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Tomato disease object detection
method combining prior
knowledge attention mechanism
and multiscale features

Jun Liu* and Xuewei Wang*

Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science
and Technology, Weifang, China
To address the challenges of insufficient accuracy in detecting tomato disease

object detection caused by dense target distributions, large-scale variations, and

poor feature information of small objects in complex backgrounds, this study

proposes the tomato disease object detection method that integrates prior

knowledge attention mechanism and multi-scale features (PKAMMF). Firstly,

the visual features of tomato disease images are fused with prior knowledge

through the prior knowledge attention mechanism to obtain enhanced visual

features corresponding to tomato diseases. Secondly, a new feature fusion layer

is constructed in the Neck section to reduce feature loss. Furthermore, a

specialized prediction layer specifically designed to improve the model’s ability

to detect small targets is incorporated. Finally, a new loss function known as A-

SIOU (Adaptive Structured IoU) is employed to optimize the performance of the

model in terms of bounding box regression. The experimental results on the self-

built tomato disease dataset demonstrate the effectiveness of the proposed

approach, and it achieves a mean average precision (mAP) of 91.96%, which is a

3.86% improvement compared to baseline methods. The results show significant

improvements in the detection performance of multi-scale tomato

disease objects.

KEYWORDS

complex background, tomato diseases, prior knowledge, attention mechanism, multi-
scale features, object detection
1 Introduction

Due to the ongoing expansion of tomato cultivation areas and limited arable land, a

growing contradiction has emerged between the two. As a result, consecutive cropping

of tomatoes has become prevalent, resulting in an increase in the variety and complexity of

tomato diseases. According to relevant studies, there are currently more than thirty types of

fungal diseases alone affecting tomatoes worldwide (Widjaja et al., 2022). In China, there

are several prevalent and influential tomato diseases that significantly impact tomato

cultivation. These include early blight, late blight, bacterial spot, gray leaf spot, gray mold,
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leaf mold, yellow leaf curl virus, mosaic virus, canker, and

anthracnose (Liu and Wang, 2020).

Tomato diseases have become a prominent issue in China,

leading to a reduction in yield of approximately 10%. In areas

severely impacted by these diseases, complete crop failure has been

observed (Thangaraj et al., 2022). Tomato diseases not only result in

a reduction in tomato yield but also pose risks to storage and

transportation due to the contamination of infected fruits. As a

result, the efficient diagnosis and control of tomato diseases have

emerged as critical concerns in tomato production.

During the early stages of tomato diseases, farmers often neglect

to assess and manage these diseases due to their unclear symptoms.

This oversight frequently results in missing the optimal period for

disease prevention and control. As the tomato diseases progress and

become severe, the application of a large amount of fungicides

proves to be ineffective. Another group of farmers faces challenges

in assessing whether their tomatoes are infected and lacks the ability

to distinguish the severity of the diseases. Consequently, they resort

to extensively using fungicides for disease prevention and control.

Unfortunately, prolonged implementation of such practices leads to

the excessive use of fungicides, posing risks to environmental safety

and human health (Moussafir et al., 2022). Therefore, there is an

increasing demand for timely and effective identification, detection,

and precise application of treatments for tomato diseases, making it

a prominent research topic in recent years.

Through the long-term collaborative efforts of agricultural and

plant protection scholars, notable advancements have been made in

the domain of tomato disease control and prevention in China.

Commonly employed methods include empirical analysis based on

observable symptoms and physicochemical analysis. However,

when it comes to large-scale detection, the limited number of

experts hinders their ability to provide real-time monitoring of

tomato diseases across the entire production line. Additionally,

expert judgments may be swayed by various influential elements,

including weather conditions and theoretical knowledge, making it

challenging to timely and accurately assess the occurrence of tomato

diseases in actual production. Moreover, the physicochemical

analysis of tomato diseases requires a significant number of

specialized technicians, is time-consuming, and poses the risk of

secondary transmission of diseases due to human activities.

Consequently, there is an urgent need to explore and develop

rapid, accurate, non-destructive, and environmentally-friendly

methods for detecting tomato diseases, which has become a key

research focus.

The development of modern computer technology has led to

increasingly refined applications of new artificial intelligence

information in agriculture. Over the course of more than 30 years

of progress in artificial intelligence, intelligent diagnosis has been

implemented in various aspects of crop cultivation management,

plant protection, crop breeding, and agricultural planting decisions

(Misra et al., 2020). These advancements have greatly enhanced the

efficiency and accuracy of agricultural practices. Additionally, the

integration of artificial intelligence and image recognition enables

rapid, accurate, and non-destructive identification and diagnosis of

diseases. Image detection primarily relies on cameras and other

devices to capture information on crop diseases, thereby reducing
Frontiers in Plant Science 025
the need for human observation (Mohammad-Razdari et al., 2022).

By leveraging digital image processing, healthy and diseased crops

can be identified and classified accurately.

However, there is still significant room for improvement in the

actual tomato disease detection process, as the current detection

accuracy and algorithm processing speed do not meet the

requirements of real-world farming scenarios (David et al., 2021)

(Karthik et al., 2020). Several challenges contribute to this

limitation. Firstly, there is an imbalance in the number of samples

available for different tomato diseases (Abbas et al., 2021). This

scarcity of samples makes it difficult to obtain an adequate

representation of various diseases, which in turn hampers model

training and severely restricts the learning capacity of deep learning

models. Secondly, tomato disease detection possesses unique

characteristics. The natural background of tomato diseases is

complex and diverse, and different types of diseases exhibit

distinct characteristics (Gonzalez-Huitron et al., 2021). Even with

a sufficient number of tomato disease samples, relying solely on

visual features makes accurate identification challenging (Huang

et al., 2023). In contrast, humans possess the ability to quickly learn

and assimilate new knowledge based on their accumulated

experiences, which is referred to as prior knowledge. This

suggests that incorporating prior knowledge of tomato diseases

into tomato disease detection is essential to enhance learning

efficiency (Diligenti et al., 2017). Therefore, it is crucial to

integrate deep learning models with prior knowledge in the field

of tomato disease detection in order to overcome these challenges.

Applying existing deep learning models directly to tomato

disease detection tasks makes it challenging to accurately

differentiate the distinctive features of different diseases. This

limitation often leads to a significant number of misclassifications

or omissions. Consequently, the integration of deep learning

models with prior knowledge and the improvement of tomato

disease detection accuracy through a collaborative “data model

knowledge” approach have become common challenges faced by

both the agricultural and academic communities. To address the

lack of explicit expression of objective prior knowledge in deep

learning models and the imbalanced distribution of disease samples,

this research aims to combine deep learning models with disease

prior knowledge. The study focuses on tomato diseases occurring in

complex backgrounds, considering the complexity of tomato

disease data and utilizing prior knowledge. As a result, a tomato

disease object detection method that integrates a prior knowledge

attention mechanism and multi-scale features is proposed.
2 Related work

2.1 Object detection

Object detection technology encompasses multi-object

classification and localization as its primary tasks. It is not only

responsible for determining whether the detection area contains

target objects but also for marking these targets with bounding

boxes. Over the past few years, the remarkable and swift progress in

the field of computer technology has been noteworthy, coupled with
frontiersin.org
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advancements in convolutional neural networks, has significantly

propelled object detection technology forward. As a result, it has

found extensive applications in diverse fields including traffic

monitoring and tracking, video surveillance and security alert

systems, drone scene analysis, and robotic vision (Zou et al., 2023).

Object detection technology can be categorized into traditional

approaches and those based on deep learning. Traditional

approaches are founded upon the dependence of manual feature

extraction and conventional classifiers for object classification.

However, they are plagued by problems like weak feature

representation, suboptimal accuracy and inadequate real-time

performance. In contrast, the rapid growth of big data and

computing hardware has led to the widespread adoption and

acceptance of deep learning in the field of object detection. It

excels in feature extraction, which brings notable benefits such as

enhanced detection accuracy and accelerated processing speed. As a

result, it is gradually emerging as the dominant technology in the

field of computer vision (Zhao et al., 2019). This technology has

shown great potential in various applications, including tomato

disease detection, where accurate and efficient identification of

diseases is crucial for effective disease management in agriculture.
2.2 Plant disease object detection method
in laboratory environment

Zhang et al. (2020) developed an enhanced iteration of the

Faster-RCNN algorithm, specifically tailored for the identification

of healthy tomato leaves and the detection of four different diseases.

Instead of using VGG16, they utilized ResNet101 as the feature

extractor. The experimental findings substantiated that the

enhanced detection approach yielded a 2.71% increase in

accuracy, while also providing faster detection speed. Wang et al.

(2021) conducted experiments using the PlantVillage dataset and

found that the DBA_SSD algorithm outperformed other object

detection algorithms. However, It is important to highlight that the

images employed in these studies was primarily captured in

controlled laboratory environments. In such environments, the

samples benefitted from sufficient lighting, simple and uniform

backgrounds, and carefully controlled shooting angles. Moreover,

agricultural experts screened and annotated the samples, resulting

in more distinct disease features. In contrast, images collected in

natural environments are significantly more complex. Various

uncontrollable factors such as environmental location, weather

conditions, and shooting angles pose challenges, including uneven

lighting, shadow occlusion, overlapping leaves, and complex

backgrounds (Liu and Wang, 2021). Consequently, object

detection models trained solely under laboratory conditions are

inadequate for real-world natural environments and fail to fully

meet the production needs of farmers. The performance of these

models can be affected by various factors such as lighting

conditions, variations in plant appearance, and diverse

backgrounds in the field. Therefore, it is crucial to train object

detection models using datasets that encompass a wide range of

real-world scenarios, including different weather conditions, growth

stages, and farming practices.
Frontiers in Plant Science 036
2.3 Object detection method for plant
diseases in real natural environments

In real natural environments, the complexity of the image

sample backgrounds adds to the difficulty of the detection task.

Training an effective deep learning model for disease object

detection necessitates a substantial amount of data. Consequently,

this task has garnered considerable attention and become a

significant challenge in current research endeavors.

Fuentes et al. (2017) conducted fine-tuning of classical models

using transfer learning on a self-built dataset of tomato diseases.

After thorough analysis, they selected R-FCN with ResNet-50. This

particular configuration achieved an impressive average precision

(AP) of 85.98% and effectively recognized nine different diseases. In

their study, Xu et al. (2022) presented a real-time technique for

detecting diseases on cucumber leaves. In order to boost the model’s

performance, channel pruning was utilized to trim and fine-tune a

sparsely trained model, and the pruned YOLO v5s+Shuffle model

was then deployed on the Jetson Nano platform, achieving a

remarkable mean average precision (mAP) of 96.7%. Zhang et al.

(2021) developed a multi-feature fusion Faster R-CNN to accurately

detect diseases on soybean leaves. Their approach yielded a best

average precision of 83.34%, showcasing the effectiveness of their

design. Chen et al. (2022) developed an improved plant disease

identification model based on the original YOLOv5 network model

with an average accuracy of 70%. Roy et al. (2022) put forward an

exceptional-performance framework for real-time detection of fine-

grained objects. Their framework achieved successful detection of

diseases across diverse and challenging environmental conditions.

Taking inspiration from attention mechanisms (Vaswani et al.,

2017), some research studies have enhanced feature extraction by

incorporating attention mechanisms. For example, Qi et al. (2022)

put forward an enhanced network model, SE-YOLOv5 for the

identification of tomato virus diseases, which resulted in an

average precision (mAP) of 94.10%. In another study, Guo et al.

(2022) presented a CST model based on the Swin Transformer. This

model employed a novel convolution design and achieved

accuracies of 0.909 and 0.922. Furthermore, Thai et al. (2023)

introduced FormerLeaf. Their contribution was the proposal of

attention pruning. This algorithm achieved a reduction in model

size by 28%, an evaluation speed acceleration by 15%, and an

approximate 3% improvement in accuracy.

Furthermore, the contextual information captured during the

recording of plant disease images contributes to more accurate

category classification by the model. Wang et al. (2020) introduced

a context-aware attention model which encodes various types of

information, such as image context, geographical information, time

information, and environmental information, into image

annotations. They utilized a multi-task learning architecture with

CNN models for each task to extract features related to pest coarse

classification, geography, time, and environment. This algorithm

surpasses traditional image feature extraction by incorporating

external environmental factors like geography, time, and

environment into the process. By extracting features relevant to

pest habitat, it explores the possibility of integrating a wide range of

environmental information into CNN for feature representation.
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Zhao et al. (2020) developed the Multi-Context Fusion Network

(MCFN), which leverages contextual features extracted from image

sensors as prior knowledge. This introduction resulted in highly

accurate predictions of crop diseases. Cheng et al. (2023) proposed a

Position Attention Block that effectively extracts positional

information from feature maps and constructs attention maps to

bolster the feature extraction ability. These efforts aim to enhance

the performance and applicability of disease object detection

models in real-world agricultural settings.
2.4 Technical challenges of plant disease
detection methods

Compared to earlier studies on plant disease detection

algorithms, the methods mentioned above have significantly

improved detection performance. However, they still encounter

various obstacles that pose challenges to accurate detection. These

challenges include four categories (Figure 1). One of them is intra-

class variation, where different instances of the same disease may

exhibit variations in appearance and symptoms. Inter-class

resemblances refer to cases where different diseases or healthy

plants may share similar visual characteristics, leading to

misclassification. Complications arising from low resolution

images can make it difficult to discern fine details and accurately

identify diseases. Additionally, occlusion and overlap of plant parts

or other objects in the image can further hinder detection accuracy.

It is crucial for researchers to address these challenges through

advanced techniques such as data augmentation, model

optimization, and incorporating contextual information to

improve the robustness and reliability of plant disease detection

algorithms (Thakur et al., 2022). Figure 1 illustrates these

challenges visually.

To tackle the aforementioned concerns, this study proposes a

method for detecting objects related to diseases in tomato plants

called PKAMMF. This method integrates a prior knowledge

attention mechanism and incorporates features at different scales

to tackle the obstacles of dense distribution of tomato disease

objects in complex backgrounds, a broad spectrum of scale
Frontiers in Plant Science 047
variations, and lack of feature information for small objects. By

combining the prior knowledge attention mechanism and multi-

scale features, PKAMMF aims to improve the performance of

detecting tomato disease objects.

This study makes significant contributions in the

following aspects:
(1) A backbone network was proposed, which integrates a prior

knowledge attention mechanism to improve the capability

of extracting features and improve model stability during

training on large-scale datasets.

(2) The Rep Conv convolutional layer was reparameterized in a

structured manner to construct the SPPCSPF module,

reducing computational and memory costs during model

training.

(3) A parallel multi-branch feature fusion network was

established to minimize the loss of effective information

in feature maps. Additionally, to enhance the capability of

detecting small objects across multiple scales, an additional

layer specifically designed for small object detection was

incorporated.
(4) A novel A-SIOU loss function was employed to refine and

improve bounding box regression, resulting in accelerated model

convergence and improved training accuracy. Experiments were

carried out to evaluate the effectiveness of the proposed approach

using a self-built dataset of tomato disease. The findings indicate

that the proposed method surpasses the performance of

mainstream algorithms in tomato disease object detection tasks

with complex backgrounds.
3 Methods

Because of the intricate background conditions of tomato

disease images, where the background occupies a large portion of

the image while the diseased area to be detected is often small, it is

necessary to use a network structure with the ability to globally

model the complex nature of the background. Therefore, this study
A B DC

FIGURE 1

Various obstacles of plant disease detection task (A) intra-class discrepancies; (B) inter-class resemblances; (C) complications arising from low
resolution; (D) occlusion overlap).
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proposes a tomato disease object detection method that combines

prior knowledge attention mechanism and multi-scale features. The

specific improvements are described as follows:
3.1 Prior knowledge attention
mechanism module

To improve disease detection and recognition, it is necessary to

incorporate geographical location information, environmental

parameters, and time information of tomato disease images. This

is due to the inconsistent types of tomato diseases, occurrence time,

surrounding environment, and geographical conditions. In this

study, we propose a PKAM module that integrates the prior

knowledge attention mechanism to enhance the capability of

extracting target features in complex backgrounds. The

framework of the PKAM module is illustrated in Figure 2.

Firstly, to encode the prior knowledge of tomato disease, we

utilize the Bert model (Devlin et al., 2018). The Bert model,

introduced by Google in 2018, is a language model built on a

transformer encoder structure. It is specifically designed for

encoding language information. In our case, the Bert model is

employed to encode the prior knowledge of tomato diseases. By

inputting the prior knowledge text information, the model

generates an encoded prior knowledge vector K (C, T), where C

denotes the maximum text length of the prior knowledge and T

denotes the vector dimension. The default value for T is set at 100.

Furthermore, to handle the diverse perspectives of tomato

disease images, we utilize convolutional kernels of various sizes

(1×1, 3×3, 5×5) to extract features from the input visual features

IVF (C, H, W). These convolutional kernels capture different spatial

information at different scales. Afterwards, the features obtained at

different scales are concatenated and merged to obtain the visual

feature VF (CH, H, W). Additionally, we treat the obtained visual
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feature VF as the query Q, the input knowledge feature IKF as the

key K and value V, and employ scaled dot-product attention to

calculate the output feature map G (H, W, C). The calculation

formula for this attention mechanism can be expressed as follows:

Attention(Q,K ,V) = Softmax
Q,KTffiffiffi

d
p

� �
V (1)

In the above-mentioned formular, d denotes the dimension of

the vectors Q and K.

Then, the fundamental concept behind the prior knowledge

embedding strategy is to integrate visual information with prior

knowledge through the attention mechanism. By combining the

encoded knowledge features with the visual features corresponding

to the input image, we achieve enhanced visual features that

incorporate prior knowledge about tomato diseases. The output

feature map G is multiplied by the visual features VF, resulting in

the final enhanced visual features E-V (C, H, W) that are embedded

with prior knowledge about tomato diseases.

In the end, the advantageous enhanced visual features EV

resulting from the fusion process will be learned by the PKAM

module in the subsequent encoding stage, thereby producing an

output vector embedded with prior knowledge of tomato diseases.

Here, C and C1 represent the channel count in the feature maps,

while H and W denote the height and width of the feature

maps, respectively.
3.2 SPPCSPF module with
structural reparameterization

This research has developed the SPPCSPF module to reduce

memory access costs and improve model training efficiency. The

module employs structurally reparameterized RepConv convolutional

layers in place of regular convolutional layers within the residual
IVF (C, H, W)

Conv 1×1 Conv 3×3 Conv 5×5

Concat

Conv 1×1

Conv 1×1VF (C, HW)
 (HW, C)  (HW, T)

Softmax
 (HW, T)

Conv 1×1

EV (C, H, W)

Conv 1×1 Conv 1×1

IKF (C, T)

(C, T) (C, T)

(T, C)

G (H, W, C)

Element wise multiplication matrix multiplication

FIGURE 2

Framework of PKAM module.
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structure. In training, a multi-branch residual structure is used for

feature extraction. Additionally, during inference, the convolutional

layers are merged with BN (Batch Normalization) layers, and the three

branches are consolidated into a single-path model. As a result, all the

trained parameters are equivalent to a 3×3 convolutional layer,

enabling faster inference speed and reduced memory access costs.

Figure 3 illustrates the designed max pooling part of the SPPCSPF

module, taking into consideration the increased training costs associated

with using structurally reparameterized layers. The pooling kernel size is

set to a fixed value of 5×5 in this design. Furthermore, the output from

each pooling layer serves as input for the subsequent pooling layer. By

setting a pooling stride of 1, two 5×5 max pooling layers can effectively

perform the same function as a single 9×9 max pooling layer. Similarly,

three 5×5max pooling layers yield the same result as a single 13×13max

pooling layer. This approach significantly reduces the computational

load during model training.
3.3 Multiscale detection module with small
object detection layer

In this study, the target detection dataset images are of size

800×800. Since there are small objects with pixel sizes smaller than

8×8 in tomato disease detection images that have complex

backgrounds, the study employs the principle of detecting large

objects based on the small object detection feature map and vice

versa. To maintain the same scale of the output feature map as the

baseline model, a 160×160 detection layer is added in the prediction

stage. This layer divides the input image into 160×160 grid cells,

each measuring 5×5 in size. This approach enhances the regression

and adjustment of prior boxes, resulting in accurate detection boxes
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for small objects and significantly enhancing precision in small

object detection. To tackle the challenge of losing a substantial

amount of feature information for smaller objects in deeper network

layers, this study proposes the incorporation of innovative feature

layers with alternative dimensions sourced from the backbone

network. Furthermore, by enhancing the Neck component and

constructing a parallel multi-branch feature fusion network, the loss

of effective information in the feature maps is mitigated.
3.4 A-SIOU loss function

Precise target localization is essential for successful target

detection, relying heavily on the utilization of a superior quality

bounding box loss function. The conventional CIOU loss function

proficiently handles the task of orienting bounding boxes, even in

situations where there is no intersection between the predicted and

ground truth boxes. Accomplishing this involves incorporating the

aspect ratio of the boxes into the loss calculation. However, the

CIOU loss function has certain limitations, as it calculates all loss

variables as a whole without adequately addressing the disparity

between the actual target and the predicted box. As a result, this

approach leads to slow convergence and instability issues.

In this study, we introduce the A-SIOU (Alpha SIOU) loss

function as a replacement for the existing CIOU loss function in the

tomato disease detection model. This novel bounding box loss

function, based on enhancements to the SIOU loss function

(Gevorgyan, 2205), offers significant improvements. It enhances

the gradient convergence speed of the loss function through the

parameter a (He et al., 2021). The A-SIOU loss function fully

considers the influence of distance, angle, and area - these three key

factors - on the boundary regression of the model. This ensures that

the predicted box can converge towards the ground truth box more

quickly, thereby controlling the convergence direction. The

proposed loss function consists of four components: Langle, Ldis,

Lshape, and IOU.

The equation for computing the angle loss Langle is given by:

zh = btcy − bpcy
�� ��

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(btcx − bpcx)2(btcy − bpcy)2

q

Langle = 1 − 2 sin2 (arcsin( zhs ) − p
4 )

8>>><
>>>:

(2)

In the given equation, zh denotes the disparity in height between

the center points of the predicted box and the ground truth box. s
represents the spatial displacement between the center coordinates

of the ground truth box and the predicted box. Furthermore, btcx
and btcy denote the center coordinates of the ground truth box, while

bpcx and bpcy denote the center coordinates of the predicted box.

The formula for calculating the distance loss is provided below:

rx =
btcx−b

p
cx

cw

� �2

ry =
btcy−b

p
cy

ch

� �2

Ldis = 2 −oi=x,yexp (Langle − 2)ri
� 	

8>>>>><
>>>>>:

(3)
Inputs

CBS×3 RepConv

5 5 5

Concat

CBS×2

Concat
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FIGURE 3

Network structure of SPPCSPF module.
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Here, cw and ch represent the width and height of the minimum

bounding rectangle of the ground truth box and the predicted box.

To compute the shape loss, use the following formula:

ww = wp−w tj j
max(wp ,w t )

wh =
hp−htj j

max(hp ,ht )

Lshape =oi=w,h 1 − exp(wi)ð Þq

8>>><
>>>:

(4)

In the equation above, wp and hp represent the width and height

of the predicted box, while wt and ht represent the width and height

of the ground truth box. q is a constant used to control the emphasis

on shape loss, with a value of 4 in this study.

The formula for calculating the A-SIOU loss function is as

follows:

IOU = A
B

LA−SIOU = 1 − IOUa −
(Ladis+L

a
shape)

2

� �
8<
: (5)

In the equation above, A and B represent the intersection and

union of the areas of the ground truth box and the predicted box. a
is a variable that controls the convergence speed of the loss function.

Through multiple experiments, it has been found that setting a to 2

helps the model focus more on targets with high intersection-over-

union ratios, thereby improving the accuracy of object localization.

Compared to other functions, the A-SIOU boundary box loss

function considers the influence of distance and angle on boundary

regression, thereby avoiding the issue of gradient vanishing in cases

where there is no overlap between the predicted box and the ground

truth box. Additionally, the A-SIOU loss function include four

components. In the angle loss component, the range of values for

the angle loss Langle is [0, 1] due to the characteristics of the sine

function. In the distance loss component, considering the range of

ri to be [0, 1), the value range of the distance loss Ldis can be derived

as (0, 2-2e-2). In the shape loss component, considering the range of

wi to be (0, 1), the value range of the shape loss Lshape can be derived

as (0,2(1-e)4). In conclusion, the A-SIOU function has a value range

of (-2 + 2e-4,1 + 2(1-e)8), which has both upper and lower limits,

effectively preventing gradient explosion.
3.5 Overall framework of PKAMMF

Based on the above improvement measures, the overall network

framework of the PKAMMF method for tomato disease detection,

which incorporates the fusion of prior knowledge attention

mechanism and multi-scale features to enhance performance, is

illustrated in Figure 4.
4 Dataset

4.1 Experimental data collection

The experimental research area was selected as the tomato

planting base in Shouguang City, Shandong Province. This

location is known for year-round cultivation of various tomato
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varieties, as shown in Figure 5. To collect data, agricultural IoT

monitoring equipment equipped with a 4K high-definition camera

(with a resolution of 4096x3112) was used. The equipment enabled

the collection of typical tomato disease images from different plants,

regions, and growth stages under natural conditions. Image

collection took place during specific time intervals: 08:00 to 09:00,

11:00 to 12:00, and 15:00 to 16:00 every day, to capture images

under varying lighting conditions. In total, 26,983 images depicting

various types of tomato diseases were collected.
4.2 Dataset construction

To ensure data quality, the original image was cropped to a fixed

size of 640 × 640. Cropping the image to this specific dimension

ensures that the subject of the photograph is clear, the disease

objects are easily discernible, and the real background is visible. In

addition, we manually removed duplicate and low-quality images

from the dataset. After the selection process, we obtained a total of

10,000 tomato disease images that represent various types of

diseases. Next, we divided these images into a 9:1 ratio, creating a

training set and a test set. The training set encompassed 9,000

images, while the test set contained 1,000 images. By including a

diverse range of scene information, such as rainy and foggy weather,

sunny days, cloudy conditions, and other scenarios, the dataset

effectively captures real-world planting environment information.

In order to enhance the model’s robustness to variations in

tomato disease image sizes and lighting conditions, we employed a

method to augment the training set. This involved changing the

contrast and scaling the image sizes. The contrast coefficient and

scaling factor were randomly generated within the ranges of [0.6,

1.5] and [0.6, 1.7], respectively. In order to enhance the model’s

capability in detecting occluded disease objects, we augmented the

dataset by adding salt-and-pepper noise to simulate random pixels

and artificially create occlusions. As a result, the augmented training

set consisted of a total of 45,000 tomato disease images. Meanwhile,

the test set remained in its original state, and data augmentation was

solely applied to the training set. This decision was made to improve

the dependability and precision of the test results.
4.3 Data annotations

The labeling of tomato disease samples is divided into two steps.

Firstly, the prior knowledge information of tomato disease is labeled.

Secondly, the tomato disease category information is labeled.

4.3.1 Labeling prior knowledge information of
tomato diseases

The prior knowledge information of tomato diseases includes

the identification of the disease infection location (leaves, stems,

fruits) and the shooting angle from which the images are captured

(main view, top view). To illustrate this, Table 1 presents a

compilation of tomato disease images along with corresponding

label examples.
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The labeled examples serve as valuable references for training

and developing models or systems focused on tomato disease

detection, making use of prior knowledge information.

4.3.2 Labeling tomato disease
category information

The model used in this study was trained on a Pascal VOC-

formatted dataset. To annotate the tomato disease images of

different disease types, we utilized the LabelImg software. The

annotation rules were as follows: 1) We annotated the diseased

areas in the images without occlusion or with some occlusion that

did not impact manual judgment of the disease type. 2) We did not

annotate severely occluded areas where it was difficult for humans

to determine the disease type accurately. Since tomato diseases

rapidly spread, it is common for most images to contain multiple

affected areas. In total, we annotated 127,356 diseased areas across

10 disease categories during the annotation process. The quantities

of the different tomato disease types can be found in Table 2.
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5 Results

5.1 Operating environment configuration

The experimental platform employs Ubuntu 22.04 as its

operating system. It utilizes two NVIDIA RTX 3080 GPUs for

deep learning, with a memory capacity of 12GB. Other software

packages include Python 3.8, CUDA 11.0, Torch 1.7.0, and

torchvision 0.8.1.
5.2 Model training

During the training phase, we performed pre-training using the

weight file of the baseline model. Since the improved model shares

most of its structure with the baseline model, many weights can be

transferred from the baseline model to the improved network. This

transfer of weights allows us to save a significant amount of training
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time. To carry out the training, a batch size of 16 was chosen, and

the training process consisted of 300 epochs. We utilized the Adam

algorithm for gradient descent. Additionally, the image size was

adjusted to 416×416. The initial learning rate was set to 0.01, and

the weight decay coefficient was determined to 0.000005. We

employed the cosine annealing algorithm for learning

rate adjustment.

Throughout the process of training the model, we recorded the

loss function of the model and depicted it in Figure 6. According to

the depicted graph, in the early stages of training, the loss function

experiences rapid decrease with minor overall fluctuations. Notably,

around the 20,000th iteration, the loss value reaches 0.022. After

training for 30,000 iterations, the loss value converges and stabilizes

at 0.016.
5.3 Metrics for evaluating performance

Before introducing the metrics, it is necessary to briefly explain

the symbols used. In this research experiment, when IOU > 0.5, it is

considered that the predicted box hits the annotated box; otherwise,

it is considered that the predicted box does not hit the annotated

box. TP indicates the count of correctly predicted boxes that match

the annotated boxes for the given class, FP corresponds to the count

of incorrectly predicted boxes that match the annotated boxes for

the given class, TN is the count of predicted boxes that correctly

match the annotated boxes for other classes, and FN represents the

count of predicted boxes that fail to match any annotated boxes.

The commonly used metrics include Recall, Precision, Average

Precision (AP), and mAP. Recall is used to evaluate whether the

model predicts all target objects comprehensively. The model’s

prediction accuracy is assessed through Precision. To evaluate the

model’s classification performance for a particular class, AP

calculates the area under the Precision-Recall curve, while mAP
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computes the average AP across multiple classes. Furthermore, the

model’s detection speed is measured in frames per second (FPS),

representing the number of images detected per second. The

formulas for calculating the above evaluation metrics are as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

AP =
Z 1

0
p(r)dr (8)

mAP = o
N
n=1AP(n)

N
(9)

FPS =
Cimg

Timedetect
(10)

In the above-mentioned formulars, p(r) represents the

Precision-Recall curve. N denotes the overall count of categories

within the tomato disease detection data, while n represents the

current data category. Cimg represents the count of pictures within

the test dataset, and Timedetect represents the time taken to detect

Cimg images.
5.4 Ablation experiment

In order to verify the performance enhancement of the various

improvement measures proposed in this study for tomato disease

image object detection, a series of experiments involving ablation

was conducted. These experiments aimed to systematically assess

the impact of each improvement measure by selectively removing or
FIGURE 5

Experimental site.
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disabling them one by one. The experimental results are presented

in Table 3, where PKAM, SPPCSPF, MSD, and A-SIOU represent

the four improvement measures, namely, the PKAM module, the

SPPCSPF module, the Multi-Scale Detection module, and the loss

function, respectively.

The above-mentioned table reveals the following:
(1) Improvement 1 designs the PKAM module, which utilizes

attention mechanisms to integrate visual information with

prior knowledge. This enhances the network’s ability to

capture global observations. While the introduction of the

PKAM module leads to a slight increase in the parameter

count and a decrease in detection speed, it results in a

significant improvement in mAP, with an increase of

2.23%. This indicates that the incorporation of the PKAM

module helps to improve the overall performance of the

detection by effectively leveraging both visual information

and prior knowledge. Despite the trade-off in terms of

computation and speed, the gained improvement in

accuracy justifies the utilization of the PKAM module in

the context of disease object detection in tomato plants.

(2) Building upon improvement 1, improvement 2 designs the

SPPCSPF structure with structurally reparameterized

RepConv convolutional layers. This design not only

stabilizes the training process but also improves inference

speed, resulting in an mAP improvement of 0.59%

compared to improvement 1.

(3) Based on improvement 1, improvement 3 implements

multi-scale detection by adding a new feature fusion layer

in the Neck section and incorporating a small object

prediction layer during inference. Compared to

improvement 1, improvement 3 achieves a mAP

improvement of 0.74%, indicating enhanced accuracy in

detecting small objects.

(4) Improvement 4 integrates the first three improvements and

achieves the highest mAP. Compared to the baseline model,

improvement 4 shows an mAP enhancement of 3.86%.

(5) Continuing from improvement 4, this study further

improves the proposed method by utilizing A-SIoU.

Although the mAP improvement is only 0.59% compared

to improvement 4, the convergence speed during actual

training is faster.
Overall, through multiple improvement measures, the proposed

method in this study achieves a 3.86% mAP increase compared to

the baseline model. Despite a slight increase in parameter count, the

number of parameters remains within the same order of magnitude

as the baseline model, indicating that the additional computational

requirements are manageable. The detection frame rate drops by

11.71 frames per second. However, it still meets the fundamental

criteria for real-time performance. Considering these factors, the

detection accuracy improvement obtained through the various

improvement measures is highly cost-effective. The trade-offs in

terms of parameter count and detection speed are reasonable, given

the substantial enhancement in accuracy achieved by the proposed
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method. This implies that the proposed method may have practical

value and can be considered as an effective solution for detecting

objects related to diseases in tomato plants.
5.5 Comparative analysis of performance
with alternative mainstream approaches

To further validate the advantages of the PKAMMF method in

detecting tomato diseases in complex backgrounds, we conducted

object detection experiments using our own tomato disease dataset

under the same experimental environment and parameter settings.

We compared and analyzed the object detection performance of

mainstream methods such as Faster-RCNN, SSD, YOLO series, and
Frontiers in Plant Science 1114
PKAMMF in this study. The experimental outcomes from these

various methodologies are presented in Table 4.

As shown in Table 4, the parameter size (Params) of single-

stage object detection methods, including SSD, YOLO series, and

the proposed method in this study, is relatively smaller than the

two-stage object detection approach, Faster-RCNN. This reduction

in parameter size leads to faster detection speed. In comparison to

the baseline model, the proposed method in this study exhibits an

increase of 14.87M parameters and a decrease of 11.71 frames per

second (FPS) in the detection frame rate. However, it demonstrates

an improvement of 3.26% in precision (P), 2.55% in recall (R), and

achieves a mean average precision (mAP) of 91.96%. This

performance enhancement surpasses YOLOv7 by 3.86% and

outperforms other models in the table. It strongly indicates that
TABLE 2 Sample quantities for each disease type.

No.
Disease
class

Sample images in the
training set

Annotated diseased areas
in the training set

Sample images in
the test set

Annotated diseased
areas in the test set

1 Early blight 4500 10903 100 228

2 Late blight 4500 12317 100 247

3 Bacterial spot 4500 17302 100 469

4
Gray leaf
spot

4500
13236 100 303

5 Gray mold 4500 12315 100 269

6 Leaf mold 4500 11871 100 235

7
Yellow leaf
curl virus

4500
10036 100 213

8 Mosaic virus 4500 10277 100 208

9 Canker 4500 12398 100 249

10 Anthracnose 4500 13964 100 316

Total 45000 124619 1000 2737
FIGURE 6

Variations of the loss function during the training process.
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PKAMMF exhibits remarkable superiority in detecting tomato

disease objects.

Given that the self-built tomato disease dataset comprises ten

disease classes with significant variations in scale and features

among different instances, achieving multi-scale object detection

is typically challenging. Table 5 presents the average precision (AP)

results of different methods for detecting various object categories.

According to Table 5, the experiment shows that the proposed

PKAMMF outperforms the baseline model YOLOv7 among the 10

target categories. Therefore, in comparison to alternative prevalent

object detection methods, PKAMMF also demonstrates significant

advantages in detecting objects at multiple scales. The proposed

method exhibits notable superiority in detecting tomato disease

objects of varying scales, even within complex backgrounds.

However, there is still room for improvement in detecting

bacterial spot disease and gray leaf spot disease, as these targets

have less distinct features. In scenarios involving multiple scales,

there is a higher risk of false negatives occurring.
5.6 Performance comparison of different
attention mechanisms in tomato disease
detection

The comparative experiments were conducted under consistent

conditions, and several classical attention mechanisms, namely SE

(Hu et al., 2018) (Squeeze and Excitation), CBAM (Woo et al., 2018)

(Convolutional Block Attention Module), GAM (Liu et al., 2021)

(Global Attention Mechanism), and Biformer (Zhu et al., 2023),
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were added. Table 6 provides a performance comparison of the

proposed prior knowledge attention mechanism and other

attention mechanisms in tomato disease detection. The results

clearly demonstrate that the proposed prior knowledge attention

algorithm in this study achieves the highest mAP and exhibits a

significant enhancement in detection performance.

This finding suggests that the prior knowledge attention

mechanism effectively integrates prior knowledge of tomato

diseases, enabling more focused feature extraction in the regions

associated with tomato diseases. The prior knowledge attention

mechanism helps to focus on relevant areas of the image that are

more likely to contain disease objects. This can improve the

efficiency and accuracy of detection by reducing false positives

and identifying subtle disease symptoms. Consequently, the prior

knowledge attention mechanism is deemed more suitable for

feature extraction in tomato disease detection scenarios.
5.7 The influence of training samples of
different sizes on detection results

The number of training samples can significantly influence the

detection performance of a model, so training samples of different

sizes should be evaluated. To investigate the impact of training

sample size on the performance of the proposed PKAMMF model,

it is necessary to employ a method that involves changing the

number of training samples while keeping the test set samples

unchanged. Building upon the experiments conducted in the

previous sections, we randomly selected 5000, 10000, 15000,
TABLE 3 Results of ablation experiments.

Methods PKAM SPPCSPF MSD A-SIOU Params(M) FPS(Frames per second) mAP(%)

YOLOv7 36.853 66.39 88.10

Improvement 1 Yes 50.856 57.92 90.33

Improvement 2 Yes Yes 51.267 57.98 90.92

Improvement 3 Yes Yes 51.698 55.67 91.07

Improvement 4 Yes Yes Yes 51.279 55.32 91.37

PKAMMF Yes Yes Yes Yes 51.723 54.68 91.96
fro
TABLE 4 Performance metrics of various methods.

Methods P(%) R(%) F1 score(%) Params(M) FPS mAP(%)

Faster-RCNN 85.98 61.79 71.85 129.8 10.59 70.73

SSD 90.87 55.87 68.92 25.43 47.65 72.54

YOLOv3 85.88 60.78 70.82 60.83 27.28 78.62

YOLOv4 87.95 68.54 76.21 62.73 34.07 80.37

YOLOv5 89.97 75.82 80.33 70.10 60.28 88.98

YOLOv7 88.64 83.52 85.97 36.853 66.39 88.10

PKAMMF 91.90 86.07 88.18 51.723 54.68 91.96
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20000, 25000, 30000, 35000, 40000, and 45000 samples,

maintaining the same proportion of tomato disease categories

from our self-built dataset. We employed the same training

method to train datasets with varying sample sizes. The impact of

training samples of different sizes on mean Average Precision

(mAP) is illustrated in Figure 7.

From Figure 7, it can be seen that the learning ability of the

model increases with the increase of sample size for different

training sample Quantities. In the case of a small number of

training samples (5000-200000), the mAP obtained in the

experiment significantly can improve greatly. As the number of

training samples continue to increase, the improvement of mAP

slows down. When the number of training samples exceeds 30000,

mAP gradually tends to stabilize.
5.8 Analysis of tomato disease object
detection results

The proposed PKAMMF model was utilized to detect 10 types

of tomato disease images under complex backgrounds in the test set,

which comprised 1000 images. Figure 6 presents some of the disease

detection results.

Based on Figure 8, it is evident that the proposed PKAMMF

model exhibits accurate detection capabilities for tomato disease
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images. The results depicted in Figure 6 clearly showcase the

robustness and adaptability of the PKAMMF model in handling

challenging scenarios commonly encountered in tomato disease

detection. The model effectively addresses the difficulties posed by

objects at different scales, instances where objects are partially

obscured, and varying lighting conditions, all of which are

prevalent in real-world situations. Also, by effectively identifying

objects in tomato disease images under challenging conditions, the

model minimizes instances where diseases go undetected (missed

detections) and also reduces the occurrence of incorrectly

identifying healthy regions as diseased (false detections). By

accurately detecting objects under such conditions, the

PKAMMF model proves its capability to improve the

performance of tomato disease detection. Its ability to handle

complex backgrounds further strengthens its practical

applicability in agricultural settings.
6 Discussion

In response to the limitations of existing deep learning models

in learning prior knowledge of tomato disease objects and their

reliance solely on visual features, this study proposes a method for

tomato disease detection. The main objective is to leverage the prior

knowledge available in tomato disease images and achieve accurate

disease detection in complex backgrounds. To address this

challenge, our proposed method, called tomato disease object

detection method combining Prior Knowledge Attention

Mechanism and Multiscale Features (PKAMMF), is introduced.

By integrating the visual features extracted from detected images

with the prior knowledge of tomato diseases, the overall

performance of tomato disease detection in complex natural

backgrounds is significantly enhanced. Through comprehensive

experimental analysis and comparisons with existing methods, we

have drawn the following discussions:
(1) In response to the challenge posed by complex

backgrounds and unclear, overlapping target features in
TABLE 5 Average precision of several methods for detecting different disease class.

Disease class Faster-RCNN SSD YOLOv3 YOLOv4 YOLOv5 YOLOv7 PKAMMF

Early blight 89.3 90.2 90.6 90.1 95.4 96.7 98.3

Late blight 88.7 89.3 92.5 80.3 91.3 92.2 97.9

Bacterial spot 77.5 70.2 79.8 80.6 76.3 78.5 79.6

Gray leaf spot 77.3 80.1 72.7 75.8 76.2 76.4 79.1

Gray mold 69.4 66.8 92.1 88.9 90.0 90.2 93.4

Leaf mold 89.3 80.4 80.8 85.4 88.6 89.7 94.8

Yellow leaf curl virus 86.5 84.3 78.6 79.6 82.7 84.9 90.1

Mosaic virus 80.2 86.7 82.4 72.8 87.9 88.1 89.6

Canker 53.7 52.2 69.7 70.7 88.2 90.1 90.3

Anthracnose 42.6 53.9 80.4 76.9 89.3 90.5 91.1
f

TABLE 6 Comparison of different attention mechanisms.

Algorithms with different attention mechanisms
mAP
(%)

baseline 88.10

baseline+SE 88.26

baseline+ CBAM 89.39

baseline+ GAM 89.27

baseline+Biformer 89.56

baseline+PKAM 90.33
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Fron
tomato disease images, this study investigates the utilization

of prior knowledge on tomato diseases. We incorporate

prior knowledge as auxiliary information into our model,

enabling the detection network to effectively learn the

distinctive features of various categories of tomato

diseases and achieve accurate detection.

(2) Incorporate a feature fusion layer within the Neck section

to facilitate effective information transmission across the

backbone network. Additionally, augment the prediction

section with a small object detection layer, enabling

improved performance in detecting small objects at

multiple scales. This enhancement reduces both the

missed detection rate and false detection rate. Moreover,

introduce the A-SIoU loss function to expedite bounding

box regression, thereby accelerating the convergence speed.
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(3) Validate the proposed algorithm using a self-built dataset

specifically designed for tomato disease detection. The

experimental results demonstrate that the proposed

model adeptly utilizes the prior knowledge inherent in

tomato disease images. It achieves accurate detection of

small target diseases and effectively identifies densely

occluded diseases against complex backgrounds. This

approach significantly enhances the overall detection

performance of tomato diseases and mitigates the

occurrence of missed and false detections arising from

complex backgrounds. Furthermore, the proposed model

exhibits good real-time performance.
This study focuses on leveraging prior knowledge to enhance

the detection effectiveness of tomato diseases. The experimental
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FIGURE 7

The impact of training sample size on detection results.
FIGURE 8

Object detection results of tomato disease.
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results validate that, with the guidance of prior knowledge, the

model performs significantly better in detecting tomato diseases

amidst complex natural backgrounds. This research sets the

groundwork for integrating prior knowledge of tomato diseases

with deep learning models, offering new insights and ideas for

intelligent disease detection technology in plants. However, it is

important to note that the proposed model currently only

incorporates explicit knowledge, such as the precise location and

shooting angle of tomato diseases, at the coding level. It lacks the

capability to autonomously acquire implicit knowledge, including

expert experience and the utilization of existing “knowledge” for

reasoning. Therefore, future work should explore ways to integrate

implicit knowledge, such as expert experience, into the model by

employing technologies like knowledge graphs. Additionally, there

are plans to conduct in-depth research into the fusion of prior

knowledge and the model, incorporating spatial location

relationships among diseases or prior knowledge about disease

occurrence time to achieve more accurate disease detection.

Knowledge reasoning methods will be employed to express prior

knowledge more effectively, and efforts will be made to further

enhance the proposed method and apply it to a wider range of plant

disease detection scenarios, aiming for more accurate multi-

category plant disease detection.
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Jun Liu*, Xuewei Wang*, Qianyu Zhu and Wenqing Miao

Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science
and Technology, Weifang, China
Brown rot disease poses a severe threat to tomato plants, resulting in reduced

yields. Therefore, the accurate and efficient detection of tomato brown rot

disease through deep learning technology holds immense importance for

enhancing productivity. However, intelligent disease detection in complex

scenarios remains a formidable challenge. Current object detection methods

often fall short in practical applications and struggle to capture features from

small objects. To overcome these limitations, we present an enhanced algorithm

in this study, building upon YOLOv5s with an integrated attention mechanism for

tomato brown rot detection. We introduce a hybrid attention module into the

feature prediction structure of YOLOv5s to improve the model’s ability to discern

tomato brown rot objects in complex contexts. Additionally, we employ the

CIOU loss function for precise border regression. Our experiments are

conducted using a custom tomato disease dataset, and the results

demonstrate the superiority of our enhanced algorithm over other models. It

achieves an impressive average accuracy rate of 94.6% while maintaining a rapid

detection speed of 112 frames per second. This innovation marks a significant

step toward robust and efficient disease detection in tomato plants.

KEYWORDS

object detection, tomato brown rot, YOLOv5, hybrid attention, loss function
1 Introduction

Plant protection is a crucial aspect of agriculture, and precise disease detection and

early forecasting are pivotal for maximizing crop yields. Presently, the identification and

prediction of crop diseases heavily depend on local plant protection agencies. Nevertheless,

constrained resources and a scarcity of experts present obstacles to the widespread

implementation of scientific prevention and control strategies across diverse regions.

Additionally, rural agricultural workers frequently lack the necessary expertise, leading

to suboptimal disease management and impeding large-scale control initiatives. Since crops

are predominantly grown in dispersed locations by individual farmers, the outbreak of
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diseases poses a significant challenge. Indiscriminate use of

chemical pesticides by farmers not only exacerbates regional drug

resistance but also poses a severe threat to the ecological

environment (Horvath, 2018). Hence, it is crucial to propose a

timely and efficient detection method that accurately identifies and

diagnoses crop diseases. This will enable the implementation of

appropriate preventive measures aimed at minimizing losses.

Tomatoes are among the most widely cultivated vegetables

globally. However, they are susceptible to various diseases, with

brown rot being one of the most prevalent. Therefore, this study

takes tomato brown rot as a representative example. Also known as

tomato fruit drop, tomato brown rot is a prominent ailment

affecting tomatoes (Review, 1991). This disease can occur in both

open field and greenhouse production systems, and tomatoes may

become infected at any stage of growth, leading to devastating

consequences and significant losses for vegetable farmers. In recent

years, the incidence of tomato brown rot has increased, resulting in

substantial economic losses for farmers. Extensive field

investigations and comprehensive analyses have revealed that

tomato brown rot primarily manifests after heavy rainfall and

high temperatures, causing plant wilting and fruit drop.

Generally, crop yield losses range from 30% to 40% in affected

areas, while severely affected regions experience yield reductions

exceeding 50% (Liaquat et al., 2019). Immature fruits are

particularly vulnerable to tomato brown rot, although the stems

and leaves can also be infected. The symptoms of this disease are

multifaceted and often coexist with other disease symptoms,

significantly complicating diagnosis efforts. Accordingly, there is

an urgent need to develop a rapid and reliable detection method for

early identification of tomato brown rot.

The current diagnosis of tomato brown rot predominantly depends

on visual assessment by trained experts. Nevertheless, this method

demands substantial time for professional training, and human

judgment is inherently subjective, complicating the establishment of

standardized criteria. In contrast, Artificial Intelligence (AI) presents a

range of advantages, encompassing objectivity, enhanced accuracy, and

measurable judgment outcomes. Integrating AI into the investigation

of tomato brown rot and related diseases allows for the resolution of

qualitative issues with heightened precision and the analysis of

quantitative concerns with greater accuracy.

Most previous research on disease identification methods has

been conducted in laboratory settings or controlled conditions. The

limited number of samples obtained in natural environments has

hindered the generalization capability of models. When utilizing

large public datasets, the simplicity of image backgrounds and

insufficient data representation become significant issues.

Consequently, when applied to practical scenarios, the lack of

dataset representativeness diminishes the model’s ability to

extract disease characteristics from complex backgrounds. This

inadequacy results in reduced accuracy and speed in crop disease

detection. To enhance model accuracy, researchers typically employ

deep learning network structures with more convolutional layers to

extract object features. However, this increases computational

requirements and hardware dependence, leading to excessively

long recognition times. As a result, the effectiveness of practical

implementation in natural environments is severely restricted.
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In this study, we employ a deep learning object detection

algorithm to develop an online, non-destructive method for

identifying tomato brown rot. This approach seeks to overcome

the limitations of traditional artificial recognition, addressing its

challenges and constraints. To enhance the precision of tomato

brown rot disease identification and localization, we present an

algorithm built upon an improved YOLOv5.

Our primary contributions are as follows:
1. We introduce a hybrid attention module into YOLOv5’s

feature prediction structure, bolstering its capacity to learn

features from disease objects in complex contexts.

2. We replace the GIoU Loss with CIoU Loss, resulting in an

accelerated bounding box regression rate and improved

positional accuracy. This, in turn, enhances the detection of

diseased objects.

3. We conduct experiments using a tomato disease dataset,

with results demonstrating that our algorithm achieves a

mean average precision (mAP) of 94.6%, a noteworthy

4.8% improvement over YOLOv5. Moreover, our detection

accuracy significantly outperforms other mainstream

algorithms.
In conclusion, our algorithm successfully fulfills the demands

for accurate identification and localization of tomato brown rot in

complex greenhouse environments.
2 Related work

2.1 Plant disease image recognition based
on simple background

Plant disease images with a simple background exhibit

characteristics such as a single background, minimal interference

factors, and distinctive disease features. Previous research in this

area has focused on improving disease feature extraction and

reducing recognition error rates. Chen et al. (2020) utilized

VGGNet and Inception modules pre-trained on ImageNet for rice

disease recognition, achieving an average precision rate at 92%.

Mensah et al. (2020) introduced a Gabor Capsule network for

tomato and citrus disease recognition in the PlantVillage dataset,

attaining a test set accuracy of 98.13%. Atila et al. (2021) introduced

EfficientNet, achieving an accuracy of 99.91%. Jain et al (Jain and

Gour, 2021). proposed a method using conditional generation

inverse network (C-GAN) to generate composite images, an

accuracy rate of 99.51% was attained. Joshi et al (Joshi and

Bhavsar, 2020). investigated feature extraction of crop images

affected by bacillus through a multi-layer convolutional neural

network and fusion of multi-feature images, yielding promising

results in crop bacterial disease recognition. Agarwal et al. (2020)

introduced a technology to categorie 10 types of tomato disease

images, designing an 8-layer convolutional neural network

structure. However, due to limited availability of samples for the

10 tomato disease categories, the author indicated room for

improvement in classification accuracy. Zhang et al. (2020)
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utilized an enhanced Faster RCNN to detect healthy tomato leaves

and four distinct disease types. Instead of VGG16, they employed a

depth residual network for image feature extraction and

implemented the k-means clustering algorithm for bounding box

clustering. Experimental results on open datasets showed an

average recognition accuracy of 98.54% with a detection time of

only 470 ms.

These studies have yielded favorable outcomes in identifying

plant diseases against simple backgrounds. However, Notably, the

experimental data acquired controlled laboratory settings

significantly differs from the complex background scenarios

encountered in actual agricultural production processes.

Consequently, the aforementioned research might experience a

notable decline in disease identification accuracy when confronted

with images collected under realistic complex backgrounds.
2.2 Plant disease image recognition in
natural scene

Plant disease images captured in natural scenes are

characterized by complex backgrounds, which accurately

represent real-world application scenarios. The primary focus of

research regarding plant disease images in natural scenes lies in

eliminating the impact of complex backgrounds and non-standard

photography on disease recognition accuracy. Lee et al. (2020)

collected and trained 1822 tea pathological images, conducting

experiments using Faster RCNN, which achieved an accuracy rate

of 89.4%. Bollis et al. (2020) implemented a approach that

substantially reduced the annotation task and was applied to

identify citrus crop diseases and pests using the self-established

CPB dataset, achieving an accuracy of 91.8%. Demird et al (Demir

and Vedat, 2021). combined a newly developed depth CNN model

with the impulse neural network (SNN) model. Experimental

results demonstrated that the hybrid model proposed achieved an

accuracy rate of 97.78%. Wang et al. (2021) introduced a new

method that achieved disease identification accuracy of 99.7% in

controlled laboratory environments. However, when tested in

realistic environments, the disease identification accuracy dropped

to 75.58%. Yang et al. (2021) introduced an innovative rebalancing

convolutional network designed specifically for rice diseases and

pests based on field image data, achieving an accuracy of 97.58%. He

et al. (2021) developed a watermelon disease detection algorithm.

They improved the preselector setting formula of the SSD model,

resulting in an average accuracy of 92.4%. Wu et al. (2021) utilized

two state-of-the-art object detection algorithms, and experimental

results showed a precision range of 0.602-0.64, wherein YOLOv3

demonstrated a smaller size and faster processing speed compared

to Faster RCNN. Temniranrat et al. (2021) proposed a rice disease

diagnosis system based on improvements to the YOLOv3 model.

The detection accuracy of this model reached 78.86%, with the

entire detection process taking approximately 2-3 seconds. Gautam

et al. (2022) considered various architectures, namely InceptionV3,

VGG16, ResNet, SqueezeNet, and VGG19, for the detection of

diseases in rice leaves. They employed additional fully connected
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layers in deep neural networks (DNN) to identify biotic diseases in

rice leaves caused by fungi and bacteria, achieving an accuracy of

96.4%. Aggarwal et al. (2023) introduced a lightweight federated

learning architecture for rice leaf disease recognition, achieving

outstanding training and evaluation accuracy of 99%. Their

research revealed that a federated learning model with multiple

clients outperformed traditional pre-trained models.

These studies demonstrate that deep learning exhibits

outstanding performance within the domain of plant diseases

detection under natural scenes and can serve as a powerful

technical tool. However, there is currently a lack of research on

tomato brown rot based on deep learning. Given the complexity of

its symptoms, manual identification of diease symptoms remains

the primary method for early diagnosis of this disease. Therefore,

exploring the application of deep learning in recognizing tomato

brown rot diease symptoms holds significant research potential.
2.3 Object detection algorithms

Computer vision encompasses a critical research field known as

object detection, which serves as the fundamental linking

component between object recognition and tracking. The main

objective of algorithms for object detection is to accurately

recognize and locate specific targets present in images by

determining their location and classification. Two main categories

exist for these algorithms: the first is candidate region-based (two-

stage), and the second is regression-based (one-stage). The key

distinction between these two categories lies in the approach

utilized for generating candidate bounding boxes. The former

utilizes sub-network assistance to generate candidate bounding

boxes, while the latter directly produces them on the feature map.

The algorithm utilizing candidate regions is an adaptation of the

RCNN proposed by Girshick et al. in 2014 (Girshick et al., 2014).

RCNN was the pioneer in incorporating deep learning into the field

of object detection, marking a significant breakthrough, achieving

an mAP value of 66.0% on the Pascal VOC dataset. Building upon

this foundation, subsequent algorithms such as Faster RCNN (Ren

et al., 2017), and Mask RCNN (He et al., 2017) have emerged. On

the other hand, the regression-based algorithm traces its origins to

the YOLO (Redmon et al., 2016) introduced by Redmon et al. in

2016 and the SSD algorithm (Liu et al., 2016) proposed by Liu et al.

This approach transforms detection into a regression problem and

significantly enhances detection speed. Further advancements have

led to the development of algorithms like RSSD (Jeong et al., 2017),

YOLO v2 (Redmon and Farhadi, 2017), YOLO v3 (Redmon and

Farhadi, 2018), YOLO v4 (Bochkovskiy et al., 2020), YOLO v5

(YOLOv5, 2021), YOLOX (Ge et al., 2021), YOLOV6 (Li et al.,

2022), YOLOV7 (Wang et al., 2023) and YOLOV8 (Terven and

Cordova-Esparza, 2023).

Algorithms based on candidate regions generally exhibit slower

detection speeds and do not meet real-time detection requirements,

but they achieve good detection accuracy. On the other hand,

regression-based algorithms offer faster detection speeds and

better real-time performance, although their detection accuracy is
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poorer compared to two-stage algorithms. Currently, extensive

research has led to the proposal of various object detection

algorithms. Moving forward, algorithm development should

prioritize lightweight object detection algorithms that strike a

balance between parallel detection speed and accuracy.
2.4 Attention mechanism

Since the data used in this study consists of tomato disease data

obtained under greenhouse conditions, it is susceptible to

environmental factors and may contain significant amounts of

noise during the identification process. This noise information

can also propagate through the network model. With the increase

in the number of network layers during the learning process, there

is a corresponding amplification of noise information within the

feature map, ultimately impacting the model negatively (Zhu et al.,

2021). To address this issue, the model incorporates an attention

mechanism, which serves as a solution. It is a critical concept in

neural networks that was initially applied in machine translation

and has now gained wide usage in computer vision. The attention

mechanism can be intuitively explained through the human visual

mechanism. Its fundamental idea is to filter out irrelevant

information and prioritize key information similar to human

vision. By adjusting the weights of each channel, the attention

mechanism assists the model in capturing more useful semantic

information for the recognition task. As a result, it enhances

valuable information, suppresses the weight of noise and other

interfering elements, and mitigates their negative impact on

recognition. Moreover, The incorporation of the attention

mechanism enhances the overall performance and effectiveness by

directing more attention to effective features, ultimately enhancing

the model’s recognition performance (Ju et al., 2021). Yohanandan

et al. (2018) (Yohanandan et al., 2018) pointed out that the visual

attention mechanism closely aligns with human visual cognition.

Consequently, leveraging the visual attention mechanism in

computer vision offers significant benefits for various tasks. In

recent years, numerous researchers have effectively improved key

feature extraction capabilities in object detection networks by

incorporating visual attention mechanisms. It has been

demonstrated that attention mechanisms are an excellent choice

for enhancing model performance.

The object detection technology based on the YOLO algorithm

has demonstrated significant advancements in image recognition in

recent years. However, certain challenges still exist when it comes to

object detection in plant disease images. Considering the issues

prevalent in detecting tomato brown rot images within complex

scenes, this study proposes the utilization of the YOLOv5 network

with a Hybrid attention module for tomato brown rot detection. By

integrating a Hybrid attention module into the feature prediction

structure of YOLOv5, the capability to learn features of diseased

objects amidst complex backgrounds is enhanced. Additionally, the

loss function is improved considering the characteristics of the

disease spots, thereby improving the detection performance of

diseased objects within the image. Finally, a series of comparative

tests are carried out to assess the efficacy of the algorithm.
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3 Materials

3.1 Dataset collection

For this study, tomato disease images were captured at the

greenhouse tomato experimental base of our laboratory to create a

dataset of tomato disease images. The dataset comprises two

categories of images: healthy tomato leaves and tomato brown rot

images. To account for various weather conditions in natural

settings, images were acquired under different scenarios, including

sunny and cloudy days, morning and afternoon sessions, and both

normal photography and backlight photography. The image

acquisition process encompassed the early, middle, and late stages

of the disease.

The collection device used in this study is a remote-operated

patrol robot equipped with a high-definition camera (HS-CQAI-

1080, 4 megapixels). This camera enables the capture of 360-view

greenhouse plant images and offers various functionalities such as

zoom, dimming, zoom-in and zoom-out capabilities, as well as

preset position settings. The robot has a maximum horizontal

moving distance of 27 meters and a vertical moving distance of

1.5 meters. It allows for the collection of high-definition images of

various types of diseases affecting tomato. The main goal of the data

collection process is to examine and capture clear images of tomato

disease. Therefore, the collected images predominantly feature

lesion region, which are positioned at the center of the images.

This study involves a significant volume of images depicting

tomato disease, which were acquired over a considerable time span.

A total of 8,956 tomato images were collected in 4 cycles. After

excluding highly blurry samples, 7,029 samples were retained,

forming a comprehensive tomato diease image database for

training and testing purposes in the context of tomato brown rot.

This dataset consisted of 3,968 healthy tomato leaves and 3,061

tomato brown rot images. Some samples are shown in Figure 1.

To augment the sample set specifically for tomato brown rot, an

additional 871 images were acquired through the implementation of

a web crawler technique, yielding a cumulative count of 3,932

tomato brown rot sample images. The dataset was divided into

three sets, namely the training set, validation set, and test set, in a

ratio of 6:2:2. Notably, the test set was not subjected to data

augmentation using the web crawler approach, and therefore, the

original images were selected for the test set.
3.2 Data annotation

Supervised training is required for the convolutional neural

network. Since images themselves lack labels and semantics, they

need to be annotated for training purposes. In this study,

professional technicians performed a thorough comparison and

confirmation process. The annotation tool, LabelImg, was utilized

to label the tomato brown rot images, distinguishing between

healthy leaves and those affected by brown rot, as seen in

Figure 2. Following the annotation process, an XML file was

generated for each tomato disease image.
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3.3 Data enhancement

During the training of the tomato brown rot detection model,

an issue arose due to the excessive number of model layers. The

model tended to overlearn the details within the training data,

resulting in subpar generalization capabilities and a propensity for

overfitting. To tackle this issue, an image preprocessing method was

employed to expand the training set and increase the sample size

through random transformations. This approach aimed to enhance

the model’s generalization ability.

By applying these methods, the original training and

verification datasets were expanded by a factor of 5, resulting in a

total of 31,605 images. Importantly, the original annotations

remained valid throughout the image augmentation process.

Additionally, The dimensions of the images analyzed in this study
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were scaled to 224 × 224 pixels. Table 1 presents the distribution of

the tomato disease image database.
4 Methods

4.1 YOLOv5

YOLOv5 (You Only Look Once) is one of the more advanced

and mature target detection algorithms, with excellent performance

in detection accuracy and speed, and more flexible network

deployment.YOLOv5 has five versions, n, s, m, 1, x, with certain

differences in accuracy, speed, network size, etc., as shown in

Table 2, which shows that: under the condition of increasing a

smaller number of parameters (Params) and computation (FLOPs),
FIGURE 1

Partial Samples of the Self built Dataset.
FIGURE 2

Annotation interface.
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the accuracy of s is greatly improved compared with n and the speed

remains unchanged, although the accuracy of m, 1, x is improved

compared with s, but the parameters and computation volume

(FLOPs) are increased. As shown in Table 1, it can be seen that:

under the condition of increasing the number of parameters

(Params) and the amount of computation (FLOPs), the accuracy

of s is greatly improved compared to n and the speed remains

unchanged, although the accuracy of m, 1, x is improved compared

to s, the parameters and the amount of computation are greatly

increased, therefore the YOLOv5s model is selected as the basis.

YOLOv5s combines various computer vision technologies into

a small network model with fast computation speed. Refer to

Figure 3 for an illustration of the network structure.
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The main reasons behind the strong achievement of YOLOv5s

are as follows:
1. Input: Mosaic data augmentation is employed, which involves

combining images through random scaling, random

cropping, and random arrangement. This technique

enhances the diversity of the dataset. Additionally, adaptive

anchor box calculation is employed to ascertain the ideal size

of the bounding box by means of clustering. This approach

contributes to improved detection speed.

2. Backbone. The YOLOv5s network model utilizes several

components in its backbone architecture, including Focus

(Lin et al., 2017b), CSP (Wang et al., 2020) and SPP (He

et al., 2015). The Focus module performs a slicing operation

that expands the feature dimension during the conversion

from the input image to the feature map. CSP improves the

network’s learning ability while reducing memory usage. In

the YOLOv5s network, ordinary images with dimensions of

3 * 608 * 608 are initially input into the network. The size of

the feature map is determined after undergoing a single

slicing operation using the Focus module and becomes 12 *

304 * 304. Subsequently, it is transformed into a feature

map of dimensions 32 * 304 * 304 through a regular

convolution operation involving 32 convolution cores.
TABLE 1 Detailed information of samples.

Class
Image count
prior to data
augmentation

Image count
following data
augmentation

Number
of images
for test

Tomato
brown
rot

3932 16516 786

Healthy 3968 16668 793

Total 7900 33184 1579
TABLE 2 Different versions of YOLOv5.

Versions mAP0.5/% Speed/ms Parameters size/106 Computational size/109

YOLOv5n 45.7 6.3 1.9 4.5

YOLOv5s 56.8 6.4 7.5 16.5

YOLOv5m 64.1 8.2 21.2 49

YOLOv5l 67.3 10.1 46.5 109.1
FIGURE 3

Network Structure of YOLOv5s.
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Fron
The SPP structure enables the network to handle images of

varying scales, expanding its processing capabilities.

3. Neck. The neck component of the YOLOv5s network model

consists of PANET (Liu et al., 2018). PANET extends the

feature learning capabilities of the network by introducing

additional information transmission paths based on FPN

(Lin et al., 2017a). This enrichment allows for a broader

range of feature learning. In contrast to the CSP structure, the

neck employs a different variant. In the YOLOv5s network

model, the CSP1_1 Structure and CSP1_3 Structure are

employed as the backbone network. Additionally, the neck

section integrates CSP2_1 to strengthen feature fusion.

4. Prediction. The prediction phase of object detection

encompasses several tasks, including prediction of

bounding boxes, computation of the loss function, and

application of non-maximum suppression. In terms of

bounding box prediction, the loss function has been

enhanced from CIOU (Complete IoU) loss to generalized

IoU (GIoU) loss. This modification improves the accuracy

of localization. During the post-processing stage of object

detection, when there is a high density of objects in certain

areas of the image, the weighted NMS (Non-Maximum

Suppression) method is employed to mitigate the impact of

redundant bounding boxes on network parameter updates.
Although YOLOv5s offers rapid recognition, adaptive anchor

boxes, and commendable precision and accuracy, it exhibits

limitations in its object feature extraction capability. The existing

feature fusion network primarily concentrates on high-level

semantic information, resulting in a bottleneck when detecting

small objects with inconspicuous features, such as tomato

diseases. In order to tackle this problem, our team has developed

an improved approach that fully extracts and leverages object

features. This approach aims to augment the model’s detection

capability for small and complex objects like tomato brown rot,

ultimately yielding improved detection results.
4.2 Hybrid attention module

The original algorithm treats all image regions with equal

attention, which renders the network insensitive to feature
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discrepancies and hinders the extraction of features from small

objects in the presence of complex backgrounds. To tackle this

concern, the present study introduces a novel methodology, the

introduction of a Hybrid attention mechanism. In scenes with

intricate backgrounds and numerous small objects, the

significance of various channels and spaces is simultaneously

emphasized with the aim of improving the extraction capacity of

features related to smaller objects. The configuration of the Hybrid

attention feature augmentation module is depicted in Figure 4. The

ordering of the attention modules aligns with the conclusions

drawn from Hu et al (Jie et al., 2017) and Woo et al. (2018).

The Hybrid attention mechanism is an effective module

designed to operate in two dimensions: channel and space. It

achieves feature adaptive learning by multiplying the feature map

with the attention map, the two are combined together. The Hybrid

attention mechanism serves as a lightweight and versatile module

capable of enhancing network representation without significantly

increasing network parameters.

The main focus of the channel attention module lies in

highlighting the channel-related details present in the feature

map. By utilizing maximum pooling and average pooling, The

spatial dimension of the feature map is compressed into a

condensed representation consisting of two descriptive values.

Subsequently, a shared network comprising hidden layers of

multilayer perceptrons computes a channel attention map.

In contrast, the positional information of object features is the

primary focus of the spatial attention module. Using maximum

pooling and average pooling, two feature descriptions are obtained.

These descriptions are then combined through a joining operation,

Afterwards, a conventional convolution operation is employed to

produce a spatial attention map.

Let F(i, j, z) ∈ RH�W�C represent the feature map input to the

Hybrid attention module, where H denotes the length of the feature

map,W represents the width of the feature map, and C indicates the

channel count in the input feature map. The indices i, j, and z lie

within the ranges i ∈ ½1,H�,   j ∈ ½1,W�, z ∈ ½1,C�, respectively.
Within the channel attention module, the input features

undergo spatial dimension compression using both mean value

pooling and maximum pooling layers. These operations aim to

emphasize crucial information within the channel domain.

Subsequently, the compressed feature map is fed into the

perception layer. Finally, the outputs of the two feature maps are
FIGURE 4

Hybrid attention module.
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superimposed and passed through an activation function, yielding

the channel attention weightW1 ∈ R1�1�C , as illustrated in formula

(1).

W1 = s fMLP ATavg F(i, j)ð Þ� �� �
⊕ fMLP ATmax F(i, j)ð Þð Þ� �

(1)

In the aforementioned formula, s represents the sigmoid

activation function, and ⊕ denotes the addition of corresponding

elements. The terms ATavg and ATmax correspond to the mean value

pooling layer and maximum pooling layer, respectively, as depicted

in formulas (2) and (3).

ATavg F(i, j)ð Þ = 1
H �WoH

i=1oW
j=1F(i, j) (2)

ATmax F(i, j)ð Þ = argmax oH
i=1oW

j=1F(i, j)
� �

(3)

The term fMLP refers to a multi-layer perceptron that consists of

an adaptive convolution layer f1×m and ReLU activation function, as

illustrated in formula (4).

fMLP = ReLU f 1�1�m(A)
� �

(4)

In the aforementioned formula, A represents the feature matrix

that is input into fMLP. The term f1×1×mdenotes a one-dimensional

convolution composed of m parameters. The relationship between

m and the number of feature channels C is depicted in formula (5).

m =
log2 (C)

k
+
b
k

����
����
Odd

(5)

Since the channel dimension C is usually a multiple of 2, fMLP is

utilized to map the non-linear relationship between the convolution

kernel size and the number of feature channels C. The value of m

can be adjusted flexibly by modifying parameters b and k. If m is a

non-integer, an odd number closest to m is chosen. This ensures

that the anchor point of the convolution core is positioned in the

middle, facilitating subsequent sliding convolution and avoiding

location offset. In comparison to the fully connected layer, fMLP

significantly reduces the model parameters while preserving the

ability to capture interaction information between channels, thus

minimizing the speed impact on the original module.

The output features of the channel attention module are

denoted as FC ∈ RH�W�C , as shown in formula (6).

FC = W1 � F(i, j, z) (6)

In the spatial attention module, the input feature map undergoes

compression in the channel domain through mean value pooling and

maximum pooling layers, respectively. This compression enhances

the distinction between background and objects on the spatial

domain. Subsequently, the compressed feature map is reassembled

in the channel domain. Finally, the convolution layer, f 7�7
con , adjusts

the channel depth and feeds it into the activation function to obtain

the spatial attention weight,W2 ∈ RH�W�1, as shown in formula (7).

W2 = s f 7�7
con ATavg FC(z)ð Þ� �� �

⊕ f 7�7
con ATmax FC(z)ð Þð Þ� �

(7)
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In the aforementioned formula, f 7�7
con represents the convolution

kernel with a size of 7×7.

Both attention modules utilize mean value pooling and

maximum pooling along the channel axis. Mean value pooling

emphasizes background information on the feature map, whereas

maximum pooling provides feedback to the pixel point that exhibits

the highest response in the feature map, thereby highlighting object

information in the image. Consequently, with the incorporation of

these two pooling layers, the network becomes more sensitive to

distinguishing objects from the background in the image.

The output features of the spatial attention module are denoted

as FS ∈ RH�W�C , as shown in formula (8).

FS = W2 � FC (8)

Finally, in YOLOv5s, FS is utilized to predict the location of

tomato disease objects and strengthens the network’s effectiveness

to learn about disease objects by selecting and weighting the

transmitted features.

In Figure 5, we present the improved network architecture,

featuring the integration of the Hybrid attention module just before

the prediction component of YOLOv5s. This alteration empowers

the network to make object predictions using the global attention

map created by the attention module. Given that the original

YOLOv5s network incorporates numerous residual links in its

feature extraction section, it’s essential to replace all of these

residual links with the attention module.
4.3 The improved loss function

To enhance the accuracy of model positioning, the bounding box

loss function in YOLOv5s incorporates GIOU_LOSS. This ensures

that even when the predicted box and the real box do not intersect,

GIOU_LOSS can predict their distance, overcoming the limitations

of IOU_LOSS. However, the GIOU_LOSS algorithm encounters an

issue where the position of the prediction box cannot be determined if

it is entirely contained within the true box (i.e., A∩B=B).
Therefore, this study examines the influence of the center point

distance and aspect ratio of detection and labeling bounding boxes on

the basis of the overlapping area. For object detection tasks, the

regression loss function used is CIOU_LOSS. CIOU_LOSS considers

the intersection area and distance between the central points of the

predicted box and the object box. In the event that the object box

encloses the prediction box, the separation between the two boxes is

directly measured. It also considers the center point distance of the

bounding box and the scale information of the width-height ratio of

the bounding box. Furthermore, the ratio between the length and

width of the prediction box and the object box is taken into

consideration to improve the quality of the bounding regression

result. Figure 6 illustrates the schematic diagram of CIOU.

Let’s assume that the diagonal distance of the minimum

bounding rectangle C is represented by Distance1, and the

distance between the center point of the object’s true box and the

prediction box is represented by Distance2. The loss function used
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in this study is CIOU_LOSS, as shown in formula (9).

CIOULoss = 1 − CIOU = 1 − IOU −
Distance22
Distance21

−
g 2

(1 − IOU) + g

	 

(9)

In the above-mentioned formula, g is a parameter that measures

the consistency of the aspect ratio of the object prediction box. It is

calculated as shown in formula (10).

g =
4
p2 arctan

wgt

hgt
− arctan

wp

hp

	 
2

(10)

In the above-mentioned formula, wgt and hgt represent the

width and height of the object bounding box, while wp and hp

represent the width and height of the prediction bounding box.
5 Experimental design

5.1 Experimental operation environment

The experimental setup for this study utilized the following

components: PaddlePaddle 2.4.0 as the deep learning framework, an

Intel Core i7 8700 K CPU, 32 GB of memory, and an NVIDIA
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GeForce GTX 1070 GPU. The programming language employed

was Python.
5.2 Evaluating indicator

The performance of the enhanced YOLOv5 algorithm is

assessed using several evaluation indicators including average

accuracy (AP), mean Average Precision (mAP), F1 score, and

detection rate. AP represents the average accuracy across different

recall rates, while mAP is the average sum of AP values. The F1

score is a measure of the harmonic mean between accuracy and

recall. Additionally, the detection rate is calculated as the number of

frames per second (FPS) that the model processes, reflecting both

the time complexity and the size of the model’s parameters.

AP, mAP, and F1 scores are expressed as shown in formular

(11), (12) and (13), respectively.

AP = ∫10 P(R)d(R) (11)

mAP = o
C
k=0APk
C

(12)

F1 =
2PR
P + R

(13)

In the above-mentioned formula, oC
k=0APk represents the

average accuracy of each category, where C is the total number of

categories. P (Precision) represents the accuracy, and R (Recall)

represents the recall rate. The formulas for P and R are shown as

follows:

P =
TP

TP + FP
(14)
FIGURE 6

CIOU schematic diagram.
FIGURE 5

The improved network structure.
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R =
TP

TP + FN
(15)

In the above-mentioned formula, in the case of detecting

Tomato Brown Rot disease, TP (True Positive) indicates the

count of accurately identified instances, FP (False Positive)

represents the count of incorrectly identified instances, and FN

(False Negative) corresponds to the count of undetected instances.
5.3 Model training

During the model training stage, we utilized an attenuation

coefficient of 0.0005, conducted 10,000 iterations, and initialized the

learning rate at 0.001. At the 2,000th and 3,000th iterations, we

adjusted the learning rate to 0.0001 and 0.00001, respectively.

Convergence was achieved after approximately 3,000 iterations, as

illustrated in Figure 7, depicting the loss function and accuracy.

Based on the performance evaluation results depicted in

Figure 5, it can be concluded that the enhanced YOLOv5 model

exhibits favorable outcomes during the training phase.
6 Analysis of experimental results

6.1 Qualitative analysis

To ensure a comprehensive assessment of the algorithm’s

generalization capabilities and avoid biased conclusions from a

single training-validation-test split, we employ multifold cross-

validation. Figure 8 illustrates the test results, revealing the

model’s effectiveness in real-world scenarios. The image

sequences in Figure 8 display the detection results at early,

middle, and late stages of tomato brown rot. More detailed

experimental results can be found in Table 3.

Based on the aforementioned results, the enhanced object

detection algorithm utilizing YOLOv5 achieves a detection
Frontiers in Plant Science 1029
accuracy of 93.2% for tomato brown rot disease and 96.5% for

healthy instances, respectively. Additionally, the processing speed

reaches 112 FPS. These results demonstrate that the proposed

model accurately detects tomato brown rot with excellent efficacy.
6.2 Quantitative analysis

To gauge the effectiveness of the enhanced YOLOv5s algorithm,

we conducted a comparative analysis against widely used object

detection algorithms, including Faster RCNN, FCOS, YOLOX,

EfficientDet, YOLOv4-tiny, and YOLOv5s. We ensured

uniformity in the training platform, configuration details, and

dataset throughout all experiments. Each algorithm was trained

and applied to detect the same set of images, enabling a

comprehensive performance evaluation. The outcomes of this

comparative analysis are presented in Table 4.

Table 4 clearly illustrates that Faster RCNN falls short in all

parameters, especially with extended inference time and a lower

frame rate, making it unsuitable for deployment on edge devices.

On the other hand, YOLOv5s stands out as one of the most favored

target detection algorithms, striking a commendable balance

between accuracy and speed.

In our study, we’ve harnessed the proposed method, which

outperforms other algorithms. It enhances both average accuracy

and detection speed, surpassing the original YOLOv5s algorithm by

4.8% and the Faster R-CNN algorithm by 4.3%. While YOLOX

boasts an impressive 119 frames per second (FPS), which slightly

exceeds our method’s 112 FPS, it sacrifices detection accuracy due

to its limited capability to detect small targets. This improvement in

detection accuracy primarily results from the introduction of the

hybrid attention module, enhancing feature learning in the disease

target region, and utilizing CIoU as the loss function for edge

regression, which elevates edge regression accuracy.

As a result, our enhanced algorithm excels in the complex

detection of tomato brown rot. The comprehensive results highlight

that, compared to other advanced algorithms, our method strikes a

superior balance between detection accuracy and speed in the task

of tomato brown rot detection, meeting the real-time detection

requirements of edge-end devices. Clearly, our method exhibits

distinct advantages over other detection models, firmly aligning

with the needs of online tomato brown rot detection tasks.
6.3 Ablation experimental analysis

In order to comprehensively assess the effectiveness of the

proposed methodology, an extensive experimental analysis was

conducted. These experiments aimed to assess how different

improvement modules impact the detection performance. The

model’s performance was evaluated based on two key aspects: the

precision of object detection and the rate of detection. The results of

these comparisons are provided in Table 5.

Our results highlight the substantial enhancement in model

detection accuracy achieved by incorporating the Hybrid attention

module, marking a notable increase of 3.4%. This improvement
FIGURE 7

Performance Evaluation of Model Training Process.
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comes with minimal impact on detection speed, with only a

marginal decrease of 6 frames per second. These findings

underscore the effectiveness of the proposed Hybrid attention

module in judiciously assigning network learning weight to

object-rich areas.

Furthermore, through the optimization of the loss function, we

observe a further 3.7% increase in detection accuracy while

maintaining consistent detection speed. This underlines the

success of the proposed loss function in prioritizing high-score

prediction bounding boxes and diminishing the influence of

redundant bounding boxes during subsequent screening.
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Considering the assessment of model accuracy and speed, it is

evident that the proposed model strikes a commendable balance

between detection precision and efficiency. This makes it well-suited

for deployment on resource-constrained embedded systems.
7 Application prospect

The model developed in this study demonstrates remarkable

accuracy and holds profound significance in several key areas. It

contributes to the formulation of effective disease prevention
TABLE 3 Detection results using the proposed algorithm.

Class AP/% Precision/% Recall/% FPS

Brown rot 93.2 93.5 92.7 112

Healthy 96.5 96.6 95.8 112
frontier
FIGURE 8

The visual representation of the detection approach in this study.
TABLE 4 Detection outcomes obtained from diverse algorithms.

Algorithms Backbone mAP(%) FPS(Frame/second)

Faster R-CNN ResNet50 90.3 8

FCOS ResNet101 85.7 16

YOLOX CSPDarkNet53 86.9 119

EfficientDet EfficientNet-B2 87.8 44

YOLOv4-tiny DarkNet53 88.7 98

YOLOv5s CSPDarkNet53 89.8 118

The proposed algorithm CSPDarkNet53 94.6 112
TABLE 5 Results of ablation experiments on tomato brown rot disease object detection.

Strategies Hybrid attention mechanism The improved loss function mAP(%) FPS(Frame/second)

1 × × 89.8 118

2 √ × 93.2 112

3 × √ 93.5 119

4 √ √ 94.6 112
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strategies, improves tomato yield and quality, reduces the cost of

on-site diagnosis of tomato diseases, and offers a scientific basis for

the creation of intelligent pesticide spray robots.

The results of this study readily translate into real-time disease

identification, facilitating precise prevention and control measures while

minimizing economic losses caused by diseases. We have already

established the infrastructure for the Tomato Greenhouse Internet of

Things equipment, as shown in Figure 9. This infrastructure provides a

strong foundation for the future implementation of an integrated

system for the detection and prevention of tomato diseases through

intelligent control. Furthermore, it sets the stage for ongoing disease

inspection and monitoring within greenhouses, employing continuous

video surveillance.
8 Conclusions and future directions

8.1 Conclusions

In this study, we harnessed a neural network model for the

precise detection and localization of tomato brown rot disease. We

introduced a novel hybrid attention module into the feature

prediction structure of YOLOv5, while refining the loss function.

Our experimental findings unequivocally confirm the efficacy of our

proposed approach. Notably, our method outperforms other

cutting-edge object detection algorithms when it comes to

identifying tomato brown rot in a greenhouse environment.
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While it’s true that our algorithm’s detection speed is marginally

slower than the original YOLOv5, this trade-off is well-justified by its

superior average accuracy, surpassing both the original YOLOv5 and

faster RCNN algorithms. The algorithm we’ve developed here is

eminently practical and can be seamlessly integrated into tomato

disease detection systems. It empowers precise, real-time disease

identification, particularly beneficial for vegetable growers and

individuals who lack comprehensive disease knowledge. This, in

turn, facilitates the timely implementation of effective preventive and

control measures, thereby minimizing economic losses.

8.2 Future directions

This study introduced a tomato brown rot detection algorithm,

bolstering the accuracy of disease identification. While progress has

been made, several areas warrant further exploration and

resolution. Future research can focus on:
1. Enhancing CNN Structures: Investigate and optimize

convolutional neural network (CNN) structures,

continually innovating and incorporating high-capacity

models for improved disease detection accuracy.

2. Early Disease Recognition: Develop recognition algorithms

and models for early disease identification, especially in

complex backgrounds. This research aims to boost the

efficiency and precision of tomato brown rot disease

detection, enabling timely disease prevention and control.
FIGURE 9

Tomato Greenhouse Internet of Things Equipment.
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Fron
3. Federated Learning Integration: Explore the potential of

integrating federated learning into our research to

further enhance disease detection results, ultimately

providing more effective tools for disease identification in

agriculture.
By pursuing these research directions, we can advance the field

of tomato disease detection, contributing to comprehensive and

effective disease management.
Data availability statement

The dataset and code in this study can be accessed by contacting

the corresponding author.
Author contributions

JL: Funding acquisition, Methodology, Software, Validation,

Visualization, Writing – original draft, Writing – review & editing.

XW: Funding acquisition, Conceptualization, Investigation, Software,

Writing – original draft, Writing – review & editing. QZ: Writing –

review & editing. WM: Writing – review & editing.
tiers in Plant Science 1332
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The present

study receives support from the Shandong Province Natural Science

Foundation (Grant No. ZR2021QC173 and ZR2023MF048), Key

R&D Plan of Shandong Province (Soft Science Project) with project

number 2023RKY02013.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Agarwal, M., Gupta, S. K., and Biswas, K. K. (2020). Development of efficient cnn
model for tomato crop disease identification. Sustainable Computing: Informatics and
Systems 28.
Aggarwal, M., Khullar, V., Goyal, N., Alammari, A., Albahar, M. A., and Singh, A.

(2023). Lightweight federated learning for rice leaf disease classification using non
independent and identically distributed images. Sustainability 15 (16), 12149. doi:
10.3390/su151612149
Atila, M., Uar, M., Akyol, K., and Uar, E. (2021). Plant leaf disease classification using

efficientnet deep learning model. Ecol. Inf. 61, 101182. doi: 10.1016/j.ecoinf.2020.101182
Bochkovskiy, A., Wang, C. Y., and Liao, H. (2020). Yolov4: optimal speed and

accuracy of object detection.

Bollis, E., Pedrini, H., and Avila, S. (2020). Weakly supervised learning guided by
activation mapping applied to a novel citrus pest benchmark. IEEE. doi: 10.1109/
CVPRW50498.2020.00043

Chen, J., Chen, J., Zhang, D., Sun, Y., and Nanehkaran, Y. A. (2020). ). Using deep
transfer learning for image-based plant disease identification. Comput. Electron. Agric.
173, 105393.

Demir, K., and Vedat, T. (2021). Drone-assisted automated plant diseases
identification using spiking deep conventional neural learning. Ai. Commun. 1.

Gautam, V., Trivedi, N. K., Singh, A., Mohamed, H. G., Noya, I. D., Kaur, P., et al.
(2022). A transfer learning-based artificial intelligence model for leaf disease
assessment. Sustainability 14 (20), 13610.

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). Yolox: Exceeding yolo series in
2021. arXiv. preprint. arXiv:2107.08430.

Girshick, R., Donahue, J., Darrelt,, et al. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation[C]//Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 580–587.

He, X., Fang, K., Qiao, B., Zhu, X., and Chen, Y. (2021). Watermelon disease detection
based on deep learning. Int. J. Pattern Recognition. Artif. Intell. 35 (05), 96–107.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask RCNN. IEEE
transactions on pattern analysis & Machine intelligence. IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. Pattern Anal. Mach. Intell. IEEE Trans.
37 (9), 1904–1916. doi: 10.1109/TPAMI.2015.2389824
Horvath, D. M. (2018). Putting science into action to address threats to food security
caused by crop diseases. Outlooks. Pest Manage. doi: 10.1564/v29_jun_07

Jain, S., and Gour, M. (2021). Tomato plant disease detection using transfer learning
with c-gan synthetic images. Comput. Electron. Agric. 187 (2021).

Jeong, J., Park, H., and Kwak, N. (2017). Enhancement of SSD by concatenating
feature maps for object detection. . Br. Mach. Vision Conf. 2017. doi: 10.5244/C.31.76

Jie, H., Li, S., Gang, S., and Albanie, S. (2017). Squeeze-and-excitation networks. IEEE
Trans. Pattern Anal. Mach. Intell. PP (99).

Joshi, B. M., and Bhavsar, H. (2020). Plant leaf disease detection and control: a
survey. J. Inf. Optimization. Sci. 41 (2), 475–487. doi: 10.1080/02522667.2020.1734295

Ju, M., Luo, J., Wang, Z., and Luo, H. (2021). Adaptive feature fusion with attention
mechanism for multi-scale target detection. Neural Computing. Appl. 33 (7). doi:
10.1007/s00521-020-05150-9

Lee, S., Lin, S., and Chen, S. (2020). Identification of tea foliar diseases and pest
damage under practical field conditions using a convolutional neural network. Plant
Pathol. 69. doi: 10.1111/ppa.13251

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., et al. (2022). YOLOv6: A single-
stage object detection framework for industrial applications. arXiv. preprint.
arXiv:2209.02976.

Liaquat, F., Liu, Q., Arif, S., Shah, I. H., and Munis, M. (2019). First report of brown
rot caused by rhizopus arrhizus on tomato in Pakistan. J. Plant Pathol. 101 (4). doi:
10.1007/s42161-019-00320-8

Lin, T. Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017a).
Feature pyramid networks for object detection. 2017 IEEE conference on computer
vision and pattern recognition (CVPR). IEEE Comput. Soc. doi: 10.1109/
CVPR.2017.106

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017b). Focal loss for dense
object detection. IEEE transactions on pattern analysis & Machine intelligence (Vol.PP,
pp.2999-3007). IEEE. doi: 10.1109/ICCV.2017.324

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., et al. (2016). “SSD:
Single Shot MultiBox Detector,” in European Conference on Computer Vision (Cham:
Springer).
frontiersin.org

https://doi.org/10.3390/su151612149
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.1109/CVPRW50498.2020.00043
https://doi.org/10.1109/CVPRW50498.2020.00043
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1564/v29_jun_07
https://doi.org/10.5244/C.31.76
https://doi.org/10.1080/02522667.2020.1734295
https://doi.org/10.1007/s00521-020-05150-9
https://doi.org/10.1111/ppa.13251
https://doi.org/10.1007/s42161-019-00320-8
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.3389/fpls.2023.1289464
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1289464
Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path aggregation network for instance
segmentation. 2018. IEEE/CVF. Conf. Comput. Vision Pattern Recognition. (CVPR).
doi: 10.1109/CVPR.2018.00913

Mensah, P. K., Weyori, B. A., and Ayidzoe, M. A. (2020). Gabor capsule network for
plant disease detection. Int. J. Adv. Comput. Sci. Appl. 11 (10), 388–395.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
unified, real-time object detection. Computer vision & Pattern recognition. IEEE. doi:
10.1109/CVPR.2016.91

Redmon, J., and Farhadi, (2018). Yolov3: an incremental improvement. arXiv. e-prints.

Redmon, J., and Farhadi, A. (2017). YOLO9000: better, faster, stronger. IEEE
conference on computer vision & Pattern recognition (pp.6517-6525). IEEE. doi:
10.1109/CVPR.2017.690

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster RCNN: towards real-time
object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39 (6), 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Review, B. (1991). Compendium of tomato diseases. Mycologia 84 (1), 133.

Temniranrat, P., Kiratiratanapruk, K., Kitvimonrat, A., Sinthupinyo, W., and
Patarapuwadol, S. (2021). A system for automatic rice disease detection from rice paddy
images serviced via a chatbot. . Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106156

Terven, J., and Cordova-Esparza, D. (2023). A comprehensive review of YOLO:
From YOLOv1 to YOLOv8 and beyond. arXiv. preprint. arXiv:2304.00501.

Wang, C. Y., Bochkovskiy, A., and Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proc. IEEE/CVF. Conf.
Comput. Vision Pattern Recognition. pp, 7464–7475). doi: 10.1109/CVPR52729.2023.00721
Frontiers in Plant Science 1433
Wang, C. Y., Liao, H., Wu, Y. H., Chen, P. Y., and Yeh, I. H. (2020). CSPNet: A new
backbone that can enhance learning capability of CNN. 2020 IEEE/CVF conference on
computer vision and pattern recognition workshops (CVPRW). IEEE. doi: 10.1109/
CVPRW50498.2020.00203

Wang, D., Wang, J., Li, W., and Guan, P. (2021). T-CNN: Trilinear convolutional
neural networks model for visual detection of plant diseases. November.
2021.Computers. Electron. Agric. 190 (1), 106468. doi: 10.1016/j.compag.2021.106468

Woo, S., Park, J., Lee, J. Y., and Kweon, I. S. (2018). “CBAM: convolutional block
attention module,” in European conference on computer vision (Cham: Springer).

Wu, B., Liang, A., Zhang, H., Zhu, T., and Su, J. (2021). Application of conventional
uav-based high-throughput object detection to the early diagnosis of pine wilt disease
by deep learning. For. Ecol. Manage. 486 (2), 118986. doi: 10.1016/j.foreco.2021.118986

Yang, G., Chen, G., Li, C., Fu, J., and Liang, H. (2021). Convolutional rebalancing
network for the classification of large imbalanced rice pest and disease datasets in the
field. Front. Plant Sci. 12, 671134. doi: 10.3389/fpls.2021.671134

Yohanandan, S., Song, A., Dyer, A. G., and Tao, D. (2018). Saliency preservation in
low-resolution grayscale images. doi: 10.1007/978-3-030-01231-1_15

YOLOv5 (2021). Available at: https://github.com/ultralytics/yolov5.

Zhang, Y., Song, C., and Zhang, D. (2020). Deep learning-based object detection
improvement for tomato disease. IEEE Access PP (99), 1–1. doi: 10.1109/
ACCESS.2020.2982456

Zhu, H., Xie, C., Fei, Y., and Tao, H. (2021). Attention mechanisms in cnn-based
single image super-resolution: a brief review and a new perspective. Electronics 10 (10),
1187. doi: 10.3390/electronics10101187
frontiersin.org

https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.compag.2021.106156
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1016/j.compag.2021.106468
https://doi.org/10.1016/j.foreco.2021.118986
https://doi.org/10.3389/fpls.2021.671134
https://doi.org/10.1007/978-3-030-01231-1_15
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/ACCESS.2020.2982456
https://doi.org/10.1109/ACCESS.2020.2982456
https://doi.org/10.3390/electronics10101187
https://doi.org/10.3389/fpls.2023.1289464
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Dun Wang,
Northwest A&F University, China

REVIEWED BY

Olarik Surinta,
Mahasarakham University, Thailand
Guoxiong Zhou,
Central South University Forestry and
Technology, China

*CORRESPONDENCE

Wei Yao

YaoWei-hebau@hotmail.com

RECEIVED 31 October 2023
ACCEPTED 28 December 2023

PUBLISHED 30 January 2024

CITATION

Liu B, Wei S, Zhang F, Guo N, Fan H and
Yao W (2024) Tomato leaf disease
recognition based on multi-task
distillation learning.
Front. Plant Sci. 14:1330527.
doi: 10.3389/fpls.2023.1330527

COPYRIGHT

© 2024 Liu, Wei, Zhang, Guo, Fan and Yao.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 30 January 2024

DOI 10.3389/fpls.2023.1330527
Tomato leaf disease
recognition based on
multi-task distillation learning
Bo Liu1,2, Shusen Wei1,2, Fan Zhang1,2, Nawei Guo1,2,
Hongyu Fan1,2 and Wei Yao1,2*

1College of Information Science and Technology, Hebei Agricultural University, Baoding, China,
2Hebei Key Laboratory of Agricultural Big Data, Baoding, China
Introduction: Tomato leaf diseases can cause major yield and quality losses.

Computer vision techniques for automated disease recognition show promise

but face challenges like symptom variations, limited labeled data, and

model complexity.

Methods: Prior works explored hand-crafted and deep learning features for

tomato disease classification and multi-task severity prediction, but did not

sufficiently exploit the shared and unique knowledge between these tasks. We

present a novel multi-task distillation learning (MTDL) framework for

comprehensive diagnosis of tomato leaf diseases. It employs knowledge

disentanglement, mutual learning, and knowledge integration through a multi-

stage strategy to leverage the complementary nature of classification and

severity prediction.

Results: Experiments show our framework improves performance while

reducing model complexity. The MTDL-optimized EfficientNet outperforms

single-task ResNet101 in classification accuracy by 0.68% and severity

estimation by 1.52%, using only 9.46% of its parameters.

Discussion: The findings demonstrate the practical potential of our framework

for intelligent agriculture applications.
KEYWORDS

multi-task learning, knowledge distillation, tomato leaf diseases, disease classification,
severity prediction
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1 Introduction

Tomato is one of the most widely cultivated vegetables in the

world, with its versatility extending to various applications such as a

culinary ingredient (Kumar et al., 2022), an industrial raw material

(Botines ̧tean et al., 2015), a component in cosmetics (Septiyanti and

Meliana, 2020), and medicinal uses (Kumar et al., 2012). However,

tomato diseases can rapidly spread through a field if not identified

and managed in a timely manner, leading to substantial losses in

both yield and quality of the crop (Zhang et al., 2022). As symptoms

of many tomato diseases can appear on the leaves, leveraging

computer vision techniques for automated recognition of leaf

diseases has attracted widespread attention from researchers

(Boulent et al., 2019; Habib et al., 2020; Nanehkaran et al., 2020;

Roy and Bhaduri, 2021; Albahli and Nawaz, 2022; Harakannanavar

et al., 2022). Although these techniques effectively improve the

accuracy and speed of disease diagnosis, they also present

challenges. These include variations in disease symptoms and

lighting conditions (Zhang et al., 2018a), difficulty in collecting

enough disease samples (Zhang et al., 2021), varying levels of

disease severity (Wang et al., 2021), and limitations in computing

power (Bi et al., 2022). Such factors potentially influence the

applicability of the learning models.

Most of the computer vision-based leaf disease recognition

methods are mainly divided into two categories: hand-crafted

feature-based methods and deep learning-based methods.

Traditionally, hand-crafted features refer to the manual extraction

of specific features such as textures, colors, shapes, and sizes from

leaf images. These features are then used as input for training a

classifier to identify the presence of plant diseases. The utilization of

classical classifiers, such as support vector machines (SVM) (Cortes

and Vapnik, 1995) and random forests (RF) (Breiman, 2001), has

been instrumental in leaf disease identification, owing to their

robust nature in handling high-dimensional, noisy, and missing

data (Patil et al., 2017). Consequently, the research community has

significantly focused on developing improved methods for feature

extraction to enhance recognition performance. Mokhtar et al.

(2015) employed geometric features and histogram features for

classifying two tomato leaf viruses, achieving the highest accuracy of

91.5% using the Quadratic kernel function. Meenakshi et al. (2019)

improved plant leaf disease identification using exact Legendre

moments shape descriptors, with a high accuracy of 99.1% on

three tomato diseases (early and late blight and mosaic). In Rahman

et al. (2022), texture features from tomato leaf images were analyzed

using a gray level co-occurrence matrix (GLCM). In addition to

single-type features, hybrid features have been well-studied. Sharif

et al. (2018) proposed a hybrid method for automatic detection and

classification of six types of diseases in citrus plants, which used

color, texture, and geometric features combined in a codebook and

selected by PCA score, entropy, and skewness-based covariance

vector before being fed to a multi-class SVM. Similarly, Basavaiah

and Arlene Anthony (2020) recognized four main diseases in

tomato plants through the fusion of multiple features, including

color histograms, Hu Moments, Haralick, and local binary pattern,

resulting in 94% accuracy achieved by a RF classifier. In summary,

hand-crafted feature-based methods are highly valued for their
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simplicity and interpretability, as well as they have demonstrated

satisfactory performance on small to medium-sized datasets.

However, they struggle to scale up large and diverse datasets, and

fall short in coping with biases and noises in the data distribution,

leading to decreased accuracy and robustness in real-

world applications.

Recently, deep learning has revolutionized the field of computer

vision, resulting in significant improvements in detecting leaf

diseases (Sujatha et al., 2021; Shoaib et al., 2022). For instance, a

novel tomato leaf disease recognition framework was proposed,

which used binary Wavelet transform for image preprocessing to

remove noise, and both-channel residual attention network (B-

ARNet) for identification (Sujatha et al., 2021). Other types of

attention mechanisms are also incorporated to enhance the model’s

recognition capability. In Zhao et al. (2021), to adaptively

recalibrate channel-wise feature responses, a squeeze-and-

excitation (SE) module (Hu et al., 2018) is integrated into a

ResNet50 network (He et al., 2016), with an average identification

accuracy of 96.81% on the publicly available PlantVillage dataset

(Hughes et al., 2015).

Additionally, Bhujel et al. (2022) compared the performance

and computational complexity of different attention modules and

found that the convolutional block attention module (CBAM)

(Woo et al., 2018) was the most effective in enhancing

classification performance, resulting in an average accuracy of

99.69%. Despite the successes of these deep learning-based

methods, they face limitations such as the need for large amounts

of labeled data and substantial computational resources. To address

these challenges, researchers have proposed a series of strategies for

constructing lightweight networks, such as depthwise separable

convolutions (MobileNet (Howard et al., 2017)), channel shuffling

(ShuffleNet (Zhang et al., 2018a)), and a combination of network

scaling and architecture search (EfficientNet (Tan and Le, 2019)).

For example, Zeng et al. (2022) developed a lightweight CNNmodel

named LDSNet, which uses an improved dense dilated convolution

(IDDC) block and coordinated attention scale fusion (CASF)

mechanism to identify corn leaf diseases in complex backgrounds.

Similarly, Janarthan et al. (2022) utilized a simplified MobileNetV2

architecture and an empirical method for creating class prototypes,

requiring low processing power and storage space. Li et al. (2023)

explored a hybrid transformer-based architecture by integrating

shuffle-convolution and a lightweight transformer encoder. While

compact models achieve computational efficiency gains by reducing

the parameters, these gains may come at the cost of decreased

accuracy (Atila et al., 2021; Thai et al., 2023).

In addition to identifying the presence of a plant disease, it is

also crucial to estimate the severity of the disease, providing a

quantitative assessment for disease diagnosis (Ilyas et al., 2022; Ji

and Wu, 2022). The precise localization, size, and distribution of

infected regions in plant leaves can significantly enhance the

accuracy of disease classification, especially in field images with

complex backgrounds (Barbedo, 2019). Moreover, these factors are

vital for severity grading, disease progression monitoring, and

assessment of treatment efficacy. The process of estimating the

level of leaf diseases often involves two main steps: segmentation

and grading. Segmentation refers to the operation of separating
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infected regions from healthy areas of the leaf or plant. This can be

achieved through various methods such as morphological

operations (Gupta, 2022), k-means clustering and thresholding

(Karlekar and Seal, 2020; Singh et al., 2021), and deep learning-

based semantic segmentation (Wang et al., 2021; Liu et al., 2022;

Deng et al., 2023). Grading then assigns a numerical score or rating

to the severity of the disease, based on proportional area

measurement (Wu et al., 2022) or ordinal categories (Ozguven

and Adem, 2019; Pal and Kumar, 2023). Considering the

complementary nature of disease classification and severity

estimation, there is an emerging trend toward multi-task learning.

This approach aims to jointly optimize both tasks by leveraging

shared representations and correlations between them. For

example, Ji et al. (2020) presented a set of binary relevance-CNNs

that can simultaneously recognize 7 crop species, classify 10 crop

diseases (including healthy), and estimate 3 disease severity levels,

achieving the best test accuracy of 86.70% for recognition and

92.93% for severity estimation. Other techniques, such as

alternating training (Jiang et al., 2021) and weighting adjustment

(Wang et al., 2022), have been explored to enhance the accuracy of

the combined task. Although multi-task learning can lead to better

performance than individual tasks, it may also introduce increased

computational effort and suboptimal solutions due to the difficulty

in balancing tasks.

To address these challenges, we propose a novel multi-task

distillation learning framework for tomato leaf disease diagnosis

(MTDL). Unlike traditional distillation learning (Hinton et al.,

2015) that relies on one-to-one and one-way knowledge transfer

from a teacher model to a student model. Instead, our framework

considers tomato disease category identification and severity

prediction as a multi-task model that can be optimized

simultaneously, as well as two single-task models that can be

mutually informative. Accordingly, we develop a learning process

for knowledge decoupling and reorganization, facilitating the efficient

transfer of knowledge between the two tasks. Furthermore, this

process is designed to be integrated with deep networks of varying

complexity and architecture, making it adaptable to different disease

identification scenarios with diverse computational power

configurations and performance requirements.

Specifically, MTDL uses a multi-task model that contains

disease classification and severity estimation as the baseline. It

adopts a multi-stage learning strategy, including knowledge

disentanglement, single-task mutual learning, and knowledge

integrat ion , In this process , the goal of knowledge

disentanglement is to transfer the shared knowledge from the

original multi-task model to the corresponding single-task

models. This enables the specialization of task-specific models

and avoids negative transfer of knowledge between tasks. For

mutual learning between tasks, the goal is to fully exploit the

complementarity between different learning objectives. Finally,

through knowledge integration, the disentangled and mutually

learned knowledge components are re-combined and unified to

produce the refined high-quality multi-task model.

Furthermore, considering that multi-stage distillation learning

will lead to a dependency of the current student model on the

teacher model from the previous stage, we propose a decoupled
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teacher-free knowledge distillation (DTF-KD) strategy to simplify

the training process. DTF-KD introduces a virtual teacher,

replacing the traditional teacher model in the distillation process.

This approach allows for increased adaptability by applying

different learning intensities to target and non-target knowledge.

In the context of the classification problem addressed in this paper,

the target knowledge corresponds to the correct classification

assignment of the ground truth.

The main contributions of this paper are summarized

as follows:
1. We propose a novel multi-task distillation learning

(MTDL) framework for leaf disease identification. This

framework progressively decomposes and integrates the

inherent knowledge from two tasks: tomato disease

classification and severity prediction, through a

distillation process, thereby generating a robust multi-task

model for comprehensive disease diagnosis.

2. We propose a decoupled teacher-free knowledge

distillation (DTF-KD) method to simplify MTDL by

reducing the reliance on teacher models during the

learning process. A virtual teacher is introduced to guide

the learning process by providing separate instructions for

the correct class and non-correct classes.

3. The experimental results demonstrate that the proposed

framework effectively leverages the complementary

characteristics of tomato disease category identification

and severity prediction, reducing the model size while

improving the performance.
2 Materials and methods

2.1 Dataset

The dataset employed in this study is aggregated from three

distinct sources.The first source is drawn from the AI Challenger

2018 Crop Leaf Disease Challenge (Dataset AI Challenger, 2018),

encompassing 11 types of plants and 27 types of diseases. Some of

these diseases are further categorized into general and severe

degrees, resulting in a total of 61 categories. Specifically, the

dataset includes instances of leaf diseases for the following plants:

apple (2,765), grape (3,144), peach (2,146), potato (3,246), citrus

(4,577), pepper (1,929), strawberry (1,263), cherry (939), maize

(3,514), pumpkin (1,465), and tomato (11,610). For the purposes of

our study, we focus on the tomato subset. However, as the dataset

contains only three samples of Canker disease, we decide to exclude

this category from our analysis. The second source, the PlantDoc

dataset (Singh et al., 2020), consists of 2,598 data samples that

involve 13 types of plants and 27 categories (17 diseases, 11

healthy). These samples were mainly obtained from the internet

and manually annotated, with the tomato subset containing 8

categories. The third source is the Taiwan Tomato Disease dataset

(Huang and Chang, 2020), which is originally comprising 622

samples, was first employed in the study detailed in Thuseethan
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et al. (2022). In addition, it encompasses six distinct categories,

namely Bacterial Spotted (110), Leaf Mold (67), Gray Spot (84),

Health (106), Late Blight (98), and Powdery Mildew (157). We

choose this dataset for its diverse disease conditions and combine it

with larger datasets like AI Challenger 2018 and PlantDoc to further

enrich the diversity of our data. Figure 1 shows examples of different

tomato leaf diseases.
2.2 Data preprocessing

For the AI Challenger dataset, given the scarcity of data for the

canker disease category (only 3 instances), we excluded this data.

The dataset provided severity labels for most of the data, categorized

into three levels: healthy, moderate, and severe. In addition, we

supplemented the dataset with severity labels for the tomato spotted

wilt virus. For the PlantDoc dataset, due to the complexity of the

leaf background, we manually cropped the tomato leaf subset to

meet the needs of the disease identification task. Each image was

cropped to retain the main area of a single leaf while preserving

some background information from the plant. For the Taiwan

Tomato dataset, we used all the original data. For all three

datasets, we applied consistent severity labeling. Specifically, we

hired five agricultural experts to manually annotate the severity of

the disease. The final severity level was determined by a majority

vote. Table 1 summarizes the information about the three datasets

used in this study.

We divide the dataset into training, validation, and test sets in

an 8:1:1 ratio, ensuring a balanced and representative distribution

for each set. The division is performed randomly to maintain

fairness and diversity. Furthermore, we rigorously validate both

the results reported in the paper and the determination of

hyperparameters through 10-fold cross-validation.
2.3 Multi-task distillation framework

The proposed MTDL for tomato leaf disease diagnosis is

comprised of three components: two single-task models, one for

disease recognition and the other for severity prediction, and a

hybrid model that integrates these two tasks. As illustrated in

Figure 2, the MTDL pipeline enables mutual knowledge transfer
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between the two individual tasks, facilitating knowledge

disentanglement and integration to enhance performance. In

traditional distillation learning processes (Hinton et al., 2015), a

powerful teacher model transfer knowledge to a lightweight student

model. However, our MTDL framework emphasizes bidirectional

knowledge transfer between teacher and student models, allowing

for greater flexibility in their selection.
2.3.1 Problem formulation
Given a leaf disease dataset D = (xi, y

c
i , y

s
i )f gNi=1 containing N

images, where xi ∈ RC�H�W is the i-th leaf image with C, H, andW

denoting the number of channels, height, and width of the image,

respectively. Each image is labeled with two types of annotations:

yci ∈ 1, 2, · · ·,Kcf is the disease category label, with Kc being the

number of disease categories, and ysi ∈ 1, 2, · · ·,Ksf g is the disease

degree label, with Ks being the number of severity levels.

In MTDL, there are three basic tasks denoted as Tc for disease

category recognition, Ts for severity estimation, and Th for the

hybrid task that jointly performs Tc and Ts. As shown in Figure 2,

each task uses a standard ResNet50 (He et al., 2016) as the backbone

for feature extraction. In particular, the two single tasks Tc and Ts,

each uses a multi-layer perceptron (MLP) to output the logits of its

corresponding task, denoted as zci ∈  RKc and zsi ∈  RKs ,

respectively. For Th, two separate MLPs are used to perform two

tasks simultaneously on a shared backbone, and the output is

d e n o t e d a s zhi = ½zhci : zhsi � ∈  RKc+Ks , w h e r e zhci a n d zhsi
corresponding to the logits for the disease category and severity,

respectively. Usually, a softmax function is applied to the output of

each task to produce the predicted probabilities, pci ∈  RKc
, psi ∈

 RKs
and phi = ½phci : phsi � ∈  RKc+Ks , respectively. Guided by these

three basic tasks, MTDL employs a designed knowledge routing

mechanism to build a tomato disease diagnosis model. The process

begins with the distillation of multi-task knowledge from Th back to

the corresponding task models Tc and Ts (as shown in Figure 2A).

These two models then engage in mutual learning (as shown in

Figure 2B). Finally, the knowledge from these two models is

integrated to output an enhanced multi-task model, namely T 0
h

(as shown in Figure 2C). The detailed learning process is described

in the following sections, including, knowledge decomposition

(Section 2.3.2), mutual knowledge tranfer (Section 2.3.3), and

knowledge integration (Section 2.3.4).
FIGURE 1

Examples of tomato diseases from the datasets.
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2.3.2 Knowledge disentanglement
Multi-task learning has demonstrated its advantages in

leveraging shared information among related tasks to improve

performance on individual tasks. However, directly training a

multi-tasking model can be suboptimal, as the tasks may have

different levels of difficulty. For instance, the task of severity

estimation is more challenging than the leaf disease classification

task because it typically necessitates a finer analysis of the leaf and

disease spot attributes (Wang et al., 2017). Therefore, given a multi-

task model Th pre-trained on dataset D, as shown in Figure 2A, it is

reasonable to disentangle the shared knowledge and transfer it back

to the single-task models, i.e., Tc and Ts, using knowledge

distillation (Hinton et al., 2015). Specifically, when distilling

knowledge from Th to Tc, we first soften the probability phci by:
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qhci,j =
exp   phci,j =T

� �

ojexp (p
hc
i,j =T)

(1)

where T is the temperature hyperparameter that controls the

sharpness of qhci , p
hc
i,j is the j-th element of phci , and qhci,j denotes

the softened probability distribution of the j-th class for the i-th

input data. The formulation of the knowledge distillation process

from Th to Tc involves minimizing the loss function Lh→c, which is

defined as follows:

Lh→c =
1
No

N

i=1
LCE(p

c
i , y

c
i ) + LKD(p

c
i , q

hc
i )

h i
(2)

where  LCE is the cross-entropy loss, which measures the

dissimilarity between the predicted probability distribution pci and
TABLE 1 Summary of main datasets used in the study.

Dataset AIChallenger2018 PlantDoc Taiwan Total

Class Healthy Moderate Severe Healthy Moderate Severe Healthy Moderate Severe

Health 1381 120 106 1607

Late Blight 302 1267 10 29 16 82 1706

Leaf Mold 371 384 40 67 22 45 929

Early Blight 287 505 22 86 900

Septoria Leaf
Spot Fungus

481 922 23 141 1567

Gray Spot 25 59 84

Yellowing
Varicose Leaf

1616 2790 35 88 4529

Bacterial Spotted 47 27 15 56 29 81 255

Mosaic Virus 104 194 26 43 367

Spider
Mite Damage

619 310 929

Powdery Mildew 47 110 157

Total 1381 3827 6399 120 171 510 106 139 377 13030
fronti
B CA

FIGURE 2

Architecture of the multi-task distillation learning (MTDL). The MTDL framework uses a three-stage distillation process involving single-task models
Tc and Ts, and a multi-task model Th. Initially, knowledge from Th is transferred to the single-task models. Then, Tc and Tsshare knowledge. Finally,

their knowledge is integrated back into Th, creating an improved multi-task model T0
h. For simplicity, sample indices are omitted from the symbols in

the figure. Additionally, the temperature parameter T in KD is fixed at t during the learning process. (A) Knowledge Disentanglement, (B) Mutual
Knowledge Transfer, (C) Knowledge Integration.
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the one-hot ground-truth label vector yci for the single-task model

Tc. It can be written as shown in Equation 3:

LCE(p
c
i , y

c
i ) = −o

Kc

j=1
yci,jlog p

c
i,j (3)

And LKD, the knowledge distillation loss, which quantifies the

divergence between qhci and pci , is defined as shown in Equation 4:

LKD(p
c
i , q

hc
i ) =o

Kc

j=1
qhci,j log 

qhci,j
pci,j

(4)

Similar to Equation 2, we can define a loss function from

Th to Ts, denoted as Lh→s, which is given by:

Lh→s =
1
No

N

i=1
LCE(p

s
i , y

s
i) + LKD psi , q

hs
i

� �h i
(5)

where qhsi is the probability distribution obtained by softening the

severity prediction output phsi from Th (referred to in Equation 1),

and psi is the output from Ts.

2.3.3 Mutual knowledge transfer
Upon completing the knowledge disentanglement process,

the shared knowledge from the hybrid tasks Th is individually

transferred back to the corresponding subtasks, i.e., Tc for

disease species classification and Ts for disease severity

identification. We then employ mutual distillation to further

investigate the complementarity of the two subtasks. Here, we

assume that Tc and Ts use the same backbones, such as ResNet50.

Motivated by Komodakis and Zagoruyko (2016), as shown in

Figure 2B, the commonality of knowledge between subtasks is

reflected in the consistency of attention maps from the middle

layer. Specifically, given two feature mappings, Fc
l and Fl

s, which

are the outputs of layer l of the models Tc and Ts, respectively, we

can calculate the attention maps, Ac
l and As

l , as shown in

Equation 6:

Ac
l (x, y) =

1
Ci
o
Ci

c=1
Fc
l (k, x, y), As

l (x, y) =
1
Ci
o
Ci

k=1

Fs
l (k, x, y) (6)

where Ci is the number of channels in the feature mappings of

Fc
l and Fs

l , and (k,x,y) specifies the location and channel of an

activation value within the feature mapping. The attention maps Ac
l

and As
l are computed by averaging the activation values across the

channels of the respective feature mappings, Fc
l and Fs

l . For stability

of optimization, we first reshape the Ac
l and As

l into a vector form as

acl = vec(Ac
l ) and asl = vec(As

l ), where vec(.) is an operation that

transforms a matrix into a vector by concatenating its columns.

Then, we normalize the vectors using l2 norm as shown in Equation 7:

â c
l =

acl
acl

�� ��
2

, â s
l =

asl
asl

�� ��
2

(7)

The attention transfer loss for layer l is written as shown in

Equation 8:

LAT (â
c
l , â

s
l ) = â c

l − â s
lk k22 (8)
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And the total loss for mutual learning between subtasks is

defined as follows:

Ls↔c =
1
No

N

i=1
LCE(p

c
i , y

c
i ) + LCE(p

s
i , y

s
i)� +

1
Lo

L

l=1

LAT (â
c
l , â

s
l )

" #
(9)

where L denotes the number of layers considered for attention

transfer loss.

2.3.4 Knowledge integration
The primary objective of the proposed MTDL is to enhance

multi-task learning capabilities. In the final step of this learning

framework, we consider the two sub-tasks after mutual learning, Tc

and Ts, and reintegrate them into the original multi-tasking model,

denoted as … As shown in Figure 2C, this reintegration process

results in an enhanced multi-task model T 0
h.The knowledge

integration loss is formulated as follows:

L c → h

s → h

=
1
No

N

i=1
LCE(p

hc
i , y

c
i ) + LKD(p

hc
i , q

c
i ) + LCE(p

hs
i , y

s
i) + LKD(p

hs
i , q

s
i)

h i

(10)

where qci and qsi represent the output of softened probability

distributions of Tc and Ts, respectively, which are obtained by

applying the process described in Equation 1. The whole process of

MTDL is summarized in Algorithm 1.
Require: Inputs: Single-task models   Tc, Ts and multi-

task model Th.

Ensure: Outputs: Enhanced multi-task model T 0
h.

1: Decompose Thinto two sub-tasks Tc and Tsusing

Equations 2 and Equation 5.

2: Perform mutual learning between Tc and Ts using

Equation 9.

3: Reintegrate Tc and Ts into the original multi-task

model Th to produce the enhanced model us T0
h using

Equation 10.
Algorithm 1. MTDL process.
2.4 Teacher-free based MTDL

In the staged learning process of MTDL, the current stage can

be considered the teacher model for subsequent stages. While this

approach fully utilizes the process of knowledge transfer, it also

leads to a dependency on the teacher model, thereby reducing the

flexibility of the framework. To overcome this limitation, inspired

by the work of Yuan et al. (2020) and Zhao et al. (2022), we propose

a decoupled teacher-free KD (DTF-KD) method. In the following

sections, we first present the general form of the DTF-KD, and then

demonstrate how it can be applied to MTDL.

In the absence of a teacher model, we introduce a virtual

teacher. We define the output of this virtual teacher as a
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categorical distribution, vi,j, given by:

vi,j =
a  if j = t

(1 − a)=(K − 1)  if j ∈ nt

(
(11)

where a is a predefined constant, typically ≥ 0.95, t is the correct

class or target class for the i-th sample, K is the total number of

classes, j represents the class index, and \t denotes all classes except

the correct class t. This definition ensures that the virtual teacher

assigns the highest probability to the correct class, while distributing

the remaining probability equally among the incorrect classes.

In our proposed DTF-KD method, we divide the information

distillation process into two parts: teacherfree based correct class

KD (CC-KD) and teacher-free based non-correct class KD (NCC-

KD). CC-KD focuses on the learning of target knowledge. It aims to

transfer knowledge that is particularly important or challenging for

the student model. In CC-KD, according to Equation 11, the binary

probability outputs the virtual teacher for the correct class t and the

K−1 non-correct classes are denoted as qvi =  ½qvi,t ,  qvi,nt �  ∈  R2.

These outputs are calculated using:

qvi,t =
exp   (a)

exp   (a) +oK
k=1,k≠texp   (vi,k)

, 

qvi,nt =
oK

k=1,k≠texp   (vi,k)

exp   (a) +oK
k=1,k≠texp   (vi,k)

(12)

Correspondingly, for the student model, we can obtain bi =

 ½bi,t , bi,nt�  ∈ R2, defined as:

bi,t =
exp   (zi,t)

oK
j=1 exp   (zi,j)

, bi,∖ t =
oK

k=1,k≠texp (zi,k)

oK
j=1 exp   (zi,j)

(13)

where zi,j represents the logit for the j-th class of i-th instance of the

student model. Therefore, combining Equations 12 and 13, the loss

function of CC-KD can be written as:

LCC−KD(bi, q
v
i ) = qvi,t log  

qvi,t
bi,t

+ qvi,∖ t log  
qvi,∖ t
bi,∖ t

(14)

In NCC-KD, we consider the probability outputs for the K−1

non-correct classes, denoted as ~qvi ∈ RK−1 for the virtual teacher

and ~pi ∈ RK−1 for the student model. For each m ∈ {1, 2,…,K}\{t},

we calculate these outputs as follows:

~qvi,m =
exp (vi,m)

oK
k=1,k≠t exp   (vi,k)

, ~pi,m =
exp   (zi,m)

oK
k=1,k≠t exp   (zi,k)

(15)

where vi,m is defined in Equation 11, and zi,m represents the logit for

the m-th class of the i-th instance from the student model.

According to Equation 15, the NCC-KD loss function is then

defined as:

LNCC−KD(~pi, ~q
v
i ) = o

K

j=1,j≠t
~qvi,j log  

~qvi,j
~pi,j

(16)

Combining Equations 14 and 16, the total loss of DTF-KD is

LDFK−KD(bi, q
v
i , ~pi, ~q

v
i ) = LCC−KD(bi, q

v
i ) + LNCC−KD(~pi, ~q

v
i ) (17)
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According to DTF-KD, we propose two variants of the MTDL

framework. The first variant, as shown in Figure 3A which we call

partially teacher-free MTDL (MTDL-PTF), eliminates the

knowledge disentanglement stage from the MTDL process,

thereby removing the dependency on the initial multi-task

teacher model, known as Th. To compensate for the absence of T
h, we introduce two virtual teacher models corresponding to the two

learning tasks of disease category recognition and severity

estimation, denoted as T v
c and T v

s , respectively. For T v
c , as

described in Equations 12, 13 and 15, we obtain qvci ∈  R2 and bci ∈
R2 for the distillation outputs for the correct class, as well as and
eqvci ∈  RKc−1and epci ∈  RKc−1 the non-correct classes. Similarly, for

T v
s , we can obtain qvsi ∈  R2 and bsi ∈ R2 for the correct severity

level. For the non-correct severity levels, we can also obtain eqvsi ∈
 RKs−1 and epvsi ∈  RKs−1. Therefore, the mutual knowledge transfer

process in MTDL-PTF is given as shown in Equation 18:

Lv
s↔c = Ls↔c +

1
N o
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s
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vs
i )

" #

(18)

where Ls↔c and LDFK−KD LDFK-KD are defined in Equations 9 and

17, respectively.

In the second variant of MTDL, named teacher-free MTDL

(MTDL-TF), we completely abandon the teacher model. The

process of MTDL-TF is illustrated in Figure 3B. Instead, we

directly introduce the distillation information from the virtual

teacher models T v
c and T v

s into Th, which is defined as shown in

Equation 19:

Lv
c → h

s → h

=
1
No

N
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hc
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i , ~p

hs
i , ~q

vs
i )

i

(19)

where bhci and bhsi are two binary probability outputs corresponding

to the correct class and non-correct classes for the disease category

recognition and severity estimation tasks, respectively, in the hybrid

model Th. They can be obtained via zhci and zhsi using Equation 13.

Accordingly, the output for the non-correct classes in Th, ephci and
ephsi , can be calculated by Equation 15.
3 Experimental results and discussion

3.1 Experimental setup

3.1.1 Model training
The MTDL framework consists of three main components:

knowledge disentanglement, subtask mutual learning, and

knowledge integration. To ensure simplicity and generality of the

framework, we employ a consistent training strategy for different

learning components. Specifically, the framework is trained using

the SGD optimizer with a batch size of 32 and a momentum of 0.9.

The initial learning rate is set to 0.001, and it is reduced by a factor
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of 0.1 every 20 epochs. The weight decay is set to 1e-4. The

maximum number of training epochs is set to 100, and an early

stopping strategy is used based on the validation performance. If the

validation loss does not improve for 5 consecutive epochs, the

training process is stopped.

3.1.2 Hyperparameter settings
The MTDL framework involves three main stages of knowledge

distillation, which correspond to the objective functions in

Equations 2, 9, and 10. During the process, we use a temperature

parameter T to smooth the output of the teacher model. This

hyperparameter is determined through cross-validation using the

validation set. A comprehensive analysis of hyperparameter

selection can be found in Section 3.3.4.

3.1.3 Evaluation metrics
To evaluate the performance of the proposed MTDL method,

we employ four commonly used evaluation metrics, namely

Accuracy, Precision, Recall, and F1-score. Given true positives

(TP), true negatives (TN), false positives (FP), and false negatives

(FN), the specific definitions of these metrics are as shown in

Equations 20 and 21:

Accuracy =
TP + TN

TP + FP + FN + TN
,

 Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(20)

F1 − score = 2� Precision� Recall
Precision + Recall

(21)
3.1.4 Baseline methods
The MTDL framework is a flexible knowledge distillation

approach designed for tomato disease diagnosis. It aims to improve

the performance of recognition models while reducing their
Frontiers in Plant Science 0841
parameter size and can be combined with various existing neural

network architectures. To ensure the versatility of the MTDL

framework, we incorporate four conventional network models,

including ResNet101 (He et al., 2016), ResNet50 (He et al., 2016),

DenseNet121 (Huang et al., 2017), and VGG16 (Simonyan and

Zisserman, 2014), as well as four lightweight network models such

as EfficientNet (Tan and Le, 2019), ShuffleNetV2 (Zhang et al.,

2018b), MobileNetV3 (Howard et al., 2019), and SqueezeNet

(Iandola et al., 2016). Detailed information about these models can

be found in Table 2. These backbone models serve as the learning

components in different stages of the MTDL framework. We use the

original classification results of these models as a baseline and

compare the results before and after the multi-task distillation

process to validate the effectiveness of the proposed framework.
3.2 Results

3.2.1 Performance comparison
In this section, we report the results from two experimental

settings. The first setting, referred to as unified MTDL, employs the

same network architecture for teacher and student modules. This

setting aims to verify the effectiveness of the multi-stage distillation

architecture proposed in this paper. The second setting, termed

heterogeneous MTDL, involves using lightweight network

architectures for all student models within the MTDL framework.

This setting is designed to demonstrate the advantages of the proposed

architecture in achieving a balance between performance and

efficiency. As a reference, Table 2 lists the baseline results of the

initial two single tasks Tc and Ts, as well as the multi-task model Th,

where Thc and Ths correspond to the results of Th for disease

classification and severity estimation tasks, respectively. The results

in Table 2 demonstrate that the multi-task learning approach

effectively enhances performance across various network architectures.

The results for MTDL with a unified architecture are presented

in Table 3. We can observe that all models show improvement when

using MTDL for knowledge learning. This indicates that the MTDL
BA

FIGURE 3

Overview of the decoupled teacher-free (DTF) based MTDL. (A) Partially teacher-free MTDL (MTDL-PTF): Eliminating dependency on the multi-task
teacher model in the knowledge disentanglement stage. (B) Teacher-Free MTDL (MTDL-TF): Simplifying MTDL to only retain the final knowledge
integration stage with virtual teachers.
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framework effectively leverages the staged learning of knowledge

and the complementarity between different tasks. In terms of

specific models, ResNet101 achieves the highest performance in

both tasks under the MTDL setting, with Accuracy scores of 98.92%

for Tc and 95.32% for Ts, respectively. The corresponding F1-scores

are 98.78% and 96.32%, respectively. These results can be attributed

to both the ResNet101’s powerful feature extraction capabilities and

MTDL’s effective multi-task learning strategy. On the other hand,

SqueezeNet shows significant improvement with an increase of

1.08% and 2.53% in Accuracy of Tc and Ts respectively, and an

increase of 0.68% and 2.26% in F1-scoref or each task. This suggests

that the MTDL allows the lightweight model to learn more robust

and comprehensive features. Furthermore, Table 3 also provides a

comparison between the MTDL, MTDL-PTF, and MTDL-TF

methods across various architectures. The results indicate that

while the overall performance of MTDL-PTF and MTDL-TF

decreases when the dependence on the teacher model is reduced,

the introduction of a virtual teacher model significantly improves

the accuracy of both methods compared to the original multitask

learning. This indeed validates the effectiveness of the decoupled

teacher-free knowledge distillation approach that we proposed. We

also display the confusion matrices for results using ResNet50 as the

backbone. As shown in Figure 4, it is evident that our proposed

MTDLmethod either maintains or improves performance across all

individual classes for both disease classification and severity

estimation tasks. This demonstrates MTDL’s ability to achieve a

balanced enhancement in both overall performance and category-

specific outcomes.

Furthermore, to investigate the impact of using teacher and

student models with different architectures on the performance of

the MTDL framework, we employ complex models like DenseNet121

for the teacher and lightweight models such as EfficientNet for the

student. The results presented in Table 4 substantiate the effectiveness

of this heterogeneous MTDL approach. For instance, when using

ResNet101 as the teacher model, the SqueezeNet student model

shows an improvement of 1.95% and 3.07% in Tc and Ts
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respectively, which are higher than the result obtained under the

unified architecture MTDL setting. These results suggest that a more

powerful teacher model enriches the student model’s learning.

Finally, to ensure the effectiveness of our proposed method, we

conduct a comprehensive comparison with four well-established

approaches in the field to validate its performance:
(a) Dual-stream hierarchical bilinear pooling (DHBP) (Wang

et al., 2022): As a multi-task method initially developed for

crops and diseases classification, we adapt DHBP for both

disease classification and severity prediction tasks. This

comparison allows us to evaluate the performance of our

MTDL approach against a specialized multi-task learning

method within the same domain.

(b) Traditional knowledge distillation (KD) (Ghofrani and

Toroghi, 2022) and decouple knowledge distillation

(DKD) (Zhao et al., 2022): These two methods represent

the knowledge distillation category. We apply KD and its

enhanced version, DKD, to our disease recognition and

severity estimation tasks, providing a direct comparison

with standard and advanced distillation techniques.

(c) Attention transfer (AT) (Komodakis and Zagoruyko, 2016):

Differing from KD and DKD that focus on distilling

knowledge through predicted outcomes, AT utilizes

attention maps to transfer knowledge between the teacher

and student models. Including AT in our comparison

allows us to assess the efficacy of a distinct transfer

learning approach.
To ensure fair comparisons among KD, DKD, AT, and MTDL,

we consistently used ResNet-101 as the teacher and

MobileNetV3Small as the student model. This approach enables a

reliable assessment of knowledge distillation efficacy. Additionally,

we present MTDL results using ResNet-101 as both teacher and

student, aligning with DHBP’s backbone, to effectively demonstrate

its multi-tasking capabilities.
TABLE 2 Baseline results of single and multi-task models.

Methods Single Task
(Accuracy)

Multi Task (Accuracy) Single Task
(F1-score)

Multi Task
(F1-score)

Parameter FLOPs

Tc Ts Thc Ths Tc Ts Thc Ths (M) (G)

VGG16 96.68 93.34 96.76 (↑0.08) 93.43 (↑0.09) 96.57 94.34 96.82 (↑0.25) 94.53 (↑0.19) 253.864 15.699

ResNet101 98.11 93.61 98.56 (↑0.45) 94.33 (↑0.72) 97.72 94.51 98.14 (↑0.42) 95.13 (↑0.62) 42.529 7.832

ResNet50 97.21 93.43 97.75 (↑0.54) 93.70 (↑0.27) 97.20 94.43 97.41 (↑0.21) 94.69 (↑0.26) 23.537 4.109

DenseNet121 95.68 91.63 96.58 (↑0.90) 91.99 (↑0.36) 95.68 92.63 96.58 (↑0.90) 93.02 (↑0.39) 6.968 2.865

MobileNetV3Large 97.66 93.43 98.20 (↑0.54) 93.52 (↑0.09) 96.46 94.43 97.18 (↑0.72) 94.52 (↑0.09) 5.450 0.225

EfficientNet 97.75 93.88 98.11 (↑0.36) 93.97 (↑0.09) 96.65 94.78 97.11 (↑0.46) 94.97 (↑0.19) 4.025 0.398

MobileNetV3Small 97.03 91.72 97.21 (↑0.18) 92.35 (↑0.63) 96.01 92.62 96.21 (↑0.20) 93.34 (↑0.72) 2.123 0.059

ShuffleNetV2 96.58 91.63 96.76 (↑0.18) 91.99 (↑0.36) 95.37 92.62 95.76 (↑0.39) 92.79 (↑0.17) 1.268 0.148

SqueezeNet 94.15 90.37 94.33 (↑0.18) 90.45 (↑0.08) 94.35 91.37 94.53 (↑0.18) 91.75 (↑0.38) 0.743 0.738
fron
Tc and Ts represent the disease category recognition and severity estimation tasks in single-task models, respectively. Thc and Ths represent the corresponding tasks in multi-task models. The
symbol ↑ symbol indicates Accuracy or F1-score improvement from the single-task baseline.
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The results are shown in Table 5. In our experiments, MTDL

with ResNet-101 as both teacher and student models achieve the

best results, outperforming DHBP in disease classification by 0.53%

in Accuracy and 0.29% in F1-score, and in severity prediction by

0.86% in Accuracy and 1.08% in F1-score. These improvements

validate MTDL’s phased multi-task learning approach. Moreover,

when compared under the same teacher-student model setup with

other distillation methods (KD, DKD, AT), MTDL excelled,

particularly surpassing DKD by 0.37% in Accuracy and 0.16% in

F1-score for disease classification, and by 0.62% in Accuracy and

0.38% in F1-score for severity prediction. This indicates the

effectiveness of MTDL’s proposed mutual distillation learning

between teachers and students.

3.2.2 Significance analysis
In this subsection, we conduct a Wilcoxon Signed-Rank Test

(Corder and Foreman, 2014) to evaluate the significance of the
Frontiers in Plant Science 1043
performance improvements across all CNN architectures. We

provide the detailed significance analysis corresponding to the

results originally presented in Tables 3 and 4 in the following

Table 6 and 7. In Table 6, we present a comparison of the

performance of our MTDL model and its variants against several

baseline CNN architectures. This table focuses on scenarios within

our MTDL framework where both the teacher and student models

utilize identical architecture. The results from this table

demonstrate statistically significant improvements across all

comparisons in both disease classification and severity prediction

tasks. The p-values obtained are consistently well below the 0.05

threshold, indicating robust enhancements attributed to our MTDL

approach. Similarly, Table 7 showcases the results in a

heterogeneous setting, where the MTDL model employs a more

complex architecture as the teacher model and a lightweight

network as the student model. In these comparisons, the results

again confirm significant improvements across all evaluated aspects.
TABLE 3 Performance of MTDL and its variants in a unified architecture.

Methods (Accuracy) MTDL MTDL-PTF MTDL-TF

T 0
hc T 0

hs T v
hc T v

hs T v
hc T v

hs

VGG16 97.75 (↑0.99) 94.15 (↑0.72) 97.48 (↑0.72) 94.24 (↑0.81) 97.12 (↑0.36) 93.70 (↑0.27)

ResNet101 98.92 (↑0.36) 95.32 (↑0.99) 98.65 (↑0.09) 94.87 (↑0.54) 98.65 (↑0.09) 94.78 (↑0.45)

ResNet50 98.20 (↑0.45) 94.87 (↑1.17) 98.11 (↑0.36) 94.60 (↑0.90) 97.93 (↑0.18) 94.34 (↑0.64)

DenseNet121 97.30 (↑0.72) 93.79 (↑1.80) 97.30 (↑0.72) 93.79 (↑1.80) 97.30 (↑0.72) 92.35 (↑0.36)

Average Improvement ↑0.63 ↑1.17 ↑0.47 ↑1.01 ↑0.34 ↑0.43

MobileNetV3Large 98.74 (↑0.54) 94.60 (↑1.08) 98.65 (↑0.45) 94.24 (↑0.72) 98.56 (↑0.36) 93.97 (↑0.45)

EfficientNet 98.74 (↑0.63) 94.78 (↑0.81) 98.47 (↑0.36) 94.33 (↑0.36) 98.56 (↑0.45) 94.24 (↑0.27)

MobileNetV3Small 97.48 (↑0.27) 93.16 (↑0.81) 97.84 (↑0.63) 93.16 (↑0.81) 97.30 (↑0.09) 92.53 (↑0.18)

ShuffleNetV2 97.21 (↑0.45) 93.52 (↑1.53) 97.21 (↑0.45) 93.70 (↑1.71) 96.94 (↑0.18) 93.07 (↑1.08)

SqueezeNet 95.41 (↑1.08) 92.98 (↑2.53) 96.40 (↑2.07) 93.07 (↑2.62) 95.14 (↑0.81) 91.63 (↑1.18)

Average Improvement ↑0.59 ↑1.35 ↑0.79 ↑1.24 ↑0.38 ↑0.63

Methods (F1-Score) MTDL MTDL-PTF MTDL-TF

T 0
hc T 0

hs T v
hc T v

hs T v
hc T v

hs

VGG16 97.85 (↑1.03) 95.15 (↑0.62) 97.47 (↑0.65) 95.24 (↑0.41) 96.96 (↑0.14) 94.77 (↑0.24)

ResNet101 98.78 (↑0.64) 96.32 (↑1.19) 98.46 (↑0.32) 95.86 (↑0.56) 98.49 (↑0.35) 95.68 (↑0.38)

ResNet50 97.52 (↑0.32) 95.87 (↑1.44) 98.11 (↑0.70) 95.58 (↑0.89) 97.59 (↑0.18) 95.24 (↑0.55)

DenseNet121 97.11 (↑0.53) 94.80 (↑1.78) 97.11 (↑0.53) 94.60 (↑1.58) 97.03 (↑0.45) 93.34 (↑0.32)

Average Improvement ↑0.63 ↑1.26 ↑0.55 ↑0.86 ↑0.28 ↑0.37

MobileNetV3Large 97.65 (↑0.47) 95.60 (↑1.08) 97.41 (↑0.23) 95.24 (↑0.72) 97.25 (↑0.07) 94.56 (↑0.04)

EfficientNet 97.95 (↑0.84) 95.78 (↑0.81) 97.52 (↑0.41) 95.33 (↑0.36) 97.36 (↑0.25) 95.24 (↑0.27)

MobileNetV3Small 97.41 (↑1.20) 94.16 (↑0.82) 97.28 (↑1.07) 94.16 (↑0.82) 97.14 (↑0.93) 93.36(↑0.02)

ShuffleNetV2 97.01 (↑1.25) 94.52 (↑1.73) 97.01 (↑1.25) 94.60 (↑1.81) 96.74 (↑0.98) 94.27 (↑1.45)

SqueezeNet 95.21 (↑0.68) 94.01 (↑2.26) 96.52 (↑1.99) 94.27 (↑2.52) 94.97 (↑0.81) 92.63 (↑0.88)

Average Improvement ↑0.89 ↑1.34 ↑0.99 ↑0.76 ↑0.61 ↑0.53
f

T 0
hc and T 0

hs represent MTDL’s performance, while T v
hc and T v

hs are for MTDL-PTF and MTDL-TF with a virtual teacher. The ↑ symbol indicates Accuracy and F1-score improvement,
referencing the multi-task baseline from Table 2.
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In addition, we also perform the significance of the results in

comparison with other multi-task and distillation learning methods.

with the results recorded in Table 8. It can be seen that in most

cases, the MTDL framework shows statistically significant

differences when compared with methods like DHBP, KD, DKD,

and AT, with p-values well beneath the 0.05 significance threshold.

However, there is one exception to note: in the case of MTDL

(ResNet101-MobileNetV3Small) vs DHBP for severity prediction,

the p-value is slightly above the conventional threshold for

significance. This exception likely stems from MTDL employing

lightweight MobileNetV3Small as the distillation target, whereas

DHBP uses the more substantial ResNet101 as its base model.
3.3 Discussion

3.3.1 The effectiveness of multi-stage
distillation learning

We assess the effectiveness of the three stages in our MTDL

framework: knowledge disentanglement, mutual knowledge transfer,

and knowledge integration. To do so, we employ single-task and multi-

task models as our baselines and incorporate the results obtained after
Frontiers in Plant Science 1144
each stage of learning. As illustrated in Figure 5, the results in terms of

Accuracy and F1-score align with our expectations. The results clearly

demonstrate that each stage of learning contributes to the final

performance improvement, thereby validating the effectiveness of

staged distillation in the MTDL framework.

3.3.2 Trade-off between performance
and efficiency

We investigate the balance between performance and efficiency

within the context of our MTDL framework. Performance is

measured by Accuracy, while efficiency is represented by the

number of parameters and floating-point operations (FLOPs). We

use the single-task ResNet101 model and the multi-task ResNet101

model as baselines due to their superior performance across all

single-task and multi-task models, as shown in Table 3. The results

are presented in Figure 6, and the size of each model’s marker in the

figure represents the number of parameters used by the model.

It can be observed that there is a similar trend in both task of

disease classification (Figure 6A) and disease severity estimation

(Figure 6B). Our MTDL-enhanced ResNet101 notably surpasses the

single-task baseline with an Accuracy improvement of 0.81% for

disease classification and 1.71% for severity estimation, and it
B

C D

A

FIGURE 4

Performance improvement through multi-stage distillation in MTDL. (A) Disease classification without MTDL, (B) Disease classification with MTDL, (C)
Severity estimation without MTDL, (D) Severity estimation with MTDL.
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outperforms the multi-task baseline with 0.36% and 0.99%

improvements respectively. When using MobileNetV3Large as the

MTDL-optimized model, we achieved significant performance

gains with reduced parameter count and FLOPs, while still

enhancing Accuracy over both baselines. For example, the

MobileNetV3Large model, enhanced by our MTDL framework,

outperforms the ResNet101 baseline by 0.63% and 1.44% in the two

tasks, respectively. Remarkably, this is achieved with only 12.81% of

the parameters (5.450M vs. 42.529M) and 2.87% of the FLOPs

(0.225G vs. 7.832G). These findings highlight the MTDL

framework’s capability to improve performance significantly while

maintaining computational efficiency, thereby reinforcing its

advantage over conventional models.
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Therefore, we need to select the appropriate distillation model

for each specific scenario. The choice depends on balancing

computational resources and performance. Typically, complex

teachers like ResNet101 outperform compact students such as

MobileNet, owing to deeper architectures. MTDL promotes

mutual learning between teachers and students, simultaneously

enhancing both models. With abundant resources, an MTDL-

optimized teacher offers substantial performance gains. In

contrast, for limited-resource scenarios like mobile inference,

MTDL can distill a lightweight yet performant student model.

Additionally, the teacher-free MTDL-TF variant reduces

dependency on complex teachers, offering an alternative when

resources are constrained.
TABLE 4 Performance evaluation of MTDL under a heterogeneous setting.

Methods (Accuracy) MTDL Methods (Accuracy) MTDL

Teacher Student T 0
hc T 0

hs Teacher Student T 0
hc T 0

hs

VGG16

MobileNetV3Large 98.74 (↑0.54) 94.51 (↑0.99)

ResNet50

MobileNetV3Large 98.92 (↑0.72) 94.42 (↑0.90)

EfficientNet 98.47 (↑0.36) 94.54 (↑0.57) EfficientNet 98.74 (↑0.63) 94.51 (↑0.54)

MobileNetV3Small 97.48 (↑0.27) 93.52 (↑1.17) MobileNetV3Small 97.66 (↑0.45) 94.15 (↑1.80)

ShuffleNetV2 97.57 (↑0.81) 93.07 (↑1.08) ShuffleNetV2 97.66 (↑0.90) 93.07 (↑1.08)

SqueezeNet 95.95 (↑1.62) 92.62 (↑2.17) SqueezeNet 96.04 (↑1.71) 92.98 (↑2.53)

Average Improvement ↑0.72 ↑1.20 Average Improvement ↑0.88 ↑1.37

ResNet101

MobileNetV3Large 98.92 (↑0.72) 95.05 (↑1.53)

DenseNet121

MobileNetV3Large 98.38 (↑0.18) 94.51 (↑0.99)

EfficientNet 98.79 (↑0.68) 95.13 (↑1.16) EfficientNet 98.47 (↑0.36) 94.87 (↑0.90)

MobileNetV3Small 97.93 (↑0.72) 94.24 (↑1.89) MobileNetV3Small 97.87 (↑0.66) 93.34 (↑0.99)

ShuffleNetV2 98.02 (↑1.26) 93.97 (↑1.98) ShuffleNetV2 97.48 (↑0.72) 93.79 (↑1.80)

SqueezeNet 96.28 (↑1.95) 93.52 (↑3.07) SqueezeNet 96.17 (↑1.84) 92.80 (↑2.35)

Average Improvement ↑1.07 ↑1.93 Average Improvement ↑0.75 ↑1.41

Methods (F1-Score) MTDL Methods (F1-score) MTDL

Teacher Student T 0
hc T 0

hs Teacher Student T 0
hc T 0

hs

VGG16

MobileNetV3Large 98.54 (↑1.36) 95.24 (↑0.72)

ResNet50

MobileNetV3Large 98.72 (↑1.54) 95.62 (↑1.10)

EfficientNet 97.98 (↑0.80) 95.36 (↑0.39) EfficientNet 98.46 (↑1.35) 95.51 (↑0.54)

MobileNetV3Small 97.46 (↑1.25) 94.52 (↑1.18) MobileNetV3Small 97.66 (↑1.45) 94.10 (↑0.76)

ShuffleNetV2 97.27 (↑1.51) 94.29 (↑1.50) ShuffleNetV2 97.66 (↑1.45) 93.98 (↑1.19)

SqueezeNet 95.76 (↑1.23) 93.42 (↑1.67) SqueezeNet 96.04 (↑1.51) 93.67 (↑1.92)

Average Improvement ↑0.83 ↑1.09 Average Improvement ↑1.46 ↑1.10

ResNet101

MobileNetV3Large 98.62 (↑1.44) 95.85 (↑1.33)

DenseNet121

MobileNetV3Large 98.38 (↑1.20) 94.97 (↑0.45)

EfficientNet 98.54 (↑1.43) 96.03 (↑1.06) EfficientNet 98.27 (↑1.16) 95.62 (↑0.65)

MobileNetV3Small 97.72 (↑1.51) 94.94 (↑1.60) MobileNetV3Small 97.87 (↑1.66) 94.34 (↑1.00)

ShuffleNetV2 98.22 (↑2.46) 94.87 (↑2.08) ShuffleNetV2 97.28 (↑1.52) 94.09 (↑1.30)

SqueezeNet 96.28 (↑1.75) 93.52 (↑1.77) SqueezeNet 96.17 (↑1.64) 93.70 (↑1.95)

Average Improvement ↑1.72 ↑1.57 Average Improvement ↑1.44 ↑1.07
f

The ↑ symbol indicates an improvement in Accuracy and F1-score, as compared to the results listed in Table 2, where both teacher and student models use a unified lightweight network for
multi-task learning.
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3.3.3 Visual analysis for multi-task learning
In this section, we use Grad-CAM (Selvaraju et al., 2017) for

visual analysis to gain deeper insights into the learning process of our

MTDL framework. We examine three severity levels of Early Blight:

healthy, general, and severe. Visualizations for single-task and multi-

task models, as well as for each stage of MTDL learning, are provided.

Figure 7 shows that the model’s attention shifts toward task-relevant

areas as it learns. For healthy leaves, the MTDL-enhanced model

more precisely identifies the leaf as a whole, aligning with human

visual systems. For leaves at a general severity level, the model focuses

on localized disease spots for classification but expands its attention

to surrounding regions for severity estimation. In cases of severe

disease levels, the disease spots typically exhibit a widespread

distribution across the leaf area. The knowledge integration model,

in its pursuit to accurately recognize both the disease type and

severity, tends to produce a Grad-CAM sensitivity map covering

the entire leaf area. This comprehensive coverage contrasts with the

single-task model, which primarily focuses on localized diseased

regions, and the multi-task model, which, although it expands the

area of interest, does not distribute sensitivity intensity as effectively.

Moreover, the distribution of sensitivity intensity in the knowledge
Frontiers in Plant Science 1346
integration model offers a more realistic representation of the

disease’s extensive impact, thereby enhancing the model’s

explanatory power for Severe Early Blight. This analysis

highlights the MTDL framework’s adaptability in shifting its focus

based on the task and severity, thereby improving performance

and interpretability.

3.3.4 Parameter sensitivity analysis
The temperature parameter T adjusts the softmax output in

the neural network, smoothing the probability distribution and

revealing more nuanced information about the model ’s

predictions. This is crucial for knowledge distillation, where it

aids in transferring detailed information from a teacher to a

student model. This concept is introduced and utilized in

Equation 1. To assess the sensitivity of our model to T, we vary

T within the interval [0.1,50] and record the Accuracy of the

disease classification and severity estimation tasks for each value.

The results of nine common network architectures are shown in

Figure 8. Despite the differences in architecture, a similar trend is

observed: as T increases, the model’s performance improves, but

rapidly declines when T exceeds 10. Notably, the model’s
TABLE 5 Comparative performance analysis of MTDL with other distillation-based and multi-task learning methods for disease classification and
severity prediction.

Methods Teacher Student Disease Classification Severity Prediction

Accuracy F1-score Accuracy F1-score

DHBP (Wang et al., 2022) ResNet101 98.39 98.49 94.46 95.24

KD (Ghofrani and Toroghi, 2022) ResNet101 MobileNetV3Small 97.30 97.28 93.16 93.96

DKD Zhao et al. (2022) ResNet101 MobileNetV3Small 97.56 97.56 93.62 94.56

AT Komodakis and Zagoruyko (2016) ResNet101 MobileNetV3Small 97.39 97.46 93.28 94.09

MTDL
ResNet101
ResNet101

MobileNetV3Small
ResNet101

97.93
98.92

97.72
98.78

94.24
95.32

94.94
96.32
TABLE 6 Wilcoxon Signed-Rank Test results for MTDL variants’ Accuracy in a unified architecture.

Task Model vs VGG16 vs ResNet101 vs ResNet50 vs DenseNet121

Disease Classification MTDL 1.953 × 10−3 1.367 × 10−2 1.953 × 10−3 1.172 × 10−2

MTDL-PTF 1.953 × 10−3 1.065 × 10−2 1.953 × 10−3 1.953 × 10−3

MTDL-TF 1.953 × 10−3 2.066 × 10−2 4.980 × 10−2 1.953 × 10−3

Severity Prediction MTDL 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-PTF 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-TF 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

Task Model vs MobileNetV3Large vs EfficientNet vs MobileNetV3Small vs ShuffleNetV2 vs SqueezeNet

Disease Classification MTDL 1.151 × 10−2 1.953 × 10−3 3.906 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-PTF 1.172 × 10−1 1.079 × 10−2 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-TF 4.206 × 10−2 1.065 × 10−2 3.906 × 10−3 1.953 × 10−3 1.953 × 10−3

Severity Prediction MTDL 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-PTF 1.953 × 10−3 3.906 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-TF 1.278 × 10−2 2.734 × 10−2 1.079 × 10−2 1.953 × 10−3 1.953 × 10−3
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TABLE 7 Wilcoxon Signed-Rank Test results for MTDL variants’ Accuracy under heterogeneous settings (‘()’ indicate teacher models).

Task Model
vs

MobileNetV3Large
vs

EfficientNet
vs

MobileNetV3Small
vs

ShuffleNetV2
vs

SqueezeNet

Disease
Classification

MTDL (VGG16) 7.632 ×10−3 1.162 ×10−2 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet101) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet50) 1.953 ×10−3 1.953 ×10−3 3.906 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL
(DenseNet121)

1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

Severity Prediction

MTDL (VGG16) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet101) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet50) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL
(DenseNet121)

1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3
F
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FIGURE 5

Performance improvement through multi-stage distillation in MTDL. (A) Accuracy for identifying disease types, (B) Accuracy for assessing disease
severity, (C) F1-score for identifying disease types, (D) F1-score for assessing disease severity.
TABLE 8 Results of the Wilcoxon Signed-Rank Test for MTDL and its variants versus other methods (The first in ‘()’ is the teacher model and the
second is the student model).

Task Model vs DHBP vs KD vs DKD vs AT

Disease Classification MTDL (ResNet101-ResNet101) 1.507×10−2 1.953×10−3 1.953×10−3 1.953×10−3

MTDL (ResNet101-MobileNetV3Small) 1.953×10−3 1.953×10−3 1.953×10−3 1.953×10−3

Severity Prediction MTDL (ResNet101-ResNet101) 1.953×10−3 1.953×10−3 1.953×10−3 1.953×10−3

MTDL (ResNet101-MobileNetV3Small) 9.219×10−2 1.953×10−3 1.953×10−3 1.953×10−3
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BA

FIGURE 6

Trade-off between performance and efficiency. (A) Task for disease classification, (B) Task for disease estimation.
FIGURE 7

Visual analysis of attention shifts in MTDL framework across severity levels.
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performance remains relatively stable for T within the interval

[3,8]. This indicates that our model is robust to the choice of T

within this range, providing flexibility in practical applications.

One the other hand, the selection of a batch size of 32,

momentum of 0.9, and learning rate decay factor of 0.1 was

guided by a combination of empirical conventions and

experimental validation aimed at striking a balance between

computational efficiency and model performance. To validate

the impact of different parameter settings on performance, we

analyzed MTDL and its variants on the validation set for

varying batch sizes (Figures 9A, B), momentum (Figures 9C,

D), and learning rate decay factors (Figures 9E, F), detailing their

effects on Accuracy. We can see that Accuracy remains relatively

stable across batch sizes that varies (8, 16, 32, 64, 128), with the

optimal average Accuracy achieved at 32. This is likely because a

moderate batch size balances gradient estimation Accuracy and

the beneficial noise of stochasticity, optimizing learning. As

momen t um i n c r e a s e s f r om 0 . 1 t o 0 . 9 , A c c u r a c y

generally improves. A higher momentum, like 0.9, effectively

uses past gradients to accelerate convergence and navigate

through local minima, leading to better performance compared

to a lower setting like 0.1. Moreover, increasing decay factors tend

to lower Accuracy, potentially due to a swift reduction in the

learning rate and premature convergence. An optimal decay
Frontiers in Plant Science 1649
factor is one that slowly decreases the learning rate, facilitating

precise adjustments as the model converges to the best solution.
4 Conclusion

In this work, we present the multi-task distillation learning

(MTDL) framework, a specialized solution for diagnosing tomato

diseases. The framework comprises three key stages: knowledge

disentanglement, mutual knowledge transfer, and knowledge

integration. Using this staged learning approach, we leverage the

complementary aspects of different tasks to enhance performance

across various network architectures. Moreover, our framework

adeptly balances performance with efficiency, underlining its

potential for practical applications. Although MTDL enhances

traditional knowledge distillation with bidirectional knowledge

transfer between teacher and student models, it extends training

time due to a progressive, multi-stage learning approach. To

mitigate this, we introduce MTDL-PTF and MTDL-TF variants

for efficiency, though they may slightly underperform compared to

the original MTDL.

Furthermore, our current framework has some limitations.

First, although the framework is designed for outdoor

environments, it has stringent requirements for the subject being
F1-score for identifying disease types.                F1-score for assessing disease severity.

Accuracy for identifying disease types. Accuracy for assessing disease severity.

B

C D

A

FIGURE 8

Sensitivity analysis of temperature hyperparameter T in MTDL framework. (A) Accuracy for identifying disease types, (B) Accuracy for assessing
disease severity, (C) F1-score for identifying disease types, (D) F1-score for assessing disease severity.
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photographed, focusing mainly on recognizing single subjects in

images. Second, the severity level classification is relatively basic,

encompassing only three levels, including a healthy state. In future

work, we plan to integrate object localization techniques into the

distillation process to facilitate the identification of multiple leaves

in images. Additionally, we aim to refine the classification of disease

severity levels, focusing especially on the early detection of diseases.

These planned enhancements will contribute to the development of

more sophisticated and nuanced solutions in the field of tomato

disease diagnosis, offering a robust framework for sustainable and

intelligent agriculture.
Frontiers in Plant Science 1750
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Agriculture Science Data Center, Beijing, China, 3National Nanfan Research Institute (Sanya), Chinese
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Agricultural Sciences, Anyang, China, 5Farmland Irrigation Research Institute, Chinese Academy of
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Cotton, a vital textile raw material, is intricately linked to people’s livelihoods.

Throughout the cotton cultivation process, various diseases threaten cotton

crops, significantly impacting both cotton quality and yield. Deep learning has

emerged as a crucial tool for detecting these diseases. However, deep learning

models with high accuracy often comewith redundant parameters, making them

challenging to deploy on resource-constrained devices. Existing detection

models struggle to strike the right balance between accuracy and speed,

limiting their utility in this context. This study introduces the CDDLite-YOLO

model, an innovation based on the YOLOv8 model, designed for detecting

cotton diseases in natural field conditions. The C2f-Faster module replaces the

Bottleneck structure in the C2f module within the backbone network, using

partial convolution. The neck network adopts Slim-neck structure by replacing

the C2f module with the GSConv and VoVGSCSP modules, based on GSConv. In

the head, we introduce the MPDIoU loss function, addressing limitations in

existing loss functions. Additionally, we designed the PCDetect detection head,

integrating the PCD module and replacing some CBS modules with PCDetect.

Our experimental results demonstrate the effectiveness of the CDDLite-YOLO

model, achieving a remarkable mean average precision (mAP) of 90.6%. With a

mere 1.8M parameters, 3.6G FLOPS, and a rapid detection speed of 222.22 FPS, it

outperforms other models, showcasing its superiority. It successfully strikes a

harmonious balance between detection speed, accuracy, and model size,

positioning it as a promising candidate for deployment on an embedded GPU

chip without sacrificing performance. Our model serves as a pivotal technical

advancement, facilitating timely cotton disease detection and providing valuable

insights for the design of detection models for agricultural inspection robots and

other resource-constrained agricultural devices.
KEYWORDS

cotton diseases detection, natural environment, deep learning, lightweight, YOLOv8
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1 Introduction

Cotton, a member of the Malvaceae family (Chohan et al.,

2020), holds the top position among natural fibers, thanks to its

simplicity of cultivation and its wide range of uses in clothing and

home textiles. It satisfies nearly 35% of the global annual fiber

demand (Huang et al., 2021). Beyond the textile industry, cotton

plays a crucial role in the production of animal feed and edible oil

(Townsend, 2020; Zaidi et al., 2020). In 75 countries, cotton crop

production supports the livelihoods of over 250 million people

(Wang et al., 2020).

Throughout the cotton growth cycle, diseases can significantly

hinder both yield and quality, posing a substantial threat to the

economic viability of farmers (Chi et al., 2021). According to

statistics, estimates of the total cotton disease losses ranged from

6% to 12% of the yield lost due to disease (Lawrence et al., 2022).

Among cotton diseases, verticillium wilt (Cai et al., 2009), fusarium

wilt (Wang et al., 2009), and anthracnose (Nawaz et al., 2018) are

particularly significant (Toscano-Miranda et al., 2022). They are

often referred to as the ‘cancer’ of cotton crops due to their ability to

substantially reduce cotton production.

The battle against cotton diseases endures, with ongoing efforts

to avert crop losses by early and effective disease detection, followed

by timely intervention (Mohanty et al., 2016; Guo et al., 2022).

While manual disease detection is the prevailing approach, it is

hampered by reliability issues and is impractical for large-scale

monitoring due to time and cost constraints (Peyal et al., 2022). The

quest for automated cotton disease detection methods is becoming

increasingly urgent, particularly given the rapid growth of the

cotton industry (Pan et al., 2023b).

Over the past two decades, image-processing techniques for

identifying plant diseases have yielded promising results (Thakur

et al., 2022). With recent advancements in machine learning, these

techniques offer the potential to reduce labor costs, minimize time

wastage, and enhance plant quality (Wani et al., 2022). However,

traditional machine learning algorithms predominantly rely on

manually crafted, low-level visual features based on engineering

experience. This limitation often leads to subpar performance when

dealing with complex scenes (Wang et al., 2022b). Consequently,

further research is required to develop more efficient and automated

methods (Zhang et al., 2023e).

Deep learning algorithms exhibit the capability to

autonomously extract and learn complex high-level features

through deeply structured convolutional neural networks. Due to

its rapid evolution, deep learning models have been constructed for

the detection of plant diseases (Pan et al., 2023a). These models not

only excel in disease classification but also accurately determine

disease locations on plant leaves within images (Liu and Wang,

2021). Much like other research domains such as medical science,

mechanical automation, and logistics, the integration of robotics

and deep learning into agriculture has sparked a revolution in the

way plants are cultivated and safeguarded (Balaska et al., 2023). This

transformative approach allows for the intelligent application of

chemical sprays, including fungicides, herbicides, and pesticides,

following successful robotic disease detection. This intelligent

strategy offers the promise of establishing a cost-effective crop
Frontiers in Plant Science 0254
protection system (Saleem et al., 2021). This innovative approach

has been applied to a wide range of crops, including cucumber (Li

et al., 2023b), maize (Leng et al., 2023), potato (Johnson et al., 2021;

Dai et al., 2022), rice (Jia et al., 2023), soybeans (Zhang et al., 2021),

strawberry (Zhao et al., 2022), tomato (Tang et al., 2023b), and

wheat (Zhang et al., 2023a), on a global scale for disease detection

using deep learning techniques.

In recent years, researchers have harnessed deep learning

techniques for the detection of cotton diseases. Several noteworthy

studies have been conducted: Susa et al (Susa et al., 2022). applied the

YOLOv3 algorithm to detect and classify cotton plants and leaves,

achieving a remarkable mean Average Precision (mAP) score of

95.09%. Zhang et al (Zhang et al., 2023b). optimized the YOLOv5

algorithm to address the issue of subpar small target detection in the

context of cotton wilt disease. They introduced a small target detection

layer and incorporated an attention mechanism, resulting in an

impressive mAP score of 91.13%. PRIYA et al (Priya et al., 2021).

utilized Faster R-CNN with Region Proposal Network (RPN) to detect

and classify images containing both healthy and diseased cotton plant

leaves. Their approach demonstrated an average accuracy of 96% in

disease identification. R. Devi Priya et al (Devi Priya et al., 2022).

proposed the Augmented Faster R-CNN (AFR-CNN) algorithm by

amalgamating Faster R-CNN, an efficient deep learning algorithm,

with effective data augmentation techniques such as rotation, blur

transformation, flipping, and GAN. The model achieved a noteworthy

mAP score of 90.2%. Zhang et al (Zhang et al., 2022). introduced a real-

time, high-performance detection model based on an improved

YOLOX. Their model incorporated features like Efficient Channel

Attention (ECA), a hard-Swish activation function, and Focal Loss into

YOLOX, resulting in an mAP of 94.60% for cotton disease and pest

detection, with a precision rate of 94.04%. Zhang et al (Zhang et al.,

2023c). proposed an enhanced attention mechanism YOLOv7

algorithm (CBAM-YOLOv7) for the image detection of diseases and

pests like cotton wilt disease. Their model achieved an impressive mean

Average Precision (mAP) score of 90.2%.

The endeavors of the researchers mentioned above have

undeniably advanced the field of cotton disease detection,

providing valuable insights into areas such as dataset

augmentation and the optimization of detection algorithms.

Nonetheless, the deployment of mobile robots and various edge

AI devices often necessitates a trade-off between computational

power, power consumption, battery size, and the time between

charges. These devices typically operate with significantly less

computational power compared to the robust GPU-based systems

commonly employed for training and assessing deep neural

networks (Yao et al., 2022). Moreover, it has become evident that

certain deep learning models with high detection accuracy tend to

possess redundant model parameters. This redundancy poses

challenges when it comes to deploying these models on mobile

agricultural inspection robots. Existing detection models struggle to

strike a balance between detection accuracy and speed, hindering

their application in this context. Furthermore, it’s worth

acknowledging that, in some of these studies, cotton disease

detection was conducted within controlled environments, and this

gap in achieving reliable detection in natural agricultural settings

remains (Tang et al., 2023a). This limitation has, to a certain extent,
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constrained the development of agricultural inspection robots

(Wang et al., 2022a; Ye et al., 2023).

Consequently, this study centered on cotton disease as the focal

point of research and proposed CDDLite-YOLO detection

algorithm to detect cotton disease quickly and accurately under

natural field conditions. The model introduced in this paper is built

upon the most recent advancements in object detection algorithms

with the specific features of cotton diseases. It successfully strikes a

harmonious balance between detection speed, accuracy, and model

size, making it a promising candidate for deployment on an

embedded GPU chip without compromising performance.

The significant contributions of this paper can be summarized

as follows:
Fron
(1) We collected a dataset of cotton disease images from

natural environments for training, validation, and testing

of the model.

(2) To enhance detection accuracy while minimizing

parameter calculations, we designed the C2f-Faster

module as a replacement for the C2f module in the

backbone network and introduced a novel Slim-neck

structure by substituting the C2f module with the

GSConv module and the VoVGSCSP module in the

neck network.

(3) We introduced MPDIoU, an IoU loss measure, to address

limitations for cotton disease detection that existing loss

functions when predicted and ground truth bounding

boxes have the same aspect ratio but varying width and

height values.

(4) We designed the PCDetect detection head to reduce model

parameters and computations while maintaining

exceptional detection performance.

(5) Through experiments, we validated the CDDLite-YOLO

model. Compared to other models, CDDLite-YOLO

achieves higher mAP and detection speed, with lower

FLOPs and a smaller model size.
The subsequent sections of this study are structured as follows:

Section II explores critical aspects, including image acquisition,

preprocessing, and model structure enhancements. Section III

presents the experimental results alongside a detailed analysis, while

Section IV offers a comprehensive discussion of this study. Section V

encapsulates our efforts with a summary of the conclusions reached.
2 Materials and methods

2.1 Materials

2.1.1 Image data acquisition
The image dataset was collected from two specific locations: the

cotton fields at the Langfang Research Base of the Chinese Academy

of Agricultural Sciences, Hebei Province, China (N: 39°27′55.59″, E:
116°45′28.54″), and the Potianyang Base in Yazhou District, Sanya

City, Hainan Province, China (N: 18°23′49.71″, E: 109°10′39.84″).
tiers in Plant Science 0355
This data collection took place from September 2020 to December

2022.The focus of our image collection comprised three primary

types of cotton diseases: verticillium wilt, fusarium wilt, and

anthracnose. To ensure the quality and accuracy of the dataset, all

images underwent a meticulous identification and confirmation

process carried out by two expert cotton pathologists.

Images were captured during different weather conditions,

including clear and overcast skies, at various times of the day,

covering the morning, noon, and evening. Image capture was

carried out using a Canon EOS 850D digital camera (Canon Inc.,

Tokyo, Japan) and a Huawei P40 Pro smartphone (Huawei

Technologies Co., Ltd., Shenzhen, China). The images were

captured from a distance of 20–50 cm from the cotton leaves,

using automatic exposure mode. They have a resolution of 4608 ×

3456 pixels and were saved in JPG format.

To ensure the diversity and richness of our image dataset, a

randomized approach was employed during the collection process.

This involved capturing images from various angles, under different

lighting conditions, and against diverse backgrounds. To accurately

reflect natural field conditions, images were taken during different

weather conditions, including sunny, cloudy, and overcast weather,

across different times of the day, encompassing various growth

stages of the cotton crop. The images also include the presence of

soil, as well as potential field clutter such as weeds, plastic film, and

dried leaves.

2.1.2 Images processing and dataset production
To enhance data collection efficiency, we concurrently captured

images and recorded videos. Later, we employed video frame

extraction to augment the image count. The recorded videos

ranged from 15 to 30 seconds, and frames were extracted at a rate

of 15 frames per second, resulting in a range of 225 to 450 frames,

and the image resolution is 4608 × 3456, which is saved in JPG

format. These frames were then carefully curated for selection. In

order to prevent redundancy within the dataset, we adhered to three

guiding principles for image selection: (1) ensuring each diseased

leaf was represented only once, (2) avoiding multiple images from

the one or neighboring cotton plants, and (3) prioritizing images

with different angles, various lighting conditions, and diverse

backgrounds. Consequently, we curated a dataset for cotton

disease detection under natural conditions, comprising 591

images of cotton with verticillium wilt, 435 images of cotton with

fusarium wilt, and 504 images of cotton with anthracnose, totaling

1,530 images. For specific details regarding the types of cotton

diseases, the number of images in each category, and key disease

features within the dataset, please refer to Table 1.

We employed the Make Sense tool (https://makesense.ai) for

labeling the types of diseased leaves and their respective positions in

the images. The labeling area was defined as the smallest rectangle

encompassing the diseased leaf, minimizing background inclusion.

The dataset was partitioned into three subsets in an 8:1:1 ratio, with

1224 images allocated to the training set, and 153 images each for

both the validation and test sets. Additionally, mosaic augmentation

was incorporated into the training process. Mosaic augmentation

randomly selects four images, extracting segments of content and

their corresponding detection box information. These segments are
frontiersin.org
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then fused into a single image for network input. This method

substantially enhances training data diversity, mitigating the risk of

overfitting by introducing greater variability into the learning process.
2.2 Methods

2.2.1 Overall model
Object detection algorithms can be categorized into one-stage

and two-stage algorithms. The two-stage algorithm relies on region

proposals, represented by Faster R-CNN, which is known for its

slower processing speed, which makes it unsuitable for real-time

detection and deployed on an embedded GPU chip. On the other

hand, the one-stage model is based on regression, which includes

the YOLO series. offers a significant advantage in speed compared

to the two-stage model, making it better suited for real-time

detection requirements. Hence, this study opts for the YOLO

model as the baseline model. This model is an enhancement of

the YOLOv8 model specifically tailored for the task of detecting

cotton diseases in natural environments and designed for

deployment on agricultural inspection robots and other devices

with limited memory and computational resources. The

architecture of CDDLite-YOLO is visualized in Figure 1.

The model comprises four key components: Input, Backbone,

Neck, and Head. The enhancements are summarized as follows:
Fron
(1) We designed the Faster Block structure using partial

convolution to replace the Bottleneck structure in the C2f
tiers in Plant Science 0456
module within the backbone network, resulting in the

upgraded C2f module termed C2f-Faster.

(2) In the neck network, we introduce an innovative Slim-neck

structure by replacing the C2f module with the GSConv

module. Additionally, the C2f modules are enhanced by

integrating the VoVGSCSP module. This module is an

iterative fusion of the GS bottleneck, built upon GSConv.

(3) We introduced MPDIoU, an IoU loss function based on

minimum points distance, to address limitations in existing

loss functions in YOLOv8, particularly when dealing with

predicted and ground truth bounding boxes of the same

aspect ratio but varying width and height values.

(4) We designed the PCDetect detection head, incorporating

the PCD module into the detection head and replacing

specific CBS modules with PCDetect.
By integrating these advancements, CDDLite-YOLO effectively

balances detection speed, accuracy, and model size. It significantly

reduces the model’s size, accelerates detection speed, and achieves

higher detection accuracy, providing a harmonious synergy of

performance improvements.

2.2.2 YOLOv8
YOLOv8, the latest addition to the YOLO series, was introduced by

Ultralytics in January 2023. It maintains the established YOLO series

structure while undergoing significant optimization, resulting in

notable improvements in both speed and accuracy (Kang and

Kim, 2023).
TABLE 1 The types, figures, image samples, and key features of each cotton disease in the dataset.

Type of Disease Figures Image Key Features

Verticillium wilt 591
Pale yellow patches develop between leaf margins and veins,

gradually expanding and causing the loss of green color in the leaves.

Fusarium wilt 435
Lower leaves exhibit yellowing and wilting. The stem displays brown

discoloration and often splits open, revealing red-brown vascular tissue.

Anthracnose 504
Small, circular lesions appear on leaves, stems, and bolls. These lesions start as

water-soaked areas and become sunken with dark centers over time.

Total 1530
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YOLOv8 consists of three core components: Backbone, Neck,

and Head. The Backbone in YOLOv8 closely mirrors YOLOv5’s

architecture, with notable refinements to the CSPLayer, now

referred to as the C2f module. This C2f module seamlessly

integrates high-level features with contextual information,

resulting in improved detection accuracy. The Neck of YOLOv8

combines an FPN (Feature Pyramid Network) and PAN (Path

Aggregation Network) to facilitate feature fusion among the three

effective feature layers obtained in the Backbone. In the Head of

YOLOv8, a shift occurs from an anchor-based to an anchor-free

approach (Terven and Cordova-Esparza, 2023). This transition

abandons IOU matching and single-scale assignment, opting

instead for a task-aligned assigner to match positive and

negative samples.

YOLOv8n, the smallest model in the YOLOv8 series, is

distinguished by its compact model parameters and minimal

hardware requirements. When trained on the cotton diseases

dataset, YOLOv8n surpasses the performance of YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x, yielding notably superior

results. Although its mAP value is slightly lower compared to the

other four models, YOLOv8n shines with significantly reduced

computational costs and fewer parameters. This renders it an

optimal choice for deployment on resource-constrained devices.

In this article, we present the CDDLite-YOLO model, built

upon YOLOv8n. Our objective is to cater to real-time and resource-

constrained device development requirements while upholding

detection accuracy in natural field environments.
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2.2.3 C2f-faster
In object detection models, the main objective is to extract

spatial information from images, which demands a substantial

number of convolutional operations. In contrast to YOLOv5’s C3

module, YOLOv8’s new C2f module incorporates additional

Bottleneck structures and cross-layer connections, enhancing

gradient flow. However, this also brings about excessive

convolution operations and heightened computational load,

presenting deployment challenges on resource-limited

embedded devices.

To meet the requirements of embedded devices for cotton

disease detection, reduce computational complexity, and

minimize parameter size, thus achieving a lightweight network

model, enhancing the convolution operator within the C2f

module stands out as a highly effective and worthwhile approach.

The feature maps exhibit significant similarities across various

channels. FasterNet (Chen et al., 2023) introduced the concept of

partial convolution, where it applies a regular Conv operation to

only a subset of the input channels for spatial feature extraction,

leaving the rest unchanged. This approach reduces computational

redundancy and memory usage simultaneously, resulting in

efficient performance on a wide range of devices. The C2f-faster

module is inspired by the lightweight design principles of FasterNet.

It utilizes the Faster Block to replace the Bottleneck within the C2f

module, as illustrated in the Figure 2.

The Faster Block encompasses three types of blocks: PConv,

CBS, and 1×1 Conv. PConv stands for Partial Convolution, and
FIGURE 1

Overall model architecture diagram.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1383863
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2024.1383863
utilizes only 1/4 of the input channels for convolution, leaving the

remaining 3/4 channels untouched. The outputs of the convolved 1/

4 channels are then merged with the untouched 3/4 channels. For

contiguous or regular memory access, the first or last consecutive cp

channels as the representatives of the whole feature maps for

computation. Without loss of generality, we assume the input and

output feature maps have the same number of channels, which aims

to reduce redundant calculations while preserving the original

channel information. Despite 3/4 of the channels not being

involved in convolution, they are not discarded. Instead, valuable

information can be extracted from these channels in subsequent

1×1 convolutions. This approach enhances the efficiency of spatial

feature extraction by reducing redundant computation and memory

access concurrently. Additionally, CBS is composed of Conv, batch

normalization, and a SILU activation function. To ensure that the

processed feature maps maintain their original dimensions and size,

the 1×1 Conv layer is utilized to restore the output of the

preceding layer.

2.2.4 Slim-neck
The standard convolution (SC) module in YOLOv8 utilizes

different convolutional kernels across multiple channels

simultaneously, resulting in a higher parameter count and

increased computational requirements (FLOP). While lightweight

networks like MobileNet (Howard et al., 2017) and ShuffleNet

(Zhang et al., 2018) effectively address this issue using Depth-wise

Separable Convolutions (DSC), they suffer from reduced feature

extraction and fusion capabilities, hindering model detection

performance. Such limitations make them unsuitable for real-time

cotton disease detection.

To address these challenges, the CDDLite-YOLO model

introduces the GSConv module (Li et al., 2022), a lightweight

convolution, into the neck section, resulting in a novel Slim- neck

structure. The GSConv module utilizes the shuffle operation to

seamlessly integrate information from SC into DSC-generated data.

In contrast to DSC, GSConv excels at preserving hidden
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connections while still keeping complexity low, achieving a

balanced trade-off between model accuracy and speed.

The GSConv module is primarily constituted by Conv,

DWConv, Concat, and Shuffle operations, visually represented in

the Figure 3. The construction unfolds as follows:
(1) The input feature map consists of C1 channels.

(2) Half of the channels undergo Standard Convolution (SC),

and the remaining half undergo Depthwise Separable

Convolution (DSC).

(3) Concatenate the resulting two output feature maps along

the channel dimension.

(4) Subject the concatenated feature map to a shuffle operation,

resulting in the final output.

(5) The final output feature map now contains C2 channels

in total.
VoVGSCSP (Xu et al., 2023) represents an iterative integration

that builds upon the GS bottleneck using the foundation of

GSConv, as depicted in Figure 3. This process involves

segmenting the input feature map’s channel count into two

portions. The initial segment undergoes Convolution (Conv) for

processing, followed by consecutive GS bottleneck modules for

feature extraction. Simultaneously, the remaining segment serves

as residuals and undergoes a single Convolution operation. The

resulting two output feature maps are then concatenated and

subjected to an additional Convolution, resulting in the final

output. The ultimate output feature map contains a total of C2

channels. This module effectively strikes a balance between model

accuracy and speed, concurrently reducing computational load and

complexity while preserving commendable accuracy.

We envisioned integrating GSConv and VoVGSCSP into the

neck network to create a lightweight model without compromising

detection performance, as illustrated in the Figure 3. This

enhancement led to a reduction in model parameter calculations,
FIGURE 2

Structural diagram of C2f-Faster.
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fostering high detection accuracy and a notable improvement in the

balance between the model’s accuracy and speed.

2.2.5 MPDIoU
Computing the loss involves comparing the network’s predicted

results with the groundtruth (Tian et al., 2022). Our model’s loss

function aligns with YOLOv8, encompassing regression and

classification components. YOLOv8 utilizes DFL and CIoU for

bounding box regression (Xiao et al., 2023).

The training dataset comprises precisely ground truth bounding

boxes that accurately delineate diseased areas. In cotton disease

detection, the diverse range of diseases, variations across growth

stages, and the influence of factors such as camera angles, lighting

conditions, and obstructions can introduce discrepancies in disease

localization.However, the aspect ratio definition in CIoU is relative

rather than absolute. In instances where predicted and ground truth

bounding boxes share the same aspect ratio but differ in width and

height, the model may generate boxes with slight deviations (Zhang

et al., 2023d). CIoU’s sensitivity to such nuances poses challenges

for precise learning and prediction, impacting convergence speed

and accuracy. To mitigate this, we introduced a novel bounding box

similarity comparison metric, MPDIoU (Siliang and Yong, 2023),

based on the minimum point distance.

MPDIoU incorporates three key factors: overlapping or non-

overlapping area, central points distance, and width and height
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deviation. It streamlines calculations by minimizing the distance

between top-left and bottom-right points in predicted and ground

truth bounding boxes. This adaptable metric accommodates

overlapping or non-overlapping bounding box regression.

Equation 1 shows the computation method for MPDIoU.

d21 = (xB1 − xA1 )
2 + (yB1 − yA1 )

2

d22 = (xB2 − xA2 )
2 + (yB2 − yA2 )

2

MPDIoU = A∩B
A∪B −

d21
w2+h2 −

d22
w2+h2

(1)

In the formulation, d1 and d2 represent the intersection and

minimum point distance. Shapes A and B are two arbitrary convex

entities, with w and h signifying the width and height of the input

image. The coordinates (xA1 , y
A
1 ) and (x

A
2 , y

A
2 ) denote the top-left and

bottom-right points of shape A, respectively, and (xB1 , y
B
1 ) and (xB2 ,

yB2 ) represent the top-left and bottom-right points of shape B.

Benefiting from the implementation of MPDIoU to replace

CIoU in YOLOv8, our model has demonstrated competitive results.

The subsequent section detailing illustrates that our proposed

MPDIoU surpasses the original CIoU and other loss functions.

2.2.6 PCDetect
YOLOv8 introduces the decoupled head mechanism, separating

convolutional layers from fully connected layers. This technique

leverages neck network output features to predict category and
FIGURE 3

Structural diagram of neck.
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location via distinct branches. While enhancing model convergence

and accuracy, the decoupling head introduces additional

parameters and computational costs.

To boost computational efficiency, we propose the PCD

module, building on PConv from Section 2.2.3. The PCD module

features a 3 × 3 PConv layer for extraction, augmented by a CBS

module using a 1×1 convolutional kernel for channel adjustment.

This enhancement improves feature fusion and cross-channel

perception without a substantial parameter increase, enhancing

model expressiveness.

The PCD module replaces some CBS modules in the detection

head, forming PCDetect. Input and output feature maps are H × W

× C. Equation 2 shows the FLOPs ratio of PCD to traditional

convolution is only 1/5–1/6 when k = 3, r = 4 (Jiang et al., 2023).

s =
FLOPsPCD
FLOPsConv

=
k� k� C=r �W � H � C=r + C �W �H � C

k� k� C � H �W � C

=
1
r2

+
1
k2

  (2)

Substituting PCDetect for the Detection module in YOLOv8

significantly reduces model parameters while maintaining similar

detection accuracy. This effectively resolves conflicts between

accuracy and detection speed.
3 Experiments and analysis of results

3.1 Experiment settings

3.1.1 Experimental parameter settings
The experimental setup utilized a Dell tower workstation (Dell,

Inc., Round Rock, Texas, USA) running Windows 11. It was

equipped with a 12th Gen Intel(R) Core(TM) i5–12500 processor

operating at 3.00 GHz, 32GB of RAM, a 1TB solid-state drive, and

an NVIDIA GeForce RTX 3080 graphics card with 10GB of video

memory for GPU-accelerated computing. The software

environment included Python 3.8.17, PyTorch 1.13.0, Torchvision

0.14.0, and CUDA 11.7.

The experiment comprised 300 iterations with a batch size of 4.

The optimization algorithm used was Adam, with an initial learning

rate of 1e-3, a maximum learning rate of 1e-5, a momentum of

0.937, a weight decay of 5e-4, and an input image resolution of

640×640. These training parameters and dataset were consistent

across all models during the training process.

3.1.2 Evaluation indicators
To assess the model’s performance, various evaluation metrics

were used, including Precision, Recall, mAP@0.5, mAP@0.5:0.95,

Speed (measured in frames per second or FPS), the number of

parameters (Params), and computation costs (FLOPS).

Precision measures the ratio of correctly classified positive

samples to all samples predicted as positive, calculated using the

formula in Equation 3:
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Precision =
TP

TP + FP
(3)

Where TP is the true positive samples, and FP is the false

positive samples.

Recall quantifies the proportion of actual positive samples

correctly identified by the model, calculated using Equation 4:

Recall =
TP

TP + FN
(4)

mAP, which stands for mean Average Precision, is determined

through the precision-recall (PR) curve and is calculated using

Equation 5:

mAP = o
N
i=1APi

N
(5)

Where mAP@0.5 is the average AP with an IoU of 0.5, and

mAP@0.5:0.95 is the average AP with IoU values ranging from 0.5

to 0.95 in steps of 0.05.

The number of parameters (Params) reflects the model’s

complexity and its capacity to learn and represent features. It’s

calculated using Equation 6:

Param =o(K � K � Cin  � Cout ) (6)

Where K represents the convolution kernel size, Cin is the input

size, and Cout is the output size.

Speed is measured in frames per second (FPS), calculated using

Equation 7:

speed=frames=time (7)

FLOPS (Floating-Point Operations Per Second) represents the

model’s computation costs, and its calculation is detailed in

Equation 8:

FLOPs =o(K� K � Cin  � Cout  �H�W) (8)

Where H × W is the size of the outputted feature map.
3.2 Analysis of results

3.2.1 Ablation experiments
For a more in-depth evaluation of the effectiveness of the

enhancement technique in the CDDLite-YOLO model, we

performed a series of ablation experiments. We used YOLOv8 as

the baseline model for comparison, and the results can be found

in Table 2.
(1) Effects of C2f-Faster: A comparative analysis between

YOLOv8 and experiments involving the gradual addition

of the C2f-Faster module highlights its effectiveness. The

incorporation of C2f-Faster significantly reduces

computational costs, with a 13.41% reduction in FLOPS

and a 13.33% decrease in Params. Simultaneously, it

modestly enhances feature extraction capabilities, leading

to a 1.3% increase in mAP@0.5. This demonstrates that

C2f-Faster not only significantly reduces parameters but
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Fron
also reduces computational costs without compromising

detection accuracy.

(2) Effects of Slim-neck: A comparison between YOLOv8 and

experiments involving the gradual integration of the Slim-

neck module reveals that the inclusion of the Slim-neck

contributes to a reduction in computational costs. It leads

to a notable 10.98% reduction in FLOPS and a 10.00%

decrease in Params. Simultaneously, it provides a modest

enhancement in feature extraction capabilities, resulting in

a 1.4% increase in mAP@0.5. When both C2f-Faster and

Slim-neck are added, computational costs experience a

significant decrease, with FLOPS and Params decreasing

by 24.39% and 20.00%, while mAP@0.5 remains stable.

This achieves model lightweight without compromising

mAP@0.5. This outcome can be primarily attributed to

the incorporation of the GSConv and VoVGSCSP module,

which utilizes depthwise separable convolution to

significantly reduce the number of computed parameters.

Additionally, it reshuffles the connections between

channels to ensure information multiplexing, thereby

maintaining detection accuracy. The deliberate decision to

integrate the GSConv module into the neck was made with

careful consideration. However, it was intentionally

omitted from the backbone to prevent an excessive

presence of GSConv modules. This choice aimed to avoid

over-complicating the network architecture, which could

hinder the flow of spatial information and substantially

increase inference times.

(3) Effects of MPDIoU: A comparative analysis between

YOLOv8 and experiments gradually introducing the

MPDIoU module highlights the efficacy of its integration.

The addition of MPDIoU notably enhances model

accuracy, achieving a mAP@0.5 of up to 90.7% and

showing improvements of 2.10%, with no additional
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parameters and speed costs. It also achieves high accuracy

when integrated with other improvements. This

substantiates that MPDIoU indeed contributes to

improved model performance by calculating the IoU

based on minimizing the point distance between the

predicted bounding box and the ground truth

bounding box.

(4) Effects of PCDetect: A comparative analysis between

YOLOv8 and experiments involving the gradual addition

of the PCDetect module highlights its effectiveness. The

incorporation of PCDetect contributes to a reduction in

computational costs, with FLOPS and Params experiencing

reductions of 31.71% and 20.00%, respectively. It maintains

accuracy while achieving these reductions when integrated

with other improvements.

(5) Effects of integrating together: CDDLite-YOLO seamlessly

combines the strengths of C2f-Faster, Slim-neck, MPDIoU,

and PCDetect. The result is a model with a 56.10% reduction

in parameters, a 40.00% decrease in computational demand,

and a noteworthy 2.00% improvement in mAP@0.5

compared to YOLOv8.
The CDDLite-YOLO model significantly reduces both model

size and computational costs while maintaining a comparable

detection accuracy. This emphasizes a harmonious balance

between enhancing accuracy and streamlining model efficiency,

underscoring the significance of our proposed improvements.

3.2.2 Performance comparison with the state-of-
the-art detection models

To evaluate the model’s effectiveness, we conducted

comparative experiments, comparing our proposed model against

well-known lightweight models such as YOLOv5n, YOLOv6n,

YOLOv7-tiny, and YOLOv8n. All experiments utilized the same
TABLE 2 Comparisons of ablation experiments.

BaseLine C2f-Faster Slim- neck MPDIoU PCDetect mAP@0.5 FLOPS/G Params/M

✓ 88.6% 8.2 3.0

✓ ✓ 89.9% 7.1 2.6

✓ ✓ ✓ 89.3% 6.2 2.4

✓ ✓ ✓ ✓ 90.2% 6.2 2.4

✓ ✓ 90.0% 7.3 2.7

✓ ✓ ✓ 90.1% 7.3 2.7

✓ ✓ ✓ ✓ 89.6% 4.7 2.2

✓ ✓ 90.7% 8.2 3.0

✓ ✓ ✓ 89.4% 5.6 2.4

✓ ✓ 89.0% 5.6 2.4

✓ ✓ ✓ ✓ ✓ 90.6% 3.6 1.8
The bold values in Table 2 represent the model proposed in this paper.
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cotton diseases dataset, which consists of 1224 training images, 153

validation images, and 153 test images. We maintained identical

experimental conditions throughout to ensure a fair comparison.

The comparison results are shown in Figure 4 and Table 3.

CDDLite-YOLO outperforms other mainstream lightweight

models in terms of detection accuracy. In this paper, CDDLite-

YOLO achieves mAP@0.5 and mAP@0.5:0.95 scores of 90.6% and

73.7%, surpassing the performance of YOLOv5n, YOLOv6n,

YOLOv7-tiny, Faster R-CNN, SSD, RetinaNet, FCOS and

YOLOv8n. Several factors contribute to this superior performance.

Firstly, the C2f-Faster module utilizes only 1/4 of the input channels

for convolution and processing 3/4 of the channels extracted from

these channels in subsequent 1×1 convolutions. This approach

enhances spatial feature extraction by reducing redundant

computation and memory access simultaneously. Secondly, Slim-

neck utilizes the shuffle operation to seamlessly integrate information

from SC into DSC-generated data while preserving hidden

connections. This approach effectively achieves a balanced trade-off

between model accuracy and speed, keeping complexity low.

Additionally, the PCDetect module employs a 1×1 convolutional

kernel for channel adjustment, enhancing feature fusion and cross-

channel perception without substantially increasing parameters. The

integration of the C2f-Faster module, Slim-neck, and PCDetect

module significantly reduces operational parameters while

maintaining inference speed, without compromising detection

accuracy. Furthermore, the inclusion of MPDIoU is pivotal in

enhancing model accuracy. It addresses limitations in existing loss

functions by considering the minimum point distance between

predicted and ground truth bounding boxes, particularly when they

share the same aspect ratio but possess varying width and height

values. These factors collectively enhance the effectiveness of the

CDDLite-YOLO model in detecting cotton diseases.

The CDDLite-YOLO model excels in reducing parameter count

and computational complexity. Compared to YOLOv5n,

YOLOv6n, YOLOv7-tiny, Faster R-CNN, SSD, RetinaNet, FCOS

and YOLOv8n, our proposed CDDLite-YOLO model offers lower

FLOPS and Params, specifically 3.6G and 1.8M. This reduction can

be mainly attributed to the incorporation of the C2f-Faster module,

Slim-neck, and PCDetect module.
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Upon analyzing the results, we observe that the Params of the

YOLOv5n model are slightly lower than those of our proposed

model, albeit by only 0.1. However, what sets CDDLite-YOLO apart

is its superior performance in terms of Precision, Recall, mAP@0.5,

mAP@0.5:0.95, and speed. The CDDLite-YOLO model

outperforms YOLOv5n with a 0.5% increase in Precision, 4.9% in

Recall, 3.1% in mAP@0.5, 7.1% in mAP@0.5:0.95, and a remarkable

107.28 FPS boost in speed.

The results unequivocally establish the superiority of our

proposed model over the current mainstream lightweight

algorithms in three key aspects: model size, detection accuracy,

and detection speed. To further substantiate the performance of the

CDDLite-YOLO model, we randomly selected detection results

from a variety of environmental conditions among all testing

samples, as displayed in Figure 5.

3.2.3 Performance comparison of loss function
We experimented with various IoU loss functions to determine

their impact on performance. The tested loss functions include

CIoU loss, GIoU loss (Rezatofighi et al., 2019), SIoU loss

(Gevorgyan, 2022), WIoU loss (Cho, 2021), and MPDIoU loss,

while the remaining aspects of the YOLOv8 model were kept

constant. The comparative results are presented in the Table 4.

Notably, when using MPDIoU as the loss function for YOLOv8,

the highest mAP is achieved. This can be attributed to its

adaptability to diseases of various shapes and sizes in field

environments, distinguishing it as the most suitable choice for

our model in comparison with the other tested loss functions,

particularly when compared to the original IoU loss.

3.2.4 Performance comparison of detection
head optimization

To evaluate the impact of the PCDetect detection head on

cotton disease detection, we conducted experiments to determine

the most effective detection head. We tested several detection heads,

including Origin YOLOv8 (featuring two 3x3 Conv layers), a

detection head with one 1x1 ScConv (Li et al., 2023a) + one 1x1

Conv, a detection head with two 3x3 RepConv (Soudy et al., 2022),

and PCDetect (comprising 1x1 PConv + one 1x1 Conv). The
A B

FIGURE 4

Comparison of detection results between different models. (A) Detection performance. (B) Computational complexity, parameter, and
detection time.
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Comparison of different detection heads on YOLOv8 is shown

in Table 5.

Comparing PCDetect with Origin YOLOv8 and the detection

head with one 1x1 ScConv + one 1x1 Conv, we observed that the

mAP@0.5 of the PCDetect detection head remained stable. However,

the number of parameters decreased by 20% and 4%, while

computational complexity increased by 31.71% and 1.75%. It’s worth

noting that although the mAP@0.5 of the detection head with two 3x3

RepConv was 0.6 higher than that of PCDetect, the computational

costs and parameter count increased by 44.64% and 58.33% compared

to PCDetect, even surpassing those of the Origin YOLOv8 model.

Our experimental results unequivocally confirm that using the

PCDetect detection head outperforms other options, maintaining

detection accuracy while requiring fewer parameters and lower

computational complexity.
4 Discussion

4.1 The importance of model lightweight

In recent years, advances in deep learning and convolutional

networks have significantly enhanced object detection capabilities.

Embedded computing devices have emerged as the preferred

computational core for cost-effective and portable agricultural

equipment. However, a graphics card’s performance depends on

its single-precision floating-point capabilities, CUDA core count,

and overall computing power, creating a noticeable power gap

between embedded devices and professional computing cards

(Cui et al., 2023). Consider the NVIDIA H100, a pinnacle in

professional computing, with an impressive 1200.00 TFlops in

single-precision floating-point performance and a substantial

18432 CUDA cores. Meanwhile, the NVIDIA A100, another

powerhouse in professional computing, maintains a balanced

profile with 312.00 TFlops and 6912 CUDA cores. On the other

hand, the NVIDIA GeForce RTX 4090, a robust GPU not

specifically tailored for professional computing, emphasizes a

different performance profile with 82.58 TFlops and 16384 CUDA

cores. In contrast, embedded devices like the NVIDIA Jetson AGX
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Orin and Jetson TX2, efficient in their own right, demonstrate more

modest capabilities with 5.30 TFlops/2560 CUDA cores and 1.36

TFlops/256 CUDA cores, respectively.

Deep learning models demand a considerable number of

multiplicative operations for accurate feature extraction.

Deploying detection models on embedded devices presents a

significant challenge due to their constrained computational

resources. Unfortunately, the computing power of the NVIDIA

Jetson TX2 is only 1/882nd of that of the NVIDIA H100,

highlighting the embedded devices’ inability to handle such

demanding calculations within a reasonable timeframe.

In the context of deployment on agricultural inspection robots

and resource-constrained devices, while some detection networks

boast high accuracy, their extensive parameters and computations

strain devices. Conversely, the most lightweight detection models

offer faster detection but often sacrifice accuracy, posing challenges

for application. Thus, ensuring the model lightweight while

maintaining detection accuracy is a fundamental requirement for

deploying the cotton disease detection model on agricultural

inspection robots and other resource-constrained devices. The

CDDLite-YOLO model adeptly amalgamates the strengths of

various lightweight modules such as C2f-Faster, Slim-neck, and

PCDetect. By doing so, it achieves a harmonious balance between

enhancing accuracy and streamlining model efficiency, rendering it

well-suited for deployment on agricultural inspection robots and

other resource-constrained agricultural devices.
4.2 Discussions of the detection results

Extensive research has been conducted on detecting cotton

diseases using deep learning. However, previous studies, such as

those by (Priya et al., 2021; Devi Priya et al., 2022; Susa et al., 2022;

Zhang et al., 2022; Zhang et al., 2023b, Zhang et al., 2023c), did not

fully consider the requirement for fast detection in applications

involving agricultural inspection robots or detection conducted

within controlled environments. This study addresses these

specific needs.

The advantages of the CDDLite-YOLO model are as follows:
TABLE 3 Comparison of detection performance of different models.

Models Precision Recall mAP@0.5 mAP@0.5:0.95 FLOPS/G Params/M Speed

YOLOv5n 88.5% 81.2% 87.5% 66.6% 4.1 1.7 114.9

YOLOv6n 87.4% 79.5% 87.2% 71.9% 11.8 4.2 220.3

YOLOv7-tiny 89.5% 84.0% 88.0% 66.4% 13.2 6.0 80.0

YOLOv8n 87.1% 85.2% 88.6% 72.8% 8.2 3.0 158.7

Faster R-CNN 43.9% 83.2% 74.3% 46.3% 370.2 137.1 21.0

SSD 74.4% 85.4% 82.1% 58.4% 62.8 26.3 117.6

RetinaNet 89.5% 76.8% 84.4% 60.8% 170.1 38.0 39.3

FCOS 86.3% 86.8% 89.4% 67.4% 161.9 32.2 41.5

CDDLite-YOLO 89.0% 86.1% 90.6% 73.7% 3.6 1.8 222.2
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FIGURE 5

Prediction results of the proposed method. (A) Under complex backgrounds such as plastic film, water pipes, and soil in the field. (B) Under dense
disease conditions. (C) Under the conditions of image blurriness generated during the agricultural inspection robot movement and
collection process.
TABLE 4 Comparison of different loss functions onYOLOv8.

Loss Functions CIoU (Origin YOLOv8) GIoU SIoU WIoU MPDIoU

mAP@0.5 88.6% 89.3% 90.1% 90.0% 90.7%
F
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(1) Lightweight and Speed: The CDDLite-YOLO model

exhibits lightweight characteristics and reduces model

size, making it well-suited for deployment on agricultural

inspection robots and other resource-constrained

agricultural devices.

(2) Balance of Accuracy and Efficiency: The CDDLite-YOLO

model strikes a harmonious balance between detection

speed, accuracy, and model size, positioning it as a

promising candidate for deployment on an embedded

GPU chip without compromising performance.
4.3 Limitations and future prospects

While our proposed method has demonstrated encouraging

results, there are still certain limitations that need to be addressed in

future research.

The mAP@0.5 of the CDDLite-YOLO model for detecting

cotton verticillium wilt diseases currently stands at 78.1%, leaving

room for improvement. This lower accuracy may be attributed to

factors such as background interference, as the color of cotton

verticillium wilt diseases closely resembles that of the soil, making

them easily blend into the background. Additionally, cotton

verticillium wilt diseases and cotton Fusarium wilt diseases share

a similar color, leading to occasional misdetections. To address

these limitations, future experiments will explore the use of spectral

imaging or hyperspectral imaging to capture more detailed

information about the spectral characteristics of cotton

verticillium wilt diseases. This can aid in distinguishing them

from the soil background. Moreover, we will enrich our dataset

by gathering and analyzing images of cotton diseases from various

varieties and regions captured by agricultural inspection robots

during their operation. This initiative will further validate the

applicability of the model proposed in this study. Furthermore,

we intend to implement systems that integrate human expertise to

validate and refine model predictions, thus strengthening the

accuracy of disease detection.

Regarding model deployment, we have successfully deployed

the CDDLite-YOLO model on embedded devices such as the

NVIDIA Jetson AGX Orin, NVIDIA Jetson TX2, and NVIDIA

Jetson Nano. It performs well and fulfills the requirements for low

computational power embedded devices in detecting cotton

diseases in natural field environments. It achieves a balance

between detection speed, accuracy, and model size, allowing

deployment on these embedded GPU chips without sacrificing

performance. Additionally, the CDDLite-YOLO model has been
tiers in Plant Science 1365
applied on agricultural inspection robots equipped with NVIDIA

Jetson AGX Orin, demonstrating excellent performance in rapidly

inspecting. We hope to deploy it on more cost-effective agricultural

inspection robots in the future. However, our lab currently lacks

access to agricultural inspection robots which are equipped with

more cost-effective devices like NVIDIA Jetson Nano, which will be

the focus of our future research.

Despite its limitations, CDDLite-YOLO serves as a valuable

technical reference for detecting cotton diseases in natural field

conditions. The application of the CDDLite-YOLO model in

agricultural inspection robots for cotton disease detection holds

the promise of validating its reliability.
5 Conclusions

Cotton, a crucial global source of natural textile fibers, is highly

susceptible to cotton diseases, which significantly impact both

cotton quality and yield. The use of deep learning has become an

integral approach to cotton disease detection. However, current

detection models often suffer from an overabundance of model

parameters, making them unsuitable for resource-constrained

devices and hindering the delicate balance between detection

accuracy and speed. To address these challenges, our research

establishes a dedicated dataset for cotton disease detection.

Building upon the YOLOv8 model, we introduce significant

improvements, resulting in the CDDLite-YOLO model that meets

the demands for accuracy, lightweight design, and real-time

performance in agricultural inspection robots and resource-

constrained agricultural devices. These enhancements encompass

the introduction of the C2f-Faster module, Slim-neck structure, the

PCDetect detection head, and the MPDIoU loss function. These

innovations enable automatic cotton disease detection in natural

environments, even on resource-constrained agricultural devices.

Our experimental results validate the model’s effectiveness,

achieving an impressive mAP@0.5 of 90.6%. It outperforms

comparable models in mAP@50–95, precision, and recall. The

model excels in computational efficiency, with parameters totaling

1.8M, FLOPS at 3.6G, and a rapid detection speed of 222.22ms.

These advancements represent a significant leap compared to

mainstream lightweight detection models like YOLOv5n,

YOLOv6n, YOLOv7-tiny, and YOLOv8n, rendering them highly

suitable for deployment on agricultural inspection robots. This

study provides innovative methods for developing lightweight

cotton disease detection models and deploying them on

agricultural inspection robots and other resource-constrained

agricultural devices. Additionally, it is also a reference for crop
TABLE 5 Comparison of different detection heads onYOLOv8.

Detection head Origin YOLOv8 one 1x1 ScConv
+ one 1x1 Conv

two
3x3 RepConv

PCDetect

mAP@0.5 88.6% 88.7% 89.6% 89.0%

FLOPS/G 8.2 5.7 8.1 5.6

Params/M 3.0 2.5 3.8 2.4
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loss estimation, pesticidal management practices, and

understanding symptom-environment relationships. the

CDDLite-YOLO model for detecting cotton verticillium wilt

indicates room for improvement. This limitation could potentially

be addressed by exploring the use of spectral imaging or

hyperspectral imaging to capture more detailed information about

the spectral characteristics of cotton verticillium wilt diseases.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

PP: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing. MS: Data curation, Software, Writing –

review & editing. PH: Data curation, Writing – review & editing.

LiH: Funding acquisition, Supervision, Writing – review & editing.

SZ: Validation, Writing – review & editing. LoH: Formal analysis,

Writing – review & editing. GZ: Funding acquisition, Project

administration, Writing – review & editing. JZ: Funding

acquisition, Project administration, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the National Key Research and Development

Program of China (No.2022YFF0711805, 2021YFF0704204,

2022YFF0711801), and the Project of Sanya Yazhou Bay Science
Frontiers in Plant Science 1466
and Technology City (No.SCKJ-JYRC-2023-45), and the

Innovation Project of the Chinese Academy of Agricultural

Sciences (No.CAAS-ASTIP-2024-AII, No.CAAS-ASTIP-2023-

AII), and The Special Fund of Chinese Central Government for

Basic Scientific Research Operations in Commonweal Research

Institutes (No.JBYW-AII-2024-05, No.JBYW-AII-2023-06,

No.Y2022XK24, No.Y2022QC17, No.JBYW-AII-2022-14), and

Nanfan special project, CAAS Grant Nos. YBXM2409,

YBXM2410, YBXM2312, ZDXM2311, YBXM2312, YDLH01,

YDLH07, YBXM10 and National Natural Science Foundation of

China (No.31971792, No.32160421).
Acknowledgments

Appreciations are given to the editors and reviewers of the

Journal Frontiers in Plant Science.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Balaska, V., Adamidou, Z., Vryzas, Z., and Gasteratos, A. (2023). Sustainable crop
protection via robotics and artificial intelligence solutions. Machines 11, 774.
doi: 10.3390/machines11080774

Cai, Y., He, X., Mo, J., Sun, Q., Yang, J., and Liu, J. (2009). Molecular research and
genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr. J.
Biotechnol. 8, 7363–7372.

Chen, J., Kao, S.-H., He, H., Zhuo, W., Wen, S., Lee, C.-H., et al. (2023). “Run, don’t
walk: chasing higher FLOPS for faster neural networks,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition. (IEEE: Vancouver, BC,
Canada), 12021–12031. doi: 10.1109/CVPR52729.2023.01157

Chi, B., Zhang, D., and Dong, H. (2021). Control of cotton pests and diseases by
intercropping: A review. J. Integr. Agric. 20, 3089–3100. doi: 10.1016/S2095-3119(20)63318-4

Cho, Y.-J. (2021). Weighted intersection over union (wIoU): A new evaluation metric
for image segmentation. arXiv e-prints arXiv:2107.09858. doi: 10.48550/
arXiv.2107.09858

Chohan, S., Perveen, R., Abid, M., Tahir, M. N., and Sajid, M. (2020). “Cotton
diseases and their management,” in Cotton Production and Uses: Agronomy, Crop
Protection, and Postharvest Technologies. Eds. S. Ahmad and M. Hasanuzzaman
(Springer Singapore, Singapore), 239–270.

Cui, M., Lou, Y., Ge, Y., and Wang, K. (2023). LES-YOLO: A lightweight pinecone
detection algorithm based on improved YOLOv4-Tiny network. Comput. Electron.
Agric. 205, 107613. doi: 10.1016/j.compag.2023.107613
Dai, G., Hu, L., and Fan, J. (2022). DA-actNN-YOLOV5: hybrid YOLO v5 model
with data augmentation and activation of compression mechanism for potato disease
identification. Comput. Intell. Neurosci. 2022, 6114061. doi: 10.1155/2022/6114061

Devi Priya, R., Devisurya, V., Anitha, N., Dharani,, Geetha, B., and Kirithika, R. V.
(2022). “Faster R-CNN with augmentation for efficient cotton leaf disease detection,” in
Hybrid Intelligent Systems. Eds. A. Abraham, P. Siarry, V. Piuri, N. Gandhi, G. Casalino,
O. Castillo and P. Hung (Cham: Springer International Publishing), 140–148.
doi: 10.1007/978-3-030-96305-7_13

Gevorgyan, Z. (2022). SIoU loss: more powerful learning for bounding box
regression. arXiv e-prints arXiv:2205.12740. doi: 10.48550/arXiv.2205.12740

Guo, Y., Lan, Y., and Chen, X. (2022). CST: Convolutional Swin Transformer for
detecting the degree and types of plant diseases. Comput. Electron. Agric. 202, 107407.
doi: 10.1016/j.compag.2022.107407

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). MobileNets: efficient convolutional neural networks for mobile vision
applications. arXiv e-prints 1704.04861. doi: 10.48550/arXiv.1704.04861

Huang, G., Huang, J.-Q., Chen, X.-Y., and Zhu, Y.-X. (2021). Recent advances and
future perspectives in cotton research. Annu. Rev. Plant Biol. 72, 437–462. doi: 10.1146/
annurev-arplant-080720-113241

Jia, L., Wang, T., Chen, Y., Zang, Y., Li, X., Shi, H., et al. (2023). MobileNet-CA-
YOLO: an improved YOLOv7 based on the mobileNetV3 and attention mechanism for
rice pests and diseases detection. Agriculture 13(7). doi: 10.3390/agriculture13071285
frontiersin.org

https://doi.org/10.3390/machines11080774
https://doi.org/10.1109/CVPR52729.2023.01157
https://doi.org/10.1016/S2095-3119(20)63318-4
https://doi.org/10.48550/arXiv.2107.09858
https://doi.org/10.48550/arXiv.2107.09858
https://doi.org/10.1016/j.compag.2023.107613
https://doi.org/10.1155/2022/6114061
https://doi.org/10.1007/978-3-030-96305-7_13
https://doi.org/10.48550/arXiv.2205.12740
https://doi.org/10.1016/j.compag.2022.107407
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1146/annurev-arplant-080720-113241
https://doi.org/10.1146/annurev-arplant-080720-113241
https://doi.org/10.3390/agriculture13071285
https://doi.org/10.3389/fpls.2024.1383863
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2024.1383863
Jiang, H., Hu, F., Fu, X., Chen, C., Wang, C., Tian, L., et al. (2023). YOLOv8-Peas: a
lightweight drought tolerance method for peas based on seed germination vigor. Front.
Plant Sci. 14. doi: 10.3389/fpls.2023.1257947

Johnson, J., Sharma, G., Srinivasan, S., Masakapalli, S. K., Sharma, S., Sharma, J., et al.
(2021). Enhanced field-based detection of potato blight in complex backgrounds using
deep learning. Plant Phenomics 2021. doi: 10.34133/2021/9835724

Kang, C. H., and Kim, S. Y. (2023). Real-time object detection and segmentation
technology: an analysis of the YOLO algorithm. JMST Adv. 5, 69–76. doi: 10.1007/
s42791-023-00049-7

Lawrence, K., Strayer-Scherer, A., Norton, R., Hu, J., Faske, T., Hutmacher, R., et al.
(2022). “Cotton disease loss estimate committee repor,” in 2022 Beltwide Cotton
Conferences (National Cotton Council, San Antonio, TX).

Leng, S., Musha, Y., Yang, Y., and Feng, G. (2023). CEMLB-YOLO: efficient detection
model of maize leaf blight in complex field environments. Appl. Sci. 13(16).
doi: 10.3390/app13169285

Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., and Ren, Q. (2022). Slim-neck by GSConv: A
better design paradigm of detector architectures for autonomous vehicles. arXiv e-
prints 2206, 2424. doi: 10.48550/arXiv.2206.02424

Li, J., Wen, Y., and He, L. (2023a). “SCConv: spatial and channel reconstruction
convolution for feature redundancy,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. (IEEE: Vancouver, BC, Canada), 6153–6162.
doi: 10.1109/CVPR52729.2023.00596

Li, K., Zhu, X., Qiao, C., Zhang, L., Gao, W., and Wang, Y. (2023b). The gray mold
spore detection of cucumber based on microscopic image and deep learning. Plant
Phenomics 5, 11. doi: 10.34133/plantphenomics.0011

Liu, J., and Wang, X. (2021). Plant diseases and pests detection based on deep
learning: a review. Plant Methods 17, 22. doi: 10.1186/s13007-021-00722-9
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Introduction: Pine wilt disease spreads rapidly, leading to the death of a large

number of pine trees. Exploring the corresponding prevention and control

measures for different stages of pine wilt disease is of great significance for its

prevention and control.

Methods: To address the issue of rapid detection of pine wilt in a large field of

view, we used a drone to collect multiple sets of diseased tree samples at

different times of the year, which made the model trained by deep learning more

generalizable. This research improved the YOLO v4(You Only Look Once version

4) network for detecting pine wilt disease, and the channel attention mechanism

module was used to improve the learning ability of the neural network.

Results: The ablation experiment found that adding the attention mechanism

SENet module combined with the self-designed feature enhancement module

based on the feature pyramid had the best improvement effect, and the mAP of

the improved model was 79.91%.

Discussion: Comparing the improved YOLO v4 model with SSD, Faster RCNN,

YOLO v3, and YOLO v5, it was found that the mAP of the improved YOLO v4

model was significantly higher than the other four models, which provided an

efficient solution for intelligent diagnosis of pine wood nematode disease. The

improved YOLO v4 model enables precise location and identification of pine wilt

trees under changing light conditions. Deployment of the model on a UAV

enables large-scale detection of pine wilt disease and helps to solve the

challenges of rapid detection and prevention of pine wilt disease.
KEYWORDS

pine wilt disease, UAV images, large field-of-view, deep learning, target detection
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1 Introduction

Pine wilt disease (PWD) is caused by pine wood nematode

(PWN), which is known for its high destructiveness (Kobayashi

et al., 2003). The disease has been widely distributed in Asia,

especially in China, Japan, and South Korea, where it has caused

the most damage (Kikuchi et al., 2011). The spread of PWD is swift.

Once a diseased tree is found, nearby pine trees may also be infected

(Asai and Futai, 2011). PWNS feed on and infest pine trees, causing

the trees to weaken and die (Yun et al., 2012), resulting in losses to

forestry production and the ecological environment. Countries have

strengthened quarantine and control measures to cope with the

spread of PWD. The spread of PWD poses a threat to Asia’s forestry

and ecological environment (Wu et al., 2020). Therefore,

monitoring PWD is of great significance for the safety of China’s

forest resources (Schröder et al., 2010). The application of drone

remote sensing technology has dramatically improved the efficiency

of forest resource surveys (Kentsch et al., 2020). Traditional

monitoring techniques rely on low-level semantic features

extracted from remote sensing images, making them susceptible

to factors such as noise, lighting, and seasons, which limits their

application in complex real-world scenarios (Park et al., 2016).

Using drones to aerially photograph areas affected by PWD, the

location and degree of diseased trees can be visually observed from

the aerial images, and targeted measures can be taken to deal with

diseased trees, reducing the workload of manual investigations. It is

of great significance to use drones combined with artificial

intelligence algorithms to detect pine wilt disease, which

significantly improves the detection efficiency of pine wilt disease.

With the rapid development of drone monitoring technology

and image processing technology, drone remote sensing monitoring

methods have gradually been applied in PWD monitoring (Syifa

et al., 2020; Vicente et al., 2012). When drones are used to aerially

photograph areas affected by pine wilt disease, visible light cameras

are carried to obtain ground images within the scope of the PWD

epidemic, and the images are transmitted to the display terminal for

automatic identification and positioning of diseased trees by the

trained target detection algorithm (Kuroda, 2010). The use of

drones for automatic monitoring of PWD can improve the

efficiency of diseased tree monitoring. Compared with satellite

remote sensing monitoring, drone remote sensing monitoring has

a lower cost and more straightforward operation. Applying this

technology in PWD detection is beneficial to the protection of pine

tree resources and the stability of the ecological environment (Gao

et al., 2015; Tang and Shao, 2015).

In target detection, accurate feature extraction from images is a

crucial issue affecting model performance. Traditional image target

detection uses machine learning algorithms to extract image features.

However, because machine learning algorithms can only extract

shallow feature information from images, the performance of target

detection is challenging to improve (Khan et al., 2021). Machine

learning algorithms use manually designed feature operators to

extract feature vectors of targets in the image, and based on these

feature vectors, use statistical learning methods to achieve intelligent

visual detection of image targets (Tian and Daigle, 2019). These

algorithms rely on colors or specific shapes whose features are not
Frontiers in Plant Science 0269
stable enough, resulting in detectionmode. Thus, the adaptability and

robustness of the model to the environment are not good enough

(Long et al., 2015). Therefore, deep learning algorithms have emerged

(Li et al., 2023), and it has been successfully applied in fields such as

computer vision, speech recognition, and medical image analysis.

This algorithm uses convolutional neural networks to extract image

features, which can extract deep-level feature information of image

targets, thereby improving the detection accuracy of diseased trees

(Lifkooee et al., 2018). The theoretical system of target detection

algorithms has gradually improved as research in this subject has

progressed, and many distinct method frameworks have been

employed in many image detection fields (Zhang and Zhang,

2019). Li proposes a multi-block SSD method based on small

object detection to the railway scene of UAV surveillance (Li et al.,

2020). Xu extends the Faster RCNN vehicle detection framework

from low-altitude drone images captured at signalized intersections

(Xu et al., 2017). The focus of the research is how to change the

structure of the algorithm model and achieve a balance between

detection accuracy and processing time (Hosang et al., 2016).

Under changing lighting conditions, the texture features of the

image change, resulting in a decrease in detection accuracy (Barnich

and Van, 2011). There are relatively few algorithms for monitoring

pine wilt diseased trees in the lighting change scene, and most of the

target detection algorithms for diseased trees have complex

structures, low detection accuracy, and low computational

efficiency (Zhang et al., 2019). Huang et al. Constructed a densely

connected convolutional networks (D-CNN) sample dataset, using

GF-1 and GF-2 remote sensing images of areas with PWD. Then,

the “microarchitecture combined with micromodules for joint

tuning and improvement” strategy was used to improve the five

popular model structures (Huang et al., 2022). In 2021, a

spatiotemporal change detection method to improve accurate

detections in tree-scale PWD monitoring was proposed by Zhang

et al., which represents the capture of spectral, temporal, and spatial

features (Zhang et al., 2021).

Currently, most of the detections for pine wilt are done by

biological sampling, which is time-consuming and labor-intensive.

Research on the detection of pine wilt disease using unmanned

aerial vehicle (UAV) has mainly focused on stable light conditions,

and little attention has been paid to the detection of pine wilt disease

under changing light conditions, resulting in the low detection

accuracy of the existing models, as well as the inability of their

improved methods to detect disease spots under changing light

conditions. And there is the problem of small field of view and small

number of targets. The research object of this paper is PWD tree, by

increasing the flying height of UAV, increasing the field of view

range of the camera, increasing the number of image targets, and

based on this, a set of algorithms for detecting and recognizing the

targets of diseased tree is proposed, which provides theoretical and

practical support for detecting and recognizing the targets of remote

sensing images by UAV.

In conclusion, this paper proposes a YOLO v4 target

recognition algorithm based on the Attention Mechanism Module

to establish a model for rapid localization and accurate recognition

of pine nematode disease trees under dynamic light changes.

Further, combining it with UAV image technology realizes rapid
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multi-target detection over a large field of view. This can save time

in investigating pine wood nematode disease and realize prevention

in advance, which is of great significance for preventing the spread

of pine wood nematode disease.
2 Experimental parameters and YOLO
v4 network structure

2.1 Sample collection sites and UAV
images acquisition

The prominent peak of Yunji Mountain has an elevation of

1434.2 meters and is located at 24°07’ north latitude and 114°08’

east longitude (Figure 1A). It is located in the north of Guangzhou

City, in the central part of Xinfeng County, 10 kilometers away from

the county town. It belongs to the natural ecosystem transitional

zone from the South sub-tropical zone to the Central subtropical

zone, with a jurisdictional area of 2700 hectares. The panoramic

image collected by the drone was taken in multiple shots and

stitched together to form a complete image. The collection area

includes a winding road and houses distributed along the roadside.

The mountain is higher in the northeast and lower in the southwest

as shown in Figure 1B.

The visible light images were acquired using the DJI Mavic 2

drone, equipped with ten sensors distributed in six directions: front,

rear, left, right, up, and down. The sensor model is 1-inch

Complementary Metal Oxide Semic (CMOS), and the captured

image resolution is 5472×3684. The drone can reduce air resistance

by 19% during high-speed flight, and its maximum flight speed can

reach 72 km/h, with a flight time of up to 31 minutes, the

experimental drone is shown in Figure 1C.

The illumination can affect the clarity of the drone remote

sensing image collection. Due to the continuously changing natural

lighting conditions over time and weather, the lighting conditions

greatly affect the image quality, resulting in complex information in
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the collected images of diseased trees. According to the lighting

conditions of the photos, they can be divided into two categories:

sufficient light and insufficient light. The light intensity was

measured by an illuminometer.

To balance the image quality and the diseased tree target

detection network, all remote sensing images of diseased trees are

uniformly resized to a resolution of 416×416 pixels. The uneven

lighting caused by changes in the lighting conditions affects the

quality of the images (Figure 1D). The change in the lighting

environment poses a significant challenge for object detection.

Compared with the photos collected under sufficient lighting

conditions, whose illuminance is 10826 lux, the remote sensing

images of diseased trees collected under insufficient lighting

conditions contain a large amount of noise. The visibility of

objects such as diseased trees, houses, and roads is poor, resulting

in blurred targets and severe distortion of details (Zuky et al., 2013).
2.2 Experimental environment
configuration and training
parameter settings

The YOLO v4 and its improved diseased tree detection

algorithm run on the Windows 10.0 system with 32 GB of

memory. This experiment uses an NVIDIA GeForce RTX 3080 Ti

graphics card with 12 GB of memory and an 8-core 11th Gen Intel

Core i7–11700KF CPU. The central frequency of the CPU is 3.6

GHz. Adopting an object detection algorithm based on PyTorch,

the code runs in Python 3.7 environment. The object detection

network is built using the Python language. In addition, third-party

library packages such as numpy, opencv, and panda. Pytorch are

Python-based machine learning libraries that can achieve powerful

GPU acceleration.

The model parameters of YOLO v4 are set as shown (Table 1).

The input image size is 416×416, the optimizer uses Adam, a total of

50 epochs are trained, the threshold of the prior box is set to 0.5, and
B C

D

A

FIGURE 1

Geographical location diagram of UAV images acquisition. (A) Geographical location map of the research area (B) UAV orthophoto map (C) Drone
appearance diagram (D) Single UAV aerial photo.
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the loss function is cross-entropy loss. The model’s training process

is divided into two stages: frozen training and unfrozen training

(Liu et al., 2020). During the firm training process, the pretraining

weights of the backbone network do not need to be trained, which

can improve the training efficiency of the networks, and addicts

were also used. Usually, an increase in detection accuracy leads to

an increase in the complexity of the model, but due to the

limitations of computer arithmetic thus leading to slow

computation. Therefore, the use of higher computing power

computers or multi-CPU parallel computing can improve the

detection time and accuracy, but it is a challenge to balance the

model size and cost control.
2.3 YOLO v4 network structure and
detection process

YOLO v4 is an improvement on YOLO v3, retaining most of the

structure of the YOLO v3. The improved parts of the network

architecture include the input part, the leading feature extraction

network, the neck network, and the head network (Bochkovskiy

et al., 2020). Unlike YOLO v3, the feature extraction network of

YOLO v4 is replaced by CSPDarknet53. The main feature

extraction network comprises CSPDarknet53, and Cross Stage

Partial (CSP) can effectively enhance the feature extraction ability

of the convolutional network (Hui et al., 2021; Deng et al., 2022).

The feature extraction network used by YOLO v4 is CSPDarknet,
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composed of the CSPX and CBM modules arranged alternately

(Jiang et al., 2013). The structure of CSPX is shown in (Acharya,

2014; Fan et al., 2022).

First, visible light images of PWD trees collected by drones are

annotated with the Labeling tool to save the detection box position

and category information as an XML file. The training set images

are rotated at different angles and input into YOLO v4 for training

to increase the diversity of training samples. The trained model

outputs detection boxes for the test set images (Figure 2).

In order to increase the detection accuracy of the model, this

study modified the structure of the YOLO v4 model. By embedding

attention mechanism and feature enhancement module in the YOLO

v4 model improves the model’s feature extraction ability. Determine

the optimal model structure through ablation experiments.
3 Model improvement
and methodology

3.1 Data enhancement and attention
mechanism test

To increase the diversity of training samples, prevent over fitting

during model training, and improve the accuracy of model detection.

A widespread way to enhance image data is to perform geometric

transformation, such as cropping, rotating, translating, and adjusting

the image’s brightness (Kim and Seo, 2018). This study used the

rotation method to perform data augmentation on the training set

samples. Five different angles, 15°, 60°, 195°, 240°, and 285°, were used

to rotate the training set images, corresponding to Figures 3B–F,

respectively. And the original image is showed in Fiqure 3A.

Convolutional neural networks contain the invariance property,

which allows the network to preserve invariance to images under

changing illuminations, sizes, and views. As a result, by rotating the

acquired drone diseased tree photographs from various angles, the

neural network will recognize these images as distinct (Moeskops
FIGURE 2

Disease tree target detection process for YOLO v4.
TABLE 1 Model training parameter settings.

Parameter
Name

Freeze
Training Phase

Unfreezing
Training Stage

Epoch 1–25 25–50

Learning rate 0.001 0.0001

Batch size 4 4
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et al., 2016). Due to the limited number of diseased tree images, a

large sample set was added by augmenting the images through

rotation at different angles. Five different angles were used to rotate

the images, and five different images were obtained. The schematic

diagram of the diseased tree images before and after sample

augmentation is shown in the figure, and the number of images

obtained after image transformation reached 7218, with 515 images

in the test set. The above method was used to augment the sample

data in the training set. The initial data in the training set was 1203

images, which was expanded six-fold. After rotating the images, the

sample data set was expanded, and the expanded data was divided

into a training set and a validation set. The training set contains

5052 images, the validation set contains 2166 images, and the test

set contains 515 images.

The recognition results on the diseased pine tree dataset are

compared (Table 2). It can be seen from the table that before data

augmentation, the mean average precision (mAP) of the diseased

pine tree detection was 77.45%. After data augmentation, the

detection accuracy of the diseased pine tree was slightly

improved, with an mAP of 77.81%, an increase of 0.36%. The

accuracy increased by 0.22%, the specificity increased by 0.01, the

recall increased by 2.22%, and precision decreased slightly. Overall,

the detection accuracy of the diseased pine tree was improved. Data

analysis shows that data augmentation can improve the detection

effect of the diseased pine tree.
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3.2 Attention mechanism addition
position test

To determine the appropriate position for adding the attention

mechanism, the detection performance of two different positions

with the attention mechanism added in the YOLO v4 network

structure was compared. Position 1 added the attention mechanism

after the last three feature layers of the backbone feature network,

before the feature pyramid network. In contract, position 2 added

the attention mechanism before the three YOLO detection

heads (Figure 4).

The detection accuracy of the attention mechanism at different

positions is shown in Table 3. When the Squeeze-and-Excitation

Networks (SENet) attention mechanism was added at position 1, the

mAP of the test set was 79.29%. When the SENet attention

mechanism was added at position 2, the mAP of the test set was

78.09%. The accuracy and recall in position 1 were higher than in

position 2, with an increase of 0.42% and 1.76%, respectively,

indicating that adding the attention mechanism at position 1

achieved higher detection accuracy and better detection performance.

Figure 5 shows the loss curves of the attention mechanism

SENet at different embedding positions. The loss curves indicate

that all three models can converge quickly during training. The loss

in the test set decreases rapidly before 20 epochs and slows down

when trained to 40 epochs. After 40 epochs, the loss value tends to
TABLE 2 Data enhancement effect.

mAP/% F1 Accuracy/% Precision/% Recall/%

Before augmentation 77.45 0.73 84.91 83.38 65.25

After augmentation 77.81 0.74 85.13 81.74 67.47
B C

D E F

A

FIGURE 3

The diagram of data enhancement. (A) Original image (B) Rotate 15° (C) Rotate 60° (D) Rotate 195° (E) Rotate 240° (F) Rotate 285°.
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stabilize. However, the loss curve of the YOLO v4 model fluctuates

more. After convergence, the model with attention mechanism

SENet embedded in position 1 has a lower loss value. Therefore,

the feature extraction effect of the attention mechanism SENet

embedded in position 1 is better.
3.3 Attention mechanism type test

Channel attention module SENet includes squeeze, excitation,

and weight calibration operations (Hu et al., 2018). The channel

attention module SENet can learn feature weights based on the loss

function and then re-calculate the weights for each feature channel so

that the object detection model places more attention on the features,

thereby improving the object detection accuracy (Figure 6).

The information propagation in the network structure follows the

order of input feature map, global pooling layer, feature matrix with a

size of 1×1×C, one-dimensional convolution structure with a

convolution kernel size of k, and output feature map. The forward

propagation process outputs channel weight parameters, which are

then loaded into the input feature matrix using matrix multiplication.

The core idea of efficient channel attention network (ECA-Net) is to

introduce channel attention after the convolutional layer to

dynamically adjust the response of different channels (Xue et al., 2022).
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The convolutional block attention module (CBAM) feature

module is composed of a channel attention feature module and a

spatial attention feature module (Woo et al., 2018). The channel

attention feature module performs global max pooling and global

average pooling operations on the input feature map to obtain two

feature maps, which are then input into a multi-layer perceptron

network (Selvaraju et al., 2020). The multi-layer perceptron

network sums the two feature maps obtained and inputs them

into a sigmoid activation function to obtain the channel attention

feature weights (Figure 7). Finally, the weights are multiplied by the

input feature map to obtain the intermediate feature map.

To improve the accuracy of the YOLO v4 object detection

model, this work introduced three attention mechanisms to the

feature pyramid of the YOLO v4 model for feature extraction. Three

types of attention mechanisms include SENet, ECA and

CBAM (Figure 8).

The accuracy and detection speed of the model before and after

improvement were tested in Table 4.

The mAP of the YOLO v4 model on the test set was 77.81%,

with a recall of 65.25%, precision of 83.38%, and accuracy of

85.13%. After adding attention mechanisms, the detection

accuracy of the model was improved to varying degrees. Among

them, the addition of the SENet attention mechanism achieved the

most significant improvement in detection accuracy, with an
TABLE 3 Evaluation indicators for detection accuracy of different addition positions in attention mechanisms.

mAP/% Accuracy/% Precision/% Recall/% F1 FPS/(sheets/s)

Position 1 79.29 91.57 83.74 69.95 0.76 49.78

Position 2 78.09 91.15 83.84 67.19 0.75 50.24
FIGURE 4

Different locations for adding attention mechanisms.
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increase in mAP from 77.81% to 79.29%, an increase of 1.48%

compared to the YOLO v4 model, and an increase in accuracy from

85.13% to 91.57%. FPS was used to assess the running speed of the

four models. The running speed of the YOLO v4 model was 52.53

frames per second (fps), while the speed of the SENet-YOLO v4

model was slower, with an FPS of 49.78, a decrease of 2.75 fps

compared to the original YOLO v4 model, indicating that the

processing speed of the model decreased after adding SENet.

Although the running speed of the model decreased, the added

SENet showed an accuracy improvement of over 1% on the diseased

pine tree dataset, indicating the effectiveness of the model

improvement. Based on the evaluation of the four models’ test

accuracy and speed, the SENet-YOLO v4 model had the best testing

performance. The accuracy of this model was the best, with an mAP

of 79.29% on the test set, an increase of 1.48% compared to the

YOLO v4 model. At the same time, among the four models, the

CBAM-YOLO v4 model had the fastest processing speed, with an

FPS of 57.32 on the test set, an increase of 0.9 fps compared to the

YOLO v4 model. These show that the YOLO v4 model embedded

with the SENet module can extract target features in more detail,

which is beneficial for target classification. Although the detection
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speed decreased, the test accuracy was improved, and the model

performance was optimized.
4 Model improvement
and methodology

4.1 Ablation test

Three groups of ablation experiments were conducted to

demonstrate the effectiveness of each improvement method used

in the YOLO v4 network, including feature enhancement modules,

feature fusion modules, and attention mechanisms. All parameters

except for the testing module were kept consistent during the

ablation experiments.

As different layers contain significantly different information, it

is necessary to improve the adaptability of the feature layers to the

target and the stability of the model for targets of different sizes. The

working principle of this module is to perform three different

operations on the input feature map (Figure 9). The second

operation uses a 3x3 convolution operation, followed by the

ReLU activation function, and ends with a 1x1 convolution

operation. The third operation is the same as the second

operation but with different padding for the 3x3 convolution. The

three operations are then combined, and the enhanced feature map

is output to improve the network’s feature extraction ability further

and acquire adequate information about the target in the feature

map, acting as a feature enhancement (Liang et al., 2021).

In the YOLO v4 backbone feature extraction network, there are

differences in the information contained in the feature maps of

different layers (Sun et al., 2021). Deep feature maps contain rich

semantic information, but small targets have less information and

are usually used to detect large targets. Low-feature maps contain

much detailed information but lack rich semantic information for

detecting small targets. In order to better extract the feature

information of diseased pine trees, a feature fusion module is

designed, as shown in the Figure 9. This module adds three layers

of feature maps to obtain the context information of diseased pine

trees fully and then adds the outputs of three branches to achieve

feature fusion (Sun et al., 2005). Three different scales of the

backbone feature extraction network in the YOLO v4 model. The
FIGURE 6

SENet channel attention mechanism.
FIGURE 5

Loss curve of test set with different addition positions in
attention mechanisms.
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working principle of this module is: three feature maps of different

sizes are used as inputs for the three branches, and the input feature

maps of the middle branch are enlarged to adjust the size of the

feature maps, and then 3×3 to extract the features of the input

feature map, and finally use the Activation function rectified linear

unit (ReLU). The operation process of the input feature map for

branch 3 is the same as that for branch 2. Due to the difference in

size between the input feature maps of the third branch and the

input feature maps of the second branch, there is a difference in

magnification between the input feature maps of the third branch

and the second branch. The feature maps are processed by the first

branch, and the other two branches are added and fused. The fused

feature map is further divided into three branches for processing,

and the feature map of the first branch is processed through three

steps. After the convolution operation of 3×3, use the Activation

function ReLU to process, and output the feature map (Figure 10).

The difference between the other two branches is that before
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activating the operation, the maximum pooling operation is used

to adjust the size of the feature map to match the input feature map

size of the corresponding branch. By fusing feature maps from

adjacent layers through the feature fusion module, the semantic

differences between different feature channel layers are further

reduced. This module can be used to collect contextual

information of different scales and improve detection accuracy

(Wu et al., 2021).

The effectiveness of the target detection network improvement

methods was evaluated using the mAP evaluation metric, and the

impact of each module on the overall network performance was

analyzed. The “√” in the table indicates that the corresponding

module was added to the original YOLO v4 network, while the

absence of “√” indicates that the corresponding module was not

added. The specific experimental results are shown in the table. The

comparison of the results of the ablation experiments is shown

in Table 5.
FIGURE 8

The addition positions of different attention mechanisms.
FIGURE 7

Schematic diagram of CBAM module.
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The study’s results on the effectiveness of the feature

enhancement module, feature fusion module, and attention

mechanism SENet show that the mAP of the basic network on

the diseased pine tree dataset is 77.81%. After adding the feature

enhancement module, the mAP increased to 78.61%, resulting in a

0.8% improvement. The reason is that introducing the feature

enhancement module can enhance the weight information of the

target object and extract features more comprehensively and

accurately. After adding the attention mechanism to the primary

network, the mAP increased to 79.29%, resulting in a 1.48%

improvement. As shown by the results of experiments 1 and 3,

not all modules can improve the detection performance of the

model. The mAP of the test set fell after adding the feature fusion

module, indicating that the feature fusion module’s results were

unstable and unsuitable for implementation in the YOLO v4

network. The mAP climbed to 79.91% after adding the feature

enhancement module and attention mechanism to the original

YOLO v4 network, representing a 2.1% improvement. The

combination of the feature improvement module and the

attention mechanism SENet was chosen to be the best network

model after screening. Thus, added the SENet attention mechanism

and the feature improvement module after the last three feature

layers of the YOLO v4 backbone feature network, the accuracy of

YOLO v4 disease tree detection has been improved 2.1%. The

improvement of detection performance is related to the feature

extraction ability of the feature enhancement module. The feature

enhancement module is self-designed, which can adapt to different

lighting changes.
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4.2 Feature visualization analysis

The Gradient-weighted Class Activation Mapping (Grad-CAM)

tool was used to analyze the feature extraction process of the

network, extract heat maps after embedding the improvement

modules, and analyze the impact of the improvement modules on

target feature extraction. The brightest point at the center is the

position of the center point, and the closer the position is to the vital

point of the target, the larger the activation function value

(Figure 11). The darker the color of the center point, the more

obvious the feature. Before embedding the improvement modules,

the YOLO v4 network randomly extracted the features of diseased

trees and did not pay enough attention to the features of the

diseased tree location. After embedding the improvement

modules, the critical feature channels accounted for a more

significant proportion, the network obtained a larger receptive

field, and the improved YOLO v4 network could more effectively

extract the feature information of diseased trees, making it easier to

distinguish the location of diseased trees from the image. The

improved YOLO v4 model performs better in detecting diseased

trees, not only recognizing a larger number of diseased trees, but

also improving the model’s ability to recognize green backgrounds

as yellow diseased trees. The improved YOLO v4 model can extract

more feature information about disease trees and improve the

detection performance of disease trees under complex lighting

conditions. In order to better achieve lightweight deployment of

models, future research focuses on reducing model volume and

improving detection speed while minimizing model accuracy loss.
FIGURE 9

Feature enhancement module.
TABLE 4 Evaluation of detection accuracy for different attention mechanisms.

mAP/% Accuracy/% Precision/% Recall/% FPS/(sheets/s)

YOLO v4 77.81 85.13 83.38 65.25 52.53

ECA-YOLO v4 79.00 91.33 83.75 68.26 51.98

SENet-YOLO v4 79.29 91.57 83.74 69.95 49.78

CBAM-YOLO v4 79.07 91.15 85.22 65.91 53.1
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4.3 Visualization of prediction results

The test set images were used to analyze and evaluate the results

of diseased tree recognition. A total of 515 test set images were

selected to evaluate the model’s prediction results, and the

prediction results of two models in robust light environments are

shown (Figure 12).

It can be seen that after the model was improved, it could

detect the specific location of the diseased tree, and the confidence

values were all increased (Figure 12B). In the predicted images,

there were fifteen diseased trees of different colors with strong

light, and some of the diseased tree crowns had small contours and
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colors similar to those of surrounding trees, as well as overlapping

crowns. In this complex image background, both models could

identify the location of the diseased trees accurately. Among them,

the YOLO v4 model identified ten diseased trees, and three were

not correctly identified, with false positives (Figure 12A). After

adding the channel attention mechanism SENet and feature

enhancement module, the improved YOLO v4 model correctly

identified thirteen diseased trees, three more than the YOLO v4

model. The reason why the YOLO v4 model failed to detect the

one missed diseased tree correctly may be due to the obstruction

of other healthy trees in the crown, which affected the feature

extraction of the model.
FIGURE 10

Feature fusion module.
TABLE 5 Comparison of ablation experiment effects.

Number Feature
Enhancement

Module

Feature
Fusion Module

Attention Mechanism mAP/%

1 77.81

2 √ 78.61

3 √ 77.57

4 √ 79.29

5 √ √ 79.14

6 √ √ 78.76

7 √ √ 79.91

8 √ √ √ 79.39
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4.4 Comparative experiments with other
object detection models

To compare the comprehensive performance of the improved

YOLO v4 model in this study, Single Shot Multibox Detector (SSD),

Faster RCNN, YOLO v3, and YOLO v5 were compared, showing

the effectiveness of the model in detecting diseased pine trees, as

shown in Table 6.
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The improved YOLO v4 model has the highest parameters,

which are increased by 230.535 M, 228.545 M, and 194.871 M

compared to SSD, Faster RCNN, and YOLO v3, respectively. This is

due to the addition of the SENet module and feature enhancement

module to the YOLO v4 network.

Moreover, the improved YOLO v4 model has the highest mAP,

which is increased by 68.2%, 62.49%, 54.68%, and 1.22% compared

to SSD, Faster RCNN, YOLO v3, and YOLO v5, respectively. The
B CA

FIGURE 11

Thermal diagram before and after embedding the improved module. (A) Network Input Diagram. (B) The diagram before the improvement module is
embedded. (C) The diagram after the improvement module is embedded.
BA

FIGURE 12

Remote sensing image recognition results under strong light environment. * white circles indicate correct detections, black circles indicate missed
detections, yellow circles indicate misdetections. (A) YOLO v4 detection results (B) Improved YOLO v4 detection results.
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model’s precision is also the highest, which has increased by

21.69%, 64.94%, 2.36%, and 4.73% compared to SSD, Faster

RCNN, YOLO v3, and YOLO v5, respectively. Although, the

improved YOLO v4 model has the highest parameters and

requires more computation, its performance is the best, as its

mAP is 79.91%, the highest among the five models, indicating

that the improved YOLO v4 model has higher detection accuracy.

Therefore, the model improvement in this study is effective.
5 Conclusion and discussion

Since the changes in lighting conditions can lead to a decrease in

image quality during unmanned aerial vehicle detection of pine wilt

disease, this study used unmanned aerial vehicles to create a sample

set of diseased trees at different time periods, making the deep

learning model trained more generalizable and improving the

performance of object recognition. The application of the YOLO v4

algorithm in the field of diseased tree object detection was studied,

and the CSPDarknet53 network structure was used to complete the

feature extraction process. In contrast, the feature pyramid network

structure was used to enhance the feature extraction capability of the

convolutional neural network. The mAP of the YOLO v4 model was

77.81%. By comparing experiments, the type of attention mechanism

and its addition position in the YOLO v4 network were determined,

and the detection effect was best when the attention mechanism

module SENet was added before the feature pyramid network

structure. The ablation experiment found that the optimal

combination was the object detection model that combined the

channel attention mechanism SENet and feature enhancement

module. The mAP of the model was 79.91%, an increase of 2.1%

after improvement, indicating that the channel attention mechanism

SENet combined with feature enhancement module can effectively

enhance the ability to recognize detection targets. Under the same

conditions, the mAP of the improved YOLO v4 model was increased

by 68.2%, 62.49%, 54.68%, and 1.22% compared to SSD, Faster

RCNN, YOLO v3, and YOLO v5, respectively, indicating that the

model can achieve high-precision detection of diseased trees caused

by PWD under changing light conditions. In 2021, Wu estimated the

power of the hyperspectral method, LiDAR and their combination to

predict the infection stages of PWD using the random forest (RF)

algorithm. The results showed that the combination of hyperspectral
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method and LiDAR had the best accuracies (Yu et al., 2021). The

improved YOLO v4 model has a high recognition accuracy for

diseased trees, which can achieve precise positioning and

recognition of pine wilt disease trees under changing light

conditions. This is critical in guiding the prevention and control of

pine wilt disease.

The ablation experimental results have demonstrated the

optimization effect of the improved module on the YOLOv4

detection network. Although the improved YOLOv4 algorithm

performs well in the target detection task of diseased tree images

captured by drones, there is still room for improvement in detection

accuracy and speed. The current challenge is how to count the

number of diseased trees in the image, which requires post-

processing of the model but increases its complexity. Following

that, there is a goal to do research on lightweight models and build

software and hardware implementation of a real-time target

detection system suited for drones to detect disease trees.

Moreover, the system provides ideas for lychee disease detection

in lychee gardens.
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Tomato disease image recognition plays a crucial role in agricultural production.

Today, while machine visionmethods based on deep learning have achieved some

success indiseaserecognition, theystill faceseveralchallenges.These include issues

such as imbalanced datasets, unclear disease features, small inter-class differences,

and large intra-class variations. To address these challenges, this paper proposes a

method for classifying and recognizing tomato leaf diseases based on machine

vision. First, to enhance the disease feature details in images, a piecewise linear

transformation method is used for image enhancement, and oversampling is

employed to expand the dataset, compensating for the imbalanced dataset. Next,

this paper introduces a convolutional block with a dual attentionmechanism called

DAC Block, which is used to construct a lightweight model named LDAMNet. The

DAC Block innovatively uses Hybrid Channel Attention (HCA) and Coordinate

Attention (CSA) to process channel information and spatial information of input

images respectively, enhancing the model’s feature extraction capabilities.

Additionally, this paper proposes a Robust Cross-Entropy (RCE) loss function that

is robust tonoisy labels,aimedat reducingthe impactofnoisy labelsontheLDAMNet

model during training. Experimental results show that this method achieves an

average recognition accuracy of 98.71% on the tomato disease dataset, effectively

retaining disease information in images and capturing disease areas. Furthermore,

the method also demonstrates strong recognition capabilities on rice crop disease

datasets, indicating good generalization performance and the ability to function

effectively in disease recognitionacross different crops. The researchfindings of this

paper provide new ideas and methods for the field of crop disease recognition.

However, future research needs to further optimize the model’s structure

and computational efficiency, and validate its application effects in more

practical scenarios.
KEYWORDS

tomato disease identification, machine vision, deep learning, lightweight models,
attention mechanisms
1 Introduction

Originating from the indigenous regions of South America, the tomato is a crop with a

short growth cycle, low environmental requirements, and rich nutritional value, and has

been widely cultivated around the world (Mitchell et al., 2007; Bhatkar et al., 2021). In

agricultural production, tomato plants are susceptible to a variety of pathogenic bacteria
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and environmental factors such as fungi, bacteria, and viruses,

resulting in the occurrence of white spot disease, early blight, mosaic

virus, leaf mold, and other diseases. These diseases are mainly

manifested in the leaves and affect their function, thus affecting the

yield and quality of tomatoes. Especially under conditions of frequent

rainfall or high humidity, tomato plants are more likely to be infected

withdiseases, resulting in seedling rot and stemand fruit rot (Vos et al.,

2014). However, the diversity and complexity of tomato diseases pose

great challenges to control. During the occurrence of these diseases,

early symptoms usually appear on tomato leaves, showing abnormal

characteristics thataredifferent fromthoseofhealthy leaves, asdetailed

in SupplementaryTable S2. Early and accurate disease identification in

agricultural production can effectively reduce the yield loss caused by

diseases. However, traditional manual methods of disease

identification are inefficient and often require specialized agricultural

expertise, hinderingwidespread and accurate identification of diseases

and resulting in wasted labor and medicines (Patil and Thorat, 2016).

Therefore, there is an urgent need for a convenient and rapid detection

method that can non-destructively identify plant developmental

abnormalities at an early stage to mitigate the impact of diseases on

agricultural production (Eli-Chukwu and Ogwugwam, 2019).

Nowadays, with the rise of precision agriculture and smart

agriculture concepts, it is important to use machine vision

technology to assist agricultural production, realize the accurate

identification of tomato diseases, take management measures and

prevention strategies in a timely manner, and improve crop yields

(Affonso et al., 2017).

Identifying plant leaf diseases falls under the field of agricultural

information technology. The rapid development and advancement

of machine vision technology provide new directions for crop

disease identification and combined with robotics technology, can

achieve more flexible agricultural production (Tang Y, et al., 2023;

Ye et al., 2023). Initially, machine learning algorithms were used to

extract image features and classify them. (Xie and He, 2016) used a

gray-level co-occurrence matrix to extract texture features and

classified them using the K-NN algorithm. (Akbarzadeh et al.,

2018) employed support vector machines to efficiently distinguish

weeds based on the morphological features of broadleaf and narrow

plants. However, using traditional machine learning algorithms for

disease identification typically relies on single global features such as

color, texture, and shape. This often requires researchers to

manually design image feature extraction methods based on

experience, resulting in a limited ability to identify various types

of diseases and insufficient recognition capability to meet the needs

of large-scale agricultural disease identification (Khan et al., 2018).

With the development of deep learning, it has shown significant

advantages in feature extraction and recognition tasks. Deep

learning-based disease image recognition has become an

important method in current research. Convolutional neural

network (CNN) models, by introducing operations such as local

connections and weight sharing, have made significant progress in

various crop disease identification tasks and are currently

considered one of the best algorithms for pattern recognition

tasks (Prathibha et al., 2017). To address the data imbalance

problem in cassava disease detection based on CNN models,

(Gnanasekaran and Opiyo, 2020) used methods such as class
Frontiers in Plant Science 0283
weights, SMOTE, and focal loss functions to enhance the model’s

recognition performance on imbalanced datasets. (Wu, 2021)

constructed a dual-channel convolutional neural network model

by integrating ResNet50 and VGG19 network models, thereby

improving the network model’s ability to extract disease features

and achieve high-precision recognition of maize diseases.

Additionally, to address the challenge of identifying grape

diseases in natural environments, (Cai et al., 2023) used an

improved MSR algorithm to process images and employed a

Siamese network structure to extract image features, achieving

model lightweighting. (Sanida et al., 2023) improved recognition

capability by combining VGG and Inception modules and using a

multi-scale approach to enhance the model. (Uddin et al., 2024)

integrated Inception V3 and DenseNet201 with the addition of the

attention mechanism VIT to obtain the E2ETCA network model for

rice disease identification. (Deng et al., 2023) used a combination of

ResNest and Ghost to obtain GR-ARNet, which separately

processed the depth feature information and channels of images,

achieving efficient identification of banana leaf diseases. In

agricultural production, to effectively prevent and control

diseases, (Kamal et al., 2019) proposed a MobileNet model

improved by deep separable convolution, which outperformed

VGG and GoogleNet models on the 55-class PlantVillage leaf

dataset. (Waheed et al., 2020) proposed an optimized DenseNet

model for identifying maize leaf diseases.

In neural network models, the attention mechanism is an

effective method to improve the model’s recognition performance.

Neural network models can use the attention mechanism to

compute the weights of input images, selectively emphasizing

areas of interest through feature weighting, thereby aiding feature

extraction. Currently, many achievements have been made, such as

SE-Net (Hu et al., 2018), ECA-Net (Wang et al., 2020), CBAM

(Woo et al., 2018), and Coordinate Attention (Hou et al., 2021).

Additionally, through the efforts of many researchers, the attention

mechanism can be applied to plant disease detection. For example,

(Zhao et al., 2022) embedded the CBAM attention mechanism into

the Inception network model, thereby enhancing the network

model’s ability to identify diseases in maize, potatoes, and tomatoes.

(Zeng and Li, 2020) proposed a self-attention convolutional neural

network (SACNN) and added it to the neural network, achieving good

recognition results on the MK-D2 agricultural disease dataset. (Chen

et al., 2021) proposed an attentionmodule (LSAM) forMobileNet V2,

effectively enhancing the network’s recognition capability for diseases.

(Liao et al., 2023) optimized the network by combining ResNet-50,

long short-term memory (LSTM) network, and SE-Net attention

mechanism. (Tang L. et al., 2023) proposed a ternary parallel

attention module based on the CBAM attention mechanism,

combined with a multi-scale hybrid model composed of Inception

modules and ResNext modules, achieving good results in the

identification of apple leaf diseases. Additionally, some scholars have

integrateddeep learningnetworkmodelswith robotics technology. For

instance, (Wang et al., 2023) integrated a visual system and a robotic

intelligent control system, enabling positioning for lychee harvesting

and obstacle recognition and avoidance.

In tomato disease identification, there are also numerous

research achievements. (Mokhtar et al., 2015) used Gabor wavelet
frontiersin.org
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transform to extract image features and then used support vector

machines to identify tomato leaf diseases. (Anandhakrishnan and

Jaisakthi, 2022) improved the LeNet5 network model architecture,

combining support vector machines (SVM) and multilayer

perceptron to detect tomato diseases. (Ullah et al., 2023) used a

hybrid network approach, combining EfficientNetB3 and

MobileNet into the EffiMob-Net multi-scale model to detect

tomato leaf diseases. (Zhou et al., 2021) introduced dense

network connections into the residual network model, forming a

hybrid network model that improved recognition accuracy while

achieving model lightweighting. (Zaki et al., 2020) used the PCBAM

attention mechanism and Dense Inception convolution blocks to

optimize the MobileNet model. (Zhang et al., 2023) proposed a

multi-channel automatic direction recursive attention network (M-

AORANet) to address noise issues in tomato disease images,

effectively achieving disease recognition, although some

difficulties remained with other crop diseases. (Chen et al., 2020)

combined the ResNet-50 network model with the proposed dual-

channel residual attention network model (B-ARNet) to enhance

the model’s recognition of tomato diseases from multiple scales.

(Zhao et al., 2021) optimized the ResNet50 model by using the SE-

Net attention mechanism and combining it with a multi-scale

feature extraction module to recognize tomato diseases.

Neural network models are effective for agricultural plant

disease identification, and many new and original network

structures have emerged in recent years. These network model

structures can improve the recognition effect of the model by

combining image enhancement algorithms, attention mechanisms

and fusion methods. However, due to the uneven spatial

distribution of the characteristics of agricultural diseases and the

influence of different stages of their onset, the problems of small

disease characteristics, large differences in similar characteristics,

and small differences in heterogeneous characteristics lead to the

difficulty of achieving high precision and lightweight of the model.

Therefore, the purpose of this paper is to propose a high-precision

detection method with limited computing resources, which can

meet the accuracy requirements and be suitable for mobile

deployment. The specific contributions of this article are as follows:

Image enhancement technology was used to enhance the

detailed features of leaf disease images. Initially, the piecewise

linear transformation method was used to remap the brightness

values of the image by setting thresholds for minimum and

maximum brightness, enhancing the detailed features, and

helping the neural network model extract abstract features

during training.

A lightweight CNN neural network model, LDAMNet, is

proposed, which is mainly composed of a double attention

convolution (DAC) block with mixed-channel attention (HCA)

and coordinate space attention (CSA) functions. Set the number of

blocks by pressing [1,1,3,1] in four different stages.

Considering the influence of noise labels in CNN model

training, the Cross-Entropy loss function is improved, and the

Robust Cross-Entropy Loss (RCE) loss function is derived by

introducing a weighted formula with two adjustable parameters,

a and b , which enhances the ability of the model to deal with label
Frontiers in Plant Science 0384
noise. In addition, by adjusting these two parameters, the loss value

in model training can be flexibly adjusted.

Finally, by comparing different CNN models, different blocks,

different normalization methods, as well as ablation experiments

and experiments using different datasets, the effectiveness of the

proposed method for identifying tomato leaf disease is proved with

limited computing resources, and the recognition ability is on par

with that of large-scale models, which has obvious advantages

compared with existing lightweight models.

The structure of this paper is summarized as follows: the second

part mainly introduces the methods used in this paper, including

LDAMNet, DAC block, HCA channel attention mechanism, CSA

spatial attention mechanism, and RCE loss function. Subsequently,

the third part is mainly used to test the detection method proposed

in this paper and evaluate the performance of the proposed

identification method in all aspects through five different

experiments. Finally, the fourth part mainly summarizes the work

and experimental conclusions of this paper.
2 Materials and methods

2.1 Image preprocessing

2.1.1 Sample
The tomato image dataset used in this study is derived from the

Plant Disease Classification Merged Dataset published on the Kaggle

platform (https://www.kaggle.com/datasets/alinedobrovsky/plant-

disease-classification-merged-dataset).

The dataset combines 14 existing agricultural imagery datasets

covering 88 disease categories affecting 23 different crops. In this

paper, the tomato leaf disease images were selected as the dataset for

the study, including ten disease images at different disease stages.

The image size in the dataset is 256×256, the leaf samples are shown

in Figure 1, and the disease characteristics are shown in

Supplementary Table S2.

2.1.2 Image processing
Training data plays a vital role in the performance of CNN

models, which directly affects the training effect of model training.

The process of image acquisition is usually affected by the image

acquisition equipment and environment, resulting in problems

such as inconsistent brightness and noise. These issues can

obscure image features, hinder the model’s ability to discriminate

features during training, and ultimately impair its ability to

recognize. In addition, due to the different number of disease

samples, there are large differences in the number of images of

different categories in the image dataset. This will cause the model

to tend to the category with a large number of images during the

training process, and the images of other categories cannot be

effectively recognized, resulting in overfitting (Kong et al., 2021).

To address the aforementioned issues, this paper proposes an

image processing method. In this method, images from the dataset

are first decomposed into red, green, and blue color channels. Then,

based on the set thresholds a and b, as well as the range 0-255, the
frontiersin.org
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pixels in each channel are divided into three intervals. The pixel

values in different intervals are processed according to Equation 1 to

obtain the processed pixel value F(x). Finally, the three processed

color channels are recombined to obtain enhanced disease image

samples. Moreover, data imbalance is a crucial factor affecting the

training effectiveness of deep learning network models. Network

models tend to overly learn features from categories with more
Frontiers in Plant Science 0485
samples and struggle to effectively classify categories with fewer

samples. To address this, this paper uses oversampling to balance

the samples in the image dataset. The effects of image enhancement

and oversampling are shown in Figure 2 The enhanced image

dataset is divided into training and test sets at an 8:2 ratio, with

15975 images for training and 3994 for testing. Table 1 shows the

sample distribution before and after data augmentation.
FIGURE 2

Image-enhanced sample display. Original represents the images in the original dataset, and enchanced and mirror represent enhanced and
oversampled image samples, respectively.
B C D E

F G H I J

A

FIGURE 1

Different categories of leaf images in the tomato dataset. From (A–J), it includes 10 types of disease and healthy leaf image samples.
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F(x) =

0     x < a
255

(b−a)(x−a)   a < x < b

255    x > b

8>><
>>:

(1)
2.2 LDAMNet model

The LDAMNet model proposed in this paper is used for tomato

leaf disease identification and is composed of DN block, DAC block,

D block, and Classifier. In model training, the DN block and D

block are used to downsample the input image, the DAC block

extracts the features of the input image, and finally, the Classifier

implements the classification of the image. The DN block is

composed of a convolutional layer with a convolutional kernel of
Frontiers in Plant Science 0586
4×4 and GN, which mainly processes the input image to reduce the

size of the image and extracts features in a large range by using the

convolutional kernel of 4×4. The D block is composed of a

convolutional layer with GN and a convolutional kernel of 2×2,

which is smaller than the DN block, which makes the network

model pay more attention to the local features of the image. The

DAC module allocates the number of blocks in four stages

according to the quantities 1, 1, 3, 1, and its structure is shown in

Figure 3 and Table 2.
2.3 Dual attention convolution block

To enhance the extraction of complex image features, this paper

improves the existing inverted bottleneck block and proposes a

Dual Attention Convolution (DAC) block. It consists of an Inverted

Bottleneck Attention (IBA) block and Coordinate Space Attention

(CSA), as shown in Figure 3 The IBA block mainly comprises two

pointwise convolution layers, a 3×3 depthwise convolution layer,

Hybrid Channel Attention (HCA), ReLU6, and two GroupNorm

layers. CSA is a lightweight coordinate space attention mechanism

proposed in this paper to locate regions of interest in images. As

shown in Figure 4C, the IBA module draws inspiration from the

inverted bottleneck module, ConvNeXt V2 module, and Channel

Attention module (CBAM), focusing primarily on processing input

image channels to enrich disease feature representation.

2.3.1 Inverted bottleneck attention block
The inverted bottleneck block, first applied in MobileNet V2,

serves as an optimization method for traditional convolution layers,

effectively reducing the computational and parameter requirements

for model training. In the inverted bottleneck block, the number of

image channels and image size remain unchanged, allowing for
TABLE 1 Tomato leaf disease dataset sample size.

Categories Before After train test

Bacterial spot 1612 1969 1575 394

Early blight 1000 2000 1600 400

Healthy 1251 2000 1600 400

Late blight 1209 2000 1600 400

Leaf mold 952 2000 1600 400

Septoria leaf spot 1379 2000 1600 400

Spider mites 1257 2000 1600 400

Target spot 988 2000 1600 400

Mosaic 373 2000 1600 400

Yellow leaf curl 1849 2000 1600 400
FIGURE 3

The structure of the LDAMNet model. b, s, and dim represent the number of IBA blocks, the stride of deep convolution, and the multiple of IBA
block expansion image channels, respectively.
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effective information extraction while reducing model size. The

ConvNeXt V2 block improves upon the inverted bottleneck block

by adding a 7×7 convolution layer before the first pointwise

convolution to capture broader spatial features and mitigate the

impact of complex backgrounds on model recognition

performance. Additionally, it uses Global Response Normalization

(GRN) instead of depthwise convolution between the two pointwise

convolution layers.

This paper improves the inverted bottleneck block by placing

the depthwise convolution after two pointwise convolution layers,

adding an HCA module and ReLU6 activation function to enhance

the model’s expressiveness, and introducing GroupNorm to replace
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BatchNorm, reducing the model’s dependence on training batch

sizes. As shown in Figure 4C, after the input image passes through

the first pointwise convolution and ReLU6 activation function, the

input image channels are expanded according to the size of the

parameter ‘dim’ and undergo nonlinear transformation. Then,

the HCA channel attention mechanism obtains weights for the

expanded channels and applies weighting. After weighing, the

channels pass through a second pointwise convolution, preserving

channels with rich feature expressions. Finally, a 3×3 depthwise

convolution organizes the spatial information of the retained

channels, facilitating subsequent CSA extraction of regions of

interest in the image.
2.3.2 Hybrid channel attention
EfficientNet and ConvNeXt V2 use SE-Net and Global

Response Normalization (GRN), respectively, to help models

expand and integrate image dimensions and extract important

image channels. This paper proposes a lightweight channel

attention mechanism called Hybrid Channel Attention (HCA).

This attention mechanism calculates weights for different

channels in the image and applies weighting to image channels to

preserve important ones during channel integration. In this paper,

the HCA attention mechanism mainly consists of Nam and ECA

modules. As shown in Figure 5, the input image is fed into both

modules to calculate channel weights, and the resulting two channel

weights are applied to the input image channels.

The Nam module uses input normalization to obtain weights

for different dimensions in the image (Liu et al., 2021). This paper

uses GroupNorm for calculation, as shown in Equation 2.

GroupNorm is a method that groups input data based on channel

dimensions and then normalize within each group. In the Nam

module, mean and variance are calculated for each group and

normalized to obtain Wg .

GN(x) = g
x�mxffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
x + e

p + b (2)
TABLE 2 Architectures for LDAMNet.

output size layer name LDAMNet

56×56

DN block
Conv(4×4, 32)

GroupNorm(channel = 32)

DAC block
IBA block × 1
CSA block × 1

28×28

D block
GroupNorm(channel = 32)

Conv (2×2, 64)

DAC block
IBA block × 1
CSA block × 1

14×14

D block
GroupNorm(channel = 64)

Conv (2×2, 128)

DAC block
IBA block × 3
CSA block × 1

7×7

D block
GroupNorm(channel = 128)

Conv (2×2, 256)

DAC block
IBA block × 1
CSA block × 1

1×1 Classifier
GroupNorm(channel = 256)

Linear(256, 10)
The IBA block is shown in Figure 4B, CSA in Figure 5. The DN block and D block have strides
of 4 and 2, respectively.
B CA

FIGURE 4

Different inverted bottleneck block structures. (A) is the convolution block in MobileNetV2, (B) is the convolution block in ConvNextV2, and (C) is the
IBA Block.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420584
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1420584
Wg =
gi

oj=0gj
(3)

Wnam = sigmoid(Wg(GN(x))) (4)

where mx and sx are the mean and variance in each specified

grouping, respectively, and the g and b are trainable affine

transformations. The parameters, Wg , are composed of the

scaling factor g of each channel and are calculated according to

Equation 3.Wnam is the channel attention weight obtained from the

Nam module, as shown in Equation 4.

The ECA module first applies global average pooling to the

input image, then processes the image through a one-dimensional

convolution with an adaptively adjustable kernel to generate

channel weights (Wang et al., 2020). In the formula, the size of

the convolution kernel k is determined by the mapping of the

channel dimension. The calculation formula is as follows.

Weca = sigmoid(C1Dk(x)) (5)

k = y(C) =
log2 (C)

d
+
b
d

����
����
odd

(6)

In Equation 5, C1D represents the 1-dimensional convolution

processing; in Equation 6, C is the given channel dimension, k is the

adaptive convolution kernel size, d, and b are set to 2 and 1,

respectively, and tj jodd represents the odd number closest to t.

After obtaining the channel attention weights of the Nam

module and the ECA module, the channel attention weights W

are obtained by combining them, and the calculation process is

shown in Equation 7. Finally, the image is weighted using the

resulting weight W input.

W = sigmoid(Wg (GN(x)))� sigmoid(C1Dk(x)) (7)
Frontiers in Plant Science 0788
2.3.3 Coordinate-space attention
In this paper, Coordinate Space Attention (CSA) is a spatial

attention mechanism that mainly utilizes spatial position

information to obtain weights for different regions in the image.

As shown in Figure 6, the CSA attention mechanism first applies

average pooling to the input image to generate horizontal and

vertical feature vectors. Then, the obtained feature vectors are

concatenated to form a feature map of the input image.

Subsequently, dilated convolution, GroupNorm, and ReLU6 are

used to enrich the feature map’s expression and determine whether

regions of interest exist in both directions.

The CSA module uses average pooling to obtain horizontal and

vertical spatial information of the image, using two spatial pooling

kernels (H, 1) and (1,W) to encode each channel of the input x

along the horizontal and vertical coordinate directions. The height h

obtained in channel c can be represented as Equation 8.

zhc (h) =
1
W o

0≤i<W
xc(h;i) (8)

Similarly, the width w obtained in the c-channel can be

expressed as Equation 9.

zwc (w) =
1
H o

0≤i<h

xc(h,w) (9)

where zc represents the encoded results of h in the horizontal

direction w and vertical direction of the c-channel using average

pooling, and xc represents the eigenvalues of the c-channel in the

feature map at the positions of height h and width w.

Through the calculation Formula 9, the eigenvalues along the

abscissa and the ordinate can be obtained. Then, it was re-stitched

to obtain a new feature image, and the feature map was processed by

using a dilated convolution with a convolution kernel of 3×3. By

using dilated convolutions with an expansion rate of 2, it is possible
BA

FIGURE 5

Hybrid channel attention structure. (A) is the HCA structure diagram and (B) is the NAM and ECAmodel structure diagram.
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to increase the receptive field without increasing the computational

cost of the model. The calculation is shown in Equation 10.

f = d (Fd
3�3(½zh,zw�)) (10)

where ½·  ,   ·� Represents a concatenated operation along a spatial
dimension. Where F3�3 is the convolutional transformation

function, d is the expansion rate, d represents the nonlinear

activation function, and f ∈ RC�(H+W) is the intermediate feature

map that encodes spatial information in the horizontal and vertical

directions. Then, the feature map is divided into two independent

tensors along the spatial dimension to obtain f h ∈ RC�H and f w ∈
RC�H . In addition, the attention weights of the tensors f h and f w

were obtained by using the sigmoid mapping, respectively, and the

calculation formula is shown in Equations 11 and 12.

gh = sigmoid(Fh(f
h)) (11)

gw = sigmoid(Fw(f
w)) (12)

Finally, the weights gh and gw are used to weight the input

image, and the final result is shown in Equation 13.

y(i,j) = xc(i,j)� ghc (i,j)� gwc (i,j) (13)

where y is the final output of CSA, inspired by Coordinate

attention, CSA obtains eigenvalues from the horizontal and vertical

aspects of the image and processes them. It can help the model to

locate the disease location of the leaf in detail. In addition,

compared with Coordinate attention, CSA has a smaller number

of parameters.
2.4 Robust cross-entropy loss

In CNN model training, dataset samples play a crucial role in

the training of network model recognition capabilities. However,

due to the constraints of environment, equipment, and other

factors, the collected plant disease images may contain some data

that are difficult to classify, outlier data, and mislabeled data, which

will seriously affect the training effect of the model. The Cross-
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Entropy loss function is a loss function commonly used in

classification problems to measure the difference between the

model input and the actual label, and for classification problems

of M categories, it can be defined as Equation 14.

CE(p,y) = −o
M

c=1
y(o,c)log(po,c) (14)

where M is the total number of categories, C is the index of the

category or class, O is the index of a particular sample in the dataset

in the calculation, and when the loss is calculated for a particular

sample, c iterates through all possible categories, from 1 to M. yo,c
represents the true label of category C in sample O, while the model

predicts the probability of category C for sample O when po,c. If only

one category is considered per sample, the y(o,c) can be treated as 1,

and the O index is omitted, the CE loss function can be defined as

Equation 15.

CE(y) = −o
M

c=1
log(pc) (15)

As shown in Figure 7, when the CE loss function is trained,

when the accuracy is low, the loss function will give a large loss

value to help the model quickly adapt to the image data. This can

effectively promote the training of the network model for the dataset

with correct labeling, but it will cause the network model to learn

wrong data when facing the dataset with noise labels, which will not

only lead to the decline of the model’s recognition ability but also

make the model over-adapt to the wrong labels, thereby reducing

the generalization ability of the model.

To solve this problem, (Zhang and Sabuncu, 2018) proposed

Generalized Cross-Entropy Loss (GCE). By introducing the

parameter q, the GCE loss function can reduce the penalty by

reducing the loss value when the noise is wrong, thereby increasing

the tolerance of the model. When q is close to 0, the contribution of

the noise label to the total loss is also limited to a small range,

reducing the impact on model training. The formula is shown in

Equation 16.

GCE(p,y) =
1 − pqy
q

(16)
FIGURE 6

Coordinate space attention mechanism.
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Although the GCE loss function can reduce the impact of

noise labels on the recognition ability of the model, it gives a

small loss value when the accuracy is high, which makes the

model unable to be further trained to improve the recognition

ability. In this paper, to help the network model be robust

to noise labels in training and improve the effect of model

training, a weighted formula with adjustable parameters a and b
is introduced to optimize the CE loss function, defined as

Equation 17.

RCE(y) =
1
Mo

M

c=1
((a � pc + b)� ( − log(pc))) (17)

In the formula, (a · pc + b) represents the added weighting

formula. In this weighting formula, a and b are two parameters.

Specifically, b serves as a scaling factor that directly influences the

overall loss magnitude during model training. When b is greater

than 1, the RCE loss function imposes larger penalties; when b is

less than 1, it imposes smaller penalties, with b   >   0. On the other

hand, parameter a can be used to adjust the magnitude of the loss

during model training, constrained by a   >  −b . A larger a assigns

larger losses during training, while a smaller a assigns smaller

losses, as depicted in Figure 7B.

In this paper, the parameters a and b of the RCE loss

function are set to 0.6, as shown in Figure 7A. When a and b
are 0.6, fewer loss values can be given when the model accuracy is

low, and no formal distribution of data is learned, so as to

reduce the penalty of the loss function on the noise label, help the

model focus on the label with higher confidence, and reduce the

influence of the noise label on the model training. When the

progress of the model is high, a larger loss value is given, and on

the basis of extracting abstract and useful information to a certain

extent, the model pays more attention to the samples that are

difficult to classify correctly and improves the recognition ability of

the model.
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2.5 Tomato disease identification
model process

The overall training flow of the LDAMNet model is illustrated

in Figure 8. In this study, a CNN-based deep learning method is

used to construct the recognition model, which heavily relies on the

training data. To address issues such as blurred disease features and

insufficient image samples in the dataset, this paper first resizes the

images and applies piecewise linear transformation to enhance

image detail features, as shown in Figure 8. After processing the

images in the dataset, they are divided into training and test sets at

an 8:2 ratio. Then, to improve the model’s generalization ability,

normalization is applied to the images in both training and test sets

to standardize pixel values across different channels. Finally, to

avoid issues caused by interrupted training, this paper saves model

parameter files at each training epoch to facilitate continued

training. Additionally, to achieve effective disease recognition, the

weights of the best-fitting model are saved during training based on

set evaluation parameters for subsequent use.
3 Experimental results and discussion

3.1 Experimental design

The computer used in this paper uses the Windows 11

operating system, uses a 12th Gen Intel(R) Core(TM) i7-12700

(2.10 GHz) processor, and uses a GPU for model training and

testing, and the GPU is NVIDIA GeForce RTX 3060(12G). The

software environment uses Python 3.9.13, PyTorch 1.13.1, and

Cuda 11.6 frameworks.

The experiment is divided into five parts. Namely, the

comparative test between different network models proposed in

this paper, the comparative test with the inverted bottleneck block,
BA

FIGURE 7

Comparison of loss function curves. (A) is the loss function curve of a and b 0.6 and (B) is the influence of different a values on the loss
function curve.
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the comparative test using different loss functions, the ablation

experiment, and the comparative test on different datasets.

In the training of the neural network model, the Adam stochastic

gradient descent method was used to optimize the network model.

The calculation of this algorithm is relatively simple, and it has strong

adaptability to the gradient. The learning rate is set to 0.0001, the

number of iterations is set to num_epochs = 100, and the number of

images per batch batch_size = 16. In addition, the AutoAugment

method is used to process the training set images, which can enhance

the network training effect.
3.2 Evaluation indicators

In order to effectively evaluate the trained neural network

model, precision, recall, accuracy, and F1 score were used to

measure the performance of the neural network model in the

identification of tomato leaf diseases. These parameters are

calculated as shown in Equations 18–21.

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

Accuray =
TP + TN

TP + FN + FP + TN
(20)

F1 =
2TP

2TP + FP + FN
(21)

In the formula, TP (True Positive) is the true example, which

indicates the number of positive samples predicted by the model;

TN (True Negative) is the true negative example, which indicates

the number of negative samples predicted by the model, FP (False

Positive) is a false positive example, which indicates the number of
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negative samples predicted by the model, and FN(False Negative) is

a false negative example, which indicates the number of positive

samples predicted by the model to be negative.

In this study, precision represents the proportion of samples

that are correctly judged to be positive by the network model. Recall

measures the proportion of positive class samples correctly

identified by the network model in actual positive class samples.

Precision represents the ratio of the total number of samples

correctly classified by the network model to the total number of

samples. The F1 value is a harmonic average of precision and recall,

taking into account precision and recall, and is balanced between

precision and recall.

In addition, two parameters, Flops (floating-point arithmetic)

and Params (number of parameters), are introduced to evaluate the

size of the network model. The larger the Flops, the more

computational resources the network model needs for training

and inference, and this parameter usually represents the Flops

computation in a single forward propagation. Params represent

the number of parameters in the model, including all weights and

biases that need to be learned, and larger Params mean that the

larger the network model, the more storage space is needed to hold

the model weights.
3.3 Experiments of different
network models

To test the performance of the LDAMNet network model, this

study compares it with ConvNeXtV2 (Woo et al., 2023),

Inception_Next (Yu et al., 2023), DenseNet121 (Huang et al., 2017),

ResNet18 (He et al., 2016), GhostNet (Han et al., 2020), EfficientNet

(Tan and Le, 2019), EfficientFormer (Li et al., 2023), MobileNet

(Sandler et al., 2018), MobileVitV2 (Mehta and Rastegari, 2022),

Swin Transformer V2 (Liu et al., 2022), Deit3 (Touvron et al.,

2022). The models participating in the experiment were evaluated
FIGURE 8

Overall flowchart of LDAMNet model training.
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using six parameters: precision, recall, accuracy, F1 score, Flops, and

Params. In the comparative experiment, to effectively detect the

recognition capabilities of LDAMNet and different network models,

these 11 network models were divided into three categories: large-scale

CNN models, lightweight CNN models, and Vit models. The large-

scale CNN models include ConvNeXt, Inception_Next, DenseNet,

and ResNet; the lightweight CNN models include GhostNet,

EfficientNet , and MobileNet; the Vit models include

EfficientFormer, MobileVitV2, Swin Transformer V2, and Deit3.

The accuracy curve comparison of these three types of models with

LDAMNet is shown in Supplementary Figure S1. The networkmodels

used in this experiment are all from the Timm library, and the

experimental results are shown in Table 3.

As shown in Table 3, in the comparative experiment, the

average values of accuracy, precision, recall, and F1 score of the

LDAMNet model are the highest among the eight network models,

which are 98.71, 98.73, 98.69, and 98.71, respectively. In addition,

the Flops and Params parameters of the LDAMNet model are 0.142

and 0.91, respectively, which are the smallest among the 12 models,

indicating that this network model can achieve lightweight and

high-precision recognition of tomato diseases.

Furthermore, the experimental results show that on the

processed tomato dataset, the recognition ability of the LDAMNet

model is higher than that of the other 11 network models. The

recognition ability of the LDAMNet model is not significantly

different from the large models in this paper; according to the

evaluation parameters obtained in Table 3, the average accuracy of

LDAMNet, DenseNet121, Swin Transformer, and ResNet18 can all

reach more than 98%. However, the floating-point operations and

parameter counts required by the LDAMNet network model are

much smaller than those of the other three types of models, which

proves that the LDAMNet model, as a lightweight network model,

can achieve the recognition ability of large-scale CNN models or

mainstream Vit models, or even slightly better.
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In this experiment, the LDAMNet model was compared with

three mainstream lightweight models: GhostNet, EfficientNet, and

MobileNet. As shown in Supplementary Figure S1B, the recognition

ability of the LDAMNet model is better than that of these three

mainstream lightweight models, with the gap between the

EfficientNet model and the LDAMNet model being the largest,

with the four evaluation parameters being about 6.63%, 6.54%,

6.58%, and 6.56% higher, respectively.

Finally, to test the classification effects of the 12 models, a

confusion matrix was used to test the models. As shown in Figure 9,

BS, EB, H, LB, LM, SLS, SM, TS, M, and YLC represent ten types of

leaves in the tomato image dataset used in this paper. The test

dataset was obtained from the dataset in proportion, including 999

images in 10 categories. In all confusion matrix tests, only the

LDAMNet proposed in this paper achieved complete recognition of

the test dataset. The other 11 network models all produced a

certain number of misjudgments. Among them, ConvNext,

MobileNet, and MobileVit had the most misjudgments, with 8, 6,

and 6, respectively. EB was the main category of incorrect

recognition by the models. The main reason is the uncertain

regional distribution of tomato leaf data and the similar

characteristics of different types of leaf diseases. For example,

both EB and BS diseases produce black or brown spots in

appearance, with only slight differences in the shape and color of

the spots, leading to some network models being unable to

effectively extract features, causing misjudgment.
3.4 Experimental of inverted bottlenecks

In subsection 2.2.1, this paper proposes an improved inverted

bottleneck block DAC block by adding a channel attention

mechanism and a spatial attention mechanism, respectively. In

order to verify the improvement effect, the improved inverted
TABLE 3 Comparison table of evaluation parameters obtained from training of different network models.

Model Accuracy Precision Recall F1 score Flops(G) Params(M)

ConvNeXt V2_T 94.87 95.02 94.83 94.92 4.45 27.79

Inception_Next_T 97.15 97.30 97.16 97.23 4.2 28.04

DenseNet121 98.64 98.69 98.67 98.68 2.83 7.89

ResNet18 98.05 98.04 97.94 97.99 1.82 11.69

GhostNet V2 94.30 94.53 94.40 94.46 0.42 11.10

EfficientNet 92.08 92.19 92.11 92.15 0.38 5.24

EfficientFormerV2 96.49 96.57 96.50 96.48 1.23 12.63

MobileNetV2 94.19 94.33 94.23 94.28 0.3 3.47

MobileVitV2 95.15 95.25 95.16 95.14 1.41 4.87

Swin TransformerV2 98.22 98.28 98.22 98.22 4.51 28.33

Deit3 97.57 97.60 97.51 97.51 4.24 21.97

LDAMNet
(Proposed model)

98.71 98.73 98.69 98.71 0.142 0.910
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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bottleneck block (CIB block) in ConvNeXt V2 and the inverted

bottleneck block (IB block) used in MobileNet V2 were used for

experimental comparison in this experiment, and the three-block

structures are shown in Figure 4. Table 4 shows the parameters of

the LDAMNet model trained with three blocks, among which the

model with DAC block has the highest evaluation parameters,

which are 3.34, 3.33, 1.09 and 1.09 larger than the lowest CIB

block, respectively. In addition, among the three types of block,

most of the parameters required for training are made with the IB

block, followed by the CIB block, and finally, the DAC block. The

results show that compared with the IB block and CIB block, the

DAC block can achieve higher recognition ability with fewer

computing resources.
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CIB block, as an improved method of IB block, although the

parameters of IB block are effectively reduced by reducing the

normalization method and placing the convolutional layer in front

of the whole channel, it cannot effectively extract image features in the

face of tomato disease image dataset due to its use of 7×7 convolution

kernel. The reason is that some diseases in the tomato disease image

show small local regions, and although the 7×7 convolutional kernel

can obtain the association of regions in space through the receptive

field method, it will also lead to inaccurate information acquisition in

local regions, which leads to the inferior recognition ability of CIB

block in this dataset. However, the IB block and DAC block using the

3×3 convolutional kernel can fully extract the local features of the

image so that the recognition ability of the two blocks is similar.
TABLE 4 Parameters were evaluated using the IB, CIB, and DAC block.

Methods Accuracy Precision Recall F1 score Flops(G) Params(M)

IB block 97.57 97.64 97.60 97.62 0.288 1.836

CIB block 95.37 95.49 95.36 95.42 0.189 1.176

DAC block 98.71 98.73 98.69 98.71 0.142 0.910
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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FIGURE 9

Confusion matrix testing for different CNN models. Models from (A) to (L) are the models for comparative experiments in Table 4, respectively.
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Figure 10 shows the feature map of the LDAMNet model using

different blocks in four stages. In the first three stages, the CIB block

and IB block can better preserve the image outline than the DAC

block. However, in the fourth stage, the output feature map contains

fewer abstract features than the DAC block, and even some feature

maps do not contain image features. As a result, the classifier of the

LDAMNet model using CIB block and IB block cannot discriminate

the input graph with missing features, which affects the recognition

ability of the LDAMNet model.
3.5 Experiment of normalization methods

In this paper, in order to reduce the influence of different

batches in model training, the GN normalization method is used

instead of the BN normalization method commonly used in

convolutional neural networks. In addition, in order to verify the

optimization effect of the LDAMNet network using the GNmethod,

in this experiment, four normalization methods were used: (Wu

and He, 2020), BN (Ioffe and Szegedy, 2015), IN (Ulyanov et al.,

2016), and LN (Ba et al., 2016), respectively, in Batch size=8, Batch

size=16, and Batch size=32 cases to train the network model.

Supplementary Figure S2 shows the transformation of the

accuracy curve of the LDAMNet network model trained using

four normalization methods: GN, BN, LN, and IN. Among the

four normalization methods, the accuracy curves using the IN and

LN normalization methods fluctuated greatly with different batches.
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However, the accuracy curve using the GN and BN normalization

methods is more stable in the three cases. In addition, as shown in

Table 5, the GN normalization method can achieve the highest

accuracy in the three cases with different batch sizes, while the BN

normalization method is slightly lower. Among them, the

maximum accuracy difference between GN and BN is 1.05%

when Batch size = 16, and the minimum accuracy difference is

0.36% when Batch size = 32.
3.6 Ablation experiments

In this section, we conducted ablation experiments, comparison

experiments of different attentional mechanisms, and experiments

using different loss functions for training. As shown in

Supplementary Figure S3A, among the three improvements of

HCA, CSA, and DAC, the DAC block has the greatest

improvement in the recognition performance of the network,

followed by the HCA and CSA modules. As shown in Table 6,

the DAC block, which aggregates CSA and HCA in the lightweight

LDAMNet model, can effectively help the network model improve

the recognition accuracy of the disease, and its average accuracy can

reach 98.71%. The average recognition accuracy of the HCA block

and CSA block is 96.21% and 95.89% respectively, which indicates

that both of them can effectively improve the recognition ability of

the model in LDAMNet, with the attention effect of HCA being

slightly better.
FIGURE 10

Characteristic diagram of the LDAMNet network at different stages using three blocks.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1420584
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1420584
Then, to examine the difference between the DAC block

proposed in this paper and mainstream attention mechanisms, CA

and CBAM were introduced for comparison experiments.

Supplementary Figure S3B shows the variation of the experimental

accuracy curves, in which the CA and CBAM attention mechanisms

have some fluctuations in their accuracy curves during the training

cycle, while the DAC accuracy curve is relatively smooth. The test

data, as shown in Table 6, show that there is no significant difference

among the three methods in terms of the amount of computation and

the number of parameters required, while the average accuracy of the

DAC block method is slightly higher than that of the two attention

mechanisms, CA and CBAM. Figure 11 shows the class activation

diagrams of the LDAMNet network model using different attention

mechanisms, and the input images are the four leaf disease images in

Figure 1. From the figure, it is clearly observed that the DAC block

effectively captures the leaf disease regions at different locations,

whereas HCA, CSA, CA, and CBAM attention mechanisms do not

capture the regions as accurately as the DAC block.

Finally, in this section, to validate the RCE loss function proposed

in this paper, the mainstream CE loss function is used for

comparison. Supplementary Figure S3C shows the comparison of
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the accuracy curves of LDAMNet using the RCE loss function and the

CE loss function, respectively. The LDAMNet model applying the

RCE loss function does not have the effect of too small loss values in

the pre-training period, which leads to slower convergence, and its

accuracy curve is more stable in the late training period.
3.7 Cross-dataset experiments

Through the above experiments, it can be proved that the model

proposed in this paper has a strong recognition ability in the tomato

dataset. However, it is unknown whether the model can have the

same advantages in the face of different leaf disease datasets.

Therefore, in this experiment, in order to test the recognition

ability of the LDAMNet network model in the face of different leaf

disease images, the model was trained and tested using Rice Leaf

Disease Images with complex backgrounds, and the samples of the

rice dataset are shown in Supplementary Figure S4, including

Bacterialbight, Blast, Brownsport, Tungro has a total of 5932

images (https://www.kaggle.com/datasets/nirmalsankalana/rice-leaf-

disease-image) in four categories.
TABLE 6 Comparative experiments of different structures and training methods of network models.

Settings Accuracy Precision Recall F1 score Flops(G) Param(M)

Baseline 95.19 95.31 95.18 95.24 0.1418 0.9057

+HCA 96.21 96.31 96.18 96.24 0.1425 0.9057

+CSA 95.89 95.97 95.88 95.92 0.1419 0.9105

+CA 97.98 98.03 97.92 97.97 0.1422 0.9385

+CBAM 97.34 97.41 97.31 97.36 0.1424 0.9279

+DAC(CE) 98.15 98.27 98.20 98.23 0.1426 0.9105

+DAC(RCE) 98.71 98.73 98.69 98.71 0.1426 0.9105
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
TABLE 5 Accuracy values of different normalization methods under different batch sizes.

Batch size Methods Accuracy Precision Recall F1 score

8

LN 96.69 96.84 96.67 96.75

IN 96.22 96.30 96.20 96.25

BN 97.68 97.81 97.65 97.73

GN 98.49 98.64 98.51 98.57

16

LN 96.28 96.48 96.34 96.41

IN 96.34 96.52 96.35 96.43

BN 97.66 97.75 97.63 97.69

GN 98.71 98.73 98.69 98.71

32

LN 96.66 96.87 96.63 96.75

IN 96.03 96.25 96.02 96.13

BN 97.88 97.94 97.89 97.91

GN 98.24 98.38 98.25 98.31
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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In order to detect the gap between the recognition ability of the

LDAMNet model in this dataset and the current mainstream

models, the seven models used in Part 3.3 were used in this

experiment. In the experiment, set the Batch Size to 16, the

training round epoch to 100, and the learning rate to 0.00001.

Table 7 lists the number of datasets. In addition, ConvNeXt,

Inception, DenseNet, ResNet, GhostNet, EfficientNet, and

MobileNet were trained using the CE loss function, and

LDAMNet was trained using the RCE loss function, and the

evaluation parameters obtained from the test are shown in

Table 8, and the change of the accuracy curve is shown in Figure 12.

The measured data are shown in Table 8, and the highest scores

of the Accuracy, Recall, and F1 scores of the model are 98.56, 98.58,

and 98.65, respectively, while the Precision parameter of the

ConvNeXt model achieves the highest value of 98.71, which is

slightly higher than the 98.70 of the LDAMNet model. The

measured data show that LDAMNet can still maintain the same

recognition ability as the existing mainstream large-scale models
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after replacing it with the rice dataset and can also maintain certain

advantages compared with the lightweight model.

Figure 12 shows the accuracy curves of the different models in

the experiment. As shown in the figure, the recognition accuracy

convergence speed of the proposed model in the early stage of

training is relatively slow and fluctuates to a certain extent.

However, with further training of the model, the recognition

accuracy of the LDAMNet model can be stabilized in a high

region. The results show that the network model proposed in this

paper can still maintain high recognition performance in the face of

cross-dataset and has a certain generalization.
4 Conclusion

This paper addresses the issues of uneven distribution of disease

features in tomato leaf images, significant differences within similar

features, and small differences between dissimilar features. A high-
FIGURE 11

Category activation diagram using different attention mechanisms in the face of four different tomato diseases.
TABLE 7 Number of samples from the training and test sets of rice image datasets without data augmentation.

Categories Bacterial blight Blast Brownsport Tungro

Train 1268 1152 1280 1046

Test 316 288 320 262
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precision and lightweight leaf disease recognition method has been

designed. First, linear transformation is used to enhance the image,

augmenting the detail features of the disease and mitigating the

problems of significant differences within similar features and small

differences between dissimilar features. Then, DAC block, composed

of HCA, CSA, and IBA blocks, is used to build a lightweight network

model called LDAMNet. Additionally, the RCE loss function is

employed to train the model, increasing its robustness.

Comprehensive testing shows that this method can effectively

identify tomato leaf diseases, offering certain advantages over

mainstream large-scale and lightweight models, with maximum

accuracy, precision, recall, and F1 scores reaching 99.88, 99.88, and

99.87, respectively. This confirms that LDAMNet achieves high-

precision disease recognition while being a lightweight model.
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Moreover, to verify the generalization of this detection method,

a rice disease dataset was used for testing. Experimental results

indicate that the proposed method still maintains certain

advantages and can be used for cross-dataset disease recognition.

Although LDAMNet achieves high-precision disease recognition, it

still has potential for further exploration. Its average recognition

accuracy on the rice disease dataset has not reached the optimum

level. Further improvements are needed to address the issue of

uneven distribution of disease features in complex backgrounds.

In summary, this paper proposes a method for detecting

tomato leaf diseases and establishes a new lightweight

convolutional neural network model, LDAMNet. Tests have

shown that this model can effectively identify tomato leaf

diseases and maintain strong recognition capability even in the
frontiersin.o
BA

FIGURE 12

The accuracy curves of different models trained using rice datasets. (A) comparison of the accuracy curves of large-scale models (B) and
comparison of the accuracy curves of lightweight models.
TABLE 8 Comparison of evaluation parameters obtained by the model trained using the rice dataset.

Model Accuracy Precision Recall F1 score Flops(G) Params(M)

1 Connect V2_T 98.44 98.71 98.46 98.58 4.45 27.79

2 Inception_Next_T 96.10 96.35 96.20 96.27 4.2 28.04

3 DenseNet121 98.52 98.51 98.51 98.51 2.83 7.89

4 ResNet18 97.16 97.28 97.19 97.24 1.82 11.69

5 GhostNet V2 97.95 97.95 97.95 97.95 0.42 11.10

6 EfficientNet 95.56 95.47 95.53 95.50 0.38 5.24

7 MobileNetV2 90.44 90.40 90.59 90.49 0.3 3.47

8
LDAMNet

(Proposed model)
98.56 98.70 98.58 98.63 0.142 0.910
The bold values represent the best data in the experiment, such as the best average Accuracy, the best average Precision, the best Recall, the best F1 score, the minimum Flops requirement, and the
minimum Params requirement.
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complex backgrounds of the rice disease dataset. The proposed

method can effectively identify agricultural leaf diseases, providing

a feasible approach for early identification and reasonable

treatment of agricultural diseases.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

EZ:Writing – original draft. NZ:Writing – review & editing. FL:

Resources, Writing – original draft. CL: Visualization, Writing –

original draft.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Frontiers in Plant Science 1798
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1420584/

full#supplementary-material
References
Affonso, C., Rossi, A. L. D., Vieira, F. H. A., and de Carvalho, A.C.P.d. (2017). Deep
learning for biological image classification. Expert Syst. Appl. 85, 114–122. doi: 10.1016/
j.eswa.2017.05.039

Akbarzadeh, S., Paap, A., Ahderom, S., Apopei, B., and Alameh, K. (2018). Plant
discrimination by Support Vector Machine classifier based on spectral reflectance.
Comput. Electron. Agric. 148, 250–258. doi: 10.1016/j.compag.2018.03.026

Anandhakrishnan, T., and Jaisakthi, S. M. (2022). Deep Convolutional Neural
Networks for image based tomato leaf disease detection. Sustain. Chem. Pharm. 30,
100793. doi: 10.1016/j.scp.2022.100793

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv
1607.06450. doi: 10.48550/arXiv.1607.06450

Bhatkar, N. S., Shirkole, S. S., Mujumdar, A. S., and Thorat, B. N. (2021). Drying of
tomatoes and tomato processing waste: a critical review of the quality aspects. Dry.
Technol. 39, 1720–1744. doi: 10.1080/07373937.2021.1910832

Cai, C., Wang, Q., Cai, W., Yang, Y., Hu, Y., Li, L., et al. (2023). Identification of
grape leaf diseases based on VN-BWT and Siamese DWOAM-DRNet. Eng. Appl. Artif.
Intell. 123, 106341. doi: 10.1016/j.engappai.2023.106341

Chen, J., Zhang, D., Zeb, A., and Nanehkaran, Y. (2021). Identification of rice plant
diseases using lightweight attention networks. Expert Syst. Appl. 169, 114514.
doi: 10.1016/j.eswa.2020.114514

Chen, X., Zhou, G., Chen, A., Yi, J., Zhang, W., and Hu, Y. (2020). Identification of
tomato leaf diseases based on combination of ABCK-BWTR and B-ARNet. Comput.
Electron. Agric. 178, 105730. doi: 10.1016/j.compag.2020.105730

Deng, J.-s., Huang, W.-q., Zhou, G.-x., Hu, Y.-h., Li, L.-j., and Wang., Y.-f. (2023).
Identification of banana leaf disease based on KVA and GR-ARNet1. J. Integr. Agricult.
doi: 10.1016/j.jia.2023.11.037

Eli-Chukwu, N., and Ogwugwam, E. (2019). Applications of artificial intelligence in
agriculture: A review. Eng. Technol. Appl. Sci. Res. 9, 4377–4383. doi: 10.48084/
etasr.2756

Gnanasekaran, S., and Opiyo, G. (2020). A predictive machine learning application
in agriculture: Cassava disease detection and classification with imbalanced dataset
using convolutional neural networks. Egypt. Inf. J. 22.

Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., and Xu, C. (2020). “GhostNet: more
features from cheap operations,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 1577-1586. doi: 10.1109/CVPR42600.2020

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770-778. doi: 10.1109/CVPR.2016.90
Hou, Q., Daquan, Z., and Feng, J. (2021). Coordinate attention for efficient mobile
network design. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR), 13708-13717. doi: 10.1109/CVPR46437.2021.01350

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7132-7141.
doi: 10.1109/CVPR.2018.00745

Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2261-2269. doi: 10.1109/CVPR35066.2017

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network
training by reducing internal covariate shift. abs/1502.03167.

Kamal, K. C., Yin, Z., Wu, M., and Wu, Z. (2019). Depthwise separable convolution
architectures for plant disease classification. Comput. Electron. Agric. 165, 104948.
doi: 10.1016/j.compag.2019.104948

Khan, M. A., Akram, T., Sharif, M., Awais, M., Javed, K., Ali, H., et al. (2018). CCDF:
Automatic system for segmentation and recognition of fruit crops diseases based on
correlation coefficient and deep CNN features. Comput. Electron. Agric. 155, 220–236.
doi: 10.1016/j.compag.2018.10.013

Kong, J., Wang, H., Wang, X., Jin, X.-b., Fang, X., and Lin, S. (2021). Multi-stream
hybrid architecture based on cross-level fusion strategy for fine-grained crop species
recognition in precision agriculture. Comput. Electron. Agric. 185, 106134. doi: 10.1016/
j.compag.2021.106134

Li, Y., Hu, J., Wen, Y., Evangelidis, G., Salahi, K., Wang, Y., et al. (2023). “Rethinking
vision transformers for mobileNet size and speed,” in 2023 IEEE/CVF International
Conference on Computer Vision (ICCV) , 16843-16854. doi : 10.1109/
ICCV51070.2023.01549

Liao, F.-b., Feng, X., Li, Z.-q., Wang, D.-y., Xu, C.-m., Chu, G., et al. (2023). A hybrid
CNN-LSTMmodel for diagnosing rice nutrient levels at the rice panicle initiation stage.
J. Integr. Agric. 23. doi: 10.1016/j.jia.2023.05.032

Liu, Y., Shao, Z., Teng, Y., and Hoffmann, N. (2021). NAM: normalization-based
attention module. abs/2111.12419.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., et al. (2022). “Swin transformer V2:
scaling up capacity and resolution,” in 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 11999-12009. doi: 10.1109/CVPR52688.2022.01170

Mehta, S., and Rastegari, M. (2022). Separable self-attention for mobile vision
transformers. ArXiv abs/2206.02680.

Mitchell, A. E., Hong, Y.-J., Koh, E., Barrett, D. M., Bryant, D. E., Denison, R. F., et al.
(2007). Ten-year comparison of the influence of organic and conventional crop
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1420584/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1420584/full#supplementary-material
https://doi.org/10.1016/j.eswa.2017.05.039
https://doi.org/10.1016/j.eswa.2017.05.039
https://doi.org/10.1016/j.compag.2018.03.026
https://doi.org/10.1016/j.scp.2022.100793
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.1080/07373937.2021.1910832
https://doi.org/10.1016/j.engappai.2023.106341
https://doi.org/10.1016/j.eswa.2020.114514
https://doi.org/10.1016/j.compag.2020.105730
https://doi.org/10.1016/j.jia.2023.11.037
https://doi.org/10.48084/etasr.2756
https://doi.org/10.48084/etasr.2756
https://doi.org/10.1109/CVPR42600.2020
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR46437.2021.01350
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR35066.2017
https://doi.org/10.1016/j.compag.2019.104948
https://doi.org/10.1016/j.compag.2018.10.013
https://doi.org/10.1016/j.compag.2021.106134
https://doi.org/10.1016/j.compag.2021.106134
https://doi.org/10.1109/ICCV51070.2023.01549
https://doi.org/10.1109/ICCV51070.2023.01549
https://doi.org/10.1016/j.jia.2023.05.032
https://doi.org/10.1109/CVPR52688.2022.01170
https://doi.org/10.3389/fpls.2024.1420584
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1420584
management practices on the content of flavonoids in tomatoes. J. Agric. Food Chem.
55, 6154–6159. doi: 10.1021/jf070344+

Mokhtar, U., Ali, M. A. S., Hassenian, A. E., and Hefny, H. (2015). “Tomato leaves
diseases detection approach based on Support Vector Machines,” in 2015 11th
International Computer Engineering Conference (ICENCO), 246-250. doi: 10.1109/
ICENCO.2015.7416356

Patil, S. S., and Thorat, S. A. (2016). “Early detection of grapes diseases using
machine learning and IoT,” in 2016 Second International Conference on Cognitive
Computing and Information Processing (CCIP), 1-5. doi: 10.1109/CCIP.2016.7802887

Prathibha, S. R., Hongal, A., and Jyothi, M. P. (2017). “IOT based monitoring system
in smart agriculture,” in 2017 International Conference on Recent Advances in
Electronics and Communication Technology (ICRAECT), 81-84. doi: 10.1109/
ICRAECT.2017.52

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L. C. (2018).
“MobileNetV2: inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 4510-4520. doi: 10.1109/
CVPR.2018.00474

Sanida, M. V., Sanida, T., Sideris, A., and Dasygenis, M. (2023). An efficient hybrid
CNN classification model for tomato crop disease. Technologies 11. doi: 10.3390/
technologies11010010

Tang, L., Yi, J.-z., and Li., X.-y. (2023). Improved multi-scale inverse bottleneck
residual network based on triplet parallel attention for apple leaf disease identification.
J. Integr. Agric. 23.

Tan, M., and Le, Q. V. (2019). EfficientNet: rethinking model scaling for
convolutional neural networks. abs/1905.11946.

Tang, Y., Chen, C., Leite, A. A. C., and Xiong, Y. (2023). Editorial: Precision control
technology and application in agricultural pest and disease control. Front. Plant Sci. 14.
doi: 10.3389/fpls.2023.1163839

Touvron, H., Cord, M., and J'egou, H. e. (2022). “DeiT III: revenge of the viT,” in
European Conference on Computer Vision.

Uddin, M. Z., Mahamood, M. N., Ray, A., Pramanik, M. I., Alnajjar, F., and Ahad, M.
A. R. (2024). E2ETCA: End-to-end training of CNN and attention ensembles for rice
disease diagnosis1. J. Integr. Agricult. doi: 10.1016/j.jia.2024.03.075

Ullah, Z., Alsubaie, N., Jamjoom, M., Alajmani, S. H., and Saleem, F. (2023). EffiMob-
net: A deep learning-based hybrid model for detection and identification of tomato
diseases using leaf images. Agriculture 13. doi: 10.3390/agriculture13030737

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2016). Instance normalization: the
missing ingredient for fast stylization. abs/1607.08022.

Vos, C. M., Yang, Y., De Coninck, B., and Cammue, B. P. A. (2014). Fungal (-like)
biocontrol organisms in tomato disease control. Biol. Control 74, 65–81. doi: 10.1016/
j.biocontrol.2014.04.004

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Hassanien, A. E., and Pandey, H. M.
(2020). An optimized dense convolutional neural network model for disease
recognition and classification in corn leaf. Comput. Electron. Agric. 175, 105456.
doi: 10.1016/j.compag.2020.105456
Frontiers in Plant Science 1899
Wang, C., Li, C., Han, Q., Wu, F., and Zou, X. (2023). A performance analysis of a
litchi picking robot system for actively removing obstructions, using an artificial
intelligence algorithm. Agronomy 13. doi: 10.3390/agronomy13112795

Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. (2020). “ECA-net: efficient
channel attention for deep convolutional neural networks,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 11531-11539.
doi: 10.1109/CVPR42600.2020

Woo, S., Debnath, S., Hu, R., Chen, X., Liu, Z., Kweon, I. S., et al. (2023). “ConvNeXt
V2: co-designing and scaling convNets with masked autoencoders,” in 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 16133-16142.
doi: 10.1109/CVPR52729.2023.01548

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. (2018). CBAM: convolutional block
attention module. ArXiv abs/1807.06521. doi: 10.48550/arXiv.1807.06521

Wu, Y. (2021). Identification of maize leaf diseases based on convolutional neural
network. J. Phys.: Conf. Ser. 1748, 032004. doi: 10.1088/1742-6596/1748/3/032004

Wu, Y., and He, K. (2020). Group normalization. Int. J. Comput. Vision 128, 742–
755. doi: 10.1007/s11263-019-01198-w

Xie, C., and He, Y. (2016). Spectrum and image texture features analysis for early
blight disease detection on eggplant leaves. Sensors 16, 676. doi: 10.3390/s16050676

Ye, L., Wu, F., Zou, X., and Li, J. (2023). Path planning for mobile robots in
unstructured orchard environments: An improved kinematically constrained bi-
directional RRT approach. Comput. Electron. Agric. 215, 108453. doi: 10.1016/
j.compag.2023.108453

Yu, W., Zhou, P., Yan, S., and Wang, X. (2023). InceptionNeXt: when inception
meets convNeXt. abs/2303.16900.

Zaki, S., Zulkifley, M. A., Mohd Stofa, M., Kamari, N., and Mohamed, N. (2020).
Classification of tomato leaf diseases using MobileNet v2. IAES Int. J. Artif. Intell. (IJ-
AI) 9, 290. doi: 10.11591/ijai.v9.i2

Zeng, W., and Li, M. (2020). Crop leaf disease recognition based on Self-Attention
convolutional neural network. Comput. Electron. Agric. 172, 105341. doi: 10.1016/
j.compag.2020.105341

Zhang, Y., Huang, S., Zhou, G., Hu, Y., and Li, L. (2023). Identification of tomato leaf
diseases based on multi-channel automatic orientation recurrent attention network.
Comput. Electron. Agric. 205, 107605. doi: 10.1016/j.compag.2022.107605

Zhang, Z., and Sabuncu, M. R. (2018). Generalized cross entropy loss for training
deep neural networks with noisy labels. abs/1805.07836.

Zhao, S., Peng, Y., Liu, J., and Wu, S. (2021). Tomato leaf disease diagnosis based on
improved convolution neural network by attention module. Agriculture 11, 651.
doi: 10.3390/agriculture11070651

Zhao, Y., Sun, C., Xu, X., and Chen, J. (2022). RIC-Net: A plant disease classification
model based on the fusion of Inception and residual structure and embedded attention
mechanism. Comput. Electron. Agric. 193, 106644. doi: 10.1016/j.compag.2021.106644

Zhou, C., Zhou, S., Xing, J., and Song, J. (2021). Tomato leaf disease identification by
restructured deep residual dense network. IEEE Access 9, 28822–28831. doi: 10.1109/
Access.6287639
frontiersin.org

https://doi.org/10.1021/jf070344+
https://doi.org/10.1109/ICENCO.2015.7416356
https://doi.org/10.1109/ICENCO.2015.7416356
https://doi.org/10.1109/CCIP.2016.7802887
https://doi.org/10.1109/ICRAECT.2017.52
https://doi.org/10.1109/ICRAECT.2017.52
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.3390/technologies11010010
https://doi.org/10.3390/technologies11010010
https://doi.org/10.3389/fpls.2023.1163839
https://doi.org/10.1016/j.jia.2024.03.075
https://doi.org/10.3390/agriculture13030737
https://doi.org/10.1016/j.biocontrol.2014.04.004
https://doi.org/10.1016/j.biocontrol.2014.04.004
https://doi.org/10.1016/j.compag.2020.105456
https://doi.org/10.3390/agronomy13112795
https://doi.org/10.1109/CVPR42600.2020
https://doi.org/10.1109/CVPR52729.2023.01548
https://doi.org/10.48550/arXiv.1807.06521
https://doi.org/10.1088/1742-6596/1748/3/032004
https://doi.org/10.1007/s11263-019-01198-w
https://doi.org/10.3390/s16050676
https://doi.org/10.1016/j.compag.2023.108453
https://doi.org/10.1016/j.compag.2023.108453
https://doi.org/10.11591/ijai.v9.i2
https://doi.org/10.1016/j.compag.2020.105341
https://doi.org/10.1016/j.compag.2020.105341
https://doi.org/10.1016/j.compag.2022.107605
https://doi.org/10.3390/agriculture11070651
https://doi.org/10.1016/j.compag.2021.106644
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/Access.6287639
https://doi.org/10.3389/fpls.2024.1420584
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Yongliang Qiao,
University of Adelaide, Australia

REVIEWED BY

Aibin Chen,
Central South University Forestry and
Technology, China
Weibin Wu,
South China Agricultural University, China
Nitin Goyal,
Central University of Haryana, India

*CORRESPONDENCE

Fuchuan Ni

fcni_cn@mail.hzau.edu.cn

Wenyong Dong

dwy@whu.edu.cn

RECEIVED 03 April 2024
ACCEPTED 11 July 2024

PUBLISHED 13 August 2024

CITATION

Wu R, He F, Rong Z, Liang Z, Xu W, Ni F and
Dong W (2024) TP-Transfiner: high-quality
segmentation network for tea pest.
Front. Plant Sci. 15:1411689.
doi: 10.3389/fpls.2024.1411689

COPYRIGHT

© 2024 Wu, He, Rong, Liang, Xu, Ni and Dong.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Methods

PUBLISHED 13 August 2024

DOI 10.3389/fpls.2024.1411689
TP-Transfiner: high-
quality segmentation
network for tea pest
Ruizhao Wu1, Feng He1,2, Ziyang Rong1,2, Zhixue Liang3,
Wenxing Xu4, Fuchuan Ni2* and Wenyong Dong3*

1College of Informatics, Huazhong Agricultural University, Wuhan, China, 2Engineering Research
Center of Intelligent Technology for Agriculture, Ministry of Education, College of Informatics,
Huazhong Agricultural University, Wuhan, China, 3School of Computer Science, Wuhan University,
Wuhan, China, 4College of Plant Science & Technology, Huazhong Agricultural University,
Wuhan, China
Detecting and controlling tea pests promptly are crucial for safeguarding tea

production quality. Due to the insufficient feature extraction ability of traditional

CNN-based methods, they face challenges such as inaccuracy and inefficiency

of detecting pests in dense and mimicry scenarios. This study proposes an end-

to-end tea pest detection and segmentation framework, TeaPest-Transfiner (TP-

Transfiner), based on Mask Transfiner to address the challenge of detecting and

segmenting pests in mimicry and dense scenarios. In order to improve the

feature extraction inability and weak accuracy of traditional convolution

modules, this study proposes three strategies. Firstly, a deformable attention

block is integrated into themodel, which consists of deformable convolution and

self-attention using the key content only term. Secondly, the FPN architecture in

the backbone network is improved with amore effective feature-aligned pyramid

network (FaPN). Lastly, focal loss is employed to balance positive and negative

samples during the training period, and parameters are adapted to the dataset

distribution. Furthermore, to address the lack of tea pest images, a dataset called

TeaPestDataset is constructed, which contains 1,752 images and 29 species of

tea pests. Experimental results on the TeaPestDataset show that the proposed

TP-Transfiner model achieves state-of-the-art performance compared with

other models, attaining a detection precision (AP50) of 87.211% and

segmentation performance of 87.381%. Notably, the model shows a significant

improvement in segmentation average precision (mAP) by 9.4% and a reduction

in model size by 30% compared to the state-of-the-art CNN-based model Mask

R-CNN. Simultaneously, TP-Transfiner’s lightweight module fusion maintains

fast inference speeds and a compact model size, demonstrating practical

potential for pest control in tea gardens, especially in dense and

mimicry scenarios.
KEYWORDS

tea pest, instance segmentation, dense and mimicry scenarios, attention mechanism,
Mask Transfiner
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1 Introduction

As a vital economic crop, tea faces annual challenges from

various pests during its cultivation, significantly impacting

productivity and quality. Major tea pests include Jacobiasca

formosana, Geisha distinctissima, Arctornis alba, Measuring worm,

Tortricida, Amata germana, and Euricania ocellus, among others.

Throughout the evolution of some tea pests, their morphological

characteristics often undergo significant changes (Ihsan-ul Haq

et al., 2003), making it difficult to manually track pest dynamics.

Additionally, the mimicry and dense distribution characteristics

exhibited by some tea pests complicate their identification and

localization. Consequently, these challenges have driven the

development of artificial intelligence for pest monitoring.

Convolutional neural network (CNN) is a primary choice for

image processing and is widely used in various fields of computer

vision. Sharma et al. (2022); Yang et al. (2024), and Singh et al.

(2022) conduct image recognition and classification tasks across

different application fields by constructing CNNs with various

architectures. These studies leverage the excellent feature

extraction capabilities of CNN and demonstrate the superiority

and robustness of their respective models through experiments.

As deep learning continues to revolutionize various domains, its

application in plant monitoring has garnered significant attention,

leading to innovative solutions and enhanced performance in plant

disease and pest detection. Liu and Wang (2021) explore challenges

in the practical application of deep learning for plant disease and

pest detection. They propose potential solutions, presented research

ideas to address these challenges, and offered insightful suggestions.

Kaur et al. (2024) utilized the H-CSM model, which integrates

support vector machine (SVM), convolutional neural network

(CNN), and convolutional block attention module (CBAM) to

detect and classify plant leaf diseases. Experimental results

indicate a classification accuracy of 98.72%. Kang et al. (2023)

introduce MCUNet, a corn leaf pest detection and segmentation

model that outperforms mainstream neural networks. Furthermore,

aiming to obtain a more lightweight model, Agarwal et al. (2023)

propose a pest detection method utilizing the EfficientNetB3 model.

Experimental results demonstrate the effectiveness in achieving

high accuracy for classifying various pests in image datasets. Dai

et al. (2023) introduce an improved YOLOv5m-based method for

pest detection in plants. By integrating Swin-Transformer and

Transformer mechanism, their approach improves the detection

accuracy and efficiency. Besides this, Jiao et al. (2022); Tian et al.

(2023), and Yang et al. (2023a) also utilized deep learning methods

to detect and classify pests on various plants. In summary, these

studies have predominantly relied on conventional detection

methods for monitoring and has not performed segmentation of

the detected pests or leaf diseases. By achieving high detection

accuracy through the construction of pest datasets and model

improvements, these studies effectively address challenges such as

small targets, multiscale detection, and real-time requirements.

In contrast, the field of pest or leaf diseases monitoring in tea

gardens remains relatively underexplored, with only a few studies

focusing on tea pest monitoring (Wang et al., 2023; Yang et al.,

2023b; Ye et al., 2024). These studies primarily concentrate on the
Frontiers in Plant Science 02101
detection of tea pests without further segmentation of individual

pests. The complex distribution of pests in tea gardens,

characterized by mimicry and dense populations, presents

significant challenges for traditional pest detection models. As for

tea pest monitoring, a previous work conducted by Zhou et al.

(2021) uses automatic machine learning to classify each image in

the TeaPestDataset. Xue et al. (2023); Yang et al. (2023b), and Lin

et al. (2023) utilize the popular object detection model YOLO

(Redmon et al., 2016) to detect tea plant diseases or pests. Hu

et al. (2021) employ a discriminative pyramid network for semantic

segmentation of tea geometrids in natural scenes. Experimental

results demonstrate excellent performance in the semantic

segmentation of tea geometrids. In contrast, this research treats

each pest as an individual entity, achieving specific pest counts and

improving edge processing capabilities by developing a deeper

network for instance segmentation. Furthermore, this study not

only accurately identifies both larva and adult tea geometrids but

also encompasses the identification and processing of 27 other

common pests in tea gardens. Moreover, Hu et al. (2024) employ

hybrid architecture based on transformer to detect tea pests in

complex backgrounds. However, previous researches on tea pest

monitoring primarily focus on classification, detection, or semantic

segmentation tasks, ignoring the importance of instance

segmentation tasks for pest control. This study summarizes

previous researches on tea pest detection and applies instance

segmentation tasks to improve the effectiveness of tea pest

control. Instance segmentation offers a promising solution to

these issues by enabling pixel-wise parsing of pest images, thereby

accurately predicting the position of each pest.

Additionally, in practical applications, traditional detection

methods face significant limitations, particularly in scenarios

involving target overlap and occlusion, leading to suboptimal

detection performance. Moreover, precise pesticide application in

tea gardens necessitates adjusting dosages based on pest size to

balance effective pest control with environmental concerns. Various

pests and disease pathogens exhibit different degrees of resistance to

pesticides at various growth stages. Consequently, pesticides should

ideally be applied during periods when pests are most susceptible.

The results of segmentation tasks can provide detailed information

on pest growth, development, and distribution, which is critical for

precise pesticide application.

To address these limitations caused by detection models, recent

studies committed to segmentation tasks have shown potential

solutions. Classical two-stage segmentation models, such as Mask

R-CNN (He et al., 2017), Mask Scoring R-CNN (Huang et al.,

2019), HTC (Chen et al., 2019), and DCT-Mask (Shen et al., 2021)

exhibit excellent segmentation performance. Besides this, one-stage

models such as BCNet (Ke et al., 2021) and SOLO (Wang et al.,

2021) also have superior performance and efficiency. However,

these segmentation models may lack sensitivity to details and

edge features, leading to unsatisfactory extraction results and

aliasing. Mask Transfiner (Ke et al., 2022) incorporates

Transformer architecture into the model to provide supervision

and self-correction for regions erroneously predicted by Mask R-

CNN. Built upon this innovative mechanism, the segmentation

performance of the edge area is significantly optimized.
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The attention mechanism is a crucial component in various

algorithmic theories within the realm of computer vision. The

integration of the attention module with the deep network

enhances the network’s ability to better extract target features (Xu

et al., 2021)—for instance, Wang et al. (2022) demonstrate the

effectiveness of the attention module combined with D2Det in pest

segmentation. Yang et al. (2023b) improve the YOLOv7-tiny model

by utilizing deformable convolution and attention mechanism,

achieving 93.23% accuracy on their self-made tea pest

segmentation dataset. Additionally, Zhang and Huang (2022)

design a novel attention mechanism to overcome challenges such

as scale changes, complex backgrounds, and dense distribution in

light trap images. Experimental results show that the model

outperforms both classic detection models and lightweight

detection models.

Besides this, the deformable convolutional network (DCN) (Dai

et al., 2017) enhances feature extraction accuracy by employing

deformable convolution kernels. A deep convolutional network

combined with a deformable convolution structure is proposed by

Cao et al. (2020) to overcome geometric transformations.

Experiments have demonstrated that the framework, when fused

with the DCN, effectively improves the accuracy as well as inference

speed of object detection. Significant improvement has been

observed in the trade-off between them.

In order to effectively solve the monitoring problems of tea pests

in mimicry and dense scenarios, this study proposes a framework

named TeaPest-Transfiner (TP-Transfiner) for tea pest detection

and segmentation tasks using an enhanced Mask Transfiner

framework. The main contributions are as follows:
Fron
• Provide a dataset including 1,752 tea pest images and

corresponding annotated file, which can be used in the

object detection and instance segmentation tasks.

• Fuse the attention mechanism into the backbone network

and improve the FPN architecture of the Mask Transfiner

to get a novel pest monitoring model TP-Transfiner.

• Implement experiments and demonstrate that while

maintaining lightweight, TP-Transfiner outperforms
tiers in Plant Science 03102
classical models for tea pest detection and segmentation

tasks, particularly in dense and mimicry scenarios.
2 Materials and methods

This section summarizes the datasets used in this study and the

implementation details of the proposed TP-Transfiner model.

Specifically, Section 2.1 discusses the collection, annotation, and

data augmentation of the TeaPestDataset. Section 2.2 details the

overall process and implementation of the TP-Transfiner model.

Section 2.3 presents the evaluation metrics used in the experiments.
2.1 TeaPestDataset and data augmentation

To develop widely applicable pest detection and segmentation

models, a carefully selected and labeled dataset is necessary. In this

study, various types of pest images in diverse scenarios are collected

and manually labeled, resulting in a total of 1,752 images. The

original pictures in the dataset are primarily sourced through three

methods. The first method involved images provided by agriculture

and forestry-related laboratories and pictures pertaining to tea pest

knowledge. The second method consisted of on-site shooting in tea

gardens using mobile devices. The third source was from Internet

search engines. Consequently, the collected scenes are mainly

categorized into indoor (laboratory or specimen) and outdoor

(natural environment of the tea garden) scenes. Specifically, there

are 1,492 images of outdoor scenes and 260 images of indoor scenes.

These images serve as the original dataset for tasks related to the

localization and segmentation of pest instances.

Figure 1 presents samples of the dataset. The first row displays

the original images, and the second row shows the annotated

images. The dataset includes images and annotations of tea pests

in mimicry and dense scenarios, providing a foundation for the

model’s robust generalization performance in these complex scenes.

During the dataset design process, 22 common pest species found in
A B D E

F G IH J

C

FIGURE 1

Original and annotated images of the pests. (A–E) Original and (F–J) ground truth.
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tea plantations are selected. However, considering the significant

morphological differences during different growth stages of some

pests, the larvae and adult stages of certain pests are further

subdivided. Consequently, the final dataset comprises 29

categories, with the specific quantities of images in indoor and

outdoor scenes for each type of pest illustrated in Figure 2.

The initial sample size is limited, and there is inconsistency in

the number of various data types. This condition may lead to

model overfitting, causing a tendency to predict categories with a

higher number of samples. Hence, the original dataset is

augmented to achieve a more uniform distribution of each data

type. In addition to rotation and cropping, random affine

transformations and random color transformations (including

adjustments to image brightness, contrast, saturation, and hue)

are applied to enhance the model’s generalization ability, as shown

in Figure 3. Finally, the dataset in this study includes a total of

34,928 images across 29 categories. The process of making the

dataset is to divide the 1,752 original images in a ratio of 7:2:1 and

then perform data augmentation on the training set and validation

set. To avoid falsely high precision, the test set remains the

original images.
2.2 TeaPest-Transfiner

This study introduces an optimized framework—for

instance, segmentation of tea pests based on Mask Transfiner.

Primarily, it integrates the attention mechanism and DCN

module into backbone network, replacing the backbone

network in Mask Transfiner. Additionally, it utilizes the

feature-aligned pyramid network (FaPN) (Huang et al., 2021)

as a feature extraction module to segment the edge of each

instance in high quality. Figure 4 depicts the network diagram of

the optimized Mask Transfiner segmentation model, referred to

as TP-Transfiner.
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2.2.1 Backbone network
Most of the time, backbone network refers to the feature

extraction network, and its function is to extract information

from the image, which is then utilized by the box head and mask

head. In this study, a ResNet fused with attention module and FaPN

are combined as the backbone network of Mask Transfiner, which is

used to extract features of pests.

2.2.1.1 ResNet

The ResNet is proposed by He et al. (2016), and it has been

proven to effectively improve the accuracy and convergence of deep

learning. A ResNet learns image data by its well-designed residual

block (as shown in Figure 5A), which can be defined as Equations 1

and 2.

y = F(x, Wif g) + x (1)

y = F(x, Wif g) +Wsx (2)

where F(x, {Wi}) denotes the residual mapping to be learned,

and x is the input vector of previous layers or image. If the

dimensions of x and F are not equal, a linear projection Ws can

be applied to match the dimensions, as shown in formula 2.

According to the research of He et al. (2016), the experimental

results illustrate that the residual block has the ability in solving

problems such as gradient vanishing and training degradation of

the deep network. ResNet has outstanding feature extraction

performance without increasing the model parameters and

computational burden. Therefore, ResNet is chosen as the

backbone network. At the same time, to balance efficiency and

accuracy, ResNet-50 is chosen.

2.2.1.2 Attention mechanism

The attention mechanism in deep learning draws inspiration

from the attentional processes observed in human vision.

Essentially, it comprises a set of weight parameters that can
FIGURE 2

Schematic diagram of the number of types of data collection.
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autonomously learn during the training period through the

network. The mechanism prioritizes region of interest (RoI) in a

dynamically weighted manner, simultaneously suppressing

irrelevant background regions.

Dai et al. (2019) propose a solution to address the issue of

context fragmentation by integrating the transformer attention

module into the backbone network. Building upon this

foundation, Zhu et al. (2019) conduct a comprehensive study

that investigated the influence of four different factors: the query

and key content, the query content and relative position, the key

content only, and the relative position. Additionally, they explore

the impact of incorporating deformable convolution into the
Frontiers in Plant Science 05104
network. Empirical results show that a proper combination of

deformable convolution and the key content only term in

transformer attention achieves the best accuracy–efficiency

trade-off compared with the transformer attention module

alone. Based on this conclusion, the key content self-attention

module is integrated into the ResNet-50 backbone network in this

study. Detailed information is indicated by Equation 3.

x = uTmV
C
mxk (3)

where um is a learnable vector. It captures salient key content

which should be focused on the task and is irrelevant to the query. T

represents the transpose of a vector, and m represents one of the
FIGURE 4

Framework of TP-Transfiner.
A B D

E F G H

C

FIGURE 3

Examples of data augmentation. (A) Original, (B) flip, (C) noise adding, (D) flip and noise adding, (E) adjust hue 1, (F) adjust hue 2, (G) adjust
saturation, and (H) adjust saturation and noise adding.
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attention heads. VC
m is learnable embedding matrices for the key

content and xk denotes the input.

Specifically, the 3 × 3 regular convolution in the residual block is

replaced with a deformable convolution block. Subsequently, a 3 × 3

deformable convolution in the residual block is followed by the

addition of a self-attention module, contributing to the deformable

attention block (as shown in Figure 5B). To apply a pre-trained model

without altering its original behavior, the self-attention module is

inserted using a residual connection. The output of the self-attention

module is then multiplied by a learnable scalar initialized to zero. The

residual block after the third stage of ResNet-50 is replaced with an

optimized one, and the feature map outputted by ResNet-50 serves as

the input for FaPN for multi-scale feature extraction.

2.2.1.3 FaPN

Achieving accurate mimetic pest instance detection requires the

availability of both high-quality spatial information for precise

object detection and robust semantic information for effective

classification. FaPN optimizes FPN by replacing 1 × 1

convolutions with a feature selection module (FSM) and adding a

feature alignment module (FAM) during upsampling, as shown in

Figure 6. Inspired by SENet (Hu et al., 2018), FSM accurately

extracts crucial information about features and recalibrates them by

performing channel reduction and suppressing redundant feature

maps. FSM can be represented by Equation 4.

bCi = Fs(Ci + fm(z) ∗Ci) (4)

Here z signifies the data obtained through global average pooling

of the input feature map Ci, while fm(z) denotes the modeling of the

importance of each feature map through a process involving a 1 × 1

convolution followed by a sigmoid activation on z.

FAM refines each sampling position within the convolution

kernel by employing a learnable offset, thereby aligning the
Frontiers in Plant Science 06105
upsampled feature map with a set of feature maps. The feature

map Ci-1 furnishes the spatial position to determine Pi, ensuring

alignment with Ci-1. FAM can be explained by Equation 5:

bPi   = Fa Pi, f∘     (Ĉ i−1 ∘   Pi)
� �

(5)

where ∘ signifies the channel concatenation operation, f° denotes

the learned offset, and Fa(·) represents the alignment function.

2.2.2 Segmentation algorithm
To avoid a large number of edge pixels being misclassified,

Mask Transfiner considers not only the high-level semantics of the

image but also the large-resolution deep feature maps. With these

fusion features, Mask Transfiner gains better result than the classic

framework for tea pest detection and segmentation tasks in dense

and mimicry scenarios. Besides this, the bounding box used for the

detection task is generated by the original Faster R-CNN (Ren

et al., 2016).

The mask head of Transfiner employs a quadtree structure to

represent discrete points at various levels, addressing the discrete

distribution characteristics of information loss areas. It utilizes a

segmentation network based on Transformer to predict the label of

each tree node instance in discontinuous space. As shown in

Figure 4, the network comprises three modules—node encoder,

sequence encoder, and pixel decoder—which work together to

convert discrete nodes into unordered pixel sequences and predict

instance labels for each point.

2.2.3 Loss function
Based on the structures above, the entire Mask Transfiner

framework can be trained in an end-to-end manner. As shown in

Equation 6, a multi-task loss function is defined as:

L = l1 LDetect + l2LCorase + l3LRefine + l4LIncoherent (6)
A B

FIGURE 5

Structure comparison of residual block in ResNet-50. (A) Original residual block and (B) deformable attention block.
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Here LRefine signifies refinement with L1 loss between predicted

labels for incoherent nodes and their ground-truth labels. In TP-

Transfiner, LRefine is replaced with smooth L1 loss. Besides this, a

binary cross-entropy loss LIncoherent is utilized for detecting

incoherent regions. The detection loss, denoted as LDetect,

encompasses both localization and classification losses derived

from the base detector, exemplified by Faster R-CNN.

Subsequently, LCoarse represents the loss attributed to the initial

coarse segmentation prediction generated by Mask R-CNN. The

weights l1,2,3,4 are initially given as {1.0,1.0,1.0,0.5}, respectively.

To mitigate the challenge posed by mimetic and close contact

instances, focal loss (Lin et al., 2017) is introduced to LCoarse during

training. Focal loss is tailored to address class imbalance in object

detection tasks, where background class pixels dominate.

Traditional cross-entropy (CE) loss struggles with the surplus of

background samples, hindering optimal learning for the minority

foreground class. Similarly, the mimicry of tea pests requires TP-

Transfiner model to pay more attention to instances camouflaged

within the background during training.

2.2.3.1 Focal loss

Yao et al. (2022) utilize focal loss to train Mask R-CNN and

Mask Scoring R-CNN for peach disease segmentation.

Experimental results indicated that after parameter adjustment,

focal loss not only enhances segmentation accuracy but also

improves detection rate. Based on this conclusion, focal loss is

introduced to LCoarse to enhance the performance of TP-Transfiner,

and parameters are adjusted in the same way.
Frontiers in Plant Science 07106
Focal loss introduces a modulating factor that down-weights the

contribution of well-classified examples, focusing more on the hard-

to-classify samples. The key idea is to assign lower weight to easily

classified examples and higher weight to misclassified or

challenging examples. Equation 7 shows detailed definition for

focal loss.

FL(pt) = −o
N

i=1
ai(1 − pi)

g log(pi) (7)

Here pt represents the predicted probability of the true class,

and g is a focusing parameter initially defined. Notably, ai

represents the category weight assigned to each sample, where

samples belonging to the same category share identical weights.
2.3 Evaluation metric

This study primarily focuses on object detection and instance

segmentation tasks. Mean average precision (mAP) serves as a

commonly used evaluation metric in object detection. Araújo et al.

(2019) and Hong et al. (2020) proposed that its corresponding index

is the average of the average precision rate (mAP). This metric is

calculated using the values of true positive (TP) and false positive

(FP) to assess the detection and segmentation results. Equations 8

and 9) can be employed for calculation. The higher the two

parameters are, the better the detection and segmentation results.

Bbox −mAP = mean(
TP

TP + FP
) (8)
FIGURE 6

Structural comparison of FPN and FaPN.
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Seg −mAP =o
k

i=1

AP(i)
C

(9)

where TP, FP, and FN represent true positive, false positive, and

false negative, respectively. AP is the average precision of pixels

segmentation, and C is the number of segmentation categories.

Furthermore, AP50 and AP75 in detection task represent mAP of

Bbox when IoU is 0.5 and 0.75, respectively. Also, AP50 and AP75

in segmentation task represent mAP of mask when IoU is 0.5 and

0.75, respectively.
3 Results and discussion

This section summarizes all the experiments and related

extended discussions conducted in this study to demonstrate the

effectiveness of the TP-Transfiner model. Section 3.1 presents the

hyperparameter settings and the training process of the model.

Section 3.2 discusses the results of adjusting two parameters in focal

loss. Section 3.3 compares the TP-Transfiner with state-of-the-art

models. Section 3.4 details the ablation study of the model.
3.1 Implementation

The experiments in this paper are conducted in Linux

environment of the CentOS system, utilizing Python 3.7 and the

PyTorch 1.7.1 framework. Two NVIDIA Tesla V100 32 GB GPUs

are employed for training. Stochastic gradient descent (SGD) with

momentum is chosen as the optimization method during training,

with a momentum parameter set to 0.9 and 1K constant warm-up

iterations. Besides this, the initial learning rate is set to 0.01, with a

weight decay factor of 0.0001. The batch size is 8, and the training

process extends over 12 epochs. The learning rate is reduced to 0.1

times the original value after the 8th and 11th epochs, respectively.

After each epoch, the model is validated on the validation set and
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the weights of the current model are saved. The Mask Transfiner

encoder consists of three standard transformer layers. Each layer

has four attention heads with feature dimension at 256.

Furthermore, the improved Mask Transfiner is initialized using

the original Mask R-CNN model pre-trained on the COCO dataset

(Lin et al., 2014) to accelerate the training process. All experiments

are conducted on Detectron2 (Wu et al., 2019).
3.2 Adaption of parameters

In the current study, focal loss is utilized with empirical values

of g = 2 and a = 0.25. However, it is noted that different data

distributions may require different parameters. Therefore, various

values of g and a are tested to accommodate these variations. As

shown in Table 1, the implementation of focal loss enhances the

overall accuracy of TP-Transfiner, with BCE loss resulting in

the lowest accuracy. For each g, the optimal a is determined to fit

the dataset. As a increases, the weight of difficult samples increases,

but excessively large a values can decrease the accuracy of the

model. Table 1 demonstrates that the experimental results align well

with these observations. The table only displays detailed results

when g = 2. For g = 1,3,4,5, only the optimal results are shown. After

multiple rounds of testing, the model achieves the best result on the

validation set when g = 2 and a = 0.45. As a result, focal loss

improves the overall segmentation accuracy by 2.1%.

To illustrate the optimization achieved with focal loss, the

accuracy on the validation set and changes in loss during the

training period are depicted. Figure 7A presents the validation

mAP of bounding boxes (IoU = 0.5) from epoch 1 to epoch 12

when training the dataset with different loss functions, indicating

that the validation mAP of bounding boxes is higher with focal loss

compared to BCE loss. Figure 7B shows the validation mAP of

segmentation (IoU = 0.5) over the same epochs when trained with

different loss functions, similarly demonstrating that the mAP of

segmentation is higher with focal loss. Figure 7C illustrates the
TABLE 1 Training parameter and test results based on TP-Transfiner with different loss functions.

Model
Bbox_mAP

(%)
Segm_mAP

(%)

Loss type
Epoch g a

LCoarse LRefine

TP-Transfiner 67.499 64.000 BCE Smooth L1 loss 12

TP-Transfiner 68.501 65.650 Focal Smooth L1 loss 12 2 0.25

TP-Transfiner 67.875 65.744 Focal Smooth L1 loss 12 2 0.35

TP-Transfiner 67.372 66.123 (+2.1) Focal Smooth L1 loss 12 2 0.45

TP-Transfiner 68.247 65.913 Focal Smooth L1 loss 12 2 0.55

TP-Transfiner 67.359 64.851 Focal Smooth L1 loss 12 2 0.75

TP-Transfiner 67.259 63.473 Focal Smooth L1 loss 12 2 0.95

TP-Transfiner 67.960 65.290 (+1.3) Focal Smooth L1 loss 12 1 0.45

TP-Transfiner 67.834 65.237 (+1.2) Focal Smooth L1 loss 12 3 0.55

TP-Transfiner 67.900 65.217 (+1.2) Focal Smooth L1 loss 12 4 0.55

TP-Transfiner 67.791 65.010 (+1.0) Focal Smooth L1 loss 12 5 0.45
The bold value indicates segmentation accuracy when the model performs best. The values in brackets are the added values compared to the first row of Table 1.
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trend of training loss under different loss functions. It is evident that

focal loss effectively reduces the loss during the training period

compared to BCE loss, making the model more suitable for the

distribution of the dataset. The results shown in Figure 7 and

Table 1 indicate that the application of TP-Transfiner with focal loss

achieves superior performance compared to BCE loss.
3.3 Comparison to state-of-the-art models

Detecting and segmenting pests in mimicry and dense scenarios

poses a formidable challenge in tea production industry. The

proposed TP-Transfiner model demonstrates excellent performance

in addressing the detection and segmentation tasks especially in dense

and mimicry scenarios. As illustrated in Figures 8A–H, conventional

models such as BCNet, Mask R-CNN, Mask Scoring R-CNN, DCT-

Mask, and HTC struggle to precisely segment intricate parts like

antennae. Similarly, Mask Transfiner encounters difficulty in

effectively capturing detailed features. In contrast, TP-Transfiner

exhibits outstanding performance in accurately detecting and

segmenting pests with detailed characteristics.

3.3.1 Performance in mimicry scenarios
Some tea pests like Measuring worm and Mesosa perplexa are

very good at using the surrounding environment to disguise

themselves. This phenomenon, called mimicry, greatly increases
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the difficulty of the neural network to detect tea pests. Through

superior edge feature extraction ability, TP-Transfiner

demonstrates excellent performance in detecting and segmenting

mimetic pests. In Figures 8I–P, though various models segment the

pest camouflaged in leaves, TP-Transfiner distinguishes itself by

segmenting the detailed antennae and small body. Besides this, as

shown in Figures 8Q–X, BCNet, Mask R-CNN, Mask Scoring R-

CNN, DCT-Mask, and HTC all misidentify branches as pests. The

original Mask Transfiner slightly improved the situation, while TP-

Transfiner improves the segmentation of the mimetic pest very well.

As a result, the proposed TP-Transfiner can effectively detect and

segment the specific contours of tea pests in such scenarios.

3.3.2 Performance in dense scenarios
In the dense scenario depicted in Figure 9, the segmentation

results of TP-Transfiner significantly outperforms other models.

Though some models fail to segment two instances in contact

(BCNet, Mask R-CNN, and Mask Scoring R-CNN) or segment

overlapping objects, TP-Transfiner performs well. Additionally,

TP-Transfiner demonstrates powerful ability in detail processing.

Compared to other models, the mask predicted by TP-Transfiner

comprehensively covers the entire detected pests, while BCNet,

Mask R-CNN, Mask Scoring R-CNN, HTC, DCT-Mask, and

Mask Transfiner retains a large number of unpredicted pixels

belonging to pests. Overall, TP-Transfiner demonstrates superior

edge feature extraction ability compared with other models,
A B

C

FIGURE 7

TP-Transfiner with different loss validation parameters and loss functions. (A) Comparison of mAP of bbox (IoU = 0.5) on different loss,
(B) comparison of mAP of segmentation (IoU = 0.5) on different loss, and (C) comparison of total loss.
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enabling accurate detection and segmentation of tea pests in

dense distribution.

Besides this, this study compares the detection and

segmentation accuracy of seven state-of-the-art models

including BCNet, Mask R-CNN, Mask Scoring R-CNN, HTC,

DCT-Mask, Mask Transfiner, and TP-Transfiner. The results are

shown in Table 2. Compared with BCNet, Mask R-CNN, Mask

Scoring R-CNN, DCT-Mask, and HTC, the original Transfiner

has obvious advantages in instance segmentation, and BCNet and

HTC have higher accuracy in object detection task. Subsequently,

the study optimizes the Transfiner by integrating deformable

convolution, attention mechanism, and FaPN, resulting in the

TP-Transfiner. Comparative analysis reveals that TP-Transfiner

outperforms other methods, achieving the highest detection

accuracy (mAP) of 67.372% and segmentation accuracy (mAP)

of 66.123% for object detection and instance segmentation tasks.

As for the light weight of the model, TP-Transfiner has a more

significant advantage than other segmentation framework (except
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the original Transfiner). It denotes that TP-Transfiner holds

broader application prospects in tea gardens with limited

hardware equipment.
3.4 Ablation study

3.4.1 Impact of deformable attention block
To evaluate the feature extraction ability of the deformable

attention block on transparent wings, slender antennae, and legs of

tea pests, detailed comparative experiments are conducted.

Figure 10 illustrates the segmentation effects of two different

modules on pests with varying characteristics. It is evident that

the model integrating the deformable attention block significantly

improves the detection and segmentation effect of pest antennae (A,

B), transparent wings (B, C), and mimicry scenario (D). The results

demonstrate the deformable attention block’s exceptional feature

extraction ability for pest’s edges and transparent states. The impact
FIGURE 9

Comparison of segmentation results of different state-of-the-art models for tea pests (Euproctis pseudoconspersa) in dense scenarios.
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FIGURE 8

Comparison of segmentation results of different state-of-the-art models for tea pests with detailed and mimetic feature. (A–H) Arctornis alba,
(I–P) Mesosa perplexa, and (Q–X) Measuring worm.
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of the deformable attention block on detection and segmentation

accuracy will be illustrated in the next section.

3.4.2 Effect of different modules
Table 3 illustrates that the integration of various modules into

the Transfiner framework yields distinct accuracy improvements,

with a more pronounced enhancement observed upon combining

three modules. Compared with Transfiner, the proposed TP-

Transfiner model improves the object detection accuracy (mAP)

by 8.6% and the segmentation accuracy (mAP) by 5%. In addition,

the fusion of modules does not affect the inference speed on images.

3.4.2.1 Effect of DCN

DCN learns by updating the offset, allowing the convolution

kernel to align more closely with the shape and size of the object

during sampling. This approach proves to be efficient for

segmenting densely distributed and mimetic tea pests.

Experimental results show that employing DCN enhances the

accuracy of Transfiner, either integrating self-attention and FaPN
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or not, in both tea pest detection and segmentation tasks. Besides

this, the integration of DCN refines the edge feature extraction

results to detailed areas such as the insect’s antennae and legs, as

shown in the feature extraction visualization outputted by the

pyramid network (Figure 11).
3.4.2.2 Effect of self-attention

As an essential component of the Transformer architecture, the

module aims to extract global features from input images. As shown in

Table 3, it can be observed that before integrating DCN, the fusion of

this attention module leads to a decrease in the model’s detection and

segmentation performance. However, incorporating DCN with self-

attention (the deformable attention block) into the backbone results in

a subtle improvement on detection and segmentation accuracy. It is

noteworthy that while self-attention does not significantly improve

accuracy, it enables the backbone network to focus more on detailed

information such as the legs and antenna of pests, as shown in

Figure 11. This mechanism has a significant impact on the TP-

Transfiner’s ability to segment mimetic pest with slender antennae.
A B DC

FIGURE 10

Comparison of segmentation results before (the first row) and after (the second row) integrating the deformable attention block. (A) Mesosa
perplexa, (B) Arctornis alba, (C) Euricania ocellus, and (D) Measuring worm.
TABLE 2 Comparison to different state-of-the-art models.

Model Model size (MB)
Detection Segmentation

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

BCNet
(one-stage)

292.90 59.330 76.910 67.151 52.498 75.301 58.357

MS R-CNN 460.20 56.705 84.605 64.578 56.547 81.881 63.909

Mask R-CNN 335.92 56.971 84.419 66.690 56.704 83.114 63.562

HTC 590.40 61.923 83.300 69.713 57.956 80.821 65.301

DCT-Mask 736.23 57.571 83.304 66.378 58.057 82.768 66.289

Transfiner 202.35 59.886 85.067 68.738 60.687 84.871 69.149

TP-Transfiner 235.07 67.372 87.211 76.271 66.123 87.381 76.002
The six bold values are the accuracies of the best models. For the specific meaning of accuracies, refer to the table header.
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3.4.2.3 Effect of feature-aligned pyramid network

FaPN improves the feature misalignment issue of FPN,

particularly around the border area. Therefore, it assists TP-

Transfiner in enhancing the feature extraction ability for pest edge,

leading to more accurate segmentation of pests in mimicry. A strong

comparison depicted in the feature extraction visualization (Figure 11)

shows that when FaPN is fused (the second line), the most attended

area is distributed around the legs and antennae of the pest. As for the

detection and segmentation accuracy, FaPN significantly improves

model performance, regardless of whether the self-attention and DCN

modules are integrated (as shown in Table 3).
4 Conclusion

To address the limitations of tea pest detection and

segmentation in dense and mimicry scenarios, this study develops
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an end-to-end framework called TP-Transfiner. The framework

integrates a deformable attention block, consisting of deformable

convolution and a self-attention module, to improve pest feature

extraction ability. Additionally, the FPN architecture is enhanced

with a more effective FaPN to address feature misalignment issues.

Focal loss is introduced during the training period, and g = 2 and

a = 0:45 are adjusted to optimize the model’s performance.

Furthermore, to solve the insufficient tea pest dataset for

detection and segmentation tasks, this study conducts a

TeaPestDataset including 29 categories of tea pests. Experimental

results on the TeaPestDataset demonstrate that TP-Transfiner has

outstanding tea pest detection and segmentation performance

compared with several classic models, particularly in dense and

mimicry scenarios. The model achieves state-of-the-art

performance in both object detection (mAP: 67.372%) and instance

segmentation (mAP: 66.123%) tasks, with the same computing

resource requirements as the original model while remaining
A

B D E

F G IH

C

FIGURE 11

Visualization results of feature extraction after the backbone network fuses different modules. (A) Input, (B) FPN, (C) FPN fused with self-attention,
(D) FPN fused with DCN, (E) FPN fused with DCN and self-attention (deformable attention block), (F) FaPN, (G) FaPN fused with self-attention,
(H) FaPN fused with DCN, and (I) FaPN fused with DCN and self-attention (deformable attention block).
TABLE 3 Comparison of models after integrating different modules.

Attention DCN FaPN Backbone
Runtime
(FPS)

Detection Segmentation

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

ResNet-50 9.7 59.886 85.607 68.738 60.687 84.871 69.149

√ ResNet50 7.7 64.915 86.167 74.938 63.811 85.744 73.222

√ ResNet50 9.1 61.434 85.937 71.586 61.498 84.761 70.802

√ √ ResNet50 7.3 64.416 86.237 75.089 63.539 85.989 72.271

√ ResNet50 9.4 65.659 86.462 74.763 63.165 85.620 72.212

√ √ ResNet50 7.2 67.413
(+7.5)

87.230 76.087 65.244
(+4.8)

86.824 74.499

√ √ ResNet50 9.3 65.278
(+5.4)

86.302 73.891 63.627
(+3.0)

85.737 73.235

√ √ √ ResNet50 7.1 68.501
(+8.6)

87.433
(+1.8)

77.793
(+9.0)

65.650
(+5.0)

87.081
(+2.2)

75.643
(+6.5)
f

All models employ focal loss during the training period with g = 0:25 and a = 2:0.
FPS, number of images processed per second.
The six bold values are the accuracies of the bestmodels. For the specific meaning of accuracies, refer to the table header. The values in brackets are the added values compared to the first row of Table 3.
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lightweight. Besides this, the deformable attention block is proven to

have outstanding feature extraction ability on detailed information.

However, the proposed TP-Transfiner needs to be further

improved for pest detection and segmentation in occluded scenes,

and it is inefficient for the accurate detection of pests in real-time

applications. Therefore, future work will focus on simplifying the

model’s architecture. Additionally, this study plans to expand the

variety and quantity of images in TeaPestDataset. These efforts aim

to provide a more precise method for automating pest monitoring.
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Study of resistance mechanism
of Alternaria blight (Alternaria
brassicicola) by biochemical
markers in Indian Mustard
(Brassica juncea L.
Czern. &Coss.)
Anurag Mishra1,2, Nawaz Ahmad Khan1, Ratnesh Kumar Jha3,
Tamilarasi Murugesh2 and Ashutosh Singh 3*

1Department of Plant Molecular Biology and Genetic Engineering, Acharya Narendra Deva University
of Agriculture and Technology, Ayodhya, Uttar Pradesh, India, 2Department of Agricultural
Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur,
Bihar, India, 3Centre for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central
Agricultural University, Samastipur, Bihar, India
Indian mustard (Brassica juncea) is an important oilseed crop in India. Alternaria

leaf spot (Alternaria blight) is incited by the fungus Alternaria brassicicola. It

majorly affects crop production leading to a yield loss of up to 70%. To

circumvent this problem, the study of the resistance mechanism and

identification of biochemical markers is one of the important strategies for its

management. In the present study, a total of 219 genotypes of Indian mustard

with check were screened for Alternaria blight over two seasons. Based on the

area under the disease progress curve (AUDPC) scores, ten consistently

performing genotypes were selected for the screening of biochemical and

yield attributes under artificial inoculated conditions of Alternaria brassicicola

(Berk) Sacc. The result showed a negative correlation between disease and yield

attributes. The catalase (CAT) activity was significantly increased in resistant

genotypes compared to susceptible ones, indicating the crucial role of CAT in

the resistance mechanism. Pathogen infection also increases the total protein

content and the Alternaria-resistant genotype showed the highest total soluble

protein while the susceptible genotype showed the lowest total soluble protein.

The ten genotypes were categorized by SSI (stress susceptibility index) and

Varuna was identified as a tolerant genotype and Giriraj as a susceptible

genotype for Alternaria brassicicola (Berk) Sacc. Varuna and Giriraj were

chosen for quantitative analysis of methionine and tryptophan amino acids

from seeds using RP-HPLC (Reverse Phase-High Performance Liquid

Chromatography) and there were significant differences in the levels of

methionine and tryptophan between the Varuna and Giriraj genotypes. Varuna

showed higher methionine and tryptophan content compared to the Giriraj

genotype. Higher protein content demonstrated an increase in biotic stress-
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responsive amino acids, such as methionine and tryptophan, suggesting

increased resistance to Alternaria diseases in these high-protein genotypes.

These amino acids could be used as biochemical markers for Alternaria

resistance of mustard.
KEYWORDS

mustard, Alternaria disease, biochemical, catalase, sulfur-containing amino acids
1 Introduction

Oilseed crops play a key role in the Indian agricultural economy

and account for 19% of global acreage but contribute only 2.7% to

global production. India is the third largest consumer and importer of

edible oils and mainly relies on imports. India imports approximately

$10 billion in edible oil annually (Reddy and Immanuelraj, 2017; Jha,

2019; Singh et al., 2021a; Khan et al., 2023). Mustard is commercially

significant and it is most widely cultivated due to its resilient nature

across diverse agroclimatic conditions (Singh et al., 2018, Singh et al.,

2020a, b). Mustard productivity in India is 1.2 t/ha while in Germany

productivity is 3.73t/ha (Tyagi and Singh, 2016). Indian mustard

confronts a range of challenges, including biotic and abiotic stresses,

that limit its productivity (Singh et al., 2021b).

Among the biotic stresses, Alternaria brassicicola (Berk) Sacc,

(Saccardo, 1886) caused severe yield loss (up to 70%) (Gupta et al.,

2020). Alternaria brassicicola infections cause dark brown lesions on

leaves, stems, and siliquae, which, in turn, diminish photosynthetic

efficiency, hasten senescence, and ultimately result in crop losses

(Hansen and Earle, 1997; Nowakowska et al., 2019). This disease may

cause significant loss in both temperate and tropical regions (Mathpal

et al., 2016). In India, A. brassicicola reduces yield by up to 47%

(Sharma et al., 2013). Initial symptoms of Alternaria produce a series

of concentric rings (Mamgain et al., 2013). It is a necrotrophic

pathogen that causes lesions in leaves, stems, and siliquae that

significantly affect the quality and quantity of mustard seeds by

reducing oil content, seed size, and seed color (Duczek et al., 1999). It

is important to gain insight into genotypic variability in Alternaria

brassicicola resistance among mustard crops as it could be used as a

potential donor for the development of a resistant variety.

Phenotyping over multiple seasons provides stable performance of

genotypes (Li and Wu, 2023).

Plant cellular antioxidant enzyme activity is a biochemical

response to disease stress. It is considered useful for the early

detection of disease and is also associated with Alternaria resistance

in mustard. Moreover, successful infections disrupt cell wall proteins

and trigger an overproduction of reactive oxygen species (ROS)

(Meena et al., 2016a; Narware et al., 2023). ROS plays a critical role

in plant development and defense but is often linked to disease

susceptibility (Bandyopadhyay et al., 1999). Excessive ROS

production can lead to cell membrane damage, protein
02115
degradation, and harm to the photosynthetic machinery, causing

oxidative stress in plants (Das and Roychoudhury, 2014). To

counteract these effects, plants rely on antioxidants, which act as

scavengers (Shereefa and Kumaraswamy, 2016). The susceptibility of

plants to necrotrophic fungi, such as Alternaria brassicicola (Berk)

Sacc., is closely tied to the balance between ROS generation and

scavenging through antioxidant defense mechanisms (Sharma et al.,

2012). An imbalance in this process indicates a failure of host defense

or successful infection. Peroxidase is a ROS scavenger that converts

hydrogen peroxide (H2O2) to water and plays a critical role in

preventing oxidative damage and has been implicated in various

defense-related processes, including hypersensitive response,

lignification, cross-linking of phenolics and glycoproteins,

suberization, and phytoalexin production (Jung et al., 2004;

Kashyap et al., 2023). Additionally, catalase is frequently employed

by cells to rapidly break down hydrogen peroxide into less reactive

gaseous oxygen and water molecules, thereby preventing cellular

disintegration (Bolwell and Wojtaszek, 1997; Kannojia et al., 2017).

These mechanisms represent the most common means of scavenging

ROS during stress responses and play a significant role in plant

resistance (Mittler, 2002; Kesharwani et al., 2023).

In this context, sulfur (S) emerges as a vital macronutrient for

plants, playing a crucial role in fundamental plant processes and the

regulation of various metabolic pathways (Rathore et al., 2015;

Hasanuzzaman et al., 2018). Additionally, sulfur plays a critical role

in shielding plants from adverse environmental conditions. Sulfur-

containing amino acids and metabolites are instrumental in

maintaining plant cell mechanisms, thereby enhancing their

capacity to withstand Alternaria stress (Hasanuzzaman et al.,

2018). Furthermore, sulfur and its derivatives, including

glutathione (GSH), hydrogen sulfide (H2S), methionine (Met),

cysteine (Cys), phytochelatin (PC), ATP sulfurylase (ATPS),

protein thiols, and others have been observed to fortify

antioxidant defenses and mitigate the excessive production of

ROS under various biotic stress conditions (Capaldi et al., 2015).

Notably, plants from the Brassicaceae family, including important

crops, exhibit a higher demand for sulfur compared to other plant

varieties to achieve optimal growth and yield. Sulfur is primarily

stored in the form of storage proteins, such as cruciferin and napin,

with sulfur-rich secondary metabolite referred to as glucosinolate

(GSL) (Borpatragohain et al., 2019).
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With the background of the above points, this study aimed to

screen large populations of Indian rapeseed mustard for Alternaria

disease over two seasons to identify sources of disease resistance

within rapeseed and field mustard germplasm. Further biochemical

analysis and morphological markers studies were conducted to

elucidate resistance mechanisms against the Brassica species.
2 Materials and methods

2.1 Material

A total of 219 genetically diverse Brassica juncea genotypes with

a check genotype (Giriraj) were collected from the Department of

Genetics and Plant Breeding, NDUAT Faizabad, Uttar Pradesh

India, and the Directorate of Rapeseed-Mustard Research,

Bharatpur, Rajasthan, India.
2.2 Screening of mustard genotypes for
Alternaria blight

A total of 219 genotypes with susceptible check Giriraj (Dhaliwal

and Singh, 2019) of Brassica juncea were sown for evaluation of

Alternaria brassicicola during two crop seasons (2016-17 and 2017-

18) under natural field conditions. They were grown in augmented

block design. The check was sown after every ten genotypes. Each

genotype was sown in two rows with a row length of 1.5 m and a

spacing of 30x10 cm. All standard agronomic practices were followed

to raise the crops. The genotypes were meticulously assessed and

categorized based on their Alternaria blight disease severity scores at

the reproductive stage. The disease severity scores of Alternaria blight

are presented in Table 1 (AICRP and Proceeding, 2011).

2.2.1 Measurement of disease severity
To evaluate disease severity, five plants were randomly selected

for each genotype and tagged. Infection levels and disease
Frontiers in Plant Science 03116
appearance were monitored, and severity was visually recorded

for the tagged plants using a rating scale ranging from 0 to 9. It was

recorded at three crop growth stages: 60 DAS, 75 DAS, and 90 DAS

in both crop seasons (2016-17 and 2017-18). To quantify the disease

progress, the area under the disease progress curve (AUDPC) was

calculated using the midpoint rule method (Campbell and Madden,

1990). The details of the formula are as follows:

AUDPC  =o n−1
i=1 ½(ti+1 –  ti) (yi +  yi+1)=2�

Where,
y= Percentage of affected foliage at each reading.

t = Time in days between each reading.

n = Total number of readings.
2.2.2 Isolation of Alternaria brassicicola and
inoculum preparation

Alternaria brassicicola was isolated from leaf samples of infected

plants for artificial inoculation in the treated block. The leaf samples

were sterilized in 0.5% sodium hypochlorite solution for 1-2

minutes. They were subsequently rinsed thoroughly with distilled

water and placed on potato dextrose agar (PDA) culture media (G-

Biosciences Geno Technology USA). The cultures were incubated at

a temperature of 27°C and kept in 12-hour cycles of light and

darkness for 6-10 days for fungal growth. Alternaria brassicicola

was confirmed by microscopic examination. The morphological

characteristics of Alternaria brassicicola (Berk) Sacc. such as conidia

shape, structure, and size were observed under the microscope

(Meena et al., 2016b). A Alternaria brassicicola colony was

introduced into potato dextrose broth (PDB) and incubated for

10 days. During the incubation periods, the temperature was

maintained at 27°C and followed by 12 hours of daylight and 12

hours of darkness. Further, the concentration of the inoculum was

carefully determined using a hemocytometer (Avni Scientific Co.)

with a size of 30 x 70 mm and 4 mm thickness and adjusted to a

level of 5 x 10^4/mL (Akhtar et al., 2007).
TABLE 1 Details of the rating scale and AUDPC (area under the disease progress curve) range used for rating Alternaria blight in rapeseed mustard.

S.
No.

Rating
Scale
(0-9)

Description of scale AUDPC
range

Host reaction

1 0 No visible symptoms 0 Near Immune (I)

2 1 < 5% leaf area covered ≤ 50 Resistant (R)

3 3
5-10% leaf or pod area covered with small pinhead spots on the leaves and superficial pinhead
spots on pods

51 - 100 Moderate
Resistant (MR)

4 5
11-25% leaf or pod area covered with small spots on leaf and superficial pinhead spots on pods 101-250 Moderately

Susceptible (MS)

5 7
26-50% leaf or pod area covered with bigger spots with the initiation of coalesces on leaves and
deep lesions on pods

251-500 Susceptible (S)

6 9
> 50% leaf or pod area covered with bigger commonly coalescing spots on leaves and deep
lesions on pods

≥ 500 Highly
Susceptible (HS)
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2.2.3 Evaluation of selected genotypes for
morphological and yield traits

A total of 10 sets of consistently performing genotypes were

identified after a 2-year field screening which included moderate

resistant (MR) (2), moderate susceptible (MS) (1), susceptible (S)

(3) and highly susceptible (HS) (4). . These 10 genotypes were sown

during the 2018-19 rabi season at the Agricultural Research Farm,

NDUAT, Faizabad, India. The experiment was conducted in two

blocks in natural field conditions with three replications and a

spacing of 30 x 10 cm. Isolated spores of Alternaria brassicicola were

sprayed (75 DAS) in one block and it was considered a treated block

(Chakrabarty et al., 2018). The others that had not been sprayed

with spores of Alternaria brassicicola were considered as control. In

the control block, 0.02% mancozeb fungicide solutions (non-

inoculated) were sprayed to control Alternaria blight.

2.2.4 Data collection of genotypes for
morphological and yield attributes

Five plants were randomly tagged from each genotype in each

replication to record the observations. The following data were

recorded from three replications.

Plant height (PH): At the time of maturity, plant height was

measured from the ground to the main shoot tip.

Number of pods per plant (PB): The total number of pods

counted from each plant and considered as the number of pods

per plant.

Secondary branch (SB): The number of secondary branches

per plant was assessed by enumerating branches arising from

primary branches.

Mean raceme length (SMR) (cm): The length of the main

raceme was measured from the joint at the apex of the primary

branch to the top of the plant, and the average was taken to

represent the overall length.

Siliqua length (SL) (cm): It was measured by randomly selected

siliquae from base to tip in centimeters.

Seeds per siliqua (SPS): The number of seeds per siliquae was

calculated by counting from five randomly chosen siliquae in each

of the five tagged plants and the average value taken.

Siliquae per plant (SPP): the mean of the total number of

siliquae counted from the main raceme.

Test weight (TW) (g): 1,000 sun-dried seeds from each selected

plant were counted and weighed in grams using an electronic balance.

Seed yield per plant (YPP): The seed yield per plant (g) was

recorded by weighing the total seeds obtained after threshing each

plant separately.

Area under the disease progress curve (AUDPC): The

calculation of the area under the disease progress curve (AUDPC)

was based on severity scores during the reproductive stage.

2.2.5 Biochemical analysis
2.2.5.1 Estimation of total soluble proteins

Samples were collected from all 10 genotypes in both the non-

inoculated and inoculated conditions 7 days after fungal inoculation

on the leaves (82 DAS). A total of nine plants from each genotype
Frontiers in Plant Science 04117
were selected. The leaf samples were promptly frozen and stored at

a temperature of -80°C. The total soluble protein (TSP) of the leaves

was quantified by using methods of Bradford, 1976; Sambrook and

Russell, 2001; and Kruger, 2009.
2.2.5.2 Peroxidase activity

Peroxidase activity was estimated from control and treated

plants. A fresh leaf sample (200g) was homogenized in 10 ml of

phosphate buffer (pH 6.0) and then centrifuged at 10,000 rpm for 30

min at room temperature. Afterward, 2 ml of the enzyme extract

was mixed in a test tube containing 2 ml of phosphate buffer (pH

6.0) with 1 ml of pyrogallol and 0.2 ml of H2O2. The mixture was

incubated at 37°C, shaken, and placed in water for 10 minutes to

allow purpurogallin formation. The color intensity was measured at

430 nm using a spectrophotometer to assess the enzyme’s activity

(McCune and Galston, 1959).

2.2.5.3 Catalase activity

The catalase activity was assessed by Dhindsa et al. (1981) method.

The reaction mixture, with a final volume of 1 ml, was prepared and

contained 50 mM sodium phosphate buffer (pH 7.0) with 50 μl of

enzyme extract. To determine the enzyme activity, 35 μl of H2O2 was

added at every 5-second interval over a duration of 1 minute. The rate

of decreasing absorbance at 240 nmwasmeasured. The catalase activity

was quantified by using an extinction coefficient of 39.4 M-1 cm-1.

2.2.6 Stress Susceptibility Index (SSI)
The SSI was calculated for all morphological, physiological, and

biochemical traits to categorize the genotypes, and it was calculated

by using the following formula:

SSI = (1 − Y=Yp)=(1 − X=Xp)

Where:
Y represents the mean performance of a mustard genotype in

an inoculated condition.

Yp represents the mean performance of a mustard genotype in

a non-inoculated condition.

X represents the mean performance of all mustard genotypes

in an inoculated condition.

Xp represents the mean performance of all mustard genotypes

in a non-inoculated condition.
For each trait, genotypes with SSI values below 0.5 were

categorized as resistant, those with values between 0.5 and 1 were

considered moderately resistant, and genotypes showed values ≥1

were considered as susceptible genotypes (Singh et al., 2024).

2.2.7 Quantitative estimation of methionine and
tryptophan amino acids by RP-HPLC
2.2.7.1 Extraction of amino acids from B. juncea

The following procedure was used for methionine and

tryptophan amino acids estimation.
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2.2.7.2 Preparation of extract

The SSI was used to identify two contrasting genotypes (Varuna

and Giriraj) for Alternaria blight. These two contrasting genotypes

were used for methionine and tryptophan amino acid profiling. The

seeds from the genotypes were first stored in a deep freezer

overnight. After 24 h, the seeds were finely ground into a powder

using a mortar and pestle, and it was kept for vacuum drying.

The vacuum-dried samples were subjected to vapor-phase

hydrolysis, using 200 μL of constantly boiling 6N HCl and 40 μL of

phenol. Subsequently, the samples were oven-dried at a temperature

range of 112-116°C for a duration of 20-24 hours to eliminate any

excess HCl. Afterward, the tubes containing the samples were passed

through a 90-min vacuum treatment. The seed samples were

reconstituted by adding 500 μL of 20 mM boiling HCl.

2.2.7.3 Derivatization of amino acids

Amino acids were derivatized (FMOC–AA) at room

temperature using a Precolumn derivatization technique. Initially,

a 300 μL aliquot of the mustard seed extract (or a standard amino

acid solution) was combined with 600 μL of a 200 mM borate buffer

(pH 10.0). Afterward, 600 μL of 15 mM FMOC chloride (in

acetonitrile) was added to the mustard seed extract, initiating the

derivatization process. The reaction was stopped after 5 min by

introducing 600 μL of 300 mM ADAM (a mixture of water and

acetonitrile in a 1:1 ratio) and it formed the FMOC–ADAM

complex during a 1 min reaction. The sample was filtered and

subjected to analysis using RP-HPLC. The entire procedure was

completed within 6 minutes. The detection of amino acids was

carried out using automated derivatization with FMOC–AA and

online analysis was conducted using RP-HPLC with ultraviolet

−visible (UV−Vis) detection (Henderson et al., 2003).

Filtered samples were analyzed using a HiQ Sil C18-HS column

(4.6 mm× 250 mm × 5μm) and a Systronics high-performance liquid

chromatography system equipped with a UV−Vis detector and

autosampler. The analysis was monitored at a wavelength of 263

nm, and the column temperature was maintained at 25°C. The
Frontiers in Plant Science 05118
mobile phase consisted of an isocratic mixture prepared from 50

mM acetate buffer and acetonitrile (in a ratio of 70:30). The flow rate

was set at 0.750 mL/min, and the injection volume was 20 mL. The
total runtime for a single sample analysis was 25 min. Quantification

of the various compounds was based on peak areas and expressed as

equivalents of representative standard compounds. The results were

expressed in grams per 100 g of fresh weight.

2.2.8 Statistical analysis
Microsoft Excel 2016 Analysis Tools were utilized for a two-way

ANOVA. R Studio was employed to explore Pearson’s correlation

coefficient, conduct principal component analysis (PCA), and use

Duncan’s multiple range test (DMRT) to categorize genotypes into

different groups.
3 Results

3.1 Screening for Alternaria blight
resistance: a comparative analysis of 2016-
17 and 2017-18

The result of 2 years (2016-17 and 2017-18) of rigorous screening

processes revealed varying degrees of resistance among different

genotypes to Alternaria blight. Based on the AUDPC scores, six

genotypes were categorized as moderately resistant (MR), 116

genotypes were moderately susceptible (MS), 56 were susceptible

(S) genotypes, and 141 genotypes were highly susceptible (HS) in the

year 2016-2017. Similarly, in 2017-18, the genotypes were classified: 7

genotypes were MR, 14 were MS, 63 were S, and 135 were HS. It is

important to note that none of the genotypes showed resistance in

both years (Supplementary Table 1; Figures 1A, B).

A total of 10 contrasting genotypes were selected from the 219

genotypes for morphological, physiological, and biochemical

analysis. The selection criteria were based on the consistent

performance and host reaction categories observed across the 2-
A B

FIGURE 1

Genotype distribution in five host reaction categories to Alternaria blight during the rabi season for (A) 2016-17 and (B) 2017-18 under
natural conditions.
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year screening (2016-17 and 2017-2018) (Figure 2). Genotypes

Varuna, RGN-13, and Pusa Mustard-25 were selected from the

MR category; LET-18 and Pusa Mustard-26 from the MS category;

EJ-17 and RGN-48 from the S category; and Giriraj, Anuradha, and

RGN-13 from the HS category.
3.2 Performance analysis of genotypes for
morphological and yield aspects

All 10 genotypes were inoculated against spore suspensions of

isolated A. brassicicola (Supplementary Figure 1), and different

genotypes showed varying responses. In control plots (mancozeb

spray) genotypes in the rabi season of 2018-19 showed distinct
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AUDPC scores compared to the results from a 2-year screening

under natural conditions. Analysis of variance showed that

treatments had significant effects on all morphological and yield

attributes (Table 2). However, genotypes Varuna, Kranti, PM 25,

Anuradha, EJ-17, RGN 13, and RGN 48 showed no significant

difference in AUDPC scores between inoculated and non-

inoculated conditions. Notably, Varuna and Kranti consistently had

lower AUDPC scores in both conditions. On the other hand, Giriraj,

PM 26, and LET 18 had AUDPC scores ranging from 251 to 500 in

non-inoculated conditions, but these scores increased beyond 500

after they were exposed to infection in inoculated conditions. The

Varuna genotype showed the highest YPP (18.020 g) in non-

inoculated conditions, followed by Kranti (15.480 g). Both Varuna

and Kranti experienced reductions in terms of percent change over

inoculated conditions of approximately 28% and 36%, respectively.

Meanwhile, Giriraj showed YPP (13.110 g) in non-inoculated

conditions and showed the highest reduction of 43% after

inoculation against A. brassicicola (Supplementary Table 2).
3.3 Exploring trait associations in
inoculated and non-inoculated conditions

For both the inoculated and non-inoculated conditions, area

graphs were strategically positioned along the diagonal, and box

and whisker plots were situated on the right side of the visual canvas

to depict a unified trend. The area graph exhibited a leftward

inclination, and the box and whisker plot showed a decrease for

all traits following A. brassicicola inoculation. It contributed to a

cohesive narrative. Notably, the AUDPC, treated as a singular

entity, showed a distinct trajectory. In the case of the AUDPC,

the area graph demonstrated a rightward inclination, and the box

and whisker plot exhibited an increase under inoculated conditions

compared to non-inoculated conditions (Figure 3).

A correlation coefficient (r) analysis of the traits under both

inoculated and non-inoculated conditions was also conducted. The

AUDPC demonstrated a robust, negative correlation with MRL, SPS,

SPP, and SMR. In contrast, yield had a strong, positive association

with these same traits. Notably, the correlation between yield and the

AUDPC showed a significant negative correlation (-0.823). It showed

an inverse relationship between yield and AUDPC (Figure 3).
TABLE 2 Combined analysis of variance for yield traits of 10 mustard genotypes under inoculated and non-inoculated conditions.

Source
of variation

Df PH PB SB MRL SMR SL SPS SPP TW YPP AUDPC

Genotypes (G) 9 3897.28*** 6.15*** 54.46*** 828.67*** 309.78*** 3.95*** 19.85*** 4224.99*** 0.58*** 45.70*** 130714.68***

Treatment (E) 1 2969.89*** 7.95*** 29.95*** 580.51*** 476.27*** 5.35*** 52.21*** 4493.50*** 6.09*** 219.42*** 73290.2***

Interaction (G X E) 9 9.16ns 0.20* 0.36ns 6.93ns 2.86ns 0.08* 0.65ns 39.10ns 0.06ns 2.45*** 3335.48***

Error 38 75.86 0.08 0.23 9.15 4.54 0.04 0.42 87.72 0.05 0.28 657.92

Total 59
f

PH, Plant Height; PB, primary branch number; SB, secondary branch number; MRL, main raceme length; SMR, siliqua on main raceme number; SL, siliqua length; SPS, seeds per siliqua number;
SPP, siliqua per plant number; TW, test weight; YPP, seed yield per plant; AUDPC, area under disease progress curve.
(* significant at P<0.05, and *** significant at P<0.001).
FIGURE 2

Host reaction categories for 219 mustard genotypes under natural
field conditions during the rabi seasons of 2016-17 and 2017-18,
with categories represented as : R, Resistant; MR, Moderately
Resistant; MS, Moderately Susceptible; S, Susceptible; HS,
Highly Susceptible.
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3.4 Principal component analysis

The results of the PCA revealed the presence of three principal

components (PCs) with eigenvalues exceeding 1 under non-inoculated

conditions (5.29, 2.80, and 1.32). The first and second PCs individually

explained 48.90% and 26.60% of the phenotypic variance, and the

cumulative value was 75.50%. The prominent contributing parameters

to these two PCs included MRL, YPP, SPS, PB, AUDPC, SMR, and PH

(Figure 4A). Conversely, under inoculated conditions, the first three

principal components exhibited eigenvalues exceeding or equal to 1

(5.38, 2.93, and 1.00). The first and second PCs independently elucidated

approximately 48.10% and 25.50% of the phenotypic variation,

collectively amounting to 73.60%. Noteworthy contributors to PC1

and PC2 included MRL, YPP, AUDPC, SPS, SMR, PB, PH, SB, SL,

and SPP (Figure 4B). It is pertinent to note that under non-inoculated

conditions, the AUDPC contributed 9.99% to the overall variability,

while its contribution increased to 11.09% under inoculated conditions.
3.5 Exploring molecular and
biochemical insights

The catalase activity was examined for all 10 genotypes and

Varuna showed the highest activity (value), while Giriraj exhibited

the lowest value under both non-inoculated and inoculated
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conditions. Specifically, Varuna showed a 13.00% increase in

catalase activity under inoculated conditions as compared to the

non-inoculated conditions, while Giriraj showed a 27.00% decrease

in catalase activity (Figure 5A).

Furthermore, Varuna showed significantly higher peroxidase

activity than LET-18 in both non-inoculated and inoculated

conditions among the tested genotypes, while LET-18 exhibited

considerably lower activity. Remarkably, the inoculated Varuna

genotype showed a 10.00% increase in peroxidase activity in contrast

to the non-inoculated conditions, whereas Anuradha showed a

substantial decrease in peroxidase activity (38.00%) (Figure 5B).

The TSP content of all 10 genotypes was also estimated. Varuna

showed the highest TSP content in both non-inoculated and

inoculated environments, while Giriraj showed the lowest values.

Comparatively, the Varuna genotype TSP content experienced a 5%

increase under the non-inoculated compared to the inoculated

condition, whereas Giriraj showed a reduction of 23.00% in TSP

under the inoculated condition (Figure 5C).
3.6 Genotype grouping based on SSI

The genotypes were categorized into either “moderately

resistant” or “susceptible” groups based on their performance

across various morpho-physio-biochemical traits, including PH,
FIGURE 3

Correlation matrix, scatter plot, and data distribution for yield traits in two conditions, with diagonals indicating the distribution of each parameter and
the lower triangular matrix indicating scatter plot. Correlation values and their statistical significance are denoted by asterisks and positioned above the
diagonal. Red and navy-blue colors represent correlations within the non-inoculated (NI) and inoculated (I) conditions, respectively. Significance levels
are as follows: *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p ≤ 0.05. PH, Plant Height; PB, Primary Branch Number; SB, Secondary Branch Number; MRL,
Main Raceme Length; SMR, Siliqua on Main Raceme Number; SL, Siliqua Length; SPS, Seeds per Siliqua Number; SPP, Siliqua per Plant Number; TW, Test
Weight; YPP, Seed Yield per Plant; AUDPC, Area Under Disease Progress Curve; Trt, Treatment; NI, Non-Inoculated; I, Inoculated.
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SB, MRL, SMR, SL, SPS, SPP, TW, YPP, AUDPC, and TSP

(Figure 6). Specifically, Genotype Kranti falls into the “resistance”

category for traits such as PB, AUDPC, POD, and CAT. Genotype

Varuna was categorized as resistant for POD and CAT traits, while

PM 25 for AUDPC score. For the remaining traits, these genotypes

were categorized as either “moderately resistant” or “susceptible.”

Genotype Varuna was predominantly classified as either “resistant”

or “moderately resistant” across most traits except SB and SL. In

contrast, Genotype Giriraj was primarily labeled as “susceptible” for

most of the traits, except for SB. Therefore, for amino acid profiling,
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Varuna was regarded as a “resistant” genotype, while Giriraj was

considered “susceptible.
3.7 Amino acid profiling of contrasting
mustard genotypes

We also quantified two essential amino acids, methionine and

tryptophan, in two contrasting genotypes of mustard (Varuna and

Giriraj) seeds. The concentrations of these amino acids were
A B

C

FIGURE 5

(A) Catalase (B) Peroxidase Activities (C) Total Soluble Protein Content in Mustard Genotypes under Non-Inoculated and Inoculated Conditions. Bars
labeled with the same letter indicate no statistically significant difference at a significance level of P<0.05, as determined by the Duncan Multiple
Range Test. The average of three determinations is represented by the bars, and error bars indicate the standard error (SE).
A B

FIGURE 4

Principal Component Analysis (PCA) Biplot of PC1 and PC2: Contributions of Morphological Traits in (A) Non-Inoculated (B) Inoculated Conditions.
PH, Plant Height; PB, Primary Branch Number; SB, Secondary Branch Number; MRL, Main Raceme Length; SMR, Siliqua on Main Raceme Number;
SL, Siliqua Length; SPS, Seeds per Siliqua Number; SPP, Siliqua per Plant Number; TW, Test Weight; YPP, Seed Yield per Plant; AUDPC, Area Under
Disease Progress Curve. The contribution to phenotypic variation is represented by the color and lengths of the vector.
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examined under both non-inoculated and inoculated conditions

(Figure 7). The results revealed that both the Varuna and Giriraj

genotypes experienced a decrease in the levels of methionine and

tryptophan in the inoculated conditions in comparison to the non-

inoculated conditions. Specifically, Varuna displayed an 11%
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reduction in methionine content, while Giriraj exhibited a more

substantial 22% decrease. For tryptophan content, Varuna showed a

12% decrease, while Giriraj demonstrated a notable 39% reduction.

Therefore, the level of reduction in amino acids was less for the

Alternaria blight-resistant genotype.
FIGURE 7

The concentration of methionine and tryptophan in Varuna and Giriraj under non-inoculated and inoculated conditions analyzed using RP-HPLC.
Bars labeled with the same letter indicate no statistically significant difference at a significance level of P<0.05, as determined by the Duncan Multiple
Range Test. The average of three determinations is represented by the bars, and error bars indicate the standard error (SE).
FIGURE 6

SSI grouping of genotypes based on morpho-physio-biochemical traits. The color green corresponds to an SSI value below 0.5, while the color
yellow signifies an SSI value ranging from 0.5 to 1. In contrast, the color red denotes an SSI value exceeding 1. These color codes categorize the
genotypes as “resistant,” “moderately resistant,” and “susceptible,” respectively. PH, Plant Height; PB, Primary Branch Number; SB, Secondary Branch
Number; MRL, Main Raceme Length; SMR, Siliqua on Main Raceme Number; SL, Siliqua Length; SPS, Seeds per Siliqua Number; SPP, Siliqua per Plant
Number; TW, Test Weight; YPP, Seed Yield per Plant; AUDPC, Area Under Disease Progress Curve; POD, Peroxidase Activity; TSP, Total Soluble
Protein; CAT, Catalase Activity.
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4 Discussion

Biotic stress factors have been observed to impede plant growth

and induce unfavorable alterations at both the cellular and

molecular levels (Møller et al., 2007). Despite extensive research

endeavors, there has been no substantial discovery of materials that

confer a high degree of resistance against A. brassicicola (Nowicki

et al., 2012; Meena et al., 2020; Singh et al., 2021a). While wild

Brassica species have demonstrated considerable resistance

(Dharmendra et al., 2014), their compatibility with susceptible

cultivated varieties remains limited (Nowakowska et al., 2019).

Only very limited resistance has been identified in cultivated

Brassica species. Consequently, the identification of resistant

genotypes within cultivated species assumes pivotal importance

for the success of breeding programs in this context.

To facilitate this objective, effective assessment tools for

evaluating pathogen resistance are of paramount significance, and

it is prudent to subject germplasm to examination during genuine

epidemic occurrences. Building on this perspective, previous studies

conducted by Summuna et al. (2012), and Singh et al. (2021a)

categorized plant varieties into five distinct classes using a modified

rating scale introduced by AICRP-RM-2011 (All India Coordinated

Research Project - Rapeseed Mustard). Likewise, in our research

efforts, we conducted an evaluation of Indian mustard genotypes for

their resistance to Alternaria blight over the course of two

consecutive growing seasons, specifically in 2016–17 and 2017–

18. Within our investigation, we observed that none of the

genotypes exhibited resistance to Alternaria brassicicola. Instead,

they were categorized into four alternative classes based on their

reactions to the prevailing field conditions: moderately resistant,

moderately sensitive, susceptible, and highly sensitive.

For the performance of rapeseed-mustard genotypes under

controlled conditions concerning Alternaria brassicicola infection,

we selectively identified genotypes from each host reaction group

that consistently showed stability over a two-year duration and

implemented artificial inoculation during the reproductive phase. A

similar study was conducted by Munir et al. (2020), although their

focus was on different Brassicaceae species, such as B. rapa and B.

napus . These investigations delved into various plant

characteristics, offering valuable insights into plant-pathogen

interactions (Saed-Moucheshi et al., 2013).

In the present study, the correlation plot revealed that the

AUDPC was inversely correlated with MRL, SPS, SPP, and SMR,

while crop yield demonstrated a positive correlation with these

growth attributes. This underscores the crucial role of these growth

parameters in enhancing plant yield, particularly in the context of

disease resistance, and a positive association between growth

parameters such as PH, PB, and MRL and plant yield was

identified (Poli et al., 2018; Singh et al., 2021a). While siliqua

length exhibited a strong negative correlation with the AUDPC, it

did not demonstrate significant associations with yield per plant.

These results imply that conventional proxies such as siliqua length

may not serve as reliable indicators for breeding and selection

purposes due to their inverse relationships with disease severity

(Naznin et al., 2015; Ali et al., 2018). In contrast, yield displayed a

positive correlation with seeds per pod and thousand seed weight.
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Interestingly, dark leaf spots caused an adverse effect on the

formation of healthy seeds within infected Brassica pods.

Consequently, severely disease-spotted pods prematurely dried,

contracted, and broke open, leading to the premature shedding of

shrunken seeds, resulting in yield loss (Allen et al., 1971; Munir

et al., 2020). These findings show the importance of prioritizing

strategies aimed at enhancing plant survival and facilitating the

development of pods with healthier and more abundant seeds. This

suggests that it may be more beneficial to focus efforts on Brassica

breeding strategies that prioritize these factors rather than solely

emphasizing siliqua length (Bennett et al., 2017).

Plants have developed various defense mechanisms to combat

invading pathogens. These mechanisms encompass processes such

as callose deposition, lignin formation, the production of

phytoalexins, generation of reactive oxygen species, induction of

pathogenesis-related (PR) proteins, and the presence of enzymes

such as peroxidase and catalase (Torres et al., 2006; Almagro et al.,

2009; Doughari, 2015; Yadav et al., 2020). Moreover, catalase and

peroxidase play pivotal roles in managing excessive H2O2

production, which is integral to the plant defense response

(Hameed et al., 2008, 2009). Some evidence supports the

protective function of POD activity in the context of disease

resistance against Alternaria (Tyagi et al., 1998; Hameed et al.,

2010). In our investigation, peroxidase activity was elevated after

pathogen inoculation Alternaria in Varuna and Kranti. Notably,

resistant genotypes (Varuna) displayed higher POD activity under

inoculated over non-inoculated conditions. It was observed that

increased POD activity in mustard genotypes confronting

Alternaria blight (Pandey et al., 2018). Our study showed an

increase in CAT activity in both Varuna and Kranti. This surge

in CAT activity during the disease period implies the scavanging of

excess H2O2 quickly generated within the plants (Mittler, 2002).

Significantly, our results highlight that CAT activity was more

pronounced in resistant genotypes compared to susceptible ones,

emphasizing the crucial role of CAT in the resistance mechanism

(Debona et al., 2012; Meena et al., 2016a).

Our research findings showed a significant association between

the progression of the disease and the levels of TSP in mustard

genotypes. It was proposed that the proliferation of pathogens

triggers the synthesis of various enzymatic proteins and can alter

the nutritional composition of the substrate, ultimately leading to an

increase in its protein content (Onifade and Jeff-Agboola, 2003).

Amino acids play a pivotal role as substrates in host-pathogen

interactions (Titarenko et al., 1993), potentially influencing

metabolic processes related to disease resistance and exerting

fungistatic effects (Misra et al., 2008; Mathpal et al., 2016). These

insights shed light on the intricate relationship between disease

progression, protein levels, and the role of amino acids in the

interactions between plants and pathogens (Moormann et al., 2022).

It is well understood that under stressful conditions, plants

engage in photorespiration as a protective mechanism. This process

aids in removing light-induced harmful molecules and maintaining

the redox balance. It has been hypothesized that photorespiration in

plants contributes to the synthesis of sulfur-containing amino acids,

including cysteine, and methionine (Kalwan et al., 2023). In

mustard crops, growth regulators derived from methionine and
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tryptophan operate both independently and collaboratively,

contributing to plant resistance to biotic stress (Zemanová et al.,

2014). Meanwhile, within the Brassicaceae plant family, secondary

metabolites known as glucosinolates, which originate from the

su l fur-conta in ing amino ac id meth ionine (a l iphat ic

glucosinolates) and tryptophan (indole glucosinolates), play a

vital role in enhancing plant immunity and serve as an inducible

defense mechanism against pathogens (Choudhury et al., 2022).

Notably, our study revealed significant differences in the levels of

methionine and tryptophan between the Varuna and Giriraj

genotypes with Varuna showing higher levels of these amino

acids. These differences suggest a potential role for methionine

and tryptophan in enhancing resistance in mustard seeds. These

findings raise questions about the relationship between seed protein

content and resistance in various contexts. Interestingly, genotypes

with higher protein content demonstrated a notable increase in

biotic stress-responsive amino acids, such as methionine and

tryptophan, suggesting more resistance to diseases in these high-

protein genotypes.
5 Conclusion

Comprehensive screening of mustard genotypes suggested that

gene pools had moderately resistant genotypes. Further,

investigation suggested that the Varuna genotype showed the

highest resistance compared to the rest of the genotypes against

Alternaria blight infection while Giriraj showed the least resistance.

Catalase activity increased after infection with the pathogen and the

tolerant genotype showed more catalase activity. The observed

differences in amino acid content between these genotypes may

be linked to the presence of specific resistance genes. Further amino

acid profiling is required in more genotypes to confirm its relation

with biotic stress tolerance. Moderately tolerant genotypes Varuna

and Kranti can be utilized for future experiments and can serve as

tolerant material for Alternaria disease. However, further

experiments are necessary to precisely identify the resistance

genes responsible for modulating tryptophan and methionine

content, evaluate their expression, determine their cellular

localization, and assess their impact on amino acid levels and

protein content in mustard seeds. Identifying these resistance

genes would significantly aid in categorizing genotypes based on

the relationship between the expression levels of these

specific resistance genes and amino acid (methionine and

tryptophan) content.
Frontiers in Plant Science 11124
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

AM: Formal analysis, Investigation, Methodology, Writing –

original draft. NK: Funding acquisition, Resources, Supervision,

Visualization, Writing – review & editing. RJ: Funding acquisition,

Writing – review & editing. TM: Formal analysis, Writing – review

& editing. AS: Conceptualization, Formal analysis, Validation,

Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1420197/

full#supplementary-material
References
AICRP, R., and Proceeding, M. (2007). „Revised rating scale of major diseases of
rapeseed-mustard.” in Proceedings of 18th annual group meeting of AICRP rapeseed-
mustard. (Khanpur campus, AAU, Guwahati (Assam)) (Vol. 1).

Akhtar, K. P., Saleem, M. Y., Asghar, M., Jamil, F. F., and Haq, M. A. (2007).
Evaluation of tomato genotypes against Alternaria leaf blight disease. Pakistan J.
Phytopathol. 19, 15–18.
Ali, N., Khan, N. U., Farhatullah, R. M., Bibi, Z., Gul, S., Ali, S., et al. (2018). Genetic
diversity in indigenous landraces of Brassica napus based on morphological and
biochemical characteristics using multivariate techniques. Int. J. Agric. Biol. 20, 277–
287. doi: 10.17957/ijab/15.0488

Allen, E. J., Morgan, D. G., and Ridgman, W. J. (1971). A physiological analysis of the
growth of oilseed rape. J. Agric. Sci. 77, 339–341. doi: 10.1017/S0021859600024515
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1420197/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1420197/full#supplementary-material
https://doi.org/10.17957/ijab/15.0488
https://doi.org/10.1017/S0021859600024515
https://doi.org/10.3389/fpls.2024.1420197
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mishra et al. 10.3389/fpls.2024.1420197
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Weakly supervised localization
model for plant disease based
on Siamese networks
Jiyang Chen, Jianwen Guo*, Hewei Zhang,
Zhixiang Liang and Shuai Wang

Dongguan University of Technology, Dongguan, China
Problems: Plant diseases significantly impact crop growth and yield. The

variability and unpredictability of symptoms postinfection increase the

complexity of image-based disease detection methods, leading to a higher

false alarm rate.

Aim: To address this challenge, we have developed an efficient, weakly supervised

agricultural disease localization model using Siamese neural networks.

Methods: This model innovatively employs a Siamese network structure with a

weight-sharing mechanism to effectively capture the visual differences in plants

affected by diseases. Combined with our proprietary Agricultural Disease Precise

Localization Class Activation Mapping algorithm (ADPL-CAM), the model can

accurately identify areas affected by diseases, achieving effective localization of

plant diseases.

Results and conclusion: The results showed that ADPL-CAM performed the best

on all network architectures. On ResNet50, ADPL-CAM’s top-1 accuracy was

3.96% higher than GradCAM and 2.77% higher than SmoothCAM; the average

Intersection over Union (IoU) is 27.09% higher than GradCAM and 19.63% higher

than SmoothCAM. Under the SPDNet architecture, ADPL-CAM achieves a top-1

accuracy of 54.29% and an average IoU of 67.5%, outperforming other CAM

methods in all metrics. It can accurately and promptly identify and locate

diseased leaves in crops.
KEYWORDS

plant disease, deep learning, Siamese networks, weakly supervised localization, class
activation mapping
1 Introduction

Disease detection in agriculture plays a crucial role in ensuring crop health and

maximizing yields. Traditionally, manual inspection and experience-based judgment have

been used to identify diseases, but these methods often lack efficiency and accuracy,

particularly for minor or inconspicuous ailments. With the advancement of machine vision
frontiersin.org01127

https://www.frontiersin.org/articles/10.3389/fpls.2024.1418201/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1418201/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1418201/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1418201&domain=pdf&date_stamp=2024-09-27
mailto:guojw@dgut.edu.cn
https://doi.org/10.3389/fpls.2024.1418201
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1418201
https://www.frontiersin.org/journals/plant-science


Chen et al. 10.3389/fpls.2024.1418201
and deep learning models, particularly Convolutional Neural

Networks (CNNs) (LeCun et al., 2015), significant progress has

been made in computer vision techniques for agricultural disease

detection (Ferentinos, 2018). Utilizing these cutting-edge

technologies for disease image classification has greatly improved

the accuracy and robustness of detection.

However, current deep learning vision detection models still

face challenges when dealing with the diversity and randomness of

plant diseases. For example, diversity can lead to poor adaptability

of traditional algorithms at different scales, resulting in missed or

false detections. Diseases might be difficult to detect due to

variations in the size, shape, or color of plant leaves or due to

environmental factors such as lighting and occlusion. Traditional

CNN architectures often perform poorly in addressing these issues

(Fuentes et al., 2017) as they are designed with fixed scales and field-

of-view sizes, which do not adapt well to varying sizes of disease

features, especially in large-scale agricultural fields. Moreover,

conventional disease detection methods require extensive

annotation of datasets, which increases training costs and limits

application scenarios. In contrast, weakly supervised learning can

effectively detect using existing image category labels, significantly

reducing the reliance on detailed annotations. Current weak

supervision localization techniques primarily rely on multiple

instance learning (Carbonneau et al., 2018) and Class Activation

Mapping methods (Zhou et al., 2016), which train networks using

image-level labels but often focus only on local features, making it

difficult to cover the entire target and handle multiple instances of

the same category.

To address these challenges, we propose an innovative detection

model based on Siamese neural networks and weak supervision

localization techniques, transforming the disease detection problem

into a task of visual difference identification. By integrating

multiscale features and implementing a refined weighting

strategy, we have enhanced the accuracy and efficiency of disease

identification. We use the ADPL-Class Activation Map (CAM)

technique to generate heatmaps for precise disease localization and

employ Non-Maximum Suppression (NMS) technology to handle

multiple case issues, effectively improving the model’s performance

in complex environments.

The latter part of this article will detail the relevant research

work, foundational knowledge of Siamese networks and Class

Activation Mapping techniques, describe our model architecture

and experimental design, and demonstrate the effectiveness of our

model through experimental results. We will discuss these results,

emphasizing their significance in the field of intelligent agricultural

disease detection, and outline future research directions.
2 Related work

2.1 Advances in plant disease detection
research using deep learning

Early-stage plant diseases refer to diseases or diseases that occur

in the early stages of plant growth, usually in the early stages after

infection. Their symptoms may not be easily observed or recognized
Frontiers in Plant Science 02128
but may have potential impacts on the health and growth status of

plants. The automatic recognition of early-stage plant disease

images has traditionally relied on conventional machine learning

techniques such as K-Nearest Neighbors (KNN) (Kumar et al.,

2020), Support Vector Machines (SVM) (Rumpf et al., 2010), and

Deep Forest methods (Zhou and Feng, 2017). However, with the

advent of deep learning models, intelligent diagnostic methods

based on these technologies have become the mainstream

approach for image recognition (Sankaran et al., 2010) and have

been increasingly applied to crops like corn, wheat, citrus, and

potatoes (Ferentinos, 2018). For instance, (Mohanty et al., 2016)

have demonstrated the accuracy and robustness of deep learning in

classifying a vast array of plant disease images using CNNs.

Similarly, the deep learning models developed by (Sladojevic

et al., 2016) and the PlantXViT model introduced by Poornima

et al (Poornima and Pushpalatha, 2021), which combines CNNs

with Vision Transformers, have achieved notable success in plant

disease recognition.

To address the shortage of datasets, researchers have explored

small sample learning: (Li et al., 2023) investigated the potential of

Diffusion Models (DDPM), Swin-Transformer models, and transfer

learning for diagnosing citrus diseases with limited datasets. (Lee

et al., 2018) designed two new data generation methods based on

plant canopy simulation and Generative Adversarial Networks

(GANs), which successfully handled the challenging task of

segmenting apple scab disease in apple tree canopy images,

showing promising results on small datasets. In terms of transfer

learning, (Atila et al., 2020) proposed an efficient network of deep

learning models for classifying plant leaf diseases, trained using the

transfer learning approach on the EfficientNet architecture and

other deep learning models. (Zj et al., 2019) enhanced the VGG16

model with multitask learning concepts and then applied transfer

learning with pretrained models from ImageNet, effectively

recognizing diseases in rice and wheat leaves, and providing a

reliable method for identifying multiple plant leaf diseases. (Chen

et al., 2018) explored deep convolutional neural network transfer

learning to identify plant leaf diseases, considering using pretrained

models from large-scale datasets and then transferring them to

specific tasks.

Deep learning models still face challenges in handling the

multiscale and randomness aspects of diseases. Diseases may

appear on plants in various sizes, shapes, and colors, making it

difficult for traditional algorithms to adapt to different scales and

potentially leading to missed or false detections. Additionally, the

same disease might appear differently on various plants and be

influenced by environmental factors such as lighting and occlusion,

increasing the likelihood of false positives. This presents significant

challenges for disease detection, especially in large-scale agricultural

environments. To overcome these issues, new solutions are being

explored: (Singh et al., 2018) used Long Short-Term Memory

(LSTM) networks (Hochreiter and Schmidhuber, 1997) to detect

moisture stress in chickpea bud images, showcasing the potential of

LSTM networks in multiscale diagnosis. (Mahlein, 2016) discussed

methods for plant leaf disease detection using imaging sensors,

highlighting the randomness in disease manifestation and

proposing solutions. (Sumaya and Uddin, 2021) emphasized the
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importance of using deep learning for multiscale diagnosis and

made progress in diagnosing various plant leaf diseases.

We believe that traditional CNN architectures, designed with

predetermined image scales (He et al., 2016) and fixed receptive

fields, struggle to adapt to disease spots of varying sizes (Liu et al.,

2016). Additionally, these networks are not well-suited for spatial

transformations such as rotation and scaling (Jaderberg et al., 2015),

which can vary significantly across different plants, resulting in poor

performance in such tasks. Moreover, these networks may lose

crucial detailed information necessary for identification while

extracting high-level semantic information (Zeiler and

Fergus, 2014).
2.2 Siamese network

The Siamese network, as illustrated in Figure 1, is a specialized

neural network architecture designed for image comparison and

verification tasks. This architecture is characterized by its two

parallel branches, mirroring each other and sharing identical

parameters, much like the interconnected nature of Siamese twins

—hence the name. The primary benefit of this shared-parameter

design is that it ensures both branches carry out the same

transformations. Consequently, each input image is transformed

into a feature vector, enabling a direct and equitable comparison.

To enhance the network’s ability to accurately measure image

similarity, loss functions such as ContrastiveLoss (Hadsell et al.,

2006) and TripletLoss (Schroff et al., 2015) are employed during the

network’s training phase. These functions are crucial for the fine-

tuning of network parameters, directly impacting the precision of

similarity measurements.
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Upon inputting two distinct photographs, the network analyzes

each one independently. Each branch meticulously deconstructs its

image into a detailed array of features—lines, edges, textures, and

patterns—that define the image’s unique identity. These features are

then transcribed into vectors, comprehensive numerical sequences that

represent the images’ visual characteristics. Thanks to the Siamese

configuration, this feature extraction process is consistently executed

across both branches, laying the foundation for a balanced comparison.

Siamese networks have proven their effectiveness in a spectrum of

applications. For instance, the DeepFace system (Taigman et al., 2014)

harnesses a Siamese network for facial recognition, demonstrating its

prowess in complex identification tasks. Similarly, the SiamFC tracker

(Bertinetto et al., 2016) showcases the power of Siamese networks in real-

time object tracking in video streams. Beyond these, the architecture has

shown exceptional performance in recognizing Chinese handwritten

characters (Zhang et al., 2017) and evaluating semantic similarity in

natural language processing (Mueller and Thyagarajan, 2016).

In our research, we leverage the Siamese network’s dual-branch

feature extraction capability by inputting image pairs that exhibit

similarity. This approach allows us to produce highly accurate

feature maps that are essential for precisely pinpointing object

locations within images. By training the network with pairs of

known similar images, we enhance its proficiency in detecting fine

distinctions and shared characteristics between images, which is

critical for tasks that demand exact localization.
2.3 Class activation map

The CAM is a technique used in imaging to interpret and

visualize the decision-making process of CNNs. It is based on a
FIGURE 1

The architecture of the Siamese network was used in this study. The network independently analyzes each input image and deconstructs it into a
detailed array of features such as lines, edges, textures, and patterns. These features are then transcribed into vectors, representing the images’ visual
characteristics. The network is trained with pairs of known similar images to enhance its proficiency in detecting fine distinctions and
shared characteristics.
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critical insight: classification networks not only extract categorical

information from images but also implicitly encode spatial location

information of targets. CAM generates heatmaps for specific

categories by combining the outputs of a Global Average Pooling

(GAP) layer with the feature maps from the last convolutional layer,

visually indicating the target locations. The implementation process

is illustrated in Figure 2.

Initially, an input image is processed through a CNN,

producing a set of feature maps. Following the last convolutional

layer of the CNN, a GAP layer is employed to calculate the average

activation of each feature map, as shown in Equation 1:

Fk =
1

H�Wo
H

i=1
o
W

j=1
f kij (1)

Here, f kij denotes the activation value at position (i, j) on the kth

feature map, withH andW representing the height and width of the

feature map, respectively.

Subsequently, the output from the GAP layer is connected to a

fully connected layer, whose weight matrix is used to compute the

scores for each category:

Sc =o
k

Wk,c · Fk (2)

In this formula, W is the weight matrix of the fully connected

layer, Wk,c represents the weight between the kth feature map and

the cth category, and   Fk is the average activation of the kth

feature map.

Finally, by multiplying each feature map’s activation values by

their corresponding category weights and summing them up, a class

activation map is generated:

Mc(i, j) =o
k

Wk,c · f
k
i,j (3)

This map is the same size as the original image and uses

grayscale values to indicate the significance of different areas for

the network’s prediction. Higher scores indicate greater
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contributions to the final classification outcome. Converting this

grayscale map to a color map can more clearly show which parts of

the image are most focused on by the network and which areas are

most predictive for a particular category.

The CAM method has been successfully applied in many

research tasks, such as using CAM to locate pneumonia in chest

X-ray images (Wang et al., 2017). Researchers have developed

several variants of CAM, such as Grad-CAM (Selvaraju et al.,

2017), which uses category-specific gradient information to

weight feature maps, extending CAM’s applicability to more

CNN architectures. Score-CAM (Wang et al., 2020) and Layer-

CAM (Jiang et al., 2020) enhance the usability and interpretative

power of CAM methods through model scoring and specific layer

visualization, respectively.
3 Plant disease localization model
based on Siamese neural networks

The traditional backbone networks often struggle to adequately

recognize the subtle variances present in crop disease symptoms. To

address this issue, we present SPDNet, a Siamese neural network-

based method for weakly supervised localization of plant diseases.

SPDNet is ingeniously crafted to tackle the challenges associated

with the nuanced differences in infection symptoms and the

presence of multiscale features.

The SPDNet model begins by inputting pairs of images that

exhibit similar plant disease symptoms, with each pair comprising a

query image and a reference image. A Siamese neural network,

initialized with shared parameters, processes both the query and

reference images. The query image is fed into the first subnet to

extract feature maps, while the reference image is processed through

the second subnet for feature extraction. Subsequently, a pyramid

structure is employed to fuse the multiscale feature maps obtained

from both the query and reference images, ensuring a

comprehensive representation of disease symptoms across
FIGURE 2

Implementation of Class Activation Mapping: (A–C), CAM color heatmaps; (D), original image overlaid with the CAM heatmap.
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different scales. These fused multiscale feature maps are then input

into the ADPL-CAM-based weakly supervised localization module.

This module autonomously generates pseudo-detection bounding

boxes to identify potential disease symptom regions. Following this,

the ADPL-CAM module’s localization results are used to predict

bounding boxes around the disease symptoms in the query image,

with the disease locations highlighted in red on the heatmap. The

SPDNet model is trained using weakly supervised learning

methods, leveraging pseudo-labels generated by the ADPL-CAM

module instead of precise annotations. During the iterative training

process, the model is continuously refined to improve accuracy in

disease localization.

The architecture of SPDNet, as illustrated in Figure 3, leverages

shared parameters within its Siamese framework to enhance the

model’s sensitivity to minor discrepancies between input images.

The network processes pairs of disease images that share similar

characteristics, using one image as the target and the other as a

referential guide for localization. This dual-image input strategy

enables SPDNet to develop more refined and distinctive feature

representations, crucial for distinguishing between subtle

disease symptoms.

Within the Siamese network, a pyramid structure is employed

to amalgamate multiscale information extracted at various layers,

ensuring a thorough representation of disease symptomatology

across different scales.

The ADPL-CAM-based weakly supervised localization module

is a core component of SPDNet, tailored for effective internal

feature mapping during the detection and localization of plant

diseases. It autonomously generates pseudo-detection bounding

boxes, thereby diminishing the dependency on precisely

annotated data. This module’s capability to produce pseudo-labels

is pivotal for the generation of bounding boxes and the execution of

weakly supervised localization tasks.

The employment of weakly supervised learning methodologies

is a strategic choice for training SPDNet models. Given the

laborious and sometimes unfeasible nature of acquiring fully

annotated datasets in the agricultural domain, the weakly

supervised approach is exceptionally pertinent. It facilitates the
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training of SPDNet with a reduced need for meticulously labeled

data. The generation of pseudo-labels by SPDNet’s localization

module acts as a surrogate for detailed annotations, making the

training process more scalable and economically viable while

preserving effectiveness. Through the study of SPDNet, we have

reduced the dependence on precisely annotated data, which enables

it to work effectively even in situations where annotated data are

scarce, breaking free from the limitations of supervised learning

methods like PiTLiD (Liu and Zhang, 2022) on small

sample datasets.
3.1 SPDNet Siamese network development

The development of the SPDNet Siamese network aims to

overcome a series of challenges faced by traditional CNNs when

processing crop disease images, particularly issues related to

handling multiscale image features, adapting to spatial

transformations like rotation and scaling, and preserving detailed

information. The SPDNet employs a dual-branch structure to

extract complementary features, which effectively deals with

spatial transformations in disease areas and enhances the

robustness of localization results. The architecture of the SPDNet

Siamese network is shown in Figure 4, featuring this dual-

branch structure.

The feature extraction part of the network utilizes a Feature

Pyramid Structure (Lin et al., 2017), a strategy for extracting and

integrating information across multiple scales. This allows for a

comprehensive capture of disease symptom features of varying

sizes. By merging features across scales, the network adaptively

responds to changes in the size of disease areas, enhancing

the robustness of the localization outcomes. In the higher

layers, SPDNet incorporates both GAP and Global Max Pooling

(GMP) (Zhou et al., 2016) to fuse features, which highlights

the most significant features while also considering the

average characteristics of the images, thus balancing global

and local information. Moreover, SPDNet introduces a Multi-

Scale Excitation (MSE) module to boost its representational
FIGURE 3

Flowchart of a weakly supervised plant disease localization model based on Siamese neural networks, where the blue represents the Siamese neural
feature extraction network, and the red denotes the weakly supervised localization module based on ADPL-CAM. In the heatmap, red indicates the
location of the disease.
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power by adaptively adjusting the weights of different

feature channels, focusing on the most pertinent features. The

network also includes Parametric Rectified Linear Unit (PReLU)

(He et al., 2015) as a nonlinear activation function and a

dropout mechanism (Srivastava et al., 2014) for regularization,

further enhancing the network’s learning capabilities and

feature robustness.

3.1.1 Detailed component descriptions
3.1.1.1 Basic block

This consists of a 3 × 3 convolution, batch normalization, and

ReLU activation:

y = ReLU(BN(Conv(x))) (4)

where Conv represents 3 × 3 convolution, BN denotes batch

normalization, and ReLU is the activation function.

3.1.1.2 Feature Calibration Component MSE

The Feature Calibration Component MSE (Hu et al., 2018)

facilitates the modeling of the importance across different semantic

feature channels. By utilizing GAP and GMP to extract the average

vector vavg and maximum vectorvmax, respectively, and

then concatenating them along the channel dimension, the

resulting vector is input into a fully connected network to learn

channel correlations.
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The computation of the channel attention vector is formulated

as follows:

Z = ½GAP(x);GMP(x)� (5)

A = s (W2(d (W1Z))) (6)

where s denotes the Sigmoid function, d represents the PReLU

activation function, [;] indicates the concatenation operation, and

W1 and W2 are learnable weights.

3.1.1.3 More detailed structure and parameter selection

GAP and GMP are employed to compress each channel of the

input feature map into a single scalar value, representing the global

average and global maximum of that channel, respectively. The

pooled features (concatenated results of GAP and GMP, with a

dimension twice the number of input channels) are mapped to a

hidden layer. The hidden layer’s channel count is set to 25% of the

input channel count (controlled by the expansion parameter). The

weights of the first fully connected layer (FC1) are initialized using

the He initialization method. Batch normalization is applied to

stabilize the training process. Dropout is used to prevent overfitting,

with the dropout rate set to 0.5. The PReLU activation function is

applied after the first fully connected layer. The Sigmoid activation

function is applied after the second fully connected layer,

compressing the output values to the range [0, 1]. The weights of
FIGURE 4

Architecture diagram of the SPDNet Siamese network component.
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the second fully connected layer (FC2) are initialized using the

Xavier initialization method.

3.1.1.4 MBConv module

A mobile-optimized bottleneck residual block structure that

introduces the MSE mechanism between input and output (Sandler

et al., 2018):

x←ReLU(BN(DWConv(ReLU(BN(Expand(x)))))) (7)

attention = s (MSE(x)) (8)

  x← x + Proj(x⊙ attention) (9)

where Expand represents channel expansion via 1x1

convolution, DWConv stands for depthwise separable

convolution, and Proj is a 1 × 1 convolution projection.

3.1.1.5 Transformer module

Based on a conventional Attention and FFN transformer encoder

structure, the main process involves MST, LayerNorm, Attention

computation, and residual connections (Vaswani et al., 2017):

x1 = MST(x) (10)

z1 = Attention(LN(x1)) + x2 (11)

z2 = FFN(LN(z1)) + z1 (12)

where ×2 is a downsampling or equivalent Identity, LN denotes

LayerNorm normalization, and MST represents multiscale

integration of different sampling information.

3.1.1.6 Feature Pyramid Structure

After extracting features at each level, a 1 × 1 convolution processes

internally before upsampling is combined with the previous layer’s

feature map, and a 3 × 3 convolution smoothly integrates to ensure

consistent output scale and channel number (Lin et al., 2017):

Ci = Conv1x1 (13)

Pi = Upsample(Pi+1) + Ci (14)

FPNi = Conv3�3(Pi) (15)

By employing a complex design with multiple modules operating

at different sampling rates, the SPDNet Siamese network not only

captures disease features across various scales but also effectively

minimizes localization errors due to changes in disease appearance

through its dual-branch structure’s complementary characteristics,

demonstrating exceptional performance.
3.2 Weakly supervised localization based
on ADPL-CAM

To enhance the accuracy and robustness of disease symptom

localization in SPDNet, this study introduces an innovative Class
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Activation Mapping method named Agricultural Disease Precise

Localization Class Activation Map (ADPL-CAM). The overall

detailed workflow diagram is shown in Figure 5. This method was

developed with an understanding of the limitations of traditional

CAM technologies in handling agricultural disease images,

especially their inadequacies in dealing with multiscale features

and background noise. It utilizes multiscale feature maps generated

by the two branches of the SPDNet Siamese network. Based on a

pair of similar image inputs, categorized into a reference image and

a query image (the actual target frame output image), where the

reference image enhances the features of the query image. ADPL-

CAM extracts two feature matrices and effectively merges feature

map s f r om bo th b r an ch e s u s i n g up s amp l i n g and

interpolation methods.

Subsequently, these feature maps undergo pooling to activate

hierarchical weight, using weights to absorb the importance of

features from different network layers. Ultimately, ADPL-CAM

undertakes token learning for the reference image’s features:

employing global maximum pooling to extract semantic

information (i.e., tokens) and then fusing these tokens with the

feature maps of the query image. Through token-based fusion, the

activation map of the query image prominently represents similar

semantic features. This strategy not only intensifies the model’s

focus on the disease target areas but also significantly reduces its

sensitivity to background noise.

Moreover, ADPL-CAM incorporates a NMS strategy to

optimize the generation of localization boxes. NMS identifies the

local maxima within each potential target area and filters out areas

with low scores or high overlap through thresholding, thus enabling

more accurate delineation of disease areas and effectively reducing

misses. This strategy is particularly aimed at localization challenges

in scenarios where similar diseases are clustered, greatly enhancing

the mode l ’ s prec i s ion and adaptab i l i t y in complex

agricultural settings.
3.2.1 ADPL-CAM multiscale feature map-
weighted fusion

The CAM is formulated as a weighted sum of feature maps:

CAM =o
N

i=1
wi · Fi (16)

where N is the number of feature maps, wi are weights obtained

via the global average pooling layer, and   Fi is the feature map at

that scale.

3.2.2 Token-based feature learning
Initially, we define the tokenization process for the reference

image’s feature maps (feature tokenization) to extract representative

feature vectors Ti:

Ti = GlobalMaxPool(Fi) (17)

Here, the GlobalMaxPool operation performs global maximum

pooling, traversing each channel of the feature map and retaining

only the maximum value per channel, thus forming a compact

feature vector. This vector Ti acts as a token, capturing the most
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critical visual features. Subsequently, we fuse the target feature map

G with the token (Ti), resulting in an enhanced feature map:

G0 = G +o
N

i=1
a · Ti (18)

where a represents the learned weights, indicating the

contribution of different tokens to the target feature map.

3.2.3 Adaptive threshold function for generating
box thresholds

T(x, y) = 1
blocksize2 o

i,j∈neighborhood

I(i, j) − C (19)

Here (Bradley and Roth, 2007), T(x, y) is the threshold at the

pixel location (x, y), I (i, j) is the value of the pixels in the

neighborhood, C is a constant used to adjust the threshold, and

blocksize squared represents the size of the neighborhood

considered for local threshold computation.

3.2.4 Non-maximum suppression
Define a set of detection boxes (D = d1,d2,…,dn), each with a

corresponding confidence score (si), select the box (dmax) with the

highest score from (D). Calculate the Intersection over Union (IoU)

with (dmax) for the other boxes and remove those with high

overlap. Repeat this process until only one box remains.

Thus, ADPL-CAM not only enhances the handling of

multiscale features but also improves the accuracy of disease

symptom localization, providing robust technical support for

precise agricultural disease diagnosis.
4 Experiments and results

4.1 Experimental design

The model’s effectiveness is assessed using three main metrics:

Top-K Positioning Accuracy, GT-Known Positioning Accuracy,

and Average Intersection over Union (Average IoU).

Top-K Positioning Accuracy is defined as the condition where

the correct category is among the top-K categories predicted by the

model and the IoU between the model’s predicted bounding box and

the actual bounding box exceeds a specified threshold (set at 0.5). If

these conditions are met, the prediction is considered correct.

GT-Known Positioning Accuracy measures whether the model

can accurately locate the object when the true category is known.

The prediction is deemed accurate if the IoU between the predicted

and actual bounding boxes exceeds a predetermined threshold.

Average IoU calculates the mean IoU value between all

predicted and actual bounding boxes across all test images to

gauge the model’s overall localization precision.

We selected Top-K Positioning Accuracy, GT-Known

Positioning Accuracy, and Average IoU as our principal metrics

for evaluation due to their recognized efficacy and standardization

in assessing both classification and localization performances within

the field of computer vision. Top-K Positioning Accuracy holds

particular significance for applications in the real world, where the
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ability to generate multiple plausible predictions is often more

beneficial than pinpoint accuracy in classification. This metric

ensures that the correct category is listed among the top

contenders, while the associated IoU threshold criterion

guarantees precise object localization within the imagery—a

critical factor for practical implementations such as precision

agriculture or automated wildlife monitoring.

GT-Known Positioning Accuracy is deployed to gauge the

model’s proficiency in object localization when the true category

is pre-identified—a typical training and tuning scenario for models

engaged in detection tasks. This metric singularly focuses on and

evaluates the model’s spatial discernment capabilities. The Average

IoU, on the other hand, extends to provide a cumulative measure of

localization accuracy across all tested instances, offering insight into

the model’s generalization capabilities across a diverse array of

categories and conditions. By integrating these tripartite metrics, we

ensure a holistic evaluation of the model’s competence in not just

accurately classifying objects but also in their precise localization,

both of which are indispensable for the practical deployment of

such models in scenarios where accurate identification and exact

object placement are of paramount importance.

In this work, we used two datasets: to further explore the

adaptability of the model to changes in different lighting

conditions, crop varieties, and disease stages, we constructed a

Multi-Conditional Plant Disease Dataset (MCPDD) based on the

PlantVillage dataset. This dataset generates image data for different

lighting conditions, crop varieties, and disease stages through image

processing and classification, specifically for plant disease detection

research. MCPDD contains a total of 42 images of different types

and degrees of diseases on grape, potato, and tomato leaves under

different lighting conditions. This diversity meets the requirements

of plant disease detection at different stages, ensuring full

consideration of the subtle semantic features of early diseases.

In contrast, the CUB-200 dataset is a fine-grained image

classification dataset focused on various animal species. The ADPL-

CAM method leverages its capability to capture semantic features

within the same class in images. The CUB-200 dataset is not only

informative but also serves as a universal benchmark for fine-grained

classification tasks. Therefore, evaluating the ADPL-CAMmethod on

this dataset not only validates its overall effectiveness in capturing

similar semantic features and generating accurate localization maps

but also reaffirms its robustness in fine-grained classification tasks.

This study assesses the feature semantic extraction capabilities

of ADPL-CAM using both the PlantVillage and CUB-200 datasets

to comprehensively verify the method’s universality and

effectiveness. The simulation experiments were conducted on a

computer equipped with an RTX A5000 GPU and 24GB VRAM.

The experimental environment included PyTorch 1.11.0, CUDA

11.6, cuDNN 8.4.0, and Python 3.9.12. Images were resized to 224

pixels × 224 pixels, and data augmentation techniques such as

random rotation and Gaussian blur were applied. The training was

performed using the AdamW optimizer with an initial learning rate

of 0.01, a minimum learning rate of 0.0001, and a cosine annealing

learning rate schedule. The training lasted for 100 epochs with a

batch size of 16, and the experiments were conducted under

consistent hyperparameter settings.
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4.2 Quantitative experiments
and discussion

In our quantitative analysis, we used EfficientNet and ResNet50

as comparative classification networks and compared different

CAM algorithms, including GradCAM, SmoothCAM, and our

proposed ADPL-CAM. The results are shown in Figures 6, 7, and

detailed results are shown in Tables 1, 2.

Based on the experimental results, we can draw the

following conclusion.

1. Performance comparison: In the CUB-200 and PlantVillage

datasets, ADPL-CAM outperformed Grad-CAM and SmoothCAM,

especially within the SPDNet framework. Notably, under the

SPDNet architecture, ADPL-CAM achieved the best results across

all evaluation metrics (accuracy, recall, precision, F1-score, GT-

known, and mean IoU). This demonstrates ADPL-CAM’s

significant advantage in capturing salient regions of target objects

and generating more accurate class activation maps.

2. Framework adaptability: The performance improvement of

ADPL-CAM in fine-grained tasks when paired with ResNet50 and

EfficientNetB0 is relatively modest. This can be attributed to these

CNN architectures being primarily designed for general image

classification tasks rather than specialized plant disease

recognition. However, in the MCPDD dataset, ADPL-CAM’s

performance is notably outstanding. This indicates that

specifically designed network structures, such as SPDNet, can

better capture task-specific features in specialized domains.

3. Disease recognition capability: The combination of SPDNet

and ADPL-CAM shows significant advantages in plant disease

recognition tasks, particularly in terms of various metrics. This
Frontiers in Plant Science 09135
suggests that SPDNet can effectively learn feature representations of

plant diseases, contributing to more accurate localization maps.

Traditional CAM methods (Grad-CAM and SmoothCAM) often

perform poorly in complex or challenging disease scenarios,

whereas ADPL-CAM maintains high effectiveness, which is

crucial for improving model reliability in practical applications.

ADPL-CAM excels in covering target areas more comprehensively.

Through adaptive multiscale feature fusion and enhanced Class

Activation Mapping mechanisms, ADPL-CAM can cover lesion

areas more thoroughly, avoiding the omission of key features.

4. Performance deficiencies and potential factors: Despite

ADPL-CAM’s improvement in overall localization accuracy, this

experiment did not validate potential issues in complex scenarios,

such as small or overlapping lesion areas, where the model might

experience false negatives or misclassifications. The potential reason

for this deficiency is that ADPL-CAM’s multiscale feature fusion

mechanism requires further optimization to better leverage features

at different levels. Although we have consciously enhanced fine-

grained features in the dataset, the model appears not to have fully

learned to recognize subtle disease characteristics. Label-based

semantic enhancement may need improvement to distinguish

disease samples with minor features. Figure 7 also indicates that

ADPL-CAM’s localization results are affected by factors such as

illumination conditions and crop varieties. Among these, the most

significant factor is crop variety, due to the vast semantic differences

in characteristics of different plant diseases. Furthermore, ADPL-

CAM’s generalization ability in small sample datasets might decline,

necessitating further optimization of network structures and

training strategies to enhance the model’s robustness in small

sample scenarios.
FIGURE 5

ADPL-CAM workflow diagram. Feature extraction: Feature maps are extracted in parallel from the reference and query images via SPNet
subnetworks. Hierarchical weight activation: Emphasizes or attenuates the importance of certain features through the network layers. Feature
tokenization: The feature maps from the reference image undergo tokenization, transforming these features into a set of compact tokens. Token-
based fusion: Tokens from the reference image are fused with the feature maps of the query image, enhancing the feature representation of the
query image. Class Activation Mapping: Postfusion, a sequence of processing steps generates the class activation map, highlighting areas of interest
in the query image. Non-Maximum Suppression (NMS): To conclude, NMS is applied to the class activation map to suppress overlapping detections,
ensuring distinct localization of each detected object.
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FIGURE 6

Displayed results of different visual models combined with different CAM methods on the CUB-200 dataset.
FIGURE 7

Visualization of experimental data. Displayed results of the combination of SPDNet and ADPL-CAM methods on MCPDD.
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4.3 Qualitative experiments and discussion

We conducted our research using the SPDNet+ADPL-CAM

strategy to visualize the effectiveness of our proposed method on

two datasets and to compare the generated localization bounding

boxes with the actual detection bounding boxes, as shown in

Figure 8. Additionally, to provide a comprehensive display of this

method’s performance, we have published all the localization data

from our qualitative experiments on GitHub [Qualitative

Experiment Visualization (github.com)].

By integrating the ADPL-CAM Class Activation Mapping method

with the SPDNet architecture, a series of visualization results were

obtained. These results demonstrate the potential advantages of this

combination in feature recognition and target localization. From the

visualized class activation maps, it is evident that this combination can

accurately identify and locate target areas. This not only confirms the

efficacy of SPDNet in capturing key features but also illustrates the

capability of the ADPL-CAM method in accurately generating target

localization frames (annotation boxes). This rapid target localization

approach, based on image-level labels, offers significant advantages in
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reducing training costs and resource consumption. It also provides

directions for further optimization of SPDNet and improvements to

the ADPL-CAM algorithm.

However, the visualization results also highlighted some areas

for improvement. When dealing with widely distributed and

scattered disease features, ADPL-CAM tends to recognize only

the most prominent parts, which could lead to failures in

detecting multiple smaller features. Additionally, the detection

outcomes are influenced by lighting conditions, which may affect

the accuracy of the localizations.
5 Conclusion

This paper addresses the challenges of multiscale and random

distribution of plant disease characteristics by proposing a weakly

supervised localization model based on Siamese neural networks. This

model is equipped with a proprietary ADPL-CAM algorithm, which

accurately identifies and locates areas affected by plant diseases. In early-

stage disease detection tasks, the model can timely and accurately identify
TABLE 1 Results of various CAM methods on the CUB-200 dataset (units: %).

Method CNN Top-1 Top-5 Recall Precision F1 score GT-know Average
IoU

GradCAM ResNet50 46.71 54.44 46.71 54.44 50.17 57.35 40.3

SmoothCAM ResNet50 47.25 55.67 47.25 55.67 51.06 58.12 42.8

ADPL-CAM ResNet50 48.56 56.43 48.56 56.43 52.14 59.78 51.2

GradCAM EfficientnetB0 49.38 57.22 49.38 57.22 52.91 60.47 45.6

SmoothCAM EfficientnetB0 50.14 58.76 50.14 58.76 54.05 61.89 47.4

ADPL-CAM EfficientnetB0 51.67 59.55 51.67 58.95 55.25 62.33 52.1

GradCAM SPDNet 52.82 60.91 52.82 60.91 56.55 63.25 56.7

SmoothCAM SPDNet 53.47 61.34 53.47 61.34 57.17 64.58 57.9

ADPL-CAM SPDNet 54.29 62.87 54.29 62.87 58.25 65.42 67.5
The bold values in the table indicate the optimal performance of each method on the CUB-200 dataset.
TABLE 2 Results of SPDNet combined with ADPL-CAM on the MCPDD.

Crop
varieties

Light
conditions

Accuracy Recall Precision F1
score

GT-known
(ADPL-
CAM)

Average
IoU

(ADPL-
CAM)

GT-known
(SmoothCAM)

Average IoU
(SmoothCAM)

Grape Normal 97.09 97.34 97.30 97.30 68.33 58.90 28.33 38.39

Shadow 73.06 72.47 77.31 73.53 55.00 51.56 28.33 40.68

Strong light 78.77 77.96 84.16 78.57 60.00 54.90 25.00 35.16

Potato Normal 96.50 96.35 96.55 96.40 42.50 43.79 22.50 35.88

Shadow 84.33 84.62 84.69 84.24 45.00 44.32 27.50 36.03

Strong light 70.33 70.88 79.00 70.04 37.50 42.04 15.00 29.42

Tomato Normal 90.84 87.93 89.67 88.32 82.22 63.25 36.67 44.13

Shadow 81.91 79.93 80.08 79.23 79.34 62.54 44.69 46.30

Strong light 62.88 60.74 70.82 61.36 73.33 58.67 23.90 33.74
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and locate diseased crop leaves. Moreover, the model also demonstrates

good performance in other feature recognition tasks. Delving deeply into

the ADPL-CAM technology enhances our model’s capability to pinpoint

plant diseases with remarkable precision. This empowers farmers with

prompt and reliable diagnostic insights, mitigating themisuse of pesticides

and avoiding the repercussions ofmisdiagnoses on crop yields. Enhancing
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the model’s resilience to fluctuations in light and extreme conditions is

essential, guaranteeing consistent performance amidst the diverse and

unpredictable agricultural landscapes. Integrated into an intelligent

decision support framework, our model becomes a pivotal tool for

farmers, aiding in the rapid identification of plant afflictions and

offering strategic management advice, thereby diminishing labor
FIGURE 8

(A) Part of the experimental results on the CUB-200 dataset. The first column contains the original images, the second column shows the ADPL-
CAM class activation maps, and the third column displays the localization maps. Yellow boxes represent the target boxes, while green boxes indicate
the generated boxes. (B) Partial experimental results of the MCPDD dataset are described, with the first column being the original plant disease map,
the second column being the ADPL-CAM class activation map, and the third column being the localization map. The green box represents the
target box, and the red box represents the generated box.
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demands and elevating agricultural productivity. Technicians benefit from

the model’s swift disease detection, enabling them to tailor more effective

control strategies, thus bolstering the efficacy of their interventions. For

researchers, the model serves as a vigilant sentinel for disease surveillance

and a robust data repository, laying down a solid scientific foundation for

disease management and the cultivation of new crop varieties.

Future research will focus on the following areas:

1. Exploring ADPL-CAM mechanisms and mapping strategies:

We plan to further investigate the mechanisms behind ADPL-CAM

and its performance enhancement in various CNN architectures. This

includes analyzing how it effectively integrates multiscale features and

handles spatial transformations to optimize methods or develop more

efficient CAM variants. Considering the limitations of ADPL-CAM in

handling complex features, exploring new activation mapping

techniques could be beneficial. For instance, introducing an

attention-based Class Activation Mapping might help the model

focus better on multiple key areas of the target.

2. Enhancing model robustness: Although ADPL-CAM maintains

good performance in complex disease scenarios, enhancing the model’s

adaptability to extreme variations (such as very small or concealed

disease features) is also crucial. This might be achieved by integrating

more fine-grained feature extraction mechanisms or using deeper

learning strategies. The impact of lighting conditions on image

recognition is a complex but critical issue. Model robustness to

lighting variations could be improved through data augmentation

(e.g., introducing a variety of lighting conditions during training) or

by incorporating lighting-invariant features.
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Introduction: Zanthoxylum bungeanum Maxim is an economically significant

crop in Asia, but large-scale cultivation is often threatened by frequent diseases,

leading to significant yield declines. Deep learning-based methods for crop

disease recognition have emerged as a vital research area in agriculture.

Methods: This paper presents a novel model, LT-DeepLab, for the semantic

segmentation of leaf spot (folium macula), rust, frost damage (gelu damnum),

and diseased leaves and trunks in complex field environments. The proposed

model enhances DeepLabV3+ with an innovative Fission Depth Separable with

CRCC Atrous Spatial Pyramid Pooling module, which reduces the structural

parameters of Atrous Spatial Pyramid Pooling module and improves cross-scale

extraction capability. Incorporating Criss-Cross Attention with the Convolutional

Block Attention Module provides a complementary boost to channel feature

extraction. Additionally, deformable convolution enhances low-dimensional

features, and a Fully Convolutional Network auxiliary header is integrated to

optimize the network and enhance model accuracy without increasing

parameter count.

Results: LT-DeepLab improves the mean Intersection over Union (mIoU) by

3.59%, themean Pixel Accuracy (mPA) by 2.16%, and theOverall Accuracy (OA) by

0.94% compared to the baseline DeepLabV3+. It also reduces computational

demands by 11.11% and decreases the parameter count by 16.82%.
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Discussion: These results indicate that LT-DeepLab demonstrates excellent

disease segmentation capabilities in complex field environments while

maintaining high computational efficiency, offering a promising solution for

improving crop disease management efficiency.
KEYWORDS

Zanthoxylum bungeanum Maxim, cross-scale, real-world environments, disease
segmentation, small target, deep learning, attention mechanism
1 Introduction

Zanthoxylum bungeanumMaxim, a woody plant in the Rutaceae

family, is widely distributed across Asia. It serves as a significant

economic resource, offering valuable seasoning, spice, and woody

oilseed derivatives from its branches, leaves, and fruits. These parts

also possess high nutritional and medicinal values (Lu et al., 2022).

Under large-scale cultivation, the plant frequently suffers from

diseases, particularly in its branches and leaves, significantly

impacting yield. Early disease detection is crucial for preventing

substantial economic losses in agriculture (Savary et al., 2019).

Consequently, rapid and accurate monitoring and analysis of leaf

and trunk diseases in Zanthoxylum bungeanumMaxim are essential.

Traditional disease identification methods, which predominantly rely

on subjective manual visual observation, are labor-intensive, slow,

and prone to misclassification (Cruz et al., 2019).

In terms of traditional segmentation techniques, threshold-

based methods are prevalent. Gao and Lin (2019) enhanced and

extracted leaf veins to segment medicinal plant leaves using direct

processing of RGB images and OTSU methods. Barbedo (2016)

developed a semi-automatic algorithm for segmenting plant leaf

disease symptoms by manipulating the histograms of the H-channel

in HSV and the a-channel in Lab color space. Clustering-based

approaches are also utilized; for instance, Shedthi et al. (2023)

designed a plant disease recognition system using hybrid clustering

algorithms to improve upon the local optimization limitations of

the k-means algorithm. Javidan et al. (2023) employed new image

processing algorithms and multi-class support vector machines for

diagnosing and classifying grapevine leaf diseases, achieving up to

98.97% accuracy with PCA and GLCM feature selection.

Additionally, there are region-based methods: Ma et al. (2017)

proposed a segmentation method for vegetable leaf lesions using

color information and region-growing techniques. They composed

a comprehensive color feature using the red index, the H

component in HSV color space, and the b component in Lab

color space. Based on this feature, an interactive region-growing

method was used to segment leaf lesions against a complex

background. Li et al. (2018) developed a single-leaf segmentation

method for indoor ornamental plant leaves using over-

segmentation with small planes and region growing with small

planes in a dense plant point cloud, achieving an average precision
02142
and recall rate exceeding 90%. These methods, while less

computationally demanding and straightforward, often lack

robustness in complex backgrounds due to subtle gray-scale

variations and small diseased spot sizes on leaves.

With the continuous advancements in computer vision, high-

performance models have been increasingly utilized for image

classification, detection, and recognition tasks (Attri et al., 2023).

There are currently three principal approaches for analyzing plant

diseases using deep learning: image-based classification, bounding

box-based object detection, and semantic segmentation based on

pixel classification. Nahiduzzaman et al. (2023) developed a

lightweight deep separable CNN model, PDS-CNN, achieving

accuracies of 95.05% in triple classification and 96.06% in binary

classification with a compact model size of 6.3M. Pal and Kumar

(2023) combined traditional INC-VGGN and Kohonen-based

networks for plant disease detection and severity classification.

Thai et al. (2023) introduced FormerLeaf for cassava leaf disease

detection, employing the Least Important Attention Pruning

(LelAP) algorithm to enhance Transformer models by reducing

model size by 28% and improving accuracy by approximately 3%.

Additionally, they utilized the sparse matrix multiplication method

(SPMM) to decrease the model’s complexity, reducing training time

by 10%. Liu et al. (2024) proposed Fusion Transformer YOLO, a

real-time and lightweight detection model that integrates VoVNet

into the backbone to enhance accuracy and incorporates an

improved dual-stream PAN+FPN structure in the neck, achieving

an average model accuracy of 90.67%. Jodas et al. (2021) merged

deep residual blocks with UNet for semantic segmentation,

achieving an IoU of 81.47% by refining the segmentation region

to exclude irrelevant binary areas. Zhang et al. (2023) improved the

sensory field in a grapevine leaf disease segmentation model by

inverting the residual convolution and replacing the downsampling

operation with reversible attention, increasing IoU performance by

4.04% over the baseline model. Compared to traditional methods,

semantic segmentation offers more practical and complex

functionalities, making it highly suitable for precision agriculture

applications (Deng et al., 2023).

Unlike previous studies, our task requires cross-scale

segmentation due to varying sizes of diseased trunks and frost-

damaged parts, which differ from the smaller diseased leaves and

spots. The ASPP structure of Deeplabv3+ is particularly apt for
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cross-scale feature extraction due to its varied receptive fields,

making it an ideal baseline for our study on Zanthoxylum

bungeanum Maxim trunk and leaf disease segmentation. In our

experiments, we identified two main challenges: (1) significant loss

of target edge information in complex backgrounds, leading to poor

segmentation under varied environmental conditions and blurred

target boundaries, and (2) the difficulty in detecting and segmenting

small disease spots on leaves due to their irregular size and presence.

To address the issue of complex backgrounds, Wang et al.

(2021) fused DeepLabV3 and UNet in a two-stage model for

cucumber leaf lesion segmentation, initially segmenting leaves in

complex backgrounds with DeepLabV3 followed by lesion

segmentation with UNet. Mzoughi and Yahiaoui (2023)

segmented diseases based on local disease signature features,

reducing the impact of common backgrounds. To mitigate

computational costs, this paper designs a lightweight dual-

attention mechanism that concurrently extracts features from

both channel and spatial dimensions, focusing the model on

target regions while disregarding background noise.

To tackle the problem of overlooking small leaf spots, Qi and Jia

(2023) enhanced segmentation accuracy for small infrared targets

by modifying the expansion rate of the ASPP module and

introducing a position enhancement module. Deng et al. (2023)

developed a cross-layer attention fusion mechanism to differentiate

tiny spots from healthy areas. This paper enhanced the ASPP

module by altering its data flow, adding deformable convolution,

and incorporating our proposed CRCC module to better detect

small target spots. Additionally, standard convolution is replaced

with depth-separable convolution to reduce parameter count while

improving accuracy. Furthermore, deformable convolution is

applied to shallow extracted features before their integration with

deep features to more effectively transfer shallow information.

In this paper, a cross-scale disease segmentation network is

proposed, LT-DeepLab, for Zanthoxylum bungeanum Maxim
Frontiers in Plant Science 03143
trunks and leaves. The contributions of this study are summarized

as follows: (1) A dual-attention module CRCC structure is designed,

combining spatial and channel attention mechanisms to enhance

segmentation in complex backgrounds. (2) An improved ASPP

module (FDCASPP) is proposed, incorporating an enhanced

attention mechanism with variability convolution to boost cross-

scale feature extraction and using lightweight deep separable

convolution to minimize redundant information. (3) The model

employs a deep supervision technique that does not increase

parametric quantities and incorporates an auxiliary loss during

training to enhance accuracy. (4) This paper innovatively applies

semantic segmentation techniques to Zanthoxylum bungeanum

Maxim disease segmentation, producing a scientific dataset of

Zanthoxylum bungeanum Maxim leaf and trunk disease and

facilitating cross-scale segmentation of leaf and trunk diseases,

thereby bridging the research gap in this area.
2 Materials and methods

2.1 Data collection and processing

2.1.1 Data collection
This study examines the segmentation of diseases on the leaves

and trunks of Zanthoxylum bungeanum Maxim trees within

complex environments. The image data were collected from a

Zanthoxylum bungeanum Maxim plantation located in Dongba

Town, Nanbu County, Sichuan Province, China. To accommodate

diverse lighting conditions in natural settings, the dataset was

compiled at various times in July, specifically in the morning

(8:00-10:00), at noon (12:00-14:00), and in the afternoon (15:00-

17:00), with additional images captured post-rainfall. The categories

of images include leaf spot, rust, and frost damage. Representative

examples of these images are presented in Figure 1.
FIGURE 1

Samples of various diseases: (A) leaf spot; (B) rust; (C) postrainy leaf spot; (D) frost damage.
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2.1.2 Data processing
A total of 1,200 raw images were captured with an initial

resolution of 3472x4624. Leaf and disease spots, as well as trunk

and frost damage, were annotated using Labelme software under

expert guidance to create mask maps. The dataset was then split

into a training set of 960 images and a test set of 240 images,

adhering to an 8:2 ratio. The annotated images are depicted as labels

in Figure 1.Since the initial training set comprised only 960 images,

this paper applies data augmentation to boost the model’s

robustness and generalization capabilities. To maintain a

reasonable training speed, the augmentation process involved

randomly scaling the length of the images to a range between

2048 and 512 pixels, then cropping them to a size of 512x512 pixels,

and finally applying random flips. Additionally, transformations in

terms of brightness, contrast, and saturation were used to further

improve the model’s performance. These data augmentation

techniques were applied consistently across all experiments to

ensure uniformity among the different models.
2.2 Improved methods

Based on DeepLabv3+, this paper proposes a segmentation

network named LT-DeepLab designed for cross-dimensional

segmentation of Zanthoxylum bungeanum Maxim trunks, leaves,

and lesions. The network primarily consists of deformable

convolutions, a fission feature pyramid with depth-separable

convolutions, and an improved CRCC dual attention module.

The CRCC module combines the Criss-Cross module with the

Convolutional Block Attention Module, allowing for feature

complementation in both spatial and channel dimensions, and is

used in both the backbone and FDCASPP modules. Furthermore,

the FDCASPP module incorporates deformable convolutions and
Frontiers in Plant Science 04144
depth-separable convolutions, reducing the parameter count while

maintaining or even improving model accuracy.

2.2.1 DeepLabv3+ network structure
DeepLabv3+ is a prominent semantic segmentation

architecture distinguished by its Atrous Spatial Pyramid Pooling

(ASPP) module, which employs dilated convolution to capture

contextual information across various scales (Chen et al., 2018).

This is achieved by applying differing dilation rates to feature maps

processed by deep neural networks, which are then combined with

low-level features to produce the prediction map. However, the

original model had a high parameter count and did not perform

well in segmentation for this specific task, prompting us to make

several improvements.

2.2.2 LT-DeepLab structure
In real environments, the segmentation of leaf and trunk

diseases is complicated by various factors such as light, weather,

shading, and complex backgrounds, particularly when imaging leaf

spots and frost-damaged trunk portions. This study addresses both

the larger-sized trunk and frost-damaged parts as well as the smaller

leaves and even smaller diseased spots, with the inherent data

imbalance increasing segmentation difficulty. Although the

traditional DeepLabv3+ network, with its ASPP module capable

of multi-scale feature extraction, achieves satisfactory segmentation

results on leaves and trunks against a single background, it struggles

with more complex backgrounds. The performance deteriorates

further due to the cross-pixel feature extraction of the expansion

convolution within the ASPP module, often failing to adequately

capture features of leaves and smaller spots, which is critical for

segmentation tasks involving small targets (Zhu et al., 2023). To

address these challenges, this study introduces an enhanced version

of DeepLabv3+, LT-DeepLab, as depicted in Figure 2. This model
FIGURE 2

LT-DeepLab network structure.
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integrates an improved Criss-Cross attention mechanism to boost

the feature extraction capability of the backbone. In the decoder,

features from the backbone are fused with outputs from the ASPP

module, incorporating deformable convolution to better preserve

features of small targets like leaves and disease spots. Furthermore,

this paper proposes a new encoder, the Separation Fission Depth

Separable with CRCC Atrous Spatial Pyramid Pooling, called

FDCASPP module. This encoder replaces standard convolution

with depth-separable convolution, retaining the multi-scale feature

extraction of ASPP while integrating an enhanced CRCC module

and deformable convolution, thus addressing the insufficient

feature extraction capability for small targets.

2.2.3 CRCC module structure
In real-world scenarios, the segmentation of Zanthoxylum

bungeanum Maxim leaves and trunks is challenged by frequent

occlusions and the phenotypic similarity between healthy and

diseased leaves. To improve the model’s focus on relevant features

and enhance information filtration from complex backgrounds, this

paper introduces and refines the Criss-Cross attention module

(Huang et al., 2019). The enhanced CCNet efficiently captures

contextual information from the surrounding pixels via cross-

path operations. This mechanism enables each pixel to ascertain

the remote dependencies of all other pixels through a cyclic

operation, thereby improving segmentation accuracy. The original

Criss-Cross module is computed as, given a local feature map H ∈
RC�W�H , the feature maps K ,  Q, and V are first generated for the

leaf and trunk lesion feature maps after three 1 × 1 convolutions,

where {Q,K} ∈ RC0�W�H , and C0 is the number of channels less

than C. After that, this paper generates the feature maps Q and K by

Affinity operation to generate the attention map A ∈
R(H+W−1)�W�H , and for the position u of the feature map Q in

the spatial dimension, which can obtain Qu ∈ RC0
, and for the same

row or column of the same position u in K , it can obtain Wu ∈
R(H+W−1)�C

0
. Wi,u ∈ RC0

is the ith element of Wu. Define the

Affinity operation as follows:

di,u = QuWi,u (1)
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Where di,u ∈ D is the degree of correlation between feature Qu

and Wi,u, i = ½1,…, Wuj j�, D ∈ R(H+W−1)�W�H . Then, a softmax

layer on D over the channel dimension is applied to calculate the

attention map A.

Correspondingly, for the previously generated feature map V ∈
RC�W�H and each position u in the spatial dimension, Vu ∈ RC

and a set Fu ∈ R(H+W−1)�C are obtained, where the set Fu is the set

of feature vectors in V that are in the same row or column as

position u. Aggregation is defined as:

H
0
u = o

i∈ Fuj j
Ai,uFi,u + Hu (2)

where  H
0
u is the output feature maps H0 ∈ RC�W�H at position

u. Ai,u is the scalar value at a for channel i and position u.

However, while the Criss-Cross Attention module effectively

contextualizes features spatially, it does not adequately connect

spatial information (Huang et al., 2019). To address this limitation,

this paper integrated it with the Convolutional Block Attention

Module (CBAM) (Woo et al., 2018), creating a dual attention

mechanism named CRCC, as illustrated in Figure 3. In this

mechanism, the feature maps K ,  Q, and V from H are fused

before being processed by the CBAM module, which then weights

these features to ensure a cohesive channel connection. The

integration process is detailed as follows:

Hc = CBAM(concat(K ,Q,V)) (3)

Finally, the output of the CRCC module is combined with that

of the Criss-Cross module. To capture the global connections in a

cyclic manner, a two-dimensional convolution is applied to

integrate the features and compress their dimensionality.

This process preserves the original spatial context provided by the

Criss-Cross module while incorporating the spatial and channel-

weighted features from the CBAM. The final output of the CRCC

module after one iteration is described below:

Hout = Conv2d(Hc + H
0
u) (4)

Additionally, this paper has integrated the CRCC module into

the enhanced Fission Depth Separable with CRCC Atrous Spatial
FIGURE 3

CRCC module structure.
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Pyramid Pooling (FDCASPP) structure to further optimize our

segmentation network.
2.2.4 Deformable convolution structures
Conventional convolution operates with a fixed kernel shape,

which may not adequately address the irregular shapes of leaf and

trunk lesions. To overcome this limitation, this paper introduces

deformable convolution, which modifies the convolution process

to adapt to these irregularities before feature fusion. In standard

2D convolution, feature maps for leaf and trunk lesions are

initially sampled using a regular grid network R. The sampled

values are then multiplied by their corresponding weights w, and

subsequently summed. The output at each position P0 on the

feature maps y, can be described by the following equation (Dai

et al., 2017):

y(P0) = o
Pn∈R

W(Pn) � X(P0 + Pn) (5)

where Pn represents each position on the convolution kernel. As

illustrated in Figure 4, deformable convolution modifies standard

convolution by introducing an offset to the receptive field.

Consequently, Equation 5 transforms into Equation 6. This offset

is learnable, allowing it to adapt closely to the actual contours of the

object. Through ablation studies, deformable convolution has

demonstrated enhanced segmentation capabilities, significantly

improving the model’s performance.

y(P0) = o
Pn∈R

W(Pn) � X(P0 + Pn + DPn) (6)
2.2.5 FDCASPP module structure
The traditional Atrous Spatial Pyramid Pooling module utilizes

specific expansion rates to obtain different receptive fields for multi-

scale feature extraction. However, due to the integration of pooling

and convolution with strides, there is significant loss of boundary

information in the segmented targets. Additionally, the extensive
Frontiers in Plant Science 06146
use of expansive convolutions through a deep convolutional neural

network with a high number of channels results in a large parameter

count. To address these issues, this paper proposes a Fission Depth

Separable with CRCC Atrous Spatial Pyramid Pooling (FDCASPP).

This module divides the feature maps into two data streams: one

stream undergoes global average pooling followed by a 1x1

convolution for global feature statistics, while the other stream

reduces the feature map resolution to balance accuracy with

computation. As demonstrated by Xu et al. (2015), LeakyReLU

outperforms ReLU in scenarios involving small datasets. To

enhance model expressiveness, the reduced feature map is

activated using LeakyReLU, then processed through the CRCC

dual attention mechanism, and subsequently enhanced for

activation. It is then integrated into the multidimensional joint

feature extraction section, which replaces the standard convolution

in the original ASPP module with depth-separable convolution

(Sifre and Mallat, 2014) to minimize redundant parameters. This

section sets expansion rates at 12, 24, and 36 to accommodate

various target sizes. Additionally, deformable convolution is

employed to refine the segmentation of targets. Finally, the

feature maps from both data streams in the FDCASPP are fused

to enhance feature integration.

2.2.6 Auxiliary head loss
To optimize the training process, Zhao et al. (2017)

demonstrated in their study on PSPNet that employing auxiliary

loss can significantly enhance training effectiveness. They

established that setting the weight a of the auxiliary loss to 0.4 is

optimal. Notably, the auxiliary head, which processes the feature

maps from the backbone network to generate segmentation masks

and calculate the auxiliary loss using the cross-entropy loss

function, is active only during the training phase. Consequently,

it does not add to the computational load or the parameter count

during model inference. This paper adopts a similar approach by

introducing auxiliary loss generated by the FCN auxiliary head,

applying a cross-entropy function, with the weight also set to a=0.4.
FIGURE 4

Comparison of conventional and deformable convolution receptive fields: Panel (A) displays a schematic diagram of the receptive field for a standard
3x3 convolution, while Panel (B) illustrates the receptive field of deformable convolution.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1423238
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1423238
2.3 Model training

The hardware configurations for training and testing in this study

include an 18 vCPU AMD EPYC 9754 128-Core Processor with 60GB

of RAM and an NVIDIA RTX 3090 GPUwith 24GB of videomemory.

The software environment consists of CUDA version 11.1, PyTorch

version 1.8.1, and Python version 3.8.10. To mitigate the influence of

hyper-parameters on experimental outcomes, this paper standardizes

settings across all tests. Specifically, the Stochastic Gradient Descent

optimizer was employed with an initial learning rate of 0.01. A

polynomial decay strategy, PolyLR, was used to adjust the learning

rate during the experiments. The experiments were conducted over

10,000 iterations with a batch size of 4.
2.4 Evaluation metrics

In this study, the effectiveness of disease segmentation on

Zanthoxylum bungeum Maxim leaves and trunks is quantitatively

assessed using three principal evaluation metrics: mean Intersection

over Union (mIoU), mean Pixel Accuracy (mPA), and Overall

Accuracy (OA). These metrics are chosen to provide a

comprehensive evaluation of the segmentation performance

across all tested networks. mIoU, mPA, and OA were formulae

are calculated as follows, respectively:

mIoU = 1
k+1o

k

i=0

Pii

ok
j=0Pij +ok

j=0Pji − Pii
(7)

mPA = 1
k+1o

k

i=0

Pii

ok
j=0Pij

(8)

OA = ok
i=0

Pii

ok
i=0ok

j=0
Pij

(9)

where k denotes the number of classes, excluding background

Pij denotes the number of pixels that refer to the prediction of

category i   as category jFor the number of parameters of the model

and the amount of computation, it is calculated as:

Parameters = Cin � Cout � K � K (10)

FLOPs   = Cout � (Cin  �K2)�W � H (11)

Where Cin denotes the number of input channels, Cout

represents the number of output channels, K refers to the size of

the convolutional kernel, and W and H indicate the width and

height of the feature map, respectively.

Equation (10) describes how the number of parameters is

calculated in each convolutional layer, the smaller the number of

parameters is calculated, the lighter the model is and the easier it is

to deploy. Equation (11) describes how the amount of computation

in each convolutional layer is calculated, the smaller the amount of

computation in the model, the smaller the computational burden of

the model and the faster the inference. The bias terms in the

convolutional layers are not considered in either of the

above calculations.
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2.5 Normalization of the confusion matrix

In this study, we utilized confusion matrices to evaluate the

performance of the baseline model and our proposed model on the

test set. To provide a more intuitive understanding of each

category’s performance, we applied row normalization to the

original confusion matrix. This process converts the absolute

counts into proportions, indicating the percentage of samples

within each category that are predicted to belong to respective

categories. Specifically, each element in the normalized confusion

matrix, denoted as CMnorm, can be expressed as:

CMnorm½i, j� = CM½i,j�
oN

k=1
CM½i,k� (12)

Where CM½i, j� represents the element in the ith row and jth

column of the original confusion matrix, indicating the number of

samples from the actual category i that are predicted as category j,

and o
N

k=1

CM½i, k�   is the sum of all elements in the ith row,

representing the total number of samples in the actual category i.
2.6 Statistical testing method

In this study, we employed a t-test to compare the performance

differences between the improved LT-DeepLab model and the baseline

model. To facilitate a statistical comparison, we recorded the results of

five experiments conducted on the same dataset for both models. We

utilized an independent samples t-test to assess whether the mean

difference between these two models is statistically significant.

Specifically, we calculated the means, variances, and t-statistics for

the two samples, and determined the p-value by consulting the t-

distribution table. The p-value represents the probability of observing

the current t-statistic, or a more extreme value, under the null

hypothesis that there is no significant difference between the means

of the two groups. If the calculated p-value is less than the

predetermined significance level (e.g., 0.05), we reject the null

hypothesis, indicating that the mean difference between the two

datasets is statistically significant. The calculation method is as follows:

�X = 1
no

n

i=1
Xi (13)

S2 = 1
n−1o

n

i=1
(Xi − �X)2 (14)

t =
X1−X2j jffiffiffiffiffiffiffiffi

S2
1
n1
+
S2
2

n2

q (15)

df =
(
S2
1
n1
+
S2
2
n2
)2

(
S2
1
n1

)2

n1−1
+
(
S2
2
n2

)2

n2−1

(16)

In this context, �X  represents the sample mean, with X1 and X2

denoting the means of the two groups. S2 denotes the sample variance,

with S21 and S22 representing the variances of the two groups. n stands
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for the sample size, with n1 and n2 indicating the sample sizes of the

two groups. The t-statistic t measures the difference between sample

means relative to the variability within the samples, offering a

standardized metric of the mean difference. The degrees of freedom

df are used to consult the t-distribution table to determine the p-value.
3 Experiments and analysis of results

3.1 Comparison experiments

To establish the superior segmentation capabilities of LT-

DeepLab, this paper performes comparative experiments using an

identical dataset across various state-of-the-art semantic

segmentation networks. Each competing CNN-based model

utilized a ResNet50V1c backbone, was subjected to the same data

augmentation techniques, and employed a transfer learning

approach. All networks were initialized with pre-trained weights

from the Cityscapes dataset. The comparative analysis included

models such as FCN, CCNet, DANet, PSPNet, Non_Local, UNet,

and Segformer. The outcomes of these experiments are detailed in

Table 1. As illustrated in Table 1, among the nine networks

compared, our network, LT-DeepLab, consistently achieves the

best results across all metrics, underscoring its distinct

effectiveness for this task. Specifically, LT-DeepLab shows

improvements over the baseline network by 3.59% in mIoU,

2.49% in mPA, and 0.63% in OA. Segformer, incorporating the

advanced Transformer architecture, ranks second but still trails by

2.73%, 2.16%, and 0.94% in mIoU, mPA, and OA, respectively.

Further comparisons reveal that our network surpasses CCNet,

which utilizes the original Criss-Cross module. Our enhanced

Criss-Cross attention module improves performance in mIoU,

mPA, and OA by substantial margins of 3.23%, 1.54%, and

0.78%, respectively. Additionally, the inclusion of an auxiliary

FCN head in our architecture enables it to outperform the native

FCN network by 3.43% in mIoU, 2.62% in mPA, and 0.69% in OA.

Against the classical PSPNet and DANet, LT-DeepLab also shows

superior performance, leading by 3.28%, 2.79%, 0.50% and 2.90%,

2.01%, 0.52% in mIoU, mPA, and OA, respectively.
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Figure 5 visualizes the performance trends and stability across

models. Figure 5A depicts the mIoU trends per 50 iterations,

highlighting that LT-DeepLab reaches higher mIoU levels faster

and maintains greater stability compared to others, surpassing other

models’ mIoU at 2500 iterations versus their 10000 iterations.

Figure 5B shows the mPA change curves, with our model

achieving significantly higher mPA after 3750 iterations.

Figure 5C compares the OA curves, demonstrating that our

model’s curve is markedly more stable. Lastly, Figure 5D presents

the loss variation curves; despite using the same cross-entropy loss

function as other models, our network employs auxiliary loss,

aiding in quicker convergence and resulting in a slightly higher

initial loss value. These data further affirm the superior performance

of our model.

To demonstrate the distinct performance of various networks

more effectively, this paper compares their prediction results as

depicted in Figure 6. This comparison highlights the challenges

posed by real-environment field conditions and varying scales. The

baseline network utilizes the original ASPP module for feature

extraction, which fails to adequately detail the leaf edges and poorly

integrates areas where trunks meet leaves, indicating limited

segmentation capability.

The UNet network, despite its success in healthcare applications,

underperforms on our dataset. This is likely due to its smaller number

of parameters and the U-shaped with skip connections, optimized for

simpler semantic tasks. In contrast, the complexity of leaf and stem

disease segmentation in Zanthoxylum bungeanumMaxim proves too

challenging, resulting in suboptimal outcomes. Non_Local excels in

capturing long-distance dependencies and uniquely succeeds in

correctly segmenting distant diseased spots as seen in Figure 6E.

However, it still struggles with accurate feature extraction at the edges

of leaves, diseased spots, and trunk regions. FCN, a classic semantic

segmentation network, retains spatial feature information effectively

using a fully convolutional structure. It performs well in identifying

larger targets within images but is unable to adequately segment

smaller, less significant ones, often ignoring them completely.

PSPNet, which incorporates a pyramid pooling module, manages

boundary information more effectively than many networks by

capturing contextual details at various scales. Yet, like FCN, it often

overlook minor targets, needing further improvements in overall

segmentation. CCNet, designed to reduce the computational intensity

inherent in Non_Local through its Criss-Cross Attention mechanism,

slightly outperforms Non_Local in segmenting target edges according

to the comparative prediction images. DANet, which integrates both

spatial and channel attention mechanisms, achieves the highest

accuracy among the traditional CNN networks. Nonetheless, it still

neglects elements in the distance. Our proposed LT-DeepLab

network outshines all compared networks by delivering superior

segmentation of target boundary information—such as leaf-to-lesion,

leaf-to-background, trunk-to-leaf, and trunk-to-background

transitions. It markedly surpasses other models, especially in

segmenting very small leaf lesions, underscoring its superiority over

common semantic segmentation networks.

In addition to the classical networks mentioned above, this

paper also compares several recently proposed models, as shown in

Figure 7. Mask2Former (Cheng et al., 2022) integrates the masking
TABLE 1 Comparison of common semantic segmentation networks.

Model mIoU mPA OA

DeepLabV3+(baseline) 72.99 83.53 95.36

FCN 73.15 83.40 95.30

CCNet 73.35 84.48 95.21

DANet 73.68 84.01 95.47

PSPNet 73.30 83.23 95.49

Non_Local 73.11 83.93 95.02

Segformer 73.85 83.86 95.05

UNet 70.42 81.70 93.02

LT-DeepLab 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
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technique and self-attention mechanism into a fully convolutional

network, achieving performance second only to our proposed LT-

DeepLab, with an mIoU of 76.19%. SegNeXt (Guo et al., 2022)

updates the design of the traditional convolutional block and

utilizes multi-scale convolutional features to evoke spatial

attention through simple elemental multiplication, achieving an

mIoU of 71.31%. SAN (Xu et al., 2023) and PID (Xu et al., 2023),

which focus more on lightweight design, perform poorly on our

dataset, with mIoU values of 62.48% and 65.24%, respectively.

To demonstrate the effectiveness of the attention mechanism

proposed in this paper, we replaced the CRCC attention mechanism

in the LT-DeepLab model with various other attention mechanisms

while keeping all other conditions constant. The results are

presented in the Table 2. Using the Criss-Cross Attention (CCA)

alone results in lower accuracy due to insufficient contextual

connections of channel features. The CBAM alone achieves better

results by focusing on both channel and spatial features. The CRCC

module proposed in this paper, which enhances channel features

using CBAM while retaining the spatial contextual linking

capability of Criss-Cross Attention module, achieves the best

results across all metrics. The ELA module (Xu and Wan, 2024)

extracts feature vectors in the horizontal and vertical directions

using band-pooling in the spatial dimension, resulting in mIoU,

mPA, and OA values of 76.13%, 85.86%, and 95.74%, respectively.

The CA module (Hou et al., 2021) employs global average pooling

of feature maps in both the width and height directions, then merges

the two parallel phases, achieving mIoU, mPA, and OA values of
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76.22%, 85.33%, and 95.89%, respectively. The EMA module

(Ouyang et al., 2023) reshapes some channels to obtain the batch

dimension and groups them into multiple sub-features to preserve

channel information, resulting in mIoU, mPA, and OA values of

76.01%, 85.41%, and 95.86%, respectively. The ECA module (Wang

et al., 2020) captures inter-channel dependencies using one-

dimensional convolution, avoiding the complex upscaling and

downscaling process, with mIoU, mPA, and OA values of 76.04%,

85.41%, and 95.86%, respectively. These data further confirm the

effectiveness and superiority of the attention mechanism proposed

in this paper.
3.2 Heat map visualization

To visually demonstrate the enhancements in our network, this

paper employes gradient-weighted class activation mapping (Grad-

CAM) (Selvaraju et al., 2017) to illustrate how effectively the model

discriminates between different classes. Grad-CAM is a technique

that visualizes neural network decisions by analyzing gradients in

the final convolutional layer to determine the significance of each

feature map relative to a specific class. This method generates heat

maps that highlight areas of the image most relevant to the model’s

predictions. In Figure 8, this paper compares the heat maps from

both the baseline and the improved versions of our model to

showcase the differences pre- and post-enhancement. Each class

is visualized separately to assess how effectively the network
FIGURE 5

Evaluation Metrics and Loss Curve Analysis: This figure illustrates the progression of evaluation metrics and loss curves throughout the training
process. Each Round consists of 50 iterations, with a total of 10,000 iterations completed.
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activates in response to that class. In the images, darker and more

focused colors within the designated segmentation regions indicate

stronger network activations, signifying better model performance

and learning capability.

Upon comparison, it is evident that our model demonstrates

superior category-specific activation compared to the baseline

model. For instance, as shown in Figure 8A, our model is able to
Frontiers in Plant Science 10150
detect multiple diseased leaves against a complex background

simultaneously, whereas the baseline model tends to recognize

only few leaves. Similarly, in Figure 8D, while the baseline

network struggles to accurately identify normal trunk sections,

often misactivating diseased parts and some background areas,

our model distinctly and correctly activates the normal trunk

category. Overall, these observations confirm that our model
FIGURE 6

Overlay of Predicted Results from Common Networks: (A) leaf spot, (B) rust, (C) frost damage, (D) simultaneous rust and leaf spot, and (E)
concurrent leaf spot and frost damage, respectively.
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achieves more precise class activation than the baseline model,

validating the effectiveness of our enhanced attention mechanism.
3.3 Confusion matrix

Figures 9A, B present the confusion matrices for the baseline

model and our proposed model on the test set, respectively. By

applying row normalization to the confusion matrices, the diagonal

values in each matrix reflect the pixel accuracy of each category. A

comparison of these values clearly demonstrates that our model

achieves superior segmentation performance across all categories.

For instance, an analysis of the first row shows that our model more

effectively distinguishes between each category and the background,

exhibiting significantly better performance in real-world

environment segmentation compared to the baseline model.
3.4 Ablation experiments

To evaluate the effectiveness of our improved modules, this paper

initially examines the impact of employing multiple auxiliary heads, as

detailed in Table 3. Additionally, sixteen sets of ablation experiments

are conducted to validate each of the four modules discussed in this
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paper, focusing on various metrics including model size and

computational efficiency. These experiments are summarized in

Table 4, which reports on metrics such as mIoU, mPA, OA, the

floating-point operations (FLOPs), and the number of parameters

(Params).The baseline configuration, native DeepLabv3+, utilizes a

multilayer convolutional structure within the original ASPP, leading

to a high computational demand of 0.27 TFLOPs and a parameter

count of 65.74M, achieving an mIoU of 72.99%. As demonstrated in

Table 4 (2), the implementation of auxiliary loss results in a 0.15%

improvement in mIoU. Importantly, since auxiliary loss only influences

the training phase, it does not increase the number of parameters or

computational load during the inference process. In experiment 3(3),

integrating deformable convolution with low-dimensional feature maps

resulted in a 1.47% increase in mIoU. Table 4 (5) highlights the

enhancements to the ASPP module through lightweight and

attention-fused deformable convolutions, which not only elevate

mIoU by 2.54% but also reduce the computational demand by 0.05

TFLOPs and decrease the parameter count by 13.37M. Further, as

shown in Table 4 (9), the inclusion of our improved CRCC module

based on CCNet slightly raised the mIoU by 0.01%. A comprehensive

comparison from Tables 4 (8) and 3(16) demonstrates that the

collective application of all improvements, with and without the

CRCC module, boosts the mIoU by 0.46%, mPA by 0.01%, and OA

by 0.28%, confirming the overall efficacy of our enhancements.

In pursuit of an optimal auxiliary head to further optimize

training, this paper evaluates four different designs that generate

auxiliary loss during training only. The results are summarized in

Table 3, which led us to select the FCNHead as our auxiliary head

due to its superior performance in mIoU and OA.

Figure 10 is a scatter Plot of mIoU versus Number of

Parameters. This scatter plot illustrates the trade-off between

model complexity and segmentation accuracy across the entire set

of ablation experiments. It visualizes the relationship between the

accuracy of each experimental group and their corresponding

number of parameters. Notably, our model attains the highest

mIoU while maintaining a relatively low parameter count,

demonstrating its efficiency and effectiveness in segmentation tasks.

To validate the robustness of the LT-DeepLab network proposed

in this paper, various backbone networks were employed for feature

extraction. As depicted in Table 5, the experiments were divided into

five groups. Each group compared the original DeepLabV3+ model

with the corresponding backbone to the proposed LT-DeepLab

model using the same backbone. Notably, in each group, the LT-

DeepLab architecture consistently achieved the best segmentation

performance across all metrics. The most significant improvement

was observed in the first group, with an increase of 17.84% in mIoU,

18.14% in mPA, and 3.58% in OA. These enhancements can be

attributed to the superior contextualization and feature integration

capabilities of the LT-DeepLab network. The results clearly illustrate

that the LT-DeepLab architecture is robust and versatile, making it a

suitable choice for various feature extraction backbone networks.

Table 6 presents the IoU values for each category in our

proposed model, indicating that the IoU for leaf spot disease is

the lowest. One probable reason for this is the small size and

irregular boundaries of these spots. As depicted in Figure 11, these

spots have a range of faded green areas around the brown spots, and
FIGURE 7

Frontier Model Comparison Line Chart.
TABLE 2 Comparison of different attention mechanisms in LT-DeepLab.

Attention mIoU mPA OA

CCA 75.81 86.02 95.77

CBAM 76.29 85.65 95.91

ELA 76.13 85.86 95.74

CA 76.22 85.33 95.89

EMA 76.01 85.86 95.80

ECA 76.04 85.41 95.86

CRCC (our) 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
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in the early stages of the disease, only faded green spots are present

without any brown spots. To ensure that the model can detect this

type of disease even in its early stages, this paper includes the faded

green areas in our labeling. However, the faintness of these

boundaries results in less accurate information extraction, leading

to lower segmentation accuracy for this category. Although this may

reduce accuracy, it is crucial for identifying early-stage disease and

enabling timely intervention to prevent further damage.
3.5 Module efficiency

To evaluate the computational efficiency of the primary

modules proposed by LT-DeepLab, this study examines the

number of parameters and computation time of the CRCC
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attention module and the FDCASPP structure. The results are

presented in Table 7. The CRCC module is utilized in both the

backbone feature extraction network and the FDCASPP structure,

with the only difference being the number of intermediate channels.

In the backbone, the CRCC module has 256 intermediate channels,

whereas in the FDCASPP, it has 2048 intermediate channels. This

design choice balances computational speed and segmentation

accuracy. The average frame rate of the LT-DeepLab model

during inference is 12.56 fps.
3.6 Significance test results

The results of the independent samples t-test indicate that the

mean performance of the improved LT-DeepLab model is
FIGURE 8

Category Weight Activation Maps: Panels A through E display the category weight activation maps for different conditions: (A) diseased leaves,
(B) rust, (C) leaf spot, (D) diseased trunks, and (E) frost-damaged areas.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1423238
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2024.1423238
significantly higher than that of the baseline model. Specifically, the

five experimental outcomes for LT-DeepLab were 76.48, 76.49,

76.49, 76.58, and 76.46, while the five outcomes for the baseline

model were 72. 85, 72.88, 72.85, 72.99, and 72.82. The p-value

obtained from the t-test was substantially lower than the commonly

accepted significance level of 0.05, allowing us to reject the null

hypothesis, thereby confirming that the mean difference between

the two models is statistically significant. This finding demonstrates

that LT-DeepLab significantly outperforms the baseline model in

enhancing performance.
4 Discussion

In this study, we propose a novel CRCC attention mechanism

integrated with DeepLabV3+, which simultaneously considers both

spatial and channel-wise features. This mechanism skillfully

combines the Criss-Cross attention with the CBAM mechanism,

addressing the Criss-Cross attention’s limitation in capturing

channel-wise features and enhancing overall performance.

Additionally, we introduce a new cross-scale solution header,

FCDASPP, which, compared to the original ASPP module, reduces

the number of parameters by employing depthwise separable
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convolutions. This approach, when combined with the CRCC

attention mechanism, significantly improves segmentation

capabilities. Furthermore, the inclusion of an FCN auxiliary head

enhances segmentation performance during training by participating

solely in the loss computation, thereby avoiding any additional

overhead during inference. The incorporation of deformable

convolutions allows the convolutional kernels to learn offsets,

facilitating the effective handling of shallow features and enabling

more efficient extraction and fusion of shallow and deep features.

In the field of research on segmentation of leaf or trunk diseases

in Zanthoxylum bungeanum Maxim, Yang et al. (2021) introduced

a fifth ASPP branch into DeepLabv2 to segment rust disease in a

controlled laboratory environment, achieving an mIoU of 84.99%.

Zhang et al. (2024) proposed a lightweight U-shaped perceptual
FIGURE 9

Confusion Matrix Comparison: Panel (A) displays the confusion matrix for the baseline model on the test set, and Panel (B) shows the confusion
matrix for the LT-DeepLab model on the test set.
TABLE 3 Comparison of auxiliary head performance.

Name mIoU mPA OA

DWFCNHead 76.28 86.07 95.95

DAHead 76.13 86.33 95.84

PSPHead 76.29 85.91 95.91

FCNHead 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
FIGURE 10

Scatter Plot of Evaluation Indicators versus Number of Parameters:
Points A through P on the plot correspond to data entries 1 through
16 in Table 4, respectively.
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transformer for grape leaf disease segmentation, which strikes a

balance between performance and efficiency. However, this method

may not be suitable for field conditions and is limited to a small

number of diseases, indicating that its practical applicability needs

improvement. Wang et al. (2021) employed a two-stage

segmentation approach for cucumber leaf disease in complex

environments, using two networks sequentially to segment

different targets, thereby achieving higher segmentation accuracy.
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However, this method incurs significant computational overhead,

making it less practical for real-world production applications. The

model proposed in this paper maintains accuracy while reducing

the size compared to the benchmark network, enabling robust

segmentation of multiple diseases simultaneously. Similar to the

study by (Zhou et al., 2024), we also chose to improve the

DeepLabV3+ model. The difference lies in their introduction of a

gated pyramid feature fusion structure, which connects features of

different scales using a specialized gating mechanism while

capturing different receptive fields. The FDCASPP structure

proposed in this paper is fundamentally designed to fuse multi-

scale features and enhance the connections between them through

the CRCC attention mechanism. Furthermore, Wang et al. (2024)

demonstrated that integrating the CBAM attention mechanism

with residuals into the UNet network enhances its feature

extraction capability and ability to capture fine-grained

information, utilizing an improved ASPP module. Our study

extends this idea by complementing CBAM with the Criss-Cross

attention mechanism, incorporating this combination into the
TABLE 4 Comparison of evaluation indexes of ablation experiments with parametric quantities and calculation quantities.

Num CRCC FDCASPP DCN Aux_Loss mIoU mPA OA FLOPs/T Params/M

1 ✗ ✗ ✗ ✗ 72.99 83.53 95.36 0.27 65.74

2 ✗ ✗ ✗ ✓ 73.14 84.03 95.34 0.27 65.74

3 ✗ ✗ ✓ ✗ 74.46 84.26 95.52 0.29 67.55

4 ✗ ✗ ✓ ✓ 74.25 84.05 95.48 0.29 67.55

5 ✗ ✓ ✗ ✗ 75.53 85.15 95.69 0.22 52.37

6 ✗ ✓ ✗ ✓ 75.56 85.44 95.70 0.22 52.37

7 ✗ ✓ ✓ ✗ 76.14 85.63 95.66 0.23 53.08

8 ✗ ✓ ✓ ✓ 76.12 86.01 95.71 0.23 53.08

9 ✓ ✗ ✗ ✗ 73.00 83.13 95.35 0.28 67.34

10 ✓ ✗ ✗ ✓ 73.29 83.52 95.46 0.28 67.34

11 ✓ ✗ ✓ ✗ 74.60 84.54 95.14 0.29 69.15

12 ✓ ✗ ✓ ✓ 74.55 84.97 95.71 0.29 69.15

13 ✓ ✓ ✗ ✗ 75.43 85.11 95.75 0.23 54.68

14 ✓ ✓ ✗ ✓ 75.61 85.43 95.78 0.23 54.68

15 ✓ ✓ ✓ ✗ 76.03 85.40 95.88 0.24 54.68

16 ✓ ✓ ✓ ✓ 76.58 86.02 95.99 0.24 54.68
In the table, a checkmark (✓) indicates that a specific module was included in that group of experiments, while a cross (✗) signifies that the module was not incorporated in that particular
experimental setup.
Bold indicates that this metric has the best performance.
TABLE 5 Comparison of different feature extraction backbone networks
in LT-DeepLab.

Model mIoU mPA OA

DeepLabV3Plus+replknet 53.75 64.96 90.75

LT-DeepLab+replknet 71.59 83.10 94.33

DeepLabV3Plus+vgg16 60.66 70.94 93.20

LT-DeepLab+vgg16 73.49 83.91 95.30

DeepLabV3Plus
+MobileNetV3

56.79 67.30 92.19

LT-DeepLab+ MobileNetV3 70.07 81.18 94.51

DeepLabV3Plus+ResNeSt 69.76 80.28 94.56

LT-DeepLab+ ResNeSt 72.59 83.03 95.06

DeepLabV3Plus
+ResNet(baseline)

72.99 83.53 95.36

LT-DeepLab+ResNet(our) 76.58 86.02 95.99
Bold indicates that this metric has the best performance.
TABLE 6 Comparison of individual category IoUs between the baseline
model and our model.

0 1 2 3 4 5

Baseline 95.59 84.20 64.75 50.68 72.84 69.89

Ours 96.22 86.47 70.33 59.94 75.14 71.38
fron
where 1-5 denote background, diseased leaves, rust, leaf spot, diseased trunks, frost
damage respectively.
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FDCASPP structure to further enhance multi-scale feature

extraction. Zhu et al. (2024) replaced dilated convolutions in the

ASPP module with deformable convolutions to address issues such

as poor segmentation accuracy for irregular defects in navel orange

surface defect detection. Similarly, this study employs deformable

convolutions in the self-proposed FDCASPP structure to assist in

feature extraction, particularly in the decoder stage, to better fit

irregular lesions on leaves and trunks, further demonstrating the

effectiveness of deformable convolutions in extracting features from

irregular targets. However, when comparing our study with the

UNet network, unlike (Han et al., 2024) success in brain tumor

image segmentation by integrating the Criss-Cross attention

mechanism into UNet, the U-Net network performed poorly on

our dataset. This could be attributed to UNet’s skip connection

structure, which directly combines low-level and high-level features,
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leading to issues such as unclear boundaries when dealing with

targets that have fuzzy edges or are difficult to distinguish from the

background. In our dataset, diseased leaves are particularly

challenging to differentiate from healthy ones in a complex

environment, with the boundaries of the lesions being

especially indistinct.

The model proposed in this paper strikes a balance between

accuracy and model size when compared to the baseline network. It

also demonstrates strong robustness by effectively segmenting

multiple diseases simultaneously. Future work will focus on

validating the model’s generalizability using other datasets.

Despite the current model’s success in reducing computational

load and parameter count, there remains room for further

optimization. Future research will aim to develop a lighter and

more efficient network, facilitating easier deployment in field
FIGURE 11

Detail of faded green areas.
TABLE 7 Comparison of different feature extraction backbone networks in LT-DeepLab.

Module Location Params /M - Time/s LT-DeepLab

CRCC

CRCC_backbone 1.1
Train_time 0.0273

12.56fps

Test_time 0.0091

CRCC_FDCASPP 6.1
Train_time 0.0361

Test_time 0.0145

FDCASPP – 17.1
Train_time 0.0991

Test_time 0.0465
The data dimensions of the aforementioned modules during training are (4, 256, 64, 64), while during testing, the dimensions are (1, 256, 86, 64). This discrepancy in feature map sizes between
training and testing is attributable to the differing data augmentation strategies employed.
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environments. Additionally, the possibility of segmenting

peppercorn fruits will be explored, enabling real-time monitoring

and segmentation of Zanthoxylum bungeanum Maxim diseases to

enhance the efficiency and productivity of peppercorn cultivation.
5 Conclusion

To address the challenge of integrated segmentation of diseases

on Zanthoxylum bungeanumMaxim leaves and trunks, this research

proposes an enhanced version of DeepLabv3+, named LT-DeepLab.

This method innovatively applies semantic segmentation technology

for joint disease targeting on both leaves and trunks. This paper have

improved the Criss-Cross Attention module by integrating the

channel-space attention capabilities of the CBAM, and proposed a

new attention mechanism, the CRCC module, which accurately

extracts edge information of leaves and trunks. Additionally, a

deformable convolution module has been implemented to

effectively capture low-dimensional information, enhancing the

fusion with high-dimensional feature maps. Addressing the issue of

the original ASPP module’s high parameter count and limited cross-

scale information extraction capability, this paper has developed the

FDCASPP module, designed to enhance the extraction of multi-scale

information and improve target segmentation in complex

backgrounds. Experimental results demonstrate that LT-DeepLab’s

segmentation capabilities in complex environments surpass those of

other commonly used semantic segmentation networks. Relative to

the baseline model, LT-DeepLab not only reduces the number of

parameters and computational demands but also achieves superior

performance across all evaluation metrics.
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Early detection of pine wilt
disease based on UAV
reconstructed
hyperspectral image
Wentao Liu1,2,3, Ziran Xie1,3, Jun Du1,3, Yuanhang Li1,3,
Yongbing Long1,3, Yubin Lan1,3, Tianyi Liu2*,
Si Sun2* and Jing Zhao1,3*

1College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural
University, Guangzhou, China, 2College of Forestry and Landscape Architecture, South China
Agricultural University, Guangzhou, China, 3National Center for International Collaboration Research
on Precision Agricultural Aviation Pesticides Spraying Technology, Guangzhou, China
Pine wilt disease (PWD) is a highly destructive infectious disease that affects pine

forests. Therefore, an accurate and effective method to monitor PWD infection is

crucial. However, the majority of existing technologies can detect PWD only in

the later stages. To curb the spread of PWD, it is imperative to develop an efficient

method for early detection. We presented an early stage detection method for

PWD utilizing UAV remote sensing, hyperspectral image reconstruction, and SVM

classification. Initially, employ UAV to capture RGB remote sensing images of

pine forests, followed by labeling infected plants using these images.

Hyperspectral reconstruction networks, including HSCNN+, HRNet, MST++,

and a self-built DW3D network, were employed to reconstruct the RGB

images obtained from remote sensing. This resulted in hyperspectral images in

the 400-700nm range, which were used as the dataset of early PWD detection in

pine forests. Spectral reflectance curves of infected and uninfected plants were

extracted. SVM algorithms with various kernel functions were then employed to

detect early pine wilt disease. The results showed that using SVM for early

detection of PWD infection based on reconstructed hyperspectral images

achieved the highest accuracy, enabling the detection of PWD in its early

stage. Among the experiments, MST++, DW3D, HRNet, and HSCNN+ were

combined with Poly kernel SVM performed the best in terms of cross-

validation accuracy, achieving 0.77, 0.74, 0.71, and 0.70, respectively.

Regarding the reconstruction network parameters, the DW3D network had

only 0.61M parameters, significantly lower than the MST++ network, which

had the highest reconstruction accuracy with 1.6M parameters. The accuracy

was improved by 27% compared to the detection results obtained using RGB

images. This paper demonstrated that the hyperspectral reconstruction-poly

SVM model could effectively detect the Early stage of PWD. In comparison to
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UAV hyperspectral remote sensing methods, the proposed method in this article

offers a same precision, but a higher operational efficiency and cost-

effectiveness. It also enables the detection of PWD at an earlier stage

compared to RGB remote sensing, yielding more accurate and reliable results.
KEYWORDS

pine wilt disease (PWD), early stage detection, UAV remote sensing, hyperspectral image
reconstruction, supervised classification
1 Introduction

Pine wilt disease (PWD) is a highly destructive conifer disease

with a global impact, affecting numerous countries and regions.

PWD initially originated in North America (Ikegami and Jenkins,

2018) but has now spread extensively across East Asia, resulting in

significant damage to billions of pine trees and substantial economic

and ecological losses (Zhao et al., 2020a; Hao et al., 2022).

Therefore, timely detection of PWD is crucial as it enables us to

comprehend the current infection situation and implement

appropriate measures to prevent further spread. The existing

classification of PWD disease cycles primarily defines infection

stages based on resin secretion, growth vigor, and needle color (Yu,

R et al., 2021a; 2021b). The traditional and widely used method for

PWD detection involves analyzing wood samples collected from

trees in the chemistry laboratory to detect the presence of pine wood

nematode (PWN) (Futai, 2013). However, this method necessitates

expertise in nematology and is time-consuming. Additionally,

collecting samples over large areas becomes challenging due to

the complex terrain of mountainous regions. Thus, there is an

urgent need to develop a rapid, non-destructive, and large-scale

early detection method.

Recently, UAV-based remote sensing has emerged as a

promising approach for detecting forest pests and diseases (Yang

et al., 2017; Xiao et al., 2022; Du et al., 2024). The integration of

UAV-based remote sensing in plant disease detection has garnered

extensive acceptance due to its cost-effectiveness, flexibility, and

superior spatial resolution, surpassing conventional manual

detection methods (Bagheri, 2020; Sangaiah et al., 2024; Shan

et al., 2024; Zhao et al., 2023; Guo et al., 2023). On the other

hand, a large number of studies show that there are differences in

the visial-infrared spectral band of the canopy before and after

PWD infection (Kim et al., 2018; Yu et al., 2021a). Based on this

fact, researchers have begun using the method of spectral method to

do the PWD detection (Li et al., 2022; Yu, R et al., 2021b; Rao et al.,

2023; Oide et al., 2022), the U-shaped network architecture, known

for its efficacy in capturing features across varied scales of image

space dimensions, is adopted. (Zeng et al., 2021). So to combine

these two methods together has become a hotspot in PWD research.
02159
Certain research methods integrating UAV and spectral images

with target detection algorithms enables direct image-based

detection (Wu et al., 2021; Yu et al., 2021c). Take Wu, B and Yu,

R., for example. Wu, B et al. trained four deep learning models for

detection purposes, which utilized collected images in the 390-

760nm range to detect Early stage PWD, resulting in an average

detection accuracy of 50.2%. Yu, R., et al. used the random forest

based on cart decision tree model to detect PWD early infection

stage, which extracted 37 spectral variables from hyperspectral data

and the recognition accuracy reached 71.67%. Nevertheless, the

mainstream UAV hyperspectral cameras operate on push-broom

imaging principles, compromising spatial resolution in favor of

spectral information, which leads to low image acquisition

efficiency and strict demands on stable environmental

illumination. This limitation hampers their suitability for outdoor

environments and large-area detection. Conversely, the

advancement of deep learning technology has notably enhanced

the performance of hyperspectral image reconstruction networks. A

viable approach involves utilizing UAV RGB cameras to capture

color remote sensing images and conduct hyperspectral image

reconstruction, enabling the extraction of spectral information for

disease testing purposes.

Currently, hyperspectral images reconstruction networks can

accurately retrieve spectral information from RGB images. The

accuracy of hyperspectral reconstruction has been consistently

enhanced in recent computer vision summit challenges, including

NTIRE2018 (Arad et al., 2018), NTIRE2020 (Arad et al., 2020), and

NTIRE2022 (Arad et al., 2022). Among them, the NTIRE2018

champion network HSCNN+ is a convolutional neural network-

based method for hyperspectral image reconstruction (Shi et al.,

2018). In the NTIRE2020 champion network HRNET, a 4-level

hierarchical regression network method is used to reconstruct

hyperspectral images (Zhao et al., 2020b). The network utilizes

PixelUnShuffle and Pixelshuffle layers for inter-layer downsampling

and upsampling (Shi et al., 2016), thereby preserving more spectral

details. In NTIRE2022, the champion network MST++ employed

the Transformer (Ashish et al., 2017) as the fundamental

framework for hyperspectral image reconstruction (Cai et al.,

2022). To enhance the performance of spectral reconstruction,
frontiersin.org
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particularly for reconstructing UAV remote sensing hyperspectral

images in large-scale forest monitoring, this study introduces a

novel spectral reconstruction network called DW3D. DW3D

employs depth-separable three-dimensional convolution to

minimize the network parameter count (Rahim et al., 2021) and

utilizes a U-shaped network architecture to extract features at

various scales (Ronneberger et al., 2015), resulting in improved

reconstruction performance. This network architecture exhibits

strong expressive and generalization abilities in spectral

reconstruction tasks. This article employs the three champion

reconstruction networks and the self-built DW3D network

architecture to conduct spectral reconstruction on RGB images

captured by UAV remote sensing, specifically for the task of early

PWD detection.

Therefore, we presented a novel method for early detection of

PWD, specifically based on UAV remote sensing hyperspectral

image reconstruction and SVM classification. The contributions of

this article can be summarized as follows:
Fron
1. This study combined the hyperspectra l image

reconstruction method with an SVM classification model

to achieve Early stage detection of PWD using UAV RGB

remote sensing images.

2. This paper proposed a novel hyperspectral reconstruction

network that combines three-dimensional depth-separable

convolution and a U-shaped network to enhance detection

efficiency and enable real-time detection of UAV remote

sensing over large areas.

3. Establish a UAV hyperspectral PWD image dataset

containing healthy pine trees and pine trees in the Early

stages of PWD.
2 Materials

This paper utilized two datasets: a self-built dataset for detecting

PWD and a public dataset for training the hyperspectral image

reconstruction network. Furthermore, by combining needle

analysis, ground plant observations, and drone images, PWD is
tiers in Plant Science 03160
categorized into five stages: (I) Green pine, (II) Early stage, (III)

Middle stage, (IV) Heavy stage, and (V) Gray stage (Yu, R et al.,

2021). The remote sensing images provided by this article are also

divided into 5 categories, as depicted in Figure 1.
2.1 The self-built dataset of pine forest
hyperspectral images

The pine remote sensing dataset utilized in this experiment was

sourced from a forest farm located in Hecheng Street, Gaoming District,

Foshan City, Guangdong Province, China(22°54′N, 112°51′E). The
forest farm spans 57 hectares and predominantly consists of masson

pine trees. The dataset comprises UAV remote sensing images captured

at the same location over a duration of eight months, from May to

December 2022. Data collection was performed using the DJI Phantom

4RTK drone, with each flight carried out at an altitude of 350 meters.

Data collection took place in sunny weather conditions between 10:00

and 14:00, with a light intensity of approximately 100,000 Lux, to

maintain data collection consistency. The RGB camera had a spatial

resolution of 1600x1300 pixels, as depicted in Figure 2.

This study conducted 10 remote sensing data collections

spanning from May to December 2022. The study utilized the

coordinates of mid to late-infected pine trees in more recent images

to identify early-infected pine trees in earlier images. Additionally,

ground inspection confirmed that the target plants were infected

with pine wilt disease (PWD) As shown in Figure 3.

Following manual annotation of the original remote sensing

images, the UAV remote sensing images were cropped to achieve a

resolution of 512x482. As shown in Figure 4A. The cropped images

were processed by the hyperspectral reconstruction network, resulting

in the creation of the corresponding dataset of pine forest hyperspectral

images. The spectral information of the corresponding plant is

extracted from the reconstructed hyperspectral image based on the

annotation. As shown in Figure 5.

A total of 320 target plants, consisting of equal proportions of

healthy and diseased plants, were obtained based on the annotations.

Eventually, a spectrum dataset consisting of 320 samples were obtained,

with each sample containing 31 spectral features and a label indicating

the presence or absence of disease. A total of 31 spectral features are

utilized for machine learning classification.
FIGURE 1

Unmanned Aerial Vehicle (UAV) images of pine trees at different PWD infection stages.
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2.2 The public dataset

The NTIRE2022 spectral reconstruction public dataset (Arad

et al., 2022) is employed in this article to pre-train the four

reconstruction networks utilized in our study. The dataset

comprises 1000 RGB-HSI pairs, which are partitioned into

training, validation, and test subsets in an 18:1:1 ratio. Each HSI

data possesses a spatial resolution of 482 × 512 and encompasses 31

wavelengths ranging from 400 nm to 700 nm, as depicted

in Figure 4B.
3 Methods

Deep networks are employed in this article for the

reconstruction of hyperspectral images. The champion networks,

HSCNN+, HRNet, and MST++ from the NTIRE2018, NTIRE2020,

and NTIRE2022 Spectral Reconstruction Challenges, were utilized.
Frontiers in Plant Science 04161
Additionally, the self-built spectral reconstruction network DW3D

from this article was employed to reconstruct hyperspectral images

of pine forest remote sensing.

Simultaneously, this study employed the SVM classification

model to classify and detect Early stage of PWD using the

reflectance spectral features of target plants obtained through

crown segmentation from the pine forest reconstructed

hyperspectral images.
3.1 Hyperspectral reconstruction network

3.1.1 DW3D self-built network
DW3D is a hyperspectral reconstruction network that combines

three-dimensional convolution and the U-Net architecture.

Depthwise separable three-dimensional convolution is employed

to reduce the parameter count, contributing to a more efficient

network. It achieves improved reconstruction performance by
FIGURE 3

(A) Correspond to the images captured on May 26 2022, and (B) correspond to the images captured on June 29 2022. Mid to late-infected pine
trees in the newer image identifying early-infected pine trees in the older image by coordinates.
FIGURE 2

A stitched image of the study area.
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performing multi-scale feature extraction through a U-shaped

network architecture.

Figure 6 illustrates that the input of the DW3D network is an

RGB image. Initially, the feature channels of the RGB input undergo

expansion using a separate two-dimensional convolution layer,

followed by a matrix dimension transformation to include a depth

dimension. Subsequently, a deep feature extraction module is

constructed using three encoder modules and three decoder

modules, forming a combination of U-shaped networks. To

alleviate the issues of information loss and blurring during network

transmission, a skip connection is employed, allowing direct transfer

of intermediate features from the encoder module to the decoder

module. Residual connections are incorporated in the deep feature

extraction module to address the challenges of gradient

disappearance and gradient explosion. The encoder module

comprises two residual separable 3D convolution blocks (RS3CB),

and the decoder module includes two depth-separable 3D

convolutions (D3C) (Rahim et al., 2021). To enhance convergence
Frontiers in Plant Science 05162
speed and improve the model’s generalization ability, batch

normalization and the PReLU activation function are applied.

RS3CB is composed of two depthwise separable 3D convolutions

and a PReLU activation function. Batch normalization is applied

prior to the activation function, and residual connections are utilized

within RS3CB. Downsampling in the U-shaped network is performed

using a three-dimensional maximum pooling layer, whereas

upsampling is achieved using a three-dimensional transposed

convolution layer. In contrast to conventional upsampling

approaches like nearest neighbor interpolation and bilinear

interpolation, the three-dimensional transposed convolution layer is

equipped with learnable parameters (Dumoulin and Visin, 2016) and

can dynamically adjust the upsampling parameters based on the

network. Lastly, the output feature cube from the deep feature

extraction module is transformed into a feature cube with 31

channels using a three-dimensional convolution operation.

Subsequently, a hyperspectral image comprising 31 channels is

obtained by reshaping the matrix dimensions.
FIGURE 5

Hyperspectral images reconstruction and reflectance spectral feature acquisition.(The red box represents the diseased plant, the green box
represents the healthy plant, and the curve depicts the spectral characteristic curve of the plant.).
FIGURE 4

(A) UAV RGB remote sensing image dataset, and (B) the NTIRE2022 Spectral Reconstruction Challenge open source dataset.
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In this study, Figure 7 illustrates the employment of the

Depthwise Separable 3D Convolution Module (D3C). Given that

3D convolution possesses an additional dimension compared to 2D

convolution, it offers advantages in channel dimensionality.

Concurrently, the U-shaped network architecture, known for its

efficacy in capturing features across varied scales of image space

dimensions, is adopted. Traditional 3D convolution bases its

convolution kernel count on input and output channel numbers,

leading to potential parameter redundancy. To address this, the study
Frontiers in Plant Science 06163
suggests utilizing Depthwise Separable 3D convolution to trim

unnecessary parameters while maintaining the reconstruction

quality. This technique segments the convolution layer into two

components: a grouped 3D convolution and a pointwise 3D

convolution. Initially, kernels with matching input channels extract

diverse channel features, followed by one-dimensional kernels for

channel information fusion. This approach balances feature

extraction and channel information fusion, effectively reducing

parameters without compromising reconstruction outcomes.
FIGURE 7

Depthwise Separable 3D Convolutional Module (D3C).
FIGURE 6

Self-built DW3D structure.
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3.1.2 Hyperspectral reconstruction
network evaluation

To assess the performance of DW3D proposed in this article on

the NTIRE2022 dataset in an objective manner, the scoring criteria

provided by the NTIRE2022 Spectral Reconstruction Challenge are

followed. The evaluation of this article employs RMSE(root mean

square error), MRAE(mean relative absolute error), and PSNR

(Peak signal-to-noise ratio) as indicators. MRAE is selected as the

ranking criterion to prevent the introduction of weighting errors in

high-brightness areas of the test image, rather than using RMSE.

The calculation of MRAE, RMSE and PSNR is as follows:

MRAE =
1
No

N

p=1
(
I(p)HSI − I(p)SR

��� ���
I(p)HSI

) (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

p=1
(I(p)HSI − I(p)SR )

2

s
(2)

PSNR = 10 � log10(
MAX2

MSE
) (3)

MSE =
1
No

N

p=1
(I(p)HSI − I(p)SR )

2 (4)

where I(p)HSI and I(p)SR denote the p-th pixel value of the ground

truth and the spectral reconstructed HSI. MAX represents the

maximum value among all image points. A smaller MRAE or

RMSE indicate better performance.
3.2 Machine learning classification model

3.2.1 Classification algorithm
This article employs the support vector machine (SVM) as the

classification algorithm (Cortes et al., 1995). It utilizes the soft

margin SVM and employs various high-dimensional space

mapping methods to transform the spectral data into linearly

separable data in high-dimensional space.

Furthermore, this article employs logistic regression. It utilizes

decision tree classification and Bayesian classification for detection

and compares them with SVM classification results. Based on the

outcomes in section 4.2, the study adopts the optimal SVM

classification model.

3.2.2 Evaluation
This article utilized the 10-fold cross-validation accuracy

(Cross-Validation Accuracy) as the ranking metric to assess the

classification results. Additionally, precision, recall, and accuracy

were employed to evaluate the detection performance, as shown

below.

recall =
TP

TP + FN
(5)
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precision =
TP

TP + FP
(6)

accuracy =
TP + TN

TP + FP + TN + FN
(7)

Here, TP(A True Positive) occurs when a positive example is

correctly classified as positive, while FN(a False Negative) is

recorded when a positive example is erroneously classified as

negative. Similarly, TN(a True Negative) is noted when a negative

example is correctly classified as negative, and FP(a False Positive) is

registered when a negative example is mistakenly classified

as positive.

This article expanded the evaluation of classification problems

by incorporating ten-fold cross-validation to assess the accuracy

and stability of the machine learning model. Ten-fold cross-

validation involves the random division of the sample data into

10 parts, with 9 parts selected as the training set in each iteration,

and the remaining 1 part used as the test set. After each round, 9

new samples are randomly chosen for training. Following several

rounds (fewer than 10), the model and parameters that yield

optimal loss function evaluation are selected. This method

provides a more comprehensive reflection of the model’s stability

and accuracy.
4 Results

4.1 Training of hyperspectral image
reconstruction network

This article compared a self-built hyperspectral reconstruction

network with an existing state-of-the-art (SOTA) hyperspectral

reconstruction network, including the champion networks

HSCNN+ and HRNET from the NTIRE2018 and NTIRE2020

Spectral Reconstruction Challenge, as well as the NTIRE2022’s

champion network MST++. The results were presented in

Table 1. The self-built DW3D reconstruction yields improved

results in terms of reconstruction accuracy compared to HSCNN

+ and HRNet. However, DW3D exhibited a noticeable gap when

compared to MST++. Our self-constructed DW3D network

exhibits the lowest number of parameters and computational

load. This demonstrates the superior efficiency of our DW3D

network. GFLOPS, an acronym for floating-point operations,

serves as a metric to assess the computational speed of a model.

Typically, a lower GFLOPS value correlates with higher

computational speed.

This article presented visual HSI reconstruction results and

their corresponding error maps for various methods. Figure 8

displays the error heat map for band 21. Darker colors indicate

smaller errors, while lighter colors indicate larger errors. The MRAE

error is uniformly distributed across the range from 0 to 10,

depicted on the far right of the figure. Based on these figures, it

was evident that MST++ exhibits the most favorable reconstruction

effect and fidelity, with the DW3D method following closely.
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4.2 PWD predict results

This study performed conducts a comparative analysis of

several different hyperspectral image reconstruction networks

combined with SVM classification models for the detection of

Early stage PWD. HSCNN+, HRNet, MST++, and the self-built

DW3D network were used for hyperspectral image reconstruction

and combined with different kernel function SVM classification

models, logistic regression classification models, decision tree

classification models, and Bayesian classifiers to conduct binary

classification experiments. For the classification experiment, the

samples underwent shuffling, and a random number seed divided
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the training and test sets into a 7:3 ratio. The experimental results

are shown in Table 2.

Based on the experimental results, the SVM classification model

outperforms the other three classification models. We studied the

best matching value of the kernel function coefficient (gamma) and

the regularization parameter C in the Radial Basis Function (RBF)

SVM for PWD data classification in the paper. The gamma value

determines the coefficient of the kernel function. The greater the

gamma value, the kernel function has a greater impact on the

classification results. The experiments demonstrated that

the classification cross-validation accuracy was optimal when the

kernel function coefficient gamma was set to 0.1 and C was set to 10.
FIGURE 8

The Visual results of the 21-th band and the reconstruction error images of an HSI chosen from validation set.
TABLE 1 Comparison of four hyperspectral reconstruction network evaluation indicators.

Methods Parameter (M) FLOPS n(G) MRAE RMSE PSNR

HSCNN+ 4.65 302.89 0.3814 0.0588 26.36

HRNet 31.70 164.20 0.3476 0.0550 26.89

MST++ 1.62 23.10 0.1645 0.0248 34.32

DW3D 0.61 16.42 0.3177 0.0446 28.40
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This paper investigated the influence of the degree of the

polynomial kernel function and the constant term on PWD data

classification in polynomial SVM. Modifying the values of degree

and constant term alters the model’s capacity to capture nonlinear

features. The optimal degree and coef0 are determined by

evaluating the cross-validation accuracy. Additionally, the study

examined the influence of different regularization parameters (L1

and L2) and various loss functions in the linear kernel function

SVM on PWD data classification. Finally, this article employed grid

search to identify the optimal parameters by exploring all potential

combinations among the candidate parameters. The parameters

yielding the best cross-validation accuracy were then selected.

This study ranks using the average accuracy obtained from ten-

fold cross-validation and assesses the performance of the

classification model by considering standard deviation, accuracy,

precision, and recall indicators. Table 2 reveals the utilization of the

self-constructed DW3D network for reconstruction. The poly

kernel SVM cross-verification accuracy stands at 74.0%, with the
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linear kernel SVM achieving the highest accuracy of 82.47%. The

MST++ network exhibited a cross-validation accuracy of 77% using

the poly kernel SVM, with the highest accuracy of 83.5% achieved

using the linear kernel SVM. The results revealed that the self-built

hyperspectral reconstruction network outperforms HSCNN+ and

HRNet in terms of detection accuracy, generalization, and

application performance. It is noteworthy that we achieved a

cross-validation accuracy of 74% using our self-built DW3D

approach, with the number of model parameters amounting to

only 38% of MST++.

In Figure 9, This study utilized the MST++-polySVM model to

present the visualization results of selected Early stage PWD

samples from the test set (the subsequent result analysis defaults

to this model). Each sample in the study is assigned a unique

number during manual annotation. The annotations of the test set

samples are then selected based on their respective test numbers for

visual representation. The prediction results are manually

annotated on the image based on the plants’ location information,
TABLE 2 Predict results of different reconstruction networks and different kernel SVMs.

Reconstructed Methods Predicted model Cross validation Standard Deviation Accuracy Precision Recall

MST++

Poly-SVM 0.77 0.0744 0.824 0.77 0.82

Linear-SVM 0.704 0.0774 0.835 0.87 0.80

Rbf-SVM 0.707 0.0902 0.763 0.77 0.72

Logistic Regression 0.70 0.0923 0.824 0.71 0.78

Decision Tree 0.67 0.0855 0.730 0.72 0.80

Bayes Classifier 0.65 0.0896 0.710 0.70 0.62

DW3D

Poly-SVM 0.74 0.0971 0.793 0.82 0.71

Linear-SVM 0.669 0.1058 0.8247 0.84 0.66

Rbf-SVM 0.66 0.0965 0.773 0.86 0.64

Logistic Regression 0.69 0.1208 0.783 0.78 0.71

Decision Tree 0.68 0.1032 0.762 0.69 0.73

Bayes Classifier 0.63 0.1158 0.65 0.71 0.64

HRNet

Poly-SVM 0.719 0.0722 0.763 0.79 0.70

Linear-SVM 0.70 0.0834 0.793 0.77 0.70

Rbf-SVM 0.66 0.1003 0.773 0.74 0.68

Logistic Regression 0.704 0.0856 0.763 0.79 0.70

Decision Tree 0.64 0.0961 0.793 0.73 0.72

Bayes Classifier 0.65 0.1143 0.723 0.70 0.68

HSCNN+

Poly-SVM 0.70 0.0658 0.814 0.89 0.70

Linear-SVM 0.70 0.0657 0.79 0.86 0.77

Rbf-SVM 0.641 0.1148 0.773 0.78 0.77

Logistic Regression 0.70 0.1189 0.804 0.83 0.71

Decision Tree 0.67 0.1139 0.78 0.85 0.77

Bayes Classifier 0.65 0.1135 0.742 0.62 0.73
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corresponding to the test sample number. Correct classifications are

indicated by a red box, while incorrect ones are marked with a green

box. In the early PWD detection samples randomly selected, our

model can achieve 77% detection accuracy.

This paper currently employs the SVM model to achieve a 77%

classification accuracy on a dataset comprising 320 samples, despite

having shown promising results in early PWD detection studies.

However, there exists ample room for in-depth analysis and

enhancement within this study’s findings. Firstly, the quantity and

quality of samples play a crucial role. The high flight altitude of the

drone in this study results in limited pixels per tree canopy, potentially

impacting hyperspectral image reconstruction. Moreover, due to the

sample size constraint, the SVM’s performance was not fully realized,

potentially influencing the model’s efficacy. Secondly, the selection of

model parameters significantly affects accuracy. Experimentation with

various kernel functions and parameter combinations has been

conducted to optimize detection outcomes. Lastly, feature

engineering stands out as a pivotal aspect for enhancing model

performance. Future research aims to delve deeper into feature

engineering techniques, including feature combination and
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dimensionality reduction methods, to enhance the model’s data

representation capabilities.
5 Discussion and conclusion

5.1 Advantages of DW3D networks

The self-constructed DW3D model in this paper exhibits

substantially fewer parameters and floating-point operations—

accounting for only 38% and 71% of MST++, respectively. This

indicates that the DW3D model introduced in this study offers

accelerated image processing. This makes it feasible to integrate our

lightweight reconstruction model into embedded devices, unlike

existing reconstruction algorithms that are impeded by their high

parameter count. By consuming fewer memory resources and

operating with greater speed, our DW3D model enables seamless

integration with embedded devices. Moreover, these embedded

devices can be incorporated into drone platforms, facilitating rapid,

non-destructive, and large-scale detection of early pine wilt disease.
FIGURE 9

The visualization results of Early stage PWD samples from the test set are presented, with successful classifications denoted in red boxes and
incorrect classifications denoted in green boxes. (A) represents the original image, while (B) represents the predicted result. (A, B) Correspond to the
images captured on May 26, while (C) represents the real image taken on June 29.
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5.2 RGB images are directly used for early
PWD detection

This paper compared the utilization of RGB images directly,

without employing a hyperspectral reconstruction network. The

results are presented in Table 3. The highest achieved cross-

validation accuracy is only 0.50, which means that the use of

hyperspectral images is more conducive to early PWD detection.

This study employs a decision tree classification model to assess

feature importance. The model evaluates the significance of features

by examining their impact on the target variable. Notably, in

constructing the decision tree, the optimal partitioning attribute is

chosen based on the feature’s classification efficacy on the dataset,

utilizing metrics like information gain or information gain ratio.

This paper examines and contrasts the contributions of

reconstructed hyperspectral images and RGB images in label

classification. Figure 10 displays the ranking of feature importance

for labels using 31 features of the reconstructed hyperspectral image

and 3 features of the RGB image. The 610nm band exhibits the

highest feature importance, succeeded by the 570nm and 630nm

bands, as depicted in the figure. The approximate ranges of the three

channels in the RGB image are as follows: R (around 700 nm), G

(around 550 nm), and B (around 430 nm). The feature importance

ranking of hyperspectral images reveals that the features near these

channels are of lesser significance. Simultaneously, the feature

ranking of RGB images indicates that the importance of the R, G,

and B channels is relatively moderate. These three features appear

to contain limited classification information, resulting in

suboptimal classification performance when using RGB images.

This article employed a three-dimensional display diagram to

compare and analyze the visualization results of three features (R,

G, and B) comprising 80 random samples and the channel values

(570nm, 610nm, and 630nm) that exert the highest influence on the

label. Figure 11 reveals that the labels in the RGB visualization

results lack a distinct classification tendency, whereas the

visualization results of the 18th, 22nd, and 24th channels in HSI

exhibit a noticeable classification tendency. These findings imply

that incorporating features from reconstructed hyperspectral

images may enhance the classification performance in this task.

Some research methodologies integrate RGB images with deep

learning target detection algorithms for direct detection (Yu, R et

al., 2021b; Wu et al., 2021);. Yu, R et al. utilized Faster R-CNN,

YOLOv4, random forest, and support vector machine algorithms to

detect early PWD. The target detection algorithm categorized PWD
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into four classes, with early PWD accuracy at 48.88%. Machine

learning was employed for multi-classification tasks of PWD,

achieving an overall classification accuracy of 75.33%. Wu, B

et al. trained four deep learning models (Faster R-CNN ResNet50,

Faster R-CNN ResNet101, YOLOv3 DarkNet53, and YOLOv3

MobileNet) for detection. Images ranging from 390 to 760nm

were utilized for early PWD detection, with an average detection

accuracy of 50.2%. While the target detection algorithm based on

deep learning in RGB images is effective for mid- and late-stage

PWD, its efficacy for early-stage PWD is moderate. This is primarily

due to minimal changes in canopy color of early PWD diseased

plants, leading to challenges in accurately identifying them using

the deep learning-based target detection algorithm. In conclusion,

reconstructing the spectral data from RGB images and extracting

spectral information prove to be valuable and beneficial for the early

detection of PWD.
5.3 The robustness of the model

This study randomly selected 87 samples in May, June, and

August respectively as test sets to study the test results in different

months. The confusion matrix of the test results was shown in

Figure 12. Specifically, the samples in May were used as the test set,

and the precision of the disease was 0.674, and the recall was 0.659;

the samples in June were used as the test set, the precision of the

disease was 0.68, and the recall was 0.84; Lastly, the samples in

August were used as the test set, the precision of the disease was

0.67, recall was 0.77. The slight variation might stem from the

sample discrepancies across various months, consequently

influencing the classification outcomes. Moreover, the chi-square

test conducted on 10 test results in this study revealed no significant

statistical variance. Consequently, the hyperspectral image

reconstruction network presented in this study, in conjunction

with the SVM-based Early Stage PWD detection model,

demonstrates robustness across samples from various months.
5.4 Conclusion

To summarize, In this paper, we proposed a method that

utilizes UAV remote sensing color images, deep learning-based

hyperspectral image reconstruction networks, and SVM

classification to achieve early detection of pine wilt disease

(PWD) in pine forests. The method achieved an accuracy of 77%.

The key to achieving early detection of PWD in this study was the

utilization of hyperspectral image reconstruction networks to

reconstruct hyperspectral images The accuracy of the early

detection method proposed in this study was comparable to or

surpasses that of methods utilizing drone hyperspectral remote

sensing technology. This article introduces a new hyperspectral

image reconstruction network called DW3D, with the number of

parameters being only 38% of MST++, the computational load is

merely 71% of that in MST++, while achieving a relatively high-

quality reconstruction. Hyperspectral remote sensing necessitates

costly sensors for accurate data collection and entails time-
TABLE 3 Comparison of classification results using RGB color
images directly.

Methods Cross validation Accuracy

MST++_SVM 0.77 0.824

DW3D_SVM 0.74 0.793

HRNet_SVM 0.719 0.763

HSCNN+_SVM 0.70 0.79

RGB_SVM 0.504 0.531
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FIGURE 11

A three-dimensional display of 80 random samples by selecting the three features R, G, and B, and a three-dimensional display of 80 samples by
selecting 570nm, 610nm, and 630nm, which have the highest impact on the label.
FIGURE 12

Samples from May, June, and August are selected as test sets respectively. (A–C) Respectively represent the confusion matrix of the test set on May
26th, the test set on June 8th, and the test set on August 17th.
FIGURE 10

Feature importance of 31 channel features of hyperspectral image (400-700nm, spectral resolution of 10nm) and 3 features of RGB image (R, G, B)
to labels.
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consuming and complex data processing. In contrast, the method

proposed in this paper reduces the detection cost, enhances data

collection efficiency, and offers more advantages for large-area

detection tasks. The establishment of the pine wilt disease (PWD)

remote sensing dataset in this study serves as a foundation for early

detection of PWD. As the dataset size grows in the future, the

detection accuracy will also improve.

Current research encounters challenges in large-scale detection.

The primary challenge involves integrating classification processing

into reconstruction to establish an end-to-end detection model. The

secondary challenge pertains to the limited richness of current data

samples. Future endeavors should focus on enhancing early PWD

samples to boost the detection model’s accuracy, facilitating more

effective early PWDdetection models in extensive agricultural regions.
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Introduction: The assessment of the severity of fruit disease is crucial for the

optimization of fruit production. By quantifying the percentage of leaf disease, an

effective approach to determining the severity of the disease is available.

However, the current prediction of disease degree by machine learning

methods still faces challenges, including suboptimal accuracy and

limited generalizability.

Methods: In light of the growing application of large model technology across a

range of fields, this study draws upon the DINOV2 visual large vision model

backbone network to construct the DINOV2-Fruit Leaf Classification and

Segmentation Model (DINOV2-FCS), a model designed for the classification

and severity prediction of diverse fruit leaf diseases. DINOV2-FCS employs the

DINOv2-B (distilled) backbone feature extraction network to enhance the

extraction of features from fruit disease leaf images. In fruit leaf disease

classification, for the problem that leaf spots of different diseases have great

similarity, we have proposed Class-Patch Feature Fusion Module (C-PFFM),

which integrates the local detailed feature information of the spots and the

global feature information of the class markers. For the problem that the model

ignores the fine spots in the segmentation process, we propose Explicit Feature

Fusion Architecture (EFFA) and Alterable Kernel Atrous Spatial Pyramid Pooling

(AKASPP), which improve the segmentation effect of the model.

Results: To verify the accuracy and generalizability of the model, two sets of

experiments were conducted. First, the labeled leaf disease dataset of five fruits

was randomly divided. The trained model exhibited an accuracy of 99.67% in

disease classification, an mIoU of 90.29%, and an accuracy of 95.68% in disease

severity classification. In the generalizability experiment, four disease data sets

were used for training and one for testing. The mIoU of the trained model

reached 83.95%, and the accuracy of disease severity grading was 95.24%.
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Discussion: The results demonstrate that the model exhibits superior

performance compared to other state-of-the-art models and that the model

has strong generalization capabilities. This study provides a new method for leaf

disease classification and leaf disease severity prediction for a variety of fruits.

Code is available at https://github.com/BaiChunhui2001/DINOV2-FCS.
KEYWORDS

DINOV2, deep learning, fruit disease recognition, semantic segmentation,
smart agriculture
1 Introduction

In the contemporary globalized food supply chain, fruits occupy

a pivotal position in the human diet. Fresh fruits, in particular, are

highly esteemed for their alluring aroma and distinctive flavor

(Wang et al., 2022). Fruit diseases represent a significant

challenge for the fruit industry, accounting for significant

economic losses annually. Timely identification of fruit diseases

helps control infections and ensure optimal productivity (Khan

et al., 2022). However, traditional fruit disease detection methods

are susceptible to subjective judgement and experience differences

of the inspector, leading to inconsistent and low accuracy of

detection results (Khattak et al., 2021). Deep learning-based fruit

disease detection methods not only significantly increase detection

speed and accuracy, but also further optimise and enhance the

ability of disease identification through continuous data

accumulation and learning (Shoaib et al., 2023).

The development and implementation of autonomous plant

disease detection has been made easier by the ongoing advancements

in artificial intelligence technologies. A study (Atila et al., 2021)

employed the EfficientNet model to identify diseases of plant leaves,

with the objective of enhancing diagnostic accuracy and efficiency. By

contrasting it with advanced convolutional neural network models, the

study demonstrated that EfficientNet performs well in classifying plant

leaf images, thereby validating its potential for automated diagnosis of

plant diseases. The RIC-Net (Zhao et al., 2022) was developed on the

foundation of the Inception and residual structure fusion models, with

an enhanced Convolutional Block Attention Module (CBAM)

integrated for the purpose of enhancing the efficacy of plant leaf

disease classification. The DFN-PSAN (Dai et al., 2024) model

demonstrated high performance in identifying diseases of plants

through the application of weather data augmentation techniques on

three datasets derived from real agricultural scenarios. The topic of

plant disease identification has already reached a mature state of

application for deep learning techniques.

Precisely determining the extent of plant diseases is vital from the

standpoint of application. This is because the detection of disease

severity assists farmers in making informed decisions to mitigate
02173
losses due to disease infection. A study (Zeng et al., 2020) created a

HLB-infected citrus leaf image dataset, expanded the original training

dataset with a deep convolutional generative adversarial network, and

trained six different deep learning models to perform severity

detection. A unique three-branch Swin Transformer classification

network (TSTC) was designed in another study (Yang et al., 2023)to

diagnose plant diseases and their severity independently and

concurrently. However, these plant disease severity estimates are

based on simple classification networks, which are less effective and

weakly interpretable. In practice, calculating the percentage of leaf

diseased area is a crucial step in assessing the severity of the disease

(Madden et al., 2007). A study (Goncalves et al., 2021) trained six

semantic segmentation models for the purpose of recognizing and

estimating the severity of plant leaf diseases with an accuracy

comparable to that of commercial software. This was achieved

without the need to manually adjust the segmentation parameters

or remove complex backgrounds from the images. Another study

(Hu et al., 2021) employed a support vector machine to segment the

lesion in order to better identify the disease and offered an elliptical

restoration approach to fit and restore the whole size of the occluded

or damaged tea leaves. Researchers presented a deep learning and

fuzzy logic based approach to establish an automated technique for

grapevine black measles disease identification and severity analysis (Ji

andWu, 2022). To address the problem of cucumber downy mildew,

researchers proposed a two-stage segmentation framework to

calculate the percentage of leaf disease area (Wang et al., 2021).

The resulting accuracy of the disease severity classification was

92.85%. Nevertheless, all of these works have trained models just

for a single plant disease, thus leading to limited generalization.

As computer vision technology advances, large vision models

find extensive use in several domains. SAM (Kirillov et al., 2023), a

powerful model designed for segmentation tasks, has been developed

to achieve zero-sample migration to a variety of tasks through cueing

engineering. It has demonstrated excellent performance on a range of

image segmentation tasks, which has contributed to the advancement

of the computer vision field. However, the considerable

computational expense of SAM represents a significant obstacle to

its broader deployment in industrial settings. FastSAM (Zhao et al.,
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2023), MobileSAM (Zhang et al., 2023a), and MobileSAMv2 (Zhang

et al., 2023b) employ model parameter reduction and accelerate

inference techniques to mitigate this challenge. DINO (Caron et al.,

2021) employs a novel contrast learning method to enhance its visual

generic representation. This method compares the features of the

original image with those of a randomly cropped image, resulting in

highly satisfactory outcomes. DINOv2 (Oquab et al., 2023) is a

method for pre-training an image encoder on a large image dataset

in order to obtain visual features with semantic meaning. These

features can be employed for a diverse range of visual tasks without

the necessity for further training to achieve performance levels

comparable to those of supervised models. In the application of

large vision models, MedSAM (Ma et al., 2024) was demonstrated to

have significantly enhanced segmentation performance on medical

images by fine-tuning SAM. SAMRS (Wang et al., 2024) dataset

developed using SAM and existing remote sensing datasets. The

powerful feature extraction capability of large vision models can

better assist agricultural disease detection. Nevertheless, there hasn’t

been any information on the use of large vision models in plant

disease detection, particularly for classification and severity estimate.

In this study, we constructed the model DINOV2-FCS for leaf

disease classification and severity prediction of a variety of fruits

based on the DINOV2 large vision model backbone network. The

contributions of this study are as follows:
Fron
1. We constructed the model DINOV2-FCS for leaf disease

classification and severity prediction of a variety of fruits

based on the DINOV2 large vision model backbone

network. This approach has been shown to have good

generalization ability.

2. In order to enhance the training of the model, the leaf and

lesion regions in the 2010 images were meticulously labeled.

3. An improvement to the MLP decoder has been proposed,

namely Explicit Feature Fusion Architecture (EFFA), which

fuses explicit feature information and multilevel feature

information and improves the segmentation accuracy of

the model.

4. We have proposed Alterable Kernel Atrous Spatial Pyramid

Pooling (AKASPP), which fuses contextual and detailed

edge information from different sensory fields in order to

enhance adaptability to varying sizes and shapes of lesion

targets and to align with the edge details of leaves

and lesions.

5. We have proposed Class-Patch Feature Fusion Module (C-

PFFM), which fuses local detailed feature information from
tiers in Plant Science 03174
patch tokens and global feature information from class token,

resulting in improved classification accuracy of the model.
2 Materials and methods

2.1 Datasets

This study collected 2,010 images related to five different fruit

foliar diseases: apple black rot, cedar apple rust, grape black measles,

grape black rot, and strawberry leaf scorch. These images were

obtained from the public PlantVillage dataset (Hughes and Salathé,

2015), which consists of images captured in an indoor laboratory

setting and is widely used for crop and plant disease research. We

increased the number of images to 8,040 using data augmentation

techniques, and all images were accurately labeled. The precise

number of images for each disease is presented in Table 1. The

procedure for processing the dataset was as follows:
1. Uniform image size: The selected images were resized to

512×512 pixels, consistent with the input specifications of

the model, by using the resize method of the Image class in

the Pillow library (version 10.2.0).

2. Data labeling: The leaf and lesion areas in the images were

manually labeled with high accuracy using LabelMe

(version 3.16.7). Each image was categorized into three

regions: background, leaf, and lesion, represented by black,

green, and red, respectively. The labeled images serve as a

benchmark for evaluating the accuracy of the segmentation

model. Figure 1A shows a selection of images from the

dataset, alongside their accurately labeled counterparts.

3. Data augmentation: To simulate various lighting

conditions and disturbances, data augmentation was

applied to the original images by introducing random

noise, applying blurring operations, and adjusting

brightness. Specifically, NumPy (version 1.24.4) was used

to generate Gaussian-distributed noise, which was added to

the images. Various blurring algorithms from the OpenCV

library (version 4.9.0.80) were applied, and brightness was

randomly adjusted using a factor generated by NumPy.

This enhanced the diversity of the dataset. Figure 1B shows

examples of the augmented images.

4. Data splitting: To train the model and evaluate its

performance, the dataset was randomly divided into
TABLE 1 Statistics on the number of datasets.

Apple black rot Cedar apple rust Grape
black measles

Grape black rot Strawberry
leaf scorch

Original 441 417 419 404 329

Enhanced 1323 1251 1257 1212 987

Total 1764 1668 1676 1616 1316
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training and test sets with a 7:3 ratio. To ensure

reproducibility, the random seed was set to 0.
In practice, calculating the percentage of leaf diseased area is a

crucial step in assessing the severity of the disease. Nevertheless,

there is as yet no uniform grading scale for the severity of disease.

Guided by the experience of experts as well as references to the

literature (Wang et al., 2021), this study graded the severity of leaf

disease to facilitate a better assessment of model performance.

illustrates the grading strategies employed to assess the severity of

leaf disease. Table 2 illustrates the grading strategies employed to

determine leaf disease severity.
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2.2 Model structure

In this study, a model, DINOV2-FCS, is constructed based on the

DINOV2 large vision model for the purpose of classifying and

segmenting diseased leaves of fruits. The DINOv2 model generates

generalized visual features through pre-training on a large amount of

well-curated data, which are effective across different image

distributions and tasks without the need for fine-tuning. The

DINOv2-FCS model uses the DINOv2-B (distilled) as the

backbone. The DINOv2-B model adopts the ViT-B/14 architecture

and consists of 12 consecutive Transformer Blocks. In this study, the

classification and segmentation modules are designed separately to

accomplish fruit leaf disease classification and severity prediction,

respectively, using the features obtained from the backbone.

In the classification module, this study proposes Class-Patch

Feature Fusion Module (C-PFFM) as a method of fusing patch

tokens and class token for effective feature fusion. C-PFFM is

demonstrated to more effectively utilise the features generated by

the backbone for disease classification of fruit leaves, and to

enhance the model’s classification accuracy. In the segmentation

module, the following methods are proposed: Explicit Feature

Fusion Architecture (EFFA) and Alterable Kernel Atrous Spatial

Pyramid Pooling (AKASPP). EFFA fuses explicit feature

information and multilevel feature information. AKASPP fuses
TABLE 2 Grading strategies for the severity of leaf disease.

Disease grade Proportion of disease spots in leaves P

Level 0 0

Level 1 0<P ≤ 10%

Level 2 10%<P ≤ 20%

Level 3 20%<P ≤ 40%

Level 4 40%<P ≤ 60%

Level 5 60%<P ≤ 100%
FIGURE 1

(A) Sample dataset annotation; (B) Sample data augmentation.
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contextual information and detailed edge information from

different sensory fields. These modules greatly enhance the

segmentation performance. The overall model structure is

shown in Figure 2.
2.3 Class-patch feature fusion module

In VIT (Dosovitskiy et al., 2020), the classifier typically inputs

the class token to a fully connected layer, after which the

classification result is obtained. The advantage of this approach is

that the classifier is constructed in a straightforward manner, the

number of parameters is minimal. However, utilising the class token

as the sole input to the classifier will result in the omission of a
Frontiers in Plant Science 05176
substantial quantity of local, detailed feature information. To

address this issue, Class-Patch Feature Fusion Module (C-PFFM)

is proposed in this study. C-PFFM effectively fuses the local detail

feature information of patch tokens and the global feature

information of class token, thereby enhancing the model’s

classification accuracy. The operation procedure of C-PFFM is

illustrated in Equation 1.

H = (1 − a) · avgpoolXp + a · Xc

a = CBS((avgpoolXp + Xc))

(
(1)

Xp denotes patch tokens feature; Xc denotes class token feature;

avgpool denotes global average pooling operation; CBS denotes

Convolution + BN + Sigmoid; X denotes output feature map;
FIGURE 3

Structure of C-PFFM.
FIGURE 2

(A) Represents the overall structure of DINOV2-FCS; (B) represents the structure of CAM; (C) represents the structure of Transformer Block.
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The final two layers of the backbone feature extraction network,

patch tokens feature Xp and class token feature Xc, are initially

identified. Feature W is obtained by performing a global average

pooling operation on feature  Xp and summing feature Xc element

by element. The global average pooling operation is illustrated in

Equation 2 The feature W is then subjected to convolution and BN

operations to obtain the channel weights a via the Sigmoid

operation. Feature Xp is subjected to element-by-element matrix

dot-multiplication with the channel weights (1 − a) and the feature.
The obtained features are subjected to element-by-element

summing operation to obtain the patch tokens and class token

fusion feature. The structure of C-PFFM is depicted in Figure 3.

Xavgpool =
1

H �WoH
i=1oW

j=1Xði,jÞ (2)

X denotes the feature map; H denotes the height of the feature

map; W denotes the width of the feature map; Xavgpool denotes the

feature after global average pooling.

Class token contains long-range global feature information and

is often used as input features for classifiers. However, the rich local

detailed feature information contained in patch tokens should not

be ignored. In particular, in the task of classifying fruit leaf diseases,

there is a great similarity between leaf spots of different diseases. If

the detailed features are ignored and only the global features are

focused on, it will lead to poor classification accuracy of the model.

Local information typically encompasses fine structural and local

features within an image, whereas global information encompasses

the overall context and background knowledge. The effective fusion

of the two enables the model to learn a complete and representative

feature, thereby enhancing its ability to comprehend the input data

and its classification performance.
2.4 Explicit feature fusion architecture

SegFormer (Xie et al., 2021) is a straightforward and effective

semantic segmentation framework for Transformer. This approach

avoids complex decoder design and fuses information from different

layers. For semantic segmentation tasks, these feature information are

multi-layered global feature information and lack explicit feature

information, which makes it difficult to segment some tiny targets.

CFPNet (Quan et al., 2023) proposes an Explicit Visual Center (EVC)

that focuses on aggregating local corner-region features of an image

to enhance the feature representation.In this study, Explicit Feature

Fusion Architecture (EFFA) is proposed. The output features from

each of the four stages of the DINOV2 backbone are input into the

MLP layer to obtain global feature information at multiple levels.

Subsequently, the features from the last layer of the DINOV2

backbone are inputted into the EVC to obtain explicit feature

information. The explicit feature information is integrated into the

global feature information of each layer through a summing

operation with the global feature information of multiple layers.

Finally, the multilevel feature information is spliced according to the

channels and fused by a channel attention. The specific structure of

EFFA is illustrated in Figure 2.
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The image of leaf disease exhibits a multitude of spots of varying

sizes. When the model performs segmentation, it is not uncommon

that disease spots are incompletely segmented or subtle spots are

directly ignored. EVC provides a powerful feature enhancement

mechanism for the model. This mechanism enables semantic

segmentation models to recognize and localize objects in an

image with greater accuracy, particularly in the context of images

comprising multiple segmented objects, such as those depicting leaf

diseases. The EFFA proposed in this study fuses explicit feature

information into global feature information at each level,

subsequently fusing multilevel feature information. Multi-level

fusion can exploit the complementarity between the underlying

and higher-level features to enhance the feature representation. The

lowest-level features typically comprise local details and texture

information about the image, whereas the highest-level features

encompass more abstract semantic information. These multilevel

features integrate explicit feature information from EVC.
2.5 Alterable kernel atrous spatial
pyramid pooling

In fruit leaf images, there are numerous spots with intricate

shapes and varying sizes that can significantly impact the

segmentation performance of the model. A Pyramid Pooling

Module (PPM), comprising a set of pooling blocks with distinct

scales, has been proposed in PSPNet (Zhao et al., 2017) based on the

concept of pyramid pooling. The PPM provides a comprehensive

global representation encompassing the interrelationships between

diverse scales and subregions, thereby minimizing the loss of

contextual information. DeepLabv2 (Chen et al., 2017a) proposed

Atrous Spatial Pyramid Pooling (ASPP) to fuse multi-scale

information. In light of this, DeepLabv3 (Chen et al., 2017b) and

DeepLabv3+ (Chen et al., 2018) have enhanced the ASPP module,

achieving notable outcomes. These modules employ diverse scales

of receptive fields for fusion, addressing the issue of varying target

sizes in images. However, in the context of fruit leaf disease images,

the spot targets are also characterised by intricate shapes and

indistinct edges. In this study, a novel approach, AKASPP, is

proposed for the fusion of contextual and detailed edge

information from different receptive fields. This approach is based

on inflated convolution and AKConv (Zhang et al., 2023).

Expansion convolution offers the potential to provide a larger

sensory field than conventional convolution. Conventional

convolution permits the construction of a receptive field of size K �
K when the convolution kernel size is K. In contrast, inflated

convolution provides a receptive field as illustrated in Equation 3

Alterable Kernel Convolution (AKConv) is a new type of

convolutional operation that allows convolution kernels to have

an arbitrary number of parameters and an arbitrary sampling shape.

In contrast to traditional convolution operations, which are

typically constrained to fixed-size windows and fixed sample

shapes, AKConv defines the initial position of an arbitrarily sized

convolution kernel through a novel coordinate generation

algorithm and introduces offsets to accommodate alterations in
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the target shape. In semantic segmentation tasks, AKConv can

facilitate more precise local feature extraction and enhanced edge

detail fitting, thereby enhancing the accuracy and detail of

segmentation.

RF = ((r − 1)(K − 1) + K)2 (3)

RF denotes the receptive field of the convolution kernel;r

denotes the expansion rate of the expansion convolution; K

denotes the convolution kernel size;

In this study, AKASPP is proposed for fruit leaf disease images

with complex spot shapes, blurred edges, and different sizes.
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Figure 4 illustrates the specific structure of AKASPP. AKASPP is

capable of fusing contextual and detailed edge information from

different receptive fields. In order to capture features under different

receptive fields, expansion convolution with different expansion

coefficients is employed. This enables the model to capture a

sufficiently wide range of contextual information at different

scales, thereby improving the recognition of targets of varying

sizes. AKConv permits the convolutional kernel to have an

arbitrary sampling shape, which differs from the traditional fixed

square sampling shape. This flexibility allows the convolutional

kernel to adapt more effectively to the varying shapes of spot targets,

and to be sufficiently flexible to capture image features and fit the

edge details of leaves and spots, thus improving performance.

AKASPP effectively fuses this feature information to better

segment different sizes and shapes of spot targets, and to better

handle the edge portions of leaves and spots.
2.6 Loss functions

The cross-entropy loss function is used in this work as the loss

function when the classification module is being trained. The cross-

entropy loss function is shown in Equation 4. Figure 5A illustrates

the variation of loss during the training of the classification model.

The loss curve gradually becomes smooth after 5000 iterations.

L =   −  
1
N o

N−1
n=0 ylog(p) (4)

L denotes the indicated cross-entropy loss; y denotes the true

label of the pixel; p denotes the prediction result of the pixel; N

denotes the number of difficult samples.

Unbalanced categories or a lack of challenging examples are

common issues in semantic segmentation tasks, which can impair

model performance. In the fruit leaf disease scene segmentation job,

for instance, the disease spot category might only cover a minority

of the space, but the leaf category might represent the majority.

Insufficient performance in predicting other categories may result

from the model’s training primarily focusing on the leaf category.

Online Hard Sample Mining (OHEM) can assist the model in
FIGURE 5

(A) Training classification of losses over iterations; (B) Training segmentation of losses over iterations.
FIGURE 4

Structure of ASPP.
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focusing on difficult and rare samples, thereby improving overall

performance (Shrivastava et al., 2016). In this study, the cross-

entropy loss function of the semantic segmentation module

includes OHEM. The loss function in this study is shown in

Equations 5–7. Figure 5A illustrates the variation of loss during

the training of the segmentation model. The loss curve gradually

becomes smooth after 100000 iterations.

lCE =  −ylog(p) (5)

lHard =   lCE ,   lCE > 0:7 (6)

LohemCE =  
1
MoM−1

m=0 lHard (7)

lCE denotes cross-entropy loss; y denotes the true label of the

pixel; p denotes the prediction result of the pixel; lHard denotes the

loss of difficult samples; LohemCE denotes the loss function in the

OHEM combined with the cross-entropy loss function; M denotes

the number of difficult samples.
3 Experimental results

3.1 Disease classification results

The classification module of the model proposed in this study

achieved a ACC of 99.67% and a Macro F1 of 99.67% on the test set.

Figure 6 presents the evaluation results of five distinct plant disease

classification algorithms, including precision, recall, and F1 score.

The diseases are presented from left to right in the following order:

apple black rot, cedar apple rust, grape black measles, grape black

rot, and strawberry leaf scorch. For each disease, the values of the
Frontiers in Plant Science 08179
three evaluation metrics are nearly identical, indicating that the

model proposed in this study has high accuracy in recognizing these

specific plant diseases. Figure 7 depicts a confusion matrix plot for

the purpose of evaluating the performance of a classification model.
FIGURE 7

Confusion matrix for classification results.
FIGURE 8

Histogram of semantic segmentation results.

FIGURE 6

Histogram of classification results.
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The x-axis represents the predicted labels, the y-axis represents the

true labels, the diagonal of the matrix represents the number of

correct disease predictions, and the rest of the matrix represents

misclassifications. As illustrated in the figure, the model exhibited a

high degree of accuracy in classifying diseased leaves in the test set,

correctly identifying the vast majority of samples. Only a small

number of samples were misclassified. For instance, in the sample

pertaining to apple black rot, there were 529 correctly classified

samples, with only 1 misclassified as strawberry leaf scorch. Among

the samples of grape black rot, 483 were correctly classified, while 6

were misclassified as grape black measles due to the high degree of

similarity between the two grape diseases. Nevertheless, the model

achieved satisfactory results. In conclusion, the DINOV2-FCS

proposed in this study is an excellent tool for the classification of

fruit leaf diseases.
3.2 Semantic segmentation results

The semantic segmentation module of the model proposed in

this study achieved a mIoU of 90.29, a PA of 98.13%, and a Macro

F1 of 94.61% on the test set. Figure 8 presents the outcomes of the

evaluation of the semantic segmentation algorithm for three

categories, including three evaluation metrics: IoU, PA, and F1.

The IoU, PA, and F1 for the background category are 0.99, the leaf

category is 0.96, 0.98, and 0.98, respectively, and the disease

category is 0.77, 0.89, and 0.87, respectively. The data in Figure 8

indicates that the background category achieved the best evaluation

results, the leaf category was the next best, and the disease category

had the worst evaluation results. This phenomenon can be

attributed to the fact that in images where the background and

leaves tend to occupy the majority of pixels, the disease only

occupies a small number of pixels. This results in a significant

imbalance in the number of samples, which impedes the network’s

ability to learn sufficient information about the pixels in the disease

category. As illustrated in Figure 9, the vast majority of pixels are

correctly categorized, with only a small number of pixels not being

correctly classified. The figure also demonstrates that the disease

category has a relatively small number of pixels compared to the

other categories. In conclusion, the DINOV2-FCS proposed in this

study demonstrates satisfactory performance in the segmentation of

leaf diseases.
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3.3 Results of leaf disease
severity prediction

In this study, the fruit leaf disease severity was categorized into

five classes. The model proposed in this work exhibited 95.68%

accuracy in grading prediction on the test set. As illustrated in

Figure 10, the model employed in this study demonstrated

satisfactory performance in predicting the severity of fruit leaf

disease. The proximity between the ratio of diseased spot area to

total leaf area predicted by the model and the true label was high,

with a difference of less than 0.40% observed even in individual

samples where the prediction grading was erroneous. Consequently,

the model in this study exhibited satisfactory capacity for the

measurement of fruit leaf disease severity.
3.4 Comparison of other models

In order to evaluate the performance of the classification

module of DINOV2-FCS proposed in this study, four state-of-

the-art mainstream classification models, namely ResNet (He et al.,

2016), VIT, ConvNext (Liu et al., 2022), and Swin (Liu et al., 2021),

have been selected for comparison. The evaluation metrics chosen

are ACC, Macro F1, and Params. It should be noted that these

models freeze the backbone network during training as

DINOV2-FCS.

Table 3 shows a comparison of the performance of different

models on the fruit leaf disease classification task, where our model

performs best with 99.67% ACC and Macro F1, and the same

number of covariates is about 0.87 × 108. This indicates that the

model proposed in this study achieves top level accuracy and F1

score while maintaining relatively compact parameter scales,

outperforming all the benchmark models compared. Figure 11

shows scatter plots of the ACC and Params counts of the
FIGURE 9

Confusion matrix of semantic segmentation results.
TABLE 3 Classification performance of different models.

Model ACC/% Macro F1/% Params

ResNet101 92.28 92.42 0.43×108

VIT(Base) 97.51 95.57 0.86×108

ConvNext(Base) 98.46 98.50 0.88×108

Swin(Base) 99.29 99.31 0.87×108

Ours 99.67 99.67 0.87×108
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different models, with five points representing five different models.

By observing the position of the points in the plot, we can see that

our model performs very well in terms of Params and ACC,

outperforming the other four models. In summary, the

classification module of DINOV2-FCS proposed in this study is

the most outstanding in terms of performance, not only achieving

the highest accuracy and F1 score, but also comparable to the Swin

base version in terms of model complexity, showing a very high

level of efficiency and optimization.

In order to evaluate the performance of the semantic

segmentation module for DINOV2-FCS proposed in this study,

we selected seven advanced mainstream semantic segmentation

models, namely FCN (Long et al., 2015), Deeplabv3+, SETR (Zheng

et al., 2021), SegMenter (Strudel et al., 2021), SegFormer,

MaskFormer (Cheng et al., 2021) and Mask2Former (Cheng

et al., 2022). The comparison is performed. The evaluation

metrics chosen are mIoU, PA, Macro F1 and Params. It should

be noted that these models are trained with and without backbone
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network freezing, respectively, and DINOV2-FCS proposed in this

study freezes the backbone network during training.

Table 4 shows the performance comparison of several semantic

segmentation models on different evaluation metrics, where

asterisks denote the freezing of the backbone network, and the

model DINOV2-FCS proposed in this study, which leads in all

metrics, with 90.29% of mIoU, 94.61% of Macro F1, 98.13% of PA,

and 1.50 × 108 of Params, reflecting the effectiveness and progress of

the model design. Figure 12 shows the scatter plots of mIoU and

Params for different models, where each color represents one

model. In the models, circles represent training without freezing

the backbone network, triangles represent training with freezing the

backbone network, and pentagram represents the model proposed

in this study. By observing the position of the pentagram in the

figure, we can see that our model outperforms the other models in

terms of Params and mIoU. In the case of freezing the backbone

network, all the other models show performance degradation, but

the model proposed in this study still outperforms all the models in
FIGURE 11

Scatterplot of ACC and Params for different models.
FIGURE 12

Scatterplot of mIoU and Params for different models.
FIGURE 10

(A) Represents the samples with correct prediction of leaf disease severity grading; (B) represents the samples with incorrect prediction of leaf
disease severity grading.
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terms of performance in the case of freezing the backbone network.

In summary, this study proposes that the semantic segmentation

module of DINOV2-FCS has the best performance, not only
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achieving the highest mIoU, Macro F1 and PA. Meanwhile, the

Params is smaller than that of SETR, which demonstrates its

superiority in semantic segmentation tasks.

In Figure 13, the models Mask2Former, SegFormer,

Maskforme, Deeplabv3+, and FCN, which exhibited superior

performance on the dataset, are presented for comparison with

the models in this study. It can be observed that although they also

achieved satisfactory results, instances were identified where a

considerable number of lesions were not entirely segmented, and

even numerous fine lesions were not detected. In contrast, the

model proposed in this study is not subject to the same limitations

when segmenting fruit leaf disease images, and the overall

segmentation effect is superior. This is due to the powerful feature

extraction capability of DINOV2 and the improvement of the

model by the characteristics of the disease spots in this study.
4 Discussions

4.1 Effectiveness of DINOV2
backbone network

In order to verify the feature extraction capability of the

DINOV2 trunk feature extraction network, we performed

principal component analysis (PCA) on the patch features

extracted by the DINOV2 model. The features of the input image

extracted by this model were subjected to PCA dimensionality

reduction in order to map the high-dimensional features to the

three-dimensional space. The background and foreground portions
TABLE 4 Segmentation performance of different models.

Model mIoU/
%

Macro
F1/%

PA/
%

Params

FCN(R101) 83.83 90.30 96.79 0.66×108

FCN(R101)* 77.53 85.34 95.46 0.66×108

Deeplabv3+(R101) 84.32 90.66 96.86 0.60×108

Deeplabv3+(R101)* 82.48 89.31 96.49 0.60×108

SETR(VIT-L) 80.28 87.60 96.06 3.04×108

SETR(VIT-L)* 72.42 80.47 94.55 3.04×108

SegMenter(VIT-B) 82.38 89.23 96.47 1.02×108

SegMenter(VIT-B)* 79.92 87.37 95.84 1.02×108

SegFormer(MIT-B5) 87.96 93.15 97.59 0.82×108

SegFormer(MIT-B5)* 82.11 89.01 96.46 0.82×108

MaskFormer(R152) 86.03 91.88 97.12 0.76×108

MaskFormer(R152)* 83.34 89.96 96.60 0.76×108

Mask2Former(SwinB) 89.39 94.07 97.81 1.07×108

Mask2Former
(SwinB)*

87.10 92.60 97.34 1.07×108

Ours* 90.29 94.61 98.13 1.50×108
(“*” indicates that the backbone network was frozen during model training.)
FIGURE 13

Segmentation effect of different models.
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of the image were then judged based on the results of PCA, with the

principal components of the foreground portion being

renormalized in order to highlight them. The visualization

facilitates comprehension of the feature extraction effect of the

DINOv2 model on the image, as well as the structure and

distribution in the feature space after dimensionality reduction by

PCA. As illustrated in Figure 14, the DINOV2 model exhibits high

performance in distinguishing between foreground and background

regions in the image, and in delineating the boundaries of the main

objects in the picture. Moreover, the DINOV2 backbone feature

extraction network has not encountered these images prior to

extraction, and the backbone feature extraction network remains

fixed throughout the training process of this working model. This

indicates that the DINOV2 backbone feature extraction network is

well-suited for the extraction of features in images of fruit leaves

affected by disease.
4.2 Effectiveness of C-PFFM

In order to verify the effectiveness of the C-PFFM proposed in

this study, ablation experiments are designed to test the

effectiveness of the C-PFFM. In the classification module,

DINOV2 is used as the backbone feature extraction network in

the first group, and one fully connected layer is used as the classifier.

The second experimental group, which combined C-PFFM, was

constituted on the basis of the first group. The evaluation metrics

used are ACC, Macro F1, and Params. The results of the ablation

experiments are presented in Table 5. We performed multiple

replicated experiments on the proposed models. For the

classification model, we selected one of the most important

metrics, ACC, to conduct an ANOVA, and the results show that

the p-value is 3.8×10-4, and the difference is statistically significant.
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As illustrated in the accompanying table, the C-PFFM proposed in

this study has demonstrably enhanced the model’s predictive

capabilities. The benchmark model in the first group achieved an

ACC of 97.80%, a Macro F1 of 97.86%, and a Params value of 0.86 ×

108. In the second group, the C-PFFMwas introduced, which represents

an effective fusion of local detail feature information from the patch

tokens and global feature information from the class token. This

resulted in an enhancement of the classification accuracy of the

model. The model achieved an ACC of 99.67%, a Macro F1 of

99.67% and 0.87×108 for the Params. The model’s accuracy was

significantly enhanced with the same number of parameters. This is

due to the fact that in the initial set of experiments, only the class token

was utilized as input to the fully connected layer, and the class token

contains global feature information over long distances. In the context of

classifying fruit leaf diseases, there is a notable similarity between the leaf

spots of different diseases. This can result in suboptimal model

classification accuracy if detailed features are overlooked and only

global features are prioritized. The C-PFFM proposed in this study

effectively integrates these features, leading to a notable

performance improvement.
4.3 Effectiveness of segmentation modules

In order to ascertain the efficacy of the proposed enhancements

to the segmentation module in this study, ablation experiments
TABLE 5 Classification module ablation experiment.

C-PFFM ACC/% Macro F1/% Params

First group × 97.80 97.86 0.86×108

Second group √ 99.67 99.67 0.87×108
fro
FIGURE 14

Visualization of principal component analysis of DINOV2 generated features.
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have been designed to assess the impact of these improvements. In

the segmentation module, the DINOV2 network is employed as the

backbone feature extraction network in the first group, resulting in

the generation of a segmented image through up-sampling using

the MLP decoder. The second experimental group, which combined

EFFA, was constituted on the basis of the first group. The third

experimental group, which combined AKASPP, was constituted on

the basis of the first group. The fourth experimental group, which

combined EFFA and AKASPP, was constituted on the basis of the

first group. The evaluation indexes are mIoU, Macro F1, PA, and

Params. The results of the ablation experiments are presented in

Table 6. We performed multiple replicated experiments on the

proposed models. For the semantic segmentation model, we

selected one of the most important metrics, MIoU, for ANOVA,

and the results showed that the p-value was 1.5×10-5, and the

difference was statistically significant.

As illustrated in the accompanying table, the proposed

enhancements to the segmentation module have demonstrably

enhanced the model’s performance. The mIoU of the benchmark

model in the first group reached 84.56%, the Macro F1 reached

90.81%, the PA reached 96.98%, and the Params was 0.90 × 108. The

incorporation of the EFFA into the second group, which fuses

explicit feature information with multilevel feature information,

resulted in an mIoU of 88.46%, a Macro F1 of 93.45%, and a PA of

97.77%. Additionally, the Params increased to 1.37 × 108. Despite

an increase in the number of parameters, there was a notable

improvement in accuracy, with an increase of 3.9% in the mIoU.
Frontiers in Plant Science 13184
This is attributed to the incorporation of explicit feature

information from EVC into multilevel features, which enables the

model to simultaneously consider the details and semantic

information, thereby enhancing its ability to comprehend the

image content. The addition of AKASPP to the third group

enables the fusion of contextual and detail edge information from

different sensory fields, resulting in an mIoU of 89.22%, a Macro F1

of 93.94%, and a PA of 97.93%, with a Params of 1.37 × 108. With a

modest increase in the Params, the mIoU was enhanced by 4.66%,

which can be attributed to the fact that the fruit leaf disease image

spots exhibit complex shapes, fuzzy edges, and varying sizes.

AKASPP effectively fuses contextual and detailed edge

information from disparate sensory fields, enabling more precise

segmentation of diverse spot targets of varying sizes and shapes, as

well as enhanced processing of leaf and spot edge components. The

fourth group incorporated both EFFA and AKASPP, based on the

findings of the first group. This resulted in an mIoU of 90.29%, a

Macro F1 of 94.61%, a PA of 98.13%, and a Params of 1.50×108,

which achieved the optimal performance.
4.4 Validation of model
generalization capabilities

In order to assess the model’s ability to generalize, four of the

five labeled fruit leaf disease datasets were used as the training set,

with one dataset reserved for the test set. The training set includes
TABLE 6 Segmentation module ablation experiment.

EFFA AKASPP mIoU/% Macro F1/% PA/% Params

First group × × 84.56 90.81 96.98 0.90×108

Second group √ × 88.46 93.45 97.77 1.37×108

Third group × √ 89.22 93.94 97.93 1.03×108

Fourth group √ √ 90.29 94.61 98.13 1.50×108
FIGURE 15

(A) Represents the samples with correct prediction of leaf disease severity grading; (B) represents the samples with incorrect prediction of leaf
disease severity grading.
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images of four diseases: apple black rot, cedar apple rust, grape black

measles, and strawberry leaf scorch. The test set includes images of

grape black rot. The semantic segmentation module achieved an

mIoU of 83.95% and the fruit leaf disease severity reached the

grading accuracy of 95.24%, thereby verifying the strong

generalization ability of the model. As illustrated in Figure 15, the

model exhibited strong generalization ability. The model

demonstrated effective performance in segmenting diseases that

had never been encountered before. The proximity between the

ratio of diseased area to total leaf area predicted by the model and

the true label was high, and the difference was minimal even in

individual samples where the prediction was incorrectly graded.
5 Conclusion

In this study, we constructed the model DINOV2-FCS for leaf

disease classification and severity prediction of a variety of fruits

based on the DINOV2 large vision model backbone network. The

model addresses the shortcomings of current models in disease

severity prediction, namely their lack of accuracy and limited

generalizability. DINOV2-FCS employs DINOv2-B (distilled) as

the backbone feature extraction network to enhance the extraction

of features from fruit diseased leaf images. In the context of fruit leaf

disease classification, where the leaf spots of different diseases

exhibit considerable similarity and the loss of detail information

is a significant issue, we propose Class-Patch Feature Fusion

Module (C-PFFM), which fuses the local detail feature

information of patch tokens and the global feature information of

class token. This results in an improvement in the classification

accuracy of the model. In light of the fact that the model frequently

fails to complete the segmentation of lesions, including those that

are subtle, and that lesions are often ignored entirely, we have

enhanced the MLP decoder and proposed EFFA, which fuses

explicit feature information and multi-level feature information.

This has led to an improvement in the segmentation accuracy of the

model. Furthermore, we have proposed AKASPP, which fuses

contextual information and detailed edge information from

different sensory fields, thereby enabling better adaptation to the

varying sizes and shapes of lesion targets and the edge details of

leaves and lesions. To verify the accuracy and generalizability of the

model, two sets of experiments were conducted. First, the labeled

leaf disease dataset of five fruits was randomly divided. The trained

model exhibited an accuracy of 99.67% in disease classification, an

mIoU of 90.29%, and an accuracy of 95.68% in disease severity

classification. These results demonstrate superior performance

compared to other state-of-the-art models. In the generalizability

experiment, four disease data sets were used for training and one for

testing. The mIoU of the trained model reached 83.95%, and the

accuracy of disease severity grading was 95.24%. The strong

generalization ability of the model was verified. The subsequent

stage of the process involves the augmentation of the dataset with
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respect to both species diversity and environmental diversity,

thereby aligning it with more realistic scenarios. Furthermore, the

model was tested on an NVIDIA GeForce RTX 3090 graphics card,

achieving an inference speed of 21.56 frames per second (F/S). The

next phase of the project will focus on refining the model to enable

its deployment on mobile devices. This will support agricultural

workers by assisting with disease identification in the field.
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