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Editorial on the Research Topic

Global infectious disease surveillance technologies and data
sharing protocols

In this Research Topic titled “Global Infectious Disease Surveillance Technologies and
Data Sharing Protocols”, we issued a call for papers “related to the research, practice and
architectural design of surveillance technologies and data sharing protocols that empower
infectious disease prevention and preparedness at a global scale”. We specifically encouraged
submissions showcasing innovative ideas and discoveries in wastewater-based surveillance,
innovative contactless technologies that could be deployed in public transportation
vehicles, especially those across national and regional borders. At the time of the first SARS
outbreak in the beginning of this century, the concept of wastewater-based surveillance
was unimaginable. Today, it has become a reality, presenting a promising component of
an integrated global aircraft-based genomic surveillance network (1). We also welcomed
technical contributions employing artificial intelligence (AI) and blockchain technologies
to enable real-time, transparent global data sharing. As articulated in our initial call: “Once
the global pandemic situation could be monitored and checked on anyone’s smart-phone, like
those for weather and air pollution, the lofty ideology of global pandemic prevention will be
realized, from bottom up”.

This Research Topic accepted a total of nine articles, with four primarily focused
on sampling and experimental methodologies (i.e. “wet” studies), while four focused
on statistical and computational modeling (i.e. “dry” studies). In December 2022, at
the moment during China’s transition in COVID-19 control strategies, we published a
commentary titled “The World Needs a ‘Pandamic’ Solution for a Pandemic Problem”
(2). There, we introduced the term “pandamic” (pan-da-mic). There, “da” refers to data
applications widely used and needed to fight against and prevent pandemics, while
“mic” means microbiology and, in particular, various omics technologies. Therefore,
the concept of “pandamic” stresses the essential convergence of biotechnology (wet)
and information technology (dry) in modern surveillance frameworks. A particularly
noteworthy contribution in this Research Topic is the review by Lipsitch et al,, titled
“Infectious Disease Surveillance Needs for the United States: Lessons from COVID-19”. The
authors presented a comprehensive roadmap for improving national and global infectious
disease surveillance systems. Drawing on insights from the COVID-19 pandemic,
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the article identified critical data types and infrastructure elements
necessary to support real-time decision-making. The authors
emphasized the integration of diverse data streams, including
mobility patterns, internet search trends, clinical diagnostics,
and wastewater signals, into purpose-built, responsive systems.
Importantly, the article highlighted the importance of equitable
and locally adaptive systems, capable of informing interventions
not only during acute crises but also for ongoing public
health challenges.

Three of the wet studies feature the term “wastewater” in
their titles, reflecting the growing importance of wastewater-based
surveillance in the global infectious disease monitoring landscape.
Jones et al. investigated the feasibility of using wastewater from
passenger ships as a surveillance tool for viral pathogens crossing
maritime borders. Their study demonstrated successful detection
of SARS-CoV-2 and norovirus in blackwater collected from short-
haul ferries operating between the United Kingdom and Ireland.
These findings validated the potential of maritime wastewater-
based surveillance for tracking pathogen transmission across
international boundaries, offering an important monitoring tool
in the context of international travel. Maida et al. presented
urban wastewater surveillance in Sicily during the 2022/2023
influenza season. The temporal trends of influenza viral RNA
in wastewater were found to mirror clinical case trends,
indicating the potential of wastewater-based surveillance as a non-
invasive and cost-effective complement to traditional influenza
surveillance in urban European settings. Dinssa et al. conducted
a longitudinal study of SARS-CoV-2 in Ethiopian wastewater
throughout 2023. They found a high positivity rate in untreated
wastewater samples and a strong correlation between viral RNA
levels and COVID-19 case trends.
the capability of wastewater-based surveillance in low-resource

Their work underscored

settings, where limited access to clinical diagnostics may lead
to underestimation of infection prevalence. This work provided
compelling evidence that wastewater-based surveillance can fill
critical surveillance gaps in resource-limited contexts. The fourth
study from Dama et al. described the implementation of an
integrated specimen reference system in Burkina Faso. This
system employed existing courier networks to transport human
biological specimens for priority diseases including COVID-19
from district-level clinics to reference laboratories in Burkina
Faso. This innovative system achieved >99% on-time delivery
with preserved sample integrity, proving that scalable, cost-
effective logistical infrastructure can significantly enhance disease
surveillance outcomes, especially for time-sensitive or high-risk
conditions like the COVID-19 pandemic. Together, these four
studies exemplify diverse and pragmatic approaches to enhance
the front-line data collection for infectious disease surveillance,
spanning novel applications of wastewater-based surveillance to
innovations in biospecimen logistics.

All four dry studies include “model(s)” in their titles and
collectively reflect a broad spectrum of modeling strategies and
regional applications. Bowie and Friston assessed the predictive
validity of a dynamic causal model (DCM) for long-term outcomes
of the COVID-19 pandemic. While DCM captured several
key pandemic dynamics, it tended to overestimate deaths and
hospitalization rates due to fixed assumptions about virulence
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persistence. Their work offered a critical reflection on modeling
assumptions and proposed more adaptive model frameworks that
incorporate evolving population immunity. Hou applied time-
series and machine learning methods to examine the epidemiology
of hemorrhagic fever with renal syndrome (HFRS) in relation
to environmental drivers. By integrating meteorological and air
pollutant data using distributed lag non-linear models and support
vector machines, the study provided a refined seasonal risk
framework for HFRS outbreaks, highlighting the role of air
quality as a significant predictor of disease outbreaks. Zheng
et al. evaluated ARIMAX models to predict influenza incidence in
Fuzhou, China, incorporating air pollutants and meteorological
indicators. They found that PM;, was a particularly strong
predictor and demonstrated that the inclusion of environmental
indicators improved model accuracy. These findings provided
practical implications for real-time influenza forecasting and public
health early warning systems. Vijayalakshmi et al. developed an
optimal control framework for dengue transmission using fractional-
order differential equations based on the Atangana-Baleanu Caputo
(ABC) calculus. Their mathematical model accounted for both
symptomatic and asymptomatic infections and demonstrated
that immune boosting and clinical treatment strategies could
significantly reduce disease burden when integrated into control
policies. Collectively, these four modeling papers presented the
richness and diversity of analytic approaches that can support
infectious disease prediction, environmental risk assessment,
and intervention optimization across varied geographic and
epidemiological contexts.

The COVID-19 pandemic, once a defining global crisis,
now feels like a distant memory. Yet today, its urgency has
largely receded from public consciousness and institutional
agendas. As Darwin’s theory of evolution suggests, humans
are remarkably adaptive. But adaptation should not become
synonymous with complacency. This moment calls for difficult,
but necessary questions: Has anything fundamentally changed in
the academic, operational, or policy landscape of global public
health? If a COVID-like pandemic was to emerge tomorrow, would
policymakers and societies respond more wisely, more swiftly, and
more effectively? In China, as of July 2025, the infectious disease
currently making headlines is the Chikungunya virus, transmitted
by mosquitoes (3). In response, public health authorities have
encouraged the public to drain stagnant water and apply insect
repellent. These measures, while useful, have remained largely
unchanged for over a century. Such public health intervention
should reflect the leap in infrastructure, technology, or governance
that reflects the lessons of COVID-19.

The echoes of “I have a dream” from Martin Luther King Jr. and
“we choose to go to the moon” from President Kennedy continue to
inspire visionary thinking. In the realm of global infectious disease
surveillance, what are the equivalent aspirations? Do we have a
unifying “dream” or a collective “moonshot” in this space? Or
are we still navigating a fragmented landscape of national agendas
and disconnected efforts? Public health is classically defined as
“the science and art of preventing disease, prolonging life, and
promoting health through the organized efforts and informed choices
of society” (4). While biology and medicine anchor the scientific
foundation, the “art” lies in policy, culture, communication,

frontiersin.org
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and the complexities of human behavior. From this perspective,
public health is therefore inherently interdisciplinary, but this very
breadth also risks diffusion of focus and a lack of accountability.
Without concrete systems and enforceable structures, the noble
ideals of public health remain vulnerable to drift. In this context,
the World Health Organization (WHO) should evolve from a
reactive body to a proactive global leader. It should articulate
a clear, realistic, and actionable strategy for global infectious
disease surveillance that is able to propel nations into coordinated
efforts. Much like the International Olympic Committee (I0C),
which established universal anti-doping protocols and inspired
a shared framework for athletic integrity, WHO should provide
both the inspiration and the infrastructure to coordinate global
health preparedness. It should not only be the moral authority but
also the architect of scalable solutions, setting enforceable global
standards and guiding strategic investments to ensure no country
is left behind.

In our original call for papers, we referenced the global
anti-doping protocol as an instructive model: “An exemplary
is the protocol of world doping control, where all nations are
obligated by the International Olympics Committee (IOC) to be
sampled at any time by a WADA accredited laboratory”. We
further developed this idea in a recent Viewpoint article, inspired
by a simple yet striking observation that the headquarters of
the World Anti-Doping Agency (WADA) and the International
Civil Aviation Organization (ICAO) sit just 30 meters apart in
Montreal (5). Though they govern vastly different domains in
sports and aviation, respectively, these two organizations succeed
through international cooperation, cross-border enforcement,
and standardized protocols. We proposed that ICAO could
adopt a system similar to WADA, integrating infectious
disease surveillance into international air travel. If designed
and implemented with scientific rigor, equity, and transparency,
such a system could serve as the foundational architecture for
real-time, scalable global infectious disease surveillance. This
proposal is both concrete and feasible, and represents a meaningful
step toward a coordinated, adaptive, and enforceable global
response infrastructure.

Concluding remarks

The nine papers in this Research Topic collectively demonstrate
the global diversity, creativity, and commitment in advancing
infectious disease surveillance and preparedness. From ferry
ports in the UK to wastewater plants in Ethiopia, from dengue
transmission modeling in India to influenza forecasting in
China, these studies reinforce the critical need for both robust
frontline data collection and sophisticated analytic capabilities.
Together, they reaffirm the critical importance of interdisciplinary
collaboration across epidemiology, data science, and technology. As
the COVID-19 pandemic has shown, a real-time, transparent, and
decentralized surveillance infrastructure is no longer aspirational
but a necessity. We encourage the global public health community
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to continue pushing the boundaries of innovation at this
intersection of technology, data science, and epidemiology,
ensuring that scientific insights translate into operational readiness.
We hope this Research Topic serves as both a reflection and an
inspiration to harmonize science, policy, and technology in the
service of global health security.

While ideals can inspire, only tangible frameworks and
This
distinction, between dreams and actionable solutions, lies at
the heart of this Research Topic. Without structures that hold
governments and institutions accountable, without interoperable

enforceable standards can drive meaningful change.

systems that support timely data sharing, and without enforceable
global agreements that transcend national interests, even the
most visionary declarations risk becoming symbolic rather than
substantive. We call on researchers, policymakers, and global
institutions to move from rhetoric to rigor, from ambition
to architecture.
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The COVID-19 pandemic has highlighted the need to upgrade systems for
infectious disease surveillance and forecasting and modeling of the spread of
infection, both of which inform evidence-based public health guidance and
policies. Here, we discuss requirements for an effective surveillance system
to support decision making during a pandemic, drawing on the lessons of
COVID-19 in the U.S., while looking to jurisdictions in the U.S. and beyond to
learn lessons about the value of specific data types. In this report, we define the
range of decisions for which surveillance data are required, the data elements
needed to inform these decisions and to calibrate inputs and outputs of
transmission-dynamic models, and the types of data needed to inform decisions
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by state, territorial, local, and tribal health authorities. We define actions needed
to ensure that such data will be available and consider the contribution of such
efforts to improving health equity.

KEYWORDS

pandemic, COVID-19, surveillance and forecast system, public health, infectious
diseases, mathematical model

Introduction and purpose

To monitor pandemic pathogens effectively, modern surveillance
systems should make use of the growing wealth of routine data from
the health sector and from a range of other sources with new
applications to disease surveillance such as mobility, internet searches,
and wastewater. Public health experts must integrate these data in new
ways that increase their value. We need purpose-built systems to
detect new and evolving threats and to provide information as quickly
as possible about those threats. What are the characteristics of the new
pathogens or new variants of existing pathogens? What is their
incidence and prevalence? What is the vulnerability of the population
to infection and disease? What is the impact of our efforts to respond
to these threats?

Systems to generate, integrate, and interpret these data should
be designed and built with the explicit purpose of providing timely
evidence to inform decisions about disease control and mitigation.
First, they will provide direct input into decision making. For example,
evidence of low vaccine effectiveness may prompt efforts to boost or
change formulations or doses. As another example, real-time lab order
data for diagnostic tests may prompt adjustments to resource
allocation. Second, these data will parameterize scenario and
forecasting models (1-3). For instance, estimates of per-case severity
of a new variant, incorporated into forecasts or other models of case
burden, may influence planning for hospital capacity and supply
stockpiling and distribution.

This document reflects the framing ideas and the discussions held
at a symposium organized by Harvard T.H. Chan School of Public
Health entitled “Quantitative Tools and Data Opportunities for
Pandemic Surveillance and Response,” held June 29-30, 2022,
involving a range of public health and public officials, surveillance
experts and other epidemiologists, and epidemic modelers. We first
aim to identify the most important decisions for disease control and
mitigation and the evidence that is needed to inform them. We then
describe a set of surveillance activities designed to provide timely,
reliable, and appropriately scaled data to inform these decisions. Our
focus in this report is limited to domestic detection, characterization,
and estimation of the burden of a pandemic pathogen in terms of
direct health effects. Although we note the importance of monitoring
economic, social, and indirect public health impacts of a disease
control measures, we do not offer a comprehensive treatment of this
element of pandemic monitoring and response activities. This paper
builds on earlier efforts (4) while incorporating both the new
possibilities that technology now provides, as well as the lessons of
COVID-19.

We differentiate between two related but distinct goals of
surveillance, as this document will focus on only one. The first goal is
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to provide early warning about a potential pandemic, and so this type
of surveillance includes global monitoring and rapid identification of
domestic introductions. The second goal is to provide support for
decision making during an ongoing pandemic, including tracking
incidence, prevalence, and the pathogen’s properties. While we will
briefly remark on the former-surveillance for early warning-we will
primarily focus on the latter-surveillance for decision making.

Detecting a jurisdiction’s first cases of
a new disease

The first set of decisions faced by a domestic public health
jurisdiction, following the appearance of a pandemic threat
somewhere else in the world, concerns the questions of whether, how,
and to what extent to scale up a response to reduce the risk of
importation or, if importation has happened, to control its spread
within the jurisdiction. Measures to reduce importation via restriction
or testing of inbound travelers may buy limited time to prepare (5, 6),
though such measures lose relevance once local transmission is
established (7).

To inform decisions about how to balance scarce public health
resources between preventing importation vs. controlling local spread,
itis critical to assess the risk that the infection has already arrived and
started spreading within the jurisdiction. Testing and sequencing of
specimens from international travelers at airports and analysis of
wastewater from international flights may provide evidence of
pathogen importation (8). Early evidence of local spread may come
from informal communications among health care providers,
reporting systems such as ProMED-mail (9), and “pre-health care”
data (e.g., absenteeism, internet search queries). Signals may arise
from monitoring of syndromes compatible with infections, or the
volume, distribution, and results from clinical laboratory tests.
Increasingly, wastewater monitoring can be the site of early detection
of new threats or variants (10) and from routine programs or
enhanced efforts at sequencing of clinical samples (11). They may also
come from anomalous findings in sentinel and research efforts [e.g.,
the Seattle Flu Study at the start of COVID-19 (12)].

With each type of monitoring, there is first the question of what
defines the signal we are looking for and then there is a tradeoft
between having a highly sensitive and timely system capable of
sounding an alarm early on one hand and producing too many false
alarms on the other. In most situations, a high positive predictive value
for such systems will be essential because the cost of responding to
frequent false alarms is high. Much more work is needed to assess how
to use and combine complementary monitoring signals to identify
points at which an alarm should be escalated into a response.

frontiersin.org


https://doi.org/10.3389/fpubh.2024.1408193
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Lipsitch et al.

Surveillance for decision making
during a pandemic

A comprehensive list of the decisions and guidance required in a
pandemic would fill a much longer document than this. Still, based on
the combined experience of the emergency response phase of
COVID-19 (2020-2023) and HINI influenza (2009-10) pandemics,
we propose a set of consistent themes that capture many of the major
types of decisions arising both in the early days of each pandemic
and throughout.

A brief, necessarily incomplete, list of such decisions follows,
adapted from the list in (4):

1 Public health goals of a response (elimination, control,
protection of high-risk groups, protection of health care
functioning, or a combination) and overall scale of response
needed to meet these goals.

2 Timing of scale-up and scale-down of response.

Choice of nonpharmaceutical countermeasures (individual-

targeted such as quarantine, isolation, and personal protection;

population-targeted such as closures). This includes decisions
about the timing, magnitude, and geographic range of

protective measures that may be socioeconomically costly. A

related set of decisions concerns how such measures should

be prioritized, i.e., who should receive protective equipment
when it is scarce, and how closures should be targeted to reduce
economic and social disruption.

Choice of medical countermeasures, including diagnostics,

therapeutics, and vaccines. This includes decisions about

development, stockpiling, procurement, expanding capacity

(e.g., building alternative care sites), and more. Here too,

questions of allocation and prioritization are central. This also

includes planning for potential surges.

Specific policies for each of the issues above in special

populations including vulnerable communities, and settings

such as health care, schools, congregate settings, transport, etc.

(See Centering Equity below)

Balance between community countermeasures to reduce severe

disease or reduce transmission (e.g., allocation of resources to

those at high risk of complications or high risk of transmission).

Design and implementation of staged alert systems to provide

real-time risk awareness and trigger policy changes (13, 14).

Imposition and removal of international travel screening

and restrictions.

Choice of public health communication strategies.

Each of these decisions requires specific data to decide how to
improve health equitably, effectively, and efficiently while minimizing
social and economic disruption. For example, decisions on testing,
isolation, and quarantine policies require evidence on the natural
history of infectiousness (or at least a proxy such as viral load), test
sensitivity at different levels of viral shedding, the relationship between
symptoms and infectiousness, and the potential economic and social
consequences for various communities of the policies under
consideration. In contrast, decisions about the timing of vaccine
boosters require evidence on the effectiveness of existing vaccines
against infection, transmission, and severe disease endpoints, stratified
by such factors as pathogen variant, time since vaccination, and age,
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as well as understanding of how vaccine protection is distributed
across demographic groups.

Decisions faced by state, territorial,
local, and tribal authorities

In the federal system in the United States, public health is
decentralized and typically not coordinated among states. State,
territorial, local, and tribal (STLT) governments are responsible for
nearly all binding policy decisions in public health, with governance
health structures varying by state (15). The purview of these bodies
includes (16) prescribing and enforcing isolation, quarantine, mask
mandates, and restrictions on businesses and gatherings; vaccine
prioritization and distribution; and (to a degree) diagnostic testing.
They also hold responsibility for closely related areas, such as public
education. STLT governments all have a desire for similar types of
data, but vary in how much they need, how quickly they need it, and
how they use it.

Many decisions involve procurement and distribution of
countermeasures. Because STLT authorities are making allocation
decisions within their jurisdictions (e.g., for counties, cities, hospitals,
schools), jurisdiction-wide measures of disease activity are rarely
sufficient; instead, more geographically granular numbers are required
(Table 1).

Data needs for decision support: the
COVID-19 experience

A range of data sources could and, during the COVID-19
pandemic, did provide evidence to support decisions by health
authorities. Following initial social media reports of clusters of
pneumonia, some of the earliest specific data to characterize the
COVID-19 threat came from traditional sources, such as from case
reports posted on Chinese public health department websites (17). A
key challenge was the repeated change in the syndromic case
definition in the early days (18). But other early data came from
unexpected sources, such as cruise ships (19), restaurants (20), and
fishing vessels (21), where conditions allowed inference of the path of
transmission and thereby provided evidence about the degree and
mechanisms of spread. Specifically, these provided some of the earliest
evidence of asymptomatic and aerosol spread, which, when properly
interpreted, aided in the design and prioritization of testing and other
control measures. As had been true in the 2009 influenza pandemic
(22, 23), sampling of travelers provided early estimates of the extent
of global spread, growth rates, and likely under-detection (24, 25).

As the pandemic spread, the strengths and limitations of each data
source became evident. Multiple data types were required to provide
even an incomplete picture of trends in incidence and prevalence and
behavior (26, 27). For example, case counts were used as an important
indicator of disease burden. However, the relationship between new
cases and true incidence varies as a function of numerous factors,
including test availability, test reporting requirements by jurisdiction
(which did not always include reports of negative tests), rates of testing
through clinical facilities (which declined with the growth of rapid
antigen testing), and incentives to get or avoid testing (Figure 1). Some
of these limitations can be mitigated by breaking out case counts by
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TABLE 1 summarizes key decisions and associated needs for jurisdiction-level data and analytics in COVID-19 cited by state and local leaders during

the symposium.

Decision Data/analytics need

Size of response needed

Rapid threat characterization

Choice of community countermeasures

County-level disease burden and transmission measures

How to ensure adequate supply of hospital beds, ventilators, personal protective

equipment

Forecasts of demand for these items

School and congregate setting policies (closure of schools, infection control measures

in jails, prisons, nursing homes, etc.)

Understanding of rates of transmission into, within, and from each of these settings
and impact of testing and infection control on these rates as well as population

specific health-risks

Countermeasure deployment within a jurisdiction

Age, racial, ethnic, and geographic patterns of transmission and disease burden.
Note: these are often crude proxies for social determinants of infection and outcome
risk, not adequate for scientific understanding of why particular groups are at risk,
but nonetheless potentially useful for focusing prevention and treatment efforts on

those with high vulnerability.

Efforts to distribute and promote vaccination

Variant prevalence, vaccine coverage, and vaccine effectiveness against dominant and

emerging variants

Determinants

Incidence, duration

Travel

Work/school screenings
Known exposure
Symptoms

FIGURE 1

calibration of transmission models.

Tested

Prevalent cases

Want a Test

Reported
(What we observe)

Testing patterns that vary in space and time as a result of individual incentives (left) and barriers (right) determine a changing relationship between
epidemiological quantities (top left) and reported case counts, making these counts an uncertain source of evidence for current case burden and for

Barriers

Fear of losing work (+/- sick leave)
Attitudes toward COVID-19

Test/reagent/swab shortages
Distance/cost/time loss for testing

Test sensitivity
Type of test (at home not reportable)
Reporting fail/delay

the reason why an individual was tested (symptoms, travel,
surveillance), but this was not consistently done in the US. As a result
of these limitations, hospitalizations and even deaths were increasingly
used as the more reliable indicators of case numbers, sacrificing some
timeliness for a more consistent relationship to the underlying
incidence of infection. Random sampling approaches (described
below) can overcome these limitations and provide more consistent
and reliable estimates of incidence and prevalence and how these
change over time. Only the United Kingdom and Luxembourg used
random sampling on a large scale, perhaps because of the cost and
logistical challenges. Notwithstanding their limitations, case counts
were the major early data source in the United States and provided
critical evidence especially when linked to demographic information.
Syndromic surveillance-done routinely as part of monitoring
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influenza trends-from emergency room visits and hospital admissions
were also valuable data sources, particularly when testing was limited.
However, interpretation of syndromic surveillance was complicated
by changes in healthcare seeking behavior and the increased use
of telemedicine.

Novel data streams provided confirmatory evidence as well as
early warnings of trends that might not be evident in case counts. For
example, wastewater surveillance for SARS-CoV-2 was adopted in
numerous jurisdictions from 2020 to 2022 and provided evidence on
local epidemic trends, although the precise relationship between
wastewater abundance and the number of infected persons depends
on the wastewater sampling scheme and on shedding patterns (among
other issues), and thus difficult to quantify (28). Moreover, by its
nature, wastewater cannot indicate who has been infected, thus
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leaving the demographic profile of infected persons uncertain. Finally,
wastewater surveillance as currently applied will miss infections in
areas with high reliance on septic systems, which serve roughly one
fifth of the households in the U.S. with heavy concentrations in certain
geographies, inducing inequities in whose infections are tracked by
this approach (29).

Another novel data stream is the use of population-wide
distributions of viral load measured from PCR testing, which, in the
aggregate, can provide information on the trajectory of the epidemic,
even from a single cross-sectional analysis (30). This approach has
reached proof of concept and has the advantage that it may be less
sensitive to trends in testing behaviors than measures of incidence
based on case counts, and unlike wastewater surveillance, it can
provide some information on the demography and precise location of
cases. However, further work is needed to see how a transition to
non-PCR testing for many new cases, the halting of pre-procedural
and asymptomatic testing, and the shifts in viral kinetics that come
with immunity (from vaccination and infection) affects the nature of
this signal (31-33). Moreover, the identifiability of time-since-
infection from viral load, which is needed for the approach to work,
depends on the asymmetry in viral load over time [fast rise, slower
decline (30)], which may or may not be a feature of future
infectious diseases.

Digital data can also be used for surveillance and to inform on
epidemic trajectory. ProMED-mail (9) and HealthMap (34) are
valuable for flagging and disseminating reporting and information on
events known or suspected to be infections and outbreaks. Data from
search engines, social media, and news reports data can also inform
epidemic dynamics and for forecasting (35-37).

Finally, testing for antibodies in sera collected either for the
purpose of serologic surveillance or in convenience samples (e.g.,
blood banks, discarded clinical samples) was used to characterize both
the landscape of population immunity (i.e., who was and wasn’t
vulnerable to reinfection) and to distinguish between those who had
acquired immunity via vaccination vs. infection (38). Secondary
analyses of COVID-19 vaccine studies identified complexities in
answering the latter question, finding that infection does not reliably
induce antibodies in vaccinated
individuals (39).

An important conclusion is that no one data source or surveillance

to non-vaccine antigens

tactic is sufficient. In a setting like the U.S., multiple surveillance
approaches are needed at scale. Beyond the obvious need to combine
data sources, several points stand out.

The first is the value of data completeness and of linking data types
to produce evidence that is greater than the sum of the parts. For
instance, while counts of cases and hospitalizations are valuable,
missing race/ethnicity, geographic, and other patient characteristics
have impeded efforts to improve services to groups that are
underserved or experience high disease burden and to improve equity
in health-related outcomes. Similarly, meticulously linking sequence
data from patient isolates with demographic and clinical predictors of
severe outcomes, including vaccination history, and clinical outcomes
can help to evaluate the threat posed by novel variants (40).
Unfortunately, despite prodigious amounts of SARS-CoV-2
sequencing in the U.S., this form of linkage has been relatively rare
to date.

Second is the value of clear and accessible data dashboards with
transparent data sources to make the state of the epidemic locally
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evident to the public. The same data should also be available to analysts
in public health departments, academia, and other sectors via
application programming interfaces (APIs) to facilitate rapid data
analysis. This can facilitate shared decision making and help to increase
public support for control measures. For example, the city of Austin,
Texas developed a COVID-19 staged alert system that guided local
policy between May 2020 and March 2022 (13, 14). The public-facing
dashboard featured a single graph that tracked COVID-19 hospital
admissions and clearly indicated thresholds between the red, orange,
yellow, green, and blue risk levels that were linked to specific actions.
The county judge, city mayor, and public health authority cited the
dashboard almost daily to communicate risks, explain changes in policy,
and cultivate adherence via news outlets and social media. This system
was only possible because local authorities required area hospitals to
report daily admissions beginning in April 2020, long before such data
were generally available.

Finally, discussion at the Symposium emphasized the value of
metrics that could be compared across jurisdictions. Decision-
makers expressed a desire for objective criteria by which their
performance can be judged. Comparisons across states, for example,
were hampered by differential testing rates that affected case counts
in ways not reflecting actual prevalence. A CDC-supported
academic effort called covidestim (41) used Bayesian evidence
synthesis to harmonize estimates of current and cumulative
infections across states and counties, providing an example of what
could be done by health authorities. However, this effort was also
hampered by unanticipated changes in reporting tempo, as well as
‘data dumps’ and data backfilling. Different definitions of
COVID-19 hospitalization across states and over time impeded
comparisons of outcomes that would have provided indications to
elected leaders of the quality of their responses and informed
improved responses.

Surveillance inputs to forecasts,
scenario projections, and analytic
models

As noted above, many aspects of pandemic decision-making can
directly incorporate evidence from surveillance, and will also
make use of

» Nowcasts: estimates of current burden of cases, hospitalizations,
deaths, and other quantities that account for delays in
reporting (42);

« Forecasts: relatively short-term projections using time-series and
other statistical modeling techniques, sometimes supplemented
with transmission-dynamic approaches to estimate future case,
morbidity, and mortality burden, typically on the scale of days to
weeks (1, 3);

o Scenario models: longer-term estimates of pandemic dynamics
using transmission-dynamic modeling approaches to anticipate
multiple possible futures under stated assumptions about
behavior, viral evolution, vaccine durability, etc., typically on the
scale of months to years (43);

o Results from analytic models: estimates about different
characteristics of the pathogen or a population of concern that
are specifically designed to inform a decision or guidance, such
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as school- or nursing-home-based testing policies (44), border
restrictions or contact tracing procedures (45), or quarantine
approaches (46).

These categories of decision-support tools require estimates of
input quantities that represent the assumptions of the models—for
example, in scenario models, estimates of per-case severity or vaccine
effectiveness. These estimates need to be timely, representative, and
specific to the pathogen or variants circulating or anticipated to
circulate (for example, due to importation). In addition, scenario and
forecast model output must be calibrated to existing measurements of
of
hospitalizations, deaths, and other relevant metrics, as well as against

disease burden: incidence infection, diagnosed cases,
cumulative measures such as seroprevalence. The categories of input
and output are somewhat fluid, as a model with sufficient data to
calibrate outputs may be able to estimate the values of some of the
quantities described here as inputs. In a fully Bayesian framework,
both external estimates (as priors) and calibration to output data may
contribute to posterior parameter estimates.

For forecasts, evaluation can be performed quickly due to the
short-term horizon of the predictions made, with results that can
provide feedback to modelers about places where models are
mis-specified. Evaluating scenario projections is more complicated, as
multiple sets of counterfactual projections are made under different
assumptions about how a pandemic situation will evolve over the
course of months or years (47). Most (or perhaps all) of the scenarios
will not be realized exactly as assumed, making evaluation
less straightforward.

Together the quality and timeliness of these input parameters
and output calibrations are important determinants of how useful
a model is for decision making. While there are techniques to
adjust for incomplete or lagged information, the absence of certain
ingredients—especially model output calibration targets such as
numbers of cases or hospitalizations—can critically compromise
the ability to generate models that reflect reality to the point of
hampering basic situational awareness. Data systems that support
modeling and in turn decision-making during pandemics should
be

prioritized accordingly.

considered vital national security capabilities and
A list of the key needs for model inputs is as follows, many of
which may change as a pathogen evolves (referred to below by

their letters):

Pathogen kinetics/epidemiological parameters (e.g., incubation

period, latent period, infectious period, infection fatality ratio).

Estimation of these inputs may itself require simple models,

particularly at the early stages of a pandemic [ref: Gostic paper].

Transmissibility and efficiency of various transmission

mechanisms

Risk factors for infection and severity

Individual and population immunity (including effects of

infection, vaccination, and waning)

Diagnostic test characteristics, including specificity and

sensitivity for active (acute) and past infection

f Vaccine effectiveness and waning of effectiveness, for infection,
severe disease, and mortality endpoints.

g Treatment effectiveness
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h Policies, uptake, and effectiveness of nonpharmaceutical
interventions

i Population mobility and interactions: contact networks and
patterns by setting

j Importation risk

k Other co-circulating pathogens of concern (e.g., if concurrent

with significant influenza transmission)

[a—

Capacity and utilization of healthcare resources (including
hospital beds, therapeutics, and vaccines)

Key additional data requirements for fitting models- as well as for
general situational awareness — include:

m Geographically and demographically stratified incidence,
duration and prevalence of infection, hospitalization, ICU
admission, death, and other relevant metrics associated with
the pathogen, ideally by variant.

n Strain-specific incidence.

Meeting these needs

This draft framework is a preliminary attempt to scope a system
that could meet the needs listed above for situational awareness,
decision support, and inputs and outputs for modeling and analytics
for a new variant or a new pandemic. Capacity to achieve these would
also be applicable to other pathogens, especially, but not only,
respiratory ones.

A. Estimating model inputs

System 1: high-frequency sampling for pathogen
kinetics and diagnostic sensitivity (quantities a,e)

Possible Mechanism: Surveillance would be established to obtain
repeated samples (for COVID-19, respiratory samples) from
individuals exposed to a pathogen of interest (now, SARS-CoV-2)
from the time of exposure through infection to the time of clearance.
High-frequency sampling will provide detailed profiles of pathogen
kinetics, which could be subgrouped by prior infection history,
vaccination status, pathogen variant, demographics, and other
predictors. Simultaneous use of nucleic acid amplification (NAAT),
culture, and antigen-based testing on these specimens would provide
detailed estimates of the sensitivity of each as a function of symptoms,
pathogen load, pathogen infectious capacity, variant, and time since
exposure/first-positive to inform choice of diagnostics and isolation/
test/quarantine policy.

Performers might be research/surveillance networks or STLT
health departments (recognizing that the health departments may
have limited bandwidth in the context of an outbreak). The ability to
scale up is critical. While pathogen kinetics are not likely to vary from
place to place, geographic diversity in sites capable of performing
these investigations will increase the timeliness of results in case one
region is hit much earlier than others.

Settings may include households, universities, day cares and
schools; intensely monitored cohorts such as sports leagues or health
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care workers, congregate settings such as homeless shelters,
correctional and detention facilities, or nursing homes.

Precedents: United Kingdom Household study (48) and
United States National Basketball Association studies (32, 49).

System 2: integrating routine sequencing with
detailed clinical data (quantities b,c,d,f,g,n)

Possible Mechanism: A payer-provider network with diverse
geographic and demographic representation (alternatively, a private
sector entity or consortium of public health departments and
laboratories capable of merging clinical data with sequence data)
would track individuals as a cohort (not necessarily defined by long-
term follow-up but perhaps with exposure or a positive test as an entry
criterion) with known vaccine and prior infection history through
diagnosis (outpatient or inpatient) and through the cascade of care to
estimate the probability and severity of infection as a function of this
history (vaccine effectiveness and infection-acquired immunity) and
variant. Sequencing of positive clinical specimens would enable the
variant-specific estimates. This system would provide a reliable
infrastructure for assessing severity, vaccine effectiveness, and
treatment effectiveness linked to infection and vaccination history for
each new variant/virus. It would be crucial to link electronic health
record (EHR) within the network to key external sources of data such
as immunization registries. Improving completeness of such registries
is also a high priority to improve the quality of these inferences.
Strategies for linking pathogen genome sequencing with EHRs will
depend on whether these data are from clinically validated systems
and, if not, will require consideration to ensure use for research and
not clinical purposes.

It would be valuable to explore to what extent such studies could
be done in networks such as PCORNet (50) or the Vaccine Safety
Datalink (51) that assemble EHRs from multiple health systems into
a common data model; questions include how rapidly this could
be done and whether sequence data could be linked to these records.

In addition to payer-providers, robust testing, reporting, and data
collection capabilities should be considered for congregate settings at
high-risk for transmission such as skilled nursing facilities,
correctional facilities, detention facilities, and homeless shelters that
can follow individuals from positive tests through outcomes.

Precedents: Cohort studies on variant-specific relative severity (52),
relative vaccine effectiveness (53) and absolute vaccine effectiveness (54)
have been performed during the COVID-19 pandemic. None of these
included genomic sequencing or serological profiling integrated with
clinical data collection, in part due to the issues of linking with EHRs as
mentioned above. Integration of sequencing in particular is essential for
the likely future scenario where one cannot rely on proxies for genetic
variant that have been exceptionally convenient in COVID-19, notably
the failure of the S-gene PCR target in certain polymerase chain
reaction-based diagnostic tests.

In the US, this work could build upon or integrate with existing
platforms such as VISION and Investigating Respiratory Viruses in
the Acutely Ill (IVY) (55). Key additions would be sequencing and
more comprehensive estimates of severity.

System 3: behavioral surveillance and other
routine data collection (quantities h,i,j,|)

Goals of behavioral surveillance are to provide real-time estimates
of mobility, work-from-home frequency, proportion of schools open
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or closed, use of other nonpharmaceutical interventions such as
masks, and vaccine behavior/hesitancy. Data useful during COVID-19
included vaccine coverage from HHS Protect (56)and Census Pulse
(57) and other surveys on vaccine intentions, mask use, work-from-
home, and school opening/closure. Private sector [e.g., mobility (58)]
and publicly available data [e.g. (59)], exist that measure many
quantities of interest. These include self-reported mask use,
absenteeism data from school and work, internet search queries, and
much more. Further work needs to be done in several areas to enhance
the value of these data streams:

« identify cost-effective sources of such data;

o quantify the degrees of representativeness in measurement from
these different data sources by such factors geography, race/
ethnicity, and social determinants of health;

« improve our mechanistic understanding of how these measures
of mobility relate to transmission behavior, which will likely
differ by social factors, pathogen transmission routes, and
epidemic stage, among other factors (27)

A particular example of one such data stream is air travel and
other travel data to estimate importation risk.

Precedent: Census Pulse and other surveys exist. Many local
jurisdictions have used mobility data from private providers, often via
academic intermediaries' to assess local trends. Vaccine coverage data
exist with some limitations. The Center for Disease Control and
Preventions (CDC) Division of Global Migration and Quarantine
maintains access to timely estimates of air travel volume.

B. Fitting model outputs

System 4: repeated testing for infection and
immunity in a random sample of the population
(m)

Mechanism: An academic, government (e.g., CDC or a coalition
of state health departments), or private sector entity would identify a
longitudinal sample and/or repeated cross-sections representative of
the U.S. population for monthly testing for infection and immunity as
evidence of prior infection. In the COVID-19 case, this would be PCR
testing of respiratory samples and antibody measurement in blood;
testing approaches might differ for future pathogens. Samples would
be obtained by home visit or mail/courier. Specimens testing positive
for one or more respiratory viruses would be sequenced. The initial
sample would be powered to detect US-level trends; scale-up in a
pandemic would enable regional/state-level and demographic-specific
(e.g., age, race, sex-specific) estimates of virus prevalence and
seroprevalence irrespective of symptoms and at the level of variant/
subtype/species/type (depending on the pathogen).

In pathogens with antibody-based immunity, blood samples
would be tested for multiple antibodies including vaccine and
nonvaccine antigens of the novel pathogen. These would provide a
population-based denominator for severity estimates, enable
calibration of scenario and forecast models, track trends in viral

1 e.g. https://www.covid19mobility.org/
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species/variants in an unbiased way, and estimate the magnitudes of
health inequities to better prioritize prevention measures (60).

Addition of serologic testing of a random, representative sample of
the population would supplement existing passive serosurveillance
approaches such as from blood donors (38), newborn heel sticks (61),
or discarded specimens (62, 63). Longitudinal sampling would enable
more precise estimates of rates of waning of antibody concentrations
(64, 65) and the consequences for estimation of cumulative incidence
using particular assays.

An alternative approach would be to use healthcare-based testing
of individuals requiring admission for conditions not directly related
to the pandemic, using weighting to standardize the population
seeking health care to the background population (66, 67), though the
quality of such data would need continuing validation.

Other alternatives would include the use of voluntary testing
results, such as those gathered by test-proctoring telehealth services,
retail pharmacies, or the like. CDC/FDA requirements to ask the
reason for a test would facilitate interpretation (symptomatic vs. travel
vs. exposure, for example).

Precedents: The main proposal could be roughly modeled on the
United Kingdom COVID-19 Infection Survey and REACT-1 studies.
One of the alternative approaches—universal testing of individuals
requiring admission for non-pandemic reasons-was used in New York
City early in the COVID-19 pandemic (68) and has been used in
Indiana with reported high value (66, 67) for both prevalence
and seroprevalence.

System 5: maintain hospitalization surveillance
data (I, m)

Hospitals have been required to report COVID-19 and influenza
hospitalizations to HHS, and these formed the backbone of multiple
forecasting and scenario modeling efforts in the US. It is critical to
maintain the generation, interpretation, timeliness, and accuracy of
these data to inform forecasts. In addition to the forecasting products,
these data underlie hospital capacity and burden situational awareness,
the ability to monitor outbreaks, and community burden indicators.

Precedents: Exists as of September 2023 but needs to
be maintained at a base level outside of emergencies and be able to
ramp up quickly at a time of new emergency (69).

C. Actions needed

Administrative and reporting preparedness

The response to COVID-19 required collaborations across
sectors—public, private, and academic-but these collaborations were
often forced to work through administrative frameworks that were not
designed with speed and flexibility in mind. In turn, such mis-specified
frameworks ultimately slowed or limited some critical public health
projects and prevented others from being undertaken entirely. To
address this class of problem, we propose six ideas below that would
update, recast, or create key frameworks that establish links across
sectors and that facilitate the urgent work of pandemics, while
maintaining safeguards and oversight.

1 Emergency data use agreements and formats. Data use

agreements (DUAs) are core elements to collaborative work
across institutions, but they pose two types of challenges. First,
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the process for negotiating an agreement acceptable to the
institutions providing and receiving the data is often slow. The
staff on each side tasked with reviewing and signing off on
these agreements may have many competing priorities or
be overwhelmed as an outbreak or pandemic may dramatically
increase the volume of DUAs. Work on a sensitive or high-
profile project, such as associated with an outbreak of infectious
disease or a pandemic, generates additional scrutiny and often
further lengthens the review process. Second, conflicting
limitations can stall progress or even undermine a project
before it starts. For example, in a partnership between
academics and government public health institutions, academic
institutions may deem the freedom to publish without
interference to be non-negotiable. Public health institutions,
however, may require veto power over what, if anything, is
published, due to the sensitivity of the institution’s data and
ownership thereof. To address these problems, one solution is
to establish Emergency Use Data Authorizations (EUDAs) for
public health data with a standing framework vetted and
updated regularly (e.g., annually), perhaps at the individual
state level. Such EUDAs would catalyze collaborations and
enable investigators at both institutions to shift the balance of
effort up front from administrative to research tasks. As these
are put in place, discussions about data formats can take place,
ideally also in advance, to ensure that when data are delivered
they are as ready-to-use as possible.

Surveillance versus research: updating the Common Rule.
Projects designated as human subjects research require
institutional review board (IRB) review, whereas those
designated as public health surveillance are deemed not to
be research, and thus do not require IRB review. This
surveillance-research dichotomy has substantial implications
for timeliness and speed of work, because writing, reviewing,
and adjudicating IRB reviews-while vitally important for
protecting the rights, welfare, and well-being of human
subjects—may take days to weeks. The boundaries between
surveillance and research are governed by the Common Rule,
which states that public health surveillance activities “include
those associated with providing timely situational awareness
and priority setting during the course of an event or crisis that
threatens public health (including natural or man-made
disasters)” [45 CFR 46.102(1)(2)] (70). Unfortunately, these
boundaries lacked clarity and standardization as questions
arose during the COVID-19 pandemic. For example, while
case monitoring is clearly surveillance and a routine public
health activity, one could make a strong argument that
“situational awareness and priority setting” includes assessing
vaccine effectiveness and disease severity for new variants.
However, analysis of variants requires pathogen genome
sequencing, which is viewed by some as constituting research,
as is evaluation of vaccine effectiveness, another critical public
health function which is not exclusively a research objective.
Modifying the text of the Common Rule to explicitly include
examples such as these or providing an interpretation of the
surveillance/situational awareness exemption that includes
these activities would considerably improve the ability for
public health agencies to maintain situational awareness and
set priorities, quite in line with the spirit of the exemption.
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3 Streamlined IRBs. Where projects fall under human subjects
research designation and require IRB review, generic,
pathogen-agnostic study protocols for specific populations
would accelerate research by decreasing the time to first data.
Preapproval of a range of well-defined studies targeted at
emergency response and using specific data sets would retain
critical protections for human subjects, while allowing high-
urgency protocols to be “on the shelf” and ready for fast rollout.
As an additional feature, such preapproved protocols would
also free up valuable researcher and IRB reviewer time, having
converted per-submission efforts during a pandemic into fixed-
cost efforts ahead of time. Moreover, designing consent
processes for normal “peacetime” studies to allow use of data
and specimens in public health emergencies could avoid some
of the delays experienced during COVID-19 with, for example,
use of the Seattle Flu Study’s specimens to understand early
transmission of the virus in the United States (12).

Case reporting standardization. Tracking and understanding
outbreaks, particularly at their beginnings, rely on case
reporting. Ideally, public health efforts would follow case
trends over time and across regions, compare and monitor
clinical features including disease progression, resolution, and
response to interventions, and track demographics of infected
individuals. But lack of standardization of case report protocols,
parallel or overlapping surveillance systems that result in
duplication (often with varyingly completed fields for the same
case), and inadequate systems for incorporating updates as
further information about a case accumulates after the initial
report, among other issues, result in case report data that
require much time and effort to sort through. Worse, these
issues may render some fraction of case reports unreliable.
Improving national surveillance systems to be more uniform,
timely, and flexible could serve both local and national
surveillance needs would help address these issues (60).
Dataset accessibility. In the absence of a United States national
healthcare system, research into the distribution and burden of
clinical conditions depends on academic or private data
streams, including surveys and surveillance systems
constructed to address specific questions, and databases of
insurance claims which represent utilization of the healthcare
system. Insurance claims datasets include those from (i)
employer-based insurance companies (e.g., MarketScan) (ii)
all-payer claims databases available in some states (which, since
a 2016 Supreme Court decision (71), are no longer necessarily
‘all payers’), (iii) Medicare for individuals over 65 years of age,
(iv) Medicaid, which provides coverage to over 18% of the
United States; and (v) data bases for other specific populations,
such as those of the Veterans Affairs Health System, the Indian
Health Service, and the Department of Defense. While these
datasets can provide an important window into healthcare use
across demographics and geography, access to these datasets
can be expensive and time and labor intensive. Gaining access
to Medicaid data, for example, presents a substantial burden,
since this has to be acquired on a state-by-state basis.
Establishing standing flexible DUASs for these datasets, with a
single agreement across states for Medicaid and other state-
controlled data, could enable both routine surveillance-type
analysis to identify trends (such as disease outbreaks or
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patterns of disease spread) and to evaluate the impact of clinical
and public health interventions.

Public health-health care partnerships: While the United States
does not have a national health system for all, it has a wealth of
data in the health care sector that can inform public health
decision making. Multiple studies at the Centers for Disease
Control and Prevention (CDC) and other institutions
harnessed such data to provide estimates of key quantities such
as vaccine effectiveness (72, 73), variant severity (74), and
antiviral effectiveness (75), as well as for surveillance of disease
burden and its correlates (76). Building public health
partnerships with the health care sector in advance to set in
place the administrative, information technology, and financial
arrangements to make possible high-quality analyses of this
sort rapidly (and automated where possible) would greatly
increase the timeliness and value of such efforts (77).

Strengthening personnel and research
ties, including globally

In response to the COVID-19 emergency and the need for
expertise to gather, analyze, and interpret evidence around the
pandemic and the clinical and public health responses, many
academics put aside their usual research programs to engage directly
in public health activities and research. The close interactions between
academics and local, state, and national public health officials were
often productive and important for guiding the pandemic response
but raised issues that should be addressed before the next pandemic.
These include the ad hoc way in which these academic-public health
collaborations came into being, the lack of uniformity of access to
academics with appropriate expertise across states, and the
misalignment of incentives between public health and academic work.

Ideally, academia-public health collaborations can be rapidly
scaled up in times of need through established pathways. One idea is
to create a “rotator” program, in which academics (and potentially
those in training, including doctoral students and postdoctoral
fellows) are embedded within public health agencies—and similarly
public health officials are embedded within academic groups—for
intervals (such as 3 or 6 months) that build familiarity, collegiality, and
accessibility. The LEAP fellowship through the Infectious Disease
Society of America (78) and the joint Infectious Diseases/EIS
fellowship (79) programs are efforts in this direction. Another
approach is to establish an academic career path in which some
fraction of time and effort are based in public health activities,
analogous to academic medicine paths in which researchers spend
some fraction of their time doing clinical work. Cooperative
agreements established in 2023 between the CDC’s Center for
Forecasting and Outbreak Analytics (CFA) and academic and other
groups include a surge provision whereby the performers on these
agreements would provide scientific assistance in times of crisis.
Relatedly, an official “public health reserve corps” of analysts and
modelers could provide a workforce available to be called up to
prepare for and respond to emergencies. Formal recognition of these
paths as prestigious and vital, and placing value on these activities
within the academic systems of rewards and incentives, will be key to
success (Box 1).
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Often tools developed for one public health jurisdiction solve
common problems and could be readily implemented in other
jurisdictions, underscoring the importance of making code open access
and ideally making tools generalizable. This would have the benefits of
“not reinventing the wheel” and allowing those jurisdictions lacking
local expertise access to useful tools. A curated clearinghouse of such
tools, organized by research problem and perhaps hosted by CFA offers
one strategy for providing access. Broad efforts to create and maintain
state-of-the-art tools for epidemiologic modeling, such as Epiverse (82)
and Recon are encouraging developments in this space (83).

We have focused on domestic systems in the United States, but
that international cooperation is essential for multiple reasons.
Maintaining systems to de new pathogens at multiple locations in a
globalized world will speed detection, facilitating timely responses
including development of countermeasures (25) and providing early
warning to other jurisdictions (84). For pathogen characterization, as
we note in Box 2, each jurisdiction can benefit from findings in other
jurisdictions on quantities that are relatively similar across
populations, including for example the effectiveness of vaccines and
treatments, as well as certain features of infection natural history (e.g.,
viral load kinetics). Strengthening these capacities globally means that
locations that have exceptional data and study infrastructure and/or
early experience with a pathogen or variant, can contribute to the
global store of knowledge of pathogen characteristics (49, 54, 85-87).

Educating the consumers

Tools are best deployed by those who understand how they work,
how they are limited, and how they can be modified to improve their
applicability to specific situations. Workforce development mandates
to build subject matter expertise within public health departments,
such as through CDC efforts via the Office of Science and the Office
of Advanced Molecular Detection and through fellowships such as the
CDC/Association of Public Health Laboratories (APHL) program, are
critical efforts. While waiting for these workforce programs to get up
and running, and since public health officials may not stay current
with the frontiers of analytical and modeling methods, opportunities
for regular formal trainings should be developed. For example,
meetings such as the Council of State and Territorial Epidemiologists
Annual Conference could provide a forum for workshops on advances
in modeling, genomic epidemiology, and other fields. Relatedly,
encouraging public health officials to attend field-specific meetings
(e.g., Epidemics, Applied Bioinformatics in Public Health
Microbiology) could provide opportunities for knowledge sharing,
relationship building, and networking across sectors and disciplines.

Improving knowledge flow

Successful communication of a health agency’s current
understanding of a pandemic and outlook for its future requires a
combination of approaches to communicate different kinds of data
and outlooks, for different audiences. It has been suggested that
principles for such communications include: thematic structure
related to informing key decisions, synthesis of evidence from multiple
sources, quantification of uncertainty, inclusion of visualizations as
well as text and tables, and inclusion of forward-looking material
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(outlooks for the future) (91); another important principle is open
access to the data underlying figures in these reports. CDC’s Technical
Reports on the Mpox epidemic in 2022 (92) sought to put these
principles into practice, explicitly emulating aspects of the
United Kingdom Health Security Agency (UKHSA) Technical
Briefings from COVID-19 (93). Creating a regular cadence for such
reports during an emergency, as was the case in the United Kingdom
during the height of the COVID-19 pandemic, may help develop an
audience and facilitate knowledge flow.

Centering equity

The World Health Organization has stated that “Countries have
an obligation to develop appropriate, feasible, sustainable public
health surveillance systems” to ensure that the health needs of
populations are quantified so that they can be addressed. While there
has been a disproportionate impact of COVID-19 on racial and ethnic
minorities and on socioeconomically disadvantaged populations in
the United States (94) and elsewhere (95, 96), a persistent problem is
that race/ethnicity data are too often missing from surveillance data.
Under the plausible hypothesis that those with missing data on race/
ethnicity are among the most disadvantaged, these missing data could
lead to attenuated estimates of the degree of inequities; whether or not
this is the case, it reduces the quality of the estimates by adding
uncertainty. Improving the completeness of race-ethnicity reporting
is an urgent priority to maximize the value of surveillance data to
enhance health equity. Some symposium participants, while agreeing
with the need for better reporting of such data, argued that in the
presence of ongoing racial segregation, ZIP code or other geographic
tags can be a useful proxy when such data are unavailable. Early maps
of COVID-19 in New York City showed a higher prevalence of
COVID-19 diagnoses in areas that were home to largely Black and
Hispanic populations, as well as some areas where most residents were
White and many believed to be first-responders (68). This was
reflected in elevated COVID-19 mortality rates among Black,
Hispanic, and Native American populations compared to White
populations throughout the United States, particularly in the early
waves of the pandemic (97).

The Presidential COVID-19 Health Equity Task Force final report
from 2021 (98) recommends strategies for enhancing equity in data,
analytics, and research. These recommendations include standardizing
demographic and socioeconomic categories, supporting equity-
centered data collection, tracking and reporting on health outcomes
for people in congregate and high-risk settings, and research and
analysis on behavioral health. In a similar spirit, for any clinical or
public health intervention, one should ask in what ways the
intervention exacerbates or alleviates inequities. To put this into
practice, one goal is the development of real-time metrics that inform
municipalities and states on the equity of interventions and health
outcomes, enabling adjustments and responses to keep equity at the
forefront of intervention decisions.

Other important examples of the links between surveillance and
health equity were discussed during the symposium. While documenting
disparate impacts is a necessary starting point, identifying appropriate
measures to rectify these inequities will often require understanding
where, why, when, and how they arise (99). An early example in the
U.S. was a documentation that higher SARS-CoV-2 prevalence among
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BOX 1 Modeling and analytic support for STLT jurisdictions: the role of academic groups.

COVID-19 stimulated numerous collaborations between STLT health authorities and university and other research institutions to support decision making with modeling,
analytics, and forecasts. These took multiple forms, ranging from the establishment of advisory councils to mayors and governors, to bilateral collaborations (80, 81) and formal
consortia (https://modelingconsortium.ucsf.edu/). However, there are stark differences among jurisdictions in the number of such academic groups within the jurisdiction
and/or with existing or prior links with the jurisdiction’s health department, creating inequities in access to this kind of advice. The benefits of working with academic partners
can include local knowledge and the capacity to surge efforts in an emergency. Potential barriers to such collaborations that should be addressed up front where possible include
academics’ need and incentives to publish, which may compete for time with their role in decision support, as well as the demands of academic schedules, whereby, for example,
a key analyst on a project may have to devote effort to exams at times when they are needed for decision support. Administrative preparedness in the form of preexisting data
use agreements can vastly accelerate these efforts.

Establishment of trust is essential to the success of academic — STLT collaborations. Elected and health officials at the symposium noted the repeated challenges of figuring
out which models and modelers to trust, both locally and nationally. Participants observed that academic collaborations were most effective when there was a pre-existing
relationship between the groups and the jurisdictions, and noted the benefits to both parties of cultivating these relationships in “peacetime” through collaboration on
non-pandemic activities. Academic groups’ ability to speak freely can lend credibility and objectivity to their analyses; however, trust can be undermined if academic groups
with access to limited, publicly available data release analyses in publications or preprints that may be inconsistent with more complete data that are available to health
departments but not publicly available. Frequent contact to share tentative conclusions and compare them against the evolving understanding of health officials can enhance
the quality of analyses by incorporating more complete data, if these can be shared, and can enhance the trust between the parties, improving future interactions. When such
interactions work well, they do not stifle the conclusions of academic groups but rather ensure that these conclusions are based on the best current understanding and to ensure
that health officials are aware of what is being published about data from their jurisdictions. Academic incentives and structures are particularly not suited for routinely repeated
analyses, such as reproductive number estimation, nowcasting, and forecasting, although academic centers have played key roles in these areas for over 2 years during COVID-
19. Automation, as in the California consortium’s dashboard, is one solution. CDC’s Center for Forecasting and Outbreak Analytics is beginning to take on some of these tasks

and will increasingly serve as a focal point for such repeated, real-time analyses.

BOX 2 National insight from local evidence.

Implementation of public health policies is a state/territorial/tribal and local responsibility in the U.S., as we noted above. Infectious disease surveillance is also decentralized,
often with two levels of reporting (local/county and state/territorial) below the national level. From the perspective of national decision makers seeking a clear picture of an
unfolding pandemic, decentralized surveillance has obvious limitations, particularly in a setting where data systems and data use agreements vary across jurisdictions. Efforts
are underway, and should be expanded, to improve the speed, completeness, and accuracy of data flowing from states, localities, and health care systems to the CDC and other
federal actors. Such efforts are essential for timely situational awareness and for calibrating the outputs of scenarios and forecasts to granular (state or county-level) data to form
a national picture.

While incidence, prevalence, and health care burden are intrinsically local quantities that need to be estimated everywhere and over time, many aspects of surveillance and
associated epidemiology are generalizable, such that findings in one local jurisdiction can inform control measures everywhere. These include characteristics of the pathogen,
such as severity and natural history; and characteristics of countermeasures, such as test sensitivity and the effectiveness of drugs and vaccines. For these purposes, local
conditions can facilitate detailed characterization that may not be possible, but also may not be necessary, on a larger geographic scale.

Some of the earliest evidence of low severity for the 2009 HIN1 influenza pandemic came from a study at the University of Delaware, where a comparatively self-contained
population could be studied in detail (88). We noted in a postmortem of that pandemic that the findings from that study were not widely known until months later because of
limited dissemination (4), arguably prolonging the state of alarm unnecessarily during that pandemic. In COVID-19, early findings of asymptomatic/presymptomatic infection
and likely transmission from studies in a nursing home and a cruise ship, respectively (19, 89), were documented very early and widely disseminated, but still did not fully
inform control measures.

In many other cases, detailed surveillance and epidemiology in local jurisdictions or health systems provided evidence of national and international importance. A few

examples included:

« Evidence from the Yukon-Kuskokwim (Alaska) Health Corporation about the persistence of antigen test positivity 5 or more days after initial positive test or symptom
onset during the early Omicron era (90)

« Evidence from the Kaiser Permanente Southern California health system about the relative clinical severity of Omicron BA.1 variant compared to Delta before it and
BA.2 after (74)

« others

Each of these provided evidence that could be generalized beyond the location where it was generated, because it concerned generalizable features of the infection or
countermeasures based on its biology. The degree to which these investigations informed policy and guidelines varied, indicating a need for a systematic approach to

disseminating findings of wide importance and updating guidance in a way that reflects the totality of data.

mothers admitted for labor and delivery in New York City was associated ~ modeling work explained racial disparities in infection rates in U.S. cities
with residence in boroughs with smaller reductions in mobility, suggesting  as a consequence of higher exposure by minority groups not only to
inability to work from home as a potential driver of risk (68). Subsequent  infection generally, but particularly to more crowded venues with higher
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infection risk (58). The age distribution of mortality by race/ethnicity
(100), with its skew to younger ages among Black, Hispanic, and
Indigenous individuals, also pointed to an increased exposure risk. The
United Kingdom Government’s Race Disparity Unit published a series of
reports through the first 2 years of the pandemic enumerating hypotheses
for mechanisms to explain disparate impacts, stating the current evidence
related to these hypotheses, and recommending actions to address these
drivers of higher incidence and severity in racial and ethnic minorities
(60). In the United States, such studies may require linkage of disparate
data bases to identify where disparities arise during the cascade of care
(101), a strategy that has long been useful in HIV/AIDS surveillance to
understand loss points in the continuum of care (102, 103). For COVID,
a full cascade would require an estimate of the actual number of infected
individuals, the number of people who have been identified by testing
(reflecting under-diagnosis), the number treated when treatment became
available (reflecting under-treatment), the number hospitalized (reflecting
access to care and disease severity), and the number of fatalities, jointly
stratified by race and ethnicity, age group and sex. Ascertaining these
would require both modeling-based estimates and data from multiple
sources (e.g., clinical laboratories and vital registries). For example, an
analysis from a New York City hospital suggested no racial difference in
case fatality among hospitalized patients, supporting the idea that racial
differences in exposure (more infections) rather than racial differences in
outcome contributed to racial differences in overall mortality (104).

Other sources of inequity can affect case ascertainment and thus
identification of opportunities for intervention. Geographic and temporal
variation in testing effort in the U.S. was very large, resulting in difficulties
in comparing incidence across jurisdictions. Rural areas were often the
least able to access testing, though there were important exceptions (90).
Notably, the use of random sampling stratified by geography mitigated
this problem significantly in the United Kingdom (85), though it did not
solve it entirely because participation was of necessity voluntary. Equity
considerations may change as public health authorities rely on new data
sources; for example, mobility estimates may depend on smartphone
ownership, while wastewater surveillance for pathogen abundance will
be unavailable in areas using septic systems (29, 105).

Expanding the range of data types

As described above, any health system, but particularly one as
decentralized as that of the U.S., benefits from the ability to ingest
and synthesize multiple types of data. Increased use of wastewater
data (106, 107) has contributed to early warning of rising infection
incidence and to surveillance for new variants. Further work to
standardize collection and better define the quantitative
relationships between true infection incidence and total and
variant-specific concentrations of viral genomes in wastewater is
needed to improve the value of such data, as well as a clear
mapping of where it will not be informative, such as areas using
septic systems. Likewise, mobility data from various sources (58)
can be useful in informing strategies for disease monitoring and
surveillance, modeling disease spread, and guiding interventions.
Immune measures from serology provide a window onto past
infection and a lens onto the landscape of risk (108). Here, further
work is needed to ensure data standardization and accuracy as
well as routine and frequent updating to capture important
temporal variations. Such new forms of data may also raise
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privacy considerations that have not entirely been solved
(109, 110).

Crowdsourced and survey data (111, 112) can provide important
insights into behaviors that affect the interpretations of other data; for
example, the increasing prevalence of self-testing using antigen tests
for COVID-19 reduces the utility of PCR-positive case counts.

A key to making use of this expanded range of data types is solving
the problem of how to synthesize multiple data types into a single estimate
of a quantity of interest, accounting for the different properties of each
data type (76), including understanding the different biases that will affect
each data stream. Significant further work is needed to advance the ability
to do this in real time. A related but distinct problem is how to link data
across data systems to understand the continuum of care and otherwise
improve inference about the course of individual cases.

Expanding the range of data sources

The use of claims data from health care payers (insurers) and
electronic medical records from providers has exploded in many areas
of health services research. There have been some notable examples of
such data for surveillance to address the questions described in this
report (53, 72-74), but in the United States there remains untapped
potential to expand such efforts and improve their timeliness. This will
require building relationships between public health entities and
health care systems in their jurisdictions, including relationships
between scientific investigators in each sector with regular discussions
for bidirectional learning. In the spirit of administrative preparedness
above, this will require up-front planning of master agreements to
move resources in a timely fashion to address pressing questions.
Health providers and public health have suffered from a “two cultures”
challenge that results in the need to expand public health training of
investigators and other personnel in health systems, acknowledge the
contributions of health systems to community benefits, and find ways
to produce incentives so that contributing to public health surveillance
aligns with the business interests of health systems. Medical examiners
and coroners are another group that has been disconnected from
public health but with whom cooperation can enhance and help to
calibrate surveillance for pathogen-specific deaths, as illustrated by
some examples both domestically (113) and abroad (114).

As we described above, new data sources become useful in
proportion to our understanding of their “normal” behavior. As
we expand the range of data types, it will be essential to monitor new
data streams and continue to monitor old ones outside of epidemic
periods to establish a baseline that can be used to calibrate signals of
new outbreaks and estimate the exceedance caused by the ongoing
transmission of novel pathogens (115).

Conclusion

Data and modeling needs change over the course of a
pandemic and vary by the jurisdictional dimensions, requiring
anticipatory, rapid, dynamic, and locally adapted and scaled
activities to optimize pandemic management and population
health. Here, we have sought to describe concepts, tools, and
strategies to address those needs, building on those enacted
during the COVID-19 pandemic and those that could have
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facilitated this work. While not a comprehensive list, we hope that
the ideas we propose and envision serve as a useful resource and
guide in efforts to manage ongoing infectious diseases challenges
and preparedness for the inevitable next pandemic.
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Use of wastewater from
passenger ships to assess the
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maritime international boundaries
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Objective: The worldwide spread of SARS-CoV-2 and the resulting COVID-19
pandemic has been driven by international travel. This has led to the desire
to develop surveillance approaches which can estimate the rate of import of
pathogenic organisms across international borders. The aim of this study was
to investigate the use of wastewater-based approaches for the surveillance of
viral pathogens on commercial short-haul (3.5h transit time) roll-on/roll-off
passenger/freight ferries operating between the UK and the Republic of Ireland.

Methods: Samples of toilet-derived wastewater (blackwater) were collected
from two commercial ships over a 4-week period and analysed for SARS-
CoV-2, influenza, enterovirus, norovirus, the faecal-marker virus crAssphage
and a range of physical and chemical indicators of wastewater quality.

Results: A small proportion of the wastewater samples were positive for SARS-
CoV-2 (8% of the total), consistent with theoretical predictions of detection
frequency (4%—15% of the total) based on the national COVID-19 Infection Survey
and defecation behaviour. In addition, norovirus was detected in wastewater at
low frequency. No influenza A/B viruses, enterovirus or enterovirus D68 were
detected throughout the study period.

Conclusion: We conclude that testing of wastewater from ships that cross
international maritime boundaries may provide a cost-effective and relatively
unbiased method to estimate the flow of infected individuals between countries.
The approach is also readily applicable for the surveillance of other disease-causing
agents.

KEYWORDS

wastewater-based epidemiology, international sea travel, border crossing, passenger
ferry, AMR, SARS-CoV-2 infection, import rate, public health surveillance

1 Introduction

It is well established that effective surveillance and a timely response are essential to limit
the social, health and economic impacts of rapidly spreading diseases, such as COVID-19 (1,
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2). Wastewater-based epidemiology (WBE), which measures viral
markers shed by infected individuals in faeces and urine, has been
successfully used for surveillance of infectious diseases at a population
level, including the multi-national surveillance of SARS-CoV-2 and
poliovirus (3-6). Monitoring levels of SARS-CoV-2 in wastewater has,
thus, provided an effective tool and early warning system to aid in
public health decision-making and tracking the success of policy
interventions (7-9).

Air and maritime travel represent key factors which have
facilitated the global spread of SARS-CoV-2 and other viral diseases
(10-12). International shipping is of particular interest due to the large
volume of potentially infected passengers which may enter the country
from overseas (>20 million year™ in the UK) (13). The dense
aggregation of people within port and dockyard areas may also
facilitate infection between individuals (14, 15). Further, industrial
ships and changes of crew and movement of goods in areas with
multiple working personnel has the potential to cause outbreak on
ships and within ports (16-20). These transmission events then have
the potential to spread through the local community and to additional
international ports. In a long-distance shipping context, an outbreak
of SARS-CoV-2 poses serious risks to crew as they may lack the
medical infrastructure or are unprepared to capably deal with issues
should they arise (18, 21, 22). This also represents an issue for tourism-
based cruise ships where viral (e.g., norovirus) outbreaks have
regularly led to the quarantining of vessels (23, 24). A recent modelling
study has also confirmed that international seaports are likely to
represent a significant risk to the spread of SARS-CoV-2 (14).

Even though considerable concerns have been raised about
COVID-19 transfer associated with long-haul shipping and cruise ships
(7, 14), limited surveillance has been undertaken on short-haul, mass-
transport passenger and freight ships. These short-haul international
routes, however, may pose a greater risk for pathogen entry in comparison
to longer-haul routes due to (i) the greater number of passengers involved,
(ii) a lack of point-of departure/entry testing procedures, (iii) no on-board
testing, (iv) less rigorous ship sanitation/cleaning, (v) the presence of
pre-symptomatic passengers who travel not knowing they carry the virus,
and (vi) the inability of conventional testing to capture infections (e.g.,
lateral flow devices) in comparison to cruise ships which rely more on
PCR-based testing. Whilst wastewater testing has been deployed at
international airports to evaluate the frequency of entry of infected
individuals (25-27), this approach has yet to be critically tested on ships
or at international ferry ports. The success of the approach, however, relies
on a range of factors including the toilet behaviour of individuals,
particularly on short-haul crossings, access to wastewater on the vessels
and the subsequent capacity to quantify and sequence viral RNA/DNA in
the samples.

Depending on the age and nature of the ship, on-board sanitation
systems can vary significantly between vessels (28). In some situations,
the black- and grey-water streams are kept separate, which is ideal for
WBE, whilst in others they are mixed, leading to dilution of the viral
signal. In other cases, sewage is collected on the boat and then
delivered to a port reception facility for subsequent treatment (29).
Access to sewage collection tanks may also be problematic on some
vessels whilst addition of different sanitation agents (e.g., disinfectants)
may cause issues in viral recovery. Conversely, the presence of
low-water use vacuum toilets can be expected to result in more
concentrated sewage in comparison to on-shore municipal sewage
which may aid viral detection (30).
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Due to the current paucity of information, the aim of this pilot
study was to critically evaluate whether wastewater-based surveillance
on short-haul international passenger/freight ships is viable for
monitoring the frequency of entry of SARS-CoV-2, alongside other
pathogens (e.g., norovirus, influenza-A and B, enterovirus). The study
focused on the main UK to Republic of Ireland passenger route,
monitoring wastewater on two of the main commercial vessels over a
one-month period. The work focused on the practicality, economic
viability and usefulness of the approach within the framework of a
potential national border surveillance programme for pathogens of
public health concern.

2 Materials and methods
2.1 Sampling locations

The project was based on the maritime route between the
Holyhead Ferry Terminal located in Gwynedd, Wales,
United Kingdom (53°18'58.47”N, 04°37"24.47"W) and Dublin Port
located in Dublin, Ireland (53°20°57.13”N, 06°11°50.70"W). The route
represents the main maritime freight and passenger link between the
UK and Ireland with an estimated 1.9 million passengers per year and
ca. 450,360 cargo truck transfers (31). The route is ca. 80 km from
port-to-port and takes ca. 3h 15min per crossing and is serviced by
several commercial companies (Supplementary Figure S1). This study
focused on two superferries, namely the Stena Estrid and the Stena
(Stena AB, Gothenburg,
Supplementary Figure S2).

The Stena Estrid was built in 2019 by AVIC Weihai, Shandong
Province, China and is classified as an ‘E-Flexer’ passenger roll-on/

Adventurer Sweden;

roll-off cargo (Ro-Pax) ferry. It has a capacity of 1,000 passengers,
120 cars and 210 freight vehicles. The Stena Adventurer was built in
2003 by Hyundai Heavy Industries, South Korea and is also a Ro-Pax
ferry with a capacity of 1,500 passengers and 500 cars and
freight vehicles.

The ships possess different wastewater management systems and
thus the sampling strategy varied slightly between ships. The Stena
Estrid wastewater system is separated into 2 initial chambers: (i)
blackwater (raw sewage from toilets), (ii) greywater (water from
sinks, showers, and kitchen appliances). These are then combined in
a mixing chamber and then transferred to a screening tank to
remove large non-biodegradable solids. Once mixing had occurred,
wastewater is transferred to an Evac Membrane Bioreactor treatment
module (Evac Oy, Espoo, Finland). Post aerobic treatment, clean
water is then discharged at sea whilst the solid waste becomes a dry
powder that is offloaded at shore for disposal. Samples were initially
planned to be taken from blackwater chamber, however, due to
access/system constraints, samples had to be taken from the
tank, but
(Supplementary Figure S3). The Adventurer has an older wastewater

screening prior to any treatment occurring
system containing of 3 chambers involving maceration (soaking),
chopping and mixing. After being mixed, the wastewater is moved
to a similar treatment plant to the Stena Estrid where it is aerobically
treated and filtered in a containment tank where it is stored until it
reaches port and then taken to a wastewater treatment plant.
Samples on the Adventurer were taken prior to the anaerobic

treatment stage.
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2.2 Sample collection

Wastewater sampling was undertaken on Sunday, Tuesday, and
Thursday on each ship from the 27th January 2022 to the 23rd
February 2022. On each day, 4 independent samples were taken
representing the 4 single leg journeys between Holyhead and Dublin
each day (Supplementary Table SI). The samples (500mL) were
collected by the engineering crew, placed within polycarbonate bottles
and refrigerated at 4°C on the ship prior to collection from the port
each day. Samples were collected directly from Holyhead port and
then transported to the laboratory (40km distance) in a refrigerated
box where the samples were then stored at 4°C and analysed within
24h of collection. Basic training was provided to the ship’s staff for
sample collection.

2.3 Viral concentration, nucleic acid
extraction, and quantification

Viral recovery and purification were undertaken according to the
polyethylene glycol (PEG)-salt precipitation of Farkas et al. (32) and
Kevill et al. (33). This method was chosen as it is used in the Welsh
Government national wastewater COVID-19 surveillance programme.
Briefly, 200mL of each wastewater sample was placed in a sterile
polypropylene centrifuge bottle and centrifuged (10,000g, 10 min,
4°C) to remove suspended solids. 150 mL of the clarified supernatant
was then transferred to a sterile polypropylene centrifuge bottle, the
pH adjusted to 7.0-7.5 and 50 mL of a PEG-8000-NaCl solution added
to reach a final PEG-8000 concentration of 10% and NaCl content of
2%. An aliquot of dsRNA Pseudomonas phage Phi6 was then added to
the sample as an extraction control and the samples incubated at 4°C
overnight. Post-incubation, the samples were centrifuged (10,000g,
30min, 4°C). The supernatant was then discarded and the pellet
resuspended in 850 pL of Nuclisens lysis buffer (BioMerieux, France).
The viral RNA and DNA from the resuspended pellet was then
extracted using a KingFisher 96 Flex automated purification system
(Thermo Scientific, Waltham, United States) using NucliSens
extraction reagents (BioMérieux, France) as described elsewhere (33).
The final volume of the RNA/DNA eluent was 100 pL.

One-step RT-qPCR for the SARS-CoV-2N1 gene region and Phi6
targets was performed using an TagMan™ Fast Virus 1-Step Master
Mix (Applied Biosystems Inc., United States), on a Quant Studio Flex
6 (Applied Biosystems Inc., United States) using previously published
primers and probes (34, 35) (Supplementary Table 52). The mastermix
contained 10 pmol of the forward, 20 pmol of the reverse primers and
5pmol probe, 16 nmol MgSO,, 1 g bovine serum albumin (BSA),
molecular grade water and 4 pL sample/standard/control in 20 pL
reaction mix. RT-qPCR settings were: Hold step 50°C 30min for
reverse transcription, 95°C 20s for reverse transcriptase inactivation,
followed by 45 amplification cycles of 95°C 13's, 60°C 45s.

Multiplex RT-qPCR assays were used for the detection of influenza
A/B viruses (flu A and flu B) and for Enteroviruses (EV), enterovirus
D68 (EV-D68) and norovirus GII (NoVGII) using previously
published primers and probes (36-38) (Supplementary Table S2). The
same reaction conditions as for SARS-CoV-2 quantification were used
except that the mixture contained no added MgSO,.

For crAssphage an established assay using the QuantiFast gPCR
mix was used (33) with 2 pL sample added to 20 pL reaction mix.
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All samples were run in duplicate, against a dilution series (1-10°
copies pl™" per reaction) of in house developed ssRNA standards for
SARS-CoV-2 and phi6 (33), commercial ssRNA standards for flu A/B
and EV-D68 (Twist Bioscience, United States) or plasmid DNA for
NoVGII and crAssphage (39, 40). PCR no template controls
(molecular-grade water) determined the absence of contamination
during the PCR set-up.

2.4 SARS-CoV-2 sequencing

Selected RNA extracts were further purified with Mag-Bind®
TotalPure NGS beads (Omega Bio-Tek) to remove potential inhibitors
prior to reverse transcription into cDNA with LunaScript® RT SuperMix
(NEB) prior to SARS-CoV-2 amplification and sample indexing using
EasySeq™ SARS-CoV-2 kit (Nimagen). The protocol used has been
customised previously for use with wastewater (41). Amplified products
were quantified and quality controlled using Agilent TapeStation.
Libraries were sequenced on an Illumina MiniSeq benchtop sequencer,
producing 2 x 150-bp paired-end reads. Raw reads were processed using
the ncov2019-artic-nf Nextflow pipeline (42). Briefly, reads were
trimmed using Cutadapt v1.18 (43) and Nimagen V4 primer sequences
were removed using iVar v1.3. Cleaned reads were aligned to the SARS-
CoV-2 reference genome Wuhan-Hu-1 (MN908947.3) (44) using the
Burrow-Wheeler Aligner (BWA) (45) and ca. 400,000 reads mapped per
sample. Lineage abundances were then determined using the processed
sequences using depth-weighted de-mixing of SNV frequency at each
position in the genome using Freyja pipeline (46, 47).

2.5 Wastewater physical and chemical
analysis

The samples were analysed for a range of key physicochemical
markers of wastewater quality including pH, turbidity, electrical
conductivity (EC), ammonium and orthophosphate (9). Turbidity was
assessed using an Orion AQUAfast AQ3010 turbidity metre (Thermo
Scientific, Waltham, MA, United States) whilst EC was measured using
a Jenway 4,520 conductivity metre and pH with a Hanna 209 pH probe
(Hanna Instruments Ltd., Leighton Buzzard, United Kingdom). For
NH,* and P analysis, the samples were first centrifuged (24,000 g, 5min)
to remove suspended solids. The supernatant was then retained for
subsequent analysis. Inorganic P was measured colorimetrically using
the molybdate blue reagent according to Murphy and Riley (48) whilst
NH,* was determined colorimetrically using the salicylate procedure of
(49) using a SpectroStar Nano microplate reader.

2.6 Data analysis

The qPCR quality control was carried out with QuantStudio real-
time PCR software v1.7 (Applied Biosystems, Inc., United States). The
standard curve slope, efficiency and R* met the requirements described
in Bustin et al. (50). The qRT-PCR data was converted to gc I wastewater
for statistical analysis. The assay limit of detection (LOD) and limit of
quantification (LOQ) were tested using 10 replicates of low dilutions of
genomic RNA for the RNA virus targets and plasmid DNA for
crAssphage (40). The LOD was defined as the minimum concentration
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whereby 10 replicates all return positive results and the LOQ was the
lowest concentration where the coefficient of variation was lower than
0.25 (Supplementary Table S2). As such, quantities can be detected below
this limit but are susceptible to false negatives. For comparison, the
wastewater composition from the ships was directly compared with that
collected as part of the national surveillance programme undertaken in
Wales. The latter involved the analysis of wastewater collected from 44
centralised wastewater treatment plants across Wales 5 days a week.

To theoretically estimate the number of a- and pre-symptomatic
passengers who were travelling on the transnational shipping route
(i.e., import rate, IR) we used the following equation:

IR = PN x PPx ACRx FSRxTU (1)

where PN is the total number of passengers sampled during the
wastewater testing campaign (1n=6,942), PP is the prevalence of
COVID-19 in the population (3.1%-4.1% of the population), ACR is
the amount of COVID-19 cases that are pre- or a-symptomatic
(20%-30% of the total), FSR is the shedding frequency of SARS-
CoV-2 in faeces (40%-60% of cases), and TU is the likelihood that
passengers will use a toilet whilst on board the ship (13%). It was
assumed that symptomatic passengers would not be travelling due to
government travel restrictions in place when the study was undertaken.

3 Results

3.1 Prevalence of COVID-19 cases during
the survey period

Wastewater sampling commenced towards the end of the third
main COVID-19 wave in the UK which was associated with the
emergence of the omicron variant of SARS-CoV-2. During this
sampling period 0.1% to 0.2% of the UK and Irish population tested
positive for SARS-CoV-2 (51). Overall, the patterns in COVID-19 cases
were similar between countries. Based on the results of the COVID-19
Infection Survey (CIS), which is less prone to self-reporting bias, it is
likely that the true prevalence of COVID-19 in the UK and Ireland
populations ranged from 3.1% to 4.5% during the study period (51-54).
At the time that the wastewater monitoring was undertaken, the wearing
of face coverings was still mandatory and recommendations were in
place for individuals not to travel if they had tested positive for SARS-
CoV-2. Stena line staff were also asked to self-isolate if they tested
positive for COVID-19. At the time of the study, passenger locator forms
were not required to enter the UK and no quarantining procedures were
in place. Due to the COVID-19 pandemic, the number of passengers
per journey was lower than normal with each journey having an average
of 154 passengers (range 38 to 612) on the Stena Estrid and 169 on the
Stena Adventurer (range 28 to 775). Of these, 74% were crossing with
cars or as foot passengers and 26% as commercial freight drivers. There
were no differences in the passenger:freight ratio between the two ships.

3.2 SARS-CoV-2 and other viruses in ferry
wastewater

SARS-CoV-2 was detected in four samples during the survey period
(8.1% of the total samples, n=49, Figure 1). Of the positive wastewater
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samples, the maximum concentration detected was 9.2x10° gc 1", Of
the other human pathogenic viruses tested in the wastewater samples,
only NoV GII was detected, albeit at a lower frequency (6.1% of the total
samples) with a maximum concentration of 1.3x10° gc I"". Neither,
enterovirus, enterovirus D68 or influenza A or B were detected in the
samples. The faecal marker crAssphage was detected in all samples from
the Stena Adventurer, however, recovery of crAssphage from the Stena
Estrid was much lower (26% of the total samples). The mean recovery
of crAssphage was 1.9x 10° gc I™! on the Stena Adventurer which was
lower than from the Stena Adventurer when samples tested positive
(2.1x107 gc 17, p=0.002). Overall, the levels of crAssphage were lower
than those reported in the national urban wastewater surveillance
programme (mean 1.0x 10°+£3.0x 107 gc 1I'; p<0.001).

3.3 SARS-CoV-2 sequencing

The samples that tested positive for the SARS-CoV-2N1 gene
region by RT-qPCR were subsequently sequenced. Sequence was
acquired for 600-362,000 reads of which between 60% and 82% of the
mapped to the viral genome. Although this yielded an average
coverage > 1,500, sequences mapped to very restricted regions of the
virus and therefore provided incomplete coverage for all samples.
Overall, the percentage genome covered ranged from 18% to 35%.
Consequently, we were able to ascribe one sample to the SARS-CoV-2
omicron variant, however, the other three positive samples remained
unascribed. The success of sequencing appeared directly related to the
amount of SARS-CoV-2 recovered in the sample.

3.4 Wastewater chemistry

The average orthophosphate concentration of wastewater on the
two Stena ships (mean +SEM, 211+ 57 mgl™") was considerably higher
than samples collected during the Welsh government national
surveillance project (2.6 +0.1 mgl™"; Figure 2A). Likewise, we found the
median ammonium concentration of wastewater on the ships
(320+25mgN1™") to be much higher than the national surveillance
median (16 +1mgN1™; Figure 2D). Further, the turbidity of the ships’
wastewater samples (1,172+122 NTU) was higher that reported for
urban wastewater in the national surveillance programme (90+5 NTU).
Similarly, the electrical conductivity and pH of the ships’ wastewater
(4.740.2 mS em™" and 7.9+ 0.12, respectively) were also different to the

! and

national surveillance programme samples (0.9+£0.1 mS cm~
7.5+0.02, Figures 2B,C). None of the wastewater characteristics had

significant correlations with passenger data (p > 0.05; data not presented).

4 Discussion

4.1 Potential of ship wastewater to capture
the presence of infected individuals

Wastewater can potentially provide a non-invasive, ethically
compliant and relatively unbiased way to evaluate levels of infection
within a cohort of individuals all connected to a common sanitary
system (5). To our knowledge, this is the first use of ship-based
wastewater-based surveillance to assess the potential transfer of viral
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Viral detection and quantification in wastewater collected from two international short-haul ships (Stena Estrid and Stena Adventurer) taking
passengers and commercial loads to and from Ireland (Dublin) and Wales (Holyhead). The outbound route is Holyhead to Dublin and the inbound
route is Dublin to Holyhead. SARS-CoV-2 used the N1 gene target. The faecal-marker virus crAssphage was used as an indicator of faecal matter being
present. Norovirus represents genogroup Il and Influenza represents both influenza A and B. Each square represents an individual ferry crossing
between Ireland and the Wales.
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Chemical indicators of wastewater quality from two international short-haul ships (Stena Adventurer and Stena Estrid) on the international Ireland
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pathogens across an international maritime boundary. Our results
provided clear evidence that, albeit infrequent, infected individuals
were crossing between the UK and Ireland during the third COVID-19
wave when guidance was still in place to prevent travel for infected
individuals. Whilst wastewater analysis has previously been
undertaken on ships, this has largely been from the perspective of
discharging pollutants into marine waters rather than assessing the
presence of infected individuals on a vessel (55-58). Further, most of
this work has focused on organic pollutants (e.g., antibiotics) and
faecal-derived bacteria rather than on viruses (30, 55, 59). A single
study from a cruise ship carrying passengers infected with SARS-
CoV-2 showed previously that viral RNA could be isolated from the
ship’s wastewater (60), providing the first evidence that wastewater can
be used for on-board pathogen surveillance. However, long-haul
cruise ships hold an isolated population where it can be guaranteed
that all individuals will use the toilet facilities. Further, cruise ships are
notorious for large viral outbreaks due to the close confinement of
passengers over long periods of time (e.g., norovirus, influenza) (61-
63). This suggests that viral titers in wastewater from cruise ships are
likely to be very high and may also prove useful as a temporal indicator
of outbreak progression.

In the case of short- and medium-haul passenger ferries (journey
time < 6h in duration), the frequency that individuals defecate remains
unknown; however, it is expected that this will be very low in
comparison to cruise ships. The continual changing of passengers (4
times daily in this study), is also likely to lead to more temporally
stochastic results with lower viral titers (due to a higher urination-to-
defecation ratio). Unlike cruise ships, in the context of short-haul
shipping routes, it is the frequency of detection that is most important
rather than the quantitative analysis of the amount of viral
RNA present.

4.2 Theoretical vs. actual measured
incidence of infected individuals

The success of viral surveillance using wastewater relies largely on
faecal shedding and to a lesser extent vomiting and sputum, whilst
very few pathogenic viruses are shed in urine (64). Previous studies
have indicated that enteric and respiratory viruses are shed in faeces
whether individuals are asymptomatic or symptomatic (65-67). The
frequency, duration and amount of faecal shedding, however, can vary
significantly between viruses, point in the infection cycle and on the
nature of the individual (e.g., age, immune status etc.). Here we take a
first principles approach to estimating the likely number of passengers
infected with SARS-CoV-2 who can theoretically be captured using a
wastewater-based approach. Although information exists for
defecation frequency on long-haul ships, which suggests that most
people defecate less often than on land (68), no quantitative
information exists for defecation frequency on short-haul passenger
ferries. Based on estimates of likely frequency of on-board defecation
on short-haul flights (<13%; <3h in duration) (69), we use this to
estimate the chances of capturing infected individuals on short-haul
passenger ships. Based on the total number of passengers sampled
during the study period (ca. 6,942), a population-level COVID-19
prevalence rate of 3.1%-4.5% (51, 52), an asymptomatic carriage rate
of the omicron variant of 20%-30% (70, 71) and a SARS-CoV-2 faecal
shedding rate of 40%-60% (66), we estimate that theoretically the
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number of infected passengers would range from 2.2 to 7.3
(Equation 1). The number of actual samples which tested positive for
SARS-CoV-2 (n=4) directly falls within this range. One assumption
we have made is that symptomatic people did not travel based on
government guidance at the time of the study and that diarrhoea is not
a primary symptom of omicron infections, the dominant variant in
circulation at the time (72).

4.3 Use of wastewater for the surveillance
of other viral pathogens

Although the main premise of this study was to evaluate the use
of wastewater for COVID-19 border surveillance, we showed that the
approach can also be used to evaluate the prevalence and movement
of other viruses and is likely suitable for other disease-causing agents
(e.g., anti-microbial resistant bacteria, protozoa). Here we also
detected the RNA of norovirus in wastewater on several occasions.
Indeed, wastewater may be better for the surveillance of enteric
viruses as the frequency and volume of defecation is much greater
(e.g., diarrhoea), viral shedding rates occurs in all infected individuals
and the rates of shedding are much greater (66). Enteric viruses also
represent the leading cause of illness amongst returning travellers
seeking medical care (73). Previous estimates of trans-border
movement of norovirus have relied on the analysis of serum or stool
samples, largely provided voluntarily from symptomatic individuals
(73-76). In combination with genotyping (to assess unique lineages),
wastewater could provide an unbiased assessment of norovirus entry
into the country, particularly as ca. 10% of infections are asymptomatic
and shed at similar rates to symptomatic individuals (77). The levels
of norovirus circulating in the population at the time of the study were
atypically low due to the COVID-19 pandemic (78, 79) suggesting that
more cases may be detected post-pandemic. Similarly, the prevalence
of influenza A/B and enterovirus were also unseasonably low in the
population at the time of sampling, due to the knock-on effect of
non-pharmaceutical interventions for COVID-19 control (80, 81). It
would therefore be useful to undertake a repeat survey under more
representative circumstances to evaluate the use of wastewater for
catching these viruses.

4.4 Limitations of using a
wastewater-based approach for pathogen
surveillance on ships

Whilst wastewater analysis proved successful at showing the
passage of infected individuals between the UK and Ireland, the
approach has some limitations and areas for refinement as follows: (i)
Sampling approach: For logistical reasons, we relied on taking several
manual spot measurements per journey rather than deploying an
automated time-integrated composite sampler. Although some mixing
of the wastewater will occur within the sanitary network, it is known
that a grab/spot-sampling approach does not provide the most reliable
estimate of viral load, particularly for near-source testing (82). The
design of a refrigerated autosampler that can retrieve a wastewater
sample from a pressurised sanitary network at regular intervals (ca.
every 10 min) would therefore be useful. Further, passive sampling
approaches may be appropriate to capture time integrated information
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without having to rely on complex autosamplers (83); (ii) Independent
validation: To better validate the wastewater approach, it would
be useful to take nasopharyngeal swabs from a representative sample
of individuals to confirm the presence/absence of SARS-CoV-2 and
influenza (63). Due to ethical and social considerations, validation for
enteroviruses may be more problematic; (iii) Defecation behaviour: As
the approach relies on shedding viruses in faeces, it would be useful
to gain insight into the toilet habits of individuals and whether these
are influenced by demographic factors (e.g., age, gender, nationality),
passenger type (e.g., commercial truck drivers vs. tourists, journey
details), timing (e.g., day vs. night voyages), season (e.g., tourist season
vs. off-peak) and the health status (e.g., evidence of respiratory or
gastrointestinal symptoms). This could be achieved by eliciting a
passenger questionnaire on departure from the port. Alternatively, the
number of individuals defecating on the boat could be assessed by the
unique lineages of phages present in the human gut (e.g., crAssphage)
(84). The toilet use by crew should also be a factor that needs to
be considered in this analysis; (iv) Wastewater transit time: Although
the samples were taken on a daily basis, the residence time of the
wastewater in the sanitary network (e.g., holding tanks) (30), and
therefore the potential loss of viral RNA/DNA remains unknown.
Based on previous studies on marine wastewater discharges,
we therefore recommend the deployment of a rhodamine tracer for
mapping residence time (85); (v) Origin of infection: Due to the
uncertainty in wastewater transit time, we were unable to determine
with certainty whether the wastewater collected was from the
UK-Ireland or Ireland-UK leg of the journey (or a mixture of both).
The geographical origin of SARS-CoV-2 or norovirus in our samples
could therefore not be determined with certainty. More complete
genetic sequencing of the viral strains and mapping the lineages to
national databases will clearly aid in this. Due to the high number of
clinical samples being sequenced for SARS-CoV-2 this should
be effective; (vi) Viral recovery: A preliminary investigation in a small
number of samples showed that variations on the PEG-salt based
method used here may give better viral recoveries. Given the
concentrated nature and high urea content of ship blackwater (86), it
is likely that improved methods for viral recovery and removal of PCR
inhibitors is still needed. This is evidenced by the inability to recover
crAssphage from some samples, despite its high abundance in human
faeces from industrialised countries (87). Given the high solids
content in the wastewater, it may also be desirable to evaluate the
partitioning of viruses between the solid and liquid fraction so that
the most enriched fraction can be targeted for further surveillance
activities; (vii) Other shipping routes: This study targeted short-haul
journeys, however, adopting a similar approach on longer maritime
crossings would provide additional value and may be less affected by
some of the limitations highlighted above. For example, the UK-Spain
passenger ferry (Portsmouth-Santander) has a duration of 28.5h,
whilst the UK-Belgium route (Hull-Zeebrugge) takes 13.5h and the
UK-Norway (Harwich-to-Esbjerg) passage takes 18 h.

5 Conclusion

This study has successfully demonstrated that ship blackwater can
be used to isolate and identify viruses of public health concern.
Further, the frequency of detection was consistent with theoretical
estimates based on known infection rates within the population.
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Although some refinement of the methodology is still required,
we conclude that this wastewater-based approach can be readily
expanded to a wide range of faecal-borne pathogens. In combination,
the methodology presented here provides a non-invasive way to
assessing the frequency of pathogen transfer across international
maritime boundaries and thus the contribution of maritime traffic to
the global spread of disease.
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Introduction: Seasonal influenza generally represents an underestimated
public health problem with significant socioeconomic implications. Monitoring
and detecting influenza epidemics are important tasks that require integrated
strategies. Wastewater-based epidemiology (WBE) is an emerging field that
uses wastewater data to monitor the spread of disease and assess the health
of a community. It can represent an integrative surveillance tool for better
understanding the epidemiology of influenza and prevention strategies in public
health.

Methods: We conducted a study that detected the presence of Influenza virus
RNA using a wastewater-based approach. Samples were collected from five
wastewater treatment plants in five different municipalities, serving a cumulative
population of 555,673 Sicilian inhabitants in Italy. We used the RT-qPCR test
to compare the combined weekly average of Influenza A and B viral RNA in
wastewater samples with the average weekly incidence of Influenza-like illness
(ILl) obtained from the Italian national Influenza surveillance system. We also
compared the number of positive Influenza swabs with the viral RNA loads
detected from wastewater. Our study investigated 189 wastewater samples.

Results: Cumulative ILI cases substantially overlapped with the Influenza RNA
load from wastewater samples. Influenza viral RNA trends in wastewater samples
were similar to the rise of ILI cases in the population. Therefore, wastewater
surveillance confirmed the co-circulation of Influenza A and B viruses during
the season 2022/2023, with a similar trend to that reported for the weekly
clinically confirmed cases.

Conclusion: Wastewater-based epidemiology does not replace traditional
epidemiological surveillance methods, such as laboratory testing of samples
from infected individuals. However, it can be a valuable complement to
obtaining additional information on the incidence of influenza in the population
and preventing its spread.

KEYWORDS

wastewater, surveillance, wastewater-based epidemiology, influenza viruses, influenza
season
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1 Introduction

Influenza is a viral acute respiratory infection with high morbidity
and mortality in humans, especially in specific groups such as children
and older adults, posing a constant threat to global public health
because of recurring seasonal epidemics and irregularly occurring
pandemics (1-3). The burden of this disease can vary widely, being
determined by several factors, including the characteristics of
circulating viruses, the timing of the season, the environmental
temperature, how well the available vaccine is working to protect
against illness, and how many people got vaccinated (4, 5). The
Centers for Disease Control and Prevention (CDC) estimated that
influenza has resulted in 9 million-41 million illnesses, 140,000—
710,000 hospitalizations, and 12,000-52,000 deaths annually between
2010 and 2020 in the United States (6). Seasonal influenza epidemics
have substantially contributed to the worldwide annual mortality rate,
particularly among the older adult 65years and over. In Italy, a
mortality rate of 10.7 per 1,000 inhabitants was observed in the winter
season of 2014/2015 (more than 375,000 deaths in absolute terms),
corresponding to an estimated 54,000 excess deaths (+9.1%), as
compared to the previous season (7), representing the highest reported
mortality rate since the Second World War in this country (8). Rapid
population growth, climate change, natural disasters, immigration,
globalization, and the corresponding sanitation and waste
management challenges are expected to intensify the problem in the
future (9).

Worryingly, seasonal influenza generally represents an
underappreciated public health problem with significant socio-
economic implications (10). Monitoring and detecting influenza
outbreaks are important but challenging tasks. To accurately track the
spread of influenza, reporting systems for influenza-like illness (ILI)
and laboratory-confirmed influenza infections (11) can be helpful.
These systems are crucial for estimating the number of people
experiencing symptoms, hospitalizations, and deaths caused by
influenza, addressing vaccination campaigns, and allocating treatment
resources. The surveillance of seasonal influenza is possible through
data collection and sharing systems, such as FluView in the United States
'and FluNews in Europe,” which systematically collect data on seasonal
influenza and publish periodic reports to inform on epidemiological
trends. Influnet is the Italian nationwide sentinel surveillance system for
influenza, coordinated by the Italian National Institute of Health (NIH),
collecting epidemiological and virological data that are published
weekly on the integrated surveillance system portal *according to an
operative protocol' and uploaded into the European database
coordinated by the European Centre for Disease Prevention and
Control (ECDC) (12). Collaborating sentinel doctors from each region
of the country report cases of ILI observed among their patients,
collecting, at the same time, biological respiratory samples to identify
circulating viruses. The European case definition of ILI was adopted to
ensure maximum homogeneity of detection. A case of ILI was defined
as a person presenting a sudden and rapid onset of at least one of the
following systemic symptoms: fever or feverishness, malaise, headache,

www.cdc.gov/flu/weekly
www.flunewseurope.org

https://respivirnet.iss.it/pagine/rapportoinflunet.aspx

N NN

https://www.salute.gov.it/imgs/C_17_pubblicazioni_3267_allegato.pdf
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myalgia; and at least one of the following respiratory symptoms: cough,
sore throat, shortness of breath (13). Doctors take throat swabs from ILI
patients tested for influenza viruses at regional Influnet laboratories.

The experience gained over the last few years indicates that the
Influenza virus and Coronaviruses are the two main viruses that pose
a high risk to humans. Influenza A viruses can infect various animals
and humans, leading to pandemics (14, 15). Although environmental
virus monitoring can be helpful, the methods are mainly based on
clinical data and not validated for environmental testing (16).

Despite this, since the beginning of the COVID-19 pandemic, the
utility of wastewater-based epidemiology (WBE) has emerged as a tool
for researchers to monitor the circulation of SARS-CoV-2 through the
design of pilot studies that highlighted the link between environmental
and clinical frameworks (17-22). WBE provides quickly anonymous and
aggregated data at a low cost and at a potentially large scale through the
passive contributions of the community, therefore integrating the
conventional surveillance programs and strengthening health emergency
response systems, as occurred with the tracking of the poliovirus during
the twentieth century (23). Over the past 2 years, the number of studies
supporting wastewater surveillance to monitor the circulation of
respiratory pathogens and Influenza viruses in communities has been
increasing (9, 24-32). As an effective health assessment approach, WBE
has great potential in warning of infectious disease outbreaks for public
health (20), as recently demonstrated in Italy during the COVID-19
pandemic (17, 21, 22). Our study aimed to monitor the presence of the
influenza virus in the wastewater of different cities on the island. The
objective was to evaluate the circulation of the virus throughout an entire
Influenza season and compare the results with the conventional
integrated epidemiological and virology surveillance.

2 Materials and methods
2.1 Study design and sample collections

We conducted an observational study in Sicily (Italy), the largest
and most populous island in the Mediterranean Sea, accounting for
about 5 million resident inhabitants (33). Five wastewater treatment
plants (WTPs) located in five different municipalities, serving a
cumulative population of 555,673 inhabitants (ranging from 34,000 to
314,973; 11.1% of total island residents), were included in the study.
Raw 24-h composite wastewater samples (n=188) were collected
weekly for 9months, between August 2022 (week 31/2022) and April
2023 (week 17/2023), by an automatic sampling device. Further
information about the location and the characteristics of WTPs is
provided in Figure 1. The collected samples were refrigerated,
transferred to the laboratory, and tested for influenza viral RNA
within 24 h from sampling. The wastewater samples collection period
(week 31/2022) started before the national epidemiological/virological
surveillance (week 42/2022) to assess the viral RNA early detection in
wastewater. This evaluation determines if the WBE methodology can
serve as an early warning system for influenza circulation.

2.2 Virus concentration

All samples underwent a 30-min treatment at 56°C to minimize
the potential impact of bioaerosol on personnel and environmental
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Wastewater Average inflow Served population ’ ‘\
treatment plants | (m*day+ SD) N)
1) Agrigento 7.673.3+1,399.4 55,000 %
2) Bagheria 9,540.5 +£295.3 75,000
3) Caltanissetta 13,233.4 £ 1,532.7 76,700
4) Enna 4,091.6 = 1,270.8 34,000
5) Palermo 72,121.2 + 8,860.2 314,973

FIGURE 1

Location and the characteristics of wastewater treatment plant involved in the study.

safety (34-37). Heat-treating samples at 56°C for 30 min should cause
a negligible or little effect on the sensitivity of RT-PCR (17, 38, 39).
Then, each sample was concentrated using a polyethylene glycol
(PEG)-based procedure, according to Wu et al. (40) protocol with
minor modification. Briefly, wastewater samples (45mL) were
centrifuged at 4,500 x g for 30 min; after centrifugation, 40 mL of
sample were mixed with 8% w/v polyethylene glycol 8.000 and 0.3 M
NaCl (both supplied by Sigma-Aldrich, St. Louis, MO, USA), spiked
with a known amount of Murine Norovirus, used as a process control.
After a centrifugation step at 12,000 x g for 2h, the viral pellet was
resuspended in 2mL of NucliSENS Lysis Buffer reagent (bioMerieux,
Marcy-I'Etoile, France) for sub-sequent RNA extraction.

Viral RNA extraction was performed using a semi-automated
system based on lysis and magnetic silica beads (supplied by
bioMerieux, Marcy 'Etoile, France). After an incubation of 20 min at
room temperature, 100 pL of magnetic silica beads were added. After
further incubation for 10 min, an automated procedure was performed
using the nucleic acid purification system (Auto-Pure96, All Sheng
Instruments, Zhejiang, China). Before molecular tests, the extracted
nucleic acids in an eluent volume of 100pL, were purified from
potential PCR inhibitors using the OneStep PCR Inhibitor Removal
Kit (Zymo Research, CA, USA).

2.3 RT-gPCR

One-step real-time reverse-transcription (RT) quantitative PCR
assays were used to detect the presence of Influenza A viral RNA

Frontiers in Public Health

(IAV) and/or Influenza B viral RNA (IBV) according to the CDC
protocol with minor modifications.® A test was considered positive
when its cycle threshold (Ct) value was <40. All q-PCR assays were
performed with singleplex real-time PCR (rPCR) assays using the
TagMan technology and run on a QuantStudio™ 7 Flex Real-Time
PCR System (Applied Biosystems, Carlsbad, CA, USA); primers,
probes sets and reagents are described in Tables 1, 2. For the detection
of viral RNA, we performed q-PCR as a single step using the
Quantinova Pathogen + IC kit Polymerase (Qiagen, CA, USA). The
PCR conditions were as follows: 1 cycle at 50°C for 2 min; 1 cycle at
95°C for 2min; 45 cycles at 95°C for 15s and 55°C for 30s.

Viral RNA quantification was performed using 10-fold dilutions,
ranging from 1.0 to 1.0 x 10° Genomic Copies (GC)/pL per reaction,
of a synthetic double-stranded plasmid construct carrying IAV and
IBV nucleotide sequences specific for the real-time assays. gPCR
standard curves were generated by linear regression of Ct values
versus logl0 standard concentration and used to convert Ct values
into influenza RNA copies/pL per reaction (Slope=— 3.385; R=0.999;
Efficiency (%)=97.422; Y-intercept=21.721). The influenza viral
RNA’s GC/L in wastewater was obtained according to the formula:
(GC/pL x (100pL/40mL)) x 1.000mL/1L. The results were also
evaluated in GC/day/inhabitant according to the following formula:
flow rate of WTP in 24h (m’) x GC (GC/L)/equivalent number of
inhabitants served by the WTP. Verification of PCR inhibition was

5 https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex.html
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TABLE 1 Primers and probes for detecting influenza A, influenza B and Murine Norovirus by q-PCR.

Name Description Oligonucleotide sequence (5'-3’)
InfA Forl CAA GAC CAA TCY TGT CAC CTC TGA C
A InfA For2 CAA GAC CAA TYC TGT CAC CTY TGA C
InfA Revl GCA TTY TGG ACA AAV CGT CTA CG
AR InfA Rev2 GCA TTT TGG ATA AAG CGT CTA CG
InfA-P InfA Probe FAM/TGC AGT CCT CGC TCA CTG GGC ACG/BHQ
InfB-F InfB For TCCTCA AYT CAC TCT TCG AGC G
InfB-R InfB Rev CGG TGC TCT TGA CCA AAT TGG
InfB-P InfB Probe FAM/CCA ATT CGA GCA GCT GAA ACT GCG GTG/BHQ
MNV orfl/2junct/F MNYV For CAC GCC ACC GAT CTG TTC TG
MNV orfl/2junct/R MNYV Rev GCG CTG CGC CAT CACTC
MNV orfl/2junct/P MNYV Probe FAM/CGC TTT GGA ACA ATG/MGBNFQ

TABLE 2 The PCR reagents.

Reagent for flu A detection

Final concentration (nM)

Volume (pl)

Reagent for flu B detection

Final concentration (nM)

Quantinova Master Mix* - 3.90
InfA Forl 400 0.15
InfA For2 400 0.15
InfA Revl 600 0.225
InfA Rev2 200 0.075
InfA Probe 300 0.45
Nuclease free water - 5.05
Sample - 5.00
Total volume 15.00

Volume (pl)

Reagent for Murine Norovirus detection

Final concentration (nM)

Quantinova Master Mix* - 3.90
InfB For 800 0.30
InfB Rev 800 0.30
InfB Probe 300 0.45
Nuclease free water - 5.05
Sample - 5.00
Total volume 15.00

Volume (pl)

Quantinova Master Mix* - 3.90
InfB For 300 0.15
InfB Rev 600 0.30
InfB Probe 200 0.15
Nuclease free water - 5.50
Sample - 5.00
Total volume 15.00

*Quantinova Mastermix is premixed with 15 pL of ROX reference dye before use.

performed as a quality parameter of the determinations. To verify the
inhibition, the PCR Ct value obtained from the sample added with
1pL of a 1.0 x 10> GC/pL of the synthetic double-stranded plasmid
was compared with the PCR Ct value of water for molecular biology
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added with 1pL of the same synthetic double-stranded plasmid,
according to the following formula: ACt=Ct (sample+control
plasmid) - Ct (water + control plasmid). The sample was considered
acceptable if ACt was <2. Before performing sample analysis, the limit
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of detection (LoD) was determined by spiking wastewater extracts
with dilutions of the synthetic double-stranded plasmid solutions at
concentrations of approximately 1,000, 100, 50, 20, 10, 2, and 1.0 GC/
pL. Ten replicates of each dilution were tested. The LoD was the lowest
concentration at which all ten replicates were positive. The assay had
a LoD of 2.5 GC/pL. The concentration/extraction efficiency of the
method was assessed as previously reported (22). The sample was
considered acceptable if the concentration/extraction efficiency
was >1%.

2.4 Clinical and virologic data sources

We accessed the Influnet web-based platform data (41) to obtain
weekly national and regional epidemiological and virological reports,
including the ILI incidence per 1,000 inhabitants for the Sicilian
region and the aggregate number of influenza-positive swabs.
Specifically, data were retrieved from week 42/2022 (conventionally
marked as the starting week for influenza virus circulation and thus
established as the onset time for the start of the national influenza
circulation surveillance-system data collection) up until week 17/2023
(considered as the ending of influenza season).

2.5 Statistical analyses

The national surveillance influenza platform contains regional
data regarding influenza virus surveillance. Since data collection was
performed weekly, IAV and IBV viral loads (intended as viral RNA
copy numbers per day/inhabitants of wastewater) detected from the
five Sicilian WTPs were aggregated in weekly means and summed,
thus obtaining the total IAV + 1BV viral load. Moreover, new time-
dependent variables (lag times) were created to assess the wastewater
detection method’s early-warning capacity. They were based on a
method we already performed in our previous WBE study (42).
Specifically, by using “WTPs sampling week” and “regional ILI
incidence per 1,000 inhabitants” as key variables, the incidence was
set at week 0 (intended as the week of sample collection), week 1 and
2 (respectively, 1 and 2 weeks ahead of the WTPs’ sampling week).

As viral concentrations in wastewater are log-normally
distributed, a log-10 transformation was applied for all the variables
we analysed. Thus, although WBE data were collected from week
31/2022 to assess early virus circulation, national surveillance data
were available from week 42/2022. Thus, Person’s correlation test,
log-linear regression analyses and significance tests, retrieving R, r*
and p-values, were carried out through RStudio software (version
4.2.2) to compare from week 42/2022 to week 17/2023, at weeks 0, 1
and 2, the following variables:

- The mean weekly regional ILI incidence per 1,000 inhabitants
with the weekly average of combined IAV and IBV viral loads
derived from WTPs.

- The weekly regionally combined number of positive IAV and IBV
swabs detected, with the combined AV and IBV Regional viral
load detected from WTPs.

The Shapiro-Wilk test was carried out to check for the normality
of each continuous variable. A p-value <0.05 was considered
statistically significant.
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3 Results

Opverall, from 7 September 2022 to 30 April 2023, 189 wastewater
samples were investigated every week. In particular, the following
samples were collected from five municipalities and tested for IAV and
IBV RNA: Agrigento (n=36), Bagheria (n=37), Caltanissetta (n =39),
Enna (n=39), and Palermo (n=37). Overall, IAV RNA was detected in
123/189 samples (65.1%) and IBV RNA in 37/189 samples (19.5%),
while the co-presence of the two viral RNA was recorded in 22/189
(11.6%) of the analyzed samples. The recovery rate of influenza viral
RNA has ranged from 1 to 100% (mean 8.72; 95% C.I. = 6.35-11.09),
compared to a Murine Norovirus control of known concentration in
PCR grade water. Table 3 shows the descriptive analysis of the main
clinical and virological surveillance data of the flu season 2022/2023. In
the entire study period, the concentration of IAV in wastewater ranged
from 0.0 to 9.3 x 10° GC/day/inhabitants, while IBV ranged from 0.0 to
3.5 x 10° GC/day/inhabitants. Figure 2 depicts the weekly trends in the
ILI regional incidence, reported by the national surveillance system
(primary y-axis) and the influenza RNA load in sewage (secondary
y-axis) per week of the year (x-axis). In week 36/2022, the first influenza-
positive wastewater samples were recorded, with an average
concentration of 4.4 x 10* GC/day/inhabitants. In the following weeks,
there was a constantly increasing trend of viral RNA detected in the
wastewater until reaching the peak of 9.3 x 10° GC/day/inhabitants in
week 50/2022. From then on, the viral RNA concentration in wastewater
progressively decreased until week 06/2023, after which a second lower
peak occurred at week 10/2023, quantified as 3.9 x 10° GC/day/
inhabitants. After that, the viral RNA concentration in wastewater
regularly decreased until the absence of detection from week 14/2023.
On the other hand, the epidemiological trend of ILI at a regional level
showed high values starting from week 42/2022, the first surveillance
week of the 2022/2023 season, and peaked in week 49/2022. Excluding
small occasional increases in ILIs, the trend has been downward until
the end of the surveillance season scheduled for week 17/2023. The
number of cumulative ILI cases substantially overlapped with the
influenza RNA load from wastewater samples, with an increasing trend
of influenza viral RNA in wastewater samples comparable to the rise of
ILI cases in the population. Figure 3 shows the trend of IAV and IBV
circulating regionally, obtained from the virological surveillance system
and the viral RNA load detected from the local wastewater samples. The
wastewater analyses allowed us to record the total presence of IAV from
week 36/2022 until week 51/2022. From week 52/2022 and up to week
13/2023, there was a co-circulation of the two types of viruses, and the
concentration of IBV had an increasing trend until its peak recorded at
week 09/2023 with a concentration of 3.5 x 10° GC/day/inhabitants. In
confirmation of the co-circulation of viruses from week 52/2022 and of
the subsequent predominance of IBV over IAV from week 05/2022, the
ratio of IBV over IAV showed values of 0.1 in week 52/2022, of 1.5 in
week 05/2023 and 12.8 in week 07/2022 and, in any case, always greater
than one up to week 11/2023, the last in which the wastewater samples
gave a positive result. A similar trend was shown by the regional
virological surveillance of influenza-positive swabs, in which from week
46/2022 to week 50/2022, there was an exclusive circulation of the IAV,
a co-circulation of both viruses up to week 17/2023 with a predominance
of IBV from week 06/2023 to week 17/2023, with a ratio of type B to
type A ranging from 1.2 to 4.8.

As shown in Table 3, the correlation analyses between the
Influenza viral RNA load (IAV + IBV RNA concentration) detected in
WTPs and the regional incidence of ILI per 1,000 inhabitants
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TABLE 3 Descriptive analysis containing the total weekly mean Influenza virus load assessed in wastewater from the different WTPs, the regional
weekly ILI incidence per 1,000 inhabitants, the total number of regional swabs performed and the positivity rate.

Regional ILI incidence

Total swabs

Positivity rate (%)

Viral load (GC/day/

(x 1,000 inhabitants) performed (N) inhabitants)

42/2022 37 20 100 41%10°
43/2022 48 2 0.0 40% 10°
44/2022 40 1 100.0 29% 10°
45/2022 47 8 50.0 38 10°
46/2022 8.7 63 380 34 10°
47/2022 8.6 75 333 5.4 10°
48/2022 122 92 53,3 7.8 x 10°
49/2022 14.0 102 54.0 6.5 10°
50/2022 13.6 135 585 93 x 10°
51/2022 123 130 477 63 10°
52/2022 12.1 99 37.3 7.0 x 10°
01/2023 120 100 25.0 6.5 10°
02/2023 10.9 119 5.9 41 x10°
03/2023 11.9 85 153 31 10°
04/2023 9.6 51 196 2.8x 10°
05/2023 9.5 34 34.0 1.8 x 10°
06/2023 8.1 29 29.0 20x 10°
07/2023 6.2 13 130 2.9 % 10°
08/2023 8.2 30 16.6 1.8 x 10°
09/2023 7.5 16 312 3.9% 10°
10/2023 7.2 13 13.0 3.9% 10°
11/2023 6.7 25 16.0 22% 10°
12/2023 6.0 21 95 15 % 10°
13/2023 56 17 17.6 1.7 x 10t
14/2023 43 5 60.0 0.0

15/2023 45 10 20.0 0.0

16/2023 438 1 0.0 0.0

17/2023 3.7 2 0.0 0.0

displayed a p-value <0.001 at week 0 and < 0.0001 for weeks 1 and 2,
respectively. A moderate-high correlation index (R) was retrieved,
ranging from 0.55 at week 0 to 0.78 at week 2. Accordingly, a
moderate-correlation index was retrieved when comparing the
IAV +IBV viral RNA load detected from WTPs with total number of
positive AV +IBV regionally detected swabs at all times evaluated
(Table 4: w0 R=0.46, p-value <0.01; wl R=0.55, p-value <0.01; w2
R=0.63, p-value<0.001). In Figure 4 are showed the scatterplots
describing the correlation between the RNA viral load detected in
wastewater (GC/day/inhabitants) and the number of ILI detected per
1,000 inhabitants at week 2.

4 Discussion

Regardless of the influenza season’s onset timing, we observed a rapid
and early start of the epidemic season in our study. This resulted in the
ample virus circulating in the population when the epidemiological
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surveillance of the Influnet network began. This trend was also observed
in the southern hemisphere, where the Australian data collection systems
showed an extremely accelerated and anticipated growth concerning the
normal trend (43). In Sicily (Italy), during the first week of surveillance
(42/2022, 17-23 October 2022), the incidence of reported ILI, which in
principle can be considered a good proxy of the incidence of flu illness
(44), was 3.7 cases/1,000 inhabitants, unlike previous influenza seasons
which stood at decidedly lower values (41). The anticipated presence of
the circulation of influenza viruses was also recorded through the analysis
of wastewater, which began in the week of 31/2022 (1-7 August 2022). In
week 36/2022 (5-11 September), we simultaneously detected influenza
viruses in all municipalities through wastewater analysis. This was 17 days
before the start of conventional national surveillance. The values recorded
ranged from 6.00 x 10° to 1.24 x 10* GC/L. Unfortunately, we cannot
determine the specificity of our method due to the unavailability of
sufficient clinical swabs from sentinel doctors for each municipality.
Nonetheless, this early detection of pathogen circulation through WBE
has the potential to benefit public health greatly. It could aid in
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FIGURE 2
Weekly trends in the ILI regional incidence, reported by the national surveillance system and the influenza virus load in sewage per week of the year.

differentiated programming of the start of epidemiological/virological
surveillance and vaccination campaigns to increase their effectiveness.

A sustained co-circulation of type A and B influenza viruses
characterized Italy’s 2022/2023 influenza season. Overall, IAV was
prevalent (79.5% of the samples tested positive) compared to IBV
(20.5%). The epidemiological data of influenza that have emerged in
the southern hemisphere have attested that influenza has been
spreading significantly, probably due to the reduction of distancing
measures and the use of masks (43). In the five municipalities in the
study, wastewater analyses showed that the majority of IAV was
detected in week 50/2022 (12-18 September 2022) with 9.3 x 10° GC/
day/inhabitants, while the majority of IBV was found in week 09/2023
(27 February - 05 March 2023) with 3.5 x 10° GC/day/inhabitants.
The same trend, with a time lag of 7-14 days concerning wastewater,
was recorded by the virological surveillance, which dated the peak
circulation of the IAV in the week 49/2022, therefore 7 days earlier,
and that of the IBV in week 12/2023, then 14 days later (41).

Our findings confirmed that wastewater surveillance can
effectively detect influenza virus circulation and should be considered
a valuable supplement to conventional influenza surveillance. More
in-depth, it may be used to test influenza virus circulation in the
communities for prolonged periods using a single sample approach,
like the application of SARS-CoV-2 WBE used to monitor the
prevalence of COVID-19. The WBE methodology could be an
integrative approach to epidemiological and virological surveillance
that introduces some interesting aspects to improve the estimation of
influenza incidence. By monitoring various treatment plants in the
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city, the percentage of subjects tested can be increased compared to
the Virological Surveillance Network’ target of 4% of the regional
population. Additionally, collecting and transporting wastewater is
more straightforward, cheaper, and potentially feasible wherever there
is a sewage network, thus increasing the possibility of obtaining
information even in smaller municipalities that are typically excluded
from traditional surveillance systems. While there are many
advantages to infectious disease wastewater monitoring, the WBE
approach has some limitations, including aggregated data and the
inability to perform epidemiological assessments by age groups,
symptoms, or immune status for vaccinated subjects. Wastewater is a
complex matrix affected by environmental factors that are not always
identified, leading to inherent variability and uncertainties (45, 46).
Furthermore, it's important to address the lack of standardized
protocols in the various phases of the analytical process. This includes
sample pre-treatment, concentration, and nucleic acid detection (47).
We need to establish a testing framework that considers the different
analytical sensitivities at each analysis step. For example, in the
thermal pretreatment phase, some studies show negligible changes in
RNA measurement (34-37), while others do not (48-50). Similarly, in
the concentration phase, the PEG-supernatant may have limitations
due to the nature of influenza viruses, which have an envelope. This
means it may not be suitable as the reference sample for conducting
an influenza-WBE study, despite successful use in other studies
globally (26, 51). The direct consequence is the difficulty of
determining how directly wastewater concentrations reflect the
number of infected individuals (28).
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Trend of Influenza virus circulating regionally system and viral load detected from the local wastewater samples.

TABLE 4 Correlation analysis between the mean weekly RNA viral load in wastewaters and, respectively, the weekly incidence of regional ILI x 1,000
inhabitants in Sicily and the cumulative number of IAV + IBV positive swabs detected in the region at weeks 0, 1 and 2.

Time R r? p-value
ILI x 1,000 inhabitants (regional) wo 0.55 0.30 <0.01
X wl 0.70 0.47 <0.0001
TAV +IBV GC/day/inhabitant w2 0.78 0.61 <0.0001
n°of IAV +IBV positive swabs (regional) wo 0.46 0.21 <0.01
X wl 0.55 0.30 <0.01
TIAV +IBV GC/day/inhabitant w2 0.63 0.40 <0.001

Wastewater-based methods can provide insight into the
circulation of respiratory viruses within a specific community without
testing numerous individuals. This is because a single wastewater
sample represents the entire community’s contribution. The results
from wastewater testing can be obtained within 24h of sample
collection, providing real-time information that can be used to inform
public health responses, clinical decision-making, and individual
behavior modifications.

Data availability statement
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Introduction: In 2017, the Ministry of Health and Public Hygiene (MoH) of Burkina
Faso designed and piloted a specimen transport system using the national courier
services (La Poste BF) in 4 districts. Based on satisfactory performance indicators,
the MoH set a vision aimed at scaling up this system to strengthen disease
detection and surveillance of epidemic prone diseases across the country. This
work describes the implementation process, performances, and lessons learned.

Methodology: This work describes the implementation process, performances,
and lessons learned. Under the leadership of the Directorate of Population
Health Protection within the MoH, a stepwise approach was used to bring
together multiple partners across sectors to develop the first needed documents
including a guide, an implementation plan, Standard Operating Procedures, and
data collection tools. Then, the execution phase included equipment purchase,
trainings, and consensus on a financing mechanism. Key indicators were defined
to allow performance monitoring

Result: The integrated biological specimen referral system (SITEB) was officially
launched in January 2020 to transport human biological specimens of priority
diseases including COVID-19 from district level to reference laboratories
nationwide. As of December 31, 2022, La Poste BF transported 168,856 packages
containing 206,314 specimens from all 13 regions. 99.66% of packages were
delivered in <24 h as required, and 99.68% of specimens were in good condition
at reception. COVID-19 specimens represented respectively 18% and 63% of
samples transported in 2020 and 2021.

Discussion: The political will combined with the experience gained during
the pilot phase and the commitment and support from all stakeholders laid to
the foundation of the effective implementation of this system. Collaboration
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between two government entities (MoH and Minister of Transport, Urban
Mobility, and Road Safety) to benefit public health has led to reasonable pricing
for sustainability. Although all documents integrate the “One Health” approach,
the system ensures the transport of only human samples for now. Despite
security constraints, Burkina Faso has successfully set up a system using the
national postal service to ensure the routine transport of specimens for all
diseases under laboratory surveillance including laboratory tests for HIV and TB
from the district level to reference laboratories nationwide. This system has also
proved to be useful and efficient in managing public health emergency.

KEYWORDS

integrated specimen referral system, Burkina Faso, laboratory system, disease
surveillance, national courier services, Ministry of Health

1 Introduction

An efficient laboratory network supported by a robust transport
system for biological specimens is essential to detect, prevent, and
respond effectively to public health threats (1). In low-income
countries, where detection capacity is particularly low in peripheral
laboratories, an efficient specimen referral system is needed to
support disease surveillance and the management of public health
threats. To help countries achieve this, several international
organizations including the World Health Organization (WHO),
the U.S. Centers for Disease Control and Prevention (US-CDC),
the United Nations Dangerous Goods Programme (UN DGP), and
the International Organization for Standardization (ISO) provided
guidance on the implementation of specimen transport systems
(2-5). Despite the many guidelines and regulations, setting up an
efficient specimen transport system within a laboratory network
remains challenging for many countries, particularly in resource-
limited sub-Saharan Africa. The main difficulties are linked to a
lack of coordination, low national funding, poor implementation
of laboratory policies, poor transport services, and insecurity (6, 7).
Many sub-Saharan countries have been testing various means and
approaches to setting up specimen transportation systems that aim
to be effective and efficient despite limited resources.

Under the auspices of the U.S. President’s Emergency Plan for
AIDS Relief (PEPFAR) and the Global Health Security Agenda
(GHSA), along with support from other international donors and
NGOs, several countries have engaged in improving access to
diagnostic services and surveillance systems using a performance
specimens referral system. A hub network system based on different
ad-hoc methods, including national postal courier services, was
used in Uganda to increase access to Early HIV Infant Diagnosis
(EID) services from 36% to 51%. This system also reduced
transportation costs by 62% while reducing the turn-around
times by 46.9% (8). With the support and technical assistance
from a public-private partnership (PPP), the postal services were
successfully used in Uganda and Ethiopia to strengthen the
tuberculosis specimen referral system and increase referrals from
presumptive multidrug resistant tuberculosis cases (9, 10). A
similar increase in viral load tests, reagents used, and facilities
accessing testing was noticed by Faruna et al. when a PPP was used
to improve Nigeria’s national integrated specimen referral network
(11).In Malawi, earlier study conducted by the National TB Control
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Programme reported that peripheral units using a bus service to
transport sputum to central reference laboratory for culture and
sensitivity testing had a better record of specimens arriving at the
CRL than those using alternative means of transport (12). While
these examples have focused on transporting specimens of a specific
disease, other studies have taken a more inclusive approach by
integrating several diseases.

A pilot study conducted in 3 districts in Mali, included
specimens from meningitis, measles, yellow fever, and polio
suspected cases. This study showed that shipments of specimens
from districts to the central level using the postal service was
feasible and faster than public transportation. However, further
analysis regarding the most efficient costing mechanism is needed
(6). Inspired by the “hub” model adopted by Ethiopia and Haiti
(10, 13), Guinea has developed and approved a national specimen
referral policy which includes 6 diseases (Ebola, Acute flaccid
paralysis, measles, yellow fever, cholera, and meningitis) using
a stepwise process. The implementation of this policy has been
piloted in three prefectures in Lower Guinea (14).

In 2017, a baseline assessment carried out in Burkina Faso
revealed the absence of an integrated specimen transport system
and highlighted the existence of fragmented disease-specific
transport systems. These parallel systems were funded by different
partners and used laboratory agents, increasing costs and time
spent away from laboratory duties. To address this, the Ministry
of Health and Public Hygiene (MoH) of Burkina Faso designed
and piloted a specimen transport system using the national courier
services (La Poste BF ex SONAPOST) in 4 districts under the lead of
the Directorate of Population Health Protection (DPSP- Direction
de la Protection de la Sante de la Population). Monitoring and
evaluation of La Poste BF’s performance was deemed satisfactory,
with 95% of specimens sent to the reference laboratories under the
appropriate conditions in <24h and at comparatively affordable
costs (15). Based on this success, the MoH has set a vision
aimed at expanding and implementing an integrated biological
specimen referral system, SITEB (System Intégré de Transport des
échantillons Biologiques) using La Poste BF’s services to transport
all specimen types from districts to reference laboratories across the
country. A stepwise approach was used to bring together multiple
partners to develop a standardized specimen transport system
that integrates other diseases and enhances laboratory capacity
and public health infrastructure, thereby providing global health
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security implementation. This paper describes the process used to
implement the SITEB using La Poste BE, the system’s performance
after 3 years of implementation, lessons learned, and challenges.

2 Methods

2.1 Implementation process of an
integrated system for specimen transport

Figure 1 summarizes the key stages in the process of
implementing an integrated sample transport system, the
chronology of their implementation and the main outcomes.

2.1.1 Identification of a lead department for the
project implementation and set up of a technical
working group

To concretize the Ministry of Health’s vision, the Directorate of
Population Health Protection (DPSP-Direction de la Protection de
la Sante de la Population) was designated as a lead department to
collaborate closely with the Directorate of Biomedical Laboratory
(DLBM-Direction des Laboratoire de Biologie Medicale) on SITEB
implementation. The experience gained by the DPSP during the
pilot phase with the Severe Acute Respiratory Infections (SARI)
sentinel surveillance with LaPoste BF (15) was an asset for this
directorate in charge of the epidemiological surveillance of diseases
and also the focal point for the GHSA and the International Health
Regulations (THR) in the country.

To facilitate the project’s operationalization, a SITEB technical
working group (SITEB-TWG) was established and formalized by
the Secretary General of the MoH. This group meets quarterly or as
needed and regularly invites other stakeholders.

2.1.2 Scoping meeting with partners and
technical departments of interest

In low-income countries, the international partners primarily
fund the transportation of specimens through several parallel
systems and processes for epidemiological surveillance of most
priority diseases, including meningitis, measles, influenza,
dengue/arboviruses, and polio. Adopting an integrated system
encompassing all specimen types across the nation necessitated
the support of these partners and essential stakeholders. Some
are using laboratorian technicians and other postal services or
private courier services. Partners and all the MoH technical
directorates involved in specimen transport were presented
with the MoH’s vision during this meeting. This system covers
twenty-one diseases, including zoonotic, animal, and human
diseases. It guarantees the transportation of around ten types of
specimens from regional and health district hospitals to national
and regional reference laboratories. Partners such as the US-CDC,
WHO, and the African Society for Laboratory Medicine (ASLM)
were represented. The key entities within the MoH involved in
the specimen transport that also took part were the Directorate of
Preventable Disease (DPV-Direction de la Prevention de la Maladie
par la vaccination), DLBM, DPSP, and Public Health Emergency

Operation Center (CORUS-Centre des Opérations de Reponse aux
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Urgences Sanitaires). On behalf of the Global Fund, the Health
Development Support Program (PADS-Programme d’Appui au
Développement Sanitaire) represented HIV and TB programs.
As the MoH did not have the capacity and dedicated staff for the
overall implementation of this ambitious project, an implementing
partner (Davycas International) was appointed to carry out and
monitor this project, including a phasing-out plan. This partner
was selected based on its expertise and its capacity to work on joint
projects with multiple partners and departments within the MoH
to achieve public health objectives in Burkina Faso.

2.1.3 Development of a guide and data collection
tools

A national guide for implementing the SITEB was developed
during workshops by the SITEB-TWG using a participatory,
multisectoral, and multidisciplinary approach. It was then
approved by the Ministry of Health during a validation workshop
attended by the partners. This guide highlights the project context,
the expected roles and responsibilities of the various stakeholders,
and the requirements in terms of quality insurance, and biosafety
and biosecurity associated with the specimen transport process.
It also describes SOPs on the preparation, packaging, storage,
shipping, and reception of packages, for each specimen type.
Furthermore, the national guide for implementing the SITEB
includes biosafety and biosecurity requirements on the category
of specimens transported and international guidelines. Specific
indicators were identified to ensure monitoring of the quality of the
specimens transported and the overall performance of La Poste BF.

To support the implementation of this guide, job aids, and data
collection tools were developed with SITEB-TWG contribution.
The disease notification forms included in the SITEB have been
revised to take traceability aspects into account.

2.1.4 Recruitment of a single carrier and signing
of a contract

Burkina Faso chose to contract La Poste BF as a courier
service to transport specimens throughout the country. This semi-
private courier service had collaborated successfully with the MoH
during the pilot phase and was interested in this project aiming
at improving the health of the population. Another important
criterion was its good geographical coverage with an office in
each country province. As part of implementing the SITEB using
La Poste BE the contract of the pilot phase had been revised to
include other priority diseases. However, the pricing terms did
not change. Same as in the pilot phase, the shipping cost was
based on the weight of the coolers (2.5kg) and the number of
packages transported with and without specimens (return of empty
coolers). Collaboration between two government bodies, the MoH
and the Ministry of Transport, facilitated negotiations to achieve
affordable pricing.

2.1.5 Procurement of materials and equipment

A needs assessment was conducted based on the frequency
of packages transported per week for each disease. Then, the
quantity of each item was estimated, and the implementing partners
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FIGURE 1

Process of the implementation of an integrated system of specimen transport in Burkina Faso. DPSP, Direction of the Protection of Health of
Population (Direction de la Protection de la Sante de la Population); TWG, Technical Working Group.
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placed orders. Each of the 70 districts and the eight regional
health districts received three packages containing the following:
plastic stickers with thermic transfer printing (humidity resistant),
absorbent cotton to cushion shocks and absorb liquids in the event
of spills, and an infrared thermometer to record temperature at
reception. To facilitate the return of the coolers, the address of
each sending laboratory was printed and attached to the coolers
they received. In addition to this, the address of all other possible
destination laboratories was also given to each laboratory.

2.1.6 On-site training followed by delivery of
equipment

The cascade training of the field agents and the handing over
of the necessary equipment and support have been an important
step that marked the launch of the new system. The adopted
training format (region by region) gathering both field agents
and those of the La Poste BF was conducted in each of the
13 regions of the country. Before the training, the SITEB-TWG
developed modules covering the description of the SITEB, the
role, and responsibility of the field agents, the standard operating
procedures (SOPs), and related support documents. The module on
the presentation of the SOPs provided details on the categorization
and identification of infectious substances, the triple packaging,
and the transportation and biosecurity considerations based on
international resource documents such as the WHO Guidance
on regulations for the transport of infectious substances 2015-
2016, Laboratory Safety Manual, Third Edition, WHO 2005. In
addition, guidance documents from the US-CDC and the national
safety guide for medical laboratories were used. A frequently asked
questions (FAQ) sheet was also developed to help trainers provide
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harmonized answers. Trainers were mainly SITEB-TWG members
and La Poste BF agents.

To ensure the engagement and ownership of the leaders at the
national level, a briefing session was organized for regional health
directors and the heads of districts. This was followed by two-day
training of data managers, laboratory technicians, and La Poste BF
staff in all districts. People trained were clinicians, human, animal,
and environmental laboratory staff and La Poste BF’s transporters.

2.1.7 Meeting with partners to define a financing
mechanism

The partners’ commitment was obtained from the start to
implement SITEB, but an agreement on the financing strategy still
needed to be established. Implementing a single mechanism was
challenging because partners have various financial management
requirements. The MoH and international partners provided the
financing mechanism by establishing an annual commitment
contract which includes the monthly payment schedule of the
invoices. Based on the quantity of packages transported, a monthly
bill is produced by La Poste BF and sent to the implementing
partners and the lead department under the MoH. It was decided
at the start of the year, that each partner would inform the DPSP
of the number of monthly postal invoices it can handle in a year,
regardless of specimen type or amount.

2.1.8 The signature of the contract and launch

The signing of the agreement between La Poste BF and the
MoH was followed by an official launch chaired by the MoH
and attended by the regional health directors and the district
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chief medical officers with media coverage. Finally, a note on the
implementation of SITEB signed by the MoH’s General Secretary
was disseminated.

2.2 Monitoring and evaluation mechanisms

Monitoring and evaluation (M&E) have been an essential
component of the implementation of SITEB using both papers
based (Table 1) and electronic data collection platform. M&E
aspects have been integrated throughout the system from the case
notification, specimen collection, transport, receipt, and biological
results reporting. A unique labeling system with barcode stickers is
assigned to each specimen to facilitate tracking.

An electronic System for Tracking of Epidemiological Data
and Laboratory Specimens (STELab-System de tracabilite des
donnees epidemiologiques et de laboratoire), is also used for
the visualization, validation, reporting, and management of data.
STELab is a web-interfaced electronic platform for case-based
surveillance data entry (16). It allows the real-time recording of
surveillance and laboratory data on priority diseases as well as
the tracking information of a package. Its primary role was to
track meningitis laboratory specimens (16). Because of the excellent
results of this system, its new version has been extended to all
specimens under the SITEB. Thus, today the STELab platform
includes 24 diseases including zoonotic and vaccine preventable
diseases. Key indicators were identified to monitor the performance
of the SITEB using La Poste BF:

e Percentage of packages delivered within 24 h: this indicator is
calculated from the time of pickup of the package from the site.
The denominator is the total number of packages picked up.

e Percentage of packages delivered in good condition: the package
at the reception does not present any non-conformity (correct
packing and label).

e Percentage of specimens delivered in good condition: the
specimens at the reception were not in good condition (Good
temperature, packaging).

Data are regularly pulled from the STELab platform to produce
a SITEB quarterly bulletin that is disseminated to all districts
and stakeholders including partners. This bulletin summarizes the
performance of La Poste BF during the reported period and since
the implementation of the SITEB. The target was 100% for each
of indicator.

2.3 Data collection and analysis

Data were collected on the STELab platform and were
cross referenced with data collected by LaPoste BF. Data were
confirmed, and all discrepancies were corrected. Excel software
was used to develop tables and conduct all analyses presented in
this manuscript.

The comparison of pre- and post- SITEB data has not been
possible as there was no coordinated system in place before
the implementation of the SITEB allowing centralization of data
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and monitoring of indicators. The performance evaluation used
indicators and target percentage.

3 Results

3.1 Key outcomes from the process of
SITEB implementation

The different activities implemented before the effective start
of the SITEB led to key outcomes that are critical for such a
system. First, there is the development of the national guide
for implementing the SITEB and an operational plan of SITEB
including all the SOPs. Agreement has been reached to include the
following diseases in the system: Severe Acute Respiratory illness
including COVID-19, dengue/arboviruses, rotavirus, norovirus,
measles, tuberculosis (TB), meningitis, and Human Immuno
deficiency Virus (HIV). The specimen types that SITEB can
transport include Nasopharyngeal (NP) and Oropharyngeal (OP),
serum, stool, sputum, pleural fluid, bronchoalveolar puncture
fluid, pus, urine, and Cerebrospinal Fluid (CSF). Based on WHO
guidance on regulations for transporting infectious substances
(4), all selected pathogens are categorized as class 6.2 (Infectious
Substances), category B. In line with this classification, the
following wording has been taped to each cooler “UN 3373,
Biological substance, Category B.”

Figure 2 describes the specimen transport circuit in the
healthcare
the 70 districts to the national reference laboratories which

pyramid. Specimens are transported from all
include the reference laboratories for meningitis, Influenza,
norovirus/rotavirus, viral hemorrhagic fevers, HIV, and TB, in
addition to the immunization department that received specimens
of measles and poliomyelitis.

3.2 Monitoring of key indicators of SITEB
performance

Packages were transported from 70 districts to the national
reference laboratories from all 13 country’s regions. In addition
to the national reference laboratories, HIV, and TB specimens
were also sent to the national level laboratories since the viral
load testing and TB testing are decentralized and some regions
don’t have the testing capacity. Ouagadougou and Bobo-Dioulasso
are Burkina Fasos two largest cities, hosting all the national
reference laboratories. National Reference Laboratories (NRL) for
antimicrobial resistance and viral hemorrhagic fevers are in Bobo-
Dioulasso and the remaining are in Ouagadougou (Influenza,
meningitis, measles, rotavirus HIV, and TB).

From January 31, 2020 to December 31, 2022 La Poste BF
transported 16,858 packages from the district level to the NRL and
national level laboratories across the country. Among them, 99.66%
(16,800/16,858) were delivered in <24 h as required in the contract
with La Poste BF. Only 0.05% (9/16,856) of packages transported
were found damaged during the transport. The breakdown per
year shows that 14.72% (2,481) of packages were transported in
2020 against 42.30% (71,310) and 42.98% (7,246) in 2021 and
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TABLE 1 The physical data collection tools and the levels
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of the system where they are available and completed.

Data collection tools Description

Record of specimen package shipments (collection sites)

In addition to data collected outside the sampling site, it collects the:

- date/time of collection of the package by La Poste BF package number,
specimen or sticker number

laboratory signature

signature of La Poste BF

Examination request form (collection sites)

Name of the prescriber

Date and time of the specimen collection
Requesting department

Examination requested.

Reason for the request and a space for the results

Individual notification form/case investigation (collection
sites)

In general, the individual notification form/case investigation includes:
- socio-demographic data

- clinical information

- sampling data

- transport data and laboratory results

Summary sheet for tracking specimens (collection sites)

The summary monitoring sheets for certain specimens (sputum, specimens of animal origin) contain
the name of the sampling site, a list of all the specimens contained in the cooler, and the transport
data.

Package delivery form (La Poste BF/Sender, Recipient)

Issued by La Poste BE, it collects the:

- date and time of collection of the package

- Name of the sender

- Package number and the references of the La Poste BF agent. It is signed by the senders and
recipients, including the drivers, at each change of hands in order to ensure traceability.

Delivery form (La Poste BF/Sender, Recipient)

Similar to that of La Poste BE, it is used in areas where La Poste BF’s services are
temporarily unavailable. It is issued to the person delivering the package upon arrival.

Incident management register (La Poste BF/Sender,
Recipient)

It contains the date and time of the incident; describes the type of incident (case of spillage, loss or
theft of coolers, etc.), the people to contact.

Record of receipt of specimens by the laboratory/reference
site. (All receiving sites)

- date and time of arrival,

- the conformity of the package,

- the package number,

- the signature of the laboratory and La Poste BF In case of rejection of non-compliant specimens,
reasons are specified

Collection sites: Health centers, Direction of preventable diseases, Direction of Animal National Laboratory, National reference laboratories.

CHR/CHU

CM/CMA

FIGURE 2

Human biological specimens transport circuit with La Poste BF Burkina Faso. CHR, Regional health facility (Centre Hospitalier Regional); CHU,
university teaching hospital (Centre Hospitalier Universitaire); CMA, Medical Centre with Surgical Services (Centre Medical avec Antenne chirurgical);
CM, Medical Centre (Centre Medical); CSPS, Centre for health and social advancement (Centre de Sante et de Promotion sociale); NRL, National
Reference Laboratory; NL, National Level Laboratory; DVP, Directorate of vaccine-preventable diseases (Direction de la prevention des maladies

evitable par la vaccination).
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TABLE 2 Evaluation of the performance of SITEB.

10.3389/fpubh.2024.1384382

Indicators 2020 2021 2022 Total
Packages delivered 2,481 7,131 7,246 16,858
Packages delivered in <24 h 2,437 7,121 7,242 16,800
98.23% 99.86% 99.94% 99.66%

Packages delivered in good conditions 2,481 7,127 7,241 16,849
100% 99.94% 99.93% 99.95%

Specimens delivered 29,731 117,818 58,765 206,314
Specimens delivered in good condition 29,477 117,514 58,666 205,657
99.15% 99.74% 99.83% 99.68%

2022 respectively. No packages were reported missing or lost
during transportation.

During the reporting period, 206,314 specimens were
transported of which 14.41% (29,731) in 2020, 57.11% (117,818)
in 2021, and 28.48% (29,731) in 2022 (Table 2). The breakdown
of specimens transported by disease and year reveals that in 2020
and 2022, HIV specimens were predominant with 59% and 53%
respectively, while in 2021 COVID-19 specimens accounted for
63% of all specimens transported by SITEB. No specimen of
acute flaccid paralysis was transported during the first year of
the implementation of the SITEB whereas, in 2021 and 2022,
respectively 553 (0.4%) and 2,393 (4.07%) specimens were
transported (Figure 3). We didn’t find any significant differences
in the number of specimens transported in on year from another.

Packages (with and without) specimens were transported from
all the country’s 13 regions. Overall, the number of packages
transported increased between 2020 and 2022. The region with the
highest number of packages is the Center region, with more than
10,000 specimens, followed by the Southwest, Hauts-Bassins, and
Center West regions with more than 1,000 packages picked and
delivered by La Poste BF over the reporting period. The regions
where La Poste BF transported fewer packages are the Sahel (38),
Plateau Central (223), Cascades (231), Center East (304), and North
(348) (Figure 4).

3.3 Contract and rates

Like during the pilot phase, the SITEB contract was signed
directly between the DPSP representing the MoH and La Poste BF
representing the Ministry of Transport. The contract stipulates that
La Poste BF is responsible for collecting the packages containing
category B biological specimens from the public health district
laboratories, delivering them to the recipient laboratory, and
returning the empty triplicate packages to the sending health
establishments. Two important elements of this contract are the
description of the commitments of both parties and the pricing.
The contract is structured on an escalating scale, with the unit price
per package decreasing by 500F CFA ($ 0.84) as the number of
packages to be transported increases. The minimum amount per
package is 2,500 FCFA (~$ 4) and the maximum is 4,000 CFA (~$
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7) (Table 3). It is important to note that this contract is still flexible
and does not provide a comprehensive list of diseases.

4 Discussion

SITEB is a disease non-specific system that harmonizes the
transport of human biological specimens as part of national
epidemiological surveillance and laboratory tests for HIV VL/EID,
TB using the national postal system known as La Poste BF. To
our knowledge, Burkina Faso is the first country in West Africa
to implement such an integrated specimen transport system using
postal services. This paper presents the stepwise process used to set
up an integrated specimen transport system and its performance
after 3 years of implementation. Monitoring key indicators over
the 3 years of the SITEB implementation has shown the satisfactory
performance of the transport of all types of human specimens from
the district level throughout the country by the postal service.

This project was born of political will, followed by a clear vision
of the MoH. Regulatory texts or policies must govern the specimen
referral system in a country to enable effective intra- and inter-
sectoral collaboration and optimization of support from partners.
While some countries have developed specific policies to comply
with this requirement (14), Burkina Faso, through its framework
document for the development of biomedical laboratories and
optimization of biological diagnosis, has clearly defined its vision
about specimen transport, and listed in the same document the
strategies to achieve this goal. The vision and the definition of
the country’s objectives in regard to specimen transport system
prompted the development and validation of a national guide for
the implementation of an integrated specimen transport system by
the SITEB TWG based on the One Health approach.

The excellent country-wide coverage of La Poste BF’s services
enabled specimens to be transported to all 13 regions of Burkina
Faso. However, the accessibility of some security-challenged
areas due to terrorist attacks forced La Poste BF to limit
its presence. This situation has led to population movements
within the country, and the closure of health facilities, thereby
limiting the population’s access to healthcare (17, 18). In
Burkina Faso, the regions most affected by the humanitarian
crisis are the Sahel, Center-North, Nord, Est, and Boucle du
Mouhoun. Although not on a continuous and systematic basis,
La Poste BF has been transporting specimens from functional
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FIGURE 3
Distribution of the number of specimens transported by SITEB per disease in (A) 2020, (B) 2021, and (C) 2022.

districts in these security-challenged regions since the launch  factor to explain the considerable diversity in the number of
of SITEB. When this proved impossible for security reasons, packages per region is the COVID-19 crisis. More than half of
other strategies were developed and deployed. An additional the packages transported came from the central region, which

Frontiersin Public Health 52 frontiersin.org


https://doi.org/10.3389/fpubh.2024.1384382
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Dama et al.

10.3389/fpubh.2024.1384382

SAHEL

PLATEAU CENTRAL

CASCADE

CENTRE EST

NORTH

CENTRE NORTH

EST

CENTRE SOUTH

BOUCLE DU MOUHOUM

CENTRE WEST

HAUT BASSINS

TOTAL SUD OUEST

CENTRE

o

500 1000 1500

m Packages transported in 2022

FIGURE 4

2000

W Packages transported in 2021

|I|T"""'

2500 3000 3500 4000

W Packages transported in 2020

Distribution of packages transported (with and without specimens) by La Poste BF per region from 2020 to 2022.

TABLE 3 Price list of LaPoste Burkina Faso for the transport of specimens.

Quantity/range Unit amount; Minimum amount; Maximum amount; Observations
TTC F CFA TTC F CFA (~$) TTC F CFA (~$)

[001-500] 4000 2,000,000 (3,229) 2,000,000 (3,229) Fixed

[501-1,000] 3500 2,003,500 (3,235) 3,750,000 (6,055) Fixed price + Nb of packages *
unit cost applied from the 501 st
package

[1,001-1,500] 3000 3,753,000 (6,060) 5,250,000 (8,477) Fixed price + No. of packages *
unit cost applied from the 1,001 st
package

[1,501-3,000] 2500 5,252,500 (8,480) 9,000,000 (14,531) Fixed price + Nb of packages *
unit cost applied from the 1,501 st
package

[3,001 et +] 2000 9,002,000 (14,545) — Fixed price + No. of packages *
unit cost applied from the 3,001 st
package

was the epicenter of COVID-19, followed by Hauts-Bassins
region with 15,712 and 3,517 cases detected between 2020 and
2022 representing more than 70% and 15% of the total cases
respectively (19).

From the launch of SITEB in January 2020 to December
2022, out of 16,858 packages transported, 99.66% were delivered
within 24 h from pick-up time at the collection site (the required
turnaround time), compared to 77% during the pilot phase (15).
This result shows a significant improvement in the post office’s
performance, dispelling initial fears about its ability to meet this
challenge. To carry out its mission by the agreed upon contract,
La Poste BF has signed an agreement with several public transport
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companies in the country’s main cities, hired additional staff and
procured logistical resources. A similar pilot study in Mali showed
that only 46% of specimens transported by public transport system
were delivered within the required timeframe (72h), compared
to 71% of specimens transported by Mali’s postal service specific
means of transportation. The same study found a comparable
percentage of specimens delivered in good conditions between
the two types of transport (6). Indeed, the public transport
network in Burkina Faso is diversified and well organized, with
regular departures to major cities. While transporting biological
specimens in public transport vehicles can be perceived as a risk,
the triple packaging and extra protection provided by La Poste
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BF help to further minimize the risk of exposure to potentially
dangerous pathogens contained in the specimens. Using drones
or unmanned aircraft System technology is being explored by
some studies to transport specimens, vaccines, and other laboratory
supplies. However, a cost-effectiveness analysis of the use of these
new technologies which integrates all considerations (including
security) must be conducted (20-22).

The flexibility of the contract provisions to permit the
integration of additional specimens or adjustments during their
term is one of the system’s features and success. In 2021, this
encouraged the incorporation of COVID-19 and acute flaccid
paralysis specimens. COVID-19 had not yet been declared a
pandemic by the World Health Organization (WHO) at the time
of the SITEB’s launch, and the country intended to keep using
the traditional system for transporting acute flaccid paralysis
specimens because the disease was considered on its way out.
During the 1%t months of COVID-19 in Bobo-Dioulasso, there was
only one laboratory in the country capable of performing diagnosis
and it was in Bobo Dioulasso. MoH vehicles transported specimens
from suspected COVID-19 in other regions to Bobo-Dioulasso.
However, as the number of cases increased across the country,
specimen transportation became difficult due to logistical issues.
COVID-19 specimens were integrated into the SITEB without any
changes to the initial contract or pricing after several meetings and
briefing sessions with the post office.

There was little to no significant difference in the number of
packages that La Poste BF transported in 2021 and 2022. However,
the number of specimens transported was twice higher in 2021
due to COVID-19 specimens (63%) which were transported by the
dozen in a single package. Indeed, the peak of COVID-19 cases
was notified in 2021 between January and February with more
than 69,000 COVID-19 samples tested. It is worth noting that
this number includes those of COVID-19 suspected cases but also
samples collected from international travelers who are required
to test. The drop in COVID-19 cases and the implementation
of vaccination in June 2021 explains the decrease in COVID-
19 specimens collected in 2022. The decrease in the number
of specimens transported by SITEB for other diseases such as
meningitis, yellow fever, SARI/ILI, and dengue/arbovirus between
2020 and 2021 can be attributed to the impact of COVID-19 on the
health system in general and on disease surveillance in particular,
as documented in numerous studies (22, 23). Several initiatives
and actions were implemented to re-energize disease surveillance,
which had been slowed by COVID-19, and improvements were
seen in late 2021 and 2022.

In most developing countries, disease surveillance, including
specimen transport, is funded by international partners. To
minimize the risk of this system collapsing due to a lack of
resources, particular emphasis was placed on negotiating rates.
Rates were negotiated between the Ministry of Health and La
Poste BF to ensure that the country would be able to meet
costs in the event of a reduction or cessation of partner support.
During the pilot phase, which only involved 4 districts, the cost of
transporting a package by La Poste BF was around 28 USD (17,500
CFA), when the system was extended, the cost was negotiated
to ~6 USD (3,500 CFA) per package, almost 5 times cheaper.
The estimated cost for implementation of the SITEB in Burkina
Faso is approximately 662,000 USD (400.000.000 CFA) which
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includes meetings, equipment, trainings, and document printing.
The average cost of the LaPoste BF’s monthly bill is ~23,528 USD
(14.215.762 CFA). The cost-benefit analysis of such a system using
postal services or hub systems is still a gap in many studies (23).

5 Lessons learned

The experience of Burkina Faso provides important lessons and
recommendations that must be considered to ensure the successful
development and implementation of an efficient and integrated
specimen transport system. The following are key lessons learned
from this experience:

e A strong political will is essential to engage partners
and stakeholders.

e It is critical to select an efficient operator (public or private)
capable of providing services throughout the country.

e Contract flexibility is essential so that, in addition to
surveillance and clinical diagnosis, the system can be used in
response to epidemics or other public health events.

e Throughout the process, sustainability, and a multi-sector
approach (One Health) must be considered.

e A good monitoring and evaluation plan must be developed to
ensure that the system runs smoothly and to allow assessing
performance and impact of the system.

e To ensure specimen transport in insecure areas where
government offices and health facilities are not operational, an
innovative strategy must be developed.

e It is important to consider an implementation and
coordination partner with dedicated staft to ensure smooth
implementation while ensuring a phase-out.

6 Challenges and perspectives

The main limitation of the SITEB is the non-integration of
animal and environment specimens in this system. Although, the
guide and all data collection tools have been revised according
to the One Health approach, the implementation must still be
effective. Discussions are ongoing to make this happen. In the
clauses of the current contract La Poste BF picks up specimens
from the district level while there is no formal system in place to
transfer specimens from peripheral level to district level. A pilot
phase is underway in 2 regions where La Poste BF picks specimens
from the peripheral level to extend it to the entire country after
an evaluation and a revision of the contract. Finally, although
the partners have put in place a mechanism for paying monthly
postal bills, the SITEB’s operating costs (SITEB-TWG meetings,
supervision, equipment replacement, document printing) still need
to be included, and there needs to be a government budget line to
support the operation of this system.

7 Conclusion

The involvement of stakeholders at all levels, as well as partners,
contributed to the success of this innovative system. Furthermore,
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the success and lessons learned from the pilot phase (15) have
made a significant contribution to laying the foundations of this
integrated system, which is now widely used in the surveillance of
priority diseases in Burkina Faso, as well as in the management
of health crises. Several countries have attempted to use national
mail services to transport biological specimens to strengthen
surveillance of a country’s set of priority diseases or specific diseases
such as tuberculosis and/or HIV (10). However, Burkina Faso is
one of the countries that has successfully implemented a national
mail service for a specimen transport system, which considers all
the diseases under laboratory-based surveillance and covers the
whole country down to the district level. The performance of the
SITEB after 3 years of implementation made it a major pillar in
laboratory-based surveillance of priority diseases in Burkina Faso.
It ensures the transport of all specimens collected for surveillance
purposes including VIH and TB from district level across the
country. Thanks to its flexibility, it also plays an important role in
the management of public health emergencies for an early detection
and quick response. The integration of animal specimens remains
a big gap, but efforts are underway to address this.
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dynamic causal model

Cam Bowie'* and Karl Friston?

!Retired, Somerset, United Kingdom, ?Queen Square Institute of Neurology, University College
London, London, United Kingdom

Background: This paper asks whether Dynamic Causal modelling (DCM) can
predict the long-term clinical impact of the COVID-19 epidemic. DCMs are
designed to continually assimilate data and modify model parameters, such as
transmissibility of the virus, changes in social distancing and vaccine coverage—
to accommodate changes in population dynamics and virus behavior. But as a
novel way to model epidemics do they produce valid predictions? We presented
DCM predictions 12months ago, which suggested an increase in viral
transmission was accompanied by a reduction in pathogenicity. These changes
provided plausible reasons why the model underestimated deaths, hospital
admissions and acute-post COVID-19 syndrome by 20%. A further 12-month
validation exercise could help to assess how useful such predictions are.

Methods: we compared DCM predictions—made in October 2022 —with actual
outcomes over the 12-months to October 2023. The model was then used to
identify changes in COVID-19 transmissibility and the sociobehavioral responses
that may explain discrepancies between predictions and outcomes over this
period. The model was then used to predict future trends in infections, long-
COVID, hospital admissions and deaths over 12-months to October 2024, as a
prelude to future tests of predictive validity.

Findings: Unlike the previous predictions—which were an underestimate—
the predictions made in October 2022 overestimated incidence, death and
admission rates. This overestimation appears to have been caused by reduced
infectivity of new variants, less movement of people and a higher persistence of
immunity following natural infection and vaccination.

Interpretation: despite an expressive (generative) model, with time-dependent
epidemiological and sociobehavioral parameters, the model overestimated
morbidity and mortality. Effectively, the model failed to accommodate the “law
of declining virulence” over a timescale of years. This speaks to a fundamental
issue in long-term forecasting: how to model decreases in virulence over
a timescale of years? A potential answer may be available in a year when the
predictions for 2024—under a model with slowly accumulating T-cell like
immunity—can be assessed against actual outcomes.

KEYWORDS

dynamic causal model, COVID-19 mitigation measures, acute-post COVID-19, hospital
admissions, mortality incidence
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Background

Dynamic causal modelling (DCM) stands apart from most
modelling in epidemiology by predicting mitigated outcomes and
quantifying the uncertainty associated with those outcomes (1-3).
This contrasts with quantitative epidemiological forecasts that do not
consider the effect of prevalence on sociobehavioral responses.
Usually, epidemiological projections are over few weeks—and rest
upon fitting curves to the recent trajectory of various data; e.g., (4).
DCM considers what is most likely to happen based upon a generative
model that best explains all the data available. This mandates a model
of sociobehavioral responses that mitigate viral transmission, such as
social distancing, lockdown, testing and tracing, etc. In turn, this
requires a detailed consideration of how various sorts of data are
generated. For example, it has to model fluctuations in testing capacity
and sampling bias due to people self-selecting when symptomatic. The
advantage of this kind of modelling is that any data generated by the
model can be used to inform the model parameters that underwrite
fluctuations in latent states, such as the prevalence of infection. Latent
states refer to those states of the population that cannot be estimated
directly and have to be inferred from observable data.

In October 2022, the predictions carried out 12 months earlier
using a Dynamic Causal model were assessed and found to
underestimate the waves of new COVID-19 infections in the period
October 2021 to October 2022 by 43%, deaths by 20%, tests by 24%,
hospital admissions by 31% and long COVID by 21% (5). This method
of modelling besides predicting health outcomes can also estimate
changing characteristics of the epidemic, such as the properties of
viral transmission, immunity induced by vaccine or infection, and the
propensity to leave home thereby increasing the risk of catching the
infection. We concluded that the underestimation of predictions could
be explained by the arrival of the Omicron variants and the changes
in public health policies in the UK (6-8).

This paper is a sequel to the previous paper which, besides seeking
to validate the previous 12-month predictions, makes predictions to
October 2023. It sets out to assess the underlying properties of the
epidemic during that period from October 2022 to October 2023. It
also seeks to predict what will happen in the 12 months to October
2024 assuming the current properties of the epidemic remain as they
are in October 2023. We take the opportunity to provide predictions
under priors based upon recent empirical estimates of latent,
incubation and infectious periods. In 2024, the accuracy of predictions
should speak to the usefulness of constraining parameter estimates
with informative (empirical) priors of this sort.

This article can be read as a technical report, following up on
previous reports, in which certain predictions were made.
We anticipate a follow-up report evaluating the predictions made in
this article over the forthcoming year, which will also provide an
overall synthesis of long-term forecasting with dynamic causal
modelling. This report provides the opportunity to compare long-
term forecasts with what actually happened over timescales of years.
We therefore take the opportunity to compare the predictions and
actual outcomes quantitatively. Crucially, this comparison is in the
latent state space of the causes of epidemiological (and behavioral)
measurements. In other words, because we are using a generative or
forward model of the epidemic, we can revisit the predicted
fluctuations in time-dependent epidemiological and behavioral
parameters in the light of post-hoc estimates using the same model. This
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effectively identifies where prior assumptions about key time-
dependent parameters were not endorsed by empirical outcomes. This
may be useful for future modelling initiatives along these lines.

Methods
Dynamic causal models

The dynamic causal model (DCM) used in this research has been
continually updated with data as the epidemic has unfolded. It is
designed to allow modification of model parameters, such as
transmissibility of the virus, changes in social distancing, and vaccine
coverage—to accommodate changes in population dynamics and virus
behavior. A recent model (26th September 2023) was used to explore
the effect of changing transmission of the various Omicron variants and
the likely seasonal effect of the coming winter. One modification was
tightening the constraints on changes in antibody immunity over time.
The potential benefit of a successful Find, Test, Trace, Isolate and
Support scheme was also incorporated into the model.

General and specific features of DCMs

The general and specific features of Dynamic Causal Models have
been described in our previous publication (9). Since October 2022
our DCM COVID-19 model has been updated 20 times with the
recent update on 26" September 2023 (10).

Data sources and assumptions

16 of the 24 data sources used in the model and in our previous
report have been discontinued (Supplementary Table S1):

o UKHSA COVID-19 data dashboard (11)
o Deaths within 28 days of COVID-19 infection - June 2023
o Critical care bed admissions — May 2023
o Hospital occupancy of COVID-19 cases — May 2023
o COVID-19 antibody tests — October 2022

« Office of National Statistics (12)
o Deaths by age - July 2023
o Vaccinations by age - July 2023

» UK Government dashboard - Mobility — April 2022

» Google mobility Report (13)- October 2022

o IHME estimate of Incidence (confirmed and non-confirmed
cases) — April 2023 (14)

The UK Government COVID-19 dashboard still provides eight
key input variables such as confirmed cases, hospital admissions,
certified deaths, tests and vaccine coverage (11). The Office of National
Statistics (ONS) discontinued the Coronavirus (COVID-19) infection
survey in March 2023 (15) which had provided the best estimates of
incidence using routine antibody tests and symptom questionnaires
on a regular basis to a random population sample.

The trend in the use of non-pharmaceutical interventions by the
UK government is measured using the Oxford Tracker stringency index
(7). The incidence of long COVID is calculated using the findings of a
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global meta-analysis of post-acute COVID-19 syndrome (with defined
clusters of self-reported symptoms occurring 3months after initial
infection) which found the risk of long COVID following symptoms in
the community is 7.9%, in hospital admissions is 27.9% and ARDS
(acute respiratory distress syndrome) is 41.4% (16). The image of the
proportion of variants in circulation used in Figures K-T is taken from
Our World in Data (17) which uses data sourced from Gisaid (18).

For the predictions to October 2024, it is assumed that mitigation
efforts such as improved ventilation in schools and workplaces will not
take place, that lockdown will not be re-imposed, and that no new more
virulent variants will arrive.

Model priors

To predict outcomes over the next year, the model was run using
the latest available data and prior estimates used by the DCM dashboard
(19). To address the predictive validity of empirical priors we ran the
model to furnish predictions with changes to the prior estimates of the
model parameters, where recent research suggests appropriate values.
These empirical priors were as follows: prior time constant for the latent
period is 5.5days and for the incubation period is 6.5 days in line with
the results of a recent meta-analysis (20). The infectious period is given
a prior time constant of 4.3 days in line with a recent paper (21), Table 1
[mean growth phase 1.6days; mean decline phase 2.7days].
Supplementary Table S2 provides a comparison of the priors that
maximize model evidence and the new (empirical) priors.

For completeness, three scenarios were modelled to identify the
likely effect of improving the Find Test Trace Isolate Support (FT'TIS)
system from a baseline of 25% effective to 40 and 60% effective.

Findings

Comparing projected with actual
COVID-19 deaths, cases, tests, hospital
admissions and incidence of long COVID

Last year’s projections overestimated incidence three-fold,
confirmed cases two-fold, deaths and tests by 1.4 times, hospital

10.3389/fpubh.2024.1398297

admissions by 2.2 times and long COVID by 2.7 times (Table 1).
The actual estimates of incidence and long COVID are only
available for the first half of the year but the overestimates will still
be substantial.

The reasons for the overestimations are found in the following
two sets of graphics, which compare various outcome and
parameters of model results made in October 2022 with and
without knowledge of the course of the epidemic over the recent
12-month period to October 2023 (Figures 1-5). In other words,
we were able to compare the time course of key epidemiological
parameters estimated with and without the data covering that
period (from October 2022 until October 2023). The discrepancy
between these predicted and post-dictive estimates provides one
account of the overestimates above.

The key overestimate was the projected large spike of infections
over the winter period of 2022/2023 which did not materialize
(Figure 1, top graph). Instead, we had continuous spikes of
infection at lower numbers than in the previous year (Figure 1,
bottom graph). The winter wave was predicted to be accompanied
by large numbers of deaths and hospital admissions which did not
materialize (Figures 2-3). In short, the predicted winter wave was
much greater than what transpired, partly due to a projected high
level of mobility (i.e., contact rates) (Figure 4) and despite a
sustained level of immunity (Figure 5).

To understand the overestimates, one can look at the trajectory
of the time-dependent parameters used for both predictions
(Figures 6-10). The post-hoc or post-dictive estimates showed a
tiny reduction but starting at a much longer starting point of 4.4 as
compared to 2.8 days in the latent period (Figure 6). The incubation
period, however, was longer than originally anticipated, falling not
to 1.94 days but only to 4.6 days from a starting point of 5.1 as
compared to 2.1days (Figure 7). Transmission strength had
increased from each infected person infecting 1 in 3 contacts to
infections to infecting 80% of contacts (Figure 8). What may also
be key is the change in expected antibody persistence, falling in the
original from 197 to 159 days but assumed to remain constant in
the late model with a posterior prior value of 105 days (Figure 9).
Another key difference is the less than expected rise in the
proportion of people leaving their homes, for example with only
30% of the older adult leaving home as compared to 60% in the

TABLE 1 Cumulative numbers of COVID-19 cases, deaths, tests, hospital admissions and post COVID-19 Syndrome — 1st February 2020 — 1st October

2023 and 12 month projected numbers for 1st October 2023-2024 — UK.

Scenario assuming DCM 2022 projection = Actual Data source DCM 2023 projection
FTTIS is 25% effective

Cumulative totals from 1st 1st October 2023 1st October 2023 1st October 2023 to 1st October
February 2020 to 2024

Estimated incidence 485,603,813 131,242,140 IHME - 1 Apr 2023 40,692,662

Confirmed cases by PCR and

LFT 53,409,837 24,743,787 Our World in Data - 30 Sep 2023 524,351

Deaths within 28 days of a

positive PCR test 330,957 229,765 Our World in Data - 30 Sep 2023 24,100

Tests (both PCR and LFD) 821,181,901 602,512,524 UK Covid-19 dashboard - 30 Sep 2023 14,080,675

Hospital admissions 1,867,580 862,553 UK Covid-19 dashboard - 30 Sep 2023 175,303

Post COVID-19 Syndrome 4,726,602 1,734,000 ONS Infection survey - 30 Mar 2023 3,139,699
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FIGURE 1

2023.

Epidemic curves of COVID-19 incidence from Jan 2020 — UK estimated by a DCM on two occasions (October 2022 and October 2023). The model
can estimate incidence including cases not tested; each figure offers three projections: blue if the contact tracing system remains at 24% effective,
green if it improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: Cls, 90%
credible intervals. Interpretation: The predictions with October 2022 priors are more than double the predictions using empirical priors in October

earlier model (Figure 10). Unfortunately, the empirical data
stopped at the start of the 12-months under review so we cannot
be sure of the actual level of movement. By March 2023 18% of
people were still wearing face masks outside and 11% in public
transport (22) and 14% of adults avoided contact with vulnerable
people, so it is likely that mobility increased but did not return to
pre-pandemic levels.
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Future predictions

For the period October 2023 to October 2024 the model was used
to predict the cumulative effect of the epidemic on case numbers,
deaths, tests, hospital admissions and long COVID (Table 1 and
Figures 1-3). The predictions using empirical priors suggest a wave
this coming winter but with few deaths and tests but still plenty of
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Outcome estimates in October 2023 with empirical priors
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FIGURE 2

the 2022 estimates in the Oct 22 to Oct 23 period.

Epidemic curves of COVID-19 mortality from Jan 2020 — UK estimated by a DCM on two occasions (October 2022 and October 2023). The model
can estimate projections of daily mortality certified as occurring within 28 days of a positive COVID-19 test; actual data in black is shown up till 16 June
2023—the last day of available data; each figure offers three projections: blue if the contact tracing system remains at 24% effective, green if it
improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: Cls, 90% credible
intervals. Interpretation: The model is able to ape the empirical mortality series closely; the model with empirical priors offers a prediction which is half

hospital admissions and long COVID patients. Under the empirical
priors COVID-19 cases will fall but still over 40 million cases and
over 3 million long-COVID cases will occur in next the 12-month
period. The effect of a more efficient Test and Trace system would
have little influence in reducing cases using either set of priors
(Figures 2, 3).

Discussion

The overestimates of the 12-month projections to October
2023 seem to relate to better retained immunity from previous

Frontiers in Public Health

infections and vaccines at the same time as a reduction in the
trend of the new variants becoming more infectious. The reason
the predicted large winter wave did not occur probably relates to
these factors plus a more than anticipated caution by individuals
in leaving home (i.e., exposing themselves to higher transmission
risk). We have no way of assessing how many infections did
actually occur because the ONS infection study was stopped and
estimates from other models were discontinued. Tests became
infrequent and not freely available, but many particularly older
adult people still observed isolation periods when thought to
be infected despite pressure to ignore such practices and the
removal of legal sanctions in February 2022. The year also saw
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FIGURE 3

larger admission rate than

Epidemic curves of COVID-19 hospital admissions from Jan 2020 — UK estimated by a DCM on two occasions (October 2022 and October 2023). The
model estimates number of hospital admissions; actual data in black; each figure offers three projections: blue if the contact tracing system remains at
24% effective, green if it improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom
graph: Cls, 90% credible intervals. Interpretation: The 2022 estimates follow the available actual data closely until August 2022 and predicted a much

what occurred later. The 2023 predictions with up-to-date priors got the admission rate more or less right.
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FIGURE 4

Epidemic curves of COVID-19 mobility from Jan 2020 — UK estimated by a DCM on two occasions (October 2022 and October 2023). The model
estimates the number of people leaving home each day; actual data in black taken from Google Global Mobility Report; the top figure offers three
projections: blue if the contact tracing system remains at 24% effective, green if it improves effectiveness to 40% and red to 60% from 1st October
2022 in the top graph and 1st October 2023 in the bottom graph: Cls, 90% credible intervals. Interpretation: The model is able to ape the actual data
with exceptions in Dec 2021. The empirical 2023 priors model is able to moderate the swings in estimates seen in the model using the 2022 priors.

antiviral therapies improve associated with a drop in
case fatalities.

Finally, we have specified predictions for the upcoming year, until
October 2024 based on empirical priors over the successive periods of
infection. It will be interesting to see whether these empirical priors
improve the model’s predictive validity.

In the next of these technical reports, we will use the current
and previous reports as documentary evidence of predictions to

assess the predictive accuracy of dynamic causal modelling over

Frontiers in Public Health

a forecasting timescale of weeks, months and years. We anticipate
doing this by adopting the final structure of the generative model
but estimating epidemiological and behavioral parameters from
limited timeseries—up until a certain point in time—and
assessing the posterior predictive accuracy at a series of points in
the future, as the pandemic evolved. This may provide a useful
reference for future pandemic modelling that leverages the
unprecedented amount of data and insights generated by the
COVID pandemic.
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FIGURE 5

Epidemic curves of population immunity to COVID-19 from January 2020 — UK estimated by a DCM on two occasions (October 2022 and October
2023). The model estimate of population immunity to COVID-19 (% of population) including that induced by infection, natural resistance and
immunization; each figure offers three projections: blue if the contact tracing system remains at 24% effective, green if it improves effectiveness to
40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: Cls, 90% credible intervals. Interpretation:
Both models share similar estimates of population immunity. Neither have been able to take into account the probable declining virulence over years
found in pandemics with novel viruses.
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Time-dependent parameters estimated in October 2023 using empirical priors
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FIGURE 6

assumption used.

Changing estimates of latent period of COVID-19 infection in relation to the emergence of new variants and changes in response to public health
policies: UK February 2020 to October 2023. Latent period (between day infected and day infectious) is measured as time constant for all age groups
combined; prior in top graph of 3 days with initial model estimate of 2.8 days (infected period - Supplementary Table S2) dropping to 2.64 by October
2023; prior in the bottom graph of 5.5 days with initial model estimate of 4.36 dropping to 3.9 by November 2023; stringency index dropping from
80% in March 2020 to 5% by December 2021; proportion of variant in circulation as backdrop showing variants from the original Wuhan variant in
2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: The variants have evolved to increase infectivity by
reducing the latent period between the day infected and the day infectious. This has occurred in the both models whatever the original prior

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
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accession number(s) can be found at: https://www.fil.ion.ucl.
ac.uk/spm/covid-19/. The figures in Figure 1 can be reproduced
using annotated (MATLAB/Octave) code that is available as part
of the free and open source academic software SPM (23). The
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FIGURE 7

variants which became more infectious.

Changing estimates of incubation period of COVID-19 infection in relation to the emergence of new variants and changes in response to
public health policies: UK February 2020 to October 2023. Incubation period (between day infected and start of symptoms) is measured as
time constant for all age groups combined; prior in top graph of 4 days with initial model estimate of 2.06 days (asymptomatic period -
Supplementary Table S2) dropping to 1.94 by October 2023; empirical prior in the bottom graph of 6.5 days with initial model estimate of
5.06 dropping to 4.6 by November 2023; stringency index dropping from 80% in March 2020 to 5% by December 2021; proportion of variant
in circulation as backdrop showing variants from the original Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our
World in Data). Interpretation: As with the latent period the incubation period has shrunk in both models indicating the evolution of the

routines are called by a demonstration script that can be invoked
by DEM_COVID, DEM_COVID_X, DEM_COVID_T, DEM_
COVID_I or DEM_COVID_LTLA at the MATLAB prompt. At
the time of writing, these routines are available in the
development version of the next SPM release. An archive
of the

available

relevant source code for each publication is

from  figshare  (https://figshare.com/articles/
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Dynamic_Causal_Modelling of COVID-19/12174006). The
remaining results in this paper can be reproduced using
modified scripts found at https://www.dropbox.com/scl/fo/
zyv10xs8sn9ueuw7mhkis/h?rlkey=ewxlffkdiki89yzgjw6tz355

g&dl=0. The routine data used in the manuscripts are available
from the COVID-19 Data Repository by the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University,
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FIGURE 8

the increase in transmission strength is evident in both models.

Changing estimates of transmission strength of COVID-19 infection in relation to the emergence of. Transmission strength is measured as the
secondary attack rate; prior value of 0.3 (i.e, an infected person infects 1 in 3 contacts) which rises with the new variants to 0.7 (i.e. an infected person
infects 70% of contacts); top graph combines all ages, bottom graph estimates transmission strength for each age group; stringency index dropping
from 80% in March 2020 to 5% by December 2021; proportion of variant in circulation as backdrop showing variants from the original Wuhan variant in
2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: Despite the different prior assumptions in the two figures

Coronavirus (COVID-19) UK Historical Data by Tom White and
GOV.UK Coronavirus (COVID-19) in the UK.
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FIGURE 9

Changing estimates of duration of antibody immunity induced by COVID-19 infection and vaccine in days in relation to the emergence of
new variants and changes in response to public health policies: UK February 2020 to October 2023. Duration of antibody immunity induced
by COVID-19 infection and vaccine measured as time constant for all age groups combined in top graph and by age group in bottom graph;
with initial model estimate of 196 days falling to 160 days by October 2023 in top graph; model estimates for each age group in bottom
graph maintained at those values throughout the period; proportion of variant in circulation as backdrop showing variants from the original
Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: The model used in 2022
assumed the possible time related change in the antibody immunity parameter whereas the 2023 model assumes no change. Further
empirical data will be required to understand the changes in antibody immunity over time.
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FIGURE 10

infections identified in the earlier model.

Changing estimates of the proportion of people leaving home each day in relation to the emergence of new variants and changes in response to
public health policies: UK February 2020 to October 2023. The proportion of people leaving home each day for each age group; for example for those
aged 70 years and above the top graph shows an estimate of 66% leaving home prior to the epidemic falling to 5% at first lockdown and rising slowly
to 60% by October 2023; in the bottom graph the initial estimate for the same age group was 23% leaving home falling to 0% at the first lockdown
rising to 32% by October 2023; stringency index dropping from 80% in March 2020 to 5% by December 202; proportion of variant in circulation as
backdrop showing variants from the original Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our World in Data).
Interpretation: The 2023 predictions estimate a much less mobile population than the 2022 model. This could partly explain the overestimate of
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Background: Influenza is a respiratory infection that poses a significant
health burden worldwide. Environmental indicators, such as air pollutants and
meteorological factors, play a role in the onset and propagation of influenza.
Accurate predictions of influenza incidence and understanding the factors
influencing it are crucial for public health interventions. Our study aims to
investigate the impact of various environmental indicators on influenza
incidence and apply the ARIMAX model to integrate these exogenous variables
to enhance the accuracy of influenza incidence predictions.

Method: Descriptive statistics and time series analysis were employed to
illustrate changes in influenza incidence, air pollutants, and meteorological
indicators. Cross correlation function (CCF) was used to evaluate the correlation
between environmental indicators and the influenza incidence. We used ARIMA
and ARIMAX models to perform predictive analysis of influenza incidence.

Results: From January 2014 to September 2023, a total of 21,573 cases of
influenza were reported in Fuzhou, with a noticeable year-by-year increase
in incidence. The peak of influenza typically occurred around January each
year. The results of CCF analysis showed that all 10 environmental indicators
had a significant impact on the incidence of influenza. The ARIMAX(O, O, 1) (1,
0, 0), with PMy(lag5) model exhibited the best prediction performance, as
indicated by the lowest AIC, AICc, and BIC values, which were 529.740, 530.360,
and 542.910, respectively. The model achieved a fitting RMSE of 2.999 and a
predicting RMSE of 12.033.

Conclusion: This study provides insights into the impact of environmental
indicators on influenza incidence in Fuzhou. The ARIMAX(O, 0, 1) (1, O, 0),, with
PMjs(lag5) model could provide a scientific basis for formulating influenza
control policies and public health interventions. Timely prediction of influenza
incidence is essential for effective epidemic control strategies and minimizing
disease transmission risks.

KEYWORDS

influenza incidence, air pollution, meteorological factor, time series, ARIMAX model,
prediction influenza incidence, prediction
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1 Introduction

Influenza, a widely prevalent respiratory infection, exerts a
substantial impact on the health of millions of people worldwide each
year, leading to severe morbidity and occasional deaths (1). While, like
other respiratory infections, influenza is typically most prevalent
during the winter and spring seasons, recent reports have illuminated
a noteworthy surge in summer influenza cases (2). This emerging
trend presents fresh challenges for health authorities and influenza
surveillance efforts. The onset and propagation of influenza are
influenced by a multitude of factors, including environmental
indicators such as air pollutants (3) and meteorological factors (4).
Therefore, it is of paramount importance to attain accurate predictions
of influenza incidence and develop a thorough understanding of the
factors that influence it.

Timely prediction of infectious diseases is essential to maintaining
and improving public health (5). It helps the government to formulate
and implement effective epidemic control strategies, ensuring the
availability of adequate medical resources and healthcare personnel,
thereby minimizing the risk of disease transmission. Currently,
various methods are employed for predicting infectious diseases,
encompassing infectious disease dynamics model (6), logistic
regression model (7), gray prediction theory (8, 9), ARIMA model
(10-12), Prophet model (13), Holt-Winters model (14), and LSTM
models (15). Each of these methods possesses its own set of advantages
and drawbacks. Notably, the ARIMA model stands out in its ability to
accurately identify the seasonality and trends of infectious diseases.
For instance, Wu et al. utilized the ARIMA method to forecast the
incidence of pulmonary tuberculosis under the regular COVID-19
epidemic prevention and control measures in China (16). Ahn et al.
(17) effectively applied the ARIMA model to anticipate the incidence
of rheumatic diseases during the COVID-19 pandemic in Korea.
While previous studies have extensively delved into the prediction of
infectious diseases, researchers often overlook the potential impacts
of air pollution and meteorological factors on infectious diseases.
There exists a certain degree of correlation between environmental
indicators and the incidence of infectious diseases (18, 19). Thus, the
inclusion of environmental indicators in the predictive model for
infectious diseases is anticipated to enhance the accuracy of
predictions to some extent.

In recent years, the incidence of influenza in Fuzhou has been
increasing year by year, adding to the challenges of disease prevention
and treatment. Notably, in 2023, during a spring peak in Fuzhou, the
monthly reported cases of influenza reached 2,749, marking the
highest number reported in a single month over the past decade.
Therefore, the analysis of factors influencing influenza incidence and
the provision of corresponding predictions and early warnings are
for the
control strategies.

crucial development of effective prevention and

Our study initiated an analysis of the impact of environmental
indicators, including air pollution and meteorological factors, on
influenza incidence. It then developed an optimal ARIMA model
based on influenza incidence data. Subsequently, to enhance
prediction accuracy, environmental indicators were systematically
introduced into the optimal ARIMA model, leading to the
establishment of the ARIMAX model. Finally, we selected the optimal
ARIMAX model for the prediction analysis of influenza incidence
in Fuzhou.
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2 Materials and methods
2.1 Study area and data sources

Fuzhou, situated in the southeast coastal area of China, serves as
the capital city of Fujian Province and spans an area of 11,968.53
square kilometers. As of the end of 2022, Fuzhou had a permanent
resident population of 8.448 million. The monthly data on influenza
cases were sourced from the Fuzhou Center for Disease Control and
Prevention. The surveillance of influenza cases followed the criteria
outlined by the World Health Organization and the Chinese Center
for Disease Control and Prevention for influenza-like cases.
Population statistics were extracted from the Fuzhou Statistical
Yearbook. We utilized monthly influenza incidence (per 100,000
populations) data spanning from January 2014 to December 2022.
This dataset was split into two subsets: a training set covering the
period from January 2014 to December 2022, and a test set spanning
from January 2023 to September 2023.

The monthly air pollution monitoring data used in this study
covers the period from January 2014 to September 2023 and was
provided by the Environmental Monitoring Center under the
Environmental Protection Administration of Fuzhou. The air
pollutants included particulate matter 2.5pm (PM,s), particulate
matter 10 pm (PM,), sulfur dioxide (SO,), carbon monoxide (CO),
nitrogen dioxide (NO,), and ozone (O;). Simultaneously, the monthly
meteorological data for the same period were procured from the
Fuzhou Meteorological Bureau, encompassing meteorological factors
such as monthly average temperature (°C), monthly maximum
temperature (°C), monthly minimum temperature (°C), and monthly
average wind speed (m/s). The monitoring data for the above
environmental indicators was obtained with authorization from the
Fuzhou Environmental Protection Bureau and the Fuzhou
Meteorological Bureau.

2.2 Construction of the seasonal ARIMA
model

Autoregressive Integrated Moving Average Model (ARIMA) is a
widely-used method for the analysis and prediction of time series data
(20). It finds applications in forecasting infectious diseases like
varicella (21), tuberculosis (22), and COVID-19 (23). The
fundamental concept underlying ARIMA model is to utilize historical
data to make future predictions. ARIMA model is primarily
composed of three components: Autoregressive (AR), Integration (I),
and Moving Average (MA). For time series data exhibiting periodic
patterns, the Seasonal Autoregressive Integrated Moving Average
Model (SARIMA) combines seasonal differencing with the standard
ARIMA model, making it well-suited for modeling data with
recurring characteristics.

In our study, we developed a SARIMA model denoted as
ARIMA(p, d, q) (P, D, Q),, where p signifies the AR order, d stands for
the differencing order and q represents the MA order. Meanwhile, s
indicates the period of seasonal trend, while P, D and Q correspond to
the seasonal terms within the SARIMA model. The determination of
these parameters, (p, d, q) and (P, D, Q), is achieved through an
analysis of the Partial Autocorrelation Function (PACF) and the
Autocorrelation Function (ACF). The choice of the parameter s
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depends on the length of the seasonal cycle. The seasonal model can
be mathematically represented as follows:

9 (B)d, (B )i =0,(B)0o(B" e M

In Equation 1,%p (B) represents a non-seasonal autoregressive lag

polynomial, qu(BS) represents seasonal moving average lag

polynomial, 6, ( B) represents seasonal moving average lag polynomial.
To ensure the stability of our time series, we initially applied differencing,
a crucial step in the analysis. We then conducted an augmented Dickey-
Fuller (ADF) test to verify the temporal stability of the series.
Subsequently, we employed the corrected Akaike’s information criterion
(AICc) to assess the goodness of fit of the SARIMA model, with the
model associated with the lowest AICc value considered the optimal
choice. Finally, we conducted the Ljung-Box test to ascertain whether
the residual sequence of the model exhibited characteristics of white
noise. If the p-value is greater than 0.05, the model satisfies the test’s
criteria and can be employed for predictive analysis.

2.3 Construction of the ARIMAX model

ARIMAX model, which incorporates exogenous variables related
to the target time series as input variables, builds upon the foundation
of the ARIMA model to enhance prediction accuracy (24). The
primary objective of the ARIMAX model is to capture trends and
seasonal fluctuations within time series data by amalgamating
autoregressive, differencing, moving average components, and
exogenous variables, thereby offering precise predictions and robust
analytical capabilities. In contrast to the ARIMA model, the ARIMAX
model takes into account exogenous variables that are associated with
the time series data. These exogenous variables can encompass other
time series data or non-time series data, such as environmental
indicators (25, 26) and government policies (27). The role of
exogenous variables is to furnish additional information that aids in
refining model fitting and prediction accuracy.

In this study, we developed an ARIMAX model for each
exogenous environmental variable using data from six air pollutants
and four meteorological factors. Our approach consisted of three main
steps: Initially, we conducted the cross-correlation function (CCF) to
assess the time-delay correlation between different variables and
influenza incidence. Subsequently, we integrated significant
environmental indicators as exogenous variables into the optimal
ARIMA model, thereby creating alternative ARIMAX models. Finally,
we selected the best-fitting ARIMAX model based on three criteria:
(a) the Akaike Information Criterion (AIC), Corrected Akaike
Information Criterion (AICc), Bayesian Information Criterion (BIC),
Root mean squared error (RMSE) values are smaller than the optimal
ARIMA model; (b) the degree that the residual sequence of the model
is white noise by Ljung-Box test; (c) the model’s performance in
predicting influenza incidence in 2023.

The primary innovation of our study lies in the integration of
environmental indicators into the ARIMAX framework. By
incorporating exogenous variables related to influenza incidence,
we can gain a more comprehensive understanding of the multifaceted
factors influencing disease transmission. This approach not only
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improves the accuracy of our predictions but also provides valuable
insights for public health interventions. Furthermore, we employ
advanced model selection criteria, such as the corrected AICc, to
ensure optimal model fitting. Through these enhancements, our
research contributes a novel perspective to the application of
ARIMA models in the field of epidemiology, demonstrating their
adaptability and relevance in addressing contemporary public
health challenges.

2.4 Statistical methods

Descriptive statistics were employed to illustrate changes in
influenza incidence, air pollutants and meteorological factors. Time
series plots (line plots) were utilized to visualize their temporal
distribution. The cross-correlation function (CCF) was used to
evaluate the lag effect of environmental influencing factors. For the
development of ARIMA and ARIMAX models, as well as data

» «

visualization, we utilized the R packages “forecast,” “stats,” and
“ggplot2” in R (version 4.2.1, The R Foundation). The significance

level was set at 0.05.

2.5 Ethical approval and consent to
participate

We obtained ethical approval from the Ethical Review Committee
of the Fuzhou Center for Disease Control and Prevention (Approval
No. IRB2020008) to conduct a secondary analysis of aggregated data
collected by the Fuzhou CDC, China. The informed consent
requirement was waived by the Ethical Review Committee of the
Fuzhou Center for Disease Control and Prevention for this study. This
study was carried out following the Helsinki Declaration contents.

3 Results

From January 2014 to September 2023, a total of 21,573 cases of
influenza were reported in Fuzhou, with an incidence rate of
2.228+4.593 (as shown in Table 1). The highest number of cases was
recorded in June 2023, with 2,749 reported cases. Analysis of the time
series chart of influenza incidence reveals that the peak of influenza
cases typically occurs around January each year. Overall, there is a
noticeable year-by-year increase in influenza incidence (as depicted
in Figure 1).

Upon reviewing the data from the past few years, it becomes
evident that nearly every winter is marked by severe air pollution in
Fuzhou. Simultaneously, there is a notable increase in the incidence of
influenza. Overall, the concentrations of all other five air pollutants,
with the exception of Os, exhibit a consistent downward trend, as
illustrated in Figure 2. The mean concentrations of PM, 5, PM,,, SO,,
CO, NO,, and O; were 24.160, 45.620, 5.479, 0.660, 24.060, and
88.260 pg/m’, respectively.

During the study period, the time series of meteorological factors
exhibited a strong cyclical and seasonal pattern overall, with peak
values occurring during the summer and troughs observed in the
winter (as depicted in Figure 3). The mean values of the monthly
average temperature, maximum temperature, minimum temperature
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TABLE 1 The descriptive statistics of the monthly influenza incidence and environmental indicators in Fuzhou, 2014-2023.

Variable Range Mean + S.D. P25 P50 P75 (@]
Incidence (/100, 000) 0.236-32.540 2.228+4.593 0.645 0.974 1.845 1.200
Average temperature (°C) 9.528-30.000 19.893+6.114 13.926 20.000 25.831 11.905
Maximum temperature (°C) 12.050-35.000 23.600+6.346 17.540 23.140 29.230 11.690
Minimum temperature (°C) 6.291-25.000 16.182+£5.923 10.059 16.390 21.960 11.901
Average wind speed (m/s) 4.300-9.681 6.762+0.985 6.112 6.700 7.336 1.224
PM,; (pg/m*) 12.000-56.000 24.160£7.912 18.000 23.000 29.000 11.000
PM,, (pg/m?) 23.000-89.000 45.620+£12.901 36.000 44.000 53.000 17.000
SO, (pg/m?) 3.000-16.000 5.479+1.827 4.000 5.000 6.000 2.000
CO (mg/m?) 0.326-1.165 0.660+0.142 0.577 0.668 0.735 0.158
NO, (pg/m?) 8.000-52.000 24.060+8.915 17.000 23.000 30.000 13.000
O; (pg/m?) 45.000-130.000 88.260+18.542 75.000 87.000 102.000 27.000
Time series of influenza incidence in Fuzhou
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FIGURE 1
Time series of influenza incidence in Fuzhou from January 2014 to September 2023.

and average wind speed were 19.893, 23.600, 16.182, and 6.762m/s,
respectively.

We investigated the lagged relationship between 10 environmental
indicators and influenza incidence using cross-correlation analysis. As
illustrated in Table 2, SO,, CO, NO,, average temperature, maximum
temperature, and minimum temperature exhibited direct and
statistically significant associations with influenza incidence, while the
lag variables for the other three environmental indicators also
displayed significant associations with influenza incidence.

To begin with, it is imperative to establish an optimal ARIMA
model for predicting influenza incidence in Fuzhou. Prior to
modeling, we conducted an ADF test to assess the stability of both
influenza incidence and 10 environmental indicators, aiming to
ascertain if differential processing was necessary. All p-values from the
tests were found to be less than 0.05, signifying the data were
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stationary and did not need to be differential processed. Consequently,
we conclude that the parameters d and D in the ARIMA(p, d, q) (B, D,
Q), model were both 0. Given that our predictive models were
constructed using influenza incidence data spanning January 2014 to
December 2022, we decomposed the data into trend, season, and
random items. The influenza time series showed an upward trend.
Meanwhile, this analysis also revealed a pronounced seasonality in
influenza incidence data, characterized by a seasonal period of 12
(refer to Figure 4). Consequently, the parameter s of the ARIMA
model was set at 12, and the model can be expressed as ARIMA(p, 0,
qQ (B0, Q).

We developed the model using data from the training set (January
2014 to December 2022) and assessed the prediction performance of
the model using the test set data (January 2023 to September 2023).
To determine the values of the remaining ARIMA model parameters
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Time series of the six air pollution variables from January 2014 to September 2023.
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p> ¢ P and Q, we generated ACF and PACF plots based on the training
set data. The plots for ACF and PACF reveal the temporal dependence
of influenza incidence, with maximum autocorrelation and partial
correlation coefficients observed at lags 0 (refer to Figure 5).

Through the analysis of the ACF and PACF plots of the original
time series, it can be determined that the remaining parameters p,
g, P, and Q of the ARIMA model should be 0, or 1. To automatically
identify the model order of the ARIMA model, we used the auto.
arima function from the “forecast” package to select a total of 13
alternative models (Table 3). Finally, the optimal model was
identified as ARIMA(O, 0, 1) (1, 0, 0),,, boasting the lowest AIC,
AICc, and BIC values, which stood at 552.910, 553.303, and 563.640,
respectively. Additionally, the Ljung-Box test confirmed that the
residual sequence resembles white noise (p>0.05). The ARIMA(0,
0, 1) (1, 0, 0);, model excelled in both fitting and predicting
influenza incidence. When applied to the training set, the model
yielded the fitting RMSE of 3.002; the model was employed to
predict influenza incidence in the test set, achieving the predicting
RMSE of 12.475.

To investigate the potential influence of environmental
indicators, such as air pollutants and meteorological factors, on
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influenza incidence, we systematically integrated these
environmental indicators one by one into the ARIMA(0, 0, 1) (1, 0,
0),, model to formulate an optimal ARIMAX model. We integrated
the maximum lag correlation variables for each environmental
indicator into the ARIMA(0, 0, 1) (1, 0, 0),, model, thus creating 10
distinct ARIMAX models. The Ljung-Box test was employed to
assess these 10 models, and results indicated that the residual
sequences of the models exhibited white noise characteristics (All
p>0.05).

Based on the outcomes summarized in Table 4, it was determined
that the ARIMAX(0, 0, 1) (1, 0, 0),, with PM,,(lag5) model had the
lowest AIC, AICc, and BIC values, signifying superior fitting accuracy
and suitability for predicting influenza incidence in Fuzhou. During
the model-fitting phase using the training aset, this ARIMAX model
achieved a RMSE of 2.999. When applied to forecast influenza
incidence in the test set, the model had an RMSE of 12.033.

Figure 6 graphically presents the fitting and predictive results of
influenza incidence rates based on the ARIMAX(0, 0, 1) (1, 0, 0),, with
PM,(lag5) model. These results demonstrate the efficacy of the
ARIMAX(0, 0, 1) (1, 0, 0),, with PM,,(lag5) model in accurately
forecasting influenza incidence in Fuzhou. Notably, the model
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average wind speed) from January 2014 to September 2023.

TABLE 2 The correlation coefficients and maximum lag correlation coefficients between influenza incidence and environmental indicators.

PM,5 PMj, SO, (6(0) NO; O;
Corr-Coef —-0.018 —0.070 —0.183* —0.220* —0.183* —0.006
Max lag Corr-Coef —-0.266* —0.291%* —0.184* —-0.326* —0.259* 0.238%
Its lag order (Max) 5 5 1 4 4 3

Ave.temp Max.temp Min.temp Ave.ws

Corr-Coef —0.053* —0.051%* —0.054* —0.240
Max lag Corr-Coef 0.211* 0.225% 0.195% —0.290*
Its lag order (Max) 3 3 3 2

#p<0.05; Ave.temp, average temperature; Max.temp, maximum temperature; Min.temp, minimum temperature; Ave.ws, average wind speed.

displayed commendable fitting accuracy in both the training and
test sets.

4 Discussion

Influenza is a respiratory viral disease caused by the influenza
virus (28). It typically manifests with acute respiratory symptoms, but
for individuals with weaker immune systems, such as the young, the
older adults, or those with compromised immunity, influenza can lead
to more severe complications even life-threatening outcomes (2). Over
the past decade, Fuzhou has witnessed a notable surge in the incidence
of influenza, indicating a critical influenza epidemic. Hence,
investigating the factors influencing influenza incidence is crucial for
the evidence-based development of influenza control policies and the
implementation of timely public health interventions.

Frontiers in Public Health

In 2022, the winter flu peak did not occur in Fuzhou, primarily
attributed to the outbreak of COVID-19 and the strict epidemic
prevention and control measures implemented, including the
complete suspension of in-room dining and the promotion of remote
work. These measures effectively reduced interpersonal contact,
thereby mitigating the spread of influenza. The proactive interventions
in response to the COVID-19 outbreak in Fuzhou had a positive
impact on curbing the high incidence of influenza. However, China
removed many restrictive COVID-19 prevention and control
measures after January 8, 2023. It resulted in a rapid increase in
COVID-19 infections and necessitated home-based treatments for
many citizens, contributing to a partial reduction in the spread of
influenza. These observations underscore the need for in-depth
analysis in future studies to understand the specific mechanisms and
long-term trends of various public health interventions on
influenza transmission.
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FIGURE 5

The ACF and PACF charts for influenza incidence data from January 2014 to December 2022.

During the period from 2022 to 2023, Fuzhou experienced
consecutive summer influenza peaks, with a higher number of
reported cases in both years. Apart from the conducive climate
conditions of high temperature and humidity during summer, which
potentially facilitate the transmission of the influenza virus, the
reasons behind the summer influenza peaks in the 2 years might
be different, contingent upon the contextual circumstances prevailing
at the time.
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77

In 2022, amidst a significant influenza pandemic, Fuzhou
encountered no COVID-19 outbreak in June 2022, and residents
reduced their mask-wearing behavior due to hot weather
conditions. Concurrently, with medical resources extensively
allocated for monitoring and treating respiratory diseases during
the influenza pandemic, this likely resulted in intensified
surveillance and reporting of influenza cases. During June to July
2023, the emergence of a summer influenza peak in Fuzhou may

frontiersin.org


https://doi.org/10.3389/fpubh.2024.1441240
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Zheng et al.

be associated with China’s relaxation of numerous restrictive
COVID-19 control measures, such as mask-wearing and avoidance
of crowded places, effective from January 8, 2023. Subsequently,
residents’ immune systems may have weakened. During the
COVID-19 pandemic, heightened attention to personal protection
and hygiene practices might have reduced exposure of the immune
system to common viruses. Following the easing of restrictions,
resumption of social activities may have diminished the immune
system’s resistance to the influenza virus, thereby precipitating its
outbreak. Moreover, there was a notable increase in social
gatherings. Post-lockdown, individuals likely resumed more social
and congregational activities such as dining, gatherings, and
tourism. Such congregation could have facilitated the spread of the
influenza virus, contributing to the peak in influenza cases. Finally,
the relaxation of healthcare resource pressures could also have
played a role. During the COVID-19 pandemic, medical resources
were primarily directed toward combating the outbreak,
potentially leading to neglect in the prevention and control of

TABLE 3 Parameters and AlCc of the alternative ARIMA models.

Alternative ARIMA model AlCc

ARIMA(2,0,2) (1,0,1),; Inf

ARIMA(1,0,0) (1,0,0),, 554.387
ARIMA(0,0,1) (0,0,1),, 553.402
ARIMA(0,0,1) (1,0,1),, 555.492
ARIMA(0,0,1) (0,0,2),, 555.519
ARIMA(0,0,1) (1,0,0)12 553.303
ARIMA(0,0,1) (2,0,0),, 555.493
ARIMA(0,0,1) (2,0,1)1, Inf

ARIMA(0,0,0) (1,0,0),, 562.445
ARIMA(1,0,1) (1,0,0),, 555.499
ARIMA(0,0,2) (1,0,0),, 555.499
ARIMA(1,0,2) (1,0,0),; Inf

ARIMA(0,0,1) (1,0,0),, 560.726

The bold values represent the best performing models and parameters. Inf, Infinity.

10.3389/fpubh.2024.1441240

other diseases. Post-lockdown, while healthcare resources might
have eased, reduced vigilance toward COVID-19 may have led to
diminished attention and control measures for influenza, thereby
fostering its transmission.

There have been many previous studies have demonstrated the
association between various diseases and environmental indicators,
including diseases like dengue fever (29, 30), COVID-19 (31-33),
and tuberculosis (34). In the case of influenza, environmental
indicators can influence the occurrence of influenza epidemics
through factors such as the variation and transmission of influenza
virus and the immune status of the population (35). The Cross-
Correlation Function (CCF) measures the correlation between two
variables at different time lags, making it particularly well-suited for
analyzing lagged effects and time-delayed relationships between
variables. Additionally, as the impact of environmental indicators
may exhibit a time lag in disease incidence (36, 37), we investigated
the lagged correlation between influenza incidence and these
environmental indicators.

Our analysis revealed that most of the lagged air pollution
variables exhibited a negative association with influenza incidence.
This implies that as air pollution levels increase, the incidence of
influenza tends to decrease. This negative correlation can, in part,
be attributed to the adverse impact of severe air pollution on the
human immune system, thereby increasing the risk of infectious
diseases (38). However, the manifestation of this weakened
immune system in terms of influenza incidence may not
be immediately evident and could require some time to become
apparent. This phenomenon might also be linked to public
awareness of declining air quality. Following the perception of
deteriorating air quality, individuals may have adopted proactive
protective measures, including reducing outdoor activities and
wearing face masks to mitigate their exposure to air pollution (39).
These self-protective behaviors could contribute to a reduction in
the likelihood of influenza virus transmission, consequently
lowering the incidence of influenza. Moreover, it’s essential not to
overlook the impact of the COVID-19 pandemic in recent years.
From 2019 to 2022, widespread mask-wearing in public to prevent
COVID-19 not only effectively curtailed the spread of the novel
coronavirus but also had the side effect of reducing the

TABLE 4 The performance of the ARIMA(O, 0, 1) (1, 0, 0);, and 10 ARIMAX models.

Model Variable MA(2) SAR(1) AIC AlCc BIC

ARIMA(0,0,1) (1,0,0),, 0.503* 0.387%* 552.910 553.300 563.640
ARIMA(0,0,1) (1,0,0),, with PMZvS(lagS) —0.048%* 0.516* 0.401% 533.560 534.170 546.730
ARIMA(0,0,1) (1,0,0),, with PM,(lag5) —0.068* 0.520% 0.426* 529.740 530.360 542,910
ARIMA(0,0,1) (1,0,0),, with SO,(lag4) —0.084 0.500% 0.387* 550.580 551.180 563.950
ARIMA(0,0,1) (1,0,0),, with NO,(lag4) —0.083 0.499% 0.388* 535.580 536.190 548.800
ARIMA(0,0,1) (1,0,0),, with CO(lag4) —4.254 0.503* 0.399* 536.560 537.170 549.780
ARIMA(0,0,1) (1,0,0),, with O,(lag3) 0.031 0.515% 0.396* 539.990 540.600 553.260
ARIMA(0,0,1) (1,0,0),, with Ave.temp(lag3) 0.007* 0.519% 0.400* 542.630 543.240 555.900
ARIMA(0,0,1) (1,0,0),, with Max.temp(lag3) 0.023* 0.516% 0.397* 542.550 543.160 555.820
ARIMA(0,0,1) (1,0,0),, with Min.temp(lag3) —0.012* 0.524 0.405% 542.620 543.220 555.890
ARIMA(0,0,1) (1,0,0),, with Ave.ws(lag2) —0.067 0.521% 0.387* 546.680 547.280 560.000

#P<0.05; Ave.temp, average temperature; Max.temp, maximum temperature; Min.temp, minimum temperature; Ave.ws, average wind speed. The bold values represent the best performing

models and parameters.
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Chart of fitting and predicting influenza incidence based on ARIMAX (0,0,1)(1,0,0),, with PM,q

transmission of influenza (40). Interestingly, our analysis showed
a positive association between the third-order lagged variable of
O; and influenza incidence. This positive correlation may
be attributed to high concentrations of O; inducing lung
inflammation (41), which weakens the immune system and
heightens susceptibility to infections. Furthermore, O; might also
influence the pathogen’s transmission mode, potentially rendering
it more prone to airborne transmission.

The analysis revealed that influenza incidence demonstrated a
negative association with three distinct temperature variables,
indicating that the higher the temperature, the lower the influenza
incidence. The intricacies of this relationship become more
pronounced when accounting for the temperature’s delayed effects.
The third-order lagged temperature variable demonstrated a
significant positive correlation with influenza incidence. This
observed pattern could be indicative of the seasonal pattern of
influenza virus transmission, further complicated by temperature’s
influence on human behavior and immune responses. The
transmission of the influenza virus may exhibit nuanced seasonal
variations, influenced by changing atmospheric temperatures (42).
While increasing temperatures generally correlate with reduced
influenza incidence, the full manifestation of this trend may
experience delays due to the time-sensitive nature of human
immune and behavioral adjustments. This suggests that
people may still be at risk of spreading the flu virus for some
time after the temperatures rise. Notably, behavioral patterns
also shift in response to seasonal temperature changes. During
warmer periods, increased outdoor activities and social
interactions could inadvertently amplify influenza transmission
risks, potentially leading to a spike in cases as temperatures rise.
In relation to average wind speed, while the mean value
demonstrated no significant correlation with influenza, the
second-order lagged wind speed showed a significant negative
correlation with influenza incidence, indicating that wind
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speed also has a long-term lag negative correlation effect on
influenza incidence.

We utilized time series analysis to examine the correlation
between influenza incidence and environmental indicators in
Fuzhou from January 2014 to September 2023. The environmental
indicators encompassed air pollution variables (PM, 5, PM,,, SO,,
CO, NO,, and O;) and meteorological factors (mean temperature,
minimum temperature, maximum temperature, and wind speed).
In our study, the time series data of influenza incidence in Fuzhou
from January 2014 to September 2023 were found to be stationary
and exhibited seasonal distribution. However, since the model
used in the study was able to effectively capture the seasonal
effects, there was no need to difference the time series data of
influenza incidence. We also experimented with introducing
seasonal differences in the time series data of influenza incidence;
however, we observed that this adjustment did not lead to an
improvement in the model’s performance. Therefore, the data of
influenza incidence were not processed by differencing in this
study. First, the ARIMA(0, 0, 1) (1, 0, 0),, model was identified as
the most optimal ARIMA model for forecasting influenza
incidence in Fuzhou, with AIC, AICc, and BIC values of 552.910,
553.300, and 563.640, respectively. This model was employed to
fit the training set, yielding a fitting RMSE of 3.002. Subsequently,
the model was utilized for prediction analysis on the test set,
yielding a predicting RMSE of 12.475. To enhance prediction
accuracy, the maximum lag correlation variables of environmental
indicators during the study period were incorporated into the
optimal ARIMA model. The results demonstrated that the AIC,
AICc, and BIC values of the 10 ARIMAX models, each including
a single environmental index, were lower than those of the
ARIMA(0, 0, 1) (1, 0, 0);, model. This suggested that considering
environmental indicators could enhance the predictive
performance of the model. Comparing the AIC, AICc, and BIC

values of all ARIMAX models, the ARIMAX(0, 0, 1) (1, 0, 0),, with
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PM,,(lag5) model had the lowest AIC, AICc, and BIC values,
specifically 529.740, 530.360, and 542.910, respectively. Moreover,
this model exhibited a fitting RMSE of 2.999 and a predicting
RMSE of 12.033, both of which were superior to the optimal
ARIMA model. The ARIMAX(0, 0, 1) (1, 0, 0),, with PM,,(lag5)
model can be effectively employed for short-term prediction of
influenza incidence in Fuzhou. This approach provides a
scientifically grounded basis for formulating influenza control
policies and public health interventions in Fuzhou.

The findings from our study suggest several implications for
further research. Firstly, there is a need to explore the specific
mechanisms through which environmental factors, such as air
pollution and meteorological conditions, influence influenza
transmission dynamics. Additionally, future studies could
investigate the applicability of the ARIMAX model in
different geographical contexts and for other infectious
diseases. Expanding the dataset to include more diverse
populations and environmental conditions could enhance the
robustness of predictive models. Lastly, interdisciplinary research
health,
epidemiology will be essential for developing comprehensive

integrating public environmental science, and
strategies to mitigate the impact of influenza and improve public
health preparedness.

In our study, we examined both ARIMA and ARIMAX
modeling approaches to analyze influenza incidence in Fuzhou.
The strengths of the ARIMA model include its simplicity and
strong theoretical foundation, making it effective for stationary
time series data. However, it does not account for external factors,
which can limit its explanatory power. On the other hand, the
ARIMAX model allows for the incorporation of exogenous
variables, enhancing predictive accuracy and capturing lagged
effects, which is crucial for understanding the impact of
environmental indicators. Nevertheless, the ARIMAX model
introduces complexity and relies heavily on the quality of data for
the exogenous variables, which can pose challenges in
interpretation and model validation. Ultimately, the ARIMAX
model provided a more comprehensive analysis for our research
questions. While the ARIMAX(0, 0, 1) (1, 0, 0),, with PM,,(lag5)
model incorporating environmental indicators provides valuable
insights into the relationship between these factors and influenza
incidence, it is essential to acknowledge its limitations. Firstly, the
model relies heavily on historical data, which may not capture
sudden changes in environmental conditions or emerging
infectious disease patterns. Additionally, while environmental
indicators such as air pollution and meteorological factors are
significant, they are not the sole determinants of influenza
occurrence. Biological factors, human behavior, and public health
interventions also play crucial roles. Thus, while our statistical
analysis demonstrates a correlation, it does not imply causation,
and the model’s predictions should be interpreted with caution.
Therefore, while our findings suggest a potential relationship,
further research, including controlled studies and experimental
designs, is necessary to establish definitive causal links between
environmental pollution factors and influenza incidence.
Additional, future research should consider integrating biological
and socio-economic factors to enhance the comprehensiveness of
predictive models.
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5 Conclusion

The incidence of influenza in Fuzhou has shown a significant
increase in the past decade. Our study indicates that air pollution and
meteorological factors exert an impact on influenza incidence, often
exhibiting a lag effect. The ARIMAX(0, 0, 1) (1, 0, 0),, with PM,,(lag5)
model was developed using historical data on influenza incidence and
air pollutant levels in Fuzhou, demonstrated excellent predictive
performance for forecasting influenza incidence. Therefore, the
ARIMAX(0, 0, 1) (1, 0, 0),, with PM,,(lag5) model could provide a
scientific basis for the formulation of influenza control policies and
public health interventions in Fuzhou.
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Introduction: Although wastewater-based epidemiology (WBE) successfully
functioned as a tool for monitoring the coronavirus disease 2019 (COVID-19)
pandemic globally, relatively little is known about its utility in low-income countries.
This study aimed to quantify severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) RNA in wastewater, estimate the number of infected individuals in
the catchment areas, and correlate the results with the clinically reported COVID-19
cases in Addis Ababa, Ethiopia.

Methods: A total of 323 influent and 33 effluent wastewater samples were
collected from three Wastewater Treatment Plants (WWTPs) using a 24-h
composite Moore swab sampling method from February to November 2023.
The virus was captured using Ceres Nanotrap® Enhancement Reagent 2 and
Nanotrap® Microbiome A Particles, and then nucleic acids were extracted
using the Qiagen QlAamp Viral RNA Mini Kit. The ThermoFisher TagPath™
COVID-19 kit was applied to perform real-time reverse transcriptase polymerase
chain reaction (QRT-PCR) to quantify the SARS-CoV-2 RNA. Wastewater viral
concentrations were normalized using flow rate and number of people served.
In the sampling period, spearman correlation was used to compare the SARS-
CoV-2 target gene concentration to the reported COVID-19 cases. The numbers
of infected individuals under each treatment plant were calculated considering
the target genes’ concentration, the flow rate of treatment plants, a gram of
feces per person-day, and RNA copies per gram of feces.

Results: SARS-CoV-2 was detected in 94% of untreated wastewater samples. All
effluent wastewater samples (n = 22) from the upflow anaerobic sludge blanket
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(UASB) reactor and membrane bioreactor (MBR) technology were SARS-COV-2
RNA negative. In contrast, two out of 11 effluents from Waste Stabilization Pond
were found positive. Positive correlations were observed between the weekly
average SARS-CoV-2 concentration and the cumulative weekly reported
COVID-19 cases in Addis Ababa. The estimated number of infected people in
the Kality Treatment catchment area was 330 times the number of COVID-19
cases reported during the study period in Addis Ababa.

Discussion: This study revealed that SARS-CoV-2 was circulating in the
community and confirmed previous reports of more asymptomatic COVID-19
cases in Ethiopia. Additionally, this study provides further evidence of the
importance of wastewater-based surveillance in general to monitor infectious
diseases in low-income settings.

Conclusion: Wastewater-based surveillance of SARS-CoV-2 can be a useful
method for tracking the increment of COVID-19 cases before it spreads widely
throughout the community.

KEYWORDS

COVID-19, SARS-CoV-2, qRT-qPCR, wastewater treatment plants, wastewater-based
epidemiology

BaCkg round escalated into a global pandemic since it first appeared in Wuhan,
China, in December 2019 (2). In January 2020, it led to a declaration

Economic stability and human health are considerably affected ~ of a Public Health Emergency of International Concern by the

by infectious diseases as they cause one-fourth of the mortalities =~ World Health Organization (WHO) (3). Since then, SARS-CoV-2
around the world (1). The recent outbreak of COVID-19 caused by ~ has been responsible for more than 773 million confirmed cases and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)  around 7 million deaths worldwide as of December 2023 (4). In this
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regard, Africa reported only around 1.2% of confirmed cases and
2.5% of deaths. The first COVID-19 case in the African continent
was reported from Egypt on the 14th of February 2020 (5). On
February 25, Nigeria became the second country to report a first
case, and on February 27, Algeria became the third country to do
50 (6). The first cases in other African countries, including Ethiopia,
were only detected in March 2020 (7). Most index cases originated
in Europe, where the epidemic’s epicenter had moved by March 13.
As a result, the pandemic spread quickly to Africa (8). Consequently,
this led to long-lasting collateral damage on the continent from
interruptions in the initiatives for TB, HIV/AIDS, malaria, and
vaccine-preventable illnesses (9). Ethiopia reported around 5 and
43% of the

respectively (4).

African total confirmed cases and deaths,

Surveillance focused on clinical and laboratory testing which has
drawbacks such as excessive costs, failure to detect asymptomatic
patients, and underestimating of infection prevalence (10). Current data
suggest that worldwide 35-45% of all SARS-CoV-2 infections account
for asymptomatic infected persons (11-13). However, the percentage of
asymptomatic cases in Africa and Ethiopia is 67 and 74%, respectively
(14-16). Recent study findings in Ethiopia indicated that high
asymptomatic cases are associated with persistently activated immune
system (17, 18). This will affect the clinical COVID-19 case detection
and reporting as testing of samples was prompted mainly by symptoms
(19). Hence, the community may not be prepared in terms of infection
prevention and control, and management of COVID-19 infection (20).

SARS-CoV-2 RNA can be detected in feces and urine from
asymptomatic and symptomatic individuals. Fecal shedding can
persist for several weeks, typically longer than positivity in
oropharyngeal swabs (21, 22). The extended presence of viral RNA
in feces and fecal viral RNA shedding with gastrointestinal (GI)
symptoms implies that SARS-CoV-2 infects the GI tract (23-25).
Anyhow, virus shedding in the feces of symptomatic and
asymptomatic infected individuals enables the detection of viral
RNA in influent sewage or wastewater (26, 27). Wastewater-based
epidemiology (WBE) for COVID-19 surveillance can be used as an
alternative for early warning of COVID-19 outbreaks or as a control
mechanism for potential virus transmission independent of
individual healthcare-seeking behaviors. In addition, WBE can
be scaled relatively easily, is less expensive than human subject
testing, and, if collected at strategic points, can represent local
populations (28, 29). Monitoring SARS-CoV-2 circulation in the
community will remain important for reinforcing preparedness and
identifying hotspots for further classical surveillance interventions,
particularly in regions with inadequate health system infrastructure,
human resources, and testing capacity.

Previously, numerous human infectious illnesses (such as polio
and typhoid) have been the focus of research in this WBE (30, 31). In
high-income countries, wastewater-based surveillance is well utilized
for the monitoring of SARS-CoV-2 (32). However, few African
countries have conducted wastewater-based SARS-CoV-2 surveillance
(33-35). This may be partly attributable to low sewage coverage with
deficient testing coverage, which limits COVID-19 surveillance
through sewage monitoring (36). In Ethiopia, there is only one study
in wastewater-based SARS-CoV-2 using a small sample size, and it is
focused only on the qualitative test (37). This study aimed to quantify
SARS-CoV-2 RNA in wastewater, estimate the number of infected
individuals in the catchment area, and correlate results with clinically
reported COVID-19 cases in Addis Ababa, Ethiopia.
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Materials and methods
Study setting and sampling sites

Addis Ababa is Ethiopia’s capital city, with an estimated 5,460,591
population in 2023 (38). Administratively, it is divided into 11 subcities.
Based on the information obtained from Addis Ababa Water and
Sewerage Authority (AAWSA), the wastewater treatment capacity in
Addis Ababa is nearly 86%, out of which 34% are currently connected to
sewer lines, and 52% rely on vacuum trucks, the remaining could
be considered as illegal connection or disposal. Currently, Addis Ababa
city has 4 centralized and 35 decentralized wastewater treatment plants
(WWTPs). The centralized WWTPs are Kality, Kality old, Kotebe old, and
Chefe (unpublished Strategic Environmental and Social Assessment
[SESA] of Addis Ababa City Sanitation Master Plan, 2024).

Influent wastewater samples were collected 3 times a week from three
sampling sites (Kality, Bulbula, and Mikililand) using the Moore swab
method (39) (Figure 1). Kality treatment plant (KTP) is the oldest
centralized system, mainly serving residents in the central, southern, and
eastern parts of the city (40) with an estimated population coverage of
nearly 2,000,000 (unpublished data from AAWSA). The upflow anaerobic
sludge blanket reactor (UASB) technology is applied at this site. A
membrane Bioreactor (MBR) wastewater treatment technology, which
combines a biological-activated sludge process and membrane filtration
domestic wastewater treatment, is used at the Bulbula wastewater
treatment site (41). The third wastewater treatment plant included in this
study was Mikililand Waste Stabilization Pond (WSP). Mikililand WSP
systems comprise 7 series of different types of ponds (42). It is situated in
the northwestern part of the capital city. Technical details of the
wastewater treatment process at the three wastewater treatment plants are
presented in Table 1.

Study design and sample collection

A longitudinal study design was conducted between February and
November 2023 at three wastewater treatment plants in Addis Ababa. The
Moore swab, or cotton gauze of size (120x 15cm), was folded to achieve
an 8-ply pad and tied with a string that was long enough to immerse the
swab into the influent discharge (39, 43). The prepared Moore swab was
then autoclaved and sealed in Ziploc® bag. The string was attached to a
solid structure and fully submersed into the wastewater. On all three
wastewater collecting sites, the swab installation period was between
9:30a.m. and 11:30a.m. on Sundays, Tuesdays, and Wednesdays of each
week. Following a 24-h period for the installation of the swab, the
wastewater from the submersion was collected and placed in a Ziploc®
bag. Finally, the exterior of Ziploc® bag was decontaminated with 70%
ethanol and then transported using an ice-cold box to the Ethiopian
Public Health Institute’s laboratory. Accordingly, 323 influent and 33
effluent wastewater samples were collected. The influent samples were
composed of 110 from Kality, 108 from Bulbula, and 105 from Mikililand
treatment plants Whereas, 11 effluent samples were collected from each
of the three treatment plants with the same installation time of influent
samples in October 2023 and November 2023.

Furthermore, to evaluate the effectiveness of the Moore swab
sampling method in capturing virus particles from wastewater, influent
samples were collected in parallel, covering the same 24-h period for
3 weeks from February 2023 to March 2023 using an on-site autosampler
placed at KTP (n=38).
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FIGURE 1
Sites of wastewater treatment plants. Map of wastewater treatment plant units in Addis Ababa, where all sites with diamonds were preliminary assessed.
Blue diamonds represent selected sites, whereas green diamonds represent unselected sites due to different criteria.

TABLE 1 Description of the selected WWTPs.

WWTP name Average daily Served

flow rate in m?

Sub-city/location Design Type of treatment

capacity m?
per day

per day

population

technology in
place

1 Kality treatment plant (KTP) Akaki Kality Sub-City/ 100,000* 65,000 2,000,000 USAB
Southern Addis Ababa
2 | Bulbula Treatment Plant Bole Sub-City/ Central Addis 20,000 325 34,000 MBR
Ababa
3 Mikililand Wastewater Kolfe-Keranio Sub-City/ 3,000¢ NA 24,000 ‘WSP
Stabilization Pond (WSP) Northwest Addis Ababa

Description of the selected WWTPs for this surveillance of SARS-CoV-2 in Addis Ababa, Ethiopia. *Information was collected from the AAWSA authority. "“Information was from the
literature that is cited (37) and (42). NA =Not available (we did not know the average flow rate due to lack of measuring instruments at the WSP).

RNA capture and extraction

Each Moore swab was squeezed of all liquid into a sterile container
from which a 10 ml wastewater aliquot was taken using a 15ml tube for
RNA capture and extraction. For RNA concentration, 100ul of
Nanotrap® Enhancement Reagent 2 (ER2; SKU# 10112, Ceres
Nanoscience, Inc., Manassas, VA) and 150 pl of Nanotrap® Microbiome
A Particles (SKU#44202, Ceres Nanosciences, Inc., Manassas, VA, USA)
were added into the 15-ml tube containing 10-ml wastewater and mixed
well. After samples were incubated at room temperature for 10 min,
Nanotrap® Microbiome A Particles pellet was separated using a
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DynaMag™-15 Magnet (Thermo Fisher Scientific, Waltham, MA,
USA). After washing the pellet, 150 pl of 1x phosphate-buffered saline
(PBS) for suspension and 5 pl of MS2 phage control were added to each
pellet, and negative control (RNAse free water); then RNA extraction
was executed using QIAamp Viral RNA Mini Kit (QIAGEN, Hilden,
Germany) following the manufacturer’s instruction (44). MS2 spike-in
to each sample can minimize false negatives. Briefly, 560 pl QIAGEN
Virus Lysis Buffer was added to PBS suspended pellet to lyse the cells.
Following a 10-min incubation at room temperature of the solution, the
Nanotrap® Microbiome A Particles and the lysate solution sample were
separated using the DynaMag™-2 magnet (Thermo Fisher Scientific,

frontiersin.org


https://doi.org/10.3389/fpubh.2024.1394798
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Abera Dinssa et al.

Waltham, MA, USA). The lysate supernatants were collected in a new
1.5-ml microcentrifuge tube, and the pellet was discarded. For high
nucleic acid concentration, 560 pil of 100% ethanol was added to the
concentrate, and the lysate was added to the QIAamp Mini column.
After washing using wash buffer, the QIAamp Mini column was placed
in a clean 1.5-ml microcentrifuge tube, elution was performed using
80-pl Buffer AVE, and the eluted viral RNA was stored at —80°C.

Real-time reverse transcriptase polymerase chain
reaction (qQRT-PCR)

The TagPath™ COVID-19 control was used as a quantification
standard RNA control (1x 10* copies/pl stock). A 10* copies/pl was
diluted to 2x10° copies/pl using dilution buffer and then used as
stock. The stock solution was then serially diluted 5-fold in
low-binding 1.5-ml tubes. The limit of detection of the TaqPath™
COVID-19 is 10 genomic copy equivalents (GCE)/reaction (45), but
we did not do the limit of detection in our setting.

TaqPath™ COVID-19 qRT-PCR reaction master mix was prepared
according to the manufacturer’s instructions (45). A total of 15-pl
master mix was added to each well of the plate. Approximately 10 pl of
extracted nucleic acid, quantification standard RNA, and nuclease-free
water for no template control (NTC) were added to the assay wells
containing the master mix. In the Plate Setup window of QuantStudio™
5 (Thermo Fisher Scientific, Waltham, MA), FAM, VIC, ABY, and JUN
dyes were used as reporter dyes for the viral targets of the primers and
probes: ORF1ab, Nucleocapsid (N) gene, Spike (S) gene, and MS2 phage
control, respectively (45). Thermal cycling conditions included 2-min
of uracil-N-glycosylase (UNG) incubation at 25°C, 10-minu of reverse
transcription at 53°C, 2-min at 95°C for reverse transcription
deactivation, and initial activation of Speed Star HS DNA polymerase,
followed by 40 cycles of 3s denaturation at 95°C and 30s annealing/
extension at 60°C. All samples with cycle threshold (Ct) values of
ORFlab, N gene, and S gene <37; MS2 <32 were considered positive
according to the manufacturer (45).

Determination of viral concentration in
wastewater

The PCR test results were interpreted as follows: when any two or
more of the viral targets were reported, the sample was considered
positive for SARS-CoV-2; when only one viral target was detected
within repeated tests, the result was considered inconclusive; whereas
when all the viral targets were not detected but the internal control
(MS2) detected, the sample was considered as negative for SARS-
CoV-2. Preliminary reverse transcriptase QPCR data analysis and
quality control were performed using the QuantStudio Flex 5 reverse
transcriptase qQPCR software v1.5.1 (Applied Biosystems, Inc., USA).
Viral concentrations were expressed as genome copies of RNA extract
per liter (gc/L). Using Excel and the following formula, viral
concentrations (gc/L) in the concentrated samples were determined:

X . . copies
Concentration of viral genome in wastewater

Copies in RT — gPCR reaction (copies)

x 1,000
Volume of nucleic acid extracted used for RT — qPCR (ml)* x Concentration factor*®
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*I£10 2l of the nucleic acid extract is used in RT—qPCR assay the value inmlis0.01.

s8 . Wastewater sample volume used(ml)
Concentration factor=

Volume of nucleic acid extracted (ml)

Virus concentration levels (genome copies per L) were normalized
by multiplying with the daily WWTP flow rate of specific WWTP and
then dividing by the number of people served to get daily load/persons
in sewershed [million gene copies (MGC)/person/day]. However, viral
concentration levels in all samples from Mikililand WSP were only
expressed as genome copies/L of RNA due to a lack of daily flow rate data.

Estimating the number of infectious
individuals

The number of daily reported COVID-19 cases in Addis Ababa
during the study (February to November 2023) was obtained from the
Public Health Emergency Management Center at the Ethiopian Public
Health Institute. The number of residents served by the WWTP was
obtained from the respective Woreda offices and the Addis Ababa
Water and Sewerage Authority (AAWSA) (Table 1). Using two different
approaches that have been previously published, the number of infected
individuals within each WWTP’s service area was calculated (27, 46).

The equations used for calculation are indicated below:

Method 1 (Equation 1) (27):

Predicted Infected person
( RNA copies ] “ ( Liter of Wastewater]

_ \ Liter wastewater day
g of feces “ RNA copies M
person — day g of feces

A positive individual is thought to excrete 128¢g of feces per
person per day and shed 10" RNA copies per g of feces (27).
Method 2 (Equation 2) (46):

Predicted infected person
Number of RNA copies per liter of wastewater

)

~ Contribution of RNA copies per person to total wastewater

107 RNA copies/g of feces was multiplied by 120 ml of the volume
of feces excreted by humans (considering the density of feces as 1.07 g/
ml), and total wastewater (L) received at WWTP (46).

Statistical analysis

According to the Kolmogorov-Smirnov test, the viral
concentration data were not normally distributed. We tested for
significant differences in viral concentration (gc/ml) across sites using
a Kruskal-Wallis rank sum and pairwise Wilcoxon tests. Spearman
correlation was used to assess the correlation between reported cases
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and viral data. All data analysis was performed using Inter cooled
STATA version 14.0 (College Station, TX, USA). The graphs are
presented using Power BI.

Ethical statement

Informed consent is not applicable for environmental wastewater
samples as no human subject is involved. However, for the use of reported
COVID-19 cases data from Addis Ababa, permission was granted from
the Ministry of Health, which owns the data. For COVID-19 protection,
care was taken during sample collection and analysis using personal
protection equipment and a standardized method. All respective bodies
(government and non-government) participated in this study adhered to
the sample collection and laboratory testing protocols. In addition, this
study obtained ethical clearance from the Ethiopian Public Health
Institute Scientific and Ethical Review Office (Ref. EPHI 6.13/577).
Official approval was obtained from AAWSA, the government body that
administers Addis Ababa city’s water supply and sewerage services. Access
to the treatment plant and site-level information was obtained from
this authority.

Results

Method optimization for wastewater-based
SARS-CoV-2 detection

SARS-CoV-2 detection and quantification from wastewater samples
using the Moore swab method is a relatively new method in Ethiopia,
apart from its use in polio surveillance. The comparison of the on-site
autosampler method in place at KTP and the Moore swab sampling
technique for SARS-CoV-2 detection in wastewater is presented in
Table 2.

As shown in the table, there is no significant difference in the Ct
values of the target genes (ORFlab, N, and S genes) between the
autosampler and Moore swab sampling techniques. Moreover, viral
concentrations (gc/L) of the target genes were not significantly
different using the autosampler and Moore swab sampling technique
(p >0.05; Figure 2). Although the autosampler method of wastewater
sampling is reliable, it has limitations that impede effective

TABLE 2 Comparison of Moore swab sampling technique and autosampler.

10.3389/fpubh.2024.1394798

surveillance, especially from small catchments with limited
accessibility. Since Moore swab sampling is more cost-effective and
requires fewer resources to process, we decided to continue our
monitoring of wastewater for SARS-CoV-2 using this technique.

Wastewater-based SARS-CoV-2 qualitative
test result

Wastewater samples collected from 21 February 2023 to 9
November 2023 in Addis Ababa at KTP, Bulbula WWTP, and
Mikililand WSP were tested for SARS-CoV-2 by qRT-PCR. A total of
323 wastewater Moore swab samples were tested. Each run had
negative controls and produced all negative results. Of these, 304
(94%) tested positive for SARS-CoV-2 by qRT-PCR, defined as a Ct
value of <37 for two or more SARS-CoV-2 target genes. In addition,
14/323 (4%) of the samples tested were inconclusive for SARS-CoV-2
by qRT-PCR, defined as a Ct value of <37 for one SARS-CoV-2 target
gene only in duplicate testing, and only 5/323 (2%) were negative,
defined as a Ct value of >37 for three SARS-CoV-2 target genes and a
Ct value of <32 for MS2 (internal control). Around 95% of samples
from KTP were positive, whereas 2% were negative and 3% were
inconclusive. Approximately 90% of the Bulbula samples were
positive, with the remaining 3% negative and 7% inconclusive. Finally,
97% of the Mikililand samples were positive, 3% were inconclusive,
and no negative results were found.

To determine the presence of SARS-CoV-2 RNA, 33 treated
effluent water samples were taken from these three wastewater
treatment plants. From each wastewater treatment plant, 11 treated
wastewater samples were collected. All treated samples were collected
in the morning from 8:00a.m. to 12:00p.m. by collecting
500-1,000ml of water in sterile plastic containers. The collected
samples were transported using ice and concentrated within 24 h,
using the same process as influent wastewater. The SARS-CoV-2
extraction and detection procedure for treated wastewater samples
was the same as for influent wastewater. Of the total 33 samples, 22
treated wastewater samples from Kality and Bulbula WWTP were
negative, whereas two of the total treated samples from the Mikililand
stabilized pond were positive. Five treated samples from the
Mikililand stabilized pond were inconclusive, and the remaining four
samples were negative.

Date ORFlab of swab  ORFlab of auto N gene of N gene of S gene of S gene of
swab auto swab auto

23 February 2023 32.001 32.543 32.719 33.390 31.571 30.163

27 February 2023 33.361 32,085 33.638 34.101 33.663 30.564

2 March 2023 32.753 32111 36.441 33.578 31.223 31.115

6 March 2023 30.408 29.154 28.942 28.352 30.082 29.475

9 March 2023 30.848 31.617 29.348 29.414 31.593 31.449

13 March 2023 30.443 29.882 28.884 28.241 31.170 30.266

15 March 2023 31.665 29.841 30.119 28.559 31.348 29.577

16 March 2023 31.606 31.185 30.579 29.571 30.761 31.431

The Ct-value of the target genes detected using autosampler and Moore swab sampling technique. The Ct values of the target genes between autosampler and swab sampling technique were not

significantly different (ORF1ab, p=0.1386; N gene, p=0.0858; S gene, p=0.1386).
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FIGURE 2
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Viral concentration of autosampler and Moore swab sampling technique. Comparison of viral target genes concentration level using autosampler vs.
Moore swab sampling technique. ORFlab, N gene, and S gene were the target genes. Target genes with "C" represent the concentration of viral target
genes using the autosampler, whereas target genes without "C" represent the viral target concentration using the Moore swab sampling technique.
The level of concentration of the target genes predicted by the autosampler vs. swab sampling technique was not significant (p > 0.05).

BN gene
* N geneC
4 ORF1ab
A ORF1abC
xS gene

S geneC

3/13/2023 3/15/2023 3/16/2023

Quantification RNA of SARS-CoV-2 in
wastewater

The wastewater samples that tested positive for SARS-CoV-2 RNA
by qualitative methods were subjected to quantitative PCR for three
targets (ORFlab, N gene, and S gene). The performance efficiency
range of the ORFlab, N, and S genes among the test runs was 91.8 to
105.7, 93.0 to 109.8, and 88.0 to 104.6, respectively, and the detailed
results are summarized in Supplementary Table S1.

The concentration of these three viral targets in the influent
wastewater samples across the three wastewater treatment plants
(WWTPs) is presented using a Box-Whisker plot (Figure 3A). The
median viral concentration (gc/L) and (interquartile range [IQR])
obtained for ORF1lab, N gene, and S gene in positive samples from
KTP was 60,388 (21544-430,339), 26,355 (7,748-125,372) and
6,2,573 (12,221-24,9,039), respectively. Similarly, the median viral
concentration (gc/L) and IQR for ORF1lab, N gene, and S gene from
Bulbula-positive samples was 52,780 (19,078-375,512), 38,301
(12,273-186,201), and 43,549 (10476-240,648), respectively.
Whereas the median viral concentration (gc/L) and IQR for
ORFlab, N gene, and S gene in Mikililand-positive samples was
64,762 (18087-309,415), 45,580 (15,681-158,475), and 51,454
(11,318-184,333), respectively. Hence, there was no significant
difference among the study sites in viral concentration: ORFlab
(p=0.7341), N gene (p=0.2087), and S gene (p=0.8721). The
detailed viral load of each positive sample is presented in
Supplementary Table S2_sheet 1.

After normalization of virus concentration levels (gc/L) using
daily flow rate and number of people served by each WWTP, the
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median viral concentration of daily load per person in sewershed
(million genome copies [MGC/person-day]) and IQR was generated.
Accordingly, the values for ORFlab, N gene, and S gene in positive
samples from KTP were 2055 (725-13,400), 861 (268-4,016), and
2,221 (436-7,607), respectively. Whereas, for Bulbula-positive
samples, the results for ORFlab, N gene, and S gene were 477 (136-
2,387),295 (871854), and 383 (69-1786), respectively. Therefore, there
was a significant difference among the study sites in viral concentration
of daily load per person in sewershed: ORFlab (p<0.0001), N gene
(p=0.0008), and S gene (p<0.0001). The viral concentration of daily
load per person in the sewershed of three viral targets in KTP and
Bulbula WWTPs is presented using a Box—Whisker plot (Figure 3B).

Trend of viral concentration in wastewater and
correlational analysis against COVID-19 daily
cases

Figure 4 demonstrates the dynamics of SARS-CoV-2 tests
performed and the number of reported COVID-19 clinical cases for
the year 2023. Daily reported COVID-19 cases of Addis Ababa were
presented in Supplementary Table S2_sheet 2. A significant decrease
of daily cases during the months of April and May 2023 presented in
line with the decrease in frequency of COVID-19 testing.

Positivity rates were in line with viral concentrations predicted by
the three WWTPs (Figures 5A-D).

Virus concentration levels, as determined through WWTP
testing, were normalized for the flow rate and number of people
served. KTP is the oldest centralized system, mostly serving
residents in the central, southern, and eastern parts of Addis Ababa.
Figure 5A demonstrates the wastewater concentration of the target
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FIGURE 3

wastewater treatment plants using Box—Whiskers plot.

(A) Genome copies per L of SARS-CoV-2 gene targets in three wastewater treatment plants using Box—Whiskers plot. The data represents the average
number of SARS-CoV-2 gene copies for ORF-1ab gene, N gene, and S gene per L of wastewater sample obtained in the influent wastewater samples
from the Three WWTPs. (B) The viral concentration of daily load per person in sewershed (MGC per Person-day) of SARS-CoV-2 gene targets in two

genes in samples obtained from KTP increasing sharply starting 2
March (ORFlab=1,123 MGC/person/day, N-gene = 1,234 MGC/
person/day, and S gene=742 MGC/person/day) to 13 March
(ORF1ab = 60,066 MGC/person/day, N-gene = 17,707 MGC/person/
day, and S gene=14,773 MGC/person/day; Figure 5A). Then the
wastewater concentration of the target genes fluctuated up to 27
April within the range of ORFlab =12,453-65,424 MGC/person/
day, N-gene =2,622-17,707 MGC/person/day, and S gene =8,815-
38,031 MGC/person/day. Then the concentration decreased sharply
from 1 May up to 10 May and sustained less than 1,000 MGC/
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person/day of each target genes up to 5 July. Subsequently, the
concentration in KTP increased by 3 October and decreased again
by 24 October (Figure 5A). The trend of concentration of the target
genes in wastewater samples of Bulbula and Mikililand WSP was
almost similar to that of the concentration trend of KTP and with a
bit of difference in time of increments or decrements (Figures 5B,C).

The case-based surveillance unit in EPHI does not have a daily
active cases report for the exact residents that are served by each
WWTP. However, considering the large population coverage of the KTP
(i.e., serving more than one-third of the population and wide geographic
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y-axis on the right represented the number of reported cases.
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coverage), it was found important to make a trend analysis of Addis
Ababa daily cases against the trend of concentration for the target genes
in wastewater samples collected from KTP and Bulbula WWTP.

As indicated in Figure 5D, active clinical case counts doubled from
23 February to 23 March (in 9-21 active cases). This was reflected in
a 15-fold increase in the average concentration of target genes in the
wastewater (ORF1ab increased by a factor of 27; the N gene increased
by a factor of 7, and the S gene increased by a factor of 13). Moreover,
the increase in viral target positivity in the wastewater occurred
approximately 10 days ahead of the increase in reported clinical cases.
Again, at a later moment in the year, a more limited increase of active
case counts from 17 July to 26 July (from zero to three active cases)
was preceded by a wastewater increase starting from 5 July
(ORFlab =356 MGC/person/day, N gene =165 MGC/person/day, and
S gene =142 MGC/person/day), 12 days earlier. This increase lasted
until 16 August (ORFlab=33,318 MGC/person/day, N gene=>5,285
MGC/person/day, and S gene =10,790 MGC/person/day).

The finding indicates a positive correlation between the trend of
weekly average SARS-CoV-2 MGC number in wastewater samples of
WWTPs and the cumulative weekly reported COVID-19 cases in
Addis Ababa. These were statistically significant for all three sites: KTP
(0.5648, p=0.0002), Bulbula (0.4052, p=0.0116), and Mikililand
(0.4247, p=0.0098; Supplementary Table S3).

Estimated numbers of COVID-19-infected
individuals and correlation with reported cases in
Addis Ababa

Two methods were used to estimate the number of daily infected
individuals among the population served by KTP and Bulbula WWTP
based on the SARS-CoV-2 gene copy number obtained from the
wastewater samples (27, 46). The numbers of daily predicted infected
persons using method 1 and method 2 in KTP were similar and
ranged from 10° to 10°, as represented in Figure 6A. At Bulbula
WWTP, these numbers were in the range of 10°-10*. The daily
predicted infected individuals from KTP were 330 times the median

Frontiers in Public Health

value higher than the weekly cumulative reported COVID-19 cases
(Table 3). The median predicted SARS-CoV-2 infected people of
method 1 and method 2 from Kality was 3,303 and 3,523, respectively,
whereas the median of weekly cumulative reported COVID-19 cases
was 10. Correlational analyses of reported cases trend with the
estimated number of infected individuals trend are shown in
Figure 6A and Supplementary Table S3. Similarly, the two methods
resulted in higher mean values of daily predicted infected individuals
from WWTPs compared to weekly cumulative reported COVID-19
cases (Figure 6B). The predicted number of infected individuals using
the two methods followed a decreasing trend similar to the reported
COVID-19 cases in Addis Ababa, and a statistically significant
correlation was observed with data from KTP WWTP using Spearman
correlation (r=0.5307; p=0.0006) and Bulbula WWPT (r=0.4816;
p=0.0022). However, there is a significant difference between the
number of predicted cases and reported cases for each surveillance
week (p<0.0001 for KTP and p=0.0029) for Bulbula WWPT.

Discussion

Numerous studies conducted since the beginning of the
COVID-19 pandemic have shown that WBE is a useful tool for
tracking the evolution of the pandemic and providing early warning
signs for the emergence or reemergence of public health threats (47,
48). The SARS-CoV-2 limit of detection in wastewater is principally
determined by three laboratory procedures: virus concentration, RNA
extraction, and qRT-PCR. The concentration method used here is
known to preferentially bind intact virus particles but not cell-free
nucleic acid. Thus, using other crude concentration methods or
laboratory procedures without concentration may overestimate the
intact viral burden. Using a technology that binds intact virus particles
also provides greater evidence of active infection vs. cleared viral
nucleic acid. Grab and autosampler sampling are the two most
common wastewater sampling methods, but grab sampling has
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FIGURE 5
Trends in the viral target genes concentration of wastewater over time for three WWTPs in Addis Ababa (February 22, 2023—-November 9, 2023):
(A) Trends in the viral target genes concentration of wastewater over time for KTP, (B) Trends in the viral target genes concentration of wastewater over
time for Bulbula WWTP, (C) Trends in the viral concentration of wastewater over time for Mikililand WSP, and (D) A comparison between the COVID-19
cases illustrated in purple color line that were reported in Addis Ababa and the SARS-CoV-2 target genes concentrations in KTP. The y-axis on the left
represented the MGC/person-day of the target genes, whereas the y-axis on the right represented the number of reported cases. The correlation
between the trend of daily reported cases and RNA concentration was significant (p < 0.05) in Kality. The number of cases and average SARS-CoV-2
concentration is based on the 7-day rolling average.

drawbacks in terms of missing viral shedding discharges to sewers,
and autosampler has limited accessibility (49). Our result showed that
the concentration of target genes was a bit higher in the autosampler
compared to the Moore swab sampler (Figure 2). The primary cause
of this discrepancy may be the Moore swab or gauze sampling
methods” uptake rates, which could have been affected by inhibitors
or virus losses after 8 hours of contact to the wastewater samples (50),
which in the current study was installed for 24h. However, no
significant difference in the Ct value and viral concentration was
observed between autosampler and Moore swab samples for SARS-
CoV-2 target genes (ORFlab, N, and S genes), which is consistent with
other studies (51). We conclude that Moore swab sampling is a more
economical and resource-efficient sampling technique for the
monitoring of SARS-CoV-2 in wastewater in our low-resource setting
and may be extended to other pathogens of interest.

In our study, SARS-CoV-2 RNA was detected in a majority of
influent wastewater samples (94%). This high rate revealed a much
higher COVID-19 prevalence than actually clinically detected. A prior
study using an antibody prevalence analysis showed that there was a
significant underreporting of COVID-19 cases in Ethiopia (52). This
can be explained by the fact that the far majority of actual COVID-19
cases in Addis Ababa are either mild or asymptomatic, with patients
not seeking healthcare and testing services (19).

The positive SARS-CoV-2 detection rate in Addis Ababa was
approximately identical to that of Kenya (81%) using the same
technique of collection and testing (53), but higher than that of
Malawi (8%) using samples taken from rivers and defunct WW'TPs
(33). In Malawi, samples from the defunct WWTP were found to have
higher SARS-CoV-2 positive rates (21%) than river water samples
(7%). Thus, the discrepancy in positive rate between our findings and
Malawi might be attributed to the variance in viral shedding
discharges into sewer lines of WWTP, rivers, and defunct WWTP
(54). Furthermore, the variation in results may be attributed to
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TABLE 3 The median Reported COVID-19 cases and predicated infectious
cases.

Median Median predicated
COVID-19 COVID-19 cases
reported
ey Method 1 Method 2
Addis Ababa (46)
Kality WWTP 10 3,303 3,523
Bulbula WWTP 10 17 18

differences in flow rate, methodology, data collection, and actual virus
concentration differences since Malawi used grab sampling and
polyethylene glycol (PEG) with no internal control (MS2) and
potentially generated false negatives (55). The intensity of community
transmission of SARS-CoV-2, the timing of the study, and the
population served might also be important variables that make a
difference observed for the positivity rates. The SARS-CoV-2 viral
copy numbers (GC/L) of the amplification target genes were similar
over the year 2023 (ORFlab =10°-10° N and S genes =10*~10° gc/L)
in all three WWTP influent wastewater samples. This result shows the
genome copies per 10 ml were not different at each treatment plant.

However, we observed a significant difference in terms of daily
load per person for all target genes between KTP and Bulbula
WWTPs; this is attributable to the difference in the prevalence of
infected individuals that are served by each plant and the flow rate of
the treatment plants.

For treated wastewater samples, the SARS-CoV-2 RNA was absent
inall (n=11 each) of the treated wastewater samples from two wastewater
treatment plants (KTP and Bulbula). This result suggests that the UASB
used in KTP and MBR technology used in Bulbula can successfully
remove SARS-CoV-2 from wastewater to levels that are under the limit
of detection of qPCR. However, at Mikililand WWTP (using a
stabilization pond) SARS-CoV-2 RNA was still detected in 2 treated
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FIGURE 6

Reported and predicted COVID-19 infected cases across 2 WWTPs, (A) Trends in the COVID-19 reported cases and daily average predicted infected
individuals using Ahmed et al. (27) and Hemalatha et al. (46) methods in Kality and Bulbula WWTP. The y-axis on the left represented the number of
predicted cases using two methods, whereas the y-axis on the right represented the number of reported cases. The correlation between the trend of
cumulative weekly reported and daily predicted COVID-19 cases was significant (p < 0.05) among the two WWTPs. (B) The figure represents the mean
of COVID-19 reported cases of each WWTP during the study period and the predicted infected individuals using the Ahmed et al. (27) and Hemalatha
et al. (46) methods for each WWTP for the study period.
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wastewater samples (n=11), 5 being inconclusive. This demonstrates the
limitations of the applied treatment method for viral eradication. Similar
results were found in research conducted in Spain (56), where 2/18 of
treated samples still tested positive for SARS-CoV-2.

In general, it is important to emphasize that the models used in
this study may be crude compared to some of the more recently
developed models generated. The Pepper Mild Mottle Virus
(PMMoV), which is the most abundant RNA virus in human feces
and occurs naturally in wastewater, has been used in recent studies
(57, 58) to normalize qRT-PCR data. This approach may be more
reliable in estimating the depth of infection in a community and could
be used in an Ethiopian setting as well in the future.

Generally, we found fluctuating viral concentrations (MGC per
person-day) over the study period. The overall change in the SARS-
CoV-2 viral load in wastewater is positively correlated with reported
COVID-19 clinical cases though the clinical testing frequency was low.

Thus, our result shows a significant positive correlation between
trend viral loads in wastewater and reported COVID-19 clinical cases.
This finding is consistent with previous studies in New York (59),
India (60), and Hong Kong (61). In our setting, the increase in viral
concentration started in the wastewater approximately 7-14days
ahead of the increase in COVID-19 clinical cases, as reported
elsewhere (21). Furthermore, the amount of virus in wastewater did
not drop off when the number of COVID-19 clinical cases significantly
declined, which is consistent with a prior study that showed viral RNA
might remain in fecal samples for up to 10 days (62).

The higher daily predicted infected persons from KTP, which
was 330 times greater than the weekly cumulative recorded
COVID-19 cases, revealed the high prevalence of asymptomatic
individuals shedding SARS-CoV-2 to the sewage system in the
catchment area. This is in line with previous studies in Ethiopia that
have shown a significant inverse correlation between parasite
infection prevalence and lack of COVID-19 symptoms due to shifts
in activation status of the immune system (63, 64). Most people
infected with SARS-CoV-2 in Ethiopia do not get sick (15), partly
due to widespread parasitic infections (65, 66) and they may not seek
medical care. Alternatively, the difference may be a result of the delay
in active case reporting because qQRT-PCR testing is biased as many
tested individuals are not randomly undergoing diagnostic
procedures, but their participation is motivated by the onset of
symptoms either in themselves or in the person sharing their work
or living environment, the prevalence of asymptomatic infection
within the community as measured by rapid antigen tests might
be underestimated due to sensitivity issues (67). On the other hand,
the daily predicted infected individuals from Bulbula WWTP were
merely 1.8 times the median value of the weekly cumulative reported
cases in Addis Ababa (Table 3). The difference in predicted infected
people in KTP and Bulbula is primarily attributable to the difference
in flow rate at the treatment plants (Supplementary Table S3), which
may further depend on the number of people served. Accordingly,
the more the population served, the more viral shading is in
the wastewater.

Conclusion

In conclusion, this study was undertaken to assess the presence of
SARS-CoV-2 in the wastewater samples in three WWTPs in Addis
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Ababa and evaluate its predictive value for clinical COVID-19 case
reporting. Nanotrap® Microbiome A particles, Nanotrap®
Enhancement Reagent 2 method, and Moore swab collection methods
appeared to be effective in concentrating the virus from wastewater
and can, therefore, be used in resource-limited settings. The
significantly higher rate of SARS-CoV-2 detection from wastewater
samples suggests a hidden high prevalence of COVID-19 disease in
the population that remains overtly asymptomatic and/or
underreported. Effluent wastewater treatment was only partly
successful in making SARS-CoV-2 RNA undetectable at the KTP and
Bulbula WWTP but not at Mikililand, indicating cautiousness is
recommended. The peak in SARS-CoV-2 positivity rates in wastewater
typically indicated a rise in clinical COVID-19 cases within 1-2 weeks
later. The wastewater surveillance experience developed through this
project can be applied to other national priority diseases in the future.
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Advanced optimal control
approaches for immune boosting
and clinical treatment to enhance
dengue viremia models using
ABC fractional-order analysis
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Krishnasamy Karthik**
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Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia,
SDepartment of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science
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Introduction: This work focuses on the Dengue-viremia ABC (Atangana-
Baleanu Caputo) fractional-order differential equations, accounting for both
symptomatic and asymptomatic infected cases. Symptomatic cases are
characterized by higher viremia levels, whereas asymptomatic cases exhibit
lower viremia levels. The fractional-order model highlights memory effects
and other advantages over traditional models, offering a more comprehensive
representation of dengue dynamics.

Methods: The total population is divided into four compartments: susceptible,
asymptomatic infected, symptomatic infected, and recovered. The model
incorporates an immune-boosting factor for asymptomatic infected individuals
and clinical treatment for symptomatic cases. Positivity and boundedness of the
model are validated, and both local and global stability analyses are performed.
The novel Adams-Bash numerical scheme is utilized for simulations to rigorously
assess the impact of optimal control interventions.

Results: The results demonstrate the effectiveness of the proposed control
strategies. The reproduction numbers must be reduced based on specific
optimal control conditions to effectively mitigate disease outbreaks. Numerical
simulations confirm that the optimal control measures can significantly reduce
the spread of the disease.

Discussion: This research advances the understanding of Dengue-viremia
dynamics and provides valuable insights into the application of ABC fractional-
order analysis. By incorporating immune-boosting and clinical treatment into
the model, the study offers practical guidelines for implementing successful
disease control strategies. The findings highlight the potential of using optimal
control techniques in public health interventions to manage disease outbreaks
more effectively.

KEYWORDS

dengue fractional-order mathematical modeling, Atangana-Baleanu operator,
Lyapunov stability, basic reproduction value, optimal control, Adams-Bashforth
method
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1 Introduction

Worldwide, thousands of dengue cases are reported every year.
The world’s tropical and subtropical regions are affected by dengue
infection, which is a mosquito-carrying disease. A high temperature
and flu-like symptoms are signs of mild illness or asymptomatic to
stern disease. DHF (Dengue Hemorrhagic Fever) or DSS (Dengue
Show Syndromes Syndromes) is a highly infectious form of dengue
fever that causes serious bleeding, shock, and death. Generally,
it was noticed that only one out of four dengue contagions is
symptomatic. Dengue virus occurs in four major types (DENV
types 1, 2, 3, and 4), all of which can cause serious illness. The usual
signs of DENV type 1 are like a common cold and mild fever, which
will not lead directly to DHF; conversely, later DENV types can lead
to DHF (1-3).

To understand the dynamical behavior of dengue transmission,
we formulated a mathematical model, particularly focusing on
vector-borne disease transmission from mosquitoes to humans.
Esteva and Vargas (4, 5) pioneered the creation of a fundamental
dengue model and explored numerous fundamental mathematical
concepts and their accompanying numerical simulations. Feng
et al. (6) presented a two-strain dengue infection model and
examined competitive exclusion. Researchers have conducted
numerous studies to better understand the transmission of dengue
fever (7-9).

The importance of fractional-order models lies in their ability
to capture the complex dynamics and long-term dependencies
within the transmission process. By incorporating fractional
derivatives, these models provide a more comprehensive
understanding of disease spread, which is crucial for designing
effective intervention strategies. The fractional-order models can
accommodate the nuanced behavior of dengue transmission,
offering insights that integer-order models may overlook,
thereby enhancing the accuracy and effectiveness of disease
control measures.

The fractional order model has been conclusively demonstrated
by a recent study to be capable of controlling the trend of complex
diffusion disorder (10-14). Many have emphasized various
mathematical models for Dengue transmission and prevention
(15-19). All cited references explain the transmission process of
Dengue infection from different perspectives, including dynamic
analysis, evaluation of vaccination, and optimal control measures
(20-24). The most updated studies on Dengue with real-life data
are presented in (25, 26). The mathematical description of Dengue
is briefly described in Deterministic and Stochastic terms. The
evolution of dengue with asymptomatic carriers using optimal
control measures was investigated in (27).

Therefore, motivated by the aforementioned literature, we
propose a computational framework for the dissemination of
dengue at a given viremia level. We investigated whether symptom-
free people were markedly more susceptible to mosquitoes
than clinically symptom-positive patients. The new idea of a
mathematical model to analyse the immune-boosting factor for
asymptomatic infected cases and the waning immunity that
cases re-infect is reported. To make practical applications and
simulations easier, we utilize the Adams-Bash forth numerical
scheme, which is renowned for its accuracy and stability. This
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choice ensures that our model reflects real-world scenarios while
maintaining computational efficacy. A key highlight of this study
is the incorporation of optimal control strategies into the ABC
fractional order Dengue viremia model. These strategies are
designed to explore how interventions, such as self-prevention and
vector control, can be optimized to curtail disease spread. The
analysis extends to investigating disease-free and endemic stability,
providing crucial insights into the long-term behavior of the system
under various control scenarios.

This article is prepared as follows: In portion 2, we review
the fundamental definitions for the fractional-order operator
and provide a list of mathematical properties that were used
throughout the work. The dengue viral mathematical model with
fractional order was presented in portion 3. Portion 4 examines
the local as well as global consistency of the suggested model
through the Routh-Hurwitz criteria and the Lyapunov function.
An optimal control solution and discussion are present in portion
5. The final section focuses on numerical simulations and a
comprehensive conclusion.

2 Fundamental results

This section introduces fractional derivation and some of its
properties, which will be used in the following components.

Definition 2.1.

Consider ¢ € " (0, T)and 5 € [0,t], then Atangana-Baleanu
fraction component in Caputo case is

N(n) £ d n
ABC
05);#/ ) = /0 1//(8)./\/,,[ 1 n(; 8)] ds

I1—1
(1)

The method yields a variation operator Caputo-Fabrizio
that replaces

N, [—LO;—S)} dS by N1 = exp [—L(x—&]
1= L=
It's noteworthy that ABCO’DZ [constant] = 0. Here AV () is the

typical function and it is defined as N'(0) = 1 and N (1) = 1.
N (n) depict the familiar Mittag-Leffler operator, it also reflects

the exponential function generality.

Definition 2.2.
The fractional integral of ABC with order 1 given by

— £
ABGT 0= L0 + —— [ ) a-5y as
ot N N@Twm Jo
)
Lemma 2.1.
Consider a fractional-order system
ABCD{x (1) = f(h2), £ > 1o (3)

Where ne (0, 1) in the initial case x(tg).

If /(t, ) fulfills the Lipschitz condition in relation to x, then
system (Equation 3) exhibits a unique solution in the region
[tp, +00) X p and ¢ C R".
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Lemma 2.2.
If x(t) e

consequence. Then

RT become an ongoing and attainable

) =(-

Here t > ty, 1e(0,1) and 2* € RT.

J:*

()

X

AB%@Z (.r (t)—a*—2"In (f)

X

) ABEY (1)

(4)

3 Evaluation of dengue dynamics

In this section, we expand upon the previously described
SIR-SI (18) by incorporating additional
and the classification of both human
and mosquito populations. Our includes
immune-boosting

Dengue model

factors refining
model viremia

levels, an factor for asymptomatic

infected cases, and clinical treatment for symptomatic
infected cases.
To study the mode of spread of dengue sickness, the human

species (Nj) is subdivided into four classes: susceptible (Sb),
symptomatic infectious (Tsh), asymptomatic infectious (T Ab)

and recovered human populations (£y). We classified female
mosquito species (M) into Susceptible (3y) and infective
mosquitoes (Ty). A Susceptible individual among as one who is
not infected and immune, infected humans are both asymptomatic
and symptomatic are those who have acquired Dengue viremia
from an infected mosquito populations and are all capable of
spreading dengue virus to susceptible mosquitoes. Let we examines
my and my, the acquisition rates of humans and mosquitoes. The
proposed model, illustrated in the flowchart, demonstrates the
dengue transmission dynamics. Based on Figure 1, we developed

FIGURE 1
The process diagram in dengue dynamics.
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the following differential equation.

d%
G =Ty —om (Xsh + )(_Ah)sh‘fm — 353 + 0Ky
s,
it = Otm)(shsh‘zm - (f +y+ (Sh) Tsh
d¥ 4,
Tﬁh = omxA,%Tm — (047 +8) Ta,
dfy
= (S5, +T4,) 0% — 08 + 7Tg + 0%,
&
= e (Tg, + Ty ) S b
s,
d;m = CmXm (ssh +% An) S — SmTm
(5)
Where

O - individual mosquito’s biting rate

Xs," Dissemination to human by mosquitoes, which leads to a
symptomatic infectious in humans

XAy, - Dissemination to human by mosquitoes, which leads to a
asymptomatic infectious in humans

Xm- Viremia dissemination to mosquito by human species

8y - Human Fatality rate

7 - Symptomatic infected human treatment rate

y - Recovering rate.

0 - Transition rate at which a recovered person becomes
defenseless due to loss of immunity

0 — Rates of immunosuppression for asymptomatic victims

8m- Rate of mosquito natural mortality (an average mosquito
life span)

From the basic cases (Sh R TSI ) TAb,Rh,Sm, Tm) >0.

In this approach, the ag’gregate human and mosquito
population ratios are provided by

Ny =% + Tg, + T, + Ry and Nuw =% + T

In addition, the area of biologically significance for the
aforementioned dengue model is indicated and presented by the
covered set

® = [sh T, Ty S, T € R 18+ Tg + T, + Sy
< N3 + T < N}
A fractional representation of the B¢ model as
‘AB%@;% =7y — A <X$h + XAb) Shzm — &)Sh + 08Ky
.ABCO@zTSh = amxsbshim — (‘C +vy+ 5(,) Tsh

ABC

O’DQTA,, = OthAhShgm - (Q +vy +(Sh)gAh

n
ABCDIRy = y (ssh +Ta,) — 0%y — 8y + rTg +0Ta,
AB%QZSm =TTm — Om Xm (‘Zsh + ‘ZAh) S — Sl
AB%@;Tm = UmXm (Tsh + TAh) N
(6)

A fractional derivation of Atangana-Baleanu of order
0 <7 < lisdenoted ABCOZDZ in Caputo notation.
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4 Model analysis

This section examines the validity, singularity and positive
variance of the solution of the SIR-SI type model. Additionally, a
reliability estimate for Model (Equation 6) has also been developed.

4.1 Existence and uniqueness

Theorem 4.1.
For each non- negative initial stage (Sh 0), ‘Zsh 0), Ta,0),

£ (0),3m (0), Ty (0)) € Ri, then there survives a oneness
solution of fractional order model (Equation 6).

Proof

Let & = {Sh,‘fsh, T Ay R ¥ T € RS, : max (3],
%5, || T 8] 8] 1Tl ) <

Define a mapping

M (x) = (M (v), M (x), M3 (x) , My (v) , M5 (x) , Mg (x)) and
M (v) =5 — am (Xsh + X-Ah) Shgm — ath + 08y

M, (x) = amxshSh‘Im — (‘L’ +vy+ 3[)) Tsh

M3 (2) = tmx A% Tm — (0 + ¥ +8) T,

My (x) =y (TSH + TAU) —0Ry — Ry + 1 S:Sh +0%4,

Ms (v) = Tm — o Xm (‘3:5'7 + TA;,) Sm - Smsm

M (1) = atmXm (Ish + ‘E.Ah) S — dmTm

Where x = (Sh , ‘Ish, T 4y R 2ms ‘Zm> S

Foranyx,r € &, we have

[M @ - M@ = M1 @) - M @) + M2 @) - @

+ M5 @) - M @)

+ ‘M4 () —m’

+[Ms @) = M5 @) + M (2) — M )|

< ‘m; — O (xsh + XAn>Sh§m — 8% + 08y — 7y

+otm (Xgh + XA,,) $Tm + 6;,%9,@7‘

+ ‘amxshshfm — (47 +8)Tg, —anxg $Tn
+(r 4y +8) g |

+ ‘amXAhShTm — (0+ v +38) T4, — OmxAHTm

+(o+y +8) Ta,|

+‘y (TS,, + zAh) — 0%y — 8yS%y +7 Tg +0 T,

—y (Tsh+ TAh) +0Fy + 8%y — 735 — 0T,

+ |7 = cmtm (Tg, + Ta,) S = B = 7 + it

(s, + Tar ) S + 80| + et

(T, + T4y) S0 = T — amtm(Tg, + Ta,) S + Sna|-
< [20m (x5, + x40 P+ 8| 8 =S5 + (27 + 2 + &)

5, — Fs, | + (20 +27 +3)
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‘ Tay — TAP}’ + (29+5’J) ‘ﬁh - ﬁif)‘ + [Zam (Q+R) xm + 5;,]

S =S| + [T — T = K = 7.

20tm ()(Sh + XAh) P + 8y,
Where £ = max {3 (7 4 y) + 86,2 (0 + ) + 8y, 20+55,

200 (Q +R) Xm + (Sh)(sm
Basically, since M () satisfies the Lipschitz requirement. Model
(Equation 6) has a singular solution based on Lemma 1.

4.2 Positivity solution

Since system (Equation 6) deals with mosquitoes and populace,
all components of system are positive. Following is our discussion:

Theorem 4.2.

Let ($h> Tsh, LAy Ry Sis Twm) > 0 be represent
the system (Equation6) solution for the primary points
S (0), ‘Zsh (0), T A, (0),8(0),%: (0), T (0) and represents
an immutable set

i m

o =5, Tg,: Ty K T € RE NG = T, Mo = ml,
then, all elements of the closed set

® is traveling in Ri space is positive invariant.

Proof

The given equation is used to construct the Lyapunov function:

L) =@ ®), L2 () = G + T + T, + Rpo 3 + T)
The function IL (t) satisfies
L) = (L (1), Ly (1) = (Sh + Tsh + T;Ah +ﬁh,§;n + im)
= (m] — 8[)5;] - Tsh(sh - TAhSh— ah-ﬁh)”m — (Smsm — (Smlm)
= (7‘[[) — dplly, i — (Sm]Lg) (7)

Therefore, it is simple to demonstrate Equation 7 as regards:

Li () =g — 8pL1 <0, forLy = 3 )
Ly (8) = 7tm =l <0, forLp = 3=

Inferring L (#) < 0 from the above equations, which indicates
that f is positively stable collection. On the other hand, by solving
system (Equation 6)

0< (Ly(t),Ly (1) < (’;—: + 1Ly (0) e ¥, ’5’—‘“ + L (0)e” W)

Where L; (0) and L; (0) are the primary states of IL; (t) and
L, (t) respectively. Therefore, t — oo, 0 < (IL; (t),Ly (£) <

Ty 7w
8y Om

This establishes the theorem.

and we can conclusion that ® is a desirable set.

4.3 Basic reproduction value Rg

Let Cy = S, gg , *Ah,ﬁ;;ﬁ;, T be the contagious free
h

equilibrium of Equation 6. We have Cf = (g—?, 0, 0, 7;—“‘, 0). The
h m

algorithm of the next iteration matrix is utilized to estimate RRy.
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Obviously, the infected compartments are TS , % Ay and T, as a
h

consequence of Equation 6. There are

BC T
A OQFZSK, = amethgm - (I +y+ 55) Tsh
ABGDL Ty = amx % Tm — (0 +y +3) Ta,
AB%@Z‘Im = UmxAm (Tsh + ‘Z_Ah> S — T )
Then we derive
0 0 amxs
F= 0 0 amxa |
ameSm OlmeSm 0
T4y +38 0 0
0 0 Sm

The basic reproduction value is given by
T T (XSh + XAb>
B )’ (v +7 +8) (0 +7 +8)

Where p (F V1) denote the spectral radius. Surmise that Cp=
&7, TE T, /L8
b

Ro= p(FV7') =

S p N o ¥m> T) represents the endemic equilibrium

for Equation 6. So that
(60 4 8p)uruz

S** _
’ (am (Xsh + XAh) Tm+ 5[1) Uy (9 + Sf)) — Oam Tty
. amXShshgm

% up
Tj _ OlmXAthTm

b U

o amsh‘lmm

"0+ 8w
S** _ ULUZTTm

" o Y3 Ttz + Smur
e _ 6 + Sb)u3amnh§m — SpurUzdm

m

(Xgh + XA;)> us — Buy
Where uy = 74+ y +8 p = o0+ y +8 uz =

wiXAy +oU2Xg, us = ixa, (THy) + axg (@+y),and
Us = Uiy (9 —|—5h )Sm.

4.4 Local stability

In this part, we are covering the analysis of firmness conditions
of contagious free equilibrium Cy and contagious persistence
equilibrium Cp points. A steady state analysis of this equilibrium
results in the following Theorem 4.3 and Theorem 4.4.

The obtained Jacobian matrix is:

—Qy (Xsh + XAh) Tm — 8y 0 0
amXShTm —(t+y +8) 0
5_ om X Ay T 0 —(o+y +d)
0 T+y o+vy
0 —Um xmsm —Qn XmSm
0 Ol Xmm O X
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Theorem 4.3.

If Ry < 1, the non - contagious equilibrium C fis locally stable.
Proof

The structure (Equation 6) in the Jacobian matrix of C 1 follows

—8 0 0 0 0 —am (XS + XAh) ;T':
h
0 —(t+y+38) 0 0 0 anxg %{"
h
J(C,): 0 0 —(@+ v +38) 0 0 amXAh%:
0 T+y o+y —(0+38) 0 0
0 _amezT"" _amegT"" 0 Sm 0
0 O Y 5 O Xom 5™ 0 0 —8m

(11)

To determine the eigenvalue from the above-described matrix

det (J (cf) - ,\s) =0
We obtain the Eigen values A; = —8y, 1o = —(7 + y + &p),
A3 = 8m, A4 = 0 + 8y and the characteristic relation is

Mt (o+y +8+8m) At+dm(t+y +8) (0+ v +8)
[1-Ro]l=0

When Rg < 1, it is obvious that x5 < 1 and A < 1,

all the Eigen values satisfy the condition |arg(),)| > %F, i =
1,2,...,6. the without contagious equilibrium Cf is locally
asymptotically stable.

Theorem 4.4.

If Ro > 1, the equilibrium point Cp is locally stable, then
system (Equation 6) has ubiquitous contagion.
Proof
Jacobian matrix evaluated in static equilibrium:
det (3(Cp) —2%) =0 (12)

We obtain the Eigen values are h; =

(otm xm (Té: + Tjﬂ)) + Sm)»

(0 +38), » =

A3 = o ( Xsh +x -Ah) T5F 4 8y and the characteristic relation

M4api+ar4a3=0 (13)
Where
a) = (T+Q+2(y+5h))

a = (0+y+8 +6m)[(r +v +8) —om? (Xsh + XAb) XmSZ*S,’;*]
a3 = (t+y+38)[(0+y+38)bm —am? (XSh + XAb) XmSZ*S:f}

By using Routh-Hurwitz Criteria (22, 23), if the following
provisions are handling

0 0 —am (XSh +§XA;,) %
0 0
O(mXSI7 h
0 0 OlmX.AhSh (10)
— (0 +8p) 0 0
0 —(ame(TSh + T.Ah) + Sm) 0
0 ame(TSh + ‘I.Ah) —&m

frontiersin.org


https://doi.org/10.3389/fpubh.2024.1398325
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Vijayalakshmi et al.

a; > 0,a; > 0,a3 > 0and aja, —az > 0.

Then Cp is approximately stable locally. The evidence
is conclusive.

4.5 Global stability

Theorem 4.5.
If Ry < 1, the point of without contagious equilibrium C 1 is
global stability on ®.

Proof
Create a Lyapunov function V; (t),

Vi(h)= (Sh -$ lnSh)+iSh + T4, + 8y + (Sm . 1n$m) + T
(14)

Calculating the fractional order derivatives of V; (t) in the
solution direction of Equation 6, from Lemma 2, we obtain

%

%
A
Bl vi) < (1—Sh

+A5DYTg, + P90 T, + DYy
s*
1— -0
+1-g
S*

(1

) ABC @ns

) ABCD {8y + AP0 T

=

%
+ (amXSthgm - (f ty+ Sb) T&])
+ (emx a4, Tm — (@ +v +38) Ta,) + ()/ (Tgh + TAn)

08y — 8y +T Ty +o Ta,)

+ (1 5 ) (nm — O Xm (Tsh + TAh)Sm —émsm)

+ (Olme (‘Ish + TA;,) S — Sm‘Im)

k
< 7y (1

—6;,5;, + 5(]5:; + 0 Ry (1

) (my —m (15, + 220 5 — 3% + 05

*
m

] % *
Sh> + amXShShgm + (me.AbShTm

M

S
by _
h) 5hTSh

S,

S*
_ah‘IAh — 08y — Sy Ry + T (1 — 5:) + o Xm
S*
(g, + %) 5m< = sm) — 50T
m
Substituting the reaction of without contagious free
C/ = (m‘ 0, 0, 8‘“, 0) we obtain:
3 S, SIS
ABC TV (£) < (my +85) (2= = — 2 | + (rm — b)) [2— 2 — 2
o w= (nh h) Sh Sh (T[ : Sm Svn
(15)

It is clear that each term in Equation 15 must be negative. We

have ABCODW V1 (t) < 0 due to LaSalle’s invariance principle (24),

the function ABCOQ;Z V1 (t) is required to be negative finite.

Frontiersin Public Health 103

10.3389/fpubh.2024.1398325

z, Sm = S which is
T+ contains the limit set

The maximally invariant sets 3, =
singleton C; = (8, T, Tay N
for each solution. This demonstrates C 1 is globally asymptotically
stable on ®.

Theorem 4.6.

When Ry > 1, the positive contagious equalization level of
system (Equation 6) arises and is globally stable on ®.

Proof
Let’s create a lyapunov funct<'on of the followiv\f form

Vo = (3-8 1n§b> + (T, - s,

+(Ta, - T In Ta,)

+ (% = & K ) + (Sn = 8 InSw ) + (Tw — T In T
S**
ABGDE V2 (1) < (1 - S"ﬁ) ABGDS;
T** oo
% | aBc Ay \ asc
+<1— Sh) @L‘Ish—F I_T_Ah @L‘I_Ah
(- ) e
S**
+ (1 SZ) ABCDS, + (1 - —m> ABCD{ T,
< l—g b —om |\ XS T XA, ShTm—ShSh—kGﬁb
b
T**
+ 1——S (ctmxg, $5m — (r+7 +5;) T )
b
+(1- Ay (amxa,%%Tm — (0 + v +8) Ta,) 1—2?;*
(I.Ah m X Ay h2m oTvVy h) A R

7 (Ss, +Ta,) — 0% — 8% +7Tg + 0,

1 —

S
(TS + IAb) Si

S** "
< m (1 ) + om (X$b+XAI1)Sh T —Shsh (1_

Y
** By
%
%
(Xsh TS + XAy = g

=8y T a4, <1 -

Kk
Ry

Ry

- Bme)

sk

b

<)

Sy

:3:**

+9ﬁh S

(‘L' + ]/) 5(,‘3:5'7 (

**

)im-f—(g-i-y)‘l

Tk

- ) — (T, + %)

T A,

Kk kk
-5

o s (1o 2 +<r‘§ +91A)R—"
b b7 Ry Sh b Ry

5 5
+otm Xm (Tﬁh + TAn) (Sm + 3 = )

ABSD{ V) () < (7 — 8y + 05)
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. T** 3:

S
(-T-2)reer-mf-g-
b ) 3, S,

+e+r—35)
Kk Kk
Ay TA@) b )
2— - +(y+8—-0)|2— - -
( LA, *Xh Ry ﬁ;;*
ok " ek Tm
) 22— Sm 2 -2 — 16
+ (T m) Sm S:;* + 0m ( T, T*m*) (16)

Hence, the condition in Equation 16 ensures

ABCDL Vs (1) < 0 for all ( b 3Sh TR S zm> €
® and strict the quality holds for S = ¥ = $;", Ty, 5
T 4, ‘ij{h,ﬁh = RB‘*,Sm = 5:1* and T, = T3, therefore the
equilibrium point Cp becomes globally stable on .

10.3389/fpubh.2024.1398325

adequacy condition required for the control system to be satisfied.
Equations 17, 19 can be transformed into the following point-
wise Hamiltonian H for (U;,U,) regression problem using the
aforesaid principle.

H = {a%; + 6T, + cTa, + dSm + T + fUL* + 9157}
+)ush {ﬂb — O (Xsh + XAb) ShTm — ShSh + 608, — Up (b) Sb}

+ )»gsb [amxshshgm - (‘L’ +v+ 51-,) Tsh}
+)“‘3:Ah {amXAbShIm - (Q +vy+ 8h) T.Ah}
+ )\gm {7Tm — OmXm (Tsh + (IA;,) St — 8mSm — Uz *) Sm}

g, {amim (Tg, +Tay) S0 —0uTw — U2 OFn|  (20)

Where ASO, )qs , Ax Ay AS; and Ag,, are the ad-joint variable
h

or co-state variable.

5 Optimum control approach

In this portion, we will discuss how to optimize the problem
and analyze the performance of the control function. Consolidation
of optimal controlling problem a dynamics of control system can be
described as system (Equation 6).

ABCDIS) = 7y —am (g, + XA, ) Sy — 84Sy + 05 — Ur (9) Sy
ABCO’DZTSh =amxs $Tm — (T +7 +8) T,
ABCOQZTAh = amX.AthTm - (Q +v+ Sh) S.Ah

AB%QZSm = Tm — CmXm (‘Zsh + TAh) S — 8mSm — Uz () S

ABCD T = it (T, +Ta,) S0 — ST — U () T

di

S, oH
Tl; = Tsh =a +)\‘S[~| {—Otm (Xsh +X_Ah)‘fm —8;,}
_ ()u;:sh + Ax"‘b) O (Xsh + XAh) T
di

S 0+ aag (= e+ +))

di 9T % s, f
+}V‘ImameSm
dhz 4 oH

b = =c—ig U

o T4, cTAg, 1 (B)
g {= (0 + ¥ +85)} + Axy o tm¥m
d)usm 3 ﬂ

dt Sy

(17) =d+ig {~amtm (TSK, +T4,) = bn— U2 ()]
Where +ig, (ame (Tgh + TA;,))
U;— Self-precaution (long sleeved pants and shorts, increase dis ol
immune system, consultation at & 9%, f?)@m{ — 8 — Uz (1) }
the neatest health care) minimizes the susceptible individuals.
U,— Use of chemical insecticide sprays destroying the - (ATS + Az Ah) Om (Xsh + XAb> Sy + As,
susceptible and infected mosquito cases f
The optimal solution being minimized could be expressed as: |—0lm ( Xs, +x Ah) S ] (21)
h
s - .
C UL Uy = / 1 <a§h i M'S +eTa, + B+ eTo +U,2 + gUzz) & The conditions for transversality are
o h L el =g 0=, )= g, () =45 () = 0
18 b "
For 0 < U; < 1, ¢ = 1,2. From the interior of controls,
To reduce the cost of two controls U; and U, the objective is we have:
reduced ¥, Tg;, Ta, and S, Tin. oH
Therefore, we need to obtain optimal controls U* and U} AU, U1 - ’s, (Ts, +Tay)
oH
C ( T, U;) = minUl’UZ {C (U;,0y)|U1,U; € @} (19) @ = ZQUZ - )Lsmsm - )L‘Imim (22)
A set of constraints P = From where:
{U1, U2) [U; :[0,87] = [0, 00) lebesque quantifiable i = 1,2 }. . (‘17 + )
The expense of minimizing Sh, ‘ZS[ , T Ag> Sy and T, U, = Sh Sb Ay
) = % 7
is represented by the term ash, 63?5,,’ % Apy> &y and €Ty, f
respectively. Likewise, fU2, gU% represents the cost for controls U, = )”Smsm + I (23)

U;,U;. The most prevalent PMP can be used to find the
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5.1 Utilization of optimal solutions

Theorem 5.1. (UT,U;) is a control factor can reduce over U
provided by

. _ il L
U] = max {0, min {1, Zf)\Sh (‘Ish + TAn) }}

U5 = max {0 min { )»5 S + )»Tme}} (24)

Where )\Sh,)\ry,s , Ag Ay )‘S and Ag, are co-state variable
b ‘m

that satisfy the condition (Equations17-24) in addition, the
transversality characteristic that follows

g, () =hsg (1) =2z, () = 25, () =P (1) =0

0 if Uy <o,

[UTZ [Ul ifO<U1<1,
1 ifIUle.

And

0 if Uy <0,

U; =140, if0<U,; <1, (25)
1 ingZO.

Proof

To demonstrate the survival of optimal control solutions, the
configuration of the Lipschitz criterion of the system and the
convexity of the integral in Equation 21 are related and state
variable that constrains U; and U, to the boundary of the state
solution. So we employ PMP and get the following:

oH
ABC
s, 0 = 3¢
JH oH
ABC 1 _ . ABC .
09);/\5%] ®) = 33@,]’ 0D A, (B) = T
ABEDhe (1) = S ABCDTA: (5= o ()
0= 39S, e 9%

with,
g, () =g () =Py () = Ag, () =Pz (t) = O

The Hamilton can be differentiated with regard to achieve the
conditional optimum:

oH - oM _0 27)
U, ol
The ad-joint system (Equations20, 21) derived from

Equation 17, the optimum system (Equation 23) is accessible
from Equation 24. The optimal method is the constrained system
(Equation 17) and its initial state is ad-joint the system includes
(Equation 20), and condition for intersection.
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6 Adams-Bash forth method

Here, we formulate the system of Equation 6 a recently invented
numerical approach, the Adams-Bash forth method (24). The
framework (Equation 6) can be used to test the essential theorem
from fractional calculus,

3 (1) =% (0) + 1(;, % (1), Tg (B, Ta, ),

ABC()
ﬁh (9 Sm(;))zm(};)) +

£
n

m/o Ky (ZU> Sh(w),‘zsh(w),

T, (@),

Ry (@), S (@), To(@)) (t — )" N dew (28)
Tg () =Tg O+ ABC T o (b B ®.T5 o, T4 0,
Ry (1), 3 (1), T (D)) +

£
n
W./(; K2<w, S (w),‘ZSh (@), Ta, (@), Ky
(@)% (@), T (w)) t—o) o (29)

Tay () = Ty O+ 3(;, S (1), Tg, (1), Ta, (),

ABC( )
Ky (B)> ¥ (B) > T (;)) +

£
n
ABC () T fo Ks (@ S (@),

(Ish (w) > (I.Ah (w) >ﬁh (?D') >
S (@), T (@) (4 — @) 4w (30)

Ky (B) = KRy (0) +

ABC( ) 4(1% S (F),Tgb *)»

g.Ah (’5) > Rh (I’) > Sm (;) > gm (/t)) +

3
n
m/(; K4 (lTT, Sh (w)’TSh (@),

Ta, (@),
fy @)% @), Tn (@) (t — @) do> €29)

S 1) = S (0) + Kz;(la, h (B) s

ABC( )
‘Ish (F) > (Z.Ah (F) )ﬁb (;) >Sm (F) »‘Im (F) ) +

)3
1
m/o K5<w, Sh (w),ish (@),
Ta, (@),

Ry (w),Sm(w),‘Im(w))();,—w)"_ldlw (32)
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Tm () = T (0) +

ABC( e (18 1), %5, )
Ty (08 (1), S (5, T (1) +

3
n
W/o Ks (ZU> Sh (=) ’Tsh (@),

Ta, (@), 8y (@), (@), T (@) (t — @) do (33)
Where,

Ky (1 8 (0, Fg, (5, T, 9,8 (), S (), T (1)
=7y — Um (Xsh + XAh) Sh%m — SbSh + 08y

Ky (b S (), Ts, (8)> Tty ()28 ()2 S (6) , T (1)

= (meShSh‘Zm — (T +vy+ 5h) {ZSh
Ks (b Sy (), Ts, (8)> Tty ()28 ()2 S (6) , T (1)
= O[mXAther — (Q +y+ 6[]) S:.Ah
Ka (£ Sy (), Ts, (1) Tty (1), 8p (1), Sm (£), T (1)) 34
—y (Tsh + IAh) — 08y — 8y Ry + 75 +0 T4,

Ks (5 % (9, Tg, (1, Ty (9,5 (), 8 (), T ()
= i — st (g, + Tty ) S0 — 25 — B

K6 (’5) Sh (;) > Ish (I’) > (I.Ah O‘“) )-ﬁh (F) > Sm (/t) > {Zm (;))

= amt (T, + T, ) S~ (@4 60) T

The following structure is obtained at time #,,y 1,

—-n
ABC( )

(1;“, Sh“, ’Ssh“ , (’{Ahn > Ry Sm“ > {Zm“> +

Sy (k1) =35 (0) +

1

FnJrl
U
W/o = (‘;’ % (0, Tg, (1, Tay 0, F ®),
S (), T (1’»)) (bny1 — t)"_1 dt (35)
-1
(ZS (tny1) = TS 0) + ——— ABC( )

KZ (Fn; Sh“ > ‘Zshn > ‘IA;,“ > ‘ﬁbn’ Sm“ > Tmn> +

Ln+l
Ul
m w/0~ Kz (1;, Sh (1;) ,‘ISh (;) > ‘I-Ah (;) "ﬁh (1;) >
S ), Tm (t)) (1311—0-1 — t)n_l dt (36)
-1
T, (bnt1) = T, (0) + ABC )

K3 (Fn, Sh“,zsh s S_Ahn»ﬁh“, Smu,Tmn) +

’Qn+1
n
ABC () Tn- /0 s (*’ % (1), Fg (1, Ta, 0,8 (1),
Sm (F) (Im (ﬁ)) (Fn+1 _ t)ﬂ*l &; (37)
—n
Ry (bnt1) = Ky (0) + ABC =)

Ky (Lm Shn > ‘Ish > ‘I.Ah“ > ﬁhn > smn > ‘Im“) +

.
ABC (n) [n

S (1), T (;)) (bnp1 — )"t (38)

jus}
/0 Ky ();) Sf) (};) > TS‘] (/t) > T.Ah (£) ’-ﬁb (/t) >

Frontiersin Public Health

10.3389/fpubh.2024.1398325

-1
ABC( )

Ks (Fua Sh“; st > T.Ah“:ﬁhn, Sm“, Tm“) +

S (bnt1) = S (0) +

I‘n+1
n
ABC () [ /0 s (’;’ % (1), Tg (1), Ta, B, 8% (1),
S (1), T (1) ) (b1 — DTt (39)
-1
T (1) = T (0) + ABC( )

Ks (Fm Sh",‘fshn, LA, R, Smn,Tm“) +

Bt
Ui
ABC () Tn /0 Ke (F’ % (0, Tg, (1, Tay 0, % ¢,
Sm (1'») ’(zm (/t) > (I’n-&-l - t)n_l (ﬂi’, (40)

While, at t,, we have

Sy (k) = Sy (0) + K4 (Fn b S, Tg s Ay

ABC( )
Rhn—l’ Smn—l’Tmnfl) +

n
ABC () [n

S (£) T (x)) (bn — 1)1 0t (41)

;Il
/0 K (;, S (5),Tg, (1), Tay (), 8 (),

‘35 (tn) —Tg 0) + ——5— ABC( ) (/tn—b Sh"“’%nn,l’ Ty,

’ﬁhn—l 4 Smn—l 4 ‘Imn—l)

En
Ui
+m /0 K, (ﬁ; Sh (£) ,‘ISH *), ‘I_Ah ), 8y ),
Sm (t) >Tm (€3] ) (bn — t)n_l JL (42)

T, (bn) = Ta, 0+

ABC( ) (ﬁnfl’ Sbn—l"z’s

(ZAE;“_I > ‘Rhn—l > Smnfl > Tmn—] )
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The Equations 47-52 become
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b —ta
= Tlf (b ¥n1) +

Now, only consider the Equation 59 to evaluate under the
Equation 71, that is given as
1 n
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And, from A, , to A}, are given as
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Finally, using Equations?72-77, and Equations78-82 in
Equations 53-58 therefore, we obtain the numerical solution of

model (Equation 6), as a result
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FIGURE 2
(A-D) Illustrate the time series of susceptible, infected, and recovered human populations for fractional orders and respectively. (E, F) Depict the time
series of susceptible and infected mosquito populations for the same fractional orders. (A) Simulation of S., for different fractional order. (B)

Simulation of ¥ 4, for different fractional order. (C) Simulation of QS for different fractional order. (D) Simulation of &, for different fractional

h

order. (E) Simulation of Sm for different fractional order. (F) Simulation of ¥, for different fractional order.
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6.1 Outcomes and results of simulation

In this section, we analyzed the dynamics of dengue disease
spread using both fractional and non-fractional models across
different compartments of the human and mosquito populations.
Simulations based on dengue case data collected from Karnataka
by NVBDC from August 2023 to May 2024, as detailed in reference
(28), revealed notable differences in the behavior of each population
compartment under fractional versus non-fractional conditions.

In Figure 2A, the susceptible population decreases with values

of 1 = 0.3, 0.5, 0.7, and 0.9, indicating a more realistic and
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variable decline due to the complex interactions and memory
effects incorporated. In contrast, the non-fractional model shows
a constant value of n = 1, reflecting a simpler and less
dynamic decrease. This suggests that the fractional model captures
a more nuanced reduction in the susceptible population over
time compared to the non-fractional approach. This suggests
that the fractional model captures a more nuanced reduction
in the susceptible population over time compared to the non-
fractional approach.

For infected asymptomatic humans %4, and infected

symptomatic humans Tsh, both populations will initially increase

as the infection spreads but will eventually decrease as individuals
recover or move between compartments in the Figures 2B, C.

Similarly, for the recovered human population £y, in Figure 2D,
the fractional model reflects a slower recovery rate, acknowledging
the variability in recovery times, while the non-fractional model
suggests a quicker recovery that might not align with real-world
scenarios. In the mosquito populations, the susceptible mosquito
population Sy, decrease in Figure 2E, more slowly in the fractional
model, indicating that mosquitoes remain susceptible for longer
periods. The infected mosquito population Ty, in Figure 2F, also
rises gradually in the fractional model, unlike the rapid increase
seen in the non-fractional model. Overall, the fractional models
provide a more realistic representation of the disease dynamics by
incorporating memory effects and delays, which better reflect the
natural progression and spread of dengue compared to the more
immediate transitions observed in non-fractional models.

The comparison clearly shows that fractional-order models
provide a more nuanced understanding of how diseases like
dengue evolve over time, influencing both human and mosquito
populations. The ability of these models to incorporate memory
effects allows them to better simulate the slow and cumulative
impacts of disease control measures and environmental changes,
offering a more realistic depiction of disease dynamics and aiding
in the development of more effective intervention strategies.

TABLE 1 Description of parameter values.

Symbols Baseline values

Tm 0.0071
T 0.057
3p 0.00042
Sm 0.02
Xsh 0.00567
Xah 0.01691
0 0.025
am 0.5

T 0.03436
0 0.40

y 0.0947
Xm 0.0113
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FIGURE 3

The influence of optimal control on the proposed model dynamics is illustrated.

Under this section, simulation results are performed, and values
of specification are stated in Table 1.

The disease trajectory can be seen in Figure 3, when optimal
control strategies are implemented and their effectiveness in
reducing infection rates is highlighted. Comparing the two control
strategies, it is evident that self-precautionary measures have a more
immediate and direct effect on reducing human infection rates.
This suggests that public education campaigns and community
involvement can be impactful tools in controlling dengue viremia.
Controlling both susceptible and infected mosquito populations
is crucial for interrupting the disease transmission cycle. The
impact of this strategy on reducing mosquito populations can be
observed in the control diagram, illustrating the importance of
vector management. Timing is critical for control strategies. The
effect effectiveness of vector control may be contingent on seasonal
variation in mosquito populations, while self-precaution can be
promoted consistently. To maximize their impact, it is crucial to
assess the optimal timing and deployment of these strategies.

7 Conclusions

The aim of this study is to explore the effect of dengue
viremia on the occurrence of different illnesses. We have presented
a comprehensive exploration of ABC fractional order Dengue
viremia, a novel mathematical model that incorporates critical
factors such as relapse and temporary immunity. After the model
is created, the positivity and range of solution is evaluated, and the
system survival and originality are verified. The basic reproduction
value R is determined by evaluating the equilibrium points. The
Rough Hurwitz technique is commonly used to estimate local
stability, while lyapunov functions are used to estimate global
stability. Specifically, when Rp < 1 in C/, it indicates that
the disease is unlikely to establish itself. If Rg > 1 at Cp, it
indicates that the disease is likely to continue to spread. Through
the utilization of the Adams-Bash forth numerical scheme, we
have successfully simulated disease dynamics, achieving a balance

Frontiers in Public Health

113

between computational efficiency and accuracy. In addition,
we have developed the optimum measures by eradicating the
population of mosquitoes and reducing the number of victims.
The numerical simulation findings show the behavior of Dengue
sickness model affected by different fractional orders, and they
can serve as Dengue prevention and control recommendation. The
research underscores the importance of mathematical modeling
and optimal control techniques in addressing complex infectious
disease like Dengue viremia. To develop interventions that reduce
and control dengue, it is important to ensure that Rg is below
as a guideline. For future studies, our model can refine control
strategies and adapt them to specific regions and epidemics, which
is a promising way to treat infectious diseases and safeguard public
health on a global scale.
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Effect and prediction of
long-term weather and pollutant
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with renal syndrome: based on
statistical models

Weiming Hou*

Department of Medical Engineering, Air Force Medical Center, PLA, Air Force Medical University,
Beijing, China

Background: Previous studies have typically explored daily lagged relationships
between hemorrhagic fever with renal syndrome (HFRS) and meteorology,
with a limited seasonal exploration of monthly lagged relationships,
interactions, and the role of pollutants in multiple predictions of hemorrhagic
fever.

Methods: Our researchers collected data on HFRS cases from 2005 to 2018
and meteorological and contaminative factors from 2015 to 2018 for the
northeastern region. First, we applied the moving epidemic method (MEM) to
estimate the epidemic threshold and intensity level. Then, we used a distributed
lag non-linear model (DLNM) and a generalized additive model (GAM) with a
maximum lag of 6 months to evaluate the lagged and interaction effects of
meteorological and pollution factors on the HFRS cases. Multiple machine
learning models were then applied after Spearman’s rank correlation coefficient
analysis was performed to screen for environmental factors in the Northeastern
region.

Results: There was a yearly downward trend in the incidence of HFRS in the
northeastern region. High prevalence threshold years occurred from 2005
to 2007 and from 2012 to 2014, and the epidemic months were mainly
concentrated in November. During the low prevalence threshold period, the
main lag factor was low wind direction. In addition, the meteorological lag
effect was pronounced during the high prevalence threshold period, where the
main lag factors were cold air and hot dew point. Low levels of the AQl and PMy,
and high levels of PM,s showed a dangerous lag effect on the onset of HFRS,
while extremely high levels of PM, s appeared to have a protective effect. High
levels of the AQI and PM,,, as well as low levels of PM,s, showed a protective
lag effect. The model of PM,s and the AQI interaction pollution is better. The
support vector machine (SVM)-radial algorithm outperformed other algorithms
when pollutants are used as predictor variables.

Conclusion: This is the first mathematically based study of the seasonal
threshold of HFRS in northeastern China, allowing for accurate estimation of the
epidemic level. Our findings suggest that long-term exposure to air pollution is
a risk factor for HFRS. Therefore, we should focus on monitoring pollutants in
cold conditions and developing HFRS prediction models.
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1 Introduction

Hemorrhagic fever with renal syndrome (HFRS), also known as
epidemic hemorrhagic fever, is a rodent-borne disease caused by
various strains of the hantavirus or Seoul virus, characterized by fever,
hemorrhage, and acute renal dysfunction (1). As one of the countries
most affected by the HFRS epidemic, China has seen a significant
decrease in the incidence of HFRS in most regions since 2000.
Although preventive measures such as rodent eradication and
vaccination have been implemented (2), transient epidemics still
occur at certain times and in specific regions.

Early assessments of epidemic thresholds and risk classification
focused on influenza and respiratory infections (3, 4), which have
proven novel in application and effective for infectious diseases in
China. However, there is a lack of relevant studies on HFRS. Earlier
studies have suggested that climatic factors may contribute to the
incidence of HFRS. According to an epidemiological survey in 2002,
rainfall was identified as a predictor of HFRS transmission in the
epidemic source (r = —0.63) (5). Furthermore, several studies have
gradually refined the understanding of the relationship between
meteorological factors and HFRS, highlighting varying effects in
terms of lag and dose-response relationships. For example, in Nei
Menggu province, Wen-Yi Zhang et al. found that rainfall, land
temperature, and humidity were associated with HERS onset at a lag
of 3-5 months, after controlling for autocorrelation, seasonality, and
long-term trends (6). Recent studies have also shown that wet and
warm climatic conditions in the northeastern favor the occurrence
and growth of HFRS (7). However, there is limited variability in
climatic factors across different epidemic risk classifications. In
addition, HFRS may be associated with air pollutants in terms of
incidence because it is partly transmitted via the aerosol route.
However, although several studies have confirmed the lag and
correlation with air pollution in infectious diseases, few studies have
been conducted on HFRS (8, 9).

The overall goal of this study was to explore the epidemiological
characteristics of HFRS, the graded warning system, the lag and
interaction effects of climate and pollutants, and the subsequent
development of models for predicting HFRS outbreaks. Our specific
objectives were to (a) calculate the epidemic thresholds and assess the
risk levels, (b) explore the effects of lags and interactions of
meteorological and pollution factors, and (c) construct stratified
models for HFRS onset, selecting appropriate models for different
populations.

2 Materials and methods

2.1 Setting

Supplementary Figure S1 shows the geographical location of the
study area—Heilongjiang, Jilin, and Liaoning provinces. The three
provinces are located in the northeastern of China and have medium
levels of economic development and population size.

Frontiers in Public Health

2.2 Data collection

We obtained HFRS case surveillance data from the National
Public Health Data Center of China' for the study area covering the
period from 2005 to 2018. All patients were diagnosed according to
the HFRS management criteria issued by the Ministry of Health of the
People’s Republic of China. We obtained the corresponding daily
weather data, including air temperature and dew point temperature,
from the China Meteorological Data Sharing Service (data.cma.cn).
Pollutant information, including CO, NO,, and Os, was originally
sourced from the National Oceanic and Atmospheric Administration
(NOAA).

2.3 Estimation of the epidemic threshold
and intensity level

We used the R language implementation of the moving epidemic
method (MEM) (package “mem”), which is available online for free.
The method is based on a complex mathematical algorithm that can
be summarized in three steps. The first step is the division of the
pre-epidemic, epidemic, and post-epidemic periods. In the second
step, the pre- and post-epidemic values of the historical seasons are
used to calculate the baseline and epidemic thresholds. In the third
step, the maximum values of n surveillance indicators during the
epidemic period are selected separately to calculate different epidemic
intensity thresholds. The unilateral 50%CI upper limit of the geometric
mean of the n maximum surveillance indicators during the epidemic
period is defined as the medium intensity threshold, the unilateral
90%CI upper limit as the high-intensity threshold, and the unilateral
95%CI upper limit as the very high-intensity threshold.

2.4 The lagging and interaction effect of
DLNM and GAM

Distributed lag non-linear models (DLNM) have been widely
used to assess the exposure-lag-response relationship between
environmental factors and human diseases such as congenital heart
disease, hand, foot, and mouth disease, and chronic sinusitis (8, 10—
12). The model can be written as follows:

log E(Y;) ]| = a1 + NS(M df Jag.df )+ NS (X,)+X(X;)+
NS(Time,df) + BMonth,

To analyze the lag and extreme effects of climate factors, air
temperature, dew point temperature, wind direction, and wind speed
were considered and applied to the cross-basis functions of a

1 https://www.phsciencedata.cn/
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DLNM. Here, Y; is the number of the HFRS cases in monthly  a; is
the intercept of the entire model; NS is a natural cubic spline that acts
as a smooth function of the model; M represents the estimated climate
or pollutants variable related to HFRS; and X, represents other climate
and pollutant variables involved in the pathogenesis of HERS, for
which non-linear confounding effects are adjusted. When constructing
the meteorological factor model, X (X;) does not exist, whereas in
the pollution model, meteorological factors are used as confounding
factors to construct X(X;) . The NS was applied to adjust for the
monthly confounding effects in the model. Month is a binary variable
used to control the effect of time, and S represents regression
coefficients. The optimal degrees of freedom (df) for the spline
function were estimated using the Akaike information criterion for
quasi-Poisson (Q-AIC) and minimum partial regression coefficient
(PACEF,,;,) criteria. The NS with 4 df was used for the climate factors,
except for wind direction, which used 5 df during the period of low
epidemic intensity. For both the high epidemic intensity period and
the overall model, the NS with 4 df was applied to the climate and
pollutant factors. The lag space was set to 3 df. The NS with 2-3 dffyear
was applied to the time variable in both pollutant and climate models.
The climate model was constructed using the glm () function, while
the pollution model was constructed using the gam () function.

Subsequently, a generalized additive model (GAM) was used to
explore the interaction between the pollutants and the prevalence of
HERS. The model formula can be written as follows:

log[ E(Y;) ] = a2 +s(X1.X2) +5(X3)+ X(X;)

a, is the intercept; X, represents the AQI, whereas X, and X;
denote the other two pollutants. s () indicates a penalized spline
function. s (X,, X;) represents the spline function for the interaction
between the parameters X, and X,. X;, X,, and X; represent 6-month
lagged variables. X(X;) represents the factors of climate.

2.5 Construction of a prediction model in
GPR and SVM

A Gaussian process (GP) can be regarded as an extended function
of a multivariate Gaussian distribution, which can be applied to a wide
range of variables. In a Gaussian process (GP), it is assumed that any
finite set of data follows a multivariate Gaussian distribution. Prior
beliefs concerning the relationships between variables are incorporated
into these (an infinite number of ) multivariate Gaussian distributions
to create a model that represents the observational variance. The
combination of multiple Gaussian distributions in a GP can effectively
model non-linear relationships and is more versatile than traditional
parametric models, which depend on fitting a global model. This is
because multivariate Gaussians can represent local covariance patterns
between individual sites (13).

Support vector machines (SVMs) are a non-probabilistic binary
linear regression method. Given a set of training data labeled as
belonging to one of two classes, the algorithm maps the data into a
space and defines a hyperplane that maximizes the margin between
the two classes to separate them. This plane is called the “maximal
marginal hyperplane” An algorithm uses a kernel approach to acquire
non-linear mapping to the feature space if linear integration is
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impossible. Thus, the hyperplane of the feature space stands for the
non-linear boundary of the determination in the input space (14). All
model metrics are compared using traditional machine learning
metrics such as RMSE, R?, and MAE (15-17). A total of 75% of the
dataset is used as the training set, while the remaining 25% is used as
the test set. All analyses in our study were performed using R software
(version 4.1.3).

3 Results
3.1 HFRS surveillance in northeastern China

A total of 59,431 HFRS cases were reported in the three eastern
provinces of China from 2005 to 2018, showing a decreasing trend
each year (Table 1). This was followed by the main epidemic area in
Heilongjiang province, with a total of 28,074 cases until 2018. The
incidence of influenza was primarily observed in the individuals aged
15-39 and 40-59 years, accounting for 86.42% of all cases.

Based on Table 1, however, there was a short-term rise in the cases
from 2012 to 2014. We also performed a calculation of the prevalence
threshold and determined from Supplementary Table S1 that the
optimal parameter § was 7.0 after the calculation of the popular
threshold model. As shown in Table 2, the years with a high prevalence
threshold were 2005-2007 and 2012-2014, while the years with a low
prevalence threshold were 2008-2011 and 2015-2018. Based on the
threshold model prediction shown in Table 2 and Figure 1, it was
concluded that the epidemic months were primarily concentrated
in November.

3.2 Exposure—response relationships and
lagging effect for the climate factors

The summary statistics for all HFRS cases and environmental
variables in northeastern China are shown in Supplementary Table S2.
The Spearman’s rank correlation coefficient analysis showed that
HFRS was significantly correlated with air temperature (r = —0.18,
P <0.05), dew point temperature (r = —0.23, p < 0.01), wind direction
(r=0.22,p < 0.01),and wind speed (r = 0.29, p < 0.01) (Supplementary
Table S3). As shown in Supplementary Figure S2, these climate factors
were associated with high relative risk at the lags above moderate
levels, except for air temperature.

From the dose-response relationship shown in Supplementary
Figure S3, air temperature showed mostly a U-shaped relationship with
the risk of HFRS, both in general and across the different regions and age
groups, while the other factors mostly showed an arch bridge-shaped
relationship. In Liaoning province, air temperature, dew point
temperature, and wind speed all showed a parabolic decreasing trend in
their relationship with HFRS risk. As shown in Supplementary
Table S5, the climate lag effect was weak during the low prevalence
threshold period, with sensitivity mainly concentrated in the high
prevalence areas of Heilongjiang province and the 0-14 years age group,
where the main lag factor was low wind direction. As shown in
Supplementary Table S6, the meteorological lag effect was higher during
the high prevalence threshold period, with sensitivity mainly
concentrated in the 0-14 years and 60 years and above age groups, where
the main lag factors were cold air and hot dew point. When comparing
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TABLE 1 Distribution of the HFRS cases by age groups, region, and season in northeastern China, 2005-2018.

Characteristic 15-39 40-59 > Population (10%) Incidence
: (10-2%)
No. of the HFRS cases (%)

Year 2005 245(2.26%) 5,148(47.54%) 4,586(42.35%) 850(7.85%) 10,829 10,757 1.01
2006 138(1.8%) 3,680(47.98%) 3,310(43.16%) 542(7.07%) 7,670 10,917 0.7
2007 60(1.17%) 2,386(46.64%) 2,268(44.33%) 402(7.86%) 5,116 10,952 047
2008 30(0.85%) 1,519(43.29%) 1,637(46.65%) 323(9.2%) 3,509 10,874 0.32
2009 31(0.93%) 1,313(39.42%) 1,651(49.56%) 336(10.09%) 3,331 10,907 0.31
2010 36(1.2%) 1,178(39.21%) 1,432(47.67%) 358(11.92%) 3,004 10,955 0.27
2011 38(1.17%) 1,162(35.91%) 1,630(50.37%) 406(12.55%) 3,236 10,966 0.3
2012 54(1.51%) 1,283(35.76%) 1737(48.41%) 514(14.33%) 3,588 10,973 0.33
2013 52(1.33%) 1,311(33.5%) 1973(50.41%) 578(14.77%) 3,914 10,976 0.36
2014 45(1.15%) 1,228(31.36%) 1992(50.87%) 651(16.62%) 3,916 10,976 0.36
2015 28(0.93%) 895(29.7%) 1,538(51.05%) 552(18.32%) 3,013 10,947 0.28
2016 17(0.66%) 699(27.11%) 1,384(53.69%) 478(18.54%) 2,578 10,910 0.24
2017 36(1.3%) 743(26.81%) 1,432(51.68%) 560(20.21%) 2,771 10,875 0.25
2018 32(1.08%) 784(26.52%) 1,478(50%) 662(22.4%) 2,956 10,836 0.27
Region Heilongjiang 344(1.23%) 11,459(40.82%) 13,018(46.37%) 3,253(11.59%) 28,074 3,819 7.35
Jilin 176(1.33%) 5,388(40.71%) 6,252(47.24%) 1,418(10.71%) 13,234 2,736 4.84
Liaoning 322(1.78%) 6,482(35.77%) 8,778(48.44%) 2,541(14.02%) 18,123 4,362 4.15

Season Spring (March-May) 270(1.69%) 6,660(41.63%) 7,322(45.77%) 1745(10.91%) 15,997

Summer (June-
126(1.01%) 4,824(38.68%) 6,004(48.14%) 1,518(12.17%) 12,472
August)
Autumn (September-
230(1.37%) 6,213(36.93%) 8,139(48.38%) 2,241(13.32%) 16,823
November)
Winter (December—
216(1.53%) 5,632(39.83%) 6,583(46.56%) 1708(12.08%) 14,139
February)

Total 842(1.42%) 23,329(39.25%) 28,048(47.19%) 7,212(12.14%) 59,431 10,917 5.44
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TABLE 2 Characteristics of the peak values in each year used in the model.

10.3389/fpubh.2025.1393763

Peak (per Peak Epidemic Threshold intensity Series
10-) month threshold . ,
Medium High Very
high
2005 1.57 11 0.46 0.46 0.64 0.80 Very high High
2006 1.03 11 0.46 0.46 0.74 0.98 Very high High
2007 0.81 11 0.40 0.41 0.77 1.02 High High
2008 0.47 11 0.46 0.46 0.81 1.08 Medium Baseline
2009 0.44 6 0.47 0.47 0.81 1.07 Baseline Baseline
2010 0.57 11 0.47 0.47 0.80 1.07 Medium Baseline
2011 0.43 11 0.46 0.46 0.65 0.83 Baseline Baseline
2012 0.65 11 0.46 0.46 0.55 0.68 High High
2013 0.60 11 0.38 0.38 0.50 0.60 High High
2014 0.55 11 0.38 0.38 0.51 0.62 High High
2015 042 11 0.39 0.39 0.52 0.64 Medium Baseline
2016 041 11 0.40 0.40 0.52 0.62 Medium Baseline
2017 0.35 11 0.39 0.39 0.53 0.64 Baseline Baseline
2018 0.47 11 0.40 0.40 0.52 0.62 Medium Baseline
lag effect, while hot dew point showed a protective effect during the low
-- l\_l@rﬁ high prevalence threshold period. However, this effect was reversed during
~ 2 Medium the high prevalence period.
- - Epidemic
— Monthly value
° Stacll't
®E . .
! 3.3 Exposure—response relationships and
= lagging effect for the pollutants
0.62
° === > . . .
s The Spearman’s rank correlation coefficient analysis showed that
. HERS was significantly correlated with the AQI (r = 0.40, p < 0.05),
s PM,, (r=037, p<005), and PM, (r=040, p<0.01)
g« (Supplementary Table S4). As shown in Supplementary Figure S4,
s S . . . . .
< these factors were associated with high relative risk at the lags above
E 2 high levels, except for PM,,. From the dose-response relationship
= shown in Figure 2, PM,s mostly showed an arch bridge-shaped
2 relationship, while the AQI and PM,, mostly showed a U-shaped
relationship with the risk of HFRS, both in general and across the
= different regions and age groups. In Jilin province and the 0-14 years
age group, the AQI exhibited a parabolic decreasing trend, while
(=}
S PM, s showed a parabolic increasing trend. As shown in Figure 3, in
12 3 4 5 6 7 8 9 10 11 12 terms of the total pollution lags, the effects of the low-level pollutants
Month were mainly concentrated in the long-term lag conditions
FIGURE 1 (3-6 months), while the effects of the high-level pollutants were
Surveillance and early warning of HFRS in northeastern China during mainly concentrated in the short-term lag conditions (1-2 months).
L2 months in 2018. In terms of the lagging trend, PM, 5 differed from the other pollution

the climatic lags during the low and high prevalence threshold periods
(Supplementary Tables S5, S6), we found that low wind direction and
windy conditions showed a dangerous lag effect on HFRS onset (OR > 0),
while high wind direction and windless conditions showed a protective
lag effect (OR < 0). In addition, air temperature showed protective effects
at both low and high levels, while cold air showed a dangerous effect in
the 0-14 years age group during the high prevalence threshold period
(OR (95% CI): 3.2e+17(8.4e+08, 1.2e+26)). Cold dew point had a little
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factors. As shown in Table 3, except for high-level PM,,, the lag effect
of the other pollution factors was more pronounced, and the
sensitivity was mainly concentrated in Liaoning province and the age
group of 40-59 years. Among these, we found that low levels of the
AQI and PM,, and high levels of PM, 5 showed a dangerous lag effect
on the onset of HFRS (OR > 0), while extremely high levels of PM, 5
(P95) showed a protective effect. In addition, high levels of the AQI
and PM,, and low levels of PM,s showed a protective lag effect
(OR < 0). However, at extremely high levels of the AQI (P95), a
dangerous effect was observed.
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FIGURE 2
Effect of the different pollutants on the incidence of HFRS across the different months for total, regions, and age groups.
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FIGURE 3
Summary of the estimated extreme effects at the 5th and the 95th percentile of the pollutants on the HFRS cases for the total during the different lag
months. The median value of each pollutant (AQI: 76.79, PM,s: 48.7 ug/m?, PMy,: 84.89 pg/m?) serves as a reference level.

3.4 Interaction and com Pa rison of the From Supplementary Table S8 and Table 4, the model fit was best in
multi ple polluta nt models Liaoning province among the different regions (R* > 70%) and in the
15-39 age group. In addition, the GPR model showed the same fit as
From Supplementary Figure S5, we can see that the AQl interacted  that of the SVM model. In the GPR model, the prediction results were
with PM, s and PM,, in relation to HFRS incidence. PM,, was weakly  good, except for the polydot kernel function. In the SVM model, good
positively correlated with the risk of HFRS, while PM, s showed the  prediction results were observed with the radial and sigmoid kernel
opposite relationship. From the interaction effect shown in Figure 4,  functions. Based on the SVM-radial model for exploring the
we found that low AQI combined with high levels of PM,s and PM,,  importance of the variables related to HFRS, the priority order was the
had the greatest impact on HFRS onset. The results from the testin  pollutant factors (in the order of the AQIL, PM,,, and PM, ), followed
Supplementary Table S7 indicate that the model involving the by the climatic factors (in the order of windspeed, dew point
interaction between PM, ; and the AQI performed better (R* = 44.1%).  temperature, and air temperature).
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TABLE 3 The cumulative effects of the extreme pollutant factors on the HFRS cases by region and age group.

Series

Variables

Total cases

Low AQlI effect

7.8e+05(78.501, 7.7e+09)
7.5e+03(15.225, 3.7e+06)

High AQI effect

0.051(0.002, 1.323)
1e+04(0.003, 3.3e+10)

Cumulative effects (95%Cl)

Low PM, ; effect

1.1e—04(7.2e—08, 0.182)
0.004(0.000, 0.384)

High PM,; effect

22.119(0.692, 707.182)
0.067(0.000, 1.8e+04)

Low PM,, effect

4e+04(7.046, 2.3e+08)
1.1e+03(3.266, 3.7e+05)

High PMy, effect

0.070(0.004, 1.248)
0.364(0.000, 1.3e+04)

4.8¢+06(0.808, 2.8e+13)

0.046(0.000, 13.048)

0.000(0.000, 29.414)

17.086(0.041, 7110.833)

4743.176(0.003, 7.3e+09)

0.147(0.001, 16.933)

Hellongjiang 2.4e+04(0.628, 8.9¢+08) 7.5e+05(0.000, 8.5¢+16) 0.003(0.000, 10.229) 0.002(0.000, 5.1¢+06) 257.344(0.018, 3.8¢+06) 2.665(0.000, 8.4¢+07)

Region iin 3.2e+04(0.031, 3.3¢+10) 0.029(0.000, 3.540) 0.001(0.000, 44.948) 38.629(0.245, 6.1¢+03) 185.119(0.002, 1.7¢+07) 0.948(0.020, 44.050)
1.1e+03(0.101, 1.3¢+07) 0.005(0.000, 1.5¢+07) 0.010(0.000, 10.270) 9.2¢+03(0.000, 6.5¢+11) 24.452(0.011, 5.3¢+04) 2.9¢+04(0.028, 3e+10)

o 1.6e+05(844.167, 3.1e+07) 0.128(0.021, 0.802) 1.6e—04(2.5¢—06, 0.010) 12.214(1.754, 85.054) 4.7¢+05(693.362, 3.2¢+08) 0.018(0.002, 0.160)

Liaoning 2.4e+03(70.763, 8.3e+04) 1.1(221.522, 5.4e+09) 0.005(0.000, 0.064) 0.001(0.000, 0.988) 6478.497(80.564, 5.2¢+05) 0.001(0.000, 1.786)
3.9¢+17(0.000, 1.4¢+57) 0.000(0.000, 5.3¢+09) 0.000(0.000, 3.9¢+24) 6.2¢+05(0.000, 2.3¢+23) 4.4e+14(0.000, le+61) 0.000(0.000, 1.4e+11)
O-1dyears 0.415(0.000, 7.7e+38) 0.000(0.000, 3.8¢+81) 0.000(0.000, 2.7e+15) 1.3+21(0.000, 1.1e+103) 7.2e+09(0.000, 1.2¢+41) 0.000(0.000, 5.9¢+52)

4.9¢+05(0.775, 3.1e+11) 0.034(0.000, 3.569) 0.001(0.000, 24.237) 18.395(0.130, 2.6+03) 5.1e+04(0.009, 2.9¢+11) 0.099(0.001, 17.719)
15-39 years 6.1e+03(0.748, 4.9¢+07) 51.177(0.000, 7.9e+10) 0.009(0.000, 7.870) 3.181(0.000, 1.4e+08) 1192.604(0.034, 4.2¢+07) 11.978(0.000, 1.2¢+09)

Age group 1e+07(336.722, 3.1e+11) 0.012(0.000, 0.460) 6.6e—06(1.7e—09, 0.026) 124.231(2.633, 5860.926) 2.7e+05(107.071, 6.6¢+08) 0.045(0.003, 0.614)
40-59 years 4.7e+04(45.058, 4.9¢+07) 14.229(0.000, 2¢+08) 0.001(0.000, 0.104) 29.291(0.000, 2.7¢+07) 3812.795(19.754, 7.4e+05) 0.448(0.000, 5.8¢+03)

60 years and above

50.471(4e—03, 5.9e+05)
7.647(0.014, 4.3e+03)

11.547(0.368, 362.732)
1.8e+15(1.6e+08, 2e+22)

0.223(0.000, 427.895)
0.576(0.005, 69.983)

0.105(0.003, 4.041)
5.8e—12(7.6e—18, 4.4e—06)

5.465(0.000, 1.1e+09)
3.431(0.000, 1.3e+06)

0.376(0.001, 223.061)
0.008(0.000, 1.8e+08)

Bold font indicates statistical significance at the 0.05 level.
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4 Discussion

In the European Centre for Disease Prevention and Control
(ECDC), the MEM is a standardized approach for epidemiological
classification and early warning of infectious diseases (18). However,
the application is limited to diseases with a yearly upward trend, such
as influenza and hand, foot, and mouth disease. The better-controlled
infectious diseases, such as HFRS, have limited application in
epidemic grading. Based on recent global environmental pollution
and the short-term annual rise in hemorrhagic fever cases, this study
applied the MEM to classify and issue warnings regarding its epidemic
status. As the MEM was originally applied to weekly cases, monthly
data were used in this study. The selection range for the § parameter
was adjusted from 2.5-5.0 to 4.0-8.0, and the adjustment was made
based on the criteria developed after testing with reference to the data.

The prediction of HFRS is widespread both domestically and
internationally, with models ranging from ARIMA (19) to Holt-
Winters (20) using time series analysis for the univariate prediction
of HFRS, achieving good results. However, since HFRS is a natural
epidemic, environmental factors greatly influence the transmission
of the pathogen and the host. Therefore, this study examined the
impact of meteorological factors with lag effects during different
periods, classified into high and low epidemic phases using the
MEM. This will help future disease control departments implement
targeted preventive measures and strategies under different climatic
conditions based on the epidemic intensity. We found that Liaoning
province exhibited different susceptibility compared to the other
regions. This finding is in agreement with the findings of several
studies, which indicated that the HFRS epidemic in Liaoning
province follows a bimodal pattern (21, 22). During the high epidemic
period, HFRS was mainly affected by cold air, with the most
susceptible population being in the 0-14-years age group. This finding

Frontiers in Public Health

is consistent with the findings of studies conducted in other regions
of China (23, 24). The main reason may be that cold air increases
indoor activity among young, immunocompromised individuals.
Since rodents are the primary hosts of the HFRS virus, cold air also
raises the likelihood of rodents entering indoor spaces, which
significantly exacerbates the incidence of HFRS. Research on the
impact of pollutants on diseases dates back to a survey conducted in
the United States in 1964 (25). A subsequent study in the U.S. found
that long-term exposure to fine particle pollution was linked to death
from ischemic heart disease and stroke, highlighting the need for
continued improvements in air quality to prevent cardiovascular
disease (26). In the field of infectious diseases, air pollution research
has primarily focused on respiratory diseases, with little attention
given to natural epidemic diseases such as HFRS. A survey in Tianjin
found that air pollution control efforts were primarily focused on
fulfilling local responsibilities (27), highlighting the impact of air
pollution on local health and diseases. Therefore, this study first
explored the lagged relationship between air pollution and HFRS,
identifying particulate matter (PM) as the main environmental factor.
Specifically, low levels of PM, and high levels of PM, 5 were significant
at a maximum lag of 6 months, with sensitivity concentrated in the
age group of 40-59 years. The reason for this may be that middle-
aged individuals are more likely to overlook pollution issues during
periods of high air pollution, increasing their time and chances of
being exposed to environmental hazards. This, in turn, can
significantly enhance exposure to pathogens and host animals.
Moreover, for a transmission pathway as unique as aerosols,
particulate matter may contribute to the transmission rate, although
the exact mechanism remains unknown. This study also conducted a
multiple regression analysis of environmental factors to explore the
predictive power of machine learning. Although time variables were
not included in the prediction model, as in the study by Chao Zhang

frontiersin.org


https://doi.org/10.3389/fpubh.2025.1393763
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

U1eaH d1gNd Ul S491U0S

610" uISIa13U0L

TABLE 4 Comparison of the prediction results with the different kernels of the support vector machine (SVM) models.

Parameters

RMSE

Training set

RZ

Test set
R2

Total cases cost = 10,gamma = 0.143 10 60.657 0.687 32.258 84.242 0.086 70.695
Heilongjiang cost = 10,gamma = 0.143 10 39.826 0.684 18.846 54.348 0.007 41.752
Region Jilin cost = 5,gamma = 0.143 10 10.986 0.712 6.546 16.699 0.022 12.518
Liaoning cost = 10,gamma = 0.143 10 14.752 0.756 9.796 30.271 0.335 24.729
SVM (Linear)
0-14 years cost = 0.1,gamma = 0.143 10 2.097 0.193 1.510 1.892 0.085 1.325
15-39 years cost = 10,gamma = 0.143 10 14.014 0.790 8.570 17.932 0.386 14.841
Age group
40-59 years cost = 10,gamma = 0.143 10 30.523 0.696 17.297 44.173 0.105 35.462
60 years and above cost =0.1,gamma = 0.143 10 22.295 0.197 14.206 17.911 0.092 13.482
Total cases degree = 3,cost = 4,gamma = 0.143 10 69.488 0.585 38.329 76.208 0.114 64.232
Heilongjiang degree = 3,cost = 1,gamma = 0.143 10 58.073 0.429 32.649 43.421 0.077 30.560
Region Jilin degree = 3,cost = 4,gamma = 0.143 10 11.554 0.680 6.786 16.653 0.020 12.378
Liaoning degree = 3,cost = 4,gamma = 0.143 10 17.466 0.655 11.811 30.125 0.354 23.966
SVM (Polynomial)
0-14 years degree = 3,cost = 0.1,gamma = 0.143 10 2.097 0.193 1.510 1.892 0.085 1.325
15-39 years degree = 3,cost = 3,gamma = 0.143 10 17.890 0.656 11.781 15.327 0.449 13.408
Age group
40-59 years degree = 3,cost = 2,gamma = 0.143 10 39.535 0.499 24.128 38.274 0.182 29.505
60 years and above degree = 3,cost = 0.1,gamma = 0.143 10 22.295 0.197 14.206 17.911 0.092 13.482
Total cases cost = 1,gamma = 0.5 10 66.263 0.705 39.039 75.872 0.103 59.891
Heilongjiang cost = 1,gamma = 0.5 10 49.024 0.695 25.009 48.785 0.007 34.382
Region Jilin cost = 1,gamma = 0.5 10 10.968 0.767 6.570 15.864 0.009 11.854
Liaoning cost = 1,gamma = 1 10 11.380 0.897 7.870 31.249 0.404 26.547
SVM (Radial)
0-14 years cost = l,gamma = 4 10 1.135 0.800 0.567 2.017 0.000 1.524
15-39 years cost = 1,gamma = 1 10 13.255 0.879 7.932 15.210 0.453 13.080
Age
40-59 years cost = l,gamma = 1 10 26.272 0.856 15.701 44.812 0.043 32.347
60 years and above cost = 1,gamma = 2 10 12.728 0.808 5.716 19.829 0.004 15.141
Total cases coef0 = 0.1,gamma = 0.5 10 66.263 0.705 39.039 75.872 0.103 59.891
Heilongjiang coef0 = 0.1,gamma = 0.5 10 49.024 0.695 25.009 48.785 0.007 34.382
Region Jilin coef0 = 0.1,gamma = 0.5 10 10.968 0.767 6.570 15.864 0.009 11.854
Liaoning coef0 = 0.1,gamma = 1 10 11.380 0.897 7.870 31.249 0.404 26.547
SVM (Sigmoid)
Age 0-14 years coef0 = 0.1,gamma = 4 10 1.135 0.800 0.567 2.017 0.000 1.524
15-39 years coef0 = 0.1,gamma = 1 10 13.255 0.879 7.932 15.210 0.453 13.080
40-59 years coef0 = 0.1,gamma = 1 10 26.272 0.856 15.701 44.812 0.043 32.347
60 years and above coef0 = 0.1,gamma = 2 10 12.728 0.808 5.716 19.829 0.004 15.141
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etal. (24), the application of different models with varying parameters
for hierarchical exploration helped reduce errors from omitted
variables and increased confidence in the predictive power. The
results showed better prediction accuracy in Liaoning province,
which is consistent with previous findings regarding the lagged
sensitivity of environmental factors. The SVM model proved to
be more stable than the GPR. This also confirmed the advantage of
combining the traditional ARIMA time series model with the SVM
algorithm to enhance the time series model for HFRS disease
prediction, as demonstrated by Chao Zhang et al. (24). However, this
study focused more specifically on the northeastern region of China
and did not explore the southern regions, which limited the ability to
extrapolate the effects of HFRS and natural environmental factors
across the country.

5 Conclusion

This is the first mathematically based study on the seasonal
threshold of HFRS in northeastern China, enabling accurate
estimation of the epidemic levels. Our findings support that long-term
exposure to air pollution is a risk factor for HFRS. Therefore,
we should focus on monitoring pollutants in cold conditions and
developing HFRS prediction models.
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