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Editorial on the Research Topic
Endocrine complications of COVID-19: short and long

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection mainly
affects the respiratory system by attaching to its primary receptor ACE2 (angiotensin-
converting enzyme 2), and using co-factors TMPRSS2 (the host proteases transmembrane
protease, serine 2) and ADAMI17 (A Disintegrin and Metalloproteinase 17) to gain cell
entry. It can likewise invade other organs that carry ACE2 and these co-factors. Therefore,
direct invasion is a recognized mechanism by which SARS-CoV-2 damages human tissues,
including the endocrine structures. Furthermore, heightened inflammatory responses and
cytokine production following acute SARS-CoV-2 infection could be responsible for
multiple organ injuries and potential endocrine system dysfunction (1). However, the
immune response following exposure to SARS-CoV-2 antigens are not always associated
with endocrine organ dysfunction. For instance, immune response following vaccination
was not significantly associated with endocrine system damage, including human
reproductive system (Bao et al.). Moreover, post-COVID-19 syndrome (long COVID) is
a debilitating problem after recovery from COVID-19, which can cause additional organ
impairments and encompass adverse outcomes including disruption of endocrine-organ
function (Zhang et al.). Consequently, it is necessary to recognize the risk factors, improve
diagnostic tools and identifying more effective medications to prevent the short- and long-
term complications of acute SARS-CoV-2 infection.

Increasing awareness among healthcare providers with regards to endocrine
complications of acute SARS-CoV-2 infection is important. This can be achieved
through reviewing current scientific literature and providing more evidence about
diagnosis and treatment of COVID-19. The Research Topic “Endocrine Complications
of COVID-19: Short and Long” contains four review and eight original research articles
that discuss the important aspects related to endocrine organs and acute SARS-CoV-2
infection. The review articles summarize the connection between acute SARS-CoV-2
infection and thyroid dysfunction (Panesar et al.), diabetes development (Zhou et al.),
adrenal damage and pituitary disruption (Iosef et al.) and long COVID in polycystic ovary
syndrome (PCOS) patients (Zhang et al.). The research articles discuss the risk of
hyponatremia based on CT findings in COVID patients (Wu et al.), and risk factors for
long COVID in patients with type 2 diabetes (Matviichuk et al.). The connection between
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thyroid dysfunction and severe COVID-19 prognosis (Yang et al.),
COVID severity (Zhang et al.), and long COVID (Dong et al.) are
discussed separately.

Generally, management of acute SARS-CoV-2 infection is not
limited to controlling viral replication and inflammation. We must
consider the possible complications during acute infection or after
recovery. The current therapeutic recommendation is mainly
antivirals. However, this approach is probably facing a barrier,
which is caused by the mutated forms of SARS-CoV-2. These
mutations ultimately increase the transmission rate, escape the
immune response following vaccination and endorse resistance to
antiviral medications. Targeting ACE2 or other SARS-CoV-2
receptors may be a helpful strategy in reducing virus entry into
host cells and mitigating severity of illness. Blocking virus
interaction with its receptors or tackling receptors will bypass this
defense mechanisms of SARS-CoV-2 mutated forms. This could be
achieved by (1) reducing the interaction between ACE2 on cell
membrane and SARS-CoV-2 spike protein (2), reducing the
amount of soluble ACE2 or dipeptidyl peptidase 4 (DPP-4),
which leads to less viral engulfment (3), capturing SARS-CoV-2
with a decoy receptor before entering into the cells, and (4)
manipulating the expression or function of ACE2 genetically or
with medications. However, ACE2 on cell membrane has protective
roles and the fourth approach could be potentially harmful (2, 3).

In summary, providing more evidence about the complications
and treatments of COVID-19 is necessary. Based on the possible
complications, including long COVID, endocrine disruption etc.,
managing COVID-19 is not restricted to the treatment of acute
SARS-CoV-2 infection and healthcare providers need to investigate
the complications appropriately.
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Background: The Thr92Ala-DIO2 polymorphism has been associated with clinical
outcomes in hospitalized patients with COVID-19 and neuropsychiatric diseases.
This study examines the impact of the Thr92Ala-DIO2 polymorphism on
neuropsychological symptoms, particularly depressive symptoms, in patients who
have had moderate to severe SARS-CoV-2 infection and were later discharged.

Methods: Our prospective cohort study, conducted from June to August 2020,
collected data from 273 patients hospitalized with COVID-19. This included thyroid
function tests, inflammatory markers, hematologic indices, and genotyping of the
Thr92Ala-DIO2 polymorphism. Post-discharge, we followed up with 68 patients
over 30 to 45 days, dividing them into depressive (29 patients) and non-depressive
(39 patients) groups based on their Beck Depression Inventory scores.

Results: We categorized 68 patients into three groups based on their genotypes:
Thr/Thr (22 patients), Thr/Ala (41 patients), and Ala/Ala (5 patients). Depressive
symptoms were less frequent in the Thr/Ala group (29.3%) compared to the Thr/
Thr (59.1%) and Ala/Ala (60%) groups (p = 0.048). The Thr/Ala heterozygous
genotype correlated with a lower risk of post-COVID-19 depression, as shown by
univariate and multivariate logistic regression analyses. These analyses, adjusted
for various factors, indicated a 70% to 81% reduction in risk.
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Conclusion: Our findings appear to be the first to show that heterozygosity for
Thr92Ala-DIO2 in patients with COVID-19 may protect against post-COVID-19
depression symptoms up to 2 months after the illness.

KEYWORDS

post-COVID-19, Thr92Ala-DIO2 polymorphism, thyroid function, biomarkers,

depression

1 Introduction

Since the onset of the COVID-19 pandemic on 11 March 2020,
concerns about the increased risk of neuropsychiatric disorders among
survivors have risen. Long-term COVID, involving post-acute sequelae
after SARS-CoV-2 infection, can lead to various dysfunctions of
extrapulmonary organs, including neuroinflammation, which may
contribute to the development of depression (1, 2).

The peripheral cytokines may potentially affect brain function
through direct action or via afferent pathways. Individuals with
autoimmune diseases and severe infections are more likely to
experience depression, and therapeutic cytokines can trigger
depressive symptoms. The cytokines under extensive study
include interleukin (IL) (IL-1f, IL-5, IL-6, IL-12, and IL-17),
tumor necrosis factor (TNF), and interferons (IFNs), representing
the inflammatory aspect, and IL-10, associated with resolution (3).

Depression is a complex polygenic disorder influenced by
environment. Depending on various studies, its heritability ranges
from 30% to 50%, with stress and imbalances in the HPA axis being
notable contributing factors. Genetic studies often neglect stress
effects, contributing to inconsistent results (4, 5).

There is a statistically significant association between thyroid
dysfunction and the development of mental distress, mood
disorders, and depression (5, 6). A comprehensive meta-analysis
of 12,315 individuals indicated that patients with subclinical
hypothyroidism have a higher risk of depression compared to
euthyroid controls (relative risk of 2.35, 95% CI: 1.84 to 3.02, p <
0.001) (7). Depression-related thyroid hormone (TH) level changes
include increased reversed triiodothyronine (rT3) (8, 9) and
decreased circulating T3 and TSH levels (10, 11).

The DIO2 gene encodes type 2 deiodinase (D2), a crucial enzyme
in converting the pro-hormone T4 into its active form, T3. The
Thr92Ala-DIO2 polymorphism is found in approximately half of the
global population and has been linked to chronic diseases such as type
2 diabetes mellitus (12, 13), obesity (14), arterial hypertension (15),
osteoporosis (16), mental distress (17, 18), and depression (19, 20).

Lately, we investigated 220 consecutive patients with moderate to
severe COVID-19 that showed a protective role of the heterozygous
state of the polymorphic variant DIO2 (Thr92Ala) in mortality and
severity from COVID-19. The heterozygous genotype (Thr/Ala) was
associated with a 47%-62% reduced in-hospital risk. The protective
role of Thr92Ala’s heterozygous advantage was supported in a meta-

Frontiers in Endocrinology

analysis of 21 studies in more than 20,000 patients with diseases such
as diabetes, obesity, ischemic stroke, myocardial infarction, and left
ventricular hypertrophy (21).

This study aims to investigate the potential correlation between
the Thr92Ala-DIO2 polymorphism and depressive symptoms 2
months after COVID-19 hospital discharge. Additionally, it aims to
explore various metabolic and hormonal biomarkers alongside
tomographic measurements evaluated upon hospital admission.
The results of this study could help stratify patients and enable
early identification of neuropsychiatric disorders in COVID-19
survivors, facilitating future interventions.

2 Materials and methods

This research was a branch of a broader prospective,
longitudinal cohort study, designed to assess thyroid dysfunction
in patients with moderate to severe COVID-19 requiring intensive
or semi-intensive care. We evaluated 273 consecutive patients
hospitalized with COVID-19 between June and August 2020 at
the Hospital Metropolitano Dom José Maria Pires (a tertiary
referral hospital for COVID-19) in Jodo Pessoa, Paraiba, Brazil.
Following discharge, 78 patients were assessed as outpatients for
neuropsychiatric issues (Figure 1). Ethical approval was granted by
the Hospital Universitario Lauro Wanderley’s Ethics Committee for
Human Research (CAAE:31562720.9.0000.5183).

Inclusion criteria involved patients who tested positive for
SARS-CoV-2 through quantitative real-time reverse transcription
polymerase chain reaction (rRT-qPCR—Biomol OneStep/COVID-
19, IBMP, Parana, Brazil) with respiratory tract samples. In cases of
negative rRT-qPCR, eligibility was determined based on clinical,
radiological, and serological parameters (positive IgG for SARS-
CoV-2). Exclusion criteria comprised patients with a history of
thyroid disease or the use of drugs affecting thyroid metabolism,
pregnancy, personal neuropsychiatric disorders, and the use of
neuropsychiatric medications.

The primary outcomes were long-term depression
symptomatology in previously hospitalized COVID-19 survivors
according to the Thr92Ala-DIO2 polymorphism. Secondary
outcomes were blood biochemistry, thyroid function tests, length of
stay, comorbidities, complications, and severity scores according to
Thr92Ala-DIO2 polymorphism and depressive symptomatology.
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Assessed for
eligibility (n=274)

Patients included in the
analysis (n=245)

v

183 Eligible for
teleconsultation

v

2-month follow-up
74 patients underwent assessment

v

l

FIGURE 1
Flowchart of the study.
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; Meeting exclusion criteria (n=26):

¢ Patients who used iodinated contrast in
the last six months (n=5)

¢ Patients who used drugs that interfere
with thyroid metabolism (n=13)

|« Withdrawal due to overt or subclinical

hypothyroidism (n=8)

Withdrawal due to transfer of hospital (n=3)

41 Died durign hospitalization
21 Visual, hearing, or neuropsychiatric
disorders

02 Died after hospitalization
34 Unable to be reached/speak
73 Refused teleconsultation

Patients without genotyping data available |
(n=6)

The research physicians gathered detailed clinical information
on each patient within 48 h of admission using a standard
questionnaire and severity scales (QSOFA and NEWS2). After
discharge, patients were contacted and invited (30-45 days after
discharge) by telephone for a medical consultation at the HULW, to
evaluate post-COVID-19 symptoms and signs, including
depression symptoms through Beck Depression Inventory (BDI).
The BDI is a self-assessment instrument composed of 21 items with
scores ranging from 0 to 63. The cutoff scores for the BDI were <9
(without depression) and >10 (with depression) (22).

Blood samples (50 mL) were collected within the first 48 h of
hospital admission (before any interventions or therapy, including
steroids and heparin). Laboratory tests performed included
interleukin 6, D-dimer, alanine aminotransferase (ALT), aspartate
aminotransferase (AST), creatinine, high-sensitivity C-reactive
protein (hs-PCR), and lactate dehydrogenase (LDH). The method
used in all examinations was automated chemiluminescence
(MAGLUMI-2000-PLUS; Shenzhen New Industries Biomedical
Engineering Co., Shenzhen, China). The complete blood cell
count with differential was performed on a MEK-7300
hematological analyzer (Nihon Kohden®, Tokyo, Japan).

Frontiers in Endocrinology

Patients underwent chest CT to diagnose suspected SARS-CoV-
2 pneumonia (ground-glass opacity, mosaic attenuation, and
consolidation). A semiquantitative CT severity score proposed by
Pan et al. was used in all cases (23).

Genomic DNA was extracted from peripheral blood leukocytes
using standard techniques. In this study the polymorphism was
determined by the TaqMan® SNP Genotyping method (7500 Real-
Time PCR Systems, Applied Biosystems, Foster City, CA, USA), using
the assay for genotyping with TaqMan® probes and primers, in a
combination of hybridization and DNA polymerase activity, associated
with fluorescence detection (24). We used the software Sequence
Detection, version 1.3 (Applied Biosystems, CA) to analyze the data.

Statistical analysis: To determine the requisite sample size, we
employed GPower 3.1.9.7 software, setting the significance level of o =
0.05, the desired statistical power of 0.95, and the effect size (F2) of 0.10.
The outcome indicated a minimum sample size of 158 patients from
the initial 273. Using the Cochran formula with finite population
correction (population size n = 273) and aiming for a 95% confidence
level and a margin of error within +10% for prevalence estimation, the
analysis required a minimum of 53 patients. Thus, our study group of
68 patients was sufficiently large for a comprehensive analysis.
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The data were represented as the median * interquartile range
(IQR). Non-parametric tests were used for quantitative analysis,
including the Mann-Whitney test for two-variable comparisons,
and the Kruskal-Wallis test with Dunn’s post hoc test for multiple
comparisons. Chi-square or Fisher’s exact test was used for
qualitative analyses. Spearman’s rank correlation coefficient
assessed the linear association between variables. Univariate and
multivariate logistic regression analyses evaluated the risk of post-
hospital discharge depressive symptoms among patients.

3 Results

Of the 274 adult patients admitted with COVID-19 to a referral
hospital, 183 were initially selected for post-discharge assessment.
Eligibility assessment led to the exclusion of 109 individuals: 2 due
to post-hospitalization death, 34 were unreachable, and 73 declined

10.3389/fendo.2024.1366500

participation. Furthermore, six patients were excluded due to
incomplete genotype data, resulting in a final cohort of 68
patients (Figure 1).

The group of 68 patients was stratified into three subgroups
based on genotype: Thr/Thr (n = 22), Thr/Ala (n = 41), and Ala/Ala
(n = 5) (Figure 1). The Thr allele frequency was 0.62 and the Ala
allele frequency was 0.37, with a distribution that was in Hardy-
Weinberg equilibrium (p = 0.07; chi-square test). Baseline
sociodemographic and clinical characteristics are summarized in
Table 1. During follow-up, the median age of patients was 54.5 (45—
67) years, 27 patients were over 60 years old (39.7%), and 48
patients (70.6%) were men. The median length of stay of patients in
the hospital was 6 days (4.2-8), and seven patients (10.3%) were
admitted to the ICU (Table 1).

Risk factors for post-discharge depressive symptoms were
analyzed using Mann-Whitney and Fisher’s tests. There was no
significant difference between the risk factors (hypertension,

TABLE 1 Demographic and clinical characteristics of the patient cohort and their association with Thr92Ala-DIO2 polymorphism and depressive
symptomatology (n = 68).

Thr/Thr + . .
Variables Thr/Ala INEY/\E 2 welie Non-depression = Depression Sl
(n = 41) (n = 27) (n = 40) (n = 28)

Age (years), median (IQR) (45;.27) 53 (42-65) 59 (50-68) 0.192 52 (42-59) 65.5 (53-72) 0.004

Age > 60 years, n (%) 27 (39.7) 15 (36.6) 12 (44.4) 0.516 10 (25) 17 (60.7) 0.0052

BMI (kg/m?) 32 (27-36) (;9_.;35) 32.8 (30-38) 0.068 30.7 (28-35) 32.7 (26-38) 0.455

Gender male, 1 (%) 48 (70.6) 31 (75.6) 32.8 (30-38) 0.262 34 (85) 14 (50) 0.0028

Day to symptom (days) 9 (7-11) 10 (7-11) 9 (7-10) 0.295 9 (7-10.7) 10 (6.2-11) 0.805
Associated morbidities

Hypertension, n (%) 43 (63.2) 25 (61) 18 (66.7) 0.633 22 (55) 21 (75) 0.126

Diabetes, n (%) 29 (42.6) 16 (39) 13 (48.1) 0.456 15 (37.5) 14 (50) 0.330

Obesity, n (%) 40 (58.8) 19 (46.3) 21 (77.8) 0.01 22 (55) 18 (64.3) 0.466

Cardiopathy, n (%) 7 (10.3) 3(7.3) 4 (14.8) 0.319 2 (5) 5 (17.9) 0.115

Chronic pneumopathy (%) 3 (4.4) 1(24) 2(7.4) 0.329 0 (0) 3 (10.7) 0.065
Complications

Use of vasoactive drugs, n (%) 2(2.9) 1(2.4) 1(3.7) 0.762 0 (0) 2(7.1) 0.165

Length of hospital stay 6 (4.2-8) 6 (4.5-8) 5 (4-10) 0.636 6 (4.2-8) 6 (4.2-9.5) 0.839
(days), (IQR)

ICU admission, n (%) 7 (10.3) 4(9.7) 3 (11.1) 0.857 2(5) 5 (17.9) 0.115
Scores systems

BDI score, median (IQR) 8 (3.2-14) 7 (3-10) 10 (5-22) 0.032 4.5 (2.2-7) 16 (11.2-26) <0.0001

NEWS?2 score, median (IQR) 5.5 (5-7) 6 (5-7.5) 5 (5-6) 0.544 6 (5-7) 5 (5-7) 0.478

q-SOFA score, median (IQR) 1(0-1) 1(0-1) 1(1-1) 0.672 1(0.25-1) 1(0-1) 0.423

CT COVID score, median (IQR) = 20 (15-20) | 20 (15-20) 20 (15-20) 0.958 20 (15-20) 20 (15-20) 0.323

Mann-Whitney test was performed for continuous variables (age, NEWS2, gSOFA, and TC COVID Score) while Fisher’s exact test was performed for all other variables.

BDI, Beck’s Depression Inventory; BMI, body mass index; ICU, intensive care unit; IQR, interquartile range; NEWS2, National Early Warning Score 2; NTIS, Non-thyroidal Illness Syndrome; q-
SOFA, quick sepsis related organ failure; CT COVID, Chest computed tomography score in COVID-19 patients.
The bold values correspond to the results assessed with significant p-values (P < 0.01).

Frontiers in Endocrinology

10

frontiersin.org


https://doi.org/10.3389/fendo.2024.1366500
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Beltrdo et al.

diabetes mellitus, obesity, and heart disease), complications (use of
vasoactive drugs, admission to the ICU, and hospital stay), and
severity scores (NEWS2, q-SOFA, and CT-COVID). A higher
percentage of non-depressed patients were younger than 60 (75%)
and were men (85%) (Table 1).

Spearman correlation analysis (Figure 2A) revealed a direct
correlation of BDI scores with age (r = 0.34, p = 0.005) and D-dimer
(r = 0.35, p = 0.003). The strongest correlation was between D-
dimer versus age (r = 0.45, p < 0.0001) and D-dimer versus IL-6 (r =
0.30, p < 0.01). The BDI scores, THs, and IL-6 showed no significant
difference (Figure 2A).

Regarding the BDI score, heterozygous patients (Thr92Ala) had
lower scores than homozygous patients (p = 0.032) (Table 1
and Figure 2B).

The overall prevalence of depressive symptoms post-discharge
was 41.2% (28 patients). Depressive symptoms were less common
in Ala/Thr patients (29.3%) compared to Thr/Thr patients (59.1%)
or Ala/Ala patients (60%) (p = 0.048) (Figure 3). Logistic regression
analysis, adjusted for 15 comorbidities and other covariates,
indicated that the Thr/Ala allele was associated with a reduced
risk of depressive symptoms compared to the combined Thr/Thr +
Ala/Ala genotype (overdominant model) (Table 2).

Thyroid function tests, markers of inflammation, tissue damage,
and hemochromocytometric parameters are shown in Table 2.
There was no significant difference between laboratory parameters
of the patient genotypes (Table 3). The only laboratory variable
significantly different in patients with depressive symptoms was D-
dimer levels, which were higher in these patients (p < 0.01).

BDI Scale
TSH

IL6
Ddimer

RDW

BDI Scale

Age

TSH

FT4

FT3

RT3

IL6

Ddimer

NLR

RDW

FIGURE 2
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4 Discussion

To our knowledge, this study is the first of its kind to
prospectively analyze the relationship between the Thr92Ala-
DIO2 polymorphism and post-COVID-19 depression in
hospitalized patients. Our findings indicate that the Thr/Ala
genotype correlates with a significantly reduced risk of post-
discharge depression, with risk reduction ranging between 70%
and 81% as per univariate and multivariate logistic regression
analyses adjusted for various covariates.

DIO2, essential for physiological function in the CNS, brown
adipose tissue (25), and muscle (26), plays a pivotal role in local
triiodothyronine (T3) production, influencing neurological
development and function. Active T3 is produced within the
brain by DIO2, predominantly by astrocytes, affecting genes
associated with neuronal development, myelination, and synaptic
transmission (27, 28). Notably, studies on mice that lack DIO2
revealed reduced brain T3 content with mild neurological effects,
such as altered emotional behaviors and memory processing.
Upregulation of DIO2 has been observed in various neurological
disorders, influencing gene expression associated with
inflammation and cell death.

The Thr92Ala D2 polymorphism has been associated with
decreased TH activity in various end-organ targets. Research
conducted in vitro and ex vivo suggests that the Ala allele is
linked to enzyme dysfunction, impacting neurodegenerative
mechanisms and oxidative stress within the central nervous
system (29). Additionally, this polymorphism has been correlated

B
1.0
P=0.032
60— 10 (5 - 22)
- 105 7 (3-10)
[ ]
[ ]
@ 40+
[]
Q
L 1o n
[a)
m 204
L 105 0-
THR/ALA  THRITHR+
ALA/ALA
—1 1.0

(A) Spearman correlation between laboratory variables of 68 hospitalized patients with COVID-19 collected within the first 48 h of admission and
BDI scale scores after 30 to 45 days post-hospital discharge (* indicates p < 0.01). The numbers represent the correlation coefficient (r values). (B)
Bar chart demonstrating higher BDI scores in homozygous patients (Thr/Thr + Ala/Ala) compared to heterozygous individuals (Thr/Ala) (p = 0.032).
BDI, Beck Depression Inventory; TSH, thyroid-stimulating hormone; fT4, free tetraiodothyronine; fT3, free triiodothyronine; rT3: reverse
triiodothyronine; IL-6, interleukin-6; NLR, neutrophil-lymphocyte ratio; RDW, red cell distribution width.
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inheritance Depressive Depressive P
Modals Genotype Sympto(r:)atology Symptc.z:;:;:tology OR (95% Cl) valire
Overall TT+TC+CC 28/68 41.2% - -
T 13/22 . 591% 0.99 (0.80 — 1.01)
Codominant TC 12141 29.3% 0.28 (0.09 — 0.88)  0.048
cc 3/5 . 60%  1.02(0.71-2.68)
bomi T 13122 . 594% 2.98 (0.98 — 8.84) 0.037
ominant coTC 15146 0.33 (0.1 - 1.02)
TC+TT 25/63 - 39,7% 0.43 (0.07 - 2.29)
Recessive cc 3/5 0% 228(043-133 o
o _ TT+cCC 16127 C 59.2% 3.15 (1.24 - 9.65) —_—
verdominant 16 12141 29.3% 0.28 (0.10 — 0.81)
FIGURE 3
Correlation between DIO2 Thr92Ala polymorphism and depressive symptomatology (chi-square test). Cl, confidence interval; OR, odds ratio.

TABLE 2 Blood biochemistry in patients with COVID-19 and their association with Thr92Ala-DIO2 polymorphism and depressive symptomatology (n = 68).

Thr/Ala Thr/Thr + Non- o .
Variables i epression
Ala/Ala p-value depression p p-value
(normal range)
(n = 41) (n = 27) (n = 40) (n = 28)
TSH (0.4-5.8 uIU/mL) 1.0 (065-2.25) 1.0 (0.58-2.05) 1.0 (0.82-3) 0.239 1.0 (0.65-1.89) 1.0 (0.64-3.1) 0.401
£T3 (2.0-4.2 pg/mL) 30 (26-36) | 3.1(26-37) 291 (23-32) 0.184 3.0 (2.59-3.7) 3.0 (2.65-3.47) 0.894
124
fT4 (0.89-1.72 ng/dL) (099-162) 121 (0.98-1.6) 128 (1.06-1.58) 0.642 125 (0.99-1.62) 124 (0.97-1.62) 0.698
0.54 0.58
£T3 (0.1-0.35 ng/mL) (0.31-0.65) (0.29-0.68) 0.51 (0.35-0.62) 0.701 0.51 (0.29-0.61) 0.58 (0.35-0.73) 0.144
IL-6 (<3.4 pg/mL) 38.2 483 (18.6-69) 32.8 (19.1-83) 367 (17.8-67) 523 (27.2-77.7) 0215
“Pp (19.4-75.1) =2 128 A 0.943 S SR :
CRP (<5.0 mg/dL) 822 (48-177) | 94.4 (51-179) 79.4 (45-146) 0.499 88.9 (48.7-170) 633 (45-177) 0.760
hil (1.9-6.7 10° 74 .
Neutrophil (1.9-6.7 10 67 709 6.64 (4.95-9.01) 0.445 7.46 (5.35-12.2) 6.68 (4.99-8.16) 0.447
cells/uL) (5.16-10.5) (5.39-12.1)
) 699 696 1,106
D-dimer (<500 ng/mL) 702 (462-1,441) 0.970 643 (384-835) 0.0016
(468-1,422) (470-1,446) (615-2,824)
812
LDH (207-414 U/L) G0z | 507 (617-980) 815 (611-1,115) 0.644 758 (616-896) 911 (617-1,122) 0.258
Albumin (3.5-5.5 g/dL) 3.3 (3-3.6) 3.3 (2.9-3.6) 3.3 (3-3.6) 0.327 34 (3.0-3.7) 3.2 (2.9-3.6) 0.106
HbAIc (4%-5.6%) 72(66-88) | 7.4 (6.6-8.8) 7.2 (6.5-9.3) 0.986 7.1 (6.4-8.6) 7.4 (7.0-9.6) 0.111
MCV (82-100 fL) 89.8 (86-92)  89.4 (86-92) 90 (86-92) 0.426 89.7 (86-92) 90 (87-92) 0.889
NJL ratio (1-3) 9.16 (64-14) = 9.11 (6.2-14.1) 9.4 (65-12.3) 0.815 9.3 (6.1-14) 9 (6.6-13.8) 0.894
Creatinine (mg/dL) 1.06 L13 1.00 (0.82-1.27) 0.261 1.06 (0.89-1.3) 0.98 (0.78-1.4) 0.342
reatinine (m ! . —1. .. A R —1. . ./0—1. .
¢ (0.87-1.35) (0.89-1.37)

Mann-Whitney test was performed for continuous variables. CI, confidence interval; CRP, C-reactive protein; I3, free triiodothyronine; HbAlc, hemoglobin Alc; IL-6, interleukin 6; IQR,
interquartile range; LDH, lactate dehydrogenase; MCV, mean corpuscular volume; N/L ratio, neutrophil-lymphocyte ratio; OR, odds ratio; rT3, reverse triiodothyronine; TSH, thyroid-
stimulating hormone.

The bold values correspond to the results assessed with significant p-values (P < 0.01).
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TABLE 3 Multivariable regression analyses between D2 Thr92Ala polymorphism (Thr/Thr, Thr/Ala, Ala/Ala, and overdominant model) and

depressive symptomatology.

Ala/Thr vs. Ala/Ala + Thr/Thr
(Overdominant model)

Depression
95% ClI
[~ B [ Depression 0.28 0.10-0.77 0.015
Age > 60 years 0.27 0.08-0.79 0.019
Gender (male) 0.29 0.09-0.87 0.030
Model 1
Diabetes 029 0.10-0.80 0.018
SAH 0.28 0.10 - 0.79 0.018
[ | Obesity 0.29 0.10- 0.79 0.017
Model 1 0.28 0.08-0.91 0.039
TSH 0.30 0.10-0.82 0.022
Model 5 Free T3 0.27 0.09-0.75 0.014
. Model 4 Model2 Free T4 0.27 0.09-0.75 0.013
Reverse T3 0.25 0.08-0.70 0.010
Model 2 0.22 0.07-0.66 0.009
. [ IL-6 0.27 0.09-0.75 0.013
CRP 0.29 0.09-0.88 0.031
D-dimer 0.26 0.08-0.74 0.014
Model 3
LDH 0.24 0.08-0.69 0.009
Albumin 0.30 0.11-0.84 0.024
- ) L Hemoglobin 0.22 0.06-0.66 0.009
- Model 3 0.19 0.05-0.71 0.018

Multivariable regression analyses: Model 1—adjusted for age > 60 years, diabetes, SAH, Systemic Arterial Hypertension, and obesity; Model 2—adjusted for TSH, T3, fT'4, and rT3; Model 3 -
adjusted for IL6, CRP, Ddimer, Lactate dehydrogenase (LDH), albumin, and hemoglobin. Model 4—adjusted for Models 1 and 3; Model 5—adjusted for all of the above variables.

The bold values correspond to the results assessed with significant p-values (P < 0.01).

with various neuropsychiatric conditions, including autism
(Marcondes et al., 2021), schizophrenia (30), depression (19, 20),
and cognitive impairment (31).

A Lithuanian study involving 168 participants investigated the
link between 10 single-nucleotide polymorphisms (SNPs) in DIOI,
DIO2, DIO3, and transmembrane TH transporters, specifically the
organic anion transporter polypeptide 1C1 (OATP1C1), in relation
to post-stroke depressive symptoms and anxiety. Among these
SNPs, only the wild-type OATP1C1-rs974453 genotype (GG)
showed a significant association with an increased likelihood for
depression symptoms (OR = 2.73; 95% CI: 1.04-7.12; p = 0.041). In
contrast, the Thr92Ala polymorphism did not demonstrate a
statistically significant difference, even though it was more
prevalent in the Thr/Thr genotype in patients with depression
(20). Conversely, a study in Poland indicated that the Ala-Ala
genotype of the Thr92Ala polymorphism was more common in
healthy individuals compared to those with recurrent depression
(7.2% vs. 0.6%, p = 0.03, respectively), suggesting its potential as a
marker for reduced risk of recurrent depressive disorder (32).

Frontiers in Endocrinology

This protection may be explained by the association of
Thr92Ala-DIO2 gene expression with endoplasmic reticulum
(ER) stress, inflammation, oxidative stress, apoptosis, and
mitochondrial dysfunction (33). Disruption of ER homeostasis
can lead to the accumulation of misfolded or unfolded proteins in
the ER lumen, a condition referred to as ER stress. ER stress is
associated with obesity, insulin resistance, type 2 diabetes (34),
endothelial dysfunction (35), and low-grade chronic inflammation
(36). These conditions have been associated with higher risk and
worse prognosis of COVID-19 (37) and depression (38, 39).

Clinical studies have found associations between decreased
levels of brain-derived neurotrophic factor (BDNF) and increased
inflammatory markers, which are linked to the onset of depressive
symptoms and various psychiatric disorders (40). In individuals
with depression, one study revealed a correlation between elevated
TSH levels, decreased serum BDNF levels, and a lower rise in BDNF
during antidepressant treatment (41). A more recent study
examining 50 patients undergoing their first episode of psychosis
showed that high TSH levels were associated with low peripheral
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BDNF and reduced hippocampal volume, suggesting a potential
neuroprotective effect of THs on the hippocampus (42).

Animal studies also contribute to our understanding by
showing that BDNF has a protective effect against ER stress-
induced cell death in brain neurons. This mechanism, which
depends on PI3-K activation and inhibits caspase-12, highlights
the importance of BDNF in maintaining neuronal integrity under
stress (43). The connection between the Thr92Ala-DIO2 gene, ER
stress, and BDNF regulation provides a comprehensive perspective
on the biological mechanisms that protect against pathological
conditions and depressive symptoms.

Research indicates a substantial genetic factor in depression,
estimated to contribute approximately 30%-40% to its heritability
(44, 45). A recent study found a significant link between the SIRT1
rs12415800 polymorphism, a gene associated with longevity,
cellular defense against oxidative stress, and depressive symptoms
in university students (46). This association was evident in both
codominant (p =0.0437) and overdominant (p=0.0147) genetic
models, demonstrating the heterozygous advantage (similar to our
study) of this polymorphism against depressive symptoms (47).

Microglial cells, specific types of macrophages in the central
nervous system, play a crucial role in neuroinflammation and are
increasingly linked to the development of depression. Recent findings
suggest a potential link between depression onset and viral infections
like SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which impact
various glial cells, including astrocytes, oligodendrocytes, and microglia
(48). Transcriptomic analysis [Gene Set Enrichment Analysis (GSEA)]
of mice with the Thr92Ala polymorphism revealed increased gene
expression related to neuroplasticity, cognition, apoptosis, and
neuroinflammation. These results strongly suggest an association
between Thr92Ala and neuroinflammation, involving astrocytes as
the primary cell type expressing DIO2 in the central nervous
system (49).

There are some limitations in this study. Our sample size was
relatively small, and the observation time was short; we did not
collect healthy people as controls, which may have some influence
on the study results; we used mostly self-assessment scales, which
may introduce recall bias; and we were unable to measure serum
BDNF levels in our patients.

In this prospective study, we present evidence suggesting that
possessing heterozygosity of Thr92Ala-DIO2 may have a protective
role in preventing the occurrence of depressive symptoms after
being discharged from the hospital. Additional research is needed to
confirm these findings.
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Purpose: Chest computed tomography (CT) is used to determine the severity of
COVID-19 pneumonia, and pneumonia is associated with hyponatremia. This
study aims to explore the predictive value of the semi-quantitative CT visual
score for hyponatremia in patients with COVID-19 to provide a reference for
clinical practice.

Methods: In this cross-sectional study, 343 patients with RT-PCR confirmed
COVID-19, all patients underwent CT, and the severity of lung lesions was scored
by radiologists using the semi-quantitative CT visual score. The risk factors of
hyponatremia in COVID-19 patients were analyzed and combined with
laboratory tests. The thyroid function changes caused by SARS-CoV-2
infection and their interaction with hyponatremia were also analyzed.

Results: In patients with SARS-CoV-2 infection, the total severity score (TSS) of
hyponatremia was higher [M(range), 3.5(2.5-5.5) vs 3.0(2.0-4.5) scores,
P=0.001], implying that patients with hyponatremia had more severe lung
lesions. The risk factors of hyponatremia in the multivariate regression model
included age, vomiting, neutrophils, platelet, and total severity score. SARS-CoV-
2 infection impacted thyroid function, and patients with hyponatremia showed a
lower free triiodothyronine (3.1 + 0.9 vs 3.7 + 0.9, P=0.001) and thyroid
stimulating hormone level [1.4(0.8-2.4) vs 2.2(1.2-3.4), P=0.038].

Conclusion: Semi-quantitative CT score can be used as a risk factor for
hyponatremia in patients with COVID-19. There is a weak positive correlation
between serum sodium and free triiodothyronine in patients with SARS-CoV-
2 infection.

KEYWORDS

COVID-19, SARS-CoV-2, hyponatremia, computed tomography, free triiodothyronine, pneumonia
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1 Introduction

Hyponatremia is a common electrolyte disorder in hospitalized
patients, often associated with poor prognosis (1). Severe
hyponatremia may cause complications, such as cerebral edema,
seizures, and coma. Patients with community-acquired pneumonia
(CAP) are more likely to have hyponatremia (Na"<135mmol/L),
and hyponatremia is associated with more extended hospital stays,
increased hospital costs, and increased mortality (2). The link
between COVID-19 and hyponatremia is well known, and
multiple studies have described the prevalence of hyponatremia in
COVID-19 patients ranging from 20% to 35% (3). COVID-19
causes hyponatremia in patients likely to have the following
several aspects: the first is due to the SARS-CoV-2 infection
increases interleukin 6 (IL-6) (4), and IL-6 can cross the blood-
brain barrier and directly stimulate the supraoptic and
paraventricular nuclei cause the syndrome of inappropriate
antidiuresis (SIAD) (5); Secondly, SARS-CoV-2 enters host cells
through the angiotensin converting enzyme 2(ACE2), and its
binding to ACE2 will down-regulate the activity of ACE2, causing
an imbalance between ACE and ACE2, destroying the renin-
angiotensin-aldosterone system (RAAS), and leading to the
accumulation of angiotensin II (6). Animal studies have found
that local application of various components of RAS to the
paraventricular nucleus and supraventricular nucleus of the
hypothalamus can trigger the release of hypothalamus antidiuretic
hormone (ADH), which may also be the cause of hyponatremia in
COVID-19 patients (7); Finally, electrolyte disturbances can also be
caused by inappropriate use of diuretics and hypotonic fluids in
patients with excessive fluid load for treatment.

Most patients with SARS-CoV-2 infection present with
pneumonia, and the most common symptoms include fever,
cough, dyspnea, and sore throat. Chest CT is an essential and
helpful technique for diagnosing and evaluating lung diseases,
including pneumonia. CT can detect the signs of pulmonary
involvement of COVID-19 and can be used for highly sensitive
diagnosis earlier than the reverse transcription-polymerase chain
reaction (RT-PCR) test results, which is helpful to quickly and
accurately determine the severity of the disease to carry out
reasonable management and treatment of patients (8, 9). Many
chest CT scoring systems have been developed to assess the severity
of lung involvement, and the TSS is widely used (10, 11).

This study explored the association between semi-quantitative
CT visual score and endocrine-related factors in patients with
SARS-CoV-2 infection and hyponatremia, providing evidence for
the vital role of CT score in pneumonia diagnosis, disease severity
stratification, and prognosis analysis.

2 Materials and methods

2.1 Study design

This study was a cross-sectional study. Patients admitted to the
First Hospital of Shanxi Medical University and diagnosed with
COVID-19 from January 1 to January 31, 2023, were included. The
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study was approved by the Ethics Committee of the First Hospital of
Shanxi Medical University (Approval number:2018K002). The
patients/participants provided written informed consent to
participate in this study.

Inclusion criteria:

1. SARS-CoV-2 infection was positive by RT-PCR 2. Chest CT
showed definite pulmonary infection 3. Age >18 years old

Exclusion criteria:

1. Patients who were missing CT imaging data and laboratory
indicators 2. Patients with hypernatremia 3. Patients were
readmitted due to COVID-19 and transferred patients

According to inclusion and exclusion criteria, 343 patients were
included in the final study (Figure 1). The purpose of this study is to
explore the CT semi-quantitative score of COVID-19 patients with
hyponatremia prediction effect. Therefore, patients included in the
study must demonstrate the presence of SARS-CoV-2 infection and
complete data on the underlying laboratory tests and examinations,
and those who did not meet these criteria were excluded. Second,
given the rarity of hypernatremia in COVID-19 patients
(prevalence of 3.7% to 7%) (12, 13), we also excluded patients
with hypernatremia because only 15 patients had hypernatremia in
this study, which could not meet the statistical requirements.

2.2 Definition of covariates

The variables studied included age, sex, vital signs, symptoms,
comorbidities, medication at admission, and laboratory parameters.
The clinical symptoms we collected included fever, shortness of breath,
cough/expectoration, muscle soreness, disturbance of consciousness,
poor appetite, vomiting, and diarrhea. Comorbidities collected
included diabetes, hypertension, coronary heart disease, cerebral
infarction, thyroid dysfunction, and pulmonary disease. Medications
on admission included diuretics, ACEI/ARBs, and glucocorticoids.
Laboratory indicators included blood cell analysis, liver and kidney
function indicators, coagulation indicators, electrolytes, inflammatory
indicators, and other indicators. Blood cell analysis is measured by
instrumental method (CAL8000), the determination of liver and
kidney function by adopting the method of rate method and
bromocresol green method, electrolytic determination with ion
selective electrode (indirect method), coagulation function is
measured by coagulation method and immunoturbidimetric method
(ACL TOP 550), BNP and PCT are measured by microparticle
chemiluminescence method and thyroid function is measured by
electrochemiluminescence method (COBAS 6000).

Hyponatremia was defined as serum sodium less than 135 mmol/
L, measured mainly by the indirect ion-selective electrode (ISE)
method. Patients were further classified as having mild, moderate,
or severe hyponatremia if their serum sodium levels were 130 to <135
mmol/L, 125 to <130 mmol/L, and <125 mmol/L, respectively.

2.3 CT image acquisition and interpretation

All patients underwent a chest CT scan on admission. CT image
data were obtained from one of four CT scanners (GE Lightspeed
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853 patients with laboratory-
confirmed COVID-19 admitted to
the First Hospital of Shanxi
Medical University. from January
1 to January 31, 2023

543 patients with COVID-19
infection and pulmonary
manifestations

Final study group of 343
participants

FIGURE 1
Flowchart of the study design.

VCT 64, GE HealthCare, American; Somatom Force, Siemens
Healthineers, Germany; IQon Spectral CT, Philips Healthcare, The
Netherlands; NeuViz 128 CT, Neusoftmedical, China). The CT scan
was performed with the patient supine and at the end of inspiration
without administering intravenous contrast material. The scanning
range was from the apex to the base of the lung. According to the
international recommendations and other studies (14, 15), the
parameters used were tube voltage (120kV) and tube current (60—
100 mA), which were set by the automatic exposure control system
(iDose) program, and the image quality was customized according to
the needs of low dose patients. Thoracic VCAR pulmonary function
analysis software (AW VolumeShare 7, GE company, American) was
used to analyze the image data. The 0.625 mm slice thickness image at
the end of deep inspiration was post-processed, and the threshold
limit (-1024 to -200 HU) and automatic segmentation technology
were used. The heart, trachea, rib, and other lung tissues were
segmented to obtain a three-dimensional lung tissue model.

2.4 Semiquantitative CT visual score

In this study, we used the TSS to analyze chest CT findings in
hospitalized patients. TSS is a digital scoring system based on visual
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Exclusion of patients who were
missing CT imaging data (n=278)
or transferred from other
hospitals (n=32)

Exclusion of patients who were
missing laboratory indicators
(n=185) or hypernatremia (n=15)

evaluation that analyzes the range of lesions in CT images. Two
radiologists with years of experience in imaging diagnosis
performed scoring. To more clearly express mild and moderate
hyponatremia CT score difference, our lung lesions (ground-glass
opacity, consolidation, GGO + consolidation) to the following
classification: 0:0%; 1:1-10%; 2: 11-20%; 3:21-30%; 4:31-40%;
5:41-50%; 6: >50%. According to these percentages, 0,1,2,3,4,5
and 6 points are given, respectively. The final TSS was the total
score of the left and right lungs (range 0-12).

2.5 Statistical analysis

The conformity of the data to a normal distribution was
evaluated using skewness, kurtosis tests, and histogram plots.
Normally distributed continuous variables are presented as mean
and standard deviation (+ SD); a Student t-test was used. Non-
normalized variables were presented as medians with interquartile
ranges, and a Mann-Whitney U test was used. Categorical variables
are described as the number (percentage), and Chi-square or
Fisher’s exact tests were used. Multivariate analysis was carried
out using Logistic Regression (Forward Selection: Likelihood Ratio)
to determine the significant risk factors of hyponatremia. The
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analysis of variance (ANOVA) was used in normal distribution
variables, and the Kruskal Wallis test was used in non-normal
distribution variables to compare the hyponatremia group (mild/
moderate/severe) and the difference between normonatremia
group. The data was entered and analyzed using the IBM SPSS 27
system (SPSS Inc., Chicago, IL, USA). A P-value <5% was taken for
statistical significance.

3 Results

3.1 General characteristics of COVID-
19 patients

A total of 343 eligible patients were included in the study, 58.6%
male. The mean age of the patients was 74.5 + 13.1 years, and 89.5%
were older than 60 years. Cough/expectoration (74.9%), poor
appetite (66.2%), and shortness of breath (44.6%) were the most
common clinical symptoms observed. Hypertension and diabetes
were the most common comorbidities, accounting for 49.0% and
25.9%, respectively. Of the 343 study patients, 43.4% had
hyponatremia, whereas 56.6% had normonatremia (Table 1).
Among the patients with hyponatremia, the prevalence of mild,
moderate, and severe hyponatremia was 53.7%, 16.8%, and 29.5%,
respectively (Supplementary Table SI).

Patients in the hyponatremia group were significantly older [M
(range), 80.0(70.0-86.5) vs 72.5(65.0-82.8) years old, P < 0.001]
than those in the normonatremia group. Vomiting (14.1% vs 5.7%,
P=0.008) and diuretic use (10.1% vs 3.1%, P=0.008) in the
hyponatremia group were significantly different from those in
normonatremia group. The remaining measures of vital signs,
symptoms, coexisting conditions, and out-of-hospital medication
use did not differ significantly between the two groups (Table 1).

3.2 Laboratory findings and TSS

Among the laboratory indicators in Table 1, the median (IQR)
findings of complete blood count (white blood cell/platelet/
hemoglobin/neutrophil), renal function indexes (BUN, SCr), ALT,
potassium, coagulation indicators (PT, APTT, and FDP), and BNP
were within normal limits. Compared with the normonatremia
group, the white blood cells and neutrophils in the hyponatremia
group increased, while the platelets and lymphocytes decreased, and
the difference was statistically significant (all P< 0.05, Table 1).
Compared with the normonatremia group, the median eGFR and
chlorine in the hyponatremia group were lower than the lower limit
of normal, and the difference was statistically significant (all P<
0.05, Table 1). The median blood glucose, D dimer, and PCT in the
hyponatremia group were increased, which were higher than the
upper limit of normal, and the difference was statistically significant
(all P< 0.05, Table 1).

Excellent agreement was achieved between the two radiologists
in the assessment of lung lesions, with an average measurement
intraclass correlation coefficient (ICC) of 0.953 (95% CI, 0.942-
0.962; P < 0.001) (Supplementary Table S2). Thus indicating a high
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reliability of the semi-quantitative method, in the following analysis,
the average of the CT scores of the two radiologists was selected
instead of using the scores of radiologist 1 or radiologist 2. For TSS,
the hyponatremia group showed higher scores than the
normonatremia group [M(range), 3.5(2.5-5.5) vs 3.0(2.0-4.5)
scores, P=0.001] (Table 1), indicating more severe lung lesions.
The hyponatremia was further divided into mild, moderate, and
severe groups, and the difference in CT scores between different
degrees of hyponatremia group and normonatremia group was
analyzed. The results showed that the difference between the
normonatremia and mild hyponatremia groups (P=0.001) and the
normonatremia and moderate hyponatremia groups (P=0.023)
were significant (Figure 2).

3.3 Risk factors for hyponatremia in
patients with SARS-CoV-2 infection

Univariate and multivariate logistic regression analyses were
performed to explore the risk factors of hyponatremia in patients
with SARS-CoV-2 infection, combined with the statistics of the
difference between the normonatremia group and the hyponatremia
group. By univariate logistic regression analysis, statistically
significant risk factors for hyponatremia included age, vomiting,
diuretics, platelets, lymphocytes, neutrophils, NLR, eGFR, APTT,
BNP, PCT, and TSS, as shown in Table 2.

Based on our clinical observations, fluid loss due to diarrhea/
vomiting and medications such as diuretics, ACEI/ARBs, or
glucocorticoids can cause electrolyte disturbances. After
excluding the variables with higher degree of collinearity,
multivariate logistic regression analysis was performed, and the
results showed that (Table 2) age (OR=1.039, 95%CI 1.018-1.061,
P<0.001), vomiting (OR=2.920, 95%CI 1.233-6.913, P=0.015),
neutrophil count (OR=1.167, 95%CI 1.079-1.263, P<0.001), TSS
score (OR=1.203, 95%CI 1.069-1.354, P=0.002), and platelet
count (OR=0.995, 95%CI 0.991-0.998, P=0.002) were
independent risk factors for hyponatremia in COVID-
19 patients.

3.4 The thyroid function between
normonatremia group and
hyponatremia group

To explore the role of endocrine-related factors in developing
hyponatremia in COVID-19 patients, we performed a subgroup
analysis of 104 patients with available thyroid function data. The
results showed (Table 3) that the levels of free triiodothyronine
(FT3), free thyroxine (FT4), and thyroid stimulating hormone
(TSH) were within the normal range. However, the levels of FT3,
FT4, and TSH in the hyponatremia group were lower than those in
the normonatremia group, and the difference in FT3 (3.1 + 0.9 vs
3.7 £ 0.9, P=0.001) and TSH [M (range), 1.4 (0.8-2.4) vs 2.2 (1.2-
3.4) ulU/ml, P=0.038] between the two groups were statistically
significant. The result may indicate that SARS-CoV-2 infection
affects pituitary and thyroid function differently.
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TABLE 1 Demographic and clinical characteristics of the patients. TABLE 1 Continued

Normonatremia Normonatremia

Hyponatremia P- Hyponatremia P-

(n=194) (n=149) value (n=194) (n=149) value
Demographic characteristics Medication at admission
Age (years) 72.5 (65.0-82.8) 80.0 (70.0-86.5) <0.001 Glucocorticoids, 150 (7.7) 80 (5.4) 0,386
n (%)
Male, n (%) 110.0 (56.7) 91.0 (61.1) 0.415
Body mass index 239 (21.1-26.8) 242 (21.3-26.7) 0.769 Laboratory tests
(kg/mz)
Leukocyte 5.7 (4.1-7.8) 6.2 (4.8-9.9) 0.008
Vital signs (x10°/L)
Body 36.5 (36.3-36.8) 36.6 (36.3-37.0) 0.087 Hemoglobin 137.0 (124.0-148.0) 134.0 (121.5-144.0) 0.186
temperature (°C) (g/L)
Pulse 80.0 (76.0-90.0) 80.0 (73.5-90.5) 0.430 Platelets (x10°/L) 194.0 (142.0-246.0) 173.0 (124.5-229.5) 0.016
(Times/min)
Lymphocytes 1.0 (0.7-1.4) 0.8 (0.5-1.1) <0.001
SBP (mmHg) 130.0 (118.0-139.8) 1320 (118.0-1440) | 0325 (x10°/L)
DBP (mmHg) 76.0 (70.0-82.0) 76.0 (69.0-82.5) 0.839 Neutrophils 3.8 (24-6.5) 4.7 (3.3-7.9) <0.001
(x10%/L)
Symptoms
NLR 3.8 (2.5-6.8) 7.3 (3.5-12.9) <0.001
Fever, n (%) 28.0 (14.4) 31.0 (20.8) 0.121
Blood glucose 6.7 (5.8-8.8) 7.0 (6.2-9.2) 0.058
Shortness of 93.0 (47.9) 60.0 (40.3) 0.157 (mmol/L)
breath, n (%)
ALT (U/L) 20.5 (13.0-35.3) 27.0 (18.0-38.5) 0.022
Cough/ 153.0 (78.9) 104.0 (69.8) 0.055
Expectoration, AST (U/L) 27.0 (21.0-41.0) 37.0 (24.0-57.0) <0.001
n (%) .
Albumin (g/L) 35.8 (33.0-39.3) 345 (31.8-38.1) 0.028
Muscle soreness, 26.0 (13.4) 14.0 (9.4) 0.252
%) BUN (mmol/L) 5.3 (4.0-7.3) 5.5 (4.1-7.9) 0.558
Disturbance of 12,0 (6.2) 160 (10.7) 0.127 SCr (umol/L) 67.0 (57.0-81.6) 71.0 (56.0-88.5) 0.466
consciousness, eGFR (mL/ 91.5 (75.7-100.1) 85.2 (68.9-95.0) 0.004
n (%) min/1.73m?)
Poor appetite, 124.0 (63.9 103.0 (69.1 0.312
ppett ¢ ) ( ) Potassium 3.9 (3.6-4.3) 3.9 (3.5-4.2) 0.197
n (%)
(mmol/L)
Vomiting, n (% 11.0 (5.7 21.0 (14.1 0.008
g 1 (%) 57) ( ) Chlorine 102.7 (100.4-104.8) 93.8 (87.2-98.1) <0.001
Diarrhea, n (%) 6.0 (3.1) 6.0 (4.0) 0.641 (mmol/L)
Comorbidities PT (s) 13.6 (12.8-14.4) 134 (12.7-14.3) 0.392
Diabetes, n (%) 45.0 (23.2) 44.0 (29.5) 0.185 APTT (s) 31.6 (29.3-33.7) 32.3 (29.9-35.9) 0.035
Hypertension, 97.0 (50.0) 71.0 (47.7) 0.666 FDP (ug/ml) 4.7 (1.8-163.5) 4.4 (1.9-133.5) 0.504
n (%)
D dimer (mg/L) 22 (0.3-4.5) 1.8 (0.3-4.4) 0.639
Coronary heart 31.0 (16.0) 16.0 (10.7) 0.162
disease, 1 (%) PCT (ng/ml) 0.26 (0.16-0.35) 0.29 (0.20-0.45) 0.011
Cerebral 28.0 (14.4) 22.0 (14.8) 0.931 BNP (ng/L) 52.6 (26.8-122.8) 109.0 (48.0-270.9) <0.001
. . o
infarction, (%) hs-cTnT (pg/ml) 9.5 (4.4-19.6) 13.5 (7.3-35.5) <0.001
Thyroid 7.0 (3.6 4.0 (2.7 0.863
rolc. (3.6) @7 CT assessment
dysfunction,
n (%)
TSS (scores) 3.0 (2.0-4.5) 3.5 (2.5-5.5) 0.001
P‘ulmonary 5.0 (2.6) 9.0 (6.0) 0.108 Values are expressed as mean (+ standard deviation), median (interquartile range), or number
disease, n (%) (percentage). Serum creatinine (SCr) measurements were used to calculate the estimated
L. . Glomerular Filtration Rate (eGFR) by using the 2021 Chronic Kidney Disease Epidemiology
Medication at admission Collaboration (2021 CKD-EPI) Creatinine equation (16). SBP, systolic blood pressure; DBP,
diastolic blood pressure; ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin
Diuretics, 1 (%) 6.0 (3.1) 15.0 (10.1) 0.008 receptor blocker; NLR, neutrophil to lymphocyte ratio; ALT, Alanine aminotransferase; AST,
aspartate aminotransferase; BUN, blood urea nitrogen; Cr, creatinine; eGFR, estimated
ACEI/ARBs, 15.0 (7.7) 17.0 (11.4) 0.245 glomerular filtration rate; PT, prothrombin time; APTT, activated partial thromboplastin
n (%) time; FDP, fibrinogen degradation products; PCT, procalcitonin; BNP, brain natriuretic
peptide; hs-cTnT, high-sensitivity cardiac troponin T; TSS, total severity score.
(Continued) A P-value <0.05 was considered statistically significant, shown in bold.
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FIGURE 2

Differences in CT scores of different degrees of hyponatremia. The difference between the normonatremia and mild hyponatremia groups, and the
normonatremia and moderate hyponatremia groups were significant. **P<0.01, ***P<0.001.

We performed a correlation analysis further to explore the
relationship between FT3 and serum sodium. Spearman correlation
analysis showed that there was a positive correlation between FT3
and serum sodium (r,=0.358, P< 0.001) (Table 4). The higher the
level of FT3, the higher the serum sodium of patients, but this
correlation was weak.

4 Discussion

Hyponatremia is a common electrolyte disorder associated
with high morbidity and mortality, about 30% in hospitalized
patients, and the incidence is higher in intensive care units (17).
Compared to patients with pneumonia, COVID-19 patients with a
significantly higher risk of hyponatremia (3, 18). Therefore, active
prevention and treatment of hyponatremia greatly help the
prognosis of the disease. Frontera and colleagues found that
among patients with COVID-19, moderate (Na 121-129 mEq/L)
and severe (Na < 120mEq/L) hyponatremia accounted for 7% and
1% of the study population, respectively (19). In our study, which
included only patients with COVID-19, the incidence of
hyponatremia was 43.4%. The prevalence of mild, moderate,
and severe hyponatremia was 23.3%, 7.3%, and 12.8%,
respectively. The higher incidence of hyponatremia may be
related to the advanced age of patients and more comorbidities,
and these factors are often associated with poor prognosis.
Secondly, because our data came from a large tertiary general
hospital, there were more critically ill patients, so the incidence of
hyponatremia in our study was high.

In this study, older age, vomiting, increased neutrophil count,
and higher TSS score were associated with a higher risk of
hyponatremia in COVID-19 patients. Among patients with
SARS-CoV-2 infection, older age, and more coexisting conditions
are associated with more severe disease, and these same factors are
present in patients with hyponatremia. The study by Muhammad
Anees et al. found that an elevated NLR was a risk factor for
hyponatremia in hospitalized patients with COVID-19 (20).
Although NLR was not proven to be a risk factor for the
development of hyponatremia in our study by multivariate
logistic regression, neutrophil count was proved to be a risk factor
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for the development of hyponatremia in COVID-19 patients by
univariate or multivariate logistic regression.

The increase in platelet count can reduce the risk of hyponatremia,
but the reduction effect is weak. Thrombocytopenia is another feature
of SARS-CoV-2 infection, and in a retrospective study of 1,476
hospitalized COVID-19 patients, 20.7% were found to have
thrombocytopenia, and thrombocytopenia was associated with
increased mortality (21). We found that thrombocytopenia was
more in the hyponatremia group, and the difference was statistically
significant compared with the normonatremia group. The causes of
thrombocytopenia were related to the direct effect of the virus on bone
marrow cells and the formation of autoantibodies by platelets and
their participation in immune regulation (22, 23).

ADH is generally produced by the supraoptic and
paraventricular hypothalamic nuclei, stored and released from the
posterior pituitary. ADH can also be derived from non-pituitary
sources, and excessive release of the hormone from other sites
results in SIAD. SIAD can be induced by various factors, including
tumors, infections such as pneumonia and meningitis, and
neurological diseases such as stroke (24). The effect of SIAD on
hyponatremia in community-acquired pneumonia has been
confirmed by studies (25), and SIAD is considered the leading
cause of hyponatremia in COVID-19 patients. IL-6 is one of the
most critical cytokines in inflammatory syndrome, causing
pathological changes after SARS-CoV-2 infection (26). Elevated
IL-6 levels can induce ADH secretion by directly stimulating the
hypothalamus and inducing alveolar basement membrane damage
and pulmonary hypoxia (27). Second, after SARS-CoV-2 infection,
activated immune cells (mainly T and B lymphocytes) and released
proinflammatory cytokines stimulate immune cells to release stored
ADH (28).

In the study by A Berni et al,, IL-6 was elevated in 17 of 29
patients with SARS-CoV-2 infection and inversely correlated with
serum sodium concentration (29). In our study, IL-6 was also
elevated in the hyponatremia group, and the difference was
statistically significant compared with the normonatremia group.
Furthermore, in the linear analysis, we also found a weak negative
correlation between IL-6 and serum sodium (Supplementary Tables
S3, S4). This result of our study may further support the idea of a
nonosmotic release of ADH associated with IL-6.
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TABLE 2 Logistic regression analysis to predict the indicators of hyponatremia in patients with COVID-19.

Univariate model

OR (95% Cl)

Multivariate model

P-value OR (95% Cl) P-value

Demographic characteristics

Age (years) 1.036 (1.017-1.056) <0.001 1.039 (1.018-1.061) <0.001
Symptoms

Vomiting 2.729 (1.272-5.858) 0.010 2.920 (1.233-6.913) 0.015
Diarrhea 1.315 (0.415-4.162) 0.642

Medication at admission

Diuretics 3.507 (1.327-9.274) 0.011

ACEI/ARBs 1.537 (0.741-3.189) 0.248

Glucocorticoids 0.677 (0.279-1.642) 0.388

Laboratory parameters

Platelets (x10°/L) 0.997 (0.994-0.999) 0.016 0.995 (0.991-0.998) 0.002
Lymphocytes (x10%/L) 0.494 (0.329-0.749) <0.001

Neutrophils (x10°/L) 1.038 (1.013-1.171) 0.001 1.167 (1.079-1.263) <0.001
NLR 1.053 (1.024-1.083) <0.001

ALT (mmol/L) 1.000 (0.996-1.004) 0.848

AST (mmol/L) 1.002 (0.999-1.005) 0.196

Albumin 0.968 (0.928-1.009) 0.124

eGFR (mL/min/1.73m?) 0.990 (0.981-1.000) 0.039

APTT (s) 1.036 (0.999-1.075) 0.058

PCT (ng/ml) 1.062 (1.003-1.125) 0.040

BNP (ng/L) 1.001 (1.000-1.002) 0.007

hs-cTnT (pg/ml) 1.001 (0.999-1.003) 0.226

CT assessment

TSS (scores) 1.220 (1.094-1.361) <0.001 1.203 (1.069-1.354) 0.002

OR, odds ratio; CI, confidence intervals; ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; AST, aspartate aminotransferase; eGFR, estimated glomerular

filtration rate; APTT, activated partial thromboplastin time; PCT, procalcitonin; BNP, brain natriuretic peptide; TSS, total severity score.

A P-value <0.05 was considered statistically significant, shown in bold.

With the rapid spread of COVID-19 worldwide, many scoring
systems for lung assessment have been released. Chest CT severity
score, total severity score, modified total severity score, and other
scoring methods have excellent reliability in clinical assessment (11,
30). Peijie Lyu and colleagues found that qualitative or quantitative
chest CT measures can assess the clinical severity of COVID-19
pneumonia (31). Miklos Szabo et al. found that the chest CT scoring
system (CCTS) and specific chest CT patterns can predict
ventilation requirements and mortality in COVID-19 (32). In this
study, we used the TSS semi-quantitative method to assess the
severity of lung lesions in patients with COVID-19 and then
correlate it with hyponatremia. Because our study included a
small number of patients with severe or critical lung illness, we
modified the CT score of the lung to make it easier to identify mild
and moderate pulmonary infections and to explore their effect on
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hyponatremia. The results showed that there was a significant
difference in total severity score between the normonatremia
group and the hyponatremia group, which suggested that CT
score may be a risk factor for hyponatremia, and the results of
multivariate logistic regression also proved this, the higher the TSS
score, the higher the risk of hyponatremia.

CT score can predict the severity of pneumonia after SARS-
CoV-2 infection (31-33), and hyponatremia can be caused by
SARS-CoV-2 infection (34, 35). Many studies have confirmed
these conclusions. To the best of our knowledge, this study is the
first to correlate CT score with hyponatremia, and further
exploration showed a weak inverse association between TSS and
serum sodium (Supplementary Table S5), suggesting that not only
can CT score predict the risk of hyponatremia, but it also seems to
predict the severity of hyponatremia. Of course, we still need to do
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TABLE 3 Comparison of thyroid function between Normonatremia
group and hyponatremia group.

Normonatremia Hyponatremia P-value

(n=54)

(n=50)

Thyroid function

FT3 (pmol/L) 3.7+09 31409 0.001
FT4 (pmol/L) 16.9 (15.2-18.8) 15.7 (13.2-21.1) 0.507
FT3/FT4 0.23 (0.18-0.25) 0.21 (0.16-0.27) 0.486
TSH (ulU/ml) 2.2 (1.2-3.4) 1.4 (0.8-2.4) 0.038
CT assessment

TSS 2.3 (2.0-4.0) 2.8 (2.0-3.6) 0.172

Values are expressed as mean (+ standard deviation) or median (interquartile range). FT3, free
triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; TSS, total
severity score.

A P-value <0.05 was considered statistically significant, shown in bold.

much validation. Given the widespread and convenient use of chest
CT examination in clinical practice, our results are encouraging,
which means that CT score can not only predict the occurrence of
hyponatremia after SARS-CoV-2 infection but also provide new
ideas for evaluating the association between other lung infections
and hyponatremia. Although derived from inpatients, our findings
may also be helpful in the outpatient setting since chest CT is
routinely performed based on lung lesions. CT scores can predict
the development of hyponatremia before serologic tests, which may
facilitate early intervention in the outpatient setting.Multiple studies
have reported impaired thyroid function in COVID-19 patients,
including decreased TSH and T3 levels, decreased TSH levels alone,
decreased TSH and increased T4 levels, and decreased TSH and FT4
(36-39). The causes of thyroid dysfunction may be related to a
direct effect of COVID-19 on thyroid follicular cells or to
disturbances in immune function (40, 41). Our study found that
TSH and FT3 in patients with hyponatremia were lower than those
with normal serum sodium. Similarly, W Gao et al. found that FT3
concentration was significantly lower in patients with severe
COVID-19 than in non-severe patients, and FT3 reduction could
be used as an independent predictor of all-cause mortality in
patients with severe COVID-19 (42). We considered that the
reasons for the lower TSH and FT3 in the hyponatremia group
were as follows (1): After SARS-CoV-2 infection, the pituitary cells
of patients were damaged (43), resulting in the increased release of
ADH and the decreased secretion of TSH. The increased release of
ADH can cause dilute hyponatremia, while the decreased secretion
of TSH can cause a decrease in FT4 and FT3 (2). Cytokine IL-6 is
involved in SARS-CoV-2-related cytokine storm (44). Elevated IL-6

TABLE 4 Correlation between FT3 and serum sodium.

Correlation coef- Spearman 95% Cl
ficient(r) P-value Low | High
FT3-
Serum 0.358 <0.001 0.172 0.519
sodium

CI, confidence intervals; FT3, free triiodothyronine.
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can cause the non-osmotic release of ADH and increase the
occurrence of hyponatremia. McGonagle et al. found that
increased IL-6 and TNF-o. were associated with decreased FI3
levels in patients with severe COVID-19 (45). In patients with
SARS-CoV-2 infection, elevated IL-6 is associated with subacute
thyroiditis, Graves’ disease, and Hashimoto’s thyroiditis (46), while
abnormalities of the hypothalamic-pituitary-thyroid axis can cause
a series of changes in TSH and thyroid hormones. Hyponatremia
and low FT3 together affect the severity and prognosis of the disease
(3). The patients in our hyponatremia group had a poorer general
condition (Supplementary Table S6), were at higher risk for
multiorgan dysfunction, and were more likely to be treated with
glucocorticoids according to guideline recommendations. In
contrast, the administration of glucocorticoids decreases TSH
levels and inhibits the conversion of T4 to T3 while stimulating
the conversion of T4 to rT3 (47, 48), the changes similar to those
observed in non-thyroidal illness syndrome. Decreases in TSH and
T3 are common, and the degree of decrease in T3 correlates with
disease severity. Although the results of these studies were based on
patients with SARS-CoV-2 infection, it also suggests that we should
be aware of thyroid abnormalities in other lung lesions.

Our study also has several additional limitations: First, we did
not observe the dynamic evolution of CT scores and hyponatremia
in this cross-sectional study, and the lack of a certain follow-up
period may make our conclusions partial. Second, the semi-
quantitative CT score used in this study is subject to error and
unvalidated, as well as the lack of specific serologic measures of
specificity (e.g., ADH), which could attenuate the association
between CT score and hyponatremia. Third, this study lacked a
study of patients with hypernatremia because hypernatremia may
be associated with worse outcomes (ICU admission, intubation,
death). Finally, there were no statistics on vaccination status, such
as the occurrence of autoimmune thyroid disease after COVID-19
vaccination, in some studies, so it is difficult to rule out the effect of
this confounding factor.

In conclusion, in this study, for the first time, the semi-
quantitative CT visual score was associated with hyponatremia,
and the endocrine factor (thyroid function) was analyzed to clarify
the relationship further. It was found that the CT score level can be
used to evaluate the occurrence of hyponatremia, which can achieve
early detection, prediction, and intervention in clinical practice. It is
helpful to reduce the occurrence of clinical complications. Although
our study population was derived from patients with SARS-CoV-2
infection, it provides a new perspective for analyzing patients with
other lung lesions or endocrine abnormalities.

5 Conclusion

In our study, CT semi-quantitative score was associated with
hyponatremia for the first time, and the endocrine factor (thyroid
function) was analyzed to clarify further the association, and high
TSS was found to be a risk factor for hyponatremia. Although our
study population was derived from patients with SARS-CoV-2
infection, it provides a new perspective for analyzing patients
with other lung lesions or endocrine abnormalities. The haze
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brought by COVID-19 has gradually dissipated, but new variants
still exist, and the research on long COVID-19 is in the early stages.
We hope our research can provide a reference for disease
prevention, diagnosis, and treatment.
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Thyroid dysfunction in the wake
of Omicron: understanding its
role in COVID-19 severity

and mortality

Qingfeng Zhang', Zongyue Zhang', Xu Liu, Yixuan Wang,
Hao Chen, Yueying Hao, Shigian Zha, Jingyi Zhang, Yang He,
Beini Zhou and Ke Hu @®*

Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University,
Wuhan, China

Purpose: SARS-CoV-2 can invade the thyroid gland. This study was to delineate
the risk of thyroid dysfunction amidst the prevalence of the Omicron variant, and
to investigate the correlation between thyroid function and Coronavirus disease
2019 (COVID-19) outcomes. The study also aimed to ascertain whether thyroid
dysfunction persisted during COVID-19 recovery phase.

Methods: This was a retrospective cohort study. COVID-19 patients from the
Renmin Hospital of Wuhan University, China during the epidemic of Omicron
variants were included, and their thyroid function were analyzed in groups.

Results: A history of thyroid disease was not associated with COVID-19
outcomes. COVID-19 can lead to a bimodal distribution of thyroid dysfunction.
The severity of COVID-19 was inversely proportional to the levels of thyroid-
stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4),
leading to a higher prevalence of thyroid dysfunction. Severe COVID-19 was a
risk factor for euthyroid sick syndrome (ESS) (OR=22.5, 95% ClI, 12.1 - 45.6).
Neutrophil to lymphocyte ratio mediated the association between severe
COVID-19 and ESS (mediation effect ratio = 41.3%, p < 0.001). ESS and
decreased indicators of thyroid function were associated with COVID-19
mortality, while high levels of FT3 and FT4 exhibited a protective effect against
death. This effect was more significant in women (p < 0.05). During the recovery
period, hyperthyroidism was quite uncommon, while a small percentage of
individuals (7.7%) continued to exhibit hypothyroidism.

Conclusion: COVID-19 severity was linked to thyroid dysfunction. Severe
COVID-19 increased the risk of ESS, which was associated with COVID-19
mortality. Post-recovery, hyperthyroidism was rare, but some individuals
continued to have hypothyroidism.

KEYWORDS

COVID-19, thyroid dysfunction, hypothyroidism, hyperthyroidism, Omicron variant,
euthyroid sick syndrome
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Introduction

SARS-CoV-2 is the causative agent in COVID-19 (1). The
virus’s envelope contains a spike glycoprotein that interacts with
the angiotensin-converting enzyme 2 (ACE2) with high specificity
and affinity (2). ACE2, a transmembrane protein is found in various
organs, including the endocrine system, potentially facilitating the
transmission of the virus to these organs. Within the endocrine
system, ACE2 is most abundantly present in the testicles, followed
by the thyroid and the hypothalamus. The presence of ACE2 in the
thyroid renders it a viable target for viral entry (3). Autopsy samples
procured from the thyroid gland post-mortem have demonstrated
that SARS-CoV-2 can directly infect the thyroid gland, the direct
viral insult combined with an intense immune response may trigger
or worsen thyroid conditions in predisposed individuals (4, 5).

Thyroid hormones play a pivotal role in regulating the immune
system (6). Consequently, COVID-19 could potentially influence
thyroid function, and in ture, the state of thyroid function could
impact the prognosis of COVID-19.

Existing perspectives suggest that abnormal thyroid function
can manifest during the active phase of COVID-19 and persist into
the convalescence phase (7). ESS is most prevalent among COVID-
19 patients (3) and has been identified as an independent risk factor
for disease severity (8). Furthermore, a reduction in FT3 levels has
been independently associated with all-cause mortality in patients
with severe or critical COVID-19 (9). However, most of the existing
research data were collected during the initial phase of the
pandemic, when the SARS-CoV-2 variants of concern (VOC)
were not yet widespread. Due to the limited sample size, there is
a lack of comprehensive studies describing the relationship between
COVID-19 and thyroid function. Furthermore, while it is known
that both high and low levels of thyroid hormone can be
detrimental, no previous studies have explored the non-linear
relationship between these hormone levels and the outcomes of
COVID-19.

From late 2022 to early 2023, China experienced a pandemic of
Omicron variants. Therefore, the aim of this study is to construct a
comprehensive map of COVID-19 and thyroid function in a large
retrospective cohort during the Omicron variants epidemic.

Materials and methods
Subjects and study design

Our study included 1505 patients admitted to Renmin Hospital
of Wuhan University in China from December 15, 2022, to January
25, 2023. All individuals had access to serum FT3, FT4, and TSH
concentrations, and were diagnosed with COVID-19. Among them,
111 had pre-existing thyroid conditions, while the remaining 1394
did not. COVID-19 outcomes were compared between these two
groups. The 1394 patients without thyroid disease were further
categorized into four severity groups (mild, moderate, severe,
critical) and two outcome groups (survival, death). Thyroid
function and diagnostic categories were compared across these
groups. For the longitudinal analysis of thyroid function, we
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examined the patient records in our study for any thyroid
function tests conducted prior to their COVID-19 diagnosis
(‘Before COVID-19’) and any follow-up thyroid function tests
conducted after their initial hospital admission for COVID-19
(‘After COVID-19’). The study was approved by the Ethics
Committee of Renmin Hospital of Wuhan University, and
informed consent was exempted due to its retrospective nature.

COVID-19 diagnosis and severity

A COVID-19 diagnosis is confirmed through a real-time
reverse transcriptase polymerase chain reaction (RT-PCR) test,
using a nasopharyngeal swab. The severity of the disease is
classified into four categories: Mild disease: Characterized by mild
clinical symptoms without any evidence of pneumonia on imaging.
Moderate disease: Defined by the presence of fever and respiratory
symptoms, with imaging revealing signs of pneumonia. Severe
disease: Diagnosed if any of the following conditions are met:
respiratory rate >30/min, SpO, < 93% at rest, and >50%
progression in 48 hours on imaging. Critical disease: Identified by
the occurrence of respiratory failure necessitating mechanical
ventilation, shock, or the requirement for admission to an
intensive care unit (10).

Thyroid diagnostic categories

All samples were analyzed using the ADVIA 2400 Automatic
Biochemical Analyzer from Siemens, Germany. The reagents for the
serum free triiodothyronine (FT3), free thyroxine (FT4), and
thyroid-stimulating hormone (TSH) tests were all products of
Siemens. Normal ranges are as follows: TSH (0.55-4.78 mIU/L),
T3 (2.3-4.2 pg/mL), and T4 (0.89-1.76 ng/dL). Overt
hyperthyroidism is defined as a subnormal serum TSH with
elevated FT3 and/or FT4. Subclinical hyperthyroidism is defined
as a subnormal TSH with normal FT3 and FT4 (11). Overt
hypothyroidism is defined as TSH above the reference range and
FT3 and/or FT4 below the reference range. Subclinical
hypothyroidism is defined by TSH above the reference range and
both FT3, FT4 within the normal range (12). Euthyroid sick
syndrome (ESS) is characterized by a decreased FT3 and/or FT4
without an increased TSH (8). Euthyroid hyperthyroxinemia/TSH-
mediated hyperthyroidism are defined by TSH within or above the
reference range and FT3 and/or FT4 above the normal range (11).
TSH, FT3, and FT4 are all within the normal range defined
as euthyroid.

Statistical analysis

Continuous variables were expressed as median (IQR) and were
compared using the Mann-Whitney U test for two-group
comparisons and Kruskal-Wallis test for comparisons among four
groups. Categorical variables were presented as absolute values (n)
or percentages (%) and were analyzed using the chi-square test.
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Multivariate logistic regression analyses were conducted to explore
the relationships among thyroid disease and outcomes of
COVID-19, the severity of COVID-19 and ESS, as well as ESS
and mortality. Causal mediation analysis was conducted to examine
the relationships between severe/critical COVID-19 and ESS, as
well as between severe/critical COVID-19 and mortality. Restricted
cubic spline (RCS) analyses were performed to investigate the
nonlinear relationships between levels of TSH, FT3, and FT4, and
the risk of mortality, separately for males and females. Wilcoxon
paired rank sum tests and Friedman test were used for pairwise
comparison of TSH, FT3, FT4 in the longitudinal data set. All
statistical analyses were performed using R software version 4.3.0
(http://www.r-project.org), and double-sided P < 0.05 was defined
as statistical significance.

Results

Association between thyroid disease
and COVID-19

In the cohort, patients had preexisting thyroid disease had a
higher proportion of women compared to the group without
thyroid disease (80.2% vs 45.0%). However, no significant
disparities were observed in the COVID-19 severity and mortality
rates between these two groups (Table 1). A multivariate logistic
regression analysis revealed that age was risk factor for severe
COVID-19 and mortality, while female gender appeared to be a
protective factor. A history of thyroid disease, both hyperthyroidism
and thyroidectomy/hypothyroidism, did not exhibit any association
with the COVID-19 outcomes (Table 2).

Association between COVID-19 severity
and thyroid dysfunction

As COVID-19 severity increased, there were corresponding
rises in infection indicators like white blood cell (WBC) count,
neutrophil to lymphocyte ratio (NLR), C-reactive protein (CRP),
serum amyloid A (SAA), and inflammatory mediators such as
interleukin-6 (IL-6) and interleukin-10 (IL-10). Additionally,
there was an observed dysfunction in humoral immunity, as
indicated by elevated levels of immunoglobulin E (IgE).
Conversely, cellular immune function tended to decrease with the
severity, as evidenced by lower counts of CD3, CD4, and CD8 T
cells. Furthermore, there was a noted decrease in the levels of FT3,
FT4, and TSH (Table 3).

Out of the total patients, 687 (49.3%) were euthyroid and 430
(30.8%) were diagnosed with ESS. As COVID-19 severity increased,
there was a corresponding increase in the proportions of patients
with subclinical hyperthyroidism, hypothyroidism and ESS.
Specifically, the prevalence of hypothyroidism was 2.5% in mild
cases, 5.0% in moderate cases, 6.5% in severe cases, and 8.7% in
critical cases (p=0.049). Similarly, the prevalence of ESS was 4.3% in
mild cases, 24.4% in moderate cases, 57.3% in severe cases, and 80%
in critical cases (p<.001). Interestingly, the proportions of patients
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with subclinical hypothyroidism decreased with COVID-19
severity. However, the proportions of hyperthyroidism and
euthyroid hyperthyroxinemia/TSH-mediated hyperthyroidism
were minimal and remained consistent across all severity
groups (Table 4).

After adjusting for age and sex, the severity of COVID-19 was
identified as a risk factor for ESS. Specifically, patients with severe
COVID-19 were found to be 22.5 times (95% CI, 12.1 - 45.6) more
likely to manifest ESS than those with mild COVID-19 (Table 5).

A mediation analysis was performed to explore the potential
mediating role of laboratory findings in the relationship between
severe/critical COVID-19 and ESS. As depicted in Figure 1A, the
NLR was found to significantly mediate this relationship,
accounting for 41.3% of the effect (p <.001). However, no
significant mediating effects were detected for IL-6, CD3, and IgE
(all p > 0.05).

Association between thyroid dysfunction
and COVID-19 mortality

As shown in the right section of Table 3, the group of COVID-19
patients who did not survive exhibited higher infection indicators and
increased levels of inflammatory mediators compared to the group
who survived. Furthermore, the non-survival group displayed
compromised cellular immune function and diminished thyroid
function. However, no significant differences were noted in the
humoral immune function between the two groups, except for a
mild increase in IgG levels in the non-survival group.

The group of patients who did not survive had a lower
proportion of euthyroidism (8.2% vs 51.6%, p<.001) and a higher
incidence of ESS (79.5% vs 28.2%, p<.001) compared to the group
who survived. Interestingly, the survival group had a higher
proportion of subclinical hyperthyroidism (7.6% vs 1.4%,

TABLE 1 Comparative clinical characteristics of groups without and with
a history of thyroid disease*.

Without thyroid

disease Thyroid disease P
Variables (n = 1394) (n = 111) value
Age, year 67 (55, 76) 64 (55, 72) 0.308
Female, n (%) 627 (45.0) 89 (80.2) <0.001
COVID-
19 severity
Mild, n (%) 278 (19.9) 20 (18.0) 0.240
Moderate,
n (%) 753 (54.0) 70 (63.1)
Severe, n (%) 248 (17.8) 16 (14.4)
Critical, n (%) 115 (8.2) 5 (4.5)
Death, n (%) 73 (5.2) 3(2.7) 0.241

*Categorical data shown as number (percentage). Continuous variables displayed as median
(interquartile range).
COVID-19, coronavirus disease 2019.
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TABLE 2 Multivariate logistic regression analysis for risk of severe/critical COVID-19 and death.

Severe/critical COVID-19

10.3389/fendo.2024.1412320

Variables
OR (95% Cl) P value OR (95% Cl) P value

Age 1.06 (1.05 - 1.07) < 0.001 1.06 (1.04 - 1.08) < 0.001
Female 0.52 (0.40 - 0.68) < 0.001 0.55 (0.32 - 0.93) 0.025
Thyroid disease 0.89 (0.50 - 1.50) 0.659 0.68 (0.15 - 2.05) 0.534
Undergone thyroidectomy

or hypothyroidism 0.82 (0.43 - 1.46) 0.514 0.87 (0.19 - 2.65) 0.830
Hyperthyroidism 1.24 (0.35 - 3.82) 0.718 NA 0.982

OR, odds ratio; CI, confidence interval; NA, not available.

TABLE 3 Demographic characteristics and laboratory findings across various severity levels and outcomes of COVID-19*.

COVID-19 severity

Survival status

Variables  Total Mild Moderate Severe Critical P Survival Death P
(n = 278) (n = 753) (n = 248) (n = 115) value (n = 1321) (n =73) value
Age, year 1394 53 (37, 65) 66 (56, 74) 74 (66, 82) 78 (68, 84) < 0.001 66 (54, 75) 79 (68, 84) <0.001
Female, n (%) 1394 137 (49.3) 369 (49.0) 79 (31.9) 42 (36.5) < 0.001 604 (46) 23 (32) 0.017
FT3, pg/mL 1394 | 3.09 (2.74,3.51)  2.69 (2.29,3.09) = 2.12 (1.80,2.46) = 1.79 (1.40,2.08) = <0.001 | 2.65(2.17,3.11) 185 (1.35,2.14)  <0.001
FT4, ng/dL 1394 | 1.21(1.08,1.34)  1.18 (1.04,1.33) = 1.19(1.08,1.36) = 1.07 (0.91,125) = <0.001 | 1.19(1.05,1.33)  1.10 (0.94, 1.29) 0.006
1.636 1.588 0.876 0.696 1.472 0.696
TSH, ulU/mL 1394 (1.069, 2.689) (0.838, 2.751) (0.422, 2.154) (0.387, 1.959) < 0.001 (0.735, 2.680) (0.337, 1.682) <0.001
8.81 9.14
WBC, 10°/L 1389 | 552 (4.23,6.87)  5.60 (4.19,7.45)  6.89 (4.46, 9.48) (5.86, 12.65) <0.001 | 576 (4.26, 7.64) (5.70, 12.73) < 0.001
6.84 7.75
N, 10°/L 1386 | 3.19 (2.40,4.53) = 3.70 (2.54,5.15)  5.15 (3.23, 7.83) (4.36, 11.02) <0001 | 3.79 (2.61, 5.54) (4.25,11.17) <0.001
L, 10°/L 1385 | 1.42(0.99,1.86)  1.14 (0.79, 1.55)  0.80 (0.53, 1.18) = 0.62 (0.38,0.89) = <0.001 | 1.12(0.74,1.56)  0.62 (0.37,0.83) | < 0.001
594 12.78
NLR 1382 | 2.33(1.51,3.84)  3.16 (2.01, 5.09) (3.81, 10.98) (6.06, 22.17) <0.001 3.36 (2.03, 6) 13.41 (6,23.92) < 0.001
8.49 34.18 79.04 10.57 88.61
CRP, mg/L 968 1.32 (0.50, 8.04) (0.71, 31.14) (9.37, 75.25) (36.22, 120.99) <0.001 (1.07, 42.32) (36.28,14133) | <0.001
152.67 295.42 58.83 290.22
SAA, mg/L 464 560 (5,27.67) | 34.95 (5, 160.78) (40.71, 300) (100.14, 300) < 0.001 (7.31, 248.87) (88.66, 300) < 0.001
ESR, mm/h 111 11 (8,18) 27 (19, 43) 36 (22, 52) 40 (21, 70) 0.003 27 (18, 48) 36 (18, 66) 0.487
IL-2, pg/mL 222 260 (235,293) 271 (243,3.22) 289 (2.30,3.35) | 2.79 (2.42, 3.48) 0.690 | 273(2.39,3.22) 281 (247, 3.62) 0.219
IL-4, pg/mL 222 539 (4.71,5.64) = 4.80 (4.38,524) 477 (4.35,5.18) = 4.85 (4.53, 5.33) 0267 | 4.82 (442,527)  4.65 (412, 5.29) 0.566
12.39 12.00 17.25 64.79 14.06 70.41
IL-6, pg/mL 224 (8.21, 25.40) (6.07, 35.24) (8.40, 54.12) (22.15, 186.20) <0.001 (7.31, 45.33) (27.15,269.50) | < 0.001
3.83 9.49
IL-10, pg/mL 223 500 (4.43,5.17) = 5.35(4.07,7.45) 583 (4.67, 7.91) (5.62, 14.21) <0.001 | 545 (4.43, 7.66) (5.58, 15.89) 0.001
TNF, pg/mL 222 345(297,3.97)  3.60 (2.87,4.87)  3.30 (2.85,4.39)  3.12 (2.65, 4.29) 0488 | 3.44 (2.84,4.54)  3.07 (2.63, 4.31) 0.354
IFN, pg/mL 223 2.62 (2.44, 447) 277 (2.25,4.04) = 2.82(2.41,397) = 2.94 (2.29, 4.58) 0.870 | 276 (2.31,4.09)  3.19 (2.29, 4.41) 0.386
IL-17, pg/mL 200 | 254 (1.87,3.69) 268 (2.15,3.89)  2.81 (1.90,4.66) = 2.99 (2.14, 4.70) 0736 | 2.68 (2.01,4.27) = 3.37 (2.43, 4.47) 0.262
CD3, n/ul. 189 856 (612,902) | 655 (411,1023) = 470 (252, 614) 286 (160, 476) <0001 | 598 (357, 942) 245 (143, 400) <0.001
CD4, n/ulL. 188 531 (352, 616) 383 (239, 593) 237 (140, 406) 156 (95, 242) <0001 | 353 (190, 578) 145 (82, 214) <0.001
CDS8, n/uL 188 276 (196, 413) 234 (142, 389) 156 (93, 304) 102 (65, 155) <0.001 | 202 (132, 353) 89 (62, 148) <0.001
(Continued)
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TABLE 3 Continued

Variables

Total

COVID-19 severity

Moderate
(n = 753)

Severe
(n = 248)

Critical
(n = 115)

P
value

Survival status

Survival
(n = 1321)

Death
(n=73)

10.3389/fendo.2024.1412320

CD4/CD$ 187 | 1.53(128,2.11)  1.60 (1.03,2.40) 161 (1.10,2.36) = 1.64 (0.93, 2.81) 0986 | 1.61(1.03,2.37) 142 (0.93, 2.55) 0.722
CD19, n/uL 188 118 (61, 240) 99 (57, 219) 91 (47, 193) 83 (41, 140) 0.350 97 (56, 215) 68 (41, 137) 0.090
CD16+CD56,

n/ul 188 163 (81, 208) 134 (86, 227) 110 (69, 202) 102 (55, 169) 0.065 129 (82, 209) 101 (40, 179) 0.041
10.19 10.40 12.05 12.10 10.60 13.00

IgG, g/L 154 (7.60, 12.13) (8.67, 13.15) (9.51, 14.98) (9.04, 14.55) 0.126 (8.67, 13.50) (11.85, 14.40) 0.019

IgM, g/L 155 | 095 (0.76, 1.64) = 0.95 (0.68, 1.18) = 0.64 (0.53,1.02) = 0.96 (0.70, 1.30) 0035 | 0.85(0.63,1.21) | 0.96 (0.71, 1.30) 0.378

IgA, g/L 155 | 212 (L.11,2.78) | 2.15(1.55,2.70) = 2.92 (1.93,3.52) = 1.69 (1.22, 2.54) 0023 | 223 (1.55,288) 158 (1.18, 2.50) 0.179
40.4 130 733 527 67.7

IgE, TU/mL 156 | 25.9 (184, 93.7) (18.4, 116.0) (29.6, 678.0) (22.1, 252.0) 0.012 (18.4, 176.0) (18.4, 246.0) 0.834
0.801 0.854 0.887 0.788 0.852 0.780

C3, gL 154 (0.758, 0.967) (0.710, 1.040) (0.710, 1.123) (0.612, 0.897) 0.261 (0.705, 1.040) (0.590, 0.955) 0.169
0.199 0.226 0.236 0211 0.226 0.208

C4, g/L 153 (0.174, 0.229) (0.184, 0.293) (0.181, 0.338) (0.159, 0.250) 0.147 (0,179, 0,293) (0.151, 0.235) 0.113

*Categorical data shown as number (percentage). Continuous variables displayed as median (interquartile range).

COVID-19, coronavirus disease 2019; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; WBC, white blood cell; N, neutrophil; L, lymphocyte; NLR, neutrophil
to lymphocyte ratio; CRP, C-reactive protein; SAA, serum amyloid A; ESR, erythrocyte sedimentation rate; IL-2, interleukin-2; IL-4, interleukin-4; IL-6, interleukin-6; IL-10, interleukin-10; TNF,
tumor necrosis factor; IFN, interferon; IL-17, interleukin-17; CD3, cluster of differentiation 3; CD4, cluster of differentiation 4; CD8, cluster of differentiation 8; CD19, cluster of differentiation 19;
CD16, cluster of differentiation 16; CD56, cluster of differentiation 56; IgG, immunoglobulin G; IgM, immunoglobulin M; IgA, immunoglobulin A; IgE, immunoglobulin E; C3, complement

component 3; C4, complement component 4.

p=0.047). No significant differences were observed in other types of
thyroid dysfunction between the two groups (Table 4).

After adjusting for age and sex, ESS was identified as a risk
factor for COVID-19 mortality (OR = 7.30, 95% CI, 4.10 - 13.8)
(Table 5). As depicted in Figure 1B, ESS was found to significantly
mediate the relationship between severe/critical COVID-19 and
death, accounting for 14.4% of the effect (p = 0.002).

To investigated the relationship between thyroid function
indicators and mortality due to COVID-19, RCS nonlinear
correlation curves were constructed separately for male and
female populations. These curves reflected the individual
correlations between TSH, FT3, FT4, and COVID-19 mortality.
In both male and female populations, decreased levels of TSH, FT3,
and FT4 (though FT4 was not significant in women) were
associated with an increased risk of death from COVID-19.
Interestingly, high levels of FT3 were found to have a protective
effect against death in both male and female populations, as well as
high levels of FT4 in women (Figure 2).

Thyroid function across different
time points

Of 1394 patients without prior thyroid disease, thyroid function
tests were available for 411 patients before COVID-19 and for 234
survivors during their convalescence. As depicted in the left section
(A, C, E) of Figure 3, both TSH and FT3 levels at the time of
COVID-19 admission were significantly lower than their respective
baseline values, while FT4 levels were significantly higher (all p
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<0.05). Conversely, the right section (B, D, F) of Figure 3 shows that
during the recovery period, both TSH and FT3 levels were
significantly higher than those at admission, while FT4 levels
were significantly lower (all p <0.05).

During the recovery phase from COVID-19, with a median
follow-up of 47 days (ranging from 21 to 98 days), the majority of
survivors (70.1%) exhibited euthyroidism. Hyperthyroxinemia and
subclinical hyperthyroidism were very rare, with no cases of overt
hyperthyroidism observed. However, a small proportion of patients
still exhibited ESS (6.8%), hypothyroidism (7.7%), and subclinical
hypothyroidism (12.4%) (Table 6).

A subset of 164 patients with complete sets of T3, T4, and TSH
measurements taken at three distinct time points: before, during,
and after COVID-19. These trends were visually represented in
Figure 4. The data showed that both FI3 and TSH levels initially
decreased upon admission, but eventually returned to their baseline
levels during the recovery phase. In contrast, FT4 levels remained
relatively stable, with no significant change observed (p = 0.639).

Discussion

In this study, we found that a prior history of thyroid disease,
encompassing both hyperthyroidism and thyroidectomy/
hypothyroidism, did not impact the prognosis of COVID-19
during the Omicron variant outbreak. A previous retrospective
cohort study involving 3703 COVID-19 patients revealed that 6.8%
had pre-existing hypothyroidism. This condition was not associated
with an increased risk of hospitalization or mortality (13). But, a
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TABLE 4 Thyroid diagnostic categories across various severity levels and outcomes of covip-19*.

Survival status

COVID-19 severity

Vel es Mild  Moderate  Severe  Critical Survival ~ Death
(h=278) (n=753) (n=248) (n=115 Pvalue (n=1321) (n=73) Pvalue
687
Euthyroid (49.3) 227 (81.7) 408 (54.2) 47 (19.0) 5(4.3) < 0.001 681 (51.6) 6 (8.2) < 0.001
Hyperthyroid 15 (1.1) 2(0.7) 8 (1.1) 3(1.2) 2(1.7) 0.772 14 (1.1) 1(1.4) 0.556
Subclinical 101 (7.2)
hyperthyroid 17 (6.1) 50 (6.6) 30 (12.1) 4(3.5) 0.007 100 (7.6) 1(1.4) 0.047
Hypothyroid 71 (5.1) 7 (2.5) 38 (5.0) 16 (6.5) 10 (8.7) 0.049 65 (4.9) 6 (8.2) 0.264
Subclinical 70 (5.0)
hypothyroid 9(32) 52 (6.9) 7 (2.8) 2(17) 0.006 69 (5.2) 1(14) 0.175
430
ESS (30.8) 12 (4.3) 184 (24.4) 142 (57.3) 92 (80) < 0.001 372 (28.2) 58 (79.5) < 0.001
Euthyroid 20 (1.4)
hyperthyroxinemia/
TSH-
mediated
hyperthyroidism 4 (14) 13 (1.7) 3(1.2) 0 (0) 0.662 20 (1.5) 0 (0) 0.620

*Categorical data shown as number (percentage).

COVID-19, coronavirus disease 2019; ESS, euthyroid sick syndrome; TSH, thyroid-stimulating hormone.

recent study has identified the absence of a history of
hyperthyroidism as a protective factor against COVID-19
mortality (14). It’s crucial to underscore that in our cohort,
among those with a history of thyroid disease, a mere 16
individuals (14.4%) had hyperthyroidism, while the majority 95
individuals (85.6%) had undergone thyroidectomy or were
hypothyroidism (not reflected in the tables). Therefore, the
conclusions of this study align with those of previous research.
We underscored that COVID-19 severity was inversely related
to the plasma levels of TSH, FT3, and FT4, thereby increasing the
risk of hypothyroidism and ESS. A meta-analysis encompassing 565
samples from 6 studies revealed that the severe COVID-19 group
exhibited significantly lower TSH and FT3 levels compared to the
mild group. However, no significant differences were observed in

patients, which was associated with vascular endothelial injury (16).
Neutrophils played a crucial role in the progression of COVID-19
through various mechanisms, including cytokine storms, tissue
injury, and thrombotic events (17). In infected thyroid tissues,
infiltrates of innate immune cells (macrophages and
polymorphonuclear neutrophils) were prevalent (5). In fact, a
high NLR was associated with severe COVID-19 and poor
prognosis (18). In the context of SARS-CoV-2 infection, it’s
currently understood that the immune system may become
hyperactive, potentially leading to the development and

TABLE 5 Multivariate logistic regression analysis for risk of ESS
and death.

FT4 levels between the groups (15). The variations in FT4 levels Variables OR (95% CI) P value
observed in our study can be attributed to a more detailed N -
classification of COVID-19 severity. Notably, only the decrease in SHMEMENS LoDl egda e
FT4 levels in critically ill patients reached statistical significance. A Age 1.01 (1.00 - 1.02) 0.006
recent meta-analysis found that among COVID-19 patients, ESS Female 0.82 (0.63 - 1.07) 0.143
was the most prevalent thyroid disease with a pooled prevalence of
. . L . COVID-19 severity < 0.001

26%, followed by thyrotoxicosis and hypothyroidism, with pooled
prevalences of 10% and 3%, respectively (3). In contrast, our study Mild reference
observed a different pattern. ESS had an incidence of 30.8%, and Moderate 6.16 (3.46 -12.0)
hypothyroidism was more prevalent than in the meta-analysis. The

L. . Severe 22.5 (12.1 - 45.6)
rate of hyperthyroidism was notably lower at 1.1%. This
discrepancy in the prevalence of hyperthyroidism and Critical 66.8 (32.2 - 150)
hypothyroidism may be a characteristic of the Omicron variant Multivariate logistic regression for Death
infection. Further exploration revealed that COVID-19 severity
. . . . Age 1.04 (1.02 - 1.06) <0.001
independently contributes to the risk of ESS. Interestingly, the
impact of severe COVID-19 on ESS appeared to be partially Female 070 (041 - 1.18) 0.188
mediated through the NLR (mediation effect ratio = 41.3%). ESS 730 (4.10 - 13.8) <0001

Studies have shown that neutrophils exhibited continuous basal
hyperactivation in the peripheral circulating blood of COVID-19
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Mediation effect ratio = 41.3%
P <.001
€;=0.203, P<.001

Mediation effect ratio = 50.6%
P=0.168

Severe and
critical
COVID-19

€,=0.090, P<.001

€3=0.233, P=0.004

Model 3
Mediation effect ratio = 26.1%

€,=0.363,P<.001

Model 4 Al
Mediation effect ratio = 0.9%
P =0.690

IgE
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FIGURE 1
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ESS
(Mediator)

Model 1
Mediation effect ratio = 14.4%
P =0.002
¢;=0.151, P<.001
c=0/]76 P< W

Severe and
critical
COVID-19

Mediation analysis diagrams. (A) Represents the mediation factors NLR, IL-6, CD3, and IgE in the relationship between severe/critical COVID-19 and
ESS. (B) Illustrates ESS as the mediating factor in the relationship between severe/critical COVID-19 and death; Adjusted for age and gender. COVID-
19, coronavirus disease 2019; NLR, neutrophil to lymphocyte ratio; CD3, cluster of differentiation 3; IgE, immunoglobulin E; ESS, euthyroid

sick syndrome.

progression of autoimmune thyroid diseases. This phenomenon
might be attributed to abnormal responses of T-cell subtypes, the
presence of autoantibodies, and an overproduction of inflammatory
cytokines, specifically IL-6, IFN-y, and TNF-a (19). Our study did
observe an increase in the level of inflammatory factors, depletion of

cellular immunity, and disorder of humoral immunity with the
severity of COVID-19. However, these findings may be limited by
the number of patients tested. The roles of IL-6, CD3, and IgE as
mediating factors of severe COVID-19 and ESS were not found to

be significant.
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FIGURE 2

Gender-specific RCS curves for thyroid hormone levels and COVID-19 mortality. The figure is divided into six panels. (A, C, and E (left column)
illustrate the association between TSH, FT3, and FT4 levels respectively, and COVID-19 mortality in females. (B, D, and F (right column) depict the
corresponding associations in males. OR, odds ratio; Cl, confidence interval; FT3, free triiodothyronine; FT4, free thyroxine;

TSH, thyroid-stimulating hormone.
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Box plots represent TSH, FT3, and FT4 levels at ‘before COVID-19', ‘on admission’, and ‘after COVID-19'. Left section (A, C, E, n = 411): comparison
between ‘before COVID-19" and ‘on admission’. Right section (B, D, F, n = 234): comparison between ‘on admission’ and ‘after COVID-19". Boxes
indicate 25th and 75th percentiles, whiskers indicate 5th and 95th percentiles, and line in box indicates median. Wilcoxon paired rank sum tests used for
comparisons. FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid-stimulating hormone; COVID-19, coronavirus disease 2019.

Although a history of thyroid disease was not found to be
associated with COVID-19 outcomes, this study discovered a
correlation between thyroid dysfunction resulting from COVID-19
and an increased risk of mortality. Our findings confirmed that ESS
was a risk factor for death from COVID-19, and that the high
mortality rate of severe COVID-19 could be partially attributed to
ESS, with a mediation effect ratio of 14.4%. ESS was typically
associated with the severity of the disease and a deteriorating
prognosis in critical illnesses. Consistent with previous studies, ESS
was associated with severe disease and death from COVID-19, and
was considered an early and reliable indicator of poor prognosis for
COVID-19 (8, 20). Our study further demonstrated through the RCS
curve that across all populations, low TSH and low FT3 increased the
risk of death from COVID-19, while high FT3 appeared to have a
protective effect. Many previous studies have also observed that low
FT3 was more common in patients who died from COVID-19. Low
FT3 was associated with excessive inflammation, coagulation, and
disorders of the fibrinolytic system, making low FT3 status a risk
factor for death (20-23). FT3 was considered to prevent early tissue
hypoxia during sepsis, potentially reducing secondary organ failure

Frontiers in Endocrinology

(24). An ongoing randomized placebo-controlled clinical trial
(NCT04348513) aims to investigate whether the administration of
T3 (liothyronine, 0.8 g/kg i.v.) to ICU-admitted COVID-19 patients
reduces their need for cardiorespiratory support (25). This suggests

TABLE 6 Thyroid function during COVID-19 convalescence®.

Variables

Follow-up time, days 47 (21, 98)

FT3, pg/mL 3.10 (2.75, 3.46)
FT4, ng/dL 1.10 (0.99, 1.23)
2.360
TSH, ulU/mL (1.418, 4.083)
Euthyroid, n (%) 164 (70.1)
Hyperthyroid, n (%) 0 (0)
(Continued)
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TABLE 6 Continued

Variables

Subclinical hyperthyroid, n (%) 4(1.7)
Hypothyroid, n (%) 18 (7.7)
Subclinical hypothyroid, n (%) 29 (12.4)
ESS, n (%) 16 (6.8)
Euthyroid hyperthyroxinemia/TSH-mediated
hyperthyroidism, n (%) 3(1.3)

*Categorical data shown as number (percentage). Continuous variables displayed as median
(interquartile range).

COVID-19, coronavirus disease 2019; FT3, free triiodothyronine; FT4, free thyroxine;

TSH, thyroid-stimulating hormone; ESS, euthyroid sick syndrome.

that our nonlinear model provided a more comprehensive
description of the relationship between thyroid hormones and
COVID-19 mortality. It’s important to note that the effects of FI3
and FT4 may differ between genders, and the protective effects of FT3
and FT4 may be more pronounced in women. This nuanced
understanding of the role of thyroid hormones in COVID-19

Trend for T3, T4, TSH
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4 4
3 v 3
2 2
1 1
0 0

) 'y o

@é@ & Y&@ Q)é@‘ S
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outcomes underscores the complexity of this disease and the need
for further research.

In paired analysis, we observed that the thyroid function in
COVID-19 patients typically decreased upon admission and
subsequently returned to baseline during the recovery phase. This
observation aligned with previous research, which found that in
follow-up studies of COVID-19 survivors, 82.4% (42 out of 51) of
abnormal thyroid function tests observed during acute phase of
COVID-19 resolved over a span of 6 months (26). Additionally,
after a period of 3 or 4 months, COVID-19 patients who underwent
pulmonary rehabilitation exhibited an increase in FT3 values (27).
Moreover, the thyroid structure also demonstrated spontaneous
recovery over time. with 85.7% (6 of 7) patients showing resolved
features of thyroiditis after 4 months (28). However, it’s crucial to
remain cognizant of the fact that some individuals may continue to
experience hypothyroidism.

Our study presents distinct advantages. The substantial sample
size of the cohort we included was ample to unveil, for the first time,
a comprehensive association between COVID-19 and thyroid
function during the Omicron pandemic. However, our research
also has its limitations. Firstly, our study lacks data on thyroid
autoantibodies and thyroid ultrasound, and dose not address the

5
P=0.016

4

3
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~T4
“TSH
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Longitudinal study of TSH, FT3, and FT4 levels at three distinct time points: ‘before COVID-19’, ‘on admission’, and ‘after COVID-19". The scatter

plots (n = 164) represent the individual hormone levels at each time point. W

ithin each section, a line connects the median values of T3, T4, and

TSH, providing a visual representation of the central tendency. Statistical analysis was performed using the Friedman test. FT3, free triiodothyronine;

FT4, free thyroxine; TSH, thyroid-stimulating hormone.
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development of autoimmune conditions post COVID-19. Secondly,
this study did not collect information on the underlying disease
status and treatment status of COVID-19 patients, with only age
and gender employed as confounding factors for analysis and
exclusion. It has been demonstrated that obesity is strongly
associated with COVID-19 severity and poor outcome, yet our
study lacks data on body mass index. Lastly, our study is not
prospective and thus cannot establish a definitive causal
relationship between COVID-19 and thyroid function.

Conclusion

Our study delineates a reciprocal relationship between COVID-
19 and thyroid function during the Omicron variant pandemic.
COVID-19 can detrimentally impact thyroid function, leading to a
bimodal distribution of thyroid dysfunction. Inflammation
mediates the effects of COVID-19 on ESS, and ESS partially
mediates mortality from severe COVID-19. Decreased thyroid
function increases the risk of death from COVID-19, while
elevated FT3 and FT4 levels appear to confer a protective effect,
especially in women. Additionally, there remains a risk of
hypothyroidism during the recovery phase from COVID-19.
These findings underscore the importance of monitoring thyroid
function in COVID-19 patients and highlight the potential
therapeutic implications of managing thyroid hormone levels
during both treatment and recovery phases.
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The relation between FT5
and long-term fatigue in
patients with COVID-19

Shuo Dong', FanRui Ding', Yuan Wang, Shuo Liu, Ran Bai,
YuanYuan Liu, Yin Zhao, YueRan Zhu, MengXue Liu,
Yuenan Liu and Qian Xing*

Department of Endocrine and Metabolic Diseases, First Affiliated Hospital of Dalian Medical University,
Dalian, China

Background: Under the current pandemic of Corona Virus Disease 2019
(COVID-19), The relationship between fatigue and COVID-19 has been found.
Infection with COVID-19 is associated with fatigue long after the acute phase of
COVID-19. Understanding the association of thyroid hormones levels with post-
COVID condition, such as fatigue, is necessary to improve quality of life.

Methods: This population-based cohort study was conducted in Dalian, China,
from December 2022, to March 2023, using a Yidu Core platform in the First
Affiliated Hospital of Dalian Medical University, that integrates medical records,
laboratory tests, and all diagnosis and treatment information based on patients in
hospital. Eligible individuals were 40 patients with COVID-19, Divided them into
fatigue group and non-fatigue group following up by telephone using the FS-14
scale after 6 months. The primary outcomes were the diagnoses of fatigue. The
association between thyroid hormones levels and post-COVID condition, such
as fatigue, was assessed using logistic regression analysis.

Results: Compared with the non-fatigue group, the FTs level in fatigue group was
lower (p<0.05). FT3 was negatively correlated with fatigue after 6 months (OR
0.257, p<0.05). After adjusting for confounding factors such as age and gender,
low FTs was a risk factor for fatigue in patients with COVID-19, (OR 0.225,
p<0.05). And the FTs is less than 2.47 mol/L, it is the best critical value for
predicting long-term fatigue, with a sensitivity of 92.3% and a specificity of 48.1%.

Conclusions: Most people still have fatigue 6 months after COVID-19 infection.
FTs serves as the important index to predict fatigue in patients with COVID-19. it
should be closely monitored during infection.
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1 Introduction

The novel coronavirus, which is the cause of the Corona Virus
Disease 2019 (COVID-19), has had a significant impact on human
life and health. COVID-19 enters host cells to initiate immunity
through the binding of angiotensin-converting enzyme 2 (ACE2) or
transmembrane protease, serine 2 (TMPRSS2). The high expression
of ACE2 and TMPRSS2 in the thyroid gland is even higher than that
in lung tissue, so the thyroid gland may be directly affected by
COVID-19 (1).

Non-thyroidal illness syndrome (NTIs) are patients without
previous basic thyroid diseases. Due to severe systemic diseases,
thyroid hormone levels in the blood circulation are abnormally
changed. This change is mainly manifested in the decrease of total
triiodothyronine (TT;) and free triiodothyronine (FT;) levels,
normal or decreased levels of total thyroxine (TT,) and free
thyroxine (FT,), increased levels of reverse T3 (rT;), and thyroid
stimulating hormone (TSH) levels are in the normal range (2).

It has been observed that many patients diagnosed with
COVID-19 often experience abnormal changes in their thyroid
hormones, which is known as NTIs. Present, a number of studies
have found that FT; levels in patients with COVID-19 are
significantly reduced. Zhang et al. found that 28% of COVID-19
patients had thyroid diseases, mainly NTIs (48%) (3), and Lukasz
and his colleagues found that COVID-19 patients had a significant
decrease in FT5 (4). COVID-19 caused changes in thyroid
hormones, which may be related to the down-regulation of 5-
deiodinase activity caused by cytokine storm, in vivo consumption
affecting serum thyroid hormone transporter levels, hypothalamic-
pituitary-thyroid axis (HPT) dysfunction and other factors (2). Six
months after COVID-19 infection, many people still feel muscle
pain, muscle weakness (mild to severe), fatigue and exercise
intolerance. Among them, fatigue plays a major role in long
COVID syndrome (5).

Currently, there is limited research on the relationship between
thyroid hormones and post-COVID syndrome both domestically
and internationally. The objective of this study is to investigate the
connection between thyroid hormones and long COVID
syndrome-fatigue. Additionally, the study aims to identify risk
factors that contribute to persistent fatigue following COVID-19
infection. The findings of this research can serve as a guide for the
diagnosis, treatment, and comprehensive management of COVID-
19 sequelae.

2 Methods
2.1 Study design and population

Patients with COVID-19 who had no previous or current
treatment for hypo- or hyperthyroidism or thyroid surgery
history from December in 2022 to March in 2023 in the
Department of Endocrinology and Metabolic Diseases, the First
Affiliated Hospital of Dalian Medical University were included in
the present study. We excluded people with hypothalamic or
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pituitary disorders, as well as people who were identified to
primary neuromuscular or myopathy or who had malignant
tumors history. We also excluded individuals who had received
radiotherapy or chemotherapy in the past 6 months, and
individuals with autoimmune diseases or incomplete data.
Moreover, participants who were pregnant or possibly pregnant
or ingested agents known to influence thyroid function were
also excluded.

The Research Ethics Board at the Dalian Medical University
First Affiliated Hospital reviewed and approved this study. All study
participants gave their informed consent for participation.

2.2 Data source

Data were assembled from the Yidu Core, a large medical
management intelligent platform. It contains information on
clinical events recorded by health care professionals, including
diagnosis, symptoms, and therapies.

2.3 Laboratory procedures

COVID-19 infection was defined as nucleic acid test or antigen
test was positive. According to the scoring criteria of FS-14, the score
> 3 is fatigue, and < 3 is non-fatigue (6-8). The clinical and laboratory
data of patients who met the inclusion and exclusion criteria were
collected, including gender, age and laboratory examination
indicators, such as thyroid stimulating hormone (TSH), serum free
triiodothyronine (FT3), serum free thyroxine (FT,), Alanine
aminotransferase (ALT), Aspartate aminotransferase (AST),
alkaline phosphatase (ALP), myoglobin (MYO), high-sensitivity
troponin I (hs-Tnl), creatine kinase isoenzyme (CK-MB), creatine
phosphokinase (CK), procalcitonin (PCT), C-reactive protein (CRP),
creatinine (Cr), the sum activity of deiodinases (SPINA-GD), the
secretory capacity of the thyroid gland (SPINA-GD), TSH index
(TSHI), etc. They were followed up by telephone using the FS-14 scale
at 6 months after COVID-19 infection. According to their scale
scores, they were divided into fatigue group and non-fatigue group.

2.4 Biochemical assays

A Mindray automated chemiluminescence immunoassay analyzer
CL-6000i (Mindray, China) was used to detect serum TSH, FT; and
FT, levels. All test reagents were provided by Shenzhen Mindray
Biomedical Electronics Co., Ltd. (Mindray, China). In our laboratory,
the reference ranges for TSH, FT,. and FT5 were 0.35-5.1 ulU/ml,
11.2-23.81 pmol/L, and 2.76-6.45 pmol/L, respectively.

2.5 Statistical analysis
Data were analyzed using SPSS 27.0 software. The normality test

was performed on the measurement data. Continuous variables are
expressed as either the mean - standard deviation or median and
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interquartile range. T-test or Mann-Whitney U-test was used for
comparison between the two groups. Spearman method was used for
correlation analysis between index groups, and bilateral test was used.
The statistical description of the count data was expressed as [n (%)],
and the chi-square test was used for comparison. Binary Logistic
regression analysis was used to analyze the risk factors of fatigue. The
receiver operating characteristic curve (ROC) and the area under the
curve (AUC) were used to compare the cut-off points and predictive
values. p<0.05 was deemed to show statistical significance.

3 Results
3.1 Participant demographics

In this study, a total of 126 patients infected with COVID-19
were recruited. After applying the inclusion and exclusion criteria,
40 patients were selected for the study. These patients were
followed up by telephone six months after being infected with
COVID-19 (Figure 1). Based on their fatigue scores, they were
divided into a fatigue group and a non-fatigue group. The results
showed that there was no statistically difference in sex ratio and
age between the two groups (p>0.05). The FTj; level in the fatigue
group was significantly lower than that in the non-fatigue group
(p<0.05). The difference in CK, TSH, FT,, FT3/FT, levels, SPINA-
GD, SPINA-GT, TSHi was not statistically significant (Table 1).

3.2 Association between thyroid hormone
and 6-month fatigue in COVID-19

Correlation analysis showed that fatigue scores were
significantly negatively correlated with FT3/FT, and SPINA-GD
levels (r=-0.329, p<0.05), and fatigue scores had no significantly
correlation with Ca, P, CK, and CK-MB (p<0.05) (Table 2). FT5/
FT, levels were significantly negatively correlated with hs-TnI
(r=-0.409, p<0.05). FT3/FT4 levels did not significantly correlate
with Ca, P, CK, and CK-MB (p>0.05) (Supplementary Table 1).
Binary logistic regression analysis was performed with whether
fatigue occurred in patients with COVID-19 as the dependent
variable and thyroid hormone level as the independent variable,
and the results showed that FT; level was negatively correlated
with the occurrence of fatigue in patients with COVID-19, and
that low T; was a risk factor for the occurrence of fatigue in
patients with COVID-19 (p<0.05). After correcting for
confounding factors such as age, gender, Ca, and P, FT; was
negatively correlated with the occurrence of fatigue in patients
with COVID-19, suggesting that low FT; was a risk factor for the
occurrence of fatigue in patients with COVID-19 (p<0.05)
(Table 3). There was no statistically difference between TSH,
FT,, and FT5/FT, and the occurrence of fatigue in patients with
COVID-19 (p>0.05) (Supplementary Table 2).
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126 Participants in covid-19 infection

73 Excluded
12 History of thyroid diseases
5 Hypothalamic or pituitary disorders
8 Primary neuromuscular or myopathy
5 Autoimmune diseases
11 Malignant tumors
32 Incomplete data

53 Eligible study population

13 Excluded

40 Analysis

13 Lost to follow-up
28 fatigue 12 non-fatigue
FIGURE 1

Flow chart of research and analysis of eligible COVID-19
infection participants.

3.3 Predictive value of FT3 levels in fatigue
in COVID-19 patients

The ROC curve was plotted with FT; as the test variable and
whether fatigue occurred in patients with COVID-19 as the state
variable, and the results showed that the AUC of FT; level for
predicting the occurrence of fatigue in patients with COVID-19 was
0.702 (95% CI 0.54-0.87, p<0.05). Based on the maximum of the
Jordon index as the critical value, when FT3 took a value less than
2.47 pmol/L, it was the best critical value to predict the occurrence
of fatigue in patients with COVID-19, with a sensitivity of 92.3%
and a specificity of 51.9% (Figure 2).

4 Discussion

COVID-19 can affect multiple systems throughout the body. As
an important organ of the endocrine system, the thyroid gland is
directly or indirectly affected by COVID-19. The effect of COVID-
19 on the thyroid gland may be caused by directly (caused by direct
cytotoxicity of the virus) or indirectly (caused by abnormal immune
inflammatory response to the virus, which may involve coagulation,
cytokines and complement systems) (9). NTIs is common in
COVID-19 patients. A retrospective cohort study of Zou et al.
included 149 COVID-19 patients, of which 41 (27.52%) were
diagnosed with NTIs (10). A prospective study included 196
patients diagnosed with COVID-19 and found that 60% of ICU
patients and 36% of general ward patients showed NTIs (11). In our
study, 57.5% of all follow-up patients showed NTTs.

The main manifestation of NTIs is the decrease in T; level. The
mechanism includes the change of half-life of thyroid hormone in
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TABLE 1 Demographic, clinical and biochemical characteristics of the
study population.

10.3389/fendo.2024.1411262

TABLE 2 Results of correlation analysis of features associated with
fatigue scores.

Fatigue(n=28) non-fatigue(n=12) p

Age year 72.00(50.00-80.00) 64.00(55.50-78.00) 0.654 TSH 0.022 0.893

Sex Female (n%) 13(33%) 7(59%) 0.739 FT; -0.251 0.119

TSH(uIU/ml) 1.37(0.60-2.43) 1.06(0.73-1.63) 0.444 FT, 0.076 0.642

FT5(pmol/L) 2.52 +0.63 3.00 £ 0.56 0.023* FT3/FT4 -0.329 0.038*

FT,(pmol/L) 1591 + 3.53 16.36 + 1.15 0.552 Ca 0.173 0.286

FT5/FT, 0.16 + 0.035 0.18 + 0.041 0.160 P -0.045 0.782

CK(U/L) 64.00(37.50-145.50) 46.00(20.00-183.50) 0.569 CK -0.077 0.647

ALT(U/L) 21.00(19.00-43.00) 21.00(13.50-46.00) 0.783 ALT 0.055 0.737

AST(U/L) 28.00(21.00-42.00) 29.00(17.50-42.00) 0.874 AST 0.018 0.91

ALP(U/L) 81.00(68.00-124.00) 74.00(49.50-100.00) 0.260 SPINA-GD -0.369 0.019*

MYO(ng/ml) 71.17(34.07-176.43) 47.06(27.09-319.02) 0.638 TSHI -0.146 0.370

hs-TnI(ug/ml) 0.016(0.006-0.037) 0.006(0.0055-0.0185) 0.080 FT4/TSH -0.014 0.932

CK-MB(ug/ml) 0.92(0.48-1.97) 0.92(0.37-2.33) 0.931 TSH, thyroid stimulating hormone; FTs, serum free triiodothyronine; FT,, serum free
thyroxine; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline

BNP(ng/L) 82.04(47.48-191.18) 50.51(27.70-125.97) 0.128 phosphatase; Ca, Calcium; CK, creatine phosphokinase; P, phosphorus; PCT, procalcitonin;
CRP, c-reactive protein; SPINA-GD, the sum activity of deiodinases; SPINA-GT, the secretory

P(mmol/L) 1.06 + 0.47 1.10 + 0.45 0.806 capacity of the thyroid gland; TSHI, thyroid stimulating hormone index.
*Level of significance p<0.05.

Ca(mmol/L) 2.06(1.96-2.23) 2.08(1.975-2.195) 0.897

PCT(ng/ml) 0.19(0.10-0.52) 0.20(0.02-0.37) 0.754 at least one skeletal muscle-related symptom was still present in
76% of patients at 6 months, with fatigue or muscle weakness

CRP(mg/L) 13.59(5.33-74.63) 25.10(8.34-33.00) 0.529 . A .
accounting for 63% of these (18). An Italian study reported fatigue

fatigue scores 7.00(5.00-9.00) 1.00(0.00-1.50) <0.001* ' a5 the predominant symptom (53.1%) of persistent symptoms 60

SPINA-GD 14.67(12.85-19.81) 17.19(13.87-19.82) 0.069 days after a COVID-19 infection (19). A meta-analysis showed that
fatigue was the most common symptom of long covid syndrome

TSHI -1.97(-3.11-0.40) 2.43(-2.91-1.59) 0.453 ] o )
(28.4%). Even in the non-hospitalized population, the most

SPINA-GT 5.06 +3.77 549 + 3.38 0.733 common long covid syndrome symptom is still fatigue, which is

TSH, thyroid stimulating hormone; FT;, serum free triiodothyronine; FT,, serum free
thyroxine; ALT, alanine aminotransferase, AST, aspartate aminotransferase; ALP, alkaline
phosphatase; MYO, myoglobin; hs-Tnl, high-sensitivity troponin; CK-MB, creatine kinase
isoenzyme; Ca, Calcium; CK, creatine phosphokinase; P, phosphorus; PCT, procalcitonin;
CRP; c-reactive protein; SPINA-GD, the sum activity of deiodinases; SPINA-GT, the secretory
capacity of the thyroid gland; TSHI, thyroid stimulating hormone index.

*Level of significance p<0.05.

circulation, the change of cell sensitivity to thyroid hormone, the
change of tissue uptake of thyroid hormone and the change of
deiodinase activity which converts thyroid hormone into active and
inactive forms respectively (12). After T, deiodination, plasma T; is
mainly derived from the role of DIO1 in the liver. During NTTs, the
activity of DIO1 in the liver and DIO2 in skeletal muscle decreased,
and the activity of DIO3 in the liver and skeletal muscle increased
(13). This may be a physiological adaptation to reduce energy needs
during acute diseases. Under high energy demand conditions such
as diseases, skeletal muscle is the main organ responsible for glucose
uptake in response to insulin. In this case, muscle protein
catabolism can be stimulated to maintain energy in other organs,
and a decrease in T; levels reduces metabolic activity and reduces
energy loss in these patients (14-17).

After the recovery of COVID-19, some people still suffer from
persistent and periodic symptoms. A Chinese study that included
1733 patients who had been hospitalized for COVID-19 found that
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present in 34.8% (20). Therefore, chronic fatigue syndrome (CES) is
the most common complaint of patients. CFS, also known as
myalgia encephalomyelitis, is a complex heterogeneous disorder
characterized by disabling fatigue, cognitive impairment, sleep
disruption, and accompanying bone and muscle pain that persists
for more than 6 months and does not improve with rest (21, 22).
The global pooled prevalence of CFS among long covid syndrome
patients is 45.2% (23). A meta-analysis showed that the total
prevalence reported by Western and Asian populations was

TABLE 3 Associated FT; related to fatigue by multivariate binary logistic
analysis in COVID- 19 patients.

B SE Wald p OR  95%CI
FT; -1.358 0.639 4.510 0.034* 0.257 0.074 0.901
Age 0.003 0.021 0.023 0.880 1.003 0.962 1.046
sex 0.583 0.777 0.563 0.453 1.791 0.391 8.211
Ca 0.190 2.284 0.007 0.934 1.209 0.014 106.375
P -0.608 0.972 0.391 0.532 0.544 0.081 3.661
FT3* -1.491 0.712 4.387 0.036** 0.225 0.056 0.909

*adjusted for age, sex, calcium and phosphorus.
**Level of significance p<0.05.
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Receiver operating characteristic curve analysis determining the optimal threshold of FTs for predicting fatigue after 6 months of COVID-

19 infection

comparable (1.32 + 1.45% vs 1.51 + 1.74) (24). A prospective study
showed that 75.9% of patients reported fatigue 3-6 months after
infection with COVID-19, which was consistent with our study (5).
In our study, 70% of patients were still fatigued 6 months after
infection with COVID-19. The prevalence of CFS has been reported
to be 2-3 times higher in females than in males, but there was no
significant gender difference in this study (25). A retrospective study
showed that 48.9% of CFS patients diagnosed after COVID-19
infection were male and 51.1% were female (26). We speculate that
this may be due to the fact that infections are a significant trigger for
the development of CFS, and that infections make the gender
difference negligible.

CFS may be associated with changes in hormone levels in the
hypothalamus-pituitary-thyroid axis (27). Studies have shown that
thyroid hormone function in CEFS is similar to NTIs. A Serbian
study found that compared with the healthy group, although the
basal serum T; of all subjects was normal, the T3 concentration in
the CFS group was significantly reduced (28). In this study, the level
of FT; in the fatigue group was significantly lower than that in the
non-fatigue group (2.52 £ 0.63 vs 3.00 + 0.56 p< 0.05), and 64.3% of
the fatigue group showed NTIs. FT3/FT, is commonly used to
evaluate the sensitivity of peripheral thyroid, which reflects 5-
deiodinase activity. SPINA-GD represents the total activity of
peripheral deiodinase. This study shows that although there is no
statistical difference in SPINA-GD between the two groups, SPINA-
GD in the fatigue group is lower than that in the non-fatigue group.
Correlation analysis shows that FT5/FT, and SPINA-GD are related
to fatigue (p<0.05), which indicates that fatigue in patients with
COVID-19 may be related to subtle changes in deiodinase.
Although NTIs may be beneficial in the acute phase of critical
illness, it may hinder the recovery of patients in the case of long-
term critical illness (29). Low T3 may affect brain tissue perfusion
and energy metabolism, leading to fatigue (30). This study shows
that low Tj is a risk factor for fatigue. When FT3 value is less than
2.47 pmol/L, it is the best critical value to predict fatigue in COVID-
19 patient.

Frontiers in Endocrinology

Even though the study has provided interesting findings, it had
some few limitations. Certain limitations of the study are as follows:
Firstly, the sample size is relatively small, resulting in a higher
number of patients lost to follow-up, which may introduce a bias of
loss of follow-up. Secondly. The patients included were all Chinese,
potentially limiting the generalizability of the findings to other
regions or ethnic groups. Thirdly, the thyroid hormone levels of
COVID-19 patients after 6 months were not measured again,
potentially limiting the understanding of the long-term effects of
thyroid hormones on CFS. Fourthly, the average age of both groups
is over 60 years old, and there is a lack of data on the young
population. Finally, a meta study showed that the prevalence of CFS
was 0.10% based on the physician diagnosis, and the prevalence of
CES was 2.03% in the questionnaire interview without medical
testing (24). Therefore, the prevalence of CFS based on the
questionnaire survey in our study may be overestimated. In the
future, large-scale prospective studies are needed to further explore
the mechanism of thyroid hormones affecting CES after COVID-19.

Furthermore, in addition to thyroid hormones, symptoms of
chronic fatigue may also be caused by damage to multiple organ
systems during COVID-19. The occurrence of CFS in COVID-19
may be related to excessive anti-inflammatory response, and the
dominant disease pattern of alternatively polarized macrophage
cells directly induces the occurrence of CFS (31). Hypothalamic-
pituitary-adrenal (HPA) axis disturbances have also been found in
CFS, which are manifested by mild cortisol decrease, enhanced
negative feedback, and a blunted response to excitation (32).
COVID-19 can also cause skeletal muscle damage resulting from
changes in the structure and function of the neuromuscular system
through mechanisms such as direct infiltration, inflammatory
response, hypoxia and other mechanisms to cause skeletal muscle
damage, resulting in fatigue (33). A study reported that the immune
system of ME/CFS patients produces an imbalanced ratio of pro-
inflammatory and anti-inflammatory cytokines in the early stages of
the disease (34). But CRP and PCT are not statistically significant in
our study. In conclusion, the occurrence of CFS in COVID-19
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patients is not a role of a single hormonal axis, but a combination
of factors.

5 Conclusions

In summary, this study demonstrates that the majority of patients
still experience fatigue six months after contracting the COVID-19
infection. The level of FT} in the fatigue group was lower, suggesting a
potential correlation between FT; and the persistence of fatigue
following COVID-19 infection. The mechanism of fatigue may be
related to subtle changes in the hypothalamus-pituitary-thyroid axis
and deiodinase. In addition, this study found that low T; is a risk
factor for fatigue. When the value of FTj; is less than 2.47 pmol/L, it
serves as the optimal critical threshold to predict fatigue in patients
with COVID-19. In the future, prospective studies are needed to
confirm whether monitoring serum FT; level can predict the
occurrence of CES in patients with COVID-19, and then help to
improve the symptoms of patients.
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Background: As the world population recovers from the COVID-19 infection, a
series of acute sequelae emerge including new incident diabetes. However, the
association between COVID-19 infection and new incident diabetes is not fully
understood. We purpose to determine the risk of new incident diabetes after
COVID-19 infection.

Methods: PubMed, Embase, and Cochrane Library were used as databases to
search for cohort studies published from database inception to February 4, 2024.
Two reviewers independently conducted the study screening, data extraction,
and risk of bias assessment. A random-effects model was adopted to pool the
hazard ratio (HR) with corresponding 95% confidence intervals (Cl). Subgroup
analysis was conducted to explore the potential influencing factors.

Results: A total of 20 cohort studies with over 60 million individuals were
included. The pooling analysis illustrates the association between COVID-19
infection and an increased risk of new incident diabetes (HR = 1.46; 95% Cl: 1.38-
1.55). In subgroup analysis, the risk of type 1 diabetes was HR=1.44 (95% Cl: 1.13-
1.82), and type 2 diabetes was HR=1.47 (95% Cl: 1.36-1.59). A slightly higher risk of
diabetes was found in males (HR=1.37; 95% Cl: 1.30-1.45) than in females
(HR=1.29; 95% Cl: 1.22-1.365). The risk of incident diabetes is associated with
hospitalization: non-hospitalized patients have an HR of 1.16 (95% Cl: 1.07-1.26),
normal hospitalized patients have an HR of 2.15 (95% Cl: 1.33-3.49), and patients
receiving intensive care have the highest HR of 2.88 (95% ClI: 1.73-4.79).

Conclusions: COVID-19 infection is associated with an elevated risk of new
incident diabetes. Patients ever infected with COVID-19 should be recognized as
a high-risk population with diabetes.

Systematic review registration: https://www.crd.york.ac.uk/prospero,
identifier CRD42024522050.
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1 Introduction

Diabetes is a chronic non-communicable disease characterized
by impaired glucose metabolism that results in persistently raised
blood glucose in the context of insufficient insulin caused by
autoimmune-mediated destruction of pancreatic B-cells or insulin
resistance combined with pancreatic 3-cell insufficiency (1). Despite
significant process has been made in the exploration of risk factors
for diabetes and the implementation of prevention programs, there
is a globally increasing incidence and prevalence of the disease (2).
Early detection and intensive patient-centered management are
expected to optimize the prognosis, reducing morbidity and
mortality by preventing or delaying complications (2). A previous
study has explored the primary risk factors of diabetes, including
BMI, genetics, atmosphere, diet habit, drug use, sedentary way of
life, lack of physical exercise, smoking, alcoholic beverages,
dyslipidemia, hyperinsulinemia, and improved glucagon activity
(3). Recently, the bidirectional interaction between coronavirus
disease 2019 (COVID-19) and diabetes has been revealed (4-7).
COVID-19 presumably increases the risk of new incident diabetes
(8,9).

The pandemic of COVID-19 caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is recognized as the
greatest worldwide public health threat of this century (10).
Although the World Health Organization (11) has declared that
COVID-19 is no longer a public health emergency of international
concern in May 2023, it continues to circulate and evolve, and
remains a potentially serious risk to public health. Simultaneously,
sequelae after the acute phase of COVID-19 (called long COVID)
have aroused wild attention in the medical field (12). Patients with
long COVID experience lingering symptoms across multiple organ
systems, with common new incident conditions such as diabetes
(13). Current reviews revealed an association between COVID and
increased incidence of diabetes (14-16), but Zareini et al. (17)
indicated an opposite perspective. Therefore, we systematically
reviewed the existing cohort studies to clarify the association
between COVID-19 and the risk of new incident diabetes.

2 Methods

This systematic review and meta-analysis were conducted in
accordance with the Preferred Reporting Items for Systematic
Review and Meta-analysis (PRISMA) guidelines (18). The study
protocol was registered in the International Prospective Register of
Systematic Reviews (PROSPERO) platform on March 12,
2024 (CRD42024522050).

2.1 Search strategy

We systematically searched PubMed, Embase, and Cochrane
Library for studies published up to February 4, 2024. No language
restrictions were applied, and the search strategy combined the use of
medical subject headings (MeSH) and free text. The search terms
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were related to COVID-19, Post-Acute COVID-19 Syndrome,
Diabetes Mellitus, and risk. The full search strategies are included
in Supplementary Tables 1-3. The reference lists of other published
meta-analyses were also considered to identify relevant cohort studies.

2.2 Eligibility criteria

Original research studies must meet all the following criteria to
be included: (1) the study design was a prospective or retrospective
cohort study investigating the association between COVID-19 and
the risk of new incident all-type diabetes (no prior history of
diabetes); (2) COVID-19 and diabetes were defined based on
medical records or International Classification of Diseases (ICD)
codes; (3) the hazard ratio (HR) or odds ratio (OR) and its
corresponding 95% confidence interval (CI) were reported.

The following were excluded: reviews, study protocols,
and commentaries.

2.3 Study selection

Study selection was performed by two reviewers (JYZ and YZW),
independently. Titles and abstracts were first screened to exclude
duplicate and irrelevant articles. Thereafter, the full texts were
examined to identify all eligible studies. If multiple studies
conducted assessments from the same database, we include the one
with more adequate data based on its sample size and follow-up
duration. Any disagreements were resolved by discussing them with
the third reviewer (RLX).

2.4 Data extraction

Two reviewers mentioned above (JYZ and YZW) extracted data
independently consulting the guidelines on data extraction for
systematic reviews and meta-analysis (19). Predesigned forms
were used for data extraction, including the first author, year of
publication, country, study type, data source, sample size, follow-up
duration, mean age, diagnosis criteria of COVID/diabetes, type of
diabetes, interval (interval between the first diagnosis of COVID
and the onset of diabetes). Disagreements were resolved by
consensus with all researchers (JYZ, YZW, and RLX).

2.5 Risk of bias

The quality of the included studies was assessed using the
Newcastle-Ottawa scale (NOS) (20). A “star system” was used to
judge the studies from three broad perspectives: the selection of
participants a measurement of exposure, the comparability of the
study groups, and the assessment of outcomes and adequacy of
follow-up. Each assessment was carried out by two reviewers (JYZ
and YZW) separately and repeatedly. Disagreements were solved by
discussion with the third reviewer (RLX).
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2.6 Statistical analysis

For this meta-analysis, we sought to identify HRs and 95% CI to
assess the association between COVID-19 and the risk of new
incident diabetes. Heterogeneity among the studies was evaluated
by the xz _test and the I? -values. If I> > 50%, a random-effects
model of analysis was used. We applied a sensitivity analysis by
excluding one study each time and rerunning it to verify the
robustness of the overall effects. The funnel plot was constructed
to inspect and visualize publication bias, and Egger’s regression test
was conducted to statically assess it. Subgroup analyses were
performed if two or more cohorts were identified. p-values < 0.05
were considered to be statistically significant. All analyses were
performed using Stata software (Stata Corp V.14, Texas, USA).

3 Results
3.1 Literature search

21386 results were obtained after the systematic search. After
removing duplicate content and screening the title and abstract, 42
articles were potentially eligible. Full-text articles were all accessible in
the remaining 42 studies. Twenty-two studies were excluded after full-
text review: 2 were not cohort studies, 1 was commentary, 5 were

10.3389/fendo.2024.1429848

conference proceedings, 12 did not provide our interested effect sizes
and 3 used duplicated data sources. Bowe et al. (21) used the same
dataset as Xie and Al-Aly (22) but focused on different outcomes, so we
included both. 20 cohort studies (17, 21-39) were included in the meta-
analysis. The PRISMA flow diagram illustrating the search and
selection process is provided in Figure 1.

3.2 Study characteristics

This meta-analysis included 20 cohort studies covering
60,221,176 individuals, which were published between 2021 and
2023. Out of the 20 studies, one was a prospective cohort study,
while the other 19 were retrospective studies. Among all the studies
included, one reported gestational diabetes mellitus (GDM), five
reported type 1 diabetes (T1D), seven reported type 2 diabetes
(T2D), and eight reported both T1D and T2D. The follow-up
duration of participants ranges from 3 to 84 months. Additional
characteristics of the included studies are shown in Table 1.

3.3 Quality assessment

According to the NOS criteria, the average score of all included
cohort studies was 8, and the score for five trials (21, 22, 29, 34, 39)

[ Identification of studies via databases and registers ]
—
s
E=1 Records identified (N = 21386): Records removed before
8 PubMed (n =6071) screening
% Embase (n = 14915) Duplicate records removed
3 Cochrane Library (n = 400) (n =5206)
S +
— l Records excluded
B " d Studies not related
ecords screene Reviews, protocols, case studies
(n =16180) Editorials, commentaries,
Conference proceedings
l (n =16138)
Reports sought for retrieval N Reports not retrieved
g (n=42) (n=42)
=
o
: !
o
(7]
Reports assessed for eligibility Reports excluded
(n=42) Not cohort study (n=2)
Commentaries (n= 1)
Conference proceedings (n =5)
No available outcomes (n=11)
Duplicated data sources (n=3)
~—
e v
3
= Studies included in meta-
E analysis (n =20)
—

FIGURE 1
Studies screening flow diagram.
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TABLE 1 Basic characteristics of the included studies.

Author

Year

Country

Data source

Follow-up
duration,
months

Diagnosis of
COVID-19/
diabetes

Diabetes
type

Interval,
days

NOS
scores

Adjusted
factors

Aslam 2023 Pakistan Retrospective | Department of respiratory physiology and | COVID: 55 | 5 COVID: COVID: medical T2D >1 7 NR
et al. (23) cohort medicine of independent Control: 50 39.5 records, RT-PCR
University Hospital Control: Diabetes: medical
25.65 records, HbAlc
Barrett 2022 USA Retrospective IQVIA COVID: 12 COVID: COVID: medical T1D/T2D >30 8 Age, sex
et al. cohort 80,893 123 records, ICD-10
(24)[1] Control: Control: 12.3 | Diabetes: medical
404,465 records, ICD-10
Barrett 2022 USA Retrospective | Health Verity COVID: 16 COVID: COVID: medical T1D/T2D >30 8 Age, sex
et al. cohort 439,439 12.7 records, PCR,
(24)[2] Control: Control: 12.7 | ICD-10
439,439 Diabetes: medical
records, ICD-10
Bowe 2022 USA Retrospective | VHSUS Veterans Health Administration COVID: 27.8 COVID: COVID: medical T2D >1 6 Age, sex, race,
etal. (21) cohort 234,990 60.12 records, RT-PCR, BMI, vaccination
Control: Control: ICD-10 status, area
5,334,729 60.12 Diabetes: medical deprivation
records, HbAlc, index, smoking
ICD-10
Choi 2023 South Retrospective | Health Insurance Review and COVID: 12,5 COVID: COVID: medical T2D >30 9 Age, sex,
et al. (25) Korea cohort Assessment Service 348,180 433 records, ICD-10 hypertension,
Control: Control: 43.3 | Diabetes: medical dyslipidemia
1,044,540 records, ICD-10
Daugherty | 2021 USA Retrospective | United Health Group Clinical COVID: 10 COVID: COVID: medical T2D >21 7 Age, sex, race
et al. (26) cohort Discovery Database 266,586 41.7 records, PCR,
Control: Control: 424 | ICD-10
8,980,919 Diabetes: medical
records, ICD-10
Jun Zhang = 2022 China Prospective Wuhan Hospital of Traditional COVID: 33 Total: 61.0 COVID: medical T1D/T2D After 7 Age, sex, BMI,
et al. (27) cohort Chinese Medicine 171 records, RT-PCR discharge smoking, drinking,
Control: 77 Diabetes: fasting hypertension,
blood glucose comorbidities
Kendall 2022 USA Retrospective | TriNetX COVID: 6 COVID: COVID: medical T1D >1 7 NR
et al. (28) cohort 314,917 10.3 records, ICD-10
Control: Control: 10.3 = Diabetes: NR
776,577
(Continued)
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TABLE 1 Continued

Author

Year

Country

Data source

Follow-up
duration,
months

Diagnosis of
COVID-19/
diabetes

Diabetes
type

Interval,
days

NOS
scores

Adjusted
factors

Kwan 2023 USA Retrospective Cedars-Sinai Health System Total: 6 Total: 47.4 COVID: medical T1D/T2D 0-90 6 Age, sex,
et al. (29) cohort 23,709 records, ICD-9, hypertension,
ICD-10 hyperlipidaemia
Diabetes: medical
records, ICD-9,
ICD-10
Lu 2023 USA Retrospective | Montefiore Health System in Bron COVID: 3 NR COVID: medical T2D >1 9 Age, sex, race,
et al. (30) cohort 19,427 records, RT-PCR ethnicity, BMI,
Control: Diabetes: medical hypertension, HF,
5,730 records, ICD-10 CKD, COPD
McKeigue 2022 UK Retrospective REACT-SCOT COVID: 20.6 Range: <35 COVID: medical T1D >1 9 Sex,
et al. (31) cohort 365,080 records, PCR vaccination status
Control: Diabetes:
1,484,331 medical records
Naveed 2023 Canada Retrospective | British Columbia COVID-19 Cohort COVID: 24 COVID: 45 COVID: medical T1D/T2D >30 7 Age, sex,
et al. (32) cohort 125.987 Control: 41.5 = records, RT-PCR vaccination status
Control: Diabetes: medical
503,948 records, ICD-9,
ICD-10
Noorzae 2023 Denmark Retrospective | The Danish Civil Registration System COVID: 30 Range: 0-17 COVID: medical T1D >30 7 Age, sex,
et al. (33) cohort 419,260 records comorbidities,
Control: Diabetes: medical vaccination status
1,174,677 records, ICD-10
Qeadan 2022 USA Retrospective | Cerner Real-World Data COVID: 22 COVID: COVID: medical T1D >1 6 Age, sex, race,
et al. (34) cohort 2,489,266 445 records, laboratory ethnicity, marital
Control: Control: 41.1 | test status, region
24,803,613 Diabetes: medical
records, ICD-10
Rathmann = 2022 Germany Retrospective | Disease Analyzer COVID: 16.7 COVID: COVID: medical T2D >1 9 Age, sex, obesity,
et al. (35) cohort 35,865 42.6 records, ICD-10 hypertension,
Control: Control: 42.6 = Diabetes: medical hyperlipidemia
35,865 records, ICD-10
Rege 2023 Israel Retrospective | Clalit COVID: 10.9 COVID: 43 COVID: medical T1D/T2D >1 9 Age, BMI,
et al. (36) cohort 157,936 Control: 43 records, PCR socioeconomic
Control: Diabetes: medical status,
157,936 records, ICD-9 hypertension,
dyslipidemia,

smoking status
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TABLE 1 Continued

Author

Year

Country

Data source

Follow-up
duration,
months

Diagnosis of
COVID-19/
diabetes

Diabetes
type

Interval,
days

NOS
scores

Adjusted
factors

Rezel-Potts | 2022 UK Retrospective CPRD Aurum COVID: 12 COVID: 35 COVID: medical T1D/T2D 0-120 9 Age, sex, ethnicity,
et al. (37) cohort 428,650 Control: 35 records, PCR BMI,
Control: Diabetes: medical smoking status
428,650 records, HbAlc
Soysal and | 2022 Turkey Retrospective | Obstetrics outpatient clinic of the COVID: 27 COVID: COVID: medical GDM >1 9 NR
Yilmaz cohort Obstetrics and Gynecology Department 150 28.73 records
(38) of Ankara Control: Control: Diabetes: medical
150 28.29 records, OGTT
Xie and 2022 USA Retrospective VHA COVID: 11.6 COVID: COVID: medical T2D >30 6 Age, sex, race,
Al- cohort 181,280 60.9 records, laboratory area deprivation
Aly (22) Control: Control: 61.5 | test index, BMIL,
4,278,701 Diabetes: medical smoking
records, ICD-10 status,
comorbidities
Yongkang 2022 USA Retrospective | PCORnet COVID: 3 Non- COVID: medical T1D/T2D 31-150 6 Age, sex, race,
Zhang cohort 316,249 hospitalized records, PCR, BMI, ethnicity,
et al. (39) Control: COVID: 1CD-10 smoking
2,775,331 489 Diabetes: medical status,
Hospitalized | records, ICD-10 comorbidities
COVID:
59.9
Non-
hospitalized
control: 52.8
Hospitalized
control: 55.9
Zareini 2023 Denmark Retrospective | Danish National Patient Registry; Danish | COVID: 84 Total: 12.8 COVID: medical T1D >1 9 Age, sex,
etal. (17) cohort National Prescription Registry; The 338,670 records, PCR vaccination status
Danish Cause of Death Registry; Danish Control: Diabetes:
Population Registry Danish 1,004,688 medical records

Microbiology Database

TI1D, type 1 diabetes; T2D, type 2 diabetes; GDM, gestational diabetes mellitus; PCR, polymerase chain reaction; RT-PCR, reverse transcription polymerase chain reaction; ICD-10, International Classification of Diseases 10th Revision; ICD-9, International Classification of
Diseases 9th Revision; BMI, body mass index; OGTT, oral glucose tolerance test; HF, heart failure; CKD, chronic kidney diseases; COPD, chronic obstructive pulmonary disease; NR, not reported.
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was 6 while other 14 trials (17, 23-28, 30-33, 35-38) was 7 or above,
indicating that all cohort studies were of relatively high quality in this
meta-analysis. The score of each study is shown in Table 1.

3.4 COVID-19 infection and the risk of
overall diabetes

We used data from twenty cohort studies (17, 21-39) to explore
the association between a history of COVID-19 and the risk of
overall diabetes. The pooling analysis reveals that a history of
COVID-19 infection is associated with an increased risk of overall
diabetes (HR = 1.46; 95% CI: 1.38-1.55; I* = 92.4%, p < 0.001;
Figure 2). The significant heterogeneity in the included studies was
interpreted by using a random effect model meta-analysis.
Sensitivity analysis shows that none of the individual studies
reversed the pool-effect size, indicating that the results are robust
(Supplementary Figure 1).

3.5 Subgroup analysis

The results of the subgroup analysis are summarized in Table 2.
Increased risks of new incident T1D and T2D are associated with
COVID-19 infection but there are no significant differences between
the two, T1D (HR=1.44; 95% CI: 1.13-1.82; I* = 89.1%, p =0.003), and
T2D (HR=147; 95% CI: 1.36-1.59; I* = 94.6%, p < 0.001). With
stratification by sex, males (HR=1.37; 95% CIL: 1.30-1.45; % = 86.2%, p
< 0.001) are observed with higher risks compared to those for females
(HR=1.29;95% CI: 1.22-1.365; I> = 75.6%, p <0.001). In hospitalization-

10.3389/fendo.2024.1429848

stratified analysis, the pooled risks of new incident diabetes are
significantly higher for patients in intensive care (HR=2.88; 95% CI:
1.73-4.79; I = 95.4%, p < 0.001) than those for non-hospitalized patients
(HR=1.16; 95% CI: 1.07-1.26; I* = 98.8%, p = 0.002) and normal
hospitalized patients (HR=2.15; 95% CI: 1.33-3.49; I* = 94.6%, p <
0.001). No significant associations are found in the stratification of
vaccination status. For populations from different regions, pooled risks
were evaluated as America (HR=1.52; 95% CI: 1.40-1.64; 1> = 93.0%, p<
0.001), Asian (HR=1.39; 95% CI: 1.25-1.54; I = 92.3%, p < 0.001), and
Europe (HR=1.60; 95% CI: 1.03-2.49; I* = 90.8%, p = 0.036).

3.6 Publication bias

There is no evidence of a significant publication bias in the
COVID-19 infection and risk of new incident diabetes revealed
from the visual inspection of the funnel plot (Figure 3). Egger’s test
(P = 0.166) shows no publication bias in our meta-analysis either.

4 Discussion

4.1 Main findings

We conducted a meta-analysis of 20 cohort studies covering
60,221,176 individuals, which provided a comprehensive evaluation
of the association between COVID-19 and new incident diabetes.
We find a significant increase in the risk of all-type diabetes among
individuals after COVID-19 infection, with an overall 1.46-fold
increase in risk. This indicated that COVID-19 infection might be

Study %
ID ES (95% Cl) Weight
Aslam (2023) 1.43 (1.39, 1.48) 8.44
Barrett [1] (2022) ! i 2.66 (1.98, 3.57) 274
Barrett [2] (2022) .- 1.31(1.20, 1.44) 7.16
Bowe (2022) * 1.36 (1.32, 1.41) 8.42
Choi (2023) * 1.30 (1.27, 1.33) 8.54
Daugherty (2021) —_—— 2.47 (1.14,5.37) 0.54
Jun Zhang (2022) : e 2.90 (1.07,7.87) 0.33
Kendall (2022) - — 1.83 (1.37, 2.45) 275
Kwan (2023) - 1.58 (1.24, 2.02) 3.47
Lu (2023) i N 3.96 (3.18, 4.93) 3.92
McKeigue (2022) | —— 2.62(1.81,3.79) 1.95
Naveed (2023) - E 1.17 (1.06, 1.29) 7.07
Noorzae (2023) . 0.85 (0.70, 1.04) 4.36
Qeadan (2022) —‘.T * 1.42 (1.38, 1.46) 8.48
Rege (2023) - 1.19 (1.09, 1.29) 7.34
Rezel-Potts (2022) —— 1.81 (1.50, 2.18) 4.63
Soysal (2022) | —_— 3.17 (2.16, 4.67) 1.83
Xie (2022) * 1.40 (1.36, 1.44) 8.48
Yongkang Zhang (2022) > 1.25 (1.17, 1.33) 7.84
Zareini (2023) —— 0.90 (0.60, 1.35) 1.69
Overall (I-squared =92.4%, p = 0.000) Q 1.46 (1.38, 1.55) 100.00
NOTE: Weights are from random effects analysis i

A [27 1 7.187

FIGURE 2

Meta-analysis of the risk of overall diabetes after a history of COVID-19. Barrett [1]: data from IQVIA; Barrett [2]: data from Health Verity.
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TABLE 2 Subgroup analysis for the risk of diabetes in patients with COVID-19.

Subgroups Included studies, n HR (95% ClI) Heterogeneity

Type of diabetes

(%) p-values

Type 1 diabetes 6 1.44 (1.13,1.82) 89.1% 0.003
Type 2 diabetes 8 1.47 (1.36,1.59) 94.6% 0.000
Sex

Male 7 1.37 (1.30,1.45) 86.2% 0.000
Female 7 1.29 (1.22,1.36) 75.6% 0.000
Hospitalization

Non-hospitalized 3 1.16 (1.07,1.26) 87.5% 0.000
Hospitalized 4 2.15 (1.33,3.49) 98.8% 0.002
Intensive care 4 2.88 (1.73,4.79) 95.4% 0.000
Vaccination status

0 vaccine received 4 1.27 (0.99,1.63) 86.3% 0.064
1 vaccine received 4 1.09 (0.73,1.63) 67.9% 0.676
>2 vaccine received 3 1.21 (0.92,1.60) 55.7% 0.178
Region

America 11 1.52 (1.40,1.64) 93.0% 0.000
Asian 5 1.39 (1.25,1.54) 92.3% 0.000
Europe 5 1.60 (1.03,2.49) 90.8% 0.036

an independent risk factor for new incident diabetes. The
importance of screening, prevention, and management of diabetes
for patients ever infected with COVID-19 should be emphasized.

4.2 Comparison with previous studies

Our analysis demonstrated a consistent result with previous
reviews (14-16), showing that COVID-19 infection increased the

risk of all-type diabetes. In addition, Li et al. (40) explored the
relationship between new-onset diabetes, hyperglycemia, and
COVID-19 infection, showing an elevated incidence and risk. In a
review that specifically targeted T2D (41), a higher prevalence of
diabetes in people with previous COVID-19 was illustrated, which
further corroborated our findings. Compared to prior studies, we
added more recent studies and analyzed the data in subgroups, to
provide stronger evidence for the association between COVID-19
and diabetes. Simultaneously, we only included data from cases with a
confirmed diagnosis of diabetes, contributing to reduced clinical

heterogeneity and greater reliability. Although the risk variance
" Funns! plotwith pseudo 95% confidence limits between T1D and T2D is not significant in this analysis, a previous
,9’.“\ study found a higher risk for new incident T2D than T1D for all
¥ \
1 p // \\ ° included cohorts (16). They also indicated that males with COVID-
o
/ °° . 19 were associated with a higher risk of diabetes compared to females,
e .// \\\ ° o which echoed our conclusions. We assessed the risks between
ol J N\ subgroups of hospitalization, vaccination status, and incident
-l / \
8 # 3 diabetes for the first time, and found that an increased risk of
74 \
/ . diabetes was associated with the exacerbation of hospitalization.
< // e \\ However, the risk of new incident diabetes in patients who received
/ N\ vaccination was not statistically significant.
w 4 ’/ ° \
-5 0 5 1 15
LN_HR . .
4.3 Interpretation of findings
FIGURE 3
Publication bias of the risk of new incident diabetes caused by
COVID-19 infection. So far, the pathophysiological mechanism of the association
between COVID-19 and diabetes is not entirely clear. It has been
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suggested that SARS-CoV-2 specifically induces the damage of -
cells, thereby impairing insulin production (42, 43). Angiotensin-
converting enzyme 2 (ACE2) is the main receptor of SARS-CoV-2
to gain entry into human cells (44) Several studies have found the
ACE2 expression in pancreatic B-cells (42, 45-47), leading to
speculation that SARS-CoV-2 may triggers B-cell damage by
penetrating the cells using ACE2 (48). In addition to ACE2, other
SARS-CoV-2 related entry factors such as TMPRSS2, NRP1, and
TRFC are also expressed in pancreatic 3-cells, which might play
roles in B-cell damage through similar mechanisms (42, 49).
However, the expressions of ACE2 and TMPRSS2 in pancreatic
[B-cells were doubted in other studies (50-52). Therefore, further
research is necessary.

ACE?2 is a key enzyme in the renin-angiotensin system (RAS).
Membrane-bound ACE2 is responsible for catalyzing the
conversion from Ang II into Ang-(1-7) (53). Down-regulation of
ACE2 is found in patients with COVID-19 that enhances activation
of the RAS axis, resulting in decreased insulin and glucose delivery
to tissues and impairment of insulin signaling pathways, all of
which lead to insulin resistance (54, 55). Additionally, uncontrolled
inflammatory response caused by RAS imbalance might account for
the potential role in pancreatic dysfunction (53, 54).

Autopsy tissue from deceased COVID-19 patients showed that local
inflammation and infiltration of immune cells were associated with
impairment of B-cells, causing various degrees of metabolic
dysregulation (50). SARS-CoV-2 triggers a macrophage-mediated
cytokine storm in which the overactivation of immune cells and
persistently increasing cytokines promote excessive inflammation and
further induced B-cell damage (56). SARS-CoV-2 induce a decreased
chromatin-modifying enzyme SETDB2, causing increased transcription
of inflammatory cytokines which impair the pancreas (56).

Steroids are used to treat COVID-19, but their pharmacological
effects pose extra burden on blood glucose control (57). Steroid-
induced hyperglycemia in patients with COVID-19 may be
associated with an increased risk of new incident diabetes (9). A
cohort study revealed a higher risk of diabetes in COVID-19
patients using glucocorticoids compared to those without steroid
treatments (58), which corroborates this perspective.

Lockdowns during the COVID-19 pandemic slowed the rate of
infection but caused negative mental health consequences and
adverse health-related behaviors, including reduced physical
activities, unhealthy eating, smoking, and binge drinking, which are
risk factors for diabetes (59). Symptoms oflong COVID such as fatigue,
muscle pain, and dyspnea, limit exercise capacity (60), therefore
sedentary lifestyles have become common. These changes of lifestyle
have a series of pathophysiological effects, including metabolic
consequences represented by insulin resistance, which might
increase the risks of new incident diabetes (61).

In the subgroup analysis, males with a history of COVID-19
have a higher risk of new incident diabetes than females. A previous
study has shown that males infected with COVID-19 are more
susceptible to worse outcomes and death, independent of age (62).
From another perspective, a study on rats indicated a gender-related
difference of ACE2 expression, that ACE2 content was slightly
lower in males compared to females (63). This might be attributed
to diabetes-related pathophysiological changes. Considering
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vaccination has shown a potential effectiveness on improvement
in long-COVID symptoms (64), it might be also helpful to prevent
new incident diabetes in patients ever infected with COVID-19,
which accounted for the insignificant association between COVID-
19 and incident diabetes.

4.4 Implications and limitations

The pandemic of COVID-19 has placed a tremendous burden on
humanity and might co-exist with us for many years. Our meta-
analysis summarizes the existing evidence of the association between
COVID-19 infection and the risk of new incident diabetes and shows
that a history of COVID-19 is a risk factor for all-type diabetes. It
suggests that the identification of high-risk groups of diabetes should
cover patients with COVID-19, which is conducive to the early
detection and management of diabetes. Vaccination is of critical
importance for individuals to reduce the risks of adverse outcomes.
More studies should be fostered to clarify the potential mechanisms
underlying the COVID-related diabetes, given there might be a
complex combination of pathophysiological processes behind the
COVID-19 infection and new incident diabetes.

Meanwhile, this study has certain limitations. We only included
cohort studies of which retrospective cohort studies are the
majority. Though there is a broad and deep use of electronic
databases based on validated definitions, it still cannot exclude
the bias caused by misclassification, particularly for diabetes types.
Moreover, the intervals between COVID-19 infection and diabetes
diagnosis differ in studies, which might lead to high heterogeneity,
and make it hard to discuss the risks of incident diabetes in different
phases of COVID-19. Age stratification is diverse among included
studies, so we did not pool related data.

5 Conclusions

Patients ever infected with COVID-19 had an elevated
incidence and risk of new incident diabetes. However, more
studies are necessary to specify the pathophysiological
mechanisms underlying this association.
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Since the onset of the COVID-19 pandemic, the SARS-CoV-2 virus has caused
over 600 million confirmed infections and more than 6.8 million deaths worldwide,
with ongoing implications for human health. COVID-19 has been extensively
documented to have extrapulmonary manifestations due to the widespread
expression of necessary ACE2 receptors in the human body. Nevertheless, the
association between COVID-19 and cancer risk remains inadequately explored.
This study employs Mendelian randomization (MR) methods to examine the causal
relationship between genetic variations associated with COVID-19 and the risk of
developing cancer. The findings indicate that COVID-19 has negligible impact on
most cancer risks. Interestingly, a higher COVID-19 impact is associated with a
decreased risk of thyroid cancer. In summary, our findings demonstrate a genetic
correlation between COVID-19 and thyroid cancer, contributing to our
understanding of the interplay between COVID-19 and cancer risk.

KEYWORDS

Mendelian randomization, COVID-19, SARS-CoV-2, cancer risk, thyroid

Introduction

Coronavirus Disease 2019 (COVID-19) is an infectious disease primarily characterized by
respiratory symptoms caused by the SARS-CoV-2 virus. It rapidly spread worldwide after its
initial reporting in 2019. As of now, there have been over 600 million confirmed cases and
over 6.8 million reported deaths (1-3). Despite the highly contagious and harmful nature of

Abbreviations: MR, Mendelian randomization; COVID-19, Coronavirus Disease 2019; ARDS, Acute
respiratory distress syndrome; GWAS, Genome-Wide Association Study; IV, Instrumental Variable; SNP,
Single Nucleotide Polymorphism; IVW, inverse-variance weighted; OR, odds ratios; CI, confidence interval;

FDR, False Discovery Rate; HT, Hashimoto’s Thyroiditis; GD, Graves’ Disease.
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the SARS-CoV-2 virus, not all individuals progress to severe illness.
Studies indicate that approximately 81% of patients infected with the
SARS-CoV-2 virus exhibit mild symptoms, 14% develop severe
symptoms requiring hospitalization, and 5% progress to critical
conditions requiring intensive care and respiratory support (4).
Furthermore, the SARS-CoV-2 virus infects human cells through
the angiotensin-converting enzyme 2 (ACE2) receptor, which is
widely expressed in the human body (5). This infection leads to
extensive extrapulmonary effects, including hematologic,
cardiovascular, neurologic, and dermatologic systems, among
others (6). Observations suggest that COVID-19 causes acute
damage and functional abnormalities in these organs and tissue
during the infection period, with long-term effects that require
further observation (7).

Despite more than three years having passed since the beginning
of the pandemic, research on the long-term effects of COVID-19 on
humans is only just beginning. Follow-up studies on COVID-19
survivors have reported a series of long-term complications,
including pulmonary abnormalities, endothelial damage, immune
system dysregulation, and hypercoagulability, among others (7).
However, the impact of cancer occurrence appears to have been
overlooked in the assessment of numerous long-term effects, possibly
due to the relatively short duration of the pandemic compared to the
process of cancer development. The SARS-CoV-2 virus widely
disseminates in the human body and persists for an extended
period, which increases the risk of tumor occurrence in susceptible
individuals (8-11). Limited studies have suggested that the SARS-
CoV-2 virus might play a role similar to oncogenic viruses in the
lungs and have emphasized the need for further research on the
impact of COVID-19 on cancer (12, 13). In fact, virus-induced cancer
occurrence is a common phenomenon in humans, including well-
known viruses like the Epstein-Barr virus, hepatitis viruses, and
human papillomavirus, which can cause carcinogenesis in multiple
organs such as the blood, liver, reproductive system, skin, and more
(14-16). Therefore, investigating the impact of COVID-19 on human
cancer risk is a crucial research gap that needs to be addressed.

The development of cancer is a lengthy process, which poses
challenges for existing observational data gathered from COVID-19
patients in generating robust conclusions regarding long-term
cancer risk. Mendelian randomization (MR) can assist in
overcoming this issue by examining genetic variation perspectives
(17). MR uses randomly allocated genetic variants, known as
Instrumental Variables (IV), to simulate the control of exposure
factors in randomized controlled trials. Its goal is to obtain
unconfounded estimates of the association between risk factors
and outcomes, thereby avoiding potential residual confounding and
reverse causation that observational studies might suffer from (18).
Additionally, with the advancement of sequencing technologies,
researchers have decoded extensive genomic sequences and
mutations from various biological samples. Several large-scale
Genome-Wide Association Study (GWAS) datasets have been
shared, and analysis tools have been developed to facilitate the
evaluation of the impact of SARS-CoV-2 virus on human cancer
occurrence (18, 19). In our study, we employed MR analysis to
assess the impact of three COVID-19 traits on the risk of 16 types of
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cancer and thyroid-related disorders in humans. We believe that
this research enhances our understanding of COVID-19,
particularly by providing new insights into the relationship
between COVID-19 and human cancer risk.

Methods
Data source

This study utilized a total of 23 open-access Genome-Wide
Association Study (GWAS) summary datasets, which included 3
datasets related to COVID-19, 16 datasets related to cancer. The
summary data for all these datasets were obtained from the IEU
OPEN GWAS PROJECT database (19). The selection criteria were
based on incorporating the most recent, largest sample size, and
openly accessible research data. The study numbers, along with
detailed phenotype definitions, sample sizes, and other relevant
information, have been provided in Supplementary Table S1.

Filtration of IV

IV are tools used in mendelian randomization analysis to
address endogeneity issues (20). They utilize genetic variations as
instrumental variables to help infer causal relationships between
observed variables (exposure factors) and outcomes. For each
observed variable or exposure factor, genetic variations that are
associated with the phenotype (p<5e-8) and are unrelated in terms
of clustering and physical distance (r*<0.001, distance>10000kb)
across the entire genome are selected (18). In the end, 17 Single
Nucleotide Polymorphisms (SNPs) related to the three COVID-19
phenotypes were identified and used as IVs for further analysis in
Mendelian randomization, as outlined in Supplementary Table S2.

MR and sensitivity analysis

Two-sample MR analysis was employed to infer the causal
associations between the exposure factors represented by IVs and
various cancer outcomes. In this analysis, the three COVID-19
traits serve as exposure factors, and their associations with multiple
cancer outcomes are the primary focus of the study design. The
main evaluation method utilized in this study is the inverse-
variance weighted (IVW) method, which is one of the most
important methods in MR analysis (18). Finally, the risk
contribution of the exposure factors to the outcomes is described
using odds ratios (OR) and 95% confidence intervals (CI).
Additionally, the effects of individual exposure SNPs on outcomes
are evaluated using the Wald ratio method (18).

Due to the potential influence of pleiotropy in MR analysis,
supplementary evidence is provided using the weighted median
method (21) and MR-Egger regression (22). The MR-Egger method
is employed to fit a linear regression to estimate intercepts and
conduct statistical tests to assess the presence of pleiotropy. To
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evaluate the presence of heterogeneity in each design, Cochran’s Q
test, funnel plots and MRPRESSO methods are utilized (23).

Statistical analysis and visualization

The statistical analysis for this study was conducted using R
software (Version 4.2.1) (24). The software package employed in the
analysis process was “TwoSampleMR” (18). Forest plots were
generated using the “forestploter” package (25). Visualizations
such as scatter plots and funnel plots were created using the
“TwoSampleMR” package. In this study, a significance level of
0.05 was utilized, meaning that we rejected the null hypothesis
when the p-value was less than 0.05. To address non-independent
multiple hypothesis testing, the False Discovery Rate (FDR) method
was applied for multiple hypothesis correction, ensuring accurate
control over the p-values.

Results
Identification of genetic IV

Complete Analytical Approach of the Study as Illustrated in
Figure 1. Firstly, we extracted a total of 17 SNP loci (Supplementary
Table S2) closely associated with COVID-19 exposure from
summary data of Genome-Wide Association Studies (GWAS)
conducted in three distinct cohorts investigating COVID-19
patient susceptibility, hospitalization, and severity. Most of these
loci were unique to each phenotype, with the exception of
rs2109069 (Supplementary Table S2), which was common across
all three phenotypes. Simultaneously, we collected summary data
from GWAS studies conducted on 16 common human multi-site
cancers. In these datasets, we identified 277 SNP loci most relevant

10.3389/fonc.2024.1419020

to various types of cancer (Supplementary Table S3). The included
study samples ranged from 182,625 to 1,887,658, with the number
of cases ranging from 357 to 32,494. Detailed information about
these cohorts is provided in the Supplementary Materials
(Supplementary Table S1).

Association between COVID-19 risk and
cancer risk

We utilized SNPs associated with COVID-19 susceptibility,
hospitalization, and severity traits as exposure factors for
mendelian randomization allocation. We assessed their impact on
the risk of various cancers using the IVW, MR Egger, and Weighted
Median methods (Supplementary Table S4). We found that
COVID-19 susceptibility did not significantly influence the risk of
various cancers, except for thyroid cancer (OR 0.52, 95% CI 0.33 to
0.84, p-value 0.007) (Figure 2). Additionally, intriguingly, the
increase in the effects of COVID-19 hospitalization (OR 0.75,
95% CI 0.60 to 0.93, p-value 0.009) and severity (OR 0.86, 95%
CI 0.75 to 0.98, p-value 0.029) was also associated with a reduced
risk of thyroid cancer, while having no significant impact on other
cancers (Figures 3, 4). MR Egger and Weighted Median methods
displayed results similar to IVW, although some of the results were
not significant (Figures 5A-C). Estimating the effects of individual
SNPs on thyroid cancer outcomes using the Wald ratio method, we
found it was the collective effect of multiple SNPs, rather than
individual SNPs, that influenced the outcome (Figures 5D-F). In
summary, these findings suggest a clear genetic-level causal link
between the increased risks of COVID-19 susceptibility,
hospitalization, and severity and the reduced risk of thyroid
cancer, as indicated by various methods. However, reverse MR
analysis suggests that there is no reverse causal relationship between
exposure and outcome (Supplementary Table S5).

Data sources

FIGURE 1
Workflow of this study.

Instrumental variables

MR analysis

Frontiers in Oncology

58

frontiersin.org


https://doi.org/10.3389/fonc.2024.1419020
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Susceptibility
Outcome
Brain Cancer
Breast Cancer
Cancer of Urinary Tract
Cervical Cancer
Colorectal Cancer
Endometrial Cancer
Oesophageal Cancer
Gastric Cancer
Haemotological Cancer
Lung Cancer
Oral Cavity Cancer
Ovarian Cancer
Pancreatic Cancer
Prostate Cancer
Skin Cancer
Thyroid Cancer

Hospitalized
Outcome
Brain Cancer
Breast Cancer
Cancer of Urinary Tract
Cervical Cancer
Colorectal Cancer
Endometrial Cancer
Oesophageal Cancer
Gastric Cancer
Haemotological Cancer
Lung Cancer
Oral Cavity Cancer
Ovarian Cancer
Pancreatic Cancer
Prostate Cancer
Skin Cancer
Thyroid Cancer

FIGURE 3

Case
606
13879
1841
563
5657
2188
740
1029
4552
2671
357
1588
1196
9132
25928
1054

Case
606
13879
1841
563
5657
2188
740
1029
4552
2671
357
1588
1196
9132

25928

1054

Control
371410
184644
357512
197960
366359
235651

371276
474058
367464
369345

371659
243344

473853
164361

440347
489866

Forest plot of COVID-19 susceptibility effects on multi-cancer risk.

Control
371410
184644
357512
197960
366359
235651

371276
474058
367464
369345
371659
243344
473853
164361

440347
489866

Forest plot of COVID-19 hospitalization effects on multi-cancer risk

Frontiers in Oncology

— — .

v N —

o
N
N —

A

4
v

HR (95% Cl)
1.00 (1.00 to 1.00)
1.00 (0.99 to 1.01)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.45 (0.89 to 2.37)
1.00 (1.00 to 1.00)
1.34 (0.92 to 1.93)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.12 (0.57 to 2.19)
1.48 (0.58 to 3.77)
1.00 (0.99 to 1.01)
0.91 (0.78 to 1.05)
0.52 (0.33 to 0.84)

HR (95% Cl)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.01)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.07 (0.81 to 1.41)
1.00 (1.00 to 1.00)
1.11 (0.94 to 1.31)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.00 (1.00 to 1.00)
1.14 (0.85 to 1.53)
1.11 (0.73 to 1.69)
1.00 (0.99 to 1.00)
0.98 (0.90 to 1.07)
0.75 (0.60 to 0.93)

10.3389/fonc.2024.1419020

pval

0.615
0.469
0.219
0.940
0.401
0.137
0.685
0.123
0.914
0.089
0.471
0.745
0.413
0.731
0.184
0.007

pval

0.382
0.699
0.289
0.635
0.330
0.629
0.313
0.230
0.744
0.185
0.909
0.395
0.620
0.810
0.663
0.009

frontiersin.org


https://doi.org/10.3389/fonc.2024.1419020
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al. 10.3389/fonc.2024.1419020
Severity
Outcome Case Control HR (95% CI) pval
Brain Cancer 606 371410 = 1.00 (1.00 to 1.00) 0.531
Breast Cancer 13879 184644 " 1.00 (1.00 to 1.00) 0.657
Cancer of Urinary Tract 1841 357512 u 1.00 (1.00 to 1.00) 0.687
Cervical Cancer 563 197960 + 1.00 (1.00 to 1.00) 0.664
Colorectal Cancer 5657 366359 ) 1.00 (1.00 to 1.00) 0.316
Endometrial Cancer 2188 235651 - 1.00 (0.90to 1.11) 0.943
Oesophageal Cancer 740 371276 + 1.00 (1.00 to 1.00) 0.031
Gastric Cancer 1029 474058 - 1.03 (0.95t0 1.12) 0.452
Haemotological Cancer 4552 367464 + 1.00 (1.00 to 1.00) 0.921
Lung Cancer 2671 369345 L) 1.00 (1.00 to 1.00) 0.600
Oral Cavity Cancer 357 371659 u 1.00 (1.00 to 1.00) 0.770
Ovarian Cancer 1588 243344 —l:'— 1.01 (0.87 to 1.16) 0.935
Pancreatic Cancer 1196 473853 = 0.96 (0.84 to 1.09) 0.492
Prostate Cancer 9132 164361 + 1.00 (1.00 to 1.00) 0.316
Skin Cancer 25928 440347 - 1.01 (0.95t0 1.07) 0.731
Thyroid Cancer 1054 489866 - 0.86 (0.75 to 0.98) 0.029
I I |
0.2 1 2
FIGURE 4
Forest plot of COVID-19 severity effects on multi-cancer risk.
MR Test Inverse variance weighted / MR Egger Weighted median
A B Cc
g 0.00- 0.00- 0.1-
S . L _r*
> L
F 010~ -0.10- \ 1153
§ . - 1
é -0.15- 0154 —0.1- )
[0}
o
z ~020- -0.20- -0.2
0.05 0.10 015 020 01 02 03 04 05 02 03 04 05 06
SNP effect on COVID-19 Susceptibility SNP effect on COVID-19 Hospitalization SNP effect on COVID-19 Severity
D E F
154766664 S S S r$13050728 i 1510860891 S —
: ¥ rs111837807 T
15612169 — 1535081325 TT 3 1577534576 —
35508621 I N 12660  ————&———— 152834163 e
: 152109069 — L i rs10735079 —
rs2109069 —0— rs2109069 —0—
: rS505022 - e e S I 1535081325 —
: : 1s2237608 - ———————
All = MR EQQer  m—— All - MR Egger .
: : All - MR Egger —_——
All - Inverse variance weighted T All - Inverse variance weighted e All - Inverse variance weighted —_—
-2 -1 0 -0 -05 00 05 00 05

MR effect size for

'COVID-19 Susceptibility' on 'Thyroid cancer'

FIGURE 5

'COVID-19 Hospitalization' on 'Thyroid cancer'

MR effect size for

MR effect size for

'COVID-19 Severity' on 'Thyroid cancer'

The MR analysis results between COVID-19 and multi-cancer risk are robust. scatter plot of casual estimate for MR test between COVID-19
susceptibility, hospitalization and severity on thyroid cancer (A-C); forest plot of single SNP effect of COVID-19 susceptibility, hospitalization and

severity on thyroid cancer (D-F).

Frontiers in Oncology

60

frontiersin.org


https://doi.org/10.3389/fonc.2024.1419020
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al.

Sensitivity analysis

To validate the reliability of the analysis results, conducting
sensitivity analysis is essential. We first used Cochran’s Q statistic to
test the heterogeneity of the studies to avoid the impact of errors
from non-experimental designs on the results. However, no
heterogeneity was found to exist (Supplementary Table S4).
Funnel plots showed symmetrical effect sizes around the point
estimates of the exposure factors, suggesting no apparent pleiotropy
(Figures 6A-C). Employing MR-PRESSO, we further scrutinized
horizontal pleiotropy in our MR analysis. The non-significant p
values (0.995, 0.998, 1) confirm the robustness of our findings in
thyroid cancer research(Supplementary Table S6). Furthermore, the
results of the leave-one-out analysis indicated that no individual
SNP significantly influenced the outcomes, demonstrating the
stability of the results (Figures 6D-F). In summary, the sensitivity
analysis results indicate that the findings of this study are robust,
free from interference caused by heterogeneity and pleiotropy.

Discussion

Despite a wealth of evidence indicating that cancer patients face
heightened risks of severe COVID-19 symptoms and increased
mortality rates due to their compromised immune systems (26),
limited research has been conducted on the potential cancer risk
among individuals infected with COVID-19. The absence of

10.3389/fonc.2024.1419020

standardized long-term care and health guidelines for COVID-19
patients, particularly concerning its impact on the occurrence of
malignancies, contributes to our limited understanding in this area.
We propose that this represents a matter of significant public health
concern with universal implications.

To address this question, we employed two-sample Mendelian
randomization (MR) to evaluate the association between COVID-
19 susceptibility, hospitalization, and severity and the risk of human
cancers. Our findings suggest that, among these three types of
exposure to COVID-19, there is no significant effect on the
incidence risk of most cancers. Despite SARS-CoV-2 being
primarily a respiratory virus, exposure to it does not increase the
odds ratio (OR) for lung cancer. However, an interesting exception
is observed in the case of thyroid cancer in which both COVID-19
susceptibility, hospitalization, and severity are associated with a
reduced risk (OR 0.52 for susceptibility, OR 0.75 for hospitalization,
and OR 0.86 for severity). This suggests that genetic susceptibility to
COVID-19 may have a potential protective effect on thyroid
function and the risk of thyroid cancer, although the precise
underlying mechanisms remain unclear.

The first question is why COVID-19 does not impact the
incidence of most human cancers. However, our findings suggest
that COVID-19 does not appear to raise the risk of cancer. One
potential explanation is that the duration of SARS-CoV-2 infection
and the symptoms of post-infection syndrome, although longer
than typical acute viral infections, still constitute an acute process.
This duration is still too brief when considering the extended period
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necessary for the accumulation of mutations required to initiate
malignancy. Consequently, it is justifiable to conclude that COVID-
19 may not have a significant influence on the risk of developing
various cancers in the human body. Although studies have found
that symptoms caused by SARS-CoV-2 infection can persist long-
term, there is no substantial evidence reporting that the SARS-CoV-
2 virus can persist in the human body long after infection, unlike
carcinogenic viruses such as HPV that can persist in the body long-
term. The transient nature of SARS-CoV-2 infection in the human
body may physiologically reduce the risk of carcinogenesis.

Another key issue is why there is a negative causal relationship
between the occurrence of thyroid cancer and exposure to COVID-
19. A recent study has reported similar findings, although the results
were not significant, possibly due to the significantly smaller sample
size in the dataset used by the authors (174,995 vs. 490,920) (27).
Experimental reports also support this conclusion; the SARS-CoV-2
virus does not seem to strongly attack the human thyroid (28, 29),
despite the thyroid being one of the organs with abundant
expression of ACE2 in the human body (30, 31). Moreover,
pathological reports show that it is challenging to detect the
presence of the SARS-CoV-2 virus in thyroid tissue after COVID-
19 infection (32-34). This suggests that mechanistically, SARS-
CoV-2 is unlikely to have an impact on thyroid carcinogenesis. One
possible explanation for these phenomena is that they are related to
genetic variations and immune surveillance mechanisms. Studies
have indicated that COVID-19 infection can activate the immune
system, including attacking immune cells, which may make the
body more vigilant in monitoring and clearing potential cancer cells
(35). We believe that individuals susceptible to COVID-19 have
more pronounced symptoms, indicating an easily activated immune
system. In this scenario, the activated immune system increases the
detection of cancer cells, which can reduce the occurrence of
thyroid cancer.

An interesting result is that as the severity of COVID-19
increases, the risk of various cancers decreases (the highest OR
for COVID susceptibility and cancer risk is 1.48, while for COVID
hospitalized it is 1.14, and for COVID severity it drops to 1.03),
despite the results not being significant. And not only the overall
trend of cancer decreases with increasing COVID-19 degree, but
also the OR values for thyroid cancer follow this pattern. Another
study also found similar patterns, which suggests that as the severity
of COVID-19 increases, the relative risk of cancer in patients
decreases (27). Based on this, we believe that this is unlikely to be
a coincidence in the data, but rather a general trend. This is
consistent with our speculation that carriers of genetic variations
associated with more severe COVID-19 symptoms may have higher
levels of immune surveillance, thereby possessing stronger abilities
to eliminate malignant cells, leading to a lower likelihood of thyroid
cancer occurrence. The severity of COVID-19 symptoms and the
immune levels of patients after infection are related, which is also
one of the reasons why younger patients typically have more severe
symptoms. Research conclusions support this viewpoint; levels of
cytokines and neutrophils increase in the bodies of severe COVID-
19 patients (36). Therefore, we speculate that individuals susceptible
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to COVID-19 may have higher levels of innate immune activity,
and the increased threshold of innate immunity not only leads to
more pronounced symptoms during COVID-19 infection but also
increases the probability of clearing cancerous cells in the body.

Despite providing evidence and revealing the connection
between COVID-19 infection and various cancers, our study has
some limitations. Firstly, the samples studied were predominantly
from individuals of European descent, limiting the generalizability
of the conclusions as the incidence rates of thyroid cancer vary
across different countries (37). Secondly, The study included 16
types of cancer datasets available in public databases. However,
these datasets do not encompass all known human cancers, and
reliance on a single database source may introduce selection bias.
Additionally, MR studies explain the impact of genetic variations on
outcomes. However, in the real world, interference from
environmental factors, lifestyle habits, and other acquired factors
might not yield the same results.

Conclusion

In conclusion, this study utilizes the Mendelian randomization
(MR) method and incorporates comprehensive genome-wide
association studies (GWAS) data to clarify that the susceptibility
to COVID-19 does not have a significant impact on the risk of most
cancers. However, our research emphasized a specific protective
effect of COVID-19 against thyroid cancer. These findings are of
great importance as they provide essential evidence for the
development of effective screening strategies for patients with
various types of cancer and enhance our comprehension of the
association between COVID-19 and the risk of cancer in humans.
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Objective: This study aims to examine the thyroid hormone profile and its
association with severe coronavirus disease 2019 (COVID-19) in patients
infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Methods: This retrospective cohort study enrolled patients admitted to a tertiary
hospital due to SARS-CoV-2 infection between February 18 and May 18, 2022.
Clinical data were collected retrospectively from the electronic medical record
system. Based on the thyroid function, patients were divided into five groups:
normal, non-thyroid illness syndrome (NTIS), hypothyroidism, thyrotoxicosis, and
unclassified. The association between thyroid function and severe COVID-19 was
detected using multivariable logistic regression and restricted cubic splines analysis.

Results: This study included 3,161 patients, with 7.7% of them developing severe
COVID-19. 44.9% of the patients had normal thyroid function, 36.5% had NTIS, 6.7%
had hypothyroidism, and 1.0% had thyrotoxicosis on admission. After adjusting for age,
sex, and relevant clinical characteristics, NTIS and hypothyroidism were associated
with increased risks of severe COVID-19 (odds ratio [OR] 2.38, 95% confidence interval
[Cl] 1.59-3.56 and OR 2.29, 95% Cl 1.23-4.26, respectively), compared to normal
thyroid function group. Among patients with NTIS or hypothyroidism, higher levels of
total triiodothyronine (TT3) are associated with lower risks of severe COVID-19 (OR
0.73, 95% Cl 0.64-0.82, for every 0.1nmol/L increase in TT3 level).

Conclusion: Thyroid hormone profiles of NTIS or hypothyroidism are associated

with increased risks of severe COVID-19. The decreased level of TT3 correlated with
the increased risk of severe COVID-19 in patients with NTIS or hypothyroidism.

SARS-CoV-2, severe COVID-19, non-thyroid illness syndrome, thyroid function,
total triiodothyronine
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Introduction

Since it first emerged in 2019, the Coronavirus disease-2019
(COVID-19) pandemic has had a profound and far-reaching
impact on global health. It continues to pose a significant and
ongoing threat to public well-being. This disease presents a wide
array of symptoms, ranging from mild to severe and even fatal,
affecting multiple organs and systems of the human body, including
the endocrine glands and the thyroid gland (1).

Following the publication of a case report on subacute thyroiditis
after infection with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) by Brancatella et al. (2), considerable attention has been
given to the research on the relationship between COVID-19 and the
thyroid gland (3). However, as more clinical evidence accumulated, a
wide range of thyroid function abnormalities have been noticed,
including thyroiditis, non-thyroidal illness syndrome (NTIS), clinical
and subclinical hypothyroidism, central hypothyroidism, and clinical
and subclinical hyperthyroidism (4). It is now well recognized that
NTIS, characterized by low levels of triiodothyronine (T3) and normal
or low levels of thyroid-stimulating hormone (TSH) (5, 6), is quite
common among patients with SARS-CoV-2 infection (5, 7-10).

NTIS has been reported to be a complex condition associated with
severe diseases, such as poor nutrition, heart failure, chronic obstructive
pulmonary (COPD), and community-acquired pneumonia (6, 11).
Some scholars have concluded that NTIS could predict clinical
deterioration in COVID-19 patients (9, 12). And some studies have
found that low triiodothyronine levels hold significant predictive value
for COVID-19 patients (13, 14). These results have motivated us to
conduct further research. In this study, we conducted a retrospective
analysis to investigate the thyroid hormone profiles, especially NTIS, in
SARS-CoV-2 infected patients. We also explored the relationship
between triiodothyronine and the risk of developing severe COVID-
19 during hospital stays and examined the predictive value of thyroid
function tested on admission.

Methods
Study population

This retrospective cohort study analyzed data from inpatients in
a tertiary hospital during the 2022 COVID-19 outbreak in
Shanghai. The study subjects were adults (=18 years) admitted
due to SARS-CoV-2 infection from February 18 to May 18, 2022.
Clinical Data were collected retrospectively from the electronic
medical record system. The subjects were all Chinese residents
with routine clinical data and laboratory tests, including complete
blood count, renal and liver function, thyroid function, and
coagulation function, which were conducted on admission.

Thyroid function

Thyroid function was tested within 24 hours after admission,
including total triiodothyronine (TT3), total thyroxine (TT4), free
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triiodothyronine (FT3), free thyroxine (FT4), and TSH. Based on
the thyroid hormone levels, the thyroid hormone patterns were
categorized into five groups: NTIS, hypothyroidism, thyrotoxicosis,
normal, and unclassified.

1. NTIS was defined as low TT3 with either normal TSH or
low TSH (15).

2. Hypothyroidism was defined as overt hypothyroidism
(high TSH and low FT4) or subclinical hypothyroidism
(high TSH and normal FT4) (16).

3. Thyrotoxicosis was defined as overt thyrotoxicosis (low
TSH, high TT3, and high FT4), mild (low TSH, high TT3,
and normal FT4), or subclinical thyrotoxicosis (low TSH,
normal TT3, and normal FT4) (17).

4. The normal group was defined as normal TSH, TT3, and
FT4 levels.

5. The unclassified group includes individuals with thyroid
hormone profiles that do not fit the criteria mentioned
above. This includes:

- Normal TSH, TT3, and high or low FT4.
- Normal TSH, FT4, and high TT3.

- High TSH, FT4, and low or normal TT3.
- Low TSH, normal TT3, and high FT4.

Covariates

Covariates included age, gender, diabetes, vaccination status,
and laboratory tests examined within 24 hours of admission, which
included complete blood count, renal and liver function, thyroid
function, and coagulation function. The combination of diabetes
was established based on a prior diabetes diagnosis or an HbA1C
level of 26.5% on admission. The vaccinated status of individuals
was determined based on having received at least one dose of any
COVID-19 vaccine.

Clinical outcomes

The primary outcome is the occurrence of severe COVID-19,
which was determined by a particular expert group after discussion,
according to Chinese Clinical Guidance for COVID-19 Pneumonia
Diagnosis and Treatment (Trial Version 9) (18), when patients met
any of the following criteria: respiratory rate >30/min, SpO2 <93%
at rest, and >50% progression in 48 h on imaging, critical disease
state which was defined as respiratory failure requiring mechanical
ventilation, shock, and intensive care unit (ICU) admission.

Secondary outcomes encompassed several variables: 1. Oxygen
therapy status, categorized as no oxygen treatment, oxygen
inhalation, non-invasive mechanical ventilation, or invasive
mechanical ventilation. 2. Hemodialysis treatment, administered
during the hospital stay. 3. Time to SARS-CoV-2 RNA turning
negative, defined as the number of days from confirming SARS-
CoV-2 infection to when SARS-CoV-2 RNA tests showed cycle
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threshold (Ct) <35 for at least two consecutive days. 4. Length of
hospitalization, defined as the number of days between the date of
discharge and the initial date of hospitalization. All the clinical
outcome data were retrospectively extracted from the hospital
information system’s electronic medical record.

Laboratory measurement

SARS-CoV-2 infection was defined as SARS-CoV-2 RNA with
the Ct value <35 in either target gene at least twice. Samples were
extracted from nasal/throat swabs and detected with SARS-CoV-2
real-time polymerase chain reaction (RT-PCR) by the dual-target
(ORF1lab and N genes), using detection kits from DAAN Inc.

Thyroid function was measured using automated competitive
immunoassays: Alinity I (Abbott) according to the manufacturer’s
protocol. The normal range is 0.98-2.33 nmol/L for TT3, 62.68-
150.84 nmol/L for TT4, 2.43-6.01 pmol/L for FT3, 9.01-19.05 pmol/
L for FT4, and 0.35-4.94 ulU/mL for TSH.

Serum amyloid A (SAA) was performed using a specific protein
analyzer and accompanying reagents manufactured by Upper Bio-
teach Pharma Co. in Shanghai, China. The methods were Particle-
Enhanced immunoturbidimetric. All items were operated strictly
with the operating procedures, reagent instructions, and indoor
quality control.

High-sensitivity C-reactive protein (hs-CRP) was measured
using the hs-CRP Assay Kit produced by Shenzhen Lifotronic
Technology Co. through scatter turbidimetry, according to the
manufacturer’s protocol.

Interleukin-6 (IL-6) was measured using the cytokine detection
kits produced by Qingdao Raisecare Biological Technology Co.
using the multiple microsphere flow immunofluorescence
luminescence method.

Statistical analysis

Continuous variables were reported as the median and
interquartile range (IQR) since most of the variables were not
distributed normally. Category variables were reported as
frequency and percentage. Demographic and clinical
characteristics of the patients were compared between the normal
thyroid function group and other thyroid function groups using the
Wilcoxon rank-sum or Kruskal-Wallis H test for continuous
variables and the chi-square test or Fisher’s exact test for
categorical variables.

Initially, we conducted univariate logistic regression to assess
the association between thyroid hormone patterns and severe
COVID-19. We adjusted for age, sex, diabetes, and vaccination in
Model 1. In Model 2, we additionally adjusted aspartate
transaminase (AST) levels exceeding three times the upper
normal limit (ULN), estimated glomerular filtration rate (eGFR)
below 30 ml/min/1.73m? serum calcium (Ca), white blood cell
count (WBC), neutrophil-lymphocyte ratio (N/ly), and D-Dimer.
Odds ratios (OR) with corresponding 95% confidence intervals (CI)
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were reported. Missing data were filled using the K-nearest
neighbors (KNN) method with a value of K=10.

To evaluate the association between TT3 levels and severe
COVID-19, we used a logistic regression model with restricted
cubic splines (RCS) to examine nonlinear relationships among all
patients affected with SARS-CoV-2. The logistic regression was
adjusted for the same baseline clinical characteristics as in Model 2.
The median value of the predictor variable was chosen as the
reference value. If the curve exhibited a U-shape, Inverted U-
shape, or L-shape, the inflection point (i.e., the point where the
curve changed its direction) was set as the cut-off value. The
correlations between TT3 and inflammatory factors and
lymphocyte subsets, stratified by thyroid function pattern, were
determined by the Spearman correlation coefficient.

Statistical analyses were performed using SPSS 26 (SPSS/IBM,
Armonk, NY, USA). RCS analyses were performed using R
software, version 4.2.2, with the rms package. P value <0.05 was
considered statistically significant, and a two-tailed P value
was reported.

Results
Study participants

This study was conducted from February 18 to May 18, 2022,
during the prevalence of the BA.2.2 variant of SARS-CoV-2. A total
of 3636 hospitalized patients admitted due to SARS-CoV-2
infection were initially screened. Among this group, sixty-eight
patients were excluded due to reinfection with SARS-CoV-2, and an
additional four hundred and seven patients were excluded because
their thyroid function was not tested. Ultimately, 3161 patients were
included in this study.

Thyroid hormone profile of patients
on admission

Normal thyroid dysfunction was present in 44.9% of the 3161
patients included in this study, as shown in Figure 1A. NTIS is the
most common form of abnormal thyroid dysfunction, affecting
36.5% of the entire study population. Hypothyroidism was found in
6.7% of the patients, with overt hypothyroidism accounted for only
0.16% of the study cohort. Thyrotoxicosis was observed in 1.0% of
the study population, while overt thyrotoxicosis was rare, with only
two patients (0.06%) exhibiting this condition. The unclassified
group comprised 11.0% of the study population. Within the
unclassified group, 89% of the patients presented with only high
FT4 levels (309 out of 347). 4.6% presented with normal TT3, low
TSH, and high FT4, and 3.5% presented with normal TT3, high
TSH, and high FT4. For more detailed information, please refer to
Supplementary Table 1. Among the patients who developed severe
COVID-19 during hospitalization, the proportion of nonthyroidal
illness syndrome (NTIS) was significantly higher compared to non-
severe patients (70.8% vs. 33.5%) on admission (Figures 1B, C).

frontiersin.org


https://doi.org/10.3389/fendo.2024.1361479
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Yang et al.

- Hypothyroidism,
/ 6.7%

Unclassified,

e 11.0¢
Thyrotoxicosis,
! -~

1.0%

A. Total (n=3161) B. Severe (n=240)

FIGURE 1

Unclassified, 3.8% /‘

10.3389/fendo.2024.1361479

Hypothyroidism,
6.4%

Hypothyroidist
8.3%

Thyrotoxicosis,

C. Not severe (n=2895)
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COVID-19 patients (B), and not severe COVID-19 patients (C).

Clinical characteristics of patients
according to thyroid hormone patterns

The clinical characteristics are presented in Table 1. The median
age of the patients was 60 years (IQR 42, 75); 1657 (52.4%) were
male, 28.3% had diabetes, and 54.2% had received at least one dose
of the COVID-19 vaccine. Compared to normal thyroid function
patients, NTIS patients were much older: median 67 vs 54 years and
had more patients with diabetes (36.1% vs 26.3%). In general, NTIS
patients had worse conditions in liver and kidney function tests,
such as higher lactate dehydrogenase (LDH) levels, lower albumin
(ALB), and lower eGFR (median 91 vs. 102, ml/min/1.73m?). NTIS
patients had lower serum Ca levels (median 1.99 vs. 2.06 mmol/L)
and higher D-Dimer levels (median 0.53 vs. 0.26 ug/ml).
Hypothyroid patients, when compared to normal thyroid
function patients, were older (median 63 vs. 54 years) and less
male (40.8% vs. 54.4%). Additionally, hypothyroid patients had
higher LDH (median 215 vs. 200, U/L), lower eGFR and Ca levels,
and higher D-Dimer levels than the normal thyroid
function patients.

The incidence of severe COVID-19 was as high as 14.9% among
the NTIS group, followed by hypothyroidism, thyrotoxicosis, and
the unclassified group, which was 10.0%, 3.2%, and 2.9%,
respectively, compared with 2.8% in normal thyroid function
group, see Table 1. Regarding oxygen therapy, 30.6% of the NTIS
group were prescribed oxygen therapy during hospital stay, which
was as low as 12.2% in the normal thyroid function group. The
oxygen therapy comprised oxygen inhalation, non-invasive
mechanical ventilation, and invasive mechanical ventilation,
which were 18.0%, 7.5%, and 5.1% in the NTIS group. Compared
with the normal group, NTIS patients had more extended hospital
stays (median 11 vs. 9 days).

Association of thyroid function patterns
and severe COVID-19

The odds of severe COVID-19 were significantly higher in NTIS
and hypothyroid patients, as indicated by unadjusted ORs of 6.03
(95% CI, 4.24, 8.59, P<0.001) and 3.81 (95% CI, 2.20, 6.60, P<0.001)
respectively, compared to normal thyroid function patients,
Figure 2. In model 1, after adjusting for age, sex, vaccination
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status, and diabetes, the ORs remained high at 3.57 (95% CI,
2.46, 5.18; P<0.001) for NTIS, and at 2.85 (95% CI, 1.58, 5.12;
P<0.001) for hypothyroidism. In model 2, additional adjustment for
clinical characteristics at admission resulted in ORs of 2.38 (95% CI,
1.59, 3.56; P<0.001) for NTIS and 2.29 (95% CI, 1.23, 4.26; P<0.001)
for hypothyroidism.

Association of TT3 levels and severe
COVID-19 clinical outcomes

The RCS analysis showed that the curve in Figure 3 was an L-
shape and suggested a non-linear association. The inflection point
of the RCS curve was identified at TT3 = 1.06 mmol/L, representing
a turning point in the relationship between the TT3 level and severe
COVID-19. Both NTIS and hypothyroid patients had TT3 levels
below the turning point of 1.06 nmol/L. In the NTIS and
hypothyroidism subgroups, after adjustment for clinical
characteristics as in Model 2, the odds of severe COVID-19
decreased significantly with each increment of 0.1 nmol/L of TT3
level, 0.73 (95% CI, 0.64, 0.82; P<0.001).

Association of TT3 levels and inflammatory
factors and lymphocyte subset

Significant negative correlations were found between the TT3
levels and T lymphocyte subsets in SARS-CoV-2 infected patients,
as shown in Supplementary Figure 1A-C. Furthermore, TT3 levels
were negatively correlated with inflammatory cytokines, including
hs-CRP, SAA, and IL-6, especially among the NTIS and
hypothyroidism subgroups, as shown in Supplementary
Figure 1D-F and Supplementary Table 2.

Discussion

The prevalence of NTIS was observed in 36.5% of patients upon
admission in this study. NTIS has been commonly reported among
individuals with SARS-CoV-2 infection (7, 9, 10), with rates ranging
from 1.7-66.3%, mainly depending on study cohorts and disease
severity (19). This study confirmed that NTIS was associated with
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TABLE 1 Baseline characteristics and COVID-19 clinical outcome in different thyroid function patterns.

Characteristics

Total

Normal

Hypothyroidism

Thyrotoxicosis

10.3389/fendo.2024.1361479

Unclassified

Missing,
n (%)

Patient, n (%) 3161 1418 (44.9%) 1154 (36.5%) 211 (6.7%) 31 (1.0%) 347 (11.0%)
Baseline Characteristics

Age, years 60 (42, 75) 54 (38, 69) 67 (48, 83) * 63 (48, 81) * 40 (32, 69) 62 (43, 74) * 0
Age 260 years, n (%) 1595 (50.5%) = 585 (41.3%) 699 (60.6%) * 117 (55.5%) * 11 (35.5%) 183 (52.7%) * 0
Male, n (%) 1657 (52.4%) 771 (54.4%) 596 (51.6%) 86 (40.8%) * 15 (48.4%) 189 (54.5%) 0

Diabetes, n (%)

896 (28.3%)

341 (26.3%)

389 (36.1%) *

55 (28.9%)

10 (35.7%)

101 (31.3%)

245 (7.8%)

Vaccinated, n (%)

1714 (54.2%)

884 (66.9%)

496 (46.6%) *

114 (58.8%)

17 (60.7%)

203 (61.3%)

221 (7.0%)

Waiting time', days 1(1,6) 2(1,8) 1(1,4)* 2(1,8) 1(1,1)* 1(1,5)* 30 (0.9%)
Laboratory tests
HbAlc, % 59 (5.6,64) | 59(5563) | 60(5665* 5956 64) 59 (5.6, 6.6) 6.0 (5.6, 6.5) * 83 (2.6%)
ALT, U/L 18 (12, 28) 19 (13, 31) 17 (11, 26) * 18 (12, 29) 17 (12, 28) 19 (12, 29) 43 (1.4%)
AST, U/L 20 (16.27) 20 (16, 26) 21 (16, 29) * 22 (17, 30) 18 (15, 26) 20 (16, 26) 7 (0.2%)
LDH, U/L 204 200 (174, 230) | 211 (180, 215 (183, 254) * 195 (161, 227) 202 (178, 242) 9 (03%)
(177, 242) 257) * =
ALB, g/L 40 (37, 43) 41 (39, 44) 39 (34,42) ¢ 40 (36, 43) * 40 (37, 42) 41 (38, 43) 3(0.1%)
¢GER, ml/min/1.73m> 97.4 101.5 90.8 (67.7, 90.4 (73.0, 112.3) * 106.2 (70.1, 128.6) 988 (832, 1160) (000
(79.1,1152)  (85.6, 116.6) 112.6) * -
AST=3ULN 55 (1.7%) 9 (0.6%) 42 (3.6%) * 1 (0.5%) 0 (0.0%) 3(0.9%) 7 (0.2%)
eGFR<30 ml/min/1.73m> = 126 (4.0%) 13 (0.9%) 99 (8.6%) * 12 (5.7%) * 1 (3.3%) 1 (0.3%) 6 (0.2%)
n (%)
K, mmol/L 38(354.1) | 38(3.540) | 38(354.1) 3.8 (3.6, 4.1) 3.7 (3.4, 4.0) 3.8 (3.5, 4.1) 8 (0.3%)
Na, mmol/L 39 (138, 141) | 140 (138, 141) | 139 (137, 140 (138, 141) 138 (136, 139) * 140 (138, 141) 7 02%)
141) * e
Ca, mmol/L 2.04 2.06 1.99 (1.88, 2.02 (1.90, 2.18) * 2.07 (1.94, 2.15) 208 (195,221) 25%)
(1.92, 2.18) (1.95, 2.19) 2.15)* o
TT3, nmol/L 1.04 118 0.84 (0.75, 1.06 (0.89, 1.26) * 1.23 (1.08, 1.33) 1.14 (1.05,
3 (0.1%)
(0.88, 1.22) (1.07, 1.35) 0.91) * 1.24) *
TT4, nmol/L 82(7.1,130) 87 (75,957) @ 74(6587)% 7.7 (66 55.0)* 104 (8.2, 100.9) 92 (84,10.1) * | 1 (0.03%)
FT3, pmol/L 46(4.0,53) | 49(43,54) | 41(35,47)% | 47(4.0,52)* 47 (3.9,53) 5.4 (4.9, 5.8) 1 (0.03%)
FT4, pmol/L 16.1 154 163 (14.3, 143 (12,9, 16.5) * 159 (14.8, 16.8) 204 (19.6, o
(14.1,18.3) (13.9, 17.0) 18.6) * 21.6) *
TSH, ulU/mL 17 (1.1,2.8) | 1.8(13,27) 14 (08,22)% | 66 (55, 87)* 0.2 (0.1, 0.3) * 1.6 (1.0, 2.5) * 0
WBC, 10°/L 55(43,7.1) | 55(43,69) | 54(43,74) 57 (4.4,7.3) 49 (4.0, 62) 53 (4.3, 6.9) 14 (0.4%)
Neutrophils, 10%/L 33(23,46) | 32(22,43) | 34(2553)* | 32(23,47) 34 (2.5, 44) 3.1 (22, 4.3) 14 (0.4%)
Lymphocyte, 10°/L 14(1.0,19) | 1.6(1.2,20)  12(08,1.6)* | 14 (L1,20) 0.9 (0.6,1.3) * 1.5 (1.1, 1.9) 15 (0.5%)
Nily 22(15,37) | 20(14,30) | 29(18,53)* | 20(15,3.1) 31(22,6.1) % 2.0 (14,32) 14 (0.4%)
Hemoglobin, g/L 131 1345 126 (111, 128 (114, 142) * 126 (114, 136) * 135 (123, 149)
14 (0.4%)
(118, 146) (123, 148) 142) *
Platelet, 10°/L 200 203 (164, 250) | 193 (150, 199 (167, 253) 195 (170, 249.5) A1A74256) 6o
(160, 249) 245) * e
D-Dimer, ug/ml 033 0.26 053 (0.25, 045 (0.23, 1.02) * 0.34 (0.22, 0.61) * 033 (0.20, 45 (14%)
(0.21, 0.78) (0.19, 0.55) 1.27) * 0.72) * R
(Continued)
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TABLE 1 Continued

Characteristics Total Normal

Hypothyroidism

10.3389/fendo.2024.1361479

Thyrotoxicosis

Unclassified Missing,
n (%)

COVID-19 Clinical outcomes

Severe, 1 (%) 244 (7.7%) 40 (2.8%) 172 (149%) * | 21 (10.0%) * 1 (3.2%) 10 (2.9%) 0

Oxygen therapy, n (%) 0

No 2534 (80.2%) | 1245 (87.8%) | 801 (69.4%) * 164 (77.7%) * 28 (90.3%) 296 (85.3%)

Oxygen inhalation 443 (14.0%) | 154 (10.9%) 208 (18.0%) * 34 (16.1%) 2 (6.5%) 45 (13.0%)

Non-invasi 113 (3.6%
on-nvasive (3.6%) 11 (0.8%) 86 (7.5%) * 10 (4.7%) * 1 (3.2%) 5 (1.4%)

assisted breathing

Invasi 71 (2.2%

nvasive - (2:2%) 8 (0.6%) 59 (5.1%) * 3 (1.4%) 0 1 (0.3%)

mechanical ventilation

Hemodialysis treatment, 68 (2.2% 0
emodialysis treatmen (2.2%) 10 (0.3%) 52 (1.6%) * 4(0.1%) 0 2 (0.1%)

n (%)

Time to negative, days 12 (9, 16) 12 9, 15) 12 (9, 16) 12 (8,17) 11 (4, 15) 12 (9,16) 19 (0.6%)

Hospital stays, days 10 (5, 13) 9. (5, 12) 11 (7, 15) * 9.(5,13) 11 (4, 15) 10 (6,14) * 6 (0.2%)

! Waiting time defined as days from SARS-CoV-2 infection confirmed to admission, > Time to negative defined as days from SARS-CoV-2 infection to SARS-CoV-2 RNA CT<35 at least twice in
consecutive days; * Compared with the normal group, P<0.05. NTIS non-thyroidal illness syndrome, HbA1C glycated hemoglobin, ALT alanine transaminase, AST aspartate transaminase, LDH
lactate dehydrogenase, ALB albumin, eGFR estimated glomerular filtration rate, ULN upper normal limit, K serum potassium, Na serum sodium, Ca serum calcium, TT3 total triiodothyronine,
TT4 total thyroxine, FT3 free triiodothyronine, FT4 free thyroxine, TSH thyrotropin, WBC white blood cell, N/ly, neutrophil-to-lymphocyte ratio.

severe clinical outcomes, with NTIS patients having 2.4 times the
odds of developing severe COVID-19 compared to the normal
thyroid group after adjusting for multiple relevant clinical
characteristics. Additionally, NTIS patients had more extended
hospital stays and a higher need for oxygen therapy compared to
the normal thyroid function group. NTIS can be recognized as an

early indicator of severe COVID-19, supporting the conclusions of
previous research (5, 7, 9). Previous research has demonstrated that
NTIS was linked to a 3.2-3.5 times greater risk of severe COVID-19
(7, 9). However, there are discrepancies in the literature regarding
the study populations, the definition of NTIS, and the reference
group used. In this study, we included 3161 SARS-CoV-2 infected

Thyroid function Severe Total OR (95% CI)
(Normal as reference) '
Crude model .
1
Normal 40 1418 '
NTIS 172 1154 ' ———————t 6.03 (4.24 to 8.59)
Hypothyroidism 21 211 ' —_———— 3.81 (2.20 to 6.60)
Thyrotoxicosis 1 31 ng 1.15 (0.15 to 8.63)
Unclassified 10 347 —— 1.02 (0.51 to 2.07)
1
1
Model 1 '
1
Normal 40 1418 '
NTIS 172 1154 ! —— 3.57 (2.46 to0 5.18)
Hypothyroidism 21 211 | 2.85(1.58 t0 5.12)
Thyrotoxicosis 1 31 g 1.22 (0.15t0 9.73)
Unclassified 10 347 > 0.78 (0.38 to 1.60)
1
1
Model 2 :
Normal 40 1418 !
NTIS 172 1154 | 2.38 (1.59 to 3.56)
Hypothyroidism 21 211 (—— 2.29 (1.23 to0 4.26)
Thyrotoxicosis 1 31 - 0.59 (0.06 to 6.08)
Unclassified 10 347 —or— 0.81 (0.39 to 1.69)
0.0 25 5.0 75 10.0

FIGURE 2

Association between thyroid function patterns and severe COVID-19. Model 1 multivariate logistic regression model adjusted age, sex, diabetes, and
vaccination; Model 2 multivariate logistic regression model adjusted age, sex, diabetes, vaccination, AST>3ULN, eGFR<30 ml/min/1.73m?, Ca, WBC,
N/ly, D-Dimer. OR odds ratio, Cl confidence interval, NTIS non-thyroidal illness syndrome. Missing data were filled using the K-nearest neighbors

(KNN) method with a value of K=10.
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FIGURE 3

Association between TT3 level and severe COVID-19 in patients infected with SARS-CoV-2 using restricted cubic splines. The model has 3 knots at
10th, 50th, and 90th percentiles. The Y-axis represents the OR of severe COVID-19 for any value of TT3 compared to individuals with a TT3 level of
1.06 nmol/L. The logistic regression was adjusted for age, sex, diabetes, vaccination, AST>3ULN, eGFR<30 ml/min/1.73m2, Ca, WBC, N/ly, and D-
Dimer. Missing data were filled using the K-nearest neighbors (KNN) method with a value of K=10. N=3161. C| confidence interval, TT3

total triiodothyronine.

patients with varying severity of COVID-19. The definition of NTIS
used in this study was based on low TT3 levels, while some studies
used a low FT3 level and non-NTIS patient as a reference group.
In this study, hypothyroidism only accounts for 6.7% of the
study population, we still observed an elevated risk of severe
COVID-19 in hypothyroid patients, that hypothyroid patients
were associated with 2.3-fold higher odds of developing severe
COVID-19 compared to the normal thyroid group. Similar results
were also noticed in a retrospective study, in which 7.23% of
patients had subclinical hypothyroidism, and the hazard ratio
(HR) of severe COVID-19 was 4.04 compared to those with
normal thyroid function (20). In certain circumstances,
distinguishing between hypothyroid patients and those with NTIS
can be challenging. Since NTIS is a complex condition, it
demonstrates heterogeneity in the progressive stages of the
disease. Notably, during the recovery phase of chronic illnesses, it
may present as elevated TSH levels (21). We speculate there exists
an overlap between NTIS and hypothyroidism in this study. At
present, the research on the association between hypothyroidism
and severe COVID-19 is limited. Additional studies are required to
understand and verify this association comprehensively.
Interestingly, this elevated risk of severe COVID-19 in
hypothyroid patients was found to be comparable to that of NTIS
patients in model 2. Since low plasma TT3 levels were the most
consistent and significant alteration in NTIS and hypothyroid
patients, further investigation was conducted to explore the
correlation between TT3 levels and severe COVID-19. Among
NTIS and hypothyroid patients, higher levels of TT3 were

Frontiers in Endocrinology

associated with lower risks of severe COVID-19 (OR 0.73, 95%
CI 0.64-0.82, every 0.Inmol/L increment in TT3 level). TT3 levels
have been observed to decrease shortly after surgery (22) and persist
throughout the disease in both acute and chronically ill patients
(23). This decrease in TT3 level becomes more pronounced as the
disease worsens (6, 24, 25). Other studies have also reported the
correlation between TT3 levels and the severity of COVID-19. At
the early start of the COVID-19 epidemic, one retrospective cohort
study including 50 patients concluded that the degree of TT3
decrease correlated with the severity of COVID-19 (26). Another
study carried out among 119 SARS-CoV-2 infected patients
presented that the patients in the lowest TT3 tertile (HR, 5.07)
and the middle tertiles (HR, 2.05) had higher risks of death
compared with those in the highest TT3 tertile (8). In addition to
TT3, decreased FT3 levels have been reported to be an independent
factor for poor clinical outcomes and death in mild and critical
COVID-19 patients (7, 9, 10, 27). According to our knowledge, this
is currently the only study that quantitatively describes the
correlation between the extent of TT3 reduction and the
increased risk of severe COVID-19.

This study observed a significant negative correlation between
TT3 levels and proinflammatory biomarkers such as hs-CRP, SAA,
and IL-6, especially in the NTIS and hypothyroidism subgroups, see
Supplementary Figure 1 and Supplementary Table 2. This finding
aligns with previous studies that have also reported a negative
correlation between T3 levels and hs-CRP (8), SAA (28), and IL-6
(7) levels. We speculate that pro-inflammatory factors may catalyze
changes in thyroid function. Although the exact pathophysiological
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mechanisms linking thyroid function and SARS-CoV-2 infection
are not fully understood, it is plausible that COVID-19 infection can
induce inflammation and trigger immune responses (29), impacting
various organs, including the thyroid-pituitary-hypothalamic axis.
Previous research has shown that proinflammatory cytokines play a
significant role in developing NTIS in severe patients (30). There is
decreased pulsatile secretion of TSH and impaired TSH response to
low levels of circulating T3 and T4 at the pituitary level (31, 32).
Additionally, in peripheral tissues, pro-inflammatory cytokines
have been found to suppress deiodinase 1 and increase deiodinase
3, leading to a sudden decrease in T3 levels and an increase in
reverse T3 (rT3) in circulation (33). Considering the potential
impact of SARS-CoV-2 infection, it is reasonable to suggest that
proinflammatory factors may also be the driving force behind
changes in thyroid function.

This study also revealed a positive correlation between TT3
levels and lymphocyte subset counts, particularly with the CD3+
subset (Spearman’s rho 0.331, P<0.001). Other studies have
reported similar findings, showing that TT3 levels, rather than
TSH or other thyroid hormones, are associated with lymphocyte
counts in patients with bacterial sepsis (34) and that FT3 levels
correlate with lymphocyte counts in COVID-19 patients (35, 36).
Previous research has suggested that thyroid function plays a role in
regulating cell-mediated immunity and lymphocyte proliferation.
In healthy individuals, TT3 and TT4 levels were positively linked to
various lymphocyte subgroups, particularly memory T cells, natural
killer T cells, and CD3+/CD4+/CD45RO+ memory T helper cells
(37). People with hypothyroidism presented a decrease in
lymphocyte function, which could be restored after exogenous
hormone administration (38). Therefore, TT3 levels may serve as
a reliable indicator for assessing disease severity and predicting
clinical outcomes in COVID-19. Our subgroup analysis observed
weaker correlations among patients with normal thyroid function.
However, the correlations were more significant in the
hypothyroidism and NTIS subgroups, as shown in
Supplementary Table 2.

This study focused on the TT3 level instead of the FT3 level.
Since it is widely accepted that a decrease in TT3 level is positively
correlated with the severity of the disease. Additionally, the
reduction in TT3 amplitude is generally more significant than
that of FT3 (23). Furthermore, our study cohort found that
decreased TT3 levels were more common than decreased FT3
levels (39.1% vs. 1.5%). All 46 patients with low FT3 levels in our
study also had low TT3 levels. When exploring the association
between T3 and severe COVID-19, we identified a turning point for
TT3 at 1.06 nmol/L, which is close to the lower limit of the reference
range for TT3 based on immunoassays. Considering the
convenience in clinical practice, we ultimately decided to use low
TT3 levels in defining NTIS.

This study has several limitations that should be considered.
Firstly, it was conducted at a single center, which may limit the
generalizability of the findings. However, the study population
included over three thousand individuals with varying degrees of
SARS-CoV-2 infection, which partially enhances the
generalizability of the results. Secondly, there was a lack of
medical history regarding preexisting thyroid disease and
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potential drug confounders that could interfere with the accurate
detection of thyroid function. Thirdly, it is essential to note that
thyroid function was tested within 24 hours of admission before any
subsequent treatment was administered during hospital stays.
Fourth, we relied solely on medical history, medication use, or
HbAIc levels to confirm the presence of diabetes, which may have
excluded certain individuals. Lastly, the absence of follow-up to
track changes in thyroid function is another limitation of this study.
Future research should incorporate follow-up assessments to
provide a more comprehensive understanding of the long-term
effects on thyroid function in patients with SARS-CoV-2 infection.

Conclusion

Patients with thyroid hormone profiles of NTIS or
hypothyroidism on admission were associated with increased
risks of developing severe COVID-19 during hospital stays. The
decreased level of TT3 correlated with the increased risk of severe
COVID-19 in patients with NTIS or hypothyroidism.
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The COVID-19 pandemic has left a profound mark on global health, leading to
substantial morbidity and mortality worldwide. Beyond the immediate symptoms
of infection, the emergence of “long COVID", the long-term effects of SARS-CoV-
2, has become a significant public health concern. Long COVID is a multifaceted
condition affecting various organs and systems, including the cardiovascular,
digestive, nervous, and endocrine systems. Individuals diagnosed with polycystic
ovary syndrome (PCOS) may face an increased risk of severe COVID-19 symptoms
and infection. It is crucial to comprehend how long COVID affects PCOS patients
to devise effective treatment and care strategies. Here, we review the detrimental
effects of COVID-19 and its long-term effects on reproductive health, endocrine
function, inflammation, metabolism, cardiovascular health, body composition,
lifestyle, and mental health in patients with PCOS. We offer recommendations
for the post-covid-19 management of PCOS, emphasizing the necessity of a
comprehensive, multidisciplinary approach to patient care. Furthermore, we
discuss prospective research directions, highlighting the significance of
continued investigations and clinical trials to evaluate treatment approaches for
long COVID and its ramifications in individuals with PCOS.

KEYWORDS

polycystic ovary syndrome, Long COVID, care strategies, treatment approaches,
multidisciplinary management

1 Introduction

Coronavirus disease 2019 (COVID-19), caused by infection with severe acute
respiratory syndrome coronavirus 2 (SAR-CoV-2), has been declared a public health
emergency of international concern (1). SARS-CoV-2 enters cells by interacting with spike
protein S and angiotensin-converting enzyme 2 (ACE2), causing organ dysfunction (2).
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The COVID-19 pandemic has taken a great toll worldwide, with
profound consequences for individuals, organizations, and societies.
While the initial focus was on the acute symptoms of the virus,
more attention is now being paid to the long-term after-effects of
COVID-19 (3).

Even after the virus becomes undetectable in COVID-19
patients, it can continue to replicate for up to four weeks
following infection, potentially resulting in long-term effects on
various organs and systems. This condition is commonly referred to
as “Long COVID” (4) (Figure 1). The Centers for Disease Control
has listed approximately 25 clinical laboratory abnormalities
associated with an increase in COVID-19 prevalence, which
affects the health-related quality of life and well-being of COVID-
19 patients (5, 6). It is estimated that 10-20% of cases across all ages,
including children, will develop long COVID (a complex disorder
of multiple organ system dysfunction), with most cases occurring in
people with mild acute illness (7, 8).

Several hypotheses for the pathogenesis of long COVID have
been proposed (Figure 2), including the persistence of SARS-CoV-2
in tissues (9), pathological inflammation caused by persistent
autoimmune responses and immune disorders (10, 11), long-term
tissue damage (12), endothelial dysfunction and coagulation
dysfunction (13), and the effects of SARS-CoV-2 on microbiota,
including virome (10). Relevant risk factors may include female sex,
type 2 diabetes, androgens, early dyspnoea, previous psychiatric
disorders, and specific biomarkers (14). However, most of these

10.3389/fendo.2024.1434331

studies on the mechanism hypothesis are preliminary, and further
studies on the pathophysiology of long COVID are urgently needed.
Polycystic ovary syndrome (PCOS) is an endocrine disorder
affecting 5-20% of females of reproductive age (15). This syndrome
can lead to infertility, insulin resistance (IR), obesity, type 2
diabetes, dyslipidaemia, cardiovascular problems, and a series of
other health issues (16, 17). The overlap of many PCOS
comorbidities with risk factors for severe COVID-19 progression
has attracted research attention (Figure 3). Multiple studies have
shown that women with PCOS are at a higher risk of contracting the
SARS-CoV-2 virus and worsening COVID-19-related outcomes at
all ages (18-20). A study of 21,000 patients with PCOS showed that
women with PCOS had a 28% higher risk of developing COVID-19
(21). The clinical features of PCOS, such as hyperandrogenism,
obesity, IR, chronic low-grade inflammation, and intestinal flora
disturbance, may increase the risk of SARS-CoV-2 infection (18,
22). However, the impact of COVID-19 on patients with PCOS has
not yet been explored. This review updates our knowledge on this
issue, specifically examining the impact of COVID-19 and its
subsequent effects on PCOS and its accompanying health issues.
To gain a comprehensive understanding of the health impact of
COVID-19 and its long-term effects on patients with PCOS and to
provide guidance for future research and clinical practice, we
conducted an extensive literature search of reputable databases,
including PubMed and Web of Science. The search terms involved
“long-term COVID-19”, “polycystic ovary syndrome”,

FIGURE 1

Multisystem symptoms/manifestations of long COVID. Among the various organ systems that long COVID can damage are the respiratory,
cardiovascular, neuropsychological, digestive, circulatory, immune, and genitourinary systems, making it a truly multiorgan disease.
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FIGURE 2

Suggested explanations for the underlying causes of long COVID. There are several hypothesized mechanisms for the pathogenesis of long COVID,
including prolonged presence of the virus, direct cell/tissue damage, immune dysregulation, microbiome disruption, autoimmunity, coagulation, and
endothelial abnormalities.

Common sequelae of COVID-19

Ovarian dysfunction
Endocrine disorder
Metabolic abnormalities
Obesity
Dysregulation of gut microbiota

Chronic inflammation
Cardiovascular and pulmonary sequelae
Lifestyle changes

FIGURE 3
Convergence of post-covid-19 health issues and risk factors associated with PCOS and related problems. Overlapping factors between the common
long-term outcomes of COVID-19 and risk indicators for PCOS and its associated health issues.
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“epidemiology”,
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symptoms’,
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mechanism”, “management” and
other related terms. Articles were selected based on their
relevance to the topic identified in the abstract. The reference lists

of articles were also searched to identify relevant literature.

2 Impacts of COVID-19 and its
sequelae on PCOS

2.1 Reproductive health

2.1.1 Menstrual irregularities

The female reproductive endocrine system is commonly known
to be susceptible to various viruses. Evidence from studies
demonstrates that COVID-19 patients underwent different levels of
temporary menstrual changes, including longer menstrual cycles and
decreased menstrual blood volume (23, 24). Following the COVID-
19 pandemic, a study of 1,031 women found that 53% suffered from
more severe premenstrual symptoms, 18% experienced new
menorrhagia, and 30% experienced new dysmenorrhoea (25). One
study revealed a link between menstrual disturbances and the gravity
of COVID-19 (24). However, this change is temporary, and most
patients return to normal within 1-2 months of discharge.

In addition to SARS-CoV-2 infection, the COVID-19 vaccine
also affects the menstrual cycle (26). Studies have shown an
increased incidence of changes in the menstrual cycle after
COVID-19 vaccination, particularly in menstrual cycle length,
menstrual pain, and flow of menstruation (27), which may be
attributed to immunological processes (28, 29).

2.1.2 Ovarian dysfunction

To date, no significant studies have reported the influence of
COVID-19 on the ovarian reserve, function, or follicular fluid
properties. However, clinical studies have shown that ovarian
damage can be observed in women with COVID-19, including
decreased ovarian reserve and reproductive endocrine disruption.
Certain patients exhibit irregular changes in their sex hormone
levels, including elevated follicle-stimulating, luteinizing hormones,
testosterone, prolactin, and reduced estradiol and progesterone
levels, potentially suggesting ovarian suppression (23, 30-32).
Elevated levels of luteinizing hormones would stimulate theca
cells to secrete more testosterone, potentially leading to secondary
ovulation dysfunction at a later time. This situation could be even
more problematic for women with PCOS who already have
underlying endocrine disorders. Anti-Miillerian hormone (AMH)
is secreted by small antral follicles and is an important indicator for
evaluating the ovarian reserve. It is not affected by the menstrual
cycle, exogenous sex hormones or pregnancy (33). Studies on the
effects of COVID-19 on AMH have shown mixed results, with some
studies showing no difference in average AMH concentrations in
COVID-19 patients compared to controls (23, 34); however, others
suggest that COVID-19 infection can lead to ovarian reserve
impairment by reducing AMH levels (32, 35).

When the body experiences acute stress, ovarian function is
typically suppressed to maintain normal functioning of vital organs,
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and cases of anovulation have been documented in numerous acute
illnesses. SARS-CoV-2 has demonstrated the ability to invade host
cells via either the ACE2/transmembrane serine protease 2
(TMPRSS2) pathway or the basigin/cathepsin L (BSG/CTSL)
pathway (30). Public datasets have demonstrated that the
coexistence of ACE2 and TMPRSS2 expression in ovaries is most
prominent in oocytes, whereas a minor expression is also present in
granulosa cells (36, 37). A comparison of ACE2-positive and ACE2-
negative ovarian cells revealed greater enrichment of various viral
infection-related pathways in the former (38), suggesting that
SARS-CoV-2 specifically targets certain ovarian cells through the
ACE2/TMPRSS2 pathway, thereby suppressing ovarian function.

2.2 Endocrine diseases

2.2.1 The hypothalamic-pituitary-thyroid
axis (HPT)

Thyroid dysfunction can exacerbate metabolic disorders,
dyslipidaemia, cardiovascular disease risk, and reproductive health
disorders in patients (39-41). Endocrine conditions, including
thyroid dysfunction, adrenal dysfunction, and hyperandrogenism,
have been linked to increased vulnerability to and severity of SARS-
CoV-2 infection. Notably, coronavirus directly affects the thyroid
gland (42). According to reports, COVID-19 inpatients may
experience clinical thyroid dysfunction, such as thyrotoxicosis,
hypothyroidism, and subclinical thyroid dysfunction, with the level
of thyroid-stimulating hormone indicating the presence of
hyperthyroidism or hypothyroidism (43). A study reported that
87% of patients continued to suffer from hypothyroidism even after
more than three months following their recovery from COVID-19
(44). Currently, there is no evidence of a direct or indirect effect of
SARS-CoV-2 on thyroid function. However, given that SARS-CoV-2
appears to be capable of causing organ damage through autoimmune
processes (45), COVID-19-induced thyroid damage via immune
system dysregulation cannot be ruled out.

2.2.2 The hypothalamic—pituitary—adrenal
axis (HPA)

HPA plays a crucial role in the female reproductive system, and
adrenal cortex dysfunction often accompanies variations in
reproductive system function (46). Multiple case studies and
autopsy results have corroborated the deleterious effect of SARS-
CoV-2 on the HPA axis (47-50). A study on the impact of SARS-
CoV-2 on the HPA axis found that some COVID-19 patients had
lower levels of dehydroepiandrosterone sulfate (DHEAS) and
adrenocorticotropic hormone (ACTH) in the morning (51-53).
COVID-19 patients may experience central adrenal insufficiency
(54). COVID-19, through its cytopathic actions, might enhance the
degradation and necrotic processes affecting adrenal cortical cells
(55). Physiological stress caused by diseases, such as infection,
trauma, surgery, sepsis, and critical illness, can activate the HPA
axis, decrease cortisol metabolism and binding proteins, and
increase serum cortisol levels (56). An increase in cortisol can
trigger many neuroendocrine and immune adaptive adjustments
within the body, ultimately resulting in stress responses (57). The
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pathological changes and physiological stress of the HPA caused by
SARS-Cov2 may have negative effects on the reproductive system.

2.3 Metabolic abnormalities

2.3.1 Obesity

Globally, the COVID-19 crisis has profoundly affected both
physical and mental health (58). The implementation of COVID-19
restrictions and lockdowns has been associated with weight gain,
with nearly 30% of the population experiencing this effect (59).
Since the inception of the COVID-19 pandemic, there has been a
staggering increase in obesity rates among children aged 2-17 (60).
One study indicated that during the pandemic, pre-existing
differences in obesity in terms of race, ethnicity, and community
socioeconomic status have widened.

Increased SARS-CoV-2 replication enhances the inflammatory
immune response, which leads to fat inflammation and IR in
obesity (61). Recent evidence suggests that SARS-CoV-2 directly
infects human adipocytes and alters cell metabolism in a depot-
specific and viral lineage-dependent manner (62). SARS-CoV-2
infection inhibits lipolysis in subcutaneous adipocytes and increases
pro-inflammatory gene expression in visceral adipocytes (63, 64). In
vitro models suggest that viral infection directly alters the
morphology and function of adipocytes (65).

Obesity increases IR and compensatory hyperinsulinaemia,
leading to hyperandrogenemia, which in turn increases lipogenesis
and decreases lipolysis (66). Obesity can interfere with ovarian
function through neuroendocrine mechanisms, leading to ovulation
disorders (67). Many bioactive molecules released by adipose tissue
interact with multiple molecular pathways involved in IR,
inflammation, hypertension, cardiovascular risk, coagulation, and
oocyte differentiation and maturation, thereby amplifying and
worsening the metabolic and reproductive phenotypes of PCOS
(68). Obesity is also an important factor leading to the presence
and severity of PCOS in adolescents, and intractable pre-adolescent
obesity with severe IR may predict later development of PCOS (69,
70). It is plausible that obesity due to the COVID-19 pandemic may
increase the prevalence of PCOS, particularly among adolescents.

2.3.2 IR and B-cell dysfunction

PCOS is associated with severe IR and defective insulin
secretion. IR and B-cell dysfunction are considered major drivers
of PCOS pathophysiology and are involved in the occurrence of
hyperandrogenemia and reproductive dysfunction through
multiple mechanisms (71).

COVID-19 patients experience a cytokine storm, with a large
number of inflammatory cells affecting the function of the skeletal
muscle and liver, the two main insulin-responsive organs responsible
for most insulin-mediated glucose uptake (72). Clinical studies have
shown that severely ill patients with COVID-19 have a high demand
for insulin during peak inflammatory responses, and this significant
increase in insulin demand may be due to systemic inflammation and
severe IR due to critical illness (73, 74). SARS-CoV-2 induces elevated
cytokine levels that promote pancreatic B-cell over-stimulation and
IR, resulting in fatigue and subsequent alterations in metabolism (75).
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COVID-19 can significantly shorten the life expectancy of people
with type 2 diabetes (76, 77). It can also cause [3-cell dysfunction, IR,
and abnormal control of glucose metabolism in COVID-19 patients
who have never been diagnosed with diabetes (78). Glucose
abnormalities can last for at least 2 months after disease onset (79).
It is expected that COVID-19 will further exacerbate IR in patients
with PCOS. Montefuscono et al. reported hyperinsulinemia
associated with COVID-19, suggesting that COVID-19 may lead to
IR, which in turn leads to hyperglycemia (78). He et al. demonstrated
that newly developed IR, rather than insulin deficiency, is the
mechanism underlying hyperglycaemia after SARS-CoV-2
infection. Another study showed that COVID-19 increased the risk
of IR in non-diabetic patients (80). Moreover, this IR condition
persists even after the virus has cleared, meaning that COVID-19
patients may face long-term pathological effects. Taken together, the
evidence suggests that COVID-19 exacerbates IR in patients
with PCOS.

In reviewing the current literature, we found significant
limitations and unexplored areas of research on the impact of
COVID-19 on IR in PCOS patients. In particular, there have been
few studies focusing on the specific effects of COVID-19 on PCOS
patients, and few studies have explored its impact on IR, a core
pathological process. Most studies have focused on the general
clinical presentation of COVID-19, its induced complications, and
how it affects a wide range of metabolic diseases, such as diabetes,
but have overlooked the unique effects that may occur in this
specific population of PCOS. In addition, the current understanding
of how COVID-19 specifically acts on the mechanisms of IR in
PCOS patients remains unclear. Although some studies have
proposed that SARS-CoV-2 may affect insulin sensitivity by
damaging islet beta cells and triggering cytokine storms, these
hypothetical mechanisms need to be verified and refined by more
empirical studies to build a more complete and accurate
scientific picture.

2.4 Dysregulation of gut microbiota

Several pieces of scientific evidence strongly support that the
microbiome significantly affects the aetiology and sustenance of
PCOS, and changes in the intestinal flora may further aggravate
metabolic disorders, cytokine storms, endocrine disorders, and
hyperandrogenemia in women with PCOS (81, 82). In COVID-19
patients, the composition of the gut microbiota is altered, and in
combination with inflammatory cytokines and blood indicators, it
mirrors the gravity of illness and immune system dysfunction (83).
ACE2 affects the expression of intestinal neutral amino acid
transporters (84), thereby regulating the composition of the
intestinal microbiota and regulating local and systemic immune
responses (85). The ecological imbalance of intestinal flora lasted
for up to 30 days after the resolution of the disease (79). The
lingering presence of SARS-CoV-2 in the intestines of COVID-19
patients directly leads to the loss of the conjunction-dependent
intestinal mucosal barrier in children with multisystem
inflammatory syndrome (86), hinting at the possibility that the
chronic presence of SARS-CoV-2 in the gastrointestinal tract can
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provoke alterations in the intestinal microbiome, resulting in long-
term outcomes. Sustained changes in the fecal microbiome of
COVID-19 patients have been observed, with many bacteria
associated with more proinflammatory cytokines and increased
disease complications. Given the profound influence of intestinal
flora on the pathophysiology of PCOS and changes in intestinal
flora in COVID-19 patients, it is reasonable to speculate that the
changes in intestinal flora induced by COVID-19 may exacerbate
the symptoms and comorbidities of PCOS patients. The potential
synergies between the two diseases warrant further investigation, as
COVID-19 may exacerbate pre-existing PCOS-related metabolic
and endocrine disturbances through dysregulation of the
gut microbiome.

However, the literature on this intersecting field remains limited
and is filled with gaps. First, there is a lack of studies that specifically
examine the effects of COVID-19-induced changes in the gut
microbiota of PCOS patients. Most studies have focused on either
PCOS or COVID-19 alone, failing to bridge the link between the
two diseases through the gut microbiota. Second, the long-term
effects of changes in gut microbiota associated with COVID-19 in
patients with PCOS are largely unknown. Although some studies
have shown that intestinal dysbiosis can persist in the early stages of
the disease, its impact on PCOS symptoms, fertility outcomes, and
overall quality of life remains to be clarified. In addition, the
mechanism of potential interactions between COVID-19, the gut
microbiota, and PCOS is unclear. Although ACE2 and its role in
regulating gut microbiome composition and immune response
provide a promising avenue for exploration, the specific pathways
linking COVID-19, gut dysbiosis, and PCOS outcomes require
further investigation.

2.5 Low-grade chronic inflammation

Pro-inflammatory cytokines play a pivotal role in the
pathophysiology of PCOS, potentially underpinning many of its
metabolic abnormalities. These cytokines have been linked to
dysfunction and inflammation within adipose tissue (87), IR, and
the pathophysiology of diabetes (88) while exerting a regulatory
influence on ovarian function and hyperandrogenemia.

In patients with SARS-CoV-2 infection, there is a notable
depletion in the absolute number and functional vigor of antiviral
cytotoxic lymphocytes (89, 90), alongside severe impairment of
specific T-cell subtypes (91). The apparent hyperactivity of the
immune system induced by the virus coupled with concurrent
bacterial infection can overwhelm its capacity, leading to a
chronic inflammatory state with lasting adverse effects. Even after
recovery, this persistent inflammatory cascade may manifest as a
spectrum of chronic symptoms, including profound fatigue,
dyspnoea, and joint discomfort, as well as psychological distress,
such as anxiety and depression (79). The COVID-19 cytokine storm
is characterized by rapid proliferation and hyperactivation of
macrophages and natural killer cells and the overproduction of
>150 inflammatory cytokines and chemical mediators released by
immune or nonimmune cells (92). Mast cell activation syndrome
and lymphopenia (i.e. B-cell and T-cell lymphocyte deficiencies)

Frontiers in Endocrinology

79

10.3389/fendo.2024.1434331

may be the cause of COVID-19 hyperinflammation and post-covid-
19 illness (93, 94). Indeed, increased levels of pro-inflammatory
markers (e.g. C-reactive protein, Interleukin-6, and D-dimer) and
lymphopenia have been associated with long-term COVID (12).

It is plausible that the infection of SARS-CoV-2 in women
with PCOS, who already harbor a background of low-grade
inflammation, could further exacerbate this proinflammatory
predisposition, thereby compounding various reproductive and
metabolic dysfunctions.

2.6 Cardiopulmonary functional capacity

In terms of cardiopulmonary function, COVID-19 typically
presents with cough and can precipitate a range of cardiovascular
and pulmonary complications, such as diffuse alveolar injury and
interstitial pulmonary fibrosis (95). Approximately 50% of patients
continue to experience dyspnoea for months after recovery (96, 97).
The pathophysiology of lung injury caused by SARS-CoV-2 includes
its binding with ACE2 and cytokine storm (51). Decreased
cardiorespiratory fitness and disrupted autonomic nervous system
function, coupled with irregular heart rate recovery, could be
contributing factors to the elevated cardiovascular risk observed in
patients with PCOS (98). Concurrently, compromised lung function
predisposes patients to glucose intolerance (51), IR (99), type 2
diabetes (100, 101), and cardiovascular diseases (102, 103). These
adverse outcomes may stem from the direct impact of hypoxaemia on
glucose and insulin regulation (104) as well as the inflammatory
mediators and altered insulin signaling associated with pulmonary
dysfunction (105, 106), potentially exacerbating the metabolic
manifestations of PCOS.

2.7 Fertility outcomes

2.7.1 Assisted reproduction technology (ART)

PCOS is a multifaceted endocrine disorder that often intersects
with challenges related to fertility and pregnancy. For many women
with PCOS, the path to successful conception often involves ART.
Recent investigations into the impact of COVID-19 on in vitro
fertilization (IVF) cycles have yielded noteworthy insights. Notably,
while COVID-19 did not seem to compromise patients’ physical
resilience or ovarian reserve during IVF procedures, there was a
discernible decrease in the proportion of high-quality embryos
(107). Furthermore, evidence suggests that while acute SARS-
CoV-2 infection may not impede immediate ART outcomes, it
could potentially exert adverse effects on oocyte production over the
long term (i.e. beyond 180 days post-infection) (108). It has also
been reported that the sperm concentration of couples was
significantly reduced after exposure to COVID-19 (109). Hence,
there should be at least three months (the time required for
folliculogenesis and spermatogenesis) between a patient’s recovery
from COVID-19 and the resumption of IVF treatment.

The onset of the COVID-19 pandemic has precipitated
unforeseen disruptions across various spheres, including the
delivery of non-emergency healthcare services. Notably, both the
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American Society for Reproductive Medicine and the European
Society of Human Reproduction and Embryology independently
recommend the temporary cessation of reproductive health care
services (110). This suspension had profound repercussions for
individuals and couples awaiting or undergoing fertility treatment.
Delays resulting from the pandemic have forced some patients to
face age-related limitations enforced by funding agencies, creating
formidable barriers to treatment access, and prolonged waiting
periods exacerbate anxiety, stress, and despondency among
individuals grappling with infertility, consequently diminishing
the success rates of ART (111, 112). A recent study revealed that
postponing fertility treatment by a mere 12 months could lead to a
substantial decrease in the likelihood of achieving a successful live
birth through IVF among women aged 38-39 and 40-42, with
percentages dropping by 18.8% and 22.4%, respectively (113).
Furthermore, the economic and reproductive medicine response
to the COVID-19 pandemic has reduced the affordability and
accessibility of fertility care and has had a profound impact on
IVF live birth rates (114-116).

2.7.2 Pregnancy complications

Epidemiological research has indicated that women with PCOS
are more susceptible to COVID-19 than those without (19, 117).
Contracting SARS-CoV-2 during pregnancy increases the risk of
complications such as spontaneous abortion, premature delivery,
intrauterine growth restriction, and maternal renal failure or
disseminated intravascular coagulation (118). Furthermore, there
is an elevated risk of stillbirth (119). Several preexisting conditions
and demographic factors, including chronic hypertension,
preexisting diabetes, advanced maternal age, high body mass
index, and non-white ethnicity, increase the likelihood of severe
COVID-19 during pregnancy. Pregnant women with COVID-19
are more prone to preterm birth, heightened rates of caesarean birth
(120), and potentially heightened risks of maternal mortality and
ICU admission (121), with newborns being more frequently
admitted to neonatal units. Pregnant women with PCOS may fall
within the high-risk category for pregnancy-related complications.

2.7.3 Vertical transmission

Vertical transmission, occurring when an infected pregnant
woman passes the infection to her fetus or baby during
pregnancy, delivery, or the postpartum period, is a significant
concern. The transmission route can involve the placenta in
utero, during delivery, or through breastfeeding during maternal-
infant contact. ACE2, expressed in various maternal tissues
including the placenta, human trophoblast ectoderm, fallopian
tubes, ovaries, vagina, cervix, and endometrium, plays a role in
this transmission process. Studies have reported a combined
neonatal vertical transmission rate of SARS-CoV-2 at 3.2%,
underscoring the potential for such transmission (122), with the
severity of maternal illness linked to the likelihood of vertical foetal
transmission (123).

Placental transmission likely serves as the primary mechanism
of vertical transmission, with severe/critically ill mothers more
prone to placental SARS-CoV-2 positivity (124). Another
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mechanism briefly considered is the cervicovaginal vertical
transmission route, which involves exposure of the newborn to
infected cells during delivery (125). However, most studies testing
vaginal fluids from infected pregnant women yielded negative
results for the virus (126). While breast milk from mothers
infected with SARS-CoV-2 (the virus that causes COVID-19)
may contain minimal amounts of viral RNA, evidence suggests
that breastfeeding rarely leads to transmission of the virus to
newborns (127). According to previous reports, 93% (68 out of
73) of infants born to mothers who tested positive for COVID-19
were asymptomatic. However, a small fraction of these infants
experiences adverse effects, such as gastric bleeding, multiple
organ failure, and, in some cases, mortality (120). Although foetal
and neonatal mortality due to COVID-19 during pregnancy is rare,
adverse neonatal morbidity may be associated with maternal
infection, including respiratory diseases and hyperbilirubinemia,
as reported by Norman et al. (128).

2.8 Lifestyle

2.8.1 Physical activity

For patients with PCOS, managing weight is essential not only
for symptom improvement and increasing the chances of
pregnancy but also for overall health. However, owing to the
challenging pathophysiology of PCOS, weight management is
exceptionally difficult (129). The social distancing measures
implemented during the COVID-19 pandemic, such as closures
of social, educational, and recreational facilities, have resulted in
behavioral changes that can negatively impact physical activity and
promote sedentary behavior, potentially exacerbating chronic
health conditions such as obesity (130, 131). The closure of sports
and leisure facilities during the pandemic further disrupted weight
management efforts in PCOS patients. Additionally, the lingering
effects of COVID-19 on patients, including fatigue, respiratory
issues, and joint pain, can hinder exercise routines and weight
management (6, 132, 133).

2.8.2 Sleep patterns

Sleep patterns have also been significantly affected during the
pandemic, with many women with PCOS reporting negative effects
on sleep quality (134). Insomnia and poor sleep health are common
issues in women with PCOS and are associated with mental health
problems, such as anxiety and depression, which exacerbate stress
levels (135, 136). Sleep deprivation can also lead to the secretion of
proinflammatory cytokines (137), metabolic changes, and
disruption of appetite regulation (138-140). These factors are
closely linked to the pathogenesis of PCOS.

2.8.3 Dietary habits

Eating disorders and improper diets, especially those that are
too low in plant protein and consume carbohydrates with a high
glycaemic index, increase the risk of overweight adolescent girls
with PCOS (141), causing inflammation, IR, and negatively
affecting body composition. A diet lacking quality can lead to an
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imbalance in the microbiome, subsequently causing intestinal
permeability and endotoxaemia. These conditions can exacerbate
hyperinsulinaemia, resulting in elevated insulin levels. Such high
insulin levels stimulate increased androgen production within
ovaries, disrupting the normal follicular development process.
This, in turn, worsens the clinical severity of PCOS (142).
Additionally, dietary and environmental factors play a pivotal role
in the developmental programming of PCOS female susceptibility
gene variants (143).

The stress and shopping restrictions caused by isolation lead to
changes in people’s eating habits, with a significant increase in sweet
preference and frequency of eating (144). Stress causes subjects to
overeat and consume super palatable convenience foods high in
sugar and/or fat (145), replacing more nutrient-rich foods, and thus
reducing dietary protein intake (146, 147). These foods can boost
serotonin production, which has a positive effect on mood (148).
However, it is associated with an increased risk of obesity, chronic
inflammation, metabolic abnormalities, and cardiovascular disease
(149), which have been shown to increase the risk of more serious
complications from COVID-19 (150). Before the COVID-19
outbreak, the risk of eating disorders was more than four times
higher in women with PCOS than in the control group (151). Given
that people with PCOS are more prone to uncontrolled and
emotional eating, the risk of eating disorders may be further
elevated during the pandemic.

2.9 Healthcare systems

Despite the widespread occurrence of PCOS, its fundamental
causes and biological mechanisms remain unclear. The approach to
managing this condition in routine clinical settings is fragmented,
with inconsistencies in the care provided by specialists such as
general practitioners, endocrinologists, and gynaecologists (152).
Furthermore, significant knowledge deficits persist among medical
professionals concerning the diagnosis, treatment strategies, and
comprehensive nature of PCOS manifestations (153-155). Previous
studies have shown that PCOS patients are dissatisfied with the
diagnosis and treatment they receive, and feel the need to seek
specialist care for their condition (156). As a result, women with
PCOS are often caught in the gap between relevant healthcare
services, even without the enormous pressure that the COVID-19
pandemic is putting on clinical practice. Women with PCOS lack
sufficient knowledge and access to contemporary healthcare
services, a problem that has become even more apparent during
the COVID-19 crisis (117).

The COVID-19 pandemic has placed enormous pressure on
healthcare services, requiring the reorganization and reprioritization
of resources and changes in healthcare delivery models. During the
pandemic, PCOS patients face numerous challenges in accessing
healthcare support, particularly when it comes to primary care
physicians who serve as a crucial source of assistance (157-159).
Contacting these professionals or scheduling face-to-face
appointments is very challenging, compounding the stress and
anxiety associated with PCOS (160-162). The limited availability of
primary care, coupled with the suspension of specialized PCOS-
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related medical services and the uncertainty surrounding their
resumption, creates a significant burden for individuals with PCOS,
further exacerbating their condition and overall well-being (163, 164).
Thus, the role of healthcare workers during the peak of the COVID-
19 pandemic cannot be underestimated. The COVID-19 pandemic
puts healthcare workers at unprecedented risk and under increased
stress due to work (5). Admittedly, the incidence of COVID-19
sequelae among healthcare workers affects their long-term
performance, negatively affecting the healthcare environment.

The impact of COVID-19 on access to healthcare and PCOS
management varies widely across countries, mainly because of
differences in healthcare systems, resources, and pandemic
response strategies. Developed countries with strong healthcare
systems are generally better able to cope with the surge in
COVID-19 cases; however, routine healthcare services have been
disrupted even in these countries (165, 166). Telemedicine plays a
vital role in maintaining continuity of care, enabling patients to
access consultations, laboratory tests, and prescriptions without
having to physically visit a healthcare facility (167, 168). Developing
countries with weaker healthcare systems face tougher challenges,
many of which struggle to provide basic COVID-19 care, let alone
maintain services for chronic diseases such as PCOS (169-172). In
resource-constrained settings, healthcare providers must prioritize
COVID-19 cases over other diseases, and shortages of essential
medicines needed for PCOS management are more common in
developing countries, further exacerbating the problem for PCOS
patients (171-174).

2.10 Psychological impacts

The mental health of women with PCOS is a critical concern, as
studies have shown that they are more susceptible to depression,
anxiety, and stress than are women without non-PCOS women
(175). Recent international guidelines emphasize that women with
PCOS are at a higher risk of developing mental health issues such as
depression and anxiety, especially during the pandemic. The
pandemic has exacerbated the emotional burden experienced by
women with PCOS, leading to increased psychological
distress (175).

The COVID-19 crisis has not only impacted the physical health
of patients with PCOS but has also taken a toll on their mental well-
being. Many individuals with PCOS have reported worsening
mental health, including feelings of low mood, anxiety, and
depression (164). The pandemic has also raised concerns
regarding the potential impact of PCOS on the risk of severe
COVID-19, causing heightened health anxiety among patients.
During this period, it was discovered that conditions commonly
associated with PCOS, such as obesity and diabetes, carry an
increased risk of severe illness and mortality due to COVID-19.
This uncertainty regarding the influence of PCOS on COVID-19
risk has led to significant health anxiety and depression among
many patients.

Limited access to primary care and suspension of specialized
medical services related to PCOS during the pandemic made
patients feel neglected, exacerbating their distress and anxiety
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(164). The suspension of fertility services caused severe anxiety,
psychological stress, and a sense of isolation in some individuals
struggling with PCOS (176).

Due to factors such as changes in sleep patterns, mandatory
quarantine measures, and socioeconomic impacts, it is anticipated
that global efforts to combat COVID-19 will have a negative effect
on the mental well-being of the general population. However,
individuals with PCOS who are already vulnerable may face
potentially greater consequences for their mental health.

The impact of COVID-19 on the mental health of women
with PCOS may vary depending on several factors. Women with
PCOS often require regular medical follow-ups and symptom
management. In countries where access to medical services is
limited due to the outbreak, these women may face challenges in
managing their condition, leading to increased anxiety and
stress. In some countries, rapid response and efficient
operation of health services have been achieved through the
optimization of diagnosis and treatment processes and the
introduction of intelligent management systems, and strong
healthcare systems and telemedicine services may alleviate
some of these challenges, thereby providing continuity of care
and support during the pandemic (177, 178). Conversely, in
countries with inefficient health services, patients may have to
wait for long periods to access treatment, which not only
exacerbates their physical suffering but can also trigger or
worsen psychological problems (179-181). In countries with
financial worries and limited or disrupted social support due
to the pandemic, these women may feel more isolated and
experience higher levels of anxiety and depression (182-184).
In addition, the severity of the epidemic, awareness of PCOS,
cultural attitudes, access to mental health services, and other
factors in different countries will also have different impacts on
the mental health of women with PCOS (185-187).

3 Interventions and management
during the COVID-19 pandemic

3.1 Telemedicine and virtual care

The COVID-19 pandemic has overwhelmed healthcare systems
worldwide, dramatically reducing or even eliminating the
hospitalizations of individuals with other illnesses, particularly
chronic conditions. Undoubtedly, the pandemic has changed the
management of chronic diseases, such as PCOS, as well as the
daily interactions between patients and healthcare providers.
Telemedicine has been widely implemented during this period to
effectively manage several chronic noncommunicable diseases,
including arterial hypertension (188). Considerable evidence
shows that telemedicine is an effective, safe, and satisfactory
clinical option for day-to-day management of chronic
diseases (114).

One of the most widely adopted areas of telemedicine is
outpatient consultation or virtual clinics. Virtual consultations
can avoid transportation to hospitals and unnecessary contact
with waiting rooms, enabling continuity of care without exposing
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patients or healthcare professionals to potential risks. Virtual clinics
can also prevent unnecessary visits, thereby reducing the number of
people in emergency departments and improving the efficiency of
medical resource allocation. Clinical practice reports indicate that
the consultation rate of virtual clinics is 60-95% of that of regular
clinics, and various chronic diseases are satisfactorily controlled
through virtual care (189, 190).

Since lifestyle changes are the first-line treatment for PCOS,
most patients struggle with adherence to lifestyle management, and
mobile services that provide education on lifestyle modifications
can be beneficial in treating PCOS. Mobile health apps have been
shown to improve body weight and oocyte quality in PCOS patients
(191). This reflects the effectiveness of mobile apps in facilitating
lifestyle changes in PCOS patients. Telepsychotherapy offers an
important additional treatment option for PCOS patients
experiencing anxiety and depression during the COVID-19
pandemic. Another study confirmed that mobile health apps
based on cross-theoretical models can reduce BMI, anxiety, and
depression in PCOS patients and improve exercise and dietary
adherence in these individuals in the long term (192).

3.2 Adjustments in reproductive
care guidelines

Patients with PCOS have a higher incidence of pregnancy
complications, such as preterm labor, caesarean section,
miscarriage, gestational diabetes mellitus, gestational hypertension,
and preeclampsia. Anatomical, physiological, and immunological
changes during pregnancy may lead to a higher risk of severe
SARS-CoV-2 infection in pregnant women (193). To address these
concerns and prevent potential complications, various fertility
societies globally, including the American Society of Reproductive
Medicine, Canadian Society of Fertility and Andrology, European
Society of Human Reproduction and Embryology, and International
Federation of Fertility Societies, issued guidelines during the
pandemic (194). These guidelines emphasize the importance of
implementing mitigation measures and infection control protocols
in fertility care units. Most of these guidelines recommend a
temporary halt for new fertility treatments, including ovulation
induction, intrauterine insemination, in vitro fertilization, and non-
urgent gamete cryopreservation. They also suggested postponing
embryo transfers, elective surgeries, and non-emergency diagnostic
procedures. A COVID-19 Task Force was established to monitor the
situation and provide updated guidance in alignment with local
health authorities. Enhanced monitoring of pregnant women with
PCOS, particularly those with comorbid conditions, such as
hypertension and diabetes, is recommended during prenatal and
perinatal care (195).

3.3 Patient education and support
PCOS is a prevalent and intricate disorder linked to metabolic

syndrome, obesity, eating disorders, depression, and sleep apnea
(196, 197). Prior to the COVID-19 pandemic, a survey revealed that
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women with PCOS felt that the existing information, resources, and
education did not adequately address their needs. They expressed
dissatisfaction with early diagnostic care and believed that clinicians
lacked sufficient knowledge of their conditions (198, 199). There are
evident knowledge gaps and discrepancies among residents and
physicians in the diagnosis and treatment of PCOS (154, 155).

Epidemiological studies have shown that women with PCOS are
more likely to be infected with SARS-CoV-2 than are women without
PCOS (19). Risk factors for severe COVID-19 highly overlap with the
common features of PCOS, and COVID-19 may have an impact on
all aspects of PCOS care. Additionally, the accompanying hormonal
disorders (such as IR or hyperandrogenemia) associated with
COVID-19 may further complicate the clinical features of PCOS
(19, 117). The elevated risk of COVID-19 poses challenges in
accessing timely healthcare for patients with PCOS, making
diagnosis and treatment more difficult.

Effective management of PCOS is crucial during the COVID-19
pandemic, necessitating closer monitoring and revision of care
plans for this patient population. The challenges posed by the
pandemic highlight the need for improved education, resources,
and knowledge dissemination among healthcare professionals to
ensure optimal care for patients with PCOS.

4 Impact of variants

COVID-19 and its evolving variants have demonstrated a
significant impact on human health, especially in those with
PCOS, which may in different ways exacerbate existing
comorbidities in patients and introduce new health challenges.

Different variants of SARS-CoV-2 have been found to differ
significantly in causing COVID-19-related symptoms and in
severity (200, 201). Primordial strain infections are associated
with a higher proportion of long-COVID symptoms and face a
greater burden of disease and health costs than Alpha or Delta
variants (202, 203).

Notably, some COVID-19 variants have shown increased
transmissibility and virulence compared with the original SARS-
CoV-2 strain (204, 205). This property could put people with PCOS
- whose immune systems may already be compromised by
comorbidities such as obesity, insulin resistance and chronic
inflammation - at higher risk of infection.

In addition, SARS-CoV-2 mutants are not only more infectious
than wild-type viruses but also have a particular tendency to infect
obese individuals (206), which means that PCOS patients with
symptoms of obesity need to be closely followed and
actively treated.

Different variants can also trigger different immune responses,
further affecting the balance of the immune system in PCOS
patients (207). For example, certain variants may trigger intense
autoantibody production or cytokine storms that exacerbate
autoimmune symptoms associated with PCOS, such as
hyperandrogenemia and chronic inflammation.

In summary, the impact of COVID-19 variants on PCOS
patients is diverse, given their different manifestations of
virulence, infectivity, and disruption to various physiological
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systems (208). This difference may directly lead to further
deterioration of reproductive health, metabolic status, mental
health, cardiovascular health, and immune system functions.
Therefore, it is important to continuously monitor the potential
risks of novel COVID-19 variants in PCOS patients and develop
personalized management strategies.

5 Future perspectives

As the COVID-19 pandemic continues, its long-term impact,
particularly on PCOS patients, highlights the urgency of a
multifaceted approach to care (Figure 4). Long COVID exacerbates
several challenges faced by women with PCOS, including immune,
endocrine, metabolic, neurological, cardiovascular, and
gastrointestinal issues. Recognizing this complexity, future research
must delve into the mechanisms linking COVID-19 and PCOS to
develop tailored interventions.

One of the crucial aspects of long-term COVID-19
management is the recognition and treatment of psychological
issues, such as depression and anxiety, that can arise from the
traumatic experience of the pandemic. Seeking counseling and
psychological support is vital in helping survivors overcome
feelings of despair and anxiety, and in turn, improve their overall
quality of life.

Given the heterogeneity of PCOS, personalized treatment
regimens are critical (121). Healthcare providers must consider the
impact of long COVID on PCOS symptoms and adjust interventions
accordingly. Involving people with PCOS in research and clinical
trials will contribute to a deeper understanding of the disease and its
interactions with COVID-19 (209).

The International Evidence-based Guidelines for the Evaluation
and Management of PCOS emphasize the importance of lifestyle
interventions, such as diet, exercise, and sleep optimization, for
overweight or obese women with PCOS (210). These interventions
are essential to improve the metabolic, hormonal, and psychological
aspects of the syndrome. However, many women with PCOS may
struggle to follow diet and exercise guidelines, especially in the post-
pandemic world, where COVID-19 restrictions and concerns about
disease transmission continue to affect physical activity levels.
Mobile technology can improve compliance with lifestyle
management recommendations by providing support and
monitoring tools for PCOS patients.

Future research should explore drug treatments that target both
PCOS symptoms and boost the immune system or target the virus
itself (211). Leveraging current infrastructure, developing scalable
healthcare models, and integrating them across disciplines (212) are
essential to address the complex interplay between long COVID
and PCOS. Long-term follow-up studies and the development of
effective treatments are urgently needed, with a focus on the
evolving phase of the pandemic, possible complications,
vaccination status, and the presence of new viral strains (213).

Improving the diagnosis and treatment of PCOS remains a
significant challenge in the healthcare field. Health professionals,
especially primary care professionals, must be educated about the
standard diagnostic criteria and treatment options. A
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multidisciplinary collaborative approach involving specialists in
gynaecology, endocrinology, family medicine, psychiatry, and
nutrition should be implemented. Continuing education
programs should be developed for healthcare professionals and
patients, including workshops, webinars, and standardized
educational materials (214).

Subsequent research priorities should include (i) assessing the
long-term effects of COVID-19 in people with or without PCOS; (ii)
elucidating the causal mechanisms of COVID-19 and its sequelae
affecting PCOS and its complications, including endocrine, immune
system, metabolism, and mental stress; (iii) developing and
improving scalable diagnostic methods that are highly specific for
COVID-19-related PCOS complications; (iv) assessing the effects of
vaccination and immunotherapy on PCOS and its complications;
(v) identifying new therapeutic solutions or repurposing older drugs
that can protect or reverse COVID-19-associated PCOS and its
complications; and (vi) testing the feasibility and effectiveness of
mobile health applications to improve health-related behaviors in
women with PCOS.

In conclusion, a comprehensive and collaborative approach
involving health care professionals, researchers, and patients is
key to effectively managing the long-term effects of COVID-19
and PCOS. By prioritizing individualized care, psychological
support, and ongoing research efforts, we can improve the
outcomes and quality of life for those grappling with the
aftermath of the pandemic. This approach should encompass
lifestyle interventions, innovative technologies, and targeted drug
therapies to address the unique challenges posed by the
convergence of these conditions. By integrating these strategies,
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healthcare providers can better support patients in managing their
health and well-being in the face of ongoing uncertainty and
evolving healthcare needs.

6 Limitations

This review takes a multidisciplinary approach to provide
patients with PCOS with a comprehensive perspective on
understanding and managing the long-term effects of COVID-19.
However, this method has several disadvantages. First, while the
review cites a large number of studies, many of the studies on the
relationship between long COVID and PCOS are still preliminary,
leading to some conclusions that may not be deep or comprehensive
enough. Second, the specific pathogenesis of long COVID is not
fully understood at present, which limits the depth and accuracy of
the review in exploring its mechanisms of influence. Finally, owing
to the short duration of the COVID-19 outbreak, long-term follow-
up data are relatively scarce, which has hindered the comprehensive
assessment of the long-term impact of the long COVID.

7 Conclusion

The COVID-19 pandemic has significantly impacted global
health, with long COVID emerging as a major concern. Long
COVID affects multiple systems, posing a particular challenge for
PCOS patients who may experience aggravated symptoms and
complicated management. Current evidence indicates that
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COVID-19 and its sequelae negatively impact reproductive health,
endocrine function, inflammation, metabolism, cardiorespiratory
health, body composition, lifestyle, and mental health in patients
with PCOS. These mechanisms are multifactorial and include
inflammation, lifestyle changes, and comorbidities. Given the lack
of effective therapies for PCOS post-COVID-19, a comprehensive
multidisciplinary approach is crucial for its management. Future
research and clinical trials are needed to evaluate treatment and
prevention strategies, emphasizing the importance of personalized
care and risk assessment in patients with PCOS and COVID-19.
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This review describes the impact of COVID-19 on the endocrine system,
focusing on cortisol signaling and growth factor-induced endocrine resistance.
As expected, SARS-CoV-2 infection induces systemic inflammation, resulting in
stimulation of the adrenal glands leading to elevated cortisol levels with normal
adrenocorticotropic hormone (ACTH) levels. The cytokine storm could also
stimulate cortisol production. However, in some instances, cortisol levels rise
independently of ACTH due to a phenomenon known as “pseudo-Cushing’s
syndrome,” where adrenal glands become less responsive to ACTH. Plasma
proteomic analyses showed that this pattern was variably observed among
COVID-19 patients, potentially involving calcium dysregulation and GNAS-
regulated activities, ultimately impacting the regulation of microvascular
permeability. COVID-19 also exhibited a syndrome resembling endocrine
resistance, governed by receptor tyrosine kinase signaling pathways. Mild cases
displayed elevated activity of EGFR and MMP9, along with increased expression
of survival factors like Bax and Bcl2. In contrast, more severe cases involved
IGFR-1 and enhanced NOTCH signaling, with altered expression of Bcl2, AKTL,
and MAPKS8. In summary, these findings describe the complex interplay between
COVID-19 and endocrine pathology, particularly endocrine resistance. These
insights suggest potential endocrine targets for therapeutic interventions to
improve short- and long-term outcomes for COVID-19 patients.

KEYWORDS

endocrine, COVID-19, cortisol, adrenal glands, disease management

Endocrine profiles in COVID-19

To date, over 400,000 scientific reports on COVID-19 have been published worldwide
and indexed in PubMed, with only a small percentage (~0.5%) addressing the impact of
SARS-CoV-2 infection on the endocrine system. Severe COVID-19 is typically
characterized by significant respiratory distress, low blood oxygen levels, the need for
ventilation, and/or multi-organ dysfunction. Notably, obesity and diabetes have been
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identified as risk factors for severe infection since the early stages of
the pandemic and have been extensively studied (1-4).
Furthermore, it is increasingly acknowledged that patients with
severe COVID-19 may experience adverse endocrine outcomes,
including altered glucose metabolism, thyroid dysfunction, and
adrenal insufficiency (1). This short review aims to outline the
complex interactions between COVID-19 and the endocrine system
disorders by synthesizing the current scientific knowledge obtained
by targeted plasma proteomics and envisioning future research
considerations. It is important to note that among the plethora of
COVID-19 publications, only 0.08% of the cases refer to plasma
proteomic profiles from different viewpoints, all excluding the
endocrine complications. Our studies characterized the plasma
proteomic profiles of patients with mild and severe COVID-19 by
Olink targeted proteomics technologies exploring 3,072 proteins
simultaneously (5, 6). We observed and predicted three categories
of endocrine effects associated with the adrenocorticoid system: (i)
calcium dysregulation that may lead to hormonal hypersecretion;
(ii) novel actions of the guanine nucleotide binding protein
(GNAS); and (iii) fluctuations in circulating growth factors.

SARS-CoV-2 has been detected in endocrine tissues (7), and the
inflammatory processes that develop post-infection could directly or
indirectly affect the endocrine tissues and their functions. Such
observations have been made globally (8), with therapeutic strategies
currently being developed to address the consequences (9). COVID-19
has been shown to affect various components of the endocrine system;
recently, the hypothalamic-pituitary-adrenal (HPA) axis has gained
interest along with the renin-angiotensin-aldosterone system (RAAS),
and the thyroid system (1-4, 10). Disturbance of the RAAS due to viral
infection can affect aldosterone and renin levels, leading to electrolyte
disturbances and hypertension (11-13). Similarly, SARS-CoV-2
infection may lead to dysregulation of the HPA axis and alterations
in cortisol levels. Some patients with severe COVID-19 may exhibit
adrenal insufficiency or adrenal crisis, while others may have elevated
cortisol levels due to the stress response and inflammation (1, 14, 15).
Interestingly, the angiotensin-converting enzyme 2 (ACE2) receptor,
which mediates SARS-CoV-2 viral entry into cells, is expressed in
various tissues, including the adrenal glands and the pancreas, and has
been implicated in the disturbance of the endocrine homeostasis.
Additionally, SARS-CoV-2 infection can alter thyroid function,
reflected by changes in the thyroid-stimulating hormone (TSH), free
thyroxine (FT4), and free triiodothyronine (FT3) levels (16, 17). Some
COVID-19 patients have also reported thyroid dysfunction, such as
subacute thyroiditis or non-thyroidal illness syndrome (also known as
‘euthyroid sick syndrome’). Lastly, COVID-19 may also impact sex
hormone levels, perhaps through changes in the functionality of the
vascular supply to the primary sex organs (11, 18). In men, low
testosterone levels have been linked to a more severe course of
COVID-19, while in women, higher testosterone levels are associated
with a stronger immune response (19).

COVID-19 impacts the insulin system by targeting, in part, the
insulin-like growth factors (IGFs), as they utilize the same class of
receptor tyrosine kinases (RTKs). In certain conditions, the RTKs can
be shared by IGFs and insulin systems, and vice-versa. With regards
to the insulin system, hyperglycemia, insulin resistance and new-onset
diabetes are observed in some patients, particularly those who suffered
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severe COVID-19 (20-27). The exact mechanisms underlying these
metabolic changes are not fully understood but may involve systemic
inflammation, a stress response and the direct effects of the virus on
the pancreatic beta cells (27, 28). COVID-19 may also affect the
growth hormone/insulin-like growth factor (GH-IGF-1) axis and the
gonadotropin-releasing hormone (GnRH) axis. Although we recently
showed a comprehensive profile of the growth factors and their
binding proteins based on the Olink plasma proteomics (5, 6), the
changes in the IGFs system, the magnitude, and the significance of
these alterations in COVID-19 patients require further investigation,
especially with regards to the possible competition between IGF and
insulin signaling mentioned above (20-22). The endocrine profile in
COVID-19 is complex and can vary depending on factors such as the
severity of illness, pre-existing hormonal disorders and individual
patient characteristics (18).

When investigating the endocrine status of current and recovered
COVID-19 patients, reports suggest that some individuals may
exhibit features resembling Cushing’s syndrome (29-31). As
presented in Figure 1, one of the main causes of Cushing’s-like
syndrome could be the use of exogenous glucocorticoids as a
primary treatment for severe COVID-19. Patients with severe
COVID-19 may receive glucocorticoids, such as Dexamethasone, to
counteract systemic inflammation and the cytokine storm. In this
context, treatment with glucocorticoids could lead to Cushing’s
syndrome-like features, including hypertension, glucose intolerance,
and muscle weakness (32-36). Shacham and Ishay (36) examined
immune activation resulting from chronic endogenous glucocorticoid
excess in Cushing's syndrome and explored how coronavirus infection
might improve outcomes for COVID-19 patients treated with
glucocorticoids. They concluded that a comprehensive
understanding of the molecular and cellular mechanisms associated
with both endogenous and exogenous glucocorticoids is crucial. This
includes factors such as the timing of administration, dosage, duration
of treatment, and specific formulations of these medications. While
the exact mechanisms underlying these manifestations in COVID-19
are not yet known, pathology may vary, underscoring the potential for
SARS-CoV-2 to affect adrenal function and cortisol metabolism. It is
important to note that the Cushing’s syndrome-like manifestations
observed in some COVID-19 patients may be transient and reversible,
particularly in cases where they are associated with exogenous
glucocorticoid administration or acute stress response (31-39). As
glucocorticoid therapy is reduced with clinical improvement, these
manifestations may improve or resolve. Some of the COVID-19
patients may still experience endogenous hypercortisolism as a
result of viral infection, and thus the dysregulated cortisol
production may persist. Again, this dysregulation can occur due to
various factors, such as the stress-induced activation of the HPA axis,
cytokine-mediated stimulation of adrenal cortisol synthesis, or direct
effects of the virus on adrenal glands (31, 32). HPA axis can also be
affected by systemic ionic dysbalance (39). Electrolyte disorders, such
as potassium abnormalities, have been frequently reported as clinical
manifestations of COVID-19. SARS-CoV-2 could affect potassium
equilibrium via altered epithelial sodium channels (ENaC) activity
(39). The incidence of hyperkalemia is due to the key role of furin
which is hijacked by the virus, thus the decreased activity of ENaC
would be expected, which causes retention of potassium ions and
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SARS-CoV-2 Can Induce Cushing-Like Syndrome
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FIGURE 1
SARS-Cov2 can induce cortisol excess and Cushing's-like syndrome.

hyperkalemia (39). On the other hand, the envelope (E) protein of the
SARS-CoV-2 virus forms cation-conducting channels in the
endoplasmic reticulum Golgi intermediate compartment of infected
cells (40). In this context, the calcium channel activity of E protein is
associated with the inflammatory responses of COVID-19 (40).

Dysregulated calcium signaling pathway (KEGG: hsa04020)
was notably significant across all COVID-19 datasets that we
have analyzed using enrichment algorithms with Bonferroni
correction (3-6). The three receptors involved in calcium
signaling were: i) G Protein-Coupled Receptor (GPCR), which
acts through Gs Alpha Subunit (GNAS) and affects parathyroid
hormone receptor (PTHR) signaling, ii) Growth factors Receptor
Tyrosine Kinase (RTK), which operates through Phospholipase C
Gamma (PLCY), Inositol 1,4,5-Trisphosphate Receptor (IP3R), and
phosphatidylinositol (PI3), and iii) Voltage-Gated Calcium
Channel (CaV1), which functions through Calmodulin and its
associated kinases. These signaling pathways impact calcium
homeostasis, cell proliferation, metabolism, tight junctions, and
cell movement. One key mechanism that emerges from all our
studies, and is relevant to endocrine function, involves the GNAS
protein. Its role in cyclic adenosine monophosphate (cAMP)
signaling is crucial for the regulation of calcium levels in the body
in association with PTH.
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Plasma proteomics associated with
SARS-CoV-2 infection may reflect an
altered endocrine activity

In the past four years, our group has performed extensive plasma-
targeted proteomics studies using the Olink technology on COVID-19
patients (3—6). The data suggests that, in addition to cortisol, growth
factors, and other possible endocrinopathies, COVID-19 could
potentially alter calcium homeostasis and the novel endocrine-
related-proteins such as GNAS, which can potentially lead to further
disruptions in calcium homeostasis and dysregulation of vascular
permeability. All of this could be related to endocrine resistance due
to SARS-CoV-2 induced complex pathology.

The GNAS gene, otherwise known for being involved in clinical
phenotypes including pseudo-hypoparathyroidism (PHP) and
pseudo-pseudo-hypoparathyroidism (PPHP), helps stimulate the
activity of adenylate cyclase that controls the production of several
hormones and regulates the activity of endocrine glands such as the
thyroid, pituitary gland, ovaries and testes (gonads), and adrenal
glands (41-44). GNAS-controlled activities that may be related to
endocrine responses may affect, per se, hormone receptor signaling
pathways, and hypothetically lead to endocrine resistance. For
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instance, GNAS signaling intersects with several pathways involved
in hormone action, including cAMP/PKA and MAPK pathways,
which are crucial for hormonal responses (41-44).

During viral infection, cellular calcium dynamics could be
highly affected as dysregulation of host cell signaling cascades is
elicited by SARS-CoV-2 (45). Calcium ions act as critical secondary
messengers in cellular signaling pathways, including those involved
in hormone receptor signaling and cell survival. Proper calcium
levels are crucial for maintaining vascular integrity and permeability
(45). Dysregulation of calcium homeostasis can lead to increased
vascular permeability, which is associated with inflammatory
processes, potentially leading to endocrine resistance (45).
Moreover, alterations in calcium equilibrium and vascular
permeability can disturb the microenvironment of hormone-
sensitive cells, affecting their response to hormones in natural
conditions and to hormone therapies. In addition, increased
permeability may alter drug distribution and cellular signaling,
potentially contributing to resistance mechanisms (45).

Vascular dysfunction in COVID-19 can also be associated with
endocrine pathology that may lead to complications, including
endothelial dysfunction, increased vascular permeability and
thrombosis. An important example includes leaky blood vessels,
which may impact hormone delivery and signaling in hormone-
sensitive tissues, directly inducing inflammation with inflammatory
cytokine release and direct effects on endothelial cells and other
tissues (3-6).

The observed alterations in calcium channel function and
GNAS-controlled activities could lead to disruptions in the
regulation of vascular permeability, which may, in turn, induce
endocrine resistance in the context of COVID-19. These
disruptions affect intracellular signaling pathways crucial for
hormonal responses and create an environment that hampers the
effectiveness of endocrine therapies. Understanding these molecular
and cellular changes can provide insights into endocrine resistance
mechanisms in COVID-19 and inform potential therapeutic
strategies to overcome resistance.

Pathogenesis of Cushing’'s-like
syndrome in COVID-19

Conditions or factors that mimic Cushing’s syndrome without
primary adrenal pathology are termed Cushing’s-like syndrome,
and they may be observed in some COVID-19 patients. Again,
precipitating factors may include direct viral infection, the cytokine
storm and/or treatment with exogenous glucocorticoids. The
GNAS-controlled activities, calcium balance, and vascular
permeability could contribute to the clinical manifestations of
Cushing’s-like syndrome, either directly or indirectly, through
excessive cortisol or related hormonal imbalances (41-44).
Calcium dysregulation can contribute to various symptoms seen
in Cushing’s syndrome, such as muscle weakness and fatigue. On
the other hand, GNAS mutations can also contribute to Cushing’s-
like syndrome since they are associated with various endocrine
disorders, including certain subtypes of Cushing’s syndrome, such
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as McCune-Albright syndrome (41-44). Dysregulated GNAS
signaling can potentially lead to excessive production of cortisol
or alterations in adrenal gland function, contributing to the
development of this disease (41-44). Furthermore, calcium
homeostatic effects and vascular permeability can be potentially
observed in conditions associated with cortisol excess, including
Cushing’s syndrome. This phenomenon acts as a feed-forward loop,
where high cortisol levels can lead to alterations in calcium
metabolism and induce changes in vascular permeability, thus
resulting in multiple organ dysfunctions.

Cortisol pathway activation in
COVID-19: a comparative study
between Western and Harvard
University databases

There are many studies describing genomics, epigenomics,
transcriptomics, and proteomics profiles in COVID-19 (46-48),
but very few have investigated the plasma proteome associated with
this disease. Studies by our group, and that from Harvard Medical
School (48), demonstrated similar changes in the cortisol signaling
pathway in COVID-19 (5, 6) (Figure 2). Utilizing our own
bioinformatics pipeline we compared our data with the repository
published by Filbin et al.

The same comparative analysis also highlighted the activation of
the angiotensin I (AGT1) 1/AT1 receptor system. Angiotensin I is
usually cleaved by angiotensin-converting enzyme (ACE) to generate
the active product angiotensin II, which is involved in maintaining
blood pressure, body fluid and electrolyte homeostasis, as well as
playing a role in the pathogenesis of essential hypertension and
preeclampsia (48-50). In COVID-19, ACE acts as a pathological
target, directly inducing smooth muscle cell vasoconstriction,
influencing cardiac contractility and heart rate through the
sympathetic nervous system, and altering kidney functions such as
renal sodium and water absorption, concurrently stimulating the
zona glomerulosa cells from the adrenal cortex to synthesize and
secrete aldosterone (50). In Figure 2, we can further speculate that
melanocortin receptors (MC2R) can be selectively activated by the
adrenocorticotropic hormone ACTH in COVID-19, and TREK1
could activate phospholipase C (PLC beta), which catalyzes the
formation of inositol 1,4,5-trisphosphate and diacylglycerol from
phosphatidylinositol 4,5-bisphosphate. This latter enzymatic
reaction requires calcium as a cofactor, and calcium plays a critical
role in the intracellular transduction of many extracellular signals.
PLC beta can be activated by two G-protein alpha subunits, thereby
regulating the function of the endothelial barrier. Lastly, in the same
Figure 2, it can be observed that the cortisol signaling pathway is
predicted to exhibit high activation of the CREB/cytochrome P450
system (CYP).

Calcium regulation is critical for cellular homeostasis especially
with infections such as SARS-CoV-2 (51, 52). When calcium
channels open, they allow influx of calcium into the cells.
Intracellular calcium levels modulate the inflammatory response,
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FIGURE 2

COVID-19 cortisol signaling in a comparative study between patient cohorts from Western and Harvard Universities. Partial data from the two
studies (Ref 5, 39) were utilized for bioinformatic analysis to predict various aspects of cortisol signaling as initiated by potassium channels (TREK1).
The two datasets were initially analyzed for differential expression using consistent thresholds for fold change (2-fold) and p-value (0.05).
Subsequently, a meta-analysis was conducted using upset plot algorithms, enabling a non-directional cross-analysis that identified a pool of
common proteins differentially expressed plasma proteins relevant to this study.

potentially enhancing or inhibiting the effects of dexamethasone
(52). Calcium trafficking through the channels is vital for T cell
activation (52). Calcium channels affect the release of cytokines,
while dysregulation leads to unbalanced cytokine production and
inflammation as seen in severe COVID-19 (50).

Furthermore, calcium ions themselves are secondary
messengers for different signal transduction pathways especially
when they can activate downstream signaling molecules such as
calmodulin, calcineurin, and numerous kinases which in turn may
regulate growth factor receptor (GF) signaling (53). Protein kinase
C (PKC) and calcium/calmodulin-dependent protein kinase
(CaMK), are two of the kinases that can phosphorylate GF
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receptors or their downstream effectors that were already targeted
for COVID-19 therapy (53).

Potential cortisol signaling-associated
effectors driven by growth factors

In the study described above, GNAS was found to be a key factor
upregulated almost 2-fold (Figure 3). This stimulatory G-protein alpha
subunit peptide is an important element of the signal transduction
pathway that links receptor-ligand interactions to the activation of
adenylyl cyclase and a variety of cellular responses (41-43).
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As mentioned above, GNAS is generally regarded as a
ubiquitously expressed protein involved in several pathologies such
as pseudo-hypoparathyroidism type la, fibrous dysplasia of bone,
and even several pituitary tumors (41-43). GNAS functions
downstream of several G protein receptors, including beta-
adrenergic receptors, and alters the secretion of PTH, GHRH,
ACTH, TSH, or gonadotrophins. In addition, GNAS, which
regularly binds to angiotensin (AGT), can possibly interact with
CREB molecules (41-43). Finally, we predict that GNAS may interact
with Proopiomelanocortin (PMOC), a protein synthesized in
corticotroph cells of the anterior pituitary associated with ACTH.
In tissues, including the hypothalamus, placenta, and epithelium,
these peptides have roles in pain and energy homeostasis, melanocyte
stimulation, and immune modulation, especially inflammation.
Overall, GNAS-related proteins could be proposed to interact with
the cortisol signaling in COVID-19.

GNAS is normally associated with RAS and KRAS activity in
cancers (44). We observed that functions of GNAS could also be
associated with programmed cell death in COVID-19 (Figure 4),
possibly due to overlapping growth factor signals that may affect
RAS signaling (Figure 5). In another study by Zhou S et al. (45), GNG7
(Guanine nucleotide-binding protein G) and GNAS proteins were also
found to play “a non-ignorable role in the progression of COVID-19”. In
this context, a consequence of overlapping signals can be Bax and Bcl2

10.3389/fendo.2024.1459724

dysregulation, which can also be part of the RTK signaling, ultimately
regulating apoptosis under inflammatory conditions induced by
SARS-CoV-2 (54, 55). Bax is a pro-apoptotic factor, while Bcl2 is
anti-apoptotic, and the balance between these factors determines cell
survival or apoptosis. We can speculate that in the context of COVID-
19-associated endocrine resistance, elevated Bcl2 expression can help
cells evade the apoptotic signals that would typically result from
hormone therapy, thus contributing to resistance. It is clear that
COVID-19 can disrupt various hormonal pathways through
inflammatory responses and direct viral effects on endocrine organs,
even creating local memory (1, 55). However, many effects could be a
consequence of the anti-COVID-19 therapy (53). As such, endocrine
disruptions would lead directly to hormonal resistance.

As we elaborated on RAS signaling we observed that stress and
inflammation caused by COVID-19 can even induce a state of
amplified cellular survival, proliferation and migration signaling, as
evidenced also by the elevated EGFR, MMP9, and other survival
factors. These changes can mirror the mechanisms underlying
endocrine resistance by creating an environment where cells become
less responsive to hormonal regulation and more reliant on alternative
survival pathways. This environment can mimic the conditions that
lead to endocrine resistance, where hormone-sensitive cells become less
responsive to hormonal signals due to the activation of alternative
survival and growth pathways. This observation can lead to
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Cortisol signaling: candidate biomarkers in COVID-19. The same subset of data (201 proteins) described in the legend of Figure 2 was used for an in-
depth bioinformatic analysis focusing on the GNAS protein marker. This specific protein stimulates the activity of adenylate cyclase, an enzyme that
plays a crucial role in regulating the production of several hormones that influence the function of endocrine glands, including the thyroid, pituitary

gland, ovaries, testes, and adrenal glands.
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Candidate Biomarkers for Endocrine Resistance in COVID-19

FIGURE 4
Candidate biomarkers for COVID-19 endocrine resistance.

Legend: A - activation, B - binding, C - catalysis, R - reaction

understanding the broader implications of COVID-19 on endocrine
health and resistance to endocrine therapies.

Alterations of growth factor signaling
in mild COVID-19

In mild COVID-19 cases (hospitalized for oxygen therapy
only), we observed elevated activity of epithelial growth factor
receptor (EGFR) and metalloproteinase (MMP9), along with
increased expression of survival factors like Bax and Bcl2, which
can be related to endocrine resistance through several mechanisms.
Endocrine resistance, per se, refers to the reduced response of
hormone-sensitive cells to endocrine therapies, often seen in, but
not exclusive to, conditions such as certain cancers. EGFR is a
receptor tyrosine kinase (RTK) that, when activated, initiates a
cascade of downstream signaling pathways supporting cell
proliferation, survival, and differentiation (56). The impact of
EGEFR on endocrine signaling is manifested by chronic activation
of EGFR, which can alter the normal signaling balance within cells
and potentially lead to reduced sensitivity to hormonal signals. As
EGFR activation can stimulate pathways (e.g., MAPK, PI3K/Akt)
that overlap or interfere with hormone receptor pathways, it
thereby promotes resistance to hormone-based therapies (56).
The EGF-EGFR axis may also have a role in tissue remodeling
and inflammation, affecting metalloproteinase-9 (MMP9), an
enzyme involved in the breakdown of extracellular matrix
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components (57, 58), which could potentially influence hormone
receptors. Elevated MMP9 may lead to increased degradation of
extracellular matrix components and growth factor receptors, and
alter the cellular microenvironment that affects hormone receptor
expression and function, contributing to endocrine resistance.
Moreover, MMP9 could release growth factors sequestered in the
matrix, further activating signaling pathways like EGFR and
exacerbating the resistance mechanisms. Through MMP9
activities and aberrant release of growth factors, these molecules
can cause signaling competition by overlapping induction of RTKs.
It is important to note that future research should investigate the
role of EGFR in COVID-19 management, particularly as clinical
trials are already exploring the repurposing of EGFR inhibitors for
treatment. For example, nimotuzumab, an anti-cancer monoclonal
antibody targeting EGFR, has been repurposed for COVID-19 and
studied for its potential to modulate the immune response and
reduce inflammation. Nimotuzumab may help mitigate severe
inflammatory responses in COVID-19 patients, potentially
improving clinical outcomes (59). However, research remains
limited, and more comprehensive clinical trials are needed to
establish its efficacy and safety specifically for COVID-19 treatment.

Endocrine profile in severe COVID-19

Unlike in mild COVID-19, the severe cases of COVID-19 that
were admitted to intensive care units (3-6) and showed the
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Growth factor competition for Ras signaling could lead to endocrine resistance.

involvement of insulin-like growth factor receptor I (IGF-IR),
enhanced NOTCH signaling, along with altered expression levels
of Bcl2, AKT1, and MAPKS that can lead to endocrine resistance
through various intricate mechanisms (Figure 5). IGF-IR is a
receptor that, when activated by insulin-like growth factors
(IGFs), triggers downstream signaling pathways that promote cell
growth, survival, and metabolism; these factors have been studied in
COVID-19 in association with clinical parameters (60-63).
Enhanced IGF-IR signaling may lead to increased cellular survival
and proliferation, similar to EGFR activation. The result is a
reduced efficacy of hormone-based therapies due to the activation
of alternative survival pathways (e.g., PI3K/Akt and MAPK
pathways), which can interfere with, or bypass, hormone
receptor signaling.

Frontiers in Endocrinology

Our studies also indicated that NOTCH signaling can be crucial
in cell differentiation, proliferation, and apoptosis. Enhanced
NOTCH signaling could potentially lead to changes in cell fate
and survival. Increased NOTCH signaling would also contribute to
endocrine resistance by making cells less responsive to apoptotic
signals induced by hormone therapies. In addition, NOTCH
signaling can interact with other pathways, such as AKT and
MAPK, to further complicate the cellular response to hormonal
treatments (64).

Similar to the EGFR state observed in mild COVID-19, we also
detected altered expression of Bcl2, AKT1, and MAPKS. Again,
increased levels of Bcl2 promote cell survival by inhibiting
apoptosis, making cells resistant to treatments that rely on
inducing cell death. AKT1, part of the PI3K/Akt pathway, is
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crucial for cell survival, growth, and metabolism in COVID-19 (65).
Increased AKT1 activity can enhance cell survival, resistance to
apoptosis, and contributes to endocrine resistance. In addition,
MAPKS (JNK, Stress-Activated Protein Kinase) is usually involved
in stress responses and can influence apoptosis and cell
proliferation. Altered MAPKS signaling would not only affect the
cellular response to stress and apoptosis, but also contribute to
resistance mechanisms. It is thus predicted that endocrine
disruptions leading to resistance may involve increased activation
of IGFR-I and NOTCH pathways, along with altered levels of Bcl2,
AKTI, and MAPKS creating a cellular environment that promotes
survival and proliferation (64, 66). Such an environment can reduce
the efficacy of hormone therapies by promoting alternative
pathways that support cell survival, independent of the presence
of endocrine treatments.

In summary, the activation of IGFR-I and enhanced NOTCH
signaling, coupled with altered expression of Bcl2, AKT1, and
MAPKS in severe COVID-19 may lead to an environment that
favors cell survival and proliferation. These observed changes could
lead to endocrine resistance by promoting pathways that bypass or
interfere with hormone receptor signaling, making cells less
responsive to hormone therapies. Understanding these interactions
can provide insights into how acute COVID-19 influences endocrine
health and resistance mechanisms, and provide clinical guidance
towards more effective treatment strategies.

Methodological limitations

There are very few studies available for comparison, with the
notable exception of the research conducted by Filbin et al. (39) at
Harvard University, which makes our data sets unique. Both Filbin
et al. and Tosef et al. (5) analyzed patients at Day 0/1, 3, and 7 post-
admission with severe COVID-19, all of whom presented with
severe disease characterized by bilateral pneumonia. For our cross-
comparison aimed at identifying pathways related to endocrine
dysfunction, we utilized data from Day 3 for both studies.

In Filbin et al’s study, there were 109 patients with severe
COVID-19 and 78 COVID-negative controls, while Iosef et al.
examined 22 patients with severe COVID-19 and 22 healthy
controls. A notable distinction between the two studies lies in the
technology employed: Filbin et al. used the Olink Explore 1536
platform, whereas Iosef et al. utilized the Olink Explore 3072, which
allows for the analysis of a greater number of differentially
expressed proteins.

We acknowledge that confounding factors and publication
biases may influence our results; however, our primary aim was
to conduct a meta-analysis using algorithms that facilitate a
comprehensive comparison of data sets derived from Olink
technology, specifically analyzing plasma samples from patients
with severe COVID-19. We maintained consistent thresholds for p-
values and fold change (FC) in our analysis. While the patient
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numbers varied, recruitment was age- and sex-matched in both
studies, and the criteria for severe COVID-19 were similar.

After aligning and meta-analyzing the data sets, we identified
1,780 differentially expressed proteins in our dataset and 783 in the
Harvard dataset. The difference in numbers arises from the distinct
panels of markers used for targeted proteomics in each study.
Notably, we found that 201 markers were common between the
two studies, forming the basis for our comparative analysis. Clinical
parameters, including age, sex, comorbidities (such as hypertension,
COPD, cancer, and chronic kidney disease), baseline medication,
and laboratory parameters (like blood counts and X-ray findings)
were also comparable across the studies, including confirmation of
sepsis and administered intervention drugs.

Conclusions

This review examines the endocrine implications of COVID-19,
focusing on cortisol signaling and growth factor-induced endocrine
resistance, highlighting the impact of SARS-CoV-2 on the
endocrine system. COVID-19 often causes elevated cortisol levels
with normal ACTH levels due to systemic inflammation, illness-
induced stress, and cytokine storms. Sometimes, cortisol levels rise
independently of ACTH, resembling “pseudo-Cushing’s
syndrome.” Plasma proteomics suggests this variation may
involve calcium dysregulation and GNAS-controlled activities,
affecting vascular permeability. COVID-19 also presents
endocrine resistance syndromes through activation of receptor
tyrosine kinase pathways. Mild cases show elevated EGFR and
MMP9 activity, while severe cases involve IGF-1R and enhanced
NOTCH signaling, altering Bcl2, AKT1, and MAPKS expression.
The medical conclusion is that COVID-19 potentially impacts the
endocrine system, particularly described here, through altered
cortisol signaling and endocrine resistance mechanisms. These
changes include elevated cortisol levels with normal ACTH levels,
resembling “pseudo-Cushing’s syndrome,” and variations in
receptor tyrosine kinase pathways, with different patterns in mild
and severe cases. These endocrine alterations should be considered
when developing targeted therapeutic interventions to improve
patient outcomes. Developing interventions aimed at preventing
severe cases could be a crucial direction for future research and
clinical practice.
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Introduction: Post-COVID-19 syndrome (PCS) is a severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection-associated chronic condition
characterized by long-term violations of physical and mental health. People with
type 2 diabetes (T2D) are at high risk for severe COVID-19 and PCS.

Aim: The current study aimed to define the predictors of PCS development in people
with T2D for further planning of preventive measures and improving patient outcomes.

Materials and methods: The data were collected through the national survey
targeting persons with T2D concerning the history of COVID-19 course and signs
and symptoms that developed during or after COVID-19 and continued for more
than 12 weeks and were not explained by an alternative diagnosis. In total, 469
patients from different regions of Ukraine were enrolled in the study. Among
them, 227 patients reported PCS development (main group), while 242 patients
did not claim PCS symptoms (comparison group). Stepwise multivariate logistic
regression and probabilistic neural network (PNN) models were used to select
independent risk factors.

Results: Based on the survey data, 8 independent factors associated with the risk
of PCS development in T2D patients were selected: newly diagnosed T2D (OR
4.86; 95% Cl 2.55-9.28; p<0.001), female sex (OR 1.29; 95% Cl 0.86-1.94;
p=0.220), COVID-19 severity (OR 1.35 95% CI 1.05-1.70; p=0.018), myocardial
infarction (OR 2.42 95% Cl 1.26-4.64; p=0.002) and stroke (OR 3.68 95% CI
1.70-7.96; p=0.001) in anamnesis, HbAlc above 9.2% (OR 2.17 95% Cl 1.37-3.43;
p=0.001), and the use of insulin analogs (OR 2.28 95% Cl 1.31-3.94; p=0.003) vs
human insulin (OR 0.67 95% C1 0.39-1.15; p=0.146). Although obesity aggravated
COVID-19 severity, it did not impact PCS development. In ROC analysis, the 8-
factor multilayer perceptron (MLP) model exhibited better performance (AUC
0.808; 95% CI 0.770-0.843), allowing the prediction of the risk of PCS
development with a sensitivity of 71.4%, specificity of 76%, PPV of 73.6% and
NPV of 73.9%.
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Conclusions: Patients who were newly diagnosed with T2D, had HbAlc above
9.2%, had previous cardiovascular or cerebrovascular events, and had severe
COVID-19 associated with mechanical lung ventilation were at high risk for PCS.

post-COVID-19 Syndrome, long COVID-19, COVID-19 infection, SARS-CoV-2, type

2 diabetes

Introduction

Approximately 95% of people with diabetes worldwide have
type 2 diabetes (T2D). A 3% increase in age-standardized mortality
rates from diabetes was recorded from 2000 to 2019 (1). T2D is a
group of metabolic diseases caused by insulin resistance (IR) and
altered insulin secretion by B-cells of the pancreas (2, 3).

The 2019 coronavirus disease (COVID-19) pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
become a global concern (4-6). T2D is one of the most common
comorbidities in patients infected with the SARS-CoV-2 virus, with
a relatively high incidence of severe COVID-19 (7, 8). T2D has a
bidirectional relationship with COVID-19 (9). Poorly controlled,
decompensated T2D exacerbates the severity of COVID-19 and
leads to an increased risk of hospitalization and mortality (10, 11).
Potential mechanisms contributing to enhanced susceptibility to
SARS-CoV-2 infection and poorer prognosis in people with T2D
include a proinflammatory state, weakened innate immune
response, possibly elevated levels of angiotensin-converting
enzyme 2 (ACE2), vascular dysfunction and a prothrombotic
state (12-14). On the other hand, an extreme systemic immune
response (“cytokine storm”), direct attack of pancreatic B-cells by
SARS-CoV-2 by binding to ACE2, and an unbalanced immune
response can, in turn, lead to glycemic profile disorders,
uncontrolled hyperglycemia, and progression of IR in persons
with T2D (15, 16).

COVID-19 combined with T2D enhances the risk of
hospitalization and the need for mechanical ventilation,
increasing the probability of post-COVID-19 syndrome
development. Post-COVID-19 syndrome (PCS; long COVID-19,
post-acute COVID-19, long-term effects of COVID-19) has become
an emerging health problem in people recovering from COVID-19
infection (17-19). PCS condition occurs in individuals with a
history of probable or confirmed SARS- CoV-2 infection, usually
3 months from the onset of COVID-19 with symptoms that last for
at least 2 months and cannot be explained by an alternative
diagnosis (20). Common symptoms include rapid fatigue,
weakness, headaches, memory loss, distraction, depression,
prolonged cough or shortness of breath, insomnia, heart
palpitations, bone and joint aches, myalgias, gastrointestinal
disorders, and insensitivity to smells and tastes (20). Symptoms
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may be new onset, following initial recovery from an acute COVID-
19 episode or persist from the initial illness. Symptoms may also
fluctuate or relapse over time (20).

One of the consequences of lung damage in patients with SARS-
CoV-2 infection, namely, pulmonary fibrosis, which can manifest as
persistent shortness of breath requiring oxygen supplementation in
the PCS period, is more common in people with poorly controlled
diabetes (18). Not surprisingly, the bidirectional association
between diabetes and PCS has been at the top of scientific
discussions (21, 22). Some evidence suggests that diabetes may be
a risk factor for the development of PCS (22, 23). Recent data also
indicate that new-onset diabetes might be a complication of
COVID-19 and represents the metabolic clinical phenotype of
PCS (18, 24). However, the particular links between T2D and
PCS are still under debate. Limited research exists on PCS
incidence and prevalence in low- and middle-income countries.

The current study aimed to define the predictors of PCS
development in people with T2D for further planning of
preventive measures and improving patient outcomes.

Materials and methods
Ethics statement

The study protocol was approved by the Ethics Committee at
Bogomolets National Medical University (protocol number: 171/
2023) and was conducted according to the guidelines of the 1975
Declaration of Helsinki. Individuals with T2D were enrolled in the
study during visits to endocrinologists at outpatient clinics. The
purpose and methodology of the study were fully explained to the
participants by the researchers, and all patients were asked to
provide signed informed consent before data collection.

Study design

To gather data concerning the outcomes of COVID-19 in T2D
persons, a questionnaire was developed. The following clinical and
demographic data were collected: age, sex, anthropometric
indicators, T2D duration and age at onset, T2D complications,
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history of COVID-19, COVID-19 severity and treatment, PCS
symptoms, duration of PCS and hypoglycemic therapy.
According to the WHO classification, COVID-19 was categorized
as mild, moderate or severe. Mild COVID-19 was defined as
respiratory symptoms without evidence of pneumonia or hypoxia,
while moderate or severe infection required the presence of clinical
and radiological evidence of pneumonia. In moderate cases, SpO2
290% on room air, while one of the following was required to define
severe cases: respiratory rate >30 breaths/min or SpO2 <90% on
room air (25, 26). The data were collected and registered by a
professional endocrinologist during the follow-up visits of patients
to outpatient clinics. Medical data were also retrieved from the
medical records of the participants.

The inclusion criteria were as follows: age over 18 years and the
presence of T2D and COVID-19 confirmed by a positive RT-PCR
test. The exclusion criteria included type 1 diabetes or secondary
diabetes, autoimmune diseases, inflammatory diseases, other than
T2D metabolic diseases and active malignancy. The data from 469
patients who suffered from COVID-19 infection were collected in
different regions of Ukraine. According to the responses, patients
were divided into 2 groups depending on the outcomes for up to 6
months after COVID-19 infection: the PCS group (main group,
n=227) and patients who didn’t develop PCS (comparison
group, n=242).

Body mass index (BMI) was calculated as body weight in
kilograms divided by the square of the participant’s height in
meters (weight/height®). The waist (narrowest diameter between
the xiphoid process and iliac crest) circumference (WC) was
also measured.

As obesity itself is an immunometabolic disorder, facilitating
pro-inflammatory cytokines secretion, reducing insulin sensitivity
(27) and modulating SARS-Cov2 retention (28) we provided a sub-
analysis for assessing the effect of obesity on PCS development and
COVID-19 severity. Patients were divided into two sub-groups
including individuals with BMI<30kg/m” (n=110) and patients with
obesity (BMI>30kg/m? n=117).

In addition, cases of new-onset T2D were assessed separately.
New-onset T2D in PCS group was defined when occur during or
after acute COVID-19 phase within 3 months (n=43). From
comparison group we included in sub analysis patients with onset
of T2D before 3 months to COVID-19 (n=17).

Statistical analysis

Statistical analysis was performed using MedCalc® Statistical
Software v. 22.026 (MedCalc Software Ltd., Ostend, Belgium;
https://www.medcalc.org; 2024) and STATISTICA Neural
Networks R.4.0 C (StatSoft. Inc. 1998-1999). To test the
normality of the distribution, the Shapiro-Wilk test was used.
Quantitative variables are presented as the median and
interquartile range (Me, Q; - Qqp), and qualitative variables are
presented as %. To estimate the difference in the incoming
qualitative data, the > test or Fisher’s exact test was used; for
quantitative data, the Mann—Whitney test was used. Univariate
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logistic regression analysis was applied to assess variables associated
with PCS development in patients with T2D.

Stepwise multivariate logistic regression and probabilistic neural
network (PNN) models were used to select independent risk factors
associated with PCS development. In the first stage, a minimal set of
variables associated with PCS risk was selected. To select independent
risk factors for multivariate logistic regression models, stepwise
inclusion/exclusion of variables (stepwise with pepter <0.1 Ta
Premove>0.2) was performed, and the genetic algorithm (GA)
method of selection was used for the PNN models. For the PNN
models, all patients were randomly (using a random number
generator) divided into 3 sets: training (which was used to build the
model and calculate weight coefficients of the neural network, n=369),
test (used to prevent overtraining of the mathematical model, n=60)
and verification (used to test the predictive ability of the mathematical
model on new data for controlling model retraining, n=40) sets.

The diagnostic performance of the models was evaluated using
receiver operating characteristic (ROC) curve analysis. The area
under the ROC curve (AUC) and its 95% confidence interval (CI)
were calculated. A p value < 0.05 was considered to indicate
statistical significance in all tests. Optimal cutoff values were
chosen to maximize the sum of sensitivity and specificity. Positive
predictive values (PPVs) and negative predictive values (NPVs)
were computed for these cutoff values (29).

Results
Patient characteristics

The baseline clinical parameters, COVID-19 and T2D histories
of the surveyed patients are presented in Table 1. Among the study
subjects, the ages in the main group were 61 (54 - 67) and 60 (54 -
68) years (p=0.900), respectively. The main group comprised more
patients over 60 years old (59% vs 53.7% in the comparison group),
although these differences were not significant (p=0.264) (Table 1).
There were 124 females (54.6%) in the PCS group, while the
proportion of women was lower among patients with no PCS
(115 out of 242, 47,5); however, sex differences were not
significant between the groups (p=0.139). We also did not find
differences in patient weight (p=0.994) or BMI (p=0.881) (Table 1).

By assessing the clinical phenotypes of PCS among T2D
patients, we found that fatigue was the most often observed
manifestation of PCS (59.5%). It was followed by muscle aches
(49.3%), headache (44.1%), shortness of breath (39.2%), new or
persistent cough (31.7%), loss or change of smell (31.3%),
dyssomnia (28.8%), arrhythmia (23.3%), gastrointestinal disorders
(19.8%), and depression (16.7%) (Figure 1A).

Medical history of diabetes and beyond —
the links to PCS

The subjects who suffered from PCS reported a medical history
of poor glycemic control during anamnesis and had higher values of
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TABLE 1 Baseline clinical parameters and COVID-19 and T2D history in surveyed patients.

10.3389/fendo.2024.1459171

Parameter Comparison group (no PCS) (n=242) Main group (PCS) (h=227) p
Age, years 60 (54 - 68) 61 (54 - 67) 0.900
Age over 60 years, n (%) 130 (53.7) 134 (59) 0.264
Females, n (%) 115 (47.5) 124 (54.6) 0.139
T2D duration, years 11 (7 - 16) 10 (3 - 15) 0.015
Newly diagnosed diabetes, n (%) 17 (7.0) 43 (18.9) <0.001
Weight, kg 88 (80 - 98) 88 (78 - 100) 0.994
Height, cm 169 (165 - 176) 168 (163 - 177) 0.384
BMI, kg/m> 29.8 (27.500 - 33.8) 30.7 (26.925 - 34) 0.881
HbA1C before, % 79(7-9) 8.2 (7.2 - 10) 0.005
Poor glycemic control (HbA1c>7.5), n (%) 154 (63.6) 160 (70.5) 0.118
T2D chronic complication
Diabetic nephropathy, n (%) 71 (29.3) 54 (23.8) 0.210
Diabetic neuropathy, n (%) 160 (66.1) 147 (64.8) 0.771
Diabetic retinopathy, n (%) 119 (49.2) 98 (43.2) 0.196
Diabetic foot, n (%) 43 (17.8) 26 (11.5) 0.067
Myocardial infarction, n (%) 19 (7.9) 31 (13.7) 0.051
Stroke, n (%) 11 (4.5) 27 (11.9) 0.004
No complication, n (%) 51 (21.1) 60 (26.4) 0.120
T2D treatment
No medical treatment, n (%) 8 (3.3) 18 (7.9) 0.042
Metformin, n (%) 161 (66.5) 156 (68.7) 0.623
Sulfonylureas, n (%) 86 (35.5) 68 (30) 0.203
DPP-4 inhibitors, n (%) 20 (8.3) 10 (4.4) 0.093
GLP-1 agonists, n (%) 9 (3.7) 13 (5.7) 0.383
SGLT-2 antagonists, n (%) 21 (8.7) 33 (14.5) 0.059
PPAR-y agonists, n (%) 3(1.2) 0 (0) 0.249
Human insulin, n (%) 58 (24) 36 (15.9) 0.029
Insulin analogs, n (%) 30 (12.4) 53 (23.3) 0.002
COVID-19 history

COVID-19 severity (WHO), n (%)

Mild 107 (44.2) 85 (37.4)

Moderate without hospitalization 91 (37.6) 55 (24.2) <0.001

Moderate with hospitalization 40 (16.5) 65 (28.6)

Severe 4 (1.7) 22 (9.7)
No treatment, n (%) 23 (9.5) 14 (6.2) 0.230
Supplements/NSAIDs, n (%) 203 (83.9) 190 (83.7) 0.999
Antibiotics, n (%) 157 (64.9) 152 (67) 0.697
O, therapy, n (%) 61 (25.2) 71 (31.3) 0.152
Steroids, n (%) 61 (25.2) 97 (42.7) <0.001
Mechanical ventilation, n (%) 1(0.4) 16 (7) <0.001

The data are presented as the Me (Q; - Q) or n (%); BMI, body mass index; NSAIDs, nonsteroidal anti-inflammatory drugs; WHO, World Health Organization; PCS, post-COVID-

19 syndrome.

Bold values indicate significant changes.
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The distribution of PCS symptoms: (A) among persons with T2D (main group); (B) sub analysis depending on presence of obesity in patients among

PCS group.

HbAIc than did those in the comparison group (8.2% (7.2 - 10) vs
7.9% (7 - 9); p=0.005) (Table 1). Surprisingly, the mean duration of
T2D was lower in the main group 10 (3-15) years as compared to
the comparison group - 11 (7 - 16) years (p=0.015) (Table 1). This
finding was explained by the increased incidence of newly
diagnosed T2D during the COVID-19 pandemic, representing
one of the clinical phenotypes of PCS. The number of patients
with newly developed T2D was 43 out of 224 patients in the main
group (18.9%), while only 17 individuals with newly diagnosed T2D
were identified in the comparison group (7.0%; p<0.001) (Table 1).
In sub analysis patient with new-onset T2D from PCS group
characterized with more aggressive presentation as compared to
matched patient from comparison group (7.0 (6.5 — 8.8) vs 7.8%
(6.5 - 9.4); p=0.344). We did not find significant differences in the
age of patients with new T2D between groups (57.0 (47.5 - 69.0) vs
58.0 (45.0 - 64.0) years, p=0.582). Surprisingly, patients with new-
onset T2D in PCS group had lower weight (88.0 (80.0 - 96.0) vs 97.0
(85.0 - 109.0) kg; p=0.043) and BMI (28.4 (25.2 - 31.2) vs 31.5 (28.4
- 38.1) kg/m? p=0.021) as compared to those with no PCS.

It is also worth noting that patients with PCS had a greater
incidence of diabetic macrovascular complications: 13.7% and
11.9% of PCS patients reported myocardial infarction and stroke,
respectively, during anamnesis (Table 1). In patients without PCS, a
significantly lower prevalence of cardiovascular events was reported
in their medical history: 7.9% for myocardial infarction (p=0.051)
and 4.5% for stroke (p=0.004). The incidence of microvascular T2D
complications did not differ significantly between the
groups (Table 1).

PCS was associated with a greater rate of hospitalization and a
more severe COVID-19 course. By comparing the COVID-19
course, we found that in the comparison group, most patients
demonstrated mild (107; 44.2%) or moderate COVID-19 without
hospitalization (91; 37.6%), and only a relatively small portion of
the group had a moderate course of hospitalization (40; 16.5%) or
suffered from severe COVID-19 (4; 1.7%) (Table 1). In contrast,
approximately 40% of the main group reported severe (22; 9.7%) or
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moderate disease, with hospitalization (65; 28.6%) impacting
further PCS development (p<0.001) (Table 1).

To what extent can treatment affect the
risk of PCS?

Importantly, PCS development was associated with a
higher rate of noncompliance with antidiabetic medications:
7.9% of patients in the main group didn’t follow treatment
recommendations, while the percentages were less than half in
the comparison group (3.3%; p=0.042) (Table 1). We also found a
difference in the rate of insulin and its analog administration
between the observed groups: patients without PCS were more
often administered human insulin than were those in the main
group (24% vs 15.9%; p=0.029), where insulin analogs were
used more often (23.3% vs 12.4%; p=0.002) (Table 1). In terms of
the treatment of T2D, we did not find significant differences
among the prescribed anti-diabetic drugs (ADDs) between the
groups (Table 1).

There were also peculiarities related to COVID-19 treatment.
Considering the increased rate of hospital admission and severe
COVID-19 history, the PCS group reported a significantly increased
rate of steroid prescription (42.7% vs 25.2%; p<0.001) and
mechanical ventilation (7% vs 0.4%; p<0.001) due to the severity
of COVID-19. At the same time, we did not find differences in the
prescription of NSAIDs, antibiotics or O, therapy between the
groups (Table 1).

Is there a link between obesity and PCS?

Obese people with T2D were more frequently diagnosed with
moderate and severe forms of COVID-19 infection as compared to
patients with BMI<30 (46.1% vs 30.0%, p=0.011; Table 2). Besides,
glucocorticoid prescription was more frequent in obese patients
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TABLE 2 The sub analysis for distribution of clinical parameters, COVID-19 and T2D history depending on presence of obesity in patients of
PCS group.

Parameter BMI < 30 kg/m? ( BMI>30 kg/m? (

Age, years 61.0 (53.0 - 66.3) 62.0 (55.0 - 68.0) 0.308
Age over 60 years, n (%) 61 (55.5) 73 (62.4) 0.288
Females, n (%) 63 (57.3) 61 (52.1) 0.437
T2D duration, years 8.5 (2.8 - 14.0) 11.0 (5.0 - 17.0) 0.013
Newly diagnosed diabetes, n (%) 27 (24.5) 16 (13.7) 0.037
Weight, kg 78.0 (68.0 — 87.0) 99.0 (89.5 - 110.0) <0.001
Height, cm 172.0 (165.0 - 179.0) 167.0 (162.5 - 176.0) 0.042
BMI, kg/m2 26.9 (24.0 - 28.0) 33.7 (32.0 - 37.1) <0.001
HbAIC before, % 8.2 (7.2 - 10.0) 8.3 (7.2 - 10.0) 0.991

T2D chronic complication

Diabetic nephropathy, n (%) 24 (21.8) 30 (25.6) 0.499
Diabetic neuropathy, n (%) 65 (59.1) 82 (70.1) 0.083
Diabetic retinopathy, n (%) 45 (40.9) 53 (45.3) 0.505
Diabetic foot, n (%) 11 (10.0) 15 (12.8) 0.505
Myocardial infarction, n (%) 13 (11.8) 18 (15.4) 0.434
Stroke, n (%) 16 (14.5) 11 (9.4) 0.232
No complication, n (%) 31 (28.2) 29 (24.8) 0.562

T2D treatment

No medical treatment, n (%) 9(8.2) 9(7.7) 0.891
Metformin, n (%) 68 (61.8) 87 (74.4) 0.090
Sulfonylureas, n (%) 31 (28.2) 37 (31.6) 0.572
DPP-4 inhibitors, n (%) 5 (4.5) 5(4.3) 0.921
GLP-1 agonists, n (%) 3(2.7) 10 (8.5) 0.059
SGLT-2 antagonists, n (%) 18 (16.4) 15 (12.8) 0.449
Human insulin, n (%) 14 (12.7) 22 (18.8) 0.210
Insulin analogs, n (%) 31 (28.2) 22 (18.8) 0.095

COVID-19 history

COVID-19 severity (WHO), n (%)

Mild 51 (46.4) 34 (29.1)

Moderate without hospitalization 26 (23.6) 29 (24.8) 0.011

Moderate with hospitalization 28 (25.5) 37 (31.6)

Severe 5 (4.5) 17 (14.5)
No treatment, n (%) 8 (7.3) 6 (5.1) 0.488
Supplements/NSAIDs, n (%) 94 (85.5) 96 (82.1) 0.502
Antibiotics, n (%) 70 (63.6) 82 (70.1) 0.302
O, therapy, n (%) 28 (25.5) 43 (36.8) 0.067
Steroids, n (%) 34 (30.9) 63 (53.8) <0.001
Mechanical ventilation, n (%) 2(1.8) 4 (3.4) 0.452

The data are presented as the Me (Q; - Q) or n (%); BMI, body mass index; NSAIDs, nonsteroidal anti-inflammatory drugs; WHO, World Health Organization; PCS, post-COVID-
19 syndrome.
Bold values indicate significant changes.
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with T2D (53.8% vs 30.9%; p<0.001; Table 2) during the COVID-19
course. The data representing clinical parameters, COVID-19 and
T2D history in PCS group with respect to obesity are presented in
Table 2. Important that T2D duration in normal/overweight
patients was significantly shorter as compared to obese (8.5 (2.8 -
14.0) vs 11.0 (5.0 - 17.0) years, p=0.013). This finding can be
explained by the higher occurrence of newly onset T2D in PCS
group (Table 2). The profile of T2D complication and anti-diabetic
treatment didn't differ significantly between subgroups (Table 2).
Moreover, there were no significant differences in PCS symptoms in
T2D patients regarding obesity (Figure 1B).

It is worth noting that patients with and without PCS did not
differ in BMI (Table 1). Similarly, there were no differences in the
incidence of obesity between PCS and comparison groups. The
shares of people with obesity comprised 51.5% (117 of 227) among
the PCS group being comparable with the value in the comparison
group (116 of 242; 47.8%; p=0.435). Finally, among 233 T2D
patients with comorbid obesity, about half (117; 50.2%) reported
PCS symptoms while the rest - no, demonstrating no impact of
obesity on PCS development in the observed cohort.

Thus, comorbid obesity aggravated COVID-19 severity but did
not impact PCS development in patients with T2D.

Uncovering the prognostic factors
contributing to PCS

Univariate logistic regression analysis revealed the following
independent predictors of PCS development in patients with T2D:
newly diagnosed T2D (p<0.001), poor glycemic control with an
HbAlc above 9.2% (p<0.001), history of myocardial infarction
(p=0.044) or stroke (p=0.005), treatment of T2D with insulin
analogs (p=0.002), moderate-to-severe COVID-19 course
(p<0.001), history of treating COVID-19 with glucocorticoids
(p<0.001) and mechanical ventilation (p=0.005). In contrast, the
use of human insulin (OR 0.598; 95% CI 0.377-0.950; p=0.029) had
a protective effect on PCS development (Table 3).

To select the most informative risk factors, multifactorial
logistic regression analysis was applied. As a result of the
selection, the following 8 independent factors associated with the
risk of PCS development in T2D patients were selected: newly
diagnosed T2D (OR 4.86; 95% CI 2.55 - 9.28; p<0.001), female sex
(OR 1.29; 95% CI 0.86 - 1.94; p=0.220), COVID-19 severity (OR
1.35 95% CI 1.05 - 1.70; p=0.018), presence of myocardial
infarction (OR 2.42 95% CI 1.26 - 4.64; p=0.002) and stroke (OR
3.68 95% CI 1.70 - 7.96; p=0.001) in anamnesis, HbAlc above 9.2%
(OR 2.17 95% CI 1.37 - 3.43; p=0.001), use of insulin analogs (OR
2.28 95% CI 1.31 - 3.94; p=0.003) vs human insulin (OR 0.67 95%
CI0.39 - 1.15; p=0.146), as specified in Table 4. The AUROC of the
model was 0.74 (95% CI 0.697 - 0.779; p<0.001) (Figure 2A). This
model demonstrated modest accuracy, as presented in Table 5.

In the second stage, we built PNN models based on nonlinear
relationships between variables and outcomes. We used a multilayer
perceptron (MLP) with one hidden layer. The architecture of the
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hidden layer had 3 neurons with a logistic activation function.
According to the ROC analysis, the AUC for the MLP model was
0.808 (95% CI 0.770 - 0.843, p<0.001) (Figure 2B). The cutoff value
for this model was chosen based on the Youden index (>0.490).
When applying the optimal threshold, the following characteristics
of the model were detected: sensitivity, 71.4% (95% CI 65.0 - 77.2%);
specificity, 76.0% (95% CI 70.1 - 81.3%); PPV, 73.6% (95% CI 68.7 -
78.0%); and NPV, 73.9% (95% CI 69.5 - 77.9%) (Table 5). The
forecasting results using neural networks were significantly better
than those of the logistic model (p<0.001). The results of pairwise
comparisons of the ROC curves are presented in Figure 2C. This
indicates the presence of nonlinearity in the relationship between
PCS risk and factor attributes that cannot be taken into account in a
simple regression model.

Discussion

Although high BMI and diabetes have been recognized as risk
factors for developing severe COVID-19 and PCS, there are still no
clearly articulated predictors of PCS development in T2D patients
who restrict preventive measures for improving patient outcomes
and quality of life (30). This study revealed the key risk factors
associated with the risk of PCS development in T2D patients.

By applying various types of logistic regression analysis and
PNN, we identified risk factors, including female sex, COVID-19
severity and corresponding mechanical ventilation experience,
newly diagnosed during COVID-19 diabetes and an HbAlc
higher than 9.2%, as well as myocardial infarction or stroke in
medical history, as key risk factors for PCS prediction. Various
studies of PCS prognosis have also revealed the prognostic role of
different factors. Despite the variability of the results, the ability of
core factors, including female sex and COVID-19 severity, to
predict PCS has been underscored in different studies. Maglietta
et al. in systematic review demonstrated the role of female sex
and acute disease severity (31). Lemhofer et al. reported that female
sex, preexisting coagulation disorders and coronary artery disease
were associated with a higher PCS rate (32). Similarly, in
multivariate analysis, Zemni et al. showed that female sex,
preexisting comorbidities, duration of acute COVID-19 illness,
hospitalization, number of COVID-19 episodes and vaccination
against SARS-CoV-2 are important in defining the risk of PCS
development (33). These data obtained from the whole population
analysis are consistent with our findings supporting the role of sex
and acute viral infection severity. In this study, involving exclusively
T2D patients, additional factors, including T2D severity and insulin
treatment, were found to be essential for estimating the probability
of PSC.

Diabetes is associated with a high risk of adverse outcomes of
COVID-19 infection and PCS (30). On the other hand, the current
study did not confirm that the presence of T2D was a risk factor for
long-term symptoms of PCS (34). According to the obtained results,
patients with and without T2D who recovered from COVID-19 at
7.2 (SD 0.6) months after hospital discharge had similar incidence
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TABLE 3 Univariate logistic regression analysis.

10.3389/fendo.2024.1459171

Variables Event/Total Odds ratio 95% ClI p
No 201/400
Diab foot 0.599 0.354-1.012 0.055
Yes 26/69
No 173/344
Diabetic nephropathy 0.752 0.498-1.135 0.175
Yes 54/125
No 129/252
Diabetic retinopathy 0.785 0.546-1.130 0.193
Yes 98/217
No 80/162
Diabetic neuropathy 0.942 0.643-1.378 0.757
Yes 147/307
<=60Y 93/205
Age 1.241 0.861-1.790 0.247
>60 Y 134/264
Long-term 184/409
T2D duration 3.093 1.707-5.604 <0.001
New onset 43/60
Male 103/230
Gender 1.33 0.925-1.912 0.124
Female 124/239
No 167/358
No complication 1.346 0.878-2.063 0.173
Yes 60/111
No 196/419
Myocardial infarction 1.856 1.016-3.391 0.044
Yes 31/50
>9.2 148/342
HbAlc 2.157 1.421-3.276 <0.001
<=9.2 79/127
No 200/431
Stroke 2.835 1.371-5.860 0.005
Yes 27/38
T2D treatment
No 227/466
PPAR-7y agonists 0.15 0.0077-2.928 0.191
Yes 0/3
No 217/439
DPP-4 inhibitors 0.512 0.234-1.118 0.093
Yes 10/30
No 191/375
Human insulin 0.598 0.377-0.950 0.029
Yes 36/94
No 159/315
Sulfonylureas 0.776 0.527-1.143 0.199
Yes 68/154
No 71/152
Metformin 1.098 0.745-1.618 0.635
Yes 155/316
No 214/447
GLP-1 agonists 1.573 0.659-3.754 0.308
Yes 13/22
No 194/415
SGLT-2 inhibitors 1.79 1.002-3.198 0.051
Yes 33/54
No 174/386
Insulin analogs 2.152 1.318-3.516 0.002
Yes 53/83
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TABLE 3 Continued

Variables Event/Total Odds ratio 95% ClI
T2D treatment

No 209/443

No treatment 2,519 1.073-5.914 0.034
Yes 18/26

COVID-19 history

No 213/432

No treatment 0.626 0.314-1.249 0.184
Yes 14/37
No 37176

Supplements/NSAIDs 0.987 0.604-1.613 0.957
Yes 190/393
No 75/160

Antibiotics 1.097 0.749-1.608 0.476
Yes 152/309
No 156/337

O, therapy 1.35 0.902-2.022 0.145
Yes 71/132
No 130/311

Steroids 2214 1.497-3.275 <0.001
Yes 97/158
<=2 140/338

COVID severity 2.796 1.833-4.266 <0.001
>2 87/131
No 211/452

Mechanical ventilation 18.275 2.403-138.973 0.005
Yes 16/17

Bold values indicate significant changes.

rates of PCS symptoms (1.06, 95% CI 0.92-1.24; p=0.372) (34).  outcomes, mortality as well PCS development and severity.
Therefore, additional factors influencing the outcome of COVID-19  Recent studies revealed that pretreatment with metformin, GLP-
infection should be investigated. 1RA, and SGLT-2i was associated with a lower mortality rate, main

Another challenge which is actively debated is assessment of  adverse outcomes and hospitalization in patients with COVID-19
preadmission use of different ADD for on COVID-19 adverse  and T2D (35, 36). DPP-4i use was associated with a statistically

TABLE 4 Coefficients of the 8-factor logistic regression model for PCS risk prediction.

Factor b+m p OR (95% Cl)
COVID severity 0.29 £ 0.12 0.018 1.35 (1.05 - 1.70)
Mechanical ventilation 2.85 + 1.08 0.008 17.4 (2.11 - 143)
Myocardial infarction 0.88 + 0.33 0.008 2.42 (1.26 - 4.64)
Gender (female vs male) 0.25 £ 0.21 0.220 1.29 (0.86 - 1.94)
Stroke 1.30 £ 0.39 0.001 3.68 (1.70 - 7.96)
HbAlc (>9.2 vs<=9.2) 0.77 £ 0.23 0.001 2.17 (1.37 - 3.43)
Long-term Reference
T2D duration
New onset 1.58 £ 0.33 <0.001 4.86 (2.55 - 9.28)
No insulin Reference
Insulin Human insulin -0.40 £ 0.28 0.146 0.67 (0.39 - 1.15)
Insulin analogs 0.82 £ 0.28 0.003 2.28 (1.31 - 3.94)
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ROC analysis for predicting PCS in patients with T2D. (A) logistic regression model; (B) MLP model; (C) pairwise comparison between models.

significant increase in the risk of hospitalization, admission (35) to
the ICU and mortality (36). Treatment with insulin is a risk factor
for hospitalization and increased mortality (36, 37). The effects of
sulfonylurea, thiazolidinedione, and alpha-glucosidase inhibitors on
mortality are neutral (36). In contrast, the current study did not find
a significant association between at-home ADD administration and
mortality or adverse outcomes in patients with T2D admitted for
COVID-19 (38). Recent data regarding the association between
common T2D treatments and PCS development are scarce and
limited to several reports on the protective effects of metformin
(39-41). For instance, a recent multicenter, randomized, quadruple-
blind, parallel-group, phase 3 trial demonstrated that outpatient
treatment with metformin reduced the PCS incidence by
approximately 41% (42). In our study, we noticed that insulin
analogs significantly increased the risk of PCS development; in
contrast, the use of human insulin had a protective effect. The other
types of ADDs were neutral.

TABLE 5 Diagnostic accuracy of the proposed models for
predicting PCS.

Parameter 8-factors logistic ~ 8-factors MLP

Cutoff value >0.4989 >0.4792

Sensitivity, % (95% CI) 63.0 (56.4 - 69.3) 71.4 (65.0 - 77.2)

Specificity, % (95% CI) 76.8 (70.9 - 81.9) 76.0 (70.1 - 81.3)

NPV, % (95% CI) 68.8 (64.7 - 72.6) 73.9 (69.5 - 77.9)

PPV, % (95% CI) 71.9 (66.5 - 76.6) 73.6 (68.7 - 78.0)

-LR, (95% CI) 0.48 (0.40 - 0.58) 0.38 (0.30 - 0.47)

+LR, % (95% CI) 2.71 (2.11 - 3.48) 2.98 (2.34 - 3.78)

AUC 0.740 0.808
95% CI 0.697 - 0.779 0.770 - 0.843
p (AUC) <0.001 <0.001

NPV, negative predictive value; PPV, positive predictive value; LR, likelihood ratio; AUC, area
under the ROC curve; 95% CI, 95% confidence interval for the AUC.
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A close association between T2D and COVID-19 emerged early
during the pandemic and is still active (43-45). A history of diabetes
in subjects with acute SARS-CoV-2 infections was shown to worsen
all outcomes and increase mortality (46). Although the respiratory
system is the primary target of SARS-CoV-2, many other organs and
cells can be affected by the virus, including the endothelium,
cardiomyocytes, immune cells and B-cells of the pancreas. In fact,
diabetes and SARS-CoV-2 infection share two essential
commonalities - inflammatory pathway activation and multiorgan
involvement in pathological processes (47, 48). This can result in
manifestations of various severe pathologies, including acute
cardiovascular dysfunction, digestive system disorders, neurological
complications and metabolic disturbances.

Both severe COVID-19 and inefficient glucose control
aggravated PCS development in T2D patients. However, there is a
bidirectional interplay between COVID-19 and T2D (43),
establishing a vicious cycle that facilitates the development of
complications (49). SARS-CoV-2 infection and diabetes share two
fundamental features: an inflammatory state and multiorgan
involvement and damage (50). Notably, the close relationship
between immunity and the endocrine system impacts immune
cell functionality and the response to viruses. For instance, insulin
can directly regulate immune cells, including T-lymphocytes, which
are responsible for antiviral immunity (51). Both CD4+ and CD8+
T cells express insulin receptors, which are involved in facilitating
glucose uptake and promoting glycolytic metabolism during T-cell
activation (52). Moreover, an acute decrease in insulin levels
impairs CD8+ T-cell responses to infection, whereas the injection
of basal insulin increases the antiviral potential of these cells (53).
Hyperglycemia directly undermines the key function of immune
cells (54). High blood glucose is related to impaired cytotoxicity of
CD8+ and NK cells, as well as abnormal cytokine production by
CD4+ T cells, in patients with T2D following infection (55). In
addition, HbAlc was shown to positively correlate with the course
of infections induced by different pathogens, impacting both disease
duration and severity (51). This mechanism could be related to the
stimulatory effect of hyperglycemia on the replication of several
pathogens (54), impeding the ability of the immune system to fight
infectious agents. Thus, our findings showed that poor glycemic
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control or the use of insulin analogs instead of human insulin
increased the risk of PCS development in T2D patients after
COVID-19.

We also found that a history of myocardial infarction or stroke
can significantly increase the risk of PCS. This finding is consistent
with previous findings demonstrating the impact of coronary artery
disease on increasing the rate of PCS. Similarly, cardiovascular
comorbidities and cerebrovascular events were also shown to
enhance the probability of PCS (56). Both myocardial infarction
and stroke have common mechanisms in their pathogenesis based
on the compromised regulation of the blood clotting system
(platelet aggregation and coagulation cascades), endothelial
dysfunction, mild long-term inflammation and oxidative stress
(57). Importantly, most of these pathophysiological processes
interact with theories about the mechanisms underlying PCS
development. In addition to persisting viral reservoirs and
sustained inflammation, with autoimmune components,
dysfunction of the endothelium and corresponding alterations in
blood clotting have been underscored in PCS pathogenesis (58, 59).
Notably, endothelial dysfunction, inflammation and blood clotting
are closely related to myocardial infarction and stroke. These
mechanisms are also main players in diabetic progression and
complication development. Therefore, patients who experience
myocardial infarction and stroke are at high risk for PCS and
should be considered for preventing PCS complications. Thus,
patients who experience severe COVID-19, especially those on
mechanical ventilation, are at greater risk for long-term PCS,
which can affect both their physical and mental health.

Finally, we found that patients with T2D manifested during acute
COVID-19 infections more frequently observed in normal/
overweight persons and characterized with more aggressive
presentation as compared to matched patient with onset of T2D
before COVID-19. This finding addresses recent scientific discussions
of a new specific type of diabetes. It’s still debatable if this
phenomenon represents abrupt onset of classical type 1 and type 2
diabetes or a new type of diabetes? Preliminary studies have provided
evidence that B-cell infection may be involved in COVID-19
pathogenesis or, alternatively, that pancreatic infection may impact
B cells by changing their local microenvironment. The precise
underlying mechanisms are not clearly defined, the existing
research studies suggests that the pathogenesis of new-onset
diabetes due to COVID-19 might be linked to direct viral effects on
pancreatic islets as well as systemic inflammatory responses that
disrupt glucose metabolism (60). SARSCoV-2 uses ACE2 to enter
human cells and TMPRSS2 for ‘priming’ (61). Both proteins are
highly expressed in gastrointestinal epithelial cells, pancreatic ductal,
acinar and islet cells (62). SARS-CoV-2 is also able to cause diffuse
severe endotheliitis of the submucosal vessels in several anatomical
sites, and these changes, in turn, cause diffuse microischemic disease
(63). Similar ischemic damage could occur in the pancreas due to
expression of ACE2 isoform in pancreatic microvasculature (64).
Infected pancreatic islets demonstrated reduced glucose-stimulated
insulin secretion, fewer insulin granules (65, 66) and characterized
with increased islet-cell apoptosis hat may be due to the viral spike
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protein (60). Miiller et al. also suggested that infected cells may lose
their hormone content via de-differentiation (65). Data from current
studies at least partly could give the background for more aggressive
presentation of T2D obtained by our results.

Limitations

The study was based on questionnaire results that can impact
the accuracy of the data and details concerning treatment regimens.
When recording the COVID-19 history, there were no data
documenting the test systems used for the diagnostics, viral load
and vaccination against SARS-CoV-2.

Conclusion

This study revealed several risk factors facilitating PCS
development in T2D patients in Ukraine. We found that patients
who were newly diagnosed with T2D, had an HbAlc above 9.2%,
had previous cardiovascular or cerebrovascular events, and had
severe COVID-19 associated with mechanical lung ventilation were
at high risk for PCS development. The developed predictive PNN
model allows us to assess the probability of PCS in T2D patients and
identify high-risk groups for tailoring their treatment during
viral infection.

New-onset T2D which occur during or after acute COVID-19
phase more frequently observed in normal/overweight persons and
characterized with more aggressive presentation as compared to
matched patient with onset of T2D before COVID-19.
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The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has presented
multifaceted health challenges. COVID-19 primarily targets the respiratory
system but also affects multiple organ systems, including the endocrine
system. Emerging evidence suggests interactions between thyroid function,
the acute phase of COVID-19, and the prolonged symptoms known as post-
COVID sequalae or long COVID. Several studies have reported that COVID-19
can induce thyroid dysfunction, leading to conditions such as thyroiditis and
alterations in thyroid hormone levels. The mechanisms through which SARS-
CoV-2 affects the thyroid include direct viral infection of thyroid cells, leading to
viral thyroiditis, which causes inflammation and transient or sustained thyroid
dysfunction, as well as an excessive systemic immune response (cytokine storm).
This is associated with elevated levels of cytokines, such as IL-6, that disrupt
thyroid function and lead to nonthyroidal illness syndrome (NTIS). Medications
administered during the acute illness phase, such as corticosteroids and antiviral
drugs, can also impact thyroid hormone actions. The involvement of the thyroid
gland in long COVID, or postacute sequelae of SARS-CoV-2 infection, is an area
not well defined, with potential implications for understanding and managing this
condition. Persistent low-grade inflammation affecting thyroid function over
time can lead to ongoing thyroiditis or exacerbate pre-existing thyroid
conditions. Viral infections, including SARS-CoV-2, can trigger or worsen
autoimmune thyroid diseases, such as Hashimoto's thyroiditis and Graves'’
disease. Long COVID may disrupt the hypothalamic—pituitary—adrenal (HPA)
axis, which can, in turn, affect the hypothalamic-pituitary-thyroid (HPT) axis,
leading to abnormal thyroid function. This review was designed to systematically
capture recent literature on COVID-19-related thyroid dysfunction in the adult
population, the prognostic consequences of thyroid dysfunction during COVID-
19, and the effects of thyroid dysfunction on patients with long COVID. A
comprehensive search of PubMed and EMBASE databases was conducted. The
systematic review was performed based on the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement. Study quality was
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assessed using the Critical Appraisal Skills Programme (CASP). A total of 53
studies met the inclusion criteria. The review summarises recent findings and
provides an update of the current understanding of thyroid dysfunction in
COVID-19-related spectrum of disorders, underscoring the complex nature of
SARS-CoV-2 infection and its far-reaching impacts on human health.

cytokines, thyroid, COVID-19, long COVID, inflammation

Introduction

Since the first case of the coronavirus disease 2019 (COVID-19),
an extensive volume of literature has been published on its acute
phase, caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), as well as its chronic counterpart, long COVID or
postacute COVID syndrome. Although COVID-19 is
predominately known for affecting the respiratory system, it also
presents nonpulmonary symptoms, such as cardiac abnormalities,
liver disease, and endocrine dysfunction (1). Among the endocrine
systems affected during COVID-19 infection, thyroid dysfunction is
frequently recognised, resulting from both direct and indirect
mechanisms that can disrupt thyroid homeostasis.

Thyroid function is tightly controlled by the hypothalamic-
pituitary-thyroid axis (HPT), which regulates the secretion of
thyrotropin-releasing hormone (TRH) and thyroid-stimulating
hormone (TSH). These hormones induce the synthesis of thyroid
hormones (namely 3,3',5,5'-tetraiodo-L-thyroxine (T4) and 3,5,3'-
triiodo-L-thyroinine (T3) triiodothyronine), which are then released
into circulation. A series of negative feedback loops tightly regulate
HPT axis activity (2). Moreover, the peripheral availability of T3 is
controlled by deiodination of T4 and its conversion into T3 in the
liver, kidneys, and muscles by deiodinase (DIO)1 and DIO2
enzymes, whereas DIO3 deiodinates T4 to produce reverse T3 (2).

Immune system regulation by thyroid hormones is well recognised,
as they have been shown to influence leucocyte proliferation and
migration, antibody production, and the release of cytokines, which can
trigger immune responses against microbial or sterile insults. Effects in
the opposite direction have also been described where the activation of
inflammatory pathways and infection can affect the HPT axis and the
downstream activity of thyroid hormones. This can occur indirectly
through the action of cytokines such as interleukin (IL)-1, IL-6, and
tumour necrosis factor (TNF)-o, which act on the hypothalamus,
dampening TSH activity and resulting in decreased production of T3
and T4 (2). Additionally, indirect insults are also thought to play a role
in autoimmune thyroid disease, as SARS-CoV-2 hyperactivates the
immune response, leading to a consequent increase in IL-6 and T-cell
helper (Th) lymphocytes, such as interferon (IFN)-y-secreting Th1 cells
and IL-17-secreting Th17 cells. These Th cells are produced in
peripheral lymphocytes, and increased levels of these Th cells and
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their associated cytokines have been reported in cases of autoimmune
thyroid disease, making it plausible that they could be involved the
development of autoimmune disease through apoptotic pathways in
thyroid follicular cells, leading to thyroid cell destruction (3).

Alternatively, direct viral injury can occur, whereby infections such
as SARS-CoV-2 and disorders like acute respiratory distress syndrome
can cause destruction of thyrocytes. The manifestations of injury
specifically linked to SARS-CoV-2 are displayed in Figure 1. The
ability of the virus to exert these multisystem effects is thought to be
due to the widespread expression of receptors for SARS-CoV-2, namely
angiotensin-converting enzyme 2 (ACE2) and its coreceptor
transmembrane protease serine 2 (TMPRSS2) (1). This has been
shown in deceased patients due to COVID-19, where viral mRNA
was detected in the blood, urine, and stool of these patients.
Furthermore, immunohistochemical detection of SARS-CoV-2 viral
proteins within thyroid tissue provides further evidence for the
interaction of SARS-CoV-2 with ACE2 and TMPRSS2 (4-6).
Additionally, multiple studies in patients with COVID-19 employing
ultrasound identified markedly hypoechoic focal areas in thyroid tissue
consistent with inflammation. These patients were later diagnosed with
subacute or atypical thyroiditis. Piecing this evidence together, direct
damage to the thyroid gland by SARS-CoV-2 is a plausible explanation
for thyroid involvement during COVID-19.

Following the initial wave of disease in early 2020, chronic
symptoms have been reported and investigated in survivors. In the
disease setting now identified as long COVID, these symptoms are often
serious and are thought to affect at least 10% of COVID-19 survivors.
Fatigue, joint pain, “brain fog”, chest pain, low mood, cough, shortness
of breath, headaches, and muscle pain are some of the symptoms that
have been reported to be associated with long COVID (3, 7). The
underlying pathogenesis of this syndrome is not completely understood;
however, one hypothesis suggests that thyroid involvement, especially
the transient phase of thyroid dysfunction in the convalescent period,
remains an ongoing issue in some COVID-19 patients. Conversely, it is
also thought that the immunological dysfunction from the virus can
lead to increased antithyroid antibodies, resulting in autoimmune
thyroid disease (8). Such pathological processes involve either
autoantibodies to thyroid peroxidase (TPO-Ab) and thyroglobulin
(Tg-Ab), leading to hypothyroidism, or TSH receptor autoantibodies
(TSH-R Ab) causing hyperthyroidism (9).
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Subacute thyroiditis
Presenting features
- Anterior neck pain
Fever
Symptoms of
thvrotoxicosis

Graves’ disease
Presenting features
- Features of hyperthyroidism

Thyroid function tests show
high anti TSH receptor antibody
Thyroid storm (R)
Graves orbitopathy (R)
Thyrotoxic heart disease (R)
Thyrotoxic periodic paralysis (R)
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Painless thyroiditis
Presenting features
- No Neck pain
- Symptoms of
thyrotoxicosis

Non-thyroidal illness syndrome
Presenting features
Clinically euthyroid
Thyroid function tests show
low free T3 with low or
normal TSH

Hashimoto thyroiditis
Presenting features
- Features of hypothyroidism
- Thyroid function tests show
increased anti TPO
antibody levels
- Encephalopathy (R)
- Myxoedema coma (R)

Various presentations of thyroid injury due to SARS-CoV-2 are shown here (1).

A wide range of thyroid dysfunctions have been reported, with
their symptoms described in Table 1. Concerns have been raised
that thyroid abnormalities might be masked or remain unnoticed,
as many symptoms overlap with the symptoms of COVID-19, such
as intense fatigue and fever. Furthermore, the complications related
to thyroid function can vary and, in extreme cases, can be life-
threatening, such as subacute thyroiditis.

The global response to the pandemic is shifting towards disease
prevention, with the implementation of widespread vaccination
programmes and management of the long-term consequences of
the disease. Therefore, a summary of the latest findings regarding
thyroid dysfunction in COVID-19 could provide a timely update on
the current understanding (1). The objectives of this review were to
systematically evaluate recent literature on COVID-19-related
thyroid dysfunction, the prognostic consequences of thyroid
dysfunction during COVID-19, and the effects of thyroid
dysfunction on patients with long COVID.

Methods
Search strategies and study selection

To develop the search strategy and review question, a
Population, Intervention, Comparison, and Outcome (PICO)
format (Table 2) was used.

A search was then carried out systematically on Medline and
EMBASE, and papers in the English language published between
January 2020 and April 2024 were included to ensure the results

Frontiers in Endocrinology

were accurately interpreted. The search strategy, shown in Table 3,
was based on the following keywords/phrases: (COVID-19 OR
coronavirus disease OR long COVID OR SARS-CoV-2 OR severe
acute respiratory syndrome coronavirus 2) AND (subacute
thyroiditis OR painless thyroiditis OR subacute lymphocytic
thyroiditis OR silent thyroiditis OR Graves’ disease OR
Hashimoto’s thyroiditis OR Hashimoto’s disease OR nonthyroidal
illness syndrome OR euthyroid sick syndrome). These terms were
used in order to ensure a broad search that covered all relevant
literature. On the other hand, terms such as “autoimmune
thyroiditis” were excluded to avoid ambiguity, providing more
specific results and capture the most relevant studies. Specific
quality control papers were also included to ensure the search
retrieved appropriate publications. Furthermore, relevant
secondary sources and grey literature were searched, as well as
reference lists, to identify additional pertinent papers. EndNote was
utilised to import and manage abstracts and full texts. Once the
searches were completed, duplicates were removed. The title and
abstracts, followed by the full texts, were then reviewed
independently by two reviewers at separate times.
The full search strategy is shown in Table 3.

Inclusion/Exclusion criteria

Case studies and reports, observational studies, retrospective
studies, prospective studies describing the clinical features and
outcomes of thyroid disease, including subacute thyroiditis, painless
thyroiditis, silent thyroiditis, Graves’ disease, Hashimoto’s thyroiditis,
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TABLE 1 Types of thyroid dysfunction identified in COVID-1 patients.

Thyroid

Condition

Common Symptoms

Investigations

10.3389/fendo.2024.1477389

Treatment

Subacute Characteristically, it has three phases: painful Thyroid dysfunction present as thyrotoxicosis; Self-limiting; however, beta-blockers are used
thyroiditis swelling of the thyroid gland, hypothyroidism, most cases are antithyroid antibody negative. for symptom relief. Nonsteroidal anti-
and euthyroidism. Typical symptoms, such as Ultrasound of the thyroid gland will show focal = inflammatory drugs are given in mild cases to
neck pain and persistent tachycardia, are key hypoechoic areas. reduce inflammation and pain. Prednisolone is
indicators (10). Typically, thyroid scintigraphy shows less than administered to patients with severe pain (3).
2% uptake of radioactive iodine within 24 h (3).
Painless A variation of thyroiditis with the absence of Thyroid dysfunction presents as thyrotoxicosis; =~ Beta blockers are used for symptom control.
thyroiditis neck pain. Other symptoms are similar to most cases are antithyroid antibody negative. Glucocorticoids are administered in in severe

those of subacute thyroiditis (1).

Ultrasound of the thyroid gland shows focal
hypoechoic areas.

Typically, thyroid scintigraphy shows low
uptake of radioactive iodine in 24 h (1).

cases (1).

Graves® disease

An autoimmune condition causes immune cells
to attack the thyroid, resulting in
hyperthyroidism. It can also lead to thyroid eye
disease and pretibial myxoedema. Graves’
disease involves increased thyroid hormone
synthesis, release, and growth due to thyroid-
stimulating hormone receptor antibodies (1).

Thyroid function will show thyrotoxicosis, and
high levels of antithyroid-stimulating hormone
receptor (TSH-R) antibodies will help confirm
the diagnosis.

A thyroid ultrasound will show diffuse
enlargement of the thyroid gland, as well as
increased vascularity.

Thyroid scintigraphy will show a diffuse
increase in the uptake of radioactive iodine (1).

Thionamides and beta blockers are
administered (1).

Hashimoto’s
thyroiditis

A common autoimmune condition caused by
the destruction of the thyroid gland and the
presence of either antithyroid peroxidase
antibodies and/or antithyroglobulin antibodies.
In the short term, it can present with fatigue,
weight gain, dry skin, and constipation. It
typically presents with neuromuscular
symptoms, with or without a goitre (11).

Thyroid function shows primary
hypothyroidism with high levels of antithyroid
peroxidase antibodies to help confirm the
diagnosis (1).

Levothyroxine is given (1).

Non-thyroidal
illness syndrome

This syndrome presents with alterations in
thyroid hormones and is seen in up to 70% of
hospitalised patients with critical illness, e.g.,
after major surgery, sepsis and SIRS, COVID-
19, and other viral illnesses. Clinically, patients
are euthyroid (1).

Thyroid profile exhibits low T3, high levels of

reverse T3 (rT3), low or normal T4, and low or

normal thyroid-stimulating hormone
(TSH) (1).

Self-limiting, but close supervision is
needed (1).

Thyroid condition is identified in bold.

or nonthyroidal illness syndrome, were included. Papers describing
patients who were pregnant, those in the paediatric population
(specifically under 18 years of age), or those with a previous history
of thyroid disease, as well as letters/comments to the editor, were
excluded from this review.

Case definition and
diagnostic investigations

Only papers with positive COVID-19 PCR tests, confirming
COVID-19 infection, were included in this review; in contrast, cases
speculated to be COVID-19 were not considered further.

In terms of thyroid dysfunction investigations, in the studies
included in the review, the diagnosis of subacute thyroiditis was
made on thyroid function tests suggestive of thyrotoxicosis, thyroid
ultrasonography showing focal hypoechoic areas, and thyroid
scintigraphy showing low or absent radiotracer uptake. Painless
thyroiditis would show the same investigation results as subacute
thyroiditis, but in the absence of pain.

Frontiers in Endocrinology

The diagnosis of Graves’ disease was based on the presence of
TSH-R Ab or thyroid-stimulating immunoglobulins (12), as well as
the combination of supressed TSH levels and increased free T4
levels. However, in some cases, the diagnosis of thyrotoxicosis was
based on raised levels of T3, but not T4, and undetectable TSH (T3-
induced thyrotoxicosis).

Diagnosis of Hashimoto’s thyroiditis causing hypothyroidism
was based on low or normal serum free T4 and increased serum
TSH levels, along with the presence of high levels of thyroid
peroxidase (TPO) autoantibodies. Additionally, thyroid

TABLE 2 PICO format.

Population Patients over the age of 18 years with COVID-19 and no history
of thyroid disease

Intervention = Awareness of thyroid abnormalities in COVID-19 patients

Comparison = Patients without COVID-19 and a history of thyroid disease

Outcomes Whether the presence of thyroid abnormalities in COVID-19

patients affects their outcomes and recovery

Bold: components of the clinical question.
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TABLE 3 Search strategy used for the databases Embase and Medline.

Database Search strategy

Embase 1. COVID 19.mp. or exp coronavirus disease 2019/
2. limit 1 to (English language and yr="2020 - Current*)
3. exp long COVID/or long covid.mp.
4. limit 3 to (English language and yr="2020 - Current*)
5. SARS-CoV-2.mp. or exp Severe acute respiratory syndrome
coronavirus 2/
6. limit 5 to (English language and yr="2020 -Current*)
7.20r4or6
8. subacute thyroiditis.mp. or exp subacute thyroiditis/
9. limit 8 to (English language and yr=*2020 - Current*
10. 7 and 9
11. painless thyroiditis.mp.
12. limit 11 to (English language and yr="2020 - Current*)
13. subacute lymphocytic thyroiditis.mp.
14. limit 13 to (English language and yr="2020 - Current’)
15. silent thyroiditis.mp.
16. limit 15 to (English language and yr=*2020 - Current")
17.12 or 14 or 16
18.7 and 17
19. Graves disease.mp. or exp Graves disease/
20. limit 19 to (English language and yr="2020 - Current’)
21. 7 and 20
22. Hashimoto thyroiditis.mp. or exp Hashimoto disease/
23. limit 22 to (English language and yr="2020 - Current*)
24.7 and 23
25. non-thyroidal illness syndrome.mp. or exp euthyroid sick
syndrome/
26. limit 25 to (English language and yr=*2020 - Current)
27.7 and 26

Medline COVID 19.mp. or exp COVID-19/

limit 1 to (English language and yra"2020 - Current*)
long covid.mp. or exp Post-Acute COVID-19 Syndrome/
limit 3 to (English language and yr="2020 -Current")

1
2.
3.
4.
5. long covid.mp. or exp Post-Acute COVID-19 Syndrome/
6. SARS-CoV-2.mp. or exp SARS-CoV-2/

7. limit 6 to (English language and yr="2020 - Current")
8.2o0r4o0r7

9. subacute thyroiditis.mp.

10. limit 9 to (English language and yr="2020 - Current")

11. 8 and 10

12. painless thyroiditis.mp.

13. limit 12 to (English language and yr="2020 - Current*)
14. subacute lymphocytic thyroiditis.mp.

15. limit 14 to (English language and yra"2020 - Current*)

16. silent thyroiditis.mp.

17. limit 16 to (English language and yr="2020 - Current*)
18. 13 or 15 or 17

19. 8 and 18

20. Graves disease.mp. or exp Graves Disease/

. limit 20 to (English language and yr=*2020 - Current*)
22. 8 and 21

23. Hashimoto thyroiditis.mp. or exp Hashimoto Disease/

24. limit 23 to (English language and yre"2020 - Current*)
25. 8 and 24

26. non-thyroidal illness syndrome.mp. or exp Euthyroid Sick
Syndromes/

27. limit 26 to (English language and yr«2020 - Current’)

28. 8 and 272

[
—

Database searched is identified in bold.

ultrasonography would show an enlarged thyroid gland with a
hypoechoic, diffusely heterogeneous echotexture which
hypoechoic micronodules.

Finally, in the studies mentioned, the diagnosis of nonthyroidal
illness syndrome was based on normal serum levels of TSH but
reduced serum levels of free triiodothyronine (fI3).
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Data extraction

Data extraction from the included studies was organised by
author, publication year, title, country, study design, number of
patients included, patient data (including the age, sex, and severity
of COVID-19), and thyroid characteristics. This was analysed
independently by two authors and is displayed in Supplementary
Table 1.

Study quality assessment

A critical appraisal was completed using the Critical Appraisal
Skills Programme (CASP), (https://casp-uk.net/checklists/casp-
systematic-review-checklist-fillable.pdf). This was used to assess
the quality of the studies included, as shown in Tables 4-6.

Risk of bias assessment

A risk of bias assessment was completed using a customised risk
of bias tool, due to the nature of each study, as shown in Table 7.

Synthesis of extracted evidence

Narrative synthesis was used to critically review the latest
advancements related to thyroid dysfunction and COVID-19.

Results
Search results and studies characteristics

The total number of studies identified from the searches was 53
studies. A PRISMA flow diagram, displayed in Figure 2, shows the
included and excluded articles, as well as the reasons for exclusion.
The most common study design was case studies, and details of the
findings of each study can be found in Supplementary Table 1.

Case reports

The total number of patients reported with thyroid dysfunction
from the case studies was 43, from 31 case studies. Subacute
thyroiditis was the most commonly reported, with 64% (28
patients) of patients being diagnosed with the condition (9, 15,
17, 21, 24, 38, 39, 41-44, 59, No. 77; 28, 45-48, 53, 60. Graves’
disease was reported in 21% (nine patients) of patients (20, 23, 24,
26, 28, 32,57, 58). Hashimoto’s thyroiditis was reported in 9% (four
patients) of patients (11, 28, 29), and 5% (two patients) were
diagnosed with painless thyroiditis (30, 31). These cases have
been described from multiple countries, including Spain, the
USA, Italy, Turkey, Switzerland, Korea, Singapore, and Brazil.
From the case reports, most patients were women (66% of
patients [29]), and the age range was between 18 and 81.
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TABLE 4 Risk of bias assessment.

Studies Publication Generalisability Self-selection = Attrition Reporting Confirmation Confounding Other sources

bias bias bias bias bias bias bias of bias

Baldelli et al. (13)

Alvarez Martin et al. (14)

Mehmood et al. (15)

Brancatella et al. (16)

Asfuroglu Kalkan and Ates (17)

Batman et al. (18)

Arora et al. (19)

Shermetaro and Bushman (20)

Henke et al. (21)

Lee et al. (11)

Muller et al. (22)

Franca et al. (23)

Nham et al. (24)

Peng et al. (25)

Boyle and Mullally (26)

Lee et al. (11)

Rossini et al. (27)

Feghali et al. (28)

Knack et al. (29)

Lui et al. (1)

Millan et al. (30)

Dolkar et al. (31)

Sousa et al. (32)
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TABLE 4 Continued

Studies

Vassiliadi et al. (12)

Swistek et al. (33)

Publication
bias

Generalisability

bias

©

Self-selection
bias

Attrition

bias

Reporting
bias

Confirmation
bias

®

Confounding Other sources
bias of bias

®

Sparano et al. (34)

Okwor et al. (35)

Gong et al. (36)

Schwarz et al. (37)

Campos-Barrera et al. (38)

Sohrabpour et al. (39)

Akshay Khatri 2021

Whiting et al. (40)

Davoodi et al. (41)

Ruggeri et al. (42)

Brancatella et al. (16)

Hajosi-Kalcakosz et al. (43)

Elawady et al. (44)

Tjonnfjord et al. (45)
Chong et al. (46)

Sato et al. (47)

Al-Shammaa and Abdlkadir (48)

Gezer and Ecin (49)

Ahn et al. (50)

Edwards and Hussain (51)

Mondal et al. (52)

De Souza et al. (53)

Lui et al. (1)
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All patients suspected of having subacute thyroiditis presented
with symptoms such as neck pain and tenderness and
hypothyroidism-related fatigue. Typical symptoms, investigations,
and management are described in Table 1. One patient experienced
thyrotoxicosis and was later diagnosed with subacute thyroiditis
after further investigation. However, 2 months later, a diagnosis of
o O ) Graves’ disease was made due to fluctuating thyroid function tests
(24). Two patients with painless thyroiditis exhibited the same

Other sources

pattern of investigations, showing signs of thyrotoxicosis, but
without neck pain or tenderness (30, 31).

Among the patients who developed Graves’ disease, one also
experienced eye irritation in addition to the typical symptoms

Confounding

© © 0 © outlined in Table 1. Patients with untreated Graves’ disease can
deteriorate into life-threatening illness, as shown in two patients
who experienced a thyroid storm, defined by Burch-Warsofsky
point scale (BWPS) scores of 45 and 55, respectively. Two
additional patients had BWPS scores of 35 and 40, indicating an
impending thyroid storm. All the patients were treated with

Confirmation

medication until they became euthyroid. Once they reached this
point, they were continued on a maintenance dose (20, 26, 51).

Patients who experienced Hashimoto’s thyroiditis following
COVID-19 all reported fatigue as one of their symptoms. Other
characteristic symptoms, investigative approaches, and
management are shown in Table 1.

Reporting

Retrospective studies

Attrition

o 0 & O Altogether, the total number of retrospective studies included in
this review was 12. Three focused on subacute thyroiditis post-COVID-
19 (11, 18, 52), five focused on general thyroid dysfunction post
COVID-19 (13, 19, 49, 50, 55), and four focused on nonthyroidal
illness syndrome (NTIS) post-COVID-19 (33, 36, 37, 54).

One study focusing on subacute thyroiditis, which included a
sample size of 98 patients with subacute thyroiditis after COVID-19

c
o
=
0
92
[0
w
1
=
(7]
)

infection, found that the most common symptom was neck pain
and tenderness, with the average time from diagnosis of subacute
thyroiditis following COVID-19 being 21 days (18). Another study
with a sample size of 160 found that the mean onset of subacute
thyroiditis following COVID-19 was 23.8 days, whereas painless

Generalisability

© 0 o thyroiditis was reported more frequently soon after COVID-19
recovery, with a mean onset of around 10.6 days following COVID-
19 infection (52). The study by Lee et al. (11), with a large sample
size 0f 407,427, found a higher incidence rate of subacute thyroiditis
(SAT) in COVID-19 patients compared to non-COVID-
19 patients.

Publication

(]
(]
(]
(]

Among all five studies focusing on general thyroid dysfunction,
all included patients who were diagnosed with or had clinical
markers of NTIS (13, 19, 49, 50, 55). One study with a sample
size of 119 identified NTIS in 18.5% of all patients, which was the
most common abnormality found, followed by subclinical
thyrotoxicosis, diagnosed in 14.3% of patients (50). Another study
investigated 102 patients and reported similar findings, with NTIS
diagnosed in 58.8% of patients (19). This was also demonstrated in
the study by Baldelli et al. (13), where 28 out of 46 patients had low
serum fT3 levels and were diagnosed with NTIS. The study by Gezer

Not Clear; ° High risk.

Georgios Tsivgoulis et al. (56)
Vesselina Yanachkova and

Zou et al. (54)
Wang et al. (55)

TABLE 4 Continued

Radiana (8)
Key: Q Low risk;
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TABLE 5 Summary of JBL checklist for case reports.

Author and publication year Critical appraisal
score
Alvarez Martin et al. (2021)(14) (7] (] (] (] (] (V] N/A (V] 6/7
Mehmood et al. (2020)(15) Q (V) (V) () () (V) N/A (V) 6/7
Brancatella et al. (2020a)(16) o (] () o 9 (] N/A (] 717
Asfuroglu Kalkan and Ates (2020)(17) () (] (] (] (] (] N/A (] 6/7
Henke et al. (2023)(21) (V) (V) (V) () [ (V) N/A (V) 717
Franca et al. (2023)(23) o (] (] o o (] N/A (] 717
Nham et al. (2023)(24) o (] (] Q Q o N/A o 717
Shermetaro and Bushman (2023)(20) (] (] (V] (] (] (V] N/A (V] 717
Boyle and Mullally (2023)(26) () (V) (V) () () (V) N/A (V) 717
Lee et al. (2023)(11) (] (] (] Q Q o N/A (] 717
Feghali et al. (2021)(28) (] (] (] (] (] o N/A o 717
Knack et al. (2021)(29) (V) (V) (V) () [ (V) N/A (V) 717
Millan et al. (2020)(30) o (] (] Q 9 (] N/A (] 717
Dolkar et al. (2022)(31) (] (V] (V] (] (] (V] N/A (V] 717
Sousa et al. (2022)(32) (] (V] (] (] o (] N/A (] 717
Urbanovych et al. (2021)(57) o (] (] (] o (] N/A (] 717
Harris and Al Mushref (2021)(58) o (] () Q Q o N/A o 717
Campos-Barrera et al. (2020)(38) (V) (V) (V) [ [} (V) N/A (V) 717
Sohrabpour et al. (2021)(39) (] (] (] o 9 (] N/A (] 717
Khatri et al. (2021)(59) (] (] (] (] (] (] N/A (] 717
Whiting et al. (2021)(40) (V) (V) (V) () [ (V) N/A (V) 717
Davoodi et al. (2021)(41) (2] (] (] o o (] N/A (] 6/7
Ruggeri et al. (2021)(42) o (] (] Q Q o N/A o 717
Brancatella et al. (2020a)(16) (] (] (] (] (] (V] N/A (V] 717
Hajosi-Kalcakosz et al. (2022)(43) (V) (V) (V) () () (V) N/A (V) 717
Elawady et al. (2022)(44) (] (] (] o o (] N/A (] 717
Tjonnfjord et al. (2021)(45) (7] (] (] (] (] (V] N/A (V] 6/7
Chong et al. (2021)(46) (V) (V) (V) () [ (V) N/A (V) 717
Sato et al. (2021)(47) (] (] (] (] 9 (] N/A (] 717
Al-Shammaa and Abdlkadir (2022)(48) (] (V] (V] (] (] (V] N/A (V] 717
Edwards and Hussain (2021)(51) (] (V] (] (] o (] N/A (] 717
De Souza et al. (2022)(53) o (] (] (] o (] N/A (] 717

Key: 0 Yes; 0 Not clear; N/A, Not Applicable.

and Ecin (49) found that a low TSH level was significantly correlated  than half of the sample size had clinical markers suggestive of NTIS.
with increased length of hospital stay and clinical severity, with 110~ This was based on a sample size of 201.

patients diagnosed with subclinical hypothyroidism. Furthermore, The paper by Arora et al. (19) further demonstrated that low
116 patients from this study had low T3 levels, indicating that more ~ fT3 levels, which are common in NTIS, were shown to have a
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TABLE 6 Summary of the CASP checklist for quantitative studies; Q7 and 8 omitted, as the results of the studies are provided in Supplementary

Table 1.

Author and publica- Q1 Q2 Q3 Q4 Q5

tion year (A)

Q9 Q10 Q11 Q12 Critical

appraisal score

Baldelli et al. (2021)(13) o O o o (] [x) (<) [x) (] o o o 9/12
Batman et al. (2023)(18) Q Q o o (2] (] o Q o 10/12
Arora et al. (2022)(19) o O (] (] (%] o (2] (7] (] (] (] (V] 8/12
Lee et al. (2023)(11) o O (] (] Q (2] (] (] (/] (] (] (] 11/12
Muller et al. (2023)(22) © © ©& ©¢ & © © © ©o© © o © un
Peng et al. (2023)(25) (] (] (] (] (] (] (] (] (] (] (] (] 12/12
Rossini et al. (2023)(27) o O (] (] o (] (] (] (] (] (] (] 12/12
Lui et al. (1) Q Q Q o (] (2] (2] (2] (] Q 9 o 9/12
Vassiliadi et al. (2021)(12) (] (] (] (] (V] (] (] (] (V] (] (] (] 12/12
Swistek et al. (2022)(33) © © © o o () () () ®© © © ©
Sparano et al. (2022)(34) o o (] o (] (2] () (2] (] (] o o 9/12
Okwor et al. (2021)(35) © © & & o @ | © © © © & © s
Gong et al. (2021)(36) o O (] (V] Q (2] (2] (7] (] (] (] (] 9/12
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Key: 0 Low risk; e Not Clear; ° High risk.

significant relationship with increased severity of COVID-19 and
mortality. This is reiterated in all four studies focusing specifically
on NTIS following COVID-19. For example, the paper by Swistek
etal. (33) found that 28 out of 82 patients who developed NTIS died
during hospitalisation, compared to 15 out of 133 patients without
thyroid dysfunction during hospitalisation for COVID-19. In the
paper by Gong et al. (36), the mortality rate was shown to be
significantly higher in the low FT4 group of patients, and low TSH
levels were shown to be independently related to 90-day mortality.

Schwarz et al. (37) similarly found fT3 to be a significant
independent predictor of mortality, which was echoed in the
study by Zou et al. (54), which reported a significantly higher
prevalence of severe events in patients diagnosed with euthyroid
sick syndrome, also known as NTIS. Comparably, the study by
Wang et al. (55) concluded that abnormal thyroid dysfunction was
more common in severe cases of COVID-19 (47 patients out of a
total of 52) than in mild or moderate cases of COVID-19 (16
patients out of a total of 52).

TABLE 7 Summary of the CASP checklist for case control studies; Q7 and Q8 omitted, as results of the studies are provided in Supplementary Table 1.

Author and publication Q1

year

Georgios Tsivgoulis et al. (] () [x) (2]
(2021)(56)

Q6(a) Q6(b) Q9

Key: 0 Low risk; e Not Clear; ° High risk.
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The PRISMA flowchart, depicting the searches of registers and databases, is shown here.

Prospective studies

Four of the papers included in this review were prospective
studies. One study, exploring the increased prevalence of
autoimmune thyroid disease after COVID-19 in a patient cohort
of 494, found that the prevalence doubled in COVID-19 survivors
compared to controls (27). Another study, with a patient size of 506,
focusing on NTIS after COVID-19 and its impact on patient
outcomes, demonstrating a 3.5-fold increased risk of diminished
survival in patients with lower fT3 levels (34). Lui et al. (1) studied
191 COVID-19 survivors to investigate thyroid disease, finding that
2% had new-onset abnormal thyroid function tests. Follow-up
studies from the same group described the most common
symptoms experienced by patients with thyroid dysfunction post-
COVID-19.

Discussion

Thyroid involvement in COVID-19

The relationship between COVID-19 infection and its impact
on thyroid gland function and activity is not yet fully understood.
Emerging studies suggest both direct viral injury through
pathophysiological mechanisms (3) and indirect systemic and
generalised inflammatory responses (5) targeting the thyroid gland.

Frontiers in Endocrinology

A significant number of publications focus on the role of the
cytokine storm, which causes indirect injury due to an uncontrolled
systemic inflammatory response. In many patients, this is associated
with NTIS (also known as euthyroid sick syndrome), which is
commonly present in up to 70% of hospitalised patients that have
critical illnesses, e.g., after major surgery, sepsis, SIRS, COVID-19,
and other viral illnesses (61). The main cytokines involved in the
COVID-19-driven inflammatory response have been identified as
interleukin 6 and interleukin 1b (IL-1b) (62). These cytokines have
also been found to act on the hypothalamic-pituitary-thyroid axis,
altering TSH responsiveness to circulating low fT3 levels and
resulting in inappropriately low/normal levels of serum TSH
(Figure 3). Activation of cytokines involves a series of
inflammatory signalling pathways, including nuclear factor
kappa-light-chain enhancer of activated B cells (NFkB). During
inflammation, NFkB has been demonstrated to upregulate
deiodinase 2 (DIO2). In contrast DIO1 is downregulated with IL-
1b stimulation. DIO1 has been closely linked to the pathogenesis of
NTIS/ESS, as it has been shown to be greatly reduced during illness,
resulting in low T3 levels. DIO1 and DIO2 mediate the peripheral
conversion of circulating T4 into the biologically active hormone
T3. Another deiodinase isoform, D3, is known as the key player in
inactivating thyroid hormones, as it converts T4 and T3 into the
biologically inactive rT3 (63).

The development of autoimmune thyroid diseases post-
COVID-19 is not completely understood. A proposed hypothesis
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suggests that COVID-19 can trigger latent hyperactive reactions or
instigate new-onset autoimmune disease. This reaction is thought to
be linked to the “cytokine storm”, whereby the “viral infection-
mediated hyperinflammatory condition” could activate the immune
system, leading to autoimmune thyroid diseases such as Graves’
disease and Hashimoto’s thyroiditis. The “cytokine storm”, which
leads to the overproduction of proinflammatory cytokines, is
responsible for an overresponsive, uncontrolled reaction of the
immune, coagulation, inflammatory, and complement systems, as
well as multiorgan failure. This pathological setting can lead to
death in severe cases, as the “cytokine storm” causes epithelial and
endothelial cell injury, resulting in vascular leakage and increased
permeability, ultimately leading to end-organ damage. In
autoimmune thyroid disease, there have been reports of an
increase in specific Th and cytokines. Imbalances in Thl and
Th2, along with increases in Thl and Thl7 in peripheral
lymphocytes, as well as elevated levels of cytokines such as IL-17,
IL-21, IL-23, IFN-Y, and TNF-a, have been observed in the serum of
COVID-19 patients, further linking autoimmune disease to
hyperstimulation of the immune system from COVID-19 (3).
Another potential explanation for the development of
autoimmune thyroid disease post-COVID-19 is molecular
mimicry. Research has identified several SARS-CoV-2 peptide
sequences as homologous to human peptide sequences, resulting
in cross-reactions between newly produced antibodies against the
virus and the body’s self-antigens. Proteins identified in the SARS-
CoV-2 proteome, such as the spike protein, membrane protein, and
nucleoprotein, share similar peptide sequences with TPO, leading to
this cross-reactions and, subsequently, thyroid autoimmunity.
Transcriptional changes within immune genes of the thyroid
gland have also been proposed as a plausible hypothesis for the
pathogenesis of autoimmune thyroid disease in COVID-19. Studies

have demonstrated a stronger innate immune response, which
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increases macrophage activity. This response could lead to
inflammation and damage to thyroid tissue, resulting in
symptoms frequently observed in SAT (7).

Subacute thyroiditis post-COVID-19 illness

SAT, also known as de Quervain thyroiditis, is more commonly
triggered by viral infections, specifically those of the upper respiratory
tract, such as Coxsackie viruses and coronaviruses (1). Since the start
of COVID-19 pandemic, many case reports have described an
association between the two conditions, and this review identified
23 papers that focused on COVID-19-related SAT. As outlined in
Table 1, the common symptoms described by patients were neck pain
and tenderness and symptoms of hyperthyroidism or thyrotoxicosis.
More female patients were identified with SAT than male patients,
which is not surprising as the incidence has been shown to be 19.1 vs.
4.1 per 100,000/year for women and men, respectively (64). The
retrospective study by Batman et al. (18) stated the average age of
patients was 41, with a mean onset time of 21 days (range: 5-39) from
the time of a positive COVID-19 PCR result to the diagnosis of SAT.
Similar findings were described in a recent review paper, where the
mean age of patients was 40. However, the mean onset of symptoms
was longer, with an average onset time of 4 weeks following SARS-
CoV-2 infection (1). As there is an overlap of symptoms in SAT and
COVID-19, such as fever, malaise, and lethargy, it can be difficult to
distinguish which symptoms are due to SAT or COVID-19. This can
lead to uncertainty and prolong the diagnosis of SAT, potentially
delaying treatment and having detrimental effects on the prognosis of
patients. Some of these symptoms were described in the case study by
Henke et al. (21), where the patient experienced weakness and
headaches that progressively worsened. However, the distinguishing
symptoms were neck pain, palpitations, and hand tremors. These,
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coupled with laboratory investigations, allowed for the diagnosis of
SAT. Furthermore, treatment of severe COVID-19 with high-dose
corticosteroids can mask symptoms such as pyrexia and neck pain,
making SAT harder to diagnose. Several studies identified the need
for healthcare professionals to be aware of the relationship between
SAT and COVID-19 infection.

The diagnosis of SAT is routinely based on laboratory tests and
specific imaging. Laboratory results typically show a state of
thyrotoxicosis, with negative TPO antibodies, as well as increased
C-reactive protein (CRP) and erythrocyte sedimentation rate (65).
Thyroid-specific imaging is used to further support the diagnosis of
SAT. Thyroid ultrasound reveals a diffuse decrease in vascularity,
heterogenous parenchyma, and hypoechoic areas in the thyroid
gland, while thyroid scintigraphy demonstrates low or absent
uptake of radioactive iodine within 24 h. An immune-mediated
response is thought to occur after a viral infection, where cytotoxic
T lymphocytes damage the thyroid follicular cells (1).

Over 50 years ago, the possibility of genetic influence increasing
the susceptibility of developing SAT was first mentioned in the
literature, exploring genotypes for human leukocyte antigen (HLA),
which is involved in antigen presentation by T cells and antibody
production by B cells in the immune system. Preliminary reports of
a higher incidence of SAT in patients with the genotype HLA-B35
or HLA-B-67 have been recorded, with 70% of patients who develop
SAT being carriers of HLA-B35 (66, 67). Other HLA haplotypes,
such as HLA-B15/62 and HLA-Drw8, have also been implicated.
One study suggested that viral insults like COVID-19 can trigger
the stimulation of aberrant HLA DR isotype expression, as well as
the activation of toll-like receptors (68).

The treatment of COVID-19-related SAT in all patients from
studies examined in this systematic review involved NSAIDS and/or
glucocorticoids, usually prednisolone, to reduce inflammation and
eventually correct thyroid markers. Treatment of patients
experiencing symptoms of hyperthyroidism, such as palpitations
and tremors, may also involve drugs, such as beta blockers, to help
alleviate these symptoms. On follow-up, one patient developed
subclinical hypothyroidism, which was treated with levothyroxine
(46). One patient also developed SAT alongside Graves’ disease (24),
and another patient was diagnosed with an inflammatory nodule
secondary to SAT but showed no signs of inflammation upon follow-
up (53). These further complications highlight the need for long-term
follow-up, even after SAT has been successfully treated.

The relationship between COVID-19 and SAT incidence was
reported in one study, where the incidence of SAT was compared in
patients with and without COVID-19. This was a population-based,
retrospective, cross-sectional study that included 407,427 patients
and found a positive correlation between COVID-19 patients and
SAT diagnosis. Due to the large number of patients, the risk of bias
was small, suggesting a possible association between COVID-19
infection and SAT (11).

Graves' disease post-COVID-19 infection

Graves’ disease is the most common form of hyperthyroidism,
resulting from high levels of thyroid-stimulating immunoglobulins
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that activate the TSH-R. It is an autoimmune condition and
commonly observed in middle-aged women. Two patients from
the studies included in this review experienced thyroid storms, and
one experienced Graves’ orbitopathy. Other rare symptoms
identified include thyrotoxic periodic paralysis. Thyroid storm, in
particular, is a life-threatening complication of Graves’ disease with
a high level of mortality and requires timely detection and treatment
in patients with clinical signs of thyrotoxicosis (66).

The population-based cohort study by Peng et al. (25) found a
1.3 hazard ratio (95% confidence interval: 1.10-1.54) between
COVID-19 and Graves’ disease compared with COVID-19-
negative patients, as well as an increased risk of Graves’ disease
specifically in the 18-40-year-old age group with COVID-19. This
suggest a possible link between COVID-19 and the development of
Graves” disease; however, more studies are needed to establish
whether a correlation between COVID-19 infection and Graves’
disease is indeed present.

Hashimoto's thyroiditis after COVID-19

A few reports suggested that viral infections, including COVID-
19, are able to trigger Hashimoto’s thyroiditis. This condition is a
common autoimmune disease resulting from the infiltration of
intrathyroidal mononuclear cells, which leads to the production
of antithyroglobulin and antithyroid peroxidase antibodies, causing
thyroid hormone derangement (29).

From the studies included in this review, only four patients were
reported to develop Hashimoto’s thyroiditis after COVID-19
infection. These patients had overlapping symptoms at
presentation, identical to those of patients with Hashimoto’s
thyroiditis without COVID-19. Furthermore, treatment of
Hashimoto’s thyroiditis involved replacement of thyroid
hormones in the form of levothyroxine, which normalised the
biochemical parameters and resolved clinical presentations of the
patients (3).

Painless thyroiditis after COVID-19

A number of reports described cases of COVID-19 patients who
developed painless thyroiditis, which exhibits distinct characteristics
compared to its counterpart, SAT. Painless thyroiditis, also known as
silent thyroiditis, is thought to be a subtype of autoimmune thyroid
disease or to a type of destructive thyroiditis (66).

A retrospective-prospective study focusing on patients who
presented with SAT following COVID-19 infection described a
total of 11 patients with COVID-19-associated thyroiditis,
including five patients with painless thyroiditis. In this small
series of patients, a comparison of symptoms allowed the
following findings: symptoms consistent with painless thyroiditis
presented earlier after COVID-19 infection than their comparator,
and their levels of serum CRP and IL-6 were significantly higher
(52). Patients with silent thyroiditis have also been reported to have
a “transient” form of thyrotoxicosis, with high levels of serum
thyroid hormones and low levels of TSH. This condition then
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spontaneously resolves, with the whole syndrome lasting for several
months (66). Thyrotoxicosis is thought to be associated with an
excessive inflammatory state that destroys thyroid follicles, thus
causing the increase of thyroid hormones in the bloodstream, with
elevated ESR (30).

The absence of anterior neck pain is thought to be related to the
presence of lymphopenia associated with COVID-19. Within the
thyroid gland, there is lower lymphocytic infiltration and giant cell
formation, which in turn reduces the tension in the thyroid capsule
and therefore does not cause any pain. These findings were also
shown in the study by Mondal et al. (52), as patients with painless
thyroiditis had low levels of absolute lymphocyte count and a high
neutrophil-to-lymphocyte ratio. This study also found a “significant
correlation” between 1L-6 and free T4, total T4, and total T3, which
could imply a role for proinflammatory cytokines in the
development of painless thyroiditis (52).

The above studies also emphasised the need for increased
awareness due to the “invisible” nature of this type of thyroiditis,
especially in higher-risk patients, so that management can be

delivered in a timely manner.

Nonthyroidal illness syndrome after
COVID-19

NTIS has been extensively reported in patients with COVID-19,
although it is not exclusive to coronavirus infection, as it can occur
during any type of severe illness, including myocardial infarctions,
stroke, as well as during physiological stress and fasting. NTIS is
considered an adaptive response to decrease energy expenditure during
acute illness and, therefore, at least in the early stages of disease, to play
a protective role. However, it has been linked to adverse effects and
poor outcomes by prolonging recovery time, as the typical effect it
exhibits on thyroid homeostasis lowers T3/fT'3, with a consequential
rise in reverse T3, but usually no effect on TSH and T4. The
pathophysiology is complex, involving dysregulation of the HPT axis
at multiple levels, including decreased peripheral conversion of T4 to
T3 and decreased sensitivity of the pituitary TSH responses to
decreased thyroid hormone levels (7, 69). In addition, prolonged
secretion of cortisol following viral infection might be important, as
it is thought to lower the activity of the hypothalamic-pituitary—
adrenal (HPA) axis. The HPA axis can modulate the HPT axis,
whereby acute stress can increase levels of TSH, whereas sustained
stress can lower TSH release (3). Moreover, the role of inflammatory
markers in NTIS has been investigated by numerous studies. Ilera et al.
(70) found that thyroid hormone levels and their ratios (T3, T4, T3/T4,
and fT3/FT4) negatively correlated with inflammatory markers such as
CRP, LHD, fibrinogen and p-dimer. Inflammatory cytokines impairing
the activity of deiodinase could provide a potential explanation (70).
The severity of illness has been associated with the decrease in TSH,
fT4, and fT3 due to the lower secretion levels of TRH. Therefore, the
use of these thyroid levels has been investigated in relation to disease
severity, with studies reporting a prognostic value for free T3. A
number of studies showed that low fI3 levels had a significant
association with disease severity and mortality (19); this was
supported by another study, which showed that deceased patients
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due to COVID-19 had significantly lower T3 and TSH levels than
survivors. The latter study also found that patients with the lowest T3
in their cohort (< 0.77 ng/ml) had higher rates of mechanical
ventilation, intensive care unit admissions, and death when
compared with patients with higher levels of T3 (> 1.00 ng/ml) (50).
Additionally, the study by Baldelli et al. (13) found that hospitalised
patients with COVID-19 had a “statistically significant reduction in fT'3
and TSH” levels when compared to euthyroid controls, and patients
admitted to the ICU had lower fI'3 and TSH levels.

The frequency of COVID-19 patients developing NTIS was
explored in a single-centre retrospective study by Arora et al. (19),
where 58.8% of 102 patients exhibited NTIS. This was further
supported in the retrospective study by Ahn et al. (50), which
reported NTIS as the most common manifestation of thyroid
dysfunction in a relatively small sample size of 119 patients.
These findings highlight the need to monitor thyroid function
and the possible development of NTIS in COVID-19 patients;
enhanced surveillance of thyroid function can offer prognostic
clues (7). In addition, a key recommendation in the review by Lui
etal. (1) was that patients diagnosed with NTIS should be reassessed
after 6 weeks of recovery from COVID-19, highlighting the need for
monitoring, as around 15% of COVID-19 patients go on to develop
thyroid abnormalities, with most cases being identified as NTIS.
This, coupled with the potential prognostic implications of NTIS,
could allow higher-risk patients to receive more timely intervention
and improve their outcomes.

Thyroid dysfunction in long COVID

Usually, patients with COVID-19 recover within up to 12
weeks; however, those who continue exhibiting varying symptoms
after recovery have been termed as experiencing post-COVID-19
syndrome, post-acute COVID-19 syndrome, post-acute sequelae of
SARS-CoV-2, and long COVID. As SARS-CoV-2 can affect the
thyroid during the acute period, it is important to understand the
impact on the thyroid during the post-acute infection period,
associated with the development of chronic disease. Furthermore,
data from reported cases of long COVID suggest that 53% share the
symptom of fatigue, making it the most common symptom of the
syndrome. This nonspecific symptom has led to the investigation of
the relationship between thyroid function and long COVID (3).

A small observational study by Muller et al. (22) followed 75
COVID-19 survivors for 12 months, which included thyroid
function assessment, ultrasound scans, and autoantibody
assessment. They concluded that long-term thyroid consequences
from COVID-19 “seemed unlikely”, as their results found that, at
the end of their study period, all patients had normalised thyroid
function and inflammatory markers, with no increased prevalence
of autoantibodies. The only difference noted was the presence of
focal hypoechoic areas in the thyroid gland, indicative of thyroiditis.
This was seen for up to 1 year post-COVID-19 but was notably
smaller in size when compared to those found during acute
COVID-19 (22).

Conversely, a case-control study focusing on anosmia due to
SARS-CoV-2 found a significant correlation between
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hypothyroidism and the prolongation of smell dysfunction in
COVID-19 patients. It was postulated that this continuation of
anosmia is due to direct virus-induced injury to the thyroid and
olfactory nerve. Thyroid hormones regulate development of nearly
all systems in the body, including the neural maturation of olfactory
receptor neurons. Therefore, impaired thyroid hormone secretion
or action due to SARS-CoV-2 could affect the development of these
neurons, ultimately leading to COVID-19-induced anosmia (56).
There are few studies focusing on potential thyroid dysfunctions
during long COVID, highlighting the need for further research to
understand the incidence and complications of long COVID and
how the thyroid gland is related to this condition. However, the
studies included in this review show an unclear pattern of the long-
term effects of COVID-19 on the thyroid gland.

Conclusion

Thyroid dysfunction is an endocrine complication frequently
identified in the literature describing symptoms of COVID-19.
Following SARS-CoV-2 infection, SAT, NTIS, and new-onset
autoimmune thyroid disorders are the most common thyroid
abnormalities. A number of studies included in this review also
investigated the association between long COVID and thyroid
disease, as well as autoimmune thyroid conditions. With the
increased awareness of COVID-19-associated thyroid abnormalities,
this could lead to improved detection of patient symptoms, especially
those considered to be medically unexplained, such as chronic fatigue,
by linking them to thyroid abnormalities. Furthermore, increasing
evidence will eventually help to prevent complications, particularly in
patients with multiple comorbidities, and reduce the risk of developing
chronic conditions such as permanent hypothyroidism. Therefore,
based on the evidence provided, thyroid function should be
considered in patients displaying relevant clinical features so that
management of these patients can be tailored and comprehensive care
offered in a timely manner.

However, it is important to acknowledge the limitations of our
study. Conflicting results identify the need for additional high-
quality studies with larger, well-characterised patient groups.
Furthermore, the majority of studies were case reports, where
causality cannot be inferred due to the lack of control groups.
However, the increase in case reports has warranted further
research into thyroid dysfunction following COVID-19 infection,
as demonstrated through the retrospective and prospective studies
included. Nevertheless, as our study is a systematic review, it has
inherent strengths, such as transparent and reproducible stages in
our methodology, ensuring a low risk of bias, as results are
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Introduction: This study aimed to assess the impact of inactivated COVID-19
vaccine on Anti-Mdullerian hormone (AMH) levels in Chinese women.

Methods: A retrospective analysis was conducted on women aged 18-45 who
had undergone two AMH tests between March 2020 and September 2021
Participants were grouped based on vaccine doses (two- and three-dose),
time intervals since vaccination, and manufacturers. The difference in AMH
levels and the percentage changes in AMH were measured.

Results: The results revealed no significant differences in AMH levels between the
vaccinated groups (two- and three-dose) and the control group, both in
unadjusted and adjusted analyses. Subgroup analysis showed no statistical
difference in either absolute or percentage changes of AMH levels among
different time-interval groups and manufacturer groups.

Discussion: In conclusion, the number of doses, time interval, and manufacturer
of the inactivated COVID-19 vaccine did not affect AMH levels in
Chinese women.

KEYWORDS

COVID-19 vaccine, COVID-19 inactivated vaccine, anti-Millerian hormone, ovarian
reserve, reproductive health
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1 Introduction

Coronavirus disease 2019 (COVID-19), or the “new
coronavirus pneumonia,” is a respiratory infectious disease that
has been spreading rapidly worldwide since December 2019. The
COVID-19 epidemic is the most severe global public health
outbreak since World War II, and it seriously threatens human
health. As the first country to be hit by the COVID-19 epidemic (1),
China is the best place for the research on the novel coronavirus and
its vaccines. The Chinese government announced the lifting of
epidemic control on December 7, 2022, implying that the focus of
epidemic prevention and control has shifted from controlling the
source of infection and blocking transmission routes to the
direction of protecting susceptible populations, representing a
need for more people to participate in vaccination in the face of a
raging epidemic, resulting in a surge in demand for vaccines. Driven
by policy support and media coverage, the vast majority of Chinese
residents choose to be vaccinated against the COVID-19 epidemic.
However, young people who are planning to become pregnant are
hesitant to receive vaccination because of the concern about the
safety of the vaccination. A survey in 2023 showed that the COVID-
19 vaccination rate of men and women preparing for pregnancy was
significantly lower than the average vaccination rate in China (2).
On the other hand, some people who have been vaccinated also
worry about the harm to their physical health. Among these
concerns, apprehensions regarding reproductive health are
notably prevalent.

First, some evidence supports that coronaviruses may have an
impact on human reproductive health. COVID-19 is caused by
SARS-CoV-2 pathogen infection (3-6), a single positive-stranded
RNA coronavirus with regularly arranged spines on the envelope.
The virus binds to angiotensin-converting enzyme 2 (ACE2),
mediated by the viral surface spine glycoprotein (S protein), to
enter cells (6, 7). ACE2 has been detected in human tissues of
different organs, including the heart, kidney, intestine, and blood
vessels. ACE2 has also been detected in organs related to
reproduction, such as ovaries, uterus, vagina, placenta, and testes
(8, 9). Based on the considerable regulatory role of ACE2 on
reproduction (10, 11), SARS-CoV-2 may affect female
reproductive function by affecting ACE2. Studies have shown that
SARS-CoV-2 affects ovarian reserve in women. A study by Ding
et al. in March 2021 showed that women infected with COVID-19
had lower Anti-Miillerian hormone (AMH) levels, higher FSH
levels, and higher levels of testosterone and prolactin than healthy
women (12).

Secondly, a vaccine is a biological agent derived from a virus. If
a virus exerts a specific effect on the body, it is plausible that the
vaccine may elicit similar effects. Since the outbreak of COVID-19,
many types of vaccines, such as mRNA vaccines, DNA vaccines,
inactivated vaccines, recombinant protein subunit vaccines, virus
vector vaccines, and virus-like particle vaccines, have been used.
Studies have shown that other new crown vaccines, such as mRNA
vaccines, impact women’s ovarian reserve (13-15). Inactivated
vaccines, widely administered in China, are known to retain the
intact structure of the virus, so inactivated vaccines may be more
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likely to cause damage to reproductive health than other types of
vaccines. However, current research on the impact of inactivated
vaccines on female reproductive health in China is rather limited.

Therefore, the purpose of this study was to investigate whether
the COVID-19 vaccination of inactivated vaccines in China would
affect AMH in Chinese women, and thus indirectly assess whether it
would affect ovarian function in Chinese women.

2 Methods
2.1 Subjects

This study was a retrospective study of patients admitted to a
provincial tertiary hospital in China from March 2020 to September
2021. Informed consent was obtained from all subjects. Inclusion
criteria are as follows: female, aged between 18 and 45; received two
or more AMH tests between March 2020 and September 2022; the
first AMH was within the normal range (16). The exclusion criteria
were as follows: postmenopausal women, those with polycystic
ovarian syndrome, those who were pregnant, and those who had
ovarian surgery during this period. The cases with incomplete
information were excluded in our analysis.The cases with
incomplete information were excluded in our analysis. This study
was approved by the Ethics Committee of Jiangxi Provincial
Maternal and Child Health Hospital (approval number: EC-KT-
202309). We certify that the study was performed in accordance
with the 1964 declaration of HELSINKI and later amendments.

2.2 Vaccination strategy

The vaccination strategy in China is as follows: voluntary
principle, available to people > 18 years, with two doses routinely
administered by intramuscular injection into the deltoid muscle of
the upper arm, and the interval between the two doses should be > 3
weeks but < 8 weeks. The third dose (booster) should not be given
until 6 months after the second dose. If the vaccination is not
completed in accordance with the procedure, making up the
vaccination as soon as possible is recommended. Patients who
received Sinopharm vaccine or Sinovac vaccine were included in
this study, and some patients who received both vaccines were also
included in this study. Vaccination information from official
immunization records was collected in a personal mobile
application (app).

2.3 Research grouping criteria

In this study, the subjects were divided into three groups in
accordance with the number of doses received and whether they
received the vaccine: a two-dose group (two doses received), a three-
dose group (three doses received), and control group (no
vaccination due to voluntary principle). From March 2020 to
September 2022, women who received two or 3 doses of the
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vaccine and were tested for AMH before the first dose and after the
last dose were included in the two- or three-dose vaccine group.
During the same period, women who underwent two AMH tests at
the research hospital and had never been vaccinated were included
in the control group. In current studies focusing on the effects of
inactivated vaccines on AMH, participants who received two doses
of the vaccine were included as subjects (17). In addition to
investigating the effects of two doses of vaccination, this study
also incorporated individuals who received booster shots (three-
dose groups). Due to the novelty of designing two vaccine regimens
and the uncertainty surrounding the effect of vaccination on AMH
levels, the sample size could not be predetermined.

In the end, 526, 79, and 389 women were included in the two-
dose, three-dose, and control groups, respectively (Figure 1).

2.4 Study indicators

AMH was measured by Elecsys®AMH Plus immunoassay in
this provincial tertiary hospital in China. After taking venous blood
at the blood sampling window, the serum was obtained by
centrifugation by experienced laboratory staff, and the serum was
obtained by Cobas e 801 analyzer 127 (Roche Diagnostics,
Switzerland) for testing.The study metrics were as follows: the
difference in AMH (last AMH - first AMH) and the percentage
change in AMH [(last AMH - first AMH)/first AMH)].

2.5 Statistical methods

SAS 9.4 software was applied for statistical analysis. Count data were
described by frequencies or percentages, and the chi-square test was

Assessed for eligibility(N=2829)

]

Meet the inclusion
criteria(N=1118)

Meet the exclusion
criteria:(N=124)

The final
inclusion(N=994)

two-dose grou three-dose grou
Control group(N:389)‘ ‘ (n=5296) P ‘ ‘ (n=79€)1 P

Analyzed

FIGURE 1

Flow chart showing the design, inclusion and exclusion criteria of
patients in the study. The Inclusion criteria: female, aged between
18 and 45; received two or more AMH tests between March 2020
and September 2022; the first AMH was within the normal range.
The exclusion criteria: postmenopausal women, those with
polycystic ovarian syndrome, those who were pregnant, and those
who had ovarian surgery during this period.
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applied for comparisons. The measurement data were tested for
normality by the Shapiro-Wilk test. The data conforming to a normal
distribution were compared by t-test and expressed as mean + standard
deviation (x * s), whereas those not conforming to a normal distribution
were expressed as median P50 (25th percentile, P25; 75th percentile,
P75) and compared by Kruskal-Wallis rank sum test. The AMH change
values were used in the Wilcoxon signed-rank test. A generalized linear
model was applied for multivariate analysis of AMH change values. p <
0.05 was considered a statistically significant difference.

3 Results

3.1 The baseline characteristics of the
study participants

Table 1 shows the baseline characteristics of the study participants.
The data were presented in the form of median after normality test.
Among the 994 women included in the study, significant differences
were observed in terms of median age, first AMH level, and the time
interval between AMH (days) in the two-dose (n = 526) and three-dose
(n=79) groups compared with the control group (n = 389). Due to the
differences in the underlying information, multifactorial analysis was
applied to adjust the data for the following statistical analysis to
increase the credibility of the study results.

3.2 Difference and percentage change in
AMH among the three groups

As illustrated in Table 2, compared with the control group, the
two-dose (—0.14 vs. —0.07, P = 0.332; —8% vs. —=5%, P = 0.322) and
three-dose groups (—0.17 vs. —=0.07, P = 0.303; —14% vs. -5%, P =
0.073) showed non-statistically significant difference in the
difference and percentage change in AMH, respectively.

Table 3 also shows no significant difference in the difference in
AMH between the two/three-dose groups and the control group
after adjusting for the first AMH, age, and time interval between
AMH examinations by using a generalized linear model for the
analysis (P = 0.630; P = 0.416). In addition, the percentage change in
AMH (P = 0.515; P = 0.651) was not statistically significant.

3.3 Effect of time interval on the difference
and percentage change in AMH

Table 4a and Table 4b shows the influence of the time interval
from the last vaccine injection to the last AMH examination over
the difference in AMH and the percentage change in AMH. All
patients in the two-dose group were grouped by the time interval
from the last vaccine injection to the last AMH examination
received, and they were divided into four groups of up to 0-60
days (n = 135), 61-120days (n = 154), 121-180 days (n = 146), and
more than 180 days (n = 91). The median age of patients and the
first-time AMH median values were not significantly different
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TABLE 1 Demographic characteristics of the study population.

Three-dose

Control group

10.3389/fendo.2025.1403722

Variables (n = 79) (n = 389) P-value 1 P-value 2*
Age (years) 32.67 (28.78,37.3) 33.76 (29.04,39.44) 31.33 (28.1,35.18) 0.002 0.002
Classification 0.023 0.009

<30 years (%) 169 (32.1) 21 (26.6) 149 (38.3)

30-34 years (%) 176 (33.5) 24 (30.4) 138 (35.5)

>35 years (%) 181 (34.4) 34 (43) 102 (26.2)
First AMH (ng/mL) 244 (1.12,4.21) 1.89 (0.82,3.71) 2.63 (1.35,4.8) 0.043 0.001
Last AMH (ng/mL) 2.16 (0.97,4.09) 1.32 (0.66,3.03) 2.52 (1.14,4.58) 0.020 0.000
Time interval between AMH 335 (238,432) 429 (355,556) 221 (132,329) <001 <001
examinations (days)
Classification <.001 <.001

Within 6 months 70 (13.3) 0 (0) 147 (37.8)

7 to 12 months 239 (45.4) 22 (27.9) 175 (45)

13 to 18 months 183 (34.8) 36 (45.6) 58 (14.9)

More than 18 months 34 (6.5) 21 (26.6) 9(2.3)

*Two-dose vs. Control group; # Three-dose vs. Control group. Shapiro-Wilk test and Kruskal-Wallis rank sum test were used for statistical analysis.

among the four groups. The results of the statistical analysis found
no significant change in the difference and percentage change in
AMH among the four groups. By using data within 0-60 days as a
reference, the difference in AMH adjusted 3 values (95% CI) of the
other groups were —0.01 (-0.26, 0.24), -0.16 (-0.42, 0.09), and
-0.25 (-0.55, 0.06), respectively, and the adjusted [ values (95% CI)
for the percentage change in AMH were 0.1 (-0.13, 0.32), —0.03
(-0.26, 0.2), and -0.02 (-0.29, 0.25), there was no
statistical difference.

3.4 Effect of vaccine manufacturers on the
difference in AMH and the percentage
change in AMH

Table 5a and Table 5b shows the effect of vaccine manufacturers
on AMH. In this study, the vaccine manufacturers in the two-dose
group were analyzed, which included China National
Pharmaceutical Group Co. Ltd. (Sinopharm vaccine) and Sinovac
Life Sciences Co., Ltd. (Sinovac vaccine). The participants were
further divided in accordance with the vaccine manufacturer:
Sinopharm group (Sinopharm Vaccine only, n = 129), Sinovac
group (Sinovac vaccine only, n = 153), and a mixed group
(inoculated against Sinopharm and Sinovac vaccines, n = 244).
The results found no significant difference in the AMH difference
and the percentage change in AMH among these three groups. As
shown in Table 5b, with Sinopharm as the reference, the adjusted B
values (95% CI) for the difference in AMH were —0.05 (-0.3, 0.2)
and 0.01 (-0.21, 0.24), and those for the percentage change in AMH
were —0.11 (-0.34, 0.11) and -0.07(-0.27, 0.14), there was no
statistical difference.
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4 Discussion

Indicators reflecting ovarian reserve include inhibin B, estradiol
(E2), FSH, etc. However, these indicators are affected by the
menstrual cycle (18). AMH is produced by stratum granulosum
cells of small ovarian follicles and is not affected by the dominant
follicle. Therefore, the circulating level of AMH is unaffected by the
menstrual cycle and can be used to measure ovarian follicular reserve.
So, they are now considered the preferred measure for ovarian reserve
assessment (19-22). As AMH testing is not typically included in
routine gynecological examinations, it is generally conducted in most
hospitals only when female patients present with symptoms
indicative of abnormal ovarian function, such as insomnia,
hyperhidrosis, or infertility related to ovulation. Consequently, in
numerous retrospective studies, establishing a control group with
normal AMH levels poses a significant challenge. However, this
research relies on a sizeable Grade 3A provincial obstetrics and
gynecology hospital, where the reproductive center is the main
specialty. In order to screen for the causes of infertility, women
visiting the reproductive center at this hospital undergo routine AMH

1 For Original Research articles, please note that the Material and Methods
section can be placed in any of the following ways: before Results, before

Discussion or after Discussion.
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TABLE 2 Comparison of the difference in AMH and the percentage change in AMH among the 3 groups.

Two-dose group

Three-dose group

Control group

Outcome Measures P-value 1* P-value 2#
(n = 526) (n=79) (n = 389)
The difference in AMH (ng/mL) ~0.14 (~0.64, 0.33) 017 ~0.07 0.332 0.303
(-0.58, 0.17) (~0.66, 0.51)
The percentage change in AMH (%) = -8 (=30, 18) -l - 0.322 0.073
: 8 8 ’ ’ (-37,12) (28, 25) : -

*two-dose group versus control group; “three-dose group versus control group. The difference in AMH:last AMH - first AMH; The percentage change in AMH:(last AMH - first AMH)/first

AMH. Shapiro-Wilk test and Wilcoxon signed-rank test were used for statistical analysis.

testing, resulting in a substantial collection of samples with normal
AMH levels. This includes women with other fertility issues, such as
uterine adhesions and blocked fallopian tubes, who also seek
treatment at the reproductive center. Consequently, this pool of
patients provides the source of the research samples included in
this study. Therefore, in this study, AMH was chosen as the indicator
of ovarian reserve. Retrospective analysis from different angles was
applied to investigate the effect of the inactivated COVID-19 vaccine
on AMH levels among women. The results showed that the
inactivated vaccine in China did not affect the AMH levels in women.

As a member of the TGF-f superfamily (23-25), AMH follows
the classical SMAD signal transduction pathway to transmit its
biological information. In the case of COVID-19 virus infection, the

TABLE 3 Generalized linear models of AMH change.

lungs and other affected organs trigger an inflammatory response,
and in this inflammatory microenvironment, the expression of
transforming growth factor B (TGF-P) is significantly increased.
In theory, when the TGF-B signaling pathway is overactive, the
activity or effective concentration of the Smad protein may
encounter some threshold or saturation state, which prevents the
Smad protein from receiving more upstream signal input or
efficiently transmitting the signal further to the nucleus. If this
hypothesis is true, then during COVID-19 infection, AMH may be
affected by a receptor shared with the inflammatory mediator TGF-
B, and interestingly, studies have shown that AMH does change
significantly during COVID-19 infection (26, 27). In addition, it is
worth noting that the severity of COVID-19 disease is generally

Parameter B (95% Cl) SE Wald Chi-square P-value
The difference in AMH (ng/mL) between two-dose group and control group

Two-dose group versus control group -0.04 (0.2, 0.12) 0.0826 0.231 0.630
First AMH -0.13 (-0.16, —0.09) 0.0179 48.632 < 0.001
Age (years) —0.04 (-0.06, —0.03) 0.0077 27.024 < 0.001
Time interval between AMH examinations (days) 0 (0, 0) 0.0003 0.391 0.532
The percentage change in AMH (%) between two-dose group and control group

Two-dose group versus control group -9 (-34,17) 0.1311 0.424 0.515
First AMH —-0.09 (-0.14, —0.03) 0.0283 9.25 0.002
Age (years) -0.01 (-0.03, 0.02) 0.0121 0.346 0.556
Time interval between AMH examinations (days) 0 (0, 0) 0.0005 3.126 0.077
The difference in AMH (ng/mL) between three-dose group and control group

Three-dose group versus control group —0.14 (-0.49, 0.2) 0.1754 0.66 0.416
First AMH —-0.13 (-0.19, —0.08) 0.0263 25.878 0.000
Age (years) -0.05 (-0.07, —0.03) 0.0113 19.902 0.000
Time interval between AMH examinations (days) 0 (0, 0) 0.0004 0 0.991
The percentage change in AMH (%) between three-dose group and control group

Three-dose group versus control group -16 (-83, 52) 0.3434 0.205 0.651
First AMH —-0.12 (-0.22, —0.02) 0.0515 5.094 0.024
Age (years) -0.01 (-0.05, 0.04) 0.0222 0.161 0.688
Time interval between AMH examinations (days) 0 (0, 0) 0.0008 1.167 0.280

Generalized linear model was used for statistical analysis.
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TABLE 4A Statistical characteristics of different AMH time intervals in the 2-dose group.

61-120 days

121-180 days
(n = 146)

32.9 (29.3, 37.43)

>181 days
(n =91)

31.53 (27.72, 35.88) 0.143

Variables P-value

(n = 154)

32.74 (29.3, 38.69)

Age (years) 32.68 (28.32, 36.52)

First AMH (ng/mL) 2.58 (1.32, 4.28) 2.13 (0.93, 3.86) 2.62 (0.99, 4.55) 2.49 (1.09, 4.18) 0.465

Last AMH (ng/mL) 2.26 (1.28, 4.12) 1.86 (0.91, 3.89) 2.27 (0.83, 4.23) 1.94 (0.86, 4.03) 0.662

Time interval between AMH examinations (days) 276 (166, 369) 324 (212, 409) 348.5 (257, 451) 406 (314, 507) < 0.001

*adjusted factors: Age, First AMH, Time interval between AMH examinations. Shapiro-Wilk test and Kruskal-Wallis rank sum test were used for statistical analysis.

TABLE 4B Effect of the time interval on the difference in AMH and the percentage change in AMH in the two-dose group.

0-60 days (n

61-120 days (n
= 154)

121-180 days (n
= 146)

>181 days (n

Parameters Z91)

= 135)

The difference in AMH

—0.03 (-0.63, 0.44
(ng/mL) ( )

—0.12 (-0.61, 0.34) -0.21 (-0.63, 0.23) -0.1 (-0.75, 0.39) 0.403

Crude B (95% CI)

Adjust B (95% CI)*

0.01 (-0.25, 0.26)

-0.01 (-0.26, 0.24)

-0.17 (-0.43, 0.09)

-0.16 (-0.42, 0.09)

-0.22 (-0.51, 0.07)

—0.25 (-0.55, 0.06)

The percentage change in
AMH (%)

-7 (=30, 20)

-9 (=30, 12)

-10 (=32, 15) 0.202

Crude B (95% CI)

0.08 (-0.14, 0.31)

-0.09 (-0.31, 0.14)

-0.1 (-0.36, 0.16)

Adjust B (95% CI)*

0.1 (-0.13, 0.32)

~0.03 (~0.26, 0.2)

—0.02 (~0.29, 0.25)

The difference in AMH:last AMH - first AMH; The percentage change in AMH:(last AMH - first AMH)/first AMH. Rank sum test and regression analysis were used for statistical analysis.

thought to be related to sex (28); After COVID-19 infection, women
produce fewer inflammatory factors than men (28). And mortality
rates are observed to be higher in males compared to females, which
suggests that premenopausal status may confer some protection
against COVID-19 infection (29), This protective effect may be
attributed to AMH competitively occupying a greater number of
Smad receptors, and consequently, AMH may be less able to exert
its effects because of this competitive binding.This may be explained
from the perspective of alleviating the inflammatory response,
which in turn demonstrates the association of AMH with
COVID-19 infection. However, there is no conclusive evidence to
confirm this saturation property of Smad protein, and more
rigorous experimental studies are needed to verify this hypothesis.

Whether vaccines have the same effect on AMH levels as viruses
is equally essential. This study used univariate and multivariate
analyses to investigate whether the vaccine affected AMH. First,
compared with the control group, the two- and three-dose groups
showed no statistically significant difference in the difference and
percentage change in AMH. Next, after adjusting for the first AMH,
age, and time interval between AMH examinations by using a
generalized linear model, no statistically significant difference in the
difference and percentage change in AMH was observed among the
three groups. These results suggested that different inactivated
vaccine doses did not affect AMH.

A prospective study has been conducted to determine whether
mRNA vaccines affect AMH. Statistical analysis of AMH levels in
subjects before and after the first vaccination and three months after

Frontiers in Endocrinology

that study showed that AMH levels did not change significantly
before and after mRNA vaccination (12). In particular, the authors
mentioned that AMH changes may occur after three months or
longer and require further long-term follow-up. Therefore, this study
was also designed to investigate the effect of time interval after
vaccination on AMH. In the two-dThe author(s) declare that fose
group with the largest sample size, the patients were divided into four
groups (0-60 days, 61-120 days, 121-180 days, and more than 180
days) according to the time interval from the last vaccine dose
injection to the last AMH examination. The results of multivariate
analysis showed no significant difference in AMH difference and
percentage change of AMH in each group when the data within 0-60
days were used as a reference. This suggests that AMH levels did not
change significantly after vaccination, at least during the time interval
of this study. As the novel coronavirus is a recently emerged virus, it is
currently unfeasible to collect samples at longer intervals to study the
effect of time intervals post-vaccination on AMH levels. Our findings
indicate that AMH levels remained relatively stable beyond a six-
month period following vaccination. Our future research will track
AMH fluctuations over a more extended duration.

The inactivated vaccines commonly administered to the
Chinese population are those manufactured by Sinopharm and
Kexing. The vaccination authorities do not have strict regulations
on whether the manufacturer of the second dose of vaccine should
be the same as the first dose, resulting in some of the population
receiving vaccines from different manufacturers. Therefore,
information on vaccine manufacturers was collected, and
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TABLE 5A Statistical characteristics of different vaccine manufacturers in the 2-dose group. Effect of vaccine dose manufacturer on the difference in
AMH and the percentage change in AMH in the two-dose group.

10.3389/fendo.2025.1403722

. Sinopharm (n Sinovac (n Sinopharm + Sinovac (n
Variables
= 129) = 153) = 244)

Age (years) 32.36 (28.89,36.92) 33 (29.33, 37.33) 32.42 (285, 37.17) 0.472
First AMH (ng/mL) 272 (1.1, 4.21) 2.39 (1.18, 3.45) 2.39 (1.04, 4.75) 0.771
Last AMH (ng/mL) 2.52 (0.88, 4.03) 1.95 (1.05, 3.57) 2.14 (0.92, 4.29) 0.697
Time i AMH

1me'1ntetrval between 342 (238, 426) 333 (229, 436) 335 (239.5, 435.5) 0.935
examinations (days)

*adjusted factors: Age, First AMH, Time interval between AMH examinations. Shapiro-Wilk test and Kruskal-Wallis rank sum test were used for statistical analysis.

TABLE 5B Effect of vaccine dose manufacturer on the difference in AMH and the percentage change in AMH in the two-dose group(before and
after adjustment).

Parameters Sinopharm (n = 129) Sinovac (n = 153) Sinopharm + Sinovac (n = 244) P-value 1
The difference in AMH (ng/mL) ~0.16 (~0.55, 0.39) ~0.1 (-0.61, 0.24) ~0.15 (~0.74, 0.36) 0.906

Crude B (95% CI) - ~0.06 (~0.32,0.2) ~0.01 (~0.24, 0.22)

Adjust B (95% CI) - ~0.05 (~0.3, 0.2) 0.01 (~0.21, 0.24)

The percentage change in -8 (-27, 23) -7 (~29, 15) -9 (-32, 18) 0.798

AMH (%)
Crude B (95% CI)

Adjust B (95% CI)

~0.11 (~0.34, 0.11)

~0.11 (~0.34, 0.11)

—0.08 (-0.28, 0.13)

~0.07 (~0.27, 0.14)

The difference in AMH:last AMH - first AMH; The percentage change in AMH:(last AMH - first AMH)/first AMH. Rank sum test, regression analysis, Shapiro-Wilk test and Kruskal-Wallis

rank sum test were used for statistical analysis.

subgroup analysis was performed. The results suggested that the
vaccine manufacturers did not affect the AMH level.

In conclusion, the inactivated COVID-19 vaccine, including the
different vaccine doses, the time interval after vaccination, and the
different vaccine manufacturers, did not affect AMH. This is
consistent with the results of previous studies on the effects of
other types of COVID-19 vaccines on human reproduction and
female fertility. In 2022, Mohr-Sasson et al. found that ovarian
reserve, as assessed by serum AMH levels, was not altered 3
months after SARS-CoV-2 mRNA vaccination (12). In 2023,
Another prospective study found that although menstruation in
adolescent girls may be affected by the COVID-19 mRNA vaccine,
ovarian reserve did not appear to be impaired, as estimated by AMH
(13).In a prospective cross-sectional study in Turkey, vaccination
with COVID-19 mRNA was found to have no effect on AMH levels
(30). The present study was a retrospective study to examine whether
inactivated vaccines produce changes in female AMH levels in
Chinese inactivated vaccine recipients. In some existing
prospective analyses, due to the effect of ethics and policies actively
promoting vaccination, a blank control group without vaccination
was not set up (12). In the present study, a large number of samples
that did not receive vaccine due to social or health factors were
collected for blank control analysis, which significantly increased the
credibility of the results. In addition, for the first time, this study
provides a separate analysis of populations who were offered
inactivated vaccines of different doses and different manufacturers.

Frontiers in Endocrinology

As a result, our study provides richer and more credible data on the
effects of vaccines on AMH level in women.

Although AMH is widely used as a representative marker of
ovarian function, studies on AMH alone to reflect the impact of
COVID-19 vaccines on female reproductive capacity are far from
sufficient. In fact, researchers have conducted different studies to
understand the impact of various COVID-19 vaccines on female
reproduction. First of all, menstruation is an essential physiological
phenomenon in women of reproductive age, and the results of a study
from the United States on the relationship between menstrual cycle
length and COVID-19 vaccination show that the change in menstrual
cycle after vaccination is less than 1 day (31). Another study examining
the relationship between multiple types of COVID-19 vaccines
worldwide and menstrual cycle length further found that multiple
types of COVID-19 vaccination (such as mRNA vaccine, inactivated
vaccine, etc.) are not associated with menstrual cycle length (32).
Second, pregnancy is the most direct manifestation of average female
reproductive capacity. An Internet-based pre-pregnancy cohort study
in the United States found that COVID-19 vaccination had no
significant correlation with the pregnancy rate of either party, and
COVID-19 vaccination did not harm the fertility of either party (33).
Researchers are also concerned about whether the vaccination of the
COVID-19 vaccine will have an impact on assisted reproduction. A
study examining women undergoing in vitro fertilization revealed that
administration of China’s novel coronavirus inactivated vaccine did not
impact key parameters in the in vitro fertilization process, including the

frontiersin.org


https://doi.org/10.3389/fendo.2025.1403722
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Bao et al.

number of oocytes retrieved, the implantation rate, and the sustained
pregnancy rate (34). These studies, together with this and other studies
on the effects of COVID-19 vaccines on AMH, provide evidence that
vaccination does not have an impact on women’s reproductive health.

By analyzing a substantial amount of data, this study
conclusively demonstrates that there is no basis for concern
regarding reproductive health safety following administration of
China’s inactivated COVID-19 vaccine. The study’s findings hold
significant clinical relevance. Firstly, it dispels prevalent societal
apprehensions and misconceptions about the safety of COVID-19
vaccines, thereby alleviating the need for women planning
pregnancies to postpone their family planning due to vaccination
concerns. Secondly, it offers a valuable perspective for women
experiencing long-term infertility, suggesting that their infertility
may stem from factors unrelated to vaccination.

However, this study has some limitations. Compared with those
prospective studies, the age distribution of the samples in each
group, the time interval between vaccinations, and the time interval
between AMH examinations could not be strictly controlled. In
particular, AMH is greatly affected by time factors, and AMH was
measured over a long time span in this study, which may bring
some errors to the results of the study. This study might benefit
from additional sensitivity analyses to account for potential
confounding variables or different age groups. So, a multicenter
study with a larger sample size is reccommended. In addition, a study
by Rasa Khodavirdilou in 2022 found that AMH fluctuates
significantly with the change in the menstrual cycle and that
AMH at the stage of ovulation is recommended as a research
indicator in clinical research on AMH (35), which may bring
particular information bias to the results of this study.

5 Conclusion

This study demonstrated that the COVID-19 inactivated
vaccine did not affect AMH levels in Chinese women from the
number of doses, the manufacturer and the time interval after
vaccination. The findings of this study present compelling clinical
proof in support of the safety of COVID-19 vaccination, with
particular emphasis on the reproductive health safety of Chinese
women. These findings effectively address the concerns that
vaccines might adversely affect AMH levels. Consequently,
healthcare professionals can confidently recommend the COVID-
19 vaccine to female patients without hesitation regarding its
potential negative impact on fertility. This not only boosts public
trust in vaccination and increases vaccination rates but also serves
as a crucial measure to safeguard public health and promote
women’s health and well-being.
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