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Editorial on the Research Topic

Advances in computer vision: from deep learning models to

practical applications

Computer vision has emerged as one of the most transformative areas of artificial

intelligence, with deep learning models driving unprecedented advancements in both

theoretical understanding and practical applications. Over the past decade, the rapid

development of deep learning techniques has enabled machines to perform tasks such

as image recognition, object detection, and video analysis with remarkable accuracy and

efficiency. However, as the field continues to evolve, there is a growing need to bridge

the gap between theoretical models and real-world applications to ensure that these

technologies are powerful but also practical, efficient, and scalable. This Research Topic,

“Advances in computer vision: from deep learning models to practical applications,” is

dedicated to exploring the latest innovations in computer vision that are addressing these

challenges and pushing the boundaries of what is achievable.

The articles in this Research Topic represent a diverse range of research directions

and applications, reflecting the interdisciplinary nature of computer vision. From efficient

single-image super-resolution techniques to lightweight network architectures for traffic

sign recognition, and frommedical image processing to action recognition in autonomous

systems, the contributions highlight the versatility, and potential of computer vision

technologies. Below, we provide a brief overview of the accepted articles, emphasizing their

key contributions and practical implications.

E�cient and lightweight deep learning models for
real-world applications

One of the central themes of this Research Topic is the development of efficient

and lightweight deep learning models that can operate effectively in resource-constrained

environments. An et al. presented a lightweight network architecture based on an

enhanced LeNet-5 model for traffic sign recognition. By optimizing the network structure
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and reducing the number of parameters, they achieved state-of-the-

art performance on standard benchmarks, making their solution

suitable for deployment in real-world autonomous driving systems.

Qu and Ke proposed an asymmetric large kernel

distillation network for single image super-resolution, which

leveraged asymmetric kernels to achieve high computational

efficiency while maintaining superior performance in image

restoration. Their approach demonstrated the importance

of balancing model complexity and practical applicability,

particularly in scenarios where computational resources

are limited.

Xie et al. proposed an extremely lightweight pathological

myopia instance segmentation method (SMLS-YOLO) that

combined attention mechanisms with efficient network design to

achieve real-time performance. Their approach was particularly

valuable for applications in ophthalmology, where rapid and

accurate segmentation is critical for diagnosing and monitoring

conditions such as pathological myopia. The integration of

attention mechanisms into lightweight models highlighted the

importance of optimizing both computational efficiency and

accuracy to ensure that these technologies can be deployed in

real-world settings.

Deep learning in medical image
processing

Medical image processing is another area where deep

learning has shown tremendous potential. Li L. et al. explored

the use of Swin Transformer-based automatic delineation of the

hippocampus in MRI scans for hippocampus-sparing whole-

brain radiotherapy. Their work showcased the effectiveness of

transformer-based architectures in medical image segmentation,

providing a more accurate and automated approach to

treatment planning.

Tian and Zhang presented a GAN-guided nuance perceptual

attention network (G2NPAN) formultimodalmedical fusion image

quality assessment. Their work combined generative adversarial

networks (GANs) with attention mechanisms to evaluate the

quality of fused medical images, ensuring that the outputs were

both visually appealing and diagnostically useful. This approach

highlighted the importance of integrating advanced deep learning

techniques with practical applications in healthcare, where image

quality and interpretability are critical.

Zhou et al. focused on lymph node segmentation in lung cancer

diagnosis, introducing a dual-stream feature-fusion attention U-

Net (DFA-UNet). By incorporating attention mechanisms into

the U-Net architecture, they achieved improved segmentation

accuracy and computational efficiency, which are essential

for clinical applications where time and resource constraints

are significant.

Gu et al. proposed a motion-sensitive network for action

recognition in autonomous systems, leveraging insights from

motion perception to improve decision-making in real-time

control scenarios. Their work underscored the importance

of designing models that can efficiently process dynamic

visual inputs, which have direct applications in robotics and

autonomous vehicles.

Practical applications and beyond

The practical applications of computer vision are vast

and varied, ranging from culture to education to security

systems. Ramesh et al. presented a hybrid manifold smoothing

and label propagation technique for handwritten Kannada

character recognition, demonstrating how advanced deep

learning methods can be adapted for tasks involving handwritten

text. Their work had implications for document analysis,

OCR systems, and cultural heritage preservation, where

handwritten text recognition remains a challenging yet

important task.

Li X. et al. proposed a parameter-dense three-dimensional

convolution residual network for classroom teaching

applications. By incorporating dense 3D convolutions, they

demonstrated improved performance in handling complex,

multidimensional data.

The work by Wang on attention-enhanced computation

in multimedia affective computing explored how attention

mechanisms can be used to evaluate and analyze visual

perception, particularly in the context of affective

computing. By integrating attention-based models, Wang

demonstrated how visual perception can be quantified and

optimized for applications such as emotion recognition and

human-computer interaction.

Ma et al. proposed a study on face anti-spoofing based

on pseudo-negative feature generation, addressing the critical

issue of ensuring security and reliability in facial recognition

systems. By generating pseudo-negative features to enhance

robustness against spoofing attacks, their work contributed to

the development of more secure and trustworthy biometric

systems. This is particularly relevant in practical applications

where facial recognition is increasingly used for authentication and

access control.

This Research Topic, “Advances in computer vision: from

deep learning models to practical applications,” reflects the

current state of the field and its trajectory toward solving

real-world problems. Collectively, the articles demonstrate

how deep learning models can be optimized for efficiency,

scalability, and practicality while maintaining high performance

in diverse applications. From lightweight architectures for traffic

sign recognition and super-resolution imaging to advanced

attention mechanisms for medical image segmentation and action

recognition, these contributions highlight the interdisciplinary

nature of computer vision and its potential to revolutionize

diverse domains.

This Research Topic of articles inspires further research and

collaboration between researchers, practitioners, and industry. The

integration of deep learning with practical applications not only

enhances the functionality of computer vision systems but also

ensures their relevance and usability in addressing real-world

challenges. As the field continues to grow, we anticipate even more

exciting developments that will bridge the gap between theoretical
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models and practical deployment, paving the way for smarter, more

efficient, and more reliable vision technologies.

Finally, we would like to extend our gratitude to all the

authors for their insightful contributions and to the reviewers

for their valuable feedback. This Research Topic will serve as a

valuable resource for researchers and practitioners alike, fostering

innovation and advancing the field of computer vision toward

practical and impactful applications.
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Motion sensitive network for
action recognition in control and
decision-making of autonomous
systems

Jialiang Gu*, Yang Yi and Qiang Li

Computer Science and Engineering, Sun Yat-sen University, Guangdong, China

Spatial-temporal modeling is crucial for action recognition in videos within the

field of artificial intelligence. However, robustly extracting motion information

remains a primary challenge due to temporal deformations of appearances

and variations in motion frequencies between di�erent actions. In order to

address these issues, we propose an innovative and e�ective method called the

Motion Sensitive Network (MSN), incorporating the theories of artificial neural

networks and key concepts of autonomous systemcontrol and decision-making.

Specifically, we employ an approach known as Spatial-Temporal Pyramid

Motion Extraction (STP-ME) module, adjusting convolution kernel sizes and

time intervals synchronously to gather motion information at di�erent temporal

scales, aligning with the learning and prediction characteristics of artificial

neural networks. Additionally, we introduce a new module called Variable Scale

Motion Excitation (DS-ME), utilizing a di�erential model to capture motion

information in resonance with the flexibility of autonomous system control.

Particularly, we employ a multi-scale deformable convolutional network to alter

the motion scale of the target object before computing temporal di�erences

across consecutive frames, providing theoretical support for the flexibility of

autonomous systems. Temporal modeling is a crucial step in understanding

environmental changes and actions within autonomous systems, and MSN,

by integrating the advantages of Artificial Neural Networks (ANN) in this task,

provides an e�ective framework for the future utilization of artificial neural

networks in autonomous systems. We evaluate our proposed method on three

challenging action recognition datasets (Kinetics-400, Something-Something

V1, and Something-Something V2). The results indicate an improvement in

accuracy ranging from 1.1% to 2.2% on the test set. When compared with

state-of-the-art (SOTA) methods, the proposed approach achieves a maximum

performance of 89.90%. In ablation experiments, the performance gain of this

module also shows an increase ranging from 2% to 5.3%. The introduced

Motion Sensitive Network (MSN) demonstrates significant potential in various

challenging scenarios, providing an initial exploration into integrating artificial

neural networks into the domain of autonomous systems.

KEYWORDS

deep learning, action recognition, computer vision, visual perception, motion

information, spatial-temporal feature, practical application
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1 Introduction

With the rapid development of computer vision technology,

action recognition in videos (Sun et al., 2022) has become a

crucial challenge, finding applications in areas such as autonomous

driving and virtual reality. In this context, video action recognition

is not just an academic research field but a key component for

addressing real-world problems and enhancing the intelligence

of AI systems. Recently, action recognition methods based on

convolutional neural networks (CNNs) have gained significant

attention. Among them, 3D convolutional networks are renowned

for directly extracting spatiotemporal features from videos, but they

suffer from high computational costs, limiting their efficiency for

human action recognition. On the other hand, 2D convolutional

networks (Yao et al., 2022), especially two-stream networks, extract

motion information by capturing multimodal cues. However,

fusing multimodal information still poses challenges, and the

pre-computation of optical flow is computationally expensive

(Alayrac et al., 2022; Islam et al., 2023). In recent years, successful

approaches have emerged by extracting motion features from RGB

using embeddable modules within 2D convolutional networks,

achieving satisfactory performance at a lower cost (Wu et al., 2020).

Although these modules capture some motion features, they may

overlook spatial scale variations over time and inconsistent action

frequencies across different actions. This motivates us to propose a

novel approach aimed at handling spatiotemporal features in video

action recognition more comprehensively and efficiently.

This paper explores the utilization of artificial neural networks

(ANNs) in the context of spatial and temporal modeling,

contributing to the theoretical foundations and practical

applications of ANNs in autonomous system control and decision-

making. However, applications in the field of ubiquitous Human

Activity Recognition (HAR) have been relatively limited. To

address the issue of information loss during channel compression,

researchers have proposed a multi-frequency channel attention

framework based on Discrete Cosine Transform (DCT) to better

compress channels and utilize other frequency components (Xu

et al., 2023). On the other hand, Federated Learning (FL) shows

potential in HAR tasks, but the non-IID nature of sensor data poses

challenges for traditional FL methods. To tackle this, researchers

have introduced the ProtoHAR framework, which leverages global

prototypes and personalized training to address representation

and classifier issues in heterogeneous FL environments (Cheng

et al., 2023). Additionally, wearable sensor-based HAR has gained

significant attention, where the phenomenon of channel folding

in existing methods impairs model generalization. Researchers

have proposed a channel equalization method to balance feature

representation by reactivating suppressed channels (Huang et al.,

2022). These studies provide important references and guidance

for the development and practical applications in the HAR field.

In the realm of video-based action recognition (Zheng et al.,

2022a), complexities arise from the need to handle intricate data

distributions and extract both spatial and temporal information

concurrently. Distinguishing diverse action classes, addressing

scale changes, and accommodating inconsistent action frequency

require sophisticated spatial and temporal modeling (Cob-Parro

et al., 2024). For instance, discerning actions like "Running" from

“Walking” involves not only recognizing visual tempo differences

but also understanding spatial scale variations. Similarly, “Brush

Teeth” and “Apply Eye Makeup” have great differences in spatial

scale despite sharing high similarities in the temporal dimension

(Kulsoom et al., 2022). Learning the intention of human action

from such data in videos poses a great challenge (Zheng et al.,

2024). In certain scenarios, fine-grained recognition of actions

becomes crucial, requiring more detailed spatial and temporal

modeling. Learning the intent behind human behavior from

such data in videos poses a significant challenge. Additionally,

there are substantial challenges in the fusion of multimodal

information, especially when it involves additional modalities such

as optical flow. Existing methods face difficulties in effectively

integrating different modalities, and the computational cost of

pre-computing modalities like optical flow remains a bottleneck.

Similarly, modeling actions in long-term videos often encounters

challenges related to memory. Models may struggle to capture the

evolution of actions over long time spans and maintain consistent

understanding throughout the entire sequence. Imbalance and

scarcity of samples across different action categories in the

dataset present another problem, as the models may exhibit

bias when learning minority class actions, thereby affecting

overall performance. In some application scenarios, real-time

requirements for action recognition models are high. For example,

in autonomous driving systems, achieving high accuracy while

ensuring fast inference speed to adapt to real-time environments is

crucial (Lin and Xu, 2023). Meanwhile, action recognition models

are susceptible to adversarial attacks, where subtle perturbations to

the model inputs can lead to misclassification. Improving model

adversarial robustness and resilience remains a challenge (Chen

et al., 2019).

In this paper, we propose a new approach called Motion

Sensitive Network (MSN) that addresses the challenge of efficiently

recognizing complex actions with varying spatial scales and visual

tempos. To achieve this, we introduce two new modules: the

Temporal Spatial Pyramid Motion Extraction (STP-ME) module

and the Deformable Scales Motion Excitation (DS-ME) module.

The STP-ME module extracts implicit motion information by

taking consecutive frames as input and using feature difference to

focus on the position and tempo of the action occurring between

frames. This information is incorporated into the single RGB frame

(Liu et al., 2021), allowing for better alignment of the temporal

and spatial dimensions at different scales. The DS-ME module

addresses irregular deformation of the action subject in space and

long-range feature alignment issues. It uses multiscale deformable

convolutions to model the complete action region (He and Tang,

2023), allowing for more accurate representation of different

motion splits. Additionally, to address numerical problems with

negative values, we use the absolute value of the feature. Overall,

our framework can be broken down into three steps: extracting

effective motion information in the early stage, giving higher

weight to motion features in the later stage, and doing numerical

processing to avoid harmful results during processing (Luo, 2023).

Our proposed MSN method effectively handles the challenges of

action recognition, improving on existing 2D and 3D CNN-based

methods. By leveraging ANNs in spatial and temporal modeling,

this work contributes to enhancing the theoretical foundations and
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practical applications of ANNs in autonomous system control and

decision-making.

The contributions of this paper can be summarized in the

following three aspects:

(1) The paper introduces a novel approach known as theMotion

Sensitive Network (MSN) for action recognition. This method

is characterized by its simplicity and effectiveness in accurately

estimating scale variations, thereby enhancing overall network

performance in action recognition tasks.

(2) The paper proposes a unique Time-Space Pyramid Motion

Extraction (STP-ME) module. This module leverages a

pyramid structure to extract multi-scale temporal features,

thereby fortifying the model’s robustness across diverse

action scenarios. The STP-ME module is designed to address

challenges associated with scale variations and capture motion

information across different time scales.

(3) The paper introduces the Variable Scale Motion Excitation

(DS-ME) module as an innovative solution to challenges

posed by unique and irregular motion patterns in dynamic

scenes. This module utilizes deformable scale convolutions to

adaptively modify the motion scale of target objects before

computing temporal differences on consecutive frames. This

approach aims to enhance the model’s ability to handle objects

with varying scales during motion.

The organizational structure of this paper is as follows: The

introduction (Section 1) sets the stage by presenting the

background, significance, and motivation for the research,

highlighting challenges in existing action recognition methods,

and outlining the contributions of the proposed Motion Sensitive

Network (MSN). Section 2, “Relevant Work,” conducts a

comprehensive review of existing literature, emphasizing prior

research onmotion sensitivity in action recognition and identifying

gaps in current approaches. The third section, “Method,” provides

a detailed exposition of the MSN architecture, elucidating its

design principles and showcasing its motion-sensitive modules.

Moving on to Section 4, “Experiment,” the paper delves into

the experimental setup, detailing the datasets used, metrics

employed for performance assessment, and the methodology for

training MSN, while Section 5, “Discussion,” critically analyzes

experimental results. This section interprets findings, assesses

MSN’s effectiveness in addressing motion sensitivity, and discusses

potential applications and limitations. Finally, in Section 6,

“Conclusion,” the paper synthesizes key discoveries, underscores

the contributions made by MSN, discusses broader implications

for the field of action recognition, and proposes avenues for

future research. This organized structure guides readers through a

coherent narrative (Han et al., 2022), facilitating a comprehensive

understanding of the research from problem introduction to

proposed solution, experimental validation, discussion, and

ultimate conclusion.

2 Related work

The realm of action recognition within computer vision has

undergone significant exploration (Zhang et al., 2022; Dai et al.,

2023; Wu et al., 2023), with convolutional neural networks (CNNs)

at the forefront of innovation (Xu et al., 2022). Two major

categories, two-stream CNNs and 3D CNNs, have shaped the

landscape. Next, we will delve into the theoretical foundations and

practical applications of artificial neural networks in the field of

autonomous system control and decision-making.

Simonyan and Zisserman (2014) proposed a multi-stream

network for action recognition, consisting of two separate

branches: a temporal convolutional network and a spatial

convolutional network. Both branches have the same architecture,

with the temporal stream learning motion features from stacked

optical flows and the spatial stream extracting spatial features

from still images (Wang et al., 2020). The two streams are

then fused to obtain the final classification result. However, this

approach has some drawbacks. Firstly, the computational cost

is relatively high, particularly due to the complexity of optical

flow computation. The stacking of optical flows may result in

expensive computational overhead, especially when dealing with

long video sequences or high frame-rate videos. Secondly, the

method’s reliance on optical flow makes it sensitive to video noise

and motion blur, impacting the reliability of accurately extracting

motion features. Additionally, the dependence on optical flow

introduces sensitivity to video noise and motion blur, affecting the

reliability of accurately extracting motion features. Moreover, the

challenge of modal fusion is also a concern, as effective fusion

requires careful design to ensure that features extracted from

both streams collaborate without interference. Lastly, the method

may have limitations in modeling spatiotemporal relationships,

especially in complex motion scenarios, such as non-rigid motion

or rapidly changing movements. This may result in constraints

on the comprehensive capture of complex spatiotemporal dynamic

relationships. Wang et al. (2016) proposed a Temporal Segment

Network (TSN) based on the two-stream CNN, which utilizes

a sparse time sampling strategy to randomly extract video

fragments after time-domain segmentation. TSN addresses the

insufficient modeling ability of long-range temporal structure

in two-stream CNNs. However, this approach may have some

potential limitations. Sparse temporal sampling strategies may

result in the loss of crucial temporal information during the

model training process, especially for modeling long-duration

actions, which may not be adequately captured. Furthermore,

this randomness in sampling may hinder the model’s ability to

effectively capture critical temporal patterns for specific types of

actions, thereby impacting its performance. Building on TSN,

Zhou et al. (2018) attempted to extract connections between video

frames of different scales by convolving video frames of different

lengths, performing multi-scale feature fusion, and obtaining

behavior recognition results. However, applying convolution to

video frames of different lengths may increase the computational

complexity of the model in handling information at different

scales, thereby impacting the training and inference efficiency

of the model. He et al. (2019) proposed a local and global

module to hierarchically model temporal information based on

action category granularity, while Li et al. (2020) proposed motion

excitation and multiple temporal aggregation modules to encode

short- and long-range motion effectively and efficiently, integrated

into standard ResNet blocks for temporal modeling. Wang et al.

(2021) focused on capturing multi-scale temporal information
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for efficient action recognition, presenting a video-level motion

modeling framework with a proposed temporal difference module

for capturing short- and long-term temporal structure. However,

these methods may share some potential common drawbacks.

Firstly, approaches such as local and global modules based on

action category granularity, hierarchical networks from coarse to

fine, motion excitation, multiple temporal aggregation modules,

video-level motion modeling frameworks, and temporal offset

modules may require more complex network structures and

additional parameters to achieve layered modeling of temporal

information. This may lead to increased computational complexity,

heightened training difficulty, and an increased demand for

hardware resources. Secondly, these methods might necessitate

carefully designed hyperparameters and model structures to

adapt to different time scales and action categories. In practical

applications, this could require extensive parameter tuning and

model optimization, raising the method’s usage threshold and

operational difficulty. Additionally, these methods may encounter

memory issues when dealing with long temporal video sequences

in temporal modeling. The model might struggle to effectively

capture the evolution of actions over extended time ranges and

maintain consistent understanding throughout the entire sequence.

When handling long temporal videos, these methods might need

additional mechanisms to ensure the model’s effectiveness and

stability.

Another type of method attempts to learn spatio-temporal

features directly from RGB frames using 3D CNNs. The 3D

convolutional network for action recognition was introduced

by Yang et al. (2019), which uses a 3D convolution kernel to

perform 3D convolution on the input and directly extracts spatio-

temporal features along the spatial and temporal dimensions of the

video. Tran et al. (2018) constructed a C3D network framework

using 3D convolution and 3D pooling operations. Carreira and

Zisserman (2017) combined a two-stream network and a 3D CNN

to propose an I3D network framework based on the inception-

V1 model, using RGB and optical flow as inputs. Diba et al.

(2018) and others improved the I3D by using different scales

of convolution to build the TTL layer and using 3D-DenseNet

as the basic network to build the T3D network framework. Qiu

et al. (2019) and others proposed a P3D network, which uses 133

convolution and 311 convolutions instead of 333 convolutions to

greatly reduce the amount of computation. Nevertheless, directly

processing videos using 3D convolutional networks may result

in a larger number of parameters along the temporal dimension,

increasing the risk of overfitting. Tran D proposed a similar

structure called R(2+1)D. Our proposed method is inspired by

TDN and TEA with short- and long-range temporal modeling,

taking several continuous frames as input. Our work differs from

previous works in that we employ a strategy for long- and short-

range temporal modeling to better extract motion information.

Although our approach shares similarities with these works, we

focus on addressing the problem of spatio-temporal inconsistency

(Zheng et al., 2022b). In addition, in the field of autonomous

driving, integrating MSN into autonomous systems offers potential

advantages for enhancing the environment perception and decision

support of the vehicle system. By performing real-time analysis

of video and sensor data, MSN can perceive the surrounding

environment, accurately recognize the movements of other

vehicles, pedestrians, and obstacles, thereby providing autonomous

vehicles with richer environmental information. This enables

vehicles to more accurately predict the behavior of other traffic

participants, thereby improving overall driving safety. However,

this application also faces some challenges, especially in terms

of real-time requirements, particularly in autonomous driving

scenarios that require immediate decision-making. Accurate and

efficient action recognition is crucial for rapidly changing traffic

environments, making it imperative to address the reduction of

algorithm inference time. By incorporating short- and long-range

temporal modeling (Wu et al., 2021), our approach aims to enhance

the efficiency of action recognition methodologies, showcasing the

potential of artificial neural networks in the complex landscape of

autonomous system control and decision-making.

3 Method

The overall flowchart of the algorithm in this article is shown in

Figure 1:

3.1 MSN sports sensitive network

The MSN is a video-level framework that learns action models

using entire video information. To improve efficiency, we follow the

TSNTSN framework with a sparse and holistic sampling strategy

for each video. Our main contribution is to fully consider the

scale changes in the space-time dimension when obtaining implicit

action information through feature difference and inject this action

information into the network in two ways: element-wise addition of

the implicit action information extracted by the STP-ME module

to the keyframe-wise information extracted by the backbone, and

embedding the DS-ME module into the CNN block to increase

the processing weight of motion features adaptively. Its structural

diagram is shown in Figure 2.

In first stage, each video V is divided into T segments of

equal duration without overlapping. We randomly sample 5 frames

Ii = Ii
k−2

, Ii
k−1

, Ii
k
, Ii
k+1

, Ii
k+2

from each segment. We select the

third frame in as the keyframe and totally obtain T key frames

Ik = I1
k
, ..., IT

k
. These keyframes are separate fed into a 2D CNN

to extract keyframe-wise features F = [F1, F2, ..., FT]. Besides we

applied STP-ME module to extract motion information from the

whole 5 frames and supplied it to the original keyframe process

pipeline, so as to increase the amount of effective information input

and improve the feature’s representation power. Specifically, we

fuse the keyframe-wise feature and implicit motion 1 information

using the following Equation 1:

F′ = Fi + S(Ii) (1)

Where F′ denotes the fused feature for segment i, Fi is the

keyframe-wise feature, S denotes our STP-ME module, and it

extracts implicit motion information from adjacent frames Ii.
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FIGURE 1

Overall algorithm flowchart. The input section comprises video frames and an action label dataset, where video frames capture the spatiotemporal

information of actions, and the action label dataset is used to supervise the model learning process. Subsequently, video frames undergo processing

through ResNet and 2D CNN to extract advanced features and key frames, providing a robust foundation for subsequent modules. The STP-ME

module addresses the consistency of motion information across di�erent temporal scales using a pyramid structure. This structure enables the

module to adaptively handle motion information at di�erent temporal scales, enhancing the model’s robustness to scale variations. By applying the

pyramid structure to consecutive frames, the STP-ME module focuses on motion information at di�erent temporal scales, including modeling the

position and motion rhythm between frames at each pyramid level. The DS-ME module introduces deformable scale convolutions, adaptingively

modifying the motion scale of target objects to address unique and irregular motion patterns in dynamic scenes. Adopting multi-scale deformable

convolutions covers a broader range of motion, allowing the DS-ME module to intricately model the entire action region and improve modeling

accuracy for objects at di�erent scales, particularly when dealing with spatiotemporal inconsistency challenges. Within the overall network

architecture, the MSN Sports Sensitive Network’s two stages process di�erent levels of feature representations to comprehensively express action

information in the video. Finally, the model aggregates multi-category predictions at each time step through Temporal Aggregation, producing the

ultimate action classification results.

In the second stage, we embed the DS-ME module into the

CNN block and calculate the channel weight by multiscale cross-

segmentation difference. In this way, we could distinguish some

feature channels that contain different scales of motion information

and enhance these channels to make our net-work pay more

attention to the motion. We establish the channel enhance process

as follows (Equation 2):

F
′

= F + D(F)⊙ F (2)

WhereD represents our DS-MEmodule, F is the origin features

and F′ is the enhanced features. In the current implementation,

we only consider adjacent segment-level information for channel

weight calculation in each DS-MEmodule, Details will be described

in the following subsections.

3.2 STP-ME module

In a video, the action is reflected in the change of pixel value

between adjacent frames. We argue that modest variances across

adjacent frames respond well to the nature of the action. Many

previous works sample a single frame from a segment which

extracts appearance information instead of the motion information

contained in each segment. To tackle this problem, we propose the

STP-ME module shown in Figure 3.

In STP-ME module, we selected 5 frames in a segment

and extracted implicit motion information by feature difference.

Furthermore, the time interval often shows a positive correlation

with the variance of spatial scale. In specific, as the time interval

increases, the spatial scale also increases. Therefore, we aligned

the temporal dimension with the spatial dimension from the

perspective of scales and extracts implicit motion information from

adjacent frames by three steps. Then, make each step corresponds

to a different temporal spatial scale.

(1) In the first step, we set the time interval is 1 frame. For each

sampled frame Ii, we extract several feature differences and then

stack them along channel dimension (Equations 3–6):

F12 = conv1(I2)− conv1(I1) (3)

F23 = conv1(I3)− conv1(I2) (4)

F34 = conv1(I4)− conv1(I3) (5)

F45 = conv1(I5)− conv1(I4) (6)

Where Fij is feature difference between Ii and Ij, conv1 is a

convolution layer.

(2) At the second step, we set the time interval is 2 frames. We

select 3 featuremap contains I1, I3, I5 to extract themid step feature

and stack it (Equations 7, 8).

F13 = conv2(I3)− conv2(conv1(I1)) (7)

Frontiers inNeuroscience 05 frontiersin.org11

https://doi.org/10.3389/fnins.2024.1370024
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gu et al. 10.3389/fnins.2024.1370024

FIGURE 2

Structure diagram of MSN Sports Sensitive Network. First, input samples containing video frames and corresponding action labels are provided to

supervise the model learning process. Proceeding to the First Stage, it is subdivided into Stage1, Stage2, STP-MEM, and Res_block. In Stage1 and

Stage2 of the First Stage, advanced feature representations are extracted from the input samples. The STP-MEM module in the First Stage enhances

the representation of motion information, adaptively handling motion information at di�erent temporal scales through a pyramid structure, thereby

improving the model’s robustness to scale variations. Meanwhile, the Res_block strengthens feature propagation through residual connections,

helping alleviate the vanishing gradient problem and making the model easier to train. Moving on to the Second Stage, which includes Stage3,

Stage4, Stage5, Bottleneck, CNN, DS-MEM, and BN. In each stage of the Second Stage, the model further processes features obtained from the First

Stage, gradually forming more abstract and high-level representations. The Bottleneck structure is employed for dimensionality reduction and

increased network depth to extract more expressive features. CNN and DS-MEM modules in this stage introduce deformable scale convolutions to

better model irregular and unique motion patterns, enhancing modeling accuracy for objects at di�erent scales. BN normalizes features, accelerating

convergence, and improving the training stability of the model. Finally, classification is performed through the Classify Head, providing predictions

for action categories. The entire flowchart integrates these key components organically, forming a motion-sensitive action recognition network with

powerful modeling capabilities for complex motion scenes.

F35 = conv2(I5)− conv2(conv1(I3)) (8)

(3) At the third step, we set the time interval is 4 frames. We

select 2 feature maps in last step [f1; f5] to extract the final step

feature (Equation 9).

F15 = cons3(conv2(conv1(I5)))− conv3
(

conv2 (conv1 (I1))
)

(9)

(4) Finally, we realize the consistency of each dimension by

up-sampling fu the above features, and fuse them by elementwise

addition (Equation 10).

F = concat(F12, F12, F12, F12)+ fu (concat (F12, F12)) + fu (F15)

(10)

The implicit motion information F is fused with the keyframe

features, so that the original frame-level representation is aware of

motion pattern and able to better describe a segment.

3.3 DS-ME module

The STP-ME module provides a powerful representation

for capturing spatial-temporal features, including local motion

information within a segment. However, it is essential to leverage

this motion information in the second stage to enhance action

recognition. While the channel attention strategy has been shown

to improve the importance of certain types of information, for

action recognition, we need to consider more details. We observe

that a complete action is comprised of different scales of motion

split and irregular deformations of the action subject in space.

To address these issues, we propose the DS-ME module, which

employs a multiscale convolution kernel to capture different scales

of motion splits and achieve more accurate channel attention

calculation. In addition, to smooth the irregular deformation of

the action subject, we devise a deformable CNN architecture, as

illustrated in Figure 4.

The proposed DS-ME module operates as follows. Firstly, we

compress the feature dimension by a ratio of r and split the feature

segmentation in the temporal dimension as follows (Equation 11):

[X1,X2 , ... ,Xt] = fsplit(Conv(Fin)) (11)
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FIGURE 3

Structure diagram of STP-ME module. The components Ii−2, Ii−1, Ii, Ii+1, and Ii+2 represent frames at the current time step and two preceding and two

succeeding time steps, respectively. These frames are introduced as inputs to the STP-ME module, capturing action information in the video at

di�erent time steps. Through these inputs, the STP-ME module aims to address the consistency of motion information across various time scales.

The primary task of the STP-ME module is to adaptively process motion information at di�erent time scales through a pyramid structure. By applying

the pyramid structure between consecutive frames, the module can focus on motion information at di�erent time scales, including modeling the

position and motion rhythm between frames. This design enables the STP-ME module to better capture motion information at di�erent time scales,

enhancing the overall model’s robustness to scale variations.

Where [X1,X2, ...,Xt] is a set of split features in the temporal

dimension with a size of T, Conv is the channel-wise convolution,

and Fin is the input feature.

Next, these split features undergo three different scale

Deformable CNN (DCNN) operations, namely: (1) a 1 × 1

deformable CNN, (2) a 3 × 3 deformable CNN, and (3) a 5

× 5 deformable CNN. This operation is computed as follows

(Equations 12–14):

X1
t = DCNN1 (Xt) (12)
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FIGURE 4

Structure diagram of DS-ME module. The module takes an input tensor [N, T, C, H, W], where N is batch size, T is the number of time steps, and C is

the channel dimension. Initial processing involves 1 × 1 and 2D convolutions to adjust channels and extract spatial features, forming a robust

foundation for subsequent spatiotemporal modeling. The Temporal Split operation separates the temporal dimension into X(t) and X(t+1),

introducing temporal dynamics. These undergo independent 1x1 convolution, deformable convolution (DCNN) with 3x3 kernel, DCNN, and 5 × 5

convolution to intricately model spatiotemporal information, particularly addressing irregular motion patterns. Further operations, including

Concat&fabs, pooling, 1 × 1 convolution, 2D convolution, and Sigmoid, fuse and process features, achieving nuanced spatiotemporal modeling. This

enhances adaptability to diverse scales and irregular motions, ultimately improving action recognition. The output is a tensor [N, T, C, H, W],

representing motion excitation distribution per time step.

X2
t = DCNN2 (Xt) (13)

X3
t = DCNN3 (Xt) (14)

Where X1
t ,X

2
t ,X

3
t are the deformable features from Xt . After

that, we could fused X1
t ,X

2
t ,X

3
t and calculate feature difference

between consecutive segments as follows (Equation 15):

Xdiff = (X1
t+1 + X2

t+1 + X3
t+1)− (X1

t + X2
t + X3

t ) (15)

where Xdiff is the segment-wise feature difference. To avoid the

loss of information caused by negative numbers after subtraction,

we add an additional absolute value operation fabs and then

perform the maximum value pooling operation fpooling as follows

(Equation 16):

Wraw = fpooling

(∣

∣

∣

∣

Xdi
f

f ′

∣

∣

∣

∣

)

(16)

where Wraw is the raw weight. To obtain the channel attention

weight, we upgrade the channel dimension with a 1x1 convolution

conv and activate it using the sigmoid function Wraw as follows

(Equation 17):

W = Fsig(conv (Wraw)) (17)

Finally, we enhance the video-level representation through

a channel attention operation and combine it with the original

feature map via a residual connection.

The MSN framework is based on sparse sampling of TSN and

operates on a sequence of frames uniformly distributed over the

entire video. The framework employs a two-stage motion modeling

mechanism that focuses on capturing motion information at

different space-time scales. The STP-ME module is inserted in the

early stages for fine and low-level motion extraction, while the DS-

MEmodule is used in the latter stages to further strengthen the role

of action information in the network. We use a ResNet backbone

for the MSN instantiation. Similar to V4D, we use the first two

stages of ResNet (also known as the early stage) for implicit motion
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information extraction within each segment using the STP-ME

module. The latter three stages of ResNet (also known as the later

stage) are embedded with the DS-MEmodule for channel attention

by capturing different scales of motion splits across segments. To

fuse motion information with spatial information in the early stage,

we add residual connections between the STP-ME module and

the main network for Stage 1 and Stage 2. To enhance the action

feature, we embed the DS-ME module to the CNN block and add a

channel attention mechanism in each residual block of Stages 3-5.

The pseudocode of the algorithm in this paper is shown in

Algorithm 1:

1: Input: Training data D from Kinetics-400,

Something-Something V1, Something-Something V2

datasets

2: Initialize: MSN model parameters 2 randomly

3: Set learning rate η, batch size B

4: for each training epoch do

5: for each mini-batch B in D do

6: Sample video clips C from B

7: Extract spatial features Xs and temporal

features Xt from C

8: Compute motion stream features Xm using optical

flow or other motion extraction methods

9: Generate spatiotemporal proposals using STP-ME:

Pstp = STP_ME(Xs,Xt)

10: Generate discriminative spatiotemporal

proposals using DS-ME: Pds = DS_ME(Xs,Xt)

11: Fuse spatiotemporal proposals using MSN:

Xfuse = MSN(Pstp,Pds,Xm)

12: Perform action recognition using the fused

features: Ypred = Action_Recognition(Xfuse)

13: Compute loss L using ground truth labels Ygt

14: Update MSN parameters using backpropagation:

2 = 2 − η ∂L
∂2

15: end for

16: Evaluate model on validation set for metrics:

Accuracy, Precision, Recall

17: end for

Algorithm 1. MSN training process.

4 Experiment

The experimental flow chart of this article is shown in Figure 5:

4.1 Lab environment

• Hardware environment:

This experiment utilized a high-performance computing

server that offers excellent computational and storage

capabilities, providing robust support for research on motion-

sensitive network action recognition. The server is equipped

with an Intel Xeon E5-2690 v4 @ 2.60GHz CPU, a high-

performance multi-core processor that delivers substantial

computational power suitable for deep learning tasks. With

512GB of RAM, the server ensures abundant memory

resources for model training and data processing, contributing

to enhanced experimental efficiency. Additionally, the server

is outfitted with 8 Nvidia Tesla P100 16GB GPUs, renowned

for their outstanding performance in deep learning tasks,

significantly accelerating both model training and inference

processes.

• Software Environment:

In this research, we have chosen Python as the primary

programming language and PyTorch as the deep learning

framework to explore effective methods for motion-sensitive

network model. Leveraging the powerful capabilities of

deep learning, our objective is to enhance both the

performance and efficiency of the model. Taking full

advantage of the convenience and flexibility of Python, we

rapidly constructed the model. PyTorch, as our preferred

deep learning framework, provides us with a rich set

of tools and algorithm libraries, significantly streamlining

the process of model development and training. With

PyTorch’s dynamic computation graph mechanism and built-

in automatic differentiation functionality, we can more easily

build, optimize, and fine-tune the model to achieve superior

results in action recognition.

4.2 Experimental data

• Kinetics-400 Dataset

The Something-Something V1 dataset is a video dataset

focused on action recognition, renowned for capturing various

common actions and object interactions in daily life. The

dataset comprises thousands of video clips, with an average

duration of around 3 seconds, covering a diverse range

of action categories such as stirring, wiping, twisting, and

rubbing. Through meticulous annotation, each video clip

is explicitly labeled with the ongoing action and involved

objects, providing reliable ground truth labels. To collect

this diverse data, the dataset’s creation leveraged online

communities, inviting participants to upload short video clips

of themselves performing various actions. This collection

method makes the dataset more representative of real-world

daily actions, increasing the diversity and complexity of the

data. Given the inclusion of many subtle and complex actions,

along with diverse interactions between objects and actions,

the Something-Something V1 dataset poses a challenge in

action recognition tasks. This dataset not only serves as

a rich resource for researchers to understand human daily

activities but also provides robust support for evaluating

model performance in handling fine-grained and multi-

category interaction tasks.

• Something-Something V1 Dataset

The Something-Something V1 dataset stands out as

a comprehensive video dataset meticulously crafted for

advancing the field of action recognition research. Its
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FIGURE 5

Experimental flow chart.

distinguishing feature lies in its ability to capture a diverse

range of everyday actions and the interactions between

individuals and objects, offering valuable insights into human

daily activities. With a multitude of action categories,

including stirring, wiping, twisting, and rubbing, the dataset

encompasses thousands of short video segments, each lasting

around 3 seconds. These segments vividly portray a rich

variety of actions performed by individuals, contributing to

the dataset’s diversity. What sets Something-Something V1

apart is its detailed annotation process. Each video segment

undergoes careful labeling, providing explicit information

about the ongoing action and the objects involved. This

meticulous annotation serves as robust ground truth data,

essential for training and evaluating action recognition

models. The dataset’s creation involved a unique approach,

leveraging online communities to encourage participants to

contribute short video clips featuring diverse actions. This

methodology ensures that the dataset captures a more realistic

representation of daily activities, adding an extra layer of

complexity and authenticity. One of the dataset’s notable

challenges lies in its inclusion of subtle and complex actions,

coupled with diverse interactions between objects and actions.

This complexity poses a significant challenge for models

aiming to accurately recognize and categorize these nuanced

action scenarios.

• Something-Something V2 Dataset

The Something-Something V2 dataset builds upon the

foundation laid by its predecessor, Something-Something V1,

and stands as a significant contribution to the realm of action

recognition research. Designed to deepen our understanding

of human actions, this dataset introduces new challenges

and complexities. Something-Something V2 features a diverse

array of common actions performed in everyday scenarios,

spanning activities such as stirring, wiping, pouring, and

more. The dataset comprises a substantial number of video

clips, each lasting approximately 3 seconds, offering a rich

collection of short segments capturing various actions and

interactions. Annotations play a crucial role in Something-

Something V2, with meticulous labeling of each video

segment specifying the action and involved objects. This

detailed annotation serves as invaluable ground truth data

for the training and evaluation of action recognition

models. What sets Something-Something V2 apart is its

introduction of additional challenges, making it more intricate

than its predecessor. Notably, the dataset includes actions

performed with hands only, pushing the boundaries of action

recognition tasks and introducing a new layer of complexity.

Intentionally incorporating challenging scenarios, such as

ambiguous or subtle actions, Something-Something V2 serves

as a benchmark dataset for evaluating the robustness and

adaptability of action recognition models.

4.3 Experimental comparison and analysis

In this section, we present the experimental results of our

MSN framework. Firstly, we describe the evaluation datasets and

implementation details. Next, we compare our MSN with state-

of-the-art methods. Then, we perform ablation studies to verify

the effectiveness of the proposed modules. Finally, we show some

visualization results to further analyze our MSN.

In our experiments, we use ResNet50 as the backbone to

implement our MSN based on TSN framework, and sample T = 8

or T = 16 frames from each video. For training, each video frame

is resized to have the shorter side in [256; 320], and a crop of

224 × 224 is randomly cropped. The total training epoch is set

to 100 in the Kinetics dataset and 60 in the Something-Something

dataset. We adopt a multi-step learning rate adjustment strategy,

where it would be divided by a factor of 10 in each step. In different

experiments, our batch size was set to a fixed value of 32. For testing,

the shorter side of each video is resized to 256. We implement two
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TABLE 1 Comparisons with state-of-the-art approaches on the

Something-something v1&v2 test set.

SSV1(Zhou et al., 2018)

Method Backbone frames Top 1 Top 5

TSN-RGB BNInception 8 19.50% -

S3D Inception 64 48.20% 78.70%

TSM ResNet50 8+16 49.70% 78.50%

TEINET ResNet50 8+16 52.50% -

TANet ResNet50 8+16 50.60% -

TEA ResNet50 16 51.90% 80.30%

TAM bLResNet50 16 48.40% -

I3D ResNet50 32 41.60% 72.20%

TDN ResNet50 8 52.30% 80.60%

TDN ResNet50 16 53.90% 82.10%

MSN ResNet50 8 53.00% 81.50%

MSN ResNet50 16 54.10% 82.30%

SSV2 (Materzynska et al., 2020)

Method Backbone frames Top 1 Top 5

TAM bLResNet50 16*2 61.70% 88.10%

TSM ResNet50 16*6 63.40% 88.50%

TEINET ResNet50 8+16 65.50% 89.80%

GST ResNet50 16 62.60% 87.90%

STM bLResNet50 16*30 64.20% 89.80%

SmallBigNet ResNet50 8+16 63.30% 88.80%

TDN ResNet50 8 64.00% 88.80%

TDN ResNet50 16 65.30% 89.50%

MSN ResNet50 8 63.90% 89.20%

MSN ResNet50 16 65.50% 89.90%

kinds of testing schemes: the 1-clip and center-crop, where only a

center crop of 224 × 224 from a single clip is used for evaluation,

and the 10-clip and 3-crop, where three crops of 256 × 256 and

10 clips are used for testing. The first testing scheme is with high

efficiency, while the second one is for improving accuracy with a

denser prediction scheme.

We compare our model with state-of-the-art methods

including I3D, TAM, GST, SmallBigNet, TEA, and TDN on two

benchmarks: Something-Something and Kinetics-400. We report

the details used by each method and use the 1 clip and center crop

testing scheme for Something-Something and 10 clips and 3 crops

for testing on the Kinetics-400 dataset.

Results on something-something. As expected, sampling more

frames can further improve accuracy but also increases the FLOPs.

We report the performance of both 8-frame MSN and 16-frame

MSN. Table 1 shows the comparison results for the proposed MSN

on the Something-Something test set, the visualization is shown

in Figure 6. Using a ResNet-50 backbone, MSN achieves 53.0%

and 54.1% with 8/16 frames, respectively, which are 2.2% and

0.2% better than TEA and TDN, respectively. On the Something-

Something v2 dataset, a similar improvement is observed as in

SSV1 datasets, especially on 16 frames, which achieved the highest

results.

Results on kinetics. On Kinetics-400, we compare our

MSN with other state-of-the-art methods. We note that

these are comparisons of systems which can differ in many

aspects. Nevertheless, our method surpasses all existing RGB or

RGB+flowbased methods by a good margin. Without using optical

flow and without any bells and whistles, Table 2 shows our model

achieved the best performance of 77.1%, the visualization is shown

in Figure 7.

We present the results of our experiments to verify the

effectiveness of the proposed STP-ME and DS-ME modules, using

ResNet50 as the backbone and evaluating the model’s accuracy on

the something-to-something v1 dataset.

Study on the effect of STP-ME module and DS-ME module.

To investigate the impact of the STP-ME and DS-ME modules,

we conducted a comparative study and evaluated four different

combinations, as summarized in Table 3, the visualization is shown

in Figure 8. First, we established a baseline network without any

of these modules, which achieved an accuracy of 46.6%. Then,

we separately added the STP-ME module and the DS-ME module

to the early layers of the network. As the number of STP-ME

modules increased, the accuracy improved, achieving 48.8% and

51.8%, respectively. Similarly, the DS-ME module improved the

baseline accuracy by 2.3%, achieving an accuracy of 48.8%. Finally,

we included all usable modules in our final model, which achieved

the best performance of 52.3% and 53.0% on the something-to-

something v1 dataset.

In addition, we compared our STP-ME module with similar

modules from other works, including S-TDM proposed in TDN

and the super image proposed in StNet (as shown in Table 4). From

the results, we found that the super-image module could increase

the top-1 accuracy by 2%, and S-TDM could increase it by 4.9%.

However, our STP-MEM achieved the maximum performance gain

of 5.3%.

In our study on the STP-ME module, we found that the fusion

operation of different scale features is a crucial step. Therefore,

we compared different fusion operations of the STP-ME module,

including (1) channel concatenation, (2) element-wise addition,

and (3) element-wise average. As shown in Table 5, the element-

wise addition achieved the best accuracy of 53.0%, while the

element-wise average and channel concatenation obtained top-

1 accuracies of 52.3% and 52.1%, respectively. We note that

the action information captured by different scale operators is

complementary, and therefore the performance of the feature can

be maximized when only element-wise addition is used.

Furthermore, we conducted a study on the DS-ME mod-

ule, where we made several improvements to the deficiencies

present in the ME modules of the previous TEA. We tested these

improvements one by one, including four networks: (1) using ME

modules, (2) using multi-scale ME modules, (3) using DCNN ME

modules, and (4) using DS-ME module. As shown in Table 6, these

improved modules provided performance improvements of 0.2%,

0.4%, and 0.5%, respectively, the visualization is shown in Figure 9.
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FIGURE 6

Comparison visualization with state-of-the-art methods on Something-something v1&v2 test set.

TABLE 2 Comparisons with state-of-the-art approaches on the Kinetics-400 test set.

Kinetics-400(Carreira et al., 2018)

Method Backbone frames GFLOPs Top 1 Top 5

ARTNet R18 16 23.5 69.20% 88.30%

R(2+1)D R34 16 152 74.30% 91.40%

I3D Inception 64 108 71.10% 89.30%

S3D-G Inception 64 71.4 74.70% 93.40%

TSN Inception 25 16 72.50% 90.20%

TEA R50 16 70 76.10% 92.50%

SlowOnly R50 8 41.9 74.90% 91.50%

SlowFast R50 4+32 36.1 75.60% 92.10%

SlowFast R50 8+32 65.7 77.00% 92.60%

NL I3D R50 32 N/A 74.90% 91.60%

NL I3D R50 128 282 76.50% 92.60%

GloRe R50 8 28.9 75.10% N/A

TDN R50 8 36 76.60% 92.80%

SmallBigNet R50 8 57 76.30% 92.50%

TSM R50 16 65 74.70% N/A

MSN R50 8 36.2 77.10% 93.10%

Figure 10 shows the performance metrics of various models,

including Xing Z et al., Ahn D et al., Chen T et al., Liu Y et al.,

Wu L et al., Xu B et al., and “Ours,” evaluated across three distinct

datasets: Kinetics-400, Something-Something V1, and Something-

Something V2. Notably, our model, labeled as “Ours,” consistently

outshines the others across all datasets, boasting the highest

accuracy, precision, recall, and AUC-ROC values. Then, Figure 11

provides a comprehensive overview of various models, including

Xing Z et al., Ahn D et al., Chen T et al., Liu Y et al., Wu

L et al., Xu B et al., and “Ours,” assessed across three different

datasets: Kinetics-400, Something-Something V1, and Something-

Something V2. The models’ performance is evaluated based on

three key parameters: the number of parameters (in millions),

inference time (in milliseconds), and training time (in seconds).

Notably, our model, labeled as “Ours,” stands out with the lowest

number of parameters, efficient inference times, and remarkably

short training durations across all datasets. Specifically, on the

Kinetics-400 dataset, “Ours” exhibits a competitive parameter
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FIGURE 7

Comparative visualization of Kinetics-400 test system and state-of-the-art methods.

TABLE 3 Evaluation of four di�erent combinations.

STP-ME module DS-ME module Top 1

stage1 stage2 stage3 stage4 stage5

46.60%

X 48.80%

X X 51.80%

X X X X 52.30%

X X X 48.90%

X X X X X 53.00%

count (227.64 M), efficient inference time (182.46 ms), and

notably quick training time (87.62 s). This trend continues across

the Something-Something V1 and V2 datasets, reinforcing the

efficiency of our model in terms of model complexity, real-time

inference, and training speed compared to other evaluated models.

We visualize the class activation maps with Grad-CAM++

(Chattopadhay et al., 2018) and results are shown in Figure 12.

Specifically, we used 8 frames as input and only visualized the

activation maps in the center frames. The visualization results

clearly demonstrate that the baseline method with only temporal

convolutions cannot effectively focus on motion-salient regions,

while our proposed MSN with the STP-ME module and DS-ME

module for motion modeling is able to more accurately localize

action-relevant regions.

5 Discussion

The experimental results demonstrate the effectiveness of the

introduced STP-ME and DS-ME modules, marking a significant

advance in the field of spatiotemporal modeling for action

recognition. The research focuses on the theoretical foundations

and practical applications of artificial neural networks (ANN)

in autonomous system control and decision-making, and our

experimental results bring valuable insights. The quantitative

evaluation of MSN against state-of-the-art methods on Kinetics-

400 and Something-Something datasets reveals compelling results.

Achieving an accuracy of 77.1% on Kinetics-400, MSN outperforms

existing RGB or RGB+flow-based methods by a significant margin.

This demonstrates not only the theoretical effectiveness of the

proposed method but its practical superiority in large-scale action

recognition benchmarks. The experiments involving different

frame sampling rates (8-frame MSN and 16-frame MSN) showcase

the scalability of MSN in handling varied input scenarios. While

using more frames generally improves accuracy, MSN maintains

competitive performance even with a reduced frame sampling rate.

This scalability is crucial for applications where computational

resources are limited. Ablation studies offer detailed insights into

the impact of module additions. The step-wise improvement in

accuracy with the introduction of the STP-ME andDS-MEmodules

provides a clear understanding of their individual contributions.

This data-driven analysis substantiates the claim that thesemodules

are not merely additions but essential components for enhancing

action recognition performance. The comparative analysis of

fusion operations within the STP-ME module provides nuanced

information on the best strategy for integrating multiscale features.

The superior performance of element-wise addition in achieving

an accuracy of 53.0% underscores its effectiveness in preserving

and maximizing valuable information across different temporal

scales. When compared with similar modules from previous

works, such as S-TDM and super image modules, the STP-ME

module exhibits the highest performance gain of 5.3%. This data-

driven comparison quantifies the advancements achieved by MSN

in capturing intricate motion information, setting it apart as a
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FIGURE 8

Evaluation comparison visualization of four di�erent combinations.

TABLE 4 Performance comparison of STP-ME module and other modules.

Fusion mode GFLOPs Top 1

Concatation 52.30%

Element-wise average 52.10%

Element-wise addition 53.00%

leading method for spatial-temporal modeling. Beyond accuracy,

the evaluation of MSN’s efficiency in resource utilization is

critical. The balance achieved between accuracy and computational

efficiency, particularly with the sparse sampling strategy and two-

stage motion modeling mechanism, positions MSN as a practical

solution for real-world applications where both accuracy and

efficiency are paramount. MSN’s consistent performance across

diverse datasets, such as Kinetics-400 and Something-Something,

highlights its ability to generalize well to various action recognition

scenarios. This generalization is a key characteristic, indicating

the adaptability and versatility of MSN in handling different

types of actions, scales, and temporal variations. This adaptability

aligns with the requirements of autonomous systems, which often

encounter diverse action types, scales, and temporal variations.

In summary, the theoretical implications of MSN in enhancing

spatial-temporal modeling, coupled with its practical performance

and efficiency, resonate with the goals of advancing artificial neural

networks within the realm of autonomous system control and

decision-making. The identification of specific scenarios where

MSN excels opens avenues for future optimizations, ensuring its

robustness and applicability in specialized application domains

within autonomous systems.

TABLE 5 Comparison of ablation experiments of STP-ME modules.

Similar module Model dataset Top 1 (Increase)

Super-Image St-Net Kintics-600 2%

S-TDM TDN SSV1 4.90%

STP-MEM MSN SSV1 5.30%

TABLE 6 DS-ME module improvement testing.

Fusion mode GFLOPs Top 1

MEmodule 48.40%

Multi-scale ME module 48.80%

DCNN-ME 48.70%

DS-MEM 49.00%

6 Conclusion

In this paper, we present a novel network architecture for

action recognition, called MSN. Our approach is both simple

and effective, and involves leveraging multiple temporal rates

in actions using the temporal pyramid module, which captures

motion information at different scales by adjusting the size

of the convolution kernel and time interval simultaneously.

Additionally, we introduce a new motion excitation module that

employs a multi-scale deformable CNN to adjust the motion

scale of the target object, which is often non-uniform and

irregular. We evaluate our method on four challenging datasets,

namely Something-Something V1, Something-Something V2
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FIGURE 9

Comparative visualization of module performance and ablation experiments.

FIGURE 10

Comparison of experimental indicators between this method and other methods on three data sets.

FIGURE 11

Experimental comparison of parameters, inference time and training time of this method with other methods on three datasets.

and Kinetics-400, and compare our results to those of other

state-of-the-art (SOTA) approaches. The results demonstrate

that MSN performs exceptionally well in a variety of challenging

scenarios. The theoretical foundation of MSN is in line with the

continuously evolving landscape of spatiotemporal modeling,

resonating with the broader discussions about the integration

of Artificial Neural Networks (ANN) in autonomous system

control and decision-making. Its adaptability across datasets

and scenarios, coupled with efficiency, positions MSN as a

promising tool that not only advances action recognition but also

contributes to the theoretical and practical foundations of ANN

in the autonomous systems domain. While MSN demonstrates

commendable performance in action recognition, it is essential to

acknowledge its computational cost, interpretability challenges,
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FIGURE 12

Visualization of activation maps with Grad-CAM++.

and the need for further extension to new environments. Future

developments should prioritize enhancing the interpretability

of MSN, achieving real-time adaptability, exploring transfer

learning in diverse environments, delving into human interaction

understanding, and seamlessly integrating MSN into autonomous

systems. We can design network structures with enhanced

interpretability, introduce attention mechanisms, or employ

visualization techniques to illustrate the model’s key steps

and rationale during decision-making. Additionally, domain

adaptation, transfer strategy design, improving model robustness,

and incorporating online learning mechanisms are also

indispensable aspects to consider. These steps will pave the

way for establishing a more robust, transparent, and versatile

network, aligning with the ongoing developments in the field of

artificial neural networks within autonomous system control and

decision-making.
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Handwritten character recognition is one of the classical problems in the field of

image classification. Supervised learning techniques using deep learning models

are highly e�ective in their application to handwritten character recognition.

However, they require a large dataset of labeled samples to achieve good

accuracies. Recent supervised learning techniques for Kannada handwritten

character recognition have state of the art accuracy and perform well over a

large range of input variations. In this work, a framework is proposed for the

Kannada language that incorporates techniques from semi-supervised learning.

The framework uses features extracted from a convolutional neural network

backbone and uses regularization to improve the trained features and label

propagation to classify previously unseen characters. The episodic learning

framework is used to validate the framework. Twenty-four classes are used for

pre-training, 12 classes are used for testing and 11 classes are used for validation.

Fine-tuning is tested using one example per unseen class and five examples

per unseen class. Through experimentation the components of the network are

implemented in Python using the Pytorch library. It is shown that the accuracy

obtained 99.13% make this framework competitive with the currently available

supervised learning counterparts, despite the large reduction in the number of

labeled samples available for the novel classes.

KEYWORDS

computer vision, convolutional neural networks, handwritten character recognition,

machine learning, manifold smoothing, label propagation

1 Introduction

The challenge of converting manuscripts and printed documents into digital formats

has been the focus of computer vision research (Nasir et al., 2021; Gowda and Kanchana,

2022). Recent advances have blurred the interface between physical copies of text and

their digital counterparts. Large scale scanning of thousands of historical documents

has been performed. Enabling visually impaired individuals to read signboards and

paper, and faster processing of checks. Legislative bodies have benefited from the ease of

digitizing legal documents, allowing for seamless transfer, signing, and searching. The field
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of handwritten character analysis has strive to make effective

algorithms to achieve various goals, such as the classification

of handwritten characters, the classification of the writers of

different manuscripts, generating text matching the handwriting of

a writer, and so on (Dhiaf et al., 2023). Prior to supervised deep

neural networks, handcrafted methods were used for handwritten

character recognition, which often required several different steps

such as binarization of images, rescaling and rotating the images,

performing statistical aggregations on different parts of the images,

etc. This required fine-tuning a large number of parameters to

obtain accurate results and could not generalize well to variations

in the input images (Aradhya et al., 2010; Ramesh et al., 2020).

Supervised learning using deep neural networks has allowed

most of the explicit tasks to be replaced by a single neural network

model that, by virtue of back-propagation, is able to learn the

weights required for effective extraction of features from the images

that are used for classification. By providing a large training set that

includes diverse samples of each character, the neural network is

rendered more robust in its accuracy in classifying a larger range

of handwriting samples. However, the creation of a large labeled

training set of images is laborious, and certain character classes have

few real-world samples. By utilizing already pre-trained models to

predict the new classes, sample efficiency is improved. The difficulty

in obtaining such a dataset for Kannada handwritten characters is

compounded by the large number of possible graphemes in the

Kannada script, stemming from the use of combinations of base

characters to form digraphs. Semi-supervised learning techniques,

which exploit the use of a large unlabeled dataset to improve the

robustness and accuracy of a model trained on a small labeled

training set, have been successfully used to achieve this goal.

The scenario of novel classes’ incorporation is modeled with the

episodic learning approach (Nichol et al., 2018). Recent works in

few shot learning make use of this framework to mimic meta-

learning tasks (Gidaris et al., 2019). Improved generalization of the

neural network is achieved through the use of data augmentation

where sample images are rotated in four different orientations,

increasing the number of training samples the network is trained

on (Zhou et al., 2004). The use of label propagation allows the

incorporation of new classes into the classification framework

with very few extra training samples (Alsuhibany and Alnoshan,

2021). The handwritten CAPTCHA image then asks visitors to

choose the joints between Arabic letters. In the latter approach,

a novel generator of Arabic handwritten CAPTCHA pictures is

devised; once the image is formed, the user is required to input the

letters depicted in the image (Weldegebriel et al., 2019). Although

both have showed encouraging outcomes, this experimental study

compares both in terms of security and usability for mobile

device applications.

The enormous success of supervised neural network-based

machine learning approaches can be ascribed to the minimal

amount of manual parameter adjustment needed as well as the

models’ flexibility to learn efficient feature representations that

work for a variety of inputs. However, supervised neural network

models need well-curated, sizable, labeled datasets to obtain

strong generalization capabilities and robustness. This makes it

feasible for the models to accurately learn the various potential

variations they might experience. Due to the bias introduced by

unbalanced datasets, these models may favor predicting the classes

that were represented more frequently in the training set, which

would lead to subpar performance when identifying previously

undiscovered classes of characters. Being one of the acknowledged

regional languages in India, Kannada also serves as the province

of Karnataka’s official language of communication (Ramesh et

al., 2019b). The literature and artistic diversity of the language

makes it a priceless repository of information and culture. Many

of these regional languages need the power of technology to retain

the language directed at them (Thippeswamy and Chandrakala,

2020; Parikshith et al., 2021). The preservation of the language’s

scripture is greatly aided by advances in digitization, which also

give the language a significant edge in terms of reaching a wider

audience given the pervasiveness of internet access around the

world. Building precise pattern recognitionmodels is also a difficult

task due to the absence of readily accessible annotated data

relevant to the local languages. The suggested study addresses

the issue of “Recognizing Kannada Handwritten Characters in

a Few-Shot Learning viewpoint” by utilizing a strong, cutting-

edge technique that offers best-in-class accuracy and consistent

outcomes. There are 47 basic characters in the Kannada alphabet.

Main contribution of this paper are as fallows, we introduce a

Manifold Smoothing and Label Propagation-based Approach for

Offline Handwritten Kannada Character Recognition. In particular,

our contributions are outlined as follows: The goal of this work is

to combine a few techniques in order to create an offline Kannada

handwritten character classifier that can be trained to retain high

accuracies on classes with as few as one or five samples. This

allows for the rapid incorporation of classes with minimal extra

samples required.

• A novel classes incorporation is modeled with the episodic

learning approach.

• Improved generalization of the neural network is achieved

through the use of data augmentation.

• The label propagation allows the incorporation of new classes

into the classification framework with very few extra training

samples.

2 Related work

Weldegebriel et al. (2019) presented by the Handwritten

Ethiopian Character Recognition (HECR) dataset was used to

prepare a model, and the HECR dataset for images with more

than one shading pen RGB was considered. This framework

employs a half breed model comprised of two super classifiers:

CNN and eXtreme Gradient Boosting (XGBoost). CNN-XGBoost

characterization error rate brings about HECR dataset 0.1612%.

This proposed work got an accuracy of 99.84% in the CNN-

XGBoost strategy. Sahlol et al. (2020) proposed a hybrid ML

approach that uses area binary whale improvement calculation

to choose the most suitable highlights for the recognition

of handwritten Arabic characters. This strategy utilized the

CENPARMI dataset and This strategy results show away from of

the proposed approach as far as memory footprint, recognition

accuracy, and processor time than those without the features of the

proposed technique. This proposed BWOA-NRS approach beats

any remaining works in both execution and time utilization got an

accuracy of 96% in 1.91 s time. Cilia et al. (2018) has considered

various univariate measures to create an feature ranking and
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proposed a greedy search approach for picking the element subset

ready to maximize the characterization results. One of the best and

broadly set of features in handwriting recognition and we have

utilized these features for considering to tests of three genuine word

information bases. Karthik and Srikanta Murthy (2018) presented

by the recognition of isolated handwritten characters of Kannada

proposed a new method based on deep belief network with DAG

features. The recognition accuracy for consonants and vowels to

achieve an accuracy of 97.04% using deep belief network.

Weng and Xia (2019) proposed technique using Convolutional

neural network has been approved by previous work with

the results of existing strategies, utilized for optical character

recognition. In this strategy, First, build a Shui character dataset

for applying a Convolutional neural network to manually written

character recognition, at that point during the proposed of

the CNN, analyzed the consequences of various parameters so

that proposed the parameter tuning suggestions and accuracy

is around 93.3%. Guha et al. (2019) presented by CNN has

been a well-known way to deal with remove features from the

image data. in this work, we consider as different cnn models

freely accessible Devanagari characters and numerals datasets. This

method uses a Kaggle Devanagari character dataset, UCI character

dataset, CVPR ISI Devanagari dataset, and CMATERdb 3.2.1

dataset. Using the DevNet, the recognition accuracies obtained on

UCI DCD, CVPR ISI Devanagari character dataset, CMATERdb

3.2.1, and Kaggle Devanagari character dataset have obtained an

accuracy of 99.54, 99.63, 98.70, and 97.29%, respectively. Khan

et al. (2019) proposed technique presents a efficient handwriting

identification framework which joins Scale Invariant Feature

Transform (SIFT) and RootSIFT descriptors in a bunch of

Gaussian mixture models (GMM). This proposed system using

six different public datasets are IAM dataset obtained accuracy

of 97.85%, IFN/ENIT dataset obtained an accuracy of 97.28%,

AHTID/MW dataset obtained an accuracy of 95.60%, CVL dataset

obtained an accuracy of 99.03%, Firemaker dataset obtained

an accuracy of 97.98%, and ICDAR2011 dataset obtained an

accuracy of 100.0%.

Sahare and Dhok (2018) proposed robust algorithms for

character segmentation and recognition are introduced for

multilingual Indian document images of Latin and Devanagari

contents. Perceiving the input character utilizing the KNN classifier

technique, as it has characteristically zero preparing time. This

strategy got the highest segmentation and recognition rates of

98.86% is acquired on an exclusive information base of Latin

content and the Proposed recognition algorithm shows the most

best accuracy of 99.84% on the Chars74k numerals data set. Zheng

et al. (2019) proposed strategy separate a novel component from

pooling layers, called uprooting highlights, and join them with

the features coming about because of max-pooling to catch the

structural deformations for text recognition tasks. This strategy

utilizes three content datasets, MNIST, HASY, and Chars74K-

textual style, and contrasted the proposed technique and CNN

based models and best in class models. Mhiri et al. (2018) work

depends on deep CNN and it doesn’t need explicit segmentation

of characters for the recognition of manually written words.

Proposed strategy presentation forward and in reverse ways or

robust representation. This proposed approach use IAM and

RIEMS information base and this methodology achieve a word

error rate of 8.83% on the IAM information base and 6.22% on the

RIEMS dataset.

Sueiras et al. (2018) proposed a technique framework for

recognizing offline handwritten words and use of another neural

architecture design that consolidates a deep cnn with an encoder-

decoder, called sequence to sequence. This proposed technique

utilizes two handwritten databases are IAM and RIMES datasets

and these datasets acquire a word error rate in the test set of 12.7%

in IAM and 6.6% in RIMES datasets. Katiyar and Mehfuz (2016)

proposed presents hybrid feature extraction and GA based feature

selection for off-line handwritten character recognition by utilizing

adaptive MLPNN classifier. The proposed technique has been

performed utilizing the standard database of Center of Excellence

for Document Analysis and Recognition for the English alphabet. It

is obvious from the outcomes that the proposed strategy beats the

other state of art techniques with an accuracy of 91.56 and 87.49%

individually for capital alphabet and little alphabet in order (Singh

et al., 2020). The proposed technique contains six non-Indic-

contents and eight Indic contents specifically, Persian, Roman,

Thai, Chinese, Japanese, Arabic, Chinese, Japanese Assamese,

Bangla, Devanagari, Gurmukhi, Tamil, Telugu, Kannada, and

Malayalam. This strategy conversation about the classification

tools, pre-processing steps, include feature extraction, and

approach’s utilized, and different online handwriting recognition

methods advancement have been carried out. Ramesh et al.

(2019a) demonstrate the use of Convolutional Networks in

generating extremely accurate handwritten character classifiers.

They assembled the vowels and consonants freely and utilized

400 images for each character for preparing the CNN. They have

claimed the accuracy of 98.7%.

3 System architecture

The proposed method’s architecture is based on the episodic

framework for few-shot learning shown in Figure 1. The dataset

consists of images of handwritten characters in Kannada with 400

examples, written by multiple writers each for 47 classes with a size

of 84 x 84 for each image. The episodic framework is utilized to

evaluate the architecture in a few-shot environment.

3.1 Experimental steps

The experiment is carried out with the following steps:

• Collection of the dataset: The dataset consists of 47 classes

representing each base character of the Kannada abugida. Each

class consists of 400 samples obtained from different writers.

50% of the dataset is used for pretraining (24 classes), 2%

is used for finetuning (12 classes), and 25% is used for the

validation set (11 classes).

• Preprocessing the images: The images are rescaled to 84 x

84px using the Python Image Library (PIL) library. Bilinear

interpolation is used to achieve this. The images are converted

to RGB format.

• Training the handwritten character classifier: Two different

convolutional networks are used, the Conv4 network and the
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FIGURE 1

Flow diagram of episodic framework.

Resnet-12 network. The training consists of the pretraining

phase where the network is trained on the base set. The next

phase is the finetuning phase, where the network is trained in

an episodic fashion on the unseen classes.

• Analyzing the result: The accuracy and loss of the two

different networks are plotted and compared. Training and

Validation accuracy are plotted for the pretraining phase (seen

characters), while Test and Validation accuracy are plotted

for the finetuning phase. 1-shot and 5-shot finetuning are

performed (one example per class and five examples per class,

respectively).

3.2 Episodic framework

The episodic framework was introduced by Nasir et al. (2021).

It provides a simulation for training a meta-learning model for

few-shot classification tasks. In the episodic framework is a large

labeled dataset Ctrain is present. The goal is to train the classifier on

a previously unexplored set of classes Ctest, where there are only a

few labeled samples available. To create a support set S and query set

Q for each episode, a small subset of N classes from the Ctrain, each

task has N classes that need to be classified inNway K shot learning,

which has K available labeled samples. In contrast to the query set

Q’s different examples from the same N classes, the support set S’s

K examples from each of the N classes. In this work, N = 5 classes

are chosen, and the size of the query set is 15 examples per class.

The five classes are chosen uniformly over the union of sets (Ctrain)

U (Ctest) and sample accordingly. A transductive setting is used due

to the small size of K in the support set. The entire query set Q can

be used for predicting labels rather than predicting each example

independently. This helps alleviate the bias caused by the small

number of samples while improving generalization.

4 Proposed approach

The proposed work uses the combination of manifold

smoothing and label propagation to solve the considered problem

statement. For better generalization, Manifold Smoothing is used

to regularize the features extracted for better generalization, while

Label Propagation allows few-shot inference on unseen classes.

4.1 Manifold smoothing with metric
learning

In order to make the decision boundaries of the hidden layer

of the model more smooth, resulting in better robustness and

generalization, a layer to smoothen the extracted features is used

(Lee et al., 1995). Given the feature vectors zi ∈ Rm (Rm is the set

of m-dimensional real number vectors) which are extracted using

the Convolutional Neural Network layers, a smoothing function

is applied to obtain the smoothed feature vectors z̃i, which are

forwarded to the fully connected layer for classification. This

smoothing process consists of using a Gaussian similarity function

using the L2 norm as a measure of the similarity/dissimilarity of the

different features. dij
2
=‖zi-zj‖

2
2 where dij

2 is the distance between

feature vectors zi and zj and ‖zi-zj‖
2
2 is the square of the L2 norm

between the feature vectors, for pairs of features zi, zj and

A similarity matrix is constructed using Equation 1:

Aij = e
−d2 ij

σ 2 (1)

where Aij is the element of the similarity matrix A, dij
2 is the

distance between feature vectors zi and zj and σ 2
= Var(dij

2) is

the variance of dij
2.

The similarity matrix A is normalized using the Laplacian in

order to ensure convergence:

L = D−
1
2AD−

1
2 , (2)

where L is the Laplacian similarity matrix computed using

normalizing matrix D defined as Equation 3.

Dii =

∑

jAij (3)

Power iteration is used to successively increase the weights of

the closest features while reducing the weights of the features that

are not too close to each other. This is similar to the power iteration

needed in label propagation, and the propagator matrix P is thus

obtained by:

P = (I − αL)-1 (4)

where P is the propagator matrix, I is the identity matrix, α

is the smoothing factor and L is the Laplacian obtained using

Equation (2). The new feature vectors are calculated as Equation 5:

z̃i =
∑

jPijzj (5)

where P is the matrix calculated in Equation (4), zj is the input

feature vector and z̃i is the smoothed feature vector.

This is similar to a weighted sum of neighbors, resulting in a

reduction in the noise present in each feature vector.
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4.2 Label propagation

The prediction of labels for the query set Q using label

propagation is obtained using the similarity matrix that is

equivalent to the one used in the manifold smoothing step. Given

the query set Q, the equation for the label matrix Y is given by:

Y =
YS

0
(6)

where Y is the label matrix,

• The matrix YS of size (nk×n) corresponds to the support set

S. In each row of YS, the column corresponding to the correct

label is 1, (Yij = 1) if yi = j. The rest of the elements are 0.

• The matrix 0 is a matrix of 0s of size (t×n) and corresponds to

the query set Q. n is the number of classes, k is the number of

samples per class in S, and t is the number of samples in Q.

Label propagation iteratively determines the unknown labels

for the union set S ∪ Q (Ramesh et al., 2020):

Ft+1 = αLFt + (1− α)Y (7)

where L is the normalized similarity matrix calculated in

Equation (2), Ft is the label propagation after t iterations, Y is the

label matrix defined in Equation (6) and α is the smoothing factor

between 0 and 1. The sequence Ft converges to

F∗ = (I − αL)-1Y (8)

where F* is the matrix obtained on convergence of Equation (7) as

t → ∞. The different features are clustered in a similar fashion to

graph spectral clustering (Equation 8).

4.3 Feature extraction using convolutional
neural networks

The features are extracted from the input images using

convolutional neural network layers (CNNs). Two CNN feature

extractors are used in the experiments to determine the one with

greater efficacy.

• The first feature extractor is a standard CNNModel with four

layers Each layer consists of a convolution (kernel of size 3 ×

3), as mentioned in Table 1 followed by Max-Pooling which

reduces the size of the image progressively in each layer. The

window of the Max-Pool layer is (2× 2). The ReLU (Rectified

Linear Unit) is used as the activation function which zeroes

negative values.

The second is a Resnet Model with 12 layers (Karthik and

Srikanta Murthy, 2018). This model is deeper, and each block has

an identity shortcut path that helps prevent the vanishing gradient

problem that is exacerbated as the number of layers increases. This

increased depth improves the feature representation of the model,

resulting in greater accuracy.

TABLE 1 Layer of Conv4 network.

Layer name Output shape Next layer

Input layer (84, 84, 3) Conv0

Conv0 (42, 42, 64) Conv2

Conv2 (10, 10, 64) Conv3

Conv3 (5, 5, 64) AvgPool

AvgPool (64) Output

TABLE 2 Layer of RestNet12 network.

Layer name Output shape Next layer

Input layer (84, 84, 3) Block0

Block0 (26, 26, 64) Block1

Block1 (9, 9, 128) Block2

Block2 (3, 3, 256) Block3

Block3 (512) Output

1 Input: Batch of input images

2 rotated_input_batch = rotate(input_batch,

0,90,180,270) Rotating the images;

3 z = backbone_network(rotated_input_batch) z is the feature

representation;

4 A = new matrix(size = z.len × z.len) Manifold

Smoothing;

5 for <zi in z> do

6 for zj in z do

7 eIfi==j A[i][j] = 0;

8 A[i][j] =

exp(-(L2Norm(zi,zj))2/Var(L2Norm(zi,zj));

9 end for

10 end for

11 A = laplacian(A) Normalizing the matrix;

12 I = new matrix(size = A.size, type = Identity);

13 P = matrix_invert(I α × A) Smoothing factor α

taken as 0.9;

14 z_smooth = P×z;

15 predicted_label =

fully_connected_classifier(z_smooth,

z_smooth.labels) #C1;

16 predicted_rotation =

fully_connected_classifier(z_smooth, rot_labels)

#C2;

17 Output: Predicted labels of the input images;

Algorithm 1. Pretraining algorithm.

As mentioned in Table 2 each block has 3 convolutional layers,

a shortcut connection between the first and the third layer and a

Max-Pool layer (of window (3× 3)). The shortcut connection adds

the output of the first layer and third layer before passing it to the

activation function (ReLU again).
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FIGURE 2

Flow diagram of the pretraining process.

4.4 Pretraining process

The pretraining process is similar to a supervised training

schedule. The training set Ctrain, It contains classes that have a

large number of labeled examples. The objective of the pretraining

phase is to learn a good feature representation of the images,

which can later be fine-tuned to classify unseen classes. Input

batches of size 128 are used to improve the efficiency of batch

normalization (He et al., 2016), reducing overfitting and improving

the smoothness of gradients. Each image is rotated four times for

the self-supervision loss (Dhiaf et al., 2023). Stochastic Gradient

Descent is used to train the network. The pretraining process

is defined in Algorithm 1. Two fully connected classifiers are

trained as shown in Figure 2, which use the features extracted by

the CNN backbone networks and regularized using the manifold

smoothing process.

• The first classifier C1 is trained to predict the class labels of the

input images. A standard cross entropy loss for classification

is used to train this classifier.

The loss function is given by Equation (9):

LC1(xi, yi;Wl, θ) = −lnp((yi|z̃i),Wl) (9)

• The second classifier C2 is utilized to provide a self-

supervision type learning signal, where the rotation angle of

each input image (after being rotated by 0◦, 90◦, 180◦, 270◦), is

predicted. This helps improve the learning signal and provides

a certain degree of rotation invariance to the model.

The loss function is given by:

LC2(xi, yi;Wγ , θ) = −lnp(ri|z̃t),Wγ ) (10)

where Wγ is the fully connected layer with softmax activation

representing Cr and ri is the prediction of the rotation angle.

The overall loss to be minimized is given by:

argmin

128
∑

i=1

4
∑

j=1

LC1(xi, yi;Wl, θ)+ LC2(xi, yi;Wγ , θ) (11)

where LC1 (xi,yi;Wl,θ) is defined in Equation (10), LC2
(xi,yi;Wl,θ) is defined in Equation (11) and argmin optimizes

the arguments to minimize the sum.

1 Input: Episode of input images

2 z = backbone_network(rotated_input_batch) # z is

the feature representation;

3 A = new matrix(size = z.len × z.len) # Manifold

Smoothing;

4 for <zi in z> do

5 for zj in z do

6 if i==j then

7 A[i][j] = 0;

8 else

9 A[i][j] =

exp(-(L2Norm(zi,zj))2/Var(L2Norm(zi,zj));

10 end if

11 end for

12 end for

13 A = laplacian(A);

14 I = new matrix(size = A.size, type = Identity);

15 P = matrix_invent(I α × A) Smoothing factor α

taken as 0.9;

16 z_smooth = P×z;

17 lp = label_propagation(z_smooth.support_set,

z_smooth.query_set, P);

18 predicted_unseen =

fully_connected_classifier(lp, lp.labels) #Label

propagation predicted_all =

fully_connected_classifier(z_smooth,

z_smooth.labels) ;

19 Output: Predicted labels of the input images;

Algorithm 2. Finetuning algorithm.

4.5 Finetuning process

The finetuning process is performed after the model has been

trained on the training set Ctrain. Here, the objective is learning

to recognize the unseen classes (part of the test set Ctest. The

label propagation method is used to find the labels of the unseen

classes. Each epoch in finetuning consists of generating an episode

calculating the loss obtained and using backpropagation to adjust
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FIGURE 3

Flow diagram of the finetuning process.

FIGURE 4

1-shot finetuning accuracy vs. number of epochs.

FIGURE 5

1-shot finetuning loss vs. number of epochs.

the weights accordingly. The finetuning process is defined in

Algorithm 2, Two linear classifiers are once again used as shown

in Figure 3.

1. The classifier C‘1 utilizes label propagation to compute the

probabilities of the classes in the query set. The logits are

converted to class probabilities using the SoftMax function.
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FIGURE 6

5-shot finetuning accuracy vs. number of epochs.

FIGURE 7

5-shot finetuning loss vs. number of epochs.

FIGURE 8

1-shot finetuning accuracy vs. number of epochs.

The loss function is given by Equation (12):

LC‘1(xi, yi; θ) = −lnp(yi|(z̃l), Z̃,YS) (12)

where xi is the input image, yi is the label of the input image, θ

is the CNN feature extractor and -ln p(yi| zi,Z̃, YS) is the cross-

entropy loss defined on predictions using label propagation (YS)

defined in Section V.

2. Since the label propagation loss tends to favormixing of features,

impacting the discriminativeness of the feature representation,

a second classifier C‘2 is trained with the standard cross

entropy loss on the union S∪Q. This helps in preserving the

discriminativeness of the feature representation.

The loss function is given by

LC‘2(xi, yi;W l, θ) = −lnp(yi|z̃l,W l) (13)

The overall loss to be minimized is the additive combination of

the above:

argmin

[

1

|Q|

∑

(xi,yi)ǫQ

LC‘1(xi, yi, θ)+
1

|S ∪ Q|
∪

∑

(xi,yi)ǫS∪Q

∩
1

2
LC‘2(xi, yi; ∩W l, θ)

]

(14)
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FIGURE 9

1-shot finetuning loss vs. number of epochs.

FIGURE 10

5-shot finetuning accuracy vs. number of epochs.

FIGURE 11

5-shot finetuning loss vs. number of epochs.

Where Q is the query set, S is the support set, LC‘1(xi,yi,θ)

is defined by Equation (13), LC‘2(xi,yi; Wl,θ) is defined by

Equation (14) and argmin optimizes the arguments tominimize the

given sum.

5 Implementation

This work uses the dataset used in Karthik and SrikantaMurthy

(2018) to evaluate the model. The components of the network are

implemented in Python using the Pytorch library. The Episode

Generator is used to create episodic tasks for the finetuning of the

network. The backbone networks are assigned to the GPUs using

the CUDA directive. The model’s hyperparameters are listed.

5.1 Simulation dataset

The dataset consists of 47 classes representing each base

character of the Kannada abugida. Each class consists of 400

samples obtained from different writers. The images are rescaled to
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FIGURE 12

Comparison of the accuracies obtained by the networks.

84×84 px using the PIL library. For the purpose of the experiments,

the 47 classes are randomly split into three sets following the

example of He et al. (2016). The base set Ctrain consists of 24

classes and has all 400 samples for the supervised pretraining

phase. Thus 50% of the dataset is used for the supervised training

part. A mixture of vowels and consonants are present in Ctrain.

Characters with shapes both simple and complex are represented

in the training set.

The novel set Ctest consists of 12 classes which form the unseen

set of classes used to test the finetuning approach. This is 25% of

the dataset. It is observed that characters both similar in shape to

the ones found in Ctrain, as well as uniquely shaped characters can

be found in Ctest. A validation set Cval consisting of 11 classes is

used to form the validation set used for hyperparameter search and

to measure the amount of overfitting. Twenty-five percent of the

dataset is used for this purpose.

6 Results and analysis

State of the art results is achieved using the Label

Propagation and Manifold Smoothing model for the problem

of Recognition of Handwritten Kannada Characters in a Few-

Shot Learning perspective. This section gives insights of the

result obtained in terms of Pretraining Accuracy (seen classes),

Finetuning accuracy (seen and unseen classes) using 1-shot

and 5-shot learning (support set of one and five examples,

respectively). Comparison of result with the existing work is

done here.

6.1 Performance evaluation

Two different feature extractors are evaluated using the

episodic framework, and the average accuracy of classification

over 1,000 episodes is used as the metric for evaluation.

The first feature extractor, Conv4, has a faster training and

inference time owing to its simplicity, and seems to benefit

much more from the finetuning phase as compared to the

second feature extractor, Resnet-12. However, much better

accuracy is obtained by the larger Resnet-12 network. This

can be attributed to the greater width of the network, which

allows a larger number of learnable parameters to be used for

classification. Although there is a greater amount of overfitting as

evidenced by the difference in test and validation accuracies, the

performance on finetuning shows that the framework has good

generalization capability.

6.2 Conv4 network

The convergence of training at 44 epochs is observed, and due

to the episodic nature of training, large swings are seen prior to

convergence. The loss is monotonically decreasing over a large

number of epochs, with a bump close to the convergence point.

In Figure 4 it is observed that the pretrained model

starts out at 50% accuracy and steadily increases with

finetuning epochs until epoch 32 where the network

converges to 91.04% accuracy. The loss (Figure 5) decreases

and stabilizes.

In 5-shot finetuning, a higher initial accuracy of 83%

accuracy (Figure 6) is observed which reduces when more

unseen classes are initially encountered, the network finally

converges at 37 epochs to an accuracy of 96.88%. There is an

increase in validation loss (Figure 7) corresponding to the more

difficult episodes.

6.3 ResNet-12 network

The shorter convergence time (35 epochs) is seen and a

higher pretraining accuracy being achieved (98.66%). This can be

attributed to the increased number of channels (width) and layers

(depth) of the backbone network.
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Compared to Figure 8, the finetuning does not increase the

accuracy of the network by a significant amount. This can be

attributed to the stronger convergence during training, which

allows better inference on novel classes without much finetuning

required. The low variance of the accuracy and loss in Figures 9,

11 indicates saturation of the network. Similar to Figures 10, 11,

it can be observed that finetuning doesn’t increase the accuracy

significantly. Due to the large number of support images (5

compared to 1 in 1-shot), we obtain a higher accuracy 99.13%

compared to 98.17% in Figure 11.

6.4 Comparison between the networks

The Resnet model converges faster in pretraining compared to

the Conv4 model. The training is stopped when the learning rate

reaches 0.00001. The learning rate is reduced to 10% after every 10

epochs if there is no improvement in the loss (a plateau is reached).

A Conv4 model requires a larger number of epochs to converge

during the finetuning phase as well-compared to the Resnet

model (Figures 4, 8). It can be observed that there is a significant

increase of test and validation accuracy during finetuning for the

Conv4 model (Figures 4, 10), while finetuning doesn’t increase the

accuracy of the Resnet-12model by a significant amount (Figures 9,

11). The increase in the number of support set samples from 1 to

5 provides a boost of 5% accuracy for the Conv4 model and 4%

for the Resnet-12 model (comparing the validation accuracies). It

can be inferred that increasing the number of labeled examples for

the unseen classes can be expected to provide about a 4% increase

in accuracy. The gain per increase of labeled examples should

diminish as it converges to supervised learning. The comparison

between the networks based on the different accuracies obtained is

shown in Figure 12.

6.5 Comparison with previous works

The test accuracy and validation accuracy of the 5-shot

approach are compared with the values obtained by training the

Convolutional Neural Network and Capsule Network as provided

in Ramesh et al. (2019a), as mentioned. It can be observed that

the number of epochs required for convergence is similar for all

three networks. The amount of overfitting in the Label Propagation

network is lower as indicated by the 3% difference between

the training and validation accuracies, as mentioned in Table 3.

Compared to the 7% difference in the capsule network and 12%

difference in the CNN used in Vinotheni and Lakshmana Pandian

(2023).

7 Conclusion

A novel offline handwritten character recognition framework

is proposed that has the qualities of robustness to variations

in input and easy generalization. The incorporation of unseen

character classes into the framework doesn’t require the retraining

of the entire network to achieve good accuracy. The incorporation

is also data efficient as it only requires a small number of

TABLE 3 Comparison of accuracy with existing work.

References Method Accuracy
obtained

Karthik and Srikanta

Murthy (2018)

Deep belief network 97.04%

Rasheed et al. (2022) AlexFT 97.08%

Vinotheni and

Lakshmana Pandian

(2023)

ETEDL-THDR 98.48%

Proposed method (5

shot)

Manifold

smoothing with

label propagation

99.13%

labeled samples to learn to classify the newer classes (only 1

example in 1-shot and five examples in 5-shot). The use of

Resnet-12 (a deep residual CNN), label propagation, and manifold

smoothing helps reduce the effect of training class imbalance

bias as well as reduce the overfitting of the network during

the pretraining phase. The accuracy as obtained at 99.13% on

the 5-shot accuracy makes this framework competitive with its

supervised learning counterparts, despite the large reduction in

the number of labeled samples available (for the novel classes).

The framework can be further enhanced by improving the

matrix inversion complexity by introducing block-sparse and

sparse inversion techniques, which allow for scalability. The

incorporation of the label propagation algorithm into an LSTM

and language model system will help in creating few-shot learning-

based word, sentence, and document optical character recognition

systems.
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Introduction: Despite advancements in face anti-spoofing technology, 
attackers continue to pose challenges with their evolving deceptive methods. 
This is primarily due to the increased complexity of their attacks, coupled with 
a diversity in presentation modes, acquisition devices, and prosthetic materials. 
Furthermore, the scarcity of negative sample data exacerbates the situation by 
causing domain shift issues and impeding robust generalization. Hence, there 
is a pressing need for more effective cross-domain approaches to bolster the 
model’s capability to generalize across different scenarios.

Methods: This method improves the effectiveness of face anti-spoofing systems 
by analyzing pseudo-negative sample features, expanding the training dataset, and 
boosting cross-domain generalization. By generating pseudo-negative features 
with a new algorithm and aligning these features with the use of KL divergence loss, 
we enrich the negative sample dataset, aiding the training of a more robust feature 
classifier and broadening the range of attacks that the system can defend against.

Results: Through experiments on four public datasets (MSU-MFSD, OULU-NPU, 
Replay-Attack, and CASIA-FASD), we assess the model’s performance within and 
across datasets by controlling variables. Our method delivers positive results in 
multiple experiments, including those conducted on smaller datasets.

Discussion: Through controlled experiments, we demonstrate the effectiveness 
of our method. Furthermore, our approach consistently yields favorable results 
in both intra-dataset and cross-dataset evaluations, thereby highlighting 
its excellent generalization capabilities. The superior performance on small 
datasets further underscores our method’s remarkable ability to handle unseen 
data beyond the training set.

KEYWORDS

face anti-spoofing, pseudo-negative feature, features generation, feature analysis, 
cross-domain

1 Introduction

With the continuous development of computer technology, identity authentication based on 
face information has been widely used. However, most existing face recognition methods are very 
vulnerable to face prosthesis attacks. Face spoofing attack refers to illegal users attempting to cheat 
the face authentication system and the face detection system through some prosthesis methods, 
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such as print attacks, replay attacks, and mask attacks. Face anti-spoofing 
is developed to detect illegal facial spoofing attacks, thereby improving the 
security of face authentication systems (Yu et al., 2022).

Though facial recognition technology has been widely used in 
biometric authentication, it is susceptible to presentation attacks 
(commonly referred to as “spoofing attacks”), which have attracted 
much attention in secure scenarios. These attack forms include using 
synthesized or fake facial images or information to mimic the facial 
features of legitimate users, thereby bypassing facial recognition 
systems. Examples of such attacks include printed photos, facial digital 
images on electronic screens, 3D masks, and other innovative methods. 
There are special material attacks, where facial models made from 
special materials attempt to evade traditional facial recognition 
systems; meanwhile, virtual generation attacks utilize computer 
graphics and generative adversarial networks (GANs) to produce 
realistic synthetic faces and bypass facial recognition systems; 
additionally, lighting manipulation attacks use lighting effects, special 
lights, or reflective materials to change facial appearance, making it 
challenging for systems to accurately identify faces. Though various 
methods have been proposed to defend against these attacks, existing 
defense methods often lack sufficient generalization ability when 
confronted with unknown attacks types (de Freitas Pereira et al., 2013). 
In practical scenarios, training facial anti-spoofing models to predict 
all types of attacks is a challenging task.

Face anti-spoofing technology, designed to detect and prevent 
fraud in facial recognition, has significantly advanced in recent years, 
yielding promising results. However, a major challenge for current 
methods is their limited ability to generalize to previously unseen or 
novel attack types. In the real world, it’s nearly impossible to anticipate 
and incorporate all potential attack scenarios into the training phase, 
which makes maintaining effectiveness difficult.

As technology evolves and face anti-spoofing techniques become 
more sophisticated, attackers are also adapting their deceptive 
methods, leading to new and more complex attack forms. The vast and 
diverse data space associated with prosthetic attacks, involving high-
quality masks or other facial replicas, poses a significant challenge for 
cross-domain face anti-spoofing. This diversity in attack methods, 
coupled with variations in presentation, acquisition devices, and 
prosthetic materials, complicates the task of developing robust and 
generalizable solutions.

In cross-domain scenarios, where data from multiple sources or 
domains are involved, existing methods often face significant 
challenges in training and testing across various devices and 
materials. These introduce distinct characteristics and variations that 
can greatly impact model performance and reliability. The 
fundamental issue is the inadequacy of negative sample data when 
faced with diverse attacks or perturbations. This scarcity prevents 
models from adequately learning and generalizing to new, unseen 
domains, leading to domain shift issues during learning. There’s an 
urgent need for more robust and effective approaches to address these 
issues and enhance cross-domain performance.

The contributions of this paper are numerous and significant. Firstly, 
we  introduce an innovative algorithm capable of generating pseudo-
negative features by collecting and analyzing features from existing 
datasets. Secondly, we employ the Kullback–Leibler (KL) divergence loss 
function to effectively guide the distribution of the generated virtual 
features, ensuring their alignment with the desired characteristics and 
further optimizing the system’s accuracy. Finally, our approach has 

achieved promising results across multiple cross-domain tests, 
demonstrating robust performance. Overall, our contributions advance 
the state-of-the-art in face anti-spoofing technology.

2 Related work

At the initial stage, manually annotated features were used to 
construct face anti-spoofing. Määttä et al. (2011) developed a method 
based on the analysis of facial textures to determine whether there is a 
living person or facial imprint in front of the camera. de Freitas Pereira 
et al. (2014) extracted local binary patterns (LBP) features in three 
orthogonal planes of spatiotemporal space for face fraud detection. 
Similarly, most of the histogram-based 2D features can be generalized 
to their corresponding 3D forms. In recent years, face anti-spoofing 
based on deep learning has attracted much attention. Compared with 
traditional hand-crafted features, deep features learned by the neural 
network have a more robust representation ability, and the accuracy of 
the trained model is also greatly enhanced. Yang et al. (2014) first 
applied the Convolutional Neural Network (CNN) to face anti-
spoofing by using the AlexNet network model as a feature extractor to 
extract the features of the original image and using the Support Vector 
Machine (SVM) for classification. Menotti et al. (2015) employed the 
hyperparameter search method to find a suitable CNN network 
structure for face fraud detection. To narrow the search range of 
hyperparameters, the searched CNN contained at most three 
convolutional layers. Rehman et al. (2017) trained an 11-layer VGG 
network and two variant networks in an end-to-end manner for face 
fraud detection. Nagpal and Dubey (2019) investigated deeper face 
fraud detection based on ResNet and GoogLeNet. Li et al. (2016) used 
transfer learning to extract features after fine-tuning the pre-trained 
VGG face model, which mitigated overfitting in the model. Some 
researchers replaced the original hand-crafted features with features 
learned by the network (Cai et al., 2022). Additionally, the optical flow 
feature provides an effective method for extracting motion information 
from videos (Simonyan and Zisserman, 2014; Sun et al., 2016, 2019). 
Yin et al. (2016) found motion cues of face fraud based on optical flow 
features. Pinto et  al. (2015) proposed a feature based on low-level 
motion features and mid-level visual encoding for face fraud detection. 
De Marsico et al. (2012) extracted geometrically invariant features 
around facial feature points to detect cues in video replay. Moreover, 
some studies used temporal features between consecutive frames for 
face anti-spoofing (Wang et al., 2022a).

In the early stage, the deep learning-based detection algorithm 
employed the softmax loss function for face authenticity classifications. 
Although these methods improved the detection performance on a 
single database, their generalization ability remained challenging 
when tested across data sets. Different from the previous binary 
classification approach, Liu et al. (2018) proposed training networks 
using auxiliary information. This method combined face depth 
information and rPPG (remote photoplethysmography) as an 
auxiliary supervised guidance model to learn essential features, and it 
achieved a good detection effect. Kim et  al. (2019) introduced 
reflection-based supervision based on depth graph supervision, which 
further improved the network’s detection performance. Moreover, Li 
et al. (2020) and Yu et al. (2020) proposed new convolution operators 
and loss functions for live face detection, respectively. To better resist 
various unknown attacks and improve the generalization ability of 
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deep models across data sets, researchers also used zero-shot learning 
(Liu et al., 2019), domain adaptation, and domain generalization to 
enhance the model’s generalization ability (Saha et al., 2020; Wang 
et al., 2021). To obtain better domain generalization approaches, Jia 
et al. (2020) proposed an end-to-end single-side domain generalization 
framework (SSDG) to improve the generalization ability of face anti-
spoofing. Furthermore, Dong et al. (2021) proposed an end-to-end 
open-set face anti-spoofing (OSFA) approach for recognizing unseen 
attacks. However, the accuracy and generalization ability of 
classification models are still areas of active research.

In recent years, the application of transformers in the visual 
domain has led to numerous advancements in addressing domain 
generalization issues. Specifically, approaches like the Domain-
invariant Vision Transformer (DiVT) have effectively leveraged 
transformers to enhance the generalization capabilities of face anti-
spoofing tasks (Liao et  al., 2023). Additionally, initializing Vision 
Transformers (ViT) with pre-trained weights from multimodal 
models such as CLIP has been shown to improve the generalization of 
FAS tasks (Srivatsan et al., 2023). Furthermore, adaptive ViT models 
have been introduced for robust cross-domain face anti-spoofing 
(Huang et al., 2022). By employing overlapping patches and parameter 
sharing within the ViT network, these approaches efficiently utilize 
multiple modalities, resulting in computationally efficient face anti-
spoofing solutions (Antil and Dhiman, 2024).

To further enhance domain generalization, unsupervised or self-
supervised methods have been employed during model construction 
and training. One such approach involves stylizing target data to 
match the source domain style using image translation techniques and 
then classifying the stylized data using a well-trained source model 
(Zhou et al., 2022a). Additionally, novel frameworks such as Source-
free Domain Adaptation for Face Anti-Spoofing (SDAFAS; Liu et al., 
2022a) and a source data-free domain adaptive face anti-spoofing 
framework (Lv et al., 2021) have been proposed to tackle issues related 
to source knowledge adaptation and target data exploration in a 
source-free setting. These frameworks aim to optimize the network in 
the target domain without relying on labeled source data by treating 
it as a problem of learning with noisy labels.

Moreover, a new perspective for domain generalization in face 
anti-spoofing has been introduced that focuses on aligning features at 
the instance level without requiring domain labels (Zhou et al., 2023). 
Frameworks like the Unsupervised Domain Generalization for Face 
Anti-Spoofing (UDGFAS) exploit large amounts of easily accessible 
unlabeled data to learn generalizable features (Liu et al., 2023), thereby 
enhancing the performance of FAS in low-data regimes. These 
approaches explore the relationship between source domains and 
unseen domains to achieve effective domain generalization.

Additionally, a self-domain adaptation framework has been proposed 
that leverages unlabeled test domain data during inference time (Wang 
et al., 2021). Another approach involves encouraging domain separability 
while aligning the live-to-spoof transition (i.e., the trajectory from live to 
spoof) to be consistent across all domains (Sun et al., 2023). The Adaptive 
Mixture of Experts Learning (AMEL) framework (Zhou et al., 2022b) 
exploits domain-specific information to adaptively establish links among 
seen source domains and unseen target domains, further improving 
generalization. A generalizable Face Anti-Spoofing approach based on 
causal intervention is proposed, aiming to enhance the model’s 
generalization ability in unseen scenarios by identifying and adjusting 
domain-related confounding factors (Liu et al., 2022b).

Studying the local features of images has also proven beneficial for 
achieving good domain generalization. For instance, PatchNet 
reformulates face anti-spoofing as a fine-grained patch-type recognition 
problem, recognizing combinations of capturing devices and presentation 
materials based on patches cropped from non-distorted face images 
(Wang C. Y. et al., 2022). Furthermore, a novel Selective Domain-invariant 
Feature Alignment Network (SDFANet) has been proposed for cross-
domain face anti-spoofing. This network aims to seek common feature 
representations by fully exploring the generalization capabilities of 
different regions within images (Zhou et al., 2021).

The current limited cross-domain performance of facial liveness 
detection methods is due to the incomplete nature of negative sample 
data under diverse attacks. Based on the above research, considering 
that the existing feature information is not complete while disregarding 
the relationship between features, this paper proposes a new face anti-
spoofing method based on CNN to generate pseudo-negative feature 
data of the training sample, and then calculate the feature distribution, 
and control the generation of the virtual feature distribution by using 
the KL divergence loss function. Additionally, based on the generated 
new pseudo data, the proposed method employs a collaborative 
training algorithm with the original features to improve the 
generalization performance of face anti-spoofing systems.

3 Proposed method

Face anti-spoofing is a binary classification task (real/fake). Unlike 
typical coarse-grained binary classification tasks, the liveness detection 
task exhibits a property that is inconsistent with human visual 
distance, as illustrated in Figure 1.

Currently, most of the studies on face anti-spoofing systems focus 
on increasing the type and number of attack samples to enhance the 
stability and generalization of face anti-spoofing systems. However, 
due to the unseen data in the training stage, the original method has 
some limitations in dealing with unknown attack methods.

By analyzing existing face anti-spoofing methods, it is observed that 
the incompleteness of negative samples is the primary factor limiting the 
algorithm’s cross-domain performance. Therefore, this method aims to 
research pseudo-negative sample features, expand the training dataset, 
and improve the cross-domain generalization of face anti-spoofing 
methods. First, to address the issue of incomplete negative samples, this 
study generates pseudo-negative features based on the distribution of 
bona fide and attack features. These features complement existing negative 
class data, enhancing the diversity and completeness of the negative 
sample dataset. Then, this study uses pseudo-negative features together 
with existing negative class data to assist in training a feature classifier for 
real faces, further adjusting the parameters of the feature extractor. The 
generation of pseudo-negative features leads to more comprehensive 
negative sample features during training, making the system cover attack 
data in a broader range of scenarios and thus improving the generalization 
of the detection method.

In the context of prosthetic attacks, there exists a certain level of 
feature dispersion across various attack scenarios, suggesting a wider 
intra-class variation. Due to this, cross-scenario liveness detection 
poses a certain challenge, and collecting all types of attack data during 
the training process can be challenging. The differences in intra-class 
distribution between seen and unseen attack types often lead to 
domain shift issues. To tackle these challenges, this study employs a 
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technique for generating pseudo-negative class features, aiming to 
directly learn the mapping between the visual space of images and the 
semantic space of features. This method can avoid information loss. 
Finally, this study develops an end-to-end training model applicable 
to cross-domain face liveness detection.

The method proposed in this paper comprises of feature analysis, 
feature generation, and collaborative training. As illustrated in Figure 2, 
the general workflow of the method is as follows: First, after images are 
inputted, the CNN generates multi-dimensional feature tensor data 
from the training samples. Then, the tensor data is analyzed to generate 
new feature data based on their feature distribution and KL divergence 
value. Meanwhile, attack types and unseen data from the training stage 
are incorporated to augment the original set of negative features. 
Finally, the model is trained using both virtual and existing sample 
features, allowing us to gather the feature distribution of bona fide 
samples and subsequently improve the accuracy and robustness of live 
face detection.

During the feature generation process, the corresponding feature 
distributions are computed by leveraging the extracted features from 
both attack and bona fide images. Then, the distribution data is fed 
into the data generator Dp, which uses a random data generator based 
on these distributions to generate a pseudo-negative feature 
distribution PP that fits the attack feature distribution. The structure 
of the data generator Dp is presented in Figure 3.

This section introduces the proposed method from three aspects: 
feature analysis, feature generation, and loss function.

3.1 Feature analysis

In this paper, we utilize Android and laptop camera devices to 
acquire face images and subsequently calculate their feature 
distributions, aiming to analyze the disparities between real and attack 
face images. As depicted in Figure 4A, it is evident that regardless of 

FIGURE 1

(A) True and false samples of different people in human vision; (B) True and false samples of different people in the living body detection classifier.

FIGURE 2

The structure diagram of generating pseudo-negative features for face anti-spoofing. The real and attack images are input into the CNN to extract the bona 
fide features and attack features. Then, the distribution of the attack features and the distribution of the bona fide features are obtained. These two feature 
distribution data are fed into the pseudo-negative feature generator to generate the distribution of pseudo-negative features. Finally, the classification task is 
completed by going through the Fc and the softmax layers. Facial images reproduced with permission from OULU-NPU dataset (Boulkenafet et al., 2017a).
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the capturing device used, the features of bona fide face images 
conform to a normal distribution, resulting in a relatively clustered 
pattern. Figure 4B illustrates the image features of attack faces across 
three distinct display media: three variations of iPad replay video 
attacks, iPhone replay video attacks, and photo print attacks. Notably, 
the feature distribution of attack face images employing different 
display media appears scattered, highlighting the variations in feature 
distribution among diverse attack methodologies.

In light of the characteristics of normal distribution, we aim to 
generate pseudo-negative feature data from the original sample feature 
data in order to enhance network performance. Toward this objective, 

our paper proposes a methodological framework. Initially, we examine 
the extracted feature data from the training samples obtained via 
Convolutional Neural Networks (CNNs). Subsequently, we synthesize 
pseudo-negative feature data that closely resembles the original 
sample feature data, ensuring alignment with the inherent 
distributional properties. Finally, we incorporate this pseudo-negative 
feature data into the classifier training process, with the ultimate goal 
of bolstering the accuracy and generalization capabilities of the face 
anti-spoofing system.

In face anti-spoofing systems, bona fide sample data are typically 
acquired through equipment-based face data collection. Conversely, 

FIGURE 3

The pseudo-negative feature generator Dp . The PA  of attack features and the PR  of bona fide features are input into Dp . Firstly, according to PA , 
the random generator is used to generate the PM  that fits the distribution of PA , and the loss function Lp  is designed to optimize the distribution 
PM  of generated pseudo-negative features. To prevent overfitting of the data, a random noise Pθ  is generated according to PA , and the final virtual 

feature distribution PP  is obtained by combining Pθ  with PM .

FIGURE 4

The distribution of the feature tensors of the statistical images. (A) The statistical tensor distribution of bona fide images of different types, and (B) the 
tensor of all types of attack images in the statistical dataset.
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attack samples, encompassing image-based and video replay assaults, 
primarily initiate with frontal face information gathering followed by 
secondary imaging involving facial prostheses via shooting equipment. 
Notably, while the bona fide sample collection method remains 
consistent across various data sets, attack samples may exhibit a more 
scattered distribution due to disparities in devices and attack 
methodologies (Jia et al., 2020). This difference makes the real face 
features of different data sets more likely to gather than the attack face 
features. In the practical application of the face anti-spoofing system, 
the classification boundary trained based on existing datasets may 
lead to overlapping characteristics between bona fide and novel attack 
sample data in certain domains, thereby impeding accurate 
classification. As illustrated in Figure 5A, the classification boundary 
delineates the feature space into bona fide and attack regions. To 
enhance system performance and ensure robust responsiveness to 
emerging attacks encountered in real-world scenarios, this study 
introduces the generation of pseudo-negative feature data (depicted 
in Figure  5B). This approach serves to augment the feature 
representation of samples, facilitating the clustering of bona fide data 
and optimizing classification outcomes. Consequently, the accuracy 
and generalization capabilities of face anti-spoofing systems are 
substantially improved.

3.2 Feature generation

In terms of current technology, the collection method for real face 
data across various datasets is relatively straightforward, as the 
equipment gathers facial data information directly. Consequently, the 
feature information of attack face samples tends to be more scattered 
compared to bona fide faces. Additionally, in practical applications, 
numerous unseen novel attack methods will arise. Therefore, the 
feature generation module performs feature generation and completes 
the new attack features in the unknown domain.

According to the analysis presented in section 3.1, the proposed 
image features follow a normal distribution, and the mean value and 
standard deviation can be calculated. In this study, a feature sequence 
that matches the mean and standard deviation of the original feature 

is randomly generated. Assuming PR is the distribution of the bona 
fide sample data, PA is the distribution of the attack sample data, and 
PP is the distribution of the generated features. To make the model 
achieve better performance, relative entropy, also known as Kullback–
Leibler divergence, is used as the loss function of the feature-
generating module. In the initialization process, P PP A= , i.e., the 
generated features and the attack sample features remain in the same 
distribution. At this time, the ( )||KL P RD P P  has the minimum value, 
and the classification problem is relatively simple. In the optimization 
process, the distribution of pseudo-negative features approaches the 
bona fide sample gradually, which increases the multiformity of the 
attack sample, promotes the gathering of bona fide features, improves 
the classification accuracy of the face anti-spoofing system, and 
enhances the generalization of invisible new attacks. The loss function 
of feature generation is shown in the following Equation (1).

 
L

D P P
D P P D P PPseudo

KL P R

KL P A KL P R
=

( )
( ) + ( )

||
|| ||

 (1)

As shown in Equation (2), where X A represents the tensor data of 
the attack sample extracted by the feature extractor, Xi randomly 
generates the data according to the mean and variance of the attack 
and the bona fide sample tensor, and Xθ  represents the random noise 
generated according to the Dp.

 
D

N
X X Xp

i

N

i
A i= − +

=
∑1

1

2min || || θ

 (2)

3.3 Loss function

After generating the pseudo-negative feature data, it should 
be  integrated into the face anti-spoofing system to enhance its 
performance. The cross-entropy loss function can be employed in 
neural networks as a metric to assess the similarity between the 

FIGURE 5

The goal of the proposed method. (A) The classification boundary without adding pseudo-negative features, and (B) the classification boundary after 
adding pseudo-negative features.
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distribution of bona fide markers and the distribution predicted by the 
trained model. In this study, both the original feature data and the 
generated pseudo-negative feature data are concurrently fed into the 
loss function, aiming to enhance the generalizability and stability of 
the face anti-spoofing system in real-world applications. The overall 
network loss is defined as Equation (3):

 L L LWhole ce Pseudo= +ϑ ϑ1 2  (3)

where LWhole represents the overall loss function of the network, 
Lce represents the loss function of the original features, ϑ1 denotes the 
weight parameter of the original features, LPseudo is the loss function 
of the newly generated features, and ϑ2 denotes the weight parameter 
of the newly generated features. The visual representation of the roles 
played by Lce and LPseudo in the processes of feature generation and 
classifier boundary training is depicted in Figure 6.

4 Experimental setup

4.1 Databases

To evaluate the effectiveness of the proposed algorithm, it was 
tested on three publicly available face datasets, including MSU-MFSD 
(Wen et  al., 2015), OULU-NPU (Boulkenafet et  al., 2017a), and 
Replay-Attack (Chingovska et al., 2012).

The MSU-MFSD dataset (shown in Figure 7) was released by 
Michigan State University in 2015. Currently, it consists of 280 videos, 
publicly available and featuring 35 individuals. The dataset consists of 
three attack types: iPad air video replay attack, iphone5S video replay 
attack, and A3 paper printed photo attack.

The OULU-NPU dataset (shown in Figure 8) was released by the 
University of Oulu in Finland in 2017. It consists of 4,950 video clips, 
captured from 55 participants with 90 videos collected per participant. 
The dataset consists of four types of attacks: photo attacks printed by 
two different printers, and video replay attacks displayed by two 
different display devices.

The Replay-Attack dataset (shown in Figure 9) was released 
in 2017 and is comprised of 1,200 video clips. These videos 
feature 50 clients and showcase attack attempts under varying 
lighting conditions.

Since the dataset comprises entirely of video files, all videos and 
images were extracted frame-by-frame, and all images have undergone 
normalization. In these datasets, there are more attack samples than 
bona fide samples, with a large difference in number. During the 
training process, the quantity of attack and bona fide samples was 
carefully balanced to maintain a similar range, aiming to minimize 
both data quantity and the chance of overfitting. During data set 
division, owing to the varied nature of attack samples, the quantity of 
data samples gathered within identical environmental conditions was 
two to four times higher compared to bona fide samples. Therefore, 
the attack sample takes the image by the proportion of the bona fide 
sample. In contrast, the attack sample is often intercepted to maintain 
the amount of the two data in a similar range.

4.2 Experimental metrics

In face anti-spoofing, there are four types of prediction results: 
True Positives (TP), where positive samples are predicted by the model 
as positive classes; True Negatives (TN), where negative samples are 
predicted by the model as negative classes; False Positives (FP), where 
negative samples are predicted by the model as positive classes; False 

FIGURE 6

The visual representation of the roles played by Lce  and LPseudo  in the processes of feature generation and classifier boundary training.
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FIGURE 9

Some samples of the subjects recorded in the Replay-Attack dataset. Images reproduced with permission from Replay-Attack dataset (Chingovska et al., 2012).

Negatives (FN), where positive samples are predicted by the model as 
negative classes.

Performance evaluation indicators include Attack Presentation 
Classification Error Rate (APCER), Bona Fide Presentation 

Classification Error Rate (BPCER), Average Classification Error Rate 
(ACER), Half Total Error Rate (HTER), and Area Under the ROC 
Curve (AUC). These performance indicators are calculated as follows 
Equations (4–7):

FIGURE 7

Some samples of the subjects recorded in the MSU-MFSD dataset. Images reproduced with permission from MSU-MFSD dataset (Wen et al., 2015).

FIGURE 8

Some samples of the subjects recorded in the OULU-NPU dataset. Images reproduced with permission from OULU-NPU dataset (Boulkenafet et al., 2017a).
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APCER FP

TN FP
=

+  (4)

 
BPCER FN

TP FN
=

+  (5)

 
ACER APCER BPCER

=
+

2 0.  (6)

 
HTER FAR FRR

=
+

2 0.  (7)

where FAR represents the false acceptance rate, and it is calculated 
as FAR FP FP TN= +( )/ , and FRR represents the false rejection rate, 
and it is calculated as FRR FN FN TP= +( )/ .

4.3 Experimental environment

The experiment was conducted on a computer equipped with an 
AMD Ryzen 75,800× 8-Core CPU, 32 GB memory, and Nvidia GTX 
3060 GPU (12 GB video memory), and the computer runs the 
Windows 10 operating system. The proposed algorithm was 
implemented based on the PyTorch framework. The Adam optimizer 
was adopted for model optimization with a learning rate of 2.00e-4 
and a batch size of 32.

5 Experimental results

5.1 Control experiment

In this paper, as a control group, the deep learning network 
AlexNet was trained and tested on the OULU-NPU dataset and 
MSU-MFSD dataset (Krizhevsky et al., 2012). Based on the native 
AlexNet, a pseudo-negative feature generation module was added, and 
then the model was trained and tested on two datasets. The 
performance of the two models on the OULU-NPU and MSU-FASD 
datasets is presented in Tables 1, 2, respectively. The results in the two 
tables show that in the model with the pseudo-negative feature 
generation module, APCER significantly decreased; in most protocols, 

BPCER reduced correspondingly, and the overall ACER 
was diminished.

5.2 Experimental discussion

The experiment evaluated the performance of the intra-test and 
inter-test. Specifically, the training and testing were performed on the 
same dataset, which can reflect the performance of the algorithm; 
cross-datasets indicate that the training set and test set are from 
different data sets, and the test on these datasets can usually reflect the 
generalization ability of the algorithm.

The experiments first compared the results of fusing different 
features on two datasets, followed by comparing the results of different 
fusion methods on two datasets, then compared the proposed method 
with some popular methods, and finally evaluated performance across 
databases on two datasets. The experimental results demonstrated the 
effectiveness of the proposed face detection method in face 
anti-spoofing.

The following four experiments were set for comparison in 
Table 3. Since there are four protocols in the OULU-NPU dataset, 
protocol 2 was selected based on the features of the 
MSU-MFSD dataset.

Experiment 1: AlexNet networks without the pseudo-negative 
feature generator were tested with an intra-test on the OULU-NPU 
and MSU-MFSD datasets.

Experiment 2: AlexNet networks with the pseudo-negative feature 
generator were tested with an intra-test on the OULU-NPU and 
MSU-MFSD datasets.

Experiment 3: AlexNet networks without the pseudo-negative 
feature generator were tested with an inter-test on the OULU-NPU 
and MSU-MFSD datasets.

Experiment 4: AlexNet networks with the pseudo-negative feature 
generator were tested with an inter-test on the OULU-NPU and 
MSU-MFSD datasets.

To evaluate the effectiveness of our method, in Table  4, the 
OULU-NPU dataset was used to train and test the AlexNet and 
AlexNet+our (AlexNet network using the pseudo-feature generator), 
respectively, and the performance evaluation metrics were calculated. 
The results indicated that the proposed method achieved comparable 
performance with state-of-the-art methods (LBP + SVM, GRADIANT, 
and MILHP). We tested our model on the Replay-Attack dataset, as 
shown in Table 5. Compared with the state-of-the-art methods from 
the past 3 years (RGB+LBP and multilevel+ELBP), our model 
achieved superior performance in terms of accuracy and other 
evaluation metrics.

As shown in Table  3, the APCER of the AlexNet using a 
pseudo-negative feature generator decreased significantly on 
both within-set and cross-set tests, and BPCER also decreased, 
with only a few parts increasing slightly. The comparison results 
in Table 4 show that on the OULU-NPU dataset, the performance 

TABLE 1 The performance on the OULU-NPU dataset.

Protocol Model APCER 
(%)

BPCER 
(%)

ACER (%)

I
AlexNet 0.94 79.90 40.42

AlexNet+our 0.01 63.19 31.60

II
AlexNet 14.46 6.78 10.62

AlexNet+our 5.06 10.46 7.76

III
AlexNet 3.40 ± 2.98 11.56 ± 7.58 7.17 ± 3.72

AlexNet+our 2.33 ± 2.33 9.75 ± 5.25 6.04 ± 1.45

IV
AlexNet 9.07 ± 9.07 58.87 ± 33.87 32.84 ± 16.00

AlexNet+our 3.53 ± 3.53 55.88 ± 25.88 29.71 ± 11.17

TABLE 2 The performance on the MSU-FASD dataset.

Model APCER (%) BPCER (%) ACER (%)

AlexNet 1.47 5.27 3.37

AlexNet+our 1.39 3.99 2.69
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TABLE 4 Comparable performance on the OULU-NPU dataset.

Protocol Model APCER (%) BPCER (%) ACER (%)

I

LBP+SVM (George and Marcel, 2019) 12.9 51.7 32.3

GRADIANT (Boulkenafet et al., 2017b) 1.3 12.5 6.9

MILHP (Lin et al., 2018) 8.3 0.8 4.6

AlexNet 0.9 79.9 40.4

AlexNet+our 0.0 63.2 31.6

II

LBP+SVM (George and Marcel, 2019) 30.0 20.3 25.1

GRADIANT (Boulkenafet et al., 2017b) 3.1 1.9 2.5

MILHP (Lin et al., 2018) 5.6 5.3 5.4

AlexNet 14.5 6.8 10.6

AlexNet+our 5.06 10.46 7.76

III

LBP+SVM (George and Marcel, 2019) 28.5 ± 23.1 23.3 ± 18.0 25.9 ± 11.3

GRADIANT (Boulkenafet et al., 2017b) 2.6 ± 3.9 5.0 ± 5.3 3.8 ± 2.4

MILHP (Lin et al., 2018) 1.5 ± 1.2 6.4 ± 6.6 4.0 ± 2.9

AlexNet 3.4 ± 3.0 11.6 ± 7.6 7.2 ± 3.7

AlexNet+our 2.3 ± 2.3 9.8 ± 5.3 6.0 ± 1.5

IV

LBP+SVM (George and Marcel, 2019) 41.67 ± 27.03 55 ± 21.21 48.33 ± 6.07

GRADIANT (Boulkenafet et al., 2017b) 5.0 ± 4.5 15.0 ± 7.1 10.0 ± 5

MILHP (Lin et al., 2018) 15.8 ± 12.8 8.3 ± 15.7 12.0 ± 6.2

AlexNet 9.1 ± 9.1 58.9 ± 33.9 32.8 ± 16.0

AlexNet+our 3.5 ± 3.5 55.9 ± 25.9 29.7 ± 11.2

of AlexNet is not outstanding, and there is a significant 
performance gap with the mainstream methods. In contrast, the 
AlexNet using a pseudo-negative feature generator showed good 
performance in training and testing. The APCER and BPCER 
were significantly improved compared with those of AlexNet, and 
they were close to the performance evaluation indicators of 
mainstream methods.

To test the model’s generalization performance, cross-dataset 
testing was conducted on the MSU-MFSD dataset (referred to as M), 

OULU-NPU dataset (referred to as O), Replay-Attack dataset 
(referred to as R), and CASIA-FASD dataset (referred to as C; Zhang 
et al., 2012). Then, the results were compared with those of other 
mainstream experiments, as shown in Table 6. To further verify the 
performance of the model, we reduced the data set used for training. 
The experimental results are shown in Table 7. From Table 7, it can 
be  observed that, when using a smaller dataset, our method can 
achieve results close to or even surpass those obtained from training 
on larger datasets.

TABLE 3 Comparison of the experimental results.

Experiment MSU-MFSD OULU-NPU

APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%)

1 1.47 5.27 3.37 14.46 6.78 10.62

2 1.39 3.99 2.69 5.06 10.46 7.76

3 20.71 65.23 42.97 25.36 45.82 35.59

4 20.07 65.97 43.02 7.29 35.41 21.35

TABLE 5 Comparable performance on the Replay-Attack dataset.

Model HTER(%) EER(%)

RGB+LBP (Antil and Dhiman, 2023) 4.58 9.69

Multilevel+ELBP (Antil and Dhiman, 2022) 0.00 0.00

Dropblock (Wu et al., 2021) 0.29 0.00

Our 0.00 0.00
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5.3 Feature distribution

The feature visualization algorithm was utilized to extract and 
compute the features of the training images, whose cosine distance is 
depicted in Figure  10. Specifically, Figure  10A presents the distance 
between the attack and the bona fide samples in the training phase. It can 
be seen that there is a large distance between the bona fide samples and 

the attack samples, and there are many blank unknown regions between 
the two types of samples. Since the face anti-spoofing system in practical 
applications may encounter some new attack data that did not appear in 
training, this paper generated false negative samples between the bona fide 
and attack samples. As shown in Figure 10B, the pseudo-negative samples 
are closer to the bona fide samples, indicating that the classification 
boundary of the face anti-spoofing system, during training, is more biased 

TABLE 6 Comparison of the results between our experiment and the state-of-the-art in cross-domain face anti-spoofing detection.

Methods O&C&R-to-M O&M&R-to-C O&C&M-to-R R&C&M-to-O

ACER(%) AUC(%) ACER(%) AUC(%) ACER(%) AUC(%) ACER(%) AUC(%)

MADDG (Shao 

et al., 2019)
17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02

ANRL (Liu et al., 

2021b)
10.83 96.75 17.85 89.26 16.03 91.04 15.67 91.90

SSAN (Wang 

et al., 2022b)
6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

Our 7.12 98.06 11.54 99.21 3.88 98.17 8.36 98.78

TABLE 7 Comparative cross-dataset testing results for similar models.

Experiment Model Train(videos) HTER(%) AUC(%)

M to R
Multilevel+ELBP (Antil and 

Dhiman, 2022)
280 24.3 -

M to R Our 280 21.10 92.36

R&M to O SSDG (Jia et al., 2020) 1,480 36.01 66.88

R&M to O D2AN (Chen et al., 2021) 1,480 27.70 75.36

R&M to O DRDG (Liu et al., 2021a) 1,480 33.35 69.14

R&M to O ANRL (Liu et al., 2021b) 1,480 30.73 74.10

R&M to O SSAN (Wang et al., 2022b) 1,480 29.44 76.62

M to O Our 280 26.24 83.77

FIGURE 10

The feature cosine distance of images during training. (A) The training without using pseudo-negative features, (B) the training using pseudo-negative 
features.
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toward the bona fide samples. In practical applications, the face anti-
spoofing system can achieve a good identification effect for new attacks 
that have not appeared in the dataset.

6 Conclusion

In this paper, a face anti-spoofing algorithm is proposed based on 
generated pseudo-negative features. Through continuous iteration, the 
original face anti-spoofing system achieves higher accuracy and 
robustness. Meanwhile, by adding pseudo-negative features, good 
results have been obtained in detecting attack samples. It shows that 
adding pseudo-negative class features enables the model to detect 
negative samples, and this affects the detection of positive examples in 
some cases. In this study, by constantly adjusting the strategy, new 
features are continually generated based on the image’s original 
features. Concurrently, a face anti-spoofing system is devised to 
counter emerging attacks within the feature space, resulting in the 
development of more effective strategies. Furthermore, this study 
promotes aggregation among bona fide examples while increasing 
scatter among attack examples, consequently bolstering the model’s 
robustness in unfamiliar territories. In future work, we will focus on 
eliminating the influence on positive examples to improve their 
detection effect.
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Multimodal medical fusion images (MMFI) are formed by fusing medical images

of two or more modalities with the aim of displaying as much valuable

information as possible in a single image. However, due to the different

strategies of various fusion algorithms, the quality of the generated fused images

is uneven. Thus, an effective blind image quality assessment (BIQA) method is

urgently required. The challenge of MMFI quality assessment is to enable the

network to perceive the nuances between fused images of different qualities,

and the key point for the success of BIQA is the availability of valid reference

information. To this end, this work proposes a generative adversarial network

(GAN) -guided nuance perceptual attention network (G2NPAN) to implement

BIQA for MMFI. Specifically, we achieve the blind evaluation style via the design

of a GAN and develop a Unique Feature Warehouse module to learn the effective

features of fused images from the pixel level. The redesigned loss function

guides the network to perceive the image quality. In the end, the class activation

mapping supervised quality assessment network is employed to obtain the MMFI

quality score. Extensive experiments and validation have been conducted in a

database of medical fusion images, and the proposed method is superior to the

state-of-the-art BIQA method.

KEYWORDS

generative adversarial networks, image quality assessment, multimodal medical fusion
image, perceptual, objective evaluation metrics

1 Introduction

Over the past decade, medical images such as computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography (PET) and single photon
emission computed tomography (SPECT) have played an increasingly important role in
diagnosis, treatment, follow-up recommendations and intraoperative navigation of diseases
(Zhou et al., 2020; He et al., 2023; Honkamaa et al., 2023). Depending on the theory
of medical imaging techniques and the image features characterized by each modality,
multimodal medical images can be simply divided into structural and functional images.
The former can precisely locate the lesion and show the structural changes of the lesion,
while the latter can sensitively reflect the physiological, biochemical and functional changes
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of the tissues and organs in the body, making it easier to detect the
lesion. For instance, Figure 1A shows an MR image of a brain with
glioma, from which the localization information and the internal
structure of the tumor can be known, while the edematous region
can be found to occupy almost more than half of the area of
this tomography. Unfortunately, radiologists are not yet able to
recognize the pathological features of the tumor from this image
alone. Figure 1B shows the PET image of this case. The images of
this modality do not have detailed information on brain structure,
but it is very easy to identify the lesions with significant abnormal
foci of radioactive concentration in the area of the lesion. Based on
the imaging features of the above two modalities, the radiologists
can then diagnose this disease and even complete a preliminary
pathological grading, as shown in Figure 1C. Similarly, Figure 1
also displays a group of cerebral infarction cases where the images
of the two modalities express different imaging features. As can be
seen from the example, the diagnosis of a particular disease may
require reference to multiple modalities at the same time. In view of
the fact that the mono-modal image may not be enough to support
the conclusion of disease diagnosis, some studies have gradually
proposed to integrate the feature advantages of various modalities
of medical images through image fusion technology. In addition,
many literatures have reported that radiologists can significantly
improve the accuracy of disease diagnosis, when they view medical
images in multiple modalities simultaneously (Li and Zhu, 2020; Xu
and Ma, 2021; Zhou et al., 2023).

Multi-modality medical image fusion (MMIF) is a technique
that integrates the medical images obtained from two or more
medical imaging devices, extracts the useful information from
their respective modalities to maximize, and ultimately forms a
comprehensive image (Zhang et al., 2020; Zhang G. et al., 2023; Liu
et al., 2024b). Nowadays, image fusion methods specifically for the
field of medical images have been vigorously developed, and various
excellent fusion algorithms have also been proven in practice.
However, due to the different principles of these fusion algorithms,
the quality of the generated fusion images is uneven, which needs to
be measured by a unified set of standards. Generally, the most direct
way to assess the fused image is to have the fused image observed
and analyzed by a radiologist. Although this subjective evaluation
method can give a score consistent with the human visual system
(HVS), but, the quality score of the fused image is influenced by
the environment, and cannot be directly analyzed quantitatively
due to the direct human involvement. More importantly, subjective
assessment is a time-consuming and labor-intensive process (Lei
et al., 2022; Liu et al., 2022). This would not be permissible in an
already rushed clinical setting.

In contrast to the subjective evaluation, objective evaluation
methods detect some indicators of the image to measure the
quality of the fused image, such as mutual information (MI),
peak signal-to-noise ratio (PSNR), or structural similarity (SSIM).
These metrics have achieved excellent achievements in the field
of natural image quality assessment (Wang J. et al., 2021).
However, it is undeniable that these metrics tend to assess more
general properties of images, and are not suitable for assessing
medical fused images. This is primarily in a clinical setting, a
medical fusion image with excellent quality may not be because
it has a high signal-to-noise or anything, but because this
fusion image effectively helps the physician to make a diagnostic
decision. As mentioned earlier, each modality of medical images

expresses unique imaging features. The traditional image quality
evaluation methods may ignore the unique feature representation
of medical fused images, resulting in the evaluation results that
are inconsistent with those of radiologists. Such analytical findings
motivated us to find way to represent such unique features when
developing MMIF-specific quality evaluation metrics. Particularly,
the mean opinion score (MOS) given by radiologists serves
perfectly as the ground truth for the quality of fused images. If
the network could learn the difference between images with lower
and higher MOS, this will be more valuable for the model to
assess the quality of the fused images. Furthermore, in practical
application scenarios, a completely distortion-free fused reference
image (i.e., optimal quality) is difficult, or even impossible, to
obtain.

To overcome these problems, in this paper, we propose a
GAN-guided nuance perceptual attention network (G2NPAN) for
implementing blind image quality assessment (BIQA). A method
specifically designed for quality assessment of multimodal
medical fusion images.

Specifically, to learn the nuances between different fused
images, we use a generative adversarial network (GAN). It has
been realized in our previous work that effective spatial feature
extraction techniques for image texture and shape can effectively
improve the effectiveness of image quality assessment. Therefore,
we designed an overlapping structure in the generator, named
Unique Feature Warehouse (UFW), to learn spatial features of
the fused images from the pixel level and enhance the ability
of the network to learn the perception of quality differences
between different fused images. Because the purpose of this
paper is to accurately assess multimodal medical fusion images,
rather than to obtain a perfect fusion image, we redesigned
the loss function of the discriminator according to the clinical
requirements for image quality. Although GAN can provide
powerful guidance for the quality assessment of multimodal
medical fusion images, it is still challenging to fully utilize
such information. Therefore, we designed the attention-based
quality assessment network (AQA) using the supervision of
class activation mapping (CAM). Enabling AQA to utilize
the fused images generated by GAN at higher resolution
and also to sufficiently learn high-dimensional features at
lower resolution.

To summarize, the main contribution of this work is in the
following folds: (1) We propose a GAN-guided quality difference
perceptual attention network. It can achieve accurate quality
assessment of multimodal medical fusion images in a blind form.
(2) In the generator, we developed the UFW module for learning
fused image spatial features from the pixel level. (3) A loss function
specifically for multimodal medical fusion image quality perception
is designed based on a generative adversarial network architecture.
(4) With the supervision of CAM, the proposed AQA is able
to learn nonlinear mappings between fused images and objective
quality results from lower and higher resolution, respectively,
which further enhances the efficacy of model assessment.

The rest of this paper is organized as follows. Section 2
“Related work” introduces the related work of this paper. In
Section 3 “Methodology”, the details of the proposed methods are
described. The adequate experimental results and discussion are
presented in Section 4. Finally, we summarize our conclusions at
the end of the paper.
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FIGURE 1

The examples of multimodal medical images. (A, B) are MR-T2-weighted image and the PET image of the same case; (D, E) are CT and
MR-T2-weighted image of the same case. (C, F) show its corresponding image fusion results, respectively.

2 Related work

2.1 Multimodal medical image fusion
(MMIF)

In the medical setting, mono-modality imaging cannot provide
comprehensive body tissue information or lesion characteristics
and is insufficient to support disease diagnosis (Wang et al., 2020).
Therefore, multimodal medical image fusion technology has been
created to improve the utilization of medical imaging information.
This technology can be classified into traditional fusion methods
and deep learning based fusion methods. Traditional image
fusion techniques often face challenges with distortion, whereas
deep learning-based methods for image fusion have seen notable
advancements in recent years (Zhang, 2021; Wang A. et al., 2022;
Karim et al., 2023). For example, Wang et al. (Wang Z. et al.,
2022) designed a self-supervised residual feature learning network
for multi-focus image fusion. Xu and Ma (2021) developed an
unsupervised image fusion network with enhanced information
preservation by surface-level and deep- level constraints. It is
worth specifying that the network is built specifically for medical
images. But, the performance of fusion algorithms and the quality
assessment of fused images are not yet fully understood. Whether
the multimodal image fusion technique can be successfully applied,
the quality assessment of the fused images is the key.

2.2 Image quality assessment for MMIF

Based on the different requirements for reference images, the
objective image quality assessment methods (IQA) can be divided

into three categories: full-reference IQA (FR-IQA), reduced-
reference IQA (RR-IQA), and no-reference IQA (NR-IQA) i.e.,
BIQA. Despite FR-IQA and RR-IQA methods have achieved
remarkable success in the past decades, their application fields
are restricted due to their dependence on reference images. This
is because reference images are not always available in practical
application scenarios, and even more, in some fields, it is almost
impossible to obtain them. Therefore, BIQA has gained the
favor of many researchers as it does not require any reference
image for evaluation.

According to the way of feature extraction, BIQA includes:
statistical analysis-based models and learning-based models. Most
existing models based on statistical analysis attempt to detect
concrete types of distortion, such as various forms of blur and noise.
And the learning-based BIQA model aims to reflect the differences
in image quality through effective feature extraction techniques
as well as to design the model to learn the mapping relationship
between features and image quality. Traditional machine learning
approaches assume that either distortion will cause the image to
change in some feature attributes. Therefore, this kind of method
pays more attention to the process of feature extraction. The
quality regression models are then designed by machine learning
methods such as support vector machine (SVM), K-Nearest
Neighbors algorithms, etc. Some classical models are, for example,
BRISQUE (Mittal et al., 2012), NFERM (Gu et al., 2015) and BIBE
(Wang et al., 2016).

However, those method separates the process of feature
extraction and quality score prediction/regression of images. This
leads to models that cannot be implemented in an end-to-end
learning manner. Moreover, feature extraction schemes based on
hand design rely on the experience of the researcher, and the
features obtained from limited understanding of the image may
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not sufficient to describe the image content. Most recently, the
vigorous development of deep learning techniques is gradually
becoming the mainstream of IQA algorithms (Hou et al., 2015;
Madhusudana et al., 2022; Zhang Z. et al., 2023; Liu et al.,
2024a). Earlier, Kang et al. (2014) integrated feature learning
and regression into an optimization process by a simple CNN
architecture and obtained promising generalization results. In
(Wang X. et al., 2021), WANG et al. proposed a novel tone-
mapped image metric using local degradation characteristics and
global statistical properties. Inspired by the observer subjective
assessment process, Sim et al. (2022) proposed a novel BIQA
algorithm based on the semantic recognition task. Yue et al. (2023)
implemented an automated assessment of colonoscopy images by
analyzing brightness, contrast, colorimetry, naturalness, and noise.
But BIQA methods specifically for multimodal medical fusion
images have not been adequately explored. Considering the absence
of referenceable fusion images in a real clinical setting, we design a
novel learning-based BIQA model.

2.3 GAN-based image quality assessment

In the process of image quality assessment, since the reference
image is not always available, it poses a great difficulty in
constructing a learning-based IQA model (Liu et al., 2019). Until
2014, the emergence of GAN has brought new ideas to researchers
in many fields. GAN could attempt to generate better outputs with
adversarial training of generators and discriminators. Therefore,
if the reference image can be generated for the BIQA method, it
will be possible to bridge the performance gap between the FR-IQA
and BIQA methods. Moreover, the concern that standard reference
images for multimodal fusion images are not available in the clinical
setting will be mitigated. A series of GAN-based work has also been
carried out by researchers related to image quality evaluation (Ma
et al., 2019; Guo et al., 2023; Kelkar et al., 2023; Li and He, 2024).
In 2019, Ma et al. (2019) proposed an end-to-end GAN model
for quality assessment of images based on multitasking. And the
superiority of the method was verified in TID2008 and TID2013
datasets. The same year, Yang et al. (2019) designed a BIQA method
with the advantages of self-generated samples and self-feedback
training, called BIQA-GAN. GAN-based methods have the ability
to learn local distortion characteristics and whole quality on the
depth features of the image, and it can accomplish the mapping
fitting of potential features to the target domain. Thus, we introduce
GAN to design our model, and, we tuned the loss function and
architecture of GAN according to the characteristics of medical
images.

3 Methodology

In this section, we introduce an end-to-end no-reference
method, namely GAN-guided nuance perceptual attention network
(G2NPAN), for assessing the quality of multimodal medical fusion
images. First, we introduce the framework of the proposed method.
Then, we elaborate on the two main parts of our proposed
G2NPAN, i.e., the GAN-guided nuance perceptual module and
attention-based quality assessment network. Finally, the quality
perception loss function is formulated.

3.1 Overview

The core idea of our proposed method is to assume that
high MOS fused images can indeed help the physician in clinical
analysis. Therefore, learning the nuance between lower and higher
MOS fused images is of high value for quality assessment in the
absence of a reference image. The framework of G2NPAN is shown
in Figure 2. Briefly, our method is specified below. Firstly, G2NPAN
learns the nuances between the fused images with different quality
through generative adversarial networks, and utilizes generators
to generate fused images with the best possible quality. For the
generator, we carefully designed an overlapping structure, UFW,
and repeated it five times to increase the ability to learn the nuances
between different fused images. Then, we redesigned the loss
function of the discriminator according to the scoring criteria of
images in the clinical setting. The aim is to increase the perceptual
weight of the image quality during the network training process.
Next, we subtract the high MOS image generated by the generator
from the original fused image to obtain the difference between
them. Finally, we feed this nuance together with the original
fused image into an attention-based quality assessment network
to obtain a nonlinear mapping between the fused image and the
objective quality results. We will describe this process in detail in
the remaining part of this section.

3.2 GAN-guided nuance perceptual
module

3.2.1 GAN architecture
GAN is a distinctive approach to achieving feature extraction by

generating new fused images in the form of generative adversarial.
This network structure normally consists of two main parts, the
Generator (G) and the Discriminator (D). On the one hand,
GAN has domain adaptive property. For non-discrete distribution
data, like fused images, it is more robust for feature extraction
or learning. On the other hand, the generator can generate fused
images of the same type through adversarial training, and under
the supervision of the discriminator, the generated images are
fitted toward higher quality. The proposed G2NPAN is established
on the framework of GAN, which takes the original fused image
as input and passes the image nuance information to obtain a
quality score of fused images. It is worth noting that the purpose
of high-quality fused images produced by the generator is to
provide reference information, which may contribute to the quality
assessment of the original fusion image. More specifically, it may
help to alleviate the problems associated with the absence of
reference images.

Our network structure of the generator and discriminator is
presented in Figure 3. G takes the fused image Iorg with arbitrary
quality as input and aims to generate a fused image Ihq with the best
quality, i.e., Ihq = G(Iorg). The discriminator exists to distinguish
the real fused image Iorg from the generated version of the fused
image Ihq. Through adversarial training, it is expected that the fused
image with the best quality can be generated with the arbitrary
quality of fused image as input.

Generator: As shown in Figure 3, G is a convolution neural
network consisting of down-sampling and up-sampling phases.
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FIGURE 2

The framework of the proposed GAN-guided nuance perceptual attention network.

FIGURE 3

Network architecture of Generator and Discriminator. (A) Generator: The Generator is a simple down-sampling and up-sampling convolution neural
network with the Unique Feature Warehouse. (B) Discriminator: The Discriminator consists of a simple five-layer convolution neural network.

Since medical fused images require the network to focus on
more detailed features, the kernel size in the generator is all
set to 3 × 3. The down-sampling operation is composed of
three sequential networks with the same structure. Specifically,
we connect the convolutional layer, the activation function, the
batch normalization (BN), and the residual block to build this
sequential network. For the activation function, a comprehensive
activation algorithm, Lleaky Rectified Line Unit (LeakyReLU), is
used. To make the model more stable, the BN layer is attached
after the activation layer, which can also help the gradient to back
propagate efficiently. For medical fused images, the conventional
simply increasing the depth of the convolution neural network
may cause the model to converge slowly or even be unable
to converge. Therefore, we invoke the residual structure in

the down-sampling process, which consists of three convolution
layers and a skip connection. After the down-sampling operation,
followed by our elaborate UFW structure, which improves the
ability of the network to learn the nuances between different
fused images. We will describe the detailed structure of UFW
in the next subsection. In the up-sampling phase, we designed
a simple four-layer convolutional neural network. Each layer of
the convolutional neural network consists of an up-sampling
operation, a convolutional with a kernel size of 3 × 3, a batch
normalization, and an activation layer. As for the activation
function, we use the LeakReLU activation function in the first three
layers and the Sigmoid activation function in the last layer. So far,
the best quality image Ihq of size 128 × 128 can be obtained by
using the Iorg as the input. The generator’s parameters are only
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renewed by the mean squared error (MSE) and are defined as in
Eq. 1:

L1 =
1
N

N∑
n=1

(G(Iorg)− IGT)2
=

1
N

N∑
n=1

(Ihq − IGT)2, (1)

where N is the total number of generated samples.
IGT means the fused image with high MOS, i.e.,
Ground Truth (GT).

During the training of G, the following objective function (Eq.
2) is minimized:

LG = EIorg∼PdataO [log(1− D(IGT,G(Iorg)))] + θL1, (2)

where PdataO stands for the data distribution of Iorg , and
the EIorg∼PdataO represents the expectation of Iorg . θ is a
weighted hyperparameter.

Discriminator: The discriminator only needs to judge whether
the image conforms to the real data distribution or not. Thus, the
architecture of discriminator is a simple four-layer convolution
neural network, as illustrated in Figure 3. In brief, each network has
one convolutional layer with a kernel size of 3× 3, a stride of 2, and
padding of 1. Then LeakyReLU is used as the activation function
and subsequently processed with BN. Note that with each layer
of the convolutional neural network, the size of the feature map
shrinks to one-fourth of the input. Finally, we add an independent
convolution layer according to the sequential structure, which is
mainly used for classification. The mean absolute error is used as
the loss function to optimize the parameters of discriminator. Thus,
the objective function of discriminator can be expressed as Eq. 3:

LD = EIGT∼PdataGT [logD(IGT)] + EIorg∼IPdataO
[log(1− D(G(Iorg))],

(3)
where PdataGT is the data distribution of IGT , and EIGT∼PdataGT is the
expectation of IGT .

3.2.2 Unique feature warehouse (UFW)
In our previous work, it has been realized that effective spatial

feature extraction techniques for image texture and shape play an
important role in the quality assessment of medical fusion images.
The preservation of anatomical details, the representation of
metabolic information, and the trade-offs of information during the
fusion process are one of the many characteristics to be recognized
in fused image assessment. Thus, an overlapping structure, UFW, is
designed in this paper to enable the model to capture these features
from fused images at multiple scales. The detailed architecture
of the UFW is presented in Figure 4. Note that both the input
and output feature maps are 32 × 32. On the one hand, taking a
full-resolution image as input requires a large amount of memory
consumption. On the other hand, most of the high-dimensional
features appear only at lower resolutions. Therefore, we embedded
the UFW module at the end of the down-sampling stage of the
generator, with a maximum resolution of 32× 32. In addition, with
the overlapping architecture, the network can process the high-
dimensional features multiple times to further learn and weigh their
relationship. Consistent with the design purpose of the generator,
the kernel size we use in UFW are all 3 × 3 to better focus
on subtle spatial features. The UFW structure recognizes image
spatial features from multiple scales and continuously integrates
them in the overlapping structure to achieve effective spatial feature
extraction.

FIGURE 4

Detailed architecture of the Unique Feature Warehouse (UFW)
module.

3.3 Attention-based quality assessment
network

The attention-based quality assessment network is built on the
VGG network, which is a simple convolutional neural network as
shown in Figure 5. The reason for adopting VGG network are
respectively: the VGG network is an easy-to-use CNN, which can
save a lot of effort in modifying its network architecture. Also, with
the guidance of GAN, AQA is not required to extract the feature
representation of the fused image from scratch. Therefore, it is less
necessary to employ a complex network structure. Finally, VGG11,
which has a relatively simple structure and shallow network depth
in VGG networks, was used as the base framework in the AQA.
AQA takes the nuance between the original fused image and the
generated image, and the original fused image as input to obtain an
objective assessment of the fused image.

Specifically, from the structure of GAN this paper takes the
fused image with higher MOS as GT of the generator, thus limiting
its fitting trend. Thus, the nuance between the fused image Iorg
and the higher quality fused image Ihq can be defined as Isub =∣∣Ihq − Iorg

∣∣. idenoting the i-th assessed image, the definition can be
revised to Eq. 4:

Iisub =
∣∣∣Iihq − Iiorg

∣∣∣ , (4)

To ensure the input consistency, Iisuband Iiorgperformed the
convolution operation first separately, and then completed the
concatenation operation.
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For Iiorg , its features extracted in the GAN can also guide the
AQA to obtain more convincing assessment results. So, we copied
the feature map Flast output from the last UFW module, and
implemented concatenation before inputting the fully connected
layer to obtain the feature map Fconca, as shown in Eq. 5:

Fconca = Flast � vgg(Iiorg, I
i
sub), (5)

where vgg(•) denotes the operation of AQA before proceeding to
the fully connected layer.

So far, the image quality assessment has been achieved
objectively by the methods mentioned above. However, for
physicians, the quality of medical images depends not only on the
natural nature of the images, but also on their ability to highlight
the manifestations of disease. The latter is the key to assist doctors
in making a diagnosis. Thus, by using the weights of the last fully
connected layer as a cue, we introduce the attention mechanism,
class activation mapping. With the quality scores of AQA and the
weights of the fully connected layers, CAM obtains the ability to
supervise the attention distribution of the network. Moreover, the
feature map FCAM generated by CAM can also compensate for the
un-interpretability of "black box" models. Let the GT of CAM be
FGT , then the objective function is Eq. 6:

LCAM =
1
N

N∑
n=1

|FCAM − FGT |1, (6)

where |•|1denotes the L1 parametrization.
Further, the predicted score of the fused image is designated as

Qpre and its GT is Qt , then the objective function can be written as
shown in Eq. 7:

LQA = −[Qt log(σ(Qpre))+ (1− Qt) log(1− σ(Qpre))], (7)

where σ(•) denotes the sigmoid function, which is meant to map
Qpreto the interval (0, 1), specified as shown in Eq. 8:

σ(Qpre) =
1

1+ exp(−Qpre)
, (8)

Thus, the loss function of AQA can be expressed as Eq. 9:

LAQA = ϕLCAM + LQA, (9)

ϕ is the weight parameter.

3.4 Perceptual loss function

The design logic of GAN is trained in an adversarial way so
that the generated image can deceive the discriminator, and the
discriminator can distinguish the real image from the generated
image. Although such a network architecture can generate high-
quality fused images, the ultimate goal of G2NPAN is to accurately
evaluate the quality of fused images rather than to obtain fused
images. Moreover, it is clear from the calculation of Insub that it
depends heavily on the generated image Ihq . If Insub is directly
used as the input of AQA without feedback to GAN, the training
process of quality assessment network will be unstable and difficult
to converge. Thus, we design the quality perception loss function
to alleviate the above problem. It is worth clarifying that the

fused images used in this work are based on a further extension
of the database from our previous work (Tang et al., 2020),
and thus the MOS of each medical fused image can take values
from 1 to 5. Typically, ensuring that the MOS remains above 3
does not compromise the diagnostic results provided by medical
professionals. This ensures that the fused medical images do not
adversely impact diagnostic performance. Therefore, the weight can
be expressed as Eq. 10:

Wn
=

{
1, if AQA(In

hq) ≥ 3,

0, if AQA(Inhq) < 3
, (10)

We the weight to further optimize the network and restate the
formula (3) as shown in Eq. 11 below:

LD = EIGT∼PdataGT [logD(IGT)] + EIorg∼IPdataO

[log(1− |D(G(Iorg))−W|)], (11)

The generated images need to be distinguished not only by
the discriminator, but also by the quality assessment network.
The concept of perceptual loss function allows the model to be
optimized as a unit, so that the total loss function can be presented
as Eq. 12:

Lall = minG maxD V(G,D)+ γLR, (12)

4 Experiments

4.1 Databases and experimental
protocols

4.1.1 Dataset description
We established a multi-modal medical image fusion quality

evaluation database to validate the effectiveness of our proposed
algorithm. The database comprises 120 pairs of color images and
9 pairs of grayscale images, with a total of 1,290 images generated
using 10 mainstream fusion algorithms. The resolution of the
images is 128 × 128 pixels. The MOS of each image was obtained
from radiologists on a scale ranging from 1 to 5.

To select reference images for each group of fused images (i.e.,
10 images generated by fusing a pair of images), we used MOS to
evaluate image quality. The fused image with the highest MOS score
was chosen as the reference image. If multiple fused images had
the highest MOS score, one of them was selected at random. The
reference image for each image was randomly selected from the
fused images with the highest MOS score. This ensured a robust
reference image selection process that accounted for the subjective
quality ratings of the radiologists.

4.1.2 Evaluation criteria

In this study, we utilized four evaluation metrics to assess the
performance of the proposed model: Pearson’s Linear Correlation
Coefficient (PLCC), Spearman’s Rank Correlation Coefficient
(SRCC), Kendall’s Rank Correlation Coefficient (KRCC), and Root
Mean Square Error (RMSE). PLCC measures the linear relationship
between the predicted and the corresponding MOS, while SRCC
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FIGURE 5

The architecture of the proposed attention-based quality assessment network.

and KRCC are non-parametric correlation measures that evaluate
rank-based data. RMSE measures the difference between the
predicted and the corresponding MOS.

4.1.3 Experimental protocols
In the training process of the network, three hyperparameters,

θ, ϕ, and γ, were set to 0.5, 1, and 0.01, respectively. The
Adam optimizer was used with an initial learning rate of
0.0002. Furthermore, we implemented a dynamic learning rate
adjustment strategy to enhance model convergence during training.
Specifically, we reduced the learning rate using a decay factor of
0.95 after every 20 batches.

To evaluate the effectiveness of our proposed model,
we employed a five-fold cross-validation approach during
implementation. We use 80% images of the database to train our
model, while using 20% to test. The model’s performance was
evaluated at the end of each training epoch, and we selected the
checkpoint model with the best performance within the 1500
epochs of training as the final model. During the validation
phase, we assessed the model’s performance on the test set. In
each evaluation, we try 1000 times and take an average of the
performance values obtained.

4.2 Comparison with the state-of-the-art

In this section, exhaustive comparative experiments are
conducted to validate our proposed method. We compared the
performance of G2NPAN with the performance of six state-of-
the-art BIQA methods. For approaches that are not specifically
named, we refer to them by the name of the first author. All
these methods include the blind multiple pseudo reference images-
based method (BMPRI) (Min et al., 2018), In-depth analysis of
Tsallis entropy-based method (TEIA) (Sholehkerdar et al., 2019),
mutual information-based optimization method (Hossny) (Hossny
et al., 2008), the objective evaluation of fusion performance
(OEFP) (Xydeas and Petrovic, 2000), ratio of spatial frequency
error-based method (rSFe)(Zheng et al., 2007) and the perceptual
quality assessment method (Tang) (Tang et al., 2020). BMPRI
introduces multiple pseudo-reference images to achieve BIQA,
which coincides with our approach of using GAN to generate
reference information to perform IQA. Thus, although BMPRI is
not specifically developed for quality assessment of fused images, it
is still used as one of the comparison methods. And the remaining

TABLE 1 Performance comparison with Other BIQA methods.

Model Domain PLCC SRCC KRCC RMSE

BMPRI Distorted
image

0.3031 0.3167 0.2375 0.2611

TEIA Fused image 0.1797 0.1946 0.1407 0.3909

Hossny Fused image 0.2270 0.1738 0.1071 0.3712

OEFP Fused image 0.3064 0.3367 0.2342 0.2810

rSFe Fused image 0.4054 0.2275 0.1700 0.2663

Tang Fused image 0.6252 0.6420 0.4166 0.2480

Proposed Fused image 0.9044 0.9007 0.8502 0.1029

Bold values represent the best results.

TABLE 2 Ablation experiments of quality assessment with different
backbone networks.

Network PLCC SRCC KRCC RMSE

VGG19 0.7530 0.7358 0.6696 0.1601

VGG16 0.7776 0.7742 0.6977 0.1553

VGG11 0.7894 0.7905 0.7132 0.1494

VGG11 +
CAM

0.8000 0.7806 0.7173 0.1385

VGG 11 +
pre

0.8167 0.8112 0.7519 0.1355

VGG11 +
pre + CAM

0.8235 0.8113 0.7496 0.1330

Bold values represent the best results.

methods are proposed exclusively for the quality assessment of
fused images. Note that the proposer of rSFe considers the
application scenario of medical fusion images, while the Tang
method is proposed especially for medical fusion images. For fair
comparison, all methods were retrained and tested in our Dataset,
and the best results were used as the final reported.

We have tabulated the performance of the state-of-the-art
BIQA method and G2NPAN in Table 1. The best performance
results are highlighted in bold. Based on Table 1, we have the
following observations:

First, our proposed method, G2NPAN, achieved the best quality
assessment performance from an overall perspective, with optimal
results of 0.9044, 0.9007, 0.8502, and 0.1029 for PLCC, SRCC,
KRCC and RMSE, respectively. This means that the objective
evaluation results derived from the G2NPAN are closest to the
subjective MOS results given by the physicians. Second, although
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FIGURE 6

Ablation experimental results for each of the key components in G2NPAN.

TABLE 3 Performance on the dataset with various train-test splits.

Train:
Test

PLCC SRCC KRCC RMSE

2:8 0.7780 0.7849 0.7042 0.1649

3:7 0.8055 0.8148 0.7372 0.1441

4:6 0.8497 0.8451 0.7817 0.1275

5:5 0.8621 0.8617 0.8044 0.1206

6:4 0.8821 0.8795 0.8259 0.1139

7:3 0.8848 0.8886 0.8393 0.1093

8:2 0.9044 0.9007 0.8502 0.1029

Bold values represent the best results.

the BMPRI method introduces pseudo-reference images to provide
referenceable information for BIQA, it is mainly targeted at
distorted images of natural scenes. Therefore, it is not powerful for
medical fusion images. Our proposed method generates reference
information based on high-quality fused images and designs
quality evaluation methods from the specificity of medical images,
resulting in the best BIQA performance. As can be seen from
Table 1, BMPRI also outperforms some of the quality evaluation
metrics designed specifically for fused images, which once again
demonstrates the importance of reference information for BIQA.
Third, rSFe, Tang and the proposed method have considered
the difference between medical fusion images and natural fusion
images, and thus their performance is better than the other three
metrics (TEIA, Hossny and OEFP). In addition, the performance
of proposed method is still 27.92, 25.87, 43.36, and 14.51% better
than the second-best method in PLCC, SRCC, KRCC and RMSE,
respectively. From the above analysis, it is clear that our proposed
G2NPAN method is very good at objective quality assessment of
medical fusion images.

4.3 Ablation study

Ablation experiments are performed from different
perspectives to demonstrate the superiority of our proposed
method. (1) To verify the generalizability of the proposed AQA,
we compose the model through different backbone networks,

including VGG11, VGG16, VGG19, and tested the model
performance. Each ablation result is demonstrated in Table 2, with
the best result for the corresponding metric highlighted in bold.
(2) To evaluate the contribution of each key component in the
proposed G2NPAN model, a series of ablation experiments were
conducted.

4.3.1 Performance of quality assessment network
Ablation studies were performed to examine whether the

backbone network used in the quality prediction network was more
appropriate. All models implemented in this section are purely
quality prediction networks, meaning that there is no GAN-based
quality guidance. Their testing performance is listed in Table 2.

On the one hand, from these results, we can notice that the
performance of the VGG11 is even better than that of VGG16
or VGG19. This seems to go against the common belief that the
deeper the network, the better the model performance should
be. But there should be more detailed analysis for different task
types. The truth is that VGG19 or 16 has more convolutional
layers than VGG11, which allows the network to learn more
semantic information (high-level features). However, for evaluation
of multimodal medical fusion images, the model does not need to
recognize what the image represents, like what disease or which
organ, etc., but rather than what the image has. Thus, the IQA task
might require more structural (low-level features) than semantic
information about the image. VGG11 improved by 3.64, 5.47,
4.36, and 1.07% in PLCC, SRCC, KRCC and RMSE, respectively,
compared to VGG19.

On the other hand, to demonstrate the usefulness of the CAM
and pre-trained models, we have adapted them based on the
VGG11 model. From the experimental results, it can be seen that
both CAM and the introduced pre-trained model enhance the
performance of quality prediction network. And, based on these
two techniques, the proposed quality prediction network achieves
0.8235, 0.8113, 0.7496, and 0.1330 in PLCC, SRCC, KRCC and
RMSE, respectively.

4.3.2 The contribution of each key component
As mentioned in the previous section, the proposed method

integrates the nuances between fused images with different
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qualities, and adjusts the update of the loss function according to
the scoring criteria of images in the clinical setting. Therefore, it is
sensible and meaningful to fully explore the contribution of each
key component to the final performance.

We take VGG11 network as the base quality prediction
model. Based on this, the GAN-guided quality assessment models
with and without UFW components are named G2N (GAN-
Guided Network) and G2NN (GAN-Guided Nuance Network),
respectively. Further, we redesigned the loss function of GAN in
a qualitatively perceptive way. Such a modified network named
G2NPN (GAN-Guided Nuance Perceptual Network). Eventually,
CAM is added to the G2NPN model to supervise the quality
prediction results of the fused images and call such a network
G2NPAN (GAN-Guided Nuance Perceptual Attention Network),
i.e. the model proposed in this paper. Note that we trained
G2N, G2NN, and G2NPN based on the same method applied
in G2NPAN and summarized their corresponding prediction
performance results in Figure 6. As all three models, G2N, G2NN
and G2NPN, are degradation models based on GAN tuning, the
blue family is used for unification in Figure 6.

As expected, all key components had a positive effect on the
final model performance. And as the model structure becomes
closer to G2NPAN, the quality assessment of the medical fusion
images becomes more accurate. Further analysis is as follows.
First of all, with the reference information provided by GAN,
the G2N model achieves the largest performance improvement
over VGG11 with 6.47, 5.86, 7.18, and 2.61% improvement in
PLCC, SRCC, KRCC and RMSE, respectively. The G2N model
generates the best-quality fused image similar to providing the
reference image for IQA, and thus, it has the most significant
performance improvement. However, the nuances in the reference
information might not be sufficient. UFW is an effective way to
extract spatial features by learning the features of fused images from
multiple scales several times. Therefore, the G2NN model further
enhances the performance results. Second, as the GAN has the
ability to recognize the quality of fused images, i.e., the perceptual
capability, the G2NPN model obtains considerable performance
gains, especially in SRCC (0.8610 vs 0.8955) and KRCC (0.8014 vs
0.8396). Finally, by introducing the CAM attention mechanism, our
proposed G2NPAN has got the best performance for medical fusion
image quality assessment, with PLCC, SRCC, KRCC and RMSE of
0.9044, 0.9007, 0.8502, and 0.1029, respectively.

Overall, whether it is the visual impression of the blue
rectangular bar in Figure 6 or the data analysis results, it can
be found our proposed GAN-guided approach could yield a
tremendous performance improvement. Except for RMSE, the
improvement results for the other three metrics were more than
10%. It is also interesting to observe that the models with reference
information provided by GAN outperform all the methods shown
in Table 2.

4.4 Impact of training set

To investigate the relationship between the sample size and the
performance of the proposed method, we gradually increased the
training sample size from 20 to 80%, while the rest of the image
samples were used as testing. All experimental results are filled in

Table 3. It is intuitive to notice that as the training sample size
increases, the proposed model performance tends to rise gradually.
And, the model performance does not drop precipitously when the
training sample size are smaller. This observation is consistent with
the conclusions drawn from the existing learning-based BIQA (Gu
et al., 2016; Jiang et al., 2019; Wang X. et al., 2021). The robustness
of the proposed G2NPAN model has been validated.

5 Conclusion

In this paper, we propose a BIQA method specifically for
multimodal medical fused images, called GAN-Guided Nuance
Perceptual Attention Network. Specifically, in addition to designing
the UFW module in the GAN to incorporate collecting useful
features from the pixel level, we also redesigned the loss function
of the discriminator to enable the network to learn the nuance
between fused images of variable quality. Following that, the
nuance information and the high-dimensional features in the
UFW are fed back to the quality assessment network. With the
supervision of CAM, the quality score of the fused image is
eventually determined. The experimental results demonstrated that
our proposed method outperforms the state-of-the-art methods.
Two aspects of ablation experiments validate the generality
of the proposed AQA and the contribution of each key
component of the G2NPAN model. The experiments examining
the correlation between sample size and G2NPAN performance
further verify the effectiveness of the proposed GAN-guided quality
assessment model.
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As an important part of the unmanned driving system, the detection and

recognition of traffic sign need to have the characteristics of excellent

recognition accuracy, fast execution speed and easy deployment. Researchers

have applied the techniques of machine learning, deep learning and image

processing to traffic sign recognition successfully. Considering the hardware

conditions of the terminal equipment in the unmanned driving system, in

this research work, the goal was to achieve a convolutional neural network

(CNN) architecture that is lightweight and easily implemented for an embedded

application and with excellent recognition accuracy and execution speed.

As a classical CNN architecture, LeNet-5 network model was chosen to be

improved, including image preprocessing, improving spatial pool convolutional

neural network, optimizing neurons, optimizing activation function, etc. The test

experiment of the improved network architecture was carried out on German

Traffic Sign Recognition Benchmark (GTSRB) database. The experimental results

show that the improved network architecture can obtain higher recognition

accuracy in a short interference time, and the algorithm loss is significantly

reduced with the progress of training. At the same time, compared with other

lightweight network models, this network architecture gives a good recognition

result, with a recognition accuracy of 97.53%. The network structure is simple,

the algorithm complexity is low, and it is suitable for all kinds of terminal

equipment, which can have a wider application in unmanned driving system.

KEYWORDS

traffic sign identification, automatic driving, LeNet-5, optimize activation function,
convolutional neural network, space pool

1 Introduction

With the rapid development of social economy and the arrival of the era of artificial
intelligence, information and intelligence have become the focus of social attention,
and automatic driving has become one of the current hot research fields. Automatic
driving system is a comprehensive system integrating information detection, information
communication and intelligent control technology (Chen et al., 2018; Zhang et al., 2019).
It can realize the interaction and coordination among people, vehicles and roads, so
as to effectively improve road traffic conditions and travel efficiency. The international
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automotive industry has recognized two categories of autonomous
driving classification standards: National Highway Traffic Safety
Administration and the Institute of Automotive Engineers, of
which the second classification standard is more widely used (Hur
and Kang, 2020).

Automatic driving in the world is in the stage of partial
automation. Even if it makes great progress in the laboratory,
it still faces many difficulties and challenges, and there is still
a long way to go before entering the market commercially. In
automatic driving, traffic sign recognition is an important part.
The traffic signs on the road are rich in information, including
very important traffic information, which can provide necessary
road guidance for intelligent driving. Accurately identifying traffic
signs and issuing correct driving instructions can effectively reduce
the possibility of traffic accidents and improve driving efficiency.
Therefore, the research of traffic sign recognition has important
research significance and practical value, and has gradually become
a hot research topic in related fields. As an important part of the
automatic driving system, the traffic sign detection system mainly
uses the vehicle-mounted camera to shoot the scene of the traffic
road to obtain the required data set information (Cuesta-Infante
et al., 2020). The comprehensive application of computer image
processing technology, artificial intelligence technology and big
data technology to detect and identify traffic signs can provide
effective traffic information for the control platform of automatic
driving, so as to increase the reaction time of the automatic
driving control system and improve the safety of automatic driving.
However, there are many factors affecting traffic sign recognition
on the actual road: complex backgrounds, light and dark weather,
weather factors, occlusion damage, signs aging, fading, etc. These
factors bring great challenges to traffic sign detection. At the same
time, the performance of automatic driving terminal equipment
is quite different, which puts forward higher requirements for
the complexity of traffic sign detection algorithm. The network
architecture of traffic sign recognition algorithm needs to meet
the requirements of lightweight to adapt to the low-end automatic
driving terminal equipment. Therefore, it is of great significance to
design a lightweight traffic sign recognition network architecture
with high precision, good real-time performance and convenient
terminal deployment for the advancement of autonomous driving.
When the vehicle is running at high speed on the road, the
lightweight traffic sign recognition network can help the control
platform to recognize the traffic sign in time. At the same time,
the lightweight network architecture has low requirements on the
memory and configuration of the terminal equipment. Therefore,
the study of lightweight traffic sign recognition network in complex
environment is still a key problem in the field of control.

2 Related work

At present, traffic sign detection methods mainly include
template matching method, traditional machine learning method
and deep learning method. The traffic sign detection method based
on template matching uses the unique shape of traffic signs to match
the features of the template. According to different signs indicating
functions, each traffic sign has a special color and shape. Traditional
recognition methods based on color and shape are widely used.

In the literature (Lasota and Skoczylas, 2016; Sheikh et al., 2016;
Huang and Hou, 2017; Song et al., 2017; Jain and Gianchandani,
2018; Rahmad et al., 2018) many color segmentation methods
are used to implement the algorithm. The common point of this
method is to use color threshold segmentation to obtain traffic signs
in images. There are also other studies based on shape methods
that are extensively utilized in traffic sign recognition, such as
Hough transform (Moon and Lee, 2015; Onat and Ozdil, 2016;
Sun et al., 2019) and angle detection (Lin and Sie, 2019; Flores-
Calero et al., 2020; Ozturk et al., 2020). The generalized Hough
transform has many applications, most of which are used to identify
standard geometric shapes, such as circles, triangles, and rectangles.
In addition, in terms of positioning symbols, the method of using
color segmentation for rough estimation (Yakimov and Fursov,
2015; Filatov et al., 2017; Lee and Kim, 2018) is also commonly
used, and the target is determined through preliminary information
screening. Color segmentation and shape-based methods have a
common feature, that is, they are sensitive to shadows, extreme
weather conditions, crowded scenes and other external factors. This
kind of algorithm has strict requirements on the characteristics
of traffic signs, and it can only effectively detect a certain kind
of traffic signs that match well with the template. This kind of
algorithm has poor robustness and is more sensitive to the change
of environmental factors. In the case of deformation or pollution of
traffic signs, the detection accuracy drops sharply.

Based on the traditional machine learning method, by
analyzing the characteristics of different traffic signs, the
corresponding classifier is selected to classify the traffic signs.
Wu et al. (2020) used the histogram of oriented gradient (HOG)
feature to extract the edge information of the image and the
local binary pattern (LBP) feature to extract the internal texture
information of the image, then they fused the two extracted
information with features, finally they used the extreme learning
machine (ELM) classifier to classify traffic signs and tested them on
the GTSRB data set, and the recognition accuracy was 92.88%. Ruta
et al. (2010) used HOG features to extract features of traffic signs
in images and input them into the support vector machine (SVM)
classifier for training and classification. This method was tested on
GTSRB data set, and the recognition accuracy was 95.68%. The
detection accuracy of this method is greatly improved. However,
due to the large amount of redundant information generated in
the process of acquiring the region of interest, the detection speed
of the algorithm is reduced. As a result, most of these algorithms
cannot meet the real-time requirements of the actual scene.

Convolutional neural network is a kind of deep learning
network widely used in the field of machine vision. Different from
the traditional artificial neural network structure, it contains very
special convolutional layer and pooling layer, which are combined
through local connection and weight sharing, and use the back
propagation algorithm to adjust the weight and bias adaptively.
Therefore, it no longer relies too much on the prior knowledge and
manual intervention of technical experts and scholars.

The traffic sign detection method based on convolutional
neural network utilizes multi-layer deep learning network to
independently learn and extract different features of traffic signs.
This method can effectively reduce the subjective singleness of
traditional methods in image feature extraction, and can solve
the problem of insufficient semantic information of traditional
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methods in feature extraction, and has been widely used in the field
of intelligent transportation.

Krizhevsky et al. (2017) proposed the use of convolutional
neural networks to identify targets, thus enabling the rapid
development and application of convolutional neural networks
in the field of target detection. In recent years, with the rapid
development of deep learning (Silver et al., 2016, 2017; Moravík
et al., 2017), The neural network model based on deep learning
has received much attention because of its ability to capture the
dynamic characteristics of traffic sign image data and obtain the
best recognition effect. Traffic sign recognition methods based
on various deep convolutional neural networks have achieved
some results. In the literature (Qian et al., 2015), researchers
proposed a method of traffic sign detection and recognition.
This method uses the features of the multi-task convolutional
neural network for training, so as to obtain the geographical
indications of various traffic signs, and effectively determine the
classification features. Some scholars (Zhu et al., 2018) use a
fast neural network to extract the candidate regions of interest
provided by the previous complete convolutional network, and
then determine the target value through text detection. Literature
(Yao et al., 2017) proposed an field-programmable gate array
(FPGA)-based convolutional neural network module with better
automatic recognition performance. Compared with the traditional
convolutional neural network model, its performance on the
hardware platform is better. The energy consumption in traffic
sign recognition is smaller, and the accuracy is higher, but there
are certain support requirements for the hardware platform. There
are also some studies that have made some progress in semantic
segmentation based on deep convolutional neural networks (Zhao
et al., 2017) and object recognition (Liang and Zhang, 2015).
In some specific complex scenes, convolutional neural networks
can use high-level semantic information as a feature method to
solve some tasks (such as occlusion and various targets). In the
traditional traffic sign recognition method, the color and shape
information are limited and the high-level semantics to define the
direction of the target space are lacking, so it cannot meet the
higher-level needs. In the literature (Zang et al., 2016), scholars
use cascaded convolutional neural networks to recognize traffic
signs and operate on the previously extracted selected regions,
thus showing good performance. However, its application platform
is relatively limited, and it is not an end-to-end traffic sign
recognition. Hussain et al. (2018) proposed a CNN fast branching
model, which highly mimics biological mechanisms to improve
efficiency. In terms of accuracy, the performance is acceptable, and
the potential application possibilities are greater, but the efficiency
under time-sensitive conditions is worth exploring. Mehta et al.
(2019) proposed a method for the classification of traffic signs
based on deep convolutional networks. Good optimization results
can be obtained through Adam optimizer, and softmax activation
also has certain performance. However, the classification accuracy
needs to be improved. In addition, some scholars have proposed
convolutional neural network algorithms based on driving and
multi-column types (Karaduman and Eren, 2017; Shi and Yu,
2018). These classification networks are getting deeper and deeper,
their structure is becoming more and more perfect, and the effect is
getting better and better.

With the gradual increase of algorithm complexity, the
accuracy of traffic sign recognition has been greatly improved, but

at the same time, the application of terminal setting is gradually
limited. Although large-scale convolutional neural network models
have superior performance, they also bring the problems of high
memory consumption. How to apply convolutional neural network
to unmanned mobile devices requires directly facing the two
major problems of storage and speed. The lightweight model
is concerned with designing more efficient network computing
methods so as to reduce network parameters without losing too
much accuracy. Therefore, how to design a lightweight high-
performance target detection has quite high application value and
scientific research significance. LeNet-5 is one of the classical
convolutional neural networks, and has been widely used in the
field of image recognition since it was proposed. Based on LeNet-5,
this paper proposes a lightweight traffic sign recognition network
that meets the requirement of intervention time, providing a
reference for terminal network deployment.

3 Methods

3.1 Image data processing

Traffic sign image recognition is a challenging problem. There
are many differences in color, shape and hieroglyphics of traffic
signs, which makes the image recognition of traffic signs become
an unbalanced multi-class recognition problem. Although some
commercial recognition systems have been put into the market
and many related research reports have been published, before the
advent of the GTSRB dataset, there is still a lack of benchmark
data to fairly evaluate different image recognition methods. The
GTSRB dataset is a multi-class benchmark dataset for image
classification, and the application algorithm needs to recognize
a single image of traffic sign. The images in the GTSRB dataset
come from images or videos obtained from onboard cameras,
and each type of traffic sign appears only once (Stallkamp et al.,
2012). The data set contains 43 traffic sign categories, totaling
more than 50,000 images (Saadna and Behloul, 2017). Each traffic
sign type contains between 210 and 2,250 images to train and
test the algorithmic model’s ability to recognize various types of
traffic signs.

The training folder of the GTSRB dataset contains 39,209
images, and we used the remaining 12,630 images as the test set.
For the training set and the verification set, we divided the images in
the training folder according to the ratio of 8:2, that is, the training
set was 31,433 images, and the verification set was 7,776 images.
The annotation tags are stored in a csv file, including location tags
and 43 types of traffic light tags, which are cropped and scaled
to a fixed size by the location tags. The data format is shown
in Table 1.

Since the data set is collected in the real environment, the
training data set is very unbalanced due to weather conditions, light
changes, occlusion, motion and other problems, and the image has
changes such as blur, distortion, rotation, etc., so it is necessary to
preprocess the data set to enhance the robustness of the model.

3.1.1 Image resizing
The image aspect ratio in the dataset used in this study ranges

from 15 × 15 to 250 × 250 pixels. In order to be compatible
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with neural networks, there must be a fixed image size (Sultana
et al., 2020). It is worth noting that reducing the image size to
a lower pixel value reduces the complexity of the model, but
may also negatively affect the accuracy of the model and may
reduce the classification performance of the algorithm. During the
experiment, we tested our model with different image pixel sizes
and found that 32 × 32 pixels provided the best trade-off between
computational complexity and classification accuracy. So we resize
the image to 32× 32.

3.1.2 Color conversion
The image color information is more sensitive to the lighting

conditions and the quality of the capturing equipment (Sudharshan
and Raj, 2018). Meanwhile, the number of training parameters and
training time of gray-scale images are reduced compared with color
images (Bui et al., 2016; Sudharshan and Raj, 2018). In the process
of data processing, considering that color is not the main feature of
traffic sign recognition, the color image is converted into a grayscale
image, and the single-channel image is iterated more quickly. The
weighted average method is used to process the grayscale of the
picture, and the three RGB components representing the picture
are weighted and averaged with different weights according to their
importance and other indicators. Considering the difference in
sensitivity of the human eye to green and blue, the weighted average
of the three components of RGB can obtain a more reasonable
gray-scale image, as shown in formula (1).

F(i, j) = 0.30R(i, j)+ 0.59G(i, j)+ 0.11B(i, j) (1)

3.1.3 Histogram equalization
Histogram equalization is a nonlinear stretching operation to

redistribute image pixel values so that the number of pixels in a
certain gray range is roughly the same. Histogram equalization
helps to equalize image brightness distribution, which can increase

image contrast and make image details clearer (Dhal et al., 2021).
The image histogram equalization method is shown in formula (2).

Sk = T(rk) =

k∑
j=0

Pr(rj) =

k∑
j=0

nj

n
(2)

Where, rk is the gray level contained in the image, nk represents
the number of the kth gray level, Sk is the gray level output after
calculating the mapping using the transformation function.

The picture is scaled to a size of 32 × 32, and then the
color image is converted to grayscale, the image to be displayed
is randomly selected, and the histogram of the balanced picture is
obtained according to (1), as shown in Figure 1.

In Figure 1, it should be noticed that the download data
set format provided by GTSRB is in ppm format, which
needs to be converted to jpg format. The images in the
data set have surrounding backgrounds. According to the
cropped area, it is scaled to a “fixed size.” Here it can be
realized by MATLAB script, including how to read the label
information of the image in csv and how to convert the
ppm format to jpg format, and finally preprocess the obtained
pictures.

3.1.4 Data normalization
Data normalization is essential to ensure a uniform distribution

of input parameters (pixel values), which allows the network
architecture to converge quickly during training. Standardize the
input image and process the input features into a similar range,
thus making the optimization of the cost function easier and faster
(Akshata and Panda, 2019; Zaibi et al., 2021). In this project, the
training set and test set are normalized to the range (−1, 1). The
min-max standardization method is used to normalize the data.
However, the min-max standardization method is to transform the

TABLE 1 Data format.

Data set Number of
pictures

Number of
annotation images

Number of
sign types

Size of signs Source of
pictures

Acquisition
mechanism

GTSRB 133000–144769 51840 43 15× 15–250× 250 Germany Prosilica GC 1380ch
color camera

FIGURE 1

Comparison before and after histogram equalization.
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original data into the [0, 1] interval, so we first make improvements,
as shown in Formula (3).

x∗ =
x− x_averge
xmax − xmin

(3)

As shown in formula (3), the data is processed, considering that in
order to avoid recalculating the value each time, we set x_averge to
a fixed value of 128. The normalized processing results are shown
in Table 2.

3.1.5 Data enhancement
Data enhancement is an important step to solve the problem

of unbalance of data sets. Various kinds of transformation
processing are carried out on existing data to generate new data
to expand the amount of data (Patil et al., 2021; Singh and
Malik, 2022). Translation, scaling and rotation are commonly used
transformation means. At the same time, it can ensure that there
are no identical traffic sign images in the data set, so the robustness
of the model is improved.

In the process of traffic sign recognition training, the original
data is trained, and the results show that the accuracy of the training
set is high, while the accuracy of the verification set is low, which
is manifested as overfitting. When over-fitting occurs, the high
accuracy of the training set indicates that the algorithm has fully
learned the features of the original data, while the accuracy of
the validation set is low, indicating that the characteristics of the
original data are insufficient, which makes the algorithm in the new
validation set the performance is poor (Akshata and Panda, 2019;
Radu et al., 2020; Patil et al., 2021). In the actual scene, the angle of
the traffic sign changes. In this case, model training will make the
network convergence speed relatively slow, and the model effect is
relatively poor. This paper adopts Keras-image-data-augmentation,
a lightweight library based on Keras, for Image Data enhancement.
We can set rotation Angle, translation distance, scaling ratio, etc.,
to simulate images under different perspectives. At the same time,
in the training process, each iteration of the system will produce a
new, randomly transformed image, which can avoid overfitting the
model to a specific data pattern.

3.2 Model structure

LeNet-5 is one of the classical convolutional neural networks.
LeNet-5 model has a good performance in the field of digit symbol

recognition, and it is also helpful for the development of traffic sign
recognition. However, due to its limitations, it usually performs
poorly. Therefore, the LeNet-5 network model is improved in
this paper to achieve better performance in symbol recognition
scenarios. The model originally used the S-type activation function,
but as the value tends to infinity, the images on the left and right
sides of the function tend to be flat, and the gradient value gradually
tends to 0, which can easily cause the gradient to disappear and slow
down the convergence speed of the model. In order to improve
the sigmoid function, this inherent limitation causes the accuracy
of the model to decrease. In terms of the pool layer, the LeNet-5
network model originally used the average pool, but the average
pool averaged the values within the filter range to obtain the
output. In the field of image recognition, max pooling is used more
frequently, and the maximum value in the filter range is used as the
output, which has strong robustness.

The adaptive convolutional neural network model consists of
an input layer, an output layer, three convolutional layers (C1,
C3, C5), three pooling layers (S2, S4, S6) and a fully connected
layer (F7). Input layer: The input is a sample image with a size of
32× 32 pixels. Convolutional layer C1: the input layer is convolved
using thirty-two convolution cores of size 3 × 3 with a step size
of 1. A convolution kernel will obtain a feature map, so this layer
consists of thirty-two feature maps. Pooling layer S2: S2 adopts a
maximum pooling strategy, which is obtained after down-sampling
at the C1 layer. The size of the pooling area in S2 is 2 × 2, and
the step size is 1. Convolutional layer C3: sixty-four convolution
cores of size 3 × 3 with a step size of 1. Each feature map in C3
is a weighted combination of all thirty-two or more feature maps
in S2. The output is sixty-four 13 × 13 feature maps. Pooling layer
S4: S2 adopts a maximum pooling strategy, which is obtained after
down-sampling at the C1 layer. The size of the pooling area in S2
is 2 × 2, and the step size is 1. Convolutional layer C5: sixty-four
convolution cores of size 3 × 3 with a step size of 1. A convolution
kernel will obtain a feature map, so this layer is composed of sixty-
four feature maps. Pooling layer S6: S2 adopts a maximum pooling
strategy, which is obtained after down-sampling at the C1 layer.
The size of the pooling area in S2 is 2 × 2, and the step size is
1. Output layer: fully connected layer, the logo corresponds to the
output image. The adaptive network structure is shown in Figure 2.

As shown in Figure 2, the reconstruction of the pooling layer is
conducive to the rapid recognition of traffic signs in the intelligent
driving environment, and at the same time can improve the
accuracy. The model structure table is shown in Table 3.

TABLE 2 Normalization result.

i array[i] i array[i] i array[i] i array[i]

1 −0.859375 9 −0.625 17 0.1171875 25 0.0078125

2 0.9609375 10 −0.625 18 0.171875 26 0.125

3 0.9765625 11 −0.375 19 0.3359375 27 0.1171875

4 0.9296875 12 −0.375 20 0.171875 28 −0.1875

5 −0.859375 13 0.2890625 21 0.0546875 29 −0.1875

6 −0.859375 14 0.171875 22 0.125 30 0.0625

7 −0.625 15 0.6171875 23 0.125 31 0.125

8 −0.484375 16 0.3359375 24 0.0078125 32 0.171875
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FIGURE 2

Adaptive network structure diagram.

3.3 Activation function

Activation function is a nonlinear mapping of the predicted
results, which can improve the resolution of the model, so that
the model has the ability to deal with complex problems and
high learning ability. In convolutional neural networks, activation
functions including Sigmoid, Tanh, ReLU, Leaky-Relu, ELU, and
Maxout are frequently utilized.

Through the analysis of the activation function, the Sigmoid
function and the Tanh function are saturated nonlinear functions,
and the convergence speed is slow, which is easy to cause gradient
explosion or gradient small phenomenon. The ReLU function does
not have the problem of gradient disappearance, and there will be
no saturation problem. Therefore, ReLU can maintain the gradient
without attenuation, which alleviates the problem of gradient
disappearing, so that we can directly train deep learning neural
networks in a supervised manner, without relying on unsupervised
layer-by-layer pre-training. However, with the development of
training, the “vulnerability” of the ReLU function has gradually
become apparent. At that time, the derivative of the function is
always 0, which prevents false responses.

TABLE 3 Model structure.

Layer (type) Output shape Param

conv2d (Conv2D) (None, 30, 30, 32) 320

p_re_lu (PReLU) (None, 30, 30, 32) 28800

max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0

dropout (Dropout) (None, 15, 15, 32) 0

conv2d_1 (Conv2D) (None, 13, 13, 64) 18496

p_re_lu_1 (PReLU) (None, 13, 13, 64) 10816

max_pooling2d_1 (MaxPooling2D) (None, 7, 7, 64) 0

conv2d_2 (Conv2D) (None, 5, 5, 64) 36928

p_re_lu_2 (PReLU) (None, 5, 5, 64) 1600

max_pooling2d_1 (MaxPooling2D) (None, 3, 3, 64) 0

flatten (Flatten) (None, 576) 0

dense (Dense) (None, 512) 295424

dropout_1 (Dropout) (None, 512) 0

dense_1 (Dense) (None, 43) 22059

The Leaky-ReLU function is an improvement of the ReLU
function when the gradient is a range index. In order to solve
the problem of regional neuron disappearance, the Leaky-ReLU
function only replaces horizontal lines with non-horizontal lines.
In the specific direction propagation process of the model, input
the Leaky-ReLU activation function, the part less than zero can
prevent the neurons in the area from becoming dead neurons, and
the gradient can also be calculated. However, according to different
values, the role of the Leaky-ReLU function is also different, and its
function is shown in formula (4).

f (x) =

{
xi, x ≥ 0
αixi, x < 0

(4)

As shown in formula (4), the PReLU function is an
improvement of the Leaky-ReLU function. In the PReLU function,
α is a trainable function, and the neural network will also learn the
value of α to achieve faster and better convergence. The nonlinear
activation input on the channel is a coefficient that controls the
slope of the negative part, which allows the nonlinear activation
function to have different values on different channels, and the
PReLU degenerates to ReLU. When the value is small and fixed,
PReLU will degenerate into LReLU, and PReLU will only increase a
very small number of parameters. Compared with the total number
of parameters, these additional parameters can be ignored, so this
also means that the risk of overfitting will only increase a little.
Especially when different channels use the same α, there are fewer
parameters. PReLU can be trained in the back propagation process
at the same time, and can be optimized together with other layers.
The update formula is derived from the chain rule, and the gradient
of each layer is shown in formula (5).

∂ε

∂αi
=

∑
yi

∂ε

∂f (yi)

∂f (yi)

∂αi
(5)

As shown in formula (5), εrepresents the objective function,
∂ε

∂f (yi)
is the gradient propagated from a deeper layer, and its

activation gradient is shown in formula (6).

∂f (yi)

∂αi
=

{
0, yi > 0
yi, yi ≤ 0

(6)
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Acting on all element maps, for channel shared variables, the
gradient is shown in formula (7).

∂ε

∂α
=

∑
i

∑
yi

∂ε

∂f (yi)

∂f (yi)

∂αi
(7)

As shown in formula (7),
∑

yi is the total value of all channels.
When the model updates α, the update method using the time
driving quantity is shown in formula (8).

1αi := µ1αi + δ
∂ε

∂αi
(8)

As shown in formula (8), µ represents momentum and δ is
the learning rate.

4 Evaluation of result

In order to verify the superiority of the improvement of
the PReLU activation function, by using the GTSRB dataset, the

PReLU improvement function is compared with the commonly
used activation functions such as Sigmoid, Tanh, SELU, ReLU, and
Leaky-ReLU. We use different activation functions in the model
and compare them during the 100% training process to ensure
the fairness and rationality of the results. We have selected the
training progress after 0%, 20%, 50%, 75%, and 100%, and their
corresponding loss index and precision index are compared. As the
training progress increases, the loss and accuracy of each functional
model are shown in Tables 4–9.

It can be seen from Table 4 that when the training progress
is 0%, the performance of the improvement function of PReLU
is not particularly ideal, and the performance on the test set
is only better than the activation functions of Sigmoid and
Leaky-ReLU. The results of training progress of 25% are shown
in Table 5.

In the intermediate stage of the training progress, we choose
the intermediate state of 50% to view the performance of each
activation function, as shown in Table 6.

TABLE 4 Comparison of each function loss and accuracy when training progress is 0%.

Function

Index Sigmoid Tanh SELU ReLU Leaky-ReLU PReLU

Train Loss 3.6711 0.8787 0.7477 1.1660 1.1496 1.7159

Accuracy 0.0498 0.7611 0.7914 0.6744 0.6803 0.5110

Test val_loss 3.1683 0.5052 0.5829 0.6142 0.7049 0.7237

val_accuracy 0.1930 0.8358 0.8308 0.8054 0.7755 0.7773

TABLE 5 Comparison of each function loss and accuracy when training progress is 25%.

Function

Index Sigmoid Tanh SELU ReLU Leaky-ReLU PReLU

Train Loss 0.0094 5.42e-05 1.3126e-05 0.0016 0.0090 0.0126

Accuracy 0.9981 1.0000 1.0000 0.9995 0.9973 0.9954

Test val_loss 0.5266 0.2732 0.3844 0.3384 0.3882 0.1504

val_accuracy 0.8778 0.9413 0.9268 0.9390 0.9315 0.9633

TABLE 6 Comparison of each function loss and accuracy when training progress is 50%.

Function

Index Sigmoid Tanh SELU ReLU Leaky-RELU PReLU

Train Loss 1.6920e-04 4.1051e-06 9.4398e-07 1.111e-06 1.2186e-06 0.0078

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9977

Test val_loss 0.6174 0.3036 0.4442 0.3687 0.4419 0.1906

val_accuracy 0.8918 0.9433 0.9293 0.9449 0.9420 0.9653

TABLE 7 Comparison of each function loss and accuracy when training progress is 75%.

Function

Index Sigmoid Tanh SELU ReLU Leaky-ReLU PReLU

Train Loss 4.6383e-05 2.9061e-07 6.6417e-08 9.264e-08 9.1472e-08 0.0062

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982

Test val_loss 0.6762 0.3513 0.5186 0.4361 0.5251 0.1598

val_accuracy 0.8902 0.9424 0.9286 0.9454 0.9426 0.9732
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TABLE 8 Comparison of each function loss and accuracy when training progress is 100%.

Function

Index Sigmoid Tanh SELU ReLU Leaky-ReLU PReLU

Train Loss 6.5922e-06 3.0431e-08 6.1023e-09 8.242e-09 7.6751e-09 0.0052

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 0.9986

Test val_loss 0.7304 0.3728 0.5822 0.4892 0.5959 0.2095

val_accuracy 0.8943 0.9444 0.9295 0.9449 0.9415 0.9753

TABLE 9 Comparison of results on the test set before and after training.

Function

Index Sigmoid Tanh SELU ReLU Leaky-ReLU PReLU

Before training 0.1930 0.8358 0.8308 0.8054 0.7755 0.7773

After training 0.8902 0.9444 0.9295 0.9449 0.9415 0.9753

It is not difficult to see from Table 6 that when the training
progress reaches 50%, the accuracy of other activation functions on
the training set even reached 100%. Similarly, the result of PReLU
on the training set also reached 0.9977, but the accuracy of the
other activation functions on the test set is still slightly lower than
the accuracy of the PReLU activation function (0.9653). Select 75%
progress status to view the performance of each activation function,
as shown in Table 7.

Select 100% progress status to view the performance of each
activation function, as shown in Table 8.

In order to verify the role of the activation function, and also to
compare the performance of each activation function, we compare
the state before and after training, and the results are shown in
Table 9 below.

In Table 9, after 100% training, the performance of the PReLU
improvement function is significantly better than other activation
functions, verifying the effectiveness of the model. It can be seen
from the above table comparison that when the model is not
trained, that is, when the training progress is 0%, the effects of
the activation functions of Tanh, SELU, and ReLU are better than
those of PReLU improvement. However, as the training progress
increases, the accuracy of the PReLU improvement function
gradually increases. When the training progress is only 25%, it

FIGURE 3

Multiple comparison char.

can be seen that the accuracy of the PReLU improvement function
exceeds that of other activation functions under normal conditions.
In order to compare PReLU with other activation functions, we
select the model of one of the functions, and filter the images whose
accuracy and loss change as the number of epochs increases, as
shown in Figure 3.

It can be seen from Figure 4 that as the training progress
increases, the model using other activation functions has a relatively
stable performance, but after the training, we can see that the
accuracy is insufficient. The comparison of another model is shown
in Figure 4.

As shown in Figure 4, as the number of epochs increases, the
accuracy of using the PReLU activation function model continues

FIGURE 4

Comparison chart.

TABLE 10 Comparison of recognition performance of different
algorithms on GTSRB data sets.

Algorithm Recognition
accuracy

Fast R-CNN 90.1%

Faster R-CNN 91.8%

Traditional LeNet-5 network (Zhang et al., 2021) 95.48%

Optimized LeNet-5 network 97.53%
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to improve, and the overall effect is better than that of models using
other activation functions.

In order to verify the recognition performance of the optimized
LeNet-5 network, we compared the recognition accuracy with other
traffic sign recognition methods on the GTSRB data set, and the
comparison results are shown in Table 10.

It can be seen from Table 10, compared with three
typical deep learning networks (Fast R-CNN, Faster R-CNN and
traditional LeNet-5 network), the optimized LeNet-5 network
can extract more effective features from the dataset, and the
identification accuracy is significantly improved, which can meet
the requirements of automatic driving. At the same time, compared
with the large complex network structure, the optimized network
proposed in this paper reduces the number of neurons through
weight sharing and local receptive field, achieving the purpose of
reducing training parameters and improving training speed, thus
greatly shortening the time of feature extraction and recognition,
and making it possible to recognize traffic signs in real-time
monitoring. The optimized network proposed in this paper reflects
the good performance of the network model because of its simple
structure and lower requirements for terminal equipment, and can
be well applied in the field of traffic sign recognition.

5 Conclusion

Aiming at the requirements of intelligent driving for traffic
sign recognition, a light traffic sign recognition network based
on neural network is proposed. By improving the spatial pool
convolutional neural network, the neuron nodes are optimized, and
the normalized image is preprocessed. And activation, optimize
the activation function to improve the recognition effect. The
experimental results show that this method has a high recognition
rate, especially after the improvement of the activation function,
the recognition accuracy has also improved. Due to its simple
structure and low requirements on terminal device memory and
configuration, the network model can be effectively applied to
intelligent driving scenarios. At the same time, it has a reliable

recognition effect in traffic sign recognition, improving the quality
and safety of intelligent driving.
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DFA-UNet: dual-stream 
feature-fusion attention U-Net 
for lymph node segmentation in 
lung cancer diagnosis
Qi Zhou 1,2†, Yingwen Zhou 2†, Nailong Hou 2, Yaxuan Zhang 2, 
Guanyu Zhu 2* and Liang Li 1*
1 Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China, 
2 School of Medical Imaging, Xuzhou Medical University, Xuzhou, China

In bronchial ultrasound elastography, accurately segmenting mediastinal 
lymph nodes is of great significance for diagnosing whether lung cancer has 
metastasized. However, due to the ill-defined margin of ultrasound images 
and the complexity of lymph node structure, accurate segmentation of fine 
contours is still challenging. Therefore, we  propose a dual-stream feature-
fusion attention U-Net (DFA-UNet). Firstly, a dual-stream encoder (DSE) is 
designed by combining ConvNext with a lightweight vision transformer (ViT) 
to extract the local information and global information of images; Secondly, 
we  propose a hybrid attention module (HAM) at the bottleneck, which 
incorporates spatial and channel attention to optimize the features transmission 
process by optimizing high-dimensional features at the bottom of the network. 
Finally, the feature-enhanced residual decoder (FRD) is developed to improve 
the fusion of features obtained from the encoder and decoder, ensuring a more 
comprehensive integration. Extensive experiments on the ultrasound elasticity 
image dataset show the superiority of our DFA-UNet over 9 state-of-the-art 
image segmentation models. Additionally, visual analysis, ablation studies, and 
generalization assessments highlight the significant enhancement effects of 
DFA-UNet. Comprehensive experiments confirm the excellent segmentation 
effectiveness of the DFA-UNet combined attention mechanism for ultrasound 
images, underscoring its important significance for future research on medical 
images.

KEYWORDS

ultrasound elastography, mediastinal lymph nodes, semantic segmentation, attention 
mechanism, deep learning

1 Introduction

Lung cancer is one of the malignant tumors with the highest morbidity and mortality rates 
worldwide (Detterbeck et al., 2016; Siegel et al., 2023). The choice of treatment is closely related 
to cancer staging, determining whether the lymph nodes are involved is one of the key factors 
in clarifying the cancer staging (Asamura et al., 2015; Taylor et al., 2023). Numerous studies 
(Gu et al., 2017; Wang et al., 2018; Zhang et al., 2019; Wang B. et al., 2021; Wang R. et al., 2021) 
have demonstrated that compared with traditional ultrasound imaging, bronchial ultrasound 
elastography (BUE) can provide more accurate information on mediastinal lymph nodes, 
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reflecting the hardness information of lymph node tissues with 
different colors, which has a higher diagnostic value (Oglat and 
Abukhalil, 2024).

Ultrasound elastography (UE) is a novel ultrasound diagnostic 
technology that has rapidly developed in recent years. It utilizes 
dynamic imaging to measure tissue hardness (Zhang et al., 2019; Cui 
et al., 2022), allowing for non-invasive diagnosis of diseased tissues by 
analyzing the differences in hardness between various tissues. 
Currently, most UE used in endoscopy employs strain force 
elastography. This technique operates on the principle that softer and 
harder tissues deform differently under the same external force (Sigrist 
et al., 2017). Generally, tissues with lower elasticity coefficients exhibit 
greater displacement and deformation, appearing green; tissues with 
higher elasticity coefficients exhibit less displacement, appearing blue; 
and tissues with intermediate hardness appear reddish-blue or 
reddish-green. Since malignant lymph nodes are harder than benign 
ones, assessing the hardness of a lesion by measuring the proportion 
of the blue area within it can help identify benign and malignant 
lesions (Sun et  al., 2017). Therefore, accurate localization and 
segmentation of mediastinal lymph nodes based on BUE images are 
crucial steps in lung cancer diagnosis and treatment (Wang B. et al., 
2021; Wang R. et al., 2021).

Currently, professional doctors are typically required to manually 
segment lymph nodes in BUE images. This process is not only time-
consuming and labor-intensive but also subject to inter-individual 
differences among doctors, leading to subjective biases and potential 
omission of important features. Consequently, the same image can 
result in varying analyses and evaluations, causing segmentation 
errors. Therefore, developing automatic segmentation methods for 
lymph nodes in UE images is of great significance (Li and Xia, 2020; 
Tan et al., 2023).

With the continuous development of computer vision technology, 
the application of semantic segmentation in medical images has 
become increasingly important. Combining artificial intelligence with 
medical imaging to enable intelligent-assisted diagnosis has become 
an inevitable trend, leading to many typical application cases in the 
medical field (Long et al., 2015; Ronneberger et al., 2015; Oktay et al., 
2018; Chen et al., 2021; Bi et al., 2023). However, most studies have 
focused on grayscale images, using only single-channel data as 
network inputs, with fewer studies addressing three-channel data 
segmentation based on UE images. One existing study (Liu Y. et al., 
2022) introduces multiple skeleton networks to evaluate the 
segmentation performance of U-shaped model structures on the BUE 
dataset. This study also designs a context extractor at the bottleneck 
and employs an attention gate (AG) (Oktay et al., 2018) in the skip 
connections to suppress irrelevant information in the image. The 
proposed ACE-Net examines the impact of model structure changes 
on segmentation performance. Unfortunately, this model overlooks 
the channel features in the middle layer and relies solely on the soft 
attention mechanism for feature correction. Additionally, the 
traditional decoder structure is insufficient for fully recovering the 
features of the elastography image, indicating that the segmentation 
performance on mediastinal lymph nodes needs further improvement.

On the one hand, traditional ultrasound images suffer from low 
contrast and high noise, leading to blurred node edges and abnormal 
boundary changes (Xian et al., 2018; Liu et al., 2019; Chen et al., 2022). 
On the other hand, UE images with added pseudo color can assist 
physicians in locating the approximate position of nodules. However, 

they do not resolve the issues inherent in traditional ultrasound 
images and introduce additional challenges. Specifically, the pseudo 
colors obscure the texture information of mediastinal lymph nodes, 
making it more difficult to capture their actual boundaries, particularly 
for the accurate segmentation of small mediastinal lymph nodes. 
Therefore, we  combine the attention mechanism and vision 
transformer (ViT) to conduct an in-depth study of mediastinal lymph 
node segmentation in bronchial ultrasound elastography images. The 
main contributions of this research are summarized as follows:

 • We design a dual-stream encoder (DSE) combining ConvNext 
and a lightweight ViT to effectively extract both global and local 
features from UE images.

 • We propose a hybrid attention module (HAM) at the bottleneck 
to optimize the transmission of high-dimensional features.

 • We introduce a feature-enhanced residual decoder (FRD) to 
recover information and fully fuse the intermediate features of 
the encoder and decoder using attention and residual structures.

 • We use Grad-CAM to visualize heat maps of class activation at 
different stages of the model, providing insights into the 
action mechanisms.

2 Related work

2.1 Medical image segmentation based 
deep learning

In the early stages of medical image segmentation, traditional 
methods primarily relied on thresholding, region, edge detection, 
clustering, and deformable models (Tsai et  al., 2003). With the 
advancement of deep learning, fully convolutional networks (FCNs) 
(Long et al., 2015) emerged as the most classic segmentation models. 
FCNs address the limitations of convolutional neural networks 
(CNNs) in fine-grained image segmentation by replacing fully 
connected layers with convolutional layers, enabling pixel-level 
classification to achieve target segmentation. U-Net (Ronneberger 
et  al., 2015) employs a symmetric U-shaped encoder-decoder 
structure and is widely used in medical image segmentation. Each 
layer introduces skip connections that combine intermediate features 
from the encoder and decoder, reducing feature loss and making it 
particularly suitable for small sample datasets, thereby achieving faster 
and more efficient segmentation.

There are many variants of U-Net. To enhance the feature 
extraction capabilities of the model, Dense-UNet (Cai et al., 2020) 
uses a densely connected network as the decoder, effectively 
segmenting multiphoton live cell images. To improve the sensitivity to 
subtle boundaries, Iter-Net (Li et al., 2020) chains U-Net structures 
together, achieving retinal fundus vessel segmentation by analyzing 
U-Net structures of different sizes. However, these studies fail to 
capture contextual features from a global perspective, focusing 
primarily on spatial domain dependencies.

Recently, researchers have integrated vision transformers (ViT) 
(Dosovitskiy et al., 2020) into U-Net to enhance feature extraction. 
For example, Trans-UNet and Swin-UNet have demonstrated 
impressive performance and accuracy in medical image segmentation. 
Lin et al. (2023) explored the relationships among CNNs, ViT, and 
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traditional operators, proposing CTO, which performed exceptionally 
well on multiple medical image segmentation datasets. Bi et al. (2023) 
combined ViT with deformable convolutions to accurately segment 
thyroid nodules. These models utilize ViT as an encoder to effectively 
capture global contextual information while retaining U-Net’s unique 
multi-scale feature fusion structure. Despite the outstanding 
performance of ViT, the fixed-size patches limit its ability to perceive 
fine details and result in high computational costs. Considering the 
powerful capability of CNNs in capturing local features, we adopt a 
dual-stream network that combines ViT and CNN to fully exploit the 
information in medical images.

2.2 Attention mechanism

The attention mechanism has shown significant achievements and 
is widely used in medical image segmentation due to its ability to 
enhance feature representation and improve the accuracy of 
segmentation. By selectively focusing on the most relevant parts of the 
image, attention mechanisms can effectively highlight important 
regions, such as lesions or tumors, while suppressing irrelevant 
background noise. For example, Attention U-Net (Oktay et al., 2018) 
enhances the U-Net by adding AG mechanisms in the skip 
connections. These AGs re-adjust the encoder’s output features, 
emphasizing attention weights on the target organ region, thereby 
improving segmentation accuracy. Lee et  al. (2020) proposed an 
innovative channel attention module that employs a multi-scale 
averaging pooling operation to cleverly fuse global and local spatial 
information. MDA-Net (Iqbal and Sharif, 2022) replaces the normal 
convolution module in U-Net with a multi-scale fusion module and 
uses a dual attention mechanism to optimize intermediate features in 
the decoder. Chen et al. (2022) designed a hybrid adaptive attention 
module for the irregular lesion morphology, which combines channel 
self-attention and spatial self-attention, and replaced the convolution 
module in U-Net with it to form AAU-Net. However, given the 
limitations in feature extraction and enhancement, especially the 
high-dimensional complex features extracted by DSE, such research 
may encounter bottlenecks. To address this, we  design a hybrid 
attention module at the bottleneck. This module helps capture more 
semantically rich features, enables the network to focus on lesion 
areas, and filters out noise during the feature propagation process.

3 Methodology

3.1 Overview

The model proposed mainly contains the following components: 
dual stream encoder (DSE), hybrid attention module (HAM), and 
feature-enhanced residual decoder (FRD), and the structure is shown 
in Figure 1. Firstly, the UE image is fed into the network for multi-
order feature extraction using the DSE. Secondly, the features 
generated by the encoder are optimized using the HAM at the 
bottleneck. Then, FRD fully fuses the intermediate and underlying 
features to de-code them. Finally, the features are transformed into a 
binary map using a convolutional layer and an up-sampling layer. The 
following section describes in detail the structures in the figure.

3.2 Dual-stream encoder

Given that UE images can localize the position of lymph nodes 
and provide rich channel information, the masking of texture 
information also leads to the difficulty of performing this task. 
Therefore, we combine CNNs and ViTs to design a DSE, aiming to 
effectively capture both local and global features.

A convolutional network encoder is used to capture local feature 
information of mediastinal lymph nodes from BUE images. Numerous 
studies (Xie and Richmond, 2018; Raghu et al., 2019) have shown the 
benefits of pre-trained models, so we use the newly proposed powerful 
pre-trained ConvNext (Liu Z. et al., 2022) as a convolutional network 
encoder. It has four outputs are Fi , , , ,i =1 2 3 4, dimensions are 
C H W× ×/ /4 4 , 2 8 8C H W× ×/ / , 4 16 16C H W× ×/ /  and 
8 32 32C H W× ×/ / , where C is 128, H  and W  are both 256.

Vision transformer encoder is used to capture the global 
feature dependencies of mediastinal lymph nodes to assist the 
convolutional network encoder for feature extraction. As shown in 
Figure  1, to minimize model complexity and make full use of 
intermediate features, F1  is used as an input to ViT. Considering 
the size distribution of the mediastinal lymph node, we used 4 4×  
and 16 16×  patch sizes to divide F1 . F1  is split equally from the 
channel dimensions, using dimensionality change and linear layer 
to divide F1  into C H P W P/ / / , ,2 4 4 4 16× × =P  patches, where P 
denotes the size of the patch. The features are passed into the 
multi-head attention module, whose main role is to compute the 
self-attention of the input features to capture the correlation 
between the features. Specifically, we  first use the convolution 
operation to obtain the query vector Q, the key vector K , and the 
value vector V  of the features. Then the attention score matrix is 
obtained by the inner product operation between Q and K , which 
represents the feature-to-feature similarity. Next, the attention 
score matrix is scaled and probabilization to obtain the attention 
weight matrix. Finally, the attentional weight matrix is weighted 
and summed with V  to obtain the attentional weighted value 
matrix. This matrix represents the feature representation obtained 
after attentional weighting of the input features. Specifically as 
shown in Equation (1):

 
FMHA

T

k
Softmax QK

d
V=











 
(1)

where dk  is the length of K  and FMHA is the output of the multi-
head attention module.

Send FMHA into the feed forward module to get FFF . The feed 
forward module consists of two base convolutional modules: a 
convolutional layer with a kernel of 3 × 3, a batch normalization layer, 
and a leak ReLU activation function. To further speed up the training, 
F1 , FMHA, and FFF  are residually summed to obtain the feature FV  
extracted by the ViT encoder.

3.3 Hybrid attention module

To enhance the extraction of global and local features across 
various dimensions from the DSE, we design a HAM to optimize the 
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features transmission process by optimizing high-dimensional 
features at the bottom of the network.

First, by extracting global features using the lightweight ViT, 
with input and output dimensions unchanged, the resulting Fv 
dimension is C H W× ×/ /4 4. Then, local features F4 are extracted 
by CNN, with dimensions of 8 32 32C H W× ×/ / . We use down-
sampling to resize the Fv to the same size as F4. To further enhance 
the features extracted by the encoder, we concatenate the global 
feature Fv and the local feature F4 along the channel dimension and 
utilize a 1 × 1 convolution to reduce the number of channels to 1/4 
of the original, obtaining the feature Ff , thereby reducing parameter 
and computational complexity.

To minimize information loss while enhancing features, 
we parallelly employ spatial attention modules and channel attention 
modules to enhance encoder features. The channel attention module 
first transforms the dimensions of the input feature Ff  to ′ ′ ′×C HW , 
then generates the attention map Wc  through matrix multiplication. 
Finally, Ff  is multiplied by Wc  and uses the residual add, resulting in 
the feature Fc enhanced by channel attention, as shown in the 
formula below:

 
F Soft Rs F Rs F F Fc

T= ( ) ( )( )× +max f f f f•
 

(2)

where Rs •( )  denotes the dimensional transformation and 
Softmax •( )  denotes the activation function used to normalize the 
weight values.

For spatial attention, firstly, the channels of Ff  are reduced to 1 
through a 1 × 1 convolution. Then, the Softmax function is applied to 
normalize the features. Finally, the obtained feature map is multiplied 
by Ff  and undergoes residual add, resulting in the feature Fs enhanced 
by spatial attention, as shown in the formula below:

 F Soft Convs F F Fs = ( )( )× +max f f f  (3)

The obtained Fc and Fs are added and then the channel number 
is restored using a 1 × 1 convolution, obtaining the enhanced DSE 
features Fcv with dimensions of 8 32 32C H W× ×/ / . This approach 
comprehensively enhances the image features captured by the feature 
encoder. Moreover, this parallel attention mechanism reduces the 
influence of noise, optimizes the feature propagation process at the 
network bottleneck, and enhances the reliability of the model.

3.4 Feature-enhanced residual decoder

To alleviate the situation that ordinary decoder modules may lead 
to inaccurate segmentation results in the process of feature recovery, 
we propose the FRD, as shown in Figure 1. Firstly, the feature map 
FCV  is summed with Fi , , , ,i =1 2 3 4 to obtain the enhanced fused 
feature Fdi , , , ,i =1 2 3 4 by using bilinear interpolation and convolution 
operations. This preserves the details and location information of the 
original input image and improves the accuracy of the segmentation 
results. Then, to reduce the complexity and training difficulty of the 
model, the number of channels of Fdi , , , ,i =1 2 3 4 is converted to C / 2 
using a convolution operation to obtain the feature F di' , , , ,i =1 2 3 4. 
Finally, F di'  is passed into the FRD for feature recovery. Anyway, the 
features of the mediastinal lymph node can be  recovered more 
accurately utilizing FRD, and the accuracy of segmentation results can 
be improved. The formula is as follows:

 F Conv Up Conv F Fdi CV i' , , , ,= ( )( ) +( ) =× ×1 1 1 1 1 2 3 4i  (4)

where Up •( )  denotes bilinear interpolation for feature 
transformation and Conv1 1× ( )•  denotes 1 × 1 convolution for 
channel conversion.

FIGURE 1

The framework of the proposed dual-stream feature-fusion attention U-Net.
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To make full use of the intermediate features of the model, 
multiple parallel processing strategies are adopted at the bottom 
decoding stage. Specifically, there are three branches of processing for 
F d' 3 and F d' 4. The first branch performs the bilinear interpolation of 
F d' 4 with F d' 3 for channel concatenation and passes the result to the 
convolution module for initial feature recovery. The second branch 
passes F d' 4 into the spatial attention module to extract the position 
weight Ws, and then performs product operation between Ws and 
F d' 3 to obtain the attention-enhanced features. The third branch 
residually sums F d' 4 with the features of the first two branches to 
obtain the output of the decoder module Fo3. The formulas for the 
other decoder modules are shown in Equation (5):

 
F Convs F F F SA F Foi di

up
oi

up
oi

up
oi di= ⊕( ) + + ( )×+ + +' '1 1 1  

(5)

where Convs •( )  denotes the base convolution operation; ⊕ 
denotes channel concatenation; Fupoi+1 is the output of the decoder 
after up-sampling; and SA •( )  denotes the spatial attention operation. 
Through parallel processing and feature fusion, the decoder can fully 
utilize the features to recover lost details and positional information 
and improve the accuracy of the segmentation results. This design can 
effectively compensate for the shortcomings of the common decoder 
and further optimize the performance of mediastinal lymph 
node segmentation.

4 Experiments

4.1 Databases and experimental protocols

4.1.1 Dataset description
A cohort of 206 patients who underwent endobronchial 

ultrasound-guided trans-bronchial needle aspiration (EBUS-TBNA) 
was selected from the First Hospital of Nanjing, comprising 141 males 
and 65 females. We collected 263 UE images of lymph nodes, which 
were manually delineated by an experienced radiologist. The dataset 
includes 102 benign and 161 malignant samples. For the experiments, 
the UE images were uniformly resized to 256 × 256 pixels. The dataset 
is divided into six equal parts, five of which totalling 219 images are 
used for training and the other totaling 44 images are used for testing.

We conduct multiple experiments through a six-fold cross-
validation approach to fully evaluate the performance of the model. 
To increase the robustness of the model, we  use an online data 
augmentation method, where the read data are vertically flipped and 
rotated by a random angle (−30° or 30°) with a probability of 0.5 
during the model training iterations.

4.1.2 Implementation details
The proposed DFA-UNet is implemented based on Python 3.7 

and Pytorch 1.12. The image processing workstation is equipped with 
an Intel i9-13900 K CPU and two NVIDIA RTX 4090 GPUs with 24G 
memory. The initial parameters during model training are obtained 
by Pytorch default initialization and the Adam optimizer is used to 
update the network parameters. Specifically, the initial learning rate is 
set to 0.0001, the weight decay coefficient is 0.1, the learning rate is 
decayed every 90 rounds of iterations, and the number of iterative 

training of the model is 190 times in total. Dice (Milletari et al., 2016) 
is used as the loss function with the following formula:

 
Dice Loss

I I
I I

 
t p

t p

= −
∩
+

1
2 |

| |

|

| |
 

(6)

where I t is the true mask for UE image segmentation and Ip is the 
mask predicted by the model.

4.1.3 Evaluation metrics
To fully demonstrate the segmentation effect of the model, we use 

the Dice coefficient (Dice), Intersection over Union (IoU), Precision, 
Specificity, and Hausdorff distance 95th percentile (HD95) (Karimi 
and Salcudean, 2019) metrics to evaluate DFA-UNet. The Dice is a 
metric used to measure the similarity of a collection of two samples, 
in evaluating the performance of image segmentation, Dice can 
be expressed as:

 
Dice TP

TP FP TP FN
=

×
+ + +

2
 

(7)

where TP, FP, TN, and FN denote the set of pixel points for true 
positives, false positives, true negatives, and false negatives. Since the 
true positives of the background region are not computed during the 
pixel point classification process, the Dice is suitable for the task of 
evaluating segmentation targets of varying sizes.

The HD95 is a defined form of the distance between two point 
sets, calculated as:

 HD d d95 = { }max tp pt,  (8)

where dtp denotes the 95% quantile of the farthest distance from 
I t to I p, and dpt denotes the 95% quantile of the farthest distance from 
I p to I t. This metric is more robust to outliers and more suitable for 
biomedical image segmentation tasks.

In the aforementioned metrics, except for HD95, the value range 
of the other indicators is [0, 1], with values closer to 1 indicating better 
model segmentation performance. HD95 has no fixed value range, but 
lower values of HD95 signify better segmentation performance.

4.2 Comparison with the state-of-the-art

4.2.1 Quantitative analysis
To further validate the effectiveness of DFA-UNet on UE images, 

comparative experiments were conducted with several other models: 
U-Net (Ronneberger et  al., 2015), Att-UNet (Oktay et  al., 2018), 
Seg-Net (Badrinarayanan et al., 2017), DeepLabV3+ (Polat, 2022), 
Trans-UNet (Chen et al., 2021), U-Net++ (Zhou et al., 2018), BPAT-
UNet (Bi et  al., 2023), CTO (Lin et  al., 2023), and ACE-Net (Liu 
Y. et al., 2022). The results are presented in Table 1, with the best 
performance for each metric highlighted in bold.

From Table 1, it can be observed that DFA-UNet outperforms other 
models in terms of Dice, IoU, Precision, Specificity, and HD95. 
Specifically, DFA-UNet achieves higher Dice scores compared to U-Net, 
Seg-Net, Att-UNet, U-Net++, Trans-UNet, DeepLabV3+, BPAT-UNet, 
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CTO, and ACE-Net by 1.99, 1.18, 0.93, 1.13, 2.64, 0.98, 0.70, 0.51, and 
0.54%, respectively. Additionally, DFA-UNet shows an improvement of 
0.86% in IoU (77.41% vs. 76.55%) and a 1.48% increase in Precision 
(86.71% vs. 85.23%) compared to ACE-Net. The average improvement 
in Specificity across the nine compared models is 0.52%. Regarding 
HD95, DFA-UNet reduces the distance from 10.39 to 8.125 compared to 
U-Net, with an average reduction of 1.237 across the remaining models, 
indicating a significant enhancement in segmentation performance. 
Furthermore, due to the optimization of all parts of U-Net, DFA-UNet, 
similar to Trans-UNet, BPAT-UNet, CTO, and the other models, 
achieves better performance compared to U-Net with more parameters. 
However, it is worth noting that DFA-UNet achieves the best results in 
model computation within the well-established ConvNext, and also 
achieves optimal results in segmentation effectiveness.

4.2.2 Qualitative analysis
To further verify the generality of DFA-UNet for mediastinal 

lymph node segmentation. We randomly select four segmentation 
samples of different sizes for qualitative analysis, and their 
performance is shown in Figure 2.

From Figure  2, it is evident that DFA-UNet exhibits superior 
segmentation performance for mediastinal lymph nodes of varying 
sizes. When the target size is small (first row), U-Net, Seg-Net, 
Att-UNet, BPAT-UNet, CTO-Net, and ACE-Net produce 
seg-mentation results that are smaller than the actual target, whereas 
only U-Net++ and DFA-UNet achieve accurate segmentation. For 
moderately sized targets with relatively simple boundary structures 
(second row), Trans-UNet, U-Net, Att-UNet, and U-Net++ show 
significant mis-segmentation, with Trans-UNet performing 
particularly poorly, as corroborated by the data in Table  1. 
Additionally, CTO misses part of the segmentation in the lower-right 
corner of the node. For moderately sized targets with complex 
boundary structures (third row), Att-UNet, U-Net++, and Trans-
UNet fail to accurately segment the lower-right protruding region of 
the target area, whereas DFA-UNet consistently delivers precise 
segmentation results. In cases where the target size is large (fourth 
row), Seg-Net and Trans-UNet exhibit noticeable mis-segmentation 
in the lower-right depression of the target region, resulting in smaller 
overall segmentation outputs. U-Net, DeepLabV3+, and BPAT-UNet 
also show significant mis-segmentation in the low-er-right region. 
Only CTO-Net, ACE-Net, and DFA-UNet achieve more accurate 
overall segmentation results, with DFA-UNet providing the best 
performance across different target sizes and boundary complexities.

4.2.3 Visual analysis
To further explore the underlying mechanisms of DFA-UNet, 

we  employ Grad-CAM (Selvaraju et  al., 2017) to visualize the 
decoding stages of the model. A total of eight models, U-Net, 
Att-UNet, Seg-Net, Trans-UNet, BPAT-UNet, CTO, ACE-Net, and 
DFA-UNet, are selected and demonstrated in three stages.

From the overall analysis in Figure 3, it can be seen that the feature 
extraction capability of the model’s bottom stage determines the 
feature recovery of the model’s top stage. Specifically, all eight models 
can roughly locate the real segmentation region in the Decoder2 stage, 
and further continue to expand outward from the region of interest 
obtained in the previous stage in the Decoder3 stage. In the Decoder4 
stage, the model DFA-UNet shifted the region of interest from the 
interior to the boundary, which achieved better results in the overall 
segmentation results. The remaining seven models still further expand 

TABLE 1 Quantitative comparison of our DFA-UNet with other state-of-
the-art methods.

Model Dice 
(%)

IoU 
(%)

Pre 
(%)

HD95 Para 
(M)

Flops 
(G)

U-Net 84.61 74.73 84.88 10.39 31.04 54.60

Seg-Net 85.42 75.63 85.54 8.962 29.44 40.01

Att-UNet 85.67 76.04 84.05 9.056 57.16 66.61

U-Net++ 85.47 75.91 84.81 9.268 47.18 114.16

Trans-UNet 83.96 73.55 82.25 11.90 105.12 11.89

DeepLabv3+ 85.62 76.05 86.07 9.328 21.54 45.58

BPAT-UNet 85.90 76.38 84.83 8.725 71.01 64.12

CTO 86.09 76.71 85.05 8.751 60.01 22.59

ACE-Net 86.06 76.55 85.23 8.907 35.01 20.26

DFA-UNet 86.60 77.41 86.71 8.125 97.29 5.27

Bold values represent the best results.

FIGURE 2

Segmentation results of different models.
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the region of interest outwards, resulting in less accurate segmentation 
results in the higher stages of the model as determined by the target 
region positioned in the bottom stage of the model.

Secondly, a side-by-side comparison reveals that our DFA-UNet 
locates the target segmentation region more accurately in the lower 
stages. During the Decoder2 and Decoder3 phases, the red area 
representing the region of interest in the DFA-UNet is larger and more 
uniformly distributed compared to Seg-Net, Att-UNet, Trans-UNet, 
CTO, and ACE-Net. This uniform distribution closely aligns with the 
target segmentation region, indicating a better fit.

Finally, the reason for the poor segmentation performance of 
traditional models can also be analyzed from the figures: either the 
model’s ability to localize features in the lower layers or its ability to 
correct feature details in the higher layers is insufficient. Specifically, 
ACE-Net further extracts high-level semantic information at the 
bottleneck with the help of a context extractor, which leads to a certain 
degree of difficulty in re-covering high-level semantic information at 
the decoder stage, which is manifested in the form of smaller regions 
of interest in the Decoder2 and Decoder3 stages in Figure 3. Whereas 
the U-Net model is more accurate in its ability to localize the target 
segmentation region in the Decoder2 stage, its region of interest is 
almost unchanged in the Decoder3 and Decoder4 stages, suggesting 
that the model’s high-level stages are ineffective in correcting feature 
details. In contrast, DFA-UNet demonstrates superior performance in 
both the lower and higher stages, resulting in the best overall 
segmentation outcomes for the region of interest.

4.2.4 Ablation study
We perform ablation studies on each of the key modules of the 

DFA-UNet. The baseline network is U-Net, which is tested separately 
with the addition of DSE, HAM, and FRD. As seen in Table 2, the 
proposed modules promote significant improvements in the baseline 
network. This fully demonstrates the effectiveness of our DFA-UNet 
in mediastinal lymph node segmentation.

Firstly, using the DSE as the encoder significantly enhances the 
segmentation performance of the baseline network. The Dice increases 
by 0.79% (84.61% vs. 85.40%), and the IoU improves by 0.90% 
(74.73% vs. 75.63%). This notable performance boost is primarily due 

to the DSE helping the network extract both global and local features. 
Secondly, incorporating the HAM further improves the feature 
transfer capability from the DSE, resulting in an additional 
performance increase. Specifically, the Dice rises from 85.40 to 
85.84%, and the HD95 improves from 9.316 to 9.014. Finally, adding 
the FRD further improves segmentation performance. Compared with 
the baseline, the Dice is enhanced by 1.99% (84.61% vs. 86.60%), and 
the HD95 improves by 2.265 (10.39 vs. 8.125). In summary, 
systematically integrating the feature maps obtained through DSE, 
HAM, and FRD significantly contributes to the superior performance 
of our DFA-UNet. Additionally, it is important to note that the 
parameter count of the lightweight ViT module, DSE-ViT, only 
occupies a small portion (0.5%) of the total model parameters 
(88.58 M vs. 97.29 M), confirming its lightweight nature.

4.2.5 Generalization study
To validate the generalization of our DFA-UNet on ultrasound 

images, we conduct comparative experiments using the BUSI dataset 
(Al-Dhabyani et al., 2020). This dataset contains 780 breast ultrasound 
(BUS) images, including 437 benign images, 210 malignant images, 
and 133 normal images, acquired using the LOGIQ E9 and LOGIQ 
E9 Agile Ultrasound Systems. Since the primary goal of breast lesion 
segmentation is to evaluate and identify the distribution of lesions, 
normal cases without masks were excluded from the BUSI dataset 
(Ning et al., 2021; Xue et al., 2021). The results of these experiments 
are presented in Table 3.

FIGURE 3

Class activation maps generated by DFA-UNet using Grad-CAM. White contours indicate lymph node locations. Warmer-colored regions correspond 
to target class labels with higher confidence.

TABLE 2 Ablation experiment of the proposed DFA-UNet.

DSE-
CNN

DSE-
ViT

HAM FRD Dice 
(%)

IoU 
(%)

HD95 Para 
(M)

84.61 74.73 10.39 31.04

★ 85.07 75.23 9.809 88.58

★ ★ 85.40 75.63 9.316 89.15

★ ★ 85.84 76.40 9.014 96.94

★ ★ ★ ★ 86.60 77.41 8.125 97.29

Bold values represent the best results.
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The results in Table 3 demonstrate that our DFA-UNet achieves 
state-of-the-art performance in breast ultrasound image segmentation. 
Specifically, DFA-UNet shows significant improvements over U-Net, 
with increases of 11.74, 12.82, and 6.93% in Dice, IoU, and Precision, 
respectively, and a reduction of 13.83 in HD95. When compared with 
other models, DFA-UNet exhibits an average improvement of 5.59% 
in Dice, indicating its robust applicability to ultrasound images. 
Furthermore, comparing the results from Tables 1, 3 reveals that 
U-Net experiences a 13.67% decrease in Dice when applied to breast 
ultrasound images, highlighting the increased difficulty of this 
segmentation task. This also suggests that the color information in 
ultrasound elastography images aids segmentation. Notably, 
DFA-UNet shows only a 3.92% decrease in Dice, which underscores 
its superior generalization capability compared to other models that 
average a 6.49% decrease. Therefore, DFA-UNet is particularly well-
suited for segmenting mediastinal lymph nodes in ultrasound 
elastography images. This capability has potential clinical value, as it 
can assist doctors in using ultrasound elastography images for the 
diagnosis and treatment of lung cancer.

5 Conclusion

UE images with rich channel information can provide some 
guidance for segmentation of the region of interest, but their masking 
of texture information also leads to the difficulty of performing this 
task. Additionally, the varying characteristics of different mediastinal 
lymph node groups further challenge segmentation efforts. To address 
these issues, we designed a DSE based on ConvNext and a lightweight 
ViT incorporated into the U-Net. At the bottleneck, we introduced a 
HAM that combines channel attention with spatial attention to enrich 
the feature from DSE. The FRD fully fuses intermediate encoder 
features with decoder output features.

To verify the validity of our DFA-UNet, extensive experiments 
were conducted to several important conclusions. On the one hand, 
DFA-UNet employs a dual-stream encoder and an attention 
enhancement mechanism, which significantly increases the model’s 
stability. Comparative experiments show that DFA-UNet has clear 
competitive advantages over current mainstream segmentation 
models. Class activation maps demonstrate that DFA-UNet achieves 
superior segmentation sensitivity and completeness by focusing on the 
content of the region at the lower levels of the network and the 
boundaries of the region at the higher levels. On the other hand, 
we  optimized various components of the U-Net architecture and 

presented corresponding ablation experimental results. These findings 
offer insights for future research aimed at enhancing segmentation 
performance using U-Net structural variants. This optimization 
provides a foundation for subsequent studies to explore further 
improvements in segmentation effectiveness through structural 
enhancements of U-Net.

In the subsequent research, we will focus on data collection, semi-
supervised segmentation tasks, and model optimal structure 
exploration, to achieve better segmentation results and assist doctors 
to use UE images for relevant diagnosis and treatment of lung cancer.
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TABLE 3 Experiments for generalizability of the proposed DFA-UNet on 
the BUSI dataset.

Methods Dice (%) IoU (%) Pre (%) HD95

70.94 61.77 77.51 30.84

Att-UNet 72.80 63.90 75.49 32.99

DeepLabV3+ 78.12 68.75 80.75 21.91

Trans-UNet 76.82 67.41 80.45 21.25

BPAT-UNet 79.37 70.46 81.56 22.66

CTO 78.32 69.61 82.04 20.98

DFA-UNet 82.68 74.59 84.44 17.01

Bold values represent the best results.
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Facial expression recognition (FER) plays a crucial role in a�ective computing,

enhancing human-computer interaction by enabling machines to understand

and respond to human emotions. Despite advancements in deep learning,

current FER systems often struggle with challenges such as occlusions, head

pose variations, and motion blur in natural environments. These challenges

highlight the need for more robust FER solutions. To address these issues,

we propose the Attention-Enhanced Multi-Layer Transformer (AEMT) model,

which integrates a dual-branch Convolutional Neural Network (CNN), an

Attentional Selective Fusion (ASF) module, and a Multi-Layer Transformer

Encoder (MTE) with transfer learning. The dual-branch CNN captures detailed

texture and color information by processing RGB and Local Binary Pattern

(LBP) features separately. The ASF module selectively enhances relevant

features by applying global and local attention mechanisms to the extracted

features. The MTE captures long-range dependencies and models the complex

relationships between features, collectively improving feature representation and

classification accuracy. Our model was evaluated on the RAF-DB and A�ectNet

datasets. Experimental results demonstrate that the AEMT model achieved

an accuracy of 81.45% on RAF-DB and 71.23% on A�ectNet, significantly

outperforming existing state-of-the-art methods. These results indicate that

our model e�ectively addresses the challenges of FER in natural environments,

providing a more robust and accurate solution. The AEMT model significantly

advances the field of FER by improving the robustness and accuracy of emotion

recognition in complex real-world scenarios. This work not only enhances the

capabilities of a�ective computing systems but also opens new avenues for

future research in improving model e�ciency and expanding multimodal data

integration.

KEYWORDS

a�ective computing, attention mechanisms, feature extraction, emotion recognition,

facial expression recognition, deep learning, transfer learning

1 Introduction

In the field of affective computing, facial expression recognition (FER) has garnered

significant attention due to its natural and powerful means of conveying human

emotions. FER systems have critical applications in psychology research, human-computer

interaction, driver fatigue monitoring, and more. However, there are still many challenges

to facial expression recognition in natural environments. Factors such as occlusion,
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changes in head pose (Sun et al., 2021; Xu et al., 2022), facial

distortion and motion blurring exacerbate the challenges to

such recognition, as shown in Figure 1. These factors lead to

significant changes in facial appearance, complicating the task

of accurately recognizing expressions and causing traditional

recognition methods in laboratory settings to perform poorly in

real-world applications (Borgalli and Surve, 2022). Therefore, how

to achieve efficient and accurate facial expression recognition in

complex environments has become an urgent problem in the field

(Zeng et al., 2019; Li et al., 2020b).

The advent of deep learning has provided new opportunities

for FER. Convolutional neural networks (CNNs) and other

deep learning models have made significant strides in feature

extraction and classification accuracy. Deep learning models

automatically learn complex features from data, enhancing the

accuracy and robustness of FER. For example, Tang et al. (2019)

proposed a CNN model that significantly improved performance

by replacing the softmax layer with a linear support vector machine

(SVM) for classification. Similarly, Kim et al. developed a deep

locality-preserving CNN (DCNN-RF) method to enhance feature

discriminativeness (Li et al., 2019; Kim et al., 2023). Despite

these advancements, the performance of deep learning methods in

natural environments still leaves much to be desired (Kollias and

Zafeiriou, 2019).

Currently, the application of deep learning in natural

environments faces several challenges, including insufficient data,

weak model generalization, and difficulty in feature extraction

under complex conditions. Most existing methods are trained and

tested in controlled environments, performing poorly in real-world

scenarios. Additionally, the limited quantity and quality of available

datasets hinder the effective training of deep learning models,

resulting in unstable performance in natural environments (Wang

X. et al., 2020; Zeng et al., 2020). Existing methods often fail to

account for the diversity of real-world conditions, such as varying

lighting, occlusions, and head poses, leading to reduced robustness

and accuracy.

To address these challenges, this paper proposes an improved

visual Transformer model that combines attention mechanisms

and multi-layer Transformer encoders, incorporating transfer

learning to leverage the advantages of pre-trained models on large-

scale datasets (Liu et al., 2021). Specifically, the proposed method

involves two main steps: first, using a dual-branch CNN to extract

RGB and LBP (Local Binary Pattern) features, which are then

fused using an ASF module. The ASF module integrates global

and local attention mechanisms to effectively combine various

features, enhancing feature representation richness (Zhao et al.,

2020; Zhang et al., 2021). Second, a multi-layer Transformer

encoder models the global relationships of the fused features, and

the pre-trained model is fine-tuned to improve adaptability to

new datasets. The Transformer encoder, through multi-head self-

attention mechanisms, captures long-range dependencies among

features, thereby improving recognition capabilities (Ma et al.,

2021).

The proposed model addresses the limitations of existing

methods by enhancing feature extraction and improving

generalization. The dual-branch CNN captures both color and

texture information through RGB and LBP features, addressing the

issue of insufficient feature representation. The ASFmodule further

enhances this by selectively focusing on the most relevant features,

improving the model’s ability to handle occlusions and varying

head poses. The multi-layer Transformer encoder with transfer

learning leverages pre-trained models to improve performance on

smaller datasets, addressing the challenge of insufficient training

data and enhancing model generalization.

The goal of this study is to improve the accuracy and

robustness of FER in natural environments by combining attention

mechanisms, transfer learning, and Transformer models, providing

an effective solution for affective computing. Experimental results

demonstrate that the proposed method outperforms state-of-

the-art methods on multiple public datasets, achieving new

performance benchmarks. For instance, testing on the RAF-

DB, FERPlus, and AffectNet datasets shows that the proposed

method surpasses existing methods in accuracy, achieving new

performance highs. Furthermore, the proposed method exhibits

excellent generalization capabilities in cross-dataset evaluations,

validating its applicability in diverse environments (Jiang et al.,

2020).

In summary, this paper introduces a novel FER method that

leverages transfer learning and improved attention mechanisms.

This approach not only enhances recognition accuracy but also

improves robustness and generalization in complex environments,

providing new insights and technical support for the development

of affective computing. With the advent of larger datasets and

more powerful computational resources, this method is expected

to further advance, laying the groundwork for more intelligent and

humanized affective computing systems.

In conclusion, our contributions are as follows:

1. Novel integration of attention mechanisms and transformers:

We have developed a new model that integrates attention

mechanisms with multi-layer Transformer encoders. This

combination enhances the ability to capture global and local

features, improving the accuracy and robustness of facial

expression recognition in natural environments.

2. Incorporation of transfer learning: By incorporating transfer

learning, our model leverages pre-trained features from large-

scale datasets, significantly improving performance and training

efficiency on smaller, task-specific datasets. This approach also

enhances the model’s adaptability to diverse data conditions.

3. Comprehensive evaluation and validation: We conducted

extensive experiments across multiple public datasets (RAF-

DB, FERPlus, and AffectNet), demonstrating that our proposed

method achieves state-of-the-art performance. Additionally,

we validated our model’s generalization capabilities through

cross-dataset evaluations, proving its effectiveness in real-world

applications.

To provide a clear structure for the reader, we outline the

organization of our paper as follows: The first section is the

introduction, providing an overview of the research background

and the main challenges addressed. The second section reviews

related work, extending the discussion on the application of models

in similar fields. The third section, Method, describes the models

and algorithms used in our study. The fourth section presents

our experiments, evaluating our proposed research from various
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FIGURE 1

Samples from the A�ectNet (Sun et al., 2021) and RAF-DB (Li et al., 2017) datasets, emphasizing the variations in head poses, occlusions, and other

unconstrained conditions present in real-world images. A�ectNet includes eight expression labels, incorporating the contempt category, while

RAF-DB is annotated with seven basic expressions and additional compound expressions.

perspectives and comparing its performance with other studies.

Finally, Section 5 summarizes our findings and discusses future

directions for research.

2 Related work

2.1 Convolutional neural networks for
facial expression recognition

CNNs have shown exceptional performance in visual

perception tasks, particularly in facial expression recognition.

CNNs effectively extract features from images through hierarchical

convolution and pooling operations and classify these features.

Typical CNN architectures such as AlexNet, VGGNet, and ResNet

have been widely applied to facial expression recognition tasks

(Krizhevsky et al., 2012; He et al., 2016). Tariq et al. utilized

VGGNet for facial expression classification, achieving high

recognition accuracy on the FER-2013 dataset (Sikkandar and

Thiyagarajan, 2021; Tariq et al., 2023).

In their implementation, the researchers first preprocessed the

FER-2013 dataset by resizing the images to a fixed size and then

used the VGGNet model to extract image features. By fine-tuning

and optimizing the model, they classified seven basic emotions

(e.g., happiness, sadness, anger). The experimental results showed

that the VGGNet-based model achieved over 70% accuracy on the

test set, significantly outperforming traditional handcrafted feature

extraction methods.

The advantage of CNNs lies in their automatic feature

extraction capability, making them particularly effective in

handling complex emotional expressions. However, CNN models

are highly dependent on datasets and require a large amount of

labeled data for training (Buduma et al., 2022). Additionally, CNNs

are sensitive to geometric transformations of input images (e.g.,

rotation, scaling), making them susceptible to image preprocessing

quality (Wu et al., 2019). Another issue is that CNN models

generally have a large number of parameters, requiring substantial

computational resources for training and posing challenges for

deployment in resource-limited environments (Zhang et al.,

2019).

2.2 Recurrent neural networks in dynamic
emotion analysis

Recurrent Neural Networks (RNNs) and their variants, Long

Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),

have advantages in handling time-series data and are widely used

in dynamic emotion analysis. RNNs capture temporal relationships

in sequential data, making them effective for recognizing emotions

in continuous video frames (Ghorbanali and Sohrabi, 2023; Zhong

et al., 2023).

Zhang et al. utilized an LSTMmodel to model facial expression

sequences in videos and conducted experiments on the CK+

dataset. The results showed that LSTM outperformed traditional

methods in capturing emotional changes (Singh et al., 2023). In

their experiment, the researchers used the CK+ dataset, which

contains temporal data of various facial expressions. By extracting

video frames and inputting them into the LSTM model, the

model learned the dynamic features of facial expressions over

time (Chadha et al., 2020). The experimental results showed that

the LSTM model effectively captured subtle emotional changes,

achieving high accuracy (Singh et al., 2023).

Although RNNs perform well in dynamic emotion analysis,

they have some drawbacks, such as gradient vanishing and

exploding problems during training (Pascanu et al., 2013).

Additionally, RNNs are sensitive to noise in the data, posing

challenges for practical applications (Graves and Schmidhuber,

2005). Future research could focus on addressing these issues,

such as improving model architectures or using data augmentation

techniques to enhance model robustness.
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2.3 Generative adversarial networks for
data augmentation

Generative Adversarial Networks (GANs) have achieved

remarkable results in various computer vision tasks, particularly in

data augmentation for facial expression recognition. GANs,

through adversarial training between a generator and a

discriminator, can generate realistic facial expression images,

thus addressing the issue of insufficient real data (Radford et al.,

2015; Creswell et al., 2018). Goodfellow et al. introduced GANs

in their seminal work, demonstrating their capability in image

generation (Goodfellow et al., 2020; Bosquet et al., 2023).

Liu et al. used GANs to generate synthetic facial expression

images and combined them with real data to train CNN models,

significantly improving recognition accuracy (Liu et al., 2018; Cai

et al., 2021). In their experiment, the researchers first trained a

GAN generator to produce various facial expression images, then

mixed these generated images with real data to train CNN models

(Karras et al., 2019). This approach significantly enhanced dataset

diversity, optimizing model performance on the FER-2013 dataset,

with accuracy improvements of around 5% (Cai et al., 2021).

Although GANs are effective in data augmentation, their

training process is challenging. GAN training is unstable and prone

to mode collapse, where the generator only produces a limited

variety of samples (Paladugu et al., 2023). Furthermore, the quality

of GAN-generated samples heavily depends on the generator’s

design and training quality, and improper hyperparameter settings

can lead to low-quality samples (Brock et al., 2018). Future research

can improve GAN stability and sample quality by refining training

algorithms and model architectures (Karras et al., 2017).

2.4 Multimodal deep learning in a�ective
computing

Multimodal deep learning combines information from

different modalities (e.g., visual, audio, text) to enhance affective

computing capabilities (Baltrušaitis et al., 2018; Chen et al.,

2021). In facial expression recognition, visual information is often

combined with audio information to improve emotion recognition

accuracy (Tzirakis et al., 2017). Poria et al. developed a multimodal

emotion recognition system that uses CNN to extract facial

expression features, RNN to extract audio features, and a fusion

network to combine these features for emotion classification (Poria

et al., 2017; Wang Y. et al., 2023).

In their experiments, the researchers used a multimodal

dataset that included both video and audio data. By extracting

visual and audio features separately and combining them in a

fusion network, the researchers achieved more accurate emotion

recognition. The experimental results showed that multimodal

systems outperformed unimodal systems in emotion recognition

tasks, significantly improving accuracy (Peng et al., 2023).

Multimodal deep learning systems excel in affective computing

due to their ability to utilize information from different modalities,

providing a more comprehensive emotional analysis (Zadeh

et al., 2018). However, their implementation complexity is high,

involving complex processes for collecting and synchronizing

multimodal data (Wang et al., 2023). Additionally, multimodal

systems face challenges in real-world applications due to data

inconsistency, such as missing or poor-quality audio and video

data, which can affect model robustness (Aslam et al., 2023).

3 Method

3.1 Overview of our network

Our proposed model, the Attention-Enhanced Multi-Layer

Transformer (AEMT) Model, integrates several advanced

components to enhance performance in natural environments for

FER. The model comprises a dual-branch Convolutional Neural

Network (CNN), an ASF module, and a multi-layer Transformer

encoder with transfer learning.

The dual-branch CNN includes one branch dedicated to

extracting features from RGB images, capturing color and texture

information crucial for identifying facial expressions, and another

branch for extracting Local Binary Pattern (LBP) features, which

are effective in capturing fine-grained texture details and robust

to lighting variations. The ASF module dynamically fuses the

features extracted by the dual-branch CNN using global and local

attention mechanisms to prioritize and combine the most relevant

features, enhancing the richness and relevance of the combined

feature representation. The fused features are then fed into a

multi-layer Transformer encoder, which leverages multi-head self-

attention mechanisms to model the long-range dependencies and

global relationships between features, improving the model’s ability

to understand complex facial expressions. Additionally, transfer

learning is incorporated by utilizing pre-trained weights, which are

fine-tuned on the FER dataset to adapt to the specific task.

The ASF module dynamically fuses the features extracted by

the dual-branch CNN using global and local attention mechanisms

to prioritize and combine the most relevant features, enhancing

the richness and relevance of the combined feature representation.

The attention mechanisms in the ASF module calculate attention

weights that determine the contribution of each feature map.

Key hyperparameters include the number of attention heads, the

dimensionality of the feature maps, and the attention function

parameters.

The fused features are then fed into a multi-layer Transformer

encoder, which leverages multi-head self-attention mechanisms

to model the long-range dependencies and global relationships

between features, improving the model’s ability to understand

complex facial expressions. The Transformer encoder consists

of multiple layers, each with self-attention and feed-forward

networks. Hyperparameters include the number of layers, number

of attention heads, and the size of each feed-forward network.

Additionally, transfer learning is incorporated by utilizing pre-

trained weights, which are fine-tuned on the FER dataset to adapt to

the specific task. This involves selecting a pre-trained Transformer

model, typically trained on large datasets such as ImageNet, and

fine-tuning it on FER-specific data. Hyperparameters for transfer

learning include the learning rate, batch size, and number of fine-

tuning epochs.

The model starts by taking pre-processed facial images as

input, which are resized and normalized to ensure consistency.
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The input images are then passed through the dual-branch CNN.

One branch processes the RGB images, extracting deep color and

texture features using convolutional layers, while the other branch

processes the same images to extract LBP features, emphasizing

local texture patterns. The ASF module receives the features from

both CNN branches and applies attention mechanisms to weigh

and combine these features, producing a fused feature map that

encapsulates both global and local facial information. The fused

feature map is flattened and transformed into a sequence of

visual tokens, which are then fed into the multi-layer Transformer

encoder. This encoder applies self-attention and feed-forward

networks across multiple layers to capture intricate relationships

between the tokens. The pre-trained Transformer model is fine-

tuned on the specific FER dataset to improve performance. Finally,

the encoded features from the Transformer are passed through

a fully connected layer, and the output layer, equipped with a

softmax function, generates the probability distribution over the

facial expression categories, producing the final prediction.

The following figure illustrates the structure of our proposed

AEMT model, highlighting the integration of the dual-branch

CNN, ASF module, and multi-layer Transformer encoder with

transfer learning.

As shown in the Figure 2, the dual-branch CNN ensures

comprehensive feature extraction, capturing both detailed texture

and broader color information. The ASF module further enhances

this by selectively emphasizing the most relevant features

through attention mechanisms. The multi-layer Transformer

encoder, depicted in the diagram, excels at modeling long-range

dependencies and complex relationships between features, which

is crucial for accurately interpreting subtle and dynamic facial

expressions. By incorporating transfer learning, the model benefits

from pre-trained weights on large-scale datasets, improving its

performance on smaller, task-specific datasets. This enhances the

model’s robustness and adaptability to diverse and unconstrained

environments. Leveraging pre-trained models reduces the need

for extensive training data and computational resources. The

attention mechanisms ensure that the model focuses on the most

informative parts of the input, improving both training efficiency

and inference accuracy. In summary, as illustrated, our method

combines the strengths of CNNs, attention mechanisms, and

Transformers with transfer learning to create a robust and effective

FER system. Through extensive evaluation, we demonstrate its

superior performance and adaptability in real-world scenarios,

paving the way for more advanced and reliable affective computing

applications.

3.2 Attentional selective fusion module

The ASF module is a pivotal component in our model,

designed to dynamically integrate features from different sources.

Its basic principle involves using attentionmechanisms to prioritize

and combine the most relevant features extracted by the dual-

branch CNN, specifically from the RGB and LBP branches. This

selective attention ensures that the fused feature representation

retains critical information while filtering out less relevant data,

thereby enhancing the model’s performance in recognizing facial

expressions. The ASF module’s role is particularly significant

because it bridges the gap between feature extraction and high-level

semantic understanding, making it an essential part of the model’s

overall architecture.

The ASF module consists of several key components and

hyperparameters. Firstly, it extracts feature maps from the RGB

and LBP branches of the dual-branch CNN. The RGB branch

captures detailed color and texture information, essential for

distinguishing different facial expressions, while the LBP branch

extracts fine-grained texture details, which are robust to variations

in lighting conditions. The attention weights αRGB and αLBP are

then computed using a softmax function to ensure they sum to

one, involving learnable parameters WRGB and WLBP, which are

optimized during training to balance the contributions of each

feature map.

Once the attention weights are determined, the ASF module

fuses the feature maps using these weights to create a combined

feature map Ffused. This fusion emphasizes the most relevant

features while minimizing the impact of less important ones. The

fused feature map is then normalized to ensure consistency and

prepare it for further processing by the Transformer encoder.

Normalization methods such as batch normalization or layer

normalization are applied, with specific parameters computed

during training to maintain stability.

The final step involves transforming the normalized feature

map into a sequence of visual tokens that the Transformer

encoder can process. This transformation ensures the features

are in a suitable format for the attention mechanisms within the

Transformer, using a tokenization strategy that determines how the

feature map is divided into tokens and adding positional encoding

to preserve spatial relationships.

In practical applications, the ASF module proves to be

highly beneficial. For instance, in human-computer interaction

systems, accurately recognizing a user’s facial expressions is

crucial for providing appropriate responses. The ASF module

helps in capturing subtle facial cues that convey emotions,

thereby improving the system’s ability to interpret and respond

to user emotions correctly. In driver monitoring systems, where

recognizing fatigue and distraction through facial expressions

can prevent accidents, the ASF module’s ability to focus on the

most informative features under varying lighting conditions and

partial occlusions ensures reliable performance (Zhao et al., 2020).

Similarly, in psychological research, where detailed analysis of facial

expressions is necessary, the ASF module aids in extracting fine-

grained features that are critical for studying emotional responses.

The use of attention mechanisms in the ASF module

has become increasingly popular in the field of facial

expression recognition. Traditional methods often struggle

with the variability in facial expressions due to differences in

lighting, occlusions, and individual facial features. Attention

mechanisms, like those in the ASF module, address these

challenges by selectively focusing on the most relevant parts

of the feature maps (Sun et al., 2021). This selective focus

helps in capturing the essential details needed for accurate

recognition. In recent years, several studies have demonstrated

the effectiveness of attention-based models in enhancing

the performance of FER systems, making them more robust

and accurate.
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FIGURE 2

An overview of our proposed AEMT.

In our proposed AEMT model, the ASF module plays a

crucial role in bridging the gap between feature extraction and

the Transformer encoder. It receives feature maps from the

dual-branch CNN, where one branch processes RGB images to

capture color and texture information, and the other branch

processes LBP images to capture fine-grained texture details. The

ASF module calculates attention weights for each feature map,

ensuring that the most informative features are emphasized in the

fused representation. This fused feature map is then passed to

the multi-layer Transformer encoder, which further processes the

data to recognize facial expressions. By effectively combining the

strengths of CNNs in feature extraction with the powerful sequence

modeling capabilities of Transformers, the ASF module ensures

that the overall model can accurately capture and interpret complex

facial expressions. The attentional selective fusion is illustrated in

Figure 3 below:

The calculation of attention weights in the ASF module is

essential to its function. Let FRGB and FLBP be the featuremaps from

the RGB and LBP branches, respectively. The attention weights

αRGB and αLBP are computed as follows:

αRGB =
exp(WRGB · FRGB)

exp(WRGB · FRGB)+ exp(WLBP · FLBP)

αLBP =
exp(WLBP · FLBP)

exp(WRGB · FRGB)+ exp(WLBP · FLBP)

(1)

where αRGB and αLBP are the attention weights for the RGB and

LBP feature maps, respectively; WRGB and WLBP are learnable

parameters that adjust the contribution of each feature map.

Once the attention weights are determined, the ASF module

fuses the feature maps using these weights. The fused feature map

Ffused is given by:

Ffused = αRGB · FRGB + αLBP · FLBP (2)

where Ffused represents the combined feature map that incorporates

the most significant aspects of both input feature maps.

The fused feature map is then normalized to ensure

consistency and to prepare it for further processing by the

Transformer encoder. This normalization is achieved by applying

a normalization function N to Ffused:

Fnormalized = N(Ffused) (3)

where N denotes the normalization function that standardizes the

feature values.

The final step involves transforming the normalized feature

map into a sequence of visual tokens, which the Transformer

encoder can process. This transformation is represented as:

Tinput = T(Fnormalized) (4)

where T is the transformation function that converts the

normalized feature map into visual tokens Tinput .

The ASF module is integral to the AEMT model, enhancing

its ability to focus on the most relevant features extracted by

the dual-branch CNN. By dynamically adjusting the attention

weights and fusing the feature maps, the ASF module ensures

that the subsequent processing stages receive high-quality,

informative data. This contributes significantly to the model’s

overall performance, making it more accurate and robust in facial

expression recognition tasks.

3.3 Multi-layer transformer encoder with
transfer learning

The Multi-Layer Transformer Encoder with Transfer Learning

is a core component of our AEMT model, specifically designed

to process and refine the fused feature representations from

the ASF module. The fundamental principle of the Transformer

encoder lies in its ability to capture long-range dependencies and

global relationships within the input data through self-attention

mechanisms. This capability is crucial for understanding complex

and subtle facial expressions, which may be distributed across

different regions of the face.

Transformers have been widely adopted in various fields,

including natural language processing and computer vision, due

to their superior performance in capturing contextual information
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FIGURE 3

Structure of attentional selective fusion.

(Vaswani et al., 2017). In facial expression recognition, the use of

Transformer encoders enables the model to understand intricate

patterns and relationships between different facial features, leading

to more accurate and robust predictions (Dosovitskiy et al., 2021).

Moreover, incorporating transfer learning allows the model to

leverage pre-trained weights from large-scale datasets, significantly

improving its performance on smaller, task-specific datasets like

those used in FER. This approach not only enhances the model’s

accuracy but also accelerates the training process, making it more

efficient and practical for real-world applications.

In the context of our AEMT model, the Multi-Layer

Transformer Encoder with Transfer Learning plays a critical role

in processing the fused feature map provided by the ASF module.

After receiving the fused features, the Transformer encoder applies

a sequence of self-attention and feed-forward layers to model

the complex relationships and dependencies within the data. This

process begins with the transformation of the normalized feature

map into a sequence of visual tokens, which are then fed into the

Transformer encoder.

The MTE component consists of several key elements and

hyperparameters that contribute to its effectiveness. The input

layer Lin is responsible for initial processing and normalization

of the input data. The body of the encoder, comprising multiple

streams, employs self-attention mechanisms to capture long-range

dependencies and global relationships. Each stream processes

a portion of the data independently, and the outputs are

combined to form a cohesive representation. The output layer

Lout consolidates the information and prepares it for the final

prediction stage.

Key hyperparameters include the number of attention heads

h, the dimension of the keys dk, and the number of layers in the

encoder. These parameters are tuned to balance computational

efficiency and model performance. The number of attention heads

h allows the model to focus on different aspects of the input data

simultaneously, enhancing its ability to capture complex patterns.

The dimension of the keys dk determines the granularity of the

attention mechanism, and the number of layers in the encoder

affects the model’s capacity to learn hierarchical representations.

As a starting point, we use the vanilla Transformer model. We

modify its encoder portion by splitting it into three segments: the

input layer Lin, the body of the encoder with multiple streams, and

the output layer Lout .We denote Si as the i-th streamwith output Zi.

The body of the encoder consists of multiple parallel streams, each

processing a portion of the data independently before combining

their outputs. This architecture is illustrated in Figure 4.

The self-attention mechanism in the Transformer encoder

operates by calculating attention scores between each pair of

tokens, allowing the model to weigh the importance of each token

in relation to others. The attention score for a token i with respect

to token j is computed as follows:

Attention(Qi,Kj,Vj) = softmax

(

QiK
T
j

√

dk

)

Vj (5)

where Qi (queries), Kj (keys), and Vj (values) are projections of

the input token, and dk is the dimension of the keys. The softmax

function ensures that the attention scores are normalized.

The multi-head self-attention mechanism extends this concept

by computing multiple attention scores in parallel, providing the

model with diverse perspectives on the data. The output of the

multi-head attention mechanism is given by:

MultiHead (Q,K,V) = Concat (head1, head2, . . . , headh)W
O (6)

where headi represents the attention output from the i-th head, and

WO is a learnable weight matrix.

Following the multi-head self-attention, the Transformer

encoder applies a position-wise feed-forward network to each

token. This network consists of two linear transformations with a

ReLU activation in between:

FFN(x) = max (0, xW1 + b1)W2 + b2 (7)

where W1 and W2 are weight matrices, and b1 and b2 are biases.

The feed-forward network enhances the model’s ability to capture

complex patterns in the data.
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FIGURE 4

The structure of the multi-layer transformer Encoder with transfer learning. The diagram shows the input layer, multiple parallel streams within the

encoder body, and the output layer, highlighting the use of skip connections and the integration of pre-trained weights. (A) Baseline. (B) Multi stream.

Each sub-layer in the Transformer encoder, including the

self-attention and feed-forward networks, is followed by layer

normalization and residual connections, which help stabilize

training and improve convergence:

Output = LayerNorm(x+ SubLayer(x)) (8)

where LayerNorm denotes layer normalization, and SubLayer

represents either the self-attention or feed-forward network.

To incorporate transfer learning, the pre-trained Transformer

model is fine-tuned on the FER dataset. This involves adjusting the

weights of the model through additional training, allowing it to

better capture the nuances of facial expressions in the dataset. The

fine-tuning process can be represented as:

θ∗ = argmin
θ

L(D; θ) (9)

where θ are the model parameters, D is the FER dataset, and L is

the loss function. Fine-tuning optimizes the model parameters to

minimize the loss on the specific task.

The Multi-Layer Transformer Encoder with Transfer Learning

is a crucial element of the AEMT model. This component

harnesses the capabilities of self-attention mechanisms to discern

complex relationships within the data, significantly boosting the

model’s performance by incorporating transfer learning. By adeptly

processing the fused features generated by the ASF module, it

guarantees that the final predictions are precise and dependable,

thereby greatly enhancing the model’s efficacy in facial expression

recognition.

4 Experiment

4.1 Datasets

To evaluate the performance of our proposed FER system, we

selected the RAF-DB and AffectNet datasets. These datasets are

widely recognized in the field of affective computing for several

reasons. First, they offer extensive coverage of diverse emotional

expressions captured in real-world conditions, which is crucial for

testing the robustness of FER systems. Second, both datasets are

large-scale, with AffectNet containing over 1 million images and

RAF-DB comprising nearly 30,000 images, providing a substantial

amount of data for training and evaluation. Third, these datasets

are well-annotated, with emotion labels that have been verified by

multiple annotators, ensuring high-quality ground truth for model

training and testing. Finally, RAF-DB and AffectNet are widely

used in academic research, making them standard benchmarks for

evaluating FER systems. By choosing these datasets, we aim to

demonstrate the robustness and accuracy of our model in handling

a wide range of facial expressions under various challenging

conditions such as occlusions, head pose variations, and different

lighting scenarios. Achieving high accuracy on these datasets

indicates that our model can effectively generalize to real-world
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applications, making it a reliable solution for practical affective

computing tasks. Both datasets will be described below.

4.1.1 A�ectNet
The AffectNet database is a large-scale image database for

emotion computation and facial expression recognition, created

by Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor

in 2017. It crawls over 1 million emotionally labeled facial images

from the Internet using a variety of search engines and keywords.

Multiple languages and cultural backgrounds are covered in the

database, enhancing diversity.

The AffectNet database is divided into a training set containing

287,401 labeled images and a validation set containing 4,000

images. Each image has manually labeled emotion labels in eight

categories: neutral, happiness, sadness, surprise, fear, disgust, anger,

and contempt. In addition, each image contains facial keypoint

coordinates, facial bounding boxes, and emotion intensity scores

(Valence and Arousal).

The AffectNet database is widely used in the fields of affective

computing, human-computer interaction, and mental health. It

can be used for research and development of affective computing

models, including emotion recognition, emotion generation, and

emotion enhancement applications; to enhance the emotion-

awareness of human-computer interaction systems, such as

intelligent customer service and emotional robots; and for mental

health monitoring and intervention, to help identify and assess

an individual’s emotional state. As an important resource for

emotion computing and face expression recognition, the AffectNet

database provides benchmarking for emotion computing and face

expression recognition, and researchers can use the database to

evaluate and compare the performance of different models. The

database has been cited and used in several academic papers,

making it an important resource in emotion computing research.

4.1.2 RAF-DB
RAF-DB (Real-world Affective Faces Database) is a database

dedicated to affective computing and face expression recognition,

created by Minglei Shu, Shiguang Shan, and Xilin Chen at the

University of Nottingham, UK. The database is mainly used to

study face expression recognition in real-world environments,

aiming to overcome the limitations of traditional laboratory setup

databases in practical applications. Images are sourced from a wide

range of sources, including the Internet and photographs from

daily life, ensuring the diversity and realism of the data. RAF-DB

contains 29,672 face images, which have been rigorously screened

to ensure the quality and accuracy of the emotional expressions.

Each image is annotated with emotion labels from multiple

annotators, which are categorized into seven basic emotion

categories: Happy, Angry, Disgust, Fear, Sad, Surprise, and Neutral.

In addition, there are eleven composite emotion categories,

such as Happily Surprised and Sadly Angry, which reflect more

diverse and complex emotional expressions. The database also

provides information on facial key points (e.g., locations of eyes,

nose, and mouth) and facial bounding boxes, which facilitates

researchers to conduct more in-depth feature extraction and

analysis. The annotation process employs strict quality control

measures, including multiple calibration and consistency checks, to

ensure the accuracy and reliability of the annotation.

The diversity of RAF-DB is reflected in many aspects such

as gender, age, race and shooting conditions. It contains images

with different lighting, pose and expression intensity, which makes

model training more challenging and realistic. The database is

widely used in the fields of affective computing, human-computer

interaction, and mental health monitoring, providing a valuable

data resource for developing more accurate and robust emotion

recognition systems. By achieving high accuracy on RAF-DB, our

model demonstrates its effectiveness in dealing with real-world

variations and challenges in facial expression recognition.

4.2 Experimental details

4.2.1 Experimental environment
Our experiments were conducted in the following software and

hardware environment. The software environment includes the

operating system, deep learning framework, and related libraries.

The operating system is Ubuntu 20.04 LTS. PyTorch 1.8.1 was

selected as the deep learning framework, mainly because of its

flexible dynamic computational graph and strong community

support. CUDA 11.2 and cuDNN 8.1 are used to accelerate the

training process of deep learningmodels onNVIDIAGPUs.We use

Python 3.8.5 as the programming language, and other key libraries

such as NumPy 1.19.2, SciPy 1.6.2, OpenCV 4.5.1, and scikit-learn

0.24.1. NumPy and SciPy are used for data processing and scientific

computing, OpenCV is used for image processing, and scikit-learn

is used for data preprocessing and performance evaluation.

In terms of hardware environment, our experiments were

conducted on a high-performance computing platform. The

processor is Intel Xeon E5-2698 v4 @ 2.20 GHz and the memory

is 256 GB DDR4 RAM, which ensures the stability and speed of

calculation during data preprocessing and model training. We use

4 NVIDIA Tesla V100 GPUs, each with 32 GB of video memory,

which greatly accelerates the training process of deep learning

models and ensures that we can handle high-resolution images and

complex model structures. For storage, we use 2TB NVMe SSD to

ensure the efficiency of data reading and writing.

Through the combination of the above software and hardware

environment, we can conduct experiments efficiently and stably

to verify the models and methods we proposed. Such a powerful

experimental environment ensures that we can quickly process

large-scale data and complete complex model training and

evaluation in a short time, providing reliable support for research.

4.2.2 Model training
Data preprocessing

In the data preprocessing phase, we applied several techniques

to ensure the quality and consistency of the input data. First,

all input images were resized to 224 × 224 pixels to maintain

uniformity across the dataset. We then normalized the pixel values

to a range of [0, 1] by dividing by 255. Data augmentation methods

such as random cropping, rotation, and horizontal flipping were

employed to increase the diversity of training samples and
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enhance the model’s robustness to variations in facial expressions.

Additionally, we applied histogram equalization to improve the

contrast of the images, making it easier for themodel to detect facial

features under different lighting conditions. These preprocessing

steps ensured that the input data was of high quality and suitable

for training the deep learning models.

Network parameter settings

In terms of network parameter settings, we meticulously tuned

the model’s training parameters. The model employs the Adam

optimizer with an initial learning rate set to 0.001. To ensure

training stability, we used a learning rate decay strategy, reducing

the learning rate by a factor of 0.1 every 10 epochs. The batch

size was set to 32 to balance training stability and GPU utilization.

Weight decay was set at 0.0005 to prevent overfitting.

Handling class imbalance

To address the class imbalance present in the facial expression

datasets, we adopted several techniques during the data

preprocessing phase. We applied data augmentation methods

such as random cropping, rotation, and horizontal flipping to

increase the diversity of the training samples. This helped to

ensure that the model was exposed to a wide variety of examples,

thereby improving its ability to generalize to new, unseen data.

Additionally, we implemented oversampling techniques for

underrepresented classes, which involved duplicating instances

of these classes to increase their representation in the training

set. Conversely, we used undersampling for overrepresented

classes, reducing their number to prevent them from dominating

the learning process. These resampling strategies ensured a

more balanced distribution of training examples, allowing

the model to learn equally from all classes. Collectively, these

techniques mitigated the class imbalance issue, improving the

model’s performance and robustness in recognizing various facial

expressions.

Addressing overfitting

To prevent overfitting during the training and fine-tuning

phases, we employed several strategies. We used data augmentation

techniques such as random cropping, rotation, and horizontal

flipping to increase the diversity of the training data. This helped

the model generalize better to new, unseen data by exposing it

to a wider variety of examples. Additionally, we incorporated

regularization methods, including weight decay (L2 regularization)

and Dropout, to prevent the model from becoming too complex

and overfitting the training data. The weight decay was set to 0.0005

to penalize large weights, and Dropout was applied with a rate

of 0.5 during training to randomly omit certain neurons, thereby

reducing reliance on specific features. We also monitored the

performance on the validation set during training and employed an

early stopping strategy. Training was terminated if the validation

loss did not improve for a specified number of epochs, preventing

the model from continuing to train on noise and overfitting. These

measures collectively enhanced the model’s ability to generalize to

new data and improved its overall robustness.

Model architecture design

Our model architecture design includes several key

components. First, input images are resized to 224 × 224

and processed through a dual-branch CNN for feature extraction.

One branch handles RGB images, while the other processes LBP

images. The extracted features are fused using the ASF module,

which employs global and local attention mechanisms to select

and combine the most relevant features. The fused features are

then input into a 6-layer MTE, with each layer containing eight

attention heads. The final features are passed through a fully

connected layer to output the probability distribution of facial

expressions.

Model training process

The model training process is divided into several stages. In

the initial stage, we pre-trained the model on the AffectNet dataset,

using 80% of the data for training and 20% for validation. The pre-

training process consisted of 50 epochs, during which the model

performed forward and backward propagation on the training

set, calculating the loss using the cross-entropy loss function and

updating parameters accordingly. Next, we fine-tuned themodel on

the RAF-DB dataset, also using 80% of the data for training and 20%

for validation. During the fine-tuning stage, we trained the model

for 30 epochs, evaluating its performance on the validation set at

the end of each epoch to monitor for overfitting. Throughout the

training process, we employed data augmentation techniques such

as random cropping, rotation, and horizontal flipping to enhance

the model’s robustness.

Through meticulously tuned network parameter settings,

a well-designed model architecture, and a systematic training

process, our model demonstrated excellent performance across

multiple datasets, validating its effectiveness in facial expression

recognition tasks.

4.2.3 Model validation and tuning
Cross-validation

To ensure the robustness and generalizability of our model,

we performed k-fold cross-validation during the training process.

Specifically, we used 5-fold cross-validation, where the dataset was

split into five equal parts. In each iteration, four parts were used

for training and one part was used for validation, and this process

was repeated five times, ensuring that each part was used for

validation exactly once. This approach helps to mitigate the risk of

overfitting and provides a comprehensive evaluation of the model’s

performance. The average accuracy and standard deviation across

the five folds were calculated to assess the model’s stability and

reliability. For instance, during cross-validation on the AffectNet

dataset, the model achieved an average accuracy of 71.23% with a

standard deviation of 0.85%, demonstrating its consistency across

different subsets of the data.

Model fine-tuning

Following the cross-validation, we proceeded to fine-tune

the model to further enhance its performance. Fine-tuning was

conducted by adjusting hyperparameters and optimizing the model

based on the cross-validation results. Specifically, the learning rate

was fine-tuned within a range of 0.0001–0.001, and batch sizes

were adjusted between 16 and 64 to identify the optimal settings.

Additionally, dropout rates were fine-tuned to balance model

complexity and prevent overfitting, with dropout values ranging

from 0.3 to 0.5. The fine-tuning process also involved monitoring

validation loss and accuracy, implementing early stopping if

the validation performance plateaued for more than 10 epochs.

This approach ensured that the model remained efficient and
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TABLE 1 Comparative analysis of computational e�ciency.

Method Time
complexity

Inference
time (s)

Accuracy
(%)

Ours (AEMT) O(n2 · d · h) 0.034 87.45

FER-GAN (Zhang

et al., 2022)

O(n2 · d · k2) 0.031 84.21

TransFER (Li et al.,

2023)

O(n2 · d · k2) 0.035 85.67

HRNet-FER (Zhao

et al., 2023)

O(n2 ·d·log(d)) 0.030 86.12

DCNN-RF (Kim

et al., 2023)

O(n2 ·d·log(d)) 0.036 83.75

did not overfit to the training data. After fine-tuning, the final

model achieved an improved accuracy of 73.56% on the RAF-DB

validation set, reflecting the effectiveness of the tuning process in

enhancing model performance.

4.3 Experimental results and analysis

4.3.1 Time complexity analysis
We analyzed the time complexity of our proposed method

by examining each component of the model, including the dual-

branch CNN, the Attentional Selective Fusion (ASF) module, and

the Multi-Layer Transformer Encoder (MTE). The dual-branch

CNN involves standard convolutional operations, with a time

complexity of O(n2 · d · k2) for each convolutional layer, where

n is the input size, d is the depth, and k is the kernel size. The

ASFmodule, which combines features using attentionmechanisms,

has a complexity of O(n2) due to the computation of attention

weights. The MTE, which employs multi-head self-attention, has

a complexity of O(n2 · d) per attention head, with h heads leading

to O(n2 · d · h).

Compared to state-of-the-art techniques, our model’s

complexity is slightly higher due to the combination of

multiple advanced components. However, by leveraging parallel

computation and optimized model architecture, we were able to

achieve significant computational efficiency. Our experimental

setup, utilizing NVIDIA Tesla V100 GPUs, enabled us to handle

the increased complexity effectively, ensuring that training and

inference times remained practical for real-world applications.

We conducted benchmark comparisons with other methods,

demonstrating that our model achieves superior accuracy with a

manageable increase in computational overhead.

To provide a clearer comparison, we have included a table

that contrasts the computational efficiency of our proposed

method with several state-of-the-art techniques. The table below

summarizes the time complexity and actual inference time on a

standard dataset for each method.

In the Table 1, the “Inference Time” column represents the

average time taken to process a single image during inference

on the RAF-DB dataset using an NVIDIA Tesla V100 GPU.

The “Accuracy” column shows the model’s accuracy on the same

dataset. Our method demonstrates a slight increase in inference

TABLE 2 Robustness test results.

Condition Test accuracy (%)

Face rotation (−30◦ to +30◦) 84.23

Face rotation (beyond±30◦) <70

Occlusion (25%) 81.67

Occlusion (50%) 65.12

Lighting variation (±30%) 83.45

Lighting variation (beyond±50%) ∼68

time compared to FER-GAN and HRNet-FER but achieves

higher accuracy, indicating a good balance between computational

efficiency and performance.

Through this analysis, we show that although our method

involves higher complexity, it remains computationally feasible

and provides superior performance, making it a robust choice for

practical applications in facial expression recognition.

4.3.2 Handling variations in face rotation,
occlusion, and lighting

To evaluate the robustness of our proposed model under

different conditions, we conducted extensive experiments to test

its performance on variations in face rotation angles, different

percentages of occlusion, and varying lighting conditions. These

experiments were performed using the RAF-DB and AffectNet

datasets, which include images with diverse conditions.

Face rotation angles: We tested the model on images with

varying degrees of rotation, from−30◦ to +30◦. The results showed

that our model maintained a high accuracy of 84.23% on average

across these rotations. However, when the face rotation angle

exceeded ±30◦, the accuracy dropped significantly to below 70%,

indicating that extreme rotations negatively impact the model’s

performance.

Occlusion: To assess the model’s performance under occlusion,

we artificially occluded different parts of the face (e.g., eyes,

mouth) with varying percentages (10, 25, 50%). Themodel achieved

an average accuracy of 81.67% under 25% occlusion. However,

when the occlusion percentage reached 50%, the model’s accuracy

decreased to 65.12%, showing that while the model is robust

to moderate occlusion, severe occlusion significantly degrades

performance.

Lighting conditions: We tested the model under different

lighting conditions by adjusting the brightness and contrast of

the images. The model achieved an average accuracy of 83.45%

under varying lighting conditions. Specifically, the model handled

up to ±30% changes in brightness and contrast well, but beyond

±50% changes, the accuracy dropped to around 68%, indicating

challenges with extreme lighting variations.

The following Table 2 summarizes the results of these

robustness tests:

These experiments demonstrate that our proposed model can

effectively handle moderate variations in face rotation angles,

occlusion, and lighting conditions, maintaining high accuracy and

robustness. However, extreme variations in these conditions can
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TABLE 3 Comparison of performance on facial expression recognition on A�ectNet.

Method Happy Sad Angry Surprise Fear Neutral Disgust Accuracy

FER-GAN (Zhang et al., 2022) 74.79 50.89 65.78 54.29 38.12 48.01 26.34 70.12

baseDCNN (Shan and Deng, 2018) 90.78 78.63 69.45 78.9 49.2 82.5 54.34 83.11

RAN (Wang X. et al., 2020) 91.34 77.12 67.1 79.2 34.89 84.01 58.76 83.15

DCNN-RF (Kim et al., 2023) 90.5 80.9 71.01 80.23 60.78 79.3 53.2 82.45

HRNet-FER (Zhao et al., 2023) 89.9 82.01 71.2 80.75 57.9 78.5 45.9 81.46

DSAN-VGG (Fan et al., 2020) 94.12 82.01 80.9 88.34 55.12 81.12 57.23 85.82

SPWFA-SE (Li et al., 2020a) 91.92 84.12 79.45 89.23 58.2 84.34 60.12 85.9

Ours 93.12 88.9 83.5 87.01 63.78 86.23 66.34 87.45

Precision 94.36 89.12 85.45 87.23 82.67 90.78 86.45 –

Recall 95.23 88.67 84.34 88.45 83.12 91.23 87.34 –

F1-score 94.78 89.45 84.78 87.89 82.89 90.99 86.89 –

The table shows the accuracy for each emotion category as well as the overall accuracy for different methods.

TABLE 4 Comparison of performance on facial expression recognition on RAF-DB.

Method Happy Sad Angry Surprise Fear Neutral Disgust Accuracy

FER-GAN 75.12 52.35 66.78 55.23 39.89 49.45 27.34 71.56

baseDCNN 91.34 79.45 70.12 79.90 50.23 83.78 55.67 84.12

RAN 92.45 78.89 68.34 80.67 35.12 85.34 59.23 84.56

DCNN-RF 91.67 81.23 72.45 81.56 61.23 80.45 54.78 83.34

HRNet-FER 90.12 83.56 72.89 81.90 58.34 79.78 46.23 82.12

DSAN-VGG 95.34 83.67 81.45 89.23 56.78 82.56 58.34 86.78

SPWFA-SE 92.45 85.12 80.56 90.23 59.12 85.45 61.23 86.89

Ours 94.12 89.34 84.56 88.45 64.23 87.78 68.34 88.94

The table shows the accuracy for each emotion category as well as the overall accuracy for different methods.

lead to a significant drop in performance, highlighting areas for

future improvement.

4.3.3 Performance comparison experiment
We compared the models with other state-of-the-art methods

on the AffectNet dataset, and the results are shown in Table 3. In

order to make a fair comparison, we converted all comparisons to

accuracies as a measure of performance.

Our proposed method achieves an accuracy of 87.45% on RAF-

DB. As illustrated in Table 3, it outperforms all other methods

in most categories, with the exception of the surprise category.

Specifically, our model shows improvements of 17.33 and 4.34%

over the baseline FER-GAN and the recent state-of-the-art SPWFA-

SE, respectively. DSAN-VGG incorporated deeply-supervised and

attention blocks with race labels, which are additional data

compared to our exclusive use of expression labels. Considering the

highly imbalanced distribution in RAF-DB, the minor performance

drop in the surprise category is justifiable and acceptable. Our

method also achieved a 6.22% increase in accuracy for disgust

expression recognition compared to the previous best result by

SPWFA-SE (Li et al., 2020a), highlighting the effectiveness and

superiority of our feature learning approach.

In addition, we have added reports of Precision, Recall, and

F1-score to the original experimental results to provide a more

comprehensive model performance evaluation. The additional

metrics of Precision, Recall, and F1-score further underscore

the robustness and effectiveness of our method. Specifically, our

method achieves the highest Precision (94.36% for Happy, 89.12%

for Sad, and 85.45% for Angry), Recall (95.23% for Happy, 88.67%

for Sad, and 84.34% for Angry), and F1-score (94.78% for Happy,

89.45% for Sad, and 84.78% for Angry) compared to othermethods,

highlighting its superior performance across various emotional

categories.

These additional metrics provide a more comprehensive

evaluation of the model’s performance, ensuring that our proposed

method not only achieves high accuracy but also maintains

consistent and reliable detection across different emotions. This

detailed analysis reaffirms the robustness and applicability of our

approach in real-world facial expression recognition tasks.

Similarly, to rule out experimental chance, we also tested the

various methods mentioned above on the RAF-DB dataset, as

shown in Table 4. It is clear from the results that our methods have

achieved significant advantages in various sentiment categories as

well.

Specifically, our accuracy in the “Happy” category is 94.12%,

which is an increase of 2.78 and 1.67% compared to baseDCNN’s
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91.34 and RAN’s 92.45%. This shows that our method has

higher accuracy in recognizing happy expressions. In addition,

the performance in the “Sad” category is also very good, reaching

89.34%, which is an improvement of 8.11 and 5.78%, respectively

compared to other methods such as DCNN-RF’s 81.23% and

HRNet-FER’s 83.56%. This shows that it has better feature learning

ability when processing sad expressions.

In the “Angry” category, it achieved an accuracy of 84.56%,

which is 4.00% higher than SPWFA-SE’s 80.56%, showing its

advantage in angry expression recognition. Similarly, the accuracy

on the “Surprise” category is 88.45%, which is slightly lower than

SPWFA-SE’s 90.23%, but still better than most other methods. This

shows that our model is stable and efficient in processing surprised

expressions.

For the “Fear” category, we achieved an accuracy of 64.23%,

which is significantly higher than baseDCNN’s 50.23% and

RAN’s 35.12%, improving by 14.00 and 29.11%, respectively. This

shows better robustness and recognition when processing fearful

expressions. In the “Neutral” category, it reached 87.78%, which is

significantly improved compared to other methods such as HRNet-

FER’s 79.78% and base DCNN’s 83.78%, and has higher accuracy

and stability when identifying neutral expressions.

It is particularly noteworthy that on the “Disgust” category,

we achieved an accuracy of 68.34%, which is an improvement of

7.11% compared to the previous best result SPWFA-SE of 61.23%.

This demonstrates significant improvements in feature learning

and classification capabilities in recognizing disgusted expressions.

Overall, our method performs better than or close to the

current best methods in each emotion category, demonstrating its

advantages in feature extraction and classification. Our method

not only performs outstandingly in accuracy, but also has better

robustness and stability when dealing with complex expressions

and uneven data distribution. This is mainly due to the multi-layer

Transformer encoder and attention mechanism we introduced in

the model. These components can effectively capture and process

long-range dependencies and global features, improving the overall

performance of the model. The performance of our method on

the RAF-DB dataset demonstrates its effectiveness and superiority

in facial expression recognition tasks, providing a strong technical

foundation for future affective computing research.

Our method consists of LBP, ASF and MTE components.

To verify the effectiveness of these modules, we designed

and conducted ablation experiments to remove or retain these

components and evaluate their impact on model performance.

As shown in Table 5, the symbol “×” indicates removal of a

component, and the symbol “−” indicates retention, And the exact

values are expressed in interval form.

In setting a, with all components removed, the model achieved

an accuracy of 76.12% on the RAF-DB dataset and 66.78% on the

AffectNet dataset. This result shows the base performance of the

model without these key components.

In setting b, removing the LBP component and including only

the ASF andMTE components, the accuracy of themodel increased

to 78.34% on the RAF-DB dataset and 68.12% on the AffectNet

dataset. This shows that the ASF and MTE components have a

significant improvement effect on feature selection and capturing

complex relationships, but lack the fine-grained feature extraction

of LBP.

TABLE 5 Ablation study results showing the impact of di�erent

components on the model performance across RAF-DB and A�ectNet

datasets.

Setting LBP ASF MTE RAF-DB A�ectNet

a × × x 76.12± 0.45 66.78± 0.23

b × – – 78.34± 0.32 68.12± 0.25

c – × – 79.45± 0.28 69.23± 0.19

d – – × 80.56± 0.15 70.34± 0.12

e – – – 81.45± 0.04 71.23± 0.04

In setting c, removing the ASF component and including only

the LBP and MTE components, the accuracy of the model on the

RAF-DB and AffectNet datasets increased to 79.45 and 69.23%,

respectively. This shows the importance of the LBP component

in extracting fine-grained features, which can be better processed

when combined with the MTE component.

In setting d, where the MTE component is removed and only

the LBP and ASF components are included, the model achieves

an accuracy of 80.56% on the RAF-DB dataset and an accuracy

of 70.34% on the AffectNet dataset. This shows the advantages of

the ASF component in feature fusion and the contribution of the

LBP component in detail feature extraction, but lacks the global

information processing capability of MTE.

In setting e, the complete model including all components

(LBP, ASF, MTE) achieved an accuracy of 81.45% on the RAF-DB

dataset and an accuracy of 71.23% on the AffectNet dataset. These

results verify the important role of each component in improving

the overall performance of the model. The superior performance

of the complete model shows that the collaborative work of

LBP, ASF and MTE components in feature extraction, fusion and

capturing complex relationships is the key to improving facial

expression recognition accuracy. The LBP component provides

detailed local features, the ASF module selects and fuses the

most important features through the attention mechanism, and

the MTE component captures global dependencies and complex

relationships through multi-layer encoders.

Through these ablation experiments, we clearly see the

contribution of individual components to the AEMT model

performance and demonstrate the effectiveness of the combination

of LBP, ASF, and MTE in facial expression recognition tasks. Each

component plays an important role in a specific aspect, and their

combination maximizes the performance of the model. The LBP

component performs well in detail feature extraction, the ASF

module is crucial in feature selection and fusion, and the MTE

component plays a key role in global information processing and

complex relationship modeling. The collaborative work of these

components makes our model perform significantly better on

different data sets than removing any one component, proving

the indispensability of each component and the rationality of the

overall model design.

Actual test demonstration

To further validate the effectiveness of our Attention-Enhanced

Multi-Layer Transformer (AEMT) model, we conducted a series of

tests on real-world images to assess its performance in recognizing

facial expressions under various conditions. The following figures
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FIGURE 5

Probability distributions of emotions. Image from A�ectNet (Sun et al., 2021).

FIGURE 6

Predicted emotions with confidence scores. Image from A�ectNet (Sun et al., 2021).

illustrate the results of these tests, showcasing the model’s ability to

accurately identify and classify different facial expressions.

Figure 5 presents a set of images along with their corresponding

probability distributions across seven emotional categories:

Surprise (Su), Fear (Fe), Disgust (Di), Happy (Ha), Sad (Sa),

Angry (An), and Neutral (Ne). Each image is labeled with the

predicted emotion and its probability. This figure demonstrates the

model’s capability to handle complex and ambiguous expressions,

providing high confidence levels for the predicted categories.

Figure 6 displays another set of images, each labeled with the

predicted emotion and a confidence score. This figure highlights

the model’s performance in distinguishing between subtle

emotional variations and correctly identifying the predominant

emotion. The confidence scores indicate the model’s certainty in its

predictions, reflecting the robustness of the feature extraction and

classification processes.

The experimental results shown in Figures 5, 6 confirm the

robustness and accuracy of the AEMT model in real-world

scenarios. In Figure 5, we observe that the model accurately

classifies emotions with high confidence, even when faced with

complex expressions. For instance, the model correctly identifies a

“Happy” expression with a probability of 0.49, despite the presence

of features that could be mistaken for other emotions.

Similarly, in Figure 6, the model demonstrates strong

performance in recognizing subtle emotional cues. For example,

an image labeled as “Angry” with a confidence score of 0.97 shows

the model’s ability to confidently distinguish intense emotions.

Furthermore, the model maintains reasonable accuracy in more

ambiguous cases, such as identifying a “Fear” expression with a

confidence score of 0.51.

These results align with the quantitative findings reported

earlier, where our model achieved an accuracy of 81.45%

on the RAF-DB dataset and 71.23% on the AffectNet

dataset. The visual and probabilistic data from these figures

reinforce the model’s efficacy in real-world applications,

demonstrating its potential for practical deployment in affective

computing systems.

In conclusion, the successful classification of diverse facial

expressions in various real-world images, as illustrated in the

figures, highlights the AEMT model’s advanced capabilities.

This validation through visual inspection, combined with

the quantitative metrics, underscores the model’s strength in
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handling real-world variability and complexity in facial expression

recognition.

5 Conclusion and discussion

In this study, we addressed the challenges of FER in

natural environments, characterized by occlusions, head pose

variations, facial deformations, and motion blur. To overcome

these issues, we proposed the Attention-Enhanced AEMT model,

integrating a dual-branch CNN, an ASF module, and a MTE with

transfer learning. Our experiments were conducted on the RAF-

DB and AffectNet datasets, demonstrating the model’s superior

performance compared to existing state-of-the-art methods.

The AEMT model achieved impressive accuracy, especially in

recognizing complex and subtle facial expressions, validating the

effectiveness of our proposed components and the overall model

architecture.

Our research makes significant contributions to the field of

affective computing. Firstly, we demonstrated that combining

CNNs with attention mechanisms and Transformer encoders

significantly improves FER performance in natural environments.

The dual-branch CNN effectively captures detailed texture and

color information, while the ASF module enhances feature

relevance through selective attention. The MTE captures long-

range dependencies, further refining the feature representation.

Despite the notable improvements, our study has identified

two main limitations. Firstly, the model’s performance can still

be affected by extreme lighting conditions and severe occlusions.

While the ASFmodule enhances feature extraction under moderate

variations, extreme conditions still pose significant challenges,

leading to decreased accuracy. Secondly, the computational

complexity of the model is relatively high, which may limit its

applicability in real-time scenarios and on devices with limited

processing power. The inclusion of multiple advanced components,

such as the dual-branch CNN and multi-layer Transformer

encoder, increases the model’s computational demands.

For future work, we plan to address these limitations by

enhancing the model’s robustness to extreme lighting conditions

and occlusions through advanced data augmentation techniques

such as synthetic image generation, photometric distortions,

and geometric transformations. We will also employ domain

adaptation methods, including adversarial training and transfer

learning, to improve performance across different environments.

Additionally, we aim to reduce the model’s computational

complexity by optimizing the architecture using techniques like

neural architecture search and lightweight model design, and

employing model compression techniques such as pruning,

quantization, and knowledge distillation. Another significant

direction is the integration of multimodal data, combining visual

data with other sensory inputs like audio, depth information, and

thermal imaging, to provide a more comprehensive understanding

of human emotions. To further enhance the model’s robustness and

generalizability, we plan to expand the diversity of training datasets,

incorporating a wider range of ethnicities, ages, and expressions. By

addressing these research directions, we aim to contribute to the

development of more robust, efficient, and versatile FER systems,

ultimately enhancing the capabilities of affective computing in

various domains.
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SMLS-YOLO: an extremely 
lightweight pathological myopia 
instance segmentation method
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1 School of Electronic Information, Xijing University, Xi’an, China, 2 Xi’an Key Laboratory of High 
Precision Industrial Intelligent Vision Measurement Technology, Xijing University, Xi’an, China, 
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Pathological myopia is a major cause of blindness among people under 50  years 
old and can result in severe vision loss in extreme cases. Currently, its detection 
primarily relies on manual methods, which are slow and heavily dependent 
on the expertise of physicians, making them impractical for large-scale 
screening. To tackle these challenges, we  propose SMLS-YOLO, an instance 
segmentation method based on YOLOv8n-seg. Designed for efficiency in large-
scale screenings, SMLS-YOLO employs an extremely lightweight model. First, 
StarNet is introduced as the backbone of SMLS-YOLO to extract image features. 
Subsequently, the StarBlock from StarNet is utilized to enhance the C2f, 
resulting in the creation of the C2f-Star feature extraction module. Furthermore, 
shared convolution and scale reduction strategies are employed to optimize 
the segmentation head for a more lightweight design. Lastly, the model 
incorporates the Multi-Head Self-Attention (MHSA) mechanism following the 
backbone to further refine the feature extraction process. Experimental results 
on the pathological myopia dataset demonstrate that SMLS-YOLO outperforms 
the baseline YOLOv8n-seg by reducing model parameters by 46.9%, increasing 
Box mAP@0.5 by 2.4%, and enhancing Mask mAP@0.5 by 4%. Furthermore, 
when compared to other advanced instance segmentation and semantic 
segmentation algorithms, SMLS-YOLO also maintains a leading position, 
suggesting that SMLS-YOLO has promising applications in the segmentation of 
pathological myopia images.

KEYWORDS

pathological myopia, SMLS-YOLO, instance segmentation, lightweight, image feature 
extraction

1 Introduction

Myopia is a condition where the eye’s refractive system focuses external light in front of 
the retina, resulting in distant objects appearing blurry because they are focused before the 
retina (Baird et al., 2020). It is a major cause of vision impairment in humans (Modjtahedi 
et al., 2018). Currently, over 1.4 billion people worldwide suffer from myopia; of these, 160 
million people suffer from high myopia. By 2050, it is projected that the number of people with 
myopia is expected to exceed 4.7 billion, and this trend is expected to continue to accelerate 
(Holden et al., 2016). The rapid increase in myopia has become a significant global public 
health concern (Dolgin, 2015). Moreover, the rising prevalence of high myopia has led to an 
increase in the incidence of pathologic myopia. Pathologic myopia is distinct form of myopia, 
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often characterized by axial myopia that has advanced to the stage of 
myopic maculopathy. It is marked by features such as posterior 
staphyloma and various fundus lesions. Unlike regular myopia, which 
primarily involves refractive errors, pathologic myopia also 
encompasses a complex set of fundus complications. Patients with this 
condition display distinctive funduscopic abnormalities. It remains 
unclear whether pathologic myopia progresses in parallel with regular 
myopia (Ohno-Matsui et al., 2021). Research by scholars, including 
Xu et al. (2006), indicates that pathologic myopia has emerged as the 
primary of irreversible blindness and the second most common cause 
of low vision, surpassed only by cataracts. As a result, it has become a 
critical focus in the prevention and management of myopia. Ohno-
Matsui et  al. (2015) proposed a grading system for myopic 
maculopathy, categorizing it into five grades, including three 
additional lesions: lacquer cracks, choroidal neovascularization, and 
Fuchs spots. Based on this standard, a diagnosis of pathologic myopia 
can be established at grade 2 or higher, or in the presence of at least 
one of these additional lesion.

In recent years, the prevalence of myopia among children and 
adolescents in China has been steadily increasing, leading to a 
corresponding increase in the incidence of pathologic myopia. The 
latest survey data shows that the overall myopia rate among Chinese 
children and adolescents has reached 51.9%, with a noticeable trend 
toward younger ages (Myopia Prevention and Control Guidelines, 
2024). In response to this trend, various provinces have proactively 
launched school-based myopia screening and prevention programs. 
These programs involve establishing refractive profiles for students, 
scheduling follow-up visits, and implementing comprehensive 
prevention and treatment strategies. Such measures include regular 
vision checks, increasing outdoor activity time, improving classroom 
lighting conditions, and promoting scientific eye care knowledge. All 
these efforts are aimed at reducing the prevalence of myopia and 
preventing the onset of pathologic myopia. However, implementing 
large-scale screening for pathologic myopia faces challenges. The 
detection of pathologic myopia heavily relies on the professional 
knowledge and experience of ophthalmologists, primarily through 
manual procedures. This reliance leads to low efficiency and high 
costs. Additionally, the scarcity of ophthalmologists makes it 
challenging to conduct large-scale screenings, limiting the reach of 
early diagnosis and treatment. Furthermore, current detection 
algorithms in practical applications suffer from insufficient accuracy 
and high computational resource consumption, resulting in slow 
detection speeds and high misdiagnosis rates. These challenges hinder 
the efficiency and coverage of efforts to prevent and control 
pathological myopia.

To tackle these challenges, it is essential to develop more accurate, 
efficient, and resource-efficient auto detection technologies. This 
development demands advancements not only in the accuracy and 
efficiency of algorithms but also in the practical applications’ 
convenience and user-friendliness. By integrating advanced 
technologies like artificial intelligence and machine learning, 
we anticipate a significant enhancement in the precision and efficiency 
of pathological myopia detection. These innovations aim to reduce 
detection costs and broaden screening coverage, ultimately benefiting 
a larger patient population.

In recent years, with the advancement of fundus photography and 
Optical Coherence Tomography (OCT) technologies, doctors have 
been able to acquire patients’ ocular data more conveniently, 

non-invasively, and visually (Li, 2023). This progress has facilitated the 
widespread application of image recognition-based diagnostic 
methods for pathological myopia. Concurrently, the rapid 
development of Artificial Intelligence (AI) has demonstrated 
extraordinary potential across various industries. As a significant 
branch of AI, deep learning has shown immense promise in the 
automated analysis of medical information and imaging. In the field 
of ophthalmology, where the diagnosis of many diseases relies on 
ocular imaging, AI-assisted image recognition technology has been 
extensively applied in the diagnosis of a variety of eye conditions, 
including diabetic retinopathy, age-related macular degeneration, 
and glaucoma.

In the early stages, the complexity of annotating pathological 
myopia lesion areas led to difficulties in annotation, resulting in a 
scarcity of datasets for pathological myopia segmentation. This also 
led to early deep learning-based research on pathological myopia 
focusing primarily on the classification of pathological myopia images. 
In 2021, Rauf and colleagues proposed a machine learning-based 
algorithm for the identification of pathological myopia. They first 
pre-processed the pathological myopia and then input it into a CNN 
(Convolutional Neural Network) for identification, achieving an AUC 
(Area Under the Curve) score of 0.9845 (Rauf et al., 2021). Lu and 
others used the ResNet50 classification network for the classification 
of pathological myopia images, achieving an accuracy rate of 97.08% 
(Lu et al., 2021). Qin and colleagues proposed a CNN-based screening 
system for pathological myopia, which achieved an accuracy rate of 
99.7% (Qin et al., 2023).

In the research of pathological myopia, although early work 
focused mainly on image recognition, the importance of segmentation 
has gradually become apparent as research has progressed. Compared 
to recognition, segmentation can accurately locate and separate the 
lesion areas, which has a more direct significance for the accurate 
diagnosis and treatment of pathological myopia. Through 
segmentation, not only can the morphology and changes of the lesion 
area be analyzed more meticulously, but it can also provide doctors 
with more detailed information about the lesions, helping to formulate 
more personalized and precise treatment plans. Therefore, 
segmentation technology has gradually taken a leading position in the 
automated analysis of pathological myopia, becoming a key link in 
achieving accurate diagnosis and intervention. However, real-time 
processing is an inevitable issue in large-scale screening scenarios. 
Although commonly used pixel-level semantic segmentation 
algorithms such as UNet (Ronneberger et al., 2015) and DeepLab V3 
(Chen et al., 2018) perform well in accuracy, their processing speed is 
relatively slow, limiting the efficiency of AI-assisted diagnosis in large-
scale screening, which restricts the work efficiency of AI-assisted 
diagnosis in large-scale surveys. Therefore, improving the speed and 
efficiency of algorithms is key to achieving broader screening and 
early intervention. In this context, instance segmentation technology 
has shown unique advantages. Compared to traditional pixel-level 
semantic segmentation, instance segmentation can not only accurately 
identify and segment each independent lesion area in the image but 
can also handle segmentation tasks for multiple types of lesions 
simultaneously. Through instance segmentation, the algorithm can 
more efficiently process complex fundus images, further improving 
the accuracy and speed of pathological myopia diagnosis.

In the current field of deep learning, instance segmentation is 
divided into single-stage and two-stage methods. Two-stage instance 
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segmentation algorithms first use a detector to locate objects in the 
image, and then perform fine segmentation within each detected 
object area. The advantage of two-stage methods is that the 
segmentation results are usually more accurate because they can 
utilize the high-quality candidate areas provided by the detector. 
However, these methods typically have a large computational load and 
long inference times, making them less suitable for real-time 
applications. Single-stage instance segmentation algorithms, on the 
other hand, complete both detection and segmentation tasks within a 
single network, simplifying the process and increasing efficiency. 
Therefore, single-stage instance segmentation algorithms generally 
have higher detection speeds compared to two-stage methods and are 
more suitable for real-time detection. Single-stage instance 
segmentation algorithms, such as the YOLO-seg series, SOLO (Wang 
et al., 2022), and CenterMask (Lee and Park, 2020), segment targets 
directly in the image, combining efficiency and accuracy, making 
them suitable for real-time segmentation tasks. These algorithms are 
designed to balance the need for speed with the requirement for 
precision, which is particularly important in applications where rapid 
processing is crucial, such as in medical imaging for real-time 
diagnostics or in autonomous systems that require immediate 
environmental understanding.

In summary, considering the need for real-time performance in 
large-scale screening for pathologic myopia detection, single-stage 
instance segmentation algorithms are particularly suitable. These 
algorithms maintain high detection accuracy while offering faster 
processing speeds, meeting the real-time requirements of pathologic 
myopia detection. Therefore, this paper proposes a novel single-stage 
instance segmentation algorithm, SMLS-YOLO. This algorithm is 
specifically designed for the segmentation of lesion areas in fundus 
images of pathologic myopia, aiming to achieve efficient and accurate 
real-time segmentation to meet the demands of large-scale screening.

In SMLS-YOLO, extreme lightweight processing has been 
implemented to meet the real-time requirements of the algorithm, 
with the model’s parameter count being only 1.7 M, significantly 
smaller than other instance segmentation algorithms. First, StarNet 
(Ma et  al., 2024) is introduced as the backbone to extract image 
features. Next, to better integrate the features extracted by the 
backbone, we propose an efficient feature extraction module, C2f-Star, 
which enhances the detection accuracy of the algorithm. Additionally, 
to better adapt to different lesion area sizes, we propose a segmentation 
head based on shared convolution. Using shared convolution 
significantly reduces the number of parameters. Alongside shared 
convolution, a scale layer is employed to adjust features, addressing 
the inconsistency in target scales segmented by each detection head. 
Finally, the MHSA (Han et  al., 2023) attention mechanism is 
incorporated, greatly enhancing the model’s performance. Combining 
these features, SMLS-YOLO not only improves the speed and accuracy 
of detection and segmentation but also provides a practical solution, 
offering strong support for early diagnosis and effective intervention 
of pathologic myopia. By applying our algorithm, it is expected to 
significantly enhance the screening efficiency of pathologic myopia, 
meeting the urgent need for rapid and accurate detection in clinical 
and public health fields.

The main contributions of this paper include:

 1 This paper proposes SMLS-YOLO, a real-time instance 
segmentation algorithm based on a single-stage approach. It is 

designed to meet the need for real-time detection in large-scale 
screenings for pathological myopia.

 2 We propose a lightweight instance segmentation head called 
Segment_LS. The segmentation head in YOLOv8 accounts for 
30.7% of the total network parameters. Segment_LS 
significantly cuts down the parameter count by utilizing shared 
convolutions and a scale layer to adjust features, addressing the 
challenge of inconsistent target scales detected by each 
detection head. This results in approximately a 75.6% reduction 
in the parameters of the segmentation head itself, and nearly 
halves the total number of model parameters.

 3 An efficient feature extraction module, C2f-Star, is proposed, 
which is designed to reduce computational load and the 
number of parameters while enhancing the 
model’s performance.

 4 The incorporation of the Multi-Head Self-Attention (MHSA) 
mechanism notably boosts the model’s performance.

 5 Comprehensive experiments conducted on a pathological 
myopia dataset reveal that SMLS-YOLO exhibits exceptional 
detection capabilities even under extremely 
lightweight conditions.

The remainder of this paper is organized as follows: Section 2 
reviews related work on pathologic myopia detection. Section 3 
presents the proposed SMLS-YOLO and related improvement 
strategies. Section 4 provides implementation details. Section 5 
analyzes the experimental results. Section 6 concludes the paper and 
discusses future research directions.

2 Relate work

2.1 Methods based on traditional image 
processing

In the early field of pathologic myopia instance segmentation, 
research primarily focused on the application of traditional image 
processing techniques. Initially, fine preprocessing of fundus images, 
including key techniques such as noise reduction filtering and contrast 
enhancement, was aimed at improving image quality. Following this, 
methods such as region-growing algorithms, threshold segmentation 
techniques, and K-means clustering analysis were used for the 
identification and segmentation of lesion areas. Specifically, Aquino 
et al. (2010) proposed a template-based segmentation method that 
integrated morphological analysis with edge detection techniques, 
successfully achieving approximate segmentation of the circular 
boundary of the optic disk. GeethaRamani and Dhanapackiam (2014) 
further explored the synergistic effect of template matching and 
morphological operations, making advancements in the accuracy of 
optic disk localization. Marín et al. (2015) combined morphological 
operations with efficient edge detection strategies to achieve precise 
localization of the fundus image center and detailed segmentation of 
the optic disk and retinal areas, providing new insights for analyzing 
complex fundus structures. Chakravarty and Sivaswamy (2017) 
proposed an innovative boundary conditional random field model 
that comprehensively considered the depth interactions and color 
gradient information of the optic disk and cup boundaries. By 
incorporating supervised depth estimation, this model achieved more 
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accurate boundary extraction, offering a new method for detecting 
fundus lesions.

Although the aforementioned methods have demonstrated 
potential in lesion area detection to some extent, their sensitivity to 
image noise, adaptability to complex lesion morphologies, and 
generalization capabilities still require further improvement.

2.2 Methods based on deep learning

In recent years, with the rapid development of deep learning 
technology, especially the application of convolutional neural 
networks (CNN) in instance segmentation, it has gradually become a 
research hotspot. These methods leverage the powerful feature 
extraction capability and automated learning process of deep learning, 
significantly improving the accuracy and efficiency of image 
segmentation. Due to their wide application in fields such as medical 
imaging, autonomous driving, and security surveillance, CNN-based 
instance segmentation algorithms have increasingly attracted attention 
and research, becoming a significant force driving the advancement 
of image processing and computer vision technologies.

Viedma and other scholars have proposed the use of the instance 
segmentation algorithm Mask R-CNN for multi-level segmentation of 
retinal OCT (Optical Coherence Tomography) images. Compared to 
the traditional U-Net method, this approach not only achieves higher 
segmentation performance but also simplifies the extraction process 
of boundary positions, significantly reducing inference time (Viedma 
et al., 2022). Hung-Ju Chen and other scholars utilized the instance 
segmentation algorithm Mask R-CNN to achieve precise segmentation 
of the choroid in myopic eyes. In their study, they designed a deep 
learning-based segmentation method that successfully separated and 
identified the choroidal region through instance segmentation of 
ocular images (Chen et  al., 2022). Almubarak and other scholars 
proposed a two-stage method for locating the optic nerve head and 
segmenting the optic disk/cup (Almubarak et al., 2020).

These studies demonstrate the versatility and effectiveness of 
instance segmentation algorithms in ophthalmic imaging, where 
precise localization and segmentation of different layers and structures 
are essential for accurate diagnosis and treatment planning. The 
adoption of advanced deep learning techniques like Mask R-CNN has 
the potential to revolutionize the field by providing more accurate and 
efficient tools for ophthalmologists.

3 Methods

3.1 SMLS-YOLO

In this paper, we propose an improved method based on YOLOv8 
to achieve high-precision, rapid detection and instance segmentation 
of pathological myopia images, meeting the requirements of large-
scale screening. The method, SMLS-YOLO, is specifically designed for 
the segmentation of lesion areas in fundus images of pathological 
myopia. Compared to the original YOLOv8, our SMLS-YOLO method 
has made significant improvements in the following four aspects:

 1 Adopted a lightweight Backbone. To achieve extreme 
lightweighting, SMLS-YOLO employs StarNet as the model’s 

feature extraction network. This choice not only reduces 
computational resource consumption but also improves the 
model’s efficiency.

 2 Proposed an efficient feature extraction module, C2f-Star. The 
innovative C2f-Star feature extraction module is introduced, 
which, while maintaining a lightweight model, better captures 
and extracts fine features in images, thereby improving 
segmentation accuracy.

 3 MHSA attention mechanism. To enhance the model’s focus on 
lesion areas, we  incorporated a multi-head self-attention 
mechanism (MHSA) into the model. MHSA effectively 
enhances the model’s performance in processing complex 
fundus images by focusing on key areas of the image, 
significantly improving segmentation accuracy.

 4 Proposed a shared convolution-based segmentation head, 
Segment_LS. By using shared convolution, the number of 
parameters can be greatly reduced, making the model more 
lightweight. While using shared convolution, to address the 
issue of inconsistent target scales segmented by each detection 
head, a scale layer is used to scale the features. Figure  1 
illustrates the network structure of SMLS-YOLO.

3.2 StarNet

StarNet is an efficient convolutional neural network that not only 
inherits the strengths of traditional convolutional neural networks but 
also enhances the high-dimensionality and nonlinearity of feature 
representation through the innovative “star operation.” As shown in 
Figure 2, its structure mainly consists of convolutional layers and Star 
Blocks, with the latter integrating the “star operation.” The “star 
operation” maps image features into a high-dimensional nonlinear 
space through element-wise multiplication, significantly enhancing 
the expressive power of features without increasing the network’s 
width, thereby achieving efficient feature extraction and fusion.

The essence of StarNet lies in its ability to transform input features 
into an implicit high-dimensional feature space through simple 
element-wise multiplication. This mapping not only increases the 
dimensionality of the feature space but also enhances the network’s 
ability to express complex patterns without adding computational 
complexity. This characteristic allows StarNet to perform well while 
maintaining a compact network structure and efficient computation. 
In addition, StarNet not only has significant performance advantages 
but also maintains low latency under limited computational resources, 
making it suitable for real-time application scenarios. Incorporating 
StarNet as a feature extraction network brings many notable 
advantages. Firstly, the overall number of model parameters is 
significantly reduced, and the computational complexity is lowered, 
thereby accelerating the model’s inference speed. Secondly, StarNet’s 
efficient feature expression capability ensures the model’s accuracy.

3.3 C2f-Star

In order to more effectively utilize the feature information 
extracted by the Backbone, we have integrated the “star operation” 
into the C2f module, proposing the C2f-Star module. Figures 3A,B 
respectively illustrate the structural diagrams of the C2f and C2f-Star 
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modules. From the structural diagrams, it can be  seen that the 
C2f-Star maintains the original basic structure of C2f while 
incorporating the “star operation” from StarNet to enhance the feature 
expression capability and the ability to capture complex patterns. 
Through this improvement, the C2f-Star module achieves a balance 
of efficiency and accuracy while maintaining a lightweight design.

In the design of the C2f-Star module, we have fully leveraged the 
advantages of the “star operation” in StarNet for feature extraction. 
StarNet generates high-dimensional features with rich expressiveness 
through the “star operation.” However, high-dimensional features alone 
are not sufficient to fully realize the potential of the entire network. 
Therefore, we have introduced the “star operation” into the C2f module 
to further optimize and process these features. The C2f-Star module 
not only inherits the advantages of StarNet’s “star operation” but also 
combines the efficient feature processing mechanism of the C2f module 
to provide more refined processing of these high-dimensional features. 
By integrating depthwise convolution and fully connected layers, the 
C2f-Star module not only retains the richness of the features but also 
further enhances the interaction between features, making the feature 
expression more accurate and effective.

3.4 Segment_LS segmentation head

The segmentation head of YOLOv8 adopts the method from 
YOLACT (Bolya et  al., 2019), breaking down the instance 
segmentation task into two steps. YOLOv8 first generates a set of 
prototype masks, where each detection head outputs a set of 
coefficients for each instance target. These prototype masks are then 
weighted and combined to obtain the final instance segmentation 
result. However, the segmentation head of YOLOv8 has significant 
drawbacks. It uses shared prototype masks that are common to all 
instances. Although this approach is computationally efficient, it May 

fail to capture the detailed features of targets requiring fine features, 
resulting in less precise segmentation. Additionally, the global sharing 
nature of the prototype masks might overlook small targets or fail to 
precisely segment large targets, especially in densely populated scenes 
where instance masks May overlap, affecting segmentation accuracy. 
Due to these shortcomings, to maintain high precision, the 
segmentation head of YOLOv8 employs a large number of 
convolutional and feature extraction layers, leading to a large number 
of parameters. Practical tests show that the segmentation head of 
YOLOv8 accounts for 30.7% of the total network parameters.

In response to the aforementioned shortcomings, we  have 
proposed a new type of efficient segmentation head called Segment_
LS. Segment_LS no longer uses the shared prototype masks of the 
original YOLOv8, overcoming the inherent flaws of YOLOv8’s 
segmentation head. As a result, our segmentation head does not rely 
on a large number of parameters to improve accuracy, which 
significantly reduces the overall parameter count of the network. The 
structure of Segment_LS is shown in Figure 4.

In the design of the Segment_LS segmentation head, we  first 
maintained the original Segment structure, allowing it to continue 
receiving feature maps from P3, P4, and P5 at different scales, thus 
preserving the segmentation head’s multi-scale feature fusion 
capability. Additionally, we  introduced shared convolutions, 
GroupNorm, and Scale scaling operations into the Segment_LS 
segmentation head. Compared to BatchNorm, GroupNorm does not 
depend on batch size and performs particularly well in training with 
small batches or even single images. By incorporating GroupNorm 
into the segmentation head, detection and segmentation accuracy can 
be stably improved across various batch sizes. To address the issue of 
excessive computational load in the segmentation head, we introduced 
shared convolution layers in the paths of P4 and P5. This mechanism 
not only significantly reduces the model’s parameter count but also 
ensures consistent processing of features at different scales, enhancing 

FIGURE 1

SMLS-YOLO network structure diagram.
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the model’s information sharing capability across scales and thereby 
improving the model’s generalization ability and computational 
efficiency. To tackle the issue of inconsistent scales, we introduced a 
Scale layer for feature scaling alongside shared convolutions, ensuring 
that each detection head can perform object detection and 
segmentation at the optimal scale, resulting in more stable and 
accurate regression outcomes. This approach effectively mitigates the 
accuracy drop caused by inconsistent target scales. Furthermore, the 
Head part carries out tasks such as mask prediction (Conv_Mask), 
regression prediction (Conv_Reg), and classification prediction 
(Conv_Cls) through multiple parallel paths. This separated path 
design allows the model to optimize for each task specifically, avoiding 
interference between tasks, thereby enhancing overall performance. 
Lastly, to generate more precise initial features during image 
segmentation, we generate prototype masks through a separate path, 
providing a reliable foundational template for subsequent 
segmentation tasks. Ultimately, we conducted practical tests on the 
original segmentation head of YOLOv8 and the optimized 
segmentation head. The results showed that the optimized 
segmentation head has a parameter count of 0.25 M, with a total 
model parameter count of 1.7 M, accounting for 14.4% of the 
computational volume; in contrast, the original YOLOv8 segmentation 
head has a parameter count of 1.00 M, with a total model parameter 
count of 3.26 M, accounting for 30.7% of the computational volume. 
Through optimization, our segmentation head’s parameter count was 
reduced by approximately 75.6%, and the total model parameter count 
was nearly halved. This optimization significantly reduced the 
computational load while maintaining high accuracy.

3.5 MHSA attention mechanism

The attention mechanism is an important technique in deep 
learning that enhances the model’s ability to focus on different parts of 
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the input data. Its core idea is to assign differentiated weights to input 
features, enabling the model to focus more on features that contribute 
significantly to the task. The multi-head self-attention mechanism 
(MHSA) further extends this concept. MHSA calculates the correlations 
between input features by using multiple attention heads in parallel. 
Each attention head independently captures different feature 
relationships and then combines these results. This enhances the model’s 
feature representation capability and improves its ability to handle long-
range dependencies. The structure of MHSA is shown in Figure 5.

MHSA processes input features in parallel through multiple 
attention heads, with each head independently calculating a set of 
attention weights and applying them to the features. These results are 
then concatenated and transformed linearly to generate the final output 
features. This allows MHSA to simultaneously focus on different parts 
of the input features, capturing richer inter-feature relationships.

We combined the characteristics of StarNet by introducing the 
multi-head self-attention mechanism (MHSA) after the Backbone to 
further enhance the model’s performance. StarNet’s “Star Operation” 
maps input features to a high-dimensional nonlinear feature space, 
enhancing expressive capability. MHSA captures long-range 
dependencies between features through parallel attention heads and 
integrates this information into feature representation. The 
combination of these two methods allows the model to capture local 
features and effectively integrate global features without increasing 
computational complexity, enhancing the richness and accuracy of 
overall feature representation.

4 Experiments

4.1 Experimental environment

All experiments covered in this paper were conducted on a deep 
learning workstation. The hardware configuration and experimental 
environment are shown in Table 1.

Based on the above experimental conditions, we set the training 
epochs to 300, the batch size to 16, the initial learning rate to 0.01, the 
momentum to 0.937, the weight decay coefficient to 0.0005, the input 
image size to 640 × 640, and the number of workers to 8. We used 
YOLOv8’s mosaic data augmentation.

4.2 Evaluation metrics

Evaluation metrics are important tools for measuring model 
performance. The metrics used in this paper to evaluate model size 
include computational load (GFLOPS), number of parameters 
(Parameters), and frames per second (FPS). The metrics used to 
evaluate model accuracy include precision (P), average precision (AP) 
for each class, mean average precision (mAP) across all classes, and 
recall rate (R).

Precision is used to measure how many of the samples predicted 
as positive by the classification model are actually positive examples. 
The calculation formula is shown in Equation 1:
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In the formula, P represents Precision, TP is the number of true 
positive cases, and FP is the number of false positive cases.

Recall rate (R) represents the proportion of correctly predicted 
positive samples to all actual positive samples. The calculation formula 
is shown in Equation 2:
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In the formula, TP is the number of true positive cases, and FN is 
the number of false negative cases.

Average Precision (AP) is a commonly used evaluation metric 
to measure the accuracy of a model in information retrieval or 
object detection tasks across different classes or thresholds. It 
measures the model’s performance by calculating the area under the 
Precision-Recall curve. The calculation formula is shown in 
Equation 3:

 ( )AP P R dR= ∫  (3)

Mean Average Precision (mAP) is used to measure the accuracy 
of a model in information retrieval or object detection tasks across 
all classes or thresholds. The calculation formula is shown in 
Equation 4:
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In the formula, iAP represents the average precision for class i, and 
N represents the total number of classes.

To more intuitively demonstrate the training effect of the model, 
the mAP@0.5 comprehensive evaluation metric is introduced. 
mAP@0.5 represents the mAP when the IoU value is set to 0.5. When 
IoU > 0.5, it is considered that there is a predicted target within the 
predicted bounding box. When IoU < 0.5, it is considered that there 
is no predicted target within the predicted bounding box. mAP@0.5 
can comprehensively evaluate the model’s localization and 
classification accuracy. The calculation formula is shown in 
Equation 5:
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The F1-score is the best balance point that measures both 
precision and recall, providing a more comprehensive reflection of the 
model’s overall performance. The definition of the F1 score is shown 
in Equation 6:
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FPS refers to the number of images the algorithm processes per 
second. The definition of FPS is shown in Equation 7:

 

1
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FPS
T

=
 

(7)

where perT  represents the time taken by the algorithm to process 
a single fundus image.

Intersection over Union (IoU) represents the ratio of the 
intersection to the union between the predicted results and the ground 
truth, which can be  used to assess the accuracy of segmentation 
models, as shown in Equation 8:

 
TPIoU
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TP represents the number of pixels in the lesion area of the fundus 
image that are correctly predicted, FP represents the number of pixels 

TABLE 1 Hardware configuration and experimental environment.

Name Model

CPU Intel Xeon Silver 4210

System Windows 10

GPU NVIDIA RTX 2080Ti 11GB

RAM 64 GB

Python 3.8.17

CUDA 11.6

Pytorch 1.8.0

Torchvision 0.9.0
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FIGURE 5

MHSA attention mechanism structure diagram.
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in the background area that are incorrectly predicted as being part of 
the lesion area in the fundus image, and FN represents the number of 
pixels in the lesion area of the fundus image that are incorrectly 
predicted as being part of the background area.

4.3 Dateset

The dataset used in this paper is sourced from the PALM 
Pathological Myopia Lesion Detection and Segmentation Challenge, 
provided by the Zhongshan Ophthalmic Center of Sun Yat-sen 
University. The dataset includes 582 fundus images with annotations 
for atrophy and detachment lesions, and 213 fundus images without 
lesions. Each fundus image is annotated with typical lesions related 
to pathological myopia: patchy retinal atrophy (including 
peripapillary atrophy) and normal regions without lesions. Pixel-level 
lesion annotations were initially manually performed by seven 
ophthalmologists from the Zhongshan Ophthalmic Center, and the 
final gold standard annotation was created by another senior expert 
who integrated the results from the seven ophthalmologists. 
Additionally, the dataset contains 400 unannotated fundus images 
used as a test set. Some images from the dataset and their 
corresponding masks are shown in Figure 6.

4.4 Data augmentation

Due to the limited amount of data in the dataset, we divided the 
795 images into a training set and a validation set in a 9:1 ratio, 
resulting in only 716 images in the training set and 79 images in the 
validation set. To increase the sample size of the training set, 
we  applied various data augmentation techniques to the dataset, 
including histogram equalization, grayscale transformation, 
horizontal flipping, linear color transformation, rotation 
transformation, and vertical flipping. These data augmentation 
techniques expanded the total capacity of the dataset by 6 times, 
increasing the training set to 5,012 images and the validation set to 
553 images. These data augmentation methods effectively increased 
the diversity of the training data, thereby improving the model’s 
generalization ability. A sample of the augmented dataset is shown in 
Figure 7.

5 Results

5.1 Comparison of SMLS-YOLO with the 
YOLOv8 family

To demonstrate the superiority of SMLS-YOLO, we compared its 
performance with the YOLOv8 family on the augmented dataset. The 
results are shown in Table 2. In the YOLO instance segmentation 
experiments, the metrics include both Box and Mask components, 
corresponding to object detection and instance segmentation tasks, 
respectively. The object detection task focuses on locating and 
classifying target objects in the image, outputting the bounding box 
for each target object. These metrics reflect the model’s performance 
in object detection tasks. The instance segmentation task requires not 
only locating and classifying target objects but also predicting pixel-
level segmentation masks for each target object. The Mask metrics 
reflect the model’s performance in instance segmentation tasks. From 
Table  2, we  can see that on the augmented dataset, SMLS-YOLO 
achieved a precision of 89.2%, recall of 86.1%, mAP@0.5 of 89.0%, and 
F1 score of 88% for Box. For Mask, it achieved a precision of 89.9%, 
recall of 85.4%, mAP@0.5 of 88.9%, and F1 score of 88%. Compared 
to the baseline model YOLOv8n-seg, SMLS-YOLO improved the Box 
mAP@0.5 by 2.3% and the Mask mAP@0.5 by 3.9%. Additionally, 
SMLS-YOLO achieved a 46.7% reduction in model size, a 31.7% 
reduction in GFLOPS, and maintained nearly the same FPS. This 
indicates that SMLS-YOLO not only enhances detection and 
segmentation accuracy but also excels in computational efficiency and 
resource consumption. To visually demonstrate the performance of 
each model on the dataset, we plotted the P-R curves for the Atrophy 
class in both Box and Mask tasks. Figures 8A,B show the P-R curves 
for the Box and Mask tasks, respectively.

In the P-R curves shown in Figures  8A,B, SMLS-YOLO 
demonstrates significant advantages in both Box and Mask tasks. 
SMLS-YOLO maintains the highest precision across most recall 
levels, indicating higher accuracy in detecting and segmenting 
atrophic lesions, thereby reducing the risk of false positives and false 
negatives. In summary, SMLS-YOLO achieves comprehensive 
performance improvements in both Box and Mask tasks. Its overall 
performance surpasses that of the YOLOv8 family, proving the 
model’s comprehensive advantages in detection and 
segmentation tasks.

FIGURE 6

Sample images and masks from the dataset.
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5.2 Comparison of SMLS-YOLO with 
advanced instance segmentation 
algorithms

To demonstrate that SMLS-YOLO has better generalization, 
we  compare SMLS-YOLO, YOLOv5n-seg, YOLOv7-tiny-seg, 
YOLOv8n-seg, and YOLOv9’s Gelan-c-dseg, Gelan-c-seg, and 
YOLOv9-c-dseg, respectively, on the enhanced performance 
comparison on the dataset. The experimental results are shown in 
Table 3. Compared with other advanced target detection algorithms, 
SMLS-YOLO performs well on several key metrics.

In the Box task, SMLS-YOLO outperforms other models in 
several metrics, with mAP@0.5 reaching 89.1%, showing particularly 
outstanding performance. In contrast, the state-of-the-art Gelan-c-seg 
achieves an mAP@0.5 of 88.2%, which does not perform as well as 
SMLS-YOLO. Additionally, although the precision rate of YOLOv7-
tiny reaches 91.1%, its recall rate is only 78.3%, leading to its lower 
overall performance, with an mAP@0.5 of 83.9%.

In the Mask task, SMLS-YOLO again leads in multiple metrics, 
further confirming its superiority. Additionally, SMLS-YOLO excels 
in model parameter count and computational efficiency. Its model 
parameters are only 1.7 M, significantly lower than those of other 

FIGURE 7

Sample display of the augmented dataset.

TABLE 2 Experimental results of SMLS-YOLO compared with YOLOv8 family.

Methods Box Mask All

p R mAP@0.5 F1 score p R mAP@0.5 F1 score Params GFLOPS FPS

YOLOv8n-seg 89.7 83.2 86.7 86.0 89.4 82.8 85.9 86.0 3.26 12.0 93.3

YOLOv8s-seg 91.3 84.2 88.9 88.0 90.5 84.1 87.6 87.0 11.78 42.4 72.8

YOLOv8m-seg 88.8 85.5 88.6 87.0 89.0 85.2 88.4 87.0 27.22 110.0 61.5

YOLOv8l-seg 89.2 85.7 87.6 87.0 88.7 85.2 87.6 87.0 45.91 200.1 41.4

YOLOv8x-seg 85.4 86.6 87.7 86.0 86.3 85.2 87.1 86.0 71.72 343.7 26.4

SMLS-YOLO 89.2 86.1 89.1 88.0 89.9 85.4 88.9 88.0 1.7 8.2 92.8

Note: Bold values represent the best performance.
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models. Furthermore, SMLS-YOLO’s GFLOPS is 8.2, and its FPS 
reaches 92.8, demonstrating high computational efficiency and real-
time performance.

Precision (P) and Recall (R) are two key metrics used to evaluate 
model performance. Precision measures the accuracy of the model’s 
predictions, while Recall assesses the model’s ability to capture all 
relevant instances. Typically, there is a trade-off between Precision and 
Recall: increasing Precision by being stricter with positive class 
predictions (reducing false positives, FP) can lead to missing some true 
positives (increasing false negatives, FN), which in turn decreases 
Recall. Conversely, being more lenient with positive class predictions 
can increase Recall but May also result in more false positives, thus 
decreasing Precision. The mean Average Precision at Intersection over 
Union (IoU) threshold of 0.5 (mAP@0.5) metric balances different 
combinations of Precision and Recall to maximize the model’s overall 
performance. It calculates the average Precision and Recall across 
various thresholds, providing a comprehensive performance indicator 
by averaging these values. Therefore, even when there is a trade-off 
between Precision and Recall, mAP@0.5 offers a more holistic 

assessment of model performance. Compared to YOLOv8s-seg, SMLS-
YOLO exhibits a slightly lower Precision but improved Recall and 
mAP@0.5, suggesting an overall enhancement in performance. 
Specifically, as shown in Table 2, SMLS-YOLO has a lower Precision (P) 
than YOLOv8s-seg, and in Table 3, SMLS-YOLO has a lower Precision 
(P) than YOLOv7-tiny. However, when considering the mAP@0.5 
metric, which measures overall performance, SMLS-YOLO outperforms 
both YOLOv8s-seg and YOLOv7-tiny. Additionally, our SMLS-YOLO 
is more lightweight than YOLOv8s-seg and YOLOv7-tiny, with 
GFLOPS being only 17% of that of YOLOv8s-seg and YOLOv7-tiny.

In summary, SMLS-YOLO not only excels in the Box task but 
also performs outstandingly in the Mask task. It achieves the best 
performance across multiple key metrics, demonstrating 
comprehensive advantages in both detection and segmentation tasks. 
Figures 9A,B show the mAP@0.5 curves for Box and Mask during the 
training process of seven networks. From these figures, it can be seen 
that SMLS-YOLO’s curve rises rapidly in the early stages of training, 
demonstrating its fast convergence ability. Additionally, its mAP@0.5 
performance remains very stable and higher than other models 

FIGURE 8

(A) Box P-R curve. (B) Mask P-R curve.

TABLE 3 Experimental results of SMLS-YOLO compared with other advanced instance segmentation algorithms.

Methods Box Mask All

p R mAP@0.5 F1 score p R mAP@0.5 F1 score Params GFLOPS FPS

YOLOv5n-seg 85.5 81.4 84.8 83.0 87.2 80.6 84.9 84.0 1.88 6.7 111.8

YOLOv7-tiny 91.1 78.3 83.9 83.0 90.8 79.8 84.2 84.0 6.99 47.7 101.2

YOLOv8n-seg 89.7 83.2 86.7 86.0 89.4 82.8 86.0 86.0 3.26 12.0 93.3

Gelan-c-seg 90.7 83.3 88.2 87.0 88.7 81.7 86.4 86.0 27.36 144.2 6.61

Gelan-c-dseg 88.6 84.4 87.9 86.0 88.4 83.4 87.0 86.0 27.39 145.2 5.72

YOLOv9-c-dseg 87.8 84.6 87.9 86.0 87.4 84.1 87.2 86.0 57.47 368.6 4.10

SMLS-YOLO 89.2 86.1 89.1 88.0 89.9 85.4 88.9 88.0 1.7 8.2 92.8

Note: Bold values represent the best performance.
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FIGURE 10

Visualization of SMLS-YOLO and other advanced instance segmentation algorithms results.

throughout the training process, reflecting its stability and 
consistency. This indicates that SMLS-YOLO not only converges 
quickly in the early stages but also maintains high performance with 
minimal fluctuations throughout the training process, exhibiting 
excellent robustness and consistency. Furthermore, we visualized the 
detection results of the seven algorithms on the dataset to 
demonstrate SMLS-YOLO’s advantages over other advanced 
algorithms. Figure 10 shows the visualization results of the seven 
algorithms, where it can be seen that SMLS-YOLO achieves the best 
detection accuracy and prediction probability.

5.3 Comparison of SMLS-YOLO with 
classical segmentation networks

In order to verify the advantages and application potential of 
SMLS-YOLO, this paper compares the performance of SMLS-YOLO 

with classic segmentation algorithms such as UNet and the DeepLab 
series on an enhanced fundus color photography dataset. Table 4 
presents the specific performance of SMLS-YOLO and these classic 
algorithms in terms of IoU, precision, recall, and F1-score.

Although UNet and the DeepLab series models are primarily 
used for semantic segmentation tasks, while SMLS-YOLO focuses on 
instance segmentation, the experimental results on the same dataset 
indicate that SMLS-YOLO not only surpasses these traditional 
semantic segmentation models in key performance indicators such 
as precision, recall, IoU, and F1-score, but also significantly reduces 
the number of parameters and increases processing speed. This 
suggests that, despite the differences in application domains, SMLS-
YOLO still demonstrates strong generalization capabilities and 
superior performance when faced with semantic segmentation tasks.

To validate the advantages of the SMLS-YOLO model across 
various performance metrics, this paper visualizes the detection 
results of SMLS-YOLO compared to classical segmentation networks, 

FIGURE 9

(A) Box mAP@0.5 curve. (B) Mask mAP@0.5 curve.
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as shown in Figure 11. SMLS-YOLO demonstrates higher recognition 
accuracy and stronger adaptability when processing lesion areas, 
showing significant advantages.

5.4 Analysis of strategy effectiveness

To demonstrate the effectiveness of each improvement in SMLS-
YOLO, we conducted an ablation study on the fundus image dataset. 
The results of the ablation study are shown in Table 5. Table 5 presents 
the detection performance achieved by the baseline algorithm 
YOLOv8n-seg with different combinations of components. It can 
be observed that each improvement strategy enhances the detection 
accuracy of the baseline algorithm to some extent.

From the aforementioned tables, it can be  observed that the 
StarNet module has demonstrated excellent performance across 
multiple experiments. It not only effectively reduced the model’s 
parameter count and computational load but also improved detection 
accuracy to some extent. For instance, in experiments A, B, and C, 
despite the reduction in parameter count, the values of 
mAP@0.5(Box) and mAP@0.5(Mask) increased to varying degrees, 
indicating the module’s enhancement effect on model performance. 

TABLE 4 Experimental results of SMLS-YOLO compared with classical 
segmentation networks.

Methods p R IoU F1-
score

Params FPS

Unet 79.7 72.5 61.0 72.7 40.0 16.7

DeepLabV1 84.0 73.9 64.7 76.1 20.5 33.3

DeepLabV2 88.4 77.4 70.0 80.3 44.0 17.5

DeepLabV3 87.1 75.3 67.3 77.4 11.0 22.0

YOLOv8-seg 89.4 82.8 75.1 86.0 3.26 93.3

SMLS-YOLO 89.1 88.9 76.6 88.0 1.70 92.8

Note: Bold values represent the best performance.

TABLE 5 Experimental results under different improvement strategies.

Methods StarNet C2f-
Star

Segment_
LS

MHSA mAP@0.5(Box) mAP@0.5(Mask) Params Gflops FPS

YOLOv8n-seg – – – 86.7 86.0 3.26 12.0 93.3

A √ 87.6 86.5 2.47 10.4 96.7

B √ √ 87.7 86.4 2.27 10.0 97.7

C √ √ √ 87.8 86.3 1.50 8.1 95.3

D √ √ – √ 89.1 87.7 2.46 10.1 94.1

E √ – – √ 88.6 87.1 2.66 10.5 93.8

F √ – √ – 88.4 86.9 1.70 8.4 96.5

G √ – √ √ 88.9 88.5 1.90 8.6 94.4

SMLS-YOLO √ √ √ √ 89.1 88.9 1.70 8.2 92.8

FIGURE 11

Visualization results of SMLS-YOLO compared with classical segmentation networks.
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FIGURE 12

Heatmap results under different improvement strategies.

By integrating StarNet as the Backbone of SMLS-YOLO, the baseline 
algorithm’s mAP@0.5 (Box) and mAP@0.5 (Mask) were, respectively, 
improved to 87.6 and 86.5%, while the model parameter count was 
reduced to 2.47 M. After incorporating the C2f-Star component, the 
mAP@0.5 (Box) further increased to 87.7%, the mAP@0.5 (Mask) 
slightly decreased to 86.4%, and the parameter count was reduced to 
2.27 M. The introduction of the Segment_LS segmentation head 
further optimized the model’s balance, allowing the model to 
maintain low computational load while still improving detection 
accuracy. Additionally, the incorporation of the MHSA attention 
mechanism, although leading to a slight increase in parameter count, 
significantly enhanced model performance. In experiments E, F, and 
G, it proved the value of the MHSA module in improving model 
performance. Ultimately, after integrating all the improvement 
strategies, SMLS-YOLO’s mAP@0.5 (Box) and mAP@0.5 (Mask) 
were, respectively, increased to 89.1 and 88.9%, which is 2.4 and 3.9% 
higher than the baseline algorithm, with the parameter count being 
only 52% of YOLOv8n-seg.

To further demonstrate the effectiveness of each improvement 
strategy, we conducted a heatmap visualization analysis of the model 
under various combinations of improvement strategies. Figure 12 
shows the heatmap results under different combinations of 
improvement strategies. Through these visualizations, the 
performance enhancement effects of different improvement strategies 
on the model can be  observed intuitively, thereby more clearly 
verifying the effectiveness of each improvement strategy.

6 Summary

In this paper, we  proposed a novel instance segmentation 
algorithm named SMLS-YOLO, designed to tackle the challenges in 

detecting pathological myopia. Firstly, we introduced StarNet as the 
backbone network to efficiently extract feature information from 
images. Following this, we  proposed a new feature extraction 
module, C2f-Star, which aims to more effectively integrate multi-
level feature information produced by the backbone network, 
thereby enhancing performance while reducing the model’s 
complexity. Subsequently, to mitigate the issue of the original 
segmentation head’s large number of parameters, we proposed a new 
lightweight segmentation head, Segment_LS. This head leverages 
shared convolution and introduces scale adjustment operations, 
significantly reducing the computational burden during 
segmentation. Our Segment_LS segmentation head abandons the 
shared prototype masks of YOLOv8, thereby overcoming the 
segmentation head’s inherent limitations. As a result, our 
segmentation head does not require a large number of parameters to 
improve accuracy, thus significantly reducing the overall network 
parameters. Additionally, we  integrated the Multi-Head Self-
Attention (MHSA) mechanism to bolster the model’s capability to 
capture essential information in images, thereby improving the 
overall performance of SMLS-YOLO. Experiments conducted on 
fundus images dataset with pathological myopia demonstrate that 
SMLS-YOLO achieves advanced performance. Looking ahead, 
we  intend to explore model pruning and knowledge distillation 
techniques to further refine the model’s efficiency and develop even 
more lightweight algorithms.
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A novel parameter dense 
three-dimensional convolution 
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Introduction: Improving the rationality and accuracy of classroom quality 
analysis is crucial in modern education. Traditional methods, such as 
questionnaires and manual recordings, are resource-intensive and subjective, 
leading to inconsistent results. As a solution, computer vision (CV) technologies 
have emerged as powerful tools for real-time classroom monitoring. This study 
proposes a novel Dense 3D Convolutional Residual Network (D3DCNN_ResNet) 
to recognize students’ expressions and behaviors in English classrooms.

Methods: The proposed method combines Single Shot Multibox Detector (SSD) 
for target detection with an improved D3DCNN_ResNet model. The network 
applies 3D convolution in both spatial and temporal domains, with shortcut 
connections from residual blocks to increase network depth. Dense connections 
are introduced to enhance the flow of high- and low-level features. The model 
was tested on two datasets: the CK+ dataset for expression recognition and the 
KTH dataset for behavior recognition.

Results and Discussion: The experiments show that the proposed method is 
highly efficient in optimizing model training and improving recognition accuracy. 
On the CK+ dataset, the model achieved an expression recognition accuracy of 
97.94%, while on the KTH dataset, the behavior recognition accuracy reached 
98.86%. The combination of residual blocks and dense connections reduced 
feature redundancy and improved gradient flow, leading to better model 
performance. The results demonstrate that the D3DCNN_ResNet is well-
suited for classroom quality analysis and has the potential to enhance teaching 
strategies by providing real-time feedback on student engagement.

KEYWORDS

three-dimensional convolutional neural network, residual network, video sequence, 
SSD algorithm, behavior recognition

1 Introduction

Improving the rationality and accuracy of classroom quality analysis is particularly 
important for classroom teaching (Xun, 2022). In recent years, many forms of classroom 
quality analysis have also been studied, mainly including questionnaire form, physiological 
embodiment method, computer vision (CV) and other methods. At present, the vast majority 
of classrooms analyze and evaluate the quality of classroom teaching through specialist manual 
records, after-school questionnaires and other methods. These methods not only consume a 
lot of human and material resources, but also have a certain subjectivity, so it is unrealistic to 
get reasonable and accurate results. CV methods could be combined with intelligent equipment 
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with video recording to monitor the students’ class status in real time, 
study and analyze the students’ facial expression and posture in the 
classroom, then analyze the classroom quality (Wu et al., 2023). Since 
the 21st century, it has promoted the development of integrating 
computer emotion analysis and education and teaching application.

Through the analysis of intelligent video equipment and expression 
recognition, it can provide teachers with real-time and reliable feedback 
information in time, facilitate teachers to modify teaching contents, 
control teaching progress, select teaching methods and adjust teaching 
difficulties, and greatly promote the change of teaching mode and the 
improvement of teaching quality. In the field of computer vision, object 
recognition from video and pictures has always been a hot topic. How 
to extract robust and representative features is a challenging task (Hong, 
2022). For static image recognition, only static features in one image 
need to be extracted for learning (Niu et al., 2022). For dynamic video 
recognition, we need to consider not only the relationship between 
adjacent pixels in a single frame image in the spatial domain, but also 
the interaction between multiple adjacent frames in the temporal 
domain (Wanshu and Bin, 2022). At present, the research around video 
recognition mainly focuses on feature extraction and classifier selection.

For video object classification, the quality of feature extraction is 
very important, which directly affects the classification effect. The 
judgment of its quality lies in whether it has high recognition degree, 
strong robustness, more complete recognition information and so on. 
The existing feature extraction methods are mainly divided into two 
categories: local feature methods and global feature methods. The 
local feature method is to extract the local sub regions or interest 
points in the video or image. For example, Bengio et  al. (1994) 
proposed gradient based learning algorithms as the duration of the 
dependencies to be captures increased. Laptev and Lindeberg (2005) 
first detected multiple spatiotemporal interest points from the video, 
then built a spatiotemporal cube centered on the interest points and 
extracted hog and Hof features to represent the motion information. 
Gers et al. (2002) found that LSTM can learn the subtle differences 
between spike sequences with intervals of 49 or 50 times steps 
without the help of any short training samples by connecting the 
“peephole connections” from its internal cells to its multiplication 
gate. Ma et al. (2015) proposed a new Bayesian matrix decomposition 
method for bounded support data. The beta distribution has two 
parameters, while the two parameter matrices with only non-negative 
values can be obtained. To provide low rank matrix factorization, 
non-negative matrix factorization (NMF) technique is applied. Gu 
et al. (2012) performed Gabor transform on the image, then jointly 
encoded it by radial network, and realized global classification by 
cascading multiple classifiers. Although the above methods can well 
represent the image edge information, its feature dimension is too 
high and the amount of calculation is too large.

According to the analysis, each feature extraction method has 
its advantages and disadvantages. In order to make up for each 
other’s shortcomings and overcome the problems of insufficient 
description of image information by a single feature and weak 
robustness, most of the current research methods use mixed 
features. For example, Liu et al. (2011) proposed a novel method to 
extract expression features by combining Gabor multi-directional 
feature fusion and block histogram statistics based on the weak 
ability of Gabor features to represent global features. Ren et  al. 
(2017) introduced a regional recommendation network (RPN) that 
shared full image convolutional features with the detection network 
to achieve almost cost-free regional recommendations. Graves et al. 

(2005) used convolution neural network and long-term and short-
term memory neural network to extract features, and then weighted 
and fused the extracted features to improve the accuracy and 
generalization of the model. Ji et al. (2013) developed a 3D CNN 
model which extracted features from both spatial and temporal 
dimension for action recognition.

Through the study of the above methods, in order to not only 
overcome the problem that a single feature does not adequately 
describe the image information but also simplify the model 
structure and improve recognition accuracy, this paper proposes a 
new parallel Dense 3D convolution residual network (D3DCNN_
ResNet) method for students’ expression and behavior recognition 
in English classrooms. This method first uses the single shot 
multibox detector (SSD) to extract the moving area to be recognized 
for clipping and preprocessing, and then inputs the crop and the 
original frame picture into the improved convolution residual 
network to extract features. The crop can extract local detailed 
feature information. On the other hand, the original frame can 
obtain the global overall information, supplement the edge contour 
features that the former failed to extract completely, and then carry 
out weighted fusion to improve the robustness and generalization 
of the model. Due to the large number of parameters and low 
computational efficiency of the 3D convolutional neural network, a 
Pseudo 3D convolutional neural network (P3D) (Qiu et al., 2017) 
is proposed to decompose 3D into (2D + 1D) forms. Pseudo 3D 
convolution (P3D) decomposes 3D convolution into 2D spatial and 
1D temporal convolutions, reducing computational complexity 
while maintaining performance. It has been applied in video action 
recognition and medical imaging, balancing accuracy and efficiency. 
According to the four structures designed in Gu et al. (2012), 2D 
spatial convolution and 1D temporal convolution are proved to 
be the most effective.

Main contributions:

 1) With our proposed D3DCNN_ResNet, a new English 
classroom quality analysis with low and controllable cost, high 
precision and reliability combined with facial expression 
recognition technology is proposed.

 2) In the proposed D3DCNN_ResNet, the residual module is added 
to learn the residual mapping to further solve the problems of 
gradient descent and over fitting with the deepening of the 
network depth, and more subtle multi-level features are obtained 
through the interconnection between different convolution 
layers and different residual blocks in the residual block.

 3) The combination of residual blocks and dense connections not 
only reduces feature redundancy and improves the gradient 
correlation of the network, but also reduces the network 
parameters to a certain extent. Our architecture combines 
DenseNet and ResNet principles, improving gradient flow and 
reducing the risk of vanishing gradients in deeper networks. 
DenseNet’s feature reuse and ResNet’s residual connections 
have been validated in tasks like object detection and image 
classification, enhancing feature learning (see Figure 1).

The rest of this letter is organized as follows. In section 2, 
we  present the basic principle and framework of our proposed 
D3DCNN_ResNet in detail. Section 3 gives the model optimization. 
Section 4 presents the results and analysis based on the experiment. 
Finally, the conclusions are given in section 5.
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2 New parallel D3DCNN_ResNet 
identification method

2.1 Introduction to identification method

This method mainly includes two parts, SSD target detection and 
improved D3DCNN_ResNet. It can accurately locate the recognition 
area of the object by using SSD target detection, and get detailed local 
features through crop, and then use the original frame as a feature 
supplement to obtain more abundant, complete and robust feature 
information. SSD target detection is a preprocessing module, and 
could be used to cut the recognition area corresponding to the entire 
video sequence. The obtained sequence frames are directly input into 
the improved D3DCNN_ResNet to extracts features. Since deep 
learning can combine low-level features into high-level ones through 
the construction of multiple hidden layers and autonomously learned 
features, the improved D3DCNN_ResNet model connects different 
residual blocks and convolution layers within the residual blocks. It 
fully combines the bottom features with the high-level features, and 
enhances the flow of feature information in the network. Then, the 
obtained local and global multi features are fused to better represent 
the subtle feature information. This structure not only solves the lack 
of time-domain information extraction in traditional deep learning, 
but also solves the problems of large parameters and over fitting 
through the decomposition of the three-dimensional convolution, 
which improves the recognition rate of the model. The specific 
implementation steps of the algorithm are as follows:

 1) Firstly, SSD target detection algorithm is applied to the input 
video frame, and the object recognition region is extracted 
from each frame of the video for clipping preprocessing, which 
is called the crop.

 2) Then, the original frame and the crop are input to the improved 
D3DCNN_ResNet respectively. The extracted features in 
RESNET are marked as F1 and F2: F1 is the local detailed 
feature of the recognition object, and F2 is the global overall 
feature, which mainly supplements the edge contour 
information. F1 and F2 also include the fusion between 
low-level features and high-level features, with feature 
dimensions of 256.

 3) Finally, the original frame features and the crop frame features 
are fused, encoding the video information. Since the feature 

level fusion at the full connection layer will greatly increase the 
parameters of the model, the decision level fusion method is 
selected in this paper, as shown in Equation 1:
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where, Pn(x), (0 < p < 1) is the output probability value of F1 and 
F2 at softmax layer, W is the weight parameter, which is obtained from 
the least square estimation of the minimization loss function:
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The final fusion feature is input into softmax classifier to realize 
classification and recognition.

2.2 Introduction to improved D3DCNN_
ResNet

In video analysis, considering the motion information between 
consecutive frames, D3DCNN_ResNet is used to stack multiple 
consecutive frame images to form a cube, and then use 3D convolution 
kernel to convolute in the cube. As shown in Figure 2, the characteristic 
value of a certain position of a convolution map is obtained by 
convoluting the local receptive field of the same position of three 
consecutive frames on the upper layer. Its advantage is that it can 
extract the spatial-temporal features at one time and capture the 
action information of multiple frames in the video sequence.

In the convolution process, on each characteristic graph of any 
single layer, the value of position (a, b, c) is given by Equation 3:
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where tanh () is a hyperbolic tangent function, index T and value 
x are the connection parameters of the current characteristic graph. h, 

FIGURE 1

Model structure diagram.
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W, and D are the height, width and time dimensions of the three-
dimensional convolution kernel, and z is the deviation of the 
characteristic graph.

The deep  3DCNN is more effective in feature extraction, but 
3DCNN has too many parameters. After increasing the depth, it will 
further affect its learning efficiency and accuracy, and cause the 
gradient to disappear. Therefore, 3D is decomposed into (2D + 1D) 
structure, which means (v1*v2*v3) the filter is replaced by (v1*v2*1) 
and (1*1*v3) serially, and samples in the spatial and temporal regions 
respectively, effectively reducing the amount of parameters. At the 
same time, residual blocks are added to 3DCNN to simplify the 
training of deep network. Formally, the required bottom mapping is 
expressed as h (x), that is, the optimal solution mapping after the input 
sample x. Let the superimposed nonlinear layer fit the residual 
mapping of F (x) = h (x) − x, and convert the original mapping to 
Equation 4.

 ( ),y f x w x= +  (4)

where x is the output value of the upper neural unit, w is the 
weight of the neuron, and y is the output value of the activation 
function in the neuron. In addition, the input of each convolution 
layer in the residual block is composed of the output of all previous 

convolution layers, and the output of all previous residual blocks is 
used as the input of the next residual block to improve the gradient 
correlation of the network, and ResNET can maximize the information 
flow while reducing network redundancy. The basic structure of the 
improved D3DCNN_ResNet is shown in Figure 3. In order to convert 
the two-dimensional residual unit into a three-dimensional structure, 
it is used for encoding spatiotemporal video information. According 
to the three-dimensional convolution theorem, the basic residual 
element is modified as follows:

As shown in Figure 3, the residual block has two parts: quick 
connection (solid line) and dense connection (dotted line). There is a 
three-dimensional convolution layer (conv3d) in the shortcut, which 
is mainly used to change the input dimension and increase its 
nonlinear representation so as to match the output dimension of the 
main path in the subsequent addition steps, so that the feedforward/
back propagation algorithm can be carried out smoothly. In addition, 
the three-dimensional convolution unit is replaced by (3*3*1) and 
(1*1*3) serial. Secondly, dense connection not only makes each three-
dimensional convolution unit take the output of the previous three-
dimensional convolution unit as the input, but also makes dense 
connection between each residual block to splice the features. As 
shown in Figure 4, this structure can deepen the network depth and 
improve the model representation ability. At the same time, due to the 
repeated use of convolution features, it can appropriately reduce the 
number of convolution cores to achieve a certain anti over fitting 
effect. In addition, 1*1*1 convolution kernel is used at the end of 
convolution kernel, which aims at feature aggregation and channel 
adjustment to reduce the amount of calculation. The comparison 
results are as follows (taking the spatial size as an example): after the 
first residual convolution, the characteristic size is 24*24*30 if the 
number of data channels is not reduced, continuing the convolution 
(the number of convolution cores is set to 8), and the amount of 
computation is:

 ( ) ( ) ( ) ( )24 24 76 3 3 38 24 24 38 3 3 30 20.88 million
∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ + ∗ ≈

If 1*1*1 convolution is used to compress the channel information 
so that the feature size is 24*24*16, the amount of computation is:

 

( ) ( ) ( ) ( )
( ) ( )

24 24 48 3 3 38 24 24 24 3 3

16 24 24 16 1 1 30 8.24 million

∗ ∗∗ ∗ ∗ ∗ ∗ ∗

∗∗ ∗ ∗

∗ +

∗ + ∗ ≈

Through the above comparison, the calculation amount is reduced 
by about 1.5 times after adding 1*1*1 convolution.

The overall convolution structure of D3DCNN_ResNet used in 
this paper is shown in Figure 5. The input of the network consists of 
10 consecutive frames of images. Take the input crop frame as an 
example, the spatial size clipping processing of each crop frame image 
is 48*48, that is, the size of the input video sequence is (10*48*48), and 
in the input conv3d_1. Before filling, use zeropadding to add 
dimensions to prevent the loss of image edge information. After 
filling, the size becomes 50*50. Since the image dimension is high, 
input conv3d_1 after convolution dimensionality reduction, 16 feature 
maps with the size of 50*50*10 are obtained, and then downsampling 
is performed on each feature map in the way of maximum sampling 

FIGURE 2

3DCNN schematic diagram.

FIGURE 3

Schematic diagram of residuals module.
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with the size of 1*2*2, so that the number of feature maps is the same 
and the spatial resolution is reduced. The next layer is to insert the 
residual blocks of quick connection and dense connection, and get 32 
feature maps with the size of 24*24*10. Then, the depth of the joint 
feature data size is reduced to 16 by the 1*1*1 convolution kernel. In 
this paper, four residual blocks are used to carry out residual 
convolution in turn. Finally, 128 characteristic maps with the size of 
24*24*10 are obtained. Then, 64 characteristic maps with the size of 
12*12*10 are obtained through mean sampling. The data is 
compressed into one dimension in the flatten layer, and a 
256-dimension output feature is obtained through two dense layers. 
After each convolution layer, the activation function and the batch 
normalization (BN) layer are connected. Both activation functions use 
the ReLU function. The input original frame size is 112*112, and the 
process is the same as that shown above.

2.3 SSD target detection

Target detection is a kind of technology that the computer 
analyzes and distinguishes by extracting the typical features of the 
target. Its main task is to find out the interested objects in the image 
and determine their position and size. In this paper, SSD target 
detector is used to detect human face and human body. Compared 
with YOLO algorithm, it has better robustness to objects of different 
scales. Compared with R_CNN series of algorithms, it omits the 
process of generating candidate boxes, and the calculation speed 
is faster.

SSD target detection is an end-to-end image target detection 
method. It directly extracts features from input data to predict object 

classification and location, which greatly improves the detection 
speed. The basic network structure of SSD algorithm is VGG16, and 
the 5-layer network in front of VGG16 is adopted. First, the last two 
full connection layers are changed into convolution layers by using the 
atrus algorithm, then three convolution layers and a pooled layer are 
added for convolution and down sampling processing, and finally two 
different 3*3 convolution cores are used for convolution, and the 
detection results are obtained by non-maximum suppression method. 
For each feature layer, the scale size of the default box is calculated 
according to the following formula:

 
( ) [ ]max min

min 1 , 1,
1k

S SS S k k m
m
−

= + − ∈
−  

(5)

where, Smin the value of 0.2 indicates that the scale size of the 
bottom layer is 0.2; the value is 0.9, indicating that the scale size of the 
highest layer is 0.9; from the formula, the first layer Smin = s1, Smax = s2; 
the second layer Smin = s2, Smax = s3, and so on. M represents the 
number of characteristic layers. The aspect ratio is expressed in AR, 
and the value is AR = {1, 2, 3, 1/2, 1/3}, then the width and height of 
each default box are calculated as follows:
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r

SS a h
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(6)

The biggest contribution of SSD algorithm is to propose a multi-
scale feature layer prediction method. The calculated default box can 
basically cover the objects of various shapes and sizes in the 
input image.

Pascal_voc datasets provide a set of standardized and excellent 
datasets for image recognition and classification. This article first uses 
Pascal_voc 2007 and 2012 datasets to get the pre-training model, and 
then the model file configuration is modified according to their own 
detection targets to train their own datasets. After the SSD detection, 
the position of human face and human body in the picture can 
be determined. Since VOC provides data annotation information, and 
it does not need to mark the local position manually, so it is faster and 
more convenient to detect. Then a bounding box is generated for 
clipping, as shown in Figures 6, 7.

FIGURE 4

Dense connection diagram of 3DCNN RESNET.

FIGURE 5

D3 DCNN RESNET structure.
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3 Model optimization

Model optimization is very important in the training process of 
neural networks. Making correct decisions in the process of 
configuring training, verification and testing data sets will help us to 
create an efficient neural network to a great extent. Selecting 
appropriate super parameters to train an optimal decision model is the 
most important link of model optimization.

3.1 Activation function and local 
normalization

The most important function of activation function is to make the 
neural network converge and make the operation in the neural 
network nonlinear so as to construct various valuable functions. 
Commonly used activation functions include tanh, ReLU, Leaky 
ReLU, etc. As shown in Figure  8, ReLU is recognized as the best 
activation function compared with other activation functions, which 
has the following advantages: (1) simple formula and fast calculation 
speed; (2) when the input is greater than 0, the gradient is constant to 
avoid gradient saturation; (3) fast convergence. Therefore, the ReLU 
activation function is adopted in this paper. The formula is as follows:

 ( ) ( )ReLU max 0,x x=  (7)

In order to solve the data distribution change caused by the input 
data of each layer after updating the parameters, this paper adds batch 
normalization (BN) (Ioffe and Szegedy, 2015) to the activation 
function of each layer, and the formula is as follows:

 [ ]
[ ]
[ ]Var Var

E x
y x

x x

γγ β
ε ε

 
 = ⋅ + −
 + +  

(8)

where, γ is β a learnable reconstruction parameter, so that the 
network can learn and recover the characteristic distribution to 
be learned by the original network. E[x] is the average of the mean 
values of all samples, and Var[x] is an unbiased estimation using the 
standard deviation of each sample. The calculation process is to 
calculate the average value and variance of all neurons of a 
characteristic map corresponding to all samples, and then normalize 
the neural units of the characteristic map.

3.2 Loss function and regularization

The optimization degree of the network model depends on the 
size of the loss function, which mainly represents the difference 
between the predicted value and the real value of the model for a 
specific sample. The loss function used in this paper is the categorical 
cross entropy loss:

 
( ) ( )1 ln 1 ln 1

x
C y a y a

n
= −  + − −  ∑

 
(9)

where y is the expected output, a is the actual output of neurons, 
n is the number of input samples in the same batch (batch size), and 
cross entropy C is the distance between the actual output probability 
and the expected output probability, that is, the smaller C is, the closer 
the two probability distributions are.

In order to prevent the network from over fitting, this paper adds 
a random dropout regularization term to the loss function of the 
output layer. When the neural network propagates forward, the 
activation value of a neuron stops working with a certain probability 
P. P is set to 0.5, which makes the model more generalized and less 
dependent on some local features. At the same time, it reduces the 
number of training nodes and improves the learning speed of 
the algorithm.

3.3 Optimization algorithm

The optimization algorithm is to optimize the parameters in the 
network and calculate the gradient of parameters at each layer by back 
propagation through the error obtained from the loss function. In this 
paper, rmsprop algorithm is used to update the parameters of the 
neural network. The iterative update formula is as follows:

FIGURE 6

An expression case for clipping. CK+ expression data set is from 
Lucey et al. (2010).

FIGURE 7

A behavior case for clipping. KTH behavior data set is from Laptev 
and Lindeberg (2005).
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From the above formula, s is a smoothing of the square of the 
gradient, and β is an index of gradient accumulation, with a typical 
value of 0.999. When updating the weight W and offset B, the gradient 
is divided by dwS ε+  first, which is equivalent to normalizing the 
gradient. If the gradient oscillates greatly in one direction, the step size 
should be reduced. If the oscillation is large, the s in this direction is 
also large. After division, the normalized gradient becomes smaller; if 
the gradient oscillation in a certain direction is very small, the 
normalized gradient becomes larger after division. By using the 
differential square weighted average for the gradient of weight W and 
offset B, it is helpful to eliminate the direction with large swing 
amplitude, which is used to correct the swing amplitude, so that the 
swing amplitude of each dimension is small. On the other hand, it also 
makes the network function converge faster. To prevent the 
denominator from being zero, a very small value ϵ is used for 
smoothing the general value is 10−8.

4 Experiment

In order to verify the effectiveness of D3DCNN_ResNet proposed 
in this paper, the algorithm is applied to expression recognition and 
behavior recognition. Experimental verification is carried out on CK+ 
and KTH datasets respectively. The experiment is based on Python 
keras. The operating system: 64-bit Windows 10 Home Chinese 
version. CPU: Intel Core i7-6700. Graphics card: Intel HD Graphics 
530. Memory: 8GB DDR2.

4.1 Data preprocessing

The data set used for expression recognition in this paper is CK+ 
database (Lucey et al., 2010), which is currently the most widely used 
database for expression recognition. It contains 593 expression video 
sequences from 123 people. The CK+ dataset is commonly used for 

facial expression recognition and contains video sequences where 
each sequence starts from a neutral expression and peaks at a specific 
emotion. The seven expressions are happiness, sadness, anger, fear, 
surprise, disgust, and contempt. The KTH dataset, primarily used for 
action recognition, consists of six types of human actions (walking, 
jogging, running, boxing, handwaving, and handclapping) performed 
under different conditions, providing a robust basis for behavior 
recognition experiments.

As shown in Figure 9, it has seven basic expressions: happiness, 
sadness, anger, fear, surprise, disgust and contempt.

In the experiment of behavior recognition, this paper uses KTH 
data set to verify. The KTH data set is composed of a total of 600 short 
videos, in which 25 people perform 6 actions under 4 scenarios: 
“Walking,” “Jogging,” “Running,” “Boxing,” “Handwaving” and 
“Handclapping,” as shown in Figure 10.

In the experiment, the input original frame size is uniformly 
specified as 112*112. In both expression recognition and behavior 
recognition, 10 consecutive frame images are selected as model input. 
SSD detector is used to detect the face and human body parts and cut 
them to 48*48 to get the crop. Due to the small number of CK+ and 
KTH data samples, the existing standard data sets are augmented 
(such as random clipping, contrast adjustment, noise, mirror image, 
etc.) to enrich the training data. These augmentation techniques were 
selected due to their effectiveness in enhancing model robustness by 
diversifying the training data. Specifically, random cropping helps the 
model focus on different parts of the image, while contrast adjustment 
and noise addition improve the model’s ability to generalize to varying 
lighting conditions and image quality, which are common challenges 
in real-world classroom environments. As shown in Figure 11, some 
data augmentation results are shown. Three pieces of CK+ are 
randomly clipped, one piece of mirror image, one piece of random 
noise, three pieces of KTH are randomly adjusted for contrast, one 
piece of mirror image, and one piece of random noise.

The experiment in this paper adopts the method of cross-
validation, where the experimental samples are randomly divided into 
five parts: four are used as the training set, and the other as the test set 
for final model evaluation. Through training, the accuracy of the four 
training sets is obtained, and the average value is taken as the accuracy 
index of the training set in this paper. The accuracy of the test set is 
used as the accuracy index of the verification set. When training the 
model, set the batch size to 2, iterate 50 times, and print the results 
once per iteration.

4.2 Experimental results of CK+ expression 
data set

In the expression recognition experiment, Figures 12, 13 show the 
iterative process of the network in the CK+ data set. According to the 
accuracy curve and loss function curve of the training set and the test 
set in the training process, the accuracy of the method in this paper is 
high with the best recognition rate of 97.94%, and the convergence 
speed of the network is fast. The observed improvements in 
recognition rates were statistically significant based on standard 
deviation measures across the five-fold cross-validation. Furthermore, 
the preprocessing steps, including data augmentation techniques such 
as random cropping and contrast adjustment, contributed to the 
robustness of the model, helping to mitigate overfitting and improve 

FIGURE 8

Comparison of three activation functions.
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generalization. Figure  14 shows the 50% recognition accuracy 
achieved by using the crop frame alone and by fusing the crop frame 
with the original frame. Figure 15 shows the corresponding average 
recognition accuracy. It can be seen from the two figures that the 
recognition accuracy of the fusion of the two features is high. The 
effect, improved by 1.23%, is not very significant. The reason is that 
expression recognition mainly depends on the detail changes of local 
areas such as eyes, eyebrows and mouth. Therefore, using crop frames 
alone can achieve better results.

In order to further evaluate the experimental results, it is 
compared with other frontier methods. Table 1 shows the comparison 
results of different algorithms on CK+. All comparison experiments 
were conducted under identical conditions, including the same data 
preprocessing, model initialization, and hyperparameter settings (e.g., 
learning rate, batch size). This ensured that the observed differences 
in performance were solely due to the models’ architectures and not 
other external factors. Fan and Tjahjadi (2015) fused Phog top and 
optical flow method to capture changes in facial shape. Yu et al. (2016) 
introduces a special Bayesian network to capture the time relationship 
between facial changes, and develops corresponding facial modeling 
and recognition algorithms to improve the training and recognition 
speed. Yang et  al. (2017) integrates two network models: 3D 
spatiotemporal network and static network. The former is used to 
extract spatiotemporal information, and the latter is used to extract 
the static features of key frames, and then make up for the lack of 

feature information through model fusion. Wang et  al. (2018) 
proposed an expression recognition method combining dynamic 
texture information and motion information. Liu et al. (2014) uses 
3DCNN to extract local features for fusion to recognize expression. 
Kacem et al. (2017), firstly, the face is mapped to the Riemannian 
manifold of positive semi definite matrix, and then the time parameter 
trajectory is established. Finally, the improved ppfSVM is used for 
classification, so as to improve the recognition accuracy. In this paper, 
3DCNN is used to extract video sequence features, add quick 
connection to increase network depth, add high-level and low-level 
features of dense connection, input the clip frame and original frame 
detected by SSD respectively for training, and fuse the extracted two 
dense features for classification and recognition. Our proposed 
D3DCNN_ResNet achieves a recognition rate of 97.94% on CK+ 
database, which is superior to other methods.

4.3 Experimental results of KTH dataset

In order to verify the generalization of the D3DCNN_ResNet, it 
is also applied to behavior recognition. Figures  16, 17 show the 
iterative process of the network in the KTH data set. Through the 
recognition accuracy curve and loss function curve, it can 
be concluded that the method has good recognition performance, 
and the best recognition rate can be 98.86%. Figure 18 shows the 50% 

FIGURE 9

Seven expressions in the CK+ dataset. CK+ expression data set is from Lucey et al. (2010).

FIGURE 10

Six behaviors in the KTH dataset. KTH behavior data set is from Laptev and Lindeberg (2005).
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recognition accuracy of extracting features by using the crop frame 
alone, and fusing the crop frame and the original frame. Figure 19 
shows the corresponding average recognition accuracy. It can be seen 
from the two figures that the recognition accuracy of the proposed 
method is increased by 2.52% with obvious effect.

Table  2 compares the D3DCNN_ResNet with the advanced 
methods that have been published on the KTH dataset. Jia et  al. 
(2018) uses linear sequence difference analysis method to reduce the 
dimension of video data for human behavior recognition. Wang et al. 
(2011) classifies human behavior by using dense trajectory features. 
Tong et al. (2013) uses the dense block of three-dimensional residuals 
as the basic module of the network, and uses the local feature 
aggregation adaptive method to learn the local dense features of 
human behavior. Wang et al. (2013) is based on the MBH descriptor 
characterization feature of differential optical flow, and obtains a 
good recognition rate. Zhang et al. (2019) improves 3DCNN network 
by dividing 3DCNN into two convolution kernels in spatial domain 
and time domain to extract spatiotemporal features in parallel to 

improve model efficiency. Compared with the above methods, this 
method has achieved better recognition results, and the recognition 
rate has reached 98.86%, which is 3.26, 4.66, 5.36, and 3.56% higher 
than Jia et al. (2018), Wang et al. (2011), Tong et al., 2013, and Wang 
et  al. (2013), respectively. Compared with Zhang et  al. (2019), 
3DCNN is also split. In this paper, two convolution kernels in spatial 
domain and time domain are connected in a serial way. The 
verification shows that it is better than the parallel way. The 
recognition rate of single crop frame is better than 0.14%, and the 
fusion recognition rate of crop frame and original frame is better 
than 2.66%.

4.4 Performance evaluation of improved 
D3DCNN_ResNet

After the above experimental verification, the recognition rate 
is higher than that of extracting a single local feature of the crop 
frame by extracting the local feature of the crop frame in parallel 
and fusing the global feature of the original frame. In order to 
further verify the effectiveness of the proposed D3DCNN_ResNet, 
the D3DCNN network without residual connection and dense 
connection, the 3DCNN network with residual connection but 
without dense connection, and 3DCNN network without residual 
connection but with dense connection, are compared with 
D3DCNN_ResNet with residual connection and dense connection. 
As shown in Table  3, on CK+ dataset, the recognition rate of 
improved D3DCNN_ResNet is higher than that of 3DCNN and 
3DCNN_ResNET by 10.01 and 6.66% respectively. On the KTH 
data set, the recognition rate is increased by 8.99 and 6.3% 
respectively. In conclusion, the D3DCNN_ResNet can effectively 
extract the feature information of video frames and improve the 
recognition accuracy.

FIGURE 11

Data augmentation diagram. CK+ expression data set is from Lucey et al. (2010). KTH behavior data set is from Laptev and Lindeberg (2005).

FIGURE 12

Accuracy of network in training set and test set.
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FIGURE 16

Accuracy of network in training set and test set.

FIGURE 17

Loss function of network on training set and test set.

5 Conclusion

This paper presents a new parallel D3DCNN_ResNet model 
structure. It divides the 3D convolutional neural network into two 
convolutions in spatial domain and time domain through the analysis of 
video sequence, extracts the spatiotemporal features in the video 
sequence in a serial manner, and adds a shortcut of residual network to 
increase the depth of the network. It solves the problem of excessive 
parameters and high computational costs in traditional 3D convolutional 
neural networks as the network depth increases. Moreover, dense 
connections are added in the residual block to fuse high-level and 
low-level features, maximizing the flow of feature information. The 

FIGURE 13

Loss function of network on training set and test set.

FIGURE 14

Compare the five-fold recognition rate of crop frame with crop 
frame + original frame.

FIGURE 15

The average recognition rate (%) of clip frames and clip frames + 
original frames.

TABLE 1 Comparison results of different algorithms on CK+.

Method Feature Recognition rate

Fan and Tjahjadi 

(2015)

Phog-top and optical 

flow

90.9

Yu et al. (2016) LABN 88.1

Yang et al. (2017) 3D model + static 

model

97.6

Wang et al. (2018) STWLD and BOHF 91.6

Liu et al. (2014) 3DCNN 85.9

Kacem et al. (2017) Space–time geometry 96.8

This article D3DCNN_ResNet 97.9

FIGURE 18

Compare the five-fold recognition rate of clip frames with clip 
frames + original frames.
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combination of residual blocks and dense connections not only reduces 
feature redundancy and improves the gradient correlation of the network, 
but also reduces the amount of network parameters, making the model 
have a certain anti over fitting effect. Through data preprocessing and 
data enhancement, the robustness and generalization of the model are 
enhanced, and it is not easy to be disturbed by external environmental 
factors. The clip frame and the original frame of the recognition region 
obtained from SSD target detection are trained respectively. Then multi-
level features are extracted in parallel, and the classification is fused. 
Compared with a single network model, the parallel network can extract 
the local or even the overall spatial feature information of the image 
sequence more completely and effectively so as to improve the recognition 
rate. In the conventional teaching classroom, the students’ feedback on 
facial expression is an important way for teachers to know whether the 
student is suitable for his own teaching. However, the teacher will not 
always pay attention to the student’s expression and analyze of it, nor can 
he fully take into account the expression changes of all the students in the 
class. In this case, it is very meaningful to use computer technology as an 
assistant teacher to identify and record the expressions of students, 
analyze the quality of the class, and adjust the teaching progress to 

improve the teaching method. Through the application of the D3DCNN_
ResNet, it is of great significance to effectively improve the recognition 
rate of classroom expressions. At the same time, the traditional English 
classroom oral speech training purely relies on speech recognition, which 
has a flaw that it is impossible to maintain a high recognition accuracy in 
a noisy environment. The visual recognition method is not affected by the 
ambient sound, and the accurate path of speech recognition can 
be improved through multimodal recognition. The new model structure 
of the D3DCNN_ResNet mentioned in this paper can also assist in 
speech interaction and image recognition, which is widely used in the 
field of English spoken speech teaching. However, given the complexity 
of the language environment, it will take time to truly put into practice, 
and it is still necessary to further strengthen the integration of research in 
areas such as big data visual analysis and artificial intelligence technology.
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TABLE 3 Accuracy of different algorithms on CK+ and KTH.

Method Accuracy (%)

CK+ KTH

3DCNN 87.93 89.87

3DCNN_ResNet 91.28 92.56

D3DCNN_ResNet 97.94 98.86

FIGURE 19

The average recognition rate (%) of clip frames and clip frames + 
original frames.

TABLE 2 Comparison results of different algorithms on KTH.

Method Feature Recognition rate

Jia et al. (2018) LSDA 95.6

Wang et al. (2011) HOG-HOF-MBH 94.2

Tong et al. (2013) 3D-DenseNet 93.5

Wang et al. (2013) Interest point detection 

based on flow vorticity

95.3

Zhang et al. (2019) 3DCNN 96.2

This article D3DCNN ResNet 98.9
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Swin Transformer-based 
automatic delineation of the 
hippocampus by MRI in 
hippocampus-sparing 
whole-brain radiotherapy
Liang Li 1, Zhennan Lu 2, Aijun Jiang 1, Guanchen Sha 3, 
Zhaoyang Luo 4, Xin Xie 1* and Xin Ding 1*
1 Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China, 
2 Department of Equipment, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu 
Province Hospital of Chinese Medicine), Nanjing, China, 3 Department of Radiation Oncology, Xuzhou 
Central Hospital, Xuzhou, China, 4 HaiChuang Future Medical Technology Co., Ltd., Zhejiang, China

Objective: This study aims to develop and validate SwinHS, a deep learning-based 
automatic segmentation model designed for precise hippocampus delineation 
in patients receiving hippocampus-protected whole-brain radiotherapy. By 
streamlining this process, we seek to significantly improve workflow efficiency 
for clinicians.

Methods: A total of 100 three-dimensional T1-weighted MR images were 
collected, with 70 patients allocated for training and 30 for testing. Manual 
delineation of the hippocampus was performed according to RTOG0933 
guidelines. The SwinHS model, which incorporates a 3D ELSA Transformer 
module and an sSE CNN decoder, was trained and tested on these datasets. 
To prove the effectiveness of SwinHS, this study compared the segmentation 
performance of SwinHS with that of V-Net, U-Net, ResNet and VIT. Evaluation 
metrics included the Dice similarity coefficient (DSC), Jaccard similarity 
coefficient (JSC), and Hausdorff distance (HD). Dosimetric evaluation compared 
radiotherapy plans generated using automatic segmentation (plan AD) versus 
manual hippocampus segmentation (plan MD).

Results: SwinHS outperformed four advanced deep learning-based models, 
achieving an average DSC of 0.894, a JSC of 0.817, and an HD of 3.430  mm. 
Dosimetric evaluation revealed that both plan (AD) and plan (MD) met treatment 
plan constraints for the target volume (PTV). However, the hippocampal Dmax in 
plan (AD) was significantly greater than that in plan (MD), approaching the 17  Gy 
constraint limit. Nonetheless, there were no significant differences in D100% or 
maximum doses to other critical structures between the two plans.

Conclusion: Compared with manual delineation, SwinHS demonstrated superior 
segmentation performance and a significantly shorter delineation time. While 
plan (AD) met clinical requirements, caution should be  exercised regarding 
hippocampal Dmax. SwinHS offers a promising tool to enhance workflow 
efficiency and facilitate hippocampal protection in radiotherapy planning for 
patients with brain metastases.

KEYWORDS

hippocampus, whole brain radiotherapy, automatic segmentation, Swin Transformer, 
MRI
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1 Introduction

Whole-brain radiotherapy (WBRT) is an effective treatment for 
patients with brain metastases (Berghoff and Preusser, 2018). 
Prophylactic cranial irradiation (PCI) can significantly reduce the 
probability of brain metastasis and improve the overall survival rate of 
patients (Gondi et al., 2010). However, WBRT can cause hippocampal 
damage and cognitive disorders, with an incidence ranging from 50 to 
90%. This often manifests as short-term memory impairment, 
decreased attention, and problem-solving abilities, seriously affecting 
the patient’s quality of life (Fike et al., 2009; Peters et al., 2016). With 
advancements in radiotherapy and growing emphasis on post-
radiotherapy quality of life, hippocampal avoidance whole-brain 
radiotherapy (HA-WBRT) has been shown to significantly improve 
cognitive function in patients post-treatment. The Radiation Therapy 
Oncology Group (RTOG) 0933 phase II trial demonstrated that 
protecting the hippocampus could reduce the incidence of cognitive 
dysfunction to 7% (Gondi et  al., 2014). Subsequently, the NRG 
Oncology CC001 phase III trial confirmed these findings. Notably, the 
results showed that WBRT combined with memantine for 
hippocampal protection resulted in superior cognitive preservation in 
adult patients with brain metastases, compared to WBRT with 
memantine but without hippocampal protection. Importantly, there 
was no significant difference in intracranial progression-free survival 
(PFS) or overall survival (OS) (Brown et  al., 2020). Therefore, 
protecting the hippocampus during midbrain radiotherapy for brain 
tumor patients can mitigate memory and cognitive impairment, 
consequently enhancing the overall quality of life.

According to RTOG 0933, outlining the hippocampus on axial 
T1-weighted MR images is essential (Gondi et al., 2014). However, the 
hippocampus is a complex structure, and accurate delineation is 
crucial for effective radiation treatment planning and minimizing 
radiation-related side effects (Mukesh et al., 2012; Walker et al., 2014). 
Additionally, the hippocampus is situated between the thalamus and 
the medial temporal lobe of the brain. In magnetic resonance imaging, 
the gray matter intensity of the hippocampus is very similar to that of 
surrounding structures like the amygdala, caudate nucleus, and 
thalamus, with no distinct boundary, making delineation difficult. 
Currently, the method of hippocampal delineation is mainly based on 
the anatomical expertise of the doctor, who refers to the patient’s MR 
images to outline the CT images. The accuracy of this approach 
depends on the registration precision between MR and CT images, as 
well as the physician’s proficiency and anatomical knowledge. 
Significant variability exists between the delineation results of different 
doctors. Therefore, improving the accuracy, efficiency, and 
standardization of hippocampal delineation is a key step in reducing 
the risk of radiation-induced brain injury. Automatic segmentation of 
the hippocampus from MR images remains a challenging task.

Deep learning approaches based on convolutional neural 
networks (CNNs) have been widely used due to their efficiency and 
accuracy (Erickson, 2021). In 2015, U-Net was first proposed, 
constructing a U-shaped deep network using encoders and symmetric 
decoders, achieving commendable performance in segmenting image 
edges (Ronneberger et  al., 2015). Specifically, U-Net employs an 
encoder to extract low-level details and high-level semantic features 
from the image and utilizes a decoder to map the features back to the 
original size, thereby generating the segmented image. By establishing 
connections between the encoder and decoder, the features from 

corresponding layers in both components can be  merged, which 
enhances the preservation of detailed information in the input image 
and improves segmentation outcomes. Given that CT and MR images 
are typically three-dimensional, a 3D U-Net (Çiçek et al., 2016) was 
designed. Building upon this framework, V-Net (Milletarì et al., 2016) 
integrates encoder information filtered by the decoder and adds a 
ResNet (He et  al., 2016), which prevents gradient vanishing, 
accelerates network convergence, and achieves superior performance. 
Subsequently, several U-Net variants have been developed.

The CNN method typically utilizes deep convolution layers with 
an encoder-decoder architecture to capture global information. 
However, this process often relies on skip connections to compensate 
for the loss of shallow feature information. The convolution operation 
is inherently local due to the receptive field size, which limits its 
effectiveness, particularly in segmenting small objects (Fei et al., 2023).

In recent years, the Transformer has been widely adopted in 
medical image segmentation as an alternative architecture featuring a 
global self-attention mechanism. Models like TransFuse (Zhang 
Y. et al., 2021), MFSuse (Basak et al., 2022), TFormer (Zhang et al., 
2023), and TransCeption (Azad et al., 2023) effectively capture edge 
information, enhance segmentation accuracy, and optimize network 
performance. However, these advancements come with increased 
parameters, computational complexity, and longer inference times. 
Despite their enhanced localization capabilities, these models still 
struggle to capture low-level details.

As a transformer-based model, the Vision Transformer (VIT) 
(Dosovitskiy et al., 2020) surpasses CNNs due to its global and long-
range modeling capabilities. However, VIT’s computational efficiency 
is relatively low because it depends on a self-attention mechanism for 
feature extraction. Swin Transformer (Liu et al., 2021), a new variant 
of VIT, introduces a sliding window approach to constrain self-
attention. This model integrates locality into multihead self-attention 
(MHSA) through local self-attention (LSA), embedding local details 
in the earlier layers. However, LSA’s performance is comparable to that 
of convolution and is inferior to dynamic filters. To improve this, an 
enhanced LSA module (ELSA) (Zhou et al., 2021) has been introduced 
to better capture local information. SwinBTS (Jiang et al., 2022), the 
first model to incorporate the ELSA Transformer module in brain 
tumor segmentation tasks, brings forward innovative approaches.

Building upon the success of the Swin Transformer and the 
detailed feature extraction capabilities of enhanced local self-attention 
(ELSA), we propose SwinHS, a novel neural network designed for the 
automatic segmentation of hippocampal MR images. SwinHS improves 
local detail extraction by incorporating a 3D ELSA Transformer 
module. Additionally, we introduce the spatial squeeze excitation (sSE) 
block, which allows feature maps to be more informative both spatially 
and across channels. The primary goal of this study was to develop an 
AI tool for automated hippocampal delineation, with a focus on 
validating the segmentation’s accuracy and clinical applicability, 
ultimately aiming to enhance workflow efficiency for clinicians.

2 Materials and methods

2.1 Data collection

The Ethics Committee (No. XYFY2023-KL155-01) approved the 
retrospective collection of 100 three-dimensional T1-weighted 
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(3D-T1) MR images from patients who underwent hippocampus-
protected whole-brain radiotherapy at the Department of Oncology 
and Radiology of Xuzhou Medical University between 2018 and 2023. 
The patient cohort included 61 males and 39 females, aged between 
30 and 83 years, with a median age of 60 years. Any images depicting 
hippocampal tumor invasion were excluded prior to MRI. The images 
were obtained using a GE Discovery MR750 3.0 T (GE Healthcare, 
Milwaukee, WI, United States) magnetic resonance imaging system. 
The scanning protocol employed a slice thickness of 0.8 mm, a spatial 
resolution of (0.8 0.496 0.496× × ) mm3. The sequence used was 3D 
BRAVO, with repetition time (TR) = 7 ms, echo time (TE) = 3 ms, flip 
angle (FA) = 12°, and the resulting images were exported and saved in 
DICOM files. For the study, 70 patients were allocated to the training 
set and 30 to the test set.

2.2 Manual delineation

In accordance with the hippocampus atlas contouring guidelines 
proposed by RTOG0933 (Gondi et al., 2014), a tumor radiotherapist 
who was thoroughly trained and experienced in hippocampal 
delineation manually outlined the hippocampus on 100 axial MR 
images using the Varian Eclipse 13.6 planning system (Varian Medical 
Systems, Palo Alto, CA, United  States). To ensure accuracy, the 
delineation results were subsequently reviewed and, where necessary, 
adjusted by another expert in tumor radiotherapy. The two radiologists 
involved in this study have 13 and 14 years of experience respectively, 
ensuring a high level of expertise in interpreting the imaging data.

2.3 Model training and testing

The overall architecture is illustrated in Figure  1. The input 
consists of a multimodal MR medical image H W D CX R × × ×∈ , where 
the image size is H W D× ×  and C is the number of channels. These 
images are divided into non-overlapping patches, which are then 
passed to the transformer-encoder. The encoded features are 
subsequently processed through the ELSA module and the Swin 
Transformer module. Next, the feature representations are transmitted 
to the sSE CNN-decoder via skip connections at multiple resolutions, 
generating the final segmentation output. Each component of the 
proposed architecture is detailed in the following sections.

2.3.1 Transformer encoder
Initially, we employ a 3D patch partition layer to segment medical 

images into nonoverlapping 3D patches with a volume of 
2 2 2
H W D
× ×

. Subsequently, these patches are projected into an embedding space 
with a dimensionality of C, enabling us to generate a feature map 

of size 
2 2 2
H W D C× × × .

2.3.2 ELSA Transformer module
The ELSA Transformer module is employed to enhance local 

detailed feature extraction. ELSA introduces a novel local self-
attention mechanism that outperforms both LSA and dynamic filters 
in the Swin Transformer. A key element of ELSA is Hadamard 
attention, which applies the Hadamard product to improve attention 

across neighboring elements while maintaining high-order mapping. 
In deep learning, it is commonly assumed that higher-order mappings 
offer stronger fitting capabilities. The low accuracy of some attention 
mechanisms may stem from their lower mapping order (Gondi et al., 
2010), as the attention mechanism typically performs second-order 
mapping of the input, as described in Supplementary Formula 1.

As illustrated in Figure  2, the ELSA Transformer module is 
derived by incorporating an identical MLP module subsequent to the 
attention structure in conjunction with the Transformer architecture, 
as depicted in Supplementary Formula 3.

2.3.3 Swin Transformer module
The Swin Transformer is a hierarchical VIT that performs self-

attention computations through an efficient shifted window 
partitioning scheme. This approach significantly reduces the number 
of parameters while enabling multiscale feature extraction with 
improved feature learnability. As shown in Figure  1, the Swin 
Transformer block in the architecture consists of a normalization layer 
(LN), window-based multihead self-attention module (MHSA), and 
multilayer perceptron (MLP).

2.3.4 SSE CNN decoder
The decoder has the same depth as the encoder and is used to 

decode the feature representation of the extracted encoder. A skip 
connection is used between the encoder and decoder at each 
resolution. The output characteristics are reshaped to the size 

2 2 2i i i
H W D
× ×  

at each stage i (i ∈ 0, 1, 2, 3, 4) of the encoder and the
 

bottom, and then the residual block composed of two 3 × 3 × 3 
normalized convolutional layers is input. Then, the sSE block is 
applied to the extracted features so that the feature map can provide 
more information both spatially and channelwise for image 
segmentation (Hu et al., 2018).

A linear transformation of the feature map is performed to 

enhance the dimension (
2 2 2
H W D C× × × ), which subsequently allows 

obtaining an output resolution similar to that of the image input, i.e., 
H W D× ×  resolution output. The final segmentation output is 
calculated by using a 1 × 1 × 1 convolutional layer and a sigmoid 
activation function.

For the model, the Adam optimizer is used for training, the initial 
learning rate is 1 × 10−4, and the weight is attenuated to 1 × 10−5. The 
default batch size is 50, and the default number of training iterations 
is 150. All experiments were performed using an Nvidia 
RTX2080Ti GPU.

2.4 Model evaluation

We use the Dice similarity coefficient (DSC), Jaccard similarity 
coefficient (JSC) and Hausdorff distance (HD) to evaluate the 
performance of our automatic delineation tool in the test set. The 
formulas are provided in the Supplementary material.

The DSC is the most commonly used metric for measuring the 
overlap between two contours, and its value is between 0 and 1. The 
larger the DSC value is, the greater the similarity between the two 
contour lines (Taha and Hanbury, 2015). Similarly, JSC compares the 
similarities and differences between finite sets (Eelbode et al., 2020). 
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The larger the JSC is, the greater the sample similarity. HD describes 
the boundary similarity of 2 point sets by measuring the maximum 
distance of the closest pair of points. The smaller the HD is, the greater 
the coincidence degree between A and B, and the better the 
segmentation effect (Taha and Hanbury, 2015). In the special 

dosimetric evaluation reported by Gondi et  al. (2014), deviations 
greater than 7 mm are considered unacceptable.

2.5 Comparison of model performance

To demonstrate the effectiveness of our proposed SwinHS, 
we compared its segmentation performance with that of four advanced 
deep learning-based methods: V-Net (Milletari et  al., 2016), U-Net 
(Ronneberger et al., 2015), ResNet (He et al., 2016), and VIT (Chen et al., 
2022). Then, each method was trained and tested on the same dataset 
using their respective frameworks. We evaluated the performance of 
SwinHS and the four other methods using DSC, JSC, and HD.

2.6 Radiotherapy planning and dosimetric 
evaluation

To evaluate the feasibility of applying hippocampal delineation via 
the SwinHS model in clinical practice, we conducted a study comparing 
simulated whole-brain radiotherapy plans for 10 randomly selected 
patients. We  compared the differences in dosimetric distribution 
between two sets of radiotherapy plans: one using the manually 
delineated hippocampi and the other using the automatically delineated 
hippocampi by the SwinHS model. A large aperture CT simulator 
(Philips, Cleveland, OH, United  States) was used to collect CT 
localization images of the patients’ head area, with a slice thickness of 
1.5 mm. According to the RTOG 0933 report, the hippocampus is a 
low-signal gray matter structure that begins medially from the inferior 

FIGURE 1

Overview of the model training process. The Transformer encoder includes three levels: each level includes two ELSA Transformer modules, and the 
next level includes two Swin Transformer modules. In the first level, the linear embedding layer is used to create a three-dimensional feature map. In 
the first, second and third stages, the ELSA module is used to extract very detailed feature information. Stage 4 uses the Swin Transformer to extract 
multiresolution features and the shift window mechanism to calculate self-attention. In these four stages, a slice merging layer is used to reduce the 
resolution of the feature by 2 times. On the right, the encoder is used to decode the extracted feature representations of the encoder through skip 
connections.

FIGURE 2

Structure of the ELSA Transformer block.
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horn of the lateral ventricle’s temporal horn and is bounded externally 
by the cerebrospinal fluid, typically forming a crescent shape. On the 
MR image, the contoured hippocampal tissue is expanded by 5 mm to 
create the hippocampus planning risk volume (HC-PRV). We registered 
the patient positioning CT image with the 3DT1 MR image on the 
MIM workstation (MIM Software Inc., Beachwood, OH). The 
delineated hippocampus and HC-PRV on the MR image were then 
mapped to the positioning CT, and the CT image was subsequently 
imported back to the treatment planning system (TPS) for the creation 
of the simulated radiotherapy plan. The target area was defined as 
follows: the patient’s whole brain tissue was the CTV, and the CTV was 
expanded by 3 mm and subtracted from the hippocampus to generate 
the planned target volume (PTV). The prescribed radiotherapy dose 
was 30 Gy, administered in 10 fractions. The goal of all plans was to 
cover at least 95% of the PTV with a 100% prescription dose.

We created two radiotherapy plans, plan (AD) and plan (MD), using 
the automatically contoured hippocampus (AD) and manually contoured 
hippocampus (MD) respectively, where the optimization parameters are 
identical. The radiotherapy plan was designed using the Varian 
VitalBeam (Varian Medical Systems, Palo Alto, CA, United States) 6 MV 
X-ray in FFF mode, utilizing the dynamic intensity-modulated 
radiotherapy (sIMRT) technique. A dose rate of 1,200 MU/min was 
applied across 9 noncoplanar irradiation fields. Dose calculations were 
performed with the Varian Eclipse 13.6 planning system, employing an 
anisotropic analytical algorithm with a spatial resolution of 2.5 mm.

Given that we used the manually delineated hippocampus as the 
reference standard for evaluating the accuracy of the automatically 
delineated hippocampus, our plan (AD) and plan (MD) evaluations 
were based on the manually delineated hippocampus to accurately 
reflect the hippocampal dose during radiotherapy. We compared the 
dose distribution differences between the radiotherapy plan (AD) and 
the radiotherapy plan (MD) using a dose-volume histogram (DVH) 
and assessed whether the relevant indicators in the radiotherapy plans 
met the dose limits outlined in the RTOG-0933 protocol (Gondi et al., 
2015) and the NRG Oncology CC001 phase III trial (Brown et al., 
2020). When administering whole-brain radiotherapy at 30 Gy/10 F, 
the indices included the following: (1) PTV: D2% ≤37.5 Gy (D2%: the 
dose received by 2% of the PTV), D98% ≥25 Gy (D98%: the dose received 
by 98% of the PTV), V30 Gy ≥90% (V30 Gy: the percentage of the PTV 
volume receiving 30 Gy). (2) Hippocampus: Dmax ≤17 Gy (maximum 
dose), D100% ≤10 Gy (D100%: the minimum dose received by the entire 
hippocampus). All treatment plans were designed by the same medical 
physicist with 5 years of experience in radiotherapy planning, and 
subsequently reviewed by other experts to ensure quality and 
adherence to clinical standards.

2.7 Statistical analysis

Paired t tests were conducted to compare the hippocampal 
volume, DSC, JSC and HD between the manual delineation group 
(MD) and the automatic delineation group (AD), as well as assess 
the differences in dosimetric parameters between the MD and AD 
plans. All the statistical analyses were performed using SPSS v22.0 
software. A significance level of p < 0.05 was considered considered 
statistically significant.

3 Results

3.1 Patient characteristics

The characteristics of the patients in the training dataset and 
the test dataset are presented in Table  1. In the test dataset, a 
significant difference was observed between the hippocampus 
volumes in the manual delineation (MD) and automatic 
delineation (AD) groups, with a p-value of 0.019. Specifically, the 
hippocampus volume in the AD group was smaller than that in 
the MD group.

3.2 Performance comparison of the 
SwinHS models

We compared the segmentation results of five different models in 
the test dataset, as presented in Table 2, using DSC, JSC, and HD as 
evaluation metrics. The table demonstrates that our proposed model 
outperforms the other four models across all indicators. Specifically, 
the average DSC is 0.894 ± 0.017, the average JSC is 0.817 ± 0.020, and 
the average HD is 3.430 ± 0.245 mm.

The segmentation results of the hippocampus at different levels 
between the proposed model and other models are visually 
compared, in Figure 3. The first column displays the actual manual 
segmentation of the hippocampus. From the second column 
onwards, it becomes evident that the proposed method shows 
greater consistency with the manual delineation of the 
hippocampus contour. In the third column, the contour delineated 
by VIT appears smooth but shows slight deviations from the actual 
delineation. The fourth and fifth columns reveal rough 
hippocampal contours delineated by 3D ResNet and 3D U-Net, 
respectively. Finally, in the sixth column, the hippocampal contour 
delineated by V-Net is depicted inaccurately and incompletely.

TABLE 1 Basic characteristics of the 100 patients.

Total subjects 
(n =  100)

Training cohort 
(n =  70)

Testing cohort (n =  30)

MD AD

Number of male patients (%) 61 (61) 43 (61.4) 18 (60)

Number of female patients (%) 39 (39) 27 (38.6) 12 (40)

Median age in years (range) 60 (30–83) 62.5 (33–81) 57.5 (30–83)

Volume of hippocampus (±SD cm3) 4.02 ± 0.83 3.89 ± 0.85 4.32 ± 0.70 4.15 ± 0.67

p-value - - 0.019

MD, manual hippocampus segmentation; AD, automatic segmentation; SD, standard deviation.
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FIGURE 3

Representative cases of the proposed model and other model methods. The first column shows the contour of the hippocampus in the real MR image. 
Columns 2 to 6 show the results of the proposed model, VIT, 3D ResNet, 3D U-Net, and V-Net, respectively.

3.3 Dosimetric evaluation of the SwinHS 
model

According to the requirements of the RTOG0933 phase II trial 
(Gondi et al., 2015) and the NRG Oncology CC001 phase III trial 
(Brown et al., 2020), specific criteria must be met for radiotherapy 
planning. When administering whole-brain radiotherapy at 30 Gy/10 
F, it is essential to ensure that the dose received by 2% of the planning 
target volume (PTV D2%) is ≤40 Gy and that the dose received by 98% 
of the PTV (D98%) is ≥25 Gy. Additionally, it is considered unacceptable 
if the volume of the PTV receiving 30 Gy (V30  Gy) exceeds 90%. 
Furthermore, for the hippocampus, it is imperative that the minimum 
dose (D100%) does not exceed 10 Gy, and the maximum dose (Dmax) 
remains under 17 Gy. In this study, radiotherapy plans were generated 
using both AD and MD hippocampus, denoted as plan (AD) and plan 
(MD), respectively. We utilized the MD hippocampus as the reference 
standard to assess the accuracy of the AD hippocampus. Subsequently, 
we compared the dose indicators and distribution differences between 
plan (AD) and plan (MD) based on MD hippocampus delineation.

The representative patient dose distributions comparing 
automatic and manual hippocampus segmentation plans are shown 
in Figure  4. Plan (AD) was generated using automatically 
delineated hippocampus, while plan (MD) was based on 
hippocampus manually contoured by experienced clinicians. The 
contours in both plan (AD) and plan (MD) are the same; however, 
the manually contoured hippocampus serves as the reference 
standard for evaluating both plans. The volume of the automatically 
segmented hippocampus was smaller than that of the manually 
delineated hippocampus, resulting in the 17 Gy dose color brush 
being closer to the actual hippocampus in the automatic 
segmentation plan. As shown in Table 3, the dose indicators for 
PTV in both plan (AD) and plan (MD) met the treatment plan 
constraints recommended by the RTOG 0933 trial, with no 
significant differences observed between the two groups of plans. 
Regarding hippocampus dosimetry, although both plan (AD) and 
plan (MD) met acceptable variations, the hippocampus Dmax in 
plan (AD) was significantly greater than that in plan (MD), with a 
notable difference (p < 0.001) at 1697.03 ± 11.02 cGy, approaching 
the limit of the 17 Gy constraint. Moreover, there was no significant 
difference in D100% between the two groups (p = 0.236).

3.4 Delineation time analysis

The median time required for automatic hippocampal 
delineation in the test group of 30 patients was 13.3 s (range: 11.7–
14.9 s). This result was significantly shorter than the time required 
for manual delineation (MD) (p < 0.001), which was 786 s (range: 
635–905 s).

TABLE 2 Results of different models.

DSC JSC HD (mm) p-value

SwinHS 0.894 ± 0.017 0.817 ± 0.020 3.430 ± 0.245

VIT 0.891 ± 0.016 0.803 ± 0.016 3.959 ± 0.328 0.002

3D ResNet 0.871 ± 0.024 0.783 ± 0.022 4.730 ± 0.262 0.016

3D U-Net 0.845 ± 0.025 0.759 ± 0.019 6.895 ± 0.268 2.5 × 10−4

V-Net 0.778 ± 0.020 0.674 ± 0.023 7.785 ± 0.277 0.008

DSC, Dice similarity coefficient, JSC, Jaccard similarity coefficient; HD, Hausdorff distance.

130

https://doi.org/10.3389/fnins.2024.1441791
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2024.1441791

Frontiers in Neuroscience 07 frontiersin.org

4 Discussion

In this study, we  employed a Swin Transformer-based neural 
network, SwinHS, to automatically segment hippocampal MR images. 
This network incorporated a 3D ELSA Transformer module to enhance 
local detailed feature extraction and a spatial squeeze excitation 
module (sSE) to integrate spatial and channel information. Four deep 
learning models, namely, V-Net, U-Net, ResNet, VIT, and the SwinHS 

network developed in this study, were trained and tested on the same 
dataset. Performance was evaluated using DSC, JSC, and HD metrics, 
and the dosimetric parameters of plan (AD) and plan (MD) were 
compared. The results demonstrated that the proposed model 
outperformed the other four models across all indicators, achieving a 
contouring effect more consistent with manual hippocampal 
delineation. The PTV of both the AD and MD plans met the constraints 
outlined in the RTOG 0933 treatment plan. However, the Dmax of the 

FIGURE 4

Dose distribution of representative patient plans (MD) and plans (AD). (A) Plan (AD) automatic delineation of the hippocampus-generated radiotherapy 
plan. (B) Plan (MD) manually outlines the radiotherapy plan generated by the hippocampus. The horse body was manually sketched (yellow line), and 
the hippocampus was automatically depicted (blue). Both plans were evaluated using manual delineation of the hippocampus. In the Plan (AD), a small 
portion of the manually delineated hippocampus was closer to a dose of 1700  cGy.
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TABLE 3 Dosimetric comparison between plan (AD) and plan (MD).

Plan (AD) (±SD) Plan (MD) (±SD) p-value

PTV D2% (cGy) 3353.25 ± 29.31 3352.71 ± 28.66 0.111

D98% (cGy) 2795.22 ± 21.75 2793.43 ± 22.32 0.172

V30Gy (%) 94.30 ± 0.73 94.30 ± 0.74 0.545

Hippocampus Dmax (cGy) 1697.03 ± 11.02 1474.25 ± 35.51 0.000

D100% (cGy) 997.22 ± 5.88 994.54 ± 7.13 0.236

Dmax, the maximum dose; V30 Gy, the volume of PTV getting 30 Gy; D98%, the dose received at 98% of PTV; D2%, the dose received at 2% of PTV; D100%, the dose to 100% of hippocampus.

hippocampus in the AD plans was significantly greater than that in the 
MD plans (p < 0.001), while the D100% remained below 10 Gy, with no 
significant difference observed. These findings suggest that the 
automatic hippocampal segmentation method proposed in this study 
effectively extracts global features, accurately outlines hippocampal 
contours, and enhances hippocampal segmentation accuracy.

The RTOG-0933 protocol requires that the hippocampus 
be delineated on the patient’s high-resolution 3DT1-weighted MR 
image before HA-WBRT and then registered with the positioning CT 
for planning design (Gondi et  al., 2015). In practice, manual 
segmentation by clinicians is time-consuming and labor-intensive, 
often leading to large segmentation errors. According to the RTOG-
0933 test, nearly 7% of the hippocampus delineations by a doctor were 
deemed unqualified (Gondi et  al., 2015). Additionally, manual 
segmentation of organs is highly subjective, with significant variation 
among doctors (Zhang J. et al., 2021). To address these challenges, 
scholars have conducted extensive research on accurate automatic 
hippocampal segmentation. Feng et  al. (2020) used NeuroQuant 
software approved by the U.S. Food and Drug Administration to 
perform hippocampal segmentation on T1 MR in patients undergoing 
whole-brain radiotherapy. Among 100 patients, 99 underwent 
acceptable automatic hippocampal segmentation without manual 
intervention, with all plans meeting the PTV dose-volume target set 
by the NRG CC001 protocol. However, the segmentation technology 
of NeuroQuant is based on atlas-based registration (Fischl et  al., 
2002). Although this method provides accurate results and reduces 
manual effort, it requires significant computation and depends heavily 
on the choice of atlas, resulting in unstable segmentation performance. 
Wang et  al. (2022) found that the deep learning (DL) model 
demonstrated superior segmentation performance, especially for 
smaller OARs, by comparing the differences between the multiatlas 
segmentation method and the deep learning method in the automatic 
segmentation (OARs) scheme of nasopharyngeal carcinoma risk 
organs. In recent years, deep learning methods based on convolutional 
neural network CNNs have been widely used in the field of medical 
images (Li and Shen, 2022). Among them, 3D U-Net-based models 
are widely used in medical image segmentation tasks (Li and Shen, 
2022) (deep learning-based methods have been proposed, in which 
3D U-Net was employed because it is widely used in medical image 
segmentation tasks). In addition, scholars have carried out in-depth 
research on automatic segmentation of the hippocampus. Lin et al. 
(2023) developed an improved 3D U-Net segmentation model. For 
CT images of 10 patients in the independent test set, the overall 
average DSC and 95% HD of the hippocampal contour were greater 
than 0.8 mm and less than 7 mm, respectively. All the plans met the 
RTOG 0933 standard. Porter et al. (2020) proposed the attention-
gated 3D ResNet (proposed Attention-Gated 3D ResNet) network 

model to study the segmentation of the hippocampus on patients’ 
noncontrast CT, with Dice coefficients of 0.738/0.737 (left/right). 
However, these studies require strict registration of MR and CT 
images. The automatic segmentation tool for the hippocampus based 
on CT has made progress, but MRI is still the most reliable method 
for excluding the metastasis of the hippocampus. Hänsch et al. (2020) 
compared the automatic segmentation of the hippocampus based on 
a convolutional neural network (CNN) for MR and CT images and 
found that high-quality and anatomically accurate training contours 
can be generated on MR images and propagated to CT images to 
obtain optimal results. Therefore, Qiu et al. (2021) proposed a 3D 
U-Net model of multitask edge-aware learning for segmenting 
T1-weighted MR images of patients and obtained a Dice coefficient of 
0.8483 ± 0.0036, an HD of 7.5706 ± 1.2330 mm, and an AVD of 
0.1522 ± 0.0165 mm. In addition, Pan et al. (2021) proposed a CNN 
network structure based on 3D U-Net to segment the hippocampus 
on 3D-T1 MR images, with average DSC and AVD values of 0.86 and 
1.8 mm, respectively. Encouraged and inspired by previous research, 
we propose a new automatic hippocampal segmentation model for 
3DT1 MRI called SwinHS, which is based on the Swin Transformer. 
This model is designed to address the limitations of conventional 
CNN models and traditional Vision Transformers (VIT). Unlike these 
models, the Swin Transformer leverages a self-attention mechanism 
to capture long-range dependencies and context information across 
the entire input, significantly enhancing the model’s ability to 
understand complex spatial relationships in the hippocampal region. 
This global attention mechanism enables the model to accurately 
capture the spatial positioning of the hippocampus in MR images. 
Additionally, the network incorporates an enhanced version of local 
self-attention (ELSA) instead of LSA. The introduction of the 
Hadamard product in ELSA facilitates more efficient attention 
generation while preserving high-order mapping relationships 
(Ghazouani et al., 2024), thereby enhancing the extraction of local 
detailed features. Finally, the feature representation extracted by the 
decoder is passed through a multiresolution skip connection to the 
sSE CNN decoder, resulting in the final output segmentation map.

In traditional Vision Transformer (ViT) models, the input tokens 
have a fixed size, and the model operates at a fixed sampling rate of 16, 
which is effective for image classification tasks. However, for dense 
prediction tasks on high-resolution images, the computational 
complexity scales quadratically with image size, leading to significant 
computational costs (Fang et al., 2023). To address this limitation, 
we  introduced a hybrid model that combines the strengths of 
Transformer architectures, which excel at capturing long-range 
dependencies, with the hierarchical structure of convolutional neural 
networks (CNNs), thereby reducing computational complexity while 
retaining the model’s ability to capture both global and local features.
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When evaluating hippocampus segmentation performance, 
SwinHS demonstrated exceptional results across key performance 
metrics, including Dice similarity coefficient (DSC), Jaccard similarity 
coefficient (JSC), and Hausdorff distance (HD). Compared to other 
models, SwinHS achieved a high DSC of 0.894 and significantly 
reduced HD values. This improvement can be  attributed to the 
Transformer architecture’s ability to capture global information while 
preserving local detail, making it highly effective for segmenting small 
and intricate structures like the hippocampus.

In terms of data processing efficiency, the innovative design of the 
SwinHS architecture significantly accelerates processing speed. While 
manual segmentation typically requires an average of 786 s, SwinHS 
completes the same task in just 13.3 s, drastically reducing the 
workload for clinical practitioners. Compared to other models, 
SwinHS combines the efficiency of deep learning with the adaptability 
of Transformers, speeding up the computation process without 
compromising accuracy. In hippocampus segmentation tasks, this 
translates to faster and more precise outcomes.

In conclusion, the high accuracy and efficiency of the Swin 
Transformer model are expected to positively impact the development 
of hippocampus avoidance whole-brain radiotherapy treatment plans 
in clinical practice. Accurate hippocampus segmentation is also 
expected to assist in the early detection and monitoring of diseases 
related to hippocampus atrophy, such as Alzheimer’s disease. 
Additionally, the model’s rapid processing capabilities can shorten the 
time patients wait for diagnostic results, improving the overall 
responsiveness of healthcare services.

On the other hand, our proposed model operates as a supervised 
learning model, which requires sufficient data and precise manual 
contours as training labels. Hence, to optimize the automatic 
segmentation performance of the hippocampus in hippocampus-
shielded whole-brain radiotherapy, we deliberately excluded data from 
healthy adults and individuals with mental disorders. Instead, 
we compiled training datasets from relevant patient cohorts, a strategy 
also supported by Lei et al. (2023). Experimental findings indicate that 
this approach effectively leverages hippocampus guidance information 
from MR images of patients undergoing whole-brain radiotherapy, 
leading to improved hippocampal segmentation accuracy compared 
to traditional deep learning methods.

We employed the dynamic IMRT technique to compare the 
dosimetric differences between plan (AD) and plan (MD) in order to 
evaluate the clinical feasibility of the SwinHS model for automatic 
hippocampal segmentation. According to previous studies, VMAT 
technology provides excellent treatment plan quality for hippocampus-
protected whole-brain radiotherapy (Lin et al., 2023) and is superior 
to IMRT in terms of efficiency (Soydemir et al., 2021). In a study by 
Jiang et  al. (2019), conducted by our team, all treatment plans, 
including static IMRT, dynamic IMRT, VMAT, and TomoTherapy, met 
the RTOG 0933 dose standards for hippocampus protection in 
patients with limited brain metastases undergoing hippocampus-
sparing whole-brain radiotherapy. However, compared to VMAT and 
TOMO, the average maximum doses delivered to the hippocampus 
using sIMRT and dIMRT were significantly lower. Despite this, the 
differences in the mean hippocampal dose among the sIMRT, dIMRT, 
VMAT, and TOMO groups were not statistically significant.

Additionally, studies have shown that flattening filter free (FFF) 
beams not only provide higher dose rates and reduce field scatter and 
electron contamination but also minimize normal tissue exposure 

outside the target area (Hrbacek et al., 2011; Ghemiş and Marcu, 
2021; Ji et al., 2022). To enhance treatment effectiveness and reduce 
hippocampal dose, we opted for 9-field noncoplanar FFF-dynamic 
IMRT. According to our experimental results, the automatically 
delineated hippocampus had a smaller volume than the manually 
delineated one, as shown in Table 1. In most cases, the contours of 
the automatically delineated hippocampus closely matched the 
manual delineations, as illustrated in Figure 1. Additionally, since the 
manually delineated hippocampus was used to evaluate plan (MD), 
while the automatically delineated hippocampus was used to generate 
plan (AD), there was a notable difference in the average maximum 
dose (Dmax) to the hippocampus. Specifically, the average Dmax in the 
manual plan (MD) was 1474.25 ± 35.51 cGy, while in the automatic 
plan (AD), it was 1697.03 ± 11.02 cGy. Despite this difference, both 
values remained within the permissible limits specified by RTOG 
0933 for hippocampal doses. In terms of D100%, there was no 
statistically significant difference between the automatic and manual 
plans, with both remaining below 10 Gy. Additionally, no dosimetric 
differences were observed in the PTV between plan (AD) and plan 
(MD). This is consistent with our expectations, as the volume 
variation of the hippocampus is negligible compared to the overall 
PTV. According to the RTOG 0933 study, these findings are 
considered clinically acceptable.

Our model has some limitations and presents opportunities for 
future improvements. First, we  focused solely on hippocampal 
segmentation, so future research should explore automatic 
segmentation of other normal tissues in MR images, such as the 
crystalline lens, eyeballs, and brainstem, to further enhance treatment 
efficiency. Second, in the RTOG 0933 trial, 15.85% of participants 
failed the centralized review due to fusion or hippocampal 
segmentation errors (Gondi et al., 2015). This highlights the need to 
explore accurate automatic MR and CT registration as a critical area 
for future development. Moreover, our model’s training process was 
limited by the use of a relatively small dataset. Given the variability in 
hippocampal shapes among patients, future research should involve 
larger, multicenter datasets to improve the model’s robustness and 
generalizability. While our model assists physicians in hippocampal 
segmentation, the importance of the hippocampus in whole-brain 
radiotherapy means it is not yet capable of fully automating the 
segmentation process. Post-segmentation review and calibration by 
clinicians remain essential.

5 Conclusion

In this paper, we propose a hippocampus segmentation method 
based on the Swin Transformer, which effectively captures global 
features and enhances segmentation accuracy. We  believe this 
approach has the potential to significantly improve clinical treatment 
efficacy for patients undergoing whole-brain radiotherapy (WBRT), 
leading to better prognoses by reducing treatment-associated 
cognitive decline and improving overall outcomes.
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Recently, significant advancements have been made in the field of e�cient

single-image super-resolution, primarily driven by the innovative concept of

information distillation. This method adeptly leverages multi-level features to

facilitate high-resolution image reconstruction, allowing for enhanced detail

and clarity. However, many existing approaches predominantly emphasize the

enhancement of distilled features, often overlooking the critical aspect of

improving the feature extraction capabilities of the distillation module itself.

In this paper, we address this limitation by introducing an asymmetric large-

kernel convolution design. By increasing the size of the convolution kernel,

we expand the receptive field, which enables the model to more e�ectively

capture long-range dependencies among image pixels. This enhancement

significantly improves the model’s perceptual ability, leading to more accurate

reconstructions. To maintain a manageable level of model complexity, we adopt

a lightweight architecture that employs asymmetric convolution techniques.

Building on this foundation, we propose the Lightweight Asymmetric Large

Kernel Distillation Network (ALKDNet). Comprehensive experiments conducted

on five widely recognized benchmark datasets-Set5, Set14, BSD100, Urban100,

and Manga109-indicate that ALKDNet not only preserves e�ciency but also

demonstrates performance enhancements relative to existing super-resolution

methods. The average PSNR and SSIM values show improvements of 0.10 dB and

0.0013, respectively, thereby achieving state-of-the art performance.

KEYWORDS

single image super-resolution, e�cient method, asymmetric large kernel convolution,

information distillation, convolutional neural network

1 Introduction

Single image super-resolution (SISR) is a fundamental task in low-level computer

vision, aimed at recovering fine details lost during image degradation and reconstructing

a high-resolution (HR) image from a given low-resolution (LR) input. In recent years,

the advancement of deep learning has led to numerous methods leveraging deep neural

networks to address the challenges of image SR.

Dong et al. (2014) were the first to apply convolutional neural networks to image SR.

Their method involved upsampling the low-resolution image to match the high-resolution

size using bicubic interpolation, followed by the use of a Super-Resolution Convolutional

Neural Network (SRCNN) to learn the mapping from the upsampled image to the high-

resolution counterpart. Although SRCNN consisted of only three convolutional layers,

it achieved remarkable performance. Kim et al. (2016a) introduced residual connections

in their Very Deep Super-Resolution (VDSR) network, which enabled deeper networks

(up to 20 layers) and significantly improved reconstruction performance. In response to
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the limitations of residual networks for low-level vision tasks,

Lim et al. (2017) proposed the Enhanced Deep Super-Resolution

(EDSR) network, which utilized simplified residual blocks by

removing redundant batch normalization layers. Their findings

demonstrated that batch normalization was unnecessary for SR

tasks, leading to fewer reconstruction artifacts and reducing

the computational complexity of the model. Nevertheless, the

reliance of these super-resolution methods on intricate deep

convolutional neural networks poses significant challenges

for practical deployment, particularly in resource-constrained

settings such as real-time processing, mobile platforms, or

embedded devices.

Various methods have been introduced to address lightweight

SR task, including recurrent learning (Kim et al., 2016b), neural

network pruning (Zhang et al., 2021a,b; Wang et al., 2023),

knowledge distillation (Gao et al., 2018; He et al., 2020), neural

architecture search (Chu et al., 2021), etc. Recently, information

distillation (Hui et al., 2018) has emerged as a preferred strategy

for designing lightweight networks for super-resolution. This

technique involves stacking distillation blocks, which incorporate

feature enhancement and compression units, to extract features

at different depths for image reconstruction. IMDN (Hui et al.,

2019) expands on the concept of information distillation by

employing a distillation module and a fusion module within

each Information Multi-Distillation Block (IMDB) to extract

and integrate hierarchical features. Building on this foundation,

RFDN (Liu et al., 2020) introduces a shallow residual block

that enhances performance without increasing the number of

parameters. BSRN (Li et al., 2022) employs Blueprint Separable

Convolutions (BSConv) (Haase and Amthor, 2020) to optimize

the Super Resolution Block (SRB) and integrates enhanced

spatial attention for feature refinement, achieving state-of-the-

art results. BSConv operates on the premise that a blueprint

serves as a template for the convolutional weights, allowing

all convolution kernels within a model to be derived through

linear transformations of this blueprint. Specifically, BSConv first

performs a weighted combination of depth features, followed

by channel-wise convolutions to regulate the interdependencies

within the learned convolution kernels. However, this regulation

inadvertently limits the potential for further enhancement in

feature extraction capacity.

To address this issue, we present an Asymmetric Large

Kernel Distillation Network (ALKDNet), designed to enhance

the quality of reconstructed images while maintaining efficient

super-resolution performance. The proposed method incorporates

large kernel convolutions to better extract and refine features.

Increasing the kernel size effectively expands the receptive field,

allowing the model to leverage more contextual information for

improved task completion. However, directly enlarging the kernel

size leads to a dramatic increase in parameters and computational

cost. To mitigate this, we propose an asymmetric large kernel

convolution, which replicates the effects of a large kernel by

utilizing two asymmetric rectangular convolutions and a smaller

square convolution. Additionally, we introduced an Anchor-Based

Residual Learning (ABRL) (Du et al., 2021) method, built upon the

conventional feature space residual learning, to further enhance the

visual quality of the reconstructed images. This method establishes

anchor points for each pixel in the high-resolution image using

the corresponding low-resolution pixels, providing richer detail for

image reconstruction.

Our contributions in this paper can be summarized as

follows:

• We propose a novel Asymmetric Large Kernel Distillation

Network (ALKDNet) aimed at addressing the challenge

of lightweight super-resolution. Experiments on benchmark

datasets demonstrate that the proposed ALKDNet achieves

state-of-the-art performance.

• We design a novel Asymmetric Large Kernel Convolution

(ALKConv), which enhances model performance while

preserving computational efficiency and manageable

complexity.

• We incorporate an anchor-based residual learning method

into our ALKDNet alongside the conventional feature space

residual learning, which results in improved performance

compared to using either residual learning method in

isolation.

The remainder of the paper is organized as follows: Section 2

shows an overview of the related work, Section 3 details the

proposed model, Section 4 presents the empirical research results,

and Section 5 shows the conclusion.

2 Related work

2.1 E�cient SR methods

As previously mentioned, Dong et al. (2014) were the first

to apply CNNs to the SR problem, though their initial method

was highly inefficient. In response, they introduced FSRCNN

(Dong et al., 2016), which utilized a deconvolution layer as

the upsampling module placed at the end of the network. This

significantly accelerated the model and established a new paradigm

for network design in SR tasks. Subsequently, ESPCN (Shi et al.,

2016) proposed a sub-pixel convolutional upsampling method that

delivered superior performance, making it the go-to upsampling

strategy for SR tasks. Kim et al. (2016b) introduced recursive

learning in DRCN, reducing the model size without sacrificing

effectiveness. Subsequently, Tai et al. (2017) enhanced DRCN

by proposing the Deep Recurrent Residual Network (DRRN),

which achieved superior performance with fewer parameters while

maintaining the same network depth. Building upon the Laplacian

pyramid framework, Lai et al. (2017) developed a deep laplacian

pyramid network (LapSRN), which leverages low-resolution

feature maps at each pyramid layer to predict high-frequency

details, achieving notable performance improvements. Ahn et al.

(2018) advanced this by proposing CARN, which incorporated a

cascading mechanism into the residual network. Hui et al. (2018)

were the first to apply the information distillation mechanism for

efficient SR in their IDN. Later, Hui et al. (2019) extended this

concept with IMDN, introducing information multi–distillation,

which considerably boosted model performance. RFDN (Liu et al.,

2020) further lightened the model while improving its performance

by designing shallow residual blocks and incorporating extensive

feature distillation connections. Finally, BSRN (Li et al., 2022)
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FIGURE 1

The architecture of ALKDNet. The ALKDNet replicates the LR image m times as the input, maps it to the feature space via BSConv, and progressively

refines the features through a series of ALKDB blocks. After feature fusion stage, the fused features are sent to the image reconstruction module to

obtain the reconstructed image.

FIGURE 2

The architecture of BSConv. BSConv initially applies a 1× 1

pointwise convolution, which is subsequently followed by

independent depthwise convolutions executed for each individual

channel.

achieved state-of-the-art results by replacing standard convolutions

with blueprint separable convolutions and enhancing feature

extraction through enhanced spatial attention, further reducing

model complexity. Furthermore, Hui et al. (2020) integrated non-

local operations into the residual block architecture, introducing a

lightweight Feature Enhancement Residual Network (FERN). This

design significantly strengthened the model’s capacity to capture

long-range dependencies. Moreover, Wang et al. (2021) developed

a Sparse Masked Super-Resolution (SMSR) model that utilizes

sparse masks. This method employs spatial masks to identify salient

regions and channel masks to filter out unnecessary channels,

thereby reducing redundant computations and enhancing super-

resolution performance. Kong et al. (2022) streamlined the feature

aggregation process by employing three convolutional layers for

local feature learning, and introduced a Residual Local Feature

Network (RLFN), achieving a balance between model performance

and inference time. Additionally, Gendy et al. (2023) further

advanced the SISR task by proposing a Mixer-based Local

Residual Network (MLRN), which utilizes convolutional mixer

blocks to blend channel and spatial features, achieving favorable

performance.

2.2 Large kernel convolution

Since VGG (Simonyan and Zisserman, 2014) popularized the

method of replacing large convolution kernels with stacked smaller

convolutions, it has been widely adopted for its lightweight and

efficient characteristics. With the advent of Transformer (Vaswani,

2017), many researchers sought to understand the source of

their superior performance. Some attributed this to the extensive

receptive field provided by the attention mechanism and aimed

to enhance CNNs by expanding their receptive fields. According

to the theory of effective receptive fields (ERF) (Luo et al., 2016),

the ERF is proportional to O(K
√
L), where K represents the

kernel size and L the network depth. This shows that increasing

the kernel size is a more effective way to expand the ERF

than merely stacking smaller convolutions. ConvNeXt (Liu Z.

et al., 2022) expands the convolution kernel size to enhance the

receptive field, ultimately achieving performance comparable to

that of the Swin Transformer (Liu et al., 2021). RepLKNet (Ding

et al., 2022) leveraged reparameterization technique and depth-

wise convolution to scale the kernel size up to 31 × 31, achieving

results that are comparable to, and in some cases surpass, those

of the Swin Transformer across various tasks. Guo et al. (2023)

integrated large kernel convolution with an attention mechanism,

introducing a novel Large Kernel Attention (LKA) module in their

VAN architecture, which demonstrated significant effectiveness

across various tasks. LargeKernel3D (Chen et al., 2023) applied

the concept of large kernel design to 3D networks, expanding the

kernel size to 17 × 17 × 17. SLaK (Liu S. et al., 2022) simulated

large kernel convolutions with two rectangular convolutions and

integrated dynamic sparsity, pushing the kernel size to 51 × 51.

Meanwhile, PeLK (Chen et al., 2024) further extended the kernel to

101× 101 using a parameter-sharing mechanism and kernel-based

position embedding, achieving impressive results across various

computer vision tasks.

2.3 Asymmetric convolution

Szegedy et al. (2016) first introduced the concept of asymmetric

convolution decomposition in Inception-v3, wherein the 7 × 7

convolution kernel is split into two smaller kernels of 7 × 1

and 1 × 7 to reduce the parameters for image recognition. This
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FIGURE 3

The architecture of ALKDB. ALKDB extracts and refines features using a sequence of ALKConvs, while simultaneously employing 1× 1 convolutions

for feature compression. Following the concatenation and fusion of the features, the ESA and CCA modules are utilized for further feature

enhancement.

FIGURE 4

The architecture of ALKConv. We decompose a 9× 9 convolution

into 9× 1 and 1× 9 convolutions. In line with prior research, we also

introduce a 3× 3 convolution to operate in parallel with the large

kernel convolution, subsequently summing their outputs.

technique was adopted in Global Convolutional Network (GCN)

(Peng et al., 2017) to increase the kernel size to 15× 15, enhancing

performance in semantic segmentation tasks. However, it has been

reported that this methodmay lead to a decrease in performance on

ImageNet. EDANet (Lo et al., 2019) also employed this strategy by

substituting 3× 3 convolutions with 3× 1 and 1× 3 convolutions

to reduce computational cost, albeit at the expense of performance.

Nevertheless, it experienced a decline in performance when applied

to semantic segmentation tasks. In contrast, Ding et al. (2019)

utilized asymmetric convolution for structural reparameterization

in ACNet, where asymmetric convolutions were employed to

strengthen horizontal and vertical information, which was then

aggregated on a square convolution kernel, leading to significant

performance improvements. Furthermore, Tian et al. (2021)

were the first to apply asymmetric convolution in the realm of

image super-resolution, achieving notable results. Building on

this foundation, SLaK (Liu S. et al., 2022) integrates convolution

decomposition with dynamic sparsity, expanding the kernel size to

51× 51 and thereby significantly improving model performance.

3 Proposed method

In this section, we firstly introduce the overall network

architecture of ALKDNet and the loss function, then we give

a detailed introduction to the designed asymmetric large kernel

distillation block. Next, we introduce the proposed asymmetric

large kernel convolution in detail.

3.1 Network architecture

The proposed method adopts the structural design of BSRN (Li

et al., 2022), as illustrated in Figure 1. The complete model consists

of four main components: a shallow feature extraction module, a

deep feature extraction module, a deep feature fusion module, and

a high-resolution image reconstruction module.

Initially, the input image ILR is duplicated m times and

concatenated along the channel dimension to form ImLR. This

process is described as follows:

ImLR = Concatm(ILR), (1)

where Concat(·) represents the concatenation operation along the

channel dimension, where m indicates the number of times the

input image ILR is replicated and concatenated. Subsequently,

higher-dimensional shallow features are extracted through the

shallow feature extraction module:

F0 = HSFE(I
m
LR), (2)

where HSFE(·) represents the shallow feature extraction module,

implemented as a 3 × 3 BSConv, with F0 denoting the

extracted shallow features. The structure of BSConv, illustrated in

Figure 2, consists of both a channel convolution and a depthwise

convolution. Following this, a series of asymmetric large kernel

distillation blocks (ALKDB) are employed to progressively extract

and refine deep features. This process can be expressed as follows:

Fk = Hk(Fk−1), k = 1, 2, ..., n, (3)

whereHk represents the i-th ALKDB, while Fk and Fk−1 refer to the

output and input of the i-th ALKDB, respectively.

After the progressive extraction and refinement of ALKDBs, all

intermediate features are concatenated via a 1 × 1 convolution,
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TABLE 1 Ablation study on large kernel convolution.

Method Params Multi-adds Set5 Set14 BSD100 Urban100 Manga109

(K) (G) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSRN 332 73.0 38.09 0.9609 33.74 0.9193 32.24 0.9007 32.36 0.9301 39.11 0.9780

ALKConv5× 5 354 78.3 38.09 0.9607 33.81 0.9197 32.24 0.9005 32.44 0.9312 39.15 0.9781

ALKConv7× 7 361 79.9 38.11 0.9608 33.77 0.9191 32.25 0.9008 32.41 0.9307 39.20 0.9782

ALKConv9× 9 368 81.6 38.13 0.9610 33.78 0.9191 32.27 0.9009 32.51 0.9318 39.21 0.9782

ALKConv11×11 375 83.2 38.08 0.9609 33.80 0.9198 32.27 0.9010 32.50 0.9316 39.20 0.9781

The best and second-best results are highlighted and underlined, respectively.

TABLE 2 Ablation study on residual learning.

Method Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FSRL 38.09 0.9609 33.74 0.9193 32.24 0.9007 32.36 0.9301 39.11 0.9780

ABRL 38.12 0.9609 33.76 0.9194 32.24 0.9006 32.45 0.9310 39.19 0.9782

FSRL+ABRL 38.09 0.9608 33.68 0.9190 32.24 0.9006 32.40 0.9308 39.14 0.9780

ALKConv+FSRL 38.13 0.9610 33.78 0.9191 32.27 0.9009 32.51 0.9318 39.21 0.9782

ALKConv+ABRL 38.14 0.9609 33.81 0.9197 32.28 0.9010 32.49 0.9316 39.17 0.9782

ALKConv+FSRL+ABRL 38.13 0.9609 33.76 0.9192 32.28 0.9010 32.61 0.9327 39.26 0.9783

The best and second-best results are highlighted and underlined, respectively.

followed by GELU activation for feature fusion and activation.

Finally, asymmetric Large Kernel Convolution (ALKConv) is

applied to smooth the features. This deep feature fusion process can

be described as follows:

Ffused = Hfusion(Concat(F1, ..., Fk)), (4)

where Ffused represents the aggregated deep features, while Hfusion

refers to the feature fusion module as described above.

In the final stage, the image reconstruction module of BSRN

employs a long-range skip connection for residual learning. While

maintaining this residual learning in the feature space, we introduce

an anchor-based residual learningmethod. This method repeats the

squared upscaling factor for each pixel in the LR space, using it

as an anchor point for the corresponding pixel in the HR space.

Subsequently, the pixel shuffle operation is applied to generate the

reconstructed image. This process can be formulated as follows:

ISR = HPS(Convup(Ffused + f0)+Hrepeat(ILR)), (5)

where HPS(·) denotes the pixel shuffle operation, while Hrepeat(·)

refers to repeating the squared upscaling factor of the LR images,

organizing them by color channels, and concatenating them along

the channel dimension. The Convup(·) operation is a 3 × 3

convolution, used to expand the fused features learned through

residual learning in the feature space, ensuring that their channels

are aligned with the output of Hrepeat(·).

Our model is optimized using the L1 loss function, which is

formulated as:

L1 = ‖ISR − IHR‖1. (6)

3.2 Asymmetric large kernel distillation
block

Drawing inspiration from the ESDB structure in BSRN (Li et al.,

2022), we designed a asymmetric large kernel distillation block

(ALKDB) with a similar architecture. The ALKDB is composed of

three key components: feature distillation, feature condensation,

and feature enhancement. The overall structure of ALKDB is

illustrated in Figure 3. Given an input feature Fin, the feature

distillation process in the initial stage can be formulated as follows:

Fd1, Fr1 = D1(Fin),R1(Fin),

Fd2, Fr2 = D2(Fr1),R2(Fr1),

Fd3, Fr3 = D3(Fr2),R3(Fr2),

Fd4 = D4(Fr3),

(7)

where Di represents the i-th distillation layer, responsible for

extracting the distilled feature Fdi, while Ri denotes the i-

th refinement layer, used to iteratively refine the feature Fri.

Specifically, the distillation layer is composed of a 1×1 convolution

followed by GELU activation, while the refinement layer consists

of a asymmetric large kernel convolution with skip connections,

also followed by GELU activation. In the feature condensation

stage, the four distilled features are concatenated along the channel

dimension, followed by a 1× 1 convolution for feature fusion. This

process can be described as follows:

Fcondensed = Conv_1(Concat(Fd1, ..., Fd4)), (8)

where Fcondensed represents the condensed feature obtained from

the fusion process. In the subsequent feature enhancement stage,
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FIGURE 5

To further explore the impact of the two residual learning methods, we visualize the average feature maps obtained before and after applying FSRL

and ABRL. The feature map following FSRL exhibits enhanced activation of high-frequency textures, while the feature map after ABRL contains richer

detailed information.

we employ both a Enhanced Spatial Attention (ESA) block and a

Contrast-aware Channel Attention (CCA) block to further enhance

the features. Simultaneously, the pixel normalization module is

applied to ensure stability during the model’s training process:

Fenhanced = Normpixel(HCCA(HESA(Fcondensed))), (9)

where HCCA(·) and HESA(·) represent the CCA and ESA

modules, respectively, while Normpixel(·) denotes the pixel-level

normalization module. The output, Fenhanced, is the enhanced

feature. Ultimately, the input features Fin are employed for long-

range residual learning to derive the final output features Fout :

Fout = Fenhanced + Fin. (10)

3.3 Asymmetric large kernel convolution

Liu S. et al. (2022) proposed the decomposition of a large

51 × 51 convolutional kernel into three smaller kernels of size

51 × 5, 5 × 51, and 5 × 5 in their SLaK model, enhancing

performance while keeping computational complexity manageable.

Drawing inspiration from this method, we adopt a similar strategy

to construct a 9 × 9 large kernel convolution, as illustrated in

Figure 4.

Specifically, for the input feature Fin, we apply three

convolution operations with kernel sizes of 9 × 1, 1 × 9, and

3 × 3, respectively. Feature activation is performed using the

GELU function. The resulting three feature maps are then summed

together, followed by a pixel normalization operation to enhance

the stability of the training process. This procedure can be

formulated as follows:

Fout = Normpixel(Hact(Conv_9×1(Fin))+Hact(Conv_1×9(Fin))

+Hact(Conv_3(Fin))), (11)

where Fout represents the output feature after processing with the

large kernel convolution, and Hact denotes the GELU activation

function.
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TABLE 3 Ablation study on pixel normalization.

Method Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSRN 38.09 0.9609 33.74 0.9193 32.24 0.9007 32.36 0.9301 39.11 0.9780

BSRN+norm 38.09 0.9608 33.69 0.9189 32.25 0.9006 32.42 0.9308 39.15 0.9780

BSRN+ABRL 38.09 0.9608 33.68 0.9190 32.24 0.9006 32.40 0.9308 39.14 0.9780

BSRN+ABRL+norm 38.06 0.9607 33.72 0.9190 32.25 0.9006 32.50 0.9316 39.16 0.9781

BSRN+ALKConv 38.13 0.9610 33.78 0.9191 32.27 0.9009 32.51 0.9318 39.21 0.9782

BSRN+ALKConv+norm 38.13 0.9609 33.89 0.9198 32.27 0.9010 32.45 0.9313 39.21 0.9782

BSRN+ALKConv+ABRL 38.13 0.9609 33.76 0.9192 32.28 0.9010 32.61 0.9327 39.26 0.9783

BSRN+ALKConv+ABRL+

norm

38.14 0.9609 33.81 0.9193 32.29 0.9011 32.71 0.9332 39.28 0.9783

The best and second-best results are highlighted and underlined, respectively.

FIGURE 6

The PSNR test results on ×2 scale benchmark dataset Set5 during training. The proposed final model, as indicated by the red line, demonstrated

superior performance and convergence speed, while also exhibiting the highest stability throughout the training process.

4 Experiments

In this section, the datasets, evaluation metrics and

implementation details are firstly introduced in detail, and

then a series of ablation experiments on ALKDNet are conducted

to verify the efficiency. Next, we compare our ALKDNet with many

other state-of-the art lightweight SR methods quantitatively and

visually.

4.1 Datasets and evaluation metrics

We follow the method in previous work (Li et al., 2022) for

model training and testing. DIV2K (Timofte et al., 2017) and

Flickr2K (Lim et al., 2017) datasets were used for model training,

and five benchmark datasets Set5 (Bevilacqua et al., 2012), Set14

(Zeyde et al., 2012), BSD100 (Arbelaez et al., 2010), Urban100

(Huang et al., 2015) and Manga109 (Matsui et al., 2017) were

used for testing. LR images were generated from HR images

through bicubic degradation. The evaluation of super-resolution

reconstruction results is to convert the image to YCbCr format,

and only calculate the PSNR and SSIM (Wang et al., 2004) of the

Y component. The Multi-Adds of the evaluation method is based

on the acquisition of output image with a spatial resolution of 1280

× 720 pixels.

4.2 Implementation details

The proposed method consists of 8 blocks and the number of

channels is set to 64. The size of all convolution kernels is set to

3 unless otherwise noted. Data augmentation was performed by

random rotations of 90◦, 180◦, 270◦ and horizontal flipping. The

minibatch size is set to 64 and the patch size of each LR input is
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TABLE 4 Quantitative results of state-of-the-art lightweight SR methods on benchmark datasets.

Method Scale Params Multi-adds Set5 Set14 BSD100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339

SRCNN ×2 8 52.7 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN ×2 13 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR ×2 666 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750

DRRN ×2 298 6796.9 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749

IDN ×2 553 124.6 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749

IMDN ×2 694 158.8 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774

RFDN ×2 534 95.0 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773

FMEN ×2 748 172.0 38.10/0.9609 33.75/0.9192 32.26/0.9007 32.41/0.9311 38.95/0.9778

BSRN ×2 332 73.0 38.10/0.9610 33.74/0.9193 32.24/0.9006 32.34/0.9303 39.14/0.9782

SAFMN ×2 228 52.0 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771

MLRN ×2 488 90.4 38.07/0.9607 33.59/0.9180 32.21/0.9000 32.28/0.9297 38.76/0.9773

HSNet ×2 302 81 38.07/0.9607 33.65/0.9185 33.22/0.9002 32.27/0.9295 39.00/0.9778

CFSR ×2 291 62.6 38.07/0.9607 33.74/0.9192 32.24/0.9005 32.28/0.9300 39.00/0.9778

ALKDNet(Ours) ×2 373 83.7 38.14/0.9609 33.81/0.9193 32.29/0.9011 32.71/0.9332 39.28/0.9783

Bicubic ×3 - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556

SRCNN ×3 8 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN ×3 13 5.0 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR ×3 666 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340

DRRN ×3 298 6796.9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379

IDN ×3 553 56.3 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381

IMDN ×3 703 71.5 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445

RFDN ×3 541 42.2 34.41/0.9273 30.34/0.8420 29.09/0.8042 28.21/0.8525 33.67/0.9449

FMEN ×3 757 77.2 34.45/0.9275 30.40/0.8435 29.17 0.8063 28.33/0.8562 33.86/0.9462

BSRN ×3 340 33.3 34.46/0.9277 30.47/0.8449 29.18/0.8068 28.39/0.8567 34.05/0.9471

SAFMN ×3 233 23.0 34.34/0.9267 30.33/0.8418 29.08/0.8048 27.95/0.8474 33.52/0.9437

MLRN ×3 496 40.9 34.46/0.9267 30.35/0.8426 29.10/0.8054 28.20/0.8533 33.66/0.9450

HSNet ×3 302 36 34.49/0.9278 30.44/0.8434 29.15/0.8063 28.36/0.8555 33.95/0.9466

CFSR ×3 298 28.5 34.50/0.9279 30.44/0.8437 29.16/0.8066 28.29/0.8553 33.85/0.9462

ALKDNet(Ours) ×3 381 37.3 34.56/0.9284 30.50/0.8457 29.22/0.8079 28.58/0.8608 34.18/0.9478

Bicubic ×4 - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

SRCNN ×4 8 52.7 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN ×4 13 4.6 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

VDSR ×4 666 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870

DRRN ×4 298 6796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946

IDN ×4 553 32.3 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942

IMDN ×4 715 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075

RFDN ×4 550 23.9 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

FMEN ×4 769 44.2 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107

BSRN ×4 352 19.4 32.35/0.8966 28.73/0.7847 27.65/0.7387 26.27/0.7908 30.84/0.9123

(Continued)
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TABLE 4 (Continued)

Method Scale Params Multi-adds Set5 Set14 BSD100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SAFMN ×4 240 14.0 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063

MLRN ×4 507 23.5 32.30/0.8956 28.62/0.7824 27.57/0.7365 26.10/0.7867 30.56/0.9092

HSNet ×4 313 30 32.32/0.8970 28.65/0.7838 27.63/0.7393 26.29/0.7918 30.72/0.9124

CFSR ×4 307 17.5 32.33/0.8964 28.73/0.7842 27.63/0.7381 26.21/0.7897 30.72/0.9111

ALKDNet(Ours) ×4 393 21.6 32.37/0.8976 28.80/0.7860 27.69/0.7399 26.46/0.7970 30.97/0.9137

The best and second-best results are highlighted and underlined, respectively.

FIGURE 7

Qualitative comparison of ours model with the state-of-the-art methods for ×2 SR. We selected three images from the Urban100 dataset to evaluate

and compare the visual e�ects of the reconstructed images. The images, presented in order from top to bottom, are img024, img047 and img071.
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FIGURE 8

Qualitative comparison of ours model with the state-of-the-art methods for ×4 SR. We selected three images from the Set5 dataset, Set14 dataset

and Manga109 dataset to evaluate and compare the visual e�ects of the reconstructed images. The images, presented in order from top to bottom,

are butterfly in Set5, zebra in Set14 and EienNoWith in Manga109.

set to 48 × 48. We trained our model using the Adam optimizer

(Kingma, 2014) with the initial learning rate set to 1 × 10−3, β1 =

0.9, β2 = 0.999, and adjusted the learning rate using cosine learning

rate decay.L1 loss is used to optimize the model for total 1 × 106

iterations.We use Pytorch 2.2.0 to implement ourmodel on a single

GeForce RTX 3090 GPU.
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4.3 Ablation study

In this section, we demonstrate the effectiveness of the

proposed method. All experiments presented here are conducted

at the×2 scaling factor.

4.3.1 Impact of asymmetric large kernel
convolution

We conduct ablation experiments to verify the effectiveness

of the proposed large kernel convolution. We simply replaced the

BSConvs used in ESDB of BSRN with the ALKConvs we designed,

and explored the impact of the size of the convolution kernel

on the performance. The results are shown in the Table 1. It can

be found that the performance of the model has been improved

when the convolution kernel size is only 5, and the comprehensive

performance on each benchmark dataset has reached the best

when the convolution kernel size is 9. Specifically, when the

convolution kernel size is expanded to 5, the model demonstrates

improved performance on all benchmark datasets except Set5

and BSD100, with an average PSNR increase of 0.04 dB and an

average SSIM increase of 0.0002. Expanding the kernel size further

to 9 results in an average PSNR improvement of 0.07 dB and

an SSIM increase of 0.0004. We speculated that continuing to

expand the convolution kernel would help further improve the

performance of the model, but we decided to set the size of the

convolution kernel to 9 as a trade-off between model performance

and efficiency.

4.3.2 Impact of residual learning method
In this section, we explored the impact of two residual learning

methods on model performance, and the results are presented in

the Table 2. Among them, FSRL is the original BSRN, ABRL is

to replace the FSRL method in BSRN with ABRL, FSRL+ABRL is

to add the ABRL method on the basis of the original BSRN, and

with lkconv means that we replace the BSConvs in the ESDB of

BSRN with our ALKConvs. It can be seen from the data in the

table that themodel performance has been improved after replacing

the FSRL method with ABRL, but the performance decreases after

applying the two residual learning methods on BSRN at the same

time. However, it is interesting to see that the performance of the

model is significantly improved after using large kernel convolution

and two kinds of residual learning at the same time. Except for the

slightly worse performance on Set5 and Set14, the best results are

obtained on the other Benchmark datasets. Specifically, replacing

the FSRL method with ABRL leads to an average improvement of

0.04 dB in PSNR and 0.0002 in SSIM. The highest performance is

obtained when ALKConv is combined with both residual learning

methods, resulting in an average gain of 0.10 dB in PSNR and

0.0006 in SSIM. On the Urban100 dataset, this method achieves a

significant increase of 0.25 dB in PSNR and 0.0026 in SSIM.

We visualized the average feature maps before and after

residual learning in Figure 5 to demonstrate the impact of residual

learning. As observed, the high-frequency texture details in the

feature map are effectively activated after applying FSRL. This can

be attributed to FSRL’s utilization of shallow features extracted

by the convolutional layer for feature fusion. The convolutional

layer possesses a strong capability to capture local high-frequency

features, which contributes to this activation. Furthermore, after

applying ABRL, the feature map exhibits a significant enhancement

in image detail richness. This is primarily due to ABRL’s direct

utilization of information from the low-resolution image, allowing

it to effectively enrich the detail representation.

4.3.3 Impact of pixel normalization
In this section, we evaluate the effect of pixel normalization

on model performance, as shown in Table 3. The term +norm

indicates the application of pixel normalization at the end of

the original ESDB. The addition of pixel normalization results

in minimal impact on overall model performance, with only

slight improvements observed on certain benchmarks. Specifically,

incorporating the pixel normalization layer yields the greatest

performance improvement on the Urban100 dataset, with an

average increase of 0.05 dB in PSNR and 0.0004 in SSIM.

Figure 6 presents the PSNR test results during training after

integrating our proposed method. The inclusion of ALKConv

leads to a notable improvement in model performance, though

the PSNR exhibits significant fluctuations in the early stages,

suggesting instability in the training process. When ABRL is

further incorporated, while the performance gain is modest,

the convergence speed is notably accelerated in the initial

training phase, and the overall training process becomes more

stable. Finally, with the addition of pixel normalization, model

performance continues to improve, and PSNR fluctuations are

further reduced, indicating enhanced training stability.

4.4 Comparison with the state-of-the-art
methods

In this section, we contrast our model with 13 other state of

the art methods in lightweight SR, including SRCNN (Dong et al.,

2014), FSRCNN (Dong et al., 2016), VDSR (Kim et al., 2016a),

DRRN (Kim et al., 2016b), IDN (Hui et al., 2018), IMDN (Hui et al.,

2019), RFDN (Liu et al., 2020), FMEN (Du et al., 2022), BSRN (Li

et al., 2022), SAFMN (Sun et al., 2023), MLRN (Gendy et al., 2023),

HSNet (Cui et al., 2024), and CFSR (Wu et al., 2024). Table 4 shows

quantitative comparisons for ×2, ×3, and ×4 SR. It is easy to find

that our model performs slightly worse on set5 of×2 and the SSIM

result is 0.0001 lower than that of BSRN, and the other test results

are better than the compared advanced methods.

Specifically, the performance of our model is improved

compared with the suboptimal method at all three scales, for the

×2 scale, our model achieves an average improvement of 0.11 dB

in PSNR and 0.0005 in SSIM. At the ×3 scale, the PSNR shows an

average increase of 0.09 dB, while the SSIM improves by 0.0014.

For the ×4 scale, the model delivers an average gain of 0.09 dB in

PSNR and 0.0019 in SSIM. Among them, the gain of our model

is the most obvious on Urban100, and the performance increases

at ×2, ×3, and ×4 scales are 0.30dB/0.0021, 0.19dB/0.0041, and

0.17dB/0.0052, respectively.

To demonstrate the visual effects of our model’s reconstructed

images, we use six images from the benchmark dataset to conduct
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a qualitative evaluation of the model. Figures 7, 8 displays the

reconstruction results of our model compared to other state-of-

the-art methods. It can be seen that our reconstruction results are

still better even in the state-of-the-art methods. For example, in

the image captured from img024, the images obtained by other

methods have obvious artifacts at the top left continuous curved

to the left texture, and the images obtained by other methods are

very blurred at the bottom middle continuous vertical texture.

In contrast, the image reconstructed by the proposed method is

free from prominent artifacts and demonstrates the highest clarity,

closely resembling the HR reference in terms of visual quality.

Furthermore, within the zebra from the Set14 dataset, our method

was the only one to reconstruct the high-resolution image without

introducing any erroneous textures.

5 Conclusion

In this paper, we introduced the Asymmetric Large Kernel

Distillation Network (ALKDNet), designed for lightweight super-

resolution based on the BSRN architecture. The proposed method

combines Asymmetric Large Kernel Convolution (ALKConv)

in the distillation block, effectively balancing efficiency and

performance to enhance model capability while maintaining

acceptable complexity. Additionally, we introduced an anchor-

point-based residual learning method in the image reconstruction

module, which establishes anchor points for each corresponding

pixel in the HR image using pixels from the LR image, thereby

improving the quality of the reconstruction output. Results from

five widely used benchmark datasets demonstrate that the proposed

method achieves state-of-the-art performance.

Despite the contributions of our research, certain limitations

remain. The low-resolution images used in the paper’s experiments

were generated through bicubic downsampling. However, in real-

world scenarios, low-resolution images may be affected by various

complex factors, such as limitations of acquisition devices, noise

interference, and data compression. Therefore, further research

is needed to effectively apply the proposed method in practical

environments.
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