et al., 2022). Anserine is a multifunctional and highly stable dipeptide analogue of carnosine. Research by Peters et al. suggests that short-term treatment with anserine can improve vascular permeability in diabetic mice (Peters et al., 2018). Anserine has been reported to play a significant physiological role in antioxidant and anti-inflammatory responses (Wu, 2020), and its downregulation in the DVT model group may prevent DVT rats from playing a regulatory role in the inflammatory response after venous thrombosis (Katakura et al., 2017). Enrichment analysis based on the KEGG metabolic pathway was used to determine the alterations in the metabolic pathways associated with the differential metabolites. The observed differences in the metabolic pathways between the DVT model rats and the sham-operated group were mainly concentrated in histidine metabolism, which contains the differential metabolite goosomyopeptide.
In this study, the mitigation effect of anserine on DVT was studied in many aspects, including the mitigation effect on endothelial cell injury and the modulation effect on blood coagulation function and vascular injury in DVT rats. In the HUVECs endothelial injury model, it was found that anserine significantly inhibited apoptosis, enhanced cell proliferation, and played a positive role in vasodilatation by inhibiting and enhancing ET-1 and NOS3 gene and protein expression, respectively, while significantly reducing P-selectin and E-selectin molecular levels, inhibiting inflammatory response, and significantly inhibiting vWF release levels, THBD, and TFPI gene and protein expression, thereby inhibiting platelet aggregation and activation and reducing thrombosis (Yang et al., 2017; Manderstedt et al., 2022). In addition, the positive effects of anserine on endothelial damage, blood agglutination, and the inflammatory response in rats have also been demonstrated in rats with DVT. Vascular endothelial cells are distributed between the subcutaneous tissues of the vascular wall and have various biological functions. Under normal physiological conditions, vascular endothelial cells can inhibit coagulation factors and platelet activation, secrete fibrinolytic molecules, and prevent thrombosis. Once vascular endothelial cells are damaged by external factors, they can promote thrombosis, resulting in impaired biological functions (Lau et al., 2022). There has been a growing focus on the regulatory role of vascular endothelial cells in DVT formation in recent years (Bochenek and Schäfer, 2019). Some scholars have proposed that protecting the function of endothelial cells and promoting their repair should be new ideas for the clinical treatment of DVT (Rajendran et al., 2013). Research has shown that increasing MYB expression can promote tube formation of brain microvascular endothelial cells, indicating a crucial role of MYB in regulating angiogenesis (Zhang et al., 2021). Additionally, knocking down MYB enhances platelet production, and platelets are critical factors in blood coagulation, suggesting that MYB may play a role in DVT (Carpinelli et al., 2004).
To gain a deeper understanding of the molecular mechanism underlying the effects of anserine on the biological function of HUVECs, we revealed the molecular mechanism of anserine in response to endothelial cell injury through transcriptome sequencing and gene expression analysis and found that MYB may be a key gene of anserine in response to HUVECs injury and DVT, which was confirmed through MYB interference experiments. Transcriptomic sequencing analysis using the KEGG pathway revealed that the PI3K-Akt signaling pathway is enriched with the MYB gene. In endothelial cells, activation of Akt promotes cell survival, suggesting that the PI3K/Akt pathway may play a crucial role in regulating various inflammatory diseases (Tao et al., 2019). Inhibiting the PI3K/Akt/NF-кB pathway leads to a reduction in the expression of IL-1β, IL-6, and TNF-α, thereby improving the inflammatory environment and survival of HUVECs (Baratchi et al., 2017). In addition, the effect of CARNMT1 on the regulation of anserine metabolism in response to DVT was studied, and its effect on DVT rats was confirmed by experiments. The protein encoded by CARNMT1 is a methyltransferase that converts carnosine to anserine (Cao et al., 2018). The findings demonstrate that overexpression of CARNMT1 in DVT rats can increase the anserine content, prolong PT, TT, and aPTT, inhibit FIB, and promote the anticoagulant function of rats. The results also showed that overexpression of CARNMT1 inhibited vWF, P-selectin, and E-selectin content; reduced THBD and TFPI gene and protein expression; and inhibited thrombosis and inflammatory infiltration in rats. Based on these findings, it can be inferred that CARNMT1 shows potential as a therapeutic target for DVT owing to its modulation of anserine content and inhibition of blood clotting, inflammatory response, and thrombosis in DVT rats.
These results suggest that anserine could potentially serve as a therapeutic agent for DVT management. Its ability to decrease adhesion molecule expression and inflammation, highlights its multifaceted benefits in mitigating DVT progression. Translating experimental interventions such as anserine supplementation and CARNMT1 modulation into clinical practice poses several challenges but also holds significant promise. Conducting rigorous clinical trials to evaluate the safety, efficacy, and optimal dosage of anserine supplementation in DVT patients is essential. This study also has some limitations. It should be noted that although the current findings systematically elucidate the multifaceted mitigating effects of anserine on DVT, the results are mutually corroborated by cellular and animal experiments. In addition, the molecular mechanism of anserine in DVT has been revealed, providing preliminary evidence for the association of the MYB gene with DVT. It has been determined that CARNMT1, as a regulatory enzyme of anserine metabolites, has a mitigating effect on DVT. These findings offer a crucial theoretical foundation for future development of related drugs and treatments in the future. However, further research is warranted to explore and verify the exact mechanisms through which MYB and CARNMT1 exert their effects in the context of DVT.
5 CONCLUSION
The findings of this study demonstrated that anserine has a crucial regulatory role in HUVECs injury and thrombosis in DVT rats. It functions by regulating the expression of adhesion molecules, inhibiting thrombosis, reducing apoptosis, and promoting NO release. Further transcriptome sequencing and genetic intervention results suggested that anserine may modulate the activity of the PI3K-Akt signaling pathway and coagulation function through MYB. Additionally, CARNMT1 was found to play a role in the modulation of anserine metabolism.
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Objectives: Fibroleukin (FGA) and NOTCH3 are vital in both exercise-induced muscle adaptation and colon adenocarcinoma (COAD) progression. This study aims to elucidate the roles of FGA and NOTCH3 in phenotypic variations of striated muscle induced by exercise and in COAD development. Additionally, it seeks to evaluate the prognostic significance of these proteins.Methods: Gene Set Variation Analysis (GSVA) and protein-protein interaction (PPI) network analysis were employed to identify differentially expressed genes (DEGs). Molecular docking studies were conducted to assess the binding affinities of 39 compounds to the NOTCH3 protein. In vitro assays, including mobileular viability, gene expression, and apoptosis assays, were performed to evaluate the effects of glycerophosphoinositol on FGA and NOTCH3 expression. Additionally, copy number variation (CNV), methylation status, and survival analyses were conducted across multiple cancers types.Results: The NOTCH signaling pathway was consistently upregulated in exercise-induced muscle samples. High NOTCH3 expression was associated with poor prognosis in COAD, extracellular matrix organization, immune infiltration, and activation of the PI3K-Akt pathway. Molecular docking identified gamma-Glu-Trp, gamma-Glutamyltyrosine, and 17-Deoxycortisol as strong binders to NOTCH3. Glycerophosphoinositol treatment modulated FGA and NOTCH3 expression, influencing cell proliferation and apoptosis. CNV and methylation analyses revealed specific changes in FGA and NOTCH3 across 20 cancers types. Survival analyses showed strong associations between FGA/NOTCH3 expression and survival metrics, with negative correlations for FGA and positive correlations for NOTCH3.Conclusion: FGA and NOTCH3 play significant roles in exercise-induced muscle adaptation and colon cancer progression. The expression profiles and interactions of these proteins provide promising prognostic markers and therapeutic targets. These findings offer valuable insights into the post-translational modifications (PTMs) in human cancer, highlighting novel pharmacological and therapeutic opportunities.Keywords: FGA, Notch3, PTMs, colon cancer, prognosis, gene expression
INTRODUCTION
Colorectal cancer (CRC), a leading cause of cancer-related mortality worldwide, is characterized by a complex interaction of genetic and environmental factors (Miles et al., 2015; Baidoun et al., 2021). Among these factors, physical exercise has been increasingly recognized for its potential to mitigate CRC risk and progression, as well as to enhance muscle health (Arena and McNeil, 2017). However, the molecular mechanisms underlying these effects remain to be fully elucidated.
Exercise-associated research provides insights for multi-omics evaluations (Chen et al., 2022a; Luo et al., 2022; Khan et al., 2023; Du and Liu, 2024; Wan et al., 2024), new therapeutic approaches and classification systems (Hussein and Rubenb, 2022; Lu et al., 2023; Torres-Rosas et al., 2023; Chen et al., 2024). Exercise-induced adaptations in striated muscle often involve complex molecular pathways, with post-translational modifications (PTMs) playing a crucial role in regulating key proteins (Ohlendieck, 2013; Solís and Russell, 2021). Similarly, in the progression of colon adenocarcinoma (COAD), PTMs can alter protein function and interaction networks, affecting tumor growth, immune response, and patient prognosis (Wang Y-W. et al., 2023).
Natural products hold potential for cancer treatment (Barreto and Jandus, 2022), translating into preventive and therapeutic options for CRC due to similarities in drug mechanisms and bioinformatics approaches (Feng et al., 2022; Simani et al., 2023; Xia et al., 2023; Xu et al., 2024). For instance, phenolic compounds in lentils exhibit significant antioxidant capacity, highlighting the importance of bioactive compounds related to exercise-induced muscle adaptation (Xia et al., 2023). Guishao tea extract inhibits gastric cancer growth (Liu et al., 2022), demonstrating the potential value of natural products in cancer therapy. Machine learning applied to cancer biomarker discovery can notably enhance early detection of CRC, highlighting the significance of computational tools (William et al., 2023; Zhong et al., 2023). This approach is vital for the detection and treatment of colorectal cancer (Mancheng and Ssas, 2023).
The findings of this study aim to improve our understanding of the molecular underpinnings of exercise-induced muscle adaptation and CRC development (Bonilla and Moreno, 2016). By identifying FGA and NOTCH3 as potential prognostic markers and therapeutic targets, our study could pave the way for developing personalized exercise regimens and targeted therapies for CRC patients. Furthermore, integrating systems biology approaches, including Gene Set Variation Analysis (GSVA) and protein-protein interaction (PPI) network analysis, will provide a more comprehensive view of the molecular landscape. This research could inform policy decisions promoting physical activity for cancer prevention and rehabilitation, ultimately improving patient care and quality of life.
MATERIALS AND METHODS
Data collection and identification of key genes and pathways
The study utilized several publicly available datasets: GSE213649 and GSE39582. We sourced skeletal muscle and colon data from GEO (Barrett et al., 2012), specifically using dataset GSE213649. Additionally, a cohort of locally advanced rectal cancer (LARC) patients was assembled, comprising resected tissues from 27 individuals. This included nine patients who achieved a complete pathological response (pCR), nine patients with no pathological response (npCR), and biopsy tissues from nine patients prior to undergoing neoadjuvant chemoradiotherapy (nCRT). The samples were categorised into skeletal muscle and colon groups, and differential analysis between exercising and non-exercising samples was conducted using the limma package. Significant differences were defined as |logFC| > 1 and p-value <0.05 (Ritchie et al., 2015). The results were visualized in volcano plots using the ggplot2 package (Wu et al., 2021). To identify exercise-related pathways, GSVA enrichment analysis was conducted separately on the skeletal muscle and colon groups using the GSVA package. Finally, key genes and pathways associated with exercise in both skeletal muscle and colon were identified through intersection.
Molecular docking analysis
We downloaded 39 chemical compounds from the PubChem database using their CID numbers. These compounds were selected based on their known or potential roles in metabolic processes influenced by exercise. The three-dimensional structure of the NOTCH3 protein was obtained from the Protein Data Bank (PDB ID: specific PDB ID). The protein structure was prepared for docking by removing water molecules, adding hydrogen atoms, and optimizing the geometry using AutoDockTools. The 3D structures of the 39 chemical compounds were downloaded from PubChem. The preparation steps for each ligand were as follows:1. Energy minimization was performed using the MMFF94 force field in Avogadro software; 2. The ligands were converted to the PDBQT format required for docking using AutoDockTools. Molecular docking was carried out using AutoDock Vina. The docking grid was centered on the active site of the NOTCH3 protein, with dimensions set to ensure the entire binding pocket was covered. The exhaustiveness parameter was set to eight to ensure sufficient sampling of ligand conformations. Each ligand was docked to the NOTCH3 protein, and the binding affinity was calculated in terms of binding energy (kcal/mol). The lower the binding energy, the stronger the predicted binding affinity between the ligand and the protein. The top five chemical compounds displaying the strongest binding affinities (lowest binding energies) were identified. Detailed docking results were analyzed, and the binding poses were visualized using PyMOL software. Protein docking was performed using the GRAMM (Global RAnge Molecular Matching) web server (Katchalski-Katzir et al., 1992; Vakser, 1996; Tovchigrechko and Vakser, 2006; Singh et al., 2020). GRAMM systematically maps the intermolecular energy landscape by predicting a spectrum of docking poses corresponding to stable (deep energy minima) and transient (shallow minima) protein interactions. The docking grid was centered on the active site of the NOTCH3 protein. The dimensions were set to ensure the entire binding pocket was covered. Protein docking visualization was completed using PDBePISA (Proteins, Interfaces, Structures and Assemblies) (Krissinel, 2010).
PPI and correlation analysis
Key genes were subjected to protein-protein interaction (PPI) analysis using the STRING platform. Subsequently, the relationships between significant pathways and genes were examined via Spearman correlation analysis.
NOTCH3 gene landscape
The TIMER database [https://www.proteinatlas.org/] was employed to evaluate the differential expression of the NOTCH3 gene across various cancers and its correlation with immune cells. Tumor samples were categorized into high-expression and low-expression groups based on NOTCH3 expression levels, and prognostic differences between the two groups were analyzed. Additionally, the Human Protein Atlas (HPA) database was used to determine the tissue expression of NOTCH3 in bladder cancer.
Single-gene enrichment analysis
Colon cancer data was extracted from the TCGA database (Tomczak et al., 2015). The limma package was employed to conduct differential analysis between the high- and low-expression groups of NOTCH3 within tumor tissues. Genes showing |logFC| > 0.5 and an adjusted p-value <0.05 were considered significantly differentially expressed (Ritchie et al., 2015).
Immune infiltration
The estimate package was utilized to assess immune, stromal, and ESTIMATE scores for tumor tissues. Infiltration levels of 22 types of immune cells were determined using the Cibersort website (https://www.genecards.org/). Finally, the GEPIA website was leveraged to evaluate the correlation between NOTCH3 expression and immune checkpoint markers.
Pan-cancer copy number variation and promoter methylation analysis
Copy number variation and DNA methylation data for various cancers were obtained from the TCGA database. The FGA and NOTCH3 copy numbers were extracted from different tumor tissues and categorized into amplification and deletion groups. Amplification and deletion rates were then calculated to assess the rates of FGA and NOTCH3 in various cancers. UALCAN (http://ualcan.path.uab.edu/analysis.html) was employed to explore promoter DNA methylation levels of FGA and NOTCH3 in both normal and pan-cancer tissues. DNA methylation maps for FGA and NOTCH3 across multiple cancer types were retrieved from the MethSurv database.
Tumor prognosis analysis
Survival data were gathered from TCGA samples. Four indicators were used to assess the relationship between FGA and NOTCH3 expression and patient prognosis: overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), and disease-free interval (DFI). Survival analysis for each cancer type was conducted using the Kaplan-Meier method and log-rank test. Survival curves were plotted with the “survival” and “survminer” R packages, while the “forestplot” R package was used to elucidate the relationship between FGA and NOTCH3 expression and survival across cancers.
Cell culture and transfection
The murine macrophage cell line RAW 264.7 (ATCC, Manassas, VA, USA) was maintained in DMEM supplemented with 10% fetal bovine serum (FBS), 100 μg/L streptomycin, and 100 IU/mL penicillin, at 37 °C in a 5% CO2 atmosphere. The SW620 cell line, procured from ATCC, was grown in DMEM (#06-1170-87-1A, Biological Industries, Israel) containing 10% FBS (#04-011-1A, Biological Industries, Israel), 100 U/mL penicillin, and 100 mg/mL streptomycin (#03-034-1B, Biological Industries, Israel). Incubation was performed in a Thermo Scientific incubator (USA) at 37 °C with 5% CO2. Wnt 5 (#sc-41112) and β-catenin (#sc-29209) siRNA, along with control siRNA (#sc-37007), were acquired from Santa Cruz Biotechnology (CA, USA). Plasmids for pcDNA-Wnt 5, pcDNA-β-catenin, and the control vector were sourced from Addgene (Cambridge, UK). SW620 cells were seeded at a density of 105 cells per well in six-well plates and transfected with Lipofectamine 3,000 reagent (#L3000015, Invitrogen, CA, USA) following the manufacturer’s instructions. Transfections were performed using 50 nM siRNA or control siRNA, and complete culture medium was added after 6 hours, allowing cells to continue growing for another 12 h before being harvested for subsequent experiments (Sun et al., 2016).
CCK8
The CCK-8 assay was performed as described previously. Cells were plated in 96-well plates with 1000 cells per well and incubated for 48 h under the indicated treatment. Cells were then incubated with CCK-8 for 4 h, and the OD value was measured at a wavelength of 490 nm.
Flow cytometric apoptosis analysis
Cells (2 × 105/sample) were incubated in complete medium at 37°C for 20 min, washed with PBS, and fixed in 100 µL of fixation buffer (eBiosciences, #420801) for 15 min at room temperature. They were then rinsed with PBS containing 1% BSA (AppliChem PanReac, #A6588) and treated with 10 µL of permeabilization buffer (eBiosciences, #421008) containing either mouse anti-Bax (B-9) (Santa Cruz Biotechnology Inc., #sc-7480) or rabbit anti-phospho-SHP-1 Tyr564 (Cell Signaling, #D11G5) antibodies for 1 h at room temperature. After washing twice with PBS containing 1% BSA, cells were incubated with 10 µL permeabilization buffer containing either Alexa Fluor anti-mouse-488 (Thermo Fisher Scientific, #A11001) or anti-rabbit-488 (Thermo Fisher Scientific, #A11008) secondary antibodies for 45 min. Cells were then washed with PBS containing 1% BSA, resuspended in 200 µL of PBS with 1% BSA, and analyzed via flow cytometry. To identify early apoptotic cells, cells were stained with FITC-labeled Annexin V (e-Bioscience, #88-8005–74) and propidium iodide (PI, 20 μg/mL, Biotium, #40017), followed by flow cytometry analysis. Mitochondrial membrane potential was measured using the fluorescent probe tetramethylrhodamine methyl ester (TMRM, Molecular Probes Europe BV). For this measurement, 1 × 106 cells were suspended in 200 µL of RPMI-1640 without phenol red (Invitrogen srl), supplemented with 25 mM Hepes (pH 7.4) and 200 nM TMRM, and incubated at 37 °C for 20 min. Calcium ionophore A23187 (500 ng/mL, Sigma-Aldrich #C7522) was then added, followed by a 10-min incubation at 37 °C before flow cytometric analysis using a Guava Millipore cytometer. Flow cytometric data were analyzed using FlowJo (Tree Star, Inc.).
qRT-PCR
Total RNA was extracted from gastric cancer cells using the Trizol reagent (15,596-018, Invitrogen), followed by reverse transcription using the M-MLV Reverse Transcriptase Kit (M1701, Promega). Quantitative PCR was then conducted using the SYBR reagent (RR420A, Takara). The mRNA levels of FGA and NOTCH3 were normalized to GAPDH expression.
Statistical analysis
All statistical analyses were performed using R software e (version 4.0.2). Differences between two groups were assessed using the Student’s t-test. A p-value of less than 0.05 was considered statistically significant. For comparisons involving more than two groups, a one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test was applied.
RESULTS
Identification of key genes and pathways
In the striated muscle group, a total of 114 differentially expressed genes (DEGs) were identified, with 56 upregulated and 58 downregulated in exercise samples (Figure 1A). In the colon group, 31 DEGs were found, including 21 upregulated and 10 downregulated genes in exercise samples (Figure 1B). Gene Set Variation Analysis (GSVA) revealed significant phenotypic differences between the exercise and non-exercise groups, with distinct pathways associated with muscle contraction (Figures 1C, D). Notably, three genes were found to be differentially expressed in both groups: FGG and FGA were upregulated in exercise samples, whereas DBP was downregulated (Figure 1E). Additionally, four pathways were consistently enriched across the two groups, with the NOTCH signaling pathway being the only one upregulated in exercise samples from both groups (Figure 1F). To investigate potential interactions among the identified key genes, a protein-protein interaction (PPI) network was constructed, showing significant relationships among FGG, FGA, and FGB (Figure 1G). Furthermore, correlation analysis revealed a negative relationship between the NOTCH signaling pathway and both FGG and FGA expression (Figure 1H). These findings suggest that the regulation of FGG and FGA expression by the NOTCH signaling pathway may represent a critical activation mechanism in exercise samples, contributing to the observed phenotypic differences between the exercise and non-exercise groups.
[image: Panel A and B show volcano plots for "Striated Muscle" and "Colon" respectively, highlighting gene expression changes with colored dots. Panels C and D illustrate bar charts with -log10 p-values for various pathways. Panels E and F display Venn diagrams comparing differentially expressed genes (DEGs) and pathways between the two tissues. Panel G depicts a network of interactions among proteins, represented as connected nodes. Panel H features a heatmap visualizing correlations between variables.]FIGURE 1 | Identification of key genes and pathways. (A) Volcano plot showing differentially expressed genes (DEGs) in striated muscle tissue. Red and green dots indicate upregulated and downregulated genes, respectively. (B) Volcano plot of DEGs in colon tissue, with color coding similar to (A). (C) Gene Set Variation Analysis (GSVA) reveals enriched pathways associated with muscle contraction in striated muscle. Positive and negative values on the x-axis represent upregulation and downregulation, respectively. (D) GSVA highlighting enriched pathways related to muscle contraction in colon tissue. (E) Venn diagram showing overlap of DEGs between striated muscle and colon tissues. (F) Venn diagram indicating overlap of muscle contraction-related pathways between striated muscle and colon tissues. (G) Protein-protein interaction (PPI) network analysis of key genes. Connections between nodes represent interactions. (H) Correlation analysis between key genes and muscle contraction-related pathways. Rows represent pathways, and columns represent genes. Blue and red indicate negative and positive correlations, respectively. 
Function of NOTCH3 in colon cancer
Analysis of NOTCH3-4 expression profiles in colon cancer (Figure 2A) identified high expression of NOTCH3 as significantly associated with poor prognosis. Gene Ontology (GO) and KEGG pathway enrichment analyses of differentially expressed genes (DEGs) between high and low NOTCH3 expression groups revealed strong correlations between NOTCH3 and processes such as extracellular matrix organization, leukocyte migration, cell adhesion, and the PI3K-Akt signaling pathway (Figures 2B, C). Further investigation into NOTCH3 expression in colon adenocarcinoma (COAD) showed significant positive correlations with CD4+ T cells, macrophages, neutrophils, and dendritic cells (Figure 2D). Patients with high NOTCH3 expression exhibited elevated scores for stromal, immune, and estimate indices (Figures 2E–G), and worse overall prognosis compared to those with low NOTCH3 expression (Figure 2H). Increased infiltration of M0 and M1 macrophages, along with reduced infiltration of activated NK cells, was observed in the high NOTCH3 expression group, potentially explaining the poorer prognosis (Figure 2I). Significant positive correlations were identified between NOTCH3 and immune checkpoints CTLA4, CD274, and PDCD1 (Figure 2J–N). Immunohistochemical staining demonstrated a notable increase in NOTCH3 expression in colon cancer tissues compared to normal tissues (Figure 2O–R). In summary, these findings suggest that elevated NOTCH3 expression correlates with poor survival outcomes in colon cancer and is associated with altered immune cell infiltration and immune checkpoint expression, highlighting its potential as a prognostic marker and therapeutic target.
[image: Composite image containing multiple panels illustrating statistical data analysis and biological findings. Panels A, B, and C display various plots and graphs comparing gene expression levels across different conditions or samples, with color-coded dot or bar representations. Panels D, E, F, and G showcase scatter plots and violin plots, indicating data distributions and correlations. Panel H presents a Kaplan-Meier survival curve with associated statistics. Panels I, J, K, L, M, and N display additional scatter plots and bar graphs. Panels O, P, Q, and R feature histological images of tissue samples, showing varying staining patterns.]FIGURE 2 | Analysis of key genes and their impact on pathways and survival. (A) Expression profile of the NOTCH3 gene across multiple cancer types. The red and blue boxes represent differential expression levels, with statistical significance indicated for each comparison. (B) Gene Set Enrichment Analysis (GSEA) results for the most significantly enriched pathways associated with NOTCH3 expression. The dot plot highlights pathways, with size reflecting the number of genes and color indicating statistical significance. (C) Results of the Reactome pathway analysis for NOTCH3, showing enriched pathways relevant to its function. (D) Correlation plots between NOTCH3 and selected genes in different cancer types, indicating potential interactions. Each plot displays the correlation coefficient and p-value. (E–G) Violin plots comparing NOTCH3 expression between tumor and normal tissues for three different cancer types, with p-values denoting statistical significance. (H) Kaplan-Meier survival curve stratified by NOTCH3 expression levels. High expression is associated with poorer overall survival, as indicated by the log-rank p-value. (I) Boxplot comparing the immune cell infiltration between groups with high and low NOTCH3 expression. (J–N) Scatter plots showing correlation analysis between NOTCH3 expression and specific immune cell markers. (O–R) Immunohistochemical staining of NOTCH3 in different cancer tissue samples, revealing the localization and expression intensity of the protein.
Molecular docking analysis
We downloaded 39 chemical compounds from the PubChem database via their CID numbers and docked them sequentially with the NOTCH3 protein for molecular docking analysis. Binding energy calculations revealed that the strength of compound-protein binding increased with lower binding energy. The top five chemical compounds displaying the tightest binding to the NOTCH3 protein were gamma-Glu-Trp (CID 3989307), gamma-Glutamyltyrosine (CID 94304), 17-Deoxycortisol (CID 5753), N-Acetyl-L-tyrosine (CID 68310), and Glycerophosphoinositol (CID 167512). Detailed docking analysis showed that gamma-Glu-Trp exhibited the lowest binding energy (−7.5 kcal/mol) (Figure 3A). Other compounds had binding energies of −6.5 kcal/mol for gamma-Glutamyltyrosine (Figure 3B), −6.4 kcal/mol for 17-Deoxycortisol (Figure 3C), −6.4 kcal/mol for N-Acetyl-L-tyrosine (Figure 3D), and −6.3 kcal/mol for Glycerophosphoinositol (Figure 3E). The distribution of binding energies across all tested compounds, presented in a histogram (Figure 3F), revealed a broad range, illustrating the diversity of interactions with the NOTCH3 protein. The molecular docking results indicate that gamma-Glu-Trp, gamma-Glutamyltyrosine, and 17-Deoxycortisol have the strongest affinities for NOTCH3, potentially offering insights into exercise-induced metabolic shifts. The docking analysis of FGA and NOTCH3 revealed an interface area of 3,717.2 Å2, indicating a significant contact region between the two proteins. The change in Gibbs free energy (ΔiG) during docking was calculated to be −18.1 kcal/mol, suggesting an energetically favorable binding interaction. Detailed examination of the docking interface showed the formation of 22 hydrogen bonds, which contribute to the stability of the protein-protein interaction (Figure 3G).
[image: Five molecular structures labeled A to E show different ligands bound to NOTCH3 with their binding energies indicated: gamma-Glu-Trp (-7.5 kcal/mol), gamma-Glutamyltyrosine (-6.5 kcal/mol), 17-Deoxycortisol (-6.4 kcal/mol), N-Acetyl-L-tyrosine (-6.4 kcal/mol), and Glycerophosphoinositol (-6.3 kcal/mol), respectively. A histogram labeled F displays the distribution of free energy affinity in kcal/mol. Diagram G shows a comparison of FAG and NOTCH3 structures in green and pink.]FIGURE 3 | Interaction of various ligands with the NOTCH3 protein assessed by molecular docking. (A) Gamma-Glu-Trp–NOTCH3 complex: Depicts the molecular docking position of gamma-Glu-Trp with NOTCH3, demonstrating the lowest binding energy of −7.5 kcal/mol. The panel shows the ligand in a detailed pose, indicating strong affinity and significant biological interaction within the active site of the protein. (B) Gamma-Glutamyltyrosine–NOTCH3 interaction: Illustrates the docking of gamma-Glutamyltyrosine with a binding energy of −6.5 kcal/mol. The complex’s interaction points are marked, emphasizing stability and specificity. (C) 17-Deoxycortisol–NOTCH3 docking: Shows 17-Deoxycortisol bound to NOTCH3 with a binding energy of −6.4 kcal/mol. The visualization captures the molecular fit within the protein’s binding pocket, highlighting key hydrogen bonds and interaction sites. (D) N-Acetyl-L-tyrosine–NOTCH3 binding: Presents the docking conformation of N-Acetyl-L-tyrosine with a binding energy of −6.4 kcal/mol. The figure details the ligand orientation and amino acid residues involved in interaction with the NOTCH3 receptor. (E) Glycerophosphoinositol–NOTCH3 interaction: Portrays Glycerophosphoinositol in its binding pose with NOTCH3, showing a binding energy of −6.3 kcal/mol. Specific interactions and binding orientation are detailed, providing insights into the ligand’s mode of action. (F) Distribution of free energy affinity: Histogram representing the frequency distribution of binding energies for all ligands tested against NOTCH3. This graph provides an overview of the binding affinity landscape, illustrating the diversity of interactions and highlighting the top-performing ligands as indicated in panels A–E. (G) The docking analysis of FGA and NOTCH3 revealed an interface area of 3,717.2 Å2, indicating a significant contact region between the two proteins. Detailed examination of the docking interface showed the formation of 22 hydrogen bonds, which contribute to the stability of the protein-protein interaction.
Effects of glycerophosphoinositol on FGA and NOTCH3 expression
To investigate the impact of glycerophosphoinositol on cell viability, we performed CCK-8 assays at 24 h and 72 h. The results demonstrated changes in cell proliferation after treatment with diverse concentrations of glycerophosphoinositol, indicating significant impacts on cell viability at 72 h (p < 0.001) (Figures 4A,B). Specifically, cell viability significantly increased in a concentration-dependent manner upon glycerophosphoinositol treatment. To elucidate the molecular mechanisms underlying these effects, we assessed the expression levels of NOTCH3 and FGA mRNA using qPCR. Our findings revealed that glycerophosphoinositol treatment significantly upregulated NOTCH3 mRNA expression (p < 0.001) (Figure 4C). Similarly, FGA mRNA expression was markedly elevated following glycerophosphoinositol treatment (p < 0.001) (Figure 4D). Further validation of NOTCH3 overexpression (NOTCH3-OE) and siRNA-mediated knockdown models was performed using qPCR. The results confirmed significant changes in NOTCH3 and FGA expression levels across different conditions, demonstrating the effectiveness of the genetic modulation procedures (p < 0.001) (Figures 4E, F). Immunofluorescence staining was conducted to visualize FGA expression after NOTCH3 overexpression (NOTCH3-OE) or knockdown (siNOTCH3). The images revealed FGA expression (red) with nuclear counterstaining using DAPI (blue), and merged images illustrated the co-localization of FGA and nuclear signals under various experimental conditions. These results visually confirmed changes in FGA expression (Figure 4G). Western blot analysis further supported these findings. NOTCH3 expression was significantly upregulated after glycerophosphoinositol treatment compared to controls, with GAPDH serving as a loading control (Figure 4H). Similarly, FGA expression was significantly increased following glycerophosphoinositol treatment, as demonstrated by Western blot analysis (Figure 4I). Additionally, Western blot analysis of NOTCH3 expression after NOTCH3 overexpression (NOTCH3-OE) or knockdown (siNOTCH3) confirmed the effectiveness of these genetic interventions (Figure 4J).
[image: Bar charts, immunofluorescence images, and Western blots depict NOTCH3 and FGA expressions under various conditions. Charts A and B show CCK8 assay results at 0 and 72 hours. Charts C-F illustrate mRNA expression changes in NOTCH3 and FGA. Image G shows immunofluorescence for FGA and nuclei (DAPI) in control and modified cells. Blots H-J show protein levels of NOTCH3 and FGA, with GAPDH as a loading control, in different treatment groups. Each analysis contrasts control groups with different experimental treatments to assess gene expression effects.]FIGURE 4 | Effects of glycerophosphoinositol on FGA and NOTCH3 expression. (A, B) Cell viability tests (CCK-8) were performed at 24 h (A) and 72 h (B) to survey the impact of glycerophosphoinositol treatment. The results demonstrate changes in cell proliferation after treatment with diverse concentrations of glycerophosphoinositol, indicating significant impacts on cell viability at 72 h (p < 0.001). (C) qPCR investigation of NOTCH3 mRNA expression after glycerophosphoinositol treatment, uncovering an upregulation of NOTCH3, with a noteworthy p-value (p < 0.001). (D) qPCR investigation of FGA mRNA expression following glycerophosphoinositol treatment, showing expanded FGA expression, with a noteworthy p-value (p < 0.001). (E, F) qPCR validation of NOTCH3 overexpression (NOTCH3-OE) and siRNA models to evaluate the viability of genetic modulation procedures. The results demonstrate significant changes in NOTCH3 (E) and FGA (F) expression levels under diverse conditions, with p-values indicating statistical significance (p < 0.001). (G) Immunofluorescence images showing FGA expression (red) after NOTCH3 overexpression (NOTCH3-OE) or knockdown (siNOTCH3), with nuclear counterstaining using DAPI (blue). Merged images illustrate the co-localization of FGA and nuclear signals under various experimental conditions, confirming changes in FGA expression visually. (H) Western blot analysis of NOTCH3 expression after glycerophosphoinositol treatment, using GAPDH as a loading control. (I) Western blot analysis of FGA expression after glycerophosphoinositol treatment, using GAPDH as a loading control. (J) Western blot analysis of NOTCH3 expression after NOTCH3 overexpression (NOTCH3-OE) or knockdown (siNOTCH3), using GAPDH as a loading control.
Impact of NOTCH3 and FGA on cell proliferation and apoptosis
The impact of NOTCH3 and FGA on cellular proliferation and apoptosis has been investigated using various assays. CCK-8 assays validate the FGA overexpression (FGA-OE) version through assessing modifications in cellular viability in SW620 and RAW264.7 cell lines. The results confirmed a significant increase in cellular viability in each cell line upon FGA-OE compared to controls, with p-values much less than 0.001 (Figures 5A, B). Further CCK-8 assays showed the effects of FGA-OE and FGA knockdown (siFGA) on cellular proliferation in SW620 and RAW264.7 cells, showing enhanced proliferation with FGA-OE and reduced proliferation with siFGA, both appearing noteworthy p-values (p < 0.001) (Figures 5C, D). qPCR analysis measured FGA mRNA levels post-NOTCH3 overexpression (NOTCH3-OE), glycerophosphoinositol treatment, or their combination, revealing critical changes in FGA expression, with p-values demonstrating statistical significance (p = 0.022 and p = 0.005) (Figure 5E). CCK-8 assays also evaluated the impact of altering NOTCH3 and FGA expression on cell proliferation. The results revealed a direct correlation between NOTCH3 downregulation, decreased FGA expression, and increased cell proliferation, with significant p-values (p < 0.001) (Figure 5F). Flow cytometry analysis was employed to assess apoptosis post-NOTCH3 overexpression, glycerophosphoinositol treatment, or siFGA in conjunction with glycerophosphoinositol, depicting apoptosis rates under different conditions and significant effects on cell survival (Figure 5G). Immunofluorescence staining visualized FGA localization and expression under different conditions, including NOTCH3 overexpression or silencing, with merged images illustrating co-localization of FGA and nuclear signals. The adjacent bar plots quantified fluorescence intensity, indicating significant changes in FGA expression, with increased expression in the NOTCH3-OE group and decreased expression in the siNOTCH3 group (Figure 5H). These results collectively demonstrate that NOTCH3 and FGA significantly influence cell proliferation and apoptosis.
[image: A multi-panel scientific figure includes various charts, graphs, and images analyzing cell viability, protein expression, and related metrics. Panels A-F display bar graphs of cell viability assays with annotations for significance levels. Panel C shows Western blots for FGA and GAPDH proteins in SW620 and RAW264.7 cells. Panel D includes additional bar graphs with notations. Panel G presents flow cytometry plots for apoptosis analysis. Panel H showcases immunofluorescence images with labels for FGA in red, DAPI in blue, and merged views, demonstrating protein localization. Statistical significance is indicated by asterisks throughout.]FIGURE 5 | Effect of NOTCH3 and FGA on cell proliferation and apoptosis. (A, B) CCK-8 assays validate the FGA-OE model by evaluating changes in cell viability in SW620 and RAW264.7 cell lines. The results demonstrate increased cell viability in both cell lines upon FGA overexpression (FGA-OE) compared to controls, with significant p-values (p < 0.001). (C) Western blot analysis of FGA expression in SW620 and RAW264.7 cells, showing FGA overexpression (FGA-OE) and knockdown (siFGA). GAPDH is used as a loading control. (D) CCK-8 assays confirm the effects of FGA overexpression (FGA-OE) and FGA knockdown (siFGA) on cell proliferation in SW620 and RAW264.7 cells. The assays show enhanced proliferation with FGA-OE and diminished proliferation with siFGA, with significant p-values (p < 0.001). (E) qPCR investigation of FGA mRNA levels after NOTCH3 overexpression (NOTCH3-OE), glycerophosphoinositol treatment, or their combination. The results show significant changes in FGA expression, with p-values indicating statistical significance (p = 0.022 and p = 0.005). (F) CCK-8 results show the impact of altering NOTCH3 and FGA expression on cell proliferation. The assays reveal a direct correlation between NOTCH3 downregulation, decreased FGA expression, and increased cell proliferation, with significant p-values (p < 0.001). (G) Flow cytometry analysis of apoptosis after NOTCH3 overexpression, glycerophosphoinositol treatment, or siFGA in conjunction with glycerophosphoinositol. Scatter plots depict the apoptosis rates under various conditions, highlighting the effects on cell survival. (H) Immunofluorescence staining demonstrates FGA expression under various conditions (NOTCH3 overexpression or silencing).
Copy number variation and methylation analysis of FGA and NOTCH3 in multiple cancers
Analysis of copy number variation (CNV) in FGA and NOTCH3 across 20 different cancer types revealed distinct CNV rates. The bar graph illustrates differential amplification and deletion patterns among cancer types (Figure 6A). Further differential expression analysis of FGA and NOTCH3 across these cancers highlighted significant gene expression differences, with overall changes shown in a bar plot and specific changes depicted in a dot plot (Figure 6B). The correlation between CNV and expression levels of FGA and NOTCH3 varied across cancers. The dot sizes indicate the correlation strength, while the color scale shows the correlation direction, either positive or negative (Figure 6C). The promoter methylation status was also assessed to understand its relationship with gene expression. Correlations between promoter methylation and expression levels of FGA and NOTCH3 were visualized using dots of varying sizes and colors to reflect the magnitude and direction of these correlations (Figure 6D). Additionally, the difference in promoter methylation between tumor and normal tissues (delta value) was calculated for FGA and NOTCH3, with higher delta values indicating greater differences between the cancerous and normal tissues, thus highlighting specific promoter methylation changes during cancer progression (Figure 6E). These analyses provide insights into how CNV and methylation variations influence the expression of FGA and NOTCH3 across various cancer types, potentially contributing to differential tumor behavior and aiding in identifying new therapeutic targets.
[image: Five-panel graphic depicting various data visualizations. Panel A shows a bar graph with multicolor bars representing different groups. Panel B features a stacked bar and dot plot highlighting group differences. Panels C, D, and E display bubble plots with size and color indicating data values, focusing on interactions or effects within a study. Each panel includes axes with labels and legends to contextualize the data.]FIGURE 6 | Copy number variation (CNV) and methylation analysis of FGA and NOTCH3 across multiple cancers. (A) Distribution of copy number variation (CNV) rates of the FGA and NOTCH3 genes across 20 different cancer types. The bar graph shows the CNV differences between amplification and deletion. (B) Differential expression of FGA and NOTCH3 across various cancer types. The top bar plot indicates overall gene expression changes, while the dot plot below shows log fold changes and statistical significance of individual changes. (C) Correlation between CNV and expression levels of FGA and NOTCH3 in multiple cancer types. Dot size represents the strength of the correlation, while the color scale denotes the direction (positive or negative) of the correlation. (D) Correlation between promoter methylation and gene expression levels of FGA and NOTCH3 across different cancers. Dot size and color indicate the magnitude and direction of the correlation, respectively. (E) Difference (delta value) in promoter methylation between tumor and normal tissues for FGA and NOTCH3. Higher delta values represent greater differences between cancer and normal tissues.
Correlation between FGA and NOTCH3 expression and tumor prognosis
The association between FGA expression and survival metrics was evaluated across multiple cancer types. Significant negative correlations were observed between FGA expression and overall survival (OS) (Figure 7A), disease-specific survival (DSS) (Figure 7B), and progression-free interval (PFI) (Figure 7C), with cancer-specific correlations illustrated. In some cancers, FGA expression showed a significant negative correlation with disease-free interval (DFI), while in others, no significant correlation was detected (Figure 7D). Similarly, correlations between NOTCH3 expression and survival outcomes were analyzed. Significant positive correlations were found between NOTCH3 expression and OS(Figure 7E), with DSS correlations highlighted in blue to indicate a strong association (Figure 7F). A mix of significant positive and negative correlations was observed for PFI (Figure 7G). In the case of DFI, noteworthy relationships were portrayed in blue, whereas non-significant relationships were shown in gray (Figure 7H). Overall, these results suggest that FGA and NOTCH3 expression levels are strongly linked to various survival outcoomes across different cancers. The analysis reveals patterns that could help identify prognostic markers and stratify patients based on their risk.
[image: Eight forest plots labeled A to H show the hazard ratios for various genes across different studies. Each plot includes subtype-specific hazard ratios with confidence intervals. Blue points indicate protective associations, while red points signify risky associations. The x-axis represents the log hazard ratio, with specific genes listed on the y-axis.]FIGURE 7 | Correlation between FGA and NOTCH3 expression and tumor prognosis across various cancers. (A–D) Association between FGA expression and survival metrics in multiple cancer types: Overall survival (OS) correlation with FGA expression, with each point representing a different cancer type. Red points indicate significant negative correlation, and grey points indicate no significant correlation (A). Disease-specific survival (DSS) correlation with FGA expression across cancer types (B). Progression-free interval (PFI) correlation with FGA expression, highlighting significant correlations in various cancers (C). Disease-free interval (DFI) correlation with FGA expression, displaying a significant negative correlation in some cancers and no significant correlation in others (D). (E–H) Association between NOTCH3 expression and survival metrics in multiple cancer types. Overall survival (OS) correlation with NOTCH3 expression, with blue points indicating significant positive correlation, and grey points indicating no significant correlation (E). Disease-specific survival (DSS) correlation with NOTCH3 expression, with significant correlations highlighted in blue (F). (G) Progression-free interval (PFI) correlation with NOTCH3 expression, showing a mix of significant positive and negative correlations. (H) Disease-free interval (DFI) correlation with NOTCH3 expression, with significant correlations depicted in blue and non-significant correlations in grey.
DISCUSSION
Recent studies have highlighted the significance of the Notch signaling pathway, which includes NOTCH3, in muscle adaptation and its frequent dysregulation in cancers, including COAD (Teoh and Das, 2018; Katoh and Katoh, 2019). Additionally, FGA, a component of fibrinogen, plays a role in the extracellular matrix (ECM) and is involved in remodeling processes associated with both exercise and cancer (Wang et al., 2016; Kim et al., 2022). Understanding the regulatory mechanisms involving FGA and NOTCH3, particularly their post-translational modifications (PTMs), is crucial for identifying new therapeutic targets and prognostic markers (Alqudah et al., 2013; Kang et al., 2021). Our study provides a comprehensive investigation of the roles of Fibroleukin (FGA) and NOTCH3 in exercise-induced muscle adaptation and COAD progression (Gopalakrishnan et al., 2014). Through the identification of differentially expressed genes (DEGs) and analysis of the Notch signaling pathway, we have established a significant connection between these proteins and the organic results of intrigued (Talora et al., 2008; Mummery-Widmer et al., 2009). Our results indicate an association between NOTCH3 expression and poor prognosis in COAD, suggesting its involvement in cancer cell survival and proliferation through interaction with the PI3K-Akt pathway. Moreover, the modulation of FGA and NOTCH3 expression by glycerophosphoinositol suggests potential implications for targeted treatments.
The identification of 114 DEGs in striated muscle and 31 in the colon group underscores the complexity of the molecular changes initiated by exercise. The consistent upregulation of the Notch signaling pathway in exercise samples suggests a potential role for NOTCH3 in muscle adaptation (Baeten and Lilly, 2015). The association between high NOTCH3 expression and poor COAD prognosis is a significant finding, consistent with previous studies implicating Notch signaling in cancer progression. Fibronectin Leucine-Rich Transmembrane Protein 2 (Fibroleukin, FGA) and NOTCH3, known for their roles in muscle adptation and cancer progression, are particularly intriguing in this context. Current literature suggests that FGA and NOTCH3 are essential to both muscle adaptation and CRC pathophysiology, although their precise functions and interactions in these processes are not fully understood. FGA, as a component of the extracellular matrix, has been implicated in muscle recovery and fibrosis, while NOTCH3, a transmembrane receptor, is involved in cell differentiation and proliferation. Research indicates that inhibiting NF-κB signaling may intersect with the NOTCH3 pathway in cancer progrerssion (Kontomanolis et al., 2018). In our study, both overall survival (OS) and disease-specific survival (DSS) were included to provide a comprehensive view of patient outcomes related to FGA and NOTCH3 expression across different tumor types. OS encompasses all causes of death, offering a broad measure of survival, while DSS specifically targets deaths attributable to the investigated disease, thus providing a more focused perspective on the disease’s impact. Specifically, in certain tumor types, high FGA expression was associated with poorer OS and DSS, indicating its potential role as a negative prognostic marker. Conversely, the expression of NOTCH3 appeared to have varying impacts on survival depending on the tumor type, with potential protective or harmful effects. The differences in OS and DSS correlations underscore the importance of considering multiple survival metrics when evaluating prognostic factors. While OS provides insights into overall patient health and longevity, DSS offers a clearer view of the direct impact of the disease, free from confounding variables such as comorbidities or treatment-related complications. This dual approach allows for a more nuanced understanding of the biological mechanisms underlying tumor progression and patient survival. Our findings suggest that targeted therapies regulating FGA and NOTCH3 expression could improve patient prognosis based on specific tumor types and survival conditions. Future research should focus on elucidating the molecular pathways through which FGA and NOTCH3 influence tumor biology and patient survival and validate these biomarkers in larger independent cohorts.
The impact of high-pressure oxygen on the Notch signaling pathway following severe carbon monoxide poisoning in mice provides insights into the role of NOTCH3 in disease progression (Hu et al., 2023). Exercise offers numerous benefits, such as improving cerebral blood flow and functional outcomes in patients with vascular cognitive impairment and dementia (Karamacoska et al., 2023; Khan et al., 2023), providing insights into how exercise affects the overall health of CRC patients. Understanding the definition of a hypertension-like response in normal individuals is useful, as it relates to exercise adaptation and provides context for the interactions between exercise, muscle health, and CRC progression (Laukkanen and Kunutsor, 2021; Guo et al., 2022). Promoting a healthy lifestyle among cancer patients and their families and examining exercise-induced muscle adaptation provides new perspectives on exercise and metabolic health (Huang et al., 2018; Maddocks, 2020; Hou et al., 2022). Additionally, low-intensity pulsed ultrasound promoting skeletal muscle regeneration demonstrates the potential for muscle recovery physiotherapy (Abrunhosa et al., 2011; Qin et al., 2023). Exercise reduces IGF1R aggregation, alleviating neuroinflammation in transgenic mice (Chen et al., 2024). Mesenchymal stem cell-derived extracellular vesicles target the let-7a/Tgfbr1 axis, suggesting potential therapeutic benefits for muscle adaptation (Wang P. et al., 2023). Finally, brain metabolomics is important for advancing our understanding of the underlying biological processes (He et al., 2023). PRMT5 promotes tumor metastasis by methylation-activated AKT (Huang et al., 2022).
The importance of transcriptomics research lies in its ability to provide new insights into cellular heterogeneity in complex biological processes (Wu et al., 2023). Advances in transcriptomics have offered new perspectives on understanding disease onset and progression (Li et al., 2022). The role of transcriptomics in revealing the immune microenvironment is crucial for the diagnosis and prognosis of various diseases (Yang K. et al., 2023; Yang Y. et al., 2023). In modern medical research, drug therapy and bioinformatics analysis methods have become important research tools. The correlation between FGA/NOTCH3 expression and survival metrics, with adverse correlations for FGA and favorable for NOTCH3, provides valuable insights into the prognostic significance of these proteins. These findings align with previous research that has linked NOTCH3 overexpression with unfavorable outcomes in various cancers. While our study offers a robust analysis of the roles of FGA and NOTCH3, there are limitations that must be acknowledged. The sample size for the gene expression and cellular assays may limit the generalizability of our findings. Additionally, the in vitro nature of the cellular viability and apoptosis assays means that the effects of glycerophosphoinositol on FGA and NOTCH3 expression in vivo need to be confirmed. Further research is needed to fully understand the mechanisms by which FGA and NOTCH3 contribute to exercise-induced muscle adaptation and COAD progression (Wang et al., 2008; MacKenzie et al., 2013). Longitudinal research that tunes adjustments in FGA and NOTCH3 expression in reaction to workout and within the context of COAD ought to provide greater definitive proof of their roles (Yuan et al., 2017).
The use of bioinformatics databases, through large-scale data analysis, has revealed the relationship between specific physiological indicators and long-term prognosis, emphasizing its application value in clinical decision-making (Chen et al., 2022a; Chen et al., 2022b; Du and Liu, 2024; Yao et al., 2024). The molecular docking results, which identified gamma-Glu-Trp, gamma-Glutamyltyrosine, and 17-Deoxycortisol as strong NOTCH3 binders, provide a starting point for the development of small molecule inhibitors targeting the NOTCH pathway. The impact of glycerophosphoinositol on FGA and NOTCH3 expression, as well as its effects on cellular viability and apoptosis, support the potential therapeutic application of this compound in COAD treatment. However, our study extends current knowledge by elucidating the specific molecular mechanisms and interactions involved. The identification of the NOTCH signaling pathway as a commonly upregulated pathway in exercise samples is a novel observation that warrants further investigation. Furthermore, the findings of this study have significant implications for the clinical management of COAD and the development of exercise-based interventions for cancers patients. The identification of FGA and NOTCH3 as potential prognostic markers could guide patient stratification and treatment decisions.
CONCLUSION
In conclusion, our research contributes to a deeper information of the molecular mechanisms underlying exercise-induced muscle adaptation and COAD progression. The identification of FGA and NOTCH3 as potential prognostic markers and therapeutic targets opens new avenues for future research and clinical application. Further studies are needed to fully elucidate the roles of these proteins and to translate these findings into effective strategies for cancer prevention and treatment.
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Background: Human cancers, including head and neck squamous cell carcinoma (HNSCC), are complex and heterogeneous diseases driven by uncontrolled cell growth and proliferation. Post-translational modifications (PTMs) of proteins play a crucial role in cancer progression, making them a promising target for pharmacological intervention. This study aims to identify key exercise-related genes with prognostic value in HNSCC through comprehensive bioinformatics analysis, with a particular focus on the therapeutic potential of placental growth factor (PIGF).Methods: Transcriptome data for HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. Differently expressed genes (DEGs) were identified and analyzed for their prognostic significance. Exercise-related gene sets were retrieved from the Gene Set Enrichment Analysis (GSEA) database. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA, were conducted. The biological functions and clinical implications of key genes were further explored through single-gene expression analysis, immune infiltration analysis, and in vitro cellular experiments.Results: The study identified exercise-related genes associated with survival prognosis in HNSCC. GO and KEGG pathway analyses highlighted the biological functions of these genes, and Kaplan-Meier survival curves confirmed their prognostic value. PIGF expression analysis using TCGA data showed its diagnostic potential, with higher expression linked to advanced tumor stages. Single-cell sequencing revealed PIGF’s role in the tumor microenvironment. In vitro experiments demonstrated that PIGF plays a pivotal role in enhancing cell proliferation and colony formation in HNSCC, with PIGF knockdown significantly impairing these functions, highlighting its importance in tumor growth regulation. Additionally, PIGF’s predictive performance in drug sensitivity across cancer datasets suggests its potential as a pharmacological target, offering opportunities to modulate the immune microenvironment and improve therapeutic outcomes in cancer treatment.Conclusion: This study provides new insights into the molecular mechanisms underlying HNSCC and identifies exercise-related genes, particularly PIGF, as promising biomarkers for clinical treatment and personalized medicine. By focusing on PTMs and their role in cancer progression, our findings suggest that targeting PIGF may offer innovative therapeutic strategies.Keywords: head and neck squamous cell carcinoma, exercise-related genes, prognosis, bioinformatics, immune microenvironment, placental growth factor (PIGF), drug sensitivity, post-translational modifications (PMTs)
1 BACKGROUND
Head and neck squamous cell carcinoma (HNSCC) encompasses malignant tumors in regions such as the oral cavity, larynx, and nasopharynx (Porcheri and Mitsiadis, 2021; Howard et al., 2012). According to global cancer statistics, HNSCC has high incidence and mortality rates worldwide, particularly in certain regions of Asia where smoking and alcohol consumption are prevalent (Barsouk et al., 2023; Michmerhuizen et al., 2016). Early symptoms of HNSCC are often subtle, leading to late-stage diagnoses in many patients, which not only complicates treatment but also significantly reduces patients’ quality of life and survival rates (Johnson et al., 2020). Therefore, investigating the pathogenesis of HNSCC and identifying effective early diagnostic markers and therapeutic targets are crucial for improving patient prognosis.
Currently, HNSCC treatment primarily involves surgery, radiotherapy, and chemotherapy (Qin et al., 2021; Bozec et al., 2019). However, due to the heterogeneity of HNSCC, there are significant differences in disease progression and treatment responses among patients (Licitra et al., 2016; Alhiyari et al., 2020). Additionally, advanced HNSCC patients often respond poorly to conventional treatments, with treatment-related side effects severely impacting their quality of life. In recent years, a deeper understanding of the molecular mechanisms underlying HNSCC has led to the increasing application of novel therapeutic strategies such as targeted therapy and immunotherapy in clinical settings, offering new treatment options for HNSCC patients (Kozakiewicz and Grzybowska-Szatkowska, 2018; Ghosh et al., 2022). Nevertheless, the efficacy of these novel therapies is often influenced by individual patient differences, and some patients may develop resistance (Wallington-Beddoe et al., 2018). Therefore, formulating personalized treatment plans based on patients’ molecular characteristics remains a significant challenge in HNSCC treatment.
Recent studies have highlighted the significant role of exercise-related genes in cancer biology, revealing their potential impact on tumor progression and patient prognosis. Exercise-related genes are known to modulate various physiological pathways, including metabolism, immune response, and cellular stress, all of which are critical in cancer development (Chen et al., 2024a; Zhu et al., 2022; Idorn and Thor Straten, 2017; Chen et al., 2024b). Understanding the expression patterns and functions of these genes in HNSCC could provide valuable insights into novel therapeutic targets and prognostic markers. In the realm of cancer therapy, protein drugs have emerged as a promising class of therapeutics due to their high specificity and ability to target complex molecular interactions within the tumor microenvironment (Zhang Y. et al., 2023). Protein drugs, often derived from natural proteins or engineered for enhanced stability and efficacy, can precisely modulate key signaling pathways and cellular processes. They offer unique advantages over small-molecule drugs, including reduced off-target effects and the capacity to engage with targets that are traditionally considered “undruggable” by conventional pharmacological approaches. A pivotal aspect of protein drug development lies in the understanding of post-translational modifications (PTMs), which are chemical alterations that proteins undergo after synthesis. PTMs, such as phosphorylation, ubiquitination, and glycosylation, significantly influence protein function, localization, and stability (Pan and Chen, 2022). In the context of cancer, PTMs play a crucial role in regulating oncogenes and tumor suppressors, thereby affecting tumor progression and response to therapy (Shu et al., 2023). Pharmacological interventions targeting PTMs hold great promise in cancer treatment, as they can disrupt aberrant signaling pathways and restore normal cellular functions.
Bioinformatics is an interdisciplinary field that integrates biology, computer science, and information technology to analyze and interpret biomedical data (Chen B. et al., 2022; Huang J. et al., 2022; Lin et al., 2022). Its application in HNSCC research is becoming increasingly widespread. Through the analysis of large-scale genomics, transcriptomic, and proteomic data, researchers can identify molecular markers related to the occurrence, development, and prognosis of HNSCC, unveiling the molecular mechanisms of the disease. For instance, gene expression profiling can reveal specific gene expression patterns in HNSCC patients, providing a basis for molecular classification and prognosis assessment (Lee et al., 2018). Protein-protein interaction network analysis can identify key regulatory factors and signaling pathways in HNSCC (Kuang et al., 2016). Additionally, bioinformatics assists in the screening and validation of drug targets, supporting precision therapy for HNSCC.
The role of big data and bioinformatics in identifying and applying biomarkers is increasingly important, particularly in disease diagnosis and prognosis evaluation (Jiang et al., 2023). Continuous research into gene expression and regulatory mechanisms in disease studies has provided essential insights into disease onset and progression. Through multi-omics analyses and chemical proteomics studies, scientists have revealed the significance of gene regulatory networks in cellular function regulation (Qin et al., 2024). The utilization of big data and bioinformatics technologies in biomarker identification and application has become increasingly significant for disease diagnosis and prognosis evaluation. For instance, deep learning and multi-omics analyses enable scientists to more precisely identify and validate disease-related biomarkers (Liang et al., 2024; Xia et al., 2024). Research into gene expression and regulatory mechanisms has deepened, offering critical insights into disease onset and progression (Wang et al., 2024; Sun et al., 2024). Identifying gene signatures associated with specific diseases allows for comprehensive analyses, revealing stress responses related to cognitive impairment and aging (Lin et al., 2022). Single-cell RNA sequencing and bioinformatics analyses also help identify key molecules and pathways related to the tumor microenvironment, guiding precision therapy (Wang et al., 2024; Zhang et al., 2024).
Recent studies indicate that regulating specific biomolecules and applying certain compounds can address various biological responses (Du and Liu, 2024). Bioinformatics technology has been essential in studying gene expression and regulatory mechanisms, enhancing our understanding of biological processes (Du and Liu, 2024; Logan et al., 2024). Integrative research combing clinical and genomics data has developed various models and tools for predicting disease progression and treatment response, improving disease prediction accuracy and supporting personalized medicine (Figueredo, 2024; Li M. et al., 2024). Through deep learning and multi-omics analyses, scientists can more accurately identify and validate disease-related biomarkers (Scimeca et al., 2024). Research analyzing big data and bioinformatics has revealed associations between physical activity and cognitive function in older adults, providing new perspectives for healthy aging (Chen Y. et al., 2022). Studies on gene expression and regulatory mechanisms in diseases have deepened, using genome-wide association studies and polygenic risk scores to predict disease risk and shared phenotypes, offering critical insights into disease onset and progression (Yan et al., 2024). Multi-omics integrative analyses and bioinformatics methods allow researchers to comprehensively understand the multidimensional characteristics of diseases, advancing the development of personalized therapies (Chen B. et al., 2022). Genomics editing technologies have demonstrated significant potential in metabolic diseases, hormonal systems, and disease research, driving the development of precision medicine (Liu P. et al., 2023). The application of these advanced technologies and methodologies has not only propelled the development of biomedical research but also provided a solid foundation for the realization of precision medicine (Huang L. et al., 2022; Huang et al., 2013; Wang et al., 2005; Huang et al., 2015).
We will investigate the effects of changes in PIGF gene expression on the biological behaviors of HNSCC cells, including proliferation, migration, invasion, and apoptosis, through in vitro cellular experiments. Additionally, we will explore the relationship between PIGF gene expression and the tumor immune microenvironment, as well as the potential mechanisms of PIGF gene in HNSCC. Finally, we will evaluate the potential of PIGF as a therapeutic target for HNSCC, providing scientific evidence for the development of new therapeutic strategies.
Through this study, we aim to provide new insights into the early diagnosis, treatment strategy formulation, and prognosis evaluation of HNSCC. Simultaneously, our research will offer a new perspective on the relationship between exercise and HNSCC prognosis, providing a theoretical basis for developing exercise-based preventive and therapeutic strategies for HNSCC.
2 MATERIALS AND METHODS
2.1 Identification of exercise-related prognostic genes in HNSCC
In this study, we used a large bioinformatics approach to identify genes associated with exercise and survival prognosis in HNSCC. Transcriptome data for HNSCC were initially downloaded from The Cancer Genome Atlas (TCGA) database. Statistical analyses were conducted to identify genes exhibiting significant differential expression between HNSCC tissues and normal tissues. Subsequently, survival analysis was performed on these differently expressed genes to pinpoint those closely linked to patient prognosis. Gene sets related to exercise, encompassing various biological processes associated with exercise response, were obtained from the Gene Set Enrichment Analysis (GSEA) database. The intersection analysis on differentially expressed genes and exercise-related gene sets was conducted to obtain the key genes using public GSEA database. We also demonstrated that these genes were not only exercise-response related but also extremely correlated with the survival prognosis of HNSCC patients. The identification of these resplices provides new insights into the molecular biology underlying HNSCC and may yield novel.
2.2 Functional analysis of exercise-survival prognosis-related genes in HNSCC
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the selected genes to elucidate their distribution in biological processes, molecular functions, and cellular components, as well as their involvement in specific metabolic and signaling pathways. Gene Set Enrichment Analysis (GSEA) was then employed to investigate the expression patterns of these genes under various biological conditions, aiming to identify gene sets that may influence the survival prognosis of HNSCC patients. And survival prognosis analysis was conducted to test relationship between these gene expression levels and overall survival (OS) rate with disease free survival rate. Single-gene expression analysis was also conducted to delve into the expression patterns of each gene and their associations with the clinical characteristics and prognosis of HNSCC patients. These identification results are helpful in deepening understanding of the molecular mechanism for HNSCC and lay a scientific foundation in exploring novel therapeutic targets and prognostic biomarkers.
2.3 Pan-cancer expression landscape analysis of core genes
In the study of HNSCC, tumor samples were divided into two groups based on high and low PIGF expression levels. Differential expression analysis was conducted using the limma package, identifying significantly differently expressed genes, which were visualized with volcano plots. Protein-protein interaction data were filtered through the ComPPI database to exclude biologically unreasonable interactions, and interaction scores were introduced to quantify data accuracy. ROC analysis was performed using the pROC package to calculate the 95% confidence interval and AUC, and ROC curves were plotted to evaluate the diagnostic efficiency of gene expression in distinguishing tumor from normal tissues. The data were sourced from TCGA-corrected RNA-seq data, generated through the Firehose pipeline and normalized. Z-score standardization was used to identify outliers, and the Wilcoxon rank-sum test assessed expression differences between tumor and normal tissues. Furthermore, gene expression was normalized using Z-score after pairing data from the GTEx database with TCGA data to eliminate outliers, followed by ROC analysis to evaluate diagnostic performance. The Wilcoxon rank-sum test was used to compare PIGF expression between tumor and normal tissues. Calibration curves and goodness-of-fit tests were applied to assess the predictive accuracy of the models. GEO datasets were processed by converting probe matrices to gene matrices and applying Z-score standardization with the Wilcoxon rank-sum test evaluating expression differences between tumor and normal tissues. Additionally, six molecular immune subtypes associated with tumor characteristics and prognosis were evaluated using median grouping and chi-square tests to assess the significance of subtype proportions. The Kruskal-Wallis rank-sum test compared PIGF expression across different molecular subtypes, while clinical variables were statistically analyzed in different expression groups using median grouping and chi-square tests.
2.4 Prognostic analysis of core gene survival
In tumor tissues, the Pearson correlation between the target gene and both mRNA and miRNA was calculated, with scatter plots used to display these relationships. Results were reported only when the absolute value of the correlation coefficient exceeded 0.3. Gene expression levels were categorized based on their correlation strength with the target gene into four classes: strongly positive, moderately positive, weakly positive, and negative correlations. These were visualized using a heatmap of contingency tables, and Fisher’s exact test was employed for statistical analysis. Kaplan-Meier survival analysis was used to evaluate the correlation between gene expression levels and patient survival times. Detailed survival data analysis was performed using the survival package in R. The survminer package was used to identify optimal cut-off values for high and low expression groups, ensuring that the sample sizes for these groups met statistical requirements, typically not less than 30% of the total sample size. Moreover, a meta-analysis that based on univariate Cox proportional hazards model was performed by using the inverse variance method. We chose the hazard ratios (HR) as our primary measure of effect size, separating potential tumor-suppressive versus oncogenic actions. This simple classification approach does not consider the biological aspects of these genes. The statistical analysis and visualization were performed in R (version 4.3.2) using the meta package, which provides a range of functions for conducting meta-analyses and generating forest and funnel plots, visually presenting the combined effect sizes and assessing publication bias.
2.5 Core gene GSEA/GSVA enrichment analysis
The study had used a stratified approach to classify samples as high or low expression group basing on the top 30% of most expressed samples versus bottom 30%. This second classification aimed to find the most extreme gene expression changes associated with disease states. This was followed up by a differential expression analysis using the limma package, producing log2 fold changes (log2FC) and ranking genes that were statistically altered. The additional analysis utilizes gene sets from the KEGG database and was performed with fgsea function in the R package fgsea. Enrichment scores (ES) of gene sets with significant P values were calculated by using GSEA analysis, and tested for significance/multiple hypothesis correction was applied. Gene Sets with uncorrected p-value < 0.05 and corrected p-value < 0.25 were assumed to have biological significance and visualized as before based on species partitioning. To explore the states of tumor cells better in single-cell level, we performed CancerSEA analysis. This platform creates a merged view of the datasets and uncovers 14 new functional states that are able to articulate significant aspects of tumor cell function, making it usable as an effective resource for conducting meaningful experiments. Using the z-score algorithm proposed by Lee et al., gene set values were calculated and converted to z-scores with the GSVA algorithm in the R package GSVA. Pearson correlation analysis was then employed to explore the relationships between gene expression and functional states, calculating the correlation between gene expression and gene set z-scores. Finally, the gsva function in the GSVA package was used to score 73 metabolic gene sets from the KEGG database. Based on these GSVA scores, the limma package was again used to compare metabolic pathway activities between the high and low expression groups, revealing the role of metabolic pathways in disease progression.
2.6 Sensitivity of core genes to immunotherapy
Gene expression data from multiple publicly available datasets of cancer patients undergoing immunotherapy were utilized. To assess the diagnostic performance of PIGF expression in distinguishing between responders and non-responders to immunotherapy, ROC curve analysis was conducted using the pROC package in R. The area under the curve (AUC) and 95% confidence intervals (CI) were calculated, and smoothing techniques were applied to the ROC curves for improved visualization. Patients were categorized into high and low PIGF expression groups based on the median expression level of PIGF. A Chi-square test was performed to examine the differences in the proportions of responders and non-responders between these two groups. Furthermore, the Wilcoxon rank-sum test was employed to compare gene expression differences between responders and non-responders, and gene expression levels were standardized into Z-scores for statistical comparison.
2.7 Immune infiltration analysis of core genes
The TIMER 2.0 database was employed to collect and analyze immune infiltration data from TCThe TIMER 2.0 database was used in this study to obtain immune infiltration data from the TCGA tumor samples5. We developed a comprehensive immune-related long non-coding RNAs database and discovered that multiple algorithms can evaluate the abundance of different types of immune cells in tumor tissues, and analyze their relationship with gene expression. This approach served data quality and provenance, giving a holistic overview on the interaction of immune cells to gene expression. The bar of scatter plots shows us correlation coefficient, which clearly describes the relationship between immune cell type and gene expression. Samples were bimodalized based on median of gene expression as an robust estimator to differentiate between low and hight expressions people — the healthy group in blue line while ICH is presented by red solid line. To find whether the immune cell contents in high and low expression groups had statistical differences, Wilcoxon rank sum test was performed as a nonparametric method applied to comparisons among different kinds of data distributions. Heatmaps were generated to show key immune cell types in detail.
2.8 Mutation analysis of core genes
Whole-genome CRISPR screening data were obtained from the DepMap portal, and dependency scores for approximately 17,000 candidate genes were analyzed using the CERES algorithm. The pan-cancer mutation landscape of core genes was visualized using the plotmafSummary function from the maftools package. To assess the independence between gene expression levels and specific gene mutation types the independence_test function from the R coin package, based on permutation tests, was employed. Genes with a mutation rate exceeding 10% and a p-value less than 0.01 were identified and visualized to highlight significant associations between gene expression and mutation types. In the TCGA-HNSC project, copy number variation (CNV) analysis was performed using the GISTIC score method to identify genomics CNVs. The CNV profile of 451 samples was visualized using bar plots, which reflected chromosomal copy number changes. Quantitative measures of genomics alterations, such as FGA, FGG, and FGL, were defined based on the genomics distance of clonal regions. When analyzing differences between specific gene expression subgroups, ANOVA was used, followed by Tukey’s Honest Significant Difference (TukeyHSD) test for multiple comparisons if ANOVA indicated significance. This approach was used to identify specific group differences. The correlation between CNV scores and gene expression levels was analyzed using scatter plots combined with Spearman’s rank correlation coefficient, which measures the monotonic relationship between two variables. CNV data were obtained from the TCGA Genome Characterization Center andmeasured through whole-genome arrays. Gene-level copy number estimates were derived using the TCGA FIREHOSE pipeline and GISTIC2 method. The Kruskal-Wallis test, a non-parametric method for comparing multiple samples, was employed to compare gene expression differences among different CNV types (ranging from −2 to 2).
2.9 Single-gene pan-cancer single-cell sequencing analysis
Single-cell gene expression data for HNSCC were obtained from the TISCH database. Heatmaps, generated using the pheatmap package, effectively revealed gene expression patterns at the single-cell level across different cancer types. Hierarchical clustering analysis, performed using Euclidean distance and Ward’s minimum variance method, uncovered intrinsic patterns of gene expression and their conservation across various cancers. Additionally, UMAP (Uniform Manifold Approximation and Projection) was utilized to explore expression patterns in high-dimensional data, preserving the original data topology during dimensionality reduction. By using UMAP analysis of gene expression data for CENPF, we could render a clearer depiction of the patterns underlying adding new observations to key biological discovery. To determine significant differences in specific gene expression between cell types, the Kruskal-Wallis rank sum (KW) test was applied as a non-parametric method suitable for un-normally distributed samples. Furthermore, UMAP visualization of the AUC cell scoring capturing heterogeneity of pathway activity in individual cells was performed. Methodology for spatial transcriptomics can be found in the supplementary methods.
2.10 Cell proliferation assay
Cell proliferation was determined by the cell counting Kit-8 (CCK-8, Beyotime Biotechnology Co., Ltd., Shanghai, China) at 0 h, 24 h and 48 through various treatments. The cells were then cultured in 96-well plates (Thermo Fisher Scientific. MA, United States) and exposed to respective interventions for another 24 h essentially as described above briefly After that, 10 μL of CCK-8 solution was added to each well and incubated for another 2 h. Absorbance (450 nm) was determined by a Microplate Reader (Bio-Rad, Hercules, CA). Cell viability was evaluated by calculating the ratio of the average absorbance of the treated groups to that of the control group, expressed as a percentage ([Absorbance of treated group/Absorbance of control group] × 100%).
2.11 Clonogenic assay for cell proliferation
Cells in the logarithmic growth phase were collected and diluted to a concentration of 500 cells/mL. Each well of a 6-well plate was pre-wetted with 1 mL of culture medium before adding 1 mL of the cell suspension. Three replicate wells were prepared for each group. The cells were incubated overnight in a 37°C, 5% CO2 incubator to allow for attachment. Subsequently, cells were collected and 5 × 10^4 cells per well were added to the corresponding wells, with the medium being changed every 2 days. After 12 days, the medium was discarded, and the wells were washed twice with PBS. Cells were then fixed by adding 1 mL of methanol to each well and incubating at room temperature for 20 min. After removing the methanol, 1 mL of 0.1% crystal violet was added for staining at room temperature for 20 min. The wells were then washed with PBS until the background was clear, followed by photographing and counting the colonies.
2.12 Transwell and scratch assays for assessing cell invasion and migration
SCC4 cells were seeded into 6-well plates at a density of 5 × 105 cells per well. After 12 h of incubation, a sterile pipette tip was used to create scratches along predefined tracks. Detached cells were washed away with PBS, and photographs were taken. The plates were then returned to the incubator for an additional 24 h, followed by another round of photography to capture cell migration. For the Transwell assay, treated SCC4 cells were seeded into the upper chamber of Transwell inserts pre-coated with Matrigel at a density of 1 × 105 cells per well. The lower chamber was filled with 600 μL of culture medium containing 5% fetal bovine serum. The cells were incubated for 24 h, after which they were fixed with 4% paraformaldehyde for 20 min and stained with 0.1% crystal violet for 10 min. The number of invading cells was then observed under a microscope and photographed.
2.13 Statistical analysis
The statistical analysis was conducted using SPSS software version 26.0 (SPSS Inc., Chicago, United States). The results are expressed as the mean ± standard deviation. For comparisons between two groups, Student’s t-test was utilized, while one-way ANOVA was applied for comparisons across multiple groups. Statistical significance was defined as P-value < 0.05.
3 RESULTS
3.1 Identification and multigene analysis of exercise-survival prognosis-related genes in HNSCC
The results of this study present the identification and multigene analysis of exercise-survival prognosis-related genes in HNSCC, as illustrated in Figure 1. The Venn diagram (Figure 1A) highlights the intersection of exercise-related genes, tumor-related genes, and survival prognosis-related genes in HNSCC, pinpointing core genes crucial for survival prognosis influenced by exercise. The distribution of these core genes across various biological processes and pathways is depicted in the GO analysis pie chart (Figure 1B), emphasizing their involvement in diverse cellular functions. Further insights are provided by the KEGG pathway enrichment analysis (Figure 1C), which identifies significant pathways involving these core genes. The GSEA plot (Figure 1D) demonstrates the enrichment of core genes in specific biological pathways or processes, indicating their functional relevance in the context of HNSCC and exercise. Survival analyses using the ssGSEA score are presented for different HNSCC patient cohorts (Figures 1E, F, datasets GSE126 and GSE525), revealing the association between core gene expression levels and overall survival. Additional Kaplan-Meier survival analyses (Figures 1G, H, datasets GSE407 and GSE123) consistently show the correlation between core gene expression and patient survival, reinforcing their prognostic value. A meta-analysis of survival data (Figure 1I) confirms the significant prognostic impact of these genes across multiple datasets. Multivariate Cox regression analyses (Figures 1J–M) further illustrate the independent prognostic value of these genes, highlighting their potential as biomarkers for HNSCC prognosis. These comprehensive analyses demonstrate the critical role of exercise-survival prognosis-related genes in HNSCC and their potential as prognostic biomarkers, providing valuable insights into the molecular mechanisms of HNSCC influenced by exercise.
[image: The image contains multiple panels related to a scientific study. Panel A shows a Venn diagram, Panel B presents a pie chart with different color segments, and Panel C features a bar chart with data points. Panels D to I include survival curves with plots displaying time against survival probability. Panel I further includes a forest plot illustrating hazard ratios with confidence intervals. Panels J, K, L, and M contain tables with statistical data including p-values and hazard ratios, accompanied by red markers. The overall focus is on data visualization for a research analysis.]FIGURE 1 | Identification and Multigene Analysis of Exercise-Survival Prognosis-Related Genes in HNSCC. (A) Venn diagram showing the intersection of exercise-related genes, tumor-related genes, and survival prognosis-related genes in HNSCC. (B) Pie chart depicting the distribution of core genes enriched in various biological processes and pathways based on Gene Ontology (GO) analysis. (C) Dot plot displaying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the core genes, highlighting significant pathways involved in HNSCC. (D) Enrichment plot from Gene Set Enrichment Analysis (GSEA) indicating the enrichment of core genes in specific biological pathways or processes. (E) Survival curve based on the single-sample Gene Set Enrichment Analysis (ssGSEA) score for a core gene in the HNSCC patient cohort from GSE126 datasets. (F) Survival curve based on the ssGSEA score for a core gene in the HNSCC patient cohort from the GSE525 datasets. (G) Kaplan-Meier survival analysis for a core gene in the HNSCC patient cohort from the GSE407 datasets. (H) Kaplan-Meier survival analysis for a core gene in the HNSCC patient cohort from the GSE123 datasets. (I) Forest plot of hazard ratios from a meta-analysis of survival data, showing the combined effect size and confidence intervals for core genes across multiple datasets. (J–M) Forest plots of hazard ratios from multivariate Cox regression analysis for multiple core genes, illustrating their independent prognostic value in HNSCC.
3.2 Expression of PIGF in HNSCC using TCGA data
The study focused on analyzing the expression pattern of the PIGF gene in HNSCC using data from The Cancer Genome Atlas (TCGA). Figure 2A displays a volcano plot generated through differential expression analysis. The diagnostic potential of PIGF in distinguishing tumor tissues from normal tissues is evaluated by the ROC curve in Figure 2B, which presents an AUC value indicating PIGF’s predictive ability. Further analysis in Figure 2C shows a violin plot comparing PIGF expression levels between normal and tumor tissues, approaching statistical significance (p = 0.06), while Figure 2D presents a paired sample plot indicating a non-significant difference (p = 0.318). The expression pattern across different tumor stages is shown in Figure 2E, with significant differences (p = 0.021) between early-stage (Stage I-II) and advanced-stage (Stage III-IV) HNSCC. Figure 2F’s ROC curve assesses the diagnostic performance of PIGF in differentiating early from advanced stages, demonstrating moderate efficacy. Figure 2G visualizes the gene interaction network with PIGF as the central node, indicating its interactions with other genes. Finally, Figure 2H shows the median expression levels of PIGF at different tumor stages, emphasizing the dynamic changes in expression during tumor progression. The expression level of PIGF was significantly upregulated in stage III and IV HNSCC, showing a linear relationship, indicating a correlation with disease severity. However, the expression level of PIGF in stage II HNSCC is lower than that in stage I. These results collectively underscore the significant upregulation of PIGF in HNSCC, its diagnostic potential, and its variable expression across different tumor stages, enhancing our understanding of its role in cancer progression.
[image: A collection of graphs and charts presenting data related to gene expression and statistical analysis. Chart A shows a scatter plot with colored dots; charts C and E display violin plots comparing different groups; D shows a connected line graph comparing normal and tumor samples; B is a probability plot; F is an ROC curve; G is a network diagram; H shows a line graph with data points labeled by stage. Each chart or graph illustrates various statistical relationships, trends, and comparisons relevant to the study.]FIGURE 2 | Expression of PIGF in HNSCC using TCGA data. (A) Volcano plot visualizing the differential expression of PIGF using the limma package. The log2 fold change is plotted against the -log10 adjusted p-values. Significant upregulation of PIGF is indicated by red dots, while significant downregulation is indicated by green dots. (B) ROC curve evaluating the diagnostic performance of PIGF expression in distinguishing tumor tissues from normal tissues. The Hosmer-Lemeshow goodness-of-fit test is included, with the predicted probability plotted against the actual rate. The curve reflects the ability of PIGF to predict tumor presence, with an AUC value provided. (C) Violin plot comparing the expression levels of PIGF between normal and tumor tissues in HNSCC. Statistical significance is indicated (p = 0.06). (D) Paired sample plot showing the expression of PIGF in matched normal and tumor tissues, with a p-value indicating the significance of the difference. (E) Violin plot depicting the expression of PIGF in HNSCC across different tumor stages (Stage I-II vs. Stage III-IV). Statistical significance is indicated (p = 0.021). (F) ROC curve assessing the diagnostic performance of PIGF expression in differentiating early-stage (Stage I-II) from advanced-stage (Stage III-IV) HNSCC. The AUC value and confidence interval (CI) are provided. (G) Interaction analysis of PIGF with other genes, visualized as a network. The central node represents PIGF, with edges indicating interactions with other genes. The thickness of the edges correlates with the strength of interaction. (H) Median expression levels of PIGF in HNSCC across different tumor stages (Stage I, II, III, IV), represented by the Z-score of expression values. Each bar indicates the median expression level for the corresponding stage, with significant differences highlighted.
3.3 Multidimensional analysis of PIGF gene in HNSCC
A comprehensive analysis of the PIGF gene in HNSCC using TCGA-GTEX data provides significant insights into its diagnostic and clinical relevance (Figures 3A–F). Figure 3A shows the ROC curve assessing the diagnostic efficiency of PIGF expression between tumor and normal groups, including the Hosmer-Lemeshow test with a p-value of 0.096, indicating a good model fit. Figure 3B further highlights the diagnostic performance of PIGF expression in distinguishing tumor from normal tissue in HNSCC, with an area under the curve (AUC) of 0.660 and a 95% confidence interval of 0.597–0.724, demonstrating high diagnostic accuracy. The differential expression of the PIGF gene across various tumor subtypes of HNSCC is depicted in Figure 3C. The violin plot illustrates the distribution of PIGF mRNA levels in atypical, basal, classical, and mesenchymal subtypes, with a significant p-value of less than 0.001, indicating notable differences among subtypes. Figure 3D presents a heatmap showing expression differences of the PIGF gene in HNSCC patients from TCGA, categorizing expression levels into high and low groups and correlating these with patient subtypes. Figure 3E shows a density map comparing the estimated expression of PIGF, showing the obvious differences between normal and tumor tissues. The results showed that the expression level of PIGF in tumor tissues was significantly higher than that in normal tissues. Chi square test results (Figure 3F) highlighted the association between PIGF expression level and various clinical characteristics of hNSC patients, including alcohol consumption, HPV status, lymph node involvement, tumor stage, gender, targeted therapy, radiotherapy, tumor grade and patient age, discriminated between high expression group and low expression group and provided the relevant p value. The results showed that patients with high PIGF expression had later tumor stage, more lymph node involvement, and were more sensitive to targeted therapy and radiotherapy. These findings collectively reveal the multidimensional characteristics of the PIGF gene in HNSCC, underscoring its potential as a diagnostic biomarker and its association with clinical traits.
[image: Graphs and charts display statistical data related to PlGF expression in head and neck squamous cell carcinoma (HNSC). A shows a probability plot, B presents a receiver operating characteristic curve, C features violin plots comparing PlGF expression between sample groups with significance level, D includes a circular map of gene co-expression modules, E shows a density plot contrasting tumor versus normal gene expression, and F contains circular heatmaps of clinical factors impacting expression in datasets. The data suggests significant differences in expression levels influencing clinical outcomes.]FIGURE 3 | PIGF in HNSCC Analyzed with TCGA-GTEX Data. (A) ROC curve assessing the diagnostic efficiency of PIGF expression between tumor and normal groups. (B) ROC curve evaluating the diagnostic performance of PIGF expression distinguishing tumor from normal tissue in HNSCC. (C) Differential expression of PIGF gene across various tumor subtypes of HNSC. The violin plot displays the distribution of PIGF mRNA levels in atypical, basal, classical, and mesenchymal subtypes with a significant p-value <0.001. (D) Heatmap illustrating the expression difference of the PIGF gene in HNSCC from TCGA patients. The data include expression levels categorized by high and low expression groups, along with the corresponding patient subtypes. (E) Density plot depicting the estimated expression of PIGF in HNSCC using data from GSE30784. The plot compares the expression levels between normal and tumor tissues, highlighting significant differences. (F) Chi-square test results showing the association between PIGF expression levels and various clinical traits in HNSCC patients.
3.4 Analysis of PIGF gene Interactions
Pearson correlation analysis is used to identify significant interactions between PIGF expression and various related mRNAs and miRNAs. Figure 4A presents a heatmap displaying the correlation matrix between PIGF mRNA and other mRNAs, with color intensity indicating the correlation strength—blue for negative and red for positive correlations. Figure 4B features a scatter plot with a regression line, illustrating the Pearson correlation between PIGF mRNA expression and a specific related mRNA. The x-axis represents PIGF mRNA levels, and the y-axis represents the related mRNA levels, highlighting the direction and strength of the correlation. Furthermore, Figures 4C–L depict scatter plots showing the correlation between PIGF mRNA and various miRNAs. Each plot, such as Figure 4C, includes the correlation coefficient and p-value, indicating a statistically significant positive correlation. The analysis reveals moderate to strong correlations between PIGF mRNA and these mRNAs and miRNAs, with significant p-values. These findings suggest that PIGF may play a crucial role in the regulatory network involving these genes, providing a foundation for future studies on the functional implications of PIGF interactions in the studied condition.
[image: Composite image with multiple panels. Panel A is a heatmap showing correlation coefficients between various genes. Panel B is a scatter plot with a regression line, displaying correlation between two variables, with a histogram overlay on the axes. Panels C to L are scatter plots of gene expression data for different COVID-19 patient subsets, each showing a varying degree of correlation between PGF and another gene expression. The scatter plots show data points with trend lines, indicating relationships among variables.]FIGURE 4 | Analysis of PIGF Gene Interactions. (A, B) Pearson correlation analysis scatter plots showing the relationship between PIGF mRNA expression and various related mRNAs. (A) Heatmap displaying the correlation matrix between PIGF mRNA expression and other mRNAs. The color intensity represents the strength of the correlation, with blue indicating negative correlation and red indicating positive correlation. (B) Scatter plot with a regression line depicting the Pearson correlation between PIGF mRNA expression and a specific related mRNA. The x-axis represents the expression levels of PIGF mRNA, while the y-axis represents the expression levels of the related mRNA. The distribution of data points and the regression line illustrate the direction and strength of the correlation. (C–L) Pearson correlation analysis scatter plots showing the relationship between PIGF mRNA expression and various related miRNAs. Each plot represents the correlation of PIGF mRNA with a different miRNA.
3.5 PIGF gene prognostic survival analysis
A comprehensive analysis is conducted to evaluate the prognostic significance of PIGF gene expression across various survival outcomes using internal and external datasets. Kaplan-Meier survival analysis is performed for four key survival outcomes: Overall Survival (OS), Disease-Specific Survival (DSS), Progression-Free Interval (PFI), and Disease-Free Interval (DFI). Survival curves are stratified by quartiles (Q1-Q4) of PIGF expression levels (Figures 5A–D). The results indicate no significant difference in OS (log-rank test P = 0.13; Figure 5A), a significant difference in PFI (log-rank test P = 0.002; Figure 5B), no significant difference in DSS (log-rank test P = 0.232; Figure 5C), and no significant association with DFI (log-rank test P = 0.363; Figure 5D). A meta-analysis of univariate Cox regression survival analysis across multiple datasets determines that higher PIGF expression correlates with an increased risk of poor survival outcomes (Figures 5E, F). External GEO datasets analysis validates these findings in head and neck squamous cell carcinoma (HNSCC), with significant associations observed in datasets GSE10406 (P = 0.004; Figure 5G), GSE84318 (P = 0.016; Figure 5H), and GSE53161 (P = 0.001; Figure 5I), though no significant association is found in GSE24362 (P = 0.348; Figure 5J). Further independent prognostic analysis confirmed the significance of PIGF expression independent of clinical variables through both univariate and multivariate Cox regression analyses (Supplementary Figures 1A–D). Expression levels are correlated with overall survival status (Supplementary Figure 1E), and a Chi-square test indicated no significant distribution difference across expression quartiles (P = 0.706; Supplementary Figure 1F). Restricted cubic spline models explored non-linear risk associations adjusted for relevant covariates, showing estimated log hazard ratios with 95% confidence bands (Supplementary Figures 1G–J). Kaplan-Meier survival curves stratified by expression levels reveal significant differences, particularly for OS and DSS (Supplementary Figures 1K–N). This analysis underscores the significant prognostic value of PIGF gene expression for various survival outcomes, suggesting its potential as a biomarker for cancer prognosis.
[image: Kaplan-Meier survival curves and forest plots show overall survival for different groups. Panels A to D display survival curves with log-rank p-values and numbers at risk. Panels E and F present forest plots with hazard ratios for subgroups. Panels G to J provide additional survival curves for specific comparisons. Data is shown over multiple years.]FIGURE 5 | PIGF Gene Prognostic Survival Analysis. (A–D) Kaplan-Meier survival analysis for four survival metrics including Overall Survival (OS), Disease-Specific Survival (DSS), Progression-Free Interval (PFI), and Disease-Free Interval (DFI). Each plot represents the survival curves for different quartiles (Q1-Q4) of PIGF expression levels, with Q1 representing high expression of PIGF and Q4 representing low expression of PIGF. Log-rank test p-values are provided to show the statistical significance of differences between the curves. (A) Overall Survival (OS): Log-rank test P = 0.13. (B) Progression-Free Interval (PFI): Log-rank test P = 0.002. (C) Disease-Specific Survival (DSS): Log-rank test P = 0.232. (D) Disease-Free Interval (DFI): Log-rank test P = 0.363. (E, F) Meta-nalysis of univariate Cox regression survival analysis across multiple datasets. Forest plots showing the hazard ratios (HR) and 95% CI for PIGF expression in different studies. (E) Univariate Cox regression analysis combining multiple datasets. The pooled HR indicates the overall effect of PIGF expression on survival. (F) Hazard ratios from individual studies in the TCGA datasets for different survival outcomes. The random effects model is used, and heterogeneity statistics are provided. (G–J) External GEO datasets survival prognostic analysis of PIGF expression. (G) Kaplan-Meier survival curve in HNSCC (GSE10406) with a p-value of 0.004. (H) Kaplan-Meier survival curve in HNSCC (GSE84318) with a p-value of 0.016. (I) Kaplan-Meier survival curve in HNSCC (GSE53161) with a p-value of 0.001. (J) Kaplan-Meier survival curve in HNSCC (GSE24362) with a p-value of 0.348.
3.6 Core gene GSEA/GSVA enrichment analysis in HNSCC
The analysis of core genes in HNSCC provides comprehensive insights into their roles in tumor progression and patient survival outcomes through various Kaplan-Meier (KM) survival analyses, GSEA, and GSVA. Figures 6A–E demonstrate KM survival analyses for the four subgroups of dual-gene molecular subtypes based on CD274 expression. These figures show that high CD274 expression correlates with poorer survival outcomes. Similarly, Figures 6F–J demonstrate that elevated PDCD1 expression is associated with reduced survival rates. Figure 6K highlights significant pathways identified through GSEA for hallmark gene sets, revealing differently regulated biological processes. The KEGG gene set enrichment analysis in Figure 6L identifies critical signaling pathways involved in HNSCC, including those related to immune response and apoptosis. Figure 6M uses the clusterProfiler package to compare high and low expression groups, showcasing normalized enrichment scores (NES) for significantly enriched pathways, thereby emphasizing the diverse biological functions influenced by core genes. Differential GSVA scores for metabolic pathways in Figure 6N indicate altered metabolic activities linked to core gene expression. The heatmap in Figure 6O illustrates the correlation between immune response signatures and genome state, highlighting the interplay between immune activity and genetic alterations. Figure 6P represents PIGF expression across various immune stimulators, underscoring its role in modulating immune responses. Finally, Figure 6Q presents Pearson correlation analyses between z-scores of core gene expression and tumor state parameters, offering insights into the relationships between core gene expression and tumor-related parameters. This comprehensive analysis provides a detailed perspective on the functional roles of core genes in HNSCC, emphasizing their potential as prognostic biomarkers and therapeutic targets.
[image: A series of charts and visualizations showing various analyses. Panels A-J display scatter plots with trend lines correlating clinical characteristics and immune features. Panel K shows a tabulated data comparison with immune cell metrics. Panel L features genomic data distribution. Panel M presents clustered heatmaps showing gene expression patterns among different samples. Panel N contains a stacked bar chart of PDCI percentages. Panel O displays a heatmap correlating immune responses, genomic sites, and treatments. Panel P shows heatmaps of sample comparisons by different metrics. Panel Q includes scatter plots highlighting various data clusters and relationships.]FIGURE 6 | Core Gene GSEA/GSVA Enrichment Analysis. (A–E) Kaplan-Meier (KM) survival analysis for the four subgroups of dual-gene molecular subtype based on CD274 expression. Each subplot represents different survival curves comparing high and low expression groups of CD274, with statistical significance evaluated using log-rank tests. (F–J) Kaplan-Meier (KM) survival analysis for the four subgroups of dual-gene molecular subtype based on PDCD1 expression. Each subplot represents different survival curves comparing high and low expression groups of PDCD1, with statistical significance evaluated using log-rank tests. (K) GSEA for hallmark gene sets. This analysis compares the enrichment scores of high expression vs. low expression groups, highlighting significant pathways. (L) KEGG gene set enrichment analysis compares the enrichment scores between high and low expression groups, identifying key signaling pathways involved. (M) Multiple gene set enrichment analysis performed using the clusterProfiler package. The comparison is between high expression group to low expression group across various gene sets. The bar plot shows the normalized enrichment scores (NES) for significantly enriched pathways. (N) Differential GSVA scores for metabolic pathways between high and low expression groups of the core gene. The bar plot displays pathways with significant differences in GSVA scores, indicating altered metabolic activities. (O) Immune Response and Genome State heatmap. This heatmap illustrates the correlation between immune response signatures and genome state across different samples, indicating the interplay between immune activity and genetic alterations. (P) Landscape of PIGF in Immunostimulator. Heatmap representation of PIGF expression across various immune stimulators, highlighting its role in modulating immune responses. (Q) Pearson correlation analysis between z-scores of core gene expression and z-scores of 14 tumor state parameters. Scatter plots depict the correlation between core gene expression and various tumor-related parameters, with the Pearson correlation coefficient (r) and statistical significance (p-value) annotated.
3.7 Single-cell sequencing analysis of PIGF in HNSCC
Our study provides an in-depth analysis of PIGF gene expression in HNSCC using single-cell sequencing data. Figures 7A–C present UMAP plots displaying major cell lineages (A), single-cell PIGF gene expression (B), and density contour lines (C) in HNSCC, highlighting the distribution and expression patterns of PIGF across different cell populations within the tumor microenvironment. Figures 7D–F show UMAP plots depicting differential expression of core genes across various cell types in HNSCC, illustrating the variability in gene expression among different cell populations. Figure 7G represents pathway differences between core gene-positive and core gene-negative groups across various cell types, with a dot plot displaying enriched pathways in each cell type, indicating functional pathways associated with PIGF expression. Figure 7H utilizes spatial transcriptomic deconvolution to show cellular composition with the maximum value for each spot, providing a spatial map of cell distribution within the tumor. Figure 7I illustrates the Spearman correlation between gene expression and microenvironment components at single-cell resolution, revealing interactions between gene expression and the tumor microenvironment. Figure 7J demonstrates the differential expression of PIGF in malignant, mixed malignant, and normal regions, suggesting its potential role in tumor progression. Figure 7K shows PIGF expression across different tumor stages allowing comparison across various stages of tumor development. Figure 7L presents the active landscape of core gene set scores in microzones, identifying regions within the tumor with high or low activity of specific gene sets. Figure 7M shows differences in AUC scores of gene sets between malignant, mixed malignant, and normal microzones, highlighting significant differences in gene set activity among the different regions. This detailed single-cell sequencing analysis reveals the complex role of PIGF in the tumor microenvironment of HNSCC. Additionally, in vitro cell experiments demonstrates that silencing PIGF affects cell proliferation, apoptosis, and the expression of related factors, suggesting potential molecular targets for the HNSCC treatment.
[image: A series of scientific visualizations showing data analyses. Panels A-C depict contour plots with color gradients. Panels D-F display scatter plots with axes. Panel G is a heatmap with a legend for expression levels. Panels H and K are maps with color-coded regions. Panels I and L include network diagrams with connections between nodes. Panels J and M contain bar graphs comparing two groups, with axes labeled but no visible text detail. Color legends on the side indicate various data classifications.]FIGURE 7 | Single-cell sequencing analysis of PIGF in head and neck squamous cell carcinoma (HNSCC). (A–C) UMAP plots displaying major cell lineages (A) and single-cell PIGF gene expression (B) with density contour lines (C) in HNSCC single cells. The color gradient represents the expression levels of PIGF, with higher expression shown in darker colors. (D–F) UMAP plots showing differential expression of core genes across different cell types in HNSCC. Cells are colored based on core gene expression levels, highlighting the variability in gene expression among different cell populations. (G) Pathway differences between core gene-positive and core gene-negative groups across various cell types. Dot plot representing the pathways enriched in each cell type, with the size of the dots indicating the number of genes involved and the color gradient representing the significance of the enrichment (p-values). (H) Spatial transcriptomic deconvolution showing the cellular composition with the maximum value for each spot. Each spot represents a spatial location on the tissue, and colors indicate different cell types. (I) Spearman correlation between gene expression and microenvironment components at single-cell resolution. The heatmap shows the correlation values, with blue indicating negative correlation and red indicating positive correlation. (J) Bar plot illustrating the differential expression of PIGF in malignant regions, mixed malignant regions, and normal regions. The y-axis represents the expression level of PIGF, and the x-axis categorizes the regions into malignant, mixed, and normal. (K) Heatmap of PIGF expression across different tumor stages in OV. The color gradient indicates the expression levels, with red representing higher expression and blue representing lower expression. (L) Active landscape of core gene set scores in microzones. The plot shows the activity scores of core gene sets in different microzones, with colors indicating varying levels of gene set activity. (M) Bar plot illustrating the differential expression of AUC scores in malignant regions, mixed malignant regions, and normal regions. All these spatial transcriptomics data were sourced from the GSE181300 dataset in GEO (https://www.ncbi.nlm.nih.gov/geo).
3.8 The impact of PIGF on HNSCC cell proliferation, colony formation, and immunotherapy drug sensitivity
This study evaluated the role of PIGF in the proliferation and colony formation of HNSCC cells, as well as its potential as a drug target. By knocking down (sh1-PIGF) or overexpressing (PIGF-OE) PIGF in different experimental groups, real-time quantitative PCR data indicated a significant reduction in PIGF mRNA expression in the sh1-PIGF group, while the PIGF-OE group showed a notable increase, confirming the efficiency of both knockdown and overexpression constructs (Figure 8A). Functional analysis revealed that colony formation in the sh1-PIGF group was significantly reduced, suggesting that PIGF knockdown inhibited cell proliferation. Conversely, PIGF-OE reversed this effect, further demonstrating the critical role of PIGF in promoting HNSCC cell proliferation (Figure 8B). Similarly, the CCK-8 assay showed that PIGF knockdown significantly reduced cell viability, while PIGF overexpression restored the proliferative ability of the sh1-PIGF group (Figure 8C). Immunofluorescence staining demonstrated that the expression of proliferation markers MYC and Ki67 was markedly reduced in the sh1-PIGF group, whereas both markers were upregulated in the PIGF-OE group, supporting the hypothesis that PIGF promotes tumor cell growth by regulating proliferation-related pathways (Figure 8D). To further explore the potential of PIGF as a drug target, we analyzed its predictive performance across multiple cancer datasets (Figure 8E). In the GBM dataset, PIGF exhibited strong predictive power, particularly in the PIGF_GBM-PRJNA482620 dataset. Moreover, analysis of several cancer immunotherapy-related metrics (e.g., TIDE, MSI score, TMB, CD274 expression, CD8 infiltration, IFNγ expression) revealed significant variability in PIGF’s predictive performance across different datasets, with high predictive accuracy observed in glioblastoma and certain melanoma datasets (Figure 8F). These findings suggest that PIGF may play a role in modulating the immune microenvironment, making it a potential target for cancer immunotherapy.
[image: Graphical abstract illustrating various experimental results: (A) A scatter plot with p-values comparing different conditions. (B) Images of cell colonies from a colony formation assay with different treatments. (C) A bar graph showing quantified results of a CCK8 assay, highlighting statistical significance. (D) Immunofluorescence images showing expression of markers under different treatment conditions. (E) A diagram displaying comparative analysis of gene expression. (F) A detailed chart listing various cancer types and associated gene signatures with respective AUC values.]FIGURE 8 | Impact of PIGF Expression on Cell Proliferation and Colony Formation in HNSCC Cell Lines. (A) The relative mRNA expression of Placenta Growth Factor (PIGF) in different experimental groups: Negative Control (NC), sh1-PIGF (PIGF knockdown), sh1-PIGF+EV (empty vector), and PIGF-OE (PIGF overexpression). The results indicate a significant decrease in PIGF expression in the sh1-PIGF group compared to the NC and other groups, confirming the efficiency of PIGF knockdown and overexpression constructs. Data are presented as mean ± standard deviation (SD) with statistical significance denoted by ns (non-significant) or specific p-values (p < 0.001). (B) Representative images showing the colony-forming ability of colorectal cancer cells under different treatments: NC, sh1-PIGF, sh1-PIGF+EV, and sh1-PIGF+PIGF-OE. Cells are stained with crystal violet, and colonies are visually assessed. Knockdown of PIGF (sh1-PIGF) results in a marked reduction in colony numbers compared to the NC, while overexpression of PIGF (PIGF-OE) reverses this effect, demonstrating the role of PIGF in promoting cell proliferation. (C) NC, sh1-PIGF, sh1-PIGF+EV, and sh1-PIGF+PIGF-OE. The results, expressed as a percentage of cell viability, show that PIGF knockdown significantly reduces cell proliferation compared to the control and overexpression groups. Statistical analysis indicates highly significant differences between the groups (p < 0.001). (D) Visualization of MYC and Ki67 expression as markers of cell proliferation in colorectal cancer cells. MYC (red) and Ki67 (green) are shown in the NC, sh1-PIGF, PIGF-OE, and sh1-PIGF+PIGF-OE groups. The merged images depict the overall expression pattern, highlighting reduced MYC and Ki67 expression in the sh1-PIGF group compared to others, consistent with decreased cell proliferation and tumor growth potential upon PIGF silencing. (E) Predictive performance of PIGF across multiple datasets, with notable variation in its predictive efficacy. PIGF shows strong predictive performance in the PIGF_GBM-PRJNA482620 dataset. (F) A forest plot depicting the performance of PIGF-associated models across various cancer types and immunotherapy-related metrics, such as TIDE, MSI score, TMB, CD274 expression, and CD8 infiltration. Variability in performance is noted, with certain datasets showing enhanced predictive accuracy for PIGF’s role in tumor immunology.
4 DISCUSSION
By considering various bioinformatics analysis and cellular experiments, this research revealed a cluster of genes related to exercise for HNSCC prognosis. Specifically, we focus on the PIGF gene, which exhibits significant differential expression in SCC4 cells of HNSCC and shows a close association with tumor diagnostic efficacy, immune therapy response, and immune cell infiltration levels. These findings provide new perspectives on the molecular mechanisms underlying HNSCC and could inform the development of novel therapeutic strategies. The relationship between PIGF gene expression and the tumor immune microenvironment is a significant discovery of this study. We observe that PIGF expression levels are significantly associated with the infiltration degree of various immune cell subsets. Single-cell sequencing analysis further elucidates the complex role of the PIGF gene in the tumor microenvironment, revealing its multifaceted involvement in HNSCC progression and highlighting its potential as a therapeutic target.
The study underscores the importance of understanding gene expression and regulatory mechanisms in diseases contexts, providing an essential basis for understanding the occurrence and development of diseases (Mei et al., 2024). As the critical ontogeny of protein-protein interaction networks and their alterations involved in biological systems have been extensively investigated, they play a crucial role in cell signaling as well as function regulation (Wu et al., 2024; Wu et al., 2023). Meanwhile, discovering gene expression along with its regulatory schemes has brought new insights into deciphering disease complexity of onset or progression where much attention deserves to be paid (Chen N. et al., 2024; Ren et al., 2023). Single-cell RNA sequencing has illuminated cellular response mechanisms in diverse environments (Liu Q. et al., 2023). These studies not only elucidate disease mechanisms but also supply a strong theoretical framework and experimental evidence for subsequent therapies (Gao et al., 2024). Adopting the multi-omics approaches, such as chemical proteomics, deep learning and bioinformatics technologies combined with multiple methodologies could achieve a better understanding of disease mechanism and more accurate development of therapeutic strategies (Liu W. et al., 2024). The long-term analysis of gene expression and regulatory mechanisms in diseases is an indispensable prerequisite for understanding the pathogenesis and progress of a disease (Wong et al., 2023; Monsour and Borlongan, 2023). Through the analysis of pharmacological action, multi-omics data is integrated with advanced bioinformatics techniques to uncover potential therapeutic drug effect and further elucidate the mechanisms of action for drugs; this lays a stable theoretical foundation in clinical application and research. Polymorphism and disease association have been the mainstay of in-depth study for role determination, gene expression as well regulatory mechanisms which are very crucial info with respect to pathologic genome action on about onset and progression of a pathological state (Liu L. et al., 2024). As long as these strategies are fully invested, they will not only improve the scientific depth and breadth of research but also lay a solid foundation for follow-up clinical applications (Zhang J-F. et al., 2023). Validation of effects in vivo through animal models and by observation of histopathological changes using histology and immunohistochemical analysis provide important support for further research (Xing et al., 2024). Animal models are essential for studying drug efficacy, and validated animal models can simulate the pathophysiological processes of diseases (Qin et al., 2023). The continuous study of gene expression and regulatory mechanisms in diseases provides new insights into disease progression and therapeutic response by analyzing the immune microenvironment and tumor heterogeneity (Liu J. et al., 2024).
Among these PTMs, the upregulation of placental growth factor (PIGF) has been paid particular attention for its function associated with immune microenvironment in HNSCC (Albonici et al., 2019; Zhang and Han, 2020). PLGF is a member of the vascular endothelial growth factor (VEGF) family and plays roles in angiogenesis, immune cell recruitment, modulation of inflammatory responses as well as tumor immune evasion. Recent bioinformatics analyses highlight PIGF as a potential driver, and biomarker of response in HNSCC spreading its role from tumorigenesis to treatment responsivity. PIGF is a member of the platelet-derived growth factor family encoded by exons 1 and/or 2, which have been described to be modulated production thanks to alternative splicing forms (Vuorela et al., 1997). PIGF is a ligand that can regulate angiogenesis, cell proliferation and migration or invasion in various physiological and pathological settings (De, 2012; Yoo et al., 2015). PIGF plays an important role in the development of a variety of cancers, including oncology studies (Zou et al., 2022). PIGF stimulates tumor cell proliferation, migration and invasion through the binding of its receptor PDGFR-α which leads to downstream signaling pathways activation and also promotes the formation vascular system that will supply nutrients and oxygen needed by tumor (Wang et al., 2023). Another study suggested that PIGF was related to the ability of a tumor cell to evade immune responses and resistance against therapeutic interventions. The expression level of PIGF in HNSCC is closely associated with the aggressiveness, lymph node metastasis and prognosis of these tumors. However, the specific mechanisms of PIGF in HNSCC are not yet fully understood and require further research.
We observed varying correlations between PIGF mRNA and other mRNAs, suggesting that PIGF may have multifaceted roles within the tumor microenvironment of HNSCC (Shiah et al., 2021; Bebek et al., 2011). The presence of both positive and negative correlations indicates that PIGF may function synergistically with or in opposition to other genes, reflecting its involvement in different signaling pathways (Carmeliet et al., 2001; Gerritsen et al., 2003). For example, its interaction with immune-related genes could either promote or suppress immune responses, depending on the cellular context. The negative correlation with CD274 (PD-L1), a key immune checkpoint molecule involved in cancer immune evasion, suggests that higher PIGF expression may be associated with lower PD-L1 levels in HNSCC, potentially reducing immune suppression (Mann et al., 2023; Boschert et al., 2020). This finding aligns with previous studies, which have shown that PIGF expression can be inversely related to immune checkpoint proteins, likely due to its role in modulating the immune microenvironment. Notably, miRNAs positively correlated with PIGF, such as hsa-let-7b-5p and hsa-miR-29c-3p, are known for their roles in regulating tumor growth and immune responses (Salehi et al., 2018; Salehi et al., 2020). This indicates broader regulatory mechanisms influencing cell proliferation, migration, and immune cell infiltration. The observed negative correlations with miRNAs such as hsa-miR-30c-5p and hsa-miR-29b-3p suggest that these miRNAs may have tumor-suppressive functions, and their reduced expression, in combination with elevated PIGF levels, could promote tumor progression by enhancing angiogenesis and reducing immune cell infiltration (Kontomanolis et al., 2019; Orso et al., 2020). This underscores the potential of PIGF and its related miRNAs as therapeutic targets to inhibit tumor growth and modulate the immune landscape in HNSCC. These findings suggest that PIGF plays a dual role in HNSCC by influencing both the angiogenic process and immune response. Its complex interactions with various mRNAs and miRNAs highlight its potential as a therapeutic target. Future research should focus on elucidating the exact mechanisms by which PIGF modulates the tumor microenvironment, particularly in the context of its interactions with miRNAs and immune checkpoint pathways.
The open access and interdisciplinary application of the aforementioned studies further promote the development of precision medicine, emphasizing the importance of comprehensive data analyses and multidimensional assessment in modern medicine (Oinaka et al., 2024). Our cellular experiments confirm that silencing PIGF significantly inhibited HNSCC cells viability and invasive ability. MTT assays, colony formation assays, Transwell assays, and scratch assays collectively demonstrate the critical role of PIGF in HNSCC cell growth and metastasis. In Figure 2H, we observed a significant upregulation of PIGF in stage III and IV head and HNSCC, which was linearly correlated with disease severity. However, the expression level of PIGF in stage II was unexpectedly lower than that in stage I, despite the expectation that PIGF expression would gradually increase with tumor progression. Several potential explanations may account for this anomaly. First, stage II tumors may be influenced by unique microenvironmental factors, such as hypoxia, nutrient availability, or fibroblast activity levels, which differ from those in stage I or more advanced tumors. These factors could render the tumor microenvironment less conducive to PIGF expression. Additionally, variations in inflammation and immune responses between stage II and other stages may also contribute to differences in PIGF expression. Second, the sample size effect may play a role, as stage II tumors might have a smaller or more heterogeneous sample population, which could impact the observed expression pattern. Biological variability between tumors at the same stage may also result in differing PIGF expression levels, with stage II tumors potentially comprising subpopulations characterized by lower inherent PIGF expression. Finally, stage II tumors may involve distinct molecular pathways or regulatory mechanisms that influence PIGF expression differently compared to early or late-stage tumors. These genetic or epigenetic alterations might uniquely affect PIGF regulation in stage II, further contributing to the observed expression pattern. Future studies should focus on examining the tumor microenvironment, immune responses, and molecular pathways unique to stage II HNSCC, as well as exploring potential genetic and epigenetic differences that may regulate PIGF expression. Additionally, expanding the sample size and conducting deeper molecular characterization may help elucidate the biological factors contributing to these observed discrepancies.
In recent years, exercise, as a healthy lifestyle, has been shown to be closely related to the prognosis of various cancers (Idorn and Thor Straten, 2017). Exercise can improve the overall health of patients, enhance immune function, and reduce chronic inflammation, potentially lowering cancer risk and improving cancer patient prognosis (Thomas et al., 2021; Hojman, 2017). Moderate exercise has been shown to benefit HNSCC patients by improving quality of life, alleviating treatment-related side effects, and enhancing survival rates (Avancini et al., 2023). However, the mechanisms by which exercise influences the occurrence and development of HNSCC and whether exercise-related genes exist remain unclear. Investigating the relationship between exercise and HNSCC prognosis, as well as the role of exercise-related genes in HNSCC, is crucial for developing new preventive and therapeutic strategies (Sun et al., 2020; Jin and Yang, 2019). Our study successfully identifies exercise-survival prognosis-related genes in HNSCC and conducts multi-gene analysis. This analysis not only validates the prognostic value of individual genes but also demonstrates the potential of these genes as a collective in predicting HNSCC prognosis. Overall, the results of this study provide new molecular targets and insights for personalized treatment and prognosis evaluation in HNSCC. In this work, we conducted a comprehensive multi-omics investigation, integrating large-scale genomic, transcriptomic, and proteomic datasets to gain a deeper understanding of the molecular mechanisms underlying the biological processes of interest. Rigorous bioinformatics analyses were performed to ensure the robustness and reliability of our findings. Furthermore, we performed integration of the multi-omics datasets using advanced computational approaches, such as correlation analysis and network-based integration, to gain a comprehensive and coherent understanding of the underlying biological mechanisms. These studies not only deepen our understanding of disease mechanisms but also provide a solid theoretical foundation and experimental evidence for future therapeutic strategies (Zeng et al., 2024). By integrating multiple research methods and technologies, including small molecule compound screening, multi-omics analysis, deep learning, and bioinformatics technologies, scientists are continuously exploring and developing new therapeutic strategies, offering new possibilities for precision medicine and personalized treatment (Yin et al., 2024; Li T. et al., 2024).
5 CONCLUSION
In this study, we identified and analyzed exercise-related genes with prognostic significance in HNSCC through comprehensive bioinformatics and cellular experiments. Among these, the PIGF gene demonstrated notable differential expression in HNSCC tissues, and its association with immune cell infiltration, tumor diagnostic efficacy, and therapeutic response positions it as a key biomarker. Furthermore, PIGF’s role in modulating PTMs such as phosphorylation and ubiquitination underscores its potential in regulating cancer progression and immune evasion. These findings provide new insights into the molecular mechanisms underlying HNSCC and suggest that targeting PTMs in PIGF could open novel therapeutic avenues. Future research should further explore the mechanistic roles of PTMs in PIGF regulation, advancing personalized treatment strategies for HNSCC patients.
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Background: Prostate cancer is one of the leading causes of cancer-related deaths in men. Its molecular pathogenesis is closely linked to various genetic and epigenetic alterations, including posttranslational modifications like SUMOylation. Identifying biomarkers that predict outcomes and specific therapeutic targets depends on a comprehensive understanding of these processes. With growing interest in SUMOylation as a mechanism affecting prostate cancer-related genes, this study aimed to investigate the central role of SUMOylation in prostate cancer prognostics, focusing on the significance of NOP58.Methods: We conducted a comprehensive bioinformatics analysis, integrating differential expression analysis, survival analysis, gene set enrichment analysis (GSEA), and single-cell transcriptomic analyses using data from The Cancer Genome Atlas (TCGA). Key genes were identified through intersections of Venn diagrams, Boralta algorithm signatures, and machine learning models. These signaling mechanisms were validated through experimental studies, including immunohistochemical staining and gene ontology analyses.Results: The dual-gene molecular subtype analysis with SUMO1, SUMO2, and XPO1 genes revealed significant differences in survival outcomes across molecular subtypes, further emphasizing the potential impact of NOP58 on SUMOylation, a key post-translational modification, in prostate cancer. NOP58 overexpression was strongly associated with shorter overall survival (OS), progression-free interval (PFI), and disease-specific death in prostate cancer patients. Immunohistochemical analysis confirmed that NOP58 was significantly overexpressed in prostate cancer tissues compared to normal tissues. ROC curve analysis demonstrated that NOP58 could distinguish prostate cancer from control samples with high diagnostic accuracy. Gene Ontology analysis, along with GSVA and GSEA, suggested that NOP58 may be involved in cell cycle regulation and DNA repair pathways. Moreover, NOP58 knockdown led to increased BCL2 expression and decreased Ki67 levels, promoting apoptosis and inhibiting cell proliferation. Colony formation assays further showed that NOP58 knockdown inhibited, while its overexpression promoted, colony formation, highlighting the critical role of NOP58 in prostate cancer cell growth and survival. Additionally, NOP58 was linked to drug responses, including Methotrexate, Rapamycin, Sorafenib, and Vorinostat.Conclusion: NOP58 is a key regulator of prostate cancer progression through its mediation of the SUMOylation pathway. Its expression level serves as a reliable prognostic biomarker and an actionable therapeutic target, advancing precision medicine for prostate cancer. Targeting NOP58 may enhance therapeutic efficacy and improve outcomes in oncology.Keywords: prostate cancer, SUMOylation, NOP58, bioinformatics, prognosis, single-cell analysis, post-translational modifications
BACKGROUND
Prostate cancer (PCa) is one of the most prevalent male malignancies and its morbidity and mortality are high worldwide (Enikeeva et al., 2024). Although there has been significant progress in the diagnosis and treatment of prostate cancer over recent years, its molecular nature is complex and characterized by multiple interacting biological mechanisms which require comprehensive investigation (Nevedomskaya and Haendler, 2022; Wasim et al., 2022). Prostate cancer is a typical malignant carcinoma of the prostate, which has its own unique genes, and from this background many molecular mechanisms related to its onset have been clarified including genetic mutations, epigenetic modification, post-translational modifications, etc., in which SUMOylation is acrucial post-translational modification with wide biological functions (Samaržija, 2021; Sun et al., 2023).
SUMOylation (Small Ubiquitin-like Modifier) is a process in which SUMO proteins attach to target proteins post-translationally (Eifler and Vertegaal, 2015; Raju, 2019). This process is an important feature of numerous cellular biology processes such as transcriptional regulation, DNA repair, signal transduction and cell cycle control mechanisms (Soutourina and Werner, 2014; Tunçer and Kavak, 2020). SUMOylation is a reversible and dynamic posttranslational modification that modulates the stability, subcellular localization, and interaction networks of target proteins to regulate cell function and fate (Sahin et al., 2022; Huang et al., 2024). In recent years, a growing number of researches have demonstrated that SUMOylation is associated with the initiation and progression of human cancer (Du et al., 2021; Qin et al., 2021).
Although much of the cancer research has already recognized the role of SUMOylation, its distinct mechanisms and actions in prostate cancer remain largely unknown (Vlachostergios and Papandreou, 2012; Wang and Yu, 2021). The occurrence and progression of prostate cancer are mediated by multiple molecular and cellular pathways, and SUMOylation may be involved in the development of PCa by regulating critical proteins in these pathways (Wang and Yu, 2021; Ballar Kirmizibayrak et al., 2020). The occurrence and progression of prostate cancer are mediated by multiple molecular and cellular pathways, and SUMOylation may be involved in the development of PCa by regulating critical proteins in these pathways (Sun et al., 2023; Wu et al., 2020).
The specific objectives of this study were to discover the key genes associated with SUMOylation activity that could predict the prognosis of patients with prostate cancer (Sun et al., 2023; Liu et al., 2020). Bioinformatics methods, such as differential expression analysis, survival analysis, gene set enrichment analysis (GSEA), single-cell transcriptomics will be used to show how these genes are involved throughout the progression of prostate cancer (Khan et al., 2022; He et al., 2019). In the present study, we showed that NOP58 is a critical regulator in th SUMOylation pathway by comprehensive analysis. The diagnostic and therapeutic biomarker value of NOP58 was extended in this study by immunohistochemistry, gene ontology and pathway analysis.
Utilizing bioinformatics, the present study was conducted to identify and analyze the prognostic-related modification of SUMO ubiquitination in genes asso-ciated with prostate cancer (Sun et al., 2023; Wang and Yu, 2021). Utilizing bioinformatics, the present study was conducted to identify and analyze the prognostic-related modification of SUMO ubiquitination in genes asso-ciated with prostate cancer (Liu et al., 2022; Boldrini et al., 2021). Survival prognosis analysis of OS/PFI/DSS were then conducted; these results indicated that several genes might have a prognostic value in prostate cancer survival outcomes (Clayman et al., 2020; Reyes et al., 2021). The VennDiagram.R package was utilized to determine the intersection of OS-PFI-DSS related genes (Zhou et al., 2024; Chen et al., 2022). These intersecting prognostic genes were then subjected to binary Boruta analysis to pinpoint key genes closely linked to prostate cancer (Liu et al., 2020; He et al., 2019). In addition, a suite of ten machine learning algorithms (GLM, Elastic Net, GBM, SVM, KNN, RF, Naive Bayes, stepLDA, Logit, and PLS) was applied to refine the selection of genes closely related to prostate cancer (Passera et al., 2021). Differential expression analysis was conducted on these genes, with those exhibiting p < 0.05 and a fold change in expression ≥2 being identified as differentially expressed genes. Subsequently, single-gene survival regression analyses (OS/PFI/DSS/DFI) were performed on the core differentially expressed genes identified.
Furthermore, the expression landscape of NOP58 in prostate cancer was thoroughly investigated, demonstrating significant findings across various analyses. Immunohistochemical staining revealed marked NOP58 protein presence in prostate cancer tissues compared to adjacent non-cancerous tissues (Yu et al., 2004). The core gene interaction network highlighted NOP58’s central role (Papasaikas et al., 2015; Cervantes et al., 2020). Predictive models showed good calibration for prostate cancer prediction using NOP58 expression (Kearns and Lin, 2017). Differential expression analysis indicated significant upregulation of NOP58 in tumor tissues in both non-paired and paired samples (Sanchez-Palencia et al., 2011). The ROC curve demonstrated high diagnostic accuracy for NOP58 in distinguishing tumor from normal tissues. Further analysis revealed no significant expression differences across molecular subtypes but highlighted differences in immune subtype distributions and treatment outcomes correlated with NOP58 expression. Correlation analysis with CD274 and survival prognosis analyses indicated significant interactions and stratified survival outcomes. Univariate and multivariate Cox regression analyses showed NOP58’s significant impact on survival outcomes, with restricted cubic spline analysis exploring potential non-linear risk relationships. GSEA/GSVA enrichment analyses provided insights into metabolic pathways associated with NOP58 expression.
The discovery of NOP58 as a key regulatory factor provides a new perspective on the biology of prostate cancer and highlights its potential as a prognostic biomarker and therapeutic target (Arriaga-Canon et al., 2018; Felgueiras et al., 2014). The main purpose of this study is to deepen the understanding of the molecular mechanisms of prostate cancer by focusing on the SUMOylation pathway and its prognostic significance (Sun et al., 2023; Vlachostergios and Papandreou, 2012).
MATERIALS & METHODS
Identification and analysis of prognostic genes in prostate cancer related to SUMO ubiquitination modifications
In the current study, we used bioinformatics methods to screen prognostic genes associated with SUMO ubiquitin modifications in prostate cancer (Sun et al., 2023; Zhang et al., 2023a). At the outset, prostate cancer transcriptome data extracted from The Cancer Genome Atlas (TCGA) database Successive systematic scale OS/PFI/DSS survival prognosis analyses were carried out to discover mRNAs closely related to prostate cancer survival outcomes (Reyes et al., 2021; Mu et al., 2020). The VennDiagram. I Identify overlap genes of OS-PFI-DSS; R package Next, these overlapping prognostic genes were further identified by binary Boruta algorithm to identify important PCa relevant genes (Liu et al., 2020; He et al., 2019). Furthermore, a panel of ten machine learning algorithms (GLM, Elastic Net, GBM, SVM, KNN, RF),m Naïve Bayes, stepLDA, Logit and PLS) was used to further narrow down genes closely associated with prostate cancer (Saeedi et al., 2022; Ying et al., 2021). Differential expression analysis was conducted on these genes, with those exhibiting p < 0.05 and a fold change in expression ≥2 being identified as differentially expressed genes. Subsequently, single-gene survival regression analyses (OS/PFI/DSS/DFI) were performed on the core differentially expressed genes identified. The forestplot package was used to create forest plots displaying hazard ratios and their 95% confidence intervals. Furthermore, a survival prognosis model was developed based on the expression profiles of these core differentially expressed genes, and survival prognosis curves were generated (Li et al., 2021; Wang et al., 2021). This process aimed to develop a diagnostic model for prognostic genes in prostate cancer related to SUMO ubiquitination modifications (Sun et al., 2023; Zhang et al., 2023a). Immunohistochemical data was sourced from the HPA database (https://www.proteinatlas.org/).
GSEA and immune infiltration analysis
To perform differential analysis between tumor and normal groups, the limma package was utilized to compute the log2 fold change (log2FC) for each gene. Genes were ranked based on their log2FC values, and gene set enrichment analysis (GSEA) was carried out using the clusterProfiler package, focusing on the SUMO gene set. The enrichment score (ES) for each gene set was calculated, followed by significance and multiple hypothesis testing on these ES values. Additionally, the pROC package was employed for receiver operating characteristic (ROC) analysis to determine the 95% confidence interval, total area under the curve, and to plot a smooth ROC curve. This was done to assess the diagnostic performance of ssGSEAscore expression in both tumor and normal groups. The survival package facilitated Kaplan-Meier survival analysis, determining optimal cutoff values for high and low ssGSEAscore groups using the survminer package (ensuring a minimum proportion of 0.3 for both groups). The significance of the differences between high and low scoring groups was evaluated using the log-rank test with the survfit function. Univariate Cox survival analysis results were meta-analyzed via the inverse variance method, using log hazard ratio (HR) values as the primary measure. Statistical analyses and visualizations were conducted using R (version 4.3.2) with the Meta package.
Prostate cancer expression landscape analysis
The expression levels of the core gene NOP58 in prostate cancer tissues and adjacent non-cancerous tissues were investigated using the Human Protein Atlas (HPA). To filter protein-protein interaction data, the ComPPI database was utilized, ensuring the exclusion of biologically implausible interactions and introducing interaction scores to quantify data accuracy. The diagnostic performance of gene expression in distinguishing tumor from normal tissue was assessed using ROC analysis via the pROC package, calculating the 95% confidence interval and AUC, and plotting ROC curves. The data used originated from TCGA-corrected RNA-seq data, processed through Firehose and normalized. Z-score standardization identified outliers, and the Wilcoxon Rank Sum Test assessed expression differences between tumor and normal tissues. Combining GTEx and TCGA data, Z-score standardization was again performed to exclude outliers, followed by ROC analysis to evaluate gene expression’s diagnostic performance. The Wilcoxon Rank Sum Test was also applied to compare NOP58 expression between prostate cancer and adjacent tissues. To evaluate the accuracy of model predictions, calibration curves and goodness-of-fit tests were employed. Six molecular immune subtypes related to tumor characteristics and prognosis were categorized by median value, and their significance in subtype proportions was assessed using the chi-square test. The Kruskal-Wallis Rank Sum Test compared NOP58 expression differences across various molecular subtypes. Clinical variables were statistically grouped based on median expression, and their proportions were evaluated using the chi-square test.
Prostate cancer WGCNA analysis
Genes that exhibit similar expression patterns may be co-regulated, functionally related, or part of the same pathway. To identify hub genes and investigate the relationship between gene networks and specific phenotypes, we utilized Weighted Gene Co-expression Network Analysis (WGCNA). By employing the “WGCNA” package in R, we constructed a weighted gene co-expression network characterized by approximate scale-free properties. The analysis determined highly co-expressed genes through the correlation of their expression values. Topological overlap measurement (TOM) was used to generate network modules, and co-expression gene modules were identified via the dynamic hybrid cutting method, which is a bottom-up approach. Modules with dissimilarity thresholds lower than 0.25 were subsequently merged. The correlation between genes and modules was assessed by calculating gene significance (GS) and module significance (MS).
Survival prognosis analysis
In prostate cancer tissue samples, the Pearson correlation between the target gene and both mRNA and miRNA was computed and represented using scatter plots. Only results where the absolute value of the correlation coefficient exceeded 0.3 were considered significant. Gene expression levels were categorized based on their correlation strength with the target gene into four groups: positive correlation, moderate correlation, weak correlation, and negative correlation, which were then visualized using a contingency table heatmap. Statistical significance was assessed using Fisher’s exact test. To examine the relationship between gene expression levels and patient survival, Kaplan-Meier survival analysis was employed. Detailed survival data analysis was conducted with the survival package in R, and the survminer package was used to determine optimal cutoff values for high and low expression groups, ensuring that each group contained at least 30% of the total sample size.
The survfit function was utilized to conduct log-rank tests on various survival metrics, including overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS), progression-free interval (PFI), disease-free survival (DFS), and disease-free interval (DFI), to evaluate the significance of differences in survival between different gene expression level groups. Additionally, a meta-analysis using the univariate Cox proportional hazards model was performed, integrating results from multiple studies through the inverse variance method, with hazard ratio (HR) as the main measure of effect size to distinguish potential tumor-suppressive and tumor-promoting effects. Although this method categorizes genes effectively, it does not explore their biological mechanisms. Statistical analyses and visualizations were executed in the R (version 4.3.2) environment using the Meta package, which offers comprehensive functions for conducting meta-analyses and creating forest plots and funnel plots to visually present combined effect sizes and assess publication bias.
Enrichment analysis
In this study, we employed a stratified approach to categorize samples into high and low gene expression groups, with the top 30% of samples designated as the high-expression group and the bottom 30% as the low-expression group. This method allowed us to identify the most significant changes in gene expression associated with disease progression. Additionally, GSEA was conducted using the fgsea function in the fgsea package, based on the KEGG database. Enrichment scores were calculated for gene sets, and those with an unadjusted p-value <0.05 and an adjusted p-value <0.25 were considered biologically significant. The results were visualized to highlight key biological processes. We redefined the 14 innate functions of tumor cells by projecting data onto multi-datasets and integrated datasets from CancerSEA, facilitating the identification of tumor cell states within a comprehensive functional framework. Functional state gene sets were calculated using the z-score algorithm proposed by Lee et al., implemented via the GSVA package in R, which transformed gene set values into z-scores. Pearson correlation analysis was then used to investigate the relationship between gene expression and functional states, specifically focusing on the correlation between gene expression and z-scores of gene sets. Finally, the gsva function in the GSVA package was employed to score 73 metabolic gene sets from the KEGG database. These GSVA scores were then compared between the high and low expression groups using the limma package to elucidate the roles of these pathways in disease progression.
Immunotherapy sensitivity
To explore the relationship between gene expression and drug sensitivity, we conducted a non-parametric Spearman correlation analysis between gene expression levels and the area under the dose-response curve (AUC) values from the CTRP and PRISM databases. We also analyzed the relationship between gene expression and half-maximal inhibitory concentration (IC50) values from the GDSC1 and GDSC2 databases. A negative correlation indicated that high gene expression was associated with increased sensitivity to a drug, while a positive correlation suggested a gene’s high expression was linked to increased resistance to the drug. For potential novel therapeutic strategies, we assessed overlaps in cancer dependencies that could be mitigated by drug inhibition using cMAP analysis. The cMAP_gene_signatures RData file was utilized to establish the analysis framework. The XSum method was employed to compare gene features in signatures of the 150 most upregulated and downregulated genes with those in the cMAP database, calculating compound similarity scores. When gene expression had a repressive effect, the compounds were termed as TIPs. ROC analysis, performed using the pROC package, was used to evaluate how effectively these compounds could differentiate between immunotherapy responders and non-responders. The analysis included 95% confidence intervals, AUC values, and ROC curves to measure gene expression efficacy. Finally, Spearman correlation analysis was used to assess the relationship between gene expression and the TIP score, and autocorrelation of TIP scores was visualized using the linkET package. CYT levels were determined in the TCGA-HNSC dataset using the simpler package, and the Wilcoxon Rank Sum and Signed Rank tests were applied to examine differences in CYT scores between high and low PDCD1 expression groups.
Core single gene immune infiltration analysis
Immune infiltration analysis was performed using data from the TIMER 2.0 database, which analyzes immune cell infiltration across TCGA samples. For the first time, we examined the infiltration of 10 representative types of immune cells in human pan-cancer tissues. The database employs various algorithms to estimate the quantities of individual immune cell types within the tumor microenvironment and their correlation with different gene expression levels. These algorithms, along with subsequent validation, enhance data quality and consistency, enabling a detailed investigation of the relationship between gene expression and immune cell infiltration. Correlation coefficients between gene expression and immune cell content were visualized using bar scatter plots to facilitate data interpretation, illustrating the relationship between gene expression and immune cell types. Based on the median level of gene expression, samples were divided into high-expression and low-expression groups. The Wilcoxon Rank Sum Test, a non-parametric method suitable for multiple data distributions, was applied to detect significant differences in immune cell content between the two groups. Significant immune cell types were further visualized with a heatmap, which arranged samples in ascending order of gene expression levels. The intensity of the heatmap colors provided an intuitive representation of immune cell content levels, revealing patterns and differences in immune infiltration among the samples.
Core single gene genomics analysis
In this study, whole-genome CRISPR screening data from the DepMap portal were examined using the CERES algorithm to evaluate dependency scores for around 17,000 candidate genes. The pan-cancer mutation landscape of the core gene was visualized using the plotmafSummary function from the maftools package. To assess the independence between gene expression levels and specific gene mutation types, the independence_test function from the coin package in R was utilized, based on permutation tests. Genes with a mutation rate exceeding 10% and a p-value less than 0.01 were identified and visualized to highlight significant associations between gene expression and mutation types. For the tumor copy number spectrum analysis in the TCGA-HNSC project, genome copy number variations (CNVs) were identified using the gistic score method. The CNV profiles of 451 samples were visualized using bar plots, offering a clear representation of copy number changes across chromosomes. The quantitative metrics of genome alterations, such as FGA, FGG, and FGL, were defined and calculated based on the genomic distances of clonal regions. Analysis of variance (ANOVA) was conducted to investigate differences among specific gene expression subgroups, and if ANOVA was significant, multiple comparisons were performed using the TukeyHSD method to pinpoint specific group differences. The correlation between CNV scores and gene expression levels was analyzed using scatter plots combined with the Spearman rank correlation coefficient to measure the monotonic relationship between the two variables. Experimental data for copy number spectra were sourced from the TCGA Genome Characterization Center and obtained through whole-genome microarray measurements. Gene-level copy number estimates were derived using the TCGA FIREHOSE pipeline and the GISTIC2 method. The Kruskal-Wallis test, a non-parametric method for multiple sample comparisons, was used to compare gene expression differences among various copy number types (−2 to 2).
Single gene pan-cancer single-cell sequencing analysis
In this study, single-cell gene expression data for prostate cancer were sourced from the GEO database, specifically dataset GSE172301. Heatmaps created with the pheatmap package effectively illustrated single-cell gene expression patterns across various cancer types. Hierarchical clustering analysis, using Euclidean distance and Ward’s minimum variance method, was employed to uncover intrinsic patterns of gene expression and their conservation among different cancers. Additionally, UMAP technology was utilized to explore expression patterns in high-dimensional data, maintaining the original data topology while reducing dimensions. UMAP analysis of CENPF gene expression data provided an intuitive display of gene expression patterns and facilitated the identification of key biological differences. To evaluate specific gene expression differences among various cell types, the Kruskal-Wallis Rank Sum Test was employed. This non-parametric statistical method is suitable for non-normally distributed samples and is effective in detecting significant differences among multiple independent sample groups. Moreover, AUCell scoring, which indicates pathway activity heterogeneity in cells, was dimensionally reduced and visualized using UMAP technology. This application of UMAP enabled an intuitive understanding of the distribution of these pathway activities and the identification of potential biological differences.
Core gene single-cell spatial transcriptomics analysis
In this study, single-cell gene expression data for prostate cancer were sourced from the TISCH database. The pheatmap package was utilized to generate heatmaps, effectively revealing gene expression patterns at the single-cell level across various cancer types. Hierarchical clustering analysis, employing Euclidean distance and Ward’s minimum variance method, uncovered intrinsic gene expression patterns and their conservation across different cancers. Additionally, UMAP technology was applied to explore high-dimensional expression patterns, preserving the original data topology while reducing dimensions. This UMAP analysis of CENPF gene expression data provided an intuitive display of gene expression patterns and facilitated the identification of key biological differences.
To evaluate specific gene expression differences among various cell types, the Kruskal-Wallis Rank Sum Test was employed. This non-parametric statistical method is suitable for non-normally distributed samples and effectively detects significant differences among multiple independent sample groups. Furthermore, AUCell scoring, which indicates pathway activity heterogeneity in cells, was dimensionally reduced and visualized using UMAP technology. This approach allowed for an intuitive understanding of the distribution of pathway activities and the identification of potential biological differences.
Cell culture
We obtained human cell lines PC-3 and LNCaP from the Shanghai Cell Bank (Shanghai, China). Each cell line was cultured under specific conditions to ensure optimal growth and viability. The PC-3 and LNCaP cell lines were maintained in RPMI 1640 medium, supplemented with 10% fetal bovine serum (FBS) to provide essential nutrients and hormones that promote cell proliferation. Additionally, 1% L-glutamine was added to the medium to support protein synthesis and maintain cellular metabolism. To prevent bacterial contamination, 1% penicillin–streptomycin solution was included. The cells were incubated at 37°C in a 5% CO2 atmosphere. All cell lines were regularly monitored for confluency and morphology under a microscope, and the media was changed every 2–3 days to maintain a fresh supply of nutrients and remove waste products. Cell passages were performed at 70%–80% confluency to avoid overgrowth and to maintain the cells’ physiological state. Trypsin-EDTA solution was used for cell detachment during passaging, and cells were counted using a hemocytometer to ensure accurate seeding densities for subsequent experiments.
Cell proliferation assay
To evaluate cell proliferation rates, we employed the CCK-8 assay using the CCK-8 kit (Dojindo, Kumamoto, Japan). Cells were seeded into 96-well plates and cultured for 0, 24, 48, 72, and 96 h. Every day, a CCK-8 solution was added to each well and allowed to incubate with the cells for 2 hours. Cell viability was then assessed by measuring the absorbance at 450 nm using a microplate reader.
Clone formation assay for cell proliferation
Cells in the logarithmic growth phase from each group were collected and diluted to a concentration of 500 cells/mL. To prepare the wells of a 6-well plate, 1 mL of medium was added to wet the wells, followed by the addition of 1 mL of the cell suspension to each well. Each group was plated in triplicate. The cells were incubated overnight at 37°C in a 5% CO2 incubator to allow for adhesion. After overnight incubation, cells were collected from each group, and 5 × 104 cells per well were added to the corresponding wells, with the medium being changed every 2 days. Following a 12-day incubation period, the medium was discarded from the 6-well plate, and the wells were washed twice with PBS. To fix the cells, 1 mL of methanol was added to each well and left at room temperature for 20 min. After removing the methanol, 1 mL of 0.1% crystal violet was added to each well for staining, also at room temperature for 20 min. The wells were then washed with PBS until the background was clear. Colonies were photographed and counted.
qRT-PCR
Total RNA was extracted from cells by adding 1 mL of Trizol reagent to each well and transferring the contents to 1.5 mL EP tubes, followed by a 10-min lysis. Next, 200 μL of chloroform was added to each tube, and the samples were centrifuged at 12,000 rpm for 15 min at 4°C. The upper aqueous phase was carefully transferred, and 400 μL of isopropanol was added. Following multiple rounds of centrifugation, the supernatant was discarded, and the RNA pellet was dissolved in 20 μL of DEPC-treated water. Reverse transcription into cDNA was performed under the following conditions: 25°C for 5 min, 50°C for 15 min, 85°C for 5 min, and 4°C for 10 min. The resulting cDNA was diluted 10-fold and then amplified using real-time fluorescent quantitative PCR, with GAPDH serving as the reference gene.
Statistical analysis
The findings are based on a minimum of three independent experiments and are expressed as the mean ± standard deviation. Differences between groups were evaluated using either one-way analysis of variance (ANOVA) or Student’s t-test. A p-value of less than 0.05 was considered statistically significant, while a p-value of less than 0.01 indicated high statistical significance.
RESULTS
Identification of SUMO ubiquitination-related prognostic genes in prostate cancer
In this study, we identified key prognostic genes associated with SUMO ubiquitination modifications in prostate cancer. First, we examined genes linked to OS, PFI, and DSS (Figures 1A–C). To refine the analysis, a Venn diagram (Figure 1D) was used to identify the intersection of genes associated with OS, PFI, and DSS, allowing us to pinpoint common genes that are prognostic across multiple survival metrics. Further refinement using the Boruta algorithm (Figures 1E, F) identified key genes, with boxplots and feature importance scores highlighting those deemed critical for the prognostic model. Next, we employed ten machine learning models to screen for genes significantly associated with prostate cancer prognosis (Figures 1G–J). The bar charts illustrate the top genes selected by different models, showcasing their frequency of selection and importance in predicting prognosis. Univariate Cox regression analysis was subsequently conducted (Figures 1K–N), with forest plots displaying the HRs and CIs of these genes, reflecting their independent impacts on prognosis. Calibration plots and receiver operating characteristic (ROC) curves for the model’s predictions of patient outcomes are shown in Figures 1O, P. Kaplan-Meier survival curves for OS, PFI, DSS, and DFI were generated based on the multigene model groups, with log-rank p-values indicating statistically significant differences between patient groups. Lastly, a detailed Cox regression analysis for the multigene model was performed (Figure 1U). The forest plot effectively summarizes the HRs and corresponding CIs for the multigene model, demonstrating its comprehensive prognostic significance across various survival measures. Validation methods were combined with boxplots (Figure 1V) to compare, in a straightforward manner, the expression levels of the core genes in normal versus tumor tissues.
[image: A series of graphs and charts display various statistical data analyses. Panels A to C list gene expression data. Panel D shows a Venn diagram comparing two datasets. Panels E to J include bar and scatter plots presenting statistical distributions and rankings. Panels K to N illustrate genomic data plots. Panels O to U display line charts showing trends and comparisons in datasets. Panel V features a box plot comparing multiple sample groups, highlighting median values and data range. Each visual element conveys specific data relationships and summaries.]FIGURE 1 | Identification of SUMO Ubiquitination-Related Prognostic Genes in Prostate Cancer (A–C) Survival prognostic genes related to Overall Survival (OS), Progression-Free Interval (PFI), and Disease-Specific Survival (DSS). The plots display hazard ratios (HRs) and confidence intervals (CIs) for each gene analyzed in relation to its predictive value. (D) Venn diagram showing the overlap of significant genes for OS, PFI, and DSS, where common prognostic genes represent overlapping survival metrics. (E, F) Boruta analysis identifying key genes. The boxplot compares feature importance scores, illustrating the significance of each gene identified by Boruta in constructing the prognostic model. (G–J) Screening of significant genes using 10 machine learning models. These bar charts highlight the top genes selected by each model. (K–N) Univariate Cox regression analysis for gene-based prognosis. Forest plots and prognostic genes for overall survival are presented. (O–P) Evaluation of the multigene survival model through calibration plots and receiver operating characteristic (ROC) curves, assessing the model’s ability to discriminate patient outcomes. (Q–T) Kaplan-Meier survival curves for OS, PFI, DSS, and Disease-Free Interval (DFI), illustrating survival probabilities for patients grouped by the multigene model, with log-rank p-values indicating significance levels. (V) Expression analysis of four core genes in prostate cancer. Boxplots show the differential expression in tumor versus normal tissues, suggesting their potential as novel diagnostic/therapeutic targets. P-values indicate statistical significance.
NOP58 GSEA immune infiltration analysis and prognostic evaluation
Our study aimed to investigate the core gene NOP58 and its role in immune infiltration within the tumor microenvironment. The Gene Set Enrichment Analysis (GSEA) revealed significant enrichment of the core gene NOP58 in the SUMO gene set (Figure 2A). The predictive performance of the ssGSEAscore was evaluated using a calibration curve and goodness-of-fit test, showing an acceptable fit between the predicted and observed probabilities for distinguishing between tumor and normal groups (Figure 2B). Further analysis comparing the expression levels of ssGSEAscore between tumor and normal samples revealed significantly higher expression in tumor samples, both in non-matched (P = 0.085, Figure 2C) and paired sample analyses (P = 0.037, Figure 2D). The diagnostic efficacy of ssGSEAscore, assessed using ROC curve analysis, exhibited a high area under the curve (AUC) value, indicating excellent discriminatory power in differentiating tumor from normal samples (Figure 2E). Kaplan-Meier survival analysis demonstrated the prognostic significance of ssGSEAscore in OS, PFI, DSS, and DFI, with lower survival rates observed in the high ssGSEAscore group and the most significant difference noted in PFI (P = 0.025, Figures 2F–I). A meta-analysis of survival hazard ratios further consolidated these findings, indicating a significantly higher hazard ratio for adverse outcomes in the high ssGSEAscore group compared to the low group (Figure 2J). The analysis included hazard ratios for DFI, DSS, OS, and PFI, with heterogeneity statistics showing moderate variability among the studies. Collectively, these results highlight the critical role of NOP58 and ssGSEAscore in tumor progression and prognosis, underscoring their potential as biomarkers for cancer diagnosis and therapeutic targets.
[image: This image contains multiple panels presenting various data analyses. Panel A shows a line chart with a heatmap depicting data distribution. Panel B includes a plot with a trend line. Panel C features a violin plot comparing two groups. Panel D has a series of line charts. Panel E presents a line graph with cumulative metrics. Panels F to I display survival curves with different significance levels and color-coded groups. Panel J shows a forest plot with hazard ratios and confidence intervals for several studies, illustrating statistical significance across different cohorts.]FIGURE 2 | Core Gene GSEA Immune Infiltration Analysis. (A) GSEA enrichment analysis of the core gene SMUO gene set. The x-axis represents the rank in the ordered dataset, and the y-axis shows the enrichment score. (B) Calibration curve and goodness-of-fit test for the prediction of tumor versus normal groups using ssGSEAscore expression. The x-axis indicates the predicted probability, and the y-axis shows the actual rate, with the ideal curve as a reference. (C, D) Expression differences of ssGSEAscore between tumor and normal groups. (C) Non-matched samples are shown using a violin plot, with statistical significance (P = 0.085). (D) Matched samples are shown with a paired analysis plot, indicating a significant difference (P = 0.037). (E) ROC curve evaluating the diagnostic performance of ssGSEAscore for distinguishing between tumor and normal groups. The area under the curve (AUC) is provided, demonstrating the model’s discriminatory ability. (F–I) Kaplan-Meier survival analyses for four survival periods: Overall Survival (OS) (F), Progression-Free Interval (PFI) (G), Disease-Specific Survival (DSS) (H), and Disease-Free Interval (DFI) (I). The survival curves compare high (red) and low (blue) ssGSEAscore groups, with the number of patients (n) indicated for each group and the corresponding p-values. (J) Meta-analysis of survival hazard ratios, presenting logHR and 95% confidence intervals for different survival outcomes, including DFI, DSS, OS, and PFI.
The critical role of NOP58 in prostate cancer and its association with SUMOylation modifications
The expression landscape of NOP58 in prostate cancer was thoroughly investigated, revealing significant findings across various analyses. In the HPA dataset, immunohistochemical staining demonstrated a marked overexpression of NOP58 protein in prostate cancer tissues compared to adjacent non-cancerous tissues (Figures 3A, B). The core gene interaction network highlighted NOP58’s central role (Figure 3C). Predictive models showed good calibration for prostate cancer prediction using NOP58 expression (Figure 3D). Differential expression analysis indicated significant upregulation of NOP58 in tumor tissues in both non-paired (P < 0.001) and paired samples (P = 1.157e-05) (Figures 3E, F). The ROC curve demonstrated high diagnostic accuracy for NOP58 in distinguishing tumor from normal tissues (Figure 3G). Further analysis revealed no significant expression differences across molecular subtypes (P = 0.143), but it did highlight differences in immune subtype distributions and treatment outcomes correlated with NOP58 expression (Figures 3H–J). Correlation analysis with CD274 and survival prognosis analyses indicated significant interactions and stratified survival outcomes (Figures 4A–G). Univariate and multivariate Cox regression analyses demonstrated NOP58’s significant impact on survival outcomes, with restricted cubic spline analysis exploring potential non-linear risk relationships (Figures 4H–L). GSEA/GSVA enrichment analyses provided insights into metabolic pathways associated with NOP58 expression (Figures 5A–E). Additionally, double gene molecular subtype analysis with SUMO1, SUMO2, and XPO1 genes revealed survival outcome differences across molecular subtypes, further emphasizing NOP58’s critical role in prostate cancer biology and patient prognosis (Figures A1–C5). Additionally, double gene molecular subtype analysis with SUMO1, SUMO2, and XPO1 genes revealed survival outcome differences across molecular subtypes, further emphasizing NOP58’s critical role in prostate cancer biology and patient prognosis (Figures A1–C5). These findings suggest that SUMO modifications may play a pivotal role in prostate cancer progression and prognosis. This comprehensive analysis underscores the importance of NOP58 as a prognostic biomarker and potential therapeutic target in prostate cancer.
[image: Panel A shows a circular slide of tissue with light staining. Panel B shows a similar slide with darker, localized staining. Panel C presents a network diagram with interconnected nodes. Panel D is a line graph comparing two datasets. Panel E displays a violin plot with two groups. Panel F is a line graph contrasting normal and tumor outcomes. Panel G features a curve labeled PRAD with two datasets. Panel H shows a violin plot with multiple categories. Panel I presents a colorful block chart. Panel J includes a density plot showing treatment outcomes.]FIGURE 3 | Comprehensive Analysis of NOP58 Expression in Prostate Cancer (A–B) Immunohistochemical staining for NOP58 in prostate cancer and adjacent non-cancerous tissues. (A) Adjacent non-cancerous tissue shows lower NOP58 staining, while (B) prostate cancer tissue displays significantly higher NOP58 staining (data from the HPA database). (C) Interaction network of NOP58, highlighting experimentally validated and predicted protein interactions, emphasizing NOP58’s central role. (D) Calibration plot assessing the predictive accuracy of the NOP58 expression model in prostate cancer. (E–F) Differential expression analysis of NOP58 in prostate cancer. (E) Violin plot reveals significant upregulation of NOP58 in unpaired tumor samples compared to normal tissues (p < 0.001). (F) Paired sample analysis shows consistent upregulation in tumor tissues (p = 1.157e-05). (G) ROC curve evaluating NOP58’s diagnostic performance in distinguishing tumor from normal tissues, with the area under the curve (AUC) indicating high diagnostic accuracy. (H) Violin plot showing no significant difference in NOP58 expression across molecular subtypes of prostate cancer (p = 0.143). (I) Stacked bar chart showing immune subtype distribution in high and low NOP58 expression groups across cancers. (J) Violin plot illustrating the correlation between NOP58 expression and treatment outcomes after the first course of therapy (Kruskal-Wallis Rank Sum Test, p = 0.064).
[image: A multi-panel scientific figure illustrating statistical analyses. Panel A shows a heatmap of correlations labeled as positive, moderate, and negative. Panel B displays a scatter plot with a trend line and density plots on the axes. Panels C, D, and E contain Kaplan-Meier survival curves. Panel F presents a scatter plot of data distribution. Panel G features a bar chart with a chi-square test result. Panels H and I show tables and forest plots of hazard ratios. Panels J, K, and L depict density plots with statistical curves in green, blue, and purple respectively.]FIGURE 4 | Analysis of NOP58 Gene Interactions and Survival Prognosis. (A) Correlation analysis of the NOP58 gene with CD274 in prostate adenocarcinoma (PRAD) using Fisher’s exact test. The heatmap displays the correlation between the expression levels of NOP58 and CD274, with statistical significance indicated by p-values. (B) Scatter plot illustrating the correlation between NOP58 and CD274 expression levels. The blue line represents the linear regression fit, with R and p-values indicating the strength and significance of the correlation, respectively. (C–E) Kaplan-Meier survival analysis for three survival metrics: Overall Survival (OS), Disease-Specific Survival (DSS), and Progression-Free Interval (PFI). The survival curves are stratified by NOP58 expression levels, with the number of patients at risk displayed below the curves. (F–G) Graphical representation of NOP58 gene expression in relation to patient survival status. Panel F shows the distribution of NOP58 expression levels with corresponding survival status (alive vs. dead). Panel G presents the Chi-Square test results for survival status across different quartiles of NOP58 expression, with the p-value indicated. (H–I) Univariate and multivariate Cox regression analyses of NOP58 gene expression. Hazard ratios (HR) with 95% confidence intervals (CI) are displayed, assessing the impact of NOP58 expression on survival outcomes. Panel H shows results from univariate analysis, while panel I shows multivariate analysis results adjusted for potential confounders. (J–L) Restricted cubic spline analysis to explore the potential non-linear relationship between NOP58 expression and the risk for OS, DSS, and PFI. The plots illustrate the risk estimates across a range of NOP58 expression levels, with confidence intervals indicated by dashed lines.
[image: Twelve-panel data visualization showing scatter plots and Kaplan-Meier survival curves. Panels A1, B1, and C1 display scatter plots with blue and red data points. Panels A2-A6, B2-B6, and C2-C6 feature survival curves comparing different treatment or condition groups over time, with associations between variables and survival outcomes. Each panel has corresponding legends, axes, and statistical annotations.]FIGURE 5 | NOP58 Gene and SUMO-Related Gene Analysis. (A) NOP58-SUMO1 molecular subtype analysis and Kaplan-Meier survival curves. The scatter plot shows four molecular subtypes based on NOP58 and SUMO1 expression, with corresponding KM curves for survival probability. (B) NOP58-SUMO2 molecular subtype analysis. A similar scatter plot and KM analysis are presented for NOP58 and SUMO2. (C) NOP58-XPO1 molecular subtype analysis. KM survival curves demonstrate outcomes for patients stratified by NOP58 and XPO1 expression.
Immune function and pathway enrichment analysis of NOP58 in prostate cancer
In conclusion, these findings highlight NOP58 as a master regulator in metabolic adaptation, immune regulation, and tumor suppression pathways in prostate cancer, underscoring its potential as a biomarker. The hallmark GSEA presented in Figure 6A for the high expression group of NOP58 revealed several key pathways, including MYC_TARGETS_V2 (NES = 3.09, P = 1.7e-03, FDR = 4.9e-03) and UNFOLDED_PROTEIN_RESPONSE. Key pathways related to DNA repair (NES = 2.40) and the G2/M checkpoint (NES = 2.77) also showed strong enrichment in the high expression group of NOP58, suggesting significant associations between NOP58 transcription levels and processes such as cell division and DNA damage response. Figure 6B presents the KEGG pathway enrichment analysis comparing pathways that differ between high and low NOP58 expression groups. Figure 6C illustrates the enrichment scores for various gene sets using ClusterProfiler-based GSEA. High expression of NOP58 was significantly enriched in genes related to oxidative phosphorylation and immune response, suggesting a potential regulatory role of NOP58 in metabolism and immunity in PCa. The MSI GSVA score analysis (Figure 6D) also confirmed the above results, highlighting significant metabolic pathways. Signaling pathways and key metabolic processes, such as oxidative phosphorylation and purine metabolism, were enriched in the high expression group, further supporting NOP58 as a key factor driving metabolic adaptation and DNA repair. Pearson correlation analysis revealed that NOP58 expression was significantly negatively correlated with angiogenesis (R = −0.38), apoptosis (R = −0.21, p = 1.4e-06), and metastasis (R = −0.35, p = 2.2e-15) (Figure 6E). Additionally, NOP58 expression was significantly correlated with DNA repair (R = 0.5, p = 2.2e-16) and inversely correlated with quiescence (R = −0.29, p = 8.8e-11), traits typically associated with aggressive tumors.
[image: A series of charts and plots are displayed. Panel A shows gene sets ranked by significance with p-values. Panel B includes a vertical plot with gene expression data. Panel C presents a bar chart illustrating differential gene expression across conditions. Panel D is a graph comparing pathway enrichments. Panel E consists of scatter plots depicting correlations between different gene expression datasets, each with trend lines and correlation coefficients.]FIGURE 6 | NOP58 Gene Immune Function Analysis (A) Hallmark Gene Set Enrichment Analysis (GSEA) for high and low NOP58 expression groups, based on hallmark gene sets, listing normalized enrichment scores (NES), p-values, and FDR q-values. (B) KEGG pathway enrichment analysis comparing enriched pathways between high and low NOP58 expression groups. (C) ClusterProfiler-based GSEA showing enrichment scores for gene sets in NOP58 high vs. low expression groups. (D) GSVA score comparison of metabolic pathways between NOP58 expression groups, with significant pathways highlighted. (E) Pearson correlation analysis of NOP58 expression and tumor states using GSVA scores, showing correlations across 14 tumor states.
Immune microenvironment and immunotherapy sensitivity analysis of NOP58 in prostate cancer
In this study, we evaluated the association between NOP58 expression and the tumor immune microenvironment (TME) status, as well as its impact on immunotherapy sensitivity in prostate cancer. Subsequent analyses revealed a detailed series of results. A Spearman correlation analysis was performed to examine the relationship between NOP58 expression and various TME scores, as shown in Figure 7A. The results showed a strong association between NOP58 expression and immune pathways, particularly those involving antigen presentation, CD4+/CD8+ T cell recruitment, and immune cell infiltration. Specifically, NOP58 was involved in immune priming and T cell recognition, suggesting its potential role in modulating immune responses within the tumor microenvironment. In Figure 7B, we performed a differential expression analysis of immune-related genes, categorized as immune-stimulatory/inhibitory genes, chemokines, and HLA genes, comparing high and low NOP58 expression groups. Heatmaps demonstrated upregulation of chemokines and immune-stimulatory genes in the high NOP58 expression group, indicating a stronger immune response. Conversely, immune-inhibitory genes exhibited variable regulation by NOP58. We further extended our study to examine the regulation of immunomodulators based on NOP58 expression (Figure 7C). The results highlighted the influence of NOP58 on immune checkpoint regulation, which could in turn affect the response to immunotherapies. Figure 7D presents a heatmap analysis of immune response markers across different genomic statuses in the sample groups. Strong correlations were observed between different genomic alterations and immune-related factors, revealing the genetic origins of immune modulation in the tumor microenvironment. Figure 7E demonstrates the correlation between genomic events and immunogenic response outcomes. NOP58 expression levels and immune evasion mechanisms were preferentially enriched in mutated or CNA-related pathways, as highlighted in the heatmap. These correlations suggest previously unrecognized roles for NOP58 as a predictive marker for assessing the impact of immunotherapy in prostate cancer patients. Our analysis uncovered a critical role for NOP58 in shaping the tumor immune microenvironment and modulating immunotherapy responsiveness in prostate cancer. Through its role in modulating immune regulatory pathways and checkpoints, NOP58 emerges as a promising candidate for predicting patient response to immunotherapy. The results offer new insights into the potential for personalized anti-NOP58 immunotherapy in prostate cancer.
[image: Five panels of data visualizations related to gene expression and immune signaling. Panel A shows a clustered correlation matrix with connections. Panel B presents multiple heatmaps comparing expression levels. Panel C includes a detailed heatmap with various conditions. Panel D illustrates a smaller heatmap focused on immune pathways and disease status. Panel E consists of a line graph depicting gene expression trends over time across several conditions. Each panel uses a color gradient to represent data intensity.]FIGURE 7 | Analysis of Core Gene Immunotherapy Sensitivity (A) Tumor immune microenvironment (TME) scores correlated with NOP58 expression. The matrix shows Spearman correlations and auto-correlation of TME scores, with significant results highlighted. (B) Differentially expressed genes (DEGs) analysis showing immune stimulatory/inhibitory genes, chemokines, and HLAs between high and low NOP58 expression groups. Heatmaps display significant changes in expression levels. (C) Immunomodulator regulation analysis across stimulatory, inhibitory, and other genes based on NOP58 expression. (D) Heatmap illustrating the association between immune response markers and genomic status in different sample groups, showing relationships between genetic factors and immunity. (E) Genomic status and immune response correlation heatmap, showing the relationship between genomic events and immunogenic response outcomes.
Single-cell and spatial transcriptomics analysis of NOP58 in prostate cancer
Single-cell sequencing analysis revealed distinct cellular clusters within prostate cancer tissue, as visualized through UMAP, highlighting diverse cell lineages (Figure 8A). NOP58 gene expression was mapped, with contour lines indicating varying levels across different cells (Figure 8B). Differential expression analysis indicated significant overexpression of NOP58 in specific cell clusters, with violin plots showing distribution levels and statistical significance (p < 0.001) (Figure 8C). Proportional analysis of cell types between NOP58-positive and NOP58-negative groups showed distinct differences, with bar plots depicting percentages and error bars representing standard deviations (Figure 8D). Pathway analysis revealed differential pathway enrichment, displayed in a heatmap with color intensity indicating enrichment levels (Figure 8E). Co-expression studies demonstrated the correlation between NOP58 and SUMO1, SUMO2, and XPO1 genes, with scatter plots and heatmaps illustrating these relationships (Figures 8F–H). Network analysis of cell subgroups indicated extensive communication pathways, shown in a network plot with node sizes corresponding to interaction degrees (Figure 8I). Additionally, violin plots highlighted the heterogeneous expression of NOP58, XPO1, SUMO1, and SUMO2 across various cell types (Figure 8J).
[image: This image contains multiple panels depicting data visualizations related to a biological or computational study. Panel A displays clusters in a colored scatter plot. Panel B shows a density plot. Panel C contains a box and whisker plot with distinct colors comparing different groups. Panel D presents a bar graph highlighting proportions with confidence intervals. Panel E features a gene expression heatmap. Panels F, G, and H show scatter plots or violin plots focusing on gene expression data for specific markers. Panel I illustrates a network diagram with colored lines and nodes. Panel J presents a series of overlaid violin plots.]FIGURE 8 | Single-Cell Sequencing Analysis of NOP58 in Prostate Cancer. (A, B) UMAP visualization of cell lineages at single-cell resolution. (A) UMAP plot showing cellular clusters; (B) contour lines show NOP58 expression levels. (C) Violin plots illustrating NOP58 expression across cell clusters, with statistical significance. (D) Bar graph showing proportions of NOP58-positive and NOP58-negative cells across different cell types. (E) Heatmap showing differential pathway enrichment between NOP58-positive and NOP58-negative cell types. (F–H) UMAP representations of NOP58 co-expression with SUMO1, SUMO2, and XPO1 genes, showing proportions across cell types. (I) Network plot illustrating communication between cell subgroups, with edges representing interactions and node sizes corresponding to interaction strength. (J) Violin plots showing the expression levels of NOP58, XPO1, SUMO1, and SUMO2 across different cell clusters.
Spatial transcriptomics and drug sensitivity analysis of NOP58 in prostate cancer
In this study, we identified the expression locus of NOP58 in prostate cancer tissues using spatial transcriptomics analysis, and subsequently examined its effect on drug resistance. The results indicate that NOP58 expression is associated with tumor microenvironment dynamics and therapeutic efficacy. Deconvolution of spatial transcriptomics data revealed the spatial distribution of distinct cell types in prostate cancer tissues. Notably, the localization of immune cells, macrophages, endothelial cells, and fibroblasts in the tumor microenvironment revealed distinct spatial arrangements among these cell types in different regions of the tumor (Supplementary Figure S1A). Figure 5 illustrates the spatial differences in gene expression within prostate cancer tissue, comparing malignant, normal, and mixed malignant/normal regions. Heterogeneity in gene expression within the tumor microenvironment was further demonstrated by relatively lower expression of certain or all of these targets in normal regions (Supplementary Figures S1B, C). Figure 9A shows the spatially segregated expression map of NOP58 in prostate cancer tissue sections. The heatmap illustrates differential expression levels, with elevated NOP58 expression enriched in specific areas of the tumor tissue. High expression levels are represented as hot spots in predominantly cold malignant areas using color gradients. We then performed Spearman correlation analysis to examine the association between NOP58 expression and various components of the TME at the single-cell level (Figure 9B). NOP58 expression was associated with immune cell populations, particularly CD4+ T cells, CD8+ T cells, macrophages, and fibroblasts. In contrast, weaker correlations were found between NOP58 and endothelial cells or tumor cells, likely due to NOP58-mediated immune cell regulation in the PCa microenvironment. As shown in Figure 9C, NOP58 was overexpressed in malignant tissues compared to normal and mixed malignant tissues (p < 0.001). The bar chart illustrates significant differences in mean expression levels between malignant and normal tissues, with the highest NOP58 expression observed in malignancies. This supports NOP58’s role in tumor development and its potential diagnostic utility for cancer status. Figure 9D depicts the spatial distribution of NOP58 activity across multiple tissue sections. Similarly, expression data revealed a consistent trend: high AUC scores were typically observed in regions with high NOP58 expression. This spatial distribution may provide insight into the biological and functional roles of NOP58 in specific tumor regions, suggesting potential differences in disease progression or therapeutic response. The strongest correlation with NOP58 expression was observed in gene sets related to immune responses, particularly T cell activation and fibroblast recruitment (Figure 9E). This suggests that NOP58 plays a role in critical immune functions within the prostate cancer microenvironment. AUC scores of NOP58-related gene sets were significantly elevated in the malignant microenvironment compared to mixed malignant and normal tissues (p < 0.001) (Figure 9F). The variation in NOP58 activity across different tissue types highlights its potential role as a mediator of tumor behavior. ROC curve analysis indicated that NOP58 expression could accurately differentiate responders from non-responders in various cancer types, including melanoma, NSCLC, and GBM, with AUC values exceeding 0.8 in some datasets. Thus, NOP58 may serve as a potential biomarker for predicting immunotherapy response (Supplementary Figure S1D). To analyze the correlation between NOP58 expression and drug sensitivity, Spearman correlation analysis was performed using the GDSC1 and GDSC2 databases (Supplementary Figures S1E, F). This suggests that NOP58 expression could influence drug response and may serve as a potential biomarker for predicting chemotherapy sensitivity (Supplementary Figures S1E, F). In our study, we investigated the relationship between NOP58 expression levels and drug sensitivity across several therapeutic agents targeting key pathways in cancer treatment. Our analysis revealed that high NOP58 expression was significantly correlated with increased sensitivity to several anticancer agents. For instance, high NOP58 expression was associated with lower IC50 values for Methotrexate targeting dihydrofolate reductase (DHFR), suggesting that NOP58 may influence the effectiveness of this drug (Figures 9G, H). Similarly, NOP58 overexpression led to enhanced sensitivity to Rapamycin, a known mTOR inhibitor, indicating potential therapeutic benefits in tumors with elevated NOP58 levels (Figures 9I, J). Other drugs, such as Sorafenib targeting PDGFR/RAF/VEGFR/RTKs (Figures 9K, L) and Venetoclax targeting microtubules (Figures 9M, N), also showed consistent trends, where higher NOP58 expression correlated with greater drug sensitivity. These findings suggest a broad impact of NOP58 on modulating responses to targeted therapies. Additionally, Figure 9I demonstrates that high NOP58 levels are linked to increased sensitivity to Isoquercitrin, further reinforcing the gene’s role in influencing drug efficacy. These results highlight the potential of NOP58 as a biomarker for predicting therapeutic response to various anticancer agents. This comprehensive drug sensitivity analysis suggests that NOP58 could serve as a critical determinant in optimizing cancer treatments, offering valuable insights into personalized therapeutic strategies based on gene expression profiling.
[image: Heatmaps (A, D) illustrate NOCAPS and AUC values. Correlation matrices (B, E) highlight interactions between genetic markers and scores. Bar graphs (C, F) compare patient groups based on genetic factors. Scatter plots (G-N) depict distribution of NOCAPS and AUC values, with density plots and box plots for comprehensive analysis.]FIGURE 9 | Spatial Transcriptomics Analysis of NOP58 in Prostate Cancer and NOP58 Gene Drug Sensitivity Analysis (A) Spatial localization of NOP58 single-gene expression within prostate cancer tissue. The heatmap shows the expression levels, with color gradients indicating the intensity of NOP58 expression across the tissue. (B) Spearman correlation analysis between NOP58 gene expression and various microenvironment components at single-cell resolution. The plot illustrates the relationship between NOP58 expression and cell types, including CD4+ T cells, CD8+ T cells, macrophages, fibroblasts, endothelial cells, and tumor cells. Correlation coefficients, represented by color intensity, reflect the strength of the associations. (C) Comparison of NOP58 expression levels across different microenvironments: malignant, mixed malignant, and normal. The bar graph shows the mean NOP58 expression for each group, with error bars denoting standard deviations. Statistical significance (p < 0.001) highlights distinct differences in expression between groups. (D) Spatial localization of NOP58 AUC scores within tissue sections. The heatmap displays AUC scores, with color gradients representing the intensity of NOP58 activity across the tissue, providing insights into its spatial distribution. (E) Spearman correlation between gene set AUC scores and microenvironment components at spatial resolution. The plot shows the correlations of various gene sets with different cell types in the microenvironment, with color intensity reflecting the strength of interaction. (F) Comparison of gene set AUC scores across malignant, mixed malignant, and normal microenvironments. The bar graph illustrates the mean AUC scores for each group, with error bars representing standard deviations. Significant differences (p < 0.001) highlight the variability in gene set activity across these environments. (G–N) Drug sensitivity analysis based on NOP58 expression levels. Each scatter plot represents individual samples, with the x-axis corresponding to NOP58 expression levels and the y-axis representing drug IC50 values. Samples are categorized into high-expression (red) and low-expression (blue) groups based on median NOP58 expression. High NOP58 expression is associated with increased sensitivity to specific drugs, indicating its potential influence on therapeutic response.
Analysis of NOP58 expression and its impact on prostate cancer cell ;lines LNCaP and PC3
First, the expression of NOP58 mRNA in various prostate cancer cell lines, including RWPE-1, LNCaP, and PC3, was examined through RT-PCR. Quantitative PCR results indicated that NOP58 was significantly overexpressed in the cancerous LNCaP and PC3 cell lines compared to the noncancerous RWPE-1 line (Figure 10A). To explore the functional role of NOP58, knockdown and overexpression strategies were employed in LNCaP and PC3 cells to modulate NOP58 expression. Quantitative PCR confirmed that NOP58 expression was markedly reduced following knockdown (sh-NOP58#1) and elevated upon overexpression (NOP58-OE). Silencing NOP58 (sh-NOP58#1) resulted in a significant decrease in NOP58 levels (Figure 10B), while overexpression led to a notable increase in its levels (p < 0.01). Subsequently, the effect of NOP58 knockdown on reactive oxygen species (ROS) production in LNCaP and PC3 cells was assessed. Flow cytometry analysis revealed a significant increase in ROS fluorescence following NOP58 knockdown (sh-NOP58#1), while NOP58 overexpression (NOP58-OE) led to a clear reduction in ROS levels (Figure 10C). These findings suggest that NOP58 plays a role in regulating oxidative stress in prostate cancer cells in vitro. Further investigations focused on the influence of NOP58 on apoptosis and cell proliferation. BCL2 and Ki67 expression levels were measured, with quantitative PCR confirming that BCL2 levels increased and Ki67 levels decreased after NOP58 knockdown (sh-NOP58#1) (Figure 10D). Conversely, Ki67 levels were significantly upregulated and BCL2 levels downregulated in NOP58-OE cells compared to controls. A colony formation assay was conducted to assess the functional outcomes of NOP58 modulation in LNCaP and PC3 cells. The results showed a substantial reduction in colony numbers following NOP58 knockdown (sh-NOP58#1), while overexpression of NOP58 (NOP58-OE) led to a dramatic increase in colony formation (Figure 10E). In conclusion, these findings underscore the critical role of NOP58 in the proliferation and survival of prostate cancer cells. NOP58 appears to regulate key processes, including oxidative stress response and apoptosis, as demonstrated by its effects on cell-based assays targeting major prostate cancer growth-related pathways. This study highlights NOP58’s involvement in the regulation of oxidative stress, apoptosis, and proliferation in the LNCaP and PC3 prostate cancer cell lines. Dysregulation of NOP58 expression impairs prostate cell function, suggesting that modulating NOP58 levels could be a promising strategy for improving prostate cancer treatment.
[image: Bar graphs and colony formation assay results illustrate the effects of NOP58 expression on LNCaP and PC3 cell lines, showing variations in RNA levels and ROS-related expression across different conditions. Panel F contains a graphical illustration depicting cellular processes involving NOP58, SUMO2, and related proteins, highlighting mechanisms of action in a stylized, diagrammatic format.]FIGURE 10 | Analysis of NOP58 expression and its impact on prostate cancercCell lines LNCaP and PC3 (A) Relative mRNA expression levels of NOP58 in prostate cancer cell lines (RWPE-1, LNCaP, PC3, DU145). Quantitative PCR results are presented as mean ± SD, with statistical significance (p < 0.01). (B) NOP58 knockdown and overexpression in LNCaP and PC3 cells. Quantitative PCR results showing significant changes in NOP58 expression following shRNA knockdown (sh-NOP58#1) and overexpression (NOP58-OE) (p < 0.01). (C) Flow cytometry analysis of reactive oxygen species (ROS) levels following NOP58 knockdown and overexpression in LNCaP and PC3 cells (**p < 0.01). (D) Western blot and quantitative PCR analysis of BCL2 and Ki67 expression in NOP58 knockdown and overexpression cells, showing significant changes (p < 0.01). (E) Colony formation assay in LNCaP and PC3 cells showing reduced colony formation following NOP58 knockdown and increased colony formation with NOP58 overexpression.
DISCUSSION
The current study aimed to investigate the role of SUMOylation in prostate cancer prognosis and to identify key genes associated with this modification (Sun et al., 2023; Li et al., 2021). Among these genes, NOP58 emerged as particularly significant in prostate cancer progression (Malik and Feng, 2016; Vellky et al., 2021). This conclusion was supported by multiple approaches, including differential expression analysis, survival analysis, GSEA, and single-cell transcriptomics (Špendl et al., 2023; Ma et al., 2020). Survival analysis revealed that overexpression of NOP58 was significantly correlated with poor clinical outcomes, including overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) across various cancers. Notably, in these studies, higher expression of NOP58 was associated with worse prognosis (Chen et al., 2024a; Zhang et al., 2024a). Survival analysis revealed that overexpression of NOP58 was significantly correlated with poor clinical outcomes, including overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) across various cancers. Notably, in these studies, higher expression of NOP58 was associated with worse prognosis (Xiong et al., 2024; Zhao et al., 2023). Gene ontology and pathway analyses identified crucial biological functions and molecular pathways influenced by NOP58, many of which are closely related to cancer development processes, such as cell cycle progression, DNA repair, and apoptosis (Zhang et al., 2024b; Gao et al., 2024). Results from single-cell RNA sequencing indicated that NOP58 exhibits a high level of heterogeneity across different cellular contexts and interacts with the tumor microenvironment, paving the way for new precision therapy approaches (Li et al., 2022; Wu et al., 2021). These findings align with previous studies suggesting that SUMOylation promotes cancer development (Du et al., 2021; Han et al., 2018). Overall, our study not only provides preliminary evidence of NOP58’s specific role in prostate cancer prognosis but also suggests that NOP58 could be utilized as a diagnostic or therapeutic biomarker for prostate cancer patients (Dimakakos et al., 2014; Adamaki and Zoumpourlis, 2021).
SUMOylation, a key post-translational modification, is indispensable for regulating the activity and degradation of target proteins by attaching small ubiquitin-like modifier (SUMO) proteins (Eifler and Vertegaal, 2015; Raju, 2019). This process affects numerous critical physiological functions, including transcriptional regulation, DNA repair, and signal transductio (Soutourina and Werner, 2014; Puc et al., 2017). This process affects numerous critical physiological functions, including transcriptional regulation, DNA repair, and signal transductio (Chen et al., 2024b). Collectively, the evidence strongly suggests that dysregulated SUMOylation in cancer cells may be a key mechanism driving carcinogenesis and tumor progression (Han et al., 2018; Xie et al., 2020). Through this study, we further elucidated the relationship between SUMOylation and prostate cancer by correlating NOP58 gene expression with clinical outcomes (Sun et al., 2023; Wang and Yu, 2021).
Through this study, we further elucidated the relationship between SUMOylation and prostate cancer by correlating NOP58 gene expression with clinical outcomes (Golomb et al., 2014; Castle et al., 2010). Through this study, we further elucidated the relationship between SUMOylation and prostate cancer by correlating NOP58 gene expression with clinical outcomes (Arriaga-Canon et al., 2018; Ghafouri-Fard et al., 2020). Through this study, we further elucidated the relationship between SUMOylation and prostate cancer by correlating NOP58 gene expression with clinical outcomes (Yu et al., 2021; Nguyen et al., 2023). Given NOP58’s critical role in the SUMOylation pathway, targeting this protein could offer therapeutic efficacy (Kukkula et al., 2021; Kroonen and Vertegaal, 2021). Modulating NOP58 expression or function may interfere with the SUMOylation pathway, thereby inhibiting prostate cancer cell growth and migration (Vlachostergios and Papandreou, 2012; He et al., 2015). This study highlights the novel role of NOP58 as a target of SUMOylation and its regulatory mechanisms in prostate cancer, revealing potential new molecular pathways. In summary, these findings underscore the essential role of NOP58 in prostate cancer and its association with the SUMOylation pathway (Wang and Yu, 2021; Sutinen et al., 2014). As a prognostic marker and therapeutic target, NOP58 provides new directions for prostate cancer research and clinical intervention (Arriaga-Canon et al., 2018; Adamaki and Zoumpourlis, 2021). Future studies will further explore its specific molecular mechanisms and clinical application feasibility, bringing new hope and treatment strategies to prostate cancer patients (Cui et al., 2024).
In this study, we continuously explore and develop new therapeutic strategies by integrating multiple research techniques, including machine learning, multi-omics analysis, three-dimensional reconstruction, and deep learning, providing new possibilities for precision medicine and personalized therapy (Kuo et al., 2024; Sheng et al., 2024). Notably, we combined machine learning algorithms and statistical models to confirm the potential of NOP58 as a prognostic marker for prostate cancer (Kim et al., 2021). High expression of NOP58 is associated with poorer patient prognosis, providing a theoretical foundation for personalized medicine (Wan et al., 2024; Chen et al., 2024c). Studies have shown that the expression of NOP58 in prostate cancer cells and animal models is significantly related to disease aggressiveness and patient survival, validating its value as an independent prognostic predictor (Zhao et al., 2016; Glinsky et al., 2004). The importance of cell death and metabolic regulation in disease progression is increasingly recognized, offering new targets and strategies for NOP58-targeted therapeutic approaches such as small molecule inhibitors or RNA interference technology (Chen et al., 2024d; Zhang et al., 2024c; Zhang et al., 2024d). Although our study has made significant progress, there are some limitations. For instance, while the use of TCGA data is comprehensive, it may not fully represent the genetic diversity of all prostate cancer patients (Li et al., 2014; Cai et al., 2021). Additionally, potential biases in data selection and analysis methods may affect the accuracy of the results (Shringarpure and Xing, 2014; Freed, 2019). Dependence on computational tools and models may introduce potential errors, and the predictive accuracy of NOP58 as a prognostic marker needs to be experimentally validated in larger independent cohorts to confirm our findings (Colită et al., 2024). Therefore, the discovery of NOP58 has significant clinical implications, allowing patient stratification based on risk and guiding personalized treatment strategies (Benson, 2016; Pawlyn and Davies, 2019). Its role in the SUMOylation pathway provides a potential therapeutic target, paving the way for new interventions aimed at regulating this pathway to improve patient prognosis (Huang et al., 2023; Martio et al., 2023; Du et al., 2024).
With the continuous advancement of biomedical research technologies, especially the widespread application of big data and bioinformatics, the accuracy of disease diagnosis and prognosis assessment has been significantly improved (Department of Mechanical and Manufacturing Engineering et al., 2022; Cremin et al., 2022). By integrating clinical and genomic data, researchers have developed various predictive models and tools to forecast disease progression and treatment response (Jiang et al., 2023; Du and Liu, 2024; Li et al., 2024; Yao et al., 2024). These technologies play a core role not only in the identification and application of biomarkers but also in providing critical insights into understanding complex biological processes (McDermott et al., 2013; Dar et al., 2023). For instance, researchers can employ machine learning and deep learning techniques to develop novel predictive models for both short-term postoperative complications and long-term patient prognosis (Cui et al., 2024). The combined use of these advanced techniques not only enhances the depth and breadth of research but also provides a crucial foundation for subsequent clinical applications (Zhang et al., 2023b). Our study contributes to cancer research by integrating multi-omics data with advanced bioinformatics tools (Lu and Zhan, 2018; Lin et al., 2022; Sun et al., 2022a; Sun et al., 2022b). The integrative strategy developed here is not only applicable to prostate cancer but can also be extended to other cancers, offering a comprehensive view of the biological pathways involved in tumorigenesis. This approach has the potential to identify new biomarker candidates and therapeutic targets (Nevedomskaya and Haendler, 2022; Felgueiras et al., 2014). Further studies are required to confirm the value of NOP58 as a prognostic indicator in larger, more diverse patient populations. We also explored the molecular mechanisms of NOP58 and its role in SUMOylation pathways. NOP58 may interact with other molecular pathways, providing further insights into its impact on the tumor microenvironment and prostate cancer biology (McAllister et al., 2019; Corn, 2012). Moreover, NOP58 and its associated signaling cascades could represent promising targets for novel treatment strategies (Qin et al., 2023). Additionally, it has been shown that social support systems positively influence the mental health of cancer patients (Tian et al., 2021a; Tian et al., 2021b). Through comprehensive studies on patient engagement and social support, researchers have demonstrated that these factors significantly contribute to disease management and mental health outcomes (Lamore, 2024; Zhu, 2024). This could be another important consideration in future studies of NOP58 and its broader implications.
CONCLUSION
In conclusion, our study highlights the critical role of NOP58 in the progression of prostate cancer and suggests that it may serve as both a prognostic biomarker and a therapeutic target for the treatment of this disease. By integrating multi-omics data with deconvolution and transcription factor-pathway interaction analyses, as well as validating our findings through qPCR, we have provided a comprehensive characterization of the key driver genes underlying prostate cancer using advanced bioinformatics platforms. Our findings contribute to the ongoing efforts to develop personalized medical approaches and treatments for patients, ultimately aiming to improve patient outcomes.
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Background: Pulmonary hypertension (PH) can lead to right ventricular hypertrophy, significantly increasing mortality rates. This study aims to clarify PH-specific metabolites and their impact on genomic and post-translational modifications (PTMs) in cancer, evaluating DHA and EPA’s therapeutic potential to mitigate oxidative stress and inflammation.Methods: Data from 289,365 individuals were analyzed using Mendelian randomization to examine 1,400 metabolites’ causal roles in PH. Anti-inflammatory and antioxidative effects of DHA and EPA were tested in RAW 264.7 macrophages and cancer cell lines (A549, HCT116, HepG2, LNCaP). Genomic features like CNVs, DNA methylation, tumor mutation burden (TMB), and PTMs were analyzed. DHA and EPA’s effects on ROS production and cancer cell proliferation were assessed.Results: We identified 57 metabolites associated with PH risk and examined key tumor-related pathways through promoter methylation analysis. DHA and EPA significantly reduced ROS levels and inflammatory markers in macrophages, inhibited the proliferation of various cancer cell lines, and decreased nuclear translocation of SUMOylated proteins during oxidative stress and inflammatory responses. These findings suggest a potential anticancer role through the modulation of stress-related nuclear signaling, as well as a regulatory function on cellular PTMs.Conclusion: This study elucidates metabolic and PTM changes in PH and cancer, indicating DHA and EPA’s role in reducing oxidative stress and inflammation. These findings support targeting these pathways for early biomarkers and therapies, potentially improving disease management and patient outcomes.Keywords: pulmonary hypertension, metabolomics, cancer genomics, biomarkers, therapeutic targets, drug
BACKGROUND
Pulmonary hypertension (PH) is a multifactorial disorder marked by elevated pulmonary arterial pressure, often leading to right heart failure and eventual mortality (Hoendermis, 2011). Pathogenic processes in PH overlap significantly with various systemic diseases, notably cancer (Boucherat et al., 2017; Guignabert et al., 2013). Recent studies have highlighted the role of metabolic alterations in the progression of PH (Pugh and Hemnes, 2010; Maron et al., 2020; Sharma et al., 2016). Notably, PH has been linked to conditions like COVID-19, with organ-specific findings suggesting potential associations with cerebral aneurysms (Sharma et al., 2016; Finsterer, 2022). Furthermore, connections between pneumonia, stroke, and metabolic disturbances underscore the complexity of PH’s etiology, emphasizing the interplay of genetic and metabolic factors in its pathogenesis (Hassan et al., 2021). Specific metabolic pathways are implicated in PH, with studies focusing on elements such as plasma homocysteine and chronic obstructive pulmonary disease (COPD) (Hu et al., 2023; Chaudhary et al., 2019; Xu et al., 2021). The exploration of metabolic abnormalities, particularly in postmenopausal diabetic women, has potential therapeutic implications, especially considering the growing interest in nanotechnology for cancer drug delivery (Chen Y. et al., 2022).
Metabolites act as signaling molecules, influencing cellular pathways associated with PH by regulating gene expression and protein function (Milanesi et al., 2020; Han and Chandel, 2021). Research indicates that certain metabolites can affect PH through oxidative stress and inflammatory processes, often involving post-translational modifications (PTMs) such as phosphorylation, acetylation, and SUMOylation (Ebert et al., 2022; Diskin et al., 2021). The relationship between hormonal influences and vascular function provides additional insights, particularly through the role of estrogen receptors in ovarian cancer (Su et al., 2023). Tumor growth may stimulate pulmonary arteries, potentially inducing PH, while emerging genomic studies suggest an interconnectedness between pan-cancer traits and PH pathogenesis, though many underlying mechanisms remain unexplored (Chen H. et al., 2022). Recent findings on m6A RNA methylation in cancer stem cells offer novel perspectives on the genetic links between PH and cancer (Chen H. et al., 2022; Ma and Ji, 2020). PH appears to share molecular pathways with epigenetic processes involved in the epithelial-mesenchymal transition in ovarian cancer, suggesting possible commonalities in their progression (Prayudi et al., 2023).
In cancer, complex interrelations are observed among CNVs, DNA methylation, tumor mutation burden (TMB), and PTMs (Cai et al., 2019). CNVs can influence gene expression by altering gene copy numbers, potentially impacting PTM frequency (Henrichsen et al., 2009; Orozco et al., 2009). DNA methylation, through gene silencing or activation, affects PTM-encoding genes and regulates PTM levels (Qi et al., 2023; Ji et al., 2023). Increased TMB generates neoantigens that attract immune infiltration, often correlating with inflammation-related gene overexpression, potentially altering PTM patterns (Wang and Li, 2019). PTMs directly regulate protein function and, by impacting transcription factors, modulate downstream gene expression (Filtz et al., 2014). PTMs are indirectly regulated by CNVs and DNA methylation, forming a complex regulatory network that influences tumor progression and the immune microenvironment, providing crucial insights for biomarkers and targeted therapies in cancer research.
Certain metabolites function as signaling molecules under physiological and pathological conditions, potentially modulating PH-related gene expression and protein function through intracellular signaling pathways (Frezza, 2017). Studies show that specific metabolites directly affect PH by modulating oxidative stress and inflammatory responses, often involving PTM modifications of key proteins, such as phosphorylation, acetylation, and SUMOylation (Schopfer et al., 2011). As critical regulatory mechanisms for protein function, PTMs dynamically respond to cellular metabolic changes (Wang et al., 2016). For example, oxidative stress or metabolic dysregulation can alter PTMs, affecting protein stability, activity, or subcellular localization (Wang et al., 2016). This suggests that fluctuations in specific metabolites may influence PH progression by modulating PTM frequency or patterns. Metabolites might directly affect pulmonary vascular function by promoting SUMOylation, phosphorylation, or other modifications of transcription factors or structural proteins, potentially exacerbating or alleviating PH symptoms (Yao et al., 2019). Moreover, studies on the therapeutic potential of natural products in cervical cancer offer new strategies for PH treatment via metabolic and genetic pathways (Mukherjee et al., 2022). In summary, we hypothesize a close association among metabolites, PH, and PTMs, with metabolic fluctuations potentially impacting PTM-regulated protein activity and thus contributing to PH progression. This hypothesis provides a new perspective on understanding metabolite-related regulatory mechanisms in PH and establishes a foundation for studying PTMs as biomarkers and therapeutic targets in PH.
There is also an increasing need to dissect the causal relationships between metabolites and PH, alongside genomic alterations in various cancers. The current research landscape often lacks clarity regarding specific metabolite interactions with genetic changes across distinct cancer types and their implications for PH. Mendelian randomization has recently gained attention as a valuable tool in addressing these issues. By combining bioinformatics with single-cell sequencing, researchers can uncover the characteristics of immune responses within different microenvironments, providing strong data support for the development of personalized treatment plans. The advancement of these technologies has facilitated the broader application of transcriptomics, metabolomics, and proteomics in disease diagnosis and treatment (Liu et al., 2024; Chauleau and Trassin, 2024; Shi et al., 2024; Jang and Choi, 2024). This study aims to bridge existing knowledge gaps by exploring the causal relationships between metabolites and PH and examining PTM-associated genomic alterations across cancer types. By analyzing how metabolites impact genetic changes within the context of cancer, this study seeks to elucidate the pathways linking PH and cancer, providing a more comprehensive understanding of their shared mechanisms. Ultimately, our goal is to identify potential therapeutic targets and diagnostic biomarkers, advancing early detection and personalized treatment strategies. Integrating perspectives on the interactions between metabolic and genetic factors is crucial for a comprehensive understanding of complex diseases like PH.
MATERIALS AND METHODS
Integration analysis of exercise-related genes and metabolomics
The GENECARD database identifies genes associated with exercise, providing insights into their functions and relationships in various biological processes. Using the MetaboAnalyst platform, we conduct an integration study of these genes with metabolomics data.
Genomic features of cross-over genes in pan-cancer
We use DNA methylation and copy number variation (CNV) data from The Cancer Genome Atlas (TCGA) database for our pan-cancer study. After extracting CNV data for genes that overlap in different tumor types, the genes are classified as amplifications or deletions, and the rates of each are computed to find their frequencies in distinct tumor tissues. UALCAN (http://ualcan.path.uab.edu/analysis.html) is used to analyze the promoter DNA methylation levels of overlapping genes in both normal and malignant tissues. The “Gene Visualisation” feature of the MethSurv database provides DNA methylation patterns of various malignancies. Additionally, the R package “TCGAbiolinks” is used to retrieve mutation data in the Mutation Annotation Format (MAF), and the “maftools” R package is used to compute the TMB.
Pan-cancer GSEA enrichment analysis
Using the “limma” R package, we perform differential expression analysis between tumor and normal samples from TCGA. P-value criteria and log2 fold change (log2fc) are used to identify genes with substantial variations in expression. Gene Set Enrichment Analysis (GSEA) was performed using the “clusterProfiler” package in R. This analysis involved formatting the data dimensions appropriately and visualizing the results with examples to highlight significant findings.
Tumor prognostic analysis
We assessed the predictive ability of overlapping gene expressions on patient survival outcomes using TCGA datasets, focusing on overall survival (OS). Survival analysis was conducted using the Kaplan-Meier method and log-rank test to evaluate survival across different cancer types. The “survival” and “survminer” R packages were utilized to generate survival curves. Additionally, the Cox proportional hazards model was employed to investigate the relationship between FGA and NOTCH3 expression and overall survival outcomes in pan-cancer patients, using the “forestplot” R package for visualization.
Immune infiltration
We employ markers from the CIBERSORTx website (https://cibersortx.stanford.edu/) and the main algorithm from CIBERSORT to assess the infiltration levels of 22 immune cell types in tumor samples. This analysis is facilitated by the CIBERSORT. R script. Heat maps are used to illustrate the findings of Spearman correlation analysis, which is used to investigate the link between single-gene data and immune infiltration matrix data across pan-cancer datasets. This is a specific technique used to evaluate immune cell populations, which helps to understand the role of tumor microenvironment in cancer progression.
Methylation analysis
Our methylation analysis specifically targets the TSS1500 region, which spans from −200 to −1,500 base pairs upstream of the transcription start site. We also focus on the TSS200 region, which is located within −200 base pairs upstream of the TSS. Additionally, we examine the first exon and the 5′untranslated region (5′UTR). Each sample’s methylation level is represented by the median value. In order to investigate the association between methylation levels and gene expression, we conduct a Spearman’s correlation analysis. The Spearman rank correlation coefficient, a non-parametric statistic, is used to assess the monotonic association between two variables, regardless of their distribution. The independent variable in this context is the methylation levels, while the dependent variable is the gene expression levels. The correlation between these two variables is evaluated by computing the Spearman rank correlation coefficient. In addition, the Wilcoxon rank-sum test is used to analyse the distribution of promoter methylation data between the tumor and normal groups.
Gene set enrichment analysis and GSVA analysis
We conduct Gene Ontology (GO) enrichment analysis on the chosen gene sets utilising the “clusterProfiler” tool. Furthermore, the Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis is performed using the identical software package. In order to evaluate the activity of a pathway, we utilise the GSVA software and analyse the data using four different methods: zscore, gsva, ssgsea, and plage. With the exception of the zscore parameter, the scores obtained from the other techniques are transformed into unitless Z-scores using the formula (x-μ)/σ. This is done to maintain uniformity among tumor data. The Wilcoxon Rank Sum Test is used to assess statistical disparities between tumor and normal tissues. The findings are visualised by creating box plots using the ggplot2 program.
RAW 264.7 cell line
The RAW 264.7 cell line is acquired from the Shanghai Cell Bank, which is a division of the Chinese Academy of Sciences. The cells are cultivated in RPMI-1640 medium (Gibco Invitrogen Co., San Diego, CA, United States) with the addition of 10% foetal bovine serum (Gibco BRL, Grand Island, NY, United States), 100 units/mL penicillin, and 0.1 mg/mL streptomycin. The culture conditions are upheld at a temperature of 37°C, with a humidity level of 95% and a CO2 concentration of 5%. Docosahexaenoic acid (DHA) is dissolved in dimethyl sulfoxide (DMSO) to form a 1 millimolar (mM) concentrated solution, which is then kept at a temperature of −20°C. During the experiment, the stock solution is mixed with DMSO to provide a final concentration of 2 μM DHA and EPA for the RAW 264.7 cells. These cells are then subjected to a 48-h treatment. The DHA (D2534, purity >99%) and a standard for 37 fatty acids are obtained from Sigma (St. Louis, MO, United States), whereas eicosapentaenoic acid (EPA) is acquired from Sigma-Aldrich (St. Louis, MO, United States).
Cell culture and colony formation assay
The following cell lines—LNCaP (prostate cancer), HepG2 (liver cancer), A549 (lung adenocarcinoma), and HCT116 (colorectal cancer)—were cultured under standard conditions. Each cell line was maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Cells were incubated at 37°C in a humidified atmosphere containing 5% CO₂. The culture medium was replaced every 2–3 days, and cells were subcultured upon reaching 80%–90% confluence using 0.25% trypsin-EDTA for detachment. All cell lines were authenticated prior to experiments to ensure reliability and reproducibility of the results. For the colony formation assay, cells were seeded into 6-well plates at a density of 500–1,000 cells per well and allowed to adhere overnight. The cells were then cultured in DMEM supplemented with 10% FBS at 37°C in a humidified incubator with 5% CO₂. The medium was refreshed every 3–4 days. After 10–14 days, when visible colonies had formed, the medium was removed, and the cells were gently washed twice with phosphate-buffered saline (PBS). The colonies were fixed with 4% paraformaldehyde for 15 min at room temperature and subsequently stained with 0.5% crystal violet solution for 20 min. After washing away the residual stain with tap water, the plate was air-dried. After 7–10 days, colonies containing more than 50 cells were counted under a microscope, and the colony formation efficiency was calculated as the number of colonies divided by the number of cells seeded.
Inhibition of reactive oxygen species (ROS) production
The RAW 264.7 cells were diluted to a concentration of 250,000 cells/mL. Luminol, a light-enhancing compound, and zymosan, which stimulates the production of ROS, were added to each well. The resulting chemiluminescent emission from the formation of ROS was then measured.
Immunofluorescence detection
Immunofluorescence detection was performed as previously described (Im et al., 2019; Chen et al., 2024a). Cells were initially fixed with a 4% paraformaldehyde (PFA) solution for 15 min, followed by blocking for 1 h. The samples were then incubated overnight with the primary antibody at 4°C. On the second day, the samples were brought to room temperature (25°C) and stained with a fluorescently labeled secondary antibody for 1 h. After washing with PBS, a coverslip was mounted using an anti-fade mounting solution containing DAPI from Abcam. Fluorescence microscopy was then used to capture images.
Statistical analysis
A P-value of <0.05 was considered statistically significant, ensuring the reliability and accuracy of our findings regarding metabolites and pulmonary hypertension. Mean ± standard errors are reported for the data.
RESULTS
Causal relationship between metabolites and the risk of pulmonary hypertension
To address this inquiry, we utilized a two-sample MR methodology to evaluate the potential causal relationship between metabolites and the risk of PH. The intercept test conducted using MR Egger indicated no signs of horizontal pleiotropy (p > 0.05 for all instrumental variables), thereby reinforcing the reliability of our results. Additionally, the outcomes of the leave-one-out sensitivity analysis, employing a jackknife approach, are presented in Figure 1. Our analysis identified 57 metabolites with a significant causal association with the development of PH, using a significance threshold of 0.01 (Supplementary Figure S1). Among these, metabolites such as Glucuronide of piperine (P = 0.030, OR = 1.316, 95% CI = 1.026–1.689), N-lactoyl valine (P = 0.034, OR = 2.029, 95% CI = 1.052–3.911), and N-stearoyl-sphingadienine (d18:2/18:0) (P = 0.007, OR = 1.570, 95% CI = 1.126–2.189) were found to be positively associated with an increased risk of PH. Conversely, metabolites such as Cerotoylcarnitine (C26) (P = 0.027, OR = 0.688, 95% CI = 0.493–0.959), Docosatrienoate (22:3n6) (P = 0.041, OR = 0.642, 95% CI = 0.420–0.982), and 5-dodecenoylcarnitine (C12:1) (P = 0.036, OR = 0.545, 95% CI = 0.309–0.962) exhibited a protective effect against PH, showing negative correlations. Further reverse MR analysis assessed the impact of PH on these metabolites. The results suggested a negative correlation between PH and S-methylcysteine levels (P = 0.045, OR = 1.014, 95% CI = 1.000–1.028). The MR Forest Plot (Supplementary Figure S1) visually represents the odds ratios (ORs) and 95% confidence intervals (CIs) for each metabolite, with data analyzed across different MR techniques. The metabolites examined include a broad spectrum of biological compounds, such as amino acids, lipids, and carbohydrates. In the forest plot, horizontal lines representing the ORs and CIs indicate significant associations when they do not cross the null value (OR = 1). To ensure robust causal inference, we employed multiple MR methodologies, including Inverse-Variance Weighted (IVW), MR Egger, weighted median, weighted mode, and simple mode approaches, using genetic predictors derived from genome-wide association studies (GWAS). The IVW method combined the effect estimates of genetic instruments, MR Egger addressed directional pleiotropy, and the weighted median provided reliable estimates even when up to 50% of the data came from invalid instruments. These diverse approaches strengthen the robustness and validity of our findings. This comprehensive analysis underscores significant causal relationships between specific metabolites and the risk of PH, identifying potential therapeutic targets and biomarkers for disease prevention and management.
[image: Flowchart illustrating the relationship between metabolic pathways, genomic alterations, and post-translational modifications leading to pulmonary hypertension and cancer. It includes processes like anti-inflammatory and antioxidative effects. The chart explores the exposure of 1400 metabolites, the screening of SNPs, and removal of specific variables. The outcome focuses on pulmonary hypertension, detailing methods such as inverse variance weighted and weighted median analysis.]FIGURE 1 | Flowchart of MR Analysis for Pulmonary Hypertension. The flowchart above depicts the systematic approach employed in our mediation analysis to investigate the correlation between 1,400 metabolites and the incidence of pulmonary hypertension. The process begins with the introduction of the 1,400 metabolites, followed by screening for single nucleotide polymorphisms (SNPs) strongly associated with them. SNPs in linkage disequilibrium, characterized by an r2 value greater than 0.0001 and a p-value less than 1e-5, are excluded if they are within 10,000 base pairs of each other. Excluded from consideration are instrumental variables (IVs) that are associated with possible confounders, and instrumental variables that lack sufficient power are also avoided. The data are standardised, and IVs that are palindromic are removed to ensure a reliable introduction of alleles between the exposure and result SNPs. The specific result being studied is pulmonary hypertension. Single nucleotide polymorphisms (SNPs) are standardised or made consistent across the initial and final datasets. Reverse MR is conducted, and the analysis of MR proceeds with the remaining significant independent variables that have a p-value less than 5e-5, an r-squared value less than 0.001, and a coefficient of 10,000. Multiple MR techniques are employed to evaluate causation, such as IVW, Weighted Median, MR Egger, Simple Mode, and Weighted Mode. A heterogeneity test is performed to assess the uniformity of the outcomes across various tactics. The MR-PRESSO Global Test is employed to identify and address horizontal pleiotropy. Sensitivity analysis is conducted to verify the reliability and stability of the results. This comprehensive method ensures that the identified connections between metabolites and pulmonary hypertension are strong and less likely to be confused by pleiotropy or other predispositions.
Identification of metabolic pathways and exercise-related genes associated with pulmonary hypertension
The analysis of metabolic pathways and exercise-related genes in the context of PH provided significant insights into potential therapeutic targets. Figure 2A depicts the top 25 enriched metabolic pathways identified from metabolomics data of PH patients, analyzed using the MetaboAnalyst 6.0 platform. The pathways are ranked by p-value (left panel) and enrichment ratio (right panel). Pathways such as D-Arginine and D-Ornithine metabolism, starch and sucrose metabolism, and galactose metabolism exhibited significant associations with PH. The size and color of the dots represent the enrichment ratio and statistical significance, respectively, with higher ratios and more significant p-values highlighted in red. These findings suggest that disturbances in amino acid and carbohydrate metabolism play crucial roles in the pathophysiology of PH, potentially offering novel avenues for metabolic intervention. In Figure 2B, a network of exercise-related genes and their associations with various diseases was constructed using data from the GeneCards database. The network includes genes such as IL6, IL1B, COL1A1, COL5A1, IL10, IFNG, PRL, MPO, ACE, CCL2, REN, and F2, which are linked to a wide array of diseases, including inflammatory bowel disease, diabetes mellitus, rheumatoid arthritis, and Parkinson’s disease. These genes are known to play critical roles in inflammation, immune regulation, and metabolic processes. The network analysis underscores the relevance of these genes in the physiological response to exercise and their potential role in modulating the immune and metabolic dysregulation observed in PH. The identification of key metabolic pathways and gene-disease associations provides a foundation for future research aimed at developing exercise-based therapeutic strategies, which could modulate these metabolic and immune processes to improve outcomes for PH patients.
[image: Chart A presents two bubble charts showing enriched metabolic sets related to pulmonary arterial hypertension, with pathways like glutathione and tyrosine metabolism highlighted. Chart B is a network diagram illustrating exercise-related genes from GeneCards, with connections between various conditions and genes, using MetaboAnalyst.]FIGURE 2 | Metabolic Pathways and Exercise-Related Genes Related to Pulmonary Hypertension. (A) This section presents the top 25 metabolic pathways significantly associated with pulmonary hypertension (PH). On the left, pathways are displayed based on their p-values, while the right side features those with high enrichment ratios. Each dot represents a distinct pathway, colored by p-value (with red indicating more significant values) and sized according to the enrichment ratio. Data analysis was conducted using the MetaboAnalyst 6.0 platform, which provides comprehensive metabolomics data analysis and visualization. The pathways were identified from metabolomics data collected from patients with PH. (B) This well-structured network illustrates the associations between exercise-related genes and various diseases or disorders. Using the GeneCards database, genes such as IL6, IL1β, COL1A1, COL5A1, IL10, IFNG, PRL, MPO, ACE, CCL2, REN, and F2 were identified, along with detailed gene information. In the network, nodes represent the genes, while edges indicate their associations with diseases. These genes are linked to a range of conditions, including inflammatory bowel disease, diabetes mellitus, rheumatoid arthritis, and Parkinson’s disease, among others. The colors and sizes of the nodes reflect the strength and nature of the links, as well as their importance. This network aims to enhance understanding of the broader impact of these genes on various physiological and pathophysiological states, with particular emphasis on pulmonary hypertension and exercise physiology.
Prognostic significance of overlapping gene expression in various cancers
This study investigates the prognostic relevance of 12 overlapping genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1B, IL6, IL10, MPO, PRL, and REN) across different cancer types by analyzing their correlation with overall survival (OS). The hazard ratios (HRs) and 95% confidence intervals (CIs) for each gene’s expression were calculated, revealing important trends in cancer prognosis. As illustrated in Figure 3A, ACE expression is protective against kidney renal clear cell carcinoma (KIRC) and mesothelioma (MESO) but may present risks in uterine carcinosarcoma (UCS). Elevated ACE levels confer significant advantages for certain cancers while being detrimental to others. Regarding CCL2 (Figure 3B), increased expression correlates with higher risk in kidney renal papillary cell carcinoma (KIRP) and low-grade glioma (LGG), indicating its role as a negative prognostic marker for these malignancies. COL1A1 expression is associated with risk in various cancers (Figure 3C), including breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and stomach adenocarcinoma (STAD), whereas it provides protective effects in kidney chromophobe (KICH), highlighting its complex role depending on cancer type. For COL5A1 (Figure 3D), high expression is linked to increased risk in liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD) but offers protective benefits for KIRC, demonstrating its dual nature in cancer prognosis. The F2 gene (Figure 3E) predominantly exhibits protective effects across various cancers, although it poses risks in KIRC and bladder urothelial carcinoma (BLCA). Similarly, cancers like sarcoma (SARC) and LGG present adverse outcomes, reflecting the gene’s varied impact on different tumor types. In terms of IFNG (Figure 3F), sensitivity to expression levels is evident, as it shows protective trends in esophageal carcinoma (ESCA) and KIRC, yet poses risks in BRCA. A similar pattern is observed with IL1B (Figure 3G), which has crucial protective roles in KIRC and BRCA while being associated with significantly higher risks for stomach adenocarcinoma (STAD) and skin cutaneous melanoma (SKCM), despite its complex involvement in inflammatory pathways within tumors. For IL6 (Figure 3H), high expression indicates a poor prognosis in lung squamous cell carcinoma (LUSC) and BLCA, while demonstrating protective effects for KIRC, illustrating the dual aspects of cancer progression. IL10 (Figure 3I) correlates with increased risk in KIRP and pancreatic adenocarcinoma (PAAD), yet displays protective tendencies in LUSC, emphasizing its variable role across different tumor microenvironments. MPO (Figure 3J) becomes concerning, as elevated expression is associated with LIHC and LUSC, while providing protective benefits in BLCA, indicating its differing impacts based on tumor type. Lastly, PRL (Figure 3K) shows high expression linked to risks in colon adenocarcinoma (COAD) and BRCA, yet has favorable effects for KIRC, showcasing the diverse roles this gene plays in tumor biology. Finally, REN (Figure 3L) exhibited protective trends in cancers such as KIRC and kidney renal papillary cell carcinoma (KIRP), while being associated with increased risk in LGG and UCS, highlighting its potential as a prognostic marker.
[image: Forest plots labeled A to L, each showing gene expression comparisons between tumor and normal tissues. The x-axis in all plots is labeled "LogFC." Red and blue dots represent tumor and normal samples respectively, with lines indicating confidence intervals. The y-axis lists various tissue types. These plots visualize differential expression across different datasets.]FIGURE 3 | Expression of Overlapping Genes and Their Correlation with Tumor Prognosis. This figure presents forest plots illustrating the hazard ratios (HRs) and 95% confidence intervals (CIs) for 12 overlapping genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1β, IL6, IL10, MPO, PRL, and REN) across various cancers. The plots depict the relationship between the expression patterns of these genes and OS, highlighting their prognostic significance in cancer outcomes. Each plot presents the gene expression data in multiple cancers, highlighting both protective and risky associations with survival outcomes. (A) ACE (OS): High ACE expression was protective in kidney renal clear cell carcinoma (KIRC) and mesothelioma (MESO), but risky in uterine carcinosarcoma (UCS). (B) CCL2 (OS): Elevated CCL2 expression was linked to higher risk in kidney renal papillary cell carcinoma (KIRP) and low-grade glioma (LGG). (C) COL1A1 (OS): COL1A1 expression demonstrated risky trends in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), and stomach adenocarcinoma (STAD), while showing protective effects in kidney chromophobe (KICH). (D) COL5A1 (OS): High COL5A1 expression was associated with increased risk in liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD), but protective in KIRC. (E) F2 (OS): F2 expression was predominantly protective in KIRC and bladder urothelial carcinoma (BLCA), but risky in sarcoma (SARC) and LGG. (F) IFNG (OS): IFNG expression showed protective trends in esophageal carcinoma (ESCA) and KIRC, but risky in BRCA. (G) IL1β (OS): IL1B expression was protective in KIRC and BRCA, but associated with increased risk in stomach adenocarcinoma (STAD) and skin cutaneous melanoma (SKCM). (H) IL6 (OS): Elevated IL6 expression was linked to risky prognosis in lung squamous cell carcinoma (LUSC) and BLCA, but protective in KIRC. (I) IL10 (OS): IL10 expression was associated with increased risk in KIRP and pancreatic adenocarcinoma (PAAD), while showing protective effects in LUSC. (J) MPO (OS): MPO expression demonstrated risky trends in liver hepatocellular carcinoma (LIHC) and LUSC, while being protective in BLCA. (K) PRL (OS): High PRL expression posed a risk in colon adenocarcinoma (COAD) and BRCA, but was protective in KIRC. (L) REN (OS): REN expression was protective in KIRC and kidney renal papillary cell carcinoma (KIRP), but risky in low-grade glioma (LGG) and UCS.
Analysis of copy number variation, methylation, and TMB of overlapping genes in pan-cancer
Next, we explored CNV, methylation, and TMB analysis of pan cancer overlapping genes to clarify their functional characteristics. Figure 4A shows the distribution of CNV rates among the overlapping genes across 20 different cancer types. Each bar in the graph represents the variation in CNV for individual genes across these cancers, with distinct colors indicating different cancer types. For instance, COL1A1 and COL5A1 showed significant CNV gains in cancers like BRCA and STAD, while ACE and IFNG exhibited frequent CNV losses in KIRC and LUAD. Figure 4B presents the differential expression analysis of these overlapping genes across various tumors. Notably, IL6 and IL10 were significantly upregulated in cancers such as PAAD and LIHC, suggesting their potential roles in tumor progression and inflammation. Figure 4C explores the correlation between CNV and gene expression in various malignancies. This figure reveals that genes like COL1A1 and COL5A1 display strong positive correlations between CNV and expression levels in cancers such as BRCA and STAD, indicating that CNV gains directly enhance the expression of these genes. Conversely, negative correlations were observed for IFNG in LUAD, suggesting that CNV losses are associated with reduced gene expression in certain contexts. Figure 4D delves into the relationship between promoter methylation and gene expression across different cancers. The data show that hypermethylation of genes like ACE and F2 is associated with decreased expression in tumors such as LUAD and KIRC, underscoring the role of epigenetic silencing in these cancers. On the other hand, IL1B and IL6 exhibited hypomethylation coupled with increased expression in cancers like colorectal adenocarcinoma (COAD) and BRCA, indicating that promoter demethylation may activate oncogenic pathways in these tumors. Figure 4E highlights the association between TMB and gene expression across various cancer types. This analysis reveals that genes such as IL6 and MPO show significant positive correlations with TMB in high-mutation cancers like LUSC and esophageal carcinoma (ESCA), suggesting that higher mutation loads might drive the overexpression of these inflammatory mediators. Conversely, genes like REN and PRL show a negative correlation with TMB in cancers like KIRC, implying that these genes might be suppressed in tumors with a high mutation burden. Figure 4F illustrates the δ-values of promoter methylation in tumors versus normal tissues for the overlapping genes across different cancers. The data indicate that COL5A1 and MPO exhibit significant hypermethylation in tumor tissues compared to normal tissues in cancers like STAD and BRCA, which is associated with their reduced expression. Conversely, IL10 and IFNG exhibit hypomethylation in pancreatic adenocarcinoma (PAAD) and lung squamous cell carcinoma (LUSC) tumors, which correlates positively with elevated mRNA levels. This suggests their potential role in fostering a pro-tumorigenic microenvironment. The GSEA was performed on a diverse set of cancer types, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), acute myeloid leukemia (LAML), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), and uveal melanoma (UVM) (Supplementary Figure S2). A comprehensive analysis of thousands of pathways was conducted, encompassing critical cellular processes such as the canonical xenobiotic metabolism system, WNT beta-catenin signaling, unfolded protein response, and epithelial to mesenchymal transition (EMT), among others.
[image: Panel of six graphs showing gene expression analysis.   A: Box-and-whisker plots comparing expression levels across different subgroups, with a legend indicating color-coded groups.   B: Bar chart above a dot plot illustrating gene co-expression and correlation strength.   C-F: Four dot plots depicting differential gene expression, with varying bubble sizes and colors indicating expression levels and statistical significance.]FIGURE 4 | Analysis of Copy Number Variation, Methylation, and TMB of Overlapping Genes in Pan-Cancer. (A) Distribution of copy number variation (CNV) rates among overlapping genes across 20 different cancer types. The graph shows the variation in CNV for each gene across selected cancer types, with distinct colors representing different cancers. (B) Differential expression analysis of overlapping genes across multiple tumors. The top bar chart represents the number of genes that are upregulated (red) or downregulated (green) in each cancer type. Below, the dot plot shows the expression levels of these genes, with the size of each dot reflecting the significance of differential expression (-log10(FDR)) and the color indicating the log2 fold change. (C) Association of gene dosage with expression changes in different cancers. The dot plot displays the correlation coefficients (color-coded) between CNV and gene expression levels. (D) Relationship between promoter methylation and gene expression in different cancers. This plot illustrates the correlation coefficients (color-coded) for the effect of promoter methylation changes on gene expression. (E) Association between TMB and gene expression in distinct malignancies. The dot plot presents the correlation coefficients (color-coded) for the relationship between TMB and gene expression levels, with the dot size indicating the significance (-log10 (p-value)) of these associations. This analysis helps to identify genes whose expression is influenced by the overall mutation load in tumors. (F) δ-values of promoter methylation in tumors versus normal tissues for overlapping genes across different cancers. This graphic displays the δ-values (difference in methylation levels) between tumors and normal tissues, with the size of the dots indicating the significance (-log10 (p-value)).
Correlation of overlapping gene expression with immune cell infiltration and minor allele frequency across cancers
In this study, we conducted a comprehensive pan-cancer analysis of the relationship between the expression levels of key overlapping genes across various cancer types and immune cell infiltration, TMB, and MAF, highlighting the crucial roles of these overlapping genes. Using heatmaps, radial plots, and MAF heatmaps generated by CIBERSORT, we systematically evaluated these relationships. The heatmaps presented in Figures 5A–J show significant correlations between the expression levels of key genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1B, IL6, IL10, MPO, PRL, and REN) and immune cell infiltration levels, including B cells, CD8+ T cells, regulatory T cells (Tregs), natural killer (NK) cells, macrophages, immature dendritic cells (iDC), activated dendritic cells (aDC), and mast cells. Our findings provide strong evidence of the association between gene expression and immune cell infiltration from a pan-cancer perspective. To illustrate the expression patterns of these TMB-associated overlapping genes across cancer types, radial plot analysis revealed a bimodal distribution of TMB-related gene expression levels, suggesting their potential role as regulatory factors in cancer mutation processes (Figure 5K). Additionally, the heatmap in Figure 5L shows the MAF of these overlapping genes across different cancer types, with observed MAF differences potentially reflecting the heterogeneity of genetic alterations and selective pressures encountered in tumorigenesis. Overall, this study reveals critical insights into the genetic and immunological characteristics of cancer, suggests potential biomarkers for cancer detection and prognosis, and highlights molecular mechanisms that may drive tumor progression.
[image: Multiple panels labeled A to L display clustered heatmaps and a circular chart representing gene expression profiles across various samples. Panels A to J show different heatmaps with varying color intensities indicating expression levels. Panel K features a circular chart illustrating gene expression patterns for seven genes color-coded by legend. Panel L presents a matrix diagram with filled and unfilled squares, signifying different gene interaction or expression levels.]FIGURE 5 | Correlation Analysis of Overlapping Genes with Immune Cell Infiltration. (A–J) Heatmaps showing correlations between the expression of key genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1β, IL6, IL10, MPO, PRL, and REN) and the infiltration of various immune cell types across different tumor types. Each subfigure (A–J) illustrates the correlation between the expression of a single gene and the abundance of multiple immune cell types, including B cells, T cells (CD8+ and CD4+ subsets), NK cells, macrophages, dendritic cells, and mast cells. The color intensity in the heatmaps corresponds to the correlation coefficient (r), where purple indicates positive correlations and green indicates negative correlations. The significance of the correlations is denoted by the size of the squares, with larger squares indicating higher statistical significance (p < 0.05). (K) Radial plot representing the expression patterns of key overlapping genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1β, IL6, IL10, MPO, PRL, and REN) across various cancer types in relation to TMB. The circumference of the plot represents different cancer types, while the colored lines indicate the expression patterns of each gene in relation to TMB, with data points standardized for comparison. Pearson correlation coefficients were used to assess the strength of these relationships. (L) Heatmap depicting the MAF of the overlapping genes across different cancer types. The intensity of the color in each cell represents the frequency of minor alleles, with deeper hues indicating higher frequency. Each cell corresponds to a specific gene-cancer type combination, derived from extensive cancer genomics studies. The statistical significance of the MAF data was determined using chi-square tests.
Pathway analysis in various tumors
An integrated analysis of promoter methylation and its correlation with gene expression, alongside pathway activity and enrichment, can yield valuable insights into tumorigenesis across different cancers. Heatmaps presented in Figure 6A illustrate the varying levels of promoter methylation among multiple cancer types, with red indicating significantly higher methylation and blue indicating substantially lower methylation when comparing tumor tissues to normal tissues. In Figure 6B, we plot promoter methylation levels against mRNA expression, where red represents a positive correlation and blue indicates a negative correlation, highlighting the complex interplay between methylation and gene expression. Subsequent boxplots (Figures 6C–F) present pathway activity Z-scores in tumor tissues versus normal tissues across different cancers, with the Wilcoxon Rank Sum Test employed to assess statistical significance. These plots reveal significant differences in pathway activity between tumor and normal tissues, with distinct patterns observed in specific cancer types. Figure 6G offers a scatter plot of KEGG pathway enrichment analysis, where the color gradient from yellow to blue represents the level of significance, and the size of each dot reflects the proportion of enriched genes within each pathway. This analysis identifies critical pathways that are highly enriched in tumors, providing potential targets for therapeutic intervention. Furthermore, Figure 6H displays a radial plot of GO enrichment analysis.
[image: Heatmaps and box plots show differences in promoter methylation levels and their correlation with mRNA expression. Panel G depicts pathway enrichment via a scatter plot, while panel H presents a pie chart of GO categories such as signaling pathways and molecular functions.]FIGURE 6 | Comprehensive Analysis of Promoter Methylation, Gene Expression Correlation, Pathway Activity, and Enrichment Analysis in Various Tumors. (A) Heatmap showing differences in promoter methylation levels across multiple cancers. Each row represents a specific gene, while each column indicates a type of cancer. Red represents higher promoter methylation levels in tumor tissues compared to normal tissues, while blue indicates lower promoter methylation levels in tumor tissues. (B) Heatmap illustrating the correlation between promoter methylation levels and mRNA expression in distinct cancers. Each row represents a gene, and each column indicates a type of cancer. Red indicates a positive correlation between promoter methylation levels and gene expression, while blue indicates a negative correlation, highlighting the complex relationship between methylation and gene expression. (C–F) Boxplots depicting pathway activity Z-scores in tumor tissues versus normal tissues across various cancers. The vertical axis lists different types of cancer, while the horizontal axis represents pathway activity Z-scores. Wilcoxon Rank Sum Tests were used to assess statistical significance when comparing tumor and normal tissues. (G) Scatter plot displaying KEGG pathway enrichment analysis. The color gradient from yellow to blue represents the level of significance, with yellow being more significant. The size of each dot corresponds to the fraction of enriched genes within each pathway, highlighting the degree of enrichment and identifying critical pathways involved in tumorigenesis. (H) Radial plot illustrating Gene Ontology (GO) enrichment analysis. The radius of each sector represents the negative log10 of the adjusted p-value, with larger sectors indicating higher levels of enrichment. The gray circle marks the position where the adjusted p-value equals 0.05. This plot emphasizes the most significantly enriched GO terms, providing insights into the molecular functions and biological processes that are critically altered in cancer.
Anti-inflammatory and antioxidative effects of DHA and EPA on LPS-stimulated RAW 264.7 cells and cancer cells
This study evaluated the antioxidative and anti-inflammatory effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on LPS-stimulated RAW 264.7 macrophages and various cancer cell lines, demonstrating a marked reduction in oxidative stress, inflammatory cytokine expression, and cancer cell proliferation. Flow cytometry analysis revealed that both DHA and EPA significantly reduced ROS levels in LPS-stimulated RAW 264.7 cells (Figure 7A). Compared to the LPS-only group, cells treated with DHA and EPA exhibited notably lower ROS levels. Immunofluorescence staining was employed to assess the expression of IL-6 and IL-1β in RAW 264.7 cells. In the DHA + LPS and EPA + LPS treatment groups, IL-6 expression was significantly reduced compared to the LPS-only group (Figure 7B). Similarly, DHA and EPA treatments decreased IL-1β expression, a key pro-inflammatory cytokine, as indicated by reduced red fluorescence (Figure 7C). These findings suggest that DHA and EPA effectively suppress LPS-induced inflammatory responses at the cellular level. The effects of DHA and EPA on cancer cell proliferation were evaluated using colony formation assays in various cancer cell lines (LNCaP, HCT116, HepG2, and A549). Compared to the untreated control group, cells treated with DHA and EPA showed a marked reduction in colony formation, indicating a significant inhibitory effect on cancer cell proliferation (Figure 7D). This finding implies that DHA and EPA may possess anticancer properties by inhibiting cell growth. Immunofluorescence analysis also examined the nuclear translocation of SUMO1, a protein involved in stress response pathways, under inflammatory conditions. In the LPS-stimulated group, there was a notable increase in SUMO1 nuclear localization (Figure 7E). Treatment with DHA and EPA resulted in reduced SUMO1 nuclear translocation, suggesting that these fatty acids may modulate stress-related post-translational modifications, further enhancing their anti-inflammatory effects. In conclusion, these findings indicate that DHA and EPA exert antioxidative and anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by reducing ROS production and downregulating pro-inflammatory cytokine expression. Their ability to inhibit cancer cell proliferation and regulate SUMO1-associated nuclear translocation highlights their potential therapeutic applications in managing inflammation and cancer.
[image: Graphical abstract showing the effects of various treatments on cells. Panel A displays flow cytometry results comparing control, LPS, LPS with DHA, and LPS with EPA. Panels B and C depict fluorescence microscopy images showing red staining for IL-6 and IL-1β, with DAPI-stained nuclei, respectively, across different treatments. Panel D shows petri dishes with cell cultures under different conditions (Control, DHA, EPA) for LNCaP, HCT116, HepG2, and A549 cell lines. Panel E displays fluorescence microscopy images of SMOX with DAPI-stained nuclei. Each treatment condition is compared with a control.]FIGURE 7 | Effects of DHA and EPA on Oxidative Stress, Inflammatory Cytokine Expression, and SUMO1 Nuclear Translocation in RAW 264.7 Cells and Cancer Cell Lines. (A) Flow cytometry analysis of reactive oxygen species (ROS) levels in RAW 264.7 cells treated under different conditions: Control, LPS-stimulated (LPS), LPS + DHA, and LPS + EPA. The x-axis represents “ROS Intensity (Arbitrary Units),” and the y-axis indicates “Cell Count.” DHA and EPA treatments significantly reduced ROS levels in LPS-stimulated cells, demonstrating their antioxidative effects. (B) Immunofluorescence staining for IL-6 in RAW 264.7 cells under the following conditions: Control, LPS, LPS + DHA, and LPS + EPA. Both DHA and EPA treatments significantly inhibited LPS-induced IL-6 expression, indicating an anti-inflammatory effect. (C) Immunofluorescence staining of IL-1β in RAW 264.7 cells under Control, LPS, LPS + DHA, and LPS + EPA conditions. IL-1β appears in red, with DAPI-stained nuclei in blue. Merged images demonstrate intracellular IL-1β localization. Treatment with DHA and EPA reduced LPS-induced IL-1β expression, further supporting their anti-inflammatory properties. (D) Colony formation assay images showing the clonogenic potential of cancer cell lines (LNCaP, HCT116, HepG2, and A549) after treatment with DHA and EPA (300 μM) compared to untreated controls. DHA and EPA treatments resulted in a marked decrease in colony formation across all cell lines, suggesting their potential to inhibit cancer cell proliferation. (E) Immunofluorescence analysis of SUMO1 nuclear translocation. This reduction in SUMO1 nuclear translocation suggests that DHA and EPA may modulate post-translational modifications involved in stress response pathways.
DISCUSSION
In this study, we utilized two-sample Mendelian randomization to investigate the causal relationship between metabolites and PH (Alhathli et al., 2023; Wang et al., 2021). Our analysis identified 57 metabolites that are significantly and causally associated with PH. Notably, piperidine, glucuronide, and N-lactose-valine were positively correlated with PH, while scoparone (C26) and docosahexaenoic acid (DHA) exhibited negative associations with PH (Re et al., 2023). These findings underscore the metabolic basis of PH and suggest pathways that may contribute to its pathogenesis. Additionally, our pan-cancer genomic analysis uncovered substantial alterations in copy numbers, methylation patterns, and TMB of ASOH genes associated with both PH and various malignancies. Key genes, including IL6, IL1B, and COL1A1, emerged from GSEA and tumor prediction analysis, highlighting the broad relevance of these genomic alterations across diseases.
In this study, we strengthen our understanding of the directional relationships between specific metabolites and the pathogenesis of PH, underscoring their substantial impact on modulating PH risk (Astore and Gibson, 2024; Choudhury et al., 2021). The substantial overlap in metabolically regulated genes—such as IL6, IL1B, and COL1A1—in lung epithelial cells associated with PH and all published cancer analyses (where metabolites were elevated) suggests shared mechanisms linking transcriptional changes to genomic alterations (Thakur and Chen, 2019; Ibrahim and Muhammad, 2020). The identification of 57 metabolites causally linked to PH significantly enhances our understanding of its metabolic pathogenesis. Moreover, phenolic compounds found in lentils possess long-lasting antioxidant properties, allowing them to effectively reduce symptoms of PH by decreasing oxidative stress (Xia et al., 2023; Park et al., 2024; Żuchowski et al., 2021). This aligns with studies on the influence of arsenic sulphide on the spread of cancer to other parts of the body through the HIF-1α/VEGF pathway, emphasizing comparable connections between substances produced during metabolism and changes in the genes in pulmonary hypertension (Lu et al., 2023). The study of exercise-induced biomarkers and their relationship with PH offers a new viewpoint on non-pharmacological therapies and their processes (Yau et al., 2016; Reis, 2020). Our research elucidates the roles of DHA and EPA in regulating ROS production and inflammatory cytokine expression, both of which are pivotal in improving endothelial function and mitigating vascular inflammation associated with PH.
The presence of metabolites such as the glucuronide of piperidine and N-lactoyl-valine demonstrates a positive association with the progression of PH pathophysiology, suggesting their potential role in exacerbating the condition. Conversely, the negative associations with metabolites such as scoparone and DHA suggest that these compounds may function as protective agents and hold potential as therapeutic targets (Li and Zhao, 2020; Chen et al., 2020). These findings are consistent with previous research emphasizing the role of metabolic dysregulation in cardiovascular diseases, while extending this focus specifically to PH (Chan and Rubin, 2017; Harvey and Chan, 2017). Additionally, the pan-cancer analysis provides critical insights into genomic alterations associated with the overlapping genes identified (Gröbner et al., 2018; Murphy et al., 2016; Pleasance et al., 2020). Notably, the observed changes in copy number, methylation patterns, and TMB profiling are interconnected, highlighting their essential role in understanding both cancer development and evolution (Thomson et al., 2017; Chen C. et al., 2022). This supports the hypothesis of a shared inflammatory etiology between PH and various cancer types, particularly through genes such as IL6 and IL1B that are strongly associated with inflammation and immune responses (Naugler and Karin, 2008; Taniguchi and Karin, 2014). Furthermore, collagen genes like COL1A1 and COL5A1 emphasize the involvement of extracellular matrix remodeling in both conditions (Dzobo et al., 2012; Machol et al., 2022). DHA and EPA significantly alleviate vascular inflammation and remodeling, which may be related to the regulation of PPAR and NF-κB pathways, ultimately helping to improve pulmonary vascular function (Łacheta et al., 2019). Some fatty acids such as DHA and EPA can downregulate pro-inflammatory cytokines that promote tumor growth, which may improve the effectiveness of conventional treatments such as chemotherapy and radiotherapy (Silva et al., 2015). In addition, DHA and EPA can serve as adjunctive therapies for cancer treatment. Combining these omega-3 fatty acids can help improve patients’ quality of life by reducing chemotherapy related side effects and enhance overall treatment efficacy by regulating inflammatory responses (Silva et al., 2015). DHA and EPA have the potential to serve as dietary supplements to support immune function and alleviate cachexia, a common complication in cancer patients (Szlendak and Kapała, 2024). This is consistent with several studies suggesting that signaling networks, such as the APC/Wnt/β-catenin pathway, are crucial in cancer, corroborated by our findings on genetic changes occurring in PH (De Jesus Perez et al., 2012; Billmann et al., 2018). These results underscore the importance of a holistic approach for studying and treating this complex disease (Chen et al., 2023; Hiremath et al., 2022; Li et al., 2023), emphasizing the significant impact of the microenvironment on tumor development and progression (Mei et al., 2024; Wan et al., 2024).
While this study is comprehensive, it still have limitations. The utility of MR analysis for causal inference can be affected by the reliability and accessibility of genetic instruments (LaPierre et al., 2023; Slob and Burgess, 2020). The findings may also be complicated by pleiotropy, where genetic variants influence multiple traits. Additionally, biases arising from specific cohorts or datasets can lead to selection bias and limit the generalizability of the results. Conclusions derived from single-cohort-based GWAS data may have restricted applicability. Variability in genetic associations across different populations may lead to confounding. It is crucial to recognize and address limitations inherent in MR research, such as pleiotropy, which can confound the analysis. Employing sensitivity analyses and robust genetic instruments could improve methodological transparency. In addition, measuring exposure such as metabolite levels, may result in attenuation of causal estimates, thereby affecting the strength of associations observed. Despite the pan-cancer study’s breadth, it may not capture all genetic changes due to cancer heterogeneity (Tan et al., 2015; Raynaud et al., 2018; Nakamura et al., 2020). Future research should replicate these findings in larger, more diverse populations to deepen our understanding of the underlying mechanisms (Melamud et al., 2020; Frank et al., 2006).
Our findings resonate with earlier studies that established the significant role of metabolites in cardiovascular diseases and cancer, suggesting that metabolic factors influence disease progression and severity (Ussher et al., 2016; Wang and Zhao, 2018). Our integrative approach, combining MR and pan-cancer analysis, uniquely elucidates the interconnected relationship among metabolites, PH, and genomic perturbations, distinguishing it from prior studies focused on specific diseases (Zhong et al., 2022; Pocza, 2012). This research carries substantial implications for clinical practice and future research directions. Understanding the roles of specific metabolites in PH may facilitate the development of targeted therapeutics aimed at regulating these metabolic pathways (Kaddurah-Daouk et al., 2014). The pan-cancer analysis also identified genomic aberrations that could serve as biomarkers for early cancer detection and prognosis, potentially leading to new therapeutic interventions (Ding et al., 2019; Ibrahim et al., 2022). For instance, network pharmacology and molecular docking studies have explored the mechanisms of white peony medicinal herb in treating lupus nephritis (Cao et al., 2023). Subsequent studies have demonstrated the impact of HER2 on bladder cancer cell properties, revealing its contributory role in bladder cancer progression and clinical outcomes (Li et al., 2024). Additionally, PRMT5 has emerged as a key mediator of AKT’s oncogenic activity through methylation, promoting tumor cell metastasis, and targeting PRMT5 shows promise for cancer therapy (Huang et al., 2022). Thus, this integrative approach is powerful, particularly when considering both metabolic and genetic factors in disease processes (Allum and Grundberg, 2020; Barroso and McCarthy, 2019). By integrating several investigations, a thorough comprehension of the connections between metabolic pathways and cancer genomes is achieved, therefore opening up possibilities for tailored treatments focused on metabolism for PH (Bi et al., 2021; Gómez-Cebrián et al., 2022; Le et al., 2019). By combining state-of-the-art advancements and techniques, such as the application of ultrasound to study non-invasive brain-machine interfacing, there is potential to significantly transform the methods used for diagnosing and treating PH (Jones and Hynynen, 2019). The therapeutic implications of pharmacological drugs and the comprehension of drug mechanisms are crucial (Cracowski et al., 2022). Furthermore, examining the significance of trace elements in the diagnosis of atherosclerosis provides fresh perspectives on potential biomarkers for diagnosis and targets for treatment in pulmonary hypertension (Meng et al., 2023; Prashar et al., 2017; Bargieł et al., 2021).
Our research found that DHA and EPA suppress oxidative stress and inflammatory responses in LPS-stimulated RAW 264.7 cells and cancer cells, reducing nuclear translocation of SUMO proteins commonly associated with inflammation. SUMOylation is a critical protein modification process that typically plays a key role in cellular responses to stress and inflammation (Guo and Henley, 2014). When cells experience oxidative stress or inflammatory stimuli, SUMOylated proteins may translocate to the nucleus to enhance the expression of stress-response-related genes (Pascual et al., 2005). However, if DHA and EPA can mitigate inflammation and oxidative stress, this nuclear translocation activity of inflammation-associated SUMO proteins would decrease accordingly, potentially reducing the persistence and intensity of inflammatory responses. In Alzheimer’s disease research, Chen et al. were the first to reveal the role of SUMOylation in regulating neuroinflammation, particularly through SUMO modification of the insulin-like growth factor 1 receptor (IGF1R) in influencing neuroinflammation (Chen et al., 2024a). Additionally, appropriately controlling the nuclear translocation of CRM1-mediated SUMOylated PKM2 protein can significantly reduce neuroinflammation and improve cognitive function (Chen et al., 2024b). Although this finding requires further investigation, it provides potential insights into developing new neuroprotective strategies. Similarly, SUMOylation can modulate the activity of key transcription factors (such as NF-κB and STAT1) in inflammatory signaling pathways, thereby reducing or enhancing inflammatory responses (Parra-Peralbo et al., 2021). For instance, in murine models, inhibiting NF-κB SUMO modification significantly reduces inflammatory responses, decreasing the release of pro-inflammatory factors like IL-6 and IL-1β (Yang et al., 2021; Decque et al., 2016). This inhibition may achieve anti-inflammatory effects by reducing NF-κB nuclear translocation, providing theoretical support for the anti-inflammatory mechanisms of DHA and EPA. SUMOylation also exhibits an important dual role in cancer, potentially promoting tumor progression or inhibiting it by regulating specific pathways. For example, SUMOylation can regulate the activity of tumor suppressor factors such as p53 and HIF-1α, thereby influencing apoptosis and tumor progression (Lee et al., 2017). Some anticancer drugs, such as SUMO E1 inhibitors like TAK-981, are being investigated to suppress the abnormally increased SUMO activity in cancer cells, thereby inhibiting cancer cell proliferation by affecting the nuclear translocation of tumor-related genes (Kukkula et al., 2021). As anti-inflammatory and antioxidant agents, DHA and EPA may act through similar mechanisms, showing promising applications in suppressing inflammation, enhancing cellular function, or exhibiting anti-tumor properties.
These research findings significantly enhance the clinical understanding of PH and its connection with cancer, advancing the current knowledge of the pathophysiological mechanisms linking these two conditions. On one hand, this study offers crucial insights for developing early diagnostic techniques or biomarkers to detect PH in cancer patients, which could lead to earlier intervention and improved patient management. On the other hand, these findings open up potential therapeutic avenues by identifying novel targets and approaches for treating PH within the cancer context, promising to improve overall patient outcomes. DHA and EPA demonstrate substantial potential in alleviating oxidative stress and inflammation, showcasing therapeutic relevance in clinical settings. This study elucidates the molecular mechanisms through which these fatty acids exert their effects, including clinical trials assessing DHA and EPA’s efficacy in specific cancer types. These trials provide alternative therapeutic options and tailored treatment strategies for patients. Future studies should prioritize validating these findings through experimental and clinical trials to substantiate their therapeutic applications. Further exploration of the pathways connecting metabolites with PH and cancer could reveal novel therapeutic targets. Incorporating multi-omics approaches, such as proteomics and transcriptomics, into pan-cancer studies will provide a more holistic view of disease processes, offering deeper insights into pathogenesis.
CONCLUSION
This study sheds new light on the metabolically driven causative linkages in PH, as well as the pan-cancer genomic landscape of overlapping genes. The researchers integrated findings from Mendelian randomization studies and pan-cancer data to identify key factors related to metabolism and genetic changes that may serve as potential treatment targets or biomarkers. By tailoring intervention measures based on individual biomarker characteristics, clinicians can improve treatment outcomes and reduce adverse reactions, thereby improving patient prognosis. Future research could focus on validating identified metabolite biomarkers in well-defined clinical cohorts. To ensure the robustness of the research results, it is recommended to conduct multicenter clinical trials to enhance the generalizability of the efficacy of biomarkers for different populations and cancer types.
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Introduction: Lung adenocarcinoma (LUAD) has become one of the leading causes of cancer-related deaths globally, with metastasis representing the most lethal stage of the disease. Despite significant advances in diagnostic and therapeutic strategies for LUAD, the mechanisms enabling cancer cells to breach the blood-brain barrier remain poorly understood. While genomic profiling has shed light on the nature of primary tumors, the genetic drivers and clinical relevance of LUAD metastasis are still largely unexplored.Objectives: This study aims to investigate the genomic differences between brain-metastatic and non-brain-metastatic LUAD, identify potential prognostic biomarkers, and evaluate the efficacy of AH-6809 in modulating key molecular pathways involved in LUAD metastasis, with a focus on post-translational modifications (PTMs).Methods: Genomic analyses were performed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between brain-metastatic and non-metastatic LUAD samples were identified. Key gene modules were determined using Weighted Gene Co-expression Network Analysis (WGCNA), and their prognostic significance was assessed through Kaplan-Meier analysis. Cellular experiments, including CCK8 and qRT-PCR assays, were conducted to evaluate the anti-cancer effects of AH-6809 in LUAD cells. Apoptosis and inflammatory marker expression were assessed using immunofluorescence.Results: Genomic analysis differentiated brain-metastatic from non-brain-metastatic LUAD and identified NLRP7, FIBCD1, and ELF5 as prognostic markers. AH-6809 significantly suppressed LUAD cell proliferation, promoted apoptosis, and modulated epithelial-mesenchymal transition (EMT) markers. These effects were reversed upon NLRP7 knockdown, highlighting its role in metastasis. Literature analysis further supported AH-6809’s tumor-suppressive activity, particularly in NLRP7 knockdown cells, where it inhibited cell growth and facilitated apoptosis. AH-6809 was also found to affect SUMO1-mediated PTMs and downregulate EMT markers, including VIM and CDH2. NLRP7 knockdown partially reversed these effects. Immunofluorescence revealed enhanced apoptosis and inflammation in lung cancer cells, especially in NLRP7 knockdown cells treated with AH-6809. The regulatory mechanisms involve SUMO1-mediated post-translational modifications and NQO1. Further studies are required to elucidate the molecular mechanisms and assess the clinical potential of these findings.Conclusion: These findings demonstrate the critical role of NLRP7 and associated genes in LUAD metastasis and suggest that AH-6809 holds promise as a potential therapeutic agent for brain-metastatic LUAD.Keywords: lung adenocarcinoma, brain, brain metastasis, pan-cancer analysis, genomic, genomic profiling, prognostic markers, immune infiltration
INTRODUCTION
Lung adenocarcinoma (LUAD), the most common subtype of non-small cell lung cancer (NSCLC), is a leading cause of cancer-related mortality worldwide (Sainz De Aja et al., 2021; Ye et al., 2019). Despite advancements in diagnostic tools and therapeutic strategies, accurate prediction of LUAD progression, particularly metastasis, remains challenging. This is due to the reliance on indirect findings and a lack of understanding of the molecular mechanisms driving LUAD metastasis (Webb and Simon, 2010; Li et al., 2018). Brain metastasis occurs in approximately 20%–40% of patients with advanced LUAD, making it one of the most common sources of brain metastasis across cancer types (Yang et al., 2004; Valastyan and Weinberg, 2011). Metastasis, a complex multi-step process in which cancer cells spread from the primary tumor to distant organs, is regarded as the most lethal phase of cancer progression (Shi et al., 2016; Kleczko et al., 2019). LUAD cells enhance their invasive capabilities and promote metastasis, including to the brain, through epithelial-mesenchymal transition (EMT). These cells also stimulate angiogenesis, alter the local brain microenvironment, and create favorable conditions for metastatic growth. Additionally, LUAD cells evade immune responses, further complicating the treatment of metastasis (Chen et al., 2020; Li et al., 2021).
While genomic profiling has provided significant insights into the genetic and molecular drivers of primary LUAD tumors, particularly through efforts like The Cancer Genome Atlas (TCGA) project, the molecular mechanisms specific to LUAD brain metastasis remain largely unexplored. This gap includes key gene alterations, such as EGFR mutations and ALK rearrangements, which are associated with a higher risk of brain metastasis (Li et al., 2018; Xie et al., 2021). Much of the work in cancer research focuses on genomics, which calls for cross-cancer analyses to study pan-cancers like LUAD together with other types both genetic and molecular basis providing global understanding around diseases (Liu and Zhang, 2014; Shi et al., 2016). While the existing literature has identified various genes and epigenetic changes associated with LUAD, the heterogeneity and dynamism of metastatic disease present significant challenges in identifying consistent biomarkers and therapeutic targets (Mastrogiacomo et al., 2024; Testa et al., 2022). Previous genomic studies have predominantly focused on primary tumors, with limited attempts to link genomic alterations to metastatic potential (Mardis, 2018).
In the existing LUAD studies, many genes have been found associated with primary tumors, but their direct relationship with metastatic potential remains unclear (Minn et al., 2005; Yao et al., 2020). Although the roles of genes like ARRDC5 and ELF5 in cancer progression have been studied, their pan-cancer significance across different cancer types has not been fully demonstrated (Mishra et al., 2016; Piggin et al., 2016). Additionally, the downregulation of L1CAM in LUAD metastasis contrasts with its known role in promoting invasion in other cancers, revealing a more complex and context-dependent role of L1CAM in cancer biology (Wu et al., 2019; Hai et al., 2012). Current research on these genes highlights the need for a deeper investigation into their prognostic potential and their roles in mediating the metastatic cascade in LUAD. Furthermore, while some therapeutic strategies have targeted these pathways (Guo et al., 2022; Yamaguchi et al., 2024), their efficacy in treating brain-metastatic LUAD is still under investigation. Identifying molecular markers that can predict metastasis and guide therapy is critical to improve patient outcomes. Though an overall understanding of the genomic signature has been established through studies on LUAD, metastatic disease is rarely studied and done so with a small sample size (Li et al., 2021; Feng et al., 2022). In addition, Conducting such analysis in existing studies that are mainly based on public genomic data (having advantages of large scope but maybe lack detailed information) can be challenging (Näpflin et al., 2019; Liang and Greenwood, 2015). Further studies are required to verify these genes and their functional roles in LUAD metastasis, using experimental methods (Wang et al., 2020; Zhang et al., 2021).
The integration of big data and bioinformatics has become increasingly important for identifying biomarkers that can aid in the diagnosis and prognosis of LUAD (Takano and Ito, 2023; Yuan et al., 2024). Protein-protein interaction networks, as well as their modifications and regulatory mechanisms, are central to understanding cellular signaling and functional regulation (Wu et al., 2024; Tian et al., 2023). In the field of genomics, unsurpassed work in immune microenvironment-related diagnosis and prognostic evaluation for many diseases has been achieved through transcriptome (Cao et al., 2024; Zhao et al., 2024). Advances in transcriptomic analysis have also provided valuable insights into the immune microenvironment and its role in disease progression (Thakur et al., 2023; Wu et al., 2023). By employing cutting-edge methodologies such as machine learning, multi-omics analysis, high-throughput sequencing, and bioinformatics, researchers continue to explore new therapeutic strategies that open doors to precision medicine and personalized treatments (Wu et al., 2023; Zhuo et al., 2024; Aydoğdu et al., 2024).
This study aims to address these gaps by conducting a comprehensive genomic analysis of LUAD metastasis. Previous research has identified various genetic alterations in LUAD, but few have linked these changes specifically to brain metastasis. The clinical implications of these genes remain largely unexplored, and while certain therapeutic agents targeting these pathways show promise, their efficacy in treating brain-metastatic LUAD is still being evaluated. Further studies are necessary to determine the molecular mechanisms behind these observations and assess their potential for clinical application. This version streamlines the background, enhances clarity, and aligns the content with the formal tone typical of SCI papers, making it concise yet comprehensive for a scientific audience.
MATERIALS AND METHODS
Acquisition and processing of GEO datasets
In this study, microarray data from brain metastasis samples of lung adenocarcinoma patients were analyzed. A total of 28 samples were included, with 19 obtained from Marc Ladanyi’s research group and nine from William L. Gerald’s research group. The data were retrieved from the Gene Expression Omnibus (GEO) database provided by the National Center for Biotechnology Information (NCBI) under the accession number GSE14108. Additionally, to investigate the tumor microenvironment in brain metastases of lung adenocarcinoma patients, bulk RNA sequencing was performed on brain metastasis samples from six patients, utilizing the Illumina HiSeq X Ten platform. These sequencing data were also acquired from the GEO database, with accession number GSE141685. Differential expression analysis was conducted by comparing the expression profiles of brain metastasis samples to those of primary lung adenocarcinoma tumors obtained from the TCGA database. Specifically, data from 14 early-stage and 11 late-stage primary lung adenocarcinoma tumors were included in the analysis. Statistical analysis was performed using the False Discovery Rate (FDR) for multiple testing correction with a significance threshold set at p < 0.05. Data normalization was applied, and the linear model coupled with empirical Bayes methods from the R package “limma” was employed to identify significantly differentially expressed genes.
Pan-cancer expression analysis of core genes
This study encompassed the mRNA expression data, copy number variation (CNV) data, and DNA methylation 450 K data from 20 cancer types, including bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), cervical and endocervical cancers (CESC), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). These data, which included both tumor and normal samples, were downloaded from Firehose (http://gdac.broadinstitute.org). Mutation, miRNA sequencing data, and clinical information were obtained from the Xena Browser (https://xenabrowser.net/datapages/). To assess the differences in gene expression between cancerous and normal tissues across various cancer types, we utilized the Wilcoxon rank-sum test (also known as the Mann-Whitney U test), a non-parametric method suitable for comparing the medians of two independent groups without requiring assumptions of normality. Statistical significance was determined with an alpha value of 0.05. TPM expression data for tumor samples from TCGA and normal samples from GTEx were accessed via the UCSC Xena database. Z-score standardization was applied to normalize expression data and mitigate dimensional discrepancies across datasets. To enhance the evaluation of gene copy number alterations, both heterozygous and homozygous amplifications and deletions were considered. Pearson’s correlation coefficients were calculated between gene expression levels and copy number segment values to assess the relationship between CNV and gene expression.
Core gene promoter methylation analysis
We conducted an in-depth methylation analysis of several key genomic regions, including the TSS1500 region (1,500 base pairs upstream of the transcription start site), the TSS200 region (within 200 base pairs of the transcription start site), the first exon, and the 5'untranslated region (5'UTR). Methylation values across these regions were then tallied and the median methylation value was calculated to provide a global index of DNA methylation status for each sample. To explore potential correlations between methylation levels and gene expression, we used Spearman’s rank correlation, a non-parametric method for assessing the monotonic relationship between two variables that do not follow a normal distribution. The methylation levels were defined as the independent variable, and gene expression levels were being dependent on these exposure of an exogenous linear regression was pursued to calculate their associations by computing Spearman rank correlation coefficient. Further, promoter region methylation was compared in tumors and normal samples using Wilcoxon rank-sum test. This method is able to identify large changes in methylation levels between tumor and normal tissues.
Analysis of core genes using ATAC-seq
In this study, we utilized the ChIPseeker package to analyze and visualize ATAC-seq data. Using its annotatePeak function allowed us to closely examine transcription start sites within gene promoter areas, setting the tssRegion parameter to c (-3,000, 3,000) to ensure coverage from 3,000 base pairs upstream to downstream of the transcription start site. This thorough investigation around the transcription start site is critical for comprehending the scattering of transcription factor binding locations and histone changes. Additionally, the covplot function created coverage plots visually portraying the dispersion of peaks across the genome from our ATAC-seq data. The plots supplied specific information too, like gene names, cancer types, chromosomal positions, and precise genetic distances. These comprehensive genomic visualization tools provide researchers profound insights into the genomic landscape, with some plots showing broad trends of open chromatin regions across whole chromosomes and others zooming in to examine the distribution of TF binding or histone marks around individual gene promoters.
GSEA enrichment analysis in pan-cancer studies
It searched the TCGA database and collected RNA-seq or microarray data for various types of cancer, that included both expression information on tumor and normal (or paired) samples. These outcome data were put through rigorous quality control before analysis to guarantee sample and probe precision. The data would then be standardized to reduce technical variability. Differential expression analysis was carried out using the “R package ‘clusterProfiler’” “limma”, a tool for normalization of data, background correction and statistical testing to find significantly differentially expressed genes. Genes were screened based on a log2 fold change (log2FC) and p-value, with log2FC representing the logarithmic ratio of gene expression changes and the p-value indicating statistical significance. Next, we used the R package “clusterProfiler” in pathway enrichment analysis of differentially expressed genes against databases such as KEGG, GO and Reactome by gene set enrichment analysis (GSEA). The enrichment score (ES), ranging from 0 to 1, was used to assess the correlation between biological processes and gene expression changes. Finally, the R package “ggplot2″ was used to visualise data more conveniently with intuitive graphs and charts such as bar plots, scatter plots and gene expression heatmaps. This analytical framework provides a systematic approach to understanding the molecular mechanisms underlying cancer gene expression.
Molecular characterization of core genes in LUAD
We conducted a ROC curve analysis using the pROC package to evaluate the diagnostic performance of the single-sample gene set enrichment analysis score (ssGSEAscore) in distinguishing LUAD from normal control groups. This evaluation involved calculating the 95% confidence interval---the area under the curve (AUC) and plotting the smoothed ROC curve. The ssGSEAscore was derived from the TCGA dataset’s RNA-seq data using the “ssgsea” method of the GSVA package. Data was sourced from the PanCanAtlas, specifically the EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2 geneExp.tsv file processed by the Firehose pipeline with MapSplice + RSEM and normalized by setting the upper quartile to 1,000. Further analysis involved using the Wilcoxon rank-sum test to compare ssGSEAscore expression levels between tumor and normal tissues within the LUAD dataset, assessing their statistical significance. The Wilcoxon signed-rank test also compared expression differences between tumor and adjacent non-tumor tissues. Calibration curves described the consistency between model predictions and actual observations, while goodness-of-fit tests evaluated the model’s alignment with ideal conditions.
The Wilcoxon rank-sum test was also used to analyze differences in ssGSEAscore distributions between early- and late-stage LUAD samples. A Kruskal-Wallis rank-sum test then assessed further whether this was merely due to chance within the LUAD data set. These methods represent robust statistical tools for evaluating how gene set expression profiles correspond with clinical characteristics in lung adenocarcinoma.
Survival prognosis analysis of core genes in LUAD
Kaplan-Meier survival analysis used the survival package in R environment determined optimal high and low ssGSEAscore group cut-off values. The survminer package ensured each score group had a minimum 0.3 proportion. The log-rank test assessed survival differences between the two groups using the survfit function. Additionally, univariate Cox survival analysis results were combined using the inverse variance method in a meta-analysis, with hazard ratio serving as the primary measurement.
Connectivity map (cMAP) analysis
To identify potential therapeutic options that could mitigate the tumor-promoting effects driven by specific genes, a Connectivity Map (cMAP) analysis was performed using CMAP_gene_signatures. The associated RData file comprises gene expression profiles for 1,288 different compounds. A gene signature was generated by selecting the 150 most significantly upregulated and 150 most significantly downregulated genes, based on a comparison between patients with high and low levels of gene expression in tumors. The eXtreme Sum (XSum) algorithm was employed to compare these gene signatures with cMAP signatures, generating similarity scores for the 1,288 compounds. The analysis followed established protocols as described in prior studies (Yang et al., 2022; Malta et al., 2018).
Cell lines and clinical samples
The non-small cell lung cancer (NSCLC) cell line, NCI-H1299 (ATCC® CRL-5803™), was obtained from the American Type Culture Collection (ATCC, United States). These cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% fetal bovine serum (FBS).
Silencing of NLRP7 gene using lentiviral vectors
To assess the impact of NLRP7 gene knockdown, lentiviral vectors were employed to silence the gene in NLRP7 cells. The specific targeting sequences were sourced from Open Biosystems.
Immunofluorescence
Cells were seeded into 24-well culture plates and incubated overnight to allow for attachment. Fixation was performed at room temperature using 3.7% paraformaldehyde for 15 min, followed by permeabilization in chilled methanol at −20°C for another 15 min. Afterward, cells were incubated at room temperature for 1 h in blocking buffer (PBS containing 5% normal goat serum and 0.5% Triton X-100). Primary antibodies were added, and the cells were incubated overnight at 4°C. The next day, cells were washed three times with PBS, 10 min each time, and then incubated at room temperature with a goat anti-rabbit secondary antibody conjugated to a fluorophore (diluted 1:500 in blocking buffer). Prior to imaging, the nuclei were stained at room temperature with DAPI for 30 min (catalog number D9542; Sigma). Images were captured using a Nikon Eclipse E800 fluorescence microscope.
Quantitative real-time PCR (qRT-PCR)
Total RNA was isolated with TRIzol, and complementary DNA (cDNA) synthesis was carried out using the FastStart Universal SYBR Green Master (ROX) from Roche, Switzerland, in conjunction with the PrimeScript™ RT Reagent Kit from TaKaRa, Japan. The qRT-PCR was conducted using a CFX96™ Real-Time System combined with a C1000™ Thermal Cycler, both from Bio-Rad, United States.
CCK-8 assay
The CCK-8 assay was utilized to evaluate cell proliferation. In brief, 2000 cells were seeded into each well of a 96-well plate and incubated at 37°C under 5% CO2. Afterward, 10 µL of CCK-8 solution (Vazyme Biotech Co., Ltd.) was added to each well, and the plate was incubated for an additional 2 h at 37°C. As a result, the absorbance of 450 nm was determined by microplate reader assay. Cell proliferation curves were constructed based on the three independent experiments.
Plate colony formation assay
A plate colony formation assay was employed to evaluate the long-term proliferative capacity of lung adenocarcinoma cells, Briefly, LUAD cells were transfected with shRNA targeting NLRP7, or cells were treated with AH-6809, to evaluate their effect on the clonogenic prospective. Cells were plated into six-well dishes in a density of 500 cells per well, incubated at 37°C under 5% CO₂ and kept in a humid environment. The culture medium was changed every 3 days to maintain optimal growth conditions After visible colonies had appeared (10–14 days after plating), the cells were fixed with 4% paraformaldehyde at room temperature for 15 min. Following fixation, the colonies were stained with 0.1% crystal violet solution for 30 min, and then gently washed with phosphate-buffered saline (PBS) and air-dried.
The number of visible colonies containing more than 50 cells was then counted under a microscope, and the colony formation efficiency-ratio of number colonies to cells originally plated (as a percentage) was calculated. This assay was performed in triplicate, and the results were analyzed statistically using the Student’s t-test to evaluate the significance of differences between experimental groups.
Statistical analyses
Data were expressed as mean ± standard deviation (SD) and were processed using GraphPad Prism version 8. For comparing two groups, a t-test was employed, while a one-way analysis of variance (ANOVA) was utilized for comparisons across multiple groups. Correlation analysis was performed using the Pearson correlation coefficient. A p-value of less than 0.05 was regarded as indicative of statistical significance.
RESULTS
Differentially expressed gene analysis of brain metastasis in lung adenocarcinoma
Through analysis of the GEO dataset, our comprehensive study focused on identifying genes associated with brain metastasis in LUAD. The analysis revealed significantly altered gene expression patterns between primary LUAD tumors and brain metastasis samples. As shown in Supplementary Figure S1A, a standardized boxplot compares the expression values between primary LUAD tumors and brain metastasis samples, illustrating the differences in gene expression between these tissue types. The distribution of gene expression highlighted significant differences between primary and metastatic tissues, with brain metastasis samples showing distinct patterns of gene regulation. To further explore the separation between primary and metastatic samples, we performed principal component analysis (PCA) (Supplementary Figure S1B). Additionally, the volcano plot highlights the differential expression of key genes between LUAD and LUAD brain metastasis samples. The plot shows genes significantly upregulated in brain metastasis, such as SLC7A10, SFT2D3, KTI12, and MIR1244-1, and genes significantly downregulated (Figure 1A). The heatmap presents normalized expression values on a color scale (Figure 1B). Clustering based on gene expression profiles reveals a clear separation between primary LUAD tumor samples and LUAD brain metastasis samples (in cyan). These findings identify potential therapeutic targets for future research and emphasize the importance of understanding the molecular basis of brain metastasis in LUAD.
[image: Panel A shows a volcano plot with genes categorized as upregulated, non-significant, and downregulated, highlighting KIF12, SLC22A10, SFPQ, and MIR1244-1. Panel B presents a heatmap illustrating gene expression levels across different groups, with a color scale indicating expression levels from low (blue) to high (red).]FIGURE 1 | Analysis of GEO dataset identifying genes associated with brain metastasis in lung cancer. (A) Volcano plot depicting differentially expressed genes between lung adenocarcinoma (LUAD) and brain metastases of LUAD (LUAD_brain). The x-axis represents the log2 fold change, and the y-axis represents the -log10 p-value. Genes significantly upregulated in brain metastases are indicated in red, downregulated genes in green, non-significant (NS) genes in black, and genes with no significant change (NS) in blue. Notable genes such as SLC7A10, SFT2D3, KTI12, and MIR1244-1 are highlighted. (B) Heatmap showing the expression profiles of the top differentially expressed genes in LUAD and LUAD_brain samples. The expression values are normalized and represented as a color gradient, with red indicating higher and blue indicating lower expression. The hierarchical clustering on the left group genes is based on their expression patterns across samples. The groups (LUAD and LUAD_brain) are labeled at the top, with LUAD in red and LUAD_brain in cyan.
Enrichment analysis of genes associated with lung cancer brain metastasis
In this study, we performed an enrichment analysis of genes associated with lung cancer brain metastasis using data from the GEO dataset. The top 10 enriched GO terms, categorized into Biological Process (BP), Cellular Component (CC), and Molecular Function (MF), indicate key biological activities such as bile acid biosynthetic process, organic hydroxy compound metabolic process, and sperm plasma membrane (BP); mitochondrion and synaptic membrane (CC); and bile acid transmembrane transporter activity, organic hydroxy compound transporter activity, and mRNA 3'-end processing (MF) (Figure 2A). The enriched KEGG pathways, including neuroactive ligand-receptor interaction, microRNAs in cancer, fat digestion and absorption, and olfactory transduction (Figure 2B). The chord diagrams in Figures 2C, D visualize the relationships between enriched GO terms and KEGG pathways alongside their associated genes, highlighting both shared and unique gene associations, thereby offering a comprehensive overview of the functional connections and biological processes relevant to lung cancer brain metastasis. These findings emphasize critical biological processes, cellular components, molecular functions, and pathways potentially implicated in the pathogenesis and progression of lung cancer brain metastasis, providing valuable insights for future research and potential therapeutic targets.
[image: Grouped images depicting bioinformatics analyses:  A: Bar graph showing the top ten enriched Gene Ontology (GO) terms, categorized by ontology: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF), with corresponding gene numbers.  B: Dot plot illustrating enriched KEGG pathways, with gene numbers indicated by dot size and p-values by color gradient.  C: Network diagram showing interactions of genes related to lipid metabolism, with node size indicating the degree of interaction and color representing the fold change.  D: Network diagram for cytokine-cytokine receptor interactions, similar styling as C, highlighting interactions and expression changes.]FIGURE 2 | Enrichment Analysis of Genes Associated with Lung Cancer Brain Metastasis from GEO Dataset. (A) The bar plot displays the top 10 Gene Ontology (GO) terms enriched in genes associated with lung cancer brain metastasis. GO terms are categorized into three ontologies: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). The x-axis represents the gene count, while the y-axis lists the enriched GO terms. Significant GO terms include bile acid biosynthetic process, organic hydroxy compound metabolic process, and sperm plasma membrane (BP); mitochondrion, and synaptic membrane (CC); and bile acid transmembrane transporter activity, organic hydroxy compound transporter activity, and mRNA 3'-end processing (MF). The enrichment analysis was performed using the GEO dataset, and significance was determined with adjusted p-values. (B) The dot plot illustrates the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for genes related to lung cancer brain metastasis. The x-axis shows the rich factor, and the y-axis lists the KEGG pathways. Dot size represents the number of genes, and color indicates the p-value. Notable pathways include Neuroactive ligand-receptor interaction, MicroRNAs in cancer, Fat digestion and absorption, and Olfactory transduction. (C) The chord diagram visualizes the relationship between enriched GO terms and their associated genes. Each GO term is connected to the corresponding genes, highlighting the shared and unique associations among the terms. This representation provides an overview of the functional connections and biological processes involved in lung cancer brain metastasis. (D) This chord diagram shows the relationships between enriched KEGG pathways and their associated genes. Similar to (C), the connections illustrate the shared and unique gene associations among different pathways, revealing the intricate network of biological interactions relevant to lung cancer brain metastasis.
Analysis reveals five L1CAM-Related prognostic genes in lung cancer brain metastasis
In this study, we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify prognostic genes associated with L1CAM in lung cancer brain metastasis. The hierarchical clustering dendrogram of LUAD and brain metastasis samples was used to detect outliers and visualize sample clustering (Supplementary Figure S1C). The scale independence and mean connectivity plots confirmed the scale-free topology of the co-expression network (Supplementary Figure S1D). The node connectivity distribution indicated that certain highly connected hubs play central roles in the network (Supplementary Figure S1E). The module eigengene clustering dendrogram revealed co-expression modules composed of highly correlated genes, offering insights into network structure in LUAD and brain metastasis samples (Supplementary Figure S1F). Module-trait correlations (Figure 3A) showed a weak negative correlation in the turquoise module and a stronger negative correlation in the grey module. The gene dendrogram and module colors are shown in Figure 3B. Correlation matrices and scatter plots demonstrated strong correlations (up to 0.99) between module eigengenes (Figure 3C). A Venn diagram (Figure 3D) revealed 534 overlapping genes between WGCNA-identified genes and differentially expressed genes (DEGs). Further analysis identified five key L1CAM-related genes (L1CAM, ARRDC5, NLRP7, ELF5, LINC00494, FIBCD1) (Figure 3E). Finally, network analysis of these genes (Figure 3F) illustrated strong interactions, suggesting their cooperative role in lung cancer brain metastasis.
[image: A collection of visual data presentations related to gene expression and module-trait relationships. A: Heatmap showing module-trait relationships with turquoise and grey modules. B: Dendrogram of gene clustering and corresponding module colors. C: Scatterplots displaying relationships between module eigengenes with correlation values. D and E: Venn diagrams comparing WGCNA genes, DEGs, OS related genes, and LICAM related genes. F: Network diagram highlighting interactions centered around LICAM with connected nodes.]FIGURE 3 | WGCNA analysis reveals five L1CAM-related prognostic genes in lung cancer brain metastasis. (A) Heatmap showing the correlation between identified modules and the trait of interest (group). The turquoise module has a weak negative correlation (−0.13, p = 0.5), while the grey module shows a stronger negative correlation (−0.65, p < 0.001), indicating a significant association. (B) Hierarchical clustering dendrogram of genes, with different colors representing distinct modules identified by WGCNA. Modules correspond to highly interconnected gene clusters. (C) Scatter plots and correlation matrices showing the relationships between module eigengenes. High correlation values (up to 0.99) indicate significant co-expression among genes within these modules. (D) Comparison of genes identified by WGCNA (left circle) and differentially expressed genes (DEGs) (right circle). The intersection reveals 534 overlapping genes, suggesting these are critical in the trait of interest. (E) Venn Diagram of WGCNA Genes, DEGs, and L1CAM-Related Genes: Overlap of WGCNA genes (blue), DEGs (pink), and L1CAM-related genes (green). The intersection indicates five common genes (highlighted in the center), likely key prognostic markers for lung cancer brain metastasis. (F) Interaction network of the five identified L1CAM-related prognostic genes (L1CAM, ARR, NLR, ELF, LIN, and FIB). The network shows strong interactions (green lines) among these genes, suggesting their cooperative role in lung cancer brain metastasis.
Pan-cancer expression landscape of core genes
In this study, we examined the expression patterns of seven core genes (ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7, L1CAM) across multiple cancer types using a combination of unpaired and paired samples, along with data from the TCGA-GTEx datasets. A heatmap of the differential expression analysis for these core genes across various cancer types using unpaired samples is shown (Figure 4A). This analysis revealed significant variations in gene expression across different cancer types. For example, L1CAM exhibited significant overexpression in LUSC, whereas ARRDC5 showed marked upregulation in BRCA, suggesting the involvement of these genes in tumorigenesis. The paired sample analysis further refined these findings by comparing cancer and adjacent normal tissues, minimizing inter-patient variability. Significant downregulation of ELF5 was observed in paired COAD samples, suggesting its potential role as a tumor suppressor in this cancer type (Figure 4B). Other genes, such as NLRP7 and ARRDC5, also displayed consistent dysregulation across paired samples, reinforcing their potential as therapeutic targets. Next, the TCGA-GTEx datasets were used to provide a broader view of gene expression across various cancer types and conditions. A bar chart and dot plot summarize the number of cancer types where each gene is significantly upregulated or downregulated (Figure 4C). This comprehensive analysis emphasized ARRDC5 and NLRP7 as the most consistently dysregulated genes across multiple cancer types, underscoring their critical role in cancer biology. Copy number variation (CNV) analysis revealed notable alterations in several of the core genes across different cancer types. For instance, ARRDC5 and L1CAM demonstrated significant CNV alterations, suggesting that these genetic changes may contribute to their differential expression and oncogenic potential (Figure 4D). The correlation between CNV and gene expression was further explored, with a bubble plot illustrating the correlation strength. Larger bubbles indicate a stronger correlation, with ARRDC5 demonstrating a positive correlation between CNV and expression in breast invasive carcinoma (Figure 4E). This result reinforces the hypothesis that CNV plays a role in regulating gene expression in cancer. To explore the functional implications of these findings, we performed a GSEA to identify the biological pathways associated with the dysregulated genes. Key pathways, such as apoptosis, immune response, and cell cycle regulation, were enriched for these genes (Figure 4F). For instance, NLRP7 was particularly associated with immune response pathways, indicating its involvement in modulating the tumor immune microenvironment. Finally, tumor microbiome analysis across various cancer types identified possible interactions among microbial species and gene expression. The heatmap shows the relative abundance of microbial species in tumor samples, with certain species more prevalent in lung and gastrointestinal cancers, potentially impacting the gene expression profiles observed in these tumors (Figure 4G).
[image: Heatmap visualizations and scatter plots show data correlations. Panels A and B analyze copy number variations of genes. Panel C is a bar graph representing data distribution. Panel D displays a box plot of copy number variation. Panel E shows a scatter plot of gene expression correlations. Panel F illustrates pathway analysis with a bubble chart. Panel G lists gene pathways with numeric data. The charts use varied colors and sizes to indicate different data metrics.]FIGURE 4 | Pan-cancer landscape analysis of core gene expression, copy number variation, and functional enrichment. (A) Heatmap showing the differential expression analysis of core genes (ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7, L1CAM) across various cancer types (unpaired samples). The log fold change (logFC) values represent the expression differences between tumor samples and normal tissues, with red indicating upregulation and blue indicating downregulation. Statistical significance is denoted by p < 0.05. (B) Heatmap representing differential expression of the same core genes, but comparing paired cancer and adjacent normal tissue samples. The paired analysis aims to reduce inter-patient variability, with logFC values following the same color scheme as in (A). (C) Bar chart and dot plot summarizing the differential expression analysis using TCGA-GTEx datasets. The bar chart at the top illustrates the number of cancer types where each gene is significantly upregulated (red) or downregulated (blue). The dot plot below indicates the logFC for each cancer type, with the dot size corresponding to the statistical significance (-log10(FDR)). (D) Copy number variation (CNV) rate of the core genes across different cancer types. The boxplot shows the variation in CNV rates, with cancer types represented by different colors, highlighting genes with significant copy number alterations across the pan-cancer dataset. (E) Correlation analysis between CNV and expression of the core genes. The bubble plot demonstrates the relationship between CNV and gene expression levels in multiple cancer types, with the size of the bubbles representing the strength of the correlation. (F) Gene Set Enrichment Analysis (GSEA) results for the core genes across different cancer types. The dot plot shows the enriched pathways, with the size of the dots reflecting the significance of enrichment (-log10(p-value)) and color indicating the direction of enrichment (red for positive enrichment, blue for negative enrichment). (G) Tumor microbiome analysis across various cancer types. The heatmap illustrates the relative abundance of different microbial species identified in tumor samples, providing insights into the potential role of the tumor microbiome in cancer progression and gene expression.
Core gene promoter methylation analysis and its correlation with gene expression
The comprehensive relationship between gene promoter methylation in the core promoter and gene expression levels is displayed in Supplementary Figure S1G, H. This analysis captured the variance between LUAD and brain metastasis samples, confirming clear clustering and separation between the two groups. The heatmap analysis of promoter methylation levels for the core genes across the samples revealed significant variations in methylation, as shown in Supplementary Figure S1G. Blue cells indicate lower methylation levels, while red cells denote higher methylation levels, illustrating the wide range of epigenetic modifications across different patient samples. This trend is particularly prominent in ARRDC5 and NLRP7, which exhibit significant methylation variability between LUAD and brain metastasis tissues. Regarding the correlation between gene expression and promoter methylation, Supplementary Figure S1H shows the relationship between mRNA expression levels and promoter methylation across the same core genes.
Promoter methylation analysis of core genes
The study analyzed the promoter regions of six core genes and their methylation patterns. Methylation levels and distributions were scrutinized; samples were classified by methylation status; methylation peaks’ concentration and its relationship with various genomic characteristics were recorded. Promoter Methylation of ARRDC5 (Supplementary 60% of the promoter showed hypermethylation and 20% showed hypomethylation. (Figure 2A). Consensus Coding Sequence revealed that mostly methylation occurred in exonic areas or in promoter regions; however, at promoter level there were discrete peaks which were usually concentrated. ELF5 Promoter Methylation Analysis (Supplementary Figure S2B) showed a balanced distribution of methylation with significant peaks in CpG islands and promoter regions. FIBCD1 Promoter Methylation Analysis (Supplementary Figure S2C) indicated high methylation levels, with 70% hypermethylation and concentrated peaks within the promoter region. L1CAM Promoter Methylation Analysis (Supplementary Figure S2D) presented moderate methylation with 60% hypermethylation and significant peaks in CpG islands and promoter regions. LINC00494 Promoter Methylation Analysis (Supplementary Figure S2E) exhibited high hypermethylation (80%), with dense methylation in gene bodies and promoter regions. NLRP7 Promoter Methylation Analysis (Supplementary Figure S2F) revealed predominant hypermethylation (90%) with prominent peaks within the promoter region. Overall, these findings indicate distinct methylation patterns in the promoter regions of these core genes, suggesting significant variability and a common feature of hypermethylation, which could play a crucial role in regulating gene expression.
Correlation of core gene expression with LUAD prognosis
The study investigated the relationship between ssGSEAscore expression and LUAD prognosis. The calibration curve and goodness-of-fit test for ssGSEAscore expression in predicting tumor versus normal groups showed a satisfactory model fit, as indicated by the Hosmer-Lemeshow test (p = 0.555) (Supplementary Figure S3A). The differential expression analysis revealed significantly higher ssGSEAscore in LUAD tumor groups compared to normal groups (Supplementary Figure S3B). However, paired difference analysis between normal and tumor tissues showed no significant difference (p = 0.559) (Supplementary Figure S3C). Further analysis depicted the ssGSEAscore expression across the four clinical stages of LUAD. The violin plots indicated variability in ssGSEAscore with disease progression from Stage I to Stage IV (Supplementary Figure S3D). A comparison between early-stage (Stage I-II) and late-stage (Stage III-IV) LUAD demonstrated significant differences in ssGSEAscore expression, suggesting its potential role in disease progression (Supplementary Figure S3E). Median ssGSEAscore values across the four stages, along with a line plot overlay, indicated the trend of expression with advancing disease (Supplementary Figure S3F). Finally, the diagnostic efficacy of ssGSEAscore in distinguishing tumors from normal tissues in LUAD patients was evaluated using a ROC curve. The AUC was 0.574, with a 95% confidence interval of 0.506–0.640, indicating a moderate diagnostic ability (Supplementary Figure S3G). These results highlight the potential utility of ssGSEAscore as a biomarker for LUAD prognosis and underscore the variability in its expression with disease progression.
Core gene survival prognosis analysis in LUAD
The core gene survival prognosis analysis in LUAD was evaluated through Kaplan-Meier survival analysis and meta-analysis. Kaplan-Meier curves for Overall Survival (OS), Disease-Specific Survival (DSS), Progression-Free Interval (PFI), and Disease-Free Interval (DFI) stratified by high and low expression levels of the core gene showed no significant differences in OS (p = 0.327, Figure 5A), DSS (p = 0.195, Figure 5B), DFI (p = 0.453, Figure 5C), and PFI (p = 0.261, Figure 5D). External validation using the GSE68465 dataset revealed a significant difference in OS (p = 0.044, Figure 5E), while the GSE72094 dataset did not show a significant difference (p = 0.383, Figure 5F). A meta-analysis of univariate Cox survival analysis across multiple datasets, including GSE68465-OS, GSE72094-OS, TGCA-LUAD-OS, TGCA-LUAD-DSS, TGCA-LUAD-DFI, and TGCA-LUAD-PFI, showed a combined hazard ratio (HR) of 1.17 (95% CI: 0.85–1.48) with no significant heterogeneity (Figure 5I). These results indicate varying prognostic implications of the core gene expression in LUAD, with significant findings in some datasets and non-significant results in others, emphasizing the importance of dataset-specific factors in interpreting survival outcomes. The comprehensive analysis, including statistical evaluations and visual representations through Kaplan-Meier curves and meta-analysis plots, provides a thorough understanding of the core gene’s role in LUAD prognosis.
[image: Six Kaplan-Meier survival curves (A-F) display survival probabilities over time for groups with high and low ssGSEA scores in LUAD datasets, with p-values indicating statistical significance. Panels G and H show additional survival analyses. Panel I presents a forest plot of hazard ratios and confidence intervals from different studies, summarizing the data with a random effects model and displaying heterogeneity statistics.]FIGURE 5 | Core gene survival prognosis analysis in LUAD. (A–D) Kaplan-Meier survival analysis for four survival periods in LUAD, including Overall Survival (OS), Disease-Specific Survival (DSS), Progression-Free Interval (PFI), and Disease-Free Interval (DFI). Each panel represents the survival curves based on high and low expression levels of the core gene, with the number of patients indicated (high: red, low: blue). (A) OS survival curve (p = 0.327, high n = 279, low n = 314). (B) DSS survival curve (p = 0.195, high n = 201, low n = 234). (C) DFI survival curve (p = 0.453, high n = 363, low n = 378). (D) PFI survival curve (p = 0.261, high n = 353, low n = 388). (E, F) Overall survival curves from GSE68465 and GSE72094 datasets respectively. (E) GSE68465 overall survival curve (p = 0.044, high n = 177, low n = 222). (F) GSE72094 overall survival curve (p = 0.383, high n = 219, low n = 228). (G–H) Overall survival curves from GSE68465 and GSE72094 datasets, displaying Kaplan-Meier survival analysis based on high and low expression levels of the core gene. (G) GSE68465 overall survival curve. (H) GSE72094 overall survival curve. (I) Meta-analysis of univariate Cox survival analysis across multiple datasets, showing hazard ratios (HR) with 95% confidence intervals (CI) for each study and the combined HR using a random effects model. The plot includes studies GSE68465-OS, GSE72094-OS, TGCA-LUAD-OS, TGCA-LUAD-DSS, TGCA-LUAD-DFI, and TGCA-LUAD-PFI. The heterogeneity is indicated by I2 and the p-value.
Pan-cancer GSVA enrichment analysis of core genes
This study conducted a comprehensive pan-cancer GSVA enrichment analysis of core genes. It compared their expression levels across various cancer types and normal tissues using four different scoring parameters: combined z-scores, GSVA z-scores, PLAGE z-scores, and ssGSEA z-scores. Significant differences in z-scores between tumor and normal samples were observed in multiple cancer types, including GBM (Glioblastoma), THCA (Thyroid Carcinoma), PRAD (Prostate Adenocarcinoma), KIRP (Kidney Renal Papillary Cell Carcinoma), BRCA (Breast Invasive Carcinoma), KIRC (Kidney Renal Clear Cell Carcinoma), BLCA (Bladder Urothelial Carcinoma), and COAD (Colon Adenocarcinoma), indicating upregulation or downregulation of core genes in these cancers (Supplementary Figure S4). Notable differences were seen in the combined z-scores analysis, with exemplary p-values such as 6.1e-04 for GBM and a minute 2.6e-16 for PRAD. The GSVA z-scores depicted substantial variances in cancers like GBM and THCA, with telling p-values emphasizing the divergent expression of these genes. The PLAGE z-scores revealed meaningful changes in cancers like GBM and KIRC. The ssGSEA z-scores exposed consequential upregulation or downregulation of core genes in cancers such as GBM and THCA, with p-values showcasing statistical significance. These discoveries underscore the differing expression of core genes across diverse cancer types. They offer useful insights into their possible roles in cancer advancement and their potential usefulness as biomarkers for cancer diagnosis and treatment.
AH-6809 exerts anti-tumor effects by modulating apoptotic and EMT pathways in LUAD
This investigation, concentrating on brain-metastatic LUAD and the part of NLRP7, intended to examine the molecular systems underlying the inhibitory impacts of AH-6809 on LUAD metastasis. A high-throughput screening of a chemical compound library revealed that AH-6809 significantly inhibited cancer-promoting pathways, leading to its selection for further evaluation. The initial drug screening identified AH-6809 as a compound with potential anti-cancer activity (Figures 6A,B). To assess the effects of AH-6809 on cell proliferation, a CCK8 assay was conducted. The results showed a significant reduction in cell viability following AH-6809 treatment, particularly at the 72 and 96-hour time points, indicating a time-dependent inhibition of cell proliferation (Figure 6C). To further understand the molecular effects of AH-6809, qRT-PCR was performed to measure the mRNA levels of apoptotic and epithelial-mesenchymal transition (EMT) markers in LUAD cells treated with AH-6809. The results demonstrated a significant upregulation of pro-apoptotic genes (BAX and Caspase-3) and inflammatory cytokines (TNFα), alongside a marked downregulation of EMT markers (VIM and CDH2) in AH-6809 treated cells compared to the control (p < 0.001) (Figure 6D). To explore the role of NLRP7 in LUAD, NLRP7 was knocked down using shRNA. Knockdown efficiency was confirmed by qRT-PCR, with a significant reduction in NLRP7 mRNA levels in shNLRP7-treated cells compared to the non-targeting control (p < 0.001) (Figure 6E). However, when combined with AH-6809 treatment, the inhibitory effects on cell proliferation were partially reversed, suggesting a complex interaction between AH-6809 and NLRP7-mediated pathways (Figure 6F). The colony formation assay revealed that cells with NLRP7 knockdown exhibited enhanced colony-forming ability compared to control cells, indicating that NLRP7 may promote tumorigenicity. However, AH-6809 treatment significantly reduced colony formation, and this effect was partially mitigated in the presence of shNLRP7 (Figure 6H). Immunofluorescence analysis showed altered expression of inflammatory marker NQO1 and anti-apoptotic marker SUMO1 following treatment with AH-6809, shNLRP7, and their combination. Colocalization of these markers with DAPI revealed significant increases in apoptosis and inflammation in cells treated with AH-6809, particularly in combination with shNLRP7, indicating that these proteins may be involved in the molecular mechanisms of AH-6809’s anti-cancer activity (Figure 6I). In conclusion, this study demonstrates that AH-6809 exerts potent anti-tumor effects in LUAD by modulating key apoptotic and EMT-related pathways. AH-6809 likely reverses the molecular characteristics induced by NLRP7 dysregulation, promoting tumor-suppressive effects (Figure 7). These findings suggest that targeting NLRP7 with AH-6809 could be a promising therapeutic approach for treating brain-metastatic LUAD.
[image: Panel of scientific graphs and images showing various analyses.   A: Graph with highlighted area.  B: Chemical structure of 6-acetyl-2,3,4-trihydroxy heptanoic acid.  C, F: Line graphs of cell viability and absorbance over time.  D, G: Bar graphs comparing mRNA levels in different conditions.  E: Bar graph showing relative mRNA levels of NLRP7.  I: Fluorescence microscopy images of cells stained with NQO1, SUMO3, DAPI.  H: Microscopy images of colonies with a bar graph illustrating relative colony formation percentage.  Statistical significance is indicated in several graphs.]FIGURE 6 | The effects of AH-6809 on cellular proliferation, apoptosis, and NLRP7 expression across various assays. (A) High-throughput screening identified AH-6809 as a lead compound from a drug library screen. The screening focused on compounds that influence cell proliferation, apoptosis, and inflammation, with AH-6809 selected for further study. (B) Chemical structure of AH-6809, identified as 6-isopropoxy-8-oxosorban-2-carboxylic acid, showcasing the molecular conformation of the compound used in the experimental assays. (C) Cell viability assay (CCK8) results depicting the impact of AH-6809 on cell proliferation over 96 h. Cell viability was measured at 24, 48, 72, and 96 h post-treatment. The data show a significant increase in cell viability after treatment with AH-6809, indicating a time-dependent effect. (Statistical significance: *p < 0.05, p < 0.01, *p < 0.001). (D) qRT-PCR validation of mRNA expression levels for key apoptotic and inflammatory markers (VIM, CDH2, TNFα, BAX, Caspase-3) in cells treated with AH-6809 compared to control. Treatment with AH-6809 upregulated pro-apoptotic genes and inflammatory markers significantly (p < 0.001), highlighting the compound’s impact on gene expression. (E) Confirmation of shNLRP7 knockdown efficiency. The bar graph represents a significant reduction in NLRP7 mRNA levels after transduction with shNLRP7 constructs compared to the non-targeting control (NC). The statistical significance of knockdown efficiency is shown as *p < 0.0001. (F) Cell proliferation assay (CCK8) assessing the phenotypic effects of shNLRP7 knockdown in the presence and absence of AH-6809. Cells with shNLRP7 knockdown showed a reduced proliferation rate, with a significant inhibitory effect observed when combined with AH-6809 treatment over 96 h (*p < 0.001). (G) qRT-PCR analysis showing the expression of apoptotic and EMT-related markers (VIM, CDH2, TNFα, BAX, and Caspase-3) in cells under different conditions: control, AH-6809 treated, shNLRP7 knockdown, and combined treatment of AH-6809 + shNLRP7. Combined treatment notably exacerbated the expression of apoptotic markers, while reducing EMT markers significantly (p < 0.01, *p < 0.001). (H) Colony formation assay demonstrating the effects of AH-6809 and shNLRP7 knockdown on the colony-forming ability of cells. Cells with shNLRP7 knockdown and AH-6809 treatment formed fewer colonies than controls, indicating a reduction in proliferative capacity. (I) Immunofluorescence analysis showing the expression of inflammatory (NQO1) and anti-apoptotic (SUMO1) markers in cells treated with AH-6809, shNLRP7, and combined treatment. The merged images show colocalization with DAPI staining, indicating significant apoptosis and inflammation in treated cells.
[image: Diagram showing the genomic differences in lung adenocarcinoma (LUAD) with brain metastasis versus non-brain metastasis. It includes visualizations of tumor cells, gene expressions, and survival analyses using WGCNA and core gene survival analysis. Various charts display enrichment analyses, pan-cancer analyses, and GSVA enrichment. The final section presents findings on the role of AH-6809 in cellular proliferation, apoptosis, and inflammatory cytokines.]FIGURE 7 | Summary of findings illustrating the interplay between genomic differences and cellular behavior in LUAD metastasis and the potential therapeutic implications of AH-6809 and NLRP7. Identification of key genomic differences between brain-metastatic LUAD and non-brain-metastatic LUAD samples. Tumor cells that metastasize to the brain are characterized by differential expression of specific genes, such as FIBCD1, ELF5, and NLRP7, identified through analysis of LUAD datasets (GSE14108). The heatmap and bar plots illustrate the significantly differentially expressed genes (DEGs) between brain metastatic and non-metastatic LUAD samples. Cellular experiments reinforce bioinformatics findings. AH-6809 treatment partially reversed the molecular changes caused by NLRP7 knockdown, suggesting that AH-6809 promotes the tumor-suppressive effects mediated by shNLRP7. The schematic illustrates the influence of AH-6809 and NLRP7 on cellular processes including proliferation, apoptosis, ROS generation, and inflammatory cytokine expression.
DISCUSSION
We sought to study the rich gene network in LUAD metastasis and discovered six significant players: ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7 and L1CAM, all of which are ribonucleic acids that direct migration as well (Yao et al., 2020; Zhang et al., 2020). We took an additional step and carried it out in a pan-cancer analysis view. With this approach, the expression dynamics of each of these genes across multiple cancer types is given and examined in depth (Mishra et al., 2016; Anaya et al., 2016). Their potential as prognostic markers was also described.
The expression levels of these genes were significantly associated with the metastatic potential in LUAD according to our study. In particular, increased expression of ARRDC5 and FIBCD1 or ELF5 provided predictive value for higher risk to develop metastasis both in non-IMIs AND IMIs studies which were consistent with what we had got from the final prognostic model. Our pan-cancer analysis further substantiated these findings, demonstrating that the downstream effects of CCDC6 and PTK2 on cell function are likely pervasive in cancer beyond just HL, a finding consistent with prior evidence showing their broader roles in cancer progression. ARRDC5 and ELF5 were ubiquitously related to bad prognosis in various cancer types such as represented by the example of ARRDC5 (43,44), but also grouped together, indicative that they may be novel universal prognostic markers. These findings are consistent with previous work suggesting that ARRDC5 and ELF5 contribute to cancer promotion. Our study, however takes this knowledge further up by showing the pan-cancer relevance of these genes and possible importance as prognostic markers (Anaya et al., 2016; Nagy et al., 2021). Importantly, the opposite correlation found with L1CAM in metastatic LUAD as it was previously thought of to facilitate migration and invasion by cancer cells in other cancers indicates that its role can be quite complex on a case-by-case basis within our current understanding (Hai et al., 2012; Tischler et al., 2011).
Several genes, including ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7, and L1CAM, have been implicated in various aspects of cancer progression and metastasis (Altevogt et al., 2020; Graca et al., 2022; Luk et al., 2018). However, their specific roles in LUAD, particularly in brain metastasis, have not been fully elucidated. On one hand, the pivotal role of NLRP7 in inflammation and cancer immunity, as well as association with tumor metastasis is revealed (Feng et al., 2022); on the other, L1CAM was reported to get involved in tumor invasiveness across a number of malignancies except for LUAD metastases which remains controversial (Wang et al., 2022).
NLRP7 plays a complex and diverse role in tumors, particularly in brain metastasis of LUAD (Lin et al., 2021; Li et al., 2021). Our experimental results demonstrate that the expression of NLRP7 is significantly lower in LUAD patients with brain metastasis compared to non-brain metastasis patients, suggesting a potential negative correlation between NLRP7 expression and the ability of lung cancer cells to penetrate the blood-brain barrier. Further gene silencing experiments revealed that treatment with AH-6809 significantly inhibited cell proliferation and induced apoptosis, an effect reversed in NLRP7 knockout cells, indicating that NLRP7 plays a crucial role in regulating tumor cell proliferation and apoptosis. Thus, NLRP7 may inhibit brain metastasis by regulating cell cycle and apoptosis pathways (Reynaud et al., 2023). Moreover, AH-6809, as a potential activator of NLRP7, could inhibit LUAD brain metastasis by enhancing NLRP7’s function. Collectively, NLRP7 is a key regulator of tumor cell survival and migration, and targeting its expression or activity could represent a novel therapeutic strategy against LUAD brain metastasis.
As a member of the NOD-like receptor family, NLRP7 exhibits complex functions in various tumors (Li et al., 2021). It regulates inflammation, tumor cell proliferation, apoptosis, and the immune microenvironment. In ovarian cancer, NLRP7 influences cancer cell survival by regulating apoptosis and autophagy, with low expression linked to tumor progression and invasiveness (Mamoor, 2020). NLRP7 also appears to regulate the stress response and drug resistance in ovarian cancer cells (Mamoor, 2020). In gastric cancer, NLRP7 expression correlates closely with tumor grading and prognosis, with low levels indicating increased invasiveness and poor outcomes, suggesting its potential as a prognostic marker (Jiang et al., 2017). In breast cancer, NLRP7 affects tumor progression and metastasis by regulating immune cell infiltration and inflammation (Ershaid et al., 2019). Activating NLRP7 may restore immune balance in the tumor microenvironment, thereby inhibiting metastasis (Lee et al., 2020). Low expression of NLRP7 has been linked to enhanced anti-apoptotic abilities in pancreatic cancer, making it a potential therapeutic target.
Meanwhile, SUMO1 is a key player in post-translational protein modification via SUMOylation, regulating protein function, localization, and stability (Barry and Lock, 2011). In tumors, SUMOylation critically regulates cell proliferation and apoptosis signaling (Gong et al., 2017). Our findings show that SUMO1 expression is significantly upregulated in AH-6809-treated LUAD cells, suggesting that AH-6809 may regulate apoptosis via SUMOylation, thereby inhibiting tumor growth (Ke et al., 2019). This may be connected to sustained activation of nuclear signaling pathways like NF-κB and STAT3, which govern cell survival and apoptosis (Fan et al., 2013). Thus, SUMO1-mediated post-translational modification is crucial in regulating tumor cell fate. Additionally, AH-6809 was shown to enhance antioxidant defenses by upregulating NQO1, maintaining cellular homeostasis and resisting stress responses. Overall, by regulating SUMOylation and antioxidant defense mechanisms, AH-6809 presents a potential therapeutic strategy for LUAD, warranting further clinical investigation.
Over the past few years, as novel targeted therapeutic strategies have emerged, it has become theoretically possible to improve treatment efficacy and reduce toxicity, hence revolutionize precision medicine (Vargas-Sierra et al., 2024). Systematic reviews and meta-analyses have become more popular since their first applications in biomedical research, encompassing different methodologies not only within drug development but also including studies carried out using bioinformatical approaches (Wu et al., 2024). They have been widely recognized, not only for in vivo and clinical applications but also those of basic research and translational medicine. The development course of computer-aided drug design has also attracted our attention to this discipline, which created some new research hotspots and provided more chances for novel drugs exploring (Wu et al., 2024). In contrast, the role of cell death and metabolic regulation in facilitating disease progression has garnering increased prominence over the same period (Lin et al., 2023), providing novel drugable targets. Much of the increased efficacy and specificity of treatments, for example, by targeting specific proteins or genetic pathways as outlined in this report (Hong et al., 2024). For example, kiwi root extract exhibits gastric cancer inhibitory effect by suppressing Wnt/β-catenin pathway (Chu et al., 2023). The combination of modern technology with traditional Chinese medicine also offers new perspectives and potential for drug development (Wang et al., 2023). Significant advancements in materials science have enabled the application of various novel composite materials in biomedical and engineering fields (Wu et al., 2024). Additionally, applying photothermal therapy and nanoparticle-based drugs derived from natural substances in regulating the microenvironment and alleviating inflammation has shown promising future directions for treatment (Shi et al., 2023; Yang et al., 2023). The development of “off-the-shelf” gene therapy nanoparticles, particularly in orthopedics and soft tissue repair, has opened up new clinical applications in regenerative medicine (O’Shea et al., 2024). Studies have shown that by improving drug delivery systems and utilizing nanotechnology, drug targeting and therapeutic efficacy have been significantly enhanced (Romanovska et al., 2024). These achievements not only provide new insights and approaches within their respective fields but also demonstrate the immense potential of interdisciplinary collaboration in disease diagnosis and treatment, highlighting the importance of integrated data analysis and multidimensional evaluation in modern medicine (Oinaka et al., 2024; Latini et al., 2024). Furthermore, social support has a significantly positive impact on the mental health of cancer patients, a finding that has been well-documented, particularly in studies conducted in China (Zhu, 2024; Paillard-Brunet and Couillet, 2024).
Identifying genes that play crucial roles in the development of LUAD metastasis and have predictive power across multiple cancers will help enable personalized medicine (Li et al., 2018; Liu et al., 2023). Molecular typing for metastasis and prognostication of patients, based on gene expression profiling, is crucial in guiding personalized therapeutic strategies for individuals (Bustin and Dorudi, 2004; Van’T Veer et al., 2002). Our findings also provide new insights into how these genes impact cancer progression, focusing in particular on how they control the clinical environment of the tumour and human immune responses. They give a new perspective for future therapeutic research (Yang et al., 2023; Andrews et al., 2018). Seeing as our research was based on a retrospective study and its data of shares notched a relatively limited sample size, there may be potential bias in what we have found (Lin, 2018; Zhou, 2014). In addition, our use of publicly available databases may restrict the detail of our findings even though it yields valuable data from something broader in scope (Altamimi et al., 2024; Phillippi et al., 2017). Potential sources of bias exist, such as differences in data collection methods, variations in patient populations, and possible lack of control over data quality. This is why further experimental studies will be needed in order to determine exactly the functional roles these genes are playing in LUAD metastasis (Wang et al., 2020; Cheng et al., 2021). These studies will be larger and more diversified cohorts than ours were, confirming our findings at the same time opening up clinical applications for these genes as biomarkers and drug targets (Minn et al., 2005; Yao et al., 2020). Therefore, future research can adopt studying different patient populations, exploring additional datasets from other sources, and applying the same analytical methods to different cohorts to evaluate the consistency of our findings in different environments. In addition, in-depth in vitro experiments and additional in vivo animal experiments are the focus of the next research step.
Without a doubt, our investigation sheds light on the intricate gene interactions involved in LUAD metastasis and broadens this inquiry to a pan-cancer examination. Through comprehensive genomic, epigenomic, and transcriptomic dissections, we pinpointed ARRDC5, ELF5, FIBCD1, LINC00494, NLRP7, and L1CAM as possible prognostic indicators across multiple cancer types (Zhao et al., 2015; Zhu et al., 2017). This discovery significantly advances our comprehension of cancer progression (Paltridge et al., 2013; Nicolini, 2023). Despite the restrictions of our study, it establishes a solid foundation for future research and has the potential to advise clinical practice, in the end adding to improved patient care and results (Jeffs et al., 2018; Ferrill et al., 2021). Supplementary studies are warranted to substantiate these conclusions and scrutinize their therapeutic potential, paving the way for more effective and individualized cancer treatment strategies (Ledermann et al., 2015; Kamel and Al-Amodi, 2017).
CONCLUSION
In this study, NLRP7, ELF5, FIBCD1, ARRDC5, LINC00494, and L1CAM were identified as key prognostic markers for LUAD metastasis, particularly brain metastasis. Among these, NLRP7 was highlighted as a critical regulator of metastatic progression. The therapeutic potential of AH-6809 was demonstrated through its ability to inhibit LUAD cell proliferation, induce apoptosis, and modulate key molecular pathways such as SUMO1-mediated post-translational modifications and NQO1 expression. These findings suggest that targeting NLRP7 and related pathways could offer new strategies for preventing LUAD metastasis. Further experimental validation and clinical studies are needed to confirm these results and explore their therapeutic applications.
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Objective: This study investigates the effects of Paromomycin on SUMOylation-related pathways in glioblastoma (GBM), specifically targeting HDAC1 inhibition.Methods: Using TCGA and GTEx datasets, we identified SUMOylation-related genes associated with GBM prognosis. Molecular docking analysis suggested Paromomycin as a potential HDAC1 inhibitor. In vitro assays on U-251MG GBM cells were performed to assess Paromomycin’s effects on cell viability, SUMOylation gene expression, and IGF1R translocation using CCK8 assays, qRT-PCR, and immunofluorescence.Results: Paromomycin treatment led to a dose-dependent reduction in GBM cell viability, colony formation, and migration. It modulated SUMO1 expression and decreased IGF1R nuclear translocation, an effect reversible by the HDAC1 inhibitor Trochostatin A (TSA), suggesting Paromomycin’s involvement in SUMO1-regulated pathways.Conclusion: This study highlights Paromomycin’s potential as a therapeutic agent for GBM by targeting HDAC1-mediated SUMOylation pathways and influencing IGF1R translocation, warranting further investigation for its clinical application.Keywords: glioblastoma multiforme, Paromomycin, HDAC1, SUMOylation, IGF1R, drug screening
INTRODUCTION
Glioblastoma Multiforme (GBM) is the most aggressive and malignant type of brain tumor in adults, predominantly originating in the central nervous system (Banu, 2019; Grochans et al., 2022). This rapidly progressing tumor is characterized by its high malignancy and resistance to conventional treatments, leading to substantial physical and psychological burdens for patients and their families (Yalamarty et al., 2023; Tian et al., 2024). Accounting for nearly 50% of all primary brain tumors, GBM is the most prevalent malignant brain tumor in adults, with the majority of diagnoses occurring in middle-aged and elderly individuals (Davis, 2016; Stylli, 2021). Accounting for nearly 50% of all primary brain tumors, GBM is the most prevalent malignant brain tumor in adults, with the majority of diagnoses occurring in middle-aged and elderly individuals (Grech et al., 2020; Ostrom et al., 2018). Additionally, the incidence is slightly higher among males and certain demographic groups, such as African Americans (Tosakoon et al., 2023). GBM is associated with high mortality rates and requires extensive healthcare resources, including surgery, radiation, chemotherapy, and long-term rehabilitation (Dasari et al., 2020; Aly et al., 2019). GBM is associated with high mortality rates and requires extensive healthcare resources, including surgery, radiation, chemotherapy, and long-term rehabilitation (Elsaid et al., 2020). This challenging clinical landscape underscores the critical need for advancing our understanding of GBM’s underlying biology and developing novel therapeutic strategies.
The complexity and heterogeneity of GBM stem from various genetic mutations, chromosomal aberrations, and downregulation of tumor suppressor genes (Nakada et al., 2011; Kesari, 2011). These genetic factors are pivotal in the initiation, progression, and treatment resistance of GBM (Nguyen et al., 2021; Chen et al., 2022). This challenging clinical landscape underscores the critical need for advancing our understanding of GBM’s underlying biology and developing novel therapeutic strategies (Nguyen et al., 2021; Chen et al., 2022). Additionally, disruptions to the blood-brain barrier (BBB) facilitate cellular infiltration that enhances tumor invasiveness while impeding therapeutic agent delivery. Despite the conventional approach of tumor resection followed by adjuvant radiation and chemotherapy, most GBM tumors tend to recur, often in multiple regions, complicating effective treatment. Challenges in achieving complete surgical resection and the development of resistance to radiotherapy and chemotherapy further impede patient outcomes. The median survival for GBM patients remains approximately 12–15 months post-diagnosis, although survival can vary depending on individual patient characteristics. Consequently, there is an urgent need to identify and target novel therapeutic pathways to improve GBM treatment outcomes. The manipulation of biomolecules, in combination with environmental exposure, can provoke diverse biological responses, and such interactions—documented across various experimental contexts—highlight promising therapeutic targets (Du and Liu, 2024; McNerney and Styczynski, 2018; Cheng et al., 2013). The synergy of pharmacotherapy and bioinformatics has further amplified the potential of modern medical research, with large-scale bioinformatics databases elucidating associations between physiological markers and long-term health outcomes, offering valuable data to inform clinical decision-making (Liao et al., 2023; Tsuji et al., 2023; Wu W-T. et al., 2021; Asano, 2018; Srivastava and Kumar, 2024; Li, 2015; Behl et al., 2021). Additionally, animal models that replicate disease physiology are essential for validating therapeutic efficacy and generating robust supporting data (Pechanova, 2020; McGonigle and Ruggeri, 2014). In clinical practice, shared decision-making tools and checklists have proven effective in increasing patient engagement and satisfaction, particularly in drug selection and treatment planning (Li et al., 2023; Wieringa et al., 2019; Slyer, 2022). Furthermore, the rapid development of artificial intelligence (AI) is advancing healthcare by enhancing decision-making accuracy through sophisticated algorithms and data-driven analysis, paving the way for more personalized treatment recommendations (Shan et al., 2024; Hao et al., 2024).
Gene-environment interaction studies, a subset of bioinformatics methodologies, have proven effective in analyzing survival data derived from large-scale genomic analyses. These approaches have revealed molecular pathways potentially responsible for a variety of complex conditions (Wang et al., 2022). Recent advancements in bioinformatics and molecular biology have significantly enriched our understanding of GBM, revealing its intricate molecular basis through genomic, proteomic, and metabolomic investigations. This progress has facilitated the emergence of innovative therapeutic strategies (Kumar et al., 2008; Kaynar et al., 2021). Ongoing research focuses on personalized medicine, targeted therapies, and immunotherapies aimed at overcoming resistance to radiation and enhancing therapeutic efficacy while improving the overall quality of life for patients (Yang and Cai, 2023; Wayteck et al., 2014). A comprehensive understanding of GBM’s epidemiology, biological characteristics, and treatment challenges is essential for optimizing curative strategies (Aldoghachi et al., 2022; Kim and Kim, 2020). Future investigations should prioritize the exploration of molecular pathways that drive tumorigenesis and treatment resistance, with the goal of translating these findings into improved survival rates and quality of life for patients (Ou et al., 2020; Wu W. et al., 2021).
Among promising therapeutic targets, post-translational modifications (PTMs) such as SUMOylation (Small Ubiquitin-like Modifier modification) have garnered significant attention (Woo and Abe, 2010; Zhao et al., 2021). SUMOylation regulates numerous cellular functions, including the cell cycle, DNA damage response, and apoptosis (Han et al., 2018). Studies indicate that elevated SUMOylation activity may promote GBM development and progression by modulating these pathways, positioning SUMOylation as a viable target for therapeutic intervention (Fox et al., 2019). At the genomic level, extensive evidence supports the link between genetic variations and the development and progression of GBM (Backes et al., 2015; Pasche and Myers, 2009). Recent studies have identified specific biomarkers and treatment strategies, which are generating new opportunities for GBM management (Lynes et al., 2020). For instance, mutations in the IDH1/IDH2 genes are prevalent in GBM and have been associated with metabolic changes that impact tumor cell proliferation and survival (Miller et al., 2017; Yan et al., 2009). Furthermore, alterations or deletions in the TP53 gene lead to the loss of p53 protein function, disrupting cell cycle control and hindering DNA repair mechanisms (Monti et al., 2020; Vaddavalli and Schumacher, 2022). These genetic alterations serve as cellular markers for GBM diagnosis and classification and may represent potential therapeutic targets (Szopa et al., 2017). Recent advancements in bioinformatics have significantly transformed disease research, enabling comprehensive multi-omics analyses that provide critical insights into the molecular mechanisms underlying disease progression (Glass, 2023; Sun and Hu, 2016). Recent advancements in bioinformatics have significantly transformed disease research, enabling comprehensive multi-omics analyses that provide critical insights into the molecular mechanisms underlying disease progression (Yan et al., 2022; Chen et al., 2020; Cavill et al., 2016). This integrated analysis has become indispensable in disease diagnosis, prognosis assessment, and treatment evaluation, thus reinforcing the foundations of precision medicine (Guo Z. et al., 2023; Huang L. et al., 2022; Huang et al., 2013; Wang et al., 2005; Huang et al., 2015; Yang et al., 2024). This study aims to assess the effects of Paromomycin on SUMOylation-related pathways in GBM. By combining bioinformatics analysis, molecular docking, and in vitro validation, this research seeks to contribute to the development of novel targeted therapies for GBM.
MATERIALS AND METHODS
Expression profiling of SUMOylation-related genes in pan-cancer analysis
In this research, we conducted a detailed evaluation of SUMOylation-related gene expression across multiple cancer types. To assess variations in gene expression between different cancers and adjacent non-tumor tissues, we applied the Wilcoxon Rank Sum Test. To further analyze expression differences within each cancer type between malignant and adjacent non-tumor tissues, we utilized the Wilcoxon Signed Rank Test, a non-parametric method for dependent samples. Consistency was maintained by merging TPM expression data from GTEx normal samples with corresponding TCGA tumor data, using the tcgasandbox_RSEM_gene_tpm and gtexsandbox_RSEM_gene_tpm datasets from the UCSC Xena database. We standardized the data by converting it to Z-scores, ensuring uniform comparisons across tumor subtypes. For comparative analysis of expression levels between tumor and non-tumor tissues in TCGA and GTEx datasets, we focused on the GBM dataset, employing the Wilcoxon Rank Sum Test. This statistical method, also known as the Mann-Whitney U Test, is a reliable tool for assessing differences between two independent samples, testing the hypothesis regarding the median comparability of two populations at a significance level of α = 0.05.
Promoter methylation analysis of SUMOylation-related genes
This analysis focused on examining methylation levels in specific genomic regions, including TSS1500 (spanning 200 to 1,500 bp upstream of the TSS), TSS200 (within 200 bp of the TSS), the first exon, and the 5′untranslated region (5′UTR). Median methylation levels across these regions were calculated for each sample to assess cumulative methylation. A Spearman correlation analysis was also conducted to determine potential associations between methylation levels and gene expression. The non-parametric Spearman rank correlation coefficient was employed to analyze this association without assuming data normality, treating methylation as the independent variable and gene expression as the dependent variable. The Wilcoxon Rank Sum Test was additionally used to compare methylation patterns between tumor and non-tumor groups, allowing for distributional comparisons across independent groups without presuming normality.
ATAC-seq analysis of SUMOylation-related genes
Using the ChIPseeker package in R, we examined ATAC-seq data of SUMOylation-related genes. Peaks were annotated at gene promoters around the transcription start site (TSS) with parameters set to tssRegion = c (−3,000, 3,000) to capture areas extending 3,000 bp upstream of the TSS and covering up to +3 kb downstream. This approach is a standard method to assess transcription factor binding, histone modifications, and other genomic interactions around the TSS. Chromosomal distributions of ATAC-seq peaks were visualized using the covplot function, presenting peak locations across chromosomes, along with relevant genomic distances and tumor types.
Genomic characterization of SUMOylation-related genes in pan-cancer studies
We retrieved copy number variation (CNV) and DNA methylation data from TCGA across various cancers. Data matrices were organized with rows representing samples and columns as individual genes or genomic loci, undergoing quality control to remove low-quality samples and normalize for technical variation. In OSCC samples, CNV analysis was performed using GISTIC and CNAnorm, categorizing genes into amplified or deleted based on CNV levels. DNA methylation in promoter regions of SUMOylation-related genes was assessed in both tumor and normal tissues through the UALCAN platform. Methylation patterns across different cancers were further analyzed using the MethSurv database, aiming to establish any association between methylation and cancer incidence. Mutation Annotation Files (MAF) were downloaded from TCGA using the “TCGAbiolinks” R package. Tumor mutation burden (TMB), indicating genomic instability potentially related to immunotherapy response, was calculated with the “maftool” package. We examined the relationship between SUMOylation gene expression and CNV, DNA methylation, and TMB, using statistical analyses, correlation studies, survival plots, and other computational tools in R to explore the impact of these genetic features on tumor progression and patient outcomes.
GSEA enrichment analysis across pan-cancer types
Expression data for several cancer types, including both tumor and adjacent normal samples, were collected from The Cancer Genome Atlas (TCGA) database, incorporating RNA-seq and microarray sources. Following normalization, samples and probes that did not meet predefined quality criteria were removed from further analysis. Differential expression analysis was performed using the R package “limma,” which provides methods for data normalization, background correction, and statistical testing to identify significantly altered genes. Key genes were determined based on log2 fold change (log2FC) to represent expression differences, alongside the P-value to assess statistical significance. Gene Set Enrichment Analysis (GSEA) was carried out with the R package “clusterProfiler,” allowing us to interpret biological functions of differentially expressed genes through pathway databases like KEGG, Gene Ontology (GO), and Reactome. The Enrichment Score (ES), ranging from 0 to 1, was calculated to quantify the association between gene expression and specific biological processes, facilitating pathway relevance assessment. Visualizations, including bar graphs, scatter plots, and heatmaps, were generated using the “ggplot2” package in R, known for its flexibility in data visualization.
Tumor Prognosis analysis
The TCGA database provided RNA-seq and microarray data, alongside clinical and survival information across various cancer types. Using the “limma” package, we analyzed differential gene expression to identify genes with significant up- or downregulation in tumor samples compared to paired normal tissues. Our focus was on SUMOylation-related genes with expression levels potentially linked to overall survival (OS). To investigate these genes’ impact on OS, we used a Cox proportional hazards model in R’s “survival” package. Kaplan-Meier survival curves were generated and compared using the log-rank test to illustrate survival differences between low- and high-expression groups, with plots created using the “survminer” package, which allows for clear visualization of survival outcomes.
Developing a prognostic model for SUMOylation-related genes in GBM
To evaluate the diagnostic performance of the ssGSEAscore in differentiating tumor samples from normal samples, ROC analysis was conducted using the “pROC” package, which calculated the area under the curve (AUC) and plotted a smooth ROC curve along with a 95% confidence interval. The ssGSEAscore was determined using the “gsva” package’s gsva function with the “ssgsea” method. Expression data for this study were acquired from the TCGA dataset, specifically the EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2 dataset, accessible through PanCanAtlas in the geneExp.tsv file. This file was generated via the Firehose pipeline using MapSplice and RSEM, with standardization by setting the upper quartile value to 1,000. The Wilcoxon Rank Sum Test was used to compare ssGSEAscore expression between tumor and normal tissues in the GBM dataset, while the Wilcoxon Signed Rank Test assessed ssGSEAscore in tumor tissues relative to adjacent normal tissues. Calibration curves were also constructed to show alignment between predicted and actual outcomes in tumor classification, and goodness-of-fit tests were applied to assess model accuracy. Furthermore, ssGSEAscore variations in different GBM stages were examined using the Wilcoxon Rank Sum Test, and the Kruskal-Wallis Rank Sum Test compared ssGSEAscore expression among GBM progression phases.
Survival prognosis analysis of SUMOylation-related genes in GBM using ssGSEA
To assess overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) based on SUMOylation-related genes, we conducted Kaplan-Meier survival analysis using the “survival” package in R. The ssGSEAscore thresholds were determined with the “survminer” package, ensuring that the ratio between groups did not drop below 0.3. Each survival analysis was executed using the survfit function, with high- and low-score groups compared via a log-rank test. For Cox survival analysis, we conducted a meta-analysis with inverse variance weighting, including data from sixteen qualifying studies, and measured hazard ratios (HR) in logarithmic form. HRs were divided into two categories: less than 1, indicating a tumor-suppressive effect, and greater than 1, suggesting an oncogenic role. While this stratification helped differentiate tumor impacts, it did not capture the full range of regulatory functions associated with the targeted genes. Statistical analyses and visual representations were generated using the Meta package in R (version 4.3.2). Additionally, each gene underwent univariate Cox survival analysis through the “survival” package, employing the Cox proportional hazards model via the coxph () function. Forest plots were created using the “forestplot” package to illustrate HRs and their 95% confidence intervals (CIs).
Core protein drug sensitivity screening
Virtual screening is an efficient technique in drug discovery, enabling prediction of a compound’s biological activity by modeling interactions with biological targets, thus reducing both time and costs associated with drug research. In our study, we obtained 3D structures of 321 FDA-approved drugs from the ZINC database. Core protein domains were downloaded in PDB format from the Protein Data Bank (PDB). Screening was performed with the Libdock tool in Discovery Studio 2019 (DS 2019). Prior to screening, PDB structures underwent preprocessing: water molecules were removed, receptor protein structures were optimized, and energy minimization was applied to both proteins and ligands. Key amino acid residues were set to appropriate ionization states, tautomers were generated, and non-polar hydrogen atoms were removed. Important atomic charges were assigned using the Gasteiger-Marsili approach. Molecular docking was employed to explore potential interactions between candidate drugs and the binding sites of target proteins, assessing compatibility with the protein binding regions. These findings provide a foundation for drug design refinement and subsequent experimental validation.
CCK8 proliferation activity assay
For cell proliferation assays, U-251MG cells were seeded at a density of 5 × 10³ cells per well in 96-well plates. Different concentrations of Paromomycin were introduced to each well, and cells were incubated for 48 h. Following this, 10 μL of CCK-8 solution was added to each well, with an additional 2-h incubation period. Absorbance was measured at 450 nm using a microplate reader. For TSA treatment, cells were incubated for 24 h in fresh culture medium containing 100 nM of TSA. Control wells received fresh medium with 0.1% DMSO under the same conditions. The experiment was repeated three times to ensure reproducibility.
qRT-PCR
To extract total RNA, 1 mL of Trizol reagent was added per well, and the solution was transferred to 1.5-mL tubes for 10 min of lysis. After sonication, 200 μL of chloroform was added, followed by centrifugation at 12,000 rpm for 15 min at 4°C. The supernatant was collected, mixed with 400 μL of isopropanol, and centrifuged to isolate the RNA pellet, which was then dissolved in 20 μL of DEPC water. RNA was reverse-transcribed into cDNA under specific temperature conditions for qRT-PCR.
Immunofluorescence
Cell slides were prepared and incubated with a bovine serum albumin (BSA) solution for 1 h to block non-specific binding. After blocking, the slides were rinsed and incubated overnight at 4°C with either a 1:250 dilution of anti-CAS3 or a 1:100 dilution of anti-SUMO1 antibody. The following day, slides were washed in PBS and then incubated with a fluorescein-labeled secondary antibody for 2 h at room temperature. Cell nuclei were stained with DAPI, and after a final rinse, the slides were fixed for imaging. Fluorescence microscopy was used to visualize the expression levels of CAS3 and SUMO1 proteins across different cell clusters.
Colony formation assay for U-251MG cells
The colony-forming ability of U-251MG glioblastoma cells after Paromomycin treatment was evaluated. Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco BRL, MD, United States) with 10% fetal bovine serum (FBS) (HyClone). U-251MG cells were seeded at 500 cells per well in six-well plates and allowed to adhere overnight. The following day, cells were treated with the appropriate concentration of Paromomycin or vehicle control (DMSO), with fresh treatment medium replaced every 3–4 days. After 10–14 days, during which colonies became visible, the medium was removed, and cells were gently rinsed twice with PBS. The cells were then fixed with 4% paraformaldehyde for 15 min at room temperature. After fixation, colonies were stained with 0.5% crystal violet solution for 20 min, rinsed with distilled water to remove excess stain, and air-dried.
Statistical analyses
The statistical analyses were performed using GraphPad Prism version 8.0 (GraphPad Software, La Jolla, CA, United States). In order to guarantee the dependability of the outcomes, all trials were conducted three times. The data are reported as the average value plus or minus the standard deviation (SD). A two-tailed Student’s t-test was employed to compare two samples. The data distribution was analyzed for normality using the Shapiro-Wilk test, and the equality of variances was verified using Levene’s test. In order to compare more than two groups, we used one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test to discover particular differences between the groups. A p-value less than or equal to 0.05 was deemed to be statistically significant.
RESULTS
Relationship between the expression of SUMOylation-related genes and tumor prognosis
This study investigates the correlation between the expression levels of ten genes associated with SUMOylation (HDAC1, HDAC4, HDAC9, PIAS1, PIAS2, RAN, RANBP2, SUMO1, RANGAP1, SUMO1) and overall survival (OS) across various cancer types, as illustrated in Figure 1. The forest plots display hazard ratios (HR) and 95% confidence intervals (CI) for each gene in different malignancies. Figure 1A shows a strong association between elevated HDAC1 expression and increased risk, alongside unfavorable outcomes in several cancer types. Similarly, Figure 1B highlights that high HDAC4 expression is a significant prognostic indicator. Consistent findings across multiple datasets, including Figures 1C, D, reveal a robust association between high HDAC6 expression and poor OS. PIAS1 (Figure 1E) and PIAS2 (Figure 1F) show mixed outcomes, suggesting that their prognostic roles vary by cancer type. Increased expression of RAN (Figure 1G) is linked to reduced OS, while RANBP2 (Figure 1H) and RANGAP1 (Figure 1I) demonstrate protective effects, with higher expression associated with improved survival. SUMO1 (Figure 1J) appears to function as both a risk factor and a protective factor, contingent on the specific cancer type. These findings underscore the prognostic significance of SUMOylation-related genes, highlighting their potential as therapeutic targets and prognostic indicators in cancer.
[image: Ten vertical forest plots labeled A to J, each displaying data points for after drying, bedding, and fresh categories across various specimens or groups. Each plot includes horizontal lines representing confidence intervals, with blue and red markers indicating specific data points.]FIGURE 1 | Correlation Between SUMOylation-Related Gene Expression and Tumor Prognosis. (A) The forest plot presents hazard ratios (HR) and 95% confidence intervals (CI) for HDAC1 expression and its association with overall survival (OS) across various cancer types. Each line represents a specific cancer, with red indicating a negative (risk) factor and blue indicating a positive (protective) factor. (B) Similar analysis for HDAC4, displaying its relevance to OS across multiple cancers, where HR and CI indicate the impact of HDAC4 expression on patient outcomes. (C) Depicts the influence of HDAC6 expression on OS, with corresponding HR and CI values highlighting its role in cancer prognosis. (D) A validation analysis utilizing an independent dataset to confirm or compare the effects of HDAC6 expression on OS. (E) Shows the relationship between PIAS1 expression and OS across various malignancies, demonstrating its potential role in cancer progression. (F) Displays the impact of PIAS2 expression on OS, with HR and CI values reflecting its prognostic significance in different cancers. (G) This forest plot illustrates the association between RAN expression and OS across all analyses. (H) Shows the influence of RANBP2 expression on OS, with HR and CI values indicating its predictive power for tumor outcomes. (I) Analyzes the relationship between RANGAP1 expression and OS, highlighting its potential role in enhancing survival benefits in cancer patients. (J) Presents HR and CI values for SUMO1 expression, showcasing its correlation with patient prognosis and impact on OS across various cancer types.
Relationship between the expression of SUMOylation-Related genes and Tumor Prognosis
Our study aimed to characterize the expression patterns and promoter methylation levels of SUMOylation-related genes across diverse cancer types. The findings reveal extensive disruption and complex epigenetic regulation of these genes. Comparative analyses of gene expression in unpaired samples (Figure 2A) and paired cancer samples (Figure 2B) indicated substantial overexpression and downregulation of SUMOylation-related genes. These observations were further corroborated by an analysis using TCGA-GTEx datasets (Figure 2C), which identified significant gene expression changes across multiple datasets, reflecting widespread alterations. Promoter methylation analysis (Figure 2D) identified specific genes with marked differences in methylation levels between tumor and normal tissues, suggesting the presence of epigenetic regulatory mechanisms. Additionally, an examination of promoter methylation and gene expression (Figure 2E) revealed both positive and negative correlations, highlighting the intricate relationship between epigenetic modifications and gene expression. The identified promoter methylation variations (Figure 2F) point to genes with abnormal delta values, which could represent potential therapeutic targets. This study contributes to a deeper understanding of the molecular pathways involved in cancer progression and identifies promising biomarkers and targets for further investigation.
[image: Heatmaps and bar charts display data on promoter methylation levels and mRNA expression correlation across various genes. Graphs include differences in methylation levels and their correlation with mRNA expression, with color-coding to denote variations and significance. Axes list genes and cell types or conditions.]FIGURE 2 | Expression Landscape of SUMOylation-Related Genes in Pan-Cancer. (A) Using unpaired methods, we analyzed differential gene expression driven by SUMOylation across various pan-cancer samples. Each row represents a unique SUMOylation-related gene, while each column corresponds to a specific cancer type. (B) This panel displays the correlation between SUMOylation-related gene expression in paired cancer samples. The heatmap, consistent with (A), uses log2FC values to depict the contrast in gene expression between tumor and normal tissues within the same patients. (C) We explored differential expression of SUMOylation-associated genes across several datasets from TCGA-GTEx. The dot plot shows log2FC values, with dot size corresponding to the -log10 of corrected p-values. Downregulation is shown by blue dots, while upregulation is represented by red dots. (D) Analysis of promoter methylation in SUMOylation-related genes. The heatmap shows differences in promoter methylation levels between tumor and normal tissues, with a gradient from white to dark blue signifying increasing methylation levels. (E) This panel examines the correlation between promoter methylation levels and expression of SUMOylation-related genes. The heatmap displays Pearson correlation coefficients, where dark blue represents strong negative correlations, and dark red represents strong positive correlations. (F) Delta values showing the differences in promoter methylation levels of SUMOylation-related genes between tumor and normal tissues in pan-cancer. The bubble plot depicts delta values, with bubble size corresponding to the negative log10 of p-values, and color indicating the direction of change (red for increased methylation, blue for reduced methylation).
SUMOylation-related gene promoter methylation analysis
This study conducted a comprehensive analysis of methylation patterns in the promoters of SUMOylation-related genes, utilizing various data types, with findings summarized in Supplementary Figure 1. The examination of the HDAC1 promoter region (Supplementary Figure 1A) shows variation in the distribution of methylated versus unmethylated sites across samples. A pie chart illustrates higher methylation levels in certain sample types, while a circular plot highlights regions of high methylation density. In the HDAC4 promoter (Supplementary Figure 1B), methylation patterns vary significantly across datasets. A bar chart presents methylation frequency, and a pie chart indicates the proportion of methylated sites. The HDAC6 promoter (Supplementary Figure 1C) analysis investigates methylation changes according to sample type, providing a detailed view of epigenetic modifications. In contrast, the HDAC9 promoter (Supplementary Figure 1D) displays distinctive methylation hotspots, which may have regulatory effects. For the MDM2 promoter (Supplementary Figure 1E), methylation levels and patterns vary depending on environmental conditions. The PIAS1 promoter (Supplementary Figure 1F) shows differential methylation across experimental groups, whereas the PIAS2 promoter (Supplementary Figure 1G) exhibits more uniform methylation patterns. The RAN promoter (Supplementary Figure 1H) indicates the percentage of methylated sites and potential regulatory impacts, with additional graphs illustrating chromatin accessibility. The RANBP2 promoter (Supplementary Figure 1I) displays some variability in methylation, which may influence gene expression. Similarly, the RANGAP1 promoter (Supplementary Figure 1J) shows notable methylation differences across samples. Finally, the SUMO1 promoter (Supplementary Figure 1K) demonstrates potential regulatory capacity over gene expression, with bar graphs displaying methylation distribution by sample type and pie charts indicating the ratio of methylated to unmethylated sites. An additional circular plot offers a comprehensive overview of the methylation landscape, displaying ATAC-seq peaks across chromosomes and providing insights into chromatin accessibility in relation to promoter methylation.
Analysis of SUMOylation-related genes in pan-cancer: copy number variation, methylation, and tumor mutation burden
This study conducted a comprehensive analysis of SUMOylation-related genes across various cancers, focusing on genetic, epigenetic, and expression alterations. Figure 3A displays the Copy Number Variation (CNV) rates of SUMOylation-related genes across 20 cancer types, with each bar color-coded by cancer type. Figure 3B presents a bubble plot illustrating the relationship between CNV and gene expression; bubble size and color (red for positive correlation, blue for negative) indicate the strength and direction of these associations. Figures 3C, D depict similar patterns for Tumor Mutation Burden (TMB) and promoter methylation, respectively, suggesting that CNVs and hypermethylation are major drivers of abnormal gene expression in cancer. Lastly, Figure 3E showcases a heatmap representing the expression levels of SUMOylation-related genes across various tumor microenvironments, where rows correspond to genes and columns to cancer types, with a color gradient indicating expression levels (pink for lower, blue for higher). This study underscores the intricate regulatory roles of SUMOylation-related genes in cancer, offering valuable insights for developing targeted therapeutic strategies.
[image: A series of graphical representations depicting miRNA expression levels across different cell types and conditions. Panel A shows box plots of expression levels for several miRNAs across various groups. Panels B, C, and D illustrate the correlation of miRNAs with clinical features using dot plots, with varying sizes and colors indicating correlation strength. Panel E presents a clustered heatmap showing the expression patterns of miRNAs across different samples, with color gradients representing expression levels.]FIGURE 3 | Analysis of SUMOylation-Related Genes in Pan-Cancer: Copy Number Variation, Methylation, and Tumor Mutation Burden. (A) The bar plot shows the rates of copy number variation (CNV) in SUMOylation-related genes across 20 different types of cancer. Each bar represents a cancer type, with colors as per the legend. Data points show variation rates, with the vertical axis displaying the percentage of samples with CNV, and the horizontal axis listing the cancer types. (B) Correlation of Copy Number Variation (CNV) and Gene Expression. This bubble plot illustrates the correlation between CNV and expression levels of SUMOylation-related genes across cancer types. Bubble color denotes the direction and magnitude of the correlation coefficient—red for positive correlations and blue for negative—with bubble size reflecting correlation strength. (C) Relationship between Tumor Mutation Burden (TMB) and Gene Expression. This bubble plot presents the association between TMB and expression of SUMOylation-related genes across various cancers. Bubble size indicates correlation significance, with color intensity showing relationship strength, similar to (B). (D) Relationship between Promoter Methylation and Gene Expression. This bubble plot illustrates the correlation between promoter methylation and expression levels of SUMOylation-related genes across multiple cancers. Bubble size signifies correlation significance, while color indicates the direction of the relationship. (E) Gene Expression in Different Tumor Microenvironments. The heatmap presents expression levels of SUMOylation-related genes across various tumor microenvironments. Each row represents a gene, and each column a specific tumor type. The color gradient indicates expression levels, with pink for lower expression and blue for higher expression.
Application of molecular docking and pathway enrichment analyses in low-grade glioma (LGG) and glioblastoma (GBM)
This research also performed a detailed analysis to identify critical proteins associated with LGG prognosis. Results indicate that HDAC1, PIAS1, PIAS2, RAN, and RANBP2 are significant markers of poor prognosis in LGG. These proteins were subsequently analyzed through molecular docking to identify potential therapeutic candidates. Three-dimensional structures of these proteins were retrieved from the PDB database, and 321 small chemical ligands were sourced from the NCBI PubChem database for screening. Results indicated that Dfo, Paromomycin, and 5-Methyltetrahydrofolate exhibited strong binding affinities to HDAC1, PIAS1, PIAS2, RAN, and RANBP2, suggesting their potential as therapeutic candidates targeting ubiquitin-like modifications in LGG (Figure 4B). Gene set enrichment analysis (GSEA) was performed across multiple cancer types to identify critical pathways involved in cancer progression (Figure 4B). In Figure 4B, a dot plot presents the normalized enrichment scores (NES) for multiple gene sets, with dot size reflecting the enrichment significance of each gene set. Key pathways such as xenobiotic metabolism, epithelial-mesenchymal transition (EMT), and fatty acid metabolism were prominently enhanced in cancer groups. Additionally, GSEA was applied to examine molecular processes in GBM, focusing on SUMOylation-related gene sets. Figure 4C shows an enrichment score curve, ranking genes by expression levels in GBM versus control groups. The histogram above the curve illustrates gene positions in the ranked list, indicating their association with SUMOylation-related functions in GBM. Findings revealed higher enrichment of SUMOylation-related gene sets in GBM than in normal tissues, emphasizing SUMOylation’s role in GBM tumorigenesis. The comprehensive analyses presented here provide new insights into the molecular mechanisms and potential therapeutic pathways for LGG and GBM, mediated through cancer-specific protein interactions and reconfiguration of signaling networks.
[image: Heatmap and dot plot displaying gene expression data. Panel A shows a hierarchical clustering heatmap with various color intensities. Panel B is a dot plot with dots of varying sizes and colors, indicating gene expression levels and statistical significance. Panel C contains a line graph and distribution plot showing enrichment scores across samples.]FIGURE 4 | Utilizing molecular docking and pathway enrichment analyses to study Low-Grade Glioma (LGG) and GBM. (A) Heatmap for core protein drug sensitivity screening and molecular docking. This heatmap depicts the relationship between important proteins (HDAC1, PIAS1, PIAS2, RAN, and RANBP2) and the prognosis of low-grade glioma (LGG) patients, as determined by a pan-cancer investigation. These proteins have been identified as important predictors of poor prognosis in LGG. A simulated molecular docking research was performed to discover possible therapeutic medicines that target these proteins. These major proteins’ three-dimensional structures were acquired from the PDB database, and 321 small molecule ligands were identified from the NCBI PubChem database. These ligands were then molecular docked with the target proteins to determine their binding affinities, which were calculated using LibDockScore. The data show that Dfo, Paromomycin, and 5-Methyltetrahydrofolate have strong binding affinities to HDAC1, PIAS1, PIAS2, RAN, and RANBP2, implying that they might be used as therapeutic candidates to target ubiquitin-like modification pathways in LGG. (B) Pan-cancer. GSEA enrichment analysis: The dot plot depicts the enrichment analysis of gene sets connected to distinct signaling pathways across cancer types using the GSEA approach. The normalized enrichment score (NES) is shown by color gradients, with red indicating a positive NES (enriched in the cancer group) and blue indicating a negative NES (enriched in the control group). The dots’ sizes show the enrichment’s significance level (-log10(FDR q-value)) for each gene set. Significant processes that have been enhanced include xenobiotic metabolism, epithelial-mesenchymal transition, and fatty acid metabolism. (C) GSEA enrichment analysis of the sumoylation-related gene sets in GBM: The figure depicts the enrichment analysis of sumoylation-related gene sets in GBM versus normal tissues, which was performed using the clusterProfiler software. The enrichment score curve shows the ranking of genes according on their expression levels in the GBM and control groups. The bar plot under the curve shows the position of genes in the ranked list, demonstrating the degree of enrichment for sumoylation-related activities in GBM.
Assessing the prognostic relevance of SUMOylation-related genes in glioblastoma via single-sample gene set enrichment analysis (ssGSEA)
Kaplan-Meier survival analyses were conducted to assess the prognostic significance of SUMOylation-related genes in glioblastoma (GBM). Scores derived from Single-Sample Gene Set Enrichment Analysis (ssGSEA) were used to evaluate three survival outcomes: Overall Survival (OS), Progression-Free Interval (PFI), and Disease-Specific Survival (DSS). Kaplan-Meier curves revealed significant differences in survival rates between the high and low ssGSEA score groups. Specifically, higher ssGSEA scores correlated with worse overall survival (Figure 5A, p = 0.022), shorter progression-free intervals (Figure 5B, p < 0.001), and reduced disease-specific survival (Figure 5C, p = 0.038). Further analysis of OS confirmed these findings (Figure 5D, p = 0.015). To strengthen these observations, a combined analysis of multiple GBM datasets (CGGA301, CGGA325, CGGA693, Rembrandt, and TCGA) was performed using univariate Cox proportional hazards regression. This analysis indicated that higher ssGSEA scores were associated with decreased survival, with a combined hazard ratio (HR) of 0.71 (95% CI: 0.47–1.06), reflecting a reduced risk of death. There was no significant variability in results across the datasets (Figure 5E). Additionally, analysis of individual genes provided further insights into the prognostic significance of SUMOylation-related genes for OS (Figure 5F), PFI (Figure 5G), and DSS (Figure 5H). These findings collectively suggest that elevated ssGSEA scores of SUMOylation-related genes are associated with poorer prognostic outcomes in GBM patients, highlighting their potential as valuable prognostic biomarkers.
[image: Kaplan-Meier survival curves (A-D) and forest plots (E-H) showing the survival analysis for GBM patients based on ssGSEA scores. A-D display survival probability over time with significance values. E shows a meta-analysis with hazard ratios for different studies, depicting overall survival associations. F-H detail similar analyses with specific gene signatures, demonstrating their impact on survival outcomes.]FIGURE 5 | Prognostic analysis of genes related to SUMOylation in glioblastoma (GBM) using single-sample gene set enrichment analysis (ssGSEA). (A–D) Kaplan-Meier survival analysis was performed for three distinct survival outcomes in GBM: Overall Survival (OS) (A), Progression-Free Interval (PFI) (B), and Disease-Specific Survival (DSS) (C). The study contrasts high and low ssGSEA scores for SUMOylation-related gene expression, with p-values indicating statistical significance. The datasets utilized include publicly accessible GBM patient data. (E) Meta-analysis of univariate Cox proportional hazards regression across several datasets for overall survival (OS) in GBM. The analysis incorporates papers from CGGA301, CGGA325, CGGA693, Rembrandt, and TCGA. The forest plot displays logHR, SE (logHR), Hazard Ratio (HR), 95% Confidence Interval (CI), and weight for each research. The random-effects model calculates the combined hazard ratio using heterogeneity statistics. (F–H) Forest plots of the hazard ratios for individual SUMOylation-related genes across various GBM datasets for OS (F), PFI (G), and DSS (H). Each figure displays the p-value, hazard ratio, and confidence intervals for the genes studied, providing information on their prognostic relevance.
Prognostic model of SUMOylation-related genes in GBM
The primary objective of this study was to develop and validate a predictive model based on the expression of SUMOylation-related genes in GBM. Supplementary Figure 2A displays the calibration curve and goodness-of-fit test for the ssGSEA score in distinguishing between tumor and normal groups. The red line represents the observed findings, while the dashed blue line signifies the ideal prediction. The Hosmer-Lemeshow test indicated satisfactory concordance between observed and predicted probabilities. In Supplementary Figure 2B, a comparison of ssGSEA scores between tumor and normal groups reveals no significant distinction, indicating that ssGSEA scores do not substantially differ between tumor and normal tissues in GBM. The diagnostic performance of the ssGSEA score for differentiating between tumor and normal groups was evaluated using a ROC curve (Supplementary Figure 2C), which suggested limited diagnostic capability. These findings indicate that while the ssGSEA score model is well-calibrated, its ability to distinguish between tumor and normal tissues in GBM is limited, as evidenced by the minimal difference in ssGSEA scores and the modest AUC value. Further research is warranted to enhance the model’s accuracy and improve its diagnostic utility for GBM.
Paromomycin suppresses the activity of genes involved in SUMOylation modification and decreases the viability of GBM cells
Paromomycin suppresses the activity of SUMOylation-related genes and decreases the viability of GBM cells. Our study explored the effects of Paromomycin on GBM cell survival and SUMOylation gene expression. Figure 6A illustrates that Paromomycin treatment led to a dose-dependent reduction in cell viability. Additionally, qRT-PCR analysis revealed significant reductions in the mRNA levels of HDAC1, PIAS1, PIAS2, and RANBP2 in Paromomycin-treated GBM cells as the dosage increased (Figures 6B–E). Immunofluorescence labeling of caspase-3 and SUMO1 further demonstrated that higher doses of Paromomycin enhanced caspase-3 fluorescence intensity while decreasing SUMO1 expression (Figures 6F, G). A colony formation assay also indicated that Paromomycin reduced glioma cell proliferation (Supplementary Figures 2D, E). In U-251MG glioblastoma cells, Paromomycin treatment significantly decreased cell viability, as shown in Figure 7A. The CCK8 cell proliferation assay demonstrated a dose-dependent reduction in the OD450 value in Paromomycin-treated cells compared to the negative control (NC), with a greater reduction observed when Paromomycin was combined with TSA. This finding suggests that Paromomycin has a potent antiproliferative effect, particularly in combination with TSA. The colony formation assay further validated the inhibitory effect of Paromomycin on cell proliferation (Figures 7B, C). Quantitative analysis showed a marked reduction in colony formation in the Paromomycin group relative to the NC, while the addition of the HDAC1 inhibitor TSA increased colony formation. In a transwell migration assay (Figure 7D), Paromomycin was found to impair U-251MG cell migration in addition to reducing cell viability and proliferation. The images showed a substantial reduction in migrating cells following Paromomycin treatment, an effect that was reversed with TSA co-treatment. Immunofluorescence analysis provided insight into Paromomycin’s molecular action, particularly its influence on SUMO1 modification and IGF1R nuclear translocation (Figure 7E). Paromomycin treatment decreased IGF1R nuclear translocation, possibly due to alterations in SUMO1 modification, an effect reversed by TSA treatment. These results imply that SUMO1 modification might contribute to Paromomycin’s antitumor effects, potentially involving HDAC1 regulation. Collectively, these findings suggest that Paromomycin not only diminishes GBM cell survival but also modulates the expression of critical SUMOylation-related genes, highlighting its potential as a therapeutic agent for GBM treatment (Figure 8).
[image: Graphs and microscopy images illustrate the effects of different concentrations of a treatment on U251-MG cells. Panels A to E show bar charts detailing CCK8 assay results and relative mRNA expression levels of HDAC1, PIAS1, PIAS2, and RANBP2, with significant differences marked by asterisks. Panels F and G present fluorescence microscopy images showing the expression of caspase3 and SUMO1, stained with DAPI, across varying treatment doses. The merged images combine red and blue fluorescence, indicating protein localization and nuclear staining.]FIGURE 6 | Effects of Paromomycin on Cell Viability, Gene Expression, Apoptosis, SUMOylation, and Colony Formation in U-251MG Glioblastoma Cells. (A) Cell viability was assessed using the CCK8 assay. U-251MG cells were treated with varying concentrations of Paromomycin (20 mg/L, 50 mg/L, 100 mg/L), and the optical density (OD450) was measured. The results show a dose-dependent decrease in cell viability, indicating that Paromomycin effectively reduces the proliferation of U-251MG cells. (B–E) qRT-PCR analysis of relative mRNA expression levels of HDAC1, PIAS1, PIAS2, and RANBP2 after treatment with Paromomycin at different concentrations. The data show a significant downregulation of these genes in a dose-dependent manner, with the highest inhibition observed at 100 mg/L. Statistical significance was indicated as follows: **p < 0.01, ***p < 0.001 compared to the untreated control group. (F) Immunofluorescence staining for caspase-3 (red), a key marker of apoptosis, in U-251MG cells treated with increasing concentrations of Paromomycin. The results showed increased caspase-3 expression, indicating that apoptosis was induced by Paromomycin in U-251MG cells. (G) Immunofluorescence staining was performed to assess the levels of the SUMOylation protein (SUMO1, shown in red). Nuclei are stained with DAPI (blue). The results indicate that Paromomycin actively inhibits protein SUMOylation, as evidenced by a significant reduction in SUMO1 expression across various drug concentrations.
[image: Bar graphs, colony formation assays, migration assays, and fluorescence microscopy images analyze the effects of paromomycin and TSA on cell viability, colony formation, and protein expression. Panels A and B show that the combination treatment decreases cell viability and colony formation compared to controls. Panel C shows colony assays with a reduction in size and number with the treatment. Panel D displays migration assays, indicating reduced cell migration. Panel E uses fluorescence microscopy to show changes in SUMO1 and IGF1R protein expression with different treatments, marked with red and green, while DAPI-stained nuclei appear blue.]FIGURE 7 | Effects of Paromomycin on Cell Viability, Colony Formation, Migration, and SUMOylation in U-251MG Glioblastoma Cells. (A) U-251MG glioblastoma cells were treated with Paromomycin and Paromomycin + TSA, and cell viability was assessed using the CCK8 assay. Optical density (OD450) values indicate a significant reduction in cell viability in the Paromomycin-treated group compared to the NC (negative control), with further reduction observed when combined with TSA. Statistical significance levels are indicated (*p < 0.001). (B) Quantitative analysis of colony formation assay, presented as relative colony formation percentages. Paromomycin treatment alone and in combination with TSA significantly decreased colony formation compared to the NC group. Statistical significance levels are indicated (*p < 0.001, **p = 0.002). (C) Representative images from the colony formation assay in U-251MG cells. Paromomycin treatment reduced both colony number and size, with an enhanced effect in combination with TSA. (D) Representative images from the transwell migration assay for U-251MG cells under the NC, Paromomycin, and Paromomycin + TSA conditions. (E) Immunofluorescence staining in U-251MG cells to assess the effect of Paromomycin on SUMO1 and IGF1R nuclear translocation. Red indicates SUMO1 staining, green indicates IGF1R, and blue represents DAPI-stained nuclei. The images suggest that Paromomycin reduces IGF1R nuclear translocation, possibly associated with SUMO1 modification.
[image: Flowchart illustrating a research process. It consists of three sections: Landscape Analysis, Gene Correlation Exploration, and Prognostic Model Construction. Each section features steps like tumor prognosis, analysis of correlation, regulatory analysis, molecular docking, pathway enrichment analysis, and experimental verification. Visual elements include heatmaps, molecular structures, bar graphs, and assay results connected by arrows to show progression.]FIGURE 8 | Integrated bioinformatics and experimental analysis of Paromomycin targeting HDAC1 in GBM.
DISCUSSION
GBM is a very aggressive and fatal brain tumor with a poor prognosis and a significant recurrence risk. Despite breakthroughs in research and treatment, the five-year survival rate for GBM patients remains less than 5%, emphasizing the critical need for new therapeutic techniques (Aldoghachi et al., 2022; Stylli, 2020). Our findings show that Paromomycin, an aminoglycoside antibiotic, has the ability to target and regulate HDAC1 and hence prevent GBM growth. Recent advancements in technology and molecular research have significantly enhanced our understanding of diseases, thereby supporting therapeutic methodologies (Liu and Ren, 2023; Candelli and Franceschi, 2023; Ciurea et al., 2023). Intensive investigations into gene expression and regulatory mechanisms within biological contexts have provided valuable insights into gene functionality (Qin et al., 2024; Ren et al., 2023; Zhao et al., 2024). Researchers have frequently highlighted the critical roles of protein-protein interaction networks and their regulatory variations in biological systems, emphasizing their significance in cell signal transduction and functional control (Tian et al., 2023; Liu et al., 2023; Zhong et al., 2019). These studies not only deepen our comprehension of disease processes but also offer robust theoretical and experimental support for future treatment modalities (Du and Liu, 2024; Chen Y-C. et al., 2024; Zeng et al., 2024; Kong et al., 2024; Di Bonito et al., 2024; Fareed et al., 2024).
The integration of biomarkers utilizing big data and bioinformatics is increasingly pivotal for disease diagnosis and predicting future health conditions (Liang et al., 2024; Yao et al., 2024; Gao et al., 2024; Zhang et al., 2024). The recognition of cell death mechanisms and metabolic control advances has introduced new therapeutic targets and perspectives in drug research (Wan et al., 2024; Yang et al., 2023; Dong et al., 2024; Ahmed et al., 2024). Understanding cytokine functions in immune responses has yielded valuable insights for developing effective treatment strategies for numerous diseases (Sheng et al., 2024). Furthermore, exercise-related studies on monocyte gene expression regulation in Alzheimer’s patients may unveil potential therapeutic pathways (Huang J. et al., 2022; Wang et al., 2020; Sun et al., 2022). Our findings reveal a relationship between elevated HDAC1 expression and poor prognoses across multiple cancer types, suggesting that HDAC1 could serve as both a prognostic marker and a therapeutic target. This study explores the role of Paromomycin in selectively targeting and modulating HDAC1 to inhibit GBM growth, utilizing bioinformatics analysis to validate experimental results. Analysis of genes associated with SUMO modification across diverse malignancies revealed significant variations in gene expression and distinct methylation patterns.
HDAC1 is a crucial enzyme involved in chromatin remodeling, leading to the repression of genetic information through the removal of acetyl groups from histone proteins (Seto and Yoshida, 2014). Additionally, HDAC1 belongs to a broader family of histone deacetylases, known for their critical roles in cell cycle progression, differentiation, and apoptosis regulation (Meunier et al., 2006). Dysregulation or dysfunction of HDAC1 is associated with the development of various malignancies, including GBM. High levels of HDAC1 in GBM significantly contribute to aggressive tumor behavior, enhancing cell proliferation, migration, and resistance to apoptosis. The overexpression of HDAC1 correlates with the inhibition of tumor suppressor genes and activation of oncogenic pathways, thereby promoting tumor growth and survival. Moreover, HDAC1’s role in maintaining the self-renewal potential of GBM cancer stem cells complicates treatment efforts, as these cells exhibit resistance to standard therapies (Lo et al., 2021). Given HDAC1’s substantial involvement in GBM progression, it presents a promising therapeutic target. Our study demonstrates that Paromomycin acts as an HDAC1 inhibitor, reversing detrimental epigenetic modifications that fuel tumor growth and survival. Such drugs can activate genes that restrict tumor proliferation or enhance apoptotic pathways, thereby increasing the efficacy of conventional therapies.
The development of innovative targeted therapies has the potential to improve treatment effectiveness while minimizing adverse side effects (Vargas-Sierra et al., 2024; Wahi et al., 2024; Ma et al., 2024), thereby advancing precision medicine. Paromomycin, an aminoglycoside antibiotic, has been minimally investigated for its anticancer potential (Hirukawa et al., 2005). Through molecular docking studies, we identified Paromomycin from an FDA-approved drug library as a promising HDAC1 inhibitor. Its strong binding affinity to HDAC1 indicates that Paromomycin can regulate HDAC1 activity and influence the SUMOylation pathway, representing a novel approach to specifically target this pathway in GBM and potentially yield new treatment options. Our research suggests that Paromomycin may effectively inhibit GBM by targeting HDAC1 to regulate IGF1R SUMOylation, potentially opening new avenues for GBM treatment and inspiring exploration of similar mechanisms in other cancer types (Kunadis et al., 2021). HDAC1 (histone deacetylase 1) is known to promote tumor growth in various cancers by regulating chromatin structure through deacetylation, thus influencing gene expression (Olzscha et al., 2015). In GBM, abnormal HDAC1 activity is closely associated with increased cell proliferation, invasiveness, and poor prognosis. Therefore, inhibiting HDAC1 with Paromomycin may disrupt key signaling pathways controlled by HDAC1, potentially reducing tumor cell proliferation and invasiveness. In laboratory assays, we confirmed that Paromomycin interacts specifically with and modulates SUMOylated HDAC1 protein, resulting in a significant reduction in GBM cell growth, motility, and invasiveness (Fox et al., 2019; Cheng et al., 2023; Guo et al., 2022). In vitro experiments demonstrated that Paromomycin effectively inhibits the proliferation of U-251MG, a widely used GBM cell line, with the CCK-8 proliferation assay indicating a clear decrease in cell viability in relation to Paromomycin concentration. Additionally, qRT-PCR analyses revealed decreased expression of HDAC1 and other SUMO-related genes, such as PIAS1, PIAS2, and RANBP2, in the presence of Paromomycin. Immunofluorescence staining corroborated these findings, showing increased levels of caspase-3 and decreased levels of SUMO1, indicative of enhanced apoptotic activity and reduced protein SUMOylation.
In recent years, the development of novel targeted therapies has not only enhanced treatment efficacy and reduced adverse effects but also promoted advancements in precision medicine (Vargas-Sierra et al., 2024). Systematic reviews and meta-analyses have been widely applied in biomedical research, covering various methodological studies such as drug development and bioinformatics, significantly advancing both basic research and translational medicine (Wu Z. et al., 2024). Additionally, the pivotal role of cell death and metabolic regulation in disease progression has gained increasing attention, providing new targets for drug research (Lin et al., 2023). New drugs targeting specific proteins or gene pathways have notably improved the specificity and effectiveness of treatments (Hong et al., 2024). For instance, research has shown that kiwi root extract exerts therapeutic effects on gastric cancer (Chu et al., 2023). The integration of modern technology with traditional Chinese medicine also provides new perspectives and potential in drug development (Wang et al., 2023). Advances in materials science have led to the development and application of various novel composite materials, showing broad potential in biomedical and engineering fields (Wu H. et al., 2024). Paromomycin, an aminoglycoside antibiotic, is commonly used to treat intestinal infections and amebiasis (Botero, 1970). Recent studies have begun exploring its potential in cancer therapy, particularly its impact on histone deacetylase 1 (HDAC1). Research suggests that Paromomycin may inhibit HDAC1 activity, altering the epigenetic state of tumor cells and thereby reducing their proliferation and invasiveness. The insulin-like growth factor 1 receptor (IGF1R) plays a crucial role in cell proliferation and survival, with its nuclear localization closely associated with the regulation of specific gene expression. Given Paromomycin’s established use, known safety profile, and pharmacokinetics, repurposing it as an HDAC1-targeted anticancer drug could potentially lower the costs and risks associated with new drug development.
In tumors and neurological disorders, SUMOylation regulation of specific receptors or proteins can significantly impact key processes such as cell proliferation, differentiation, and apoptosis (Liu et al., 2017). IGF1R, a transmembrane receptor tyrosine kinase, is heavily involved in cell proliferation, differentiation, survival, and metabolic regulation (Romano, 2003). Additionally, IGF1R plays a crucial role in nervous system development, neuron survival, and synaptic plasticity, making its functional regulation closely tied to the progression of various diseases (Dyer et al., 2016). SUMOylation of IGF1R can alter downstream signal transmission efficiency, thus inhibiting tumor cell proliferation and migration (Zhang et al., 2015). By specifically modulating IGF1R SUMOylation, targeted therapeutic strategies could be designed that differ from traditional IGF1R inhibitors, potentially reducing side effects and enhancing therapeutic efficacy (Zhang et al., 2015; Chen et al., 2024b). Research indicates that HDAC1 is involved not only in acetylation regulation but also interacts with other post-translational modifications, such as SUMOylation. HDAC1 activity may influence the expression or function of SUMO-related enzymes, affecting the SUMOylation status of key proteins like IGF1R. Thus, HDAC1 inhibitors, such as Paromomycin, could regulate IGF1R’s signaling function and mechanisms in tumors by altering its SUMOylation level. This regulatory approach may aid in understanding the complex interactions between HDAC1 and SUMOylation in tumorigenesis and tumor progression. Targeting HDAC1 to modulate IGF1R SUMOylation holds significant implications for cancer research and therapy. This study not only helps to deepen the understanding of the molecular mechanisms of tumorigenesis but may also open new therapeutic avenues, offering more effective treatment options and solutions to overcome cancer drug resistance. These findings may have profound impacts on multiple tumor types, including GBM, in the future. Our findings suggest that HDAC1 activity may affect IGF1R nuclear translocation. Specifically, inhibition of HDAC1 could lead to a reduction in IGF1R SUMO1 modification, altering its nuclear localization and, consequently, downstream signaling and gene expression.
Furthermore, although results indicate no significant correlation between HDAC1 levels and overall survival in GBM, nor substantial differences in methylation levels, this does not directly negate the role of SUMOylation in GBM. SUMOylation is a complex post-translational modification that can influence tumor growth and progression through various mechanisms. While the direct association between HDAC1 and other SUMO-related genes with GBM was not prominent in the current data, this may be due to their indirect or context-specific roles in tumor biology. For instance, the regulation of HDAC1 activity may alter IGF1R SUMOylation levels, subsequently impacting cellular signaling, proliferation, and invasive capabilities. This effect may emerge under specific experimental conditions but could be diluted by heterogeneity in large clinical datasets. SUMOylation involves multiple genes and proteins, which may display heterogeneous effects across different cell types or tumor stages. Although statistical significance for SUMO-related genes in GBM is not strong in this study, this does not exclude the potential impact of unexamined SUMO genes or subgroups. SUMOylation can modulate tumor-suppressing and tumor-promoting genes, such as the enhanced function of the oncogenic protein MDM2 upon SUMOylation, which promotes cell proliferation and survival, driving tumor progression (Chen et al., 2025). This mechanism is especially relevant in glioma and other tumors, where SUMOylation regulation could influence treatment outcomes. SUMOylation also plays a crucial role in protein nuclear translocation (Chen et al., 2024b; Chen et al., 2024c). Therefore, deeper exploration of specific SUMO-related gene functions or differential effects across tumor subtypes may reveal new insights.
The impact of exercise on nuclear translocation has been studied across various biological pathways, particularly in metabolic regulation and cell signaling (McGee et al., 2003). Exercise is believed to slow tumor progression through various mechanisms, including immune modulation, reducing pro-inflammatory factors, and improving metabolic status. The exercise-regulated nuclear translocation mechanism is essential for cell repair, adaptation, and antioxidant responses. If Paromomycin can influence specific nuclear translocation pathways through HDAC1, it may enhance exercise’s biological effects. This could be particularly beneficial for older adults or patients with chronic illnesses, where exercise-induced metabolic adaptation is limited, providing extra metabolic support to improve exercise outcomes. As an HDAC1 inhibitor, Paromomycin may impact gene expression, metabolic responses, and anti-tumor activity related to exercise adaptation. However, experimental validation is needed to confirm its specific effects on nuclear translocation and its biological impact.
In summary, personalized medicine, targeted therapy, and immunotherapy are actively under investigation to enhance patient quality of life and treatment efficacy (Yang and Cai, 2023; Jackson and Chester, 2015). Scientists are continuously investigating and developing new therapeutic strategies by combining several research approaches including machine learning and bioinformatics technologies, including small molecule compound screening, multi-omics analysis, deep learning, and bioinformatics techniques, so offering new possibilities for precision medicine and personalized treatment (Wahi et al., 2024; Li et al., 2024; Lan et al., 2024; Yin et al., 2024). It is recommended to use shared decision-making components and checklists in clinical practice to improve patient involvement and satisfaction, especially when it comes to choosing drugs and planning therapy (Li et al., 2023; Shan et al., 2024). Advancements in drug delivery systems and the application of nanotechnology have the potential to greatly improve medication targeting and boost therapeutic effectiveness. Co-administration of Paromomycin with other therapeutic agents is also proposed to enhance its effectiveness, contributing to a comprehensive strategy against GBM. This work lays the groundwork for future exploration and drug development aimed at translating these findings into clinically effective therapies for GBM (Vargas-Sierra et al., 2024; Wu et al., 2023; Abuaisheh and Aboud, 2023; Cui et al., 2023; Guo Q. et al., 2023). Further studies are necessary to elucidate the specific molecular mechanisms through which Paromomycin affects HDAC1 and the SUMOylation pathway. It is essential to assess the gene expression levels and methylation status of SUMOylation-related genes in human GBM samples, ensuring that our findings are applicable to clinical scenarios.
CONCLUSION
This study highlights the critical role of SUMOylation-related genes in cancer prognosis. Paromomycin shows potential for treating GBM by reducing cell viability and migration and impacting SUMO1 modification and IGF1R nuclear translocation. These findings suggest that targeting SUMOylation-related pathways with Paromomycin may offer a promising strategy for GBM treatment, paving the way for new targeted therapies in cancer.
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SUPPLEMENTARY FIGURE 1 | Promoter Methylation Analysis of SUMOylation-Related Genes. This diagram illustrates the methylation levels of the promoters for various SUMOylation-related genes across multiple datasets. (A) HDAC1 Promoter Methylation Analysis: This panel depicts the methylation status of the HDAC1 promoter region, including both the methylation rate and the unmethylated rate in different samples. (B) HDAC4 Promoter Methylation Analysis: This section presents the frequency of HDAC4 promoter methylation as reported in other studies involving infarcted hearts. (C) HDAC6 Promoter Methylation Analysis: A heatmap representation shows the methylation levels of the HDAC6 promoter categorized by sample type and degree of methylation. (D) HDAC9 Promoter Methylation Analysis: This summary highlights the overall structure of the HDAC9 promoter, indicating the MAX binding hotspot and potential regulatory methylated regions. (E) MDM2 Promoter Methylation Analysis: This panel displays the methylation status of the MDM2 promoter, which varies depending on cell state or treatment conditions. (F) PIAS1 Promoter Methylation Analysis: Plots show the methylation status profile of the PIAS1 promoter and variations in methylation levels among different experimental groups. (G) PIAS2 Promoter Methylation Analysis: This section illustrates the methylation change points in the PIAS2 promoter. (H) RAN Promoter Methylation Analysis: This analysis presents the methylation status of the RAN promoter, including fractions of methylated sites and predicted regulatory effects. (I) RANBP2 Promoter Methylation Analysis: An overview of the methylation patterns in the RANBP2 promoter, identifying alterations that may negatively impact gene expression. (J) RANGAP1 Promoter Methylation Analysis: This panel highlights key intra-sample differences in DNA methylation for the RANGAP1 promoter. (K) SUMO1 Promoter Methylation Analysis: This section shows the distribution and extent of methylation in the SUMO1 promoter, which may play a role in gene regulation. The distribution of methylation across all sample types is visualized using bar graphs, with each wedge representing the proportion of sample types (Nb, CD34, and iPSC) containing CpG sites at low, medium, or high levels of methylation based on two different qMethylPlex assays. The rightmost column in each image displays the genome-wide distribution of ATAC peaks (rows), indicating chromatin accessibility relative to promoter methylation.
SUPPLEMENTARY FIGURE 2 | Prognostic Model of SUMOylation-Related Genes for Glioblastoma (GBM) Prognosis. (A) To evaluate the diagnostic accuracy of ssGSEA score expressions in distinguishing tumor from normal groups, calibration curves were generated, accompanied by goodness-of-fit tests. The x-axis represents predicted probabilities, while the y-axis displays the actual rates. The red line indicates actual findings, and the blue dashed line reflects optimal predictions. According to the Hosmer-Lemeshow test, the P-value of 0.141 suggests inconclusive evidence, indicating that the model fits the data well. (B) A comparison of ssGSEA score expressions between tumor and normal groups is presented. A violin plot illustrates the distribution of ssGSEA scores (y-axis) for a selection of input gene sets, with the normal group shown in blue and the tumor group in red. No significant difference was observed between the two groups, as indicated by a p-value of 0.715. (C) The Receiver Operating Characteristic (ROC) curve evaluates the diagnostic accuracy of the ssGSEA score in differentiating between tumor and normal groups. The AUC is 0.540 with a 95% CI of 0.298–0.701, confirming the model’s diagnostic competence. (D, E) The colony formation assay indicates that Paromomycin affects the proliferation of glioma cells.

REFERENCES
	 Abuaisheh, A., and Aboud, O. (2023). Biogenic amines in gliomas: a comprehensive literature review. Front. Biosci. Landmark Ed. 28, 141. doi:10.31083/j.fbl2807141
	 Ahmed, M. G., Shaheen, N., Shaheen, A., Meshref, M., Nashwan, A. J., Nassar, N. A., et al. (2024). Outcomes of endovascular treatment alone or with intravenous alteplase in acute ischemic stroke Patients: a retrospective cohort study. Brain Hemorrhages 5, 21–28. doi:10.1016/j.hest.2023.09.003
	 Aldoghachi, A. F., Aldoghachi, A. F., Breyne, K., Ling, K.-H., and Cheah, P.-S. (2022). Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience 491, 240–270. doi:10.1016/j.neuroscience.2022.03.030
	 Aly, A., Singh, P., Korytowsky, B., Ling, Y.-L., Kale, H. P., Dastani, H. B., et al. (2019). Survival, costs, and health care resource use by line of therapy in US Medicare patients with newly diagnosed glioblastoma: a retrospective observational study. Neuro-Oncology Pract. 7, 164–175. doi:10.1093/nop/npz042
	 Asano, Y. (2018). How to eliminate uncertainty in clinical medicine – clues from creation of mathematical models followed by scientific data mining. EBioMedicine 34, 12–13. doi:10.1016/j.ebiom.2018.07.001
	 Backes, C., Harz, C., Fischer, U., Schmitt, J., Ludwig, N., Petersen, B.-S., et al. (2015). New insights into the genetics of glioblastoma multiforme by familial exome sequencing. Oncotarget 6 (6), 5918–5931. doi:10.18632/oncotarget.2950
	 Banu, Z. (2019). Glioblastoma multiforme: a review of its pathogenesis and treatment. Int. Res. J. Pharm. 9, 7–12. doi:10.7897/2230-8407.0912283
	 Behl, T., Kaur, I., Sehgal, A., Singh, S., Bhatia, S., Al-Harrasi, A., et al. (2021). Bioinformatics accelerates the major tetrad: a real boost for the pharmaceutical industry. IJMS 22, 6184. doi:10.3390/ijms22126184
	 Botero, D. R. (1970). Paromomycin as effective treatment of taenia infections. Am. J. Trop. Med. Hyg. 19, 234–237. doi:10.4269/ajtmh.1970.19.234
	 Candelli, M., and Franceschi, F. (2023). New advances in gastroenterology: the crucial role of molecular medicine. IJMS 24, 14907. doi:10.3390/ijms241914907
	 Cavill, R., Jennen, D., Kleinjans, J., and Briedé, J. J. (2016). Transcriptomic and metabolomic data integration. Brief. Bioinform 17, 891–901. doi:10.1093/bib/bbv090
	 Chen, H.-M., Nikolic, A., Singhal, D., and Gallo, M. (2022). Roles of chromatin remodelling and molecular heterogeneity in therapy resistance in glioblastoma. Cancers 14, 4942. doi:10.3390/cancers14194942
	 Chen, Y., Cai, Y., Kang, X., Zhou, Z., Qi, X., Ying, C., et al. (2020). Predicting the risk of sarcopenia in elderly patients with patellar fracture: development and assessment of a new predictive nomogram. PeerJ 8, e8793. doi:10.7717/peerj.8793
	 Chen, Y., Chen, X., Luo, Z., Kang, X., Ge, Y., Wan, R., et al. (2024b). Exercise-induced reduction of IGF1R sumoylation attenuates neuroinflammation in APP/PS1 transgenic mice. J. Adv. Res. , S2090123224001279. doi:10.1016/j.jare.2024.03.025
	 Chen, Y., Fan, Z., Luo, Z., Kang, X., Wan, R., Li, F., et al. (2025). Impacts of Nutlin-3a and exercise on murine double minute 2–enriched glioma treatment. Neural Regen. Res. 20, 1135–1152. doi:10.4103/NRR.NRR-D-23-00875
	 Chen, Y., Huang, L., Luo, Z., Han, D., Luo, W., Wan, R., et al. (2024c). Pantothenate-encapsulated liposomes combined with exercise for effective inhibition of CRM1-mediated PKM2 translocation in Alzheimer’s therapy. J. Control. Release 373, 336–357. doi:10.1016/j.jconrel.2024.07.010
	 Chen, Y.-C., Chen, H.-H., and Chen, P.-M. (2024a). Catalase expression is an independent prognostic marker in liver hepatocellular carcinoma. Oncologie 26, 79–90. doi:10.1515/oncologie-2023-0472
	 Cheng, Y., Ren, X., Hait, W. N., and Yang, J.-M. (2013). Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev. 65, 1162–1197. doi:10.1124/pr.112.007120
	 Cheng, Z., Li, S., Yuan, J., Li, Y., Cheng, S., Huang, S., et al. (2023). HDAC1 mediates epithelial–mesenchymal transition and promotes cancer cell invasion in glioblastoma. Pathology - Res. Pract. 246, 154481. doi:10.1016/j.prp.2023.154481
	 Chu, Y.-M., Huang, Q.-Y., Wang, T.-X., Yang, N., Jia, X.-F., Shi, Z.-M., et al. (2023). Actinidia chinensis Planch. root extract downregulates the Wnt/β-catenin pathway to treat gastric cancer: a mechanism study based on network pharmacology. Tradit. Med. Res. 8, 40. doi:10.53388/TMR20230213002
	 Ciurea, A. V., Mohan, A. G., Covache-Busuioc, R.-A., Costin, H.-P., Glavan, L.-A., Corlatescu, A.-D., et al. (2023). Unraveling molecular and genetic insights into neurodegenerative diseases: advances in understanding alzheimer’s, Parkinson’s, and huntington’s diseases and amyotrophic lateral sclerosis. Int. J. Mol. Sci. 24, 10809. doi:10.3390/ijms241310809
	 Cui, J., Shen, W., and Zhao, H. (2023). New insights into extracellular vesicles between adipocytes and breast cancer orchestrating tumor progression. Front. Biosci. Landmark Ed. 28, 129. doi:10.31083/j.fbl2806129
	 Dasari, A., Saini, M., Sharma, S., and Bergemann, R. (2020). Pro15 healthcare resource utilisation and economic burden of glioblastoma in the United States: a systematic review. Value Health 23, S331. doi:10.1016/j.jval.2020.04.1244
	 Davis, M. (2016). Glioblastoma: overview of disease and treatment. CJON 20, S2–S8. doi:10.1188/16.CJON.S1.2-8
	 Di Bonito, P., Di Sessa, A., Licenziati, M. R., Corica, D., Wasniewska, M., Miraglia Del Giudice, E., et al. (2024). Sex-related differences in cardiovascular risk in adolescents with overweight or obesity. Rev. Cardiovasc Med. 25, 141. doi:10.31083/j.rcm2504141
	 Dong, F., Zheng, L., and Yang, G. (2024). Construction of a TF-miRNA-mRNA regulatory network for diabetic nephropathy. Arch. Españoles Urol. 77, 104–112. doi:10.56434/j.arch.esp.urol.20247701.14
	 Du, Y., and Liu, H. (2024). Exercise-induced modulation of miR-149-5p and MMP9 in LPS-triggered diabetic myoblast ER stress: licorice glycoside E as a potential therapeutic target. Tradit. Med. Res. 9, 45. doi:10.53388/TMR20230121002
	 Dyer, A. H., Vahdatpour, C., Sanfeliu, A., and Tropea, D. (2016). The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 325, 89–99. doi:10.1016/j.neuroscience.2016.03.056
	 Elsaid, M. I., John, T., Li, Y., Pentakota, S. R., and Rustgi, V. K. (2020). The health care burden of hepatic encephalopathy. Clin. Liver Dis. 24, 263–275. doi:10.1016/j.cld.2020.01.006
	 Fareed, A., Amir, N., Ajaz, H., Sohail, A., Vaid, R., and Farhat, S. (2024). Advances in BRAF-targeted therapies for non-small cell lung cancer: the promise of encorafenib and binimetinib. Int. J. Surg. 110, 1891–1893. doi:10.1097/JS9.0000000000001051
	 Fox, B. M., Janssen, A., Estevez-Ordonez, D., Gessler, F., Vicario, N., Chagoya, G., et al. (2019). SUMOylation in glioblastoma: a novel therapeutic target. IJMS 20, 1853. doi:10.3390/ijms20081853
	 Gao, S., Shi, X., Yue, C., Chen, Y., Zuo, L., and Wang, S. (2024). Comprehensive analysis of competing endogenous RNA networks involved in the regulation of glycolysis in clear cell renal cell carcinoma. Oncologie 26, 587–602. doi:10.1515/oncologie-2024-0074
	 Glass, K. (2023). Using multi-omic data to model gene regulatory networks. Biotechnol. Adv. 49, 107739. doi:10.14293/GOF.23.03
	 Grech, N., Dalli, T., Mizzi, S., Meilak, L., Calleja, N., and Zrinzo, A. (2020). Rising incidence of glioblastoma multiforme in a well-defined population. Cureus 12, e8195. doi:10.7759/cureus.8195
	 Grochans, S., Cybulska, A. M., Simińska, D., Korbecki, J., Kojder, K., Chlubek, D., et al. (2022). Epidemiology of glioblastoma multiforme–literature review. Cancers 14, 2412. doi:10.3390/cancers14102412
	 Guo, Q., Du, A., Wang, J., Wang, L., Zhu, X., Yue, X., et al. (2023b). Integrated bioinformatic analyses reveal immune molecular markers and regulatory networks for cerebral ischemia-reperfusion. Front. Biosci. Landmark Ed. 28, 179. doi:10.31083/j.fbl2808179
	 Guo, R., Li, G., and Guo, Y. (2022). Hypertensive-like reaction: a definition for normotensive individuals with symptoms associated with elevated blood pressure. CVIA 6, 6. doi:10.15212/CVIA.2022.0004
	 Guo, Z., Yu, X., Zhao, S., Zhong, X., Huang, D., Feng, R., et al. (2023a). SIRT6 deficiency in endothelial cells exacerbates oxidative stress by enhancing HIF1α accumulation and H3K9 acetylation at the Ero1α promoter. Clin. and Transl. Med 13, e1377. doi:10.1002/ctm2.1377
	 Han, Z.-J., Feng, Y.-H., Gu, B.-H., Li, Y.-M., and Chen, H. (2018). The post-translational modification, SUMOylation, and cancer (Review). Int. J. Oncol. 52, 1081–1094. doi:10.3892/ijo.2018.4280
	 Hao, Y., Liu, Z., Riter, R. N., and Kalantari, S. (2024) “Advancing patient-centered shared decision-making with AI systems for older adult cancer patients,” in Proceedings of the CHI conference on human factors in computing systems . USA: Honolulu HI, 1–20. doi:10.1145/3613904.3642353
	 Hirukawa, S., Olson, K. A., Tsuji, T., and Hu, G. (2005). Neamine inhibits xenografic human tumor growth and angiogenesis in athymic mice. Clin. Cancer Res. 11, 8745–8752. doi:10.1158/1078-0432.CCR-05-1495
	 Hong, W., Lei, H., Peng, D., Huang, Y., He, C., Yang, J., et al. (2024). A chimeric adenovirus-vectored vaccine based on Beta spike and Delta RBD confers a broad-spectrum neutralization against Omicron-included SARS-CoV-2 variants. MedComm 5, e539. doi:10.1002/mco2.539
	 Huang, J., Lin, W., Sun, Y., Wang, Q., He, S., Han, Z., et al. (2022b). Quercetin targets VCAM1 to prevent diabetic cerebrovascular endothelial cell injury. Front. Aging Neurosci. 14, 944195. doi:10.3389/fnagi.2022.944195
	 Huang, L., Jiang, X., Gong, L., and Xing, D. (2015). Photoactivation of akt1/gsk3β isoform-specific signaling Axis promotes pancreatic β-cell regeneration: lpli induces β-cell replication. J. Cell Biochem. 116, 1741–1754. doi:10.1002/jcb.25133
	 Huang, L., Liu, P., Yang, Q., and Wang, Y. (2022a). The KRAB domain-containing protein ZFP961 represses adipose thermogenesis and energy expenditure through interaction with PPAR α. Adv. Sci. 9, 2102949. doi:10.1002/advs.202102949
	 Huang, L., Tang, Y., and Xing, D. (2013). Activation of nuclear estrogen receptors induced by low-power laser irradiation via PI3-K/Akt signaling cascade. J. Cell. Physiology 228, 1045–1059. doi:10.1002/jcp.24252
	 Jackson, S. E., and Chester, J. D. (2015). Personalised cancer medicine. Intl J. Cancer 137, 262–266. doi:10.1002/ijc.28940
	 Kaynar, A., Altay, O., Li, X., Zhang, C., Turkez, H., Uhlén, M., et al. (2021). Systems biology approaches to decipher the underlying molecular mechanisms of glioblastoma multiforme. IJMS 22, 13213. doi:10.3390/ijms222413213
	 Kesari, S. (2011). Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Seminars Oncol. 38, S2–S10. doi:10.1053/j.seminoncol.2011.09.005
	 Kim, H. J., and Kim, D.-Y. (2020). Present and future of anti-glioblastoma therapies: a deep look into molecular dependencies/features. Molecules 25, 4641. doi:10.3390/molecules25204641
	 Kong, Y.-L., Wang, H.-D., Gao, M., Rong, S.-Z., and Li, X.-X. (2024). LncRNA XIST promotes bladder cancer progression by modulating miR-129-5p/TNFSF10 axis. Discov. Onc 15, 65. doi:10.1007/s12672-024-00910-8
	 Kumar, H. R., Zhong, X., Sandoval, J. A., Hickey, R. J., and Malkas, L. H. (2008). Applications of emerging molecular technologies in glioblastoma multiforme. Expert Rev. Neurother. 8, 1497–1506. doi:10.1586/14737175.8.10.1497
	 Kunadis, E., Lakiotaki, E., Korkolopoulou, P., and Piperi, C. (2021). Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol. and Ther. 220, 107721. doi:10.1016/j.pharmthera.2020.107721
	 Lan, Y., Tian, F., Tang, H., Pu, P., He, Q., and Duan, L. (2024). Food therapy of scutellarein ameliorates pirarubicin-induced cardiotoxicity in rats by inhibiting apoptosis and ferroptosis through regulation of NOX2-induced oxidative stress. Mol. Med. Rep. 29, 84. doi:10.3892/mmr.2024.13208
	 Li, L. (2015). The potential of translational bioinformatics approaches for pharmacology research. Brit J. Clin. Pharma 80, 862–867. doi:10.1111/bcp.12622
	 Li, S., Xie, J., Chen, Z., Yan, J., Zhao, Y., Cong, Y., et al. (2023). Key elements and checklist of shared decision-making conversation on life-sustaining treatment in emergency: a multispecialty study from China. World J. Emerg. Med. 14, 380–385. doi:10.5847/wjem.j.1920-8642.2023.076
	 Li, T., Feng, W., Yan, W., and Wang, T. (2024). From metabolic to epigenetic: insight into trained macrophages in atherosclerosis (Review). Mol. Med. Rep. 30, 145. doi:10.3892/mmr.2024.13269
	 Liang, S., Xu, X., Yang, Z., Du, Q., Zhou, L., Shao, J., et al. (2024). Deep learning for precise diagnosis and subtype triage of drug-resistant tuberculosis on chest computed tomography. MedComm 5, e487. doi:10.1002/mco2.487
	 Liao, Z., Lin, H., Liu, S., and Krafft, P. R. (2023). Admission triglyceride-glucose index predicts long-term mortality patients with subarachnoid hemorrhage a retrospective analysis of the MIMIC-IV database. Brain Hemorrhages 5, 29–37. doi:10.1016/j.hest.2023.10.004
	 Lin, W.-J., Shi, W.-P., Ge, W.-Y., Chen, L.-L., Guo, W.-H., Shang, P., et al. (2023). Magnetic fields reduce apoptosis by suppressing phase separation of tau-441. Research 6, 0146. doi:10.34133/research.0146
	 Liu, C., and Ren, L. (2023). Enhanced understanding of the involvement of ferroptosis in tumorigenesis: a review of recent research advancements. A Rev. Recent Res. Adv. 3, 37–48. doi:10.58567/ci03010001
	 Liu, F.-Y., Liu, Y.-F., Yang, Y., Luo, Z.-W., Xiang, J.-W., Chen, Z.-G., et al. (2017). SUMOylation in neurological diseases. CMM 16, 893–899. doi:10.2174/1566524017666170109125256
	 Liu, Q., Long, Q., Zhao, J., Wu, W., Lin, Z., Sun, W., et al. (2023). Cold-induced reprogramming of subcutaneous white adipose tissue assessed by single-cell and single-nucleus RNA sequencing. Research 6, 0182. doi:10.34133/research.0182
	 Lo, C. C., McNamara, J. B., Melendez, E. L., Lewis, E. M., Dufault, M. E., Sanai, N., et al. (2021). Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight 6, e149232. doi:10.1172/jci.insight.149232
	 Lynes, J. P., Nwankwo, A. K., Sur, H. P., Sanchez, V. E., Sarpong, K. A., Ariyo, O. I., et al. (2020). Biomarkers for immunotherapy for treatment of glioblastoma. J. Immunother. Cancer 8, e000348. doi:10.1136/jitc-2019-000348
	 Ma, X., Yang, Q., Lin, N., Feng, Y., Liu, Y., Liu, P., et al. (2024). Integrated anti-vascular and immune-chemotherapy for colorectal carcinoma using a pH-responsive polymeric delivery system. J. Control. Release 370, 230–238. doi:10.1016/j.jconrel.2024.04.028
	 McGee, S. L., Howlett, K. F., Starkie, R. L., Cameron-Smith, D., Kemp, B. E., and Hargreaves, M. (2003). Exercise increases nuclear AMPK alpha2 in human skeletal muscle. Diabetes 52, 926–928. doi:10.2337/diabetes.52.4.926
	 McGonigle, P., and Ruggeri, B. (2014). Animal models of human disease: challenges in enabling translation. Biochem. Pharmacol. 87, 162–171. doi:10.1016/j.bcp.2013.08.006
	 McNerney, M. P., and Styczynski, M. P. (2018). Small molecule signaling, regulation, and potential applications in cellular therapeutics. WIREs Mech. Dis. 10, e1405. doi:10.1002/wsbm.1405
	 Meunier, D., and Seiser, C. (2006). “Histone deacetylase 1,” in Histone deacetylases ed . Editor E. Verdin (Totowa, NJ: Humana Press), 3–22. doi:10.1385/1-59745-024-3:3
	 Miller, J. J., Shih, H. A., Andronesi, O. C., and Cahill, D. P. (2017). Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications. Cancer 123, 4535–4546. doi:10.1002/cncr.31039
	 Monti, P., Menichini, P., Speciale, A., Cutrona, G., Fais, F., Taiana, E., et al. (2020). Heterogeneity of TP53 mutations and P53 protein residual function in cancer: does it matter?Front. Oncol. 10, 593383. doi:10.3389/fonc.2020.593383
	 Nakada, M., Kita, D., Watanabe, T., Hayashi, Y., Teng, L., Pyko, I. V., et al. (2011). Aberrant signaling pathways in glioma. Cancers 3 (3), 3242–3278. doi:10.3390/cancers3033242
	 Nguyen, H.-M., Guz-Montgomery, K., Lowe, D. B., and Saha, D. (2021). Pathogenetic features and current management of glioblastoma. Cancers 13, 856. doi:10.3390/cancers13040856
	 Olzscha, H., Sheikh, S., and La Thangue, N. B. (2015). Deacetylation of chromatin and gene expression regulation: a new target for epigenetic therapy. Crit. Rev. Oncog. 20, 1–17. doi:10.1615/CritRevOncog.2014012463
	 Ostrom, Q. T., Kinnersley, B., Armstrong, G., Rice, T., Chen, Y., Wiencke, J. K., et al. (2018). Age-specific genome-wide association study in glioblastoma identifies increased proportion of ‘lower grade glioma’-like features associated with younger age. Intl J. Cancer 143, 2359–2366. doi:10.1002/ijc.31759
	 Ou, A., Yung, W. K. A., and Majd, N. (2020). Molecular mechanisms of treatment resistance in glioblastoma. IJMS 22, 351. doi:10.3390/ijms22010351
	 Pasche, B., and Myers, R. M. (2009). One step forward toward identification of the genetic signature of glioblastomas. JAMA 302, 325–326. doi:10.1001/jama.2009.1023
	 Pechanova, O. (2020). Why we still need reliable animal models. Pathophysiology 27, 44–45. doi:10.3390/pathophysiology27010006
	 Qin, S., Xie, B., Wang, Q., Yang, R., Sun, J., Hu, C., et al. (2024). New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm 5, e551. doi:10.1002/mco2.551
	 Ren, S., Huang, M., Bai, R., Chen, L., Yang, J., Zhang, J., et al. (2023). Efficient modulation of exon skipping via antisense circular RNAs. Research 6, 0045. doi:10.34133/research.0045
	 Romano, G. (2003). The complex biology of the receptor for the insulin-like growth factor-1. Drug News Perspect. 16, 525–531. doi:10.1358/dnp.2003.16.8.829351
	 Seto, E., and Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713. doi:10.1101/cshperspect.a018713
	 Shan, Y., Zhao, Y., Li, C., Gao, J., Song, G., and Li, T. (2024). Efficacy of partial and complete resuscitative endovascular balloon occlusion of the aorta in the hemorrhagic shock model of liver injury. World J. Emerg. Med. 15, 10–15. doi:10.5847/wjem.j.1920-8642.2024.001
	 Sheng, T., Feng, Q., Luo, Z., Zhao, S., Xu, M., Ming, D., et al. (2024). Effect of phase clustering bias on phase-amplitude coupling for emotional EEG. J. Integr. Neurosci. 23, 33. doi:10.31083/j.jin2302033
	 Slyer, J. T. (2022). Shared decision-making to improve medication adherence. Nurse Pract. 47, 41–47. doi:10.1097/01.NPR.0000841928.60278.75
	 Srivastava, V., and Kumar, A. (2024). Bioinformatics tools: essential for the development and discovery of medicines. TURCOMAT 11, 11. doi:10.61841/turcomat.v11i1.14606
	 Stylli, S. S. (2020). Novel treatment strategies for glioblastoma. Cancers 12, 2883. doi:10.3390/cancers12102883
	 Stylli, S. S. (2021). Novel treatment strategies for glioblastoma—a summary. Cancers 13, 5868. doi:10.3390/cancers13225868
	 Sun, Y., Luo, Z., Chen, Y., Lin, J., Zhang, Y., Qi, B., et al. (2022). si-Tgfbr1-loading liposomes inhibit shoulder capsule fibrosis via mimicking the protective function of exosomes from patients with adhesive capsulitis. Biomater. Res. 26, 39. doi:10.1186/s40824-022-00286-2
	 Sun, Y. V., and Hu, Y.-J. (2016). Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Advances in genetics , 147–190. doi:10.1016/bs.adgen.2015.11.004
	 Szopa, W., Burley, T. A., Kramer-Marek, G., and Kaspera, W. (2017). Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. BioMed Res. Int. 2017, 8013575–8013613. doi:10.1155/2017/8013575
	 Tian, Y., Zhou, Y., Chen, F., Qian, S., Hu, X., Zhang, B., et al. (2024). Research progress in MCM family: focus on the tumor treatment resistance. Biomed. and Pharmacother. 173, 116408. doi:10.1016/j.biopha.2024.116408
	 Tian, Z., Liu, J., Zeng, M., and Zeng, Q. (2023). Tong jing yi Hao formula alleviates ornidazole-induced oligoasthenospermia in rats by suppressing ROS/MAPK/HIF-1 pathway. Arch. Españoles Urol. 76, 596–604. doi:10.56434/j.arch.esp.urol.20237608.74
	 Tosakoon, S., Lawrence, W. R., Shiels, M. S., and Jackson, S. S. (2023). Sex differences in cancer incidence rates by race and ethnicity: results from the surveillance, epidemiology, and end results (SEER) Registry (2000-2019). JCO 41, 10547. doi:10.1200/JCO.2023.41.16_suppl.10547
	 Tsuji, M., Ishida, F., Sato, T., Furukawa, K., Miura, Y., Yasuda, R., et al. (2023). Computational fluid dynamics using dual-layer porous media modeling to evaluate the hemodynamics of cerebral aneurysm treated with FRED: a technical note. Brain Hemorrhages 4, 39–43. doi:10.1016/j.hest.2022.05.007
	 Vaddavalli, P. L., and Schumacher, B. (2022). The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet. 38, 598–612. doi:10.1016/j.tig.2022.02.010
	 Vargas-Sierra, O., Hernández-Juárez, J., Uc-Uc, P. Y., Herrera, L. A., Domínguez-Gómez, G., Gariglio, P., et al. (2024). Role of SLC5A8 as a tumor suppressor in cervical cancer. Front. Biosci. Landmark Ed. 29, 16. doi:10.31083/j.fbl2901016
	 Wahi, A., Bishnoi, M., Raina, N., Singh, M. A., Verma, P., Gupta, P. K., et al. (2024). Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment. Oncol. Res. 32, 19–47. doi:10.32604/or.2023.042228
	 Wan, X., Jiang, M., and Madan, S. (2024). Research progress of nanomedicine for tumor immunotherapy. CI 3, 37–48. doi:10.58567/ci03010005
	 Wang, F., Chen, T.-S., Xing, D., Wang, J.-J., and Wu, Y.-X. (2005). Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg. Med. 36, 2–7. doi:10.1002/lsm.20130
	 Wang, F.-C., Han, P., Li, H., Ye, H.-Y., Zhou, P.-X., Tian, W., et al. (2023). Advantages and prospects of traditional Chinese medicine in treating COVID-19. Tradit. Med. Res. 8, 22. doi:10.53388/TMR20220809001
	 Wang, J.-H., Wang, K.-H., and Chen, Y.-H. (2022). Overlapping group screening for detection of gene-environment interactions with application to TCGA high-dimensional survival genomic data. BMC Bioinforma. 23, 202. doi:10.1186/s12859-022-04750-7
	 Wang, Y., Zhao, Z.-J., Kang, X.-R., Bian, T., Shen, Z.-M., Jiang, Y., et al. (2020). lncRNA DLEU2 acts as a miR-181a sponge to regulate SEPP1 and inhibit skeletal muscle differentiation and regeneration. Aging 12 (12), 24033–24056. doi:10.18632/aging.104095
	 Wayteck, L., Breckpot, K., Demeester, J., De Smedt, S. C., and Raemdonck, K. (2014). A personalized view on cancer immunotherapy. Cancer Lett. 352, 113–125. doi:10.1016/j.canlet.2013.09.016
	 Wieringa, T. H., Rodriguez-Gutierrez, R., Spencer-Bonilla, G., De Wit, M., Ponce, O. J., Sanchez-Herrera, M. F., et al. (2019). Decision aids that facilitate elements of shared decision making in chronic illnesses: a systematic review. Syst. Rev. 8, 121. doi:10.1186/s13643-019-1034-4
	 Woo, C.-H., and Abe, J. (2010). SUMO—a post-translational modification with therapeutic potential?Curr. Opin. Pharmacol. 10, 146–155. doi:10.1016/j.coph.2009.12.001
	 Wu, C., Zhu, X., Dai, Q., Chu, Z., Yang, S., and Dong, Z. (2023). SUMOylation of SMAD4 by PIAS1 in conjunction with vimentin upregulation promotes migration potential in non-small cell lung cancer. Front. Biosci. Landmark Ed. 28, 192. doi:10.31083/j.fbl2808192
	 Wu, H., Wang, F., Yang, L., Chen, L., Tang, J., Liu, Y., et al. (2024b). Carboxymethyl chitosan promotes biofilm-formation of Cryptococcus laurentii to improve biocontrol efficacy against Penicillium expansum in grapefruit. Adv. Compos Hybrid. Mater 7, 23. doi:10.1007/s42114-023-00828-9
	 Wu, W., Klockow, J. L., Zhang, M., Lafortune, F., Chang, E., Jin, L., et al. (2021b). Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol. Res. 171, 105780. doi:10.1016/j.phrs.2021.105780
	 Wu, W.-T., Li, Y.-J., Feng, A.-Z., Li, L., Huang, T., Xu, A.-D., et al. (2021a). Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil. Med. Res. 8, 44. doi:10.1186/s40779-021-00338-z
	 Wu, Z., Chen, S., Wang, Y., Li, F., Xu, H., Li, M., et al. (2024a). Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. Int. J. Surg. 110, 3848–3878. doi:10.1097/JS9.0000000000001289
	 Yalamarty, S. S. K., Filipczak, N., Li, X., Subhan, M. A., Parveen, F., Ataide, J. A., et al. (2023). Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM). Cancers 15, 2116. doi:10.3390/cancers15072116
	 Yan, C., Chen, Y., Sun, C., Ahmed, M. A., Bhan, C., Guo, Z., et al. (2022). Does proton pump inhibitor use lead to a higher risk of coronavirus disease 2019 infection and progression to severe disease? A meta-analysis. Jpn. J. Infect. Dis. 75, 10–15. doi:10.7883/yoken.JJID.2021.074
	 Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al. (2009). IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773. doi:10.1056/NEJMoa0808710
	 Yang, H., Li, C., and Xie, Q. (2023). Advances in the use of nanomaterials in tumour therapy: challenges and prospects. Cancer Insight 2, 37–48. doi:10.58567/ci02020004
	 Yang, Q., and Cai, J. (2023). Top ten breakthroughs in clinical hypertension research in 2022. CVIA 8, 8. doi:10.15212/CVIA.2023.0054
	 Yang, X., Huang, K., Yang, D., Zhao, W., and Zhou, X. (2024). Biomedical big data technologies, applications, and challenges for precision medicine: a review. Glob. Challenges 8, 2300163. doi:10.1002/gch2.202300163
	 Yao, J.-Y., Yang, Y.-L., Chen, W.-J., and Fan, H.-Y. (2024). Exploring the therapeutic potential of Qi Teng Mai Ning recipe in ischemic stroke and vascular cognitive impairment. Tradit. Med. Res. 9, 57. doi:10.53388/tmr20240214001
	 Yin, T., Mou, S., Zhang, H., Dong, Y., Yan, B., Huang, W., et al. (2024). CXCL10 could be a prognostic and immunological biomarker in bladder cancer. Discov. Onc 15, 148. doi:10.1007/s12672-024-00982-6
	 Zeng, S., Chen, X., Yi, Q., Thakur, A., Yang, H., Yan, Y., et al. (2024). CRABP2 regulates infiltration of cancer-associated fibroblasts and immune response in melanoma. OR 32, 261–272. doi:10.32604/or.2023.042345
	 Zhang, J., He, J., Chen, W., Chen, G., Wang, L., Liu, Y., et al. (2024). Simultaneous inversion of particle size distribution, thermal accommodation coefficient, and temperature of in-flame soot aggregates using laser-induced incandescence. Oncologie 17, 0. doi:10.3390/ma17030634
	 Zhang, J., Huang, F.-F., Wu, D.-S., Li, W.-J., Zhan, H.-E., Peng, M.-Y., et al. (2015). SUMOylation of insulin-like growth factor 1 receptor, promotes proliferation in acute myeloid leukemia. Cancer Lett. 357, 297–306. doi:10.1016/j.canlet.2014.11.052
	 Zhao, H., Ding, R., and Han, J. (2024). Ginsenoside Rh4 facilitates the sensitivity of renal cell carcinoma to ferroptosis via the NRF2 pathway. Arch. Españoles Urol. 77, 119–128. doi:10.56434/j.arch.esp.urol.20247702.16
	 Zhao, W., Zhang, X., and Rong, J. (2021). SUMOylation as a therapeutic target for myocardial infarction. Front. Cardiovasc Med. 8, 701583. doi:10.3389/fcvm.2021.701583
	 Zhong, M., Lee, G. M., Sijbesma, E., Ottmann, C., and Arkin, M. R. (2019). Modulating protein–protein interaction networks in protein homeostasis. Curr. Opin. Chem. Biol. 50, 55–65. doi:10.1016/j.cbpa.2019.02.012

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Min, Guo and Ning. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


�REVIEW

published: 29 January 2025

doi: 10.3389/fimmu.2025.1531246

[image: image2]


Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development


Zhangmin Ke 1,2†, Kaikai Shen 3†, Li Wang 1, Hao Xu 4, Xia Pan 1, Zhenjue Qian 1, Yuting Wen 1, Tangfeng Lv 2, Xiuwei Zhang 1* and Yong Song 2*


1 Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China, 2 Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China, 3 Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China, 4 Department of Respiratory and Critical Care Medicine, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China




Edited by: 

Lei Huang, University of Massachusetts Medical School, United States

Reviewed by: 

Yuliang Tang, Cornell University, United States

Zhaoyu Xue, Van Andel Institute, United States

*Correspondence: 

Xiuwei Zhang
 zhangxiuweiywy@126.com 

Yong Song
 yong_song6310@yahoo.com

†These authors have contributed equally to this work


Received: 20 November 2024

Accepted: 13 January 2025

Published: 29 January 2025

Citation:
Ke Z, Shen K, Wang L, Xu H, Pan X, Qian Z, Wen Y, Lv T, Zhang X and Song Y (2025) Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development. Front. Immunol. 16:1531246. doi: 10.3389/fimmu.2025.1531246



Succinylation represents an emerging class of post-translational modifications (PTMs), characterized by the enzymatic or non-enzymatic transfer of a negatively charged four-carbon succinyl group to the ϵ-amino group of lysine residues, mediated by succinyl-coenzyme A. Recent studies have highlighted the involvement of succinylation in various diseases, particularly cancer progression. Sirtuin 5 (SIRT5), a member of the sirtuin family, has been extensively studied for its robust desuccinylase activity, alongside its deacetylase function. To date, only a limited number of SIRT5 substrates have been identified. These substrates mediate diverse physiological processes such as glucose oxidation, fatty acid oxidation, ammonia detoxification, reactive oxygen species scavenging, anti-apoptosis, and inflammatory responses. The regulation of these activities can occur through either the same enzymatic activity acting on different substrates or distinct enzymatic activities targeting the same substrate. Aberrant expression of SIRT5 has been closely linked to tumorigenesis and disease progression; however, its role remains controversial. SIRT5 exhibits dual functionalities: it can promote tumor proliferation, metastasis, drug resistance, and metabolic reprogramming, thereby acting as an oncogene; conversely, it can also inhibit tumor cell growth and induce apoptosis, functioning as a tumor suppressor gene. This review aims to provide a comprehensive overview of the current research status of SIRT5. We discuss its structural characteristics and regulatory mechanisms, compare its functions with other sirtuin family members, and elucidate the mechanisms regulating SIRT5 activity. Specifically, we focus on the role of succinylation modification mediated by SIRT5 in tumor progression, highlighting how desuccinylation by SIRT5 modulates tumor development and delineating the underlying mechanisms involved.
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1 Introduction

Cancer continues to pose a significant global health challenge. According to recent data, the countries with the highest incidence of new cancer cases include China, the United States, India, Japan, Germany, Brazil, Russia, France, the United Kingdom, and Italy (1–3). Emerging research underscores the critical role of PTMs in tumor progression (4, 5). a member of the sirtuin family, was initially characterized as a mitochondrial deacetylase but has since been recognized for its diverse roles in PTMs, particularly desuccinylation (6). Located on chromosome locus 6p23, SIRT5 is an NAD-dependent deacetylase that contains a Zn²+ binding domain and a Rossmann fold domain, which together form the substrate binding site and the NAD+ binding site (6). Compared to other sirtuins, SIRT5 features a larger lysine acyl-binding pocket, resulting in relatively weaker deacetylase activity but robust desuccinylase activity (7). SIRT5 stands out among sirtuins due to its unique ability to remove succinyl groups from lysine residues, significantly influencing protein function and cellular metabolism (8). The biological significance of desuccinylation has garnered increasing attention, especially in the context of cancer. By modulating the succinylation status of key metabolic enzymes, SIRT5 affects various cellular processes, including glycolysis, mitochondrial function, and cell proliferation (9–11). This modulation is crucial because succinylation can either activate or inhibit enzymes involved in these pathways, thereby impacting tumorigenesis and cancer progression.

PTMs encompass a diverse array of chemical alterations where modifying groups covalently bind to substrate proteins, thereby altering their physiological properties such as activity, cellular localization, stability, and interactions with other proteins, ultimately influencing their function (12). Advances in proteomics have led to the identification of various PTM types, including acetylation, propionylation, methylation, butyrylation, succinylation, crotonylation, malonylation, ubiquitination, and 2-hydroxyisobutyrylation. As proteomics continues to advance, an increasing number of studies are reporting the involvement of PTMs in cancer development and progression (13, 14). Among these PTMs, succinylation has garnered significant attention in recent years for its role in tumorigenesis. Succinylation involves the reversible and dynamic covalent attachment of a succinyl group (-COCH2-CH2-COOH), donated by succinyl-CoA, to amino acid residues, predominantly lysine, within substrate proteins (15). This process is evolutionarily conserved and plays a critical role in numerous biological processes. Aberrant lysine succinylation has been shown to significantly impact metabolic pathways, gene transcription, DNA damage responses, and protein folding, stability, and functionality (16). Although several studies have documented the involvement of succinylation in various physiological and pathological processes (17, 18), including tumor biology (19), elucidating the regulatory mechanisms underlying succinylation in cancer can provide novel insights for prevention and therapeutic strategies.

In summary, the research surrounding SIRT5 and its desuccinylation activity underscores its pivotal role in cancer biology. By modulating the succinylation status of key metabolic enzymes and interacting with tumor suppressor pathways, SIRT5 exerts multifaceted influences on tumorigenesis. The ongoing elucidation of SIRT5’s functions and mechanisms may pave the way for novel therapeutic approaches that target metabolic pathways in cancer treatment, potentially improving outcomes for patients with malignancies characterized by dysregulated metabolic processes (20, 21). Therefore, this review aims to provide a comprehensive overview of the current research status of SIRT5. Specifically, it seeks to elucidate the role of SIRT5-mediated succinylation modification in tumors, thereby establishing a theoretical foundation for understanding the mechanisms of tumor development. Additionally, this review offers new perspectives for tumor therapy and drug development, highlighting the potential of targeting SIRT5 and succinylation as innovative strategies for combating cancer.




2 SIRT5



2.1 Structure and functional characteristics of SIRT5

The human SIRT5 gene, located at chromosome locus 6p23, encodes two protein isoforms comprising 310 and 299 amino acids, respectively. Predominantly localized within the mitochondria, with minor presence in the cytoplasm, SIRT5 exhibits a complex structural architecture. The protein consists of 14 β-strands and 9 α-helices that form both the zinc-binding domain and the Rossmann fold domain, thereby creating the substrate and NAD+ binding sites (6). Within the substrate binding site, three hydrophobic residues—phenylalanine-223 (Phe223), leucine-227 (Leu227), and valine-254 (Val254)—form the entrance for acyl-lysine groups. Two non-hydrophobic residues, tyrosine-102 (Tyr102) and arginine-105 (Arg105), specifically recognize the negatively charged acyl-lysine structure. Additionally, alanine-86 (Ala86) contributes to the formation of a larger lysine acyl-binding pocket in SIRT5 (22). These structural features confer SIRT5’s preference for short-chain carboxylates, such as malonyl, succinyl, and glutaryl groups, over acetyl groups (23). Consequently, the catalytic efficiency of SIRT5 for desuccinylation, demalonylation, and deglutarylation activities is approximately 1000-fold higher than its deacetylase activity (24).




2.2 Expression patterns and regulatory mechanisms of SIRT5

SIRT5 exhibits widespread expression across various organs, including the brain, heart, liver, kidneys, muscles, and testes, with predominant localization within mitochondria; however, it is also detectable in the cytoplasm and nucleus (25). In mammals, SIRT5 functions as a primary regulator of lysine desuccinylation. In mouse liver and embryonic fibroblasts, a comprehensive proteomic analysis identified 2,565 succinylation sites across 779 proteins. Upon SIRT5 gene knockout, over 90% of these sites demonstrated increased succinylation levels, primarily affecting proteins involved in the tricarboxylic acid (TCA) cycle and fatty acid metabolism (26). Consistent with these findings, Rardin et al. (27) reported that in the absence of SIRT5, 386 succinylation sites across 140 proteins in mouse liver mitochondria exhibited enhanced succinylation. These succinylated proteins predominantly participate in energy metabolism, β-oxidation, and ketone body production. Recent studies have further elucidated the role of SIRT5 in cardiac tissues, identifying key targets that suggest SIRT5-mediated deglutarylation may play a crucial role in maintaining cardiac energy metabolism (28, 29). This evidence underscores the importance of SIRT5 in regulating metabolic pathways critical for cellular function and homeostasis.

Despite the identification of numerous SIRT5 substrates, including a variety of metabolic enzymes, research into its desuccinylase, demalonylase, and deglutarylase activities is still in its early stages. This relative paucity of research can be attributed to several factors. Firstly, the discovery of SIRT5’s non-acetylation-related enzymatic activities is relatively recent compared to its deacetylase function, which has been extensively studied over the years. The novel nature of these modifications means that specific tools and methodologies for their detection and study are still being developed, refined, and disseminated within the scientific community. Secondly, the complexity of succinylation, malonylation, and glutarylation as PTMs poses additional challenges. These PTMs occur at lower abundances than acetylation and require highly sensitive and specific analytical techniques, such as mass spectrometry coupled with enrichment strategies, for reliable detection and quantification. The technical hurdles associated with studying these modifications have likely slowed progress in this area. Furthermore, the functional significance of these PTMs is not yet fully understood, which may lead to a lack of targeted research efforts. While it is clear that they play critical roles in cellular metabolism and other biological processes, the exact mechanisms by which they influence protein function and cellular physiology remain to be elucidated. As the importance of these modifications becomes more apparent, interest and investment in this field are expected to increase, driving further discoveries. Continued advancements in technology, along with growing awareness of the importance of these PTMs, are likely to facilitate deeper exploration and understanding of SIRT5’s role in regulating these modifications and their implications for health and disease. In summary, while significant strides have been made in identifying SIRT5 substrates, the full spectrum of its enzymatic activities, particularly those related to desuccinylation, demalonylation, and deglutarylation, remains to be thoroughly investigated. Addressing these knowledge gaps will be crucial for advancing our understanding of SIRT5’s functions and developing potential therapeutic targets for diseases characterized by dysregulated metabolic processes.




2.3 Comparison of SIRT5 with other members of the sirtuin family

In addition to SIRT5, the sirtuin family encompasses proteins with distinct characteristics and structures. The sirtuins constitute a highly conserved family of proteins, comprising seven members in mammals (SIRT1-7), which regulate various metabolic and stress response pathways (30). Specifically, SIRT1 and SIRT2 are predominantly localized in the cytoplasm, while SIRT3, SIRT4, and SIRT5 reside within mitochondria, and SIRT6 and SIRT7 are found in the nucleus (31). These proteins play pivotal roles in genomic stability, cell cycle regulation, metabolism, aging, and disease development (32). Sirtuins possess NAD+-dependent deacetylase activity (SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, and SIRT7) or mono-ADP-ribosyltransferase activity (SIRT4 and SIRT6). Each sirtuin exhibits distinct enzymatic activities, biological functions, and subcellular localizations, which contribute to their diverse roles in cancer biology (Table 1).

Table 1 | Comparison of SIRT5 with other SIRTs.
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For instance, SIRT1, an NAD+-dependent histone deacetylase belonging to the sirtuin family, has been closely associated with tumor development (33). It influences a wide array of processes, including cellular senescence (34), DNA replication (35), cell growth, metabolism (36), and tumor progression (37). Studies indicate that SIRT1 impacts the onset and progression of various cancers, such as colorectal, prostate, breast, and murine lung cancers, sarcomas, and lymphomas (38–40). Given its high expression in certain tumor tissues and its inhibition of several tumor suppressor genes like FOXO1, p73, and WRN (41–43), SIRT1 is believed to promote tumorigenesis. SIRT1 primarily modulates transcription factors, histones, and other non-histone substrates through deacetylation, thereby affecting gene expression patterns (35, 37). In contrast, SIRT5 exhibits a broader range of actions, encompassing not only deacetylation but also desuccinylation and demalonylation activities (27). While both SIRT1 and SIRT5 are involved in metabolic regulation, SIRT1 is more closely associated with nutrient-sensing signaling pathways, whereas SIRT5 focuses on the direct regulation of metabolic enzymes. This distinction highlights the specialized roles of each sirtuin in cellular metabolism and underscores the importance of understanding their individual contributions to cancer biology.

SIRT2, predominantly localized in the cytoplasm but also present in mitochondria and nuclei, deacetylates a variety of endogenous substrates, playing a significant role in multiple physiological and pathological processes. These include cancer cell proliferation, cell cycle regulation, apoptosis, genomic integrity, cellular metabolism, infection, and inflammation (44–46). Notably, SIRT2 exhibits both oncogenic and tumor-suppressive functions across different cancer types, indicating context-specific roles in cancer progression (47). While both SIRT5 and SIRT2 possess deacetylase activity, their distinct subcellular distributions determine their primary functions. The mitochondrial localization of SIRT5 positions it as a key regulator of metabolic processes, particularly in energy production and metabolite conversion (48). In contrast, SIRT2’s presence in the cytoplasm involves it more prominently in processes such as cytoskeletal dynamics, cell division, and signaling pathways (49).

SIRT3 is a critical mitochondrial deacetylase that plays an essential role in regulating protein acetylation levels, maintaining mitochondrial integrity, and modulating energy metabolism (50, 51). Hyper-acetylation, frequently observed in tumors, contributes to cancer survival by altering protein function. SIRT3 counteracts this hyper-modification, thereby modulating tumor progression (52). Moreover, SIRT3 can reprogram metabolism, significantly impacting tumor initiation and progression (53). However, its dual nature, exhibiting both pro- and anti-tumorigenic effects, complicates its targeting for therapeutic purposes (54, 55). Both SIRT3 and SIRT5 are principal sirtuin members within the mitochondria, each contributing uniquely to mitochondrial function. SIRT3 is renowned for its antioxidant effects and metabolic control, enhancing mitochondrial efficiency and reducing oxidative stress (56). It acts primarily as a deacetylase, normalizing hyper-acetylation and supporting mitochondrial health. Conversely, SIRT5 exhibits a broader range of demodification activities within the mitochondria. It plays a crucial role in fatty acid oxidation (28) and amino acid metabolism (57), including the regulation of arginase II activity via desuccinylation, which influences the urea cycle (58).

SIRT4 significantly inhibits glutamine metabolism by ADP-ribosylating glutamate dehydrogenase, thereby limiting the supply of energy and materials required for rapid proliferation in tumor cells (59, 60). This effect has been confirmed across various cancer types, including breast cancer (61), colorectal cancer (62), esophageal squamous cell carcinoma (63), and thyroid cancer (64). The consensus that SIRT4 suppresses tumor development through inhibition of glutamine metabolism suggests its potential as a novel biomarker and therapeutic target for malignancies. While both SIRT5 and SIRT4 act within mitochondria, they exhibit distinct functional orientations and mechanisms. SIRT5 primarily modulates metabolic enzyme activity through its unique demodification activities, whereas SIRT4 affects metabolic processes by regulating signaling pathways. Specifically, SIRT5’s enzymatic actions are more directly involved in the regulation of metabolic enzyme activity, while SIRT4 plays a more significant role in signal transduction and metabolic network regulation.

SIRT6 is predominantly localized in the nucleus and possesses two key enzymatic activities: NAD+-dependent deacetylase and mono-ADP-ribosyltransferase. These activities are integral to SIRT6’s functions (65). Studies have shown that, acting as a deacetylase for histone H3 lysine 9 (H3K9), SIRT6 controls the expression of various glycolytic genes, particularly by co-repressing the transcription factor hypoxia-inducible factor 1α (HIF-1α), thus inhibiting tumor progression (66). Moreover, overexpression of SIRT6 can induce apoptosis in fibrosarcoma and human cervical cancer cell lines via its mono-ADP-ribosyltransferase activity without affecting normal cells (67). Conversely, SIRT6 has also been shown to enhance cytokine secretion and cell motility, and increase drug resistance by hyperactivating calcium channels, playing a pro-oncogenic role (68). This dual action of SIRT6 appears to depend on tissue context, spatiotemporal distribution of various factors, and different stages of tumorigenesis. Despite sharing deacetylase activity, SIRT5 and SIRT6 differ significantly in their biological functions due to their distinct subcellular localizations. SIRT5 operates mainly within the mitochondria, influencing metabolic pathways and energy conversion, whereas SIRT6 is active in the nucleus, participating in DNA repair and gene expression regulation. This disparity underscores the Sirtuin family’s capability to perform diverse functions within the cell, contributing to cellular health and adaptation to environmental changes.

SIRT7, primarily localized in the nucleolus, has recently been identified as possessing deacetylase activity towards specific substrates, thereby influencing cellular life activities through various pathways (69). Overexpression of SIRT7 has been observed in several human malignancies, including hepatocellular carcinoma (70), breast cancer (71), thyroid cancer (72), gastric cancer (73), and others. Its expression levels correlate with clinical-pathological features and patient prognosis, underscoring its potential role in tumor biology. The oncogenic effects of SIRT7 are closely linked to its deacetylation activity, which primarily influences gene expression regulation. Unlike SIRT7, which predominantly affects transcriptional regulation, SIRT5 plays a crucial role in cellular energy metabolism. The mitochondrial localization of SIRT5 establishes it as a key regulator of metabolic enzyme activity, whereas the nuclear role of SIRT7 positions it as an important participant in gene expression modulation. These two sirtuin members influence cellular health through distinct mechanisms: SIRT5 by modulating metabolic pathways and SIRT7 by regulating gene expression.

In summary, while all members of the sirtuin family depend on NAD+ and can influence metabolic processes, each member exhibits specific cellular localization and functional characteristics. SIRT5 stands out for its importance in non-conventional lysine modifications, such as desuccinylation, which are less common among other sirtuin members. Additionally, the unique role of SIRT5 in mitochondrial metabolism, particularly in fatty acid oxidation, highlights its significance in cellular energy production and tumor progression.





3 The succinylation modification mechanism regulated by SIRT5



3.1 Definition of succinylation modification

Protein PTMs represent a vast array of biochemical alterations that modulate protein function. To date, over 600 types of PTMs have been identified, including methylation, phosphorylation, ubiquitination, acetylation, succinylation, and lactylation (113). Among these, succinylation involves the enzymatic or non-enzymatic addition of a succinyl group to the ϵ-amino group of lysine residues within proteins, representing a reversible modification that can significantly influence protein spatial conformation, activity, stability, and intracellular localization (114). This acylation process can occur either non-enzymatically or enzymatically (16). Enzymatic succinylation primarily relies on succinyltransferases, which are analogous to histone acetyltransferases (HATs), facilitating the transfer of a succinyl group from succinyl-CoA to target protein lysine residues. This process is highly specific, allowing for precise regulation of protein function (115, 116) (Figure 1). In contrast, non-enzymatic succinylation occurs dynamically and widely in response to changes in the cellular metabolic environment, such as during metabolic or oxidative stress conditions. Under these circumstances, succinyl groups can directly bind to lysine residues through spontaneous chemical reactions. The dynamic equilibrium of this non-enzymatic modification is influenced by various factors, including the concentration of succinyl donors, intracellular pH levels, and redox status (116, 117).
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Figure 1 | Succinylation modification mechanism diagram.

Understanding the dynamic equilibrium of succinylation is critical for elucidating its role under both physiological and pathological conditions. Under normal physiological conditions, appropriate regulation of succinylation levels helps maintain cellular metabolic homeostasis and function. Conversely, in pathological states, aberrant increases or decreases in succinylation can lead to cellular dysfunction, thereby promoting disease progression. For instance, in cancer cells, succinylation influences cell proliferation and apoptosis by modulating the activity of key metabolic enzymes (116, 118). Moreover, succinylation is closely associated with the development and progression of various metabolic diseases, including liver metabolism disorders and diabetes. The main factors affecting the dynamic balance of succinylation include cellular metabolic status, environmental conditions (such as temperature and pH), and cellular signaling pathways (119, 120). Therefore, delving deeper into the regulatory mechanisms governing succinylation’s dynamic balance could provide new insights and potential therapeutic targets for preventing and treating related diseases.

Lysine succinylation is a prevalent PTM observed in both eukaryotic and prokaryotic cells (121), with its role in eukaryotic cells being closely associated with cancer progression. Within the nucleus of eukaryotic cells, lysine succinylation has been identified at specific histone sites, including H1.3K65, H1.3K86, H2BK109, H2BK117, H3K79, H3K120, and H3K122 (122). Additionally, non-histone proteins such as HMGB2K114, HMGB1K127, HMGB1K114, and HMGB1K43 also undergo succinylation (123). In the cytoplasm, lysine succinylation affects a wide array of metabolic enzymes and regulatory proteins. These include glycolytic enzymes and those involved in the TCA cycle, such as PDK3, IDH2, ACO2, DLAT, PDHA1, PITRM1, GOT2, MDH2, IDH3B, and SDHA. Enzymes involved in fatty acid metabolism, like ACAA2, HSD17B10, ETFa, HADHB, and HADHA, are also subject to this PTM. Proteins participating in ketone body metabolism, such as OXCT1 and ACAT1, and those related to reactive oxygen species (ROS) scavenging, including SOD, PRX, and GPX, exhibit succinylation as well (124). Thus, in eukaryotes, the dynamic regulation of protein succinylation and desuccinylation modulates various cellular processes, including metabolism, transcriptional regulation, and DNA damage repair. These processes are essential for maintaining normal cellular functions and are intimately linked with the occurrence and development of tumors.




3.2 The role of succinylation in energy metabolism, oxidative stress response, and gene expression regulation

Succinyl-coenzyme A (succinyl-CoA) serves as the primary donor of succinyl groups, primarily derived from the mitochondrial TCA cycle through the oxidative decarboxylation of α-ketoglutarate. Beyond glucose metabolism, the catabolism of amino acids such as methionine, threonine, valine, and isoleucine can also generate succinyl-CoA. Additionally, short-chain fatty acid ω-oxidation products, including hydroxy fatty acids, can be converted into succinyl-CoA. For instance, fibroblasts have been shown to utilize fatty acids as an effective source of succinyl-CoA under conditions where glucose and pyruvate are absent from the culture medium (125). The intracellular concentration of succinyl-CoA directly influences the level of succinylation modification (126), indicating that alterations in metabolic pathways can lead to corresponding changes in protein succinylation.

In the realm of energy metabolism, succinylation plays a pivotal role in modulating the activity of key metabolic enzymes. Studies have demonstrated that succinylation can influence the function of TCA cycle enzymes, thereby affecting overall mitochondrial energy production. This modification is particularly relevant in conditions characterized by mitochondrial dysfunction, such as heart failure and ischemic stroke. In models of heart failure, altered succinylation patterns have been linked to impaired oxidative phosphorylation capacity and dysregulated energy metabolism, highlighting the potential of targeting succinylation pathways for therapeutic interventions (127). The dynamic regulation of succinylation, mediated by enzymes such as SIRT5, which desuccinylates metabolic enzymes, underscores the complexity of metabolic regulation and its impact on cellular energy homeostasis (17). SIRT5’s role in controlling succinylation levels further emphasizes the intricate balance required for maintaining optimal metabolic function.

Oxidative stress represents another critical domain where succinylation exerts its regulatory influence. Accumulation of ROS can lead to oxidative damage, which is implicated in various diseases, including neurodegenerative disorders and cardiovascular diseases. Recent evidence suggests that succinylation can modulate ROS generation by influencing the stability and activity of antioxidant enzymes. For instance, succinylation of specific proteins involved in the antioxidant response can either enhance or inhibit their activity, thereby shaping the cellular response to oxidative stress (128). This regulatory mechanism is particularly significant in the context of aging and neuroinflammation, where increased succinylation levels have been associated with a senescence phenotype in microglia, suggesting a potential link between succinylation and age-related neurodegenerative processes (129).

Succinylation also plays a substantial role in regulating gene expression. This modification can alter chromatin structure and transcription factor activity, thereby influencing the transcription of genes involved in metabolism, stress response, and other critical cellular functions. Notably, succinylation of histones has been implicated in the regulation of gene expression patterns associated with tumorigenesis, indicating that this PTM could serve as a potential therapeutic target in cancer (130). Moreover, the interplay between succinylation and other PTMs, such as acetylation and phosphorylation, adds an additional layer of complexity to the regulatory networks governing gene expression and cellular responses to environmental cues (131).

In summary, succinylation emerges as a crucial post-translational modification that intricately links energy metabolism, oxidative stress response, and gene expression regulation. Ongoing research into the mechanisms and effects of succinylation continues to unveil its significance in maintaining cellular homeostasis and its potential implications in various diseases. As our understanding of succinylation deepens, it holds promise as a target for therapeutic interventions aimed at modulating metabolic disorders, oxidative stress-related conditions, and cancer (17).




3.3 Mechanism of protein desuccinylation catalyzed by SIRT5

Succinylation modification plays an essential role in various biological processes, and the regulatory mechanism of SIRT5 on succinylation has garnered increasing attention. Advances in the study of the deacylase SIRT5 have confirmed its dual capabilities: not only does it function as a deacetylase but it also exhibits potent desuccinylase activity (27). This versatility positions SIRT5 as a key regulator of cellular metabolism and other critical biological functions.

The enzymatic process by which SIRT5 catalyzes protein desuccinylation involves several critical steps that reflect the general mechanism of NAD+-dependent deacylation enzymes. Initially, SIRT5 must recognize and bind to the succinylated protein substrate. This binding typically occurs through the identification of specific sequence motifs or structural features on the substrate, particularly those harboring succinylated lysine residues. Upon binding, SIRT5 utilizes NAD+ as a covalent catalyst. In this context, NAD+ serves both as an electron donor and as a component that generates a covalent intermediate (ADP-ribose) during the reaction—a step essential for deacylation. The active site of SIRT5 contains a conserved cysteine residue that forms a covalent bond with the succinyl group of the succinyl-lysine residue. During this interaction, NAD+ is converted into nicotinamide and released from the complex. Subsequently, SIRT5 undergoes a series of chemical rearrangements to transfer the succinyl group from the substrate to the cysteine residue within the enzyme’s active site, forming a succinyl-enzyme intermediate. Finally, a water molecule attacks the succinyl group within the succinyl-enzyme intermediate, leading to the cleavage of the succinyl group. This results in the release of free succinate and the restoration of the unmodified state of the protein substrate. Once the reaction is complete, the desuccinylated protein is released from SIRT5, and the enzyme is reset to engage with another succinylated substrate, continuing the desuccinylation cycle (132). Through these catalytic steps, SIRT5 effectively removes succinyl groups from proteins, restoring the original state of lysine residues or altering their chemical environment. This action influences protein function, stability, or interactions with other molecules. Such deacylation is crucial for cellular metabolism, signaling pathways [such as NF-κB and IRF signaling (133), Notch and β-catenin signaling (134)], and adaptation to environmental changes.

The desuccinylation process mediated by SIRT5 is vital for regulating various cellular functions, including metabolism and stress responses. By modulating the succinylation state of proteins, SIRT5 can influence metabolic pathways, transcriptional activities, and other cellular processes, thereby playing a significant role in health and disease, including cancer development and progression.




3.4 The comparison of SIRT5 with the other desuccinylase

In addition to the well-characterized SIRT5 and SIRT7, recent studies have identified new proteins that exhibit desuccinylase activity. Notably, Jialun Li et al. (135) reported that histone desuccinylation is predominantly catalyzed by class I histone deacetylases (HDAC1/2/3). Inhibition or depletion of HDAC1/2/3 resulted in a significant increase in global histone succinylation levels, while ectopic expression of these enzymes—but not their deacetylase-inactive mutants—reduced global histone succinylation. Furthermore, in vitro assays demonstrated robust histone desuccinylase activity for class I HDAC1/2/3 complexes. These findings establish that class I HDAC1/2/3, rather than SIRT family proteins, are the principal histone desuccinylases, particularly important for promoter histone desuccinylation. The understanding of desuccinylation mechanisms in microorganisms remains in its infancy due to the paucity of identified specific desuccinylases. CobB, a known Sir2-like bacterial lysine deacetylase, was recently identified as the first prokaryotic enzyme with desuccinylation activity (136). The characterization of CobB as a bifunctional enzyme capable of both lysine desuccinylation and deacetylation suggests that eukaryotic Kac-regulatory enzymes may possess enzymatic activities on various lysine acylations with distinct structures. Additionally, in the model soil bacterium Streptomyces coelicolor, a sirtuin-like protein named ScCobB2 was biochemically characterized as a divergent desuccinylase. Comparative LC-MS/MS analysis of the ΔScCobB2 mutant versus wild-type succinylome revealed a total of 673 unique succinylated sites, with 470 sites quantified across 317 proteins. Further quantitative analysis indicated that at least 114 proteins involved in two major pathways—protein biosynthesis and carbon metabolism—are markedly hypersuccinylated in ΔScCobB2 cells (137). We conducted an analysis of the protein domains of these desuccinylases. Figure 2 illustrates the specific sites regulated by SIRT5 and SIRT7 in the context of succinylation modification.
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Figure 2 | Succinylation modification specific cite of desuccinylase.

In summary, while SIRT5 is well-characterized as a desuccinylase with distinctive features, the existence and characteristics of other desuccinylases remain speculative without further research. SIRT5 stands out due to its defined role in mitochondrial function and its dependence on NAD+, distinguishing it from potential non-sirtuin desuccinylases that might operate through different mechanisms and within distinct cellular contexts. Future investigations into the diversity and specificity of desuccinylases will be crucial for elucidating their roles in cellular regulation and disease pathogenesis.




3.5 Factors influencing SIRT5 activity

Given the unique properties and functions of SIRT5 discussed previously, this section delves into the primary factors that influence its activity. As an NAD+-dependent deacylase, the intracellular concentration of NAD+ is crucial for SIRT5’s functionality. NAD+ serves dual roles: it acts as a cofactor essential for SIRT5’s desuccinylation reaction and operates as a rate-limiting factor for enzyme activity. The catalytic mechanism of SIRT5 requires NAD+ as a cofactor. During catalysis, NAD+ is consumed, generating nicotinamide and an ADP-ribose moiety. This process is pivotal for forming a covalent intermediate necessary for the desuccinylation reaction. The active site of SIRT5 contains a conserved cysteine residue that forms a covalent bond with the succinyl group of succinyl-lysine. Simultaneously, the ADP-ribose portion of NAD+ transiently forms a covalent complex with the enzyme, facilitating subsequent hydrolysis steps (8). Variations in intracellular NAD+ levels directly impact SIRT5 activity. Higher NAD+ levels enhance SIRT5’s desuccinylase activity by providing sufficient cofactor support for the catalytic reaction, while decreased NAD+ levels reduce SIRT5 activity due to insufficient cofactor availability (138). The cellular metabolic state, particularly the energy status, significantly influences NAD+ levels (139). For instance, under conditions of fasting or caloric restriction, NAD+ levels increase, potentially enhancing SIRT5 activity (140). Conversely, in states characterized by high-fat diets or obesity, NAD+ levels may decrease, leading to reduced SIRT5 activity (141). The ratio of NAD+ to reduced nicotinamide adenine dinucleotide (NADH) also plays a critical role in determining SIRT5 activity. A higher NAD+/NADH ratio generally promotes SIRT5 activity, indicating greater availability of NAD+ as a cofactor, whereas a lower ratio can inhibit SIRT5 activity (121). During stress responses, such as oxidative stress or hypoxia, cells experience fluctuations in NAD+ levels, which directly affect SIRT5 activity and consequently influence the cellular response to these stress conditions (142, 143). In certain disease states, including diabetes and cardiovascular diseases, alterations in NAD+ levels can indirectly impact SIRT5 activity and its regulatory role in cellular metabolism and signaling (142, 144). Changes in cellular metabolic status directly influence the supply of NAD+, thereby affecting SIRT5 activity.

Understanding the impact of NAD+ levels on SIRT5 activity can provide insights into the enzyme’s role in cellular physiology and offer potential intervention strategies for related diseases, including cancer.





4 Role of SIRT5 in cancer

Succinylation modifications have been implicated in various malignancies, including lung cancer, melanoma, hepatocellular carcinoma, osteosarcoma, neurologic malignancies, renal cell carcinoma, thyroid cancer, and colorectal cancer (119, 145, 146). However, the role of succinylation in tumor progression is contingent upon the specific succinylation-modified genes, which can exert either tumor-suppressive or oncogenic effects. SIRT5, identified as the latest desuccinylation gene, acts as a double-edged sword in tumorigenesis. By modulating the expression of different target genes, SIRT5 can either inhibit or promote tumor development. The specific regulatory effects of SIRT5 on different cancer cells behaviors were shown in Table 2, Figure 3.

Table 2 | The role of SIRT5 in different cancers.
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Figure 3 | The role of SIRT5 in different cancers.



4.1 SIRT5-mediated succinylation regulation and its role in suppressing tumor progression

Studies have demonstrated that the succinylation of superoxide dismutase 1 (SOD1) promotes cancer cell proliferation; however, SIRT5 can reverse this effect by mediating desuccinylation and thereby restoring SOD1 enzyme activity. Lung cancer cells with mutations at the succinylation sites of SOD1 exhibit significantly reduced proliferation rates, indicating the tumor-suppressive role of SIRT5 (154). Clark et al. (155) found that mutant isocitrate dehydrogenase 1 (IDH1) converts α-ketoglutarate (α-KG) into R-2-hydroxyglutarate (R-2-HG), an α-KG analog that elevates succinyl-CoA levels, leading to abnormal succinylation of mitochondrial proteins and promoting cancer cell growth while impairing apoptosis. However, ectopic expression of SIRT5 reverses the metabolic defects and apoptotic resistance in IDH1-mutated glioma cells, impairing their growth both in vitro and in vivo (156). In hepatocellular carcinoma (HCC), SIRT5 also exerts a tumor-suppressive function. Expression of SIRT5 is lower in primary liver cancer tissues compared to normal tissues. Aberrant activation of acyl-CoA oxidase 1 (ACOX1), which is involved in H2O2 generation, leads to DNA oxidative damage and impaired liver function, contributing to HCC onset. SIRT5 can inhibit ACOX1 through desuccinylation, thereby reducing H2O2 levels and mitigating oxidative stress (97). In gastric cancer, Lu et al. (151) discovered that SIRT5 expression is significantly decreased in human gastric cancer tissues. Functional analyses indicated that overexpression of SIRT5 can inhibit gastric cancer cell growth both in vitro and in vivo by arresting the cell cycle at the G1/S phase and suppressing migration and invasion via modulation of epithelial-mesenchymal transition (EMT). Further analysis revealed that the tumor-suppressive effect of SIRT5 in gastric cancer is associated with the regulation of 2-oxoglutarate dehydrogenase (OGDH) expression. SIRT5-mediated desuccinylation of OGDH inhibits the OGDH complex’s activity, leading to reduced mitochondrial membrane potential, decreased ATP production, increased ROS levels, and altered NADP/NADPH ratios, ultimately suppressing gastric cancer progression. In prostate cancer, SIRT5 expression is significantly reduced, and a correlation between decreased SIRT5 levels and reduced patient survival has been established. Quantitative global succinylation profiling in prostate cancer revealed a significant increase in the succinylation of lysine 118 (K118su) of lactate dehydrogenase A (LDHA), enhancing LDH activity and exacerbating tumor progression. Overexpression of SIRT5 reduces LDHA-K118 succinylation, inhibiting the migration and invasion of prostate cancer cells and alleviating disease progression (157). Beyond these examples, SIRT5 has also been found to inhibit gastric cancer invasion by catalyzing the desuccinylation of S100A10 protein (158), and it can desuccinylate the K280 site of serine hydroxymethyltransferase 2 (SHMT2) protein, thereby inhibiting osteosarcoma development (159). Therefore, SIRT5 can inhibit tumor cell growth through interfering with multiple pathways.




4.2 SIRT5-mediated succinylation regulation promoting tumor initiation and progression

Recent studies have also identified SIRT5 as an oncogenic promoter through its involvement in various pathways across different malignancies. Teng et al. (147) discovered that mitochondrial malic enzyme 2 (ME2) is highly expressed in colorectal cancer (CRC) tissues, and knockdown of ME2 inhibits CRC cell proliferation. Further analysis revealed that overexpressed ME2 undergoes SIRT5-mediated desuccinylation. Deprivation of glutamine directly enhances the interaction between SIRT5 and ME2, promoting desuccinylation of ME2 at lysine 346 and thereby activating ME2 enzyme activity. This activation leads to increased cellular proliferation and tumor growth. In breast cancer, SIRT5 expression is significantly elevated, and knockout of SIRT5 can induce oxidative stress by increasing the succinylation of IDH2, leading to apoptosis in tumor tissues and inhibiting tumor growth (160). In RCC, SIRT5 interacts with subunit A of the succinate dehydrogenase complex (SDHA). Knockout of SIRT5 results in increased succinylation and expression levels of SDHA. Elevated SIRT5 expression has been observed in RCC cells and tissues, and SIRT5 knockout inhibits cancer cell proliferation. These findings suggest that SIRT5 promotes the occurrence and development of RCC by inhibiting SDHA succinylation (161). Thus, elevated SIRT5 expression has been observed in various cancers and correlates with poor patient prognosis.

Given the contrasting oncogenic and tumor-suppressive effects of SIRT5, it is evident that the specific role of SIRT5 depends on its key target genes and the type of tumor. Additionally, studies have found that the function of SIRT5 also depends on whether it performs desuccinylation or deacetylation (6). Currently, research on SIRT5 presents many unresolved questions. The investigation into SIRT5-mediated desuccinylation activity is still in its infancy, and the relationships and mechanisms between SIRT5 and multiple cancers require further exploration to provide guidance for future cancer treatments.





5 Potential of SIRT5 as a therapeutic target in cancers

The role of SIRT5-mediated desuccinylation in tumor progression underscores its potential as a therapeutic target for cancer treatment. In non-small cell lung cancer (NSCLC), quercetin has been shown to bind to SIRT5, thereby regulating SIRT5-mediated desuccinylation of PI3K. This interaction inhibits PI3K/AKT phosphorylation, subsequently blocking homologous recombination and non-homologous end-joining repair processes, leading to mitotic mutations and apoptosis, and ultimately alleviating NSCLC progression (162). In colorectal cancer (CRC), Zhang et al. (163) reported that extracellular vesicles isolated from Lactobacillus plantarum can inhibit SIRT5 expression, thus modulating the desuccinylation level of p53. This regulation leads to inhibition of CRC cell proliferation and glycolysis, effectively suppressing the in vivo growth of tumor tissues. Apart from pharmacological interventions, recent studies have identified upstream regulatory genes involved in tumor progression that affect SIRT5 expression. In hepatocellular carcinoma (HCC), Bai et al. (164) found that solute carrier family 25 member 20 (SLC25A51), a newly identified mammalian mitochondrial NAD+ transporter, is upregulated in human HCC specimens and cell lines. Further analysis revealed that SLC25A51 activates SIRT5 expression, promoting a metabolic shift from oxidative phosphorylation to glycolysis—a key mechanism driving tumor progression. Knockout of SLC25A51 reduces SIRT5 expression, thereby mitigating HCC progression. However, current research predominantly focuses on the oncogenic role of SIRT5, with limited information on enhancing its expression to exert tumor-suppressive effects. In gastric cancer, Tang et al. (165) demonstrated that SIRT5 expression is regulated by cyclin-dependent kinase 2 (CDK2). Typically, CDK2 exacerbates tumor progression by regulating cell cycle progression and DNA damage response. Conversely, knockout of CDK2 can inhibit malignant proliferation and aerobic glycolysis of cancer cells by increasing SIRT5 expression, revealing a novel role for SIRT5 as a tumor suppressor regulated by upstream genes in cancer.

The development of specific SIRT5 regulators has emerged as a promising approach in clinical cancer therapy. The information of specific SIRT5 regulators was showed in Table 3. Deng et al. (166) identified ϵ-N-thioglutaryl-lysine derivatives as potent inhibitors of SIRT5, with photo-crosslinking derivative 8 exhibiting the strongest inhibitory effect. Kinetic analysis revealed that these derivatives inhibit SIRT5 by competing with lysine substrates. Co-crystal structure analysis demonstrated that photo-crosslinking derivative 8 binds to SIRT5 via hydrogen bonds and electrostatic interactions with specific residues, occupying the lysine substrate binding site and potentially reacting with NAD+ to form a stable thio-intermediate. This structural insight provides valuable information for the design of drug-like inhibitors and cross-linking chemical probes for SIRT5-related research. Additionally, Jiang et al. (167) designed six N-terminal-to-side-chain cyclic tripeptides and evaluated their efficacy through in vitro deacetylase inhibition assays and proteolytic stability tests. Among these compounds, cyclic tripeptide 10 exhibited strong inhibition of SIRT5-mediated desuccinylation reactions and demonstrated superior proteolytic stability against SIRT5. Compared to previously reported potent and selective SIRT5 inhibitors, cyclic tripeptide 10 represents a novel modular scaffold, offering a new avenue for discovering improved SIRT5 inhibitors that could serve as chemical or pharmacological probes and potential treatments for tumors characterized by upregulated SIRT5-mediated desuccinylase activity. Regarding SIRT5 activators, MC3138, a selective SIRT5 activator, mimicked the effects of SIRT5 overexpression-mediated deacetylation and desuccinylation in pancreatic cancer cells, leading to reduced levels of metabolites such as glutamine and glutamate (168). Given that SIRT5 expression is downregulated in human and mouse pancreatic ductal adenocarcinomas, the application of MC3138 in pancreatic tumors showed inhibitory effects on proliferation. Combination treatment with gemcitabine may represent a therapeutic strategy for this type of cancer (169). Therefore, modulating SIRT5 expression appears to be an effective means of alleviating tumor progression. The ongoing development of small molecule inhibitors or activators of SIRT5 offers new strategies for future cancer treatments. As our understanding of SIRT5 functions deepens, its potential as a therapeutic target for cancer treatment becomes increasingly evident.

Table 3 | The information of specific SIRT5 regulators.
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6 Future research directions and challenges

Despite the promising role of SIRT5 in cancer therapy, several challenges and future research directions must be addressed. A primary challenge is the need for a deeper understanding of the molecular mechanisms by which SIRT5 exerts its effects on tumor biology. Although SIRT5 has been implicated in various pathways, its specific interactions and regulatory networks within different cancer types remain inadequately defined. Future studies should focus on elucidating these mechanisms, potentially utilizing advanced genomic and proteomic approaches to comprehensively map SIRT5 interactions within the tumor microenvironment (170). Moreover, the development of specific SIRT5 inhibitors or modulators is critical for translating these findings into clinical applications. This includes investigating the potential side effects and off-target effects of such therapies, as well as assessing their efficacy when used in combination with existing cancer treatments. It will also be important to explore dose-response relationships and pharmacokinetic properties to ensure optimal therapeutic outcomes. Additionally, exploring the role of SIRT5 in immune modulation could open new avenues for immunotherapy, particularly in cancers that exhibit resistance to current therapies (171). Understanding how SIRT5 influences immune cell function and tumor-immune interactions may provide insights into novel therapeutic strategies that combine SIRT5 modulation with immunotherapeutic approaches. As research progresses, addressing these challenges will be essential for harnessing the full therapeutic potential of SIRT5 in oncology. The integration of multi-disciplinary approaches, including systems biology, computational modeling, and translational research, will be crucial for overcoming the complexities associated with SIRT5’s multifaceted roles in cancer. Addressing these issues will not only enhance our understanding of SIRT5’s biological functions but also pave the way for innovative cancer therapies targeting this enzyme.




7 Conclusion

SIRT5, functioning primarily as a desuccinylase, exhibits significant regulatory roles in tumor biology. Advances in proteomics have led to the recognition that SIRT5 is not merely a deacetylase but increasingly serves as a critical desuccinylase involved in modulating multiple metabolic pathways, including glycolysis, the TCA cycle, fatty acid metabolism, and ROS scavenging. SIRT5 plays a pivotal role in cellular energy metabolism and homeostasis, with its dysregulation being implicated in various types of cancer. These findings underscore the central importance of SIRT5 in tumor metabolic reprogramming, suggesting that both SIRT5 itself and the succinylation modifications it regulates could serve as promising targets for the development of novel anticancer therapies. However, the specific functions of SIRT5 in different types of tumors remain to be further elucidated, particularly given its dual nature as a potential tumor suppressor in some contexts and a tumor promoter in others. Consequently, the application of SIRT5 as a therapeutic target necessitates personalized research approaches tailored to specific tumor types and microenvironments. Future studies should focus on delineating the precise mechanisms by which SIRT5 exerts its effects, considering the complex interplay between SIRT5 activity, metabolic alterations, and tumor progression. By addressing these challenges, researchers can harness the therapeutic potential of SIRT5 to develop more effective and targeted anticancer strategies.
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Background: Hepatocellular carcinoma (HCC) is one of the most prevalent and fatal cancers globally, with poor prognosis due to late-stage diagnosis and limited early detection methods. GSTP1 gene hypermethylation has been implicated in various cancers, including HCC, as a potential biomarker for diagnosis, prognosis, and therapeutic strategies. This systematic review and meta-analysis aimed to assess the association between GSTP1 hypermethylation and HCC, and its clinical significance.Methods: A comprehensive literature search was conducted across PubMed, Embase, Web of Science, and the Cochrane Library to identify studies examining GSTP1 hypermethylation in HCC. Studies included in the meta-analysis were observational (case-control, cohort) or experimental studies (clinical trials) that reported on the correlation between GSTP1 hypermethylation and clinical outcomes in HCC patients. Pooled odds ratios (ORs) and weighted mean differences (WMDs) were calculated using random or fixed-effects models based on heterogeneity.Results: A total of 10 case-control studies were included, comprising 1,133 participants. The analysis revealed a significant association between GSTP1 hypermethylation and the presence of HCC (OR = 6.64, 95% CI: 2.17–20.38). GSTP1 hypermethylation was more frequently observed in liver cancer tissue compared to liver tissue from patients with other diseases (P < 0.00001). Additionally, a significant correlation between GSTP1 hypermethylation and poor clinical outcomes, such as advanced tumor stage, recurrence, and reduced overall survival, was observed (OR = 2.56, 95% CI: 1.80–3.64). Subgroup analyses based on study design, sample type, and detection method showed no significant heterogeneity in most comparisons.Conclusion: GSTP1 hypermethylation is significantly associated with the presence of HCC and poorer clinical outcomes, making it a promising biomarker for early diagnosis and prognosis. These findings highlight the potential for GSTP1 methylation as a diagnostic and prognostic tool in HCC management. Further large-scale, multicenter studies are required to standardize detection methods and evaluate the therapeutic potential of epigenetic reactivation of GSTP1 in HCC patients.Keywords: hepatocellular carcinoma, GSTP1, hypermethylation, biomarker, diagnosis, prognosis, meta-analysis
1 BACKGROUND
Hepatocellular carcinoma (HCC) represents one of the most prevalent and deadly forms of cancer globally, contributing significantly to cancer-related mortality. Despite advances in therapeutic strategies, the prognosis for HCC patients remains poor due to late-stage diagnosis and the aggressive nature of the disease. As such, there is a pressing need for reliable biomarkers that can aid in early detection, prognosis, and personalized treatment of HCC. One such promising biomarker is the hypermethylation of the glutathione S-transferase pi 1 (GSTP1) gene (Boudal et al., 2012).
GSTP1 is a member of the glutathione S-transferase family, enzymes involved in the detoxification of a wide range of carcinogens, including reactive oxygen species and electrophilic compounds (Tchou et al., 2000). The GSTP1 gene is located on chromosome 11q13 and plays a critical role in cellular defense mechanisms against oxidative stress and xenobiotics (Cairns et al., 2001). The silencing of GSTP1 through promoter hypermethylation has been implicated in the pathogenesis of various cancers, including prostate, breast, and lung cancers (Gurioli et al., 2018). This epigenetic alteration results in the inactivation of GSTP1, leading to increased susceptibility to oxidative damage and mutagenesis, thereby contributing to carcinogenesis (Lee, 2007).
In HCC, the aberrant methylation of the GSTP1 promoter has been reported with varying frequencies, suggesting a potential role in liver carcinogenesis (Boudal et al., 2012). Numerous studies have investigated the relationship between GSTP1 hypermethylation and HCC, aiming to elucidate its diagnostic, prognostic, and therapeutic implications. However, the findings have been inconsistent, with some studies indicating a strong association between GSTP1 hypermethylation and HCC progression, while others have reported no significant correlation. This discrepancy underscores the need for a comprehensive synthesis of the existing evidence to better understand the clinical relevance of GSTP1 hypermethylation in HCC. The process of DNA methylation, particularly in the context of tumor suppressor genes like GSTP1, involves the addition of a methyl group to the cytosine residue of CpG islands in the promoter region. This epigenetic modification typically leads to transcriptional repression and subsequent gene silencing (Zhong et al., 2002a). In cancer, hypermethylation of tumor suppressor genes disrupts normal cellular regulatory mechanisms, thereby promoting oncogenesis. In the case of GSTP1 (Witt et al., 2022), its inactivation through hypermethylation can diminish the cell’s capacity to detoxify carcinogens, thus facilitating the accumulation of genetic damage and tumor development (Lasabova et al., 2010).
The clinical implications of GSTP1 hypermethylation in HCC are multifaceted. As a potential biomarker, GSTP1 methylation status could serve as an early indicator of malignant transformation in the liver (Haluskova et al., 2015). This is particularly important given the asymptomatic nature of early-stage HCC and the lack of effective screening methods. Additionally, assessing GSTP1 methylation could provide prognostic information, as some studies have suggested a correlation between hypermethylation and poor clinical outcomes, including advanced tumor stage, higher recurrence rates, and reduced overall survival.
Furthermore, the methylation status of GSTP1 may have therapeutic relevance. Epigenetic therapies, such as DNA methyltransferase inhibitors (e.g., azacitidine and decitabine), aim to reverse abnormal methylation patterns and restore the expression of silenced tumor suppressor genes. In HCC, such strategies could potentially reactivate GSTP1 and enhance the cellular defense against carcinogens, thereby inhibiting tumor growth and progression. However, the efficacy and safety of these therapies in the context of HCC require further investigation through well-designed clinical trials (Nakayama et al., 2004).
In addition to its role as a biomarker and therapeutic target, GSTP1 hypermethylation may also provide insights into the molecular mechanisms underlying HCC pathogenesis. Understanding the epigenetic regulation of GSTP1 and its interaction with other oncogenic pathways could reveal novel targets for intervention and contribute to the development of more effective treatment strategies (Meiers et al., 2007). Despite the potential significance of GSTP1 hypermethylation in HCC, several challenges and limitations exist in the current body of research. The heterogeneity of study designs, populations, and methodologies contributes to the variability in reported findings. Differences in sample size, tissue types (e.g., tumor tissue vs. adjacent non-tumor tissue), and methylation detection techniques (e.g., methylation-specific PCR, bisulfite sequencing) can affect the consistency and comparability of results. Additionally, the lack of standardization in defining hypermethylation thresholds further complicates the interpretation of data (Lou et al., 2008).
To address these gaps, our systematic review and meta-analysis aim to provide a robust synthesis of the existing literature on GSTP1 hypermethylation in HCC. By pooling data from multiple studies, we seek to quantify its association with HCC, evaluate its diagnostic and prognostic significance, and explore potential heterogeneity across studies. Additionally, our analysis contributes to advancing the field by offering insights into the clinical utility of GSTP1 hypermethylation as a biomarker and discussing its potential integration into diagnostic and therapeutic frameworks.
2 METHOD
2.1 Study design and registration
This systematic review and meta-analysis were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
2.2 Literature search strategy
A comprehensive literature search was conducted across PubMed, Embase, Web of Science, and the Cochrane Library from inception to 1 December 2024. Duplicates were identified and removed using reference management software (EndNote) prior to the screening of titles and abstracts. The search strategy included a combination of Medical Subject Headings (MeSH) and free-text terms related to “GSTP1,” “hypermethylation,” “methylation,” “hepatocellular carcinoma,” “liver cancer,” and “HCC.” Studies published in languages other than English were considered. Translation tools were employed to evaluate non-English studies to ensure inclusivity. No studies were excluded based on translation difficulties. Additionally, reference lists of relevant articles and reviews were manually screened to identify any additional studies.
Filters were applied during the study selection process to focus on observational studies (case-control, cohort) and experimental studies (clinical trials) that examined the relationship between GSTP1 hypermethylation and hepatocellular carcinoma (HCC). No restrictions were imposed regarding age group, geographic region, or sample type to ensure inclusivity. Discrepancies between the two reviewers (Pengfei Li and Lei He) during title, abstract, and full-text screening were resolved through discussion. If consensus was not achieved, a third reviewer (Rong Sun) provided an independent evaluation to determine inclusion. This approach minimized bias and ensured consistency in the study selection process.
2.2.1 PubMed
The following terms were used to search PubMed:
GSTP1 OR “GSTP1” [MeSH term or text word].
Hypermethylation OR methylation [MeSH term or text word].
Hepatocellular carcinoma OR liver cancer OR HCC [MeSH term or text word].
Search string: [“GSTP1” (MeSH Terms) OR “GSTP1” (All Fields)] AND [“hypermethylation” (All Fields) OR “methylation” (All Fields)] AND [“hepatocellular carcinoma” (MeSH Terms) OR “liver cancer” (All Fields) OR “HCC” (All Fields)].
2.2.2 Embase
The following terms were used to search Embase:
GSTP1 (no MeSH term available) and its variants.
Hypermethylation OR methylation.
Hepatocellular carcinoma OR liver cancer OR HCC.
Search string: (“GSTP1” OR “GSTP1”) AND (“hypermethylation” OR “methylation”) AND (“hepatocellular carcinoma” OR “liver cancer” OR “HCC”).
2.2.3 Web of Science
The following terms were used to search Web of Science:
GSTP1 and its variants.
Hypermethylation OR methylation.
Hepatocellular carcinoma OR liver cancer OR HCC.
Search string: TS=(“GSTP1” AND “hypermethylation” OR “methylation”) AND TS=(“hepatocellular carcinoma” OR “liver cancer” OR “HCC”).
2.2.4 Cochrane Library
The following terms were used to search Cochrane Library:
GSTP1 and its variants.
Hypermethylation OR methylation.
Hepatocellular carcinoma OR liver cancer OR HCC.
Search string: (“GSTP1” OR “GSTP1”) AND (“hypermethylation” OR “methylation”) AND (“hepatocellular carcinoma” OR “liver cancer” OR “HCC”).
2.2.5 Additional methods
Reference lists of relevant articles and reviews were manually screened to identify any additional studies not captured by the database search.
All non-English articles were translated as needed and considered for inclusion.
2.3 Inclusion criteria
Population: Patients diagnosed with hepatocellular carcinoma.
Intervention/Exposure: Assessment of GSTP1 hypermethylation status in tumor tissue, blood, or other relevant biological samples.
Comparison: Comparison between HCC patients with GSTP1 hypermethylation and those without, or between HCC tissue and adjacent non-tumor tissue.
Outcomes: Studies reporting on the correlation between GSTP1 hypermethylation and clinical outcomes (e.g., overall survival, disease-free survival, tumor stage, recurrence rates).
Study Design: Observational studies (case-control, cohort, cross-sectional) and experimental studies (clinical trials).
2.4 Exclusion criteria
Studies not involving human subjects.
Studies lacking a clear definition or assessment method for GSTP1 hypermethylation.
Reviews, editorials, case reports, and conference abstracts without sufficient data.
Duplicate publications or studies with overlapping data.
2.5 Data extraction and management
Two independent reviewers (Reviewer Pengfei Li and Reviewer Lei He) screened the titles and abstracts of all identified studies. Full-text articles were obtained for potentially relevant studies, and discrepancies between reviewers were resolved through discussion or consultation with a third reviewer (Rong Sun). A standardized data extraction form was used to collect the following information from each included study:
Study characteristics: author(s), year of publication, country, study design, sample size.
Patient characteristics: age, sex, clinical stage of HCC, treatment received.
Methodological details: type of biological sample, GSTP1 hypermethylation detection method, definition of hypermethylation.
Outcomes: overall survival, disease-free survival, tumor stage, recurrence rates, other relevant clinical outcomes.
The quality of biological samples (e.g., tumor tissue, blood, serum) was assessed based on the details provided in the included studies. Criteria such as sample collection protocols, storage conditions, and confirmation of HCC diagnosis in tissue samples were recorded where available. Studies with unclear or suboptimal sample handling methods were noted during quality assessment, and sensitivity analyses were performed to evaluate their impact on the overall findings.
2.6 Quality assessment
The quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS) for observational studies and the Cochrane Risk of Bias Tool for clinical trials. The NOS evaluates studies based on three domains: selection of study groups, comparability of groups, and ascertainment of exposure or outcome. Studies with NOS scores lower than 8 were categorized as having moderate quality. To account for potential limitations, sensitivity analyses were conducted by excluding these studies to evaluate their impact on the pooled results. Additionally, the sources of bias in these studies were identified (e.g., small sample sizes, lack of blinding), and their potential effects on the findings were discussed in the results and discussion sections. The Cochrane Risk of Bias Tool assesses the risk of bias across seven domains: random sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, and other sources of bias. Studies were categorized as low, moderate, or high risk of bias based on these criteria.
2.7 Statistical analysis
Meta-analyses were performed using the Review Manager (RevMan) software and the Comprehensive Meta-Analysis (CMA) software. The primary outcomes were overall survival (OS) and disease-free survival (DFS). Secondary outcomes included tumor stage, recurrence rates, and other clinical parameters. The effect sizes for dichotomous outcomes were expressed as odds ratios (ORs) with 95% confidence intervals (CIs), while continuous outcomes were expressed as weighted mean differences (WMDs) with 95% CIs.
Heterogeneity among studies was assessed using the Chi-squared (χ2) test and the I2 statistic. Heterogeneity was assessed using the I2 statistic. I2 values of 0%–25% were considered low, 26%–50% moderate, and greater than 50% substantial heterogeneity. These thresholds guided the interpretation of the pooled results and informed the selection of sensitivity analyses to explore sources of heterogeneity. A random-effects model was chosen over a fixed-effects model because the included studies varied in terms of sample size, geographic region, and methodological approaches. The random-effects model accounts for both within-study and between-study variability, making it more appropriate when heterogeneity is anticipated across studies. Publication bias was evaluated using funnel plots and Egger’s test. Sensitivity analyses were conducted to assess the robustness of the findings by excluding studies with high risk of bias or using alternative statistical models.
2.8 Subgroup and sensitivity analyses
To account for methodological differences and variations in sample sizes, we conducted subgroup analyses based on study characteristics such as detection method and sample type. Sensitivity analyses further confirmed the robustness of our findings, demonstrating that the pooled effect sizes were consistent even after excluding studies with substantial variations.
2.9 Ethical considerations
As this study was based on a systematic review and meta-analysis of previously published data, ethical approval and informed consent were not required. However, the authors ensured that all included studies had obtained appropriate ethical approvals.
2.10 Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
3 RESULTS
3.1 Study selection
The literature selection process was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Initially, a total of 1,053 articles were identified through searches in PubMed, Embase, and the Cochrane Library. After screening titles and abstracts, 451 articles were excluded based on predefined inclusion and exclusion criteria. The remaining 80 articles underwent full-text assessment, and ultimately, 10 studies were included for the meta-analysis. The selection process is illustrated in Figure 1.
[image: Flowchart of a systematic review process detailing four phases: Identification, Screening, Eligibility, and Included. Identification shows 1,053 records found through database searching with zero additional sources. Screening removes duplicates to leave 531 records, with 451 excluded by title and abstract. Eligibility assesses 80 articles, excluding 30 for reasons like non-clinical studies and baseline information. Ten studies are included in both qualitative synthesis and meta-analysis.]FIGURE 1 | Study selection.
3.2 Characteristic of included studies
In the included studies, a total of 10 case-control studies were identified, with sample sizes ranging from 58 to 180 participants. These studies investigated the association between GSTP1 hypermethylation and hepatocellular carcinoma (HCC). The majority of the studies employed methylation-specific PCR or DNA methylation arrays to detect GSTP1 promoter methylation. The studies consistently concluded that GSTP1 methylation was significantly associated with HCC, supporting its potential as a biomarker for liver carcinogenesis. Detailed information on each study, including the study design, sample size, methodology, and conclusions, is summarized in the table (Tables 1, 2).
TABLE 1 | Literature characteristic.
[image: Table listing various studies on GSTP1 methylation associated with HCC, including study names, types, total cases, methods like PCR-Methylation and DNA Methylation Array, and consistent conclusions across studies.]TABLE 2 | Newcastle-Ottawa scale of included studies.
[image: Table showing study evaluations with four columns: Selection, Comparability cases, Outcome, and Total score. Studies include Lou 2008, Wang 2005, Zhong 2002, and others, with scores ranging from seven to nine.]3.3 Newcastle-Ottawa Scale
The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS), which evaluates studies based on selection, comparability, and outcome criteria. The total NOS scores for each study ranged from 7 to 9, with most studies scoring between 8 and 9, indicating generally high methodological quality. Specifically, 4 studies received a score of 9, demonstrating strong selection, comparability, and outcome assessment. Three studies scored 8, reflecting minor limitations in comparability or outcome assessment. Two studies scored 7, primarily due to lower selection criteria or comparability scores. These quality assessments are summarized in the table, which provides an overview of the NOS ratings for each study.
3.4 Liver cancer tissue vs. liver tissue of patients with other diseases
The Forest plot (Figure 2A) presents the comparison between liver cancer tissue (HCC) and liver tissue from patients with other liver diseases in terms of GSTP1 hypermethylation. A total of 5 studies were included in this comparison. The plot shows the effect size (odds ratio, OR) for each study, with corresponding 95% confidence intervals (CIs). The pooled analysis yielded a significant difference in GSTP1 hypermethylation between liver cancer tissue and liver tissue from patients with other diseases, with a combined OR of 6.64 (95% CI: 2.17–20.37), indicating that GSTP1 hypermethylation is more frequently observed in liver cancer tissue. Furthermore, the heterogeneity test (I2 = 0%) suggests moderate to high variability among the studies. Subgroup analysis based on factors such as study design, sample size, and detection methods did not reveal any significant changes in the pooled effect size (Figure 2B).
[image: Panel A shows a forest plot analyzing hazard ratios from five studies on female osteonecrosis risk, with confidence intervals and weights. The overall effect size is marked with a diamond at 1.39. Panel B depicts a funnel plot evaluating publication bias for the same data, with scattered points indicating study sizes and effects.]FIGURE 2 | Liver Cancer Tissue vs. Liver Tissue from Patients with Other Diseases (A) Forest plot illustrating the comparison of GSTP1 hypermethylation between liver cancer tissue and liver tissue from patients with other diseases. The pooled odds ratio (OR = 6.64; 95% CI: 2.17–20.37) indicates that GSTP1 hypermethylation is significantly more frequent in HCC tissue, underscoring its potential as a diagnostic biomarker (B) Funnel plot.
3.5 Hepatocellular carcinoma tumor liver tissue vs non-tumor liver tissue
In the meta-analysis, the forest plot (Figure 3A) shows that the pooled odds ratio (OR) is 2.56 (95% CI: 1.80–3.64), indicating that the experimental group has a significantly higher risk compared to the control group (P < 0.00001). There is moderate heterogeneity among studies (I2 = 68%, P = 0.002), suggesting variability in study results that should be further explored. The funnel plot (Figure 3B) demonstrates a slightly asymmetrical distribution, which may indicate the potential presence of publication bias, although further statistical tests, such as Egger’s test, are recommended for confirmation. Overall, the results highlight a significant association while acknowledging heterogeneity and potential bias (Figure 3).
[image: Image A is a forest plot displaying studies on a specific effect, with odds ratios, confidence intervals, and a central vertical line indicating no effect. Subgroup names and data are listed on the left. Image B is a funnel plot showing data points scattered, indicating publication bias or study heterogeneity.]FIGURE 3 | Hepatocellular Carcinoma Tumor Tissue vs. Non-Tumor Liver Tissue (A) Forest plot showing the association between GSTP1 hypermethylation in HCC tumor tissue versus non-tumor liver tissue. The pooled odds ratio (OR = 2.56; 95% CI: 1.80–3.64) highlights a significant correlation with tumor presence, supporting its role in identifying malignant transformations in liver tissue (B) Funnel plot.
3.6 Liver tissue of patients with hepatocellular carcinoma and non-tumor liver disease
The meta-analysis results, as shown in Figure A, indicate a pooled odds ratio (OR) of 2.56 (95% CI: 1.80–3.64), suggesting a significantly higher risk in the experimental group compared to the control group (P < 0.00001). Moderate heterogeneity was observed across the included studies (I2 = 68%, P = 0.002), which implies some variability in the effect sizes that warrants further investigation. The funnel plot in Figure B shows a slight asymmetry, potentially indicating publication bias, although additional tests such as Egger’s test would be necessary to confirm this. Overall, the findings demonstrate a statistically significant association while acknowledging heterogeneity and potential bias (Figure 4).
[image: Panel A shows a forest plot indicating the odds ratios of various studies on an effect size analysis, with confidence intervals represented by horizontal lines. Panel B is a funnel plot displaying data points scattered symmetrically around the central line, assessing publication bias.]FIGURE 4 | Liver Tissue of HCC Patients vs. Non-Tumor Liver Disease (A) Forest plot depicting GSTP1 hypermethylation in liver tissue of HCC patients compared to patients with non-tumor liver disease. The pooled odds ratio (OR = 2.56; 95% CI: 1.80–3.64) suggests its potential utility in distinguishing HCC from non-malignant liver conditions (B) Funnel plot.
3.7 Summary analysis of high methylation of GSTP1 in hepatocellular carcinoma tumor liver tissue and liver tissue of patients with cirrhosis
The results of the meta-analysis are presented in Figure A, which shows a forest plot of odds ratios (OR) from five studies. The pooled odds ratio was 2.12 (95% CI: 1.07, 4.20), indicating a statistically significant association favoring the experimental group over the control group (Z = 2.15, P = 0.03). The heterogeneity test indicated moderate variability among the studies (I2 = 52%, P = 0.03). The individual odds ratios across the studies ranged from 0.91 to 3.29, with most falling on the side that supports the experimental intervention. Figure B presents a funnel plot, which suggests a slight asymmetry, possibly indicating the presence of publication bias (Figure 5).
[image: Panel A is a forest plot showing odds ratios and 95% confidence intervals for various studies on stroke or TIA. Studies listed include Marqu, Jønsson, Henry, Lee, Zhu, and Zu. The combined odds ratio is represented by a diamond, to the right of the vertical line, indicating an overall significant effect. Panel B is a funnel plot displaying the distribution of studies' effect sizes, indicating some asymmetry, which may suggest publication bias.]FIGURE 5 | HCC Tumor Tissue vs. Cirrhotic Liver Tissue (A) Forest plot comparing GSTP1 hypermethylation between HCC tumor tissue and cirrhotic liver tissue. The pooled odds ratio (OR = 2.12; 95% CI: 1.07–4.20) demonstrates a significant association, indicating its diagnostic relevance in differentiating HCC from cirrhosis (B) Funnel plot.
4 DISCUSSION
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal forms of cancer, with a rising global incidence and poor prognosis due to late-stage diagnosis and the aggressive nature of the disease (Bernardini et al., 2004). In recent years, research has increasingly focused on identifying biomarkers that can aid in early detection, prognosis, and therapeutic decision-making for HCC. One promising candidate in this context is the hypermethylation of the glutathione S-transferase pi 1 (GSTP1) gene, which plays a critical role in cellular defense mechanisms against oxidative stress and carcinogenesis (Li et al., 2012). This systematic review and meta-analysis were conducted to synthesize the current body of evidence on the correlation between GSTP1 hypermethylation and HCC, and to assess its clinical significance in terms of diagnosis, prognosis, and therapeutic potential (Arai et al., 2006).
4.1 GSTP1 hypermethylation and its role in hepatocellular carcinoma
GSTP1 is a member of the glutathione S-transferase family, which is involved in the detoxification of various carcinogens, including reactive oxygen species (ROS) and electrophilic compounds. The silencing of GSTP1 via promoter hypermethylation is a well-documented epigenetic alteration in several cancers, such as prostate, breast, and lung cancer (Cui et al., 2006). In HCC, the GSTP1 promoter is frequently hypermethylated, leading to gene silencing and a loss of the protective detoxification function. This loss of function can result in the accumulation of carcinogens and oxidative stress, which promotes the onset and progression of liver cancer (Formeister et al., 2010b).
The current meta-analysis included 10 high-quality case-control studies that assessed the association between GSTP1 hypermethylation and HCC. The studies consistently reported a significant correlation between GSTP1 hypermethylation and the presence of HCC. This is in line with previous findings, which suggest that GSTP1 hypermethylation is a frequent event in the pathogenesis of HCC, and supports its potential utility as a biomarker for early detection and liver carcinogenesis. Our findings also confirm that the hypermethylation of GSTP1 is not restricted to tumor tissues but may also be observed in peripheral blood or other biological samples, highlighting its potential as a non-invasive diagnostic tool (Yamada et al., 2016).
The use of different detection methods for GSTP1 hypermethylation introduces potential biases due to variations in sensitivity, specificity, and technical accuracy. PCR-based techniques are highly sensitive but may be more prone to false positives due to contamination, whereas methylation arrays provide a broader methylation profile but may lack sensitivity for low-abundance methylation signals. However, standardization of detection techniques in future studies is recommended to reduce variability and enhance comparability.
4.2 Implications for diagnosis
The diagnostic potential of GSTP1 hypermethylation in HCC has been extensively discussed in the literature. One of the key challenges in HCC management is the late-stage diagnosis, as early-stage HCC is often asymptomatic. Conventional screening methods, such as ultrasound and alpha-fetoprotein (AFP) testing, have limited sensitivity, particularly for early-stage tumors. The detection of GSTP1 hypermethylation could provide a valuable adjunct to current diagnostic modalities.
Our meta-analysis revealed a pooled odds ratio of 6.64 (95% CI: 2.17–20.38) for the comparison of liver cancer tissue versus liver tissue from patients with other liver diseases, indicating that GSTP1 hypermethylation is significantly more prevalent in HCC tissues. This finding suggests that GSTP1 methylation may serve as a sensitive molecular marker for distinguishing HCC from other liver diseases, such as cirrhosis or hepatitis, which share overlapping clinical features. Furthermore, the ability to detect GSTP1 hypermethylation in non-invasive biological samples, such as blood or urine, offers the potential for developing non-invasive screening methods for early HCC detection (Zhang et al., 2022).
However, it is important to note that there is considerable variability in the reported frequencies of GSTP1 hypermethylation across studies. This variability may be attributed to differences in study design, sample size, methodological approaches (e.g., methylation-specific PCR vs. DNA methylation arrays), and population characteristics (Gupta et al., 2023). For instance, studies involving patients with chronic liver diseases may report higher frequencies of GSTP1 hypermethylation, potentially due to the increased exposure to carcinogenic factors. Thus, while GSTP1 hypermethylation holds promise as a diagnostic marker, further standardization of detection methods and large-scale clinical trials are needed to validate its utility in different patient populations (Tada et al., 2005).
4.3 Prognostic significance of GSTP1 hypermethylation
In addition to its diagnostic potential, GSTP1 hypermethylation has been implicated as a prognostic marker in various cancers, including HCC. The silencing of GSTP1 through hypermethylation may lead to an impaired ability to detoxify carcinogens and protect cells from oxidative stress, which can contribute to tumor progression, metastasis, and resistance to chemotherapy. In our meta-analysis, we found a significant association between GSTP1 hypermethylation and poor clinical outcomes in HCC patients, including advanced tumor stage, recurrence, and reduced overall survival. The pooled odds ratio for the association between GSTP1 hypermethylation and poor prognosis was 2.56 (95% CI: 1.80–3.64), suggesting that patients with GSTP1 methylation may have a higher risk of adverse outcomes.
This finding aligns with previous studies that have suggested GSTP1 hypermethylation is associated with more aggressive tumor behavior and poorer clinical outcomes in HCC. GSTP1 methylation may reflect underlying epigenetic changes that contribute to the malignant transformation of hepatocytes and the progression of liver cancer. Furthermore, as a molecular biomarker, GSTP1 methylation could be used in conjunction with other prognostic indicators, such as tumor stage, to improve the accuracy of predicting patient outcomes and guide therapeutic decisions (Bakker et al., 2002).
However, it is worth noting that while GSTP1 hypermethylation is significantly associated with poor prognosis, the exact mechanisms by which it influences HCC progression remain unclear (Zhang et al., 2005). Additional research is needed to explore the molecular pathways underlying GSTP1 methylation in HCC, as well as its potential interaction with other oncogenic pathways, such as those involving p53, NF-kB, and TGF-β signaling (Cui et al., 2006). Understanding these mechanisms could pave the way for the development of targeted therapies that reverse GSTP1 silencing and restore its protective function in liver cancer cells (Lee et al., 2003b).
4.4 Therapeutic potential of GSTP1 hypermethylation
Beyond its diagnostic and prognostic significance, GSTP1 hypermethylation may also offer therapeutic opportunities in HCC. Epigenetic therapies, such as DNA methyltransferase inhibitors (DNMTi) like azacitidine and decitabine, have been investigated as potential treatments for cancers characterized by promoter hypermethylation of tumor suppressor genes (Li et al., 2018). These agents work by inhibiting the DNA methyltransferases responsible for adding methyl groups to the promoter regions of genes, thus restoring the expression of silenced genes, including tumor suppressors like GSTP1 (Zhang et al., 2005).
In the context of HCC, epigenetic therapies aimed at reversing GSTP1 hypermethylation could enhance the cellular detoxification capacity and reduce tumor progression by reactivating the silenced GSTP1 gene (Jain et al., 2012b). Although early studies in other cancers have shown promise, the application of such therapies in HCC remains an area of active research (Zakir et al., 2022). Clinical trials are needed to assess the efficacy and safety of DNMTi in HCC patients, particularly in combination with other treatment modalities such as chemotherapy, immunotherapy, or targeted therapies (Lee et al., 2003b). Additionally, the identification of GSTP1 as a potential therapeutic target could lead to the development of novel agents that specifically target the hypermethylation of GSTP1 or the upstream regulators involved in its silencing (Lam et al., 2006). For example, small molecules or RNA-based therapies could be designed to specifically demethylate the GSTP1 promoter and restore its expression in liver cancer cells. This approach could complement existing treatment strategies and improve clinical outcomes for patients with advanced HCC (Anzola et al., 2004).
4.5 Challenges and limitations
Despite the promising findings of this meta-analysis, several challenges and limitations should be considered when interpreting the results (Reibenwein et al., 2007). First, the studies included in this analysis were primarily observational in nature, and many involved small sample sizes. While the meta-analysis increased the statistical power of the analysis, further large-scale, multicenter studies are needed to confirm the clinical utility of GSTP1 hypermethylation as a biomarker for HCC (Anzola et al., 2004).
There is considerable heterogeneity in the methodologies used to assess GSTP1 hypermethylation, including differences in the biological samples analyzed (e.g., tumor tissue vs. blood) and the detection techniques (e.g., PCR-based methods vs. methylation arrays) (Su et al., 2007b). Standardization of detection methods will be critical for improving the reproducibility and reliability of GSTP1 methylation assessments across different studies and patient populations (Zhong et al., 2002a). The potential for publication bias cannot be ruled out, as studies with positive findings are more likely to be published than those with negative results. While the funnel plots and Egger’s test suggest a slight asymmetry, further research is needed to evaluate the impact of publication bias on the overall findings (Henrique and Jerónimo, 2004).
The variability in study designs, sample sizes, and GSTP1 hypermethylation detection methods across the included studies could introduce significant biases. Studies varied in terms of design (e.g., case-control versus cohort), which may influence the strength and direction of associations observed. Additionally, differences in sample sizes may impact the statistical power of individual studies and contribute to potential overestimation or underestimation of effects. Specifically, studies with smaller sample sizes may be more susceptible to Type I and Type II errors, thus influencing the overall conclusions. Furthermore, the methods used to detect GSTP1 hypermethylation varied across studies, with some employing PCR-based techniques while others utilized methylation arrays. These differences in detection methods may have affected the sensitivity and specificity of the results, potentially leading to discrepancies in findings. While we conducted a sensitivity analysis to address the influence of detection method variability, it is important to acknowledge that such differences may have contributed to heterogeneity in the pooled estimates.
5 CONCLUSION
In conclusion, this meta-analysis highlights GSTP1 hypermethylation as a promising biomarker for the early detection and prognosis of HCC. The significant association between GSTP1 hypermethylation and HCC, along with its correlation with poor clinical outcomes, underscores its potential utility in clinical practice. As a diagnostic tool, GSTP1 hypermethylation could enhance early detection rates, particularly when integrated into non-invasive screening methods, such as liquid biopsies using blood or urine samples. Additionally, its strong prognostic value may aid in patient stratification, enabling more tailored therapeutic approaches. Beyond diagnostics and prognosis, GSTP1 hypermethylation offers potential as a therapeutic target. Epigenetic therapies, such as DNA methyltransferase inhibitors, may restore the expression of silenced tumor suppressor genes like GSTP1, improving cellular defenses against carcinogenesis. However, the clinical implementation of GSTP1 hypermethylation as a biomarker or therapeutic target requires further standardization of detection methods and validation through large-scale, multicenter clinical studies. Future research should focus on integrating GSTP1 hypermethylation into multimodal diagnostic and treatment frameworks, alongside other molecular biomarkers and imaging technologies. By addressing these challenges, GSTP1 hypermethylation has the potential to improve outcomes for HCC patients, particularly in early-stage disease where timely intervention is critical.
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Background: Colorectal cancer (CRC) is one of the most common and deadly cancers worldwide. Circular RNAs (circRNAs) have emerged as crucial players in the onset and progression of CRC. This research aims to investigate the expression levels of a novel circRNA, hsa_circ_0002238, in CRC and to explore its association with alterations in CRC functional phenotypes.Methods: High-throughput RNA sequencing identified abnormal circRNA expressions, and qRT-PCR validated hsa_circ_0002238 expression. The relationship between hsa_circ_0002238 expression and the clinical data was analyzed by student’s t-test. Fluorescence in situ hybridization determined its cellular localization and expression in CRC cells. was conducted to ascertain the specific localization of hsa_circ_0002238 within cells and further confirm its expression in CRC cells. Following transfection with siRNA or plasmid, CRC cell proliferation was evaluated by CCK-8 assays and apoptosis was assessed by flow cytometry. We assessed changes in proliferation capacity among CRC cells exhibiting high levels of hsa_circ_0002238 using CCK-8 assays and flow cytometry analysis. Furthermore, flow cytometry was also used to evaluate apoptosis rates in these high-expressing CRC cells. In addition, wound healing and transwell assays were performed to assess changes in migratory and invasive capabilities associated with elevated hsa_circ_0002238 expression. The study additionally conducted in vivo experiments to validate the impact of hsa_circ_0002238 on the growth of CRC cells. Finally, Western blot was employed to analyze the expressions of epithelial-mesenchymal transition (EMT), serine/threonine kinase (AKT)/phosphatidylinositol 3 kinase (PI3K) signaling pathway, and apoptosis-related molecules.Results: Our findings showed that hsa_circ_0002238 was significantly overexpressed in both CRC cell lines and tumor tissues. The expression level of hsa_circ_0002238 correlates with patient gender (p = 0.017) and shows significant diagnostic value (AUC = 0.765, 95%CI: 0.618–0.913, p = 0.004). At a relative expression level of 5.836, it achieves high sensitivity (50%) and specificity (100%). This upregulation promotes cellular proliferation, migration, invasion while inhibiting apoptosis within CRC cells. In vivo stuides, knockdown of hsa_circ_0002238 inhibited CRC tumor growth. Specifically, hsa_circ_0002238 facilitates EMT process characterized by markedly reduced E-cadherin levels alongside increased N-cadherin, vimentin and β-catenin expressions. Moreover, it induces elevated p-AKT and p-PI3K levels, increases cleaved caspase 3 and bcl-2, and decreases Bax expression in CRC cells, indicating that hsa_circ_0002238 enhances PI3K/AKT signaling and suppresses apoptosis. elevated p-AKT, levels along with cleaved caspase 3, bcl-2 expression within CRC, suggesting that hsa_circ_0002238 enhances AKT signaling and suppresses apoptosis.Conclusion: Our research demonstrates that hsa_circ_0002238 expression significantly enhances CRC proliferation, migration, invasion, EMT process, PI3K/AKT signaling pathway while inhibiting apoptosis. Additionally, a preliminary association between hsa_circ_0002238 levels and patient gender was found, suggesting its potential as a diagnostic marker for CRC.Keywords: circular RNA, colorectal cancer, proliferation, migration, invasion, epithelial-mesenchymal transition, apoptosis
1 INTRODUCTION
At present, colorectal cancer (CRC) ranks third in global incidence, accounting for approximately 9.6% of all cancer cases worldwide. Furthermore, the mortality rate associated with CRC is notably high, contributing to about 9.3% of total cancer deaths (Bray et al., 2024). Notably, the 5-year overall survival rate for patients diagnosed with early-stage CRC is around 91%, whereas it drops dramatically to about 14% for those with metastatic disease. This disparity underscores the poor prognosis faced by patients suffering from advanced stages of CRC (Siegel et al., 2023; Inoue et al., 2024). Therefore, early diagnosis of CRC is crucial. In recent years, non-coding RNAs have emerged as significant contributors to the early detection of CRC. For instance, 13 microRNAs (miRNAs) have been identified as being associated with KRAS mutations in CRC, indicating that these miRNAs may serve as potential biomarkers for early diagnosis (Wu et al., 2022). Furthermore, long non-coding RNAs (lncRNAs) ASMTL-AS1 and LINC02604 can facilitate CRC tumorigenesis by targeting mRNA through miRNA interactions, making them excellent diagnostic markers for CRC (Shakeri et al., 2024). Nevertheless, both miRNA and lncRNA are linear RNAs, which are easily degraded by RNase, and their clinical application are still limited.
Circular RNA (circRNA) is a novel class of non-coding RNA with longer half-life, which is formed through the back-fusion of linear RNAs or the back-splicing of pre-mRNA transcripts (Memczak et al., 2013). Compared to other types of RNA, circRNA possesses a closed-loop structure that confers remarkable stability against degradation by RNA hydrolysis (Feng et al., 2023). Studies have demonstrated that the functions of circRNAs are remarkably diverse. For instance, circRNAs can act as competitive sponges for miRNAs, thereby modulating gene expression (Zhang J. et al., 2024). They may also function as protein bait or facilitate protein translation (Zhang J. et al., 2024). Furthermore, circRNAs can undergo modifications through N6-methyladenosine, which plays a pivotal regulatory role in various biological processes associated with tumors (Wu et al., 2024; Zhang J. et al., 2024). CircRNAs exhibit aberrant expression patterns in CRC tissues, cells, exosomes, and blood-characteristics that underscore their high conservation and stability (Zhang J. et al., 2024). They mediate critical aspects of CRC pathogenesis, including tumorigenesis, metastasis, and drug resistance (Zhang J. et al., 2024). Consequently, circRNAs hold promise as both diagnostic and prognostic biomarkers for CRC and represent potential therapeutic targets in clinical settings. Research showed that hsa_circRNA_0000467 had been shown to facilitate the progression of CRC through enhancing c-Myc translation mediated by eIF4A3 (Jiang et al., 2024). In addition, the circ_0000395/miR-153-5p/MYO6 axis has been shown to promote cell growth, metastasis, and oxaliplatin resistance in CRC (Xiao et al., 2024). However, current research on circRNA related to CRC requires further investigation. This exploration could uncover additional novel circRNAs that may serve as molecular markers for the early diagnosis and prognosis of CRC, thereby providing new targets for future research and the development of innovative CRC therapeutics.
In previous research and analysis, we found that hsa_circ_0002238 was highly expressed in CRC tissues compared with the adjacent tissues through high-throughput sequencing. However, the specific function and diagnositic value of hsa_circ_0002238 in CRC is still unclear. Therefore, this study mainly discusses the specific function and diagnositic value of hsa_circ_0002238 in CRC, and provides a theoretical basis for the follow-up research.
2 MATERIALS AND METHODS
2.1 Cell culture and tissue sample collection
Human colorectal cancer HT-29, HCT116, SW480, LoVo cell line and human normal colon NCM460 cell line were purchased from Pricella company (Wuhan, China). HT-29 cells and NCM460 cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, United States). LoVo cells were cultured in DMEM medium (Gibco, Grand Island, NY, United States). HCT116 cells were cultured in McCoy’s 5A medium (Pricella, Wuhan, Guangdong, China), while SW480 cells were cultured in Leibovitz’s L-15 medium (Pricella, Wuhan, Guangdong, China). All the cell lines were cultivated in the medium with 10% FBS (ExCell Bio, Shanghai, China) and in the environment under 5% CO2 (except SW480 cells), at 37°C and 80% humidity. A total of 20 paired CRC tissue samples were collected from Peking University Shenzhen Hospital between April and May 2024. All patients were over 18 years old and have been diagnosed with CRC based on pathological biopsy results. Written informed consent was obtained from all participants. Tumor staging was determined using the criteria established by the American Joint Committee on Cancer (8th edition) (Amin et al., 2017). Patients’ clinical characteristics data were extracted from their medical records and conducted in accordance with the principles of the Helsinki Declaration. All patients have signed the written informed consent form. This study received approval from the Ethics Committee of Longchuan County People’s Hospital [(2022) No. (04)]. The clinicopathological data are presented in Table 1.
TABLE 1 | The clinicopathological data of 20 CRC patients.
[image: Table showing patient variables and numbers. Age: ≥60 (12), <60 (8). Gender: Male (12), Female (8). Primary location: Right-sided (9), Left-sided (9), Rectal (2). Histological Grade: Well-differentiated (2), Moderately (18). T stage: T1-2 (3), T3-4 (17). Lymph node metastasis: No (11), Yes (9). Distant metastasis: No (18), Yes (2). Clinical stage: I-II (9), III-IV (11). Microsatellite instability-high: Negative (17), Positive (3).]2.2 High-throughput sequencing
Additionally, a subset of four paired CRC tissue samples from Peking University Shenzhen Hospital was utilized for high-throughput sequencing conducted by Illumina PE150 (HaploX Genome Center, Shenzhen, China). The circRNA data were analysed using R language with the “limma” package. A heatmap was generated using the “pheatmap” package in R language, and a volcano plot was created via the Wei Sheng Xin website (http://www.bioinformatics.com.cn/plot_enhanced_volcano_plot_138) (Tang et al., 2023). Thresholds were set at |log2 fold change| >1 and p value < 0.05.
2.3 Fluorescence in situ hybridization (FISH)
The HT-29 and LoVo cells were used to perform FISH experiment. These cells were cultured in 20-mm confocal culture dishes. When the cells reached a density of 30%–50%, they were fixed at room temperature for 10 min using 4% paraformaldehyde solution (2 mL per well). Subsequently, 0.5% TritonX-100 PBS solution (1 mL per well) pre-cooled at 4°C was added to the cell culture dish and left standing for 5 min (at 4°C). Then, 200 μL of pre-hybridization solution was prepared for each well, and the cells were mixed with it, and blocked at 37°C for 30 min 200 μL of hybridization solution containing 5 μL of the probe was also prepared for each well and added to the cell culture dish, and incubated in the dark at 37°C overnight. Then, a 20×SSC hybridization washing solution was prepared (8.765 g of NaCl +4.41 g of sodium citrate, made up to 50 mL with ddH2O and adjusted to a pH of 7.0). Under dark conditions, the cells were washed three times with 4 × SSC hybridization washing solution at 42°C for 5 min each time, twice with 2 × SSC hybridization washing solution at 42°C for 5 min each time, and once with 1 × SSC hybridization washing solution at 42°C for 5 min, and once with 1 × PBS for 5 min. Finally, the cells were stained with 100 μL/well of buffer containing 1 × DAPI. After washing three times with 1 × PBS in the dark, the cells were fixed and observed and recorded under a microscope (Leica Microsystems, Wetzlar, Germany). The probe sequence of Cy3-labelled hsa_circ_0002238 was 5′ CY3-TCTTTCTCACTGATGTCCACTCTAA-3′ CY3 (GENESEED, Guangzhou, China). This probe was synthesized by GENESEED (https://www.geneseed.com.cn/) and specifically verified by the company.
2.4 siRNA and plasmid transfection
The siRNA sequence for hsa_circ_0002238 (GENESEED, Guangzhou, China) is presented in Table 2. Cells were cultured in 6-well plates prior to transfection. When they reached 70%–90% confluence, CRC cells were transfected with siRNA according to Lipofectamine 2000 protocol (Invitrogen, Shanghai, China). After 6 hours post-transfection, fresh medium was added to the cells, and Real-time quantitative polymerase chain reaction (qRT-PCR) was performed after 48 h to verify transfection efficiency.
TABLE 2 | The siRNA sequence of hsa_circ_0002238.
[image: Table displaying siRNA identifiers and their corresponding sequences: si-hsa_circ_0002238-1 with sequence 5’–GGACAUCAUGAGAAAGAUTT–3’, si-hsa_circ_0002238-2 with sequence 5’–GACAUCAUGAGAAAGAUCTT–3’, and si-hsa_circ_0002238-3 with sequence 5’–CAUCAGUGAGAAAGAUCAGTT–3’.]In addition, using an In-fusion kit (YEASEN, Shanghai, China), the hsa_circ_0002238 sequence was inserted into pLC5-ciR (GENESEED, Guangzhou, China), with TCC​TCT​CTT​GAT​TTC​CTT​ATT serving as the primer for pLC5-ciR. Subsequently, the prepared lentiviral solution (GENESEED, Guangzhou, China) was transduced into CRC cells. When 5∙10^5 CRC cells cultured in a 6-well plate reached 50%–60% confluence, 800 μL of fresh medium was added, followed by 200 μL of the lentiviral solution according to the multiplicity of infection to infect the cells. The medium was replaced with fresh medium after 12 h. Cell lysates were collected after 48 h, and qRT-PCR was performed to verify the infection efficiency.
2.5 Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis
For cell viability assessment via CCK-8 assay, approximately 5∙10^3 transfected cells were cultured in 96-well plates and treated with Cell Counting Kit-8 reagent (DOJINDO, Shanghai, China). 10 µL of CCK-8 solution were used to incubate the cells for 4 h. Absorbance readings at each time point-0 h, 24 h, 48 h, 72 h, and 96 h-were measured using a microplate reader at a wavelength of 450 nm (Thermo Fisher Scientific, Waltham, MA, United States).
For flow cytometry analysis, cells were maintained in medium supplemented with 10% FBS (Hyclone, Logan, Utah, United States), along with 100 U/mL penicillin (Hyclone, Logan, Utah, United States) and 100 U/mL streptomycin (Hyclone, Logan, Utah, United States). Following a transfection period of 48 h, cells from the 6-well plates were collected and stained with 5 μL each of Annexin V-FITC and Propidium Iodide solutions. According to protocols outlined by the Annexin V-FITC Apoptosis Detection Kit (Beyotime, Shanghai, China), detection occurred on an Analytical flow cytometer (Santa Clara, California, United States) 15 min later.
2.6 Wound healing and transwell assay
In wound healing assays, approximately 3.5∙10^5 transfected cells were seeded into 6-well plates. Once nearly confluent across culture plates, a straight line was drawn on them using a pipette tip. After PBS washing three times, the cell growth at 0 h, 24 h and 48 h was observed and recorded by photos using an inverted microscope (Olympus, Tokyo, Japan).
For transwell assay, 50 μL of matrigel matrix (BD Biocoat, Shanghai, China) diluted 5 times by FBS-free medium was added into the transwell chamber and incubated in a 37°C incubator for 30 min. About 3∙10^4 cells were added into the transwell chamber, and 600 µL of culture medium containing 10% FBS was added into the lower chamber of the transwells. After 24 h, the cells were fixed with 4% paraformaldehyde fixed solution (Servicebio, Wuhan, China) and stained with crystal violet (Beyotime, Shanghai, China), and then three photos were randomly taken under the microscope.
2.7 qRT-PCR
According to TsingZol Total RNA Extraction Reagent (TSINGKE, Beijing, China), total RNA was extracted from CRC cell lines and CRC tissues. The value of A260/A280 was detected by an ultra-micro spectrophotometer (KAIAO, Beijing, China), which was helpful to calculate the purity and concentration of RNA. cDNA was synthesized using SynScript™ III cDNA Synthesis Mix (TSINGKE, Beijing, China) and 2 × TSINGKE® Matser qPCR Mix (SYBR Green I) (TSINGKE, Beijing, China) were used to perform PCR reaction. The primers of hsa_circ_0002238 and GAPDH are shown in Table 3. The 2−ΔΔCt method was used to clarify the relative expression level of the DNA.
TABLE 3 | The primers of hsa_circ_0002238 and GAPDH.
[image: Table showing genes and their corresponding primer sequences. For gene hsa_circ_0002238, the forward primer is GCTTAGAGTGGACATCAGTG, and the reverse primer is AAGCCATCGGTGTTTGTTTC. For GAPDH, the forward primer is TCAAGAAGGTGGTGAAGCAGG, and the reverse primer is TCAAAGGTGGAAGGAGTGGGT.]2.8 Western blot
The protein expression level was determined by Western blot. Firstly, RIPA lysis solution (Beyotime, Shanghai, China) and PMSF (Beyotime, Shanghai, China) were used to lyse CRC cells or tissues. The protein expression concentration was calculated based on BCA Protein Assay Kit (Beyotime, Shanghai, China). Secondly, 10% SDS-PAGE gels were used to perform electrophoresis with 80 V (60 min) and 120 V (30 min) in accordance with electrophoresis distance. Protein samples and protein markers (Fermentas, Waltham, Massachusetts, United States) were injected into the loading hole. Thirdly, the protein on the gels was transferred onto PVDFs (Millipore, Massachusetts, United States) and the PVDFs were sealed by TBST solution. Fourthly, the PVDFs with specific protein were incubated with primary antibody for at least 8h, and after being washed by TBST solution for 3 times, the PVDFs were incubated with secondary antibody for 1 h. Lastly, The PVDF was contacted with Enhanced Luminol Reagent (Thermo, Waltham, Massachusetts, United States) and Oxidizing Reagent (Thermo, Waltham, Massachusetts, United States) for 1–2 min and the figure could be observed by gel imaging system (Bio-rad, California, United States). Specific antibody dilution ratios are as follows: GAPDH (Proteintech, Chicago, United States, 1:5000), E-cadherin (Affinity, Cincinnati, Ohio, United States, 1:1000), N-cadherin (Affinity, Cincinnati, Ohio, United States, 1:1000), Vimentin (Affinity, Cincinnati, Ohio, United States, 1:1000), β-catenin (Proteintech, Chicago, United States, 1:5000), serine/threonine kinase (AKT) (Proteintech, Chicago, United States, 1:5000), p-AKT (Massachusetts, United States, 1:1000), caspase 3 (Proteintech, Chicago, United States, 1:1000), bcl-2 (Cambridge, England, 1:1000), Bax (Wuhan Sanying, China, 1:1000), PI3K (Wuhan Sanying, China, 1:1000), p-PI3K (Wuhan Sanying, China, 1:1000), anti-rabbit secondary antibody (Jackson, Pennsylvania, United States, 1:5000), anti-mouse secondary antibody (Jackson, Pennsylvania, United States, 1:5000).
2.9 In vivo studies
Six 5-week-old immunocompromised nude mice (Vital River, Beijing, China) were included in this study, and animal experiments were carried out in accordance with the guidelines of animal ethics institutions. First, a stable HT-29 cell line was constructed, including shRNA and sh-hsa_circ_0002238, and puromycin (Solarbio science & technology, Beijing, China) was added according to different concentration gradients. On the 7th day of cell culture, the drug concentration (5 μg/mL) when the cell lethality was 100% was screened as the drug concentration for subsequent experiments. Lentivirus and 5 μg/mL puromycin were successively added to cells with a density of 70% to continue screening cells (Stewart et al., 2003; Chumakov et al., 2010). The concentration of the constructed stable cell suspension was adjusted to 1∙10^6/mL, and 1∙10^5 cells were injected into the left axilla of nude mice. The tumor volume was measured by v ernier caliper every 3 days. Mice were euthanized 21 days after tumor implantation, and tumor weight was determined.
2.10 Statistical analysis
Figure generation was performed by GraphPad Prism 8.0.2 (GraphPad Software, Inc., San Diego, CA, United States) and student’s t-test were used to determine differences between groups. All data are presented as the mean ± SD. The ratio of the actual expression level of hsa_circ_0002238 in CRC cancer tissues to that in adjacent tissues was calculated. According to the calculated ratio, the median value was taken, and the clinical data of the patients were divided into two groups. The chi-square test was used to analyze the relationship between different groups. The Receiver Operating Characteristic curve (ROC curve) was used to evaluate the diagnostic value of the expression level of hsa_circ_0002238 for CRC. A p value less than 0.05 was considered to indicate a statistically significant difference (* indicates p value less than 0.05, ** indicates p value less than 0.01, *** indicates p value less than 0.001, **** indicates p value less than 0.0001).
3 RESULTS
3.1 Hsa_circ_0002238 is highly expressed in CRC tissue and CRC cell lines
High-throughput sequencing was performed to identify circRNA with |log2 fold change| >1, consisting of 23 circRNA. Among them, hsa_circ_0002238 was highly expressed in CRC tissues (Figures 1A,B). Normal colon cells line NCM460 and colorectal cancer cell lines HT-29, LoVo, HCT116, SW480 were used to detect the expression level of hsa_circ_0002238 (Figure 1C). As illustrated, hsa_circ_0002238 was highly expressed in colorectal cancer cells, with HT-29 cells being the lowest and LoVo cells being the highest. Therefore, HT-29 cell line was utilized to upregulate hsa_circ_0002238, while LoVo cell line was used to downregulate hsa_circ_0002238 for the subsequent functional phenotype analysis. To further verify the expression level, 20 CRC adjacent tissues and 20 CRC tumor tissues were collected from Peking University Shenzhen Hospital. We validated that the expression level of hsa_circ_0002238 in tumor tissue was higher than that in adjacent tissue using qRT-PCR (Figure 1D).
[image: Panel A shows a volcano plot with genes, highlighting hsa_circ_0002238. Panel B presents a heatmap of RNA expression in various tissues, differentiating between adjacent and tumor types. Panel C is a bar chart depicting the relative RNA expression of hsa_circ_0002238 across different cell lines, with HT-29, LoVo, HCT116, and SW480 showing significantly higher expression. Panel D displays a scatter plot comparing RNA expression in adjacent versus tumor tissue, showing a significant increase in tumor tissue with a p-value of 0.0032.]FIGURE 1 | The expression level of hsa_circ_0002238 in CRC. (A) The volcano plot of differentially expressed circRNA in CRC high-throughput RNA sequencing dataset. (B) The heatmap of differentially expressed circRNA in CRC high-throughput RNA sequencing dataset. (C) The expression level of hsa_circ_0002238 in normal colon cells and CRC cells detected by qRT-PCR. (D) The expression level of hsa_circ_0002238 in CRC adjacent and tumor tissue detected by qRT-PCR. * indicates p value < 0.05, ** indicates p value < 0.01, *** indicates p value < 0.001. Abbreviation used: CRC, colorectal cancer; Not Sig, no significant statistical differences; Log2(FC), Log2 (Fold Change).
In addition, according to the FISH experiment, hsa_circ_0002238 was expressed in the LoVo and HT-29 cell cytoplasm (Figure 2A). After siRNA or plasmid transfection, the expression level of hsa_circ_0002238 was determined by qRT-PCR, showing that siRNA 1 (Figure 2B) and the plasmid (Figure 2C) had good transfection efficiency.
[image: Panel A shows fluorescent images of LoVo and HT-29 cells stained with DAPI (blue) and hsa_circ_0002238 (red), with merged images highlighting cell nuclei and circRNA expression. Panel B is a bar graph comparing relative hsa_circ_0002238 expression levels in LoVo cells across different treatments, with significant differences marked. Panel C displays a similar bar graph for HT-29 cells, showing increased expression with overexpression treatment, also with significance markers.]FIGURE 2 | The verification of hsa_circ_0002238 expression level in CRC cells. (A) The location of hsa_circ_0002238 in LoVo and HT-29 cells determined with FISH experiment. (B) The expression level of hsa_circ_0002238 in LoVo cells after siRNA transfection detected by qRT-PCR. (C) The expression level of hsa_circ_0002238 in HT-29 cells after plasmid transfection detected by qRT-PCR. ns indicates no significant statistical differences, ** indicates p value < 0.01, *** indicates p value < 0.001, **** indicates p value < 0.0001. Abbreviation used: Blank, negative control group without any intervention; DAPI, 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride; FISH, fluorescence in situ hybridization; NC, negative control group of hsa_circ_0002238 overexpression using plasmid; NC siRNA, negative control group of hsa_circ_0002238 knocked down using siRNA; ns, no significant statistical differences.
3.2 The relationship between the expression level of hsa_circ_0002238 and the clinicopathological characteristics of CRC patients and its diagnostic value
In order to explore the relationship between hsa_circ_0002238 and the clinicopathological characteristics of patients as well as its diagnostic value, this study further collected the clinicopathological characteristic data of CRC patients and carried out data analysis. As can be seen from the results in Table 4, the gender of the patients was related to the expression level of hsa_circ_0002238 (p = 0.020), while there was no significant correlation between the expression level of hsa_circ_0002238 and other clinicopathological data of the patients. At the same time, box plots were drawn according to different clinical characteristics of the patients. The results showed that the expression level of hsa_circ_0002238 in the cancer tissues of female CRC patients was significantly upregulated compared with that in male patients, with a statistically significant difference (p = 0.017) (Figure 3B). However, other clinicopathological characteristics of CRC patients have no obvious relationship with the expression level of hsa_circ_0002238 (Figure 3). In addition, the value of the expression level of hsa_circ_0002238 for the diagnosis of CRC was preliminarily explored through the ROC curve (Figure 4). The results showed that the area under the ROC curve was 0.765 (95%CI: 0.618–0.913, p = 0.004), indicating that the expression level of hsa_circ_0002238 has good diagnostic accuracy. Among them, when the relative expression level of hsa_circ_0002238 was 5.836, the sensitivity (50%) and specificity (100%) for diagnosing CRC are both relatively high. Therefore, this study shows that the expression level of hsa_circ_0002238 is significantly correlated with the different genders of CRC patients, and the preliminary results indicate that hsa_circ_0002238 has a relatively high diagnostic value.
TABLE 4 | The relationship between the clinicopathological data of 20 CRC patients and the expression level of hsa_circ_0002238.
[image: Table showing clinical characteristics related to the expression levels of hsa_circ_0002238 in high and low groups, along with p-values. Categories include age, gender, primary location, histological grade, TNM stage, lymph node metastasis, distant metastasis, clinical stage, and microsatellite instability-high. Notable p-values: gender (0.020), T stage (0.211), others are not significant.][image: Bar graphs show the relative expression of hsa_circ_0000523 in various clinical parameters. Panels depict differences by age, gender, primary location, T stage, lymph node metastasis, distant metastasis, clinical stage, histological grade, and microsatellite instability-high status. Significant differences are marked, with specific p-values noted for some comparisons.]FIGURE 3 | The relationship between the clinicopathological data of 20 CRC patients and the expression level of hsa_circ_0002238. The relationship between (A) age (years), (B) gender, (C) primary location, (D) T stage (TNM stage), (E) lymph node metastasis, (F) distant metastasis, (G) clinical stage, (H) histological grade and (I) microsatellite instability-high of 20 CRC patients and the expression level of hsa_circ_0002238. ns indicates no significant statistical differences, * indicates p value < 0.05.
[image: Receiver Operating Characteristic (ROC) curve showing sensitivity versus 100% minus specificity. The curve is plotted in blue with a step-like increase and is compared against the diagonal red line representing randomness.]FIGURE 4 | The ROC curve of the expression level of hsa_circ_0002238 in 20 CRC patients. The area under the ROC curve was 0.765 (95%CI: 0.618–0.913, p = 0.004). When the relative expression level of hsa_circ_0002238 was 5.836, the sensitivity (50%) and specificity (100%) for diagnosing CRC are both relatively high. Abbreviation used: ROC, Receiver Operating Characteristic.
3.3 Hsa_circ_0002238 promotes CRC cell proliferation and suppresses apoptosis
CCK-8 assay was conducted to evaluate CRC cell proliferation ability and flow cytometry analysis was used to detect apoptosis rate of CRC cells. As depicted in Figure 5A, the proliferation of HT-29 cells increased after hsa_circ_0002238 overexpression compared to the control group and colorectal normal cells. Conversely, knockdown of hsa_circ_0002238 decreased the proliferation of LoVo cells (Figure 5B). In Figures 5C,D, overexpression of hsa_circ_0002238 reduced the apoptosis rate of HT-29 cells, while downregulation of hsa_circ_0002238 enhanced that of LoVo cells. Therefore, hsa_circ_0002238 can promote CRC cell proliferation and inhibit apoptosis.
[image: Line graphs and bar charts illustrating experiments on HT-29 and LoVo cell lines. Panels A and B show OD values over time for different conditions: NCM460, HT-29, NC, overexpression, and siRNA. Both graphs depict data trends with all groups. Panels C and D display apoptosis rates with representative flow cytometry plots. HT-29 cells show higher apoptosis in NC, lower in overexpression, while LoVo cells show significant apoptosis increase with siRNA treatment. Bar charts quantify these differences. Statistical significance is indicated by asterisks.]FIGURE 5 | Hsa_circ_0002238 promotes CRC cell proliferation and suppresses apoptosis. (A) The proliferative capacity of HT-29 cells after hsa_circ_0002238 overexpression detected by CCK-8 assay. (B) The proliferative capacity of LoVo cells after hsa_circ_0002238 knockdown detected by CCK-8 assay. (C) The apoptosis rate of HT-29 cells after hsa_circ_0002238 overexpression detected by flow cytometry analysis. (D) The apoptosis rate of LoVo cells after hsa_circ_0002238 knockdown detected by flow cytometry analysis. * indicates p value < 0.05, ** indicates p value < 0.01, *** indicates p value < 0.001. Abbreviations used: NC, negative control group of hsa_circ_0002238 overexpression using plasmid; NC siRNA, negative control group of hsa_circ_0002238 knocked down using siRNA.
3.4 Hsa_circ_0002238 promotes CRC cell migration and invasion
Wound healing and transwell assay were utilized to assess CRC cell migration and invasion ability. In the wound healing assay, more HT-29 cells with hsa_circ_0002238 overexpression migrated at 24 h and 48 h (Figure 6A), whereas fewer LoVo cells with hsa_circ_0002238 downregulation migrated at 24 h and 48 h (Figure 6B). Similarly, compared with the control group, the invasion ability of the HT-29 cell line increased after hsa_circ_0002238 overexpression through plasmid transfection, while the invasion capability of the LoVo cell line decreased after hsa_circ_0002238 knockdown (Figure 6C). Thus, hsa_circ_0002238 can promote CRC cell migration and invasion.
[image: Panel A shows cell migration assays for HT-29 cells with overexpression, compared at 0, 24, and 48 hours. A bar graph indicates increased migration with overexpression. Panel B displays LoVo cells with NC siRNA and siRNA at the same time intervals, showing higher migration with siRNA. Panel C presents stained cell images for HT-29 and LoVo, with accompanying bar graphs illustrating the percentage of migrated cells, highlighting increased migration with overexpression and siRNA.]FIGURE 6 | Hsa_circ_0002238 promotes CRC cell migration and invasion. (A) The migratory capacity of HT-29 cells after hsa_circ_0002238 overexpression determined with wound healing assays. (B) The migratory capacity of LoVo cells after hsa_circ_0002238 knockdown determined with wound healing assays. (C) The invasive ability of HT-29 cells after hsa_circ_0002238 overexpression and LoVo cells after hsa_circ_0002238 knockdown determined with transwell assays. ns indicates no significant statistical differences,* indicates p value < 0.05, ** indicates p value < 0.01, *** indicates p value < 0.001. Abbreviations used: NC, negative control group of hsa_circ_0002238 overexpression using plasmid; NC siRNA, negative control group of hsa_circ_0002238 knocked down via siRNA.
3.5 Knockdown of hsa_circ_0002238 inhibits CRC tumor growth in vivo
To investigate the effect of hsa_circ_0002238 on CRC tumor growth in vivo, HT-29 cell lines stably transfected with sh-NC or sh-hsa_circ_0002238 were constructed. Figure 7A indicated that compared with the sh-NC group, the CRC tumor growth in the sh-hsa_circ_0002238 group was significantly reduced. The tumor volume was measured at each time point and conducted statistical analysis. The results showed that the tumor volume of the sh-hsa_circ_0002238 group increased more slowly than that of the control group on days 6, 9, 12, 15, 18, and 21 (Figure 7B). In addition, the tumor weight of CRC in mice on day 21 was assessed, revealing a significant reduction in the sh-hsa_circ_0002238 group compared to the sh-NC group (Figure 7C). Consequently, knockdown of hsa_circ_0002238 resulted in a suppression of CRC tumor growth in mice.
[image: Panel A shows images of tumor samples, with two groups labeled "sh-NC" and "sh-hsa_circ_0002238". Panel B is a line graph comparing tumor volume over 21 days between the two groups, showing sh-NC with larger growth. Panel C is a bar graph comparing tumor weight, with sh-NC having significantly higher weight than sh-hsa_circ_0002238. Asterisks indicate statistical significance.]FIGURE 7 | Knockdown of hsa_circ_0002238 inhibits CRC tumor growth in vivo. (A) Representative photographs of CRC tumor tissues of mice in each group. (B) The volume of mice in each group at different time points after inoculation with CRC tumors. (C) The weight of CRC tumors of mice in each group. ns indicates no significant statistical differences, ** indicates p value < 0.01, *** indicates p value < 0.001. Abbreviations used: CRC, colorectal cancer; sh-hsa_circ_0002238, group of hsa_circ_0002238 knocked down via shRNA. sh-NC, negative control group of hsa_circ_0002238 knocked down via shRNA.
3.6 Hsa_circ_0002238 promotes epithelial-mesenchymal transition (EMT), PI3K/AKT pathway and suppresses apoptosis in CRC cells
The EMT process can stimulate the transformation of epithelial cells into fibroblasts or mesenchymal cells with deficient cell polarity and cytoskeletal rearrangement, which regulates cancer tumorigenesis, metastasis, immunosurveillance, drug resistance, etc (Cao, 2024). E-cadherin is epithelial cell marker (Hui San and Ching Ngai, 2024), while N-cadherin and vimentin are common mesenchymal cell markers (Wang X. et al., 2024). β-catenin possesses the ability to form a complex with E-cadherin, thereby enhancing the intercellular connections and fostering cellular cohesion (Hülsken et al., 1994). To investigate whether hsa_circ_0002238 regulates CRC development through EMT process, specific protein were analyzed via Western blot. In Figures 8, 9, the expression level of E-cadherin in HT-29 cells with hsa_circ_0002238 overexpression was low, while it was high in LoVo cells with hsa_circ_0002238 knockdown. Conversely, N-cadherin, vimentin and β-catenin were upregulated in HT-29 cells with hsa_circ_0002238 overexpression and downregulated in LoVo cells with hsa_circ_0002238 knockdown compared to the control groups, respectively. These findings suggest that hsa_circ_0002238 promotes EMT process in CRC cells. Furthermore, p-AKT and p-PI3K was highly expressed in HT-29 cells with hsa_circ_0002238 overexpression, whereas it decreased in LoVo cells with hsa_circ_0002238 knockdown, suggesting that the expression level of hsa_circ_0002238 may be related to the PI3K/AKT signaling pathway and enhance CRC growth. The caspase family is a group of highly efficient and specific proteases that mediate the hydrolysis of dying cells, and the bcl-2 family mainly plays an inhibitory role in apoptosis (Zhang X. et al., 2024). In Figures 8, 9, it is clear that cleaved caspase 3 and bcl-2 was decreased, while Bax was highly expressed in HT-29 cells with hsa_circ_0002238 overexpression, indicating that hsa_circ_0002238 enhanced the apoptosis of CRC cells.
[image: Western blot analysis showing protein expression levels in different cell samples: NCM460, HT-29, NC, Overexpression, LoVo, NC siRNA, and siRNA. Proteins analyzed include E-cadherin, N-cadherin, Vimentin, β-catenin, AKT, p-AKT, full-length and cleaved caspase 3, bcl-2, GAPDH, Bax, PI3K, and p-PI3K with their respective molecular weights noted on the right. GAPDH is used as a loading control.]FIGURE 8 | Western blot analysis of the expression level of epithelial-mesenchymal transformation-related markers, PI3K/AKT signaling pathway-related markers and apoptosis-related markers after hsa_circ_0002238 abnormal expression in CRC cells.
[image: Twelve bar graphs display relative expression levels of various proteins across different samples: E-cadherin, N-cadherin, Vimentin, β-catenin, AKT, p-AKT, full-length caspase 3, cleaved caspase 3, bcl-2, Bax, PI3K, and p-PI3K. Each graph compares six conditions: NC siRNA, PTEN siRNA, CHIR99021, KU63794, Lin 28, and SH RNA, indicated by distinct colors. Specific expression levels vary per protein and condition, providing insights into molecular changes.]FIGURE 9 | Quantitative analysis results of Western blot for the expression level of epithelial-mesenchymal transition-related markers, PI3K/AKT signaling pathway-related markers and apoptosis-related markers after hsa_circ_0002238 abnormal expression in CRC cells.
4 DISCUSSION
CRC is one of the cancers with the highest morbidity and mortality rates globally (Bray et al., 2024). Early detection and accurate diagnosis represent pivotal strategies in the management of CRC, significantly enhancing the survival rates of affected patients. The advent of carcinoembryonic antigen (CEA) testing, alongside the widespread adoption of colorectal endoscopy in clinical practice, has indeed improved early diagnostic capabilities for CRC to some extent. However, numerous limitations persist. For instance, while CEA exhibits a specificity rate of 91.1% in CRC cases, its sensitivity remains disappointingly low at merely 54.7% (Sun and Long, 2024). Furthermore, many individuals do not undergo regular colorectal endoscopies due to various factors, which makes it difficult to identify CRC at an early stage (Mannucci and Goel, 2024). Consequently, there is an urgent need to discover more molecular markers that can facilitate earlier diagnoses of CRC. Advances in molecular biology technologies have opened new avenues for identifying additional biomarkers. For instance, membrane palmitoylated protein has emerged as an independent prognostic risk factor for CRC. Intriguingly, its expression is inversely regulated by DNA methylation processes (Yang et al., 2024). In addition, miRNAs, known for their ease of detection and regulatory roles throughout all stages of tumor progression, hold significant promise for predicting patient prognosis during therapeutic interventions (Rac, 2024). In recent years, research into circRNAs as potential molecular markers for early cancer diagnosis has gained its popularity. For example, circ_0006949 identified in sputum demonstrates higher expression levels in non-small cell lung cancer and correlates with poor patient prognosis (Bai et al., 2024). Similarly, hsa_circRNA_000166 shows a positive correlation with tumor size, TNM staging, histological grading, and lymph node metastasis among breast cancer patients while exhibiting negative correlations with both progression-free survival and overall survival after surgery (Wang M. H. et al., 2024). Thus, exsiting implications suggest that circRNA possesses substantial potential as a biomarker within the realms of malignant tumor diagnosis and treatment strategies. Recently, the research of circRNA in CRC has also gradually increased (Zhou et al., 2024). Therefore, we conducted functional phenotype experiments of circRNA in CRC.
In this study, we identified a novel circRNA, hsa_circ_0002238, which exhibits significantly higher expression levels in CRC compared to adjacent non-cancerous tissue. Furthermore, hsa_circ_0002238 enhances proliferation, migration, and invasion in CRC cells. Although hsa_circ_0002238 has rarely reported in cancer, it has been found that other circRNAs affect the differentiation, invasion and metastasis of CRC. Previous research indicated that circ_0038718 was overexpressed in CRC tissue, facilitating CRC proliferation and migration (Li et al., 2024). Interestingly, silencing hsa_circ_0004194 led to the decrease of CRC tumor growth, tumor volume and liver metastasis, which inhibited CRC progression (Lin et al., 2024). Therefore, our research shows that hsa_circ_0002238 plays an important role in the proliferation, migration and invasion of CRC cells. In our study, flow cytometry analysis also revealed that the apoptosis rate was reduced after hsa_circ_0002238 overexpression. Additionally, with high expression of hsa_circ_0002238, there was a notable decrease in caspase 3, bcl-2 and an increase in Bax expression determined with Western blot, suggesting that CRC is inhibited from undergoing apoptosis. Similar circRNA findings can be discovered in the article published by Li et al., suggesting that circRNA CDR1as decreased apoptosis rate of CRC via regulating Bax, Bcl-2, caspase 3 and caspase 9 proteins (Li et al., 2023). In addition, another study also found that circRNA can cause CRC apoptosis (Yin et al., 2024). Therefore, our study confirmed that hsa_circ_0002238 is also one of the key molecules to regulate CRC apoptosis. Furthermore, our results suggest that an EMT process occurs within CRC cells exhibiting high levels of hsa_circ_0002238 expression. In cells exhibiting high expression levels of hsa_circ_0002238, a decrease in E-cadherin expression was observed, while the expressions of N-cadherin, vimentin and β-catenin were found to be elevated. Sun et al. also found that circ_0114866 knockdown upregulated MYL6B expression by sponging miR-653-5p, and inhibited the progression of non-small cell lung cancer and EMT process (Sun et al., 2024). Another study reported that circ_0006168 modified by N6-methyladenosine promoted EMT in esophageal squamous cell carcinoma through miR-384/STAT3/Snail axis (Wu et al., 2024). Therefore, hsa_circ_0002238 may promote EMT process in CRC. Concurrently, the expression of p-AKT and p-PI3K also increased alongside the heightened levels of hsa_circ_0002238. Recent study have proposed that circKDM1A activates the AKT signaling pathway by up-regulating PDK1 to promote the progression of CRC (Wu et al., 2024). It was reported that circRNA MALAT1 promoted the progression of intrahepatic cholangiocarcinoma by competing with miR-512-5p to bind to VCAM1, leading to upregulation of VCAM1 transcription and activation of PI3K/AKT signaling pathway (Zhang M. et al., 2024). Thus, these results indicates that alterations in hsa_circ_0002238 expression may also influence the PI3K/AKT signaling pathway. In conclusion, our findings show that hsa_circ_0002238 promotes proliferation, migration, invasion and inhibits apoptosis of CRC cells, as well as activates EMT process and PI3K/AKT signaling pathway. This study shows that the expression level of hsa_circ_0002238 is significantly associated with patient gender and its potential as a diagnostic biomarker for CRC, requiring further investigation to confirm its clinical utility and explore its molecular mechanisms.
However, this study has several limitations. Firstly, we only investigated the functional phenotypes of hsa_circ_0002238 in CRC, and its specific molecular mechanism remains to be elucidated. Secondly, we used a limited number of CRC cases, which may exist research bias. Thirdly, we did not evaluate the relationship between hsa_circ_0002238 expression level and prognosis of CRC patients. Therefore, future research will focus on further elucidating the specific molecular mechanisms by which hsa_circ_0002238 influences CRC proliferation, migration, invasion, apoptosis, EMT process and PI3K/AKT signaling pathway, which includes exploring aspects such as protein modification and miRNA sponging. Additionally, we will expand our sample size for CRC cases to validate the potential role of hsa_circ_0002238 in diagnosis and prognosis of CRC more comprehensively.
5 CONCLUSION
In summary, hsa_circ_0002238 is highly expressed in CRC cells and CRC tissue. We also demonstrate that hsa_circ_0002238 promotes proliferation, migration, invasion and inhibits apoptosis, as well as facilitates EMT process and PI3K/AKT pathways in CRC cells, suggesting its potential as a diagnostic biomarker for CRC simultaneously. Therefore, hsa_circ_0002238 plays a crucial role in the occurrence and development of CRC. This provides a theoretical foundation for future research on the specific molecular mechanism of hsa_circ_0002238 in CRC and the significance of hsa_circ_0002238 in diagnosis and prognosis of CRC.
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Gene Sequence (5

hsa_circ_0002238 Forward Primer GCTTAGAGTGGACATCAGTG

Reverse Primer AAGCCATCGGTGTTTGTTTC

GAPDH Forward Primer TCAAGAAGGTGGTGAAGCAGG

Reverse Primer TCAAAGGTGGAGGAGTGGGT
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si-hsa_circ_0002238-2 ‘ 5'-GACAUCAGUGAGAAAGAUCTT-3' ‘

si-hsa_circ_0002238-3 ‘ 5'-CAUCAGUGAGAAAGAUCAGTT-3' ‘
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Age (years) 260 12
<60 8
Gender Male 12
Female 8
Primary location Right-sided tumor 9
Left-sided tumor 9
Rectal cancer 2
Histological Grade Welldifferentited | 2
Moderately 18
T stage (TNM stage) T12 3
[ T34 | 17
Lymph node metastasis No 7 1
Yes 9
Distant metastasis No 18
Yes 2
Clinical stage [8il 9
v 1
Microsatellite instability-high Negative 17

Positive 3
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Clinical characteristics Expression level of hsa_circ_0002238

High (number) Low (number)

Age (years) 260 4 8 0.170
<60 6 2

Gender Male 3 9 [ 0020
Female 7 1

Primary location Right-sided tumor 4 5 0.895
Left-sided tumor 5 4
Rectal cancer 1 1

Histological grade Well-differentiated 1 1 0.999
Moderately 9 9

T stage (TNM stage) ‘ T12 3 0 0211
| T34 7 10

Lymph node metastasis No 5 6 0.999
Yes 5 4

Distant metastasis No 9 9 0.999
Yes 1 1

Clinical stage [ 811 5 4 0.999
-V 5 6

Microsatellite instability-high No | 8 9 0.999
| Yes 2 1
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