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Editorial on the Research Topic

Autoantibodies

AUTOANTIBODIES

Autoantibodies have become a popular research topic with a constantly growing number of
research reports. The increasing interest from the scientific community is also reflected by the high
number of articles within this Research Topic, which are illustrated by an interaction map that has
been drawn by using the keywords of all articles from this collection (Figure 1). These articles,
selected from the theme of this topic, cluster around “Autoantibodies” and “Autoimmunity.”
Clustering was also observed for specific diseases, namely, pemphigus and pemphigoid, lupus,
arthritis, and neuroimmunology. Cytokines, B cells, cell signaling, and the complement cascade
are the focus of many manuscripts within this Research Topic. This clustering was the basis for the
selection of the manuscripts discussed in this editorial.

PEMPHIGUS AND PEMPHIGOID

We received a number of submissions on the topics of pemphigus and pemphigoid, which are
characterized and caused by autoantibodies to structural proteins of the skin [(1, 2); Liu et al.].
After binding to their target antigens, these autoantibodies directly (in the case of pemphigus)
or indirectly (in the case of pemphigoid) cause skin blistering, which is the common clinical
denominator of these diseases. Diagnosis is based on the clinical presentation, the detection of
autoantibodies and/or complement deposits in the skin (detected by direct immunofluorescent (IF)
microscopy), as well as the serological detection of the autoantibodies (3). For both pemphigus and
pemphigoid systemic immunosuppression corticosteroids are still the main treatment. However,
the lack of efficacy and/or the adverse events contribute to the medical burden of these diseases,
which have an overall high unmet medical need (4). Within this Research Topic “Autoantibodies,”
insights into the pathogenesis, as well as novel biomarkers and treatments, are presented with the
prospect that they might improve the diagnosis and treatment of pemphigus and pemphigoid.

SYSTEMIC LUPUS ERYTHEMATOSUS

Systemic lupus erythematosus (SLE) is a complex and multifactorial systemic autoimmune
disease that primarily affects young women. The chronic inflammatory processes
triggered during this disease can affect a variety of organ systems, including the skin,
blood vessels, kidneys, and joints. Loss of humoral tolerance toward nuclear antigens
such as RNA, DNA, and histones is one hallmark of the disease, although the direct
contribution of autoantibodies to the disease pathology in humans is still controversial.
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We thank Dr. Yask Guta (University of Libeck) for generating this figure.

FIGURE 1 | Interaction network of articles within the Research Topic “Autoantibodies”. Keywords of all 88 articles were downloaded from the website of the Research
Topic “Autoantibodies” (https://www.frontiersin.org/research-topics/6220/autoantibodies). Cytoscape (https://cytoscape.org/) was used to draw the interaction map.
Each line represents an interaction among the keywords, whereas the size of the red circles correlates to the number of times the respective keyword was mentioned.

However, novel treatments targeting autoantibody-producing
plasma cells have shown promising effects in patients with
refractory SLE (5). In addition, novel insights into the activation
and expansion of polyclonal autoreactive B cell responses during
SLE in humans have emphasized the tight connection between
the loss of humoral tolerance and disease activity (6). More
direct evidence for the critical role of autoantibodies in SLE
pathology is provided by animal model systems in the study
of lupus nephritis, which have clearly demonstrated that the
autoantibody-dependent activation of innate immune effector
cells is a major factor for kidney and lung inflammation.
With respect to the genetic factors involved in the loss of
humoral tolerance to nuclear antigens, the loss or impaired
signaling of the inhibitory effector FcgRIIb has been shown
to lead to an increased level of autoantibody production by
B cells and a decreased threshold for the activation of innate
immune effector cells (7). In line with the studies in mice,
a non-functional FcgRIIb variant has been shown to be a
genetic risk factor for SLE development in humans (8, 9).
However, it is also clear that multiple factors contribute to SLE
development, including defects in apoptosis or enhanced TLR
signaling (10, 11). Within the Research Topic “Autoantibodies,”

Weissenburger et al. provided new insights into how mutations
in the deoxyribonuclease 1-like 3 gene lead to the massive
production of autoantibodies against double stranded DNA.
Moreover, Biermann et al. demonstrated that autoantibodies for
secondary necrotic cells allow the identification of patients with
SLE. With regard to innate immune effector cells, a decreased
phagocytic capacity, resulting in the prolonged presence of dying
cells in the body, has also been suggested to contribute to disease
development (12). In summary, many pieces of the SLE puzzle
have fallen into place and suggest that the loss of humoral
tolerance is not simply a side effect of SLE but is rather an active
player in the pathogenesis of SLE.

ARTHRITIS

Rheumatoid arthritis (RA) is one of the most common
autoimmune diseases and has a large socioeconomic importance.
The role of autoantibodies, such as rheumatoid factors (RF),
has been instrumental in the classification and the investigation
on the causes and pathogenesis of the disease. More recently,
additional autoantibodies, such as antibodies to citrullinated
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proteins (ACPA), have been described. The successful treatment
with antibodies targeting B cells, reviewed by Hoffmann et al,,
have been key to the revival of the belief of the major role of
B cells in RA and in several other autoimmune diseases. As in
most autoimmune diseases, these autoantibodies appear years
before the clinical onset of the disease. Sieghart et al. analyzed the
isotype distribution of the different RA autoantibodies in early
and established RA and showed that both the ACPA and RF of
the IgG isotypes are specific for diagnosis but that the analysis
of the IgM isotype increased the sensitivity of the test. RA has a
high level of different antibodies, and the report emphasizes the
value of analyzing different specificities for the diagnosis. Bitoun
et al. immunized Macaque monkeys with citrullinated peptides
and showed that the T cell response, but not the B cell response,
was mainly directed to citrulline; this is similar to what has been
observed in humans. However, in contrast to humans, monkeys
with the MHC class II alleles (known to be associated with RA in
humans) did not have predisposed T cell or B cell responses to
citrullinated peptides. This indicates that we still lack an animal
model that accurately reflects the autoimmune process leading to
an ACPA response, which is known to occur in RA. Tong et al.
highlights another autoantibody in RA, that are likely to also
be pathogenic. The target antigen is type II collagen and in the
report Tong defines and epitope targeted by such antibodies that
is shared between type II and type XI collagen and they also show
that both the native and the citrullinated form of the epitope is
targeted by antibodies in RA.

AUTOIMMUNE
NEUROLOGICAL DISEASES

Several articles also focused on autoimmune neurological
diseases, mostly on improved diagnostics. Autoantibodies have
been shown to be the cause of several neurological diseases,
such as anti-NMDA receptor encephalitis (13) or myasthenia
gravis. Within this article collection, the role of autoantibodies
in “classical” neurodegenerative diseases, such as Parkinson’s
Disease, is discussed (Jiang et al.). This finding contributes to
the current observations that autoantibodies to specific neuronal
surface antigens are detected in a number of neuropsychiatric
disorders (14). Functional validation of these autoantibodies
would change the landscape of treatment for a number of
neuropsychiatric diseases.

INSIGHTS INTO PATHOGENESIS

Animal model systems, even with their limitations (15),
can significantly contribute to the understanding of disease
pathogenesis. Within this Research Topic, two new animal
models are described: Zheng et al. describe an immunization-
based mouse model for primary Sjogren’s Syndrome (Yin et al.).
Tong et al. describe the shared epitopes among type XI and type
II collagens in mice and humans with arthritis. Furthermore,
an immunization-based arthritis model in the macaque (Bitoun
et al.) and a model of feline limbic encephalitis (Troscher et al.)
are described within this Research Topic.

Large-scale genetic analyses, such as genome-wide association
studies, have provided detailed insights into the underlying
genetic association of autoimmune diseases, with the HLA
locus as a major risk allele (16-19). Work summarized
within this Research Topic demonstrates a co-occurrence
of autoimmune diseases, namely, pemphigus and thyroid
autoimmunity. Interestingly, the increased prevalence of anti-
TPO autoantibodies was associated with the absence of certain
HLA alleles and with the presence of non-desmoglein antibodies
(Seiffert-Sinha et al.). Overlap at the mRNA expression level
is also prevalent in different autoimmune diseases, specifically
between pemphigus and systemic lupus erythematosus (SLE)
(Sezin et al.). These comparative approaches may be useful to
identify novel therapeutic targets that are either specific to one
particular autoimmune disease or that may even be effective
in the treatment of a specific cluster of autoimmune diseases.
Examples of newly identified and validated risk alleles for SLE
are described within this Research Topic: Gene expression in
the B cells of quiescent SLE patients demonstrated an increased
expression of TRIBI. To resolve the functional relevance of
this gene for SLE pathogenesis, transgenic mice with the B
cell-specific overexpression of Tribl were generated in the
C57BL/6 genetic background. Tribl overexpression in B cells
led to lower IgG1 concentrations under normal conditions. The
immunization of mice with a T cell-dependent antigen also led
to lower antigen-specific IgG titers, and the basal or forced anti-
dsDNA IgM titers were lower in mice overexpressing Tribl.
Collectively, these data point toward the Tribl regulatory role
in autoantibody production in health and in disease (Simoni
et al.). Based on the recent discovery of the rare null alleles of
deoxyribonuclease 1-like 3 (DNASEIL3) and Fc gamma receptor
IIB (FCGR2B) in SLE patients and genetic mouse models,
Weisenburger et al. investigated the functional impact on these
2 genes in mice. For this purpose, mice deficient in both
Dnasell3- and FcgR2b were generated in the C57BL/6 genetic
background. In these mice, high levels of anti-DNA IgG were
observed as early as 10 weeks of age. Autoantibody titers in these
mice exceeded those observed in 9-month-old NZB/W mice.
In conclusion, both genes synergize to promote the IgG anti-
DNA autoantibody production by B cells (Weisenburger et al.).
For the organ-specific autoimmune disease pemphigus, novel
associations with complement genes (Bumiller-Bini et al.) and
within the neonatal Fc receptor are described within the Research
Topic (Recke et al.).

However, genetics only partially explains disease
susceptibility, and (at least in mice) the genetically determined
disease susceptibility can be overcome by changing daily
habits (20). Indeed, autoantibody production is modulated
by environmental factors, such as the diet and the microbiota
(Edwards et al; Petta et al.). Furthermore, gender may have
a greater impact on autoantibody production than previously
appreciated (Edwards et al.). Within this Research Topic, several
manuscripts addressed the contribution of environmental
factors on the generation of autoantibodies and/or autoimmune
diseases: In their study, Issac et al. showed that the mice
who are unable to clear a Salmonella infection spontaneously
develop anti-dsDNA autoantibodies. This was associated with an
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increased CD25 expression for both CD4+ and CD8+ T cells.
This effect was specific to Salmonella infections, as infections
caused by other bacteria did not induce autoantibody production
(Issac et al.). Two articles demonstrate that pemphigoid can be
induced by treatment with gliptins or by physical triggers, such
as burns (Gaudin et al.; Mai et al.).

Once autoantibodies are bound to their target antigen, they
may induce disease through a variety of mechanisms (21). These
are either direct (Fab-mediated effects), such as the induction of
aberrant signaling, or alternatively, Fc-mediated events, such as
the activation of complement and the engagement of activating
Fc-receptors, that drive tissue damage.

In pemphigus, autoantibodies to the desmosomal proteins
desmoglein (Dsg) 3 and (often) Dsg 1 cause intraepidermal
blistering in the skin and mucous membranes (22). In
addition to Dsg 1/3, a wide range of autoantibodies has
been identified in pemphigus patients (Amber et al.). The
pathogenic relevance of these autoantibodies is not as firmly
established as it is for anti-Dsgl/3. However, the injection
of IgG from a patient with Dsg 3-reactivity, but not Dsg
1-reactivity, into Dsg 3-deficient mice led to the induction
of intraepidermal blistering (23). Recently, a model has been
proposed to explain how Dsg- and non-Dsg autoantibodies
can lead to intraepidermal blistering. In brief, this model
proposes that, depending on the pathogenic activity of all
autoantibodies toward the structures on keratinocytes, they are
either capable of inducing disease alone or in combination
with other autoantibodies (24). The precise mechanisms
by which autoantibodies in pemphigus lead to desmosome
dysfunction remain to be fully elucidated (Spindler and
Woaschke): Steric hindrance, i.e., the blockade of homophilic
Dsg interactions within the desmosome through autoantibody
binding, is believed to be one cause of blistering in pemphigus.
Furthermore, Dsg3 is internalized after binding to anti-
Dg3 autoantibodies (Schlogl et al.), a process that requires
p38 MAPK activation (Cipolla et al; Vielmuth et al). In
addition to Dsg3 internalization, keratin retraction, induced
by pemphigus autoantibodies, has recently been demonstrated
to be important in mediating autoantibody-induced cell
dissociation (Schlogl et al.).

NOVEL DIAGNOSTICS / BIOMARKERS

Precise molecular diagnostics, paired with predictive biomarkers,
form the basis of diagnosis as well as the selection of the
appropriate treatment for each individual patient. Hence, almost
20% of the articles within the Research Topic “Autoantibodies”
have focused on this topic.

The serological detection of autoantibodies is the basis
of the diagnosis of many autoimmune diseases (21).
Anti-nuclear antibodies (ANAs) are among the most-
known autoantibodies. ANAs are associated with several
rheumatic diseases, such as systemic lupus erythematosus
and systemic sclerosis. However, low titers of ANAs are
also present in healthy individuals (25). The gold standard
for their detection is by indirect immunofluorescence and

incubating the patient serum with Hep-2 cells (26). However,
conventional ANA testing requires time, is laborious, and
requires microscopy expertise. To overcome these limitations
and to standardize and automate ANA indirect IF testing,
a fully automated system, which includes staining pattern
recognition, was recently developed (27). The workflow and
performance characteristics of the fully automated ANA IIF
system were compared to manual ANA testing by Ricchiuti
et al. The use of fully automated ANA determination has
significant labor savings and good concordance with manual
ANA readings.

As mentioned above, ANAs are also found in quite a
proportion of healthy individuals, ranging from 5 to 30%
depending on the population and method used (25, 28-
30). This by far exceeds the prevalence of ANA-associated
rheumatic diseases. If the target antigen is identified,
autoantibodies against DFS70 are often found Interestingly,
isolated anti-DFS70 reactivity, which was observed in over
500 serum samples, was not associated with rheumatic
disease. Hence, if the dense, fine speckled nuclear pattern,
which corresponds to anti-DFS70 reactivity, is observed
in Hep cells in ANA testing and anti-DFS70 reactivity
is confirmed, then the presence of rheumatic disease is
very unlikely (Carter et al). In contrast, the detection
of anti-cN-1A autoantibodies, which are found in 12% of
patients with primary Sjogren’s syndrome and in 10% of SLE
patients, is associated with the presence of other autoimmune
diseases (Rietveld et al.).

If an autoimmune disease is suspected but no autoantibodies
can be detected by routine methods, these may be identified
by applying novel techniques such as the determination of
the specific isotypes of the autoantibodies in a suspected case
of rheumatoid arthritis (Sieghart et al.) or by the use of a
keratinocyte binding assay in a suspected case of pemphigus
(Giurdanella et al.). In addition, autoantibodies are also found
in certain diseases that are just beginning to be understood
to be mediated by autoantibodies. These include neurological
conditions (Scharf et al.), chronic obstructive pulmonary disease
(Wen et al), and cardiovascular diseases (Basavalingappa
et al; Ernst et al; Meier and Binstadt). However, with few
exceptions, such as anti-NMDA receptor autoantibodies (31),
the pathogenic relevance of these autoantibodies needs to
be determined.

Bullous pemphigoid (BP) is the most frequent type of
pemphigoid disease (32). BP responds well to systemic
(whole body) topical steroid treatment (33). After stopping
steroid treatment, relapse occurs in 30-40% of patients
(34). Hence, biomarkers that allow for the prediction of
relapse would allow for patient selection for whom steroid
treatment can be stopped or for determining which patients
require prolonged steroid and/or adjuvant treatment. In
a retrospective analysis of BP patients, Dr. Koga and
colleagues demonstrated that high BP180 autoantibody
levels were associated with future relapse. In contrast, age,
BP230 antibodies or total IgE levels had no predictive
value (35). Researchers from France described elevated
anti-type VII collagen autoantibodies, which are the cause

Frontiers in Immunology | www.frontiersin.org

15

April 2019 | Volume 10 | Article 484


https://doi.org/10.3389/fimmu.2018.01384
https://doi.org/10.3389/fimmu.2018.01030
https://doi.org/10.3389/fimmu.2018.00542
https://doi.org/10.3389/fimmu.2018.01190
https://doi.org/10.3389/fimmu.2018.00136
https://doi.org/10.3389/fimmu.2018.00858
https://doi.org/10.3389/fimmu.2017.01022
https://doi.org/10.3389/fimmu.2018.00528
https://doi.org/10.3389/fimmu.2018.00858
https://doi.org/10.3389/fimmu.2018.00927
https://doi.org/10.3389/fmed.2018.00088
https://doi.org/10.3389/fimmu.2018.01200
https://doi.org/10.3389/fimmu.2018.00876
https://doi.org/10.3389/fimmu.2018.00839
https://doi.org/10.3389/fimmu.2018.01447
https://doi.org/10.3389/fimmu.2018.00066
https://doi.org/10.3389/fimmu.2017.01567
https://doi.org/10.3389/fimmu.2017.01595
https://doi.org/10.3389/fimmu.2018.00911
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Holmdahl et al.

Editorial: Autoantibodies

of epidermolysis bullosa acquisita (36), in almost half of
the BP patients at the time of relapse (Giusti et al.). This
is also a retrospective chart analysis with a limited number
of patients. However, both studies imply the possibility that
predictive biomarkers for BP relapse can be identified. The
steps toward this are a joint analysis of retrospective patient
cohorts from several departments as well as a prospective
diagnostic study.

NOVEL TREATMENTS

Based on the understanding of disease pathogenesis, novel
treatment targets or therapeutic approaches for autoantibody-
mediated diseases have emerged. Within the Research
Topic “Autoantibodies,” several articles have focused on
new treatments.

The anti-CD20 antibody rituximab has dramatically improved
the treatment of several autoantibody-mediated diseases, which
was most recently demonstrated in a phase III clinical trial in
pemphigus patients (37). Notably, the response to rituximab
is not uniform across all autoantibody-mediated diseases,
as was demonstrated by the lower efficacy of anti-CD20
treatment in pemphigoid patients when compared to that in
pemphigus patients (Lamberts et al.). Rituximab and other
emerging treatments to modulate B and plasma cells were the
topic of three reviews within the Research Topic (Hofmann
et al; Malkiel et al; Musette and, Bouaziz). In this Research
Topic, Roders et al. also identified SYK as a regulator of B cell
activation. Thus, targeting SYK not only affects the effector
functions (see below) but also possibly affects the generation of
autoantibodies. A different approach to modulate autoantibody
concentrations may be to enhance their turnover by inhibiting
the neonatal Fc receptor (38) or by selective immunoadsorption
using  recombinant  antigens to  specifically  elute
autoantibodies (Hofrichter et al.).

A blockade of autoantibody functions, either by targeting
the Fab or Fc fragments, is another highly interesting treatment
approach for autoantibody-mediated diseases. High doses of
intravenous immunoglobulins (IVIG) are an effective second- or
third-line treatment for a number of autoimmune diseases (39—
41). How IVIG mediates the therapeutic effects is controversial
(42): One hypothesis claims that all of the therapeutic effects
of IVIG are mediated through the inhibition of the neonatal
Fc receptor (FcRn) (43). By administering excess IgG, the
FcRn becomes saturated, and thus, all IgG molecules (including
the autoantibodies) are more rapidly cleared. Others provide
compelling evidence that the anti-inflammatory effect of IVIG
is mediated by regulating the activation threshold in myeloid
effector cells by changing the ratio of activating versus inhibitory
FcyR expression (44). This effect required both terminal
sialic acid residues at the Fc portion of IgG, as well as the
expression of the inhibitory molecule FcyRIIB (45). Finally,
the presence of anti-idiotypic antibodies has been reported,
specifically, the presence of anti-anti-Dsg 3 autoantibodies in
IVIG preparations (46, 47). In this Research Topic, Kamaguchi
et al. isolated anti-idiotypic antibodies against type XVII

collagen, the major autoantigen in bullous pemphigoid (Liu
et al.), and demonstrated a significant inhibitory activity of
these antibodies against the pathogenic effects of BP patients’
autoantibodies (Kamaguchi et al.).

In addition to the modulation of the Fab function of
autoantibodies, their function can also be manipulated by
changing the conserved N-linked Fc-glycan attached to the
asparagine at position 297 in the constant region of the Fc
heavy chain domains (Dekkers et al.). Indeed, the treatment
of mice with endo-fB-N-acetylglucosaminidase (EndoS), which
hydrolyses the B-1,4-di-N-acetylchitobiose core of the N-linked
complex type glycan on asparagine 297 (48), suppressed the
induction of experimental arthritis (Nandakumar et al.), which
was associated with the inhibition of the formation of large
immune complexes and was independent of changes in the
complement cascade or in antigen binding. The modulation of
the conserved IgG’s N-glycosylation site may have implications
beyond the mere effector functions as was reported by Bartsch
et al: In their work, they demonstrate that antigen-specific
sialylated autoantibodies but not non-specific sialylated IgG
antibodies, attenuate disease manifestation in experimental
lupus and arthritis. The antigen-specific sialylated autoantibodies
modulated the B and T cell functions rather than modulating the
effector functions of the autoantibodies.

In several autoimmune diseases, such as arthritis and
pemphigoid disease, the activation of complement, the binding
of immune cells to their immune complexes, and the subsequent
intracellular signaling events are important for pathogenesis (21).
The generalized inhibition of complement inhibition, which is
achieved by the anti-C5 antibody eculizumab (49), is, however,
associated with the risk of potentially life-threatening infections
(50). These adverse effects could be reduced by restricting the
complement inhibition at the site of complement activation
or, even more ideally, at the site of pathologic tissue damage.
By coupling a cyclic-RGD peptide to a function blocking C5
antibody, the construct is directed to the sites of the damaged
endothelial cells. Thus, C5 inhibition preferentially occurs where
endothelial damage is present (Durigutto et al.). In addition
to the targeted delivery of C5-inhibitory compounds, selectivity
may also be achieved by certain complement pathways, which
are upregulated in specific diseases. The dissection of the
individual contributions of the complement activation cascades
in the pemphigoid disease epidermolysis bullosa acquisita [(51);
Mihai et al.] demonstrated the predominant role of alternative
complement activation and no contribution from the membrane
attack complex. Thus, the selective targeting of Clq had
therapeutic effects in an animal model of epidermolysis bullosa
acquisita (Mihai et al.).

In addition to complement anaphylatoxins, cytokines recruit
leukocytes to the sites of autoantibody-induced pathology.
Thus, their inhibition has become a well-established therapeutic
principle for several chronic inflammatory diseases (52). So
far, however, each of the licensed biologics targets a single
cytokine. To enhance the anti-inflammatory activity, Abraham
et al. used phage display to identify promiscuous chemokine-
binding peptides. These bind to a number of pro-inflammatory
chemokines, such as CCL2, CCL5, and CXCL9-11. The use
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of their selected lead compounds in models of autoimmune
diseases ameliorated clinical disease manifestation (Abraham et
al.). This approach may be applicable in endemic pemphigus
foliaceus, where alterations in cytokine and chemokine serum
concentrations have previously been noted (Timoteo et al).

Once bound to the immune complexes, a complex signaling
cascade is triggered in the leukocytes, which ultimately leads to
their activation and subsequent inflammation and tissue damage
(53). By contrasting the mRNA expression between inflamed and
healthy skin in experimental pemphigoid disease, several hub-
genes that potentially contribute to tissue damage in pemphigoid
were identified. The spleen tyrosine kinase was among the
identified hub-genes. Both LysM-specific SYK knockout mice
and mice treated with an inhibitor of the small molecule SYK
were completely protected from the induction of experimental
pemphigoid disease by autoantibody transfer [Samavedam et al;
(54)]. Corresponding findings were made in a mouse model of
arthritis (Németh et al.). Taken together, these findings suggest
that targeting SYK is a potential therapeutic approach for a
number of autoantibody-mediated diseases. Furthermore, in
the pemphigoid mouse model, the inhibition of PI3K$ also
prevented disease onset. Furthermore, pharmacological PI3K$
inhibition improved clinical disease manifestation when applied
in therapeutic, experimental settings (Koga et al.). In addition
to these signaling pathways, others also contribute to the
pathogenesis of pemphigoid disease, which has recently been
reviewed elsewhere (53).

In pemphigus, in addition to the above-described alterations
in cell signaling, several lines of evidence suggest that
apoptosis contributes to the loss of keratinocyte adhesion
and consequently intraepidermal blistering (55). Initially, the
contribution of apoptosis was suggested by an increased
expression of molecules involved in this process, i.e., different
caspases, Fas, as well as FasL (56). Following this concept,
the inhibition of the Fas-FasL interaction by a function
blocking anti-FasL antibody can inhibit pemphigus IgG-induced
pathology in vitro. Furthermore, mice lacking the expression
of the secreted, soluble FasL do not develop intraepidermal
blistering when injected with IgG antibodies from pemphigus
patients (Lotti et al.).

All of the abovementioned treatments focused on targeting
IgG-mediated autoimmunity. In addition to IgG-mediated
autoimmunity, IgA autoantibodies have also long been
recognized as pathogenic. However, only recently has attention
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CONCLUDING REMARKS

“Autoantibodies” are a hot research topic, as was reflected by
the articles of this Research Topic. Based on an enhanced
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Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany

Ectopic expression of MHC Il molecules on glandular cells is a feature of primary Sjégren’s
syndrome (pSS). However, the cause of this ectopic expression and its potential role in
the pathogenesis of the disease remains elusive. Here, we report that ectopic expression
of MHC Il molecules on glandular cells represents an early presymptomatic event in a
mouse model of pSS induced by immunization of Ro60_316-335 peptide emulsified in
TiterMax® as an adjuvant. Ectopic expression of MHC Il was induced by TiterMax® but
not by complete freund’s adjuvant (CFA). Furthermore, immunization with Ro60_316-335
peptide emulsified in TiterMax®, but not in CFA, induced a pSS-like disease in mice.
Our results suggests that ectopic expression of MHC Il molecules on glandular cells
represents a presymptomatic feature of pSS and that such ectopic expression can be
induced by exogenous factors. In addition, this study also provides a novel mechanism
how adjuvants can amplify immune responses.

Keywords: primary Sjogren’s syndrome, mouse model, presymptomatic feature, MHC Il ectopic expression,
TiterMax®, adjuvant

INTRODUCTION

Primary Sjogren’s syndrome (pSS) is a systemic autoimmune disorder mainly targeting salivary
and lacrimal glands (1). Clinically, pSS is characterized by hypofunction of salivary and lacrimal
cells leading to xerostomia (dry mouth) and xerophthalmia (dry eyes) (1). Histologically, pSS
is featured by lymphocytic foci in the salivary and lacrimal glands (2) as well as ectopic
expression of MHC II molecules on the glandular epithelial cells of those glands (3). In addition,
autoantibodies including anti-SSA/Ro and anti-SSB/La autoantibodies, rheumatoid factor and anti-
nuclear antibodies (ANA) are also hallmarks for pSS (4). Despite to the well-known clinical,
histological, and immunological features of the symptomatic phase of pSS, little is known about
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the presymptomatic features of the disease. Currently, only
autoantibodies such as anti-Ro60, anti-Ro52, and anti-La were
described by Jonsson et al. in a large retrospective study (5) to be
present in the presymptomatic phase of the disease.

Animal models are invaluable tools for the identification of
relevant presymptomatic events in human autoimmune diseases
(6, 7). With regard to pSS, presymptomatic events have been
observed Non-obese diabetic (NOD) mice which develop a pSS-
like disease spontaneously over time (8). Studies in this mouse
strain revealed that the development the pSS-like disease consists
of three sequential steps (9, 10). The first step is represented by
intrinsic abnormalities in the exocrine glands, e.g., glandular cell
apoptosis, followed by lymphocytes infiltration in the exocrine
glands resulting in an impairment in secretion of saliva and
tears. These observations in NOD mice suggest that intrinsic
abnormalities in the exocrine glands and lymphocytic infiltration
represent respective early and late presympomatic features in this
mouse model.

Recently, we have established a novel mouse model for pSS by
immunizing mice with human Ro60_316-335 peptide emulsified
in TiterMax® as adjuvant (11). In this model, susceptible mice
are characterized by generation of autoantibodies, lymphocytic
infiltration and a decrease in tear secretion. By investigating gene
expression profiles of lacrimal glands, we here aimed to identify
the presymptomatic features of this novel mouse model of pSS.

METHODS AND MATERIALS

Mice and Immunization

Female Balb/c mice were purchased from Shanghai SLAC
Laboratory Animal Co., Ltd (Shanghai, China). All mice were
housed under the specific pathogen free condition in the animal
facility of Xiamen University. Immunization was performed
using the protocol described previously (11). Briefly, female
Balb/c mice were immunized with Ro60_316-335 peptide or
PBS control emulsified in the TiterMax® (Alexis Biochemicals,
Lorrach, Germany) or complete Freunds adjuvant (CFA).
Protocols of all animal experiments were approved by the
Institutional Animal Care and Use Committee of Xiamen
University.

Measurement of Tears and Saliva

Tears and saliva of mice were measured at week 0, 6, and 12
after immunization and further normalized to the bodyweight as
described previously (11). Briefly, mice were starved for 16-18 h
before the measurement, deeply anesthetized, and stimulated
with pilocarpine hydrochloride (Sigma-Aldrich). Saliva was
collected with a sponge immediately after the injection of
pilocarpine for a time period of 20 min while tears were collected
by using Phenol Red Thread (Jingming Ltd. Tianjin, China) at
10 min and 20 min time points after injection of pilocarpine. Both
saliva and tear secretion volumes were normalized to individual
mouse body weight.

Detection of Autoantibodies in Sera
Anti-Ro60_316-335 autoantibodies in murine sera were detected
by ELISA as described previously (11). In brief, SSA peptides were

absorbed onto Costar EIA/RIA Plates (Corning Icorporated,
corning, NY, USA), washed and blocked with 3% BSA in PBS
supplemented with 0.05% Tween-20 (PBS-T), incubated with
the respective mouse sera (1:200 dilution), and further washed
with PBS-T. Bound antibodies were detected by using peroxidase
conjugated goat anti-mouse IgG antibodies (Sigma, USA) and
tetramethylbenzidine (Solarbio, Beijing, China) as substrate.

Histopathological Assessment

Twelve weeks after immunization, mice were sacrificed
and tissues were collected for histopathological evaluation.
Histology of salivary and lacrimal glands was evaluated after
Haematoxylin and Eosin (H&E) staining of 5-pum-thick sections
derived from paraffin embedded tissue. Cryosections from
salivary and lacrimal glands were used for direct or indirect
immunofluorescence and immunohistochemical staining. Direct
immunofluorescence staining was performed for the detection
of CD4™ T cell, CD8" T cell, CD11c*t Dendritic cell and MHC
IT molecules by using Alexa-488 conjugated rat-anti-mouse CD4
(clone: RM4-5, Biolegend), Alexa-488 conjugated rat-anti-mouse
CD8 (clone: 53-6.7, Biolegend), Alexa-488 conjugated Armenian
Hamster-anti-Mouse CD11c antibody (clone: N418, Biolegend),
and rat-anti-mouse I-A/I-E Antibody (clone: M5/114.15.2,
Biolegend), respectively. Indirect Immunofluorescence staining
was performed for the analysis of CD3" T cell and CD19"
B cell by using rat-anti-mouse CD3 (clone: 17A2, Biolegend)
and rat-anti-mouse CD19 (clone: 6D5, Biolegend), respectively,
followed by using Alexa-488 conjugated goat-anti-rat IgG (clone:
Poly4054, Biolegend). Immunohistochemistry was performed for
the detection of MHC II molecules on lacrimal gland tissue cells
by using rat-anti-mouse I-A/I-E antibody (clone: M5/114.15.2,
Invitrogen) on cryosections.

Gene Expression Profiling Analysis

Total RNA was isolated from murine lacrimal glands at week 0,
2, and 6 after immunization using TRIzol Plus RNA Purification
Kit (Invitrogen). The extracted total RNA from each sample
was quantified by a NanoDrop ND-1000 spectrophotometer
and RNA integrity was assessed by standard denaturing agarose
gel electrophoresis. The double strand ¢cDNA was synthesized
by Invitrogen Superscript ds-cDNA synthesis kit (Invitrogen,
USA) according to the manufacturer’s protocol. cDNA was
labeled with Cy3 using NimbleGen one-color DNA labeling
kit (Roche NimbleGen Inc., USA). Labeled ds-cDNA samples
were hybridized to NimbleGen Mouse 12x135K Gene Expression
Microarray (Roche NimbleGen Inc., USA). Array scanning was
done by the Axon GenePix 4000B microarray scanner (Molecular
Devices Corporation, USA).

TIFF-files of scanned images were imported into NimbleScan
software (version 2.5) for grid alignment and expression
data analysis. Raw expression data were normalized through
quantile normalization and the Robust Multichip Average (RMA)
algorithm included in the NimbleScan software. Probe level
(*_norm_RMA .pair) files and gene level (*_RMA.calls) files were
generated after normalization. The gene level files were imported
into Agilent GeneSpring GX software (version 11.5.1) for further
analysis. Genes with values higher than or equal to lower cut-off:
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100.0 in at least 3 out of 15 samples were chosen for further data
analysis. Statistically significant differentially expressed genes
(DEGs) were identified by Volcano Plot filtering (fold change >
2.0, p-value < 0.05). KEGG pathway analysis and Gene Ontology
(GO) term enrichment analysis were applied to determine the
roles of DEGs in various biological pathways and GO terms. To
analyze the gene co-expression network, DEGs were submitted
to the STRING database (version 10.5) for construction of a
gene co-expression network. The constructed gene network was
further edited by using the Cytoscape software platform (version:
3.6.1) (12).

Real Time Quantitative PCR

Total RNA was isolated and processed by real time quantitative
PCR (RT-qPCR) for gene expression analysis. PCR was
performed by the use of an Applied Biosystems 7500 Real-Time
PCR System (Applied Biosystems). The S-actin (Actb) gene was
used as internal control. Data was normalized using the 2744t
method. A list of primers used for the RT-qPCR was presented as
Supplementary Table 5.

Statistical Analysis

Except gene expression profiling data, all data were analyzed
by using GraphPad Prism software (GraphPad Software Inc.).
P-values below 0.05 were considered as statistically significant.

RESULTS

Balb/c Mice Are Susceptible to
Ro60_316-335 Peptide-Induced pSS-Like

Disease

Previously, we have demonstrated that development of
Ro60_316-335 peptide-induced pSS-like disease in mice depends
on the genetic background of the mice, where C3H/He mice
were found to be susceptible but DBA/1 and C57BL/6 mice were
shown to be resistant to the disease (11). Here, we investigated
whether Balb/c mice are susceptible to experimental pSS. As
shown in Figure 1A, secretion of tears in mice immunized
with Ro60_316-335 peptide emulsified in TiterMax® was
significantly reduced as compared to mice immunized with
PBS control at week 12 after immunization, while no reduction
in secretion of saliva was observed (Figure 1B). Although no
lymphocytic focus was observed in the histology of either salivary
or lacrimal glands (Figure 1C), immunofluorescence staining
revealed the infiltration of both CD3" T cells and CD19" B
cells in lacrimal glands of Ro60_316-335-immunized mice but
not in the control mice (Figure 1D). CD3" T cells, but not
CD19" B cells, were also observed in the salivary glands of
Ro60_316-335-immunized mice (Supplementary Figure 1).
Analysis of the subtypes of T cells revealed that the infiltrated T
cells in lacrimal glands were composed of both CD41 and CD8"
T cells (Supplementary Figure 2). Collectively, Balb/c mice
immunized with Ro60_316-335 peptide showed lymphocytes
infiltration into the exocrine glands and impairment in tear
secretion, demonstrating that this strain is susceptible to
experimental pSS. Notably, immunization with a different
peptide derived from Ro60 (Ro60_480-494) also emulsified in

TiterMax® failed to induce corresponding disease symptoms
(Supplementary Figure 3), indicating the specificity of this
model for Ro60_316-335.

We next analyzed kinetics of T cell infiltration and
autoantibody production in Ro60_316-335 peptide-immunized
mice. As shown in Figure 1E, infiltration of CD3™ T cells into the
lacrimal gland was observed first at week 4 and reached a peak
at week 6 after immunization. Moreover, anti-Ro60_316-335
peptide autoantibodies became detectable at day 10 and peaked at
week 6 after immunization (Figure 1F). Kinetics of autoantibody
production, lymphocytic infiltration, and impairment of tear
secretion demonstrate that from week 0 to week 6 after the first
immunization was the presymptomatic phase in Balb/c mice in
this mouse model.

We then determined whether glandular cell apoptosis, a
presymptomatic feature in NOD mouse model for pSS, exists
also in the Ro60_316-335 peptide-induced model in Balb/c mice.
As shown in Supplementary Figure 4, obvious glandular cell
apoptosis was detected in lacrimal gland of neither Ro60_316-
335 peptide-immunized mice nor control mice, suggesting that
apoptosis is not a feature of this model.

Gene Expression Profiling of Lacrimal
Glands From the Presymptomatic Phase of

the Disease

Although our previous study has shown that C3H/He mice
are also susceptible to the Ro60_316-335 peptide induced
pSS-like disease (11), the time frame of the presymptomatic
phase in Balb/c mice is better defined than that in C3H/He
mice. Therefore we investigated the presymptomatic features in
the lacrimal glands in the Balb/c strain. We determined gene
expression profiling of the lacrimal glands in the presymptomatic
phase, including the status prior to immunization (week 0),
at week 2 and 6 weeks after immunization with Ro60_316-
335 peptide emulsified in TiterMax®. Comparison were
performed for peptide-immunized mice vs. untreated mice
(week 0), peptide-immunized mice vs. PBS/ TiterMax®-treated
control mice, and PBS/ TiterMax®-treated control mice vs.
untreated mice. As shown in Supplementary Figures 5, 6;
Supplementary Tables 1, 2, each comparison resulted in
hundreds of wupregulated or downregulated genes. To
further characterize those differentially expressed genes,
we performed gene ontology (GO) enrichment analysis
(Supplementary Table 3), pathway enrichment analysis
(Supplementary Table 4), and gene network analysis.

At week 6 after immunization, top enriched GO terms
in upregulated genes in the lacrimal glands of Ro60_316-335
peptide-immunized mice as compared to untreated mice (week
0) belong to the gene groups of “immune system process,” “T
cell activation,” “immune response,” and “lymphocyte activation”
(Figure 2A). These results were in line with findings of the
pathway enrichment analysis, where those upregulated genes
were allocated in the pathways “leukocyte transendothelial
migration,” “B cell receptor signaling,” and “T cell receptor
signaling” (Figure 3A). Interestingly, two infection related
pathways, measles, and human T-cell lymphotropic virus type 1
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FIGURE 1 | Balb/c mice are susceptible to Ro60_316-335-induced pSS-like disease. Balb/c mice were treated with Ro60_316-335 peptide either emulsified in
TiterMax® or PBS. Secretion of saliva (A) and tears (B) was determined after pilocarpine stimulation. Values were normalized to the respective body weights and
subsequently to the levels of secretion determined before immunization. Results of two experiments were pooled and data presented as Mean + SEM, statistically
significant differences between peptide-immunized mice (n = 11) and controls (1 = 10) were calculated by using Student’s t-test ("o < 0.05). (C) Representative
micrographs after H&E staining of sections derived from paraffin embedded lacrimal glands (upper) and salivary glands (lower) of mice immunized with Ro60_316-335
peptide or PBS control. Bars, 100um. (D) Representative immunofluorescence micrographs CD3T T cells (upper) and CD19%F B cells (lower) in lacrimal glands of
Ro60_316-335- or PBS-treated mice. Bars, 50um. (E) Time-kinetics of CD3T T cell infiltration in lacrimal glands of peptides immunized mice (n = 4) and controls (n =
4) at week 0, 2, 4, 6, and 12 after immunization. Data are presented as mean + SEM, statistically significant differences between peptide- and PBS-treated mice were
calculated by using Mann Whitney test (‘o < 0.05). (F) Time-kinetics of anti-Ro60_316-335 autoantibodies production in the sera of Ro60_316-335 peptides
immunized mice (n = 13) and controls (n = 11). Data presented as Mean + SEM, statistically significant differences between peptide- and PBS- treated mice were
calculated by using Mann Whitney test (*p < 0.01, **p < 0.001).

(HTLV-1) infection, also appeared in the pathway enrichment  after immunization. Notably, those immune response associated
analysis, suggesting that the immunization mediated immune  genes upregulated in lacrimal glands of peptide-immunized mice
responses within lacrimal glands was similar to those against  at week 6 after immunization were not seen in PBS/ TiterMax®-
infections. Furthermore, a gene network constructed on the  treated control mice (Supplementary Tables 3, 4), suggesting
basis of the identified upregulated gene showed that 7 out of  that their upregulation was induced specifically by the peptide
top 10 central nodes belong to genes involved in “immune  immunization.

responses” (Figure 4A). Therefore, all three bioinformatic Since gene expression data suggest that there were immune
analysis strategies demonstrate that immune response associated ~ responses in the lacrimal glands of mice immunized with
genes were upregulated in lacrimal glands of Ro60_316-335  Ro60_316-335 peptide at 6 weeks after immunization, we
peptide-immunized mice compared to untreated mice. These  next evaluated the gene expression profiling at 2 weeks after
findings are supported by our observation that infiltration of = immunization in the early presymptomatic phase. As compared
lymphocytes in the lacrimal glands reached the peak at 6 weeks  to week 0, top enriched GO terms of upregulated genes in
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FIGURE 2 | Gene ontology (GO) enrichment of differentially expressed genes (DEGs) in the lacrimal glands of mice. (A) GO terms enriched in genes up-regulated in
lacrimal glands of mice at week 6 after immunization with Ro60_316-335 peptide compared to untreated mice (week 0). (B) GO terms enriched in genes up-regulated
in lacrimal glands of mice at week 2 after immunization with Ro60_316-335 peptide compared to untreated mice. The top 5 significantly enriched GO terms in
“biological process,” “cellular component,” and “molecular function” are presented. Names of the GO terms are indicated in Y axis, while the X axis indicates p-values.

lacrimal glands at week 2 after immunization with the Ro60_316-
335 peptide were “antigen processing and presentation,” “MHC
protein complex,” and “peptide antigen binding” (Figure 2B),
suggesting that genes involved in antigen presentation and
processing were activated. This notion was confirmed by
pathway enrichment analysis and gene network analysis,
which showed that “antigen processing and presentation” was
one of the top enriched pathways (Figure3B) and that 5
out of top 10 central nodes consist of genes involved in
antigen presentation and processing (Figure 4B), respectively.
Therefore, our bioinformatic analysis demonstrate that in
the lacrimal glands of mice at week 2 after immunization
genes related to antigen presentation and processing were
upregulated. Surprisingly, these genes were also found to
be upregulated in mice treated PBS/TiterMax® as a control
(Supplementary Tables 3, 4), indicating that regulation to these
genes was not driven by the antigen but by the adjuvant.
Upregulated genes encompass several MHC I and MHC II genes,
including H2d1, H2ebl, H2eal, H2kl, H2dmbl, H2q7, H2aa,

and B2m (Figure 5A). To confirm the upregulation of MHC
genes, we performed real time quantitative PCR to determine the
expression of H2d1, H2kl, H2ebl, and H2aa. As predicted, we
found, all four MHC genes to be upregulated in the TiterMax®-
treated groups in comparison to the respective untreated control
group (Figure 5B).

Ectopic Expression of MHC Il on Murine

Lacrimal Glands

Under physiological condition, glandular cells express MHC 1
but not MHC II molecules. Thus, the upregulation of MHC
IT molecules observed here represent most likely an ectopic
expression. Since such an ectopic expression of HLA II on
epithelial cells of salivary glands is a feature of pSS patients
(3, 13), we further characterized the expression of MHC
IT in lacrimal glands of the immunized mice. As expected,
MHC II molecules were not expressed on glandular cells prior
to immunization. However, ectopic expression of MHC II
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FIGURE 3 | KEGG pathway enrichment analysis of differentially expressed genes (DEGs) in lacrimal glands of mice. (A) KEGG pathways enriched in genes
up-regulated in lacrimal glands of mice at week 6 after immunization with Ro60_316-335 peptide compared to untreated mice (week 0). (B) KEGG pathways enriched
in genes up-regulated in lacrimal glands of mice at week 2 after immunization with Ro60_316-335 peptide compared to untreated mice. The top 5 significantly
enriched KEGG pathways are shown. HTLV-1, Human T-cell ymphotropic virus type 1.

FIGURE 4 | Gene co-expression network of differentially expressed genes (DEGs) in lacrimal glands of mice. (A) Gene network of genes up-regulated in lacrimal
glands of mice at week 6 after immunization with Ro60_316-335 peptide compared to untreated mice (week 0). The top 10 connected genes are labeled in yellow.
Among the top ten connected genes, genes involved in immune responses are highlighted with red cycles. (B) Gene network of genes up-regulated in lacrimal glands
of mice at week 2 after immunization with Ro60_316-335 peptide compared to untreated mice. The top 10 connected genes are labeled in yellow. Among the top ten
connected genes, genes involved in antigen presentation are highlighted with red cycles.

molecules was observed at week 2, 6 and 12 after treatment Immunohistochemical staining revealed further that MHC II
with TiterMax®, irrespective whether a further antigen was  molecules were ectopically expressed on both lacrimal acinar and
co-applied or not (Figure 6A and Supplementary Figure7).  ductal cells in the lacrimal glands of TiterMax®-treated mice
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(o < 0.05, ™p < 0.01 and **p < 0.001).

FIGURE 5 | Expression of genes involved in antigen processing and presentation in lacrimal glands of mice. (A) Heatmap of differentially expressed genes involved in
antigen processing and presentation, with green and red color representing low and high gene expression, respectively. Signal intensity of gene expression

was normalized by using the z-score and indicated in color from green (low) to red (high). Calculation and plotting were performed by using package heatmap.2 in
RStudio. (B) Validation of gene expression of H2d1, H2k1, H2aa, and H2eb1 in lacrimal glands of mice at week 2 after immunization with Ro60_316-335 peptide,
PBS/Titermax® control, and in untreated mice (week 0). The quantification of gene expression was determined by real time quantitative PCR with g-actin gene
expression as internal control for normalization. Data are presented as mean + SEM, statistical differences between groups were determined by using Student’s t-test

(Figure 6B). To confirm that elevated expression of MHC II
molecules was associated with their upregulation on glandular
cells but not by infiltration of professional APCs, we performed
co-staining of tissue against MHC II in combination with CD11c.
Although we could identify a small number of CD11ctMHCIT™
APCs in the glandular tissue, the majority of MHC II™ cells in
the lacrimal glands of TiterMax®-treated mice scored negative
for CD11c (Figure 6C).

To investigate whether the ectopic expression of MHC
II molecules is limited to tissues of lacrimal glands, we
determine the expression of MHC II in other organs
including salivary glands, lung, kidney and heart. As shown
in Supplementary Figure 8, ectopic expression of MHC II
molecules could be detected in all analyzed organs in mice
treated with TiterMax® but not in untreated controls.

To further examine whether MHC II expressing glandular
cells interact with infiltrated CD4" T cells, we performed co-
staining of MHC II molecules with CD4. As shown in Figure 6D,
co-localization of CD4" T cells and MHC 1II expressing cells
was observed in the lacrimal glands of mice immunized with
Ro60_316-335 peptide, indicating that glandular cells may
have the ability to present antigen to corresponding T cells.
Noteworthy, no such interaction was observed in mice which
received TiterMax® in the absence of the peptide.

CFA Does Not Induce Ectopic Expression
of MHC Il Molecules

Finally, we then investigated whether the adjuvant induced
ectopic expression of MHC IT molecules is specific for TiterMax®

or a more general effect which can be mediated by other
adjuvants too. However, treatment with CFA did not induce the
ectopic expression of MHC II molecules in the lacrimal glands
(Figure 7A) in Balb/c mice. Furthermore, immunization with
Ro60_316-335 peptide emulsified in CFA failed to induce a pSS-
like disease. Although these mice did produce autoantibodies
against Ro60_316-335 peptide (Figure 7E), neither impairment
in tears secretion (Figures7B,C) nor lymphocytic infiltration
(Figure 7D) was observed.

DISCUSSION

In this study, we could demonstrate that ectopic expression
of MHC II molecules in lacrimal glands represents an early
presymptomatic event in the Ro_316-335 peptide-induced model
for pSS. Given that adjuvants are able to enhance maturation
of dendritic cells and to increase antigen presentation, it is
not surprising that application of an adjuvant mediates the
upregulation of MHC molecules on professional APCs (14).
However, the adjuvant-induced ectopic expression of MHC II
molecules on glandular epithelial cells has not been observed so
far. To our knowledge, this study reports for the first time on
the ectopic expression of MHC II molecules as a presymptomatic
feature of animal models of pSS.

In 1985, Lindahl et al. reported that HLA_DR molecules
are ectopically expressed on the minor salivary gland epithelial
cells around the dense lymphocytic infiltrates in pSS patients
(13). Subsequent in-situ histological studies demonstrated that
both salivary acinar and ductal cells ectopically express MHC II
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FIGURE 6 | Ectopic expression of MHC Il molecules on glandular cells in
lacrimal glands of TiterMax®-treated mice. (A) Representative micrographs of
MHC Il molecules on lacrimal glands from mice immunized with
Ro60_316-335 peptides or PBS emulsified in TiterMax® at the week 2 after
immunization and on untreated mice (week 0). MHC Il molecules were
detected on cryosections of the lacrimal glands by direct immunofluorescence
staining using Alexa-647 conjugated rat-anti-mouse I-A/I-E Antibody. Bars,
50um. (B) Representative micrographs of MHC Il molecules on lacrimal glands
of mice. Expression of MHC Il molecules was determined by
immunohistochemistry on cryosections. Bars, 50um. (C) Co-staining for
CD11c and MHC Il molecules on cryosections of lacrimal glands from mice
immunized with Ro60_316-335 peptides. CD11c and MHC Il molecules on
lacrimal gland tissue cells were detected by using Alexa-488 conjugated
Armenian Hamster-anti-Mouse CD11c antibody and Alexa-647 conjugated
rat-anti-mouse I-A/I-E Antibody, respectively. Bars, 50um. (D) Co-staining for
CD4 and MHC Il molecules on cryosections of lacrimal glands from mice
immunized with Ro60_316-335 peptides. CD4 and MHC Il molecules on
lacrimal gland tissue cells were detected by Alexa-488 conjugated
rat-anti-Mouse CD4 antibody and Alexa-647 conjugated rat-anti-mouse
I-A/I-E Antibody, respectively. Bars, 50um.

molecules (3, 15). However, it is not clear whether this ectopic
expression is a presymptomatic feature or already a consequence
of the disease manifestation. So far, the only reported evidence
for an ectopic expression of MHC II in an animal models for
pSS derives from observations in RbAp48 transgenic mice. In
2008, Ishimaru et al. reported that these mice develop a pSS-
like disease spontaneously which is associated with an ectopic
expression of MHC II molecules on glandular epithelial cells
(16). Since in this study only the histology of exocrine gland of
diseased mice was evaluated, it is not clear whether this ectopic
expression of MHC II molecules is a presymptomatic feature
of this model. By contrast, we here demonstrate that ectopic
expression of MHC II molecules on both acinar and ductal cells is
a true presymptomatic feature of Ro60_316-335 peptide-induced
mouse model for pSS.

Although ectopic expression of MHC II molecules on
glandular epithelial cell is a well-defined feature of pSS (13),
it is not clear whether this abnormality is caused by a genetic
dysregulation or by exogenous factors. In the RbAp48 transgenic
mouse model, ectopic expression of MHC II molecules is a clear
consequence of a genetic modification and is mediated by the
overepression of the RbAp48 gene (16). In our study, ectopic
expression of MHC II molecules is induced by application of
TiterMax®, suggesting that the ectopic expression can be caused
by an exogenous factor. Taken together, evidence from animal
studies suggests that both genetic and environmental factors can
mediate the ectopic expression of MHC II molecules on glandular
epithelial cells in pSS.

Expression of MHC II genes are controlled by interferon
regulatory factor 1 (IRF-1) and Class II Major histocompatibility
complex transactivator (CIITA) as primary regulators of MHC
II expression (17, 18). Moreover, it has been reported that
IFN-y regulate the expression of MHC II by acting on IRF-1
and CITA (19). Consistently, IRF-1 has been reported to be
highly expressed in the salivary gland from pSS patients (20),
supporting the hypothesis that the ectopic expression of MHC
IT is regulated by IRF-1. With regard to the ectopic expression
of MHC 1II on glandular epithelial cells in mice, Ishimaru et al.
could demonstrate the production of IFN-y by salivary gland
epithelial cells which induces the upregulation of IRF-1 and
CITA and further leads to the ectopic expression of MHC II
molecules in exocrine glands of the RbAp48 transgenic mice
(16). In line with these findings, we observed a significant
upregulation of IRF-1 and CIITA gene expression in the lacrimal
gland of TiterMax® treated mice as compared to untreated
mice (Supplementary Figure 9), providing indirect evidence
that ectopic expression of MHC II molecules is likewise mediated
by upregulation of these two molecules.

Since the MHC II molecules play a pivotal role in antigen
presentation and subsequent CD4" T cell activation (21), it
is conceivable that glandular epithelial cells expressing MHC
II molecules might act as APCs and thus are involved in
the initiation of the disease manifestation. This notion is
supported by our observation that infiltrated CD4% T cells
co-localized with glandular cells ectopically expressing MHC
II molecules. Previously, Ishimaru et al. showed that salivary
gland epithelial cells (SGEC) obtained from pSS patients express
both MHC II molecules and co-stimulatory cytokines and are
able to mediate the initiation, development and maintenance of
inflammatory response as non-professional APCs in vitro (22),
supporting a role of MHC II-expressing glandular epithelial cells
as APCs.

Interestingly, TiterMax®, but not CFA, can induce ectopic
expression of MHC II molecules. Furthermore, only TiterMax®
but not CFA can be used as the effective adjuvant for Ro60_316-
335 peptide-induced mouse model of pSS. This observation
suggests that these two adjuvants are different in their actions
in triggering immune responses, especially in triggering innate
immune responses. Studies in which both adjuvants were
compared have demonstrated that CFA is able to mediate
stronger immune response than TiterMax® (23-26), in terms of
antibody production and chronicity of inflammation. However,
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FIGURE 7 | Immunization with Ro60_316-335 peptide emulsified in complete freund’s adjuvant (CFA) failed to induce pSS-like disease in Balb/c mice. (A)
Representative immunofluorescence micrographs of MHC Il molecules on cryosections of lacrimal glands from mice treated with PBS emulsified in CFA at week 0, 2,
and 6 after immunization. Bars, 50 um. Secretion of saliva (B) and tears (C) was determined after pilocarpine stimulation. Values were normalized to the respective
body weights and subsequently to the levels of secretion determined before immunization. Data presented as mean+ SEM, statistically significant differences
between peptide-immunized mice (n = 13) and controls (n = 8) were determined using Student’ t-test. (D) Representative immunofluorescence micrographs of CD3+
T cells (upper) and CD191 B cells (lower) in lacrimal glands of Ro60_316-335-immunized mice or PBS-treated control mice. Bars, 50 pm. (E) Production of
anti-Ro60_316-335 antibodies in the sera of mice immunized with Ro60_316-335 or PBS emulsified in CFA. Data are presented as mean + SEM, statistically
significant differences between peptide- and PBS- immunized mice were calculated by using Mann Whitney test (**p < 0.001).

the difference between CFA and TiterMax® in triggering innate  cells (16). Therefore, the findings of the current study suggests a

immune responses was not clear so far. novel mechanism of adjuvant-mediated activation of the adaptive
Adjuvants are effective means to potentiate cellular and  immune response by converting epithelial cells into APCs.
humoral immune responses in modeling human immune related Although our results provide an idea on presymptomatic

diseases. The mode of action of adjuvants includes prolongation ~ processes in experimental pSS, some limitations in this study
of the lifetime of (auto-)antigens, enhancement of antigen  have to be discussed. First, the Ro60_316-335 peptide-induced
delivery to APC, and stimulation of the innate immune system  disease phenotypes in Balb/c mice are rather mild, which makes
(14, 27). The current study demonstrates that TiterMax® is  this model not ideal for all studies on this disease. Second,
able to induce ectopic expression of MHC II molecules on  lymphocytic foci in the exocrine glands, a feature of pSS
epithelial cells. Previously, Ishimaru and colleagues have shown  patients, are not present in Balb/c mice and only a rather mild
that SGEC of pSS patient express beside MHC II molecules also infiltration of lymphocytes could be detected in lacrimal and
antigen presenting-associated molecules such as CD86, CD80,  salivary glands. It is not clear whether this limited number
and ICAM-1 (16). Moreover, SGEC are able to activate CD4"  of infiltrated lymphocyte and their interaction with glandular
T cells, suggesting that they can function as antigen presenting  cells are relevant to the development of disease. Third, given
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that both lacrimal and salivary glands are characterized by
mild lymphocytic infiltration and MHC II ectopic expression,
it is unclear why only the secretion of tears is impaired. One
possible explanation for this could be discrepant susceptibilities
of both glands to autoimmune-mediated impairment. This idea
is supported by observations in two other murine models of
pSS. In thrombospondin-1-deficient mice impairment in tear
secretion occurs without effect on the production of saliva
(28) and in transgenic mice overexpressing retinoblastoma-
associated protein 48a more severe impairment of lacrimal
gland function was seen than in the function of salivary glands
(16). Finally, since TiterMax® represents a multi-component
reagent, the identity of the defined substance relevant for
the ectopic expression of the MHC II molecules has to be
clarified.

In conclusion, the current study shows that TiterMax®-
induced ectopic expression of MCH II molecules on exocrine
glands is an important feature in the early presymptomatic
phase of the Ro60 peptide-induced mouse model of pSS.
These findings suggest that that ectopic expression of MHC II
molecules in the exocrine glands might be a presymptomatic
feature of pSS and such ectopic expression can be induced
by exogenous factors. Furthermore, this study also suggests a
novel mechanism of adjuvant action in potentiating immune
responses.
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The role of autoimmunity in Parkinson’s disease (PD), as one of the most popular research
subjects, has been intensively investigated in recent years. Although the ultimate cause
of PD is unknown, one major area of interest remains identifying new therapeutic targets
and options for patients suffering from PD. Herein, we present a comprehensive review
of the impacts of autoimmunity in neurodegenerative diseases, especially PD, and we
have composed a logical argument to substantiate that autoimmunity is actively involved
in the pathogenesis of PD through several proteins, including a-synuclein, DJ-1, PINK1,
and Parkin, as well as immune cells, such as dendritic cells, microglia, T cells, and B
cells. Furthermore, a detailed analysis of the relevance of autoimmunity to the clinical
symptoms of PD provides strong evidence for the close correlation of autoimmunity
with PD. In addition, the previously identified relationships between other autoimmune
diseases and PD help us to better understand the disease pattern, laying the foundation
for new therapeutic solutions to PD. In summary, this review aims to integrate and present
currently available data to clarify the pathogenesis of PD and discuss some controversial
but innovative research perspectives on the involvement of autoimmunity in PD, as well
as possible novel diagnostic methods and treatments based on autoimmunity targets.

Keywords: autoimmunity, Parkinson’s disease, «-synuclein, autoimmune diseases, neuroimmunology

INTRODUCTION

The consensus is that under normal physiological conditions, the whole immune system fights
against foreign antigens but not self-aggressors. Unfortunately, long-standing studies have
revealed that immunological destruction may incite organisms to attack the self-antigens of
cells or tissues, referred to as autoimmunity (1, 2). Failure to maintain the self-tolerance of
lymphocytes is a fundamental explanation for the onset of autoimmune diseases. The pathogenesis
of autoimmunity has been explored for many decades, and several relevant mechanisms
have been confirmed to cause autoimmune diseases, which are summarized as follows: (1)
genetic alterations in pattern recognition receptors (PRRs); (2) cross-reaction of immune cells
with self-antigens (also called molecular mimicry); (3) epitope spreading or drifting; and (4)
dysfunction of T cells and B cells. Specifically, Chastain and Schie have shown that genetic
alterations in PRRs could increase the sensitivity threshold against harmless self-antigens. They
also demonstrated that autoimmunity could result from cross-reactivity between a host cell
receptor and the antibody induced by the antigenic epitope of an antiviral agent (3, 4).
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Qiao et al. attributed the occurrence and development of an
autoimmune disease to an imbalance between regulatory T cells
(Tregs) plus suppressive cytokines and effector T cells plus pro-
inflammatory cytokines (5). The powerful immune suppressive
capacity of Tregs and their secreted cytokines could suppress
not only effector T cells but also other immune cells, such as
B cells and dendritic cells (DCs). Meanwhile, it has also been
demonstrated that the assistance of CD41 cells (also known as
helper T cells) is pivotal for the autoantibody response of B cells
driven by autoantigens, which can also improve the outcome of
immune reactions initiated by various antigen-presenting cells
(APCs) as a secondary response to antigens (6, 7). This review
mainly elaborates on how inappropriate immune responses in the
central nervous system (CNS) contribute to the pathogenesis of a
broad range of neurodegenerative disorders including but not be
limited to Parkinson’s disease (PD).

AUTOIMMUNITY IN
NEURODEGENERATIVE DISEASES AND
ITS RELEVANCE TO PD

The immune system always exerts intricate and reciprocal effects
on the nervous system. Previous research considered brain cells
safe from attack by the immune system because most neurons do
not express antigens, which are markers specifically recognized
by antibodies. Nevertheless, increasing data have indicated that
autoimmunity causes neuronal demyelination, axonal damage,
synaptic loss and further neurodegeneration (8). In fact, the CNS
usually suffers from a chronic autoimmune attack. According
to Kawai and Akira, inflammation is one of the first and most
prominent events in this chronic process (9), which can last a
decade or two, followed by the accumulation of neuronal injury,
eventually resulting in irreversible neurodegeneration. When
autoimmunity begins, some harmful cytokines are released, some
of which further recruit immune cells to continuously attack
neurons and nerve fibers (10-12). Multiple sclerosis is a torturous
autoimmunity-related CNS disease with typical pathological
variances that are usually clinically marked by oligoclonal
bands and/or an increased immunoglobulin G index (13). As
mentioned above, even though the damage associated with acute
inflammatory lesions occurs first, the subsequent autoimmunity-
induced neurodegeneration is linked with the progressive
development of disability (14, 15). Overall, neurodegenerative

Abbreviations: «-Syn, a-Synuclein; AD, Alzheimer’s disease; APCs, antigen
presenting cells; ARD, autoimmune rheumatic disease; BP, bullous pemphigoid;
CNS, central nervous system; CSE cerebrospinal fluid; DC, dendritic cell;
DN, dopaminergic neuron; dsDNA, double-stranded deoxyribonucleic acid;
GWAS, genome-wide association studies; HSV1, herpes simplex virus 1;
Ig, immunoglobulin; IL, Interleukin; iTregs, induced regulatory T cells;
LDLs, low-density lipoproteins; LPC, lipophosphatidylcholine; MAPK, mitogen-
activated protein kinase; MDVs, mitochondria-derived vesicles; MHC, major
histocompatibility complex; MitAP, mitochondrial antigens presentation; MPTP,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NF-kB, nuclear factor kappaB;
NM, neuromelanin; nTregs, natural regulatory T cells; PARK7, Parkinson’s Disease
Protein 7; PD, Parkinson’s disease; PRRs, pattern recognition receptors; SIBO,
small intestinal bacterial overgrowth; SLE, systemic lupus erythematous; SNpc,
substantia nigra pars compacta; TNE, tumor necrosis factor; Tregs, regulatory T
cells.

diseases are irreversible, and the related deterioration might
be due to the chronic, long-lasting, and autoimmunity-induced
pathology transformation. Meanwhile, advanced age, one of the
main risk factors of both neurodegeneration and autoimmune
disease, is characterized by an erosion of tolerance and increased
reactivity to self-antigens (16-19). As such, it is assumed that PD,
as one of the most common neurodegenerative disorders ranking
after Alzheimer’s disease (AD), is also likely to be an autoimmune
disease.

The pathogenesis, diagnosis and treatment of PD have
received increasing interest due to the increasing morbidity
and mortality, enervating features, irreversibility, and early-onset
tendency of the disease. In terms of the mechanism of the death
of dopaminergic neurons (DNs), no unanimous conclusion can
yet be drawn. A growing number of published studies using cell
culture systems and preclinical animal models have provided
evidence for a role of the immune system in the etiology of
PD (20-22). Some researchers had already begun to focus on
the relationship between PD and autoimmunity as early in
1989; however, due to sample size limitations and immature
experimental technology, they did not obtain reliable data
showing a significant correlation between PD and autoimmunity
(23). After nearly three decades, a series of research results have
demonstrated that both the innate and adaptive immune systems
are activated in PD. Significant increases in innate immune
factors, including interleukin (IL)-1, IL-2, and IL-6 and tumor
necrosis factor (TNF)-a, have been detected within the substantia
nigra pars compacta (SNpc) and cerebrospinal fluid (CSF) of PD
patients (24, 25), and y8 T cells, the first line of defense, have also
been found to be elevated within the peripheral blood and CSF
(26). For specific recognition, human catecholaminergic SNpc
neurons express major histocompatibility complex I (MHC-
I), which enables them to present autoantigens and be more
susceptible to T cell-mediated cytotoxic attack (27). Increased
levels of specific immunoglobulins in the peripheral blood
and CSF of PD patients have further suggested that humoral
autoimmunity is involved in the pathogenesis of PD (28-
30). Additionally it became more convincing that post-mortem
studies of PD brain tissue showed both CD4" and CD8" T
cells in close proximity to DNs within the SNpc at levels 10-
fold higher than in the control group (31). Analysis of the
correlation between immunity and PD has demonstrated that
immunoglobulin G (IgG) binds to DNs in PD (32). Moreover,
an increase in CD8T T cells and a decrease in Tregs within
the peripheral T lymphocyte populations of PD patients (33)
indicated the downregulation of self-tolerance and upregulation
of error recognition and self-attack, further corroborating the
potential involvement of autoimmunity in PD progression. All
of these reliable experimental data indicate that autoimmunity
might play a key role in PD development. More in-depth studies
are urgently needed to prove that autoimmunity is the main
cause of PD and to explain the mechanism underlying the
injury and selective loss of DNs. Autoimmunity contributes to
the pathogenesis of PD in a multifactorial manner involving
a-synuclein (a-syn) and immune cells (e.g., microglia and
DCs) and the mutation of many genes (e.g., PINKI, Parkin,
and DJ-1). These contributions produce varied and unique
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corresponding pathomechanisms and clinical features, which will
be discussed at length in the following sections in sequence
(Figure 1).

GENETIC REGULATION OF
AUTOIMMUNITY IN PD

Some autoimmune diseases are frequently familial, while other
autoimmune diseases are sporadic (34). Despite the proven
genetic associations among distinct autoimmune diseases, much
of the heritability remains unaccountable (35). Scientists have
assumed that PD-related genes might be the key regulatory
factors engaging the autoimmune system and their dysfunction
would overshoot immunity either by lost tolerance or increased
sensitivity thresholds to self-antigens (36). Undoubtedly, certain
genes are closely related to PD, with two inheritance modes:
autosomal dominant and autosomal recessive (37). Three genes,
PINKI, Parkin, and DJ-1, are closely related to autosomal
recessive genetics in early-onset PD. Meanwhile, mutations in
PINKI and Parkin, which encode a mitochondrially targeted
protein kinase and an E3 ubiquitin ligase, respectively, have
been found in both familial and sporadic PD (38, 39). It was
once believed that the dysfunction of these two genes would
cause the failure to maintain normal mitochondrial function,
leading to the loss of DNs and ultimately causing PD (39, 40).
While in the past few years, it has been shown that PINKI and
Parkin-related immune system disorders are indeed responsible
for the upstream mechanism of mitochondrial aberrations.
PINKI, a kinase stabilized at the surface of mitochondria,
phosphorylates both ubiquitin and Parkin (41, 42). The reduced
ability of PINKI~/~ CD4" T cells to suppress bystander T cell
proliferation indicate that this pathological state could result
in reduced immuno-surveillance or activated autoimmunity
during PD progression (43). In addition, it has been reported
that the loss of PINKI/Parkin-dependent mitochondrial quality
control triggers a series of physiological events related to
PD, including the abnormal initiation of innate immunity
(44). The lack of PINKI and Parkin has been confirmed to
induce high levels of mitochondrial antigen presentation
(MitAP) MHC-I molecules in both macrophages and DCs,
as well as accelerating the formation of mitochondria-derived
vesicles (MDVs) on which MitAP depends both in vitro and
in vivo (45). Data have also shown that Parkin—/~ DNs with
MitAP activation are recognized by established mitochondria
antigen-specific T cells, accompanied by cytotoxic responses,
including microglial activation and local inflammation, as
well as a significant contribution of the immune system in
the etiology of PD (34, 46). During the process of infection or
inflammation, the presence of a lymphatic system in the CNS
could facilitate the transportation of immune cells into the brain,
subsequently destroying DNs expressing mitochondrial antigens
on their surface. In other words, under these circumstances,
mitochondrial antigen-expressing DNs are much more “visible”
to autoimmunity (34, 47). As previously stated, elucidating the
abnormal function of T cells in the absence of PINKI and/or
Parkin may also help to unravel the role of autoimmunity in

PD. Therefore, further investigations of T cell function in PINK1
and/or Parkin mutation carriers are needed.

In addition to these observations, DJ-1 (Parkinson’s
disease protein 7, PARK7) has also been reported to affect
the development of natural Tregs (nTregs) and induced
Tregs (iTregs, previously known as suppressor T cells).
Mature Tregs with normal function, which modulate not only
adaptive immunity but also innate immunity, are pivotal for
maintaining thymic function, peripheral immune self-tolerance
and immune system homeostasis. nTregs are generated in the
thymus, while iTregs are derived from naive CD4" T cells
encountering antigens in the peripheral organs. Both cell types
are generally immunosuppressive through the suppression
or downregulation of effector T cell proliferation (48). Their
“self-check” function successfully prevents excessive effector
cell reactions. On the other hand, the abnormal proliferation
of both types of Tregs leads to the failure of self-/non-self-
discrimination, resulting in autoimmune disease (49). Evidence
reported by Singh et al. has demonstrated that DJ-1, one of
the most classical key players responsible for PD pathogenesis,
is strongly linked with neuroimmunology and multiple
autoimmune responses in PD. In addition, Dj-I-deficient
animal models have shown compromised iTreg induction, cell
cycle progression, and cell survival and proliferation. DJ-1~/~
iTregs are more proliferative, more susceptible to cell death
signals and deficient in cell division compared with wild type
counterparts, as analyzed by flow cytometry and Western
blotting.

In conclusion, these discoveries provide a new perspective on
the relationship between gene regulation and neuroimmunology.
Consistent with previous reports, PINKI, Parkin and DJ-1, which
have been cited as the three musketeers of neuroprotection (50),
are beneficial to mammalian organisms. However, deficiency of
these genes leads to a failure to maintain normal neuron function
and prevent oxidative stress and inflammation damage in PD,
which has also been confirmed by our previous studies (51, 52).
Similarly, a failure to maintain the homeostatic immune system
leads to a hyperactive autoimmune state and accelerates disease
progression.

PATHOGENIC PROTEIN FUNCTION IN
AUTOIMMUNITY-ASSOCIATED PD

a-Syn, a small synaptic protein and the primary component
of Lewy bodies, if incorrectly modified or misfolded, can form
soluble or insoluble aggregates and act as the neuropathological
hallmark in the brain of patients with either sporadic or
familial PD (53). a-Syn plays a leading role in the initiation
and progression of Parkinson-like neurodegeneration because
it can induce high neurotoxicity by diverse pathways, such
as inflammation, oxidative stress and autophagy abnormalities
(53, 54). The neurotoxicity of a-syn is largely attributed to
its soluble or insoluble aggregates of oligomers or polymers,
which are found throughout the SNpc in PD but are also
found in other neurons. The hypothesis that a-syn is involved
in the autoimmune process driving PD has been constantly
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FIGURE 1 | Parkinson’s disease (PD) is actually an autoimmune disease. Autoimmunity occurs when immune homeostasis is broken by several main mechanisms
shown in this figure, which directly result in an increase in error recognition and self-attack and a decrease in self-tolerance to autoantigens. Regarding PD, chronic
autoimmune attack is not only its pathogenesis but also always involved throughout the entire disease process. Inflammation is the first step of this attack, with the
subsequent participation of various immune cells and immunoglobulins they produce, ultimately leading to the death of dopaminergic neurons. PRRs, pattern
recognition receptors; CSF, cerebrospinal fluid; SNpc, substantia nigra pars compacta; IL, interleukin; TNF, tumor necrosis factor.
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and widely debated. Prior experimental evidence in favor of
a-syn as a self-antigen in PD is based on data reported by
Benner et al., who found that effector T cells immunized
by a self-antigen, nitrated-a-syn (typical neuropathology of
PD), could exacerbate neuroinflammation and augment the
neurodegeneration of SNpc DNs in an 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) mouse model (55). This
finding indicates that nitrated-a-syn, as a self-protein and
biomarker for the clinical diagnosis of PD, which was detected
readily in cervical lymph nodes from MPTP-intoxicated mice,
might break down immunological tolerance and induce the
autoimmune responses that exacerbate the pathobiology of PD.
This report led to an alternative theory that a-syn causes PD by
triggering the immune system to attack the brain. Additionally,
Cao et al. injected adeno-associated virus overexpressing o-syn
into the SNpc of Fc-y receptor™/~ mice via a stereotaxic method
and detected attenuated microglial activation and reduced
dopaminergic neurodegeneration compared with non-injected
controls (56). Over-abundance of a-Syn lead to the expression
of a specific antigen, which further induces IgG generation. The
Fc-y receptor is expressed on the cell membrane of microglia,
which binds IgG and triggers signal transduction events leading
to microglial activation that eventually injures neurons in the
SNpc. Therefore, a-syn is important for inducing an autoimmune
response that leads to neurodegeneration. Upon further analysis,
views from Heather’s team have emphasized that in addition
to nitration, another post-translational modification of a-Syn in
PD, such as phosphorylation at serine 129 (S129), affects the
toxicity, oligomerization, and immunogenicity of a-syn itself
(57). Casein kinase-2 and G-protein-coupled receptor are two
main kinases which influence the phosphorylation of a-syn (58,
59). Circumstance poisons such as MPTP and paraquat can also
cause S129 of a-syn (60). Approximately 90% of a-syn in Lewy
bodies is phosphorylated at S129 in PD in the brain, while it
is relatively rare in human normal brain tissue (~4%). Thus,
researchers have speculated that the epitope of a-syn might not
exist in the thymus when facing negative selection and would
be erroneously recognized as a foreign antigen (61). In addition
to the above findings and analysis, Li and Games and their
colleagues found another way to change the antigenicity of a-syn
both in vitro and in vivo. They passively immunized mice using -
syn antibodies designed to bind the gene’s C-terminal fragments
and successfully observed decreased a-syn aggregation, reduced
DN loss, and alleviated movement disorder in the a-syn model of
PD (62, 63). It could be concluded that the C-terminal truncation
mutant of a-syn, identified in Lewy bodies and brain tissue with
PD, possibly produces new antigens induced by altered a-syn
processing.

As discussed above, molecular mimicry and cross
immunoreactions are two of the primary mechanisms through
which autoimmunity is triggered. Molecular mimicry between
herpes simplex virus 1 (HSV1) and human a-syn was detected
in PD patients in 2016. HSV1 infection could enhance the
development of autoimmunity because autoreactive antibodies
induced by HSV1 have the same response to the human a-syn
homologous peptide bound to the membrane of DNs and
lead to DN destruction (64). These results also support the

assumption that a-syn participates in autoimmunity involved in
the pathological progression of PD.

According to previous reports, MHC proteins are present on
SNpc DNs and norepinephrine neurons in the locus coeruleus,
and in the presence of the appropriate antigen and CD8"
T cells (also known as cytotoxic T cells), MHC-I expressing
SNpc murine neurons are more easily destroyed, suggesting
that antigenic epitopes could activate CD8™' T cells involved in
the autoimmune response and cell death (27). In June 2017,
Sulzer et al. concentrated on the characteristics of a-syn and
tested whether it could be a target of T cells as a potential self-
antigen (65). They detected the immune responses of peripheral
blood mononuclear cells from 67 PD patients and 36 healthy
controls that were exposed to a set of a-syn-derived peptides.
It has been shown that the small stretches of a-syn around
the Y39 and S129 phosphorylation regions successfully trigger
the T cell response. Furthermore, the specific sets of T cells
that respond to a-syn epitopes have also been identified to be
mostly CD4% and partly CD8" T cells. This information could
greatly benefit clinical diagnosis and treatment not only because
T cell responsiveness might be a new biomarker for identifying
individuals at risk or in the early stages of PD but also because
of the potential for strategies for inhibiting the immune reaction
or elevating the threshold of recognizing self-antigens, such as
a-syn, as an attractive and promising therapeutic target in PD.
However, there is still much more exploration to be done, as it
is not yet clear if the autoimmune response is the initiator or an
important pathogenic component of PD; in either case, it cannot
be underestimated. Sulzer’s team plans to block the autoimmune
response in PD, e.g., by deleting certain T cell subpopulations, B
cells or MHC, in an attempt to determine whether this will halt
progression of the disease.

IMMUNE CELLS AND AUTOIMMUNITY IN
PD

To date, numerous immune cells have been shown to be
responsible for driving PD progression. DCs and microglia are
two types of mammalian immune cells that act as the first and
main forms of active immune defense in the CNS (66). They act
first as APCs and then activate T cells to initiate the immune
system to identify and attack extrinsic antigens. In essence, these
immune cells lie at the intersection of the immune response
and the neurodegenerative process—two primary aspects of
CNS autoimmune disorders. DCs, the famous APCs (also
known as accessory cells), serve as messengers between the
innate and adaptive immune systems and can induce and even
maintain self-tolerance (67). It is the differentiation/maturation
rather than the haematopoietic origin or subset classification
of DCs that determines their tolerogenic or immunogenic
functions. Immature DCs can inhibit alloantigen-specific T cell
responses to reverse autoimmune diseases in murine models but
simultaneously induce antigen-specific T cell tolerance (68). The
maturation of DCs into professional APCs via the upregulation
of MHC expression enables DCs to capture antigens successfully
(69). Based on these phenomena, Platt et al. proposed a theory
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called “regulatory mechanisms by DCs” for immune responses
against self-antigens. They concluded that the failure of DCs to
control T cells via Treg differentiation and effector T cell clonal
deletion leads to a direct attack on self-antigen-harboring target
cells (70).

The progressive loss of neuromelanin (NM)-containing
DNs in the SNpc is one of the predominant features of
PD. Once produced by dopamine and norepinephrine via
an interaction with cysteine as the inevitable by-product of
aging (71), NM (the pigment) is no longer merely a spectator
but an autoantigen released from dead DNs that stimulates
the maturation and functional activation of DCs though
being phagocytized by DCs, and then triggers an adaptive
autoimmune response and finally leads to microglial activation,
which enhances this autoimmunity via positive feedback (72).
Subsequently, these mature DCs migrate from the CNS to
cervical lymph nodes, resulting in the presentation of NM
to naive T and B cells in a highly immunogenic context
(73). This autoimmune response might eventually lead to
the death of NM-rich neurons in PD. Therefore, Oberlander
and his colleagues inferred that NM is a potential target
structure during autoimmune attack on DNs. This conclusion
was later supported in 2009, as a relatively higher level of
anti-NM antibodies was detected in the sera of PD patients
(28). Consistently, a complement factor named C1q, which has
been confirmed to be involved in the classical complement
pathway and recognize antigen-bound IgG and IgM, was found
to localize on the surface of extracellular NM in the brain
of post-mortem PD patients (74). These data highlight the
conclusion that NM is a potential target during the autoimmune-
based pathogenesis of PD. Although DCs rarely exist in the
healthy human brain, myeloid-derived DCs can still infiltrate the
brain tissue during the process of neuroinflammation (75, 76).
The exact mechanism by which NM activates DCs is by its
peptide or lipid components, not by the dopamine melamine
backbone, because DC maturation is due to the oxidized
lipophosphatidylcholine (LPC) found in low-density lipoproteins
(LDLs) (73). This point of view is supported by the increased
lipid peroxidation in the SNpc detected in post-mortem PD
patients.

In the context of autoimmune disorder-induced PD, the
resulting antigens presented by microglia could promote self-
antigen recognition by T cells, thus contributing to neuronal
damage. The upregulation of MHC-II on microglia allowed
microglia to present self-antigens to autoreactive T cells (77).
This auto-aggressive loop initiated by DCs along with NM
would be enhanced and amplified by microglial activation.
Wilms et al. investigated the effects of NM on the release of
neurotoxic mediators and the underlying signaling pathways
through microglial culture in rats. NM augmented microglial
activation by manipulating two signaling pathways, the p38
mitogen-activated protein kinase (MAPK) and nuclear factor
kappa B (NF-«kB) pathways (78). Similarly, NM injection into
the rat SNpc induced microgliosis and the loss of tyrosine
hydroxylase neurons in vivo, suggesting a close relationship
between microglia and NM-associated DN degeneration in
PD (79). As previously mentioned, inflammation acts as the

first link between autoimmunity and its subsequent chronic
damage, and our findings have suggested that the purinergic
receptor P2Y6 mainly contributes to the activation and later
phagocytosis of microglia in the CNS, resulting in an outbreak
of inflammatory cytokines in the immune system (80). Hence,
microglial activation is a downstream event in which microglia
present an antigen (like NM) to DC-primed infiltrating T cells
to direct the autoimmune response. Overall, DCs and microglia
orchestrate the autoimmune response by executing different
but cooperative functions during an autoimmune response
(Figure 2).

CLINICAL FEATURES AND
AUTOIMMUNITY IN PD

Dyskinesia, rest tremor, muscular rigidity, and gait disorder are
the main motor symptoms of PD, while constipation, depression,
hyposmia, and somnipathy are the main non-motor symptoms
in a few PD patients. These symptoms indicate that there is much
to translate from basic bench research into clinical treatment.
Thus, the relationship between PD patients’ clinical features
and autoimmunity is also one of our interests in this review.
There are three major, clinically relevant forms of PD: (1)
tremor-dominant form; (2) rigidity-dominant form; and (3) gait
difficulty form (81). Many clinical studies have provided solid
evidence that autoimmunity participates in the pathogenesis
of PD. Elevated serum levels of anti-a-syn antibodies have
been found to be associated with familial variants of PD (29),
and increased anti-GM1-ganglioside antibody levels have been
detected in the tremor-dominant form of PD (82). As such,
Benkler et al. analyzed 77 PD patients and 77 matched healthy
controls and confirmed the presence of several autoantibodies
previously shown to be involved with CNS manifestations (83).
The anti-dsDNA seropositive PD patients had a significantly
higher prevalence of dyskinesia than their control counterparts,
and similar results were observed for anti-brain lysate antibodies.
In terms of non-motor symptoms, depression is one of the most
common symptoms in PD patients and has a strong positive
correlation with the presence of anti-dsDNA and anti-brain
lysate autoantibodies. Constipation is another well-known non-
motor symptom of PD, and it has been reported to occur at
median frequency of 40-50%, based on the definition (bowel
movement frequency <1 per day) and clinical tools used (84).
Among the indicators of impaired gastrointestinal motility in PD,
only constipation may precede the onset of motor symptoms
and can be an independent risk factor of PD (85), which
may herald PD or related synucleinopathies neurodegenerative
conditions by at least 5 years (86). Constipation has been
confirmed to have an intimate relation with gut microbiota
disorders. Evidence has shown that a pathogenic pathway exists
between PD and small intestinal bacterial overgrowth (SIBO)
(87), and the prevalence of SIBO is significantly higher in PD
patients than in controls (88). Meanwhile, the “microbiome-gut-
brain axis disorder” theory has been proposed to explain the
pathogenesis of PD, which is significantly modulated by the gut
microbiota via immunological and gut bacterial antigens exposed
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antigen-presenting cell; Cys, cysteine; Tregs, regulatory T cells.

FIGURE 2 | Neuromelanin (NM) is one of the potential targets during the autoimmune-based pathogenesis of PD. This figure illustrates vividly how DCs and microglia,
two kinds of mammalian immune cells, interact with each other and identify NM-rich cells as the object of autoimmune attack on DNs. Mature DCs migrate from the
CNS to cervical lymph nodes, resulting in the presentation of NM to naive T and B cells in a highly immunogenic context. This auto-aggressive loop initiated by DCs
along with NM is enhanced and amplified by microglial activation. DC, dendritic cell; DN, dopaminergic neuron; CNS, central nervous system; APC,

to the immune system, which might also be autoimmunogenic
(89). Dobbs et al. also proposed that gut microbiota disorders
incur autoimmunity, ultimately resulting in neuronal damage
and PD (90). Moreover, much research has provided new insights
into the potential link between a-syn and the gut microbiota.
Oueslati et al. described the appearance of w-syn-positive
inclusions in the gastrointestinal track, notably in the colon,

and elaborated the transmission of a-syn to the dorsal motor
nucleus through the vagus nerve. This mechanism was further
detailed by BraaK’s research showing that the a-syn pathology
started in the submucosal plexus of the enteric nervous system
and was propagated in a retrograde manner to the CNS (91).
More specifically, a-syn aggregations reach the preganglionic
cholinergic neurons of the dorsal motor nucleus and eventually
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reaching the cerebral cortex via the retrograde axonal and
transneuronal transport. In PD rat models, the increased
expression of a-syn emerges earlier in the intestinal mucosa than
in the brain (92). We observed intestinal flora variance in a PD
mouse model induced by rotenone (data not published) and
successfully detected and labeled a-syn in the intestinal mucosa
to monitor its location and abnormal aggregation. All of these
findings support the hypothesis that pathological progression
spreads from the gut to the brain. In a-syn transgenic mice,

intestinal flora disturbances have been observed and promoted
constipation and motor dysfunction compared with the normal
control mice. Furthermore, intestinal flora disturbances broke
the immune tolerance mechanism of Tregs, leading to the
activation of autoimmunity (93, 94). Excessive stimulation of
the innate immune system caused by gut dysbiosis and/or
SIBO might induce systemic inflammation, further incurring
the activation of enteric glial cells and contributing to the
initiation of a-syn misfolding, which is required for motor

FIGURE 3 | a-Synuclein (a-syn) participates in autoimmunity and is involved in the pathological progression of PD. a-Syn, as the main disease-causing protein, first
appears in the gut and is related to gut dysbiosis, which disturbs the intestinal immune system, leading to one of the main non-motor symptoms of PD: constipation.
Then, this protein transmits to the dorsal motor nucleus through the vagus nerve and acts as a self-antigen targeted by effector T cells, B cells, and microglia. This
autoimmunity attack finally results in the damage and death of DNs. SIBO, small intestinal bacterial overgrowth.
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deficits (95). The involvement of a-syn in the autoimmunity-
associated pathogenesis in the CNS of PD has been discussed
in previous parts of this article; here, we provide additional
evidence that a-syn-associated autoimmunity affects various
aspects of PD, including both motor and non-motor symptoms,
such as constipation. However, the exact mechanism driving
a-syn aggregation in autoimmunity as well as its relationship
with disease progression and neuronal degeneration remains
unknown (Figure 3).

OTHER AUTOIMMUNE DISEASES
COMBINED WITH PD

Autoimmunity can destroy the whole body, and at least 80
types of autoimmune diseases have been reported to date. There
is no doubt that some of them tangle with each other and
share a common pathogenesis. As early as 1999, Bonuccelli
et al. reported that dyskinesias and “on-off” phenomena
were abated when euthyroidism was restored in advanced
PD accompanied by thyrotoxicosis (96). They further verified
the possible neurological differences between PD and non-
PD patients as being related to thyroid autoimmunity and
function. Recently, increasing data have confirmed that hypo-
and hyperthyroidism are more prevalent in PD patients than
in normal controls because thyroperoxidase can influence PD
nitrosative stress as well as serum a-syn nitrosylation (97).
Likewise, in the last year, Bartkiewicz et al. confirmed that
patients suffering bullous pemphigoid (BP), an autoimmune
blistering dermatosis that occurs in the elderly, were more likely
to suffer from neurological and psychiatric diseases, particularly
prior to the diagnosis of BP (98). The autoantibodies bound

two components of keratinocyte hemidesmosomal proteins, type
XVII collagen/BPAG2 (BP180) and BPAG1 (BP230), as the
autoantigens, which were also expressed in neuronal tissue. In
addition, three types of autoantibodies, namely, anti-neuronal,
anti-brain lysate, and anti-dsDNA antibodies, in patients with
both PD and systemic lupus erythematous (SLE) were strongly
associated with some clinical manifestations of PD, particularly
dyskinesia and depression (99). A population-based case-control
study in China last year also focused on the associations between
autoimmune disease and PD (100). In this study, the overall
incidence rate of PD was 30% higher in the autoimmune
rheumatic disease (ARD) cohort than in the non-ARD cohort.
Additional prospective studies should be conducted to confirm
whether the activity and the severity of this autoimmune disease
increase the risk of PD. Recent genome-wide association studies
(GWAS) have tested the possible common genetic risk variants
conveying risks for both PD and autoimmune diseases; 17 novel
loci with overlap were identified, indicating that PD and other
autoimmune diseases share genetic pathways (101). These results,
from both fundamental and clinical studies, suggest that PD is
closely associated with autoimmune diseases, further supporting
the hypothesis that autoimmune mechanisms promote the
development of PD.

Now that we have discussed this issue from a clinical
perspective, immunotherapeutic strategies for PD cannot be
neglected. Current treatments, including dopamine replacement
therapy and alleviating the damage of oxidative stress and
inflammation, seem insufficient and are limited in treating
PD because most of them have only a therapeutic aim rather
than both a therapeutic and prophylactic aim. The in vivo
data presented by Zhu et al. demonstrated a significant

TABLE 1 | Autoimmunity can be a cause of PD.

Relationship Research object Evidence References
Genetic regulation of PINK1, Parkin Absence of PINK1/Parkin leads to the mitochondrial aberrations by triggering (34, 43-47)
autoimmunity in PD immune system disorders (reduced immuno-surveillance or activated
autoimmunity).
DJ-1 Absence of DJ-1 leads to abnormal proliferation of nTregs and iTregs, and result (48, 49)
in autoimmunity.
Pathogenic protein a-syn Post-translational modifications and mutation of a-syn can be recognized as the  (55-57, 61,
function in autoantigen by the central immune system. 63, 64)
autoimmunity-
associated PD
Immune cells and DC NM is an autoantigen released from dead DNs that stimulates the functional (28, 71-74)
autoimmunity in PD activation of DCs, triggering an autoimmune response and leading to microglial
activation.
Microglia Auto-aggressive loop initiated by DCs along with NM would be enhanced and (77-79)
amplified by microglial activation.
Clinical features and Tremor/dyskinesia/depression Various autoantibodies have a strong positive correlation with these (29, 82, 83)
autoimmunity in PD motor/non-motor symptoms.
Constipation Constipation is related to the gut dysbiosis and/or SIBO, which incurring the (89-92)
activation of enteric glial cells and contributing to the initiation of a-syn misfolding.
Other autoimmune Hypothyroidism/hyperthyroidism/ Other autoimmune diseases may share genetic pathways with PD and are (96-101)

diseases combined BP/SLE/ARD

with PD

correlated closely with some clinical manifestations of PD.

PD, Parkinson’s disease; a-syn, a-synuclein; DC, dendritic cell; NM, neuromelanin; SIBO, small intestinal bacterial overgrowth;, BR bullous pemphigoid; SLE, systemic lupus

erythematous,; ARD, autoimmune rheumatic disease.
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suppression of T cell mediated autoimmunity in carbidopa
(one of the classical medicines against PD) treated mice
compared with untreated mice (102). It revealed that to prevent
autoimmune disorder in PD would be a new target for drug
development. Meanwhile other new approaches for treating
PD are also urgently needed. Accumulating data have shown
that intracerebral injections of recombinant human a-syn can
successfully expand nTreg and iTreg populations in a dose-
dependent manner, accompanied by decreased o-syn aggregation
in DNs and synapses and reduced neurodegeneration (103);
this approach has potential as an immune therapy for PD.
The exact mechanism might be that the induced o-syn-
specific antibodies neutralize the a-syn deposits and harness the
neuroinflammation by modulating the microglial phagocytosis
of antibody-antigen complexes (104). Meanwhile, it has been
proposed that the high affinity of a-syn antibodies to their
a-syn antigen allows them to neutralize the neurotoxic a-syn
aggregates without interfering with beneficial monomeric a-syn
(105). In summary, an impaired capacity for immune clearance
and blocking toxic a-syn aggregates might play critical roles in
the pathogenesis of PD. Therefore, immunotherapy with a-syn
antibodies could be a new alternative approach for effectively
treating PD.

CONCLUSION

In all, autoimmunity disorders are one of the main mechanisms
of PD pathogenesis and development and have gained increasing
attention in recent years. Based on the latest research advances,
including our laboratory data, conclusions can be drawn that
both innate and adaptive immunity become pathogenic when
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Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune
diseases. TLS present features of secondary lymphoid organs such as segregated T
and B cell zones, presence of follicular dendritic cell networks, high endothelial venules
and specialized lymphoid fibroblasts and display the mechanisms to support local
adaptive immune responses toward locally displayed antigens. TLS detection in the
tissue is often associated with poor prognosis of disease, auto-antibody production
and malignancy development. This review focuses on the contribution of TLS toward
the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones
and post-translational modifications, responsible for the pathogenicity of locally formed
autoantibodies, during autoimmune disease development.

Keywords: tertiary lymphoid structures (TLS), autoantibodies, germinal center response, glycosylation, B-cells

INTRODUCTION

The polyclonal expansion of autoreactive B cells is a cardinal feature of autoimmune conditions.
Whether directed against a single antigen or playing part in a poly-specific response, autoreactive
B cells support the persistence of the autoimmune process and, in several cases are directly
pathogenic.

The development of an autoreactive B cell repertoire during the natural history of the
autoimmune condition is regulated by the process of affinity maturation against single or multiple
autoantigens that occurs within the inner part of the B cell follicles, classically within secondary
lymphoid organs (SLOs) (1). Formation of B cell follicles and germinal centers (GC) has been
also described in ectopic or tertiary lymphoid structures (TLS) in a process defined “ectopic
lymphoneogenesis.” TLS form at target organs of chronic inflammatory/autoimmune process,
localized infections and in the areas surrounding solid tumors (2-11). The prognostic value of these
structures is debated. TLS formation in target organs autoimmune disease is classically associated
with disease persistence and worst clinical manifestations. In solid tumors TLS have instead been
associated with the generation of an anti-tumor response, however in some cases the ability of
tumor cells to induce T regulatory cells (Treg) and suppress the host immune response has been
described Table 1.

Often indicated as “tertiary lymphoid organs,” TLS fail to adhere to the proper definition of
organs as they lack a stable structural organization, including a capsule, and are better classified
as “tertiary lymphoid structures” or TLS (97). TLS are not present in embryonic life and form in
adult life to support local aggregation of lymphocytes at the target organ of disease. Other terms
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TABLE 1 | TLS in different conditions.

Disease Type Localization Specific antigens Role/prognosis Human studies Mouse studies
identified?

GPA/WG AID Lungs ANCAs pathogenic (12, 13)

Hashimoto’s Thyroiditis AID Thyroid Thyroglobulin, pathogenic (14, 15) (16, 17)
Thyroperoxidase

MS AID CNS Myelin (in mice) pathogenic (18-21) (22-28)

Myasthenia gravis AID Thymus Acetylcholine pathogenic (29, 30) (31)
receptor

Primary biliary cirrhosis, AID Liver No N/A (32)

Rheumatoid Arthritis AID Synovium RF, Citrullinated pathogenic (383, 34) (383, 35)
proteins

Sjogren’s Syndrome AID Salivary/Lachrymal  SSA/Ro & SSB/La pathogenic (36-38) (89, 40)

glands, Lung

SLE AID Kidneys No pathogenic (41) (42, 43)

Breast cancer Can Breast Tumor associated favorable (44-47)
antigens

Colorectal cancer Can Colon No favorable (48, 49) (49)

Lung cancer Can Lung No favorable (50, 51)

Ovarian cancer Can Ovarian No favorable (52)

Melanoma Can Skin No favorable (53)

PCD Can Pancreas No favorable (54)

Prostate cancer Can Prostate No favorable (55)

Atherosclerosis CID Arteries No protective (in mice) (56, 57) (58, 59)

COPD CID Lung No pathogenic (in mice) (60-64) (60, 62, 65)

IBD CID Gut No pathogenic (in mice) (66-69) (70-74)

PSC CID Liver No N/A (75)

Lyme disease Inf Joints No direct evidence N/A (76)

HCV Inf Liver No direct evidence N/A (77-80)

Heliobacter pylori Inf Gastric wall No direct evidence Pathogenic (81-83) (84)

Mycobacterium tuberculosis Inf Lungs No direct evidence Protection against pathogen (85-87) (85, 86, 88)

Allograft transplants Tra Heart, lung, Allo-antigens Highly controversial (89-94) (95, 96)

kidney

GPA/WG, Granulomatosis polyangiitis/Wegener’s granulomatosis;, COPD, Chronic Obstructive Pulmonary Disease; IBD, Infammatory Bowel Disease; PSC, Primary Sclerosing
Cholangitis AID, Autoimmune disease; CID, Chronic inflammatory disease; PDC, Pancreatic duct carcinoma; HCV, Hepatitis C virus; Can, Cancer; Tran, Transplantation; Inf, Infection.
(Note: Studies on mice are presented only if there is evidence from human studies for the presence of TLSs in these different conditions).

including “ectopic lymphoid structures” (ELS) or “ectopic
germinal centers”. The latter, however, should only be used when
GC formation is determined histologically within the ectopic
lymphoid tissue (97-101). The cross-over between TLS and SLO
is the subject of debate and has been reviewed by ourselves and
others in recent publications (9, 98).

The term “tertiary lymphoid” tissue in the literature dates back
to 1992 and was introduced by Louis Picker and Eugene Butcher
(102) to describe the formation of extra-lymphoid sites, where
memory lymphocytes and/or precursors can be re-stimulated by
antigen to induce further clonal expansion or terminal effector
responses. By definition, TLS arise in tissues whose main function
is other than the generation of immune cells or the initiation of
an adaptive immune response. This excludes the bone marrow
and thymus, (as primary lymphoid organs) and spleen, lymph
nodes and Peyer’s patches (which are defined as SLOs). The
kidneys, heart, pancreas, synovium and salivary glands are not
embryologically predisposed to host the presence of lymphoid

tissue therefore lymphocyte assembly at these sites should be
considered TLS. The liver provides a hematopoietic function
during embryonic development (103) however, this function is
lost postnatally, thus including this organ among those that host
TLS in adult life (97).

TLS form in response to a series of pro-inflammatory
cytokines and TNF receptor family members following the local
cross-talk between inflammatory immune cells and resident
stromal cells. Fibroblasts, perivascular myo-fibroblasts and
resident mesenchymal cells have been differently implicated
in TLS development (39, 75, 104-112). Their role has been
recently reviewed elsewhere (97, 113, 114). Probably evolved
before SLO, TLS might have developed in ectopic tissues to
fulfill the survival need of aggregated leucocytes, prior to
placentation and development of SLOs. As such, the ability
of TLS to be initiated independently from Lymphotoxin
(LT) upon the expression of inflammatory cytokines and
in absence of lymphoid tissue inducer cells (LTi) might
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have remained as heritage of their developmental ancestry
(97).

Physiologically, the generation of a humoral response requires
the physical interaction of naive B cells with antigen experienced
T cells within the confined space of a microenvironment
rich in survival and chemotactic factors (115). Lymphocytes
are recruited from the bloodstream to the SLO in response
to a chemotactic gradient that regulates cell positioning and
interactions (116, 117). CXCL13 and CCL19/CCL21, ligands
for the chemokine receptors CXCR5 and CCR?7, respectively,
regulate the recirculation of naive B cells between the inner
part of the B cell follicle to the outer area of the T/B cell
boundary (118), thus enabling the contact of B cells with antigen-
experienced, activated T cells (119). Within the follicles, antigen-
experienced B cells migrate toward the dark zone of the GC, a
highly hypoxic CXCL12-rich area. Within this area they become
highly proliferating centroblasts and upregulate the enzyme
activation-induced cytidine deaminase (AID) (120, 121), that
regulates the introduction of single base-pair substitutions of
antibody gene segments in the immunoglobulin (Ig) variable-
region genes, in a process defined as somatic hypermutation
(SHM) (122).

Following SHM, B cells stop proliferating and undergo the
process of affinity maturation (123). Differentiated, non-dividing
B cells (centrocytes) upregulate CXCR5 and migrate along
the CXCL13 gradient toward the GC light zone (120), herby
establishing connections with the network of follicular dendritic
cells (FDC) that provide survival factors (124, 125) and antigen
presentation via the CR2 receptor (125, 126). Within the light
zone, centrocytes also encounter mature T follicular helper
cells (Tq,), known to provide signals for selection and terminal
differentiation into long-lived plasma cells or memory B cells
(127-130). Once exited from the GC, affinity matured B cells
undergo the process of class switch recombination (CSR), that
regulates isotype switching and ultimate effector function of the
immunoglobulins (Igs). This latter process is also regulated by
AID (130-142) (Figure 1A).

This organizational program in SLOs is maintained by
the anatomical differentiation of specialized, resident stromal
cells that regulate migration and functional activation of the
immune cells in the different part of the follicle (138, 143-
149). The development of this stromal network and the signals
required for his homeostasis have been reviewed elsewhere
(150). TLS display a similar anatomical structure to support
naive B and T cell recirculation, including the expression
of homeostatic lymphoid chemokines CXCL13, CCL21 and
CCL19 and the molecular complex peripheral node addressin
(PNAd) (97, 98, 151, 152). However, the complex anatomical
compartmentalization displayed in SLO is rarely acquired in TLS.
While the majority of reports on TLS describe a certain degree
of T/B cell segregation, vascular/stromal cell specialization and
expression of lymphoid chemokines, the presence of a more
complex organization of the TLS and the formation of functional
GC is highly variable within and amongst diseases (4, 153—
155). In TLS that form during chronic autoimmune processes,
the establishment of such disorganized microenvironment, rich
in survival factors and pro-inflammatory cytokines, but likely

missing key checkpoints for autoreactive cells screening, is likely
responsible for the local generation of pathogenic autoantibody
specificities and oncogenic mutations, ultimately favoring disease
progression (1, 9, 97, 98).

TLS IN AUTOIMMUNE CONDITIONS: A
LESSON FROM RHEUMATOID ARTHRITIS
AND SJOGREN’S SYNDROME

In 1996, Nancy Ruddle described the presence of a “structural
chronic inflammatory process” caused by ectopic production
of lymphotoxin, in the context of chronic inflammation of the
pancreas (156). Since then, TLS formation has been associated
with a localized process of inflammation at sites of infection,
autoimmunity, cancer, and allograft rejection. The ultimate
pathogenic role of TLS is still debated (98, 151) and most likely
depends on the context, organ and type of disease. For the scope
of this review we will focus on the role of TLS in supporting the
autoimmune process in chronic autoimmune conditions and we
will discuss the role of TLS in Rheumatoid Arthritis (RA) and
primary Sjogren’s Syndrome (pSS) (33, 36, 135, 151, 157-162).

RA is the most common rheumatic autoimmune condition,
affecting 0.5-1% of the global adult population. The pathological
features of the disease include severe inflammation of the
synovial membrane that, in some cases, leads to tissue destruction
and subchondral bone erosions (163-166). Histologically, the
disease can be classified in 3 main histopathological subtypes:
a lymphoid type, mainly characterized by T and B cell
aggregates that form TLS; a myeloid type, characterized by diffuse
infiltration of prevalent monocyte and macrophages; and the
fibroid type, defined by scarce or no immune cell infiltration and
prevalent synovial fibroblast hyperplasia (151).

The presence of a “..marked infiltration of chronic
inflammatory cells (lymphocytes or plasma cells predominating)
with tendency to form “lymphoid nodules” was recognized already
in the 1957 RA classification criteria (167). In 1972, Munthe and
Natvig suggested that the RA synovial membrane is similar to an
active lymphoid organ, containing many lymphoid follicles with
GC that undergo local division and differentiation into plasma cells
with restricted Ig production (168). Later, Steere and colleagues
described “elements found in normal organized lymphoid tissue”
in synovial lesions from both RA and Lyme disease patients
(169); suggesting that the formation of GC-like structures in
the synovium is not specific for RA and can be driven by
the local antigenic stimulation. It took, however, more than
40 years after these first descriptions to introduce the concept
that B-cell affinity maturation could arise within the inflamed
synovium (170). It is now accepted that TLS are present in
less than half of RA patients who display so called “lymphoid”
synovitis (151) and that, in those patients, the presence of TLS is
associated with differential prognosis and disease manifestations
(151). TLS formation in the synovia have been also identified
in patients with psoriatic arthritis (171) and ankylosing
spondylitis (172, 173).

A similar phenomenon of leucocyte aggregation in lymphoid
like structures occurs in the salivary glands of patients affected
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FIGURE 1 | (A) In TLS, naive B cells (NB), enter the follicle to initiate a classical germinal center reaction. In the dark zone, centroblasts (CB) proliferate and acquire
somatic hypermutations in their variable region. In the light zone, centrocytes (CC) are selected after their interaction with specific antigen found on the surface of
follicular dendritic cells (FDCs). Lectin-BCR signaling can potentially result in enhanced selection of B cells. Failure to receive survival signals from either TF (T follicular
helper cells) or FDCs leads to B cell apoptosis. Successful affinity maturation results in either mature B cell (MB) of plasma cells generation. GC microenvironment can
control the outcome of the immune response by regulating the glycosylation profile of the antibodies. (B) TLS display a less organized anatomical structure and a
predominant infiltration of MB and marginal zone B cells (MB). Aberrant production of survival and chemoattractant signals is observed at these sites.

by pSS, a disease characterized by chronic inflammation
of the exocrine glands, with progressive loss of function
(sicca syndrome) and systemic activation of the humoral
response (174). Excessive B cell hyperactivity and extra-glandular
manifestation are observed in ~30% of pSS patients and an
increased risk for lymphoma development has been described
in this condition. In 1974, Chused et al. first described the
presence of lymphoid-like structures in the salivary glands of

patients with pSS (175). This was followed by the report of local
antigenic stimulation within GC-like structures in the salivary
glands (176) and, 10 years later, by the description of FDC
network formation within the aggregates (177). In 1998, Stott
and colleagues provided the first experimental evidence of an
antigen-driven GC response, defined by clonal B cell proliferation
and clone hypermutation within the salivary gland inflammatory
foci (37), and, since then, several features associated with
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lymphoneogenesis have been reported within pSS aggregates
(157, 178).

It is now recognized that during pSS, TLS form in the
minor salivary and/or parotid gland in around 30-40% of
patients (151) and those structures host a phenomenon of
oligoclonal B cell expansion and SHM of the Ig variable genes
(37). The formation of TLS in pSS salivary glands correlates
with increased B cell hyperactivity, the presence of anti-
SSA and anti-SSB autoantibodies, hypergammaglobulinemia
and cryoglobulinemia, supporting the hypothesis that TLS
persistence contributes to disease progression in pSS (179).
Our group has contributed to these reports, describing both
the expression of lymphoid chemokines and of AID within
highly organized aggregates that harbor in the salivary gland
of patients with pSS and MALT lymphoma (135, 180). The
relationship between TLS formation and disease progression in
pSS is still debated. TLS detection has been associated with
high antibody titer, systemic manifestations and lymphoma
development. However, the direct correlation between GC
formation in the salivary glands and lymphoma formation has
not been demonstrated, suggesting that the development of GC+
TLS within the salivary glands represent one of the stages in the
process of lymphomagenesis but is not per se sufficient to induce
lymphoma (135, 154, 161, 180-182).

In order to better understand the pathogenic effect that TLS
play in disease it is important to dissect the elements, present
within these structures that contribute to their function and
persistence in the tissue.

STRUCTURAL ELEMENTS OF TLS

Antigen

There is enough evidence to support the hypothesis that TLS
form to provide an immune response against locally displayed
antigens. There are suggestions that TLS formation is an antigen
(Ag)-driven process. In the mucosal associated lymphoid tissue
that forms during Helicobacter Pilori gastritis antigen clearance
following antibiotic treatment impacts on TLS maintenance and
progression to lymphoma (183), similarly inducible bronchial
associated lymphoid tissue can dissolve upon antigen clearance
(184). Maffia and colleagues explored the properties of Ag
presentation within TLS (58, 185) demonstrating that Ag
presentation is regulated by a random process of diffusion, rather
than selective Ag uptake by DCs. Those data are reinforced by
the anatomical structure of TLS where conduits, able to support
Ag movement and APC migration have been described (186). In
this context, the absence of a capsule could favor not only the
initial Ag delivery in the tissue, but the progressive accumulation
of new antigen specificities during the course of the immune
response, favoring the persistence of these structures in the
tissue.

During a classical immune response, the antigens are collected
by antigen presenting cells in the periphery and moved, via a
complex network of lymphatic vessels, to draining lymph nodes
(LNs) (187-189). LN space is pre-formed during the embryonic
development and anatomically set before the generation of
the immune response to accommodate optimal interaction

between APC, Ag and immune cells. Differently by SLOs, TLS
organization is not anatomically predisposed to organize such a
response and Ag presentation is often provided by non-immune
cells, such as stromal cells and epithelial cells (190-193).

Lack of Ag drainage could mechanistically explain TLS
formation. TLS form spontaneously in the lungs of mice deficient
for CCR7, a chemokine receptor required for the migration of
antigen-charged dendritic cells (DCs) to draining lymph nodes
(194). However, the reconstitution of these animals with CCR7-
sufficient cells is enough to re-establish the physiological delivery
of the antigen to the lymph node and to induce TLS resolution
in the tissue. This evidence appears to suggest that an intrinsic
defect in DCs is sufficient to trigger TLS establishment. However,
it is not clear whether this phenomenon could be also supported
by a defect of lymphatic drainage from the inflamed tissue.

The expansion of a functional network of lymphatic vessels
is required for appropriate antigen delivery to the SLOs. There
are several reports describing the dramatic remodeling of the
lymphatic vessels during inflammation, whereby the activation
of NF-kB pathway supported by the expression of LT, IL-1 and
TNFa, stimulates the expression of Proxl and increases the
transcripts for the VEGF-R3, both of which are factors involved
in lymphoangiogenesis (195-201). TLS lack the presence of an
organized lymphatic system such as the one described in SLOs
(152). However, the expansion of the lymphatic vascular system
has been observed in these structures, in response to the same
cytokine milieu that regulates the maturation of the non-vascular
stroma at these sites (97, 105). It is not clear whether these
newly formed vascular structures are, however, able to establish
viable connections with pre-existing lymphatics. The failure to
do so would prevent efficient drainage of the antigen to the SLOs
and support the excessive antigenic stimulation in the peripheral
tissue (89, 202-206).

Lymphangiogenesis associated with tertiary lymphoid
structure (TLS) has been reported in numerous studies. Defects
in lymphangiogenesis in RA present with a reduction in
lymphatic flow, absence of lymphatic pulse and collapse of
draining LNs is observed during disease and is associated with
flare onsets as has been shown in vivo and ex vivo studies
performed by Schwarz and colleagues (207). Accordingly,
effective therapeutic approaches in RA, including anti-TNF and
B cell have been associated with the expansion of the lymphatic
bed (208) and increase in cell drainage from the synovium (209).

In a model of pSS our group demonstrated that during TLS
assembly an expansion of the lymphatic vascular network takes
place and this is regulated by the sequential engagement of IL-7
and LTPR signaling; suggesting the presence of a natural pro-
resolving mechanism for lymphocyte exit from the tissues during
TLS establishment (105).

The open questions related to the mobilization of Ag loaded
APC to the draining SLOs could be addressed in the future
by inducing TLS formation and tracking the movement of
labeled antigen-loaded DCs across vessels. The possibility to
interfere pharmacologically or genetically with the process of
lymphoangiogenesis and with the molecules responsible for cell
migration across these structures, is likely to elucidate this
complex phenomenon and to provide evidences on the role of
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aberrant antigen presentation and vascular disturbances in TLS
establishment and persistence.

Both RA and pSS are characterized by antibody production
against a discrete set of autoantigens and a large body of research
in this area has been focused around the identification of antigen
specificities within the TLS in the context of these diseases. The
presence of citrullinated proteins has been reported within the
synovia of RA patients by Baeten (210) and others, and associated
with the local expression of the enzyme peptidyl arginine
deiminase (PAD) in patients characterized by high systemic and
local levels of anti-citrullinated antibodies (APCA) (211). This
report fails to demonstrate the presence of the citrullinated
proteins within the synovial TLS and is in disagreement with
other studies reporting the detection of citrullinated proteins in
non-RA synovium lacking classical TLS (212); casting doubts on
the exclusive association between citrullinated protein expression
and TLS development in RA. Additional evidence that associate
the presence of TLS with the generation of auto-antibody
specificity against citrullinated peptides (but not necessarily local
display of the defined antigen) will be discussed in a different
section of this review.

Stronger evidences supporting the link between TLS and local
auto-antigen presentation have been provided in pSS. Ro/SSA
52 kDa, Ro/SSA 60 kDa and La/SSB belong to a intracellular
complex of RNA binding proteins that is physiologically
involved in the intrinsic response to viruses (213). The aberrant
expression of Ro and La has been reported in pSS patients upon
cellular apoptosis or extracellular transport in vesicles (214-216).
Moreover, the presence of anti-Ro52/TRIM21 specific plasma
cells has been demonstrated, at the boundaries of well-organized
TLS in pSS salivary glands, establishing a clear connection
between local antigen presentation and TLS formation in this
disease (158). The presence of extractable nuclear antigen
(ENA) antibodies against these two ribonucleoproteins is
pathognomonic for Sjogren’s and associated with more severe
systemic manifestation and worst prognosis (214, 216, 217).

Lymphocytic Components of TLS

We have recently reviewed the role of non-haematopoietic cells
in TLS establishment and organization (97, 98) and for the
scope of this issue focused on autoantibodies, we will limit the
discussion in this manuscript to the lymphocytic compartment.

Whilst mainly constituted of B cells and associated
with aberrant humoral responses and GC formation, TLS
establishment and maintenance strongly relies on T cells. In
humans, the presence of a shared TCR specificity among different
follicles in the RA synovium, has been described, suggesting the
presence of a common antigen for different TLS that form within
the synovial tissue (218). In line with this finding, depletion
of CD8+ T cells in human synovium-SCID mouse chimeras
hinders the formation on TLS (218).

Recently, efforts have been made to identify the cells and
signals required for TLS establishment and a series of reports have
highlighted the important role of IL-17+ T cells. Th17 cells are
required for iBALT formation (219) and for TLS establishment in
a model of experimental autoimmune encephalomyelitis (EAE);
the latter, dependent on the production of LT-af, IL-17 and IL-22

(22, 23, 220, 221). In human renal allograft rejection, Th17 cells
have been shown to promote ectopic GC formation in an IL-21
dependent manner (222). Aberrant differentiation of Th17 cells
in the absence of IL-27 has been also associated with aberrant TLS
formation in an experimental model of arthritis and in a model
of pSS (223, 224).

Our group has recently demonstrated the requirement of IL-
22 producing T cells in the early phases of TLS establishment
in murine salivary glands (39). In this model, IL-22 production,
similarly to the IL-17 production in the lungs and brain, appears
to regulate, independently but also in synergy with lymphotoxin
and TNE, the ectopic production of lymphoid chemokines that
defines TLS formation (97). These studies demonstrate that T
cells, and in particular Th17/Th22 cells, play an important role
in shaping the constituents of TLS in a manner that can support
subsequent B cell recruitment and germinal center formation.

Whether TLS provide a site of aggregation for naive T
cell is not clear and whilst naive T cell recruitment and
priming has been reported within TLS that form in pancreatic
tissue in NOD mice (225), it is more likely that effector T
cells and central memory recirculate in these structures, in
particular in the earliest phases of TLS assembly. On the
contrary it is now well accepted that TLS function as a site
for functional T cell polarization. TLS maintenance appears
to hinge on the functional relationship between T-follicular
helper cells and regulatory T cell populations. T cells displaying
a Tgy phenotype have been described in TLS, where they
are expected to regulate the GC reaction and the activation
of resident proliferating B cells (1). In the TLS that form
outside the arterial wall and control the atherosclerotic plaque
development, the presence of Ty, correlates with the organization
and maintenance of the ectopic B cell clusters (226). Functional
interference of the Tg, by ICOS-L blockade results in decreased
TLS formation and aberrant atherosclerotic plaque formation.
The opposite effect is obtained by depletion of T regulatory
cells, previously demonstrated to play a critical role in the
homeostatic control of the TLS and in the atherosclerotic
process (58).

The developmental program of Ty, in TLS is debated. There
are suggestions that this population in TLS derives from a
population of peripheral CXCR5" T cells that migrate to
the peripheral tissue following the newly established CXCL13
gradient. These circulating CXCR5+ cells do not bear classical
signs of activation and would, by definition, preferentially
migrate to SLOs; however, the local differentiation of HEVs and
the expression of PNAd (the ligand for L-selectin) supports their
homing to the TLS (227). Others suggest that, within TLS, Tg,
locally differentiate from other T cell subpopulations, including
Th17. In support of this hypothesis, in EAE, Th17 cells appear
to acquire some characteristics of Ty, including the expression
of CXCR5, ICOS and Bcl6 (23). Similarly, within the inflamed
joints of RA patients, a population of PD1MCXCR5~CD4* T
cells termed “peripheral helpers” has been described that appear
to fulfill the function of Ty, within the periphery (228). In pSS the
expansion of Ty, cells has been reported and correlates with the
increasing frequency of memory B and plasma cells in the tissue
and blood (229, 230).
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Genetic manipulation in conditional knockouts is currently
in use to induce TLS formation in mice deficient for specific
T cell populations and will allow better definition of cellular
requirements for TLS formation.

Classically, fully established TLS are mainly characterized by
B cell infiltration and the inversion of the B/T cell ratio within
TLS has been used as an index of disease severity (231, 232). In
SLO, naive B cells are known to receive antigen education and
co-stimulation; however, whether a similar phenomenon would
regularly occur in TLS is debated. Patients with pSS display
altered peripheral blood B cell frequencies with a predominance
of CD27~ naive B cells, diminished frequencies/absolute
numbers of CD27" memory B cells in the periphery, and an
enrichment of mature B cells in the salivary glands (233, 234).
The presence of CD20TCD27% B cells and plasmablasts is a
consistent finding in pSS salivary glands biopsies (235). Whilst
we have reported the presence of IgD™ naive B cells, in particular
in large TLS (180), memory B cells remain the predominant
component of the infiltrates (180, 236). This casts doubts
over the possibility that naive B cells are primed within the
TLS (235). In support of this hypothesis, bona fide GC B cells
(CD10*CD21%/~CD24*/~CD27-CD38*IgD~ that express
AID) are rarely found within the B cell aggregates of TLS, that are
mainly inhabited by CD10~CD21+CD24*CD27+CD38  IgD*
marginal zone-like type II transitional B cells (159) (Figure 1B).

The connection between the marginal zone (MZ) and TLS
establishment is also not clear. There are several evidences
supporting the involvement of MZ B cells in autoimmunity,
including reports of preferential SHM and B cell proliferation
in MRL Fas/lpr mice spleen (237) and the presence of RF"
cells in the splenic marginal sinus bridging channels (238).
The low threshold of BCR activation, the numerous effector
functions of MZ B cells and the link between autoimmunity,
TLS and MZ lymphoma development in pSS suggests a direct
involvement of this population in TLS pathology (239, 240).
However, the origin of the MZ-like B cells and the relationship
between those and the ectopic GC has not been proven. In
humans, MZ B cells are allegedly able to recirculate and carry
a highly mutated B cell receptor (241-243), thus suggesting a
post-GC origin of this population. This is not the case in mice,
where MZ B cells are stable and permanently located in the
spleen (242-244). Interestingly, however, MZ-B cells in humans
share some phenotypic features of transitional B cells, a highly
autoreactive B cell population that emerge from the BM and
mature inside the spleen before entering the follicle (245-248),
suggesting the possibility that transitional immature autoreactive
cells are inhabiting the ectopic follicles. The recirculation pattern
and screening of transitional B cells has been described from
Spencer and co-authors in an elegant work that describes the
migration and BCR editing of this population in the gut-
associated lymphoid tissue (GALT) (245). This process, aimed
at modifying the specificity of autoreactive clones, is altered in
systemic lupus erythematosus (SLE), resulting in the expansion of
the autoreactive B cell repertoire (245). In diseases characterized
by TLS formation, such as pSS and RA, this recirculation pathway
could be also altered, favoring the migration of autoreactive
clones from the lymphoid organs to the TLS. Hereby, the aberrant

expression of survival factors and chemokines would support
clonal expansion in the absence of BCR editing and support
persistence of autoimmunity.

The use of mass cytometry on digested tissue and sections
are needed to better characterize in humans the phenotype and
functional features of the B cells inhabiting the TLS. The use of
transgenic mice engineered to track cells in vivo (249) will be
useful in inducible models of TLS to perform migration studies
in vivo.

TLS AS ABERRANT
MICROENVIRONMENTS FOR
AUTOREACTIVE B CELL SURVIVAL AND
DIFFERENTIATION

More than simply acting as a hub for lymphocyte migration,
TLS have also been shown to provide critical survival signals
for incoming lymphocytes and differentiated long-lived plasma
cells such as BAFFE IL-7, and CXCL12 (98, 250). The persistence
of TLS in the tissue, despite peripheral B cell depletion of post
Rituximab, has been reported in RA (251), SS and lymphoma
(252) and, more recently in peri-bronchial TLS described in
two patients with cystic fibrosis and chronic Pseudomonas
aeruginosa infection treated with B cell depletion therapy before
transplantation. The reason for this persistence most probably
resides on the excess survival factors, such as B cell activating
factor (BAFF) or IL-7 present within the TLS that protects tissue
infiltrating cells.

BAFF is a potent B-cell survival factor produced within
SLO GCs and in the periphery by fibroblasts and epithelial
cells (159, 248-253) Excess BAFF is known to rescue self-
reactive B-cells from peripheral deletion and allows their entry
into forbidden follicular and marginal zone niches (253). The
connection between BAFF, MZ B cells, loss of tolerance and TLS
emerged from studies in mice transgenic for BAFF (BAFF-Tg),
that develop a lupus-like syndrome followed by infiltration of
MZ-like B cells within salivary glands TLS (254). Interestingly,
BAFF-Tg asplenic mice that lack MZ-B and Bla cells, but retain
normal Blb cell numbers, develop lupus nephritis but lack TLS
in the salivary glands, suggesting that both BAFF and MZ-B cells
are required for TLS establishment in this model (255).

Other lymphoid survival cytokines including IL-7 have been
described in association with TLS establishment in chronic
diseases (162, 256-258). Gene expression levels of IL-7, IL-7
receptor (both IL-7Ra and IL-2Ry subunits) and its downstream
signaling gene JAK3 are significantly elevated in RA patient
biopsies displaying TLS (259). Similarly, engagement of the IL-
7/IL-7R axis has been linked to formation of TLS in salivary
glands and associated with pSS pathology (22, 23, 33, 36, 37, 39,
58,75, 89, 102-112, 112-262). Among other critical homeostatic
functions, IL-7 can abrogate the suppressive ability of Treg,
altering the balance between pro-inflammatory effector cells
vs. suppressive T cells (162, 256, 258). Consistent with these
observations, in vivo studies demonstrated the ability of IL-7 to
induce TLS formation (263-265). The reciprocal expression of T
and B cell survival factors in TLS is somehow strictly regulated by
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the critical balance between infiltrating T and B cells, probably in
response to gradients of lymphotoxin and TNF family members.
The mechanism regulating this production and the resulting
segregation of lymphocytes in T or B cell rich areas is still under
investigation (266).

We and others have provided evidence that a functional GC
response takes place within these structures. This supports the
concept that even if TLS do not initiate disease they are involved
in its progression. In particular, we have demonstrated that AID is
expressed in pSS salivary gland TLS in association with networks
of follicular dendritic cells (135) and that its expression is retained
in the large GCs found in parotid pSS-MALT lymphomas. On
the contrary, neoplastic B cells are found to be consistently
negative for AID expression (135). AID expression in GC B
cells controls susceptibility to apoptosis, ultimately regulating
the magnitude of the GC response (267). In SLO, low levels
of AID expression have been associated with defective somatic
hypermutation and decreased peripheral B cell tolerance (268).
AID expression in TLS is consistently low (as compared to SLOs),
thus potentially explaining the aberrant survival and lack of
selection of autoreactive B-cell clones in ectopic GCs.

Other data have been generated supporting the functional role
of TLS in sustaining the generation of novel antibody specificities.
Transplantation of TLS from pSS salivary glands infected with
Epstein-Barr virus (EBV) into SCID mice have been shown
to support the production of anti-Ro 52/anti-La 48 and anti-
EBV antibodies and the survival of autoreactive B cell clones
(158). Similar data have been produced for RA. The presence of
CD138™ plasma cells, characterized by immune reactivity against
citrullinated fibrinogen, has been described within AID*/CD21%
follicular structures (33). Moreover, the survival of these clones in
a transfer model of human biopsies in SCID mice, alongside the
detection of gamma-Cmu circular transcripts in synovial grafts,
has been reported. These observations provide evidence that
synovial TLS represents an independent compartment for B cell
maturation (33).

AUTOANTIBODY PRODUCTION GOES
LOCAL

The contribution of the immune response that arises within
TLS toward disease severity, including the production of
autoantibodies, remains controversial (151). Nonetheless there
are substantial evidences in support of local antibody production
within the inflamed synovium and convincing documentation
that the synovial microenvironment could independently favor
the production of RA specific antibodies (33)

Mellors et al. firstly described the presence of “plasma B
cells” that are able to react with FITC-labeled human IgG,
interpreting this result as evidence of synovial production of
rheumatoid factors (RF) by tissue-resident plasma cells (269).
The first solid indication of local IgG production in RA is dated
to 1968 with the report of Ig synthesis in rheumatoid synovium in
vitro (270). Further studies supported this observation suggesting
that gene selection, usage of kappa/lambda chains and class
switching follows a non-stochastic process in the RA synovium

(168). Similarly, the enrichment in RF* B cells producing mono-
reactive, affinity matured, class switched antibodies in the RA
synovium is highly suggestive of a local process of affinity
maturation (271-273). On the contrary, clones producing mono-
reactive RF have not been obtained from the synovial tissue of
patients with osteoarthritis, where TLS do not form, supporting
the link between chronic autoimmune diseases and TLS (271-
275).

The production of anti-citrullinated protein antibodies
(ACPA) has been firmly associated with RA development (276)
and there are convincing evidences that these specificities can
be locally produced in the RA synovium within the TLS (277,
278). Both anti-cyclic citrullinated peptide (CCP) antibodies
(279) and anti-CCP producing B cells (280) have been detected
in the synovial fluid of RA patients and antibodies against
different citrullinated RA candidate antigens (vimentin, type
IT collagen, fibrinogen and a-enolase) appear to be enriched
in the joint compared to paired serum (281). Notably, the
presence of anti-CCP antibodies in the synovium has been also
reported in RA seronegative patients (279, 282), thus highlighting
the dissociation between the systemic and local autoimmune
response. In support of this notion, the presence of FcRL4™
ACPA producing IgA-B has been reported in the synovium,
but not in the blood of RA patients (283). This observation
provides an indication that inflammatory joints provide a specific
microenvironment able to shape and influence B cell immune
phenotype and output.

The ability of TLS to sustain the whole autoimmune process
in the absence of SLO is debated. However, cloning of the
local B cell repertoire isolated from inflamed organs bearing
TLS is highly suggestive of the presence of a functional and
SLO-independent process of affinity maturation. Terminally
differentiated CD20~CD38% cells, rheumatoid factor (RF)
producing B cells have been detected in the inflamed joints
of RA patients (284). Moreover, clonal analysis has provided
evidence of an antigen-dependent process of SHM, selection and
isotype switching in TLS positive RA synovium, indicating that
a dominant antigen-specific local immune response shapes the
synovial plasma cell repertoire (170, 285-290). Similarly, in pSS,
the multiclonal expansion of B cells within the salivary glands has
been described. Expansion of B cell clones bearing Humkv325, a
conserved V kappa gene usually associated with lymphomas, was
described previously in 1989 (291). Additional studies further
supported the notion that an antigen-driven germinal center-type
B cell response and somatic hypermutation occurs within the
salivary glands (37, 292, 293). The presence of clones that expand
and mature in the TLS does not prove that the autoimmune
process is initiated within the TLS, or that the presence of TLS
is causative of disease. However, a certain degree of antigen-
experience and affinity maturation of the B cell repertoire
undoubtedly occurs within TLS (33, 135, 153, 160, 294-296) and,
whilst the causal role of these structures in disease initiation
cannot be proved, TLS certainly display the ability to host and
perpetuate the autoimmune process. Production of Ig and RF
has been shown in other tissues, in addition to the synovium,
including rheumatoid pericardium (297), pleura (298), muscles
(299), and in the inducible bronchus-associated lymphoid tissue
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(iBALT) in patients with pulmonary complications of RA (219).
The presence of sputum autoantibodies in the absence of systemic
seropositivity, and the increased autoantibody:total Ig ratio in the
sputum (300) suggest that lymphoid tissue present in the bronchi
of RA lungs can also act as sites of antibody development.

Independent IgG and IgM synthesis has been also described
in pSS salivary glands (301) with later studies confirming
the presence of RF™ clones in ~43% of patients with pSS
(302) and with the ability of salivary gland infiltrating B
cells to secrete antibodies specific for the Ro52/TRIM21,
Ro60 and La autoantigens (36, 179, 217, 303). In vitro
expression of recombinant antibodies derived from either newly
emigrant/transitional mature naive B cells from pSS patients and
healthy individuals confirmed the presence of high frequencies
of autoreactive antibodies in both populations. This suggests a
general defective peripheral B cell tolerance in this condition
(304).

Analysis of Ig levels in different compartments (blood, saliva)
has further contributed to our understanding of the ability of
TLS to independently produce antibodies. Increased levels of IgA,
but not IgG- and IgM-RF, has been detected in the saliva of
patients with pSS (305). A study on isotype distribution of anti-
Ro/SS-A and anti-La/SS-B antibodies in the plasma and saliva of
patients with pSS demonstrated a correlation between the focus
score (the measured degree of salivary gland inflammation) and
autoantibody titers in saliva or blood. This report establishes a
pathogenic link between locally displayed autoantigens, presence
of antigen specific B cells in the inflamed tissue and autoreactive
Ig levels (306).

IMMUNOGLOBULINS AND
GLYCOSYLATION: THE SWEETER THE
BETTER?

It is becoming increasingly clear that antibody post-translational
modifications, in particular glycosylation, can influence their
function and pathogenicity. However, a relationship between
the pathogenic microenvironment established in the TLS and
the progressive acquisition of pathogenic post-translational
modifications has not been demonstrated.

Glycosylation is the process by which glycans are attached
to proteins, lipids and other molecules, thereby altering their
structure and influencing their biological activity. Whilst IgG
presents a single conserved N glycosylation site within the Fc
region, other subclasses are more heavily glycosylated (307). IgG
Fc glycosylation determines the binding of the globulins to their
receptors, FcRs type I (FcgammaRs) and II (SIGN-R1, DC-SIGN,
DCIR, CD22, and CD23), thereby influencing Ig downstream
pro-inflammatory, anti-inflammatory or immunomodulatory
effects (308, 309). In addition to conserved IgG Fc glycans,
~15-25% of serum IgG contain glycans within the Fab domain.
Intriguingly, the attachment sites for N-glycans to the Fab
portion is determined by the process of somatic hypermutation
and, accordingly, Fab glycosylation could influence antibody
binding, activity, half-life, formation of immunocomplexes and
strength of BCR signaling [extensively reviewed in (310)].

The presence of altered glycosylation in RA was suggested
in the 1970s, but it wasn’t until 1985 when two studies from
Oxford and Japan demonstrated different galactosylation profiles
between normal individuals and patients with RA or OA (311).
Later, Axford and colleagues reported the presence of reduced
circulating B cell galactosyltransferase activity in RA (312), which
was later confirmed in other studies (313-315). Other post-
translational modifications have been described in RA. Several
studies have demonstrated the presence of an altered overall
glycosylation status within specific Ig subclasses (316) that can be
detected before disease onset (317). This correlates with measures
of disease activity (318, 319) and decreased sialylation of RF-IgG,
but not in non-RF-IgG (318, 320, 321).

More recently, the degree of IgG glycosylation has been
used to monitor treatment effectiveness (321) and, whilst no
differences have been observed in the Fc glycosylation pattern
between ACPA-IgGl and total IgGl in arthralgia patients, a
decrease in galactose residues have been observed in patients with
preclinical synovitis before the onset of RA; a change probably
supported by the increasingly inflammatory microenvironment
(322). The increased presence of agalactosylated IgG in the
synovial fluid as compared to serum samples of RA has also been
reported (323). Finally, Scherer et al. recently demonstrated the
presence of autoreactive IgG in synovial fluid with decreased
number of galactosylation and sialylation sites as compared
to serum. This latter difference appeared to be specific for
autoreactive specificities as no difference was observed in total
IgG glycosylation (324).

Elevated levels of asialylated IgG have been detected in
60% of pSS patients and those appear to correlate with
clinical manifestations, such as Raynaud’s phenomenon and
arthritis. A strong correlation with rheumatoid factor or IgA-
containing immune complexes was reported (325). Based on IgG
galactosylation, the pSS patients can be classified into two groups:
one with comparable galactosylation status as in RA patients with
the presence of RF, and the other similar to healthy individuals,
and RF seronegative (326).

More recently, studies on Fab glycosylation and disease
have been performed. Corsiero and colleagues reported the
relationship between increased molecular weight of anti-NET
antibodies and the presence of N-glycans onto the Fab domain
of autoreactive clones in RA, suggesting that the process of SHM
occurring in the synovium is responsible for the acquisition of-N
glycosylation sites (286). Acquisition of N-glycosylation sites and
subsequent enrichment in Fab-glycans in the variable domain of
ACPA-IgG has been further confirmed (327, 328). On a similar
note, it has been reported that there is a selective increase in
Fab-N glycosylation sites in ACPA specific clones. However,
the presence of those glycans didn’t appear to significantly
alter the antigen binding of the APCA. Accordingly, in silico
analysis suggested that the added glycans were not located
on the antibody binding sites (329). Moreover, an increased
frequency of N-glycans in the Fab ACPA domain, but in
association with altered antibody affinity, has been also reported
(330). Interestingly, this enrichment was more prominent on
ACPA isolated from synovial fluid compared with peripheral
blood (264), providing evidence that the local microenvironment
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influences the immunoglobulin glycosylation pattern. Hamza
et al. recently reported the high prevalence of acquired IgG N-
glycosylation sites in pSS suggesting a hypothesis that in pSS,
the selection pressures that shape the antibody repertoire in the
parotid glands results from an antigen-independent mechanism
and is driven by interactions between glycosylated B cell receptors
and lectins within the microenvironment (328). In summary,
the glycan composition can have different associations with the
disease, depending on the site of glycosylation. Decreased and
increased glycosylation for the Fc and Fab portion, respectively,
have been associated with RA and SS.

A relationship between post-translational modifications
and antibody pathogenicity has been proposed. Leader
et al. reported the presence of agalactosylated IgG in
synovial immunocomplexes, suggesting a pathogenic role
for agalactosylated IgG (331). However, the relationship between
glycosylation and RF activity is debated (318, 332). The presence
of N-linked glycosylation sites within the Fc portion of target
IgG has been also shown to markedly reduce RF binding in
vitro (333) whilst the ability of rheumatoid factors to selectively
bind hypogalactosylated IgG has been suggested (334). In
mice, desialylated but not sialylated immune complexes appear
to enhance osteoclastogenesis in vitro (335). Accordingly,
artificial sialylation of anti-type II collagen antibodies, including
ACPAs, but not other IgG can supress the development of
collagen-induced arthritis (CIA) (320, 336).

A potential pathogenic role of IgG glycosylation in pSS
pathogenesis, to our knowledge, has not been addressed yet. A
recent study pointed out that the Fc-mucin binding is enhanced
when antibodies are agalactosylated, offering a mechanistic
concept for increased binding on mucosal surfaces of the
inflammatory agalocysylated antibodies and potential antibody
pathogenicity (337).

Agalactosylated IgG levels were not found to be correlated
in twin pairs indicating a low influence from genetic factors
for IgG glycosylation (338). However, four loci contained
genes for glycosyltransferases (ST6GAL1, BAGALT1, FUTS, and
MGAT3) have been highlighted in genome-wide association
studies for loci associated with IgG N-glycosylation (339). There
is evidence to support the notion that the microenvironment
can influence Fc IgG glycosylation. A recent study illustrates
the ability of CpG, IFN-gamma and IL-21 to increase Fc-linked
galactosylation and reduce bisecting N-acetylglucosamine levels
(340). Stimulation of a mouse B cell lymphoma line with IL-4 and
IL-5, but not LPS, has been shown to significantly decrease the
terminal glycosylation of secreted IgA (341) and IgM (342), but
substantially increase the terminal glycosylation of MHC Class-
I (342), suggesting that the glycosylation machinery works in a
protein-specific manner.

A mechanistic link between inflammation and post-
translational modification has been recently established by G.
Schett’s group in a manuscript illustrating the ability of IL-21
and IL-22 to regulate the expression of a2,6-sialyltransferase-1
in newly differentiating plasma cells, thus controlling the
glycosylation profile of secreted IgG (320). Interestingly, both T
cell-independent B cell activation (343) and tolerance induction
with T cell-dependent protein antigens (344) results in the

production of sialylated IgG. However, T cell independent
vaccination seems to result in a stronger induction of sialylated
antigen specific antibodies (345).

IgG glycosylation can also be controlled at an extracellular
level. IgG sialylation has been reported in the bloodstream,
through secreted ST6Gall (326). S-glycosyltransferases have also
been shown to alter the IgG molecule at sites of inflammation
with local platelets serving as nucleotide-sugar donors (346).
Other reports link the process of altered glycosylation to a
post-secretory degradative process involving oxygen free radicals
(347). All together these reports suggest the possibility that
the site of antibody synthesis can profoundly affect the post-
translational profile of the immunoglobulins.

Due to technological limitations, the extent of the
disease-related glycan alterations and the role of these
modifications in disease pathophysiology has not been
thoroughly addressed. A novel microfluidic-based method
to identify trace sulphated IgG N-glycans as biomarkers for
rheumatoid arthritis has been recently described (348) and
high-throughput methods for analysing IgG glycosylation have
also been introduced (349). These tools have been only used
in selected populations and their application on a larger scale
could, in the future, unveil differences and patterns not yet
captured.

To our knowledge, there has been no attempt to use these
stratification tools in the context of TLS associated pathologies.
The differential profile of glycosylation observed in Ig isolated,
respectively from serum and synovial compartments suggest the
fascinating hypothesis that SLO and TLS differentially regulate
these post-translational modifications (323, 324, 350). However,
the possibility that Ig derived from SLO and TLS present
substantially different “sugary fingerprints” and that those
patterns correlate with a certain degree of tissue involvement and
disease progression has still to be proven.

TLS AND LYMPHOMAGENESIS

If the concept of an association between progressive post-
translational modifications of the Ig repertoire and continuous
antigen exposure within a highly inflammatory environment
is true, we should be able to detect progressive accumulation
of Ig in patients undergoing malignant transformation through
the course of autoimmunity. The occurrence of non-Hodgkin’s
lymphoma (NHL) is pathogenically linked to TLS and represents
the most serious complication of pSS, but not RA (351).

B cell VH and VL gene analysis for pSS patients with
lymphoma revealed several point mutations in the germline
genes and intra-clonal sequence heterogeneity, in line with an
ongoing somatic hypermutation process sustaining lymphoma
growth (352, 353). It is believed that the emergence of
monoclonal RF B cells within the polyclonal infiltrate of the
salivary gland TLS represents a key developmental step in
lymphomagenesis. Chromosomal abnormalities and mutation
eventually converge in these B clones that present a proliferative
advantage, ultimately converting them into malignant clones.
Indeed, there is a strong bias for RF specific B cells in the salivary
gland MALT-type lymphoma (354-356), whilst alternative
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analysis of the B cell repertoire in micro dissected labial salivary
glands could not convincingly demonstrate predominance of
RF reactivity in the infiltrating clones (357). The relationship
between GC formation and lymphomagenesis has been recently
challenged and further studies will be required to clarify the
pathogenic link between TLS persistence and emergency of
malignant clones (161, 182, 358, 359).

The high incidence of acquired N-glycosylation sites found
in follicular lymphoma (360) would be suggestive of a similar
phenomenon in pSS associated MALT lymphoma; however,
contrary to these expectations, patients with MALT lymphoma
present low frequency of N-glycosylation sites (161, 182,
358, 359, 361). Longitudinal analysis of the glycosylation and
sialylation profile in patients with TLS undergoing lymphoma
transformations are needed to address these questions.

FUTURE PROSPECTIVE AND
CONCLUSIONS

In conclusion, TLS formation can be easily considered as a
hallmark of tissue autoimmunity. In the past few years a large
body of work has been generated aimed at dissecting key
aspects of TLS biology, however, many areas have to be further
addressed. The inter-dependency between SLOs and TLS has
to be better dissected in order to understand whether these
immune hubs are functional, both in the early phases as tolerance
is broken and, later, during disease progression. The signals
regulating migration pathways and differentiation of immune
cells within the TLS should also be investigated in vivo with
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Immunoadsorption of
Desmoglein-3-Specific IgG Abolishes
the Blister-Inducing Capacity of
Pemphigus Vulgaris IgG in Neonatal
Mice
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Enno Schmidt** and Stephanie Goletz™*

" Libeck Institute of Experimental Dermatology, University of Liibeck, Lubeck, Germany, ? Institute of Experimental
Immunology, Euroimmun AG, Libeck, Germany, ° Department of Dermatology, University of Ltbeck, Lubeck, Germany

Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune blistering disease
which is associated with autoantibodies directed against two desmosomal proteins,
desmoglein (Dsg) 3 and 1. Treatment of PV is rather challenging and relies on the
long-term use of systemic corticosteroids and additional immunosuppressants. More
recently, autoantibody-depleting therapies such as rituximab, high-dose intravenous
immunoglobulins, and immunoadsorption were shown to be valuable treatment options
in PV. Specific removal of pathogenic autoantibodies would further increase efficacy and
usability of immunoadsorption. Here, we tested the capacity of our recently developed
prototypic Dsgl1- and Dsg3-specific adsorbers to remove circulating pathogenic
autoantibodies from three different PV patients. The pathogenic potential of the
Dsg3/1-depleted IgG fractions and the anti-Dsg3-specific IgG was explored in two
different in vitro assays based on cultured human keratinocytes, the desmosome
degradation assay and the dispase-based dissociation assay. In addition, the neonatal
mouse model of PV was used. In both in vitro assays, no difference between
the pathogenic effect of total PV IgG and anti-Dsg3-specific IgG was seen, while
Dsg3/1-depleted and control IgG were not pathogenic. For the samples of all 3 PV
patients, depletion of anti-Dsg3/1 1gG resulted in a complete loss of pathogenicity
when injected into neonatal mice. In contrast, injection of anti-Dsg3-specific IgG, eluted
from the column, induced gross blistering in the mice. Our data clearly show that
anti-Dsg3-specific IgG alone is pathogenic in vitro and in vivo, whereas Dsg3/1-depletion
results in a complete loss of pathogenicity. Furthermore, our data suggest that
Dsg-specific adsorption may be a suitable therapeutic modality to efficiently reduce
pathogenic autoantibodies in patients with severe PV.

Keywords: acantholysis, autoantibody, desmoglein, desmosome, immunoadsorption, pemphigus, skin, treatment
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INTRODUCTION

Pemphigus vulgaris (PV) is a potentially life-threatening
intraepidermal blistering autoimmune disease (1-4). Desmoglein
3 (Dsg3) and desmoglein 1 (Dsgl) have been identified as
autoantigens in PV (5-8). Dsgl and Dsg3 are desmosomal
transmembrane cadherins that mediate intercellular adhesion
of keratinocytes in the skin and surface-close epithelia (3, 6,
9). In PV patients with exclusive mucosal involvement (mPV),
autoantibodies are restricted to Dsg3, whereas autoantibodies
against both Dsg3 and Dsgl are associated with skin and
mucosal lesions (mucocutaneous type of PV, mcPV) (10-12). In
pemphigus foliaceus (PF), autoantibody reactivity is limited to
Dsgl and patients only develop skin lesions. In addition to Dsgl
and Dsg3, a variety of other target antigens have been described in
PV including muscarinic and nicotinic acethylcholine receptors,
annexins, thyroid peroxidase, desmocollins, and mitochondrial
proteins (13-15). While good, albeit not undisputed, evidence
for the pathogenic effect of anti-Dsgl/3 antibodies has been
provided, less data were reported about the pathogenicity of
non-Dsg antibodies (13, 15-20).

Treatment of PV is challenging and has required the
long-term use of prednisolone and other immunosuppressants
such as azathioprine and mycophenoles (4, 21, 22). Very
recently, first-line rituximab, an anti-CD20 antibody that
depletes B cells from the circulation for 3-9 months, in
conjunction with the short term use of prednisolone has been
shown to be significantly more effective and safe compared
to the long term use of prednisolone alone (23). High-
dose intravenous immunoglobulin and immunoadsorption are
two other treatment modalities that reduce serum anti-Dsg
autoantibodies and are recommended in refractory and/or
severely affected PV patients (21, 22, 24). The reduction
of serum autoantibodies in PV appears to be a particularly
attractive therapeutic approach since the direct pathogenic
importance of pemphigus autoantibodies has been shown in
various experimental settings in vitro and in vivo (13, 25).

Whereas plasmapheresis requires substitution with fresh-
frozen plasma or human albumin, immunoadsorption
specifically removes antibodies from the circulation (24).
Unfortunately, the use of immunoadsorption is limited by the
increased risk of infections due to the parallel reduction of
protective immunoglobulins. Thus, removal of Dsg-specific
antibodies appeared to be advantageous leading to the recent
development of prototypic anti-Dsgl and anti-Dsg3 adsorbers.
The Dsgl/3-specific adsorbers are based on the recombinant
Dsg ectodomains coupled to sepharose and allowed the effective
removal of anti-Dsg reactivity from PV and PF serum samples
in vitro (26). The aim of the present study was to show that by
the use of the Dsgl/3-specific adsorbers removal of anti-Dsg
antibodies from PV sera is sufficient to abolish the pathogenic
effect of pemphigus IgG not only in vitro but also in vivo in
neonatal mice. We now also show that anti-Dsg3-specific IgG is

Abbreviations: Dsg, desmoglein; IF, immunofluorescence; NH IgG, normal
human immunoglobulin G; PE pemphigus foliaceus; PV, pemphigus vulgaris;
mPV, mucosal pemphigus vulgaris; mcPV, mucocutaneous pemphigus vulgaris.

sufficient for acantholysis in cultured keratinocytes and blister
formation in neonatal mice.

MATERIAL AND METHODS

Patients

IgG from 3 PV patients (PV1, PV2, PV3) that were treated with
conventional protein A immunoadsorption at the Department of
Dermatology, Liibeck, was used (27, 28). The clinical phenotype,
age, sex, indirect immunofluorescence (IF) serum titers on
monkey esophagus, and anti-Dsg1/3 IgG serum levels by ELISA
(Euroimmun, Liibeck, Germany) are shown in Table 1. IgG
bound to protein A was eluted by glycine buffer (pH 2.8)
and immediately neutralized with 1M Tris pH 9.0 followed by
precipitation with ammonium sulfate and dialysis against PBS. As
no immunoadsorption material from healthy donors is available,
we use affinity-purified IgG from sera of healthy volunteers as
control. The study was performed following the Declaration of
Helsinki. Pathogenicity experiments were positively reviewed by
the ethics committees of the University of Liibeck, Germany (file
reference, 09-090).

Affinity Purification of Dsg-Specific PV IgG
Using the Entire Ectodomain of Dsg3 and
Dsg1

For antigen-specific immunoaffinity purification of anti-
Dsg3 and anti-Dsgl IgG, the entire ectodomains of
Dsg3 and Dsgl, respectively, were immobilized on N-
hydroxysuccinimide-activated Sepharose 4 Fast Flow (GE
Healthcare, Buckinghamshire, UK) as previously described (26).
Immunoaffinity purifications were performed as follows. The
immobilized protein matrix was transferred into microcentrifuge
spin columns (Thermo Fisher Scientific, Darmstadt, Germany)
and washed three times with tris-buffered saline supplemented
with 5 mM CaCl, (Ca?T-TBS). The concentrated IgG of the
PV patients was diluted 1:1 with Ca>*-TBS and incubated with
the immobilized protein for 30 min at room temperature. The
flow-through fraction was collected by centrifugation at 500x
g for 30s. After several washing steps with Ca?*-TBS (until
ODygp < 0.05) the anti-Dsg3 and anti-Dsgl IgG fractions were
eluted from the matrix with IgG elution buffer (Thermo Fisher
Scientific) until the OD,gp was below 0.05, and immediately
neutralized with IM Tris pH 9.0. All eluted fractions were
pooled and buffer was exchanged to PBS using Vivaspin 500
centrifugal filter units (Sartorius AG, Goéttingen, Germany).
Finally, Dsg3/1-depleted PV IgG (flow-through fractions) and
anti-Dsg3 PV IgG (eluted fractions) were analyzed for anti-Dsg3
and anti-Dsgl autoantibody reactivity by ELISA (Euroimmun).

Immunoblotting With HaCaT Extract

HaCaT cells were grown in low calcium Keratinocyte Growth
Medium 2, KGM2 (Promocell, Heidelberg, Germany) containing
0.06 mM CaCl2 to confluence and lysed in Laemmli sample
buffer. Lysates were fractionated by SDS-PAGE, transferred
to nitrocellulose membrane and immunoblotted as reported
(29). After blocking, nitrocellulose membranes were incubated
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TABLE 1 | Pemphigus vulgaris (PV) patients’ characteristics.

Patient no. Sex Age Clinical Monkey esophagus (serum) Anti-Dsg1 serum level (U/ml) Anti-Dsg3 serum level (U/ml)
(years) phenotype

PV1 M 70 mcPV 1:2,560 1,045 3,572

PV2 M 44 mcPV 1:1,280 103 9,748

PV3 F 72 mPV 1:320 - 6,001

mcPV, mucocutaneous PV; mPV, mucosal PV.

with anti-Dsg3 specific IgG (2ug/ml), a monoclonal anti-
Dsg3 antibody (1:100, Bio-Rad, Munich, Germany), control IgG
(2png/ml) from a healthy donor and IVIg (2pg/ml, Biotest,
Dreieich, Germany) diluted in TBST containing 5% skimmed
milk powder plus 1% BSA. As secondary antibodies a horseradish
peroxidase (HRP)-conjugated polyclonal goat anti-human IgG
antibody (1:1,000, DAKO, Hamburg, Germany,) and a polyclonal
rabbit anti-mouse IgG antibody (1:1,000; DAKO) were used. The
proteins were visualized using Super Signal West Femto (Thermo
Fisher Scientific).

Desmosome Degradation Assay

The desmosome degradation assay was performed as described
previously (26, 30, 31). In brief, HaCaT cells were grown in
8-well chamber slides (BDBiosciences, Heidelberg, Germany)
to confluent monolayers. Low calcium Keratinocyte Growth
Medium 2, KGM2 (Promocell) containing 0.06 mM CaCl, was
changed to high calcium medium by adding sterile 0.15 M CaCl,
to a final concentration of 1.5 mM calcium. Monolayers were
treated with PV IgG, control IgG and IgG fractions collected
from Dsg3 and Dsgl immunoaflinity purification as indicated in
the results part. After 24h incubation at 37°C in a humidified
atmosphere, culture medium was removed and monolayers were
washed with DPBS (Thermo Fisher Scientific) and subsequently
fixed with 4% paraformaldehyde. After washing, monolayers
were treated with 0.1% Triton X-100 (Sigma Aldrich, Steinheim,
Germany), incubated with 10% normal goat serum (DAKO) plus
1% BSA (Carl Roth, Karlsruhe, Germany) and then with mouse
anti-human Dsg3 IgG1 (1:100 in PBS, clone 5G11; Acris, Herford,
Germany) for 30 min at 37°C and after three times washing
with Cy3-labeled goat anti-mouse IgG (1:100 in PBS; Dianova,
Hamburg, Germany). Slides were mounted with ProLong R
Gold antifade reagent (Life Technologies, Carlsbad, USA) and
examined microscopically (BZ-9000, Keyence, Neu-Isenburg,
Germany).

Dispase-Based Dissociation Assay

The assay was performed as reported previously (26, 30-32)
with minor modifications. In brief, HaCaT cells were cultivated
in 12-well-plates (Greiner Bio-One, Solingen, Germany) with
KGM2 (Promocell) containing 0.06 mM CaCl, in a humidified
atmosphere (5 CO;) at 37°C. At confluence, fresh KGM2
containing 1.5 mM CaCl, was added. PV IgG (2 mg/mL), control
IgG (2 mg/mL), anti-Dsg3-specific IgG fractions collected from
Dsg3- and Dsgl-specific affinity purification (20 wg/mL) and
anti-Dsg3/1-depleted IgG (2 mg/mL), respectively were added
and incubated for 24h. Subsequently, the cells were treated

with dispase solution (2.5 U/ml for 30 min; Stemcell Techn.,
Vancouver, Canada) and subjected to mechanical stress by
pipetting 10 times (5 times moderate, 5 times strong) with a 1
ml pipette. Cell fragments were fixed and stained with crystal
violet (Sigma Aldrich). Photos were taken from each well and
cell fragments were counted manually. Every experiment was
performed at least in triplicate.

Passive Transfer Neonatal Mouse Model
Neonatals from C57BL/6 mice (Charles River Laboratories,
Sulzfeld, Germany) were injected subcutaneously <24h after
birth with the respective PV IgG fraction at doses of 3-7
mg/g of total and anti-Dsg3/1-depleted IgG and 300 j.g/g anti-
Dsg3-specific IgG (each IgG batch was applied in 3 mice) with
or without exfoliative toxin A (ETA; Toxin Technology Inc.,
Sarasota, USA) as described in parts previously (33, 34). ETA
is a serine protease produced from Staphylococcus aureus which
specifically degrades Dsgl (35). Due to the different expression
patterns of Dsgl and Dsg3 in mucous membranes and the
skin, anti-Dsg3 IgG is only pathogenic in the skin when Dsgl
is graded concomitantly (either by anti-Dsgl IgG or ETA). In
contrast, in mucous membranes, anti-Dsg3 antibodies alone
are sufficient to induce intraepithelial splitting (12). Here, half
of the minimum ETA dose was applied that in preliminary
experiments had induced clinical blistering (usually 0.1 jLg/g
bodyweight). After 16-24h, the mice were clinically evaluated
before and after application of mechanical stress at the back
and sides of mice (Nikolsky phenomenon). Blood was obtained
as well as biopsies from the back for histopathology (H&E
staining) and direct IF microscopy. All animal experiments
were approved by the Animal Rights Commission of the
Ministry of Agriculture and Environment, Schleswig Holstein
(98-8/14).

Immunofluorescence Microscopy

For direct IF microscopy, a polyclonal rabbit anti-human IgG-
FITC antibody (Bio-Rad, Hercules, USA) at a dilution of 1:50
in PBS was used for 1h at room temperature. For indirect IF
microscopy, 6 um sections of monkey esophagus were incubated
with human IgG and mouse sera in a dilution range of 1:20-
1:5120 in PBS for 1 h at room temperature. For detection, a FITC-
labeled polyclonal anti-human IgG (DAKO) at 1:50 in PBS was
employed for 30 min at room temperature.

Statistics
Graphpad Prism 6 was used for the statistical analysis. The
dispase assay data across different groups within each patient was
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compared for its statistical significance using the Kruskal-Wallis
test. For all three patients, correction for multiple comparisons
was done by post-hoc Dunn’s tests to identify significant pairwise
differences between the groups.

RESULTS

Dsg1- and Dsg3-Specific Adsorption of PV

Patient IgG

Anti-Dsg3-specific IgG was immunoadsorbed from total PV IgG
in all three PV patients as previously described in Langenhan et
al. (26). In addition, in PV1 and PV2, the present Dsgl-reactivity
was removed by Dsgl-specific immunoadsorption. To study
the effect of Dsg-specific IgG we focused on anti-Dsg3-specific
IgG since only two of the three PV patients revealed Dsgl-
specifc IgG. Characteristics of patient IgG after Dsg3/1-specific
adsorption are summarized in Tables 2, 3. Western blot analysis
of cellular extracts of cultured human keratinocytes confirmed
the specific purification of anti-Dsg3 PV IgG (Figure 1). Indirect
IF microscopy on monkey esophagus revealed that total IgG from
PV patients as well as Dsg3-specific IgG, but not Dsg3/1-depleted
IgG and control IgG from a healthy blood donor, showed
the PV-typical intercellular staining of the stratified squamous
epithelium (Figure 2, Table 2).

Dsg3/1-Specific Depletion of PV IgG

Abolishes Pathogenicity in vitro
To evaluate the pathogenicity of the Dsg3-specific PV IgG and
anti-Dsg3/1 IgG-depleted fractions in vitro, the desmosome
degradation assay and the dispase-based dissociation assay were
performed. The PV IgG-induced loss of Dsg3 expression on
the keratinocyte cell surface due to internalization of Dsg3 into
endosomes and degradation was determined microscopically.
Incubation of HaCaT cell monolayers with either total PV
patient IgG or anti-Dsg3-specific IgG resulted in an equivalent
discontinuous Dsg3 staining at the keratinocyte cell borders
(Figure 3). In contrast, when cells were treated with anti-Dsg3/1
IgG-depleted fractions and normal human IgG, respectively,
Dsg3 staining was uniformly localized to the cell membrane of
keratinocytes (Figure 3).

In the dispase-based dissociation assay, treatment with
PV1, PV2, and PV3 IgG, respectively, as expected resulted
in significantly more keratinocyte fragments compared to

incubation with normal human IgG (PVI1: p = 0.0011; PV2:
p = 0.0045; PV3: p = 0.003; Figure 4). Incubation of monolayers
with purified Dsg3-specific PV IgG from the three patients
generated a significantly higher fragmentation level compared to
incubation with anti-Dsg3/1-depleted IgG (PV1: p = 0.046; PV2:

FIGURE 1 | Desmoglein3-specific IgG reactivity in Western blot using

extract of cultured keratinocytes. Western blotting of a monoclonal anti-Dsg3
antibody (lane 1; Bio-Rad, Munich, Germany), Dsg3-specific IgG (2 pg/ml)
from pemphigus vulgaris (PV) patient PV1 (lane 2), PV2 (lane 3), and PV3 (lane
4) with extract of cultured HaCaT keratinocytes. IgG affinity purified from a
healthy volunteer (2 pg/ml) and IVIg (2 pg/ml, Biotest, Dreieich, Germany) are
shown in lanes 5 and 6. Molecular weight markers are shown to the left (kDa).
The arrow indicates the migration position of desmoglein 3.

TABLE 2 | Characteristics of pemphigus vulgaris (PV) IgG fractions.

Patient no. PV IgG@ Purified anti-Dsg3 PV IgG Anti-Dsg3/1 depleted PV IgG
Dsg3 (U/m)®  Dsg1 (U/ml)®  IIF (tite)®  Dsg3 (U/m))®  Dsgl (U/mI)P  IIF (tite)®  Dsg3 (U/m))®  Dsgl (U/mI)P  IIF (titer)®
PV1 49,446 16,933 >1:5,120 9,463 Neg. 1:640 Neg. Neg. Neg.
PV2 29,526 27 >1:5,120 19,034 Neg. 1:1,280 Neg. Neg. Neg.
PV3 11,773 Neg. >1:5,120 1,691 Neg. 1:320 Neg. Neg. Neg.

aBefore subjection to Dsg-specific adsorption.

bBy ELISA (Euroimmun; lower cut-off 20 U/ml).

¢By indirect immunofiuorescence (lIF) microscopy on monkey esophagus.
Dsg, desmoglein; neg., negative.
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TABLE 3 | Characteristics of pemphigus vulgaris (PV) IgG fractions (dispase-based dissociation assay).

Patient no. PV IgG@ Purified anti-Dsg3 PV IgG Anti-Dsg3/1 depleted PV IgG
Dsg3 (U/mI)P Dsg1 (U/mi)P Dsg3 (U/mi)P Dsg1 (U/mi)°? Dsg3 (U/mi)® Dsg1 (U/mi)P

PV1 1,776 44 139 Neg. Neg. Neg.

Pv2 3,217 Neg. 1,446 Neg. Neg. Neg.

PV3 2,274 Neg. 752 Neg. Neg. Neg.

@Before subjection to Dsg-specific adsorption.
bBy ELISA (Euroimmun; lower cut-off 20 U/ml).
Dsg, desmoglein; neg., negative.

FIGURE 2 | Indirect immunofluorescence (IF) microscopy on monkey esophagus confirms Dsg3/1-specific depletion of IgG from pemphigus vulgaris (PV) IgG. Total
PV IgG from three different pemphigus vulgaris (PV) patients (PV1 (A), PV2 (D), PV3 (G)) and the respective anti-Dsg3-specific IgG (B,E,H) but not the anti-Dsg3/1
IgG-depleted IgG fractions (C,F,1) and normal human IgG (NH IgG; J) revealed the characteristic intercellular epithelial staining. Nuclei were counterstained with DAPI.

p =0.011; PV3: p = 0.02; Figure 4). No difference was observed
between treatment with anti-Dsg3/1-depleted IgG and normal
human IgG (Figure 4).

Anti-Dsg3/1 IgG-Depleted PV IgG Prevents
Pathogenicity While Anti-Dsg3-Specific
IgG Results in Blister Formation in

Neonatal Mice

When injected into neonatal mice, only total PV1 IgG
contained enough anti-Dsgl antibodies for the induction of
skin blisters without co-injection of a subclinical dose of ETA
(Figure 5A, lane 1). For mice injected with PV2 or PV3 IgG,
gentle mechanical friction was required to obtain macroscopic
blistering (Figure 5A, lanes 4 and 7). The injection of anti-Dsg3-
specific IgG fractions from all three PV patients (combined with

subclinical ETA doses) induced gross skin blistering (Figure 5A,
lanes 2, 5, and 8). In contrast, anti-Dsg3/1 IgG-depleted IgG
from all three PV patients (combined with subclinical ETA doses)
failed to induce blistering in neonatal mice (Figure 5A, lanes 3, 6,
and 9). Lesional skin biopsies revealed suprabasal acantholysis,
the characteristic histological finding of PV, after injection of
PV IgG and anti-Dsg3-specific IgG, but not after injection of
Dsg3/1-depleted PV IgG fractions or ETA alone (Figure 5D). By
direct IF microscopy, intercellular IgG depositions were found in
the epidermis in all PV IgG and anti-Dsg3-specific IgG-injected
mice, but not in mice injected with anti-Dsg3/1 IgG-depleted
PV IgG or ETA alone (Figure 5B). By indirect IF microscopy
on monkey esophagus, the characteristic intercellular staining
was seen with sera of mice injected with PV IgG and anti-Dsg3
specific PV IgG, but not after injection of anti-Dsgl/3-depleted
IgG or ETA alone (Figure 5C).
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FIGURE 3 | Desmosome degradation assay. HaCaT keratinocytes were treated with 50 pg/ml total pemphigus vulgaris (PV) IgG, 5 pwg/ml anti-Dsg3-specific and 50
png/ml anti-Dsg3/1 IgG-depleted PV IgG from three different pemphigus vulgaris (PV) patients (PV1, PV2, PV3) before immunostaining with anti-Dsg3 1gG. Dsg3
degradation was detected after incubation with total PV IgG (A,D,G) and Dsg3-specific IgG (B,E,H) but not with the PV IgG fractions depleted of anti-Dsg1/3 IgG
(C,F,l) and normal human IgG (50 wg/ml; NH IgG; J).

FIGURE 4 | Dispase-based dissociation assay. Incubation of keratinocyte monolayers with total pemphigus vulgaris (PV) IgG and anti-Dsg3-specific IgG from three
different PV patients (PV1, PV2, PV3) showed a significantly higher fragmentation compared to treatment with normal human IgG (NH IgG) and the
anti-Dsg3/1-depleted PV IgG (Dsg-depl. IgG), respectively. No difference between incubation with NH IgG and anti-Dsg3/1-depleted IgG was observed. In addition,
incubation with Dsg3-specific IgG resulted in significantly higher fragmentations compared to both Dsg-depleted PV IgG and NH IgG, respectively. Data show the
mean and standard error of the mean (error bars) of seven independent experiments. *, p < 0.05; **, p < 0.01; n.s., not significant.

DISCUSSION PV. So far, more than 100 pemphigus patients were reported

to have been subjected to immunoadsorption which has been
Adjuvant immunoadsorption is a well-established treatment  recommended in the guideline of the German Dermatological
option in a variety of autoantibody-mediated diseases including  Society for the treatment of refractory or severe PV (21, 36).
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FIGURE 5 | /n vivo pathogenicity of pemphigus vulgaris (PV) IgG fractions. Injection of neonatal mice (n = 3/ group) with PV IgG and anti-Dsg3-specific IgG purified
from three different PV patients PV1, PV2, PV3) induced flaccid macroscopic blisters (A; lanes 1, 2, 4, 5, 7, and 8; white arrows) and suprabasal splitting as seen by
lesional histopathology (D; lanes 1, 2, 4, 5, 7, and 8). No macroscopic and microscopic blistering was induced by PV IgG depleted of anti-Dsg3/1 IgG from the three
PV patients (A,D; lanes 3, 6, and 9) or ETA alone (A,D; lane 10). By direct immunofluorescence (IF) microscopy of back skin, an intercellular epidermal staining was
observed in mice injected with PV IgG (B; lanes 1, 4, and 7) or anti-Dsg3-specific IgG (B; lanes 2, 5, and 8) but not after injection of anti-Dsg3/1 IgG-depleted IgG

(B; lanes 3, 6, and 9) or ETA alone (B, lane 10). By indirect IF microscopy on monkey esophagus, the characteristic intercellular staining (1:80 dilutions are shown) was
seen with sera of mice injected with PV IgG (C; lanes 1, 4, and 7) and anti-Dsg3-specific PV IgG (C; lanes 2, 5, and 8), but not after injection of PV IgG depleted of
Dsg3-specific IgG (C; lanes 3, 6, and 9) or ETA alone (C, lane 10). Nuclei were counterstained with DAPI.
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Furthermore, the results of a randomized control trial comparing
the efficacy and safety of immunoadsorption plus best medical
treatment with best medical treatment alone in pemphigus are
currently evaluated. In PV, it may be of particular value to
rapidly reduce the amount of circulating autoantibodies at the
beginning of treatment at a stage when other therapies, i.e.,
corticosteroids, azathioprine, and rituximab, are not yet effective.
This assumption is supported by the clear evidence of a direct
pathogenic effect of pemphigus autoantibodies as demonstrated
by the occurrence of transient pemphigus in neonates of mothers
with PV, the correlation of disease activity with serum levels
of anti-Dsgl/3 IgG and various experimental models in vitro
and in vivo (2, 15, 20, 33). Conventional immunoadsorption is,
however, limited due to the risk of hypogammaglobulinaemia
and the subsequent risk of infections. This disadvantage would
not be applicable for the use of autoantibody-specific adsorbers.
Therefore, we have recently developed Dsgl- and Dsg3-specific
adsorbers based on the recombinant Dsg ectodomains. We could
show that the prototypic adsorbers effectively removed anti-
Dsgl/3 IgG from PV and PF sera and eliminated the pathogenic
effect of PV and PF IgG in vitro (26).

In the present study, the prototypic adsorbers were employed
to investigate whether Dsgl/3-specific adsorption can also
abolish the pathogenic effect of PV IgG in vivo. Extending our
previous studies (26), we asked the question whether anti-Dsg3-
specific IgG alone, i.e., without the addition of non-desmoglein
antibodies, is sufficient to induce pathogenic effects in vitro
and intraepidermal blistering in mice. Our experiments are
of particular importance since the concept that in the great
majority of PV patients, the pathogenic effects of autoantibodies
are mediated by anti-Dsg antibodies is challenged (13, 16).
Furthermore, although Amagai et al. previously showed that
affinity-purified anti-Dsg3 IgG prevented pathogenicity in vivo
(37), there are still doubts about the specificity of the affinity
purification as the recombinant Dsg3 fragment used for this
process contained the constant region of human IgG1 that might
have also bound to non-Dsg PV autoantibodies (13, 38). In our
Dsgl/3-specific adsorbers, only the ectodomains of Dsgl and 3
were used (26).

Here, we initially demonstrated the high efficiency of the
Dsg3/1-specific adsorbers since no anti-Dsg3 or anti-Dsgl IgG
antibodies could be detected in the Dsg3/1-depleted IgG fraction
by ELISA. This result was corroborated by Western blotting of
anti-Dsgl/3-specific IgG and anti-Dsgl/3 IgG-depleted PV IgG
fractions with extract of human keratinocytes. In line, by indirect
IF microscopy on monkey esophagus both, total PV IgG and anti-
Dsg3-specific IgG but not anti-Dsg3/1 IgG-depleted PV IgG and
normal human IgG stained the epithelium.

Next, we demonstrated in two different in vitro assays that
PV IgG, depleted from anti-Dsgl/3 reactivity by the use of
the Dsgl/3-specific adsorbers, lost their pathogenic effect.
No difference between anti-Dsgl/3 IgG-depleted IgG and
normal human IgG was observed in both, the desmosome
degradation assay and the dispase-based dissociation
assay. In contrast, PV IgG and anti-Dsg3-specific IgG
obtained after elution from our Dsgl/3-specific adsorbers
led to increased desmosome degradation and keratinocyte

dissociation, respectively. It has already previously been
shown that human keratinocytes loose Dsg3 expression on
their cell surface after incubation with PV IgG (39, 40).
Nevertheless, we observed that total PV IgG and anti-Dsg3-
specific IgG from PV3 resulted in less Dsg3 degradation
(Figures 3G,H) compared to the IgG fractions of PV and
PV2. We hypothesize that the weaker desmosome-degrading
capacity of both PV3 IgG and PV3 anti-Dsg3-specific IgG may
be explained by the lower anti-Dsg3 IgG titers in this patient
(Table 2).

Furthermore, the different PV IgG fractions were also
assayed in the neonatal mouse model of PV. Initially,
Anhalt and coworkers reported that the injection of PV
serum in neonatal mice recapitulated major clinical and
immunopathological characteristics of the human diseases, i.e.,
flaccid blisters that easily erode when mechanical friction
is applied, intraepidermal split formation as detected by
histopathology, and the intercellular binding of PV antibodies
in the epidermis as seen by direct IF microscopy (33). In the
present study, the injection of PV IgG and Dsgl/3-specific IgG
led to macroscopic and microscopic blisters indicating that anti-
Dsgl1/3 IgG alone is pathogenic and does not require the presence
of non-Dsg PV autoantibodies. These data are supported by
the previous observations that injection of the monoclonal anti-
Dsg3 antibody AK23 resulted in blister formation in neonatal
as well as in adult mice (41, 42). More important for the future
use of the Dsgl/3-specific adsorbers in the treatment of PV
patients is our observation that PV IgG fractions depleted from
anti-Dsg1/3 reactivity did not induce skin lesions when injected
into neonatal mice. These results unequivocally show that non-
Dsg antibodies that had been previously described in PV sera
directed e.g., against muscarinic and nicotinic acethylcholine
receptors, annexins, thyroid peroxidase, and mitochondrial
proteins are not a prerequisite for blister formation in PV. In
line, these non-Dsg antibodies have not yet been described to
be pathogenic in vivo while co-pathogenic effects have been
reported in vitro (13, 15, 17, 18, 20, 43, 44). One may speculate
that the previously proposed pathogenic effect of non-Dsg
antibodies in PV is not a key element for the initiation of blister
formation.

In contrast, anti-desmocollin autoantibodies that have been
described in pemphigus sera caused desmosome degradation
in the desmosome degradation assay, cell fragmentation in the
dispase-based dissociation assay, and suprabasal splitting in
an ex vivo skin model (45-47). In line, desmocollin 3-deficient
mice present with skin erosions and suprabasal intraepidermal
blistering (48). However, evidence is accumulating that
anti-desmocollin autoantibodies may be more relevant in
paraneoplastic and atypical pemphigus than in PV and PF
(49-51). In fact, in a large prospective study with more than
330 pemphigus patients, only 4% of all pemphigus sera and
2.7% of PV and PF sera exhibited anti-desmocollin reactivity,
while 98% of sera contained anti-Dsg3 and/or anti-Dsgl IgG
(52). These data indicate that only in a small number of PV
and PF patients, Dsgl/3-specific immunoadsorption may
not be clinically effective although anti-Dsgl/3 antibodies
have effectively been decreased. Future studies now aim at
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applying the Dsg3/1-specific adsorbers in a clinical trial with PV
patients.
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Flightless | Alters the Inflammatory
Response and Autoantibody Profile
in an OVA-Induced Atopic Dermatitis
Skin-Like Disease

Zlatko Kopecki*!, Natalie E. Stevens, Heng T. Chong, Gink N. Yang and Allison J. Cowin'

Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA, Australia

Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease characterized by
excessive inflammation and disrupted skin barrier function. Although the etiology of AD
is not completely understood, clinical and basic studies suggest increasing involvement
of autoantibodies against intracellular proteins. An actin remodeling protein, Flightless |
(Flii), has been shown to promote development of inflammatory mediated skin conditions
and impairment of skin barrier development and function. Here, we sought to determine
the effect of altering Flii expression on the development of AD and its contribution to
autoimmune aspects of inflammatory skin conditions. Ovalbumin (OVA)-induced AD
skin-like disease was induced in Flii heterozygous (Fli*'-), wild-type (Flii*’+), and Flii
transgenic (Fli™™9) mice by epicutaneous exposure to OVA for 3 weeks; each week
was separated by 2-week resting period. Reduced Flii expression resulted in decreased
disease severity and tissue inflammation as determined by histology, lymphocytic, and
mast cell infiltrate and increased anti-inflammatory IL-10 cytokine levels and a marked
IFN-y Thy response. In contrast, Fli over-expression lead to a Th, skewed response
characterized by increased pro-inflammatory TNF-a cytokine production, Th, chemokine
levels, and Th, cell numbers. Sera from OVA-induced AD skin-like disease Flii*'- mice
showed a decreased level of autoreactivity while sera from Flii™™ mice counterparts
showed an altered autoantibody profile with strong nuclear localization favoring devel-
opment of a more severe disease. These findings demonstrate autoimmune responses
in this model of OVA-induced AD-like skin disease and suggest that Flii is a novel target,
whose manipulation could be a potential approach for the treatment of patients with AD.

Keywords: atopic dermatitis, flightless I, autoantibody, inflammation, skin barrier

INTRODUCTION

Atopic dermatitis (AD) is one of the most common heterogeneous inflammatory skin diseases
affecting 20% of children and 1-3% of adults worldwide (1). The disease is associated with impair-
ments in the skin barrier and variable clinical indicators including occurrence of eczematous lesions,
pruritus, and chedilitis (1). The etiology of AD is complex and is often characterized by abnormal
immunological pathways that manifest in an imbalance of T-helper (Th); and Th, responses (2).
Typically, AD is described as having a biphasic course consisting of an acute inflammatory Th,-
dominated phase associated with IgE production and a chronic phase distinguished by reappearance
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of Th, responses, tissue remodeling, and dermal thickening (3).
Histopathologically, AD is characterized by an inflammatory
infiltrate consisting of CD4* memory T cells, mast cells, and
eosinophils and a controlled temporal-spatial expression of pro-
inflammatory cytokines and chemokines driving atopic inflam-
mation of the skin (4).

Research within the last decade has found an association
between AD and autoantibody development, suggesting the contri-
bution of autoantibodies to the pathogenesis of AD (3, 5-8). It is
proposed that tissue damage induced by AD allows exposure of
intracellular antigens that are normally inaccessible by antibodies
to the extracellular space, where they can interact with B cells and
antibodies (9). A broad spectrum of IgE targeting self-antigens
have been identified in above 90% of severe AD patients and
high-avidity IgG autoantibodies have been proposed as potential
diagnostic markers for severe AD (5, 10-12). The fact that these
autoantibodies are associated with disease severity implicates
their role in both humoral and cellular immunity in AD patho-
genesis (5, 12). Antinuclear antibodies have been shown to have
both biological and clinical significance acting as sensors of
cellular stress and inflammation associated with environmental
factors (13). While the presence of autoantibodies can have a
protective role as natural autoantibodies (14), the presence of
nuclear autoantibodies in AD has been suggested to lead to the
continual provocation of the immune system hence contributing
to the severity and chronicity of disease.

Flightless I (Flii) is a highly conserved and unique member
of the gelsolin family of actin remodeling proteins and a nuclear
receptor activator affecting the transcriptional activity of many
modulators of tissue remodeling and inflammation (15, 16). Flii
has been demonstrated to regulate cytokine secretion and cellular
inflammatory responses via its intracellular and extracellular
effects on toll-like receptors (17-20). Flii expression increases
in skin during development and in response to inflammation,
injury, skin cancer development, wound healing, and skin blis-
tering (21-23). Over-expression of Flii delays the development
of an intact skin barrier in the embryonic skin of mice and impairs
the recovery of the epidermal barrier post injury via its effects
on tight-junction formation (22). A recent study has shown that
reducing Flii levels either genetically or using Flii neutralizing
antibodies decreases erythema, inflammatory cell infiltrate, and
pro-inflammatory cytokine secretion in a mouse model of pso-
riasiform dermatitis (24). Taken together, these findings suggest
a possible role for Flii in inflammatory responses mediating AD.
Using an OVA-induc