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Editorial on the Research Topic

Global infectious disease surveillance technologies and data

sharing protocols

In this Research Topic titled “Global Infectious Disease Surveillance Technologies and

Data Sharing Protocols”, we issued a call for papers “related to the research, practice and

architectural design of surveillance technologies and data sharing protocols that empower

infectious disease prevention and preparedness at a global scale”. We specifically encouraged

submissions showcasing innovative ideas and discoveries in wastewater-based surveillance,

innovative contactless technologies that could be deployed in public transportation

vehicles, especially those across national and regional borders. At the time of the first SARS

outbreak in the beginning of this century, the concept of wastewater-based surveillance

was unimaginable. Today, it has become a reality, presenting a promising component of

an integrated global aircraft-based genomic surveillance network (1). We also welcomed

technical contributions employing artificial intelligence (AI) and blockchain technologies

to enable real-time, transparent global data sharing. As articulated in our initial call: “Once

the global pandemic situation could be monitored and checked on anyone’s smart-phone, like

those for weather and air pollution, the lofty ideology of global pandemic prevention will be

realized, from bottom up”.

This Research Topic accepted a total of nine articles, with four primarily focused

on sampling and experimental methodologies (i.e. “wet” studies), while four focused

on statistical and computational modeling (i.e. “dry” studies). In December 2022, at

the moment during China’s transition in COVID-19 control strategies, we published a

commentary titled “The World Needs a ‘Pandamic’ Solution for a Pandemic Problem”

(2). There, we introduced the term “pandamic” (pan-da-mic). There, “da” refers to data

applications widely used and needed to fight against and prevent pandemics, while

“mic” means microbiology and, in particular, various omics technologies. Therefore,

the concept of “pandamic” stresses the essential convergence of biotechnology (wet)

and information technology (dry) in modern surveillance frameworks. A particularly

noteworthy contribution in this Research Topic is the review by Lipsitch et al., titled

“Infectious Disease Surveillance Needs for the United States: Lessons from COVID-19”. The

authors presented a comprehensive roadmap for improving national and global infectious

disease surveillance systems. Drawing on insights from the COVID-19 pandemic,
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the article identified critical data types and infrastructure elements

necessary to support real-time decision-making. The authors

emphasized the integration of diverse data streams, including

mobility patterns, internet search trends, clinical diagnostics,

and wastewater signals, into purpose-built, responsive systems.

Importantly, the article highlighted the importance of equitable

and locally adaptive systems, capable of informing interventions

not only during acute crises but also for ongoing public

health challenges.

Three of the wet studies feature the term “wastewater” in

their titles, reflecting the growing importance of wastewater-based

surveillance in the global infectious disease monitoring landscape.

Jones et al. investigated the feasibility of using wastewater from

passenger ships as a surveillance tool for viral pathogens crossing

maritime borders. Their study demonstrated successful detection

of SARS-CoV-2 and norovirus in blackwater collected from short-

haul ferries operating between the United Kingdom and Ireland.

These findings validated the potential of maritime wastewater-

based surveillance for tracking pathogen transmission across

international boundaries, offering an important monitoring tool

in the context of international travel. Maida et al. presented

urban wastewater surveillance in Sicily during the 2022/2023

influenza season. The temporal trends of influenza viral RNA

in wastewater were found to mirror clinical case trends,

indicating the potential of wastewater-based surveillance as a non-

invasive and cost-effective complement to traditional influenza

surveillance in urban European settings. Dinssa et al. conducted

a longitudinal study of SARS-CoV-2 in Ethiopian wastewater

throughout 2023. They found a high positivity rate in untreated

wastewater samples and a strong correlation between viral RNA

levels and COVID-19 case trends. Their work underscored

the capability of wastewater-based surveillance in low-resource

settings, where limited access to clinical diagnostics may lead

to underestimation of infection prevalence. This work provided

compelling evidence that wastewater-based surveillance can fill

critical surveillance gaps in resource-limited contexts. The fourth

study from Dama et al. described the implementation of an

integrated specimen reference system in Burkina Faso. This

system employed existing courier networks to transport human

biological specimens for priority diseases including COVID-19

from district-level clinics to reference laboratories in Burkina

Faso. This innovative system achieved >99% on-time delivery

with preserved sample integrity, proving that scalable, cost-

effective logistical infrastructure can significantly enhance disease

surveillance outcomes, especially for time-sensitive or high-risk

conditions like the COVID-19 pandemic. Together, these four

studies exemplify diverse and pragmatic approaches to enhance

the front-line data collection for infectious disease surveillance,

spanning novel applications of wastewater-based surveillance to

innovations in biospecimen logistics.

All four dry studies include “model(s)” in their titles and

collectively reflect a broad spectrum of modeling strategies and

regional applications. Bowie and Friston assessed the predictive

validity of a dynamic causal model (DCM) for long-term outcomes

of the COVID-19 pandemic. While DCM captured several

key pandemic dynamics, it tended to overestimate deaths and

hospitalization rates due to fixed assumptions about virulence

persistence. Their work offered a critical reflection on modeling

assumptions and proposed more adaptive model frameworks that

incorporate evolving population immunity. Hou applied time-

series and machine learning methods to examine the epidemiology

of hemorrhagic fever with renal syndrome (HFRS) in relation

to environmental drivers. By integrating meteorological and air

pollutant data using distributed lag non-linear models and support

vector machines, the study provided a refined seasonal risk

framework for HFRS outbreaks, highlighting the role of air

quality as a significant predictor of disease outbreaks. Zheng

et al. evaluated ARIMAX models to predict influenza incidence in

Fuzhou, China, incorporating air pollutants and meteorological

indicators. They found that PM10 was a particularly strong

predictor and demonstrated that the inclusion of environmental

indicators improved model accuracy. These findings provided

practical implications for real-time influenza forecasting and public

health early warning systems. Vijayalakshmi et al. developed an

optimal control framework for dengue transmission using fractional-

order differential equations based on the Atangana-BaleanuCaputo

(ABC) calculus. Their mathematical model accounted for both

symptomatic and asymptomatic infections and demonstrated

that immune boosting and clinical treatment strategies could

significantly reduce disease burden when integrated into control

policies. Collectively, these four modeling papers presented the

richness and diversity of analytic approaches that can support

infectious disease prediction, environmental risk assessment,

and intervention optimization across varied geographic and

epidemiological contexts.

The COVID-19 pandemic, once a defining global crisis,

now feels like a distant memory. Yet today, its urgency has

largely receded from public consciousness and institutional

agendas. As Darwin’s theory of evolution suggests, humans

are remarkably adaptive. But adaptation should not become

synonymous with complacency. This moment calls for difficult,

but necessary questions: Has anything fundamentally changed in

the academic, operational, or policy landscape of global public

health? If a COVID-like pandemic was to emerge tomorrow, would

policymakers and societies respond more wisely, more swiftly, and

more effectively? In China, as of July 2025, the infectious disease

currently making headlines is the Chikungunya virus, transmitted

by mosquitoes (3). In response, public health authorities have

encouraged the public to drain stagnant water and apply insect

repellent. These measures, while useful, have remained largely

unchanged for over a century. Such public health intervention

should reflect the leap in infrastructure, technology, or governance

that reflects the lessons of COVID-19.

The echoes of “I have a dream” fromMartin Luther King Jr. and

“we choose to go to the moon” from President Kennedy continue to

inspire visionary thinking. In the realm of global infectious disease

surveillance, what are the equivalent aspirations? Do we have a

unifying “dream” or a collective “moonshot” in this space? Or

are we still navigating a fragmented landscape of national agendas

and disconnected efforts? Public health is classically defined as

“the science and art of preventing disease, prolonging life, and

promoting health through the organized efforts and informed choices

of society” (4). While biology and medicine anchor the scientific

foundation, the “art” lies in policy, culture, communication,
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and the complexities of human behavior. From this perspective,

public health is therefore inherently interdisciplinary, but this very

breadth also risks diffusion of focus and a lack of accountability.

Without concrete systems and enforceable structures, the noble

ideals of public health remain vulnerable to drift. In this context,

the World Health Organization (WHO) should evolve from a

reactive body to a proactive global leader. It should articulate

a clear, realistic, and actionable strategy for global infectious

disease surveillance that is able to propel nations into coordinated

efforts. Much like the International Olympic Committee (IOC),

which established universal anti-doping protocols and inspired

a shared framework for athletic integrity, WHO should provide

both the inspiration and the infrastructure to coordinate global

health preparedness. It should not only be the moral authority but

also the architect of scalable solutions, setting enforceable global

standards and guiding strategic investments to ensure no country

is left behind.

In our original call for papers, we referenced the global

anti-doping protocol as an instructive model: “An exemplary

is the protocol of world doping control, where all nations are

obligated by the International Olympics Committee (IOC) to be

sampled at any time by a WADA accredited laboratory”. We

further developed this idea in a recent Viewpoint article, inspired

by a simple yet striking observation that the headquarters of

the World Anti-Doping Agency (WADA) and the International

Civil Aviation Organization (ICAO) sit just 30 meters apart in

Montreal (5). Though they govern vastly different domains in

sports and aviation, respectively, these two organizations succeed

through international cooperation, cross-border enforcement,

and standardized protocols. We proposed that ICAO could

adopt a system similar to WADA, integrating infectious

disease surveillance into international air travel. If designed

and implemented with scientific rigor, equity, and transparency,

such a system could serve as the foundational architecture for

real-time, scalable global infectious disease surveillance. This

proposal is both concrete and feasible, and represents a meaningful

step toward a coordinated, adaptive, and enforceable global

response infrastructure.

Concluding remarks

The nine papers in this Research Topic collectively demonstrate

the global diversity, creativity, and commitment in advancing

infectious disease surveillance and preparedness. From ferry

ports in the UK to wastewater plants in Ethiopia, from dengue

transmission modeling in India to influenza forecasting in

China, these studies reinforce the critical need for both robust

frontline data collection and sophisticated analytic capabilities.

Together, they reaffirm the critical importance of interdisciplinary

collaboration across epidemiology, data science, and technology. As

the COVID-19 pandemic has shown, a real-time, transparent, and

decentralized surveillance infrastructure is no longer aspirational

but a necessity. We encourage the global public health community

to continue pushing the boundaries of innovation at this

intersection of technology, data science, and epidemiology,

ensuring that scientific insights translate into operational readiness.

We hope this Research Topic serves as both a reflection and an

inspiration to harmonize science, policy, and technology in the

service of global health security.

While ideals can inspire, only tangible frameworks and

enforceable standards can drive meaningful change. This

distinction, between dreams and actionable solutions, lies at

the heart of this Research Topic. Without structures that hold

governments and institutions accountable, without interoperable

systems that support timely data sharing, and without enforceable

global agreements that transcend national interests, even the

most visionary declarations risk becoming symbolic rather than

substantive. We call on researchers, policymakers, and global

institutions to move from rhetoric to rigor, from ambition

to architecture.
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The COVID-19 pandemic has highlighted the need to upgrade systems for 
infectious disease surveillance and forecasting and modeling of the spread of 
infection, both of which inform evidence-based public health guidance and 
policies. Here, we  discuss requirements for an effective surveillance system 
to support decision making during a pandemic, drawing on the lessons of 
COVID-19 in the U.S., while looking to jurisdictions in the U.S. and beyond to 
learn lessons about the value of specific data types. In this report, we define the 
range of decisions for which surveillance data are required, the data elements 
needed to inform these decisions and to calibrate inputs and outputs of 
transmission-dynamic models, and the types of data needed to inform decisions 
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by state, territorial, local, and tribal health authorities. We define actions needed 
to ensure that such data will be available and consider the contribution of such 
efforts to improving health equity.

KEYWORDS

pandemic, COVID-19, surveillance and forecast system, public health, infectious 
diseases, mathematical model

Introduction and purpose

To monitor pandemic pathogens effectively, modern surveillance 
systems should make use of the growing wealth of routine data from 
the health sector and from a range of other sources with new 
applications to disease surveillance such as mobility, internet searches, 
and wastewater. Public health experts must integrate these data in new 
ways that increase their value. We  need purpose-built systems to 
detect new and evolving threats and to provide information as quickly 
as possible about those threats. What are the characteristics of the new 
pathogens or new variants of existing pathogens? What is their 
incidence and prevalence? What is the vulnerability of the population 
to infection and disease? What is the impact of our efforts to respond 
to these threats?

Systems to generate, integrate, and interpret these data should 
be designed and built with the explicit purpose of providing timely 
evidence to inform decisions about disease control and mitigation. 
First, they will provide direct input into decision making. For example, 
evidence of low vaccine effectiveness may prompt efforts to boost or 
change formulations or doses. As another example, real-time lab order 
data for diagnostic tests may prompt adjustments to resource 
allocation. Second, these data will parameterize scenario and 
forecasting models (1–3). For instance, estimates of per-case severity 
of a new variant, incorporated into forecasts or other models of case 
burden, may influence planning for hospital capacity and supply 
stockpiling and distribution.

This document reflects the framing ideas and the discussions held 
at a symposium organized by Harvard T.H. Chan School of Public 
Health entitled “Quantitative Tools and Data Opportunities for 
Pandemic Surveillance and Response,” held June 29–30, 2022, 
involving a range of public health and public officials, surveillance 
experts and other epidemiologists, and epidemic modelers. We first 
aim to identify the most important decisions for disease control and 
mitigation and the evidence that is needed to inform them. We then 
describe a set of surveillance activities designed to provide timely, 
reliable, and appropriately scaled data to inform these decisions. Our 
focus in this report is limited to domestic detection, characterization, 
and estimation of the burden of a pandemic pathogen in terms of 
direct health effects. Although we note the importance of monitoring 
economic, social, and indirect public health impacts of a disease 
control measures, we do not offer a comprehensive treatment of this 
element of pandemic monitoring and response activities. This paper 
builds on earlier efforts (4) while incorporating both the new 
possibilities that technology now provides, as well as the lessons of 
COVID-19.

We differentiate between two related but distinct goals of 
surveillance, as this document will focus on only one. The first goal is 

to provide early warning about a potential pandemic, and so this type 
of surveillance includes global monitoring and rapid identification of 
domestic introductions. The second goal is to provide support for 
decision making during an ongoing pandemic, including tracking 
incidence, prevalence, and the pathogen’s properties. While we will 
briefly remark on the former–surveillance for early warning–we will 
primarily focus on the latter–surveillance for decision making.

Detecting a jurisdiction’s first cases of 
a new disease

The first set of decisions faced by a domestic public health 
jurisdiction, following the appearance of a pandemic threat 
somewhere else in the world, concerns the questions of whether, how, 
and to what extent to scale up a response to reduce the risk of 
importation or, if importation has happened, to control its spread 
within the jurisdiction. Measures to reduce importation via restriction 
or testing of inbound travelers may buy limited time to prepare (5, 6), 
though such measures lose relevance once local transmission is 
established (7).

To inform decisions about how to balance scarce public health 
resources between preventing importation vs. controlling local spread, 
it is critical to assess the risk that the infection has already arrived and 
started spreading within the jurisdiction. Testing and sequencing of 
specimens from international travelers at airports and analysis of 
wastewater from international flights may provide evidence of 
pathogen importation (8). Early evidence of local spread may come 
from informal communications among health care providers, 
reporting systems such as ProMED-mail (9), and “pre-health care” 
data (e.g., absenteeism, internet search queries). Signals may arise 
from monitoring of syndromes compatible with infections, or the 
volume, distribution, and results from clinical laboratory tests. 
Increasingly, wastewater monitoring can be the site of early detection 
of new threats or variants (10) and from routine programs or 
enhanced efforts at sequencing of clinical samples (11). They may also 
come from anomalous findings in sentinel and research efforts [e.g., 
the Seattle Flu Study at the start of COVID-19 (12)].

With each type of monitoring, there is first the question of what 
defines the signal we  are looking for and then there is a tradeoff 
between having a highly sensitive and timely system capable of 
sounding an alarm early on one hand and producing too many false 
alarms on the other. In most situations, a high positive predictive value 
for such systems will be essential because the cost of responding to 
frequent false alarms is high. Much more work is needed to assess how 
to use and combine complementary monitoring signals to identify 
points at which an alarm should be escalated into a response.
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Surveillance for decision making 
during a pandemic

A comprehensive list of the decisions and guidance required in a 
pandemic would fill a much longer document than this. Still, based on 
the combined experience of the emergency response phase of 
COVID-19 (2020–2023) and H1N1 influenza (2009–10) pandemics, 
we propose a set of consistent themes that capture many of the major 
types of decisions arising both in the early days of each pandemic 
and throughout.

A brief, necessarily incomplete, list of such decisions follows, 
adapted from the list in (4):

	 1	 Public health goals of a response (elimination, control, 
protection of high-risk groups, protection of health care 
functioning, or a combination) and overall scale of response 
needed to meet these goals.

	 2	 Timing of scale-up and scale-down of response.
	 3	 Choice of nonpharmaceutical countermeasures (individual-

targeted such as quarantine, isolation, and personal protection; 
population-targeted such as closures). This includes decisions 
about the timing, magnitude, and geographic range of 
protective measures that may be socioeconomically costly. A 
related set of decisions concerns how such measures should 
be prioritized, i.e., who should receive protective equipment 
when it is scarce, and how closures should be targeted to reduce 
economic and social disruption.

	 4	 Choice of medical countermeasures, including diagnostics, 
therapeutics, and vaccines. This includes decisions about 
development, stockpiling, procurement, expanding capacity 
(e.g., building alternative care sites), and more. Here too, 
questions of allocation and prioritization are central. This also 
includes planning for potential surges.

	 5	 Specific policies for each of the issues above in special 
populations including vulnerable communities, and settings 
such as health care, schools, congregate settings, transport, etc. 
(See Centering Equity below)

	 6	 Balance between community countermeasures to reduce severe 
disease or reduce transmission (e.g., allocation of resources to 
those at high risk of complications or high risk of transmission).

	 7	 Design and implementation of staged alert systems to provide 
real-time risk awareness and trigger policy changes (13, 14).

	 8	 Imposition and removal of international travel screening 
and restrictions.

	 9	 Choice of public health communication strategies.

Each of these decisions requires specific data to decide how to 
improve health equitably, effectively, and efficiently while minimizing 
social and economic disruption. For example, decisions on testing, 
isolation, and quarantine policies require evidence on the natural 
history of infectiousness (or at least a proxy such as viral load), test 
sensitivity at different levels of viral shedding, the relationship between 
symptoms and infectiousness, and the potential economic and social 
consequences for various communities of the policies under 
consideration. In contrast, decisions about the timing of vaccine 
boosters require evidence on the effectiveness of existing vaccines 
against infection, transmission, and severe disease endpoints, stratified 
by such factors as pathogen variant, time since vaccination, and age, 

as well as understanding of how vaccine protection is distributed 
across demographic groups.

Decisions faced by state, territorial, 
local, and tribal authorities

In the federal system in the United  States, public health is 
decentralized and typically not coordinated among states. State, 
territorial, local, and tribal (STLT) governments are responsible for 
nearly all binding policy decisions in public health, with governance 
health structures varying by state (15). The purview of these bodies 
includes (16) prescribing and enforcing isolation, quarantine, mask 
mandates, and restrictions on businesses and gatherings; vaccine 
prioritization and distribution; and (to a degree) diagnostic testing. 
They also hold responsibility for closely related areas, such as public 
education. STLT governments all have a desire for similar types of 
data, but vary in how much they need, how quickly they need it, and 
how they use it.

Many decisions involve procurement and distribution of 
countermeasures. Because STLT authorities are making allocation 
decisions within their jurisdictions (e.g., for counties, cities, hospitals, 
schools), jurisdiction-wide measures of disease activity are rarely 
sufficient; instead, more geographically granular numbers are required 
(Table 1).

Data needs for decision support: the 
COVID-19 experience

A range of data sources could and, during the COVID-19 
pandemic, did provide evidence to support decisions by health 
authorities. Following initial social media reports of clusters of 
pneumonia, some of the earliest specific data to characterize the 
COVID-19 threat came from traditional sources, such as from case 
reports posted on Chinese public health department websites (17). A 
key challenge was the repeated change in the syndromic case 
definition in the early days (18). But other early data came from 
unexpected sources, such as cruise ships (19), restaurants (20), and 
fishing vessels (21), where conditions allowed inference of the path of 
transmission and thereby provided evidence about the degree and 
mechanisms of spread. Specifically, these provided some of the earliest 
evidence of asymptomatic and aerosol spread, which, when properly 
interpreted, aided in the design and prioritization of testing and other 
control measures. As had been true in the 2009 influenza pandemic 
(22, 23), sampling of travelers provided early estimates of the extent 
of global spread, growth rates, and likely under-detection (24, 25).

As the pandemic spread, the strengths and limitations of each data 
source became evident. Multiple data types were required to provide 
even an incomplete picture of trends in incidence and prevalence and 
behavior (26, 27). For example, case counts were used as an important 
indicator of disease burden. However, the relationship between new 
cases and true incidence varies as a function of numerous factors, 
including test availability, test reporting requirements by jurisdiction 
(which did not always include reports of negative tests), rates of testing 
through clinical facilities (which declined with the growth of rapid 
antigen testing), and incentives to get or avoid testing (Figure 1). Some 
of these limitations can be mitigated by breaking out case counts by 
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the reason why an individual was tested (symptoms, travel, 
surveillance), but this was not consistently done in the US. As a result 
of these limitations, hospitalizations and even deaths were increasingly 
used as the more reliable indicators of case numbers, sacrificing some 
timeliness for a more consistent relationship to the underlying 
incidence of infection. Random sampling approaches (described 
below) can overcome these limitations and provide more consistent 
and reliable estimates of incidence and prevalence and how these 
change over time. Only the United Kingdom and Luxembourg used 
random sampling on a large scale, perhaps because of the cost and 
logistical challenges. Notwithstanding their limitations, case counts 
were the major early data source in the United States and provided 
critical evidence especially when linked to demographic information. 
Syndromic surveillance–done routinely as part of monitoring 

influenza trends–from emergency room visits and hospital admissions 
were also valuable data sources, particularly when testing was limited. 
However, interpretation of syndromic surveillance was complicated 
by changes in healthcare seeking behavior and the increased use 
of telemedicine.

Novel data streams provided confirmatory evidence as well as 
early warnings of trends that might not be evident in case counts. For 
example, wastewater surveillance for SARS-CoV-2 was adopted in 
numerous jurisdictions from 2020 to 2022 and provided evidence on 
local epidemic trends, although the precise relationship between 
wastewater abundance and the number of infected persons depends 
on the wastewater sampling scheme and on shedding patterns (among 
other issues), and thus difficult to quantify (28). Moreover, by its 
nature, wastewater cannot indicate who has been infected, thus 

FIGURE 1

Testing patterns that vary in space and time as a result of individual incentives (left) and barriers (right) determine a changing relationship between 
epidemiological quantities (top left) and reported case counts, making these counts an uncertain source of evidence for current case burden and for 
calibration of transmission models.

TABLE 1  summarizes key decisions and associated needs for jurisdiction-level data and analytics in COVID-19 cited by state and local leaders during 
the symposium.

Decision Data/analytics need

Size of response needed Rapid threat characterization

Choice of community countermeasures County-level disease burden and transmission measures

How to ensure adequate supply of hospital beds, ventilators, personal protective 

equipment

Forecasts of demand for these items

School and congregate setting policies (closure of schools, infection control measures 

in jails, prisons, nursing homes, etc.)

Understanding of rates of transmission into, within, and from each of these settings 

and impact of testing and infection control on these rates as well as population 

specific health-risks

Countermeasure deployment within a jurisdiction Age, racial, ethnic, and geographic patterns of transmission and disease burden. 

Note: these are often crude proxies for social determinants of infection and outcome 

risk, not adequate for scientific understanding of why particular groups are at risk, 

but nonetheless potentially useful for focusing prevention and treatment efforts on 

those with high vulnerability.

Efforts to distribute and promote vaccination Variant prevalence, vaccine coverage, and vaccine effectiveness against dominant and 

emerging variants
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leaving the demographic profile of infected persons uncertain. Finally, 
wastewater surveillance as currently applied will miss infections in 
areas with high reliance on septic systems, which serve roughly one 
fifth of the households in the U.S. with heavy concentrations in certain 
geographies, inducing inequities in whose infections are tracked by 
this approach (29).

Another novel data stream is the use of population-wide 
distributions of viral load measured from PCR testing, which, in the 
aggregate, can provide information on the trajectory of the epidemic, 
even from a single cross-sectional analysis (30). This approach has 
reached proof of concept and has the advantage that it may be less 
sensitive to trends in testing behaviors than measures of incidence 
based on case counts, and unlike wastewater surveillance, it can 
provide some information on the demography and precise location of 
cases. However, further work is needed to see how a transition to 
non-PCR testing for many new cases, the halting of pre-procedural 
and asymptomatic testing, and the shifts in viral kinetics that come 
with immunity (from vaccination and infection) affects the nature of 
this signal (31–33). Moreover, the identifiability of time-since-
infection from viral load, which is needed for the approach to work, 
depends on the asymmetry in viral load over time [fast rise, slower 
decline (30)], which may or may not be  a feature of future 
infectious diseases.

Digital data can also be used for surveillance and to inform on 
epidemic trajectory. ProMED-mail (9) and HealthMap (34) are 
valuable for flagging and disseminating reporting and information on 
events known or suspected to be infections and outbreaks. Data from 
search engines, social media, and news reports data can also inform 
epidemic dynamics and for forecasting (35–37).

Finally, testing for antibodies in sera collected either for the 
purpose of serologic surveillance or in convenience samples (e.g., 
blood banks, discarded clinical samples) was used to characterize both 
the landscape of population immunity (i.e., who was and wasn’t 
vulnerable to reinfection) and to distinguish between those who had 
acquired immunity via vaccination vs. infection (38). Secondary 
analyses of COVID-19 vaccine studies identified complexities in 
answering the latter question, finding that infection does not reliably 
induce antibodies to non-vaccine antigens in vaccinated 
individuals (39).

An important conclusion is that no one data source or surveillance 
tactic is sufficient. In a setting like the U.S., multiple surveillance 
approaches are needed at scale. Beyond the obvious need to combine 
data sources, several points stand out.

The first is the value of data completeness and of linking data types 
to produce evidence that is greater than the sum of the parts. For 
instance, while counts of cases and hospitalizations are valuable, 
missing race/ethnicity, geographic, and other patient characteristics 
have impeded efforts to improve services to groups that are 
underserved or experience high disease burden and to improve equity 
in health-related outcomes. Similarly, meticulously linking sequence 
data from patient isolates with demographic and clinical predictors of 
severe outcomes, including vaccination history, and clinical outcomes 
can help to evaluate the threat posed by novel variants (40). 
Unfortunately, despite prodigious amounts of SARS-CoV-2 
sequencing in the U.S., this form of linkage has been relatively rare 
to date.

Second is the value of clear and accessible data dashboards with 
transparent data sources to make the state of the epidemic locally 

evident to the public. The same data should also be available to analysts 
in public health departments, academia, and other sectors via 
application programming interfaces (APIs) to facilitate rapid data 
analysis. This can facilitate shared decision making and help to increase 
public support for control measures. For example, the city of Austin, 
Texas developed a COVID-19 staged alert system that guided local 
policy between May 2020 and March 2022 (13, 14). The public-facing 
dashboard featured a single graph that tracked COVID-19 hospital 
admissions and clearly indicated thresholds between the red, orange, 
yellow, green, and blue risk levels that were linked to specific actions. 
The county judge, city mayor, and public health authority cited the 
dashboard almost daily to communicate risks, explain changes in policy, 
and cultivate adherence via news outlets and social media. This system 
was only possible because local authorities required area hospitals to 
report daily admissions beginning in April 2020, long before such data 
were generally available.

Finally, discussion at the Symposium emphasized the value of 
metrics that could be  compared across jurisdictions. Decision-
makers expressed a desire for objective criteria by which their 
performance can be judged. Comparisons across states, for example, 
were hampered by differential testing rates that affected case counts 
in ways not reflecting actual prevalence. A CDC-supported 
academic effort called covidestim (41) used Bayesian evidence 
synthesis to harmonize estimates of current and cumulative 
infections across states and counties, providing an example of what 
could be done by health authorities. However, this effort was also 
hampered by unanticipated changes in reporting tempo, as well as 
‘data dumps’ and data backfilling. Different definitions of 
COVID-19 hospitalization across states and over time impeded 
comparisons of outcomes that would have provided indications to 
elected leaders of the quality of their responses and informed 
improved responses.

Surveillance inputs to forecasts, 
scenario projections, and analytic 
models

As noted above, many aspects of pandemic decision-making can 
directly incorporate evidence from surveillance, and will also 
make use of

	•	 Nowcasts: estimates of current burden of cases, hospitalizations, 
deaths, and other quantities that account for delays in 
reporting (42);

	•	 Forecasts: relatively short-term projections using time-series and 
other statistical modeling techniques, sometimes supplemented 
with transmission-dynamic approaches to estimate future case, 
morbidity, and mortality burden, typically on the scale of days to 
weeks (1, 3);

	•	 Scenario models: longer-term estimates of pandemic dynamics 
using transmission-dynamic modeling approaches to anticipate 
multiple possible futures under stated assumptions about 
behavior, viral evolution, vaccine durability, etc., typically on the 
scale of months to years (43);

	•	 Results from analytic models: estimates about different 
characteristics of the pathogen or a population of concern that 
are specifically designed to inform a decision or guidance, such 
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as school- or nursing-home-based testing policies (44), border 
restrictions or contact tracing procedures (45), or quarantine 
approaches (46).

These categories of decision-support tools require estimates of 
input quantities that represent the assumptions of the models–for 
example, in scenario models, estimates of per-case severity or vaccine 
effectiveness. These estimates need to be timely, representative, and 
specific to the pathogen or variants circulating or anticipated to 
circulate (for example, due to importation). In addition, scenario and 
forecast model output must be calibrated to existing measurements of 
disease burden: incidence of infection, diagnosed cases, 
hospitalizations, deaths, and other relevant metrics, as well as against 
cumulative measures such as seroprevalence. The categories of input 
and output are somewhat fluid, as a model with sufficient data to 
calibrate outputs may be able to estimate the values of some of the 
quantities described here as inputs. In a fully Bayesian framework, 
both external estimates (as priors) and calibration to output data may 
contribute to posterior parameter estimates.

For forecasts, evaluation can be performed quickly due to the 
short-term horizon of the predictions made, with results that can 
provide feedback to modelers about places where models are 
mis-specified. Evaluating scenario projections is more complicated, as 
multiple sets of counterfactual projections are made under different 
assumptions about how a pandemic situation will evolve over the 
course of months or years (47). Most (or perhaps all) of the scenarios 
will not be  realized exactly as assumed, making evaluation 
less straightforward.

Together the quality and timeliness of these input parameters 
and output calibrations are important determinants of how useful 
a model is for decision making. While there are techniques to 
adjust for incomplete or lagged information, the absence of certain 
ingredients–especially model output calibration targets such as 
numbers of cases or hospitalizations–can critically compromise 
the ability to generate models that reflect reality to the point of 
hampering basic situational awareness. Data systems that support 
modeling and in turn decision-making during pandemics should 
be  considered vital national security capabilities and 
prioritized accordingly.

A list of the key needs for model inputs is as follows, many of 
which may change as a pathogen evolves (referred to below by 
their letters):

	 a	 Pathogen kinetics/epidemiological parameters (e.g., incubation 
period, latent period, infectious period, infection fatality ratio). 
Estimation of these inputs may itself require simple models, 
particularly at the early stages of a pandemic [ref: Gostic paper].

	 b	 Transmissibility and efficiency of various transmission  
mechanisms

	 c	 Risk factors for infection and severity
	 d	 Individual and population immunity (including effects of 

infection, vaccination, and waning)
	 e	 Diagnostic test characteristics, including specificity and 

sensitivity for active (acute) and past infection
	 f	 Vaccine effectiveness and waning of effectiveness, for infection, 

severe disease, and mortality endpoints.
	 g	 Treatment effectiveness

	 h	 Policies, uptake, and effectiveness of nonpharmaceutical  
interventions

	 i	 Population mobility and interactions: contact networks and 
patterns by setting

	 j	 Importation risk
	 k	 Other co-circulating pathogens of concern (e.g., if concurrent 

with significant influenza transmission)
	 l	 Capacity and utilization of healthcare resources (including 

hospital beds, therapeutics, and vaccines)

Key additional data requirements for fitting models– as well as for 
general situational awareness – include:

	 m	 Geographically and demographically stratified incidence, 
duration and prevalence of infection, hospitalization, ICU 
admission, death, and other relevant metrics associated with 
the pathogen, ideally by variant.

	 n	 Strain-specific incidence.

Meeting these needs

This draft framework is a preliminary attempt to scope a system 
that could meet the needs listed above for situational awareness, 
decision support, and inputs and outputs for modeling and analytics 
for a new variant or a new pandemic. Capacity to achieve these would 
also be  applicable to other pathogens, especially, but not only, 
respiratory ones.

A. Estimating model inputs

System 1: high-frequency sampling for pathogen 
kinetics and diagnostic sensitivity (quantities a,e)

Possible Mechanism: Surveillance would be established to obtain 
repeated samples (for COVID-19, respiratory samples) from 
individuals exposed to a pathogen of interest (now, SARS-CoV-2) 
from the time of exposure through infection to the time of clearance. 
High-frequency sampling will provide detailed profiles of pathogen 
kinetics, which could be  subgrouped by prior infection history, 
vaccination status, pathogen variant, demographics, and other 
predictors. Simultaneous use of nucleic acid amplification (NAAT), 
culture, and antigen-based testing on these specimens would provide 
detailed estimates of the sensitivity of each as a function of symptoms, 
pathogen load, pathogen infectious capacity, variant, and time since 
exposure/first-positive to inform choice of diagnostics and isolation/
test/quarantine policy.

Performers might be  research/surveillance networks or STLT 
health departments (recognizing that the health departments may 
have limited bandwidth in the context of an outbreak). The ability to 
scale up is critical. While pathogen kinetics are not likely to vary from 
place to place, geographic diversity in sites capable of performing 
these investigations will increase the timeliness of results in case one 
region is hit much earlier than others.

Settings may include households, universities, day cares and 
schools; intensely monitored cohorts such as sports leagues or health 
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care workers, congregate settings such as homeless shelters, 
correctional and detention facilities, or nursing homes.

Precedents: United  Kingdom Household study (48) and 
United States National Basketball Association studies (32, 49).

System 2: integrating routine sequencing with 
detailed clinical data (quantities b,c,d,f,g,n)

Possible Mechanism: A payer-provider network with diverse 
geographic and demographic representation (alternatively, a private 
sector entity or consortium of public health departments and 
laboratories capable of merging clinical data with sequence data) 
would track individuals as a cohort (not necessarily defined by long-
term follow-up but perhaps with exposure or a positive test as an entry 
criterion) with known vaccine and prior infection history through 
diagnosis (outpatient or inpatient) and through the cascade of care to 
estimate the probability and severity of infection as a function of this 
history (vaccine effectiveness and infection-acquired immunity) and 
variant. Sequencing of positive clinical specimens would enable the 
variant-specific estimates. This system would provide a reliable 
infrastructure for assessing severity, vaccine effectiveness, and 
treatment effectiveness linked to infection and vaccination history for 
each new variant/virus. It would be crucial to link electronic health 
record (EHR) within the network to key external sources of data such 
as immunization registries. Improving completeness of such registries 
is also a high priority to improve the quality of these inferences. 
Strategies for linking pathogen genome sequencing with EHRs will 
depend on whether these data are from clinically validated systems 
and, if not, will require consideration to ensure use for research and 
not clinical purposes.

It would be valuable to explore to what extent such studies could 
be done in networks such as PCORNet (50) or the Vaccine Safety 
Datalink (51) that assemble EHRs from multiple health systems into 
a common data model; questions include how rapidly this could 
be done and whether sequence data could be linked to these records.

In addition to payer-providers, robust testing, reporting, and data 
collection capabilities should be considered for congregate settings at 
high-risk for transmission such as skilled nursing facilities, 
correctional facilities, detention facilities, and homeless shelters that 
can follow individuals from positive tests through outcomes.

Precedents: Cohort studies on variant-specific relative severity (52), 
relative vaccine effectiveness (53) and absolute vaccine effectiveness (54) 
have been performed during the COVID-19 pandemic. None of these 
included genomic sequencing or serological profiling integrated with 
clinical data collection, in part due to the issues of linking with EHRs as 
mentioned above. Integration of sequencing in particular is essential for 
the likely future scenario where one cannot rely on proxies for genetic 
variant that have been exceptionally convenient in COVID-19, notably 
the failure of the S-gene PCR target in certain polymerase chain 
reaction-based diagnostic tests.

In the US, this work could build upon or integrate with existing 
platforms such as VISION and Investigating Respiratory Viruses in 
the Acutely Ill (IVY) (55). Key additions would be sequencing and 
more comprehensive estimates of severity.

System 3: behavioral surveillance and other 
routine data collection (quantities h,i,j,l)

Goals of behavioral surveillance are to provide real-time estimates 
of mobility, work-from-home frequency, proportion of schools open 

or closed, use of other nonpharmaceutical interventions such as 
masks, and vaccine behavior/hesitancy. Data useful during COVID-19 
included vaccine coverage from HHS Protect (56)and Census Pulse 
(57) and other surveys on vaccine intentions, mask use, work-from-
home, and school opening/closure. Private sector [e.g., mobility (58)] 
and publicly available data [e.g. (59)], exist that measure many 
quantities of interest. These include self-reported mask use, 
absenteeism data from school and work, internet search queries, and 
much more. Further work needs to be done in several areas to enhance 
the value of these data streams:

	•	 identify cost-effective sources of such data;
	•	 quantify the degrees of representativeness in measurement from 

these different data sources by such factors geography, race/
ethnicity, and social determinants of health;

	•	 improve our mechanistic understanding of how these measures 
of mobility relate to transmission behavior, which will likely 
differ by social factors, pathogen transmission routes, and 
epidemic stage, among other factors (27)

A particular example of one such data stream is air travel and 
other travel data to estimate importation risk.

Precedent: Census Pulse and other surveys exist. Many local 
jurisdictions have used mobility data from private providers, often via 
academic intermediaries1 to assess local trends. Vaccine coverage data 
exist with some limitations. The Center for Disease Control and 
Prevention’s (CDC) Division of Global Migration and Quarantine 
maintains access to timely estimates of air travel volume.

B. Fitting model outputs

System 4: repeated testing for infection and 
immunity in a random sample of the population 
(m)

Mechanism: An academic, government (e.g., CDC or a coalition 
of state health departments), or private sector entity would identify a 
longitudinal sample and/or repeated cross-sections representative of 
the U.S. population for monthly testing for infection and immunity as 
evidence of prior infection. In the COVID-19 case, this would be PCR 
testing of respiratory samples and antibody measurement in blood; 
testing approaches might differ for future pathogens. Samples would 
be obtained by home visit or mail/courier. Specimens testing positive 
for one or more respiratory viruses would be sequenced. The initial 
sample would be powered to detect US-level trends; scale-up in a 
pandemic would enable regional/state-level and demographic-specific 
(e.g., age, race, sex-specific) estimates of virus prevalence and 
seroprevalence irrespective of symptoms and at the level of variant/
subtype/species/type (depending on the pathogen).

In pathogens with antibody-based immunity, blood samples 
would be  tested for multiple antibodies including vaccine and 
nonvaccine antigens of the novel pathogen. These would provide a 
population-based denominator for severity estimates, enable 
calibration of scenario and forecast models, track trends in viral 

1  e.g., https://www.covid19mobility.org/
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species/variants in an unbiased way, and estimate the magnitudes of 
health inequities to better prioritize prevention measures (60).

Addition of serologic testing of a random, representative sample of 
the population would supplement existing passive serosurveillance 
approaches such as from blood donors (38), newborn heel sticks (61), 
or discarded specimens (62, 63). Longitudinal sampling would enable 
more precise estimates of rates of waning of antibody concentrations 
(64, 65) and the consequences for estimation of cumulative incidence 
using particular assays.

An alternative approach would be to use healthcare-based testing 
of individuals requiring admission for conditions not directly related 
to the pandemic, using weighting to standardize the population 
seeking health care to the background population (66, 67), though the 
quality of such data would need continuing validation.

Other alternatives would include the use of voluntary testing 
results, such as those gathered by test-proctoring telehealth services, 
retail pharmacies, or the like. CDC/FDA requirements to ask the 
reason for a test would facilitate interpretation (symptomatic vs. travel 
vs. exposure, for example).

Precedents: The main proposal could be roughly modeled on the 
United Kingdom COVID-19 Infection Survey and REACT-1 studies. 
One of the alternative approaches–universal testing of individuals 
requiring admission for non-pandemic reasons–was used in New York 
City early in the COVID-19 pandemic (68) and has been used in 
Indiana with reported high value (66, 67) for both prevalence 
and seroprevalence.

System 5: maintain hospitalization surveillance 
data (l,m)

Hospitals have been required to report COVID-19 and influenza 
hospitalizations to HHS, and these formed the backbone of multiple 
forecasting and scenario modeling efforts in the US. It is critical to 
maintain the generation, interpretation, timeliness, and accuracy of 
these data to inform forecasts. In addition to the forecasting products, 
these data underlie hospital capacity and burden situational awareness, 
the ability to monitor outbreaks, and community burden indicators.

Precedents: Exists as of September 2023 but needs to 
be maintained at a base level outside of emergencies and be able to 
ramp up quickly at a time of new emergency (69).

C. Actions needed

Administrative and reporting preparedness
The response to COVID-19 required collaborations across 

sectors–public, private, and academic–but these collaborations were 
often forced to work through administrative frameworks that were not 
designed with speed and flexibility in mind. In turn, such mis-specified 
frameworks ultimately slowed or limited some critical public health 
projects and prevented others from being undertaken entirely. To 
address this class of problem, we propose six ideas below that would 
update, recast, or create key frameworks that establish links across 
sectors and that facilitate the urgent work of pandemics, while 
maintaining safeguards and oversight.

	 1	 Emergency data use agreements and formats. Data use 
agreements (DUAs) are core elements to collaborative work 
across institutions, but they pose two types of challenges. First, 

the process for negotiating an agreement acceptable to the 
institutions providing and receiving the data is often slow. The 
staff on each side tasked with reviewing and signing off on 
these agreements may have many competing priorities or 
be overwhelmed as an outbreak or pandemic may dramatically 
increase the volume of DUAs. Work on a sensitive or high-
profile project, such as associated with an outbreak of infectious 
disease or a pandemic, generates additional scrutiny and often 
further lengthens the review process. Second, conflicting 
limitations can stall progress or even undermine a project 
before it starts. For example, in a partnership between 
academics and government public health institutions, academic 
institutions may deem the freedom to publish without 
interference to be non-negotiable. Public health institutions, 
however, may require veto power over what, if anything, is 
published, due to the sensitivity of the institution’s data and 
ownership thereof. To address these problems, one solution is 
to establish Emergency Use Data Authorizations (EUDAs) for 
public health data with a standing framework vetted and 
updated regularly (e.g., annually), perhaps at the individual 
state level. Such EUDAs would catalyze collaborations and 
enable investigators at both institutions to shift the balance of 
effort up front from administrative to research tasks. As these 
are put in place, discussions about data formats can take place, 
ideally also in advance, to ensure that when data are delivered 
they are as ready-to-use as possible.

	 2	 Surveillance versus research: updating the Common Rule. 
Projects designated as human subjects research require 
institutional review board (IRB) review, whereas those 
designated as public health surveillance are deemed not to 
be  research, and thus do not require IRB review. This 
surveillance-research dichotomy has substantial implications 
for timeliness and speed of work, because writing, reviewing, 
and adjudicating IRB reviews–while vitally important for 
protecting the rights, welfare, and well-being of human 
subjects–may take days to weeks. The boundaries between 
surveillance and research are governed by the Common Rule, 
which states that public health surveillance activities “include 
those associated with providing timely situational awareness 
and priority setting during the course of an event or crisis that 
threatens public health (including natural or man-made 
disasters)” [45 CFR 46.102(l)(2)] (70). Unfortunately, these 
boundaries lacked clarity and standardization as questions 
arose during the COVID-19 pandemic. For example, while 
case monitoring is clearly surveillance and a routine public 
health activity, one could make a strong argument that 
“situational awareness and priority setting” includes assessing 
vaccine effectiveness and disease severity for new variants. 
However, analysis of variants requires pathogen genome 
sequencing, which is viewed by some as constituting research, 
as is evaluation of vaccine effectiveness, another critical public 
health function which is not exclusively a research objective. 
Modifying the text of the Common Rule to explicitly include 
examples such as these or providing an interpretation of the 
surveillance/situational awareness exemption that includes 
these activities would considerably improve the ability for 
public health agencies to maintain situational awareness and 
set priorities, quite in line with the spirit of the exemption.
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	 3	 Streamlined IRBs. Where projects fall under human subjects 
research designation and require IRB review, generic, 
pathogen-agnostic study protocols for specific populations 
would accelerate research by decreasing the time to first data. 
Preapproval of a range of well-defined studies targeted at 
emergency response and using specific data sets would retain 
critical protections for human subjects, while allowing high-
urgency protocols to be “on the shelf ” and ready for fast rollout. 
As an additional feature, such preapproved protocols would 
also free up valuable researcher and IRB reviewer time, having 
converted per-submission efforts during a pandemic into fixed-
cost efforts ahead of time. Moreover, designing consent 
processes for normal “peacetime” studies to allow use of data 
and specimens in public health emergencies could avoid some 
of the delays experienced during COVID-19 with, for example, 
use of the Seattle Flu Study’s specimens to understand early 
transmission of the virus in the United States (12).

	 4	 Case reporting standardization. Tracking and understanding 
outbreaks, particularly at their beginnings, rely on case 
reporting. Ideally, public health efforts would follow case 
trends over time and across regions, compare and monitor 
clinical features including disease progression, resolution, and 
response to interventions, and track demographics of infected 
individuals. But lack of standardization of case report protocols, 
parallel or overlapping surveillance systems that result in 
duplication (often with varyingly completed fields for the same 
case), and inadequate systems for incorporating updates as 
further information about a case accumulates after the initial 
report, among other issues, result in case report data that 
require much time and effort to sort through. Worse, these 
issues may render some fraction of case reports unreliable. 
Improving national surveillance systems to be more uniform, 
timely, and flexible could serve both local and national 
surveillance needs would help address these issues (60).

	 5	 Dataset accessibility. In the absence of a United States national 
healthcare system, research into the distribution and burden of 
clinical conditions depends on academic or private data 
streams, including surveys and surveillance systems 
constructed to address specific questions, and databases of 
insurance claims which represent utilization of the healthcare 
system. Insurance claims datasets include those from (i) 
employer-based insurance companies (e.g., MarketScan) (ii) 
all-payer claims databases available in some states (which, since 
a 2016 Supreme Court decision (71), are no longer necessarily 
‘all payers’), (iii) Medicare for individuals over 65 years of age, 
(iv) Medicaid, which provides coverage to over 18% of the 
United States; and (v) data bases for other specific populations, 
such as those of the Veterans Affairs Health System, the Indian 
Health Service, and the Department of Defense. While these 
datasets can provide an important window into healthcare use 
across demographics and geography, access to these datasets 
can be expensive and time and labor intensive. Gaining access 
to Medicaid data, for example, presents a substantial burden, 
since this has to be  acquired on a state-by-state basis. 
Establishing standing flexible DUAs for these datasets, with a 
single agreement across states for Medicaid and other state-
controlled data, could enable both routine surveillance-type 
analysis to identify trends (such as disease outbreaks or 

patterns of disease spread) and to evaluate the impact of clinical 
and public health interventions.

	 6	 Public health-health care partnerships: While the United States 
does not have a national health system for all, it has a wealth of 
data in the health care sector that can inform public health 
decision making. Multiple studies at the Centers for Disease 
Control and Prevention (CDC) and other institutions 
harnessed such data to provide estimates of key quantities such 
as vaccine effectiveness (72, 73), variant severity (74), and 
antiviral effectiveness (75), as well as for surveillance of disease 
burden and its correlates (76). Building public health 
partnerships with the health care sector in advance to set in 
place the administrative, information technology, and financial 
arrangements to make possible high-quality analyses of this 
sort rapidly (and automated where possible) would greatly 
increase the timeliness and value of such efforts (77).

Strengthening personnel and research 
ties, including globally

In response to the COVID-19 emergency and the need for 
expertise to gather, analyze, and interpret evidence around the 
pandemic and the clinical and public health responses, many 
academics put aside their usual research programs to engage directly 
in public health activities and research. The close interactions between 
academics and local, state, and national public health officials were 
often productive and important for guiding the pandemic response 
but raised issues that should be addressed before the next pandemic. 
These include the ad hoc way in which these academic-public health 
collaborations came into being, the lack of uniformity of access to 
academics with appropriate expertise across states, and the 
misalignment of incentives between public health and academic work.

Ideally, academia-public health collaborations can be  rapidly 
scaled up in times of need through established pathways. One idea is 
to create a “rotator” program, in which academics (and potentially 
those in training, including doctoral students and postdoctoral 
fellows) are embedded within public health agencies–and similarly 
public health officials are embedded within academic groups–for 
intervals (such as 3 or 6 months) that build familiarity, collegiality, and 
accessibility. The LEAP fellowship through the Infectious Disease 
Society of America (78) and the joint Infectious Diseases/EIS 
fellowship (79) programs are efforts in this direction. Another 
approach is to establish an academic career path in which some 
fraction of time and effort are based in public health activities, 
analogous to academic medicine paths in which researchers spend 
some fraction of their time doing clinical work. Cooperative 
agreements established in 2023 between the CDC’s Center for 
Forecasting and Outbreak Analytics (CFA) and academic and other 
groups include a surge provision whereby the performers on these 
agreements would provide scientific assistance in times of crisis. 
Relatedly, an official “public health reserve corps” of analysts and 
modelers could provide a workforce available to be  called up to 
prepare for and respond to emergencies. Formal recognition of these 
paths as prestigious and vital, and placing value on these activities 
within the academic systems of rewards and incentives, will be key to 
success (Box 1).
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Often tools developed for one public health jurisdiction solve 
common problems and could be  readily implemented in other 
jurisdictions, underscoring the importance of making code open access 
and ideally making tools generalizable. This would have the benefits of 
“not reinventing the wheel” and allowing those jurisdictions lacking 
local expertise access to useful tools. A curated clearinghouse of such 
tools, organized by research problem and perhaps hosted by CFA offers 
one strategy for providing access. Broad efforts to create and maintain 
state-of-the-art tools for epidemiologic modeling, such as Epiverse (82) 
and Recon are encouraging developments in this space (83).

We have focused on domestic systems in the United States, but 
that international cooperation is essential for multiple reasons. 
Maintaining systems to de new pathogens at multiple locations in a 
globalized world will speed detection, facilitating timely responses 
including development of countermeasures (25) and providing early 
warning to other jurisdictions (84). For pathogen characterization, as 
we note in Box 2, each jurisdiction can benefit from findings in other 
jurisdictions on quantities that are relatively similar across 
populations, including for example the effectiveness of vaccines and 
treatments, as well as certain features of infection natural history (e.g., 
viral load kinetics). Strengthening these capacities globally means that 
locations that have exceptional data and study infrastructure and/or 
early experience with a pathogen or variant, can contribute to the 
global store of knowledge of pathogen characteristics (49, 54, 85–87).

Educating the consumers

Tools are best deployed by those who understand how they work, 
how they are limited, and how they can be modified to improve their 
applicability to specific situations. Workforce development mandates 
to build subject matter expertise within public health departments, 
such as through CDC efforts via the Office of Science and the Office 
of Advanced Molecular Detection and through fellowships such as the 
CDC/Association of Public Health Laboratories (APHL) program, are 
critical efforts. While waiting for these workforce programs to get up 
and running, and since public health officials may not stay current 
with the frontiers of analytical and modeling methods, opportunities 
for regular formal trainings should be  developed. For example, 
meetings such as the Council of State and Territorial Epidemiologists 
Annual Conference could provide a forum for workshops on advances 
in modeling, genomic epidemiology, and other fields. Relatedly, 
encouraging public health officials to attend field-specific meetings 
(e.g., Epidemics, Applied Bioinformatics in Public Health 
Microbiology) could provide opportunities for knowledge sharing, 
relationship building, and networking across sectors and disciplines.

Improving knowledge flow

Successful communication of a health agency’s current 
understanding of a pandemic and outlook for its future requires a 
combination of approaches to communicate different kinds of data 
and outlooks, for different audiences. It has been suggested that 
principles for such communications include: thematic structure 
related to informing key decisions, synthesis of evidence from multiple 
sources, quantification of uncertainty, inclusion of visualizations as 
well as text and tables, and inclusion of forward-looking material 

(outlooks for the future) (91); another important principle is open 
access to the data underlying figures in these reports. CDC’s Technical 
Reports on the Mpox epidemic in 2022 (92) sought to put these 
principles into practice, explicitly emulating aspects of the 
United  Kingdom Health Security Agency (UKHSA) Technical 
Briefings from COVID-19 (93). Creating a regular cadence for such 
reports during an emergency, as was the case in the United Kingdom 
during the height of the COVID-19 pandemic, may help develop an 
audience and facilitate knowledge flow.

Centering equity

The World Health Organization has stated that “Countries have 
an obligation to develop appropriate, feasible, sustainable public 
health surveillance systems” to ensure that the health needs of 
populations are quantified so that they can be addressed. While there 
has been a disproportionate impact of COVID-19 on racial and ethnic 
minorities and on socioeconomically disadvantaged populations in 
the United States (94) and elsewhere (95, 96), a persistent problem is 
that race/ethnicity data are too often missing from surveillance data. 
Under the plausible hypothesis that those with missing data on race/
ethnicity are among the most disadvantaged, these missing data could 
lead to attenuated estimates of the degree of inequities; whether or not 
this is the case, it reduces the quality of the estimates by adding 
uncertainty. Improving the completeness of race-ethnicity reporting 
is an urgent priority to maximize the value of surveillance data to 
enhance health equity. Some symposium participants, while agreeing 
with the need for better reporting of such data, argued that in the 
presence of ongoing racial segregation, ZIP code or other geographic 
tags can be a useful proxy when such data are unavailable. Early maps 
of COVID-19  in New  York City showed a higher prevalence of 
COVID-19 diagnoses in areas that were home to largely Black and 
Hispanic populations, as well as some areas where most residents were 
White and many believed to be  first-responders (68). This was 
reflected in elevated COVID-19 mortality rates among Black, 
Hispanic, and Native American populations compared to White 
populations throughout the United States, particularly in the early 
waves of the pandemic (97).

The Presidential COVID-19 Health Equity Task Force final report 
from 2021 (98) recommends strategies for enhancing equity in data, 
analytics, and research. These recommendations include standardizing 
demographic and socioeconomic categories, supporting equity-
centered data collection, tracking and reporting on health outcomes 
for people in congregate and high-risk settings, and research and 
analysis on behavioral health. In a similar spirit, for any clinical or 
public health intervention, one should ask in what ways the 
intervention exacerbates or alleviates inequities. To put this into 
practice, one goal is the development of real-time metrics that inform 
municipalities and states on the equity of interventions and health 
outcomes, enabling adjustments and responses to keep equity at the 
forefront of intervention decisions.

Other important examples of the links between surveillance and 
health equity were discussed during the symposium. While documenting 
disparate impacts is a necessary starting point, identifying appropriate 
measures to rectify these inequities will often require understanding 
where, why, when, and how they arise (99). An early example in the 
U.S. was a documentation that higher SARS-CoV-2 prevalence among 
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mothers admitted for labor and delivery in New York City was associated 
with residence in boroughs with smaller reductions in mobility, suggesting 
inability to work from home as a potential driver of risk (68). Subsequent 

modeling work explained racial disparities in infection rates in U.S. cities 
as a consequence of higher exposure by minority groups not only to 
infection generally, but particularly to more crowded venues with higher 

BOX 1  Modeling and analytic support for STLT jurisdictions: the role of academic groups.

COVID-19 stimulated numerous collaborations between STLT health authorities and university and other research institutions to support decision making with modeling, 

analytics, and forecasts. These took multiple forms, ranging from the establishment of advisory councils to mayors and governors, to bilateral collaborations (80, 81) and formal 

consortia (https://modelingconsortium.ucsf.edu/). However, there are stark differences among jurisdictions in the number of such academic groups within the jurisdiction 

and/or with existing or prior links with the jurisdiction’s health department, creating inequities in access to this kind of advice. The benefits of working with academic partners 

can include local knowledge and the capacity to surge efforts in an emergency. Potential barriers to such collaborations that should be addressed up front where possible include 

academics’ need and incentives to publish, which may compete for time with their role in decision support, as well as the demands of academic schedules, whereby, for example, 

a key analyst on a project may have to devote effort to exams at times when they are needed for decision support. Administrative preparedness in the form of preexisting data 

use agreements can vastly accelerate these efforts.

Establishment of trust is essential to the success of academic – STLT collaborations. Elected and health officials at the symposium noted the repeated challenges of figuring 

out which models and modelers to trust, both locally and nationally. Participants observed that academic collaborations were most effective when there was a pre-existing 

relationship between the groups and the jurisdictions, and noted the benefits to both parties of cultivating these relationships in “peacetime” through collaboration on 

non-pandemic activities. Academic groups’ ability to speak freely can lend credibility and objectivity to their analyses; however, trust can be undermined if academic groups 

with access to limited, publicly available data release analyses in publications or preprints that may be inconsistent with more complete data that are available to health 

departments but not publicly available. Frequent contact to share tentative conclusions and compare them against the evolving understanding of health officials can enhance 

the quality of analyses by incorporating more complete data, if these can be shared, and can enhance the trust between the parties, improving future interactions. When such 

interactions work well, they do not stifle the conclusions of academic groups but rather ensure that these conclusions are based on the best current understanding and to ensure 

that health officials are aware of what is being published about data from their jurisdictions. Academic incentives and structures are particularly not suited for routinely repeated 

analyses, such as reproductive number estimation, nowcasting, and forecasting, although academic centers have played key roles in these areas for over 2 years during COVID-

19. Automation, as in the California consortium’s dashboard, is one solution. CDC’s Center for Forecasting and Outbreak Analytics is beginning to take on some of these tasks 

and will increasingly serve as a focal point for such repeated, real-time analyses.

BOX 2  National insight from local evidence.

Implementation of public health policies is a state/territorial/tribal and local responsibility in the U.S., as we noted above. Infectious disease surveillance is also decentralized, 

often with two levels of reporting (local/county and state/territorial) below the national level. From the perspective of national decision makers seeking a clear picture of an 

unfolding pandemic, decentralized surveillance has obvious limitations, particularly in a setting where data systems and data use agreements vary across jurisdictions. Efforts 

are underway, and should be expanded, to improve the speed, completeness, and accuracy of data flowing from states, localities, and health care systems to the CDC and other 

federal actors. Such efforts are essential for timely situational awareness and for calibrating the outputs of scenarios and forecasts to granular (state or county-level) data to form 

a national picture.

While incidence, prevalence, and health care burden are intrinsically local quantities that need to be estimated everywhere and over time, many aspects of surveillance and 

associated epidemiology are generalizable, such that findings in one local jurisdiction can inform control measures everywhere. These include characteristics of the pathogen, 

such as severity and natural history; and characteristics of countermeasures, such as test sensitivity and the effectiveness of drugs and vaccines. For these purposes, local 

conditions can facilitate detailed characterization that may not be possible, but also may not be necessary, on a larger geographic scale.

Some of the earliest evidence of low severity for the 2009 H1N1 influenza pandemic came from a study at the University of Delaware, where a comparatively self-contained 

population could be studied in detail (88). We noted in a postmortem of that pandemic that the findings from that study were not widely known until months later because of 

limited dissemination (4), arguably prolonging the state of alarm unnecessarily during that pandemic. In COVID-19, early findings of asymptomatic/presymptomatic infection 

and likely transmission from studies in a nursing home and a cruise ship, respectively (19, 89), were documented very early and widely disseminated, but still did not fully 

inform control measures.

In many other cases, detailed surveillance and epidemiology in local jurisdictions or health systems provided evidence of national and international importance. A few 

examples included:

	•	 Evidence from the Yukon-Kuskokwim (Alaska) Health Corporation about the persistence of antigen test positivity 5 or more days after initial positive test or symptom 

onset during the early Omicron era (90)

	•	 Evidence from the Kaiser Permanente Southern California health system about the relative clinical severity of Omicron BA.1 variant compared to Delta before it and 

BA.2 after (74)

	•	 others

Each of these provided evidence that could be generalized beyond the location where it was generated, because it concerned generalizable features of the infection or 

countermeasures based on its biology. The degree to which these investigations informed policy and guidelines varied, indicating a need for a systematic approach to 

disseminating findings of wide importance and updating guidance in a way that reflects the totality of data.
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infection risk (58). The age distribution of mortality by race/ethnicity 
(100), with its skew to younger ages among Black, Hispanic, and 
Indigenous individuals, also pointed to an increased exposure risk. The 
United Kingdom Government’s Race Disparity Unit published a series of 
reports through the first 2 years of the pandemic enumerating hypotheses 
for mechanisms to explain disparate impacts, stating the current evidence 
related to these hypotheses, and recommending actions to address these 
drivers of higher incidence and severity in racial and ethnic minorities 
(60). In the United States, such studies may require linkage of disparate 
data bases to identify where disparities arise during the cascade of care 
(101), a strategy that has long been useful in HIV/AIDS surveillance to 
understand loss points in the continuum of care (102, 103). For COVID, 
a full cascade would require an estimate of the actual number of infected 
individuals, the number of people who have been identified by testing 
(reflecting under-diagnosis), the number treated when treatment became 
available (reflecting under-treatment), the number hospitalized (reflecting 
access to care and disease severity), and the number of fatalities, jointly 
stratified by race and ethnicity, age group and sex. Ascertaining these 
would require both modeling-based estimates and data from multiple 
sources (e.g., clinical laboratories and vital registries). For example, an 
analysis from a New York City hospital suggested no racial difference in 
case fatality among hospitalized patients, supporting the idea that racial 
differences in exposure (more infections) rather than racial differences in 
outcome contributed to racial differences in overall mortality (104).

Other sources of inequity can affect case ascertainment and thus 
identification of opportunities for intervention. Geographic and temporal 
variation in testing effort in the U.S. was very large, resulting in difficulties 
in comparing incidence across jurisdictions. Rural areas were often the 
least able to access testing, though there were important exceptions (90). 
Notably, the use of random sampling stratified by geography mitigated 
this problem significantly in the United Kingdom (85), though it did not 
solve it entirely because participation was of necessity voluntary. Equity 
considerations may change as public health authorities rely on new data 
sources; for example, mobility estimates may depend on smartphone 
ownership, while wastewater surveillance for pathogen abundance will 
be unavailable in areas using septic systems (29, 105).

Expanding the range of data types

As described above, any health system, but particularly one as 
decentralized as that of the U.S., benefits from the ability to ingest 
and synthesize multiple types of data. Increased use of wastewater 
data (106, 107) has contributed to early warning of rising infection 
incidence and to surveillance for new variants. Further work to 
standardize collection and better define the quantitative 
relationships between true infection incidence and total and 
variant-specific concentrations of viral genomes in wastewater is 
needed to improve the value of such data, as well as a clear 
mapping of where it will not be informative, such as areas using 
septic systems. Likewise, mobility data from various sources (58) 
can be useful in informing strategies for disease monitoring and 
surveillance, modeling disease spread, and guiding interventions. 
Immune measures from serology provide a window onto past 
infection and a lens onto the landscape of risk (108). Here, further 
work is needed to ensure data standardization and accuracy as 
well as routine and frequent updating to capture important 
temporal variations. Such new forms of data may also raise 

privacy considerations that have not entirely been solved 
(109, 110).

Crowdsourced and survey data (111, 112) can provide important 
insights into behaviors that affect the interpretations of other data; for 
example, the increasing prevalence of self-testing using antigen tests 
for COVID-19 reduces the utility of PCR-positive case counts.

A key to making use of this expanded range of data types is solving 
the problem of how to synthesize multiple data types into a single estimate 
of a quantity of interest, accounting for the different properties of each 
data type (76), including understanding the different biases that will affect 
each data stream. Significant further work is needed to advance the ability 
to do this in real time. A related but distinct problem is how to link data 
across data systems to understand the continuum of care and otherwise 
improve inference about the course of individual cases.

Expanding the range of data sources

The use of claims data from health care payers (insurers) and 
electronic medical records from providers has exploded in many areas 
of health services research. There have been some notable examples of 
such data for surveillance to address the questions described in this 
report (53, 72–74), but in the United States there remains untapped 
potential to expand such efforts and improve their timeliness. This will 
require building relationships between public health entities and 
health care systems in their jurisdictions, including relationships 
between scientific investigators in each sector with regular discussions 
for bidirectional learning. In the spirit of administrative preparedness 
above, this will require up-front planning of master agreements to 
move resources in a timely fashion to address pressing questions. 
Health providers and public health have suffered from a “two cultures” 
challenge that results in the need to expand public health training of 
investigators and other personnel in health systems, acknowledge the 
contributions of health systems to community benefits, and find ways 
to produce incentives so that contributing to public health surveillance 
aligns with the business interests of health systems. Medical examiners 
and coroners are another group that has been disconnected from 
public health but with whom cooperation can enhance and help to 
calibrate surveillance for pathogen-specific deaths, as illustrated by 
some examples both domestically (113) and abroad (114).

As we  described above, new data sources become useful in 
proportion to our understanding of their “normal” behavior. As 
we expand the range of data types, it will be essential to monitor new 
data streams and continue to monitor old ones outside of epidemic 
periods to establish a baseline that can be used to calibrate signals of 
new outbreaks and estimate the exceedance caused by the ongoing 
transmission of novel pathogens (115).

Conclusion

Data and modeling needs change over the course of a 
pandemic and vary by the jurisdictional dimensions, requiring 
anticipatory, rapid, dynamic, and locally adapted and scaled 
activities to optimize pandemic management and population 
health. Here, we  have sought to describe concepts, tools, and 
strategies to address those needs, building on those enacted 
during the COVID-19 pandemic and those that could have 
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facilitated this work. While not a comprehensive list, we hope that 
the ideas we propose and envision serve as a useful resource and 
guide in efforts to manage ongoing infectious diseases challenges 
and preparedness for the inevitable next pandemic.
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Objective: The worldwide spread of SARS-CoV-2 and the resulting COVID-19 
pandemic has been driven by international travel. This has led to the desire 
to develop surveillance approaches which can estimate the rate of import of 
pathogenic organisms across international borders. The aim of this study was 
to investigate the use of wastewater-based approaches for the surveillance of 
viral pathogens on commercial short-haul (3.5  h transit time) roll-on/roll-off 
passenger/freight ferries operating between the UK and the Republic of Ireland.

Methods: Samples of toilet-derived wastewater (blackwater) were collected 
from two commercial ships over a 4-week period and analysed for SARS-
CoV-2, influenza, enterovirus, norovirus, the faecal-marker virus crAssphage 
and a range of physical and chemical indicators of wastewater quality.

Results: A small proportion of the wastewater samples were positive for SARS-
CoV-2 (8% of the total), consistent with theoretical predictions of detection 
frequency (4%–15% of the total) based on the national COVID-19 Infection Survey 
and defecation behaviour. In addition, norovirus was detected in wastewater at 
low frequency. No influenza A/B viruses, enterovirus or enterovirus D68 were 
detected throughout the study period.

Conclusion: We  conclude that testing of wastewater from ships that cross 
international maritime boundaries may provide a cost-effective and relatively 
unbiased method to estimate the flow of infected individuals between countries. 
The approach is also readily applicable for the surveillance of other disease-causing 
agents.

KEYWORDS

wastewater-based epidemiology, international sea travel, border crossing, passenger 
ferry, AMR, SARS-CoV-2 infection, import rate, public health surveillance

1 Introduction

It is well established that effective surveillance and a timely response are essential to limit 
the social, health and economic impacts of rapidly spreading diseases, such as COVID-19 (1, 
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2). Wastewater-based epidemiology (WBE), which measures viral 
markers shed by infected individuals in faeces and urine, has been 
successfully used for surveillance of infectious diseases at a population 
level, including the multi-national surveillance of SARS-CoV-2 and 
poliovirus (3–6). Monitoring levels of SARS-CoV-2 in wastewater has, 
thus, provided an effective tool and early warning system to aid in 
public health decision-making and tracking the success of policy 
interventions (7–9).

Air and maritime travel represent key factors which have 
facilitated the global spread of SARS-CoV-2 and other viral diseases 
(10–12). International shipping is of particular interest due to the large 
volume of potentially infected passengers which may enter the country 
from overseas (>20 million year−1 in the UK) (13). The dense 
aggregation of people within port and dockyard areas may also 
facilitate infection between individuals (14, 15). Further, industrial 
ships and changes of crew and movement of goods in areas with 
multiple working personnel has the potential to cause outbreak on 
ships and within ports (16–20). These transmission events then have 
the potential to spread through the local community and to additional 
international ports. In a long-distance shipping context, an outbreak 
of SARS-CoV-2 poses serious risks to crew as they may lack the 
medical infrastructure or are unprepared to capably deal with issues 
should they arise (18, 21, 22). This also represents an issue for tourism-
based cruise ships where viral (e.g., norovirus) outbreaks have 
regularly led to the quarantining of vessels (23, 24). A recent modelling 
study has also confirmed that international seaports are likely to 
represent a significant risk to the spread of SARS-CoV-2 (14).

Even though considerable concerns have been raised about 
COVID-19 transfer associated with long-haul shipping and cruise ships 
(7, 14), limited surveillance has been undertaken on short-haul, mass-
transport passenger and freight ships. These short-haul international 
routes, however, may pose a greater risk for pathogen entry in comparison 
to longer-haul routes due to (i) the greater number of passengers involved, 
(ii) a lack of point-of departure/entry testing procedures, (iii) no on-board 
testing, (iv) less rigorous ship sanitation/cleaning, (v) the presence of 
pre-symptomatic passengers who travel not knowing they carry the virus, 
and (vi) the inability of conventional testing to capture infections (e.g., 
lateral flow devices) in comparison to cruise ships which rely more on 
PCR-based testing. Whilst wastewater testing has been deployed at 
international airports to evaluate the frequency of entry of infected 
individuals (25–27), this approach has yet to be critically tested on ships 
or at international ferry ports. The success of the approach, however, relies 
on a range of factors including the toilet behaviour of individuals, 
particularly on short-haul crossings, access to wastewater on the vessels 
and the subsequent capacity to quantify and sequence viral RNA/DNA in 
the samples.

Depending on the age and nature of the ship, on-board sanitation 
systems can vary significantly between vessels (28). In some situations, 
the black- and grey-water streams are kept separate, which is ideal for 
WBE, whilst in others they are mixed, leading to dilution of the viral 
signal. In other cases, sewage is collected on the boat and then 
delivered to a port reception facility for subsequent treatment (29). 
Access to sewage collection tanks may also be problematic on some 
vessels whilst addition of different sanitation agents (e.g., disinfectants) 
may cause issues in viral recovery. Conversely, the presence of 
low-water use vacuum toilets can be  expected to result in more 
concentrated sewage in comparison to on-shore municipal sewage 
which may aid viral detection (30).

Due to the current paucity of information, the aim of this pilot 
study was to critically evaluate whether wastewater-based surveillance 
on short-haul international passenger/freight ships is viable for 
monitoring the frequency of entry of SARS-CoV-2, alongside other 
pathogens (e.g., norovirus, influenza-A and B, enterovirus). The study 
focused on the main UK to Republic of Ireland passenger route, 
monitoring wastewater on two of the main commercial vessels over a 
one-month period. The work focused on the practicality, economic 
viability and usefulness of the approach within the framework of a 
potential national border surveillance programme for pathogens of 
public health concern.

2 Materials and methods

2.1 Sampling locations

The project was based on the maritime route between the 
Holyhead Ferry Terminal located in Gwynedd, Wales, 
United Kingdom (53°18′58.47″N, 04°37′24.47″W) and Dublin Port 
located in Dublin, Ireland (53°20′57.13″N, 06°11′50.70″W). The route 
represents the main maritime freight and passenger link between the 
UK and Ireland with an estimated 1.9 million passengers per year and 
ca. 450,360 cargo truck transfers (31). The route is ca. 80 km from 
port-to-port and takes ca. 3 h 15 min per crossing and is serviced by 
several commercial companies (Supplementary Figure S1). This study 
focused on two superferries, namely the Stena Estrid and the Stena 
Adventurer (Stena AB, Gothenburg, Sweden; 
Supplementary Figure S2).

The Stena Estrid was built in 2019 by AVIC Weihai, Shandong 
Province, China and is classified as an ‘E-Flexer’ passenger roll-on/
roll-off cargo (Ro-Pax) ferry. It has a capacity of 1,000 passengers, 
120 cars and 210 freight vehicles. The Stena Adventurer was built in 
2003 by Hyundai Heavy Industries, South Korea and is also a Ro-Pax 
ferry with a capacity of 1,500 passengers and 500 cars and 
freight vehicles.

The ships possess different wastewater management systems and 
thus the sampling strategy varied slightly between ships. The Stena 
Estrid wastewater system is separated into 2 initial chambers: (i) 
blackwater (raw sewage from toilets), (ii) greywater (water from 
sinks, showers, and kitchen appliances). These are then combined in 
a mixing chamber and then transferred to a screening tank to 
remove large non-biodegradable solids. Once mixing had occurred, 
wastewater is transferred to an Evac Membrane Bioreactor treatment 
module (Evac Oy, Espoo, Finland). Post aerobic treatment, clean 
water is then discharged at sea whilst the solid waste becomes a dry 
powder that is offloaded at shore for disposal. Samples were initially 
planned to be  taken from blackwater chamber, however, due to 
access/system constraints, samples had to be  taken from the 
screening tank, but prior to any treatment occurring 
(Supplementary Figure S3). The Adventurer has an older wastewater 
system containing of 3 chambers involving maceration (soaking), 
chopping and mixing. After being mixed, the wastewater is moved 
to a similar treatment plant to the Stena Estrid where it is aerobically 
treated and filtered in a containment tank where it is stored until it 
reaches port and then taken to a wastewater treatment plant. 
Samples on the Adventurer were taken prior to the anaerobic 
treatment stage.
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2.2 Sample collection

Wastewater sampling was undertaken on Sunday, Tuesday, and 
Thursday on each ship from the 27th January 2022 to the 23rd 
February 2022. On each day, 4 independent samples were taken 
representing the 4 single leg journeys between Holyhead and Dublin 
each day (Supplementary Table S1). The samples (500 mL) were 
collected by the engineering crew, placed within polycarbonate bottles 
and refrigerated at 4°C on the ship prior to collection from the port 
each day. Samples were collected directly from Holyhead port and 
then transported to the laboratory (40 km distance) in a refrigerated 
box where the samples were then stored at 4°C and analysed within 
24 h of collection. Basic training was provided to the ship’s staff for 
sample collection.

2.3 Viral concentration, nucleic acid 
extraction, and quantification

Viral recovery and purification were undertaken according to the 
polyethylene glycol (PEG)-salt precipitation of Farkas et al. (32) and 
Kevill et al. (33). This method was chosen as it is used in the Welsh 
Government national wastewater COVID-19 surveillance programme. 
Briefly, 200 mL of each wastewater sample was placed in a sterile 
polypropylene centrifuge bottle and centrifuged (10,000 g, 10 min, 
4°C) to remove suspended solids. 150 mL of the clarified supernatant 
was then transferred to a sterile polypropylene centrifuge bottle, the 
pH adjusted to 7.0–7.5 and 50 mL of a PEG-8000-NaCl solution added 
to reach a final PEG-8000 concentration of 10% and NaCl content of 
2%. An aliquot of dsRNA Pseudomonas phage Phi6 was then added to 
the sample as an extraction control and the samples incubated at 4°C 
overnight. Post-incubation, the samples were centrifuged (10,000 g, 
30 min, 4°C). The supernatant was then discarded and the pellet 
resuspended in 850 μL of Nuclisens lysis buffer (BioMerieux, France). 
The viral RNA and DNA from the resuspended pellet was then 
extracted using a KingFisher 96 Flex automated purification system 
(Thermo Scientific, Waltham, United  States) using NucliSens 
extraction reagents (BioMérieux, France) as described elsewhere (33). 
The final volume of the RNA/DNA eluent was 100 μL.

One-step RT-qPCR for the SARS-CoV-2 N1 gene region and Phi6 
targets was performed using an TaqMan™ Fast Virus 1-Step Master 
Mix (Applied Biosystems Inc., United States), on a Quant Studio Flex 
6 (Applied Biosystems Inc., United States) using previously published 
primers and probes (34, 35) (Supplementary Table S2). The mastermix 
contained 10 pmol of the forward, 20 pmol of the reverse primers and 
5 pmol probe, 16 nmol MgSO4, 1 μg bovine serum albumin (BSA), 
molecular grade water and 4 μL sample/standard/control in 20 μL 
reaction mix. RT-qPCR settings were: Hold step  50°C 30 min for 
reverse transcription, 95°C 20 s for reverse transcriptase inactivation, 
followed by 45 amplification cycles of 95°C 13 s, 60°C 45 s.

Multiplex RT-qPCR assays were used for the detection of influenza 
A/B viruses (flu A and flu B) and for Enteroviruses (EV), enterovirus 
D68 (EV-D68) and norovirus GII (NoVGII) using previously 
published primers and probes (36–38) (Supplementary Table S2). The 
same reaction conditions as for SARS-CoV-2 quantification were used 
except that the mixture contained no added MgSO4.

For crAssphage an established assay using the QuantiFast qPCR 
mix was used (33) with 2 μL sample added to 20 μL reaction mix.

All samples were run in duplicate, against a dilution series (1–105 
copies μl−1 per reaction) of in house developed ssRNA standards for 
SARS-CoV-2 and phi6 (33), commercial ssRNA standards for flu A/B 
and EV-D68 (Twist Bioscience, United States) or plasmid DNA for 
NoVGII and crAssphage (39, 40). PCR no template controls 
(molecular-grade water) determined the absence of contamination 
during the PCR set-up.

2.4 SARS-CoV-2 sequencing

Selected RNA extracts were further purified with Mag-Bind® 
TotalPure NGS beads (Omega Bio-Tek) to remove potential inhibitors 
prior to reverse transcription into cDNA with LunaScript® RT SuperMix 
(NEB) prior to SARS-CoV-2 amplification and sample indexing using 
EasySeq™ SARS-CoV-2 kit (Nimagen). The protocol used has been 
customised previously for use with wastewater (41). Amplified products 
were quantified and quality controlled using Agilent TapeStation. 
Libraries were sequenced on an Illumina MiniSeq benchtop sequencer, 
producing 2 × 150-bp paired-end reads. Raw reads were processed using 
the ncov2019-artic-nf Nextflow pipeline (42). Briefly, reads were 
trimmed using Cutadapt v1.18 (43) and Nimagen V4 primer sequences 
were removed using iVar v1.3. Cleaned reads were aligned to the SARS-
CoV-2 reference genome Wuhan-Hu-1 (MN908947.3) (44) using the 
Burrow-Wheeler Aligner (BWA) (45) and ca. 400,000 reads mapped per 
sample. Lineage abundances were then determined using the processed 
sequences using depth-weighted de-mixing of SNV frequency at each 
position in the genome using Freyja pipeline (46, 47).

2.5 Wastewater physical and chemical 
analysis

The samples were analysed for a range of key physicochemical 
markers of wastewater quality including pH, turbidity, electrical 
conductivity (EC), ammonium and orthophosphate (9). Turbidity was 
assessed using an Orion AQUAfast AQ3010 turbidity metre (Thermo 
Scientific, Waltham, MA, United States) whilst EC was measured using 
a Jenway 4,520 conductivity metre and pH with a Hanna 209 pH probe 
(Hanna Instruments Ltd., Leighton Buzzard, United Kingdom). For 
NH4

+ and P analysis, the samples were first centrifuged (24,000 g, 5 min) 
to remove suspended solids. The supernatant was then retained for 
subsequent analysis. Inorganic P was measured colorimetrically using 
the molybdate blue reagent according to Murphy and Riley (48) whilst 
NH4

+ was determined colorimetrically using the salicylate procedure of 
(49) using a SpectroStar Nano microplate reader.

2.6 Data analysis

The qPCR quality control was carried out with QuantStudio real-
time PCR software v1.7 (Applied Biosystems, Inc., United States). The 
standard curve slope, efficiency and R2 met the requirements described 
in Bustin et al. (50). The qRT-PCR data was converted to gc l−1 wastewater 
for statistical analysis. The assay limit of detection (LOD) and limit of 
quantification (LOQ) were tested using 10 replicates of low dilutions of 
genomic RNA for the RNA virus targets and plasmid DNA for 
crAssphage (40). The LOD was defined as the minimum concentration 
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whereby 10 replicates all return positive results and the LOQ was the 
lowest concentration where the coefficient of variation was lower than 
0.25 (Supplementary Table S2). As such, quantities can be detected below 
this limit but are susceptible to false negatives. For comparison, the 
wastewater composition from the ships was directly compared with that 
collected as part of the national surveillance programme undertaken in 
Wales. The latter involved the analysis of wastewater collected from 44 
centralised wastewater treatment plants across Wales 5 days a week.

To theoretically estimate the number of a- and pre-symptomatic 
passengers who were travelling on the transnational shipping route 
(i.e., import rate, IR) we used the following equation:

	 IR PN PP ACR FSR TU� � � � � 	 (1)

where PN is the total number of passengers sampled during the 
wastewater testing campaign (n = 6,942), PP is the prevalence of 
COVID-19 in the population (3.1%–4.1% of the population), ACR is 
the amount of COVID-19 cases that are pre- or a-symptomatic 
(20%–30% of the total), FSR is the shedding frequency of SARS-
CoV-2 in faeces (40%–60% of cases), and TU is the likelihood that 
passengers will use a toilet whilst on board the ship (13%). It was 
assumed that symptomatic passengers would not be travelling due to 
government travel restrictions in place when the study was undertaken.

3 Results

3.1 Prevalence of COVID-19 cases during 
the survey period

Wastewater sampling commenced towards the end of the third 
main COVID-19 wave in the UK which was associated with the 
emergence of the omicron variant of SARS-CoV-2. During this 
sampling period 0.1% to 0.2% of the UK and Irish population tested 
positive for SARS-CoV-2 (51). Overall, the patterns in COVID-19 cases 
were similar between countries. Based on the results of the COVID-19 
Infection Survey (CIS), which is less prone to self-reporting bias, it is 
likely that the true prevalence of COVID-19 in the UK and Ireland 
populations ranged from 3.1% to 4.5% during the study period (51–54). 
At the time that the wastewater monitoring was undertaken, the wearing 
of face coverings was still mandatory and recommendations were in 
place for individuals not to travel if they had tested positive for SARS-
CoV-2. Stena line staff were also asked to self-isolate if they tested 
positive for COVID-19. At the time of the study, passenger locator forms 
were not required to enter the UK and no quarantining procedures were 
in place. Due to the COVID-19 pandemic, the number of passengers 
per journey was lower than normal with each journey having an average 
of 154 passengers (range 38 to 612) on the Stena Estrid and 169 on the 
Stena Adventurer (range 28 to 775). Of these, 74% were crossing with 
cars or as foot passengers and 26% as commercial freight drivers. There 
were no differences in the passenger:freight ratio between the two ships.

3.2 SARS-CoV-2 and other viruses in ferry 
wastewater

SARS-CoV-2 was detected in four samples during the survey period 
(8.1% of the total samples, n = 49, Figure 1). Of the positive wastewater 

samples, the maximum concentration detected was 9.2 × 105 gc l−1. Of 
the other human pathogenic viruses tested in the wastewater samples, 
only NoV GII was detected, albeit at a lower frequency (6.1% of the total 
samples) with a maximum concentration of 1.3 × 106 gc l−1. Neither, 
enterovirus, enterovirus D68 or influenza A or B were detected in the 
samples. The faecal marker crAssphage was detected in all samples from 
the Stena Adventurer, however, recovery of crAssphage from the Stena 
Estrid was much lower (26% of the total samples). The mean recovery 
of crAssphage was 1.9 × 106 gc l−1 on the Stena Adventurer which was 
lower than from the Stena Adventurer when samples tested positive 
(2.1 × 107 gc l−1, p = 0.002). Overall, the levels of crAssphage were lower 
than those reported in the national urban wastewater surveillance 
programme (mean 1.0 × 109 ± 3.0 × 107 gc l−1; p < 0.001).

3.3 SARS-CoV-2 sequencing

The samples that tested positive for the SARS-CoV-2 N1 gene 
region by RT-qPCR were subsequently sequenced. Sequence was 
acquired for 600–362,000 reads of which between 60% and 82% of the 
mapped to the viral genome. Although this yielded an average 
coverage > 1,500, sequences mapped to very restricted regions of the 
virus and therefore provided incomplete coverage for all samples. 
Overall, the percentage genome covered ranged from 18% to 35%. 
Consequently, we were able to ascribe one sample to the SARS-CoV-2 
omicron variant, however, the other three positive samples remained 
unascribed. The success of sequencing appeared directly related to the 
amount of SARS-CoV-2 recovered in the sample.

3.4 Wastewater chemistry

The average orthophosphate concentration of wastewater on the 
two Stena ships (mean ± SEM, 211 ± 57 mg l−1) was considerably higher 
than samples collected during the Welsh government national 
surveillance project (2.6 ± 0.1 mg l−1; Figure 2A). Likewise, we found the 
median ammonium concentration of wastewater on the ships 
(320 ± 25 mg N l−1) to be much higher than the national surveillance 
median (16 ± 1 mg N l−1; Figure 2D). Further, the turbidity of the ships’ 
wastewater samples (1,172 ± 122 NTU) was higher that reported for 
urban wastewater in the national surveillance programme (90 ± 5 NTU). 
Similarly, the electrical conductivity and pH of the ships’ wastewater 
(4.7 ± 0.2 mS cm−1 and 7.9 ± 0.12, respectively) were also different to the 
national surveillance programme samples (0.9 ± 0.1 mS cm−1 and 
7.5 ± 0.02, Figures 2B,C). None of the wastewater characteristics had 
significant correlations with passenger data (p > 0.05; data not presented).

4 Discussion

4.1 Potential of ship wastewater to capture 
the presence of infected individuals

Wastewater can potentially provide a non-invasive, ethically 
compliant and relatively unbiased way to evaluate levels of infection 
within a cohort of individuals all connected to a common sanitary 
system (5). To our knowledge, this is the first use of ship-based 
wastewater-based surveillance to assess the potential transfer of viral 
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FIGURE 1

Viral detection and quantification in wastewater collected from two international short-haul ships (Stena Estrid and Stena Adventurer) taking 
passengers and commercial loads to and from Ireland (Dublin) and Wales (Holyhead). The outbound route is Holyhead to Dublin and the inbound 
route is Dublin to Holyhead. SARS-CoV-2 used the N1 gene target. The faecal-marker virus crAssphage was used as an indicator of faecal matter being 
present. Norovirus represents genogroup II and Influenza represents both influenza A and B. Each square represents an individual ferry crossing 
between Ireland and the Wales.

FIGURE 2

Chemical indicators of wastewater quality from two international short-haul ships (Stena Adventurer and Stena Estrid) on the international Ireland 
(Dublin) to Wales (Holyhead) route. (A) orthophosphate, (B) pH, (C) electrical conductivity, and (D) ammonium. For comparison, we present results for 
influent wastewater from 44 sites collected as part of the Welsh national COVID-19 wastewater surveillance network. The 25th, 50th, and 75th 
percentile ranges are depicted by the box, excluding outliers greater or lesser than 1.5  ×  IQR depicted by the whiskers.
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pathogens across an international maritime boundary. Our results 
provided clear evidence that, albeit infrequent, infected individuals 
were crossing between the UK and Ireland during the third COVID-19 
wave when guidance was still in place to prevent travel for infected 
individuals. Whilst wastewater analysis has previously been 
undertaken on ships, this has largely been from the perspective of 
discharging pollutants into marine waters rather than assessing the 
presence of infected individuals on a vessel (55–58). Further, most of 
this work has focused on organic pollutants (e.g., antibiotics) and 
faecal-derived bacteria rather than on viruses (30, 55, 59). A single 
study from a cruise ship carrying passengers infected with SARS-
CoV-2 showed previously that viral RNA could be isolated from the 
ship’s wastewater (60), providing the first evidence that wastewater can 
be  used for on-board pathogen surveillance. However, long-haul 
cruise ships hold an isolated population where it can be guaranteed 
that all individuals will use the toilet facilities. Further, cruise ships are 
notorious for large viral outbreaks due to the close confinement of 
passengers over long periods of time (e.g., norovirus, influenza) (61–
63). This suggests that viral titers in wastewater from cruise ships are 
likely to be very high and may also prove useful as a temporal indicator 
of outbreak progression.

In the case of short- and medium-haul passenger ferries (journey 
time < 6 h in duration), the frequency that individuals defecate remains 
unknown; however, it is expected that this will be  very low in 
comparison to cruise ships. The continual changing of passengers (4 
times daily in this study), is also likely to lead to more temporally 
stochastic results with lower viral titers (due to a higher urination-to-
defecation ratio). Unlike cruise ships, in the context of short-haul 
shipping routes, it is the frequency of detection that is most important 
rather than the quantitative analysis of the amount of viral 
RNA present.

4.2 Theoretical vs. actual measured 
incidence of infected individuals

The success of viral surveillance using wastewater relies largely on 
faecal shedding and to a lesser extent vomiting and sputum, whilst 
very few pathogenic viruses are shed in urine (64). Previous studies 
have indicated that enteric and respiratory viruses are shed in faeces 
whether individuals are asymptomatic or symptomatic (65–67). The 
frequency, duration and amount of faecal shedding, however, can vary 
significantly between viruses, point in the infection cycle and on the 
nature of the individual (e.g., age, immune status etc.). Here we take a 
first principles approach to estimating the likely number of passengers 
infected with SARS-CoV-2 who can theoretically be captured using a 
wastewater-based approach. Although information exists for 
defecation frequency on long-haul ships, which suggests that most 
people defecate less often than on land (68), no quantitative 
information exists for defecation frequency on short-haul passenger 
ferries. Based on estimates of likely frequency of on-board defecation 
on short-haul flights (<13%; <3 h in duration) (69), we use this to 
estimate the chances of capturing infected individuals on short-haul 
passenger ships. Based on the total number of passengers sampled 
during the study period (ca. 6,942), a population-level COVID-19 
prevalence rate of 3.1%–4.5% (51, 52), an asymptomatic carriage rate 
of the omicron variant of 20%–30% (70, 71) and a SARS-CoV-2 faecal 
shedding rate of 40%–60% (66), we estimate that theoretically the 

number of infected passengers would range from 2.2 to 7.3  
(Equation 1). The number of actual samples which tested positive for 
SARS-CoV-2 (n = 4) directly falls within this range. One assumption 
we have made is that symptomatic people did not travel based on 
government guidance at the time of the study and that diarrhoea is not 
a primary symptom of omicron infections, the dominant variant in 
circulation at the time (72).

4.3 Use of wastewater for the surveillance 
of other viral pathogens

Although the main premise of this study was to evaluate the use 
of wastewater for COVID-19 border surveillance, we showed that the 
approach can also be used to evaluate the prevalence and movement 
of other viruses and is likely suitable for other disease-causing agents 
(e.g., anti-microbial resistant bacteria, protozoa). Here we  also 
detected the RNA of norovirus in wastewater on several occasions. 
Indeed, wastewater may be  better for the surveillance of enteric 
viruses as the frequency and volume of defecation is much greater 
(e.g., diarrhoea), viral shedding rates occurs in all infected individuals 
and the rates of shedding are much greater (66). Enteric viruses also 
represent the leading cause of illness amongst returning travellers 
seeking medical care (73). Previous estimates of trans-border 
movement of norovirus have relied on the analysis of serum or stool 
samples, largely provided voluntarily from symptomatic individuals 
(73–76). In combination with genotyping (to assess unique lineages), 
wastewater could provide an unbiased assessment of norovirus entry 
into the country, particularly as ca. 10% of infections are asymptomatic 
and shed at similar rates to symptomatic individuals (77). The levels 
of norovirus circulating in the population at the time of the study were 
atypically low due to the COVID-19 pandemic (78, 79) suggesting that 
more cases may be detected post-pandemic. Similarly, the prevalence 
of influenza A/B and enterovirus were also unseasonably low in the 
population at the time of sampling, due to the knock-on effect of 
non-pharmaceutical interventions for COVID-19 control (80, 81). It 
would therefore be useful to undertake a repeat survey under more 
representative circumstances to evaluate the use of wastewater for 
catching these viruses.

4.4 Limitations of using a 
wastewater-based approach for pathogen 
surveillance on ships

Whilst wastewater analysis proved successful at showing the 
passage of infected individuals between the UK and Ireland, the 
approach has some limitations and areas for refinement as follows: (i) 
Sampling approach: For logistical reasons, we relied on taking several 
manual spot measurements per journey rather than deploying an 
automated time-integrated composite sampler. Although some mixing 
of the wastewater will occur within the sanitary network, it is known 
that a grab/spot-sampling approach does not provide the most reliable 
estimate of viral load, particularly for near-source testing (82). The 
design of a refrigerated autosampler that can retrieve a wastewater 
sample from a pressurised sanitary network at regular intervals (ca. 
every 10 min) would therefore be useful. Further, passive sampling 
approaches may be appropriate to capture time integrated information 
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without having to rely on complex autosamplers (83); (ii) Independent 
validation: To better validate the wastewater approach, it would 
be useful to take nasopharyngeal swabs from a representative sample 
of individuals to confirm the presence/absence of SARS-CoV-2 and 
influenza (63). Due to ethical and social considerations, validation for 
enteroviruses may be more problematic; (iii) Defecation behaviour: As 
the approach relies on shedding viruses in faeces, it would be useful 
to gain insight into the toilet habits of individuals and whether these 
are influenced by demographic factors (e.g., age, gender, nationality), 
passenger type (e.g., commercial truck drivers vs. tourists, journey 
details), timing (e.g., day vs. night voyages), season (e.g., tourist season 
vs. off-peak) and the health status (e.g., evidence of respiratory or 
gastrointestinal symptoms). This could be  achieved by eliciting a 
passenger questionnaire on departure from the port. Alternatively, the 
number of individuals defecating on the boat could be assessed by the 
unique lineages of phages present in the human gut (e.g., crAssphage) 
(84). The toilet use by crew should also be  a factor that needs to 
be considered in this analysis; (iv) Wastewater transit time: Although 
the samples were taken on a daily basis, the residence time of the 
wastewater in the sanitary network (e.g., holding tanks) (30), and 
therefore the potential loss of viral RNA/DNA remains unknown. 
Based on previous studies on marine wastewater discharges, 
we therefore recommend the deployment of a rhodamine tracer for 
mapping residence time (85); (v) Origin of infection: Due to the 
uncertainty in wastewater transit time, we were unable to determine 
with certainty whether the wastewater collected was from the 
UK-Ireland or Ireland-UK leg of the journey (or a mixture of both). 
The geographical origin of SARS-CoV-2 or norovirus in our samples 
could therefore not be  determined with certainty. More complete 
genetic sequencing of the viral strains and mapping the lineages to 
national databases will clearly aid in this. Due to the high number of 
clinical samples being sequenced for SARS-CoV-2 this should 
be effective; (vi) Viral recovery: A preliminary investigation in a small 
number of samples showed that variations on the PEG-salt based 
method used here may give better viral recoveries. Given the 
concentrated nature and high urea content of ship blackwater (86), it 
is likely that improved methods for viral recovery and removal of PCR 
inhibitors is still needed. This is evidenced by the inability to recover 
crAssphage from some samples, despite its high abundance in human 
faeces from industrialised countries (87). Given the high solids 
content in the wastewater, it may also be desirable to evaluate the 
partitioning of viruses between the solid and liquid fraction so that 
the most enriched fraction can be targeted for further surveillance 
activities; (vii) Other shipping routes: This study targeted short-haul 
journeys, however, adopting a similar approach on longer maritime 
crossings would provide additional value and may be less affected by 
some of the limitations highlighted above. For example, the UK-Spain 
passenger ferry (Portsmouth-Santander) has a duration of 28.5 h, 
whilst the UK-Belgium route (Hull-Zeebrugge) takes 13.5 h and the 
UK-Norway (Harwich-to-Esbjerg) passage takes 18 h.

5 Conclusion

This study has successfully demonstrated that ship blackwater can 
be  used to isolate and identify viruses of public health concern. 
Further, the frequency of detection was consistent with theoretical 
estimates based on known infection rates within the population. 

Although some refinement of the methodology is still required, 
we  conclude that this wastewater-based approach can be  readily 
expanded to a wide range of faecal-borne pathogens. In combination, 
the methodology presented here provides a non-invasive way to 
assessing the frequency of pathogen transfer across international 
maritime boundaries and thus the contribution of maritime traffic to 
the global spread of disease.
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Introduction: Seasonal influenza generally represents an underestimated 
public health problem with significant socioeconomic implications. Monitoring 
and detecting influenza epidemics are important tasks that require integrated 
strategies. Wastewater-based epidemiology (WBE) is an emerging field that 
uses wastewater data to monitor the spread of disease and assess the health 
of a community. It can represent an integrative surveillance tool for better 
understanding the epidemiology of influenza and prevention strategies in public 
health.

Methods: We conducted a study that detected the presence of Influenza virus 
RNA using a wastewater-based approach. Samples were collected from five 
wastewater treatment plants in five different municipalities, serving a cumulative 
population of 555,673 Sicilian inhabitants in Italy. We  used the RT-qPCR test 
to compare the combined weekly average of Influenza A and B viral RNA in 
wastewater samples with the average weekly incidence of Influenza-like illness 
(ILI) obtained from the Italian national Influenza surveillance system. We also 
compared the number of positive Influenza swabs with the viral RNA loads 
detected from wastewater. Our study investigated 189 wastewater samples.

Results: Cumulative ILI cases substantially overlapped with the Influenza RNA 
load from wastewater samples. Influenza viral RNA trends in wastewater samples 
were similar to the rise of ILI cases in the population. Therefore, wastewater 
surveillance confirmed the co-circulation of Influenza A and B viruses during 
the season 2022/2023, with a similar trend to that reported for the weekly 
clinically confirmed cases.

Conclusion: Wastewater-based epidemiology does not replace traditional 
epidemiological surveillance methods, such as laboratory testing of samples 
from infected individuals. However, it can be  a valuable complement to 
obtaining additional information on the incidence of influenza in the population 
and preventing its spread.

KEYWORDS

wastewater, surveillance, wastewater-based epidemiology, influenza viruses, influenza 
season
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1 Introduction

Influenza is a viral acute respiratory infection with high morbidity 
and mortality in humans, especially in specific groups such as children 
and older adults, posing a constant threat to global public health 
because of recurring seasonal epidemics and irregularly occurring 
pandemics (1–3). The burden of this disease can vary widely, being 
determined by several factors, including the characteristics of 
circulating viruses, the timing of the season, the environmental 
temperature, how well the available vaccine is working to protect 
against illness, and how many people got vaccinated (4, 5). The 
Centers for Disease Control and Prevention (CDC) estimated that 
influenza has resulted in 9 million–41 million illnesses, 140,000–
710,000 hospitalizations, and 12,000–52,000 deaths annually between 
2010 and 2020 in the United States (6). Seasonal influenza epidemics 
have substantially contributed to the worldwide annual mortality rate, 
particularly among the older adult 65 years and over. In Italy, a 
mortality rate of 10.7 per 1,000 inhabitants was observed in the winter 
season of 2014/2015 (more than 375,000 deaths in absolute terms), 
corresponding to an estimated 54,000 excess deaths (+9.1%), as 
compared to the previous season (7), representing the highest reported 
mortality rate since the Second World War in this country (8). Rapid 
population growth, climate change, natural disasters, immigration, 
globalization, and the corresponding sanitation and waste 
management challenges are expected to intensify the problem in the 
future (9).

Worryingly, seasonal influenza generally represents an 
underappreciated public health problem with significant socio-
economic implications (10). Monitoring and detecting influenza 
outbreaks are important but challenging tasks. To accurately track the 
spread of influenza, reporting systems for influenza-like illness (ILI) 
and laboratory-confirmed influenza infections (11) can be  helpful. 
These systems are crucial for estimating the number of people 
experiencing symptoms, hospitalizations, and deaths caused by 
influenza, addressing vaccination campaigns, and allocating treatment 
resources. The surveillance of seasonal influenza is possible through 
data collection and sharing systems, such as FluView in the United States 
1and FluNews in Europe,2 which systematically collect data on seasonal 
influenza and publish periodic reports to inform on epidemiological 
trends. Influnet is the Italian nationwide sentinel surveillance system for 
influenza, coordinated by the Italian National Institute of Health (NIH), 
collecting epidemiological and virological data that are published 
weekly on the integrated surveillance system portal 3according to an 
operative protocol4 and uploaded into the European database 
coordinated by the European Centre for Disease Prevention and 
Control (ECDC) (12). Collaborating sentinel doctors from each region 
of the country report cases of ILI observed among their patients, 
collecting, at the same time, biological respiratory samples to identify 
circulating viruses. The European case definition of ILI was adopted to 
ensure maximum homogeneity of detection. A case of ILI was defined 
as a person presenting a sudden and rapid onset of at least one of the 
following systemic symptoms: fever or feverishness, malaise, headache, 

1  www.cdc.gov/flu/weekly

2  www.flunewseurope.org

3  https://respivirnet.iss.it/pagine/rapportoInflunet.aspx

4  https://www.salute.gov.it/imgs/C_17_pubblicazioni_3267_allegato.pdf

myalgia; and at least one of the following respiratory symptoms: cough, 
sore throat, shortness of breath (13). Doctors take throat swabs from ILI 
patients tested for influenza viruses at regional Influnet laboratories.

The experience gained over the last few years indicates that the 
Influenza virus and Coronaviruses are the two main viruses that pose 
a high risk to humans. Influenza A viruses can infect various animals 
and humans, leading to pandemics (14, 15). Although environmental 
virus monitoring can be helpful, the methods are mainly based on 
clinical data and not validated for environmental testing (16).

Despite this, since the beginning of the COVID-19 pandemic, the 
utility of wastewater-based epidemiology (WBE) has emerged as a tool 
for researchers to monitor the circulation of SARS-CoV-2 through the 
design of pilot studies that highlighted the link between environmental 
and clinical frameworks (17–22). WBE provides quickly anonymous and 
aggregated data at a low cost and at a potentially large scale through the 
passive contributions of the community, therefore integrating the 
conventional surveillance programs and strengthening health emergency 
response systems, as occurred with the tracking of the poliovirus during 
the twentieth century (23). Over the past 2 years, the number of studies 
supporting wastewater surveillance to monitor the circulation of 
respiratory pathogens and Influenza viruses in communities has been 
increasing (9, 24–32). As an effective health assessment approach, WBE 
has great potential in warning of infectious disease outbreaks for public 
health (20), as recently demonstrated in Italy during the COVID-19 
pandemic (17, 21, 22). Our study aimed to monitor the presence of the 
influenza virus in the wastewater of different cities on the island. The 
objective was to evaluate the circulation of the virus throughout an entire 
Influenza season and compare the results with the conventional 
integrated epidemiological and virology surveillance.

2 Materials and methods

2.1 Study design and sample collections

We conducted an observational study in Sicily (Italy), the largest 
and most populous island in the Mediterranean Sea, accounting for 
about 5 million resident inhabitants (33). Five wastewater treatment 
plants (WTPs) located in five different municipalities, serving a 
cumulative population of 555,673 inhabitants (ranging from 34,000 to 
314,973; 11.1% of total island residents), were included in the study. 
Raw 24-h composite wastewater samples (n = 188) were collected 
weekly for 9 months, between August 2022 (week 31/2022) and April 
2023 (week 17/2023), by an automatic sampling device. Further 
information about the location and the characteristics of WTPs is 
provided in Figure  1. The collected samples were refrigerated, 
transferred to the laboratory, and tested for influenza viral RNA 
within 24 h from sampling. The wastewater samples collection period 
(week 31/2022) started before the national epidemiological/virological 
surveillance (week 42/2022) to assess the viral RNA early detection in 
wastewater. This evaluation determines if the WBE methodology can 
serve as an early warning system for influenza circulation.

2.2 Virus concentration

All samples underwent a 30-min treatment at 56°C to minimize 
the potential impact of bioaerosol on personnel and environmental 
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safety (34–37). Heat-treating samples at 56°C for 30 min should cause 
a negligible or little effect on the sensitivity of RT-PCR (17, 38, 39). 
Then, each sample was concentrated using a polyethylene glycol 
(PEG)-based procedure, according to Wu et al. (40) protocol with 
minor modification. Briefly, wastewater samples (45 mL) were 
centrifuged at 4,500 x g for 30 min; after centrifugation, 40 mL of 
sample were mixed with 8% w/v polyethylene glycol 8.000 and 0.3 M 
NaCl (both supplied by Sigma-Aldrich, St. Louis, MO, USA), spiked 
with a known amount of Murine Norovirus, used as a process control. 
After a centrifugation step at 12,000 x g for 2 h, the viral pellet was 
resuspended in 2 mL of NucliSENS Lysis Buffer reagent (bioMerieux, 
Marcy-l’Étoile, France) for sub-sequent RNA extraction.

Viral RNA extraction was performed using a semi-automated 
system based on lysis and magnetic silica beads (supplied by 
bioMerieux, Marcy l’Etoile, France). After an incubation of 20 min at 
room temperature, 100 μL of magnetic silica beads were added. After 
further incubation for 10 min, an automated procedure was performed 
using the nucleic acid purification system (Auto-Pure96, All Sheng 
Instruments, Zhejiang, China). Before molecular tests, the extracted 
nucleic acids in an eluent volume of 100 μL, were purified from 
potential PCR inhibitors using the OneStep PCR Inhibitor Removal 
Kit (Zymo Research, CA, USA).

2.3 RT-qPCR

One-step real-time reverse-transcription (RT) quantitative PCR 
assays were used to detect the presence of Influenza A viral RNA 

(IAV) and/or Influenza B viral RNA (IBV) according to the CDC 
protocol with minor modifications.5 A test was considered positive 
when its cycle threshold (Ct) value was <40. All q-PCR assays were 
performed with singleplex real-time PCR (rPCR) assays using the 
TaqMan technology and run on a QuantStudio™ 7 Flex Real-Time 
PCR System (Applied Biosystems, Carlsbad, CA, USA); primers, 
probes sets and reagents are described in Tables 1, 2. For the detection 
of viral RNA, we  performed q-PCR as a single step using the 
Quantinova Pathogen + IC kit Polymerase (Qiagen, CA, USA). The 
PCR conditions were as follows: 1 cycle at 50°C for 2 min; 1 cycle at 
95°C for 2 min; 45 cycles at 95°C for 15 s and 55°C for 30 s.

Viral RNA quantification was performed using 10-fold dilutions, 
ranging from 1.0 to 1.0 × 105 Genomic Copies (GC)/μL per reaction, 
of a synthetic double-stranded plasmid construct carrying IAV and 
IBV nucleotide sequences specific for the real-time assays. qPCR 
standard curves were generated by linear regression of Ct values 
versus log10 standard concentration and used to convert Ct values 
into influenza RNA copies/μL per reaction (Slope = − 3.385; R = 0.999; 
Efficiency (%) = 97.422; Y-intercept = 21.721). The influenza viral 
RNA’s GC/L in wastewater was obtained according to the formula: 
(GC/μL x (100 μL/40 mL)) x 1.000 mL/1 L. The results were also 
evaluated in GC/day/inhabitant according to the following formula: 
flow rate of WTP in 24 h (m3) x GC (GC/L)/equivalent number of 
inhabitants served by the WTP. Verification of PCR inhibition was 

5  https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex.html

FIGURE 1

Location and the characteristics of wastewater treatment plant involved in the study.
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performed as a quality parameter of the determinations. To verify the 
inhibition, the PCR Ct value obtained from the sample added with 
1 μL of a 1.0 × 103 GC/μL of the synthetic double-stranded plasmid 
was compared with the PCR Ct value of water for molecular biology 

added with 1 μL of the same synthetic double-stranded plasmid, 
according to the following formula: ΔCt = Ct (sample + control 
plasmid) – Ct (water + control plasmid). The sample was considered 
acceptable if ΔCt was ≤2. Before performing sample analysis, the limit 

TABLE 1  Primers and probes for detecting influenza A, influenza B and Murine Norovirus by q-PCR.

Name Description Oligonucleotide sequence (5′–3′)

InfA-F
InfA For1 CAA GAC CAA TCY TGT CAC CTC TGA C

InfA For2 CAA GAC CAA TYC TGT CAC CTY TGA C

InfA-R
InfA Rev1 GCA TTY TGG ACA AAV CGT CTA CG

InfA Rev2 GCA TTT TGG ATA AAG CGT CTA CG

InfA-P InfA Probe FAM/TGC AGT CCT CGC TCA CTG GGC ACG/BHQ

InfB-F InfB For TCC TCA AYT CAC TCT TCG AGC G

InfB-R InfB Rev CGG TGC TCT TGA CCA AAT TGG

InfB-P InfB Probe FAM/CCA ATT CGA GCA GCT GAA ACT GCG GTG/BHQ

MNV orf1/2junct/F MNV For CAC GCC ACC GAT CTG TTC TG

MNV orf1/2junct/R MNV Rev GCG CTG CGC CAT CAC TC

MNV orf1/2junct/P MNV Probe FAM/CGC TTT GGA ACA ATG/MGBNFQ

TABLE 2  The PCR reagents.

Reagent for flu A detection Final concentration (nM) Volume (μl)

Quantinova Master Mix* – 3.90

InfA For1 400 0.15

InfA For2 400 0.15

InfA Rev1 600 0.225

InfA Rev2 200 0.075

InfA Probe 300 0.45

Nuclease free water – 5.05

Sample – 5.00

Total volume 					     15.00

Reagent for flu B detection Final concentration (nM) Volume (μl)

Quantinova Master Mix* – 3.90

InfB For 800 0.30

InfB Rev 800 0.30

InfB Probe 300 0.45

Nuclease free water – 5.05

Sample – 5.00

Total volume 					     15.00

Reagent for Murine Norovirus detection Final concentration (nM) Volume (μl)

Quantinova Master Mix* – 3.90

InfB For 300 0.15

InfB Rev 600 0.30

InfB Probe 200 0.15

Nuclease free water – 5.50

Sample – 5.00

Total volume 					     15.00

*Quantinova Mastermix is premixed with 15 μL of ROX reference dye before use.
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of detection (LoD) was determined by spiking wastewater extracts 
with dilutions of the synthetic double-stranded plasmid solutions at 
concentrations of approximately 1,000, 100, 50, 20, 10, 2, and 1.0 GC/
μL. Ten replicates of each dilution were tested. The LoD was the lowest 
concentration at which all ten replicates were positive. The assay had 
a LoD of 2.5 GC/μL. The concentration/extraction efficiency of the 
method was assessed as previously reported (22). The sample was 
considered acceptable if the concentration/extraction efficiency 
was ≥1%.

2.4 Clinical and virologic data sources

We accessed the Influnet web-based platform data (41) to obtain 
weekly national and regional epidemiological and virological reports, 
including the ILI incidence per 1,000 inhabitants for the Sicilian 
region and the aggregate number of influenza-positive swabs. 
Specifically, data were retrieved from week 42/2022 (conventionally 
marked as the starting week for influenza virus circulation and thus 
established as the onset time for the start of the national influenza 
circulation surveillance-system data collection) up until week 17/2023 
(considered as the ending of influenza season).

2.5 Statistical analyses

The national surveillance influenza platform contains regional 
data regarding influenza virus surveillance. Since data collection was 
performed weekly, IAV and IBV viral loads (intended as viral RNA 
copy numbers per day/inhabitants of wastewater) detected from the 
five Sicilian WTPs were aggregated in weekly means and summed, 
thus obtaining the total IAV + IBV viral load. Moreover, new time-
dependent variables (lag times) were created to assess the wastewater 
detection method’s early-warning capacity. They were based on a 
method we  already performed in our previous WBE study (42). 
Specifically, by using “WTPs sampling week” and “regional ILI 
incidence per 1,000 inhabitants” as key variables, the incidence was 
set at week 0 (intended as the week of sample collection), week 1 and 
2 (respectively, 1 and 2 weeks ahead of the WTPs’ sampling week).

As viral concentrations in wastewater are log-normally 
distributed, a log-10 transformation was applied for all the variables 
we analysed. Thus, although WBE data were collected from week 
31/2022 to assess early virus circulation, national surveillance data 
were available from week 42/2022. Thus, Person’s correlation test, 
log-linear regression analyses and significance tests, retrieving R, r2 
and p-values, were carried out through RStudio software (version 
4.2.2) to compare from week 42/2022 to week 17/2023, at weeks 0, 1 
and 2, the following variables:

	-	 The mean weekly regional ILI incidence per 1,000 inhabitants 
with the weekly average of combined IAV and IBV viral loads 
derived from WTPs.

	-	 The weekly regionally combined number of positive IAV and IBV 
swabs detected, with the combined IAV and IBV Regional viral 
load detected from WTPs.

The Shapiro–Wilk test was carried out to check for the normality 
of each continuous variable. A p-value <0.05 was considered 
statistically significant.

3 Results

Overall, from 7 September 2022 to 30 April 2023, 189 wastewater 
samples were investigated every week. In particular, the following 
samples were collected from five municipalities and tested for IAV and 
IBV RNA: Agrigento (n = 36), Bagheria (n = 37), Caltanissetta (n = 39), 
Enna (n = 39), and Palermo (n = 37). Overall, IAV RNA was detected in 
123/189 samples (65.1%) and IBV RNA in 37/189 samples (19.5%), 
while the co-presence of the two viral RNA was recorded in 22/189 
(11.6%) of the analyzed samples. The recovery rate of influenza viral 
RNA has ranged from 1 to 100% (mean 8.72; 95% C.I. = 6.35–11.09), 
compared to a Murine Norovirus control of known concentration in 
PCR grade water. Table 3 shows the descriptive analysis of the main 
clinical and virological surveillance data of the flu season 2022/2023. In 
the entire study period, the concentration of IAV in wastewater ranged 
from 0.0 to 9.3 × 105 GC/day/inhabitants, while IBV ranged from 0.0 to 
3.5 × 105 GC/day/inhabitants. Figure 2 depicts the weekly trends in the 
ILI regional incidence, reported by the national surveillance system 
(primary y-axis) and the influenza RNA load in sewage (secondary 
y-axis) per week of the year (x-axis). In week 36/2022, the first influenza-
positive wastewater samples were recorded, with an average 
concentration of 4.4 × 104 GC/day/inhabitants. In the following weeks, 
there was a constantly increasing trend of viral RNA detected in the 
wastewater until reaching the peak of 9.3 × 105 GC/day/inhabitants in 
week 50/2022. From then on, the viral RNA concentration in wastewater 
progressively decreased until week 06/2023, after which a second lower 
peak occurred at week 10/2023, quantified as 3.9 × 103 GC/day/
inhabitants. After that, the viral RNA concentration in wastewater 
regularly decreased until the absence of detection from week 14/2023. 
On the other hand, the epidemiological trend of ILI at a regional level 
showed high values starting from week 42/2022, the first surveillance 
week of the 2022/2023 season, and peaked in week 49/2022. Excluding 
small occasional increases in ILIs, the trend has been downward until 
the end of the surveillance season scheduled for week 17/2023. The 
number of cumulative ILI cases substantially overlapped with the 
influenza RNA load from wastewater samples, with an increasing trend 
of influenza viral RNA in wastewater samples comparable to the rise of 
ILI cases in the population. Figure 3 shows the trend of IAV and IBV 
circulating regionally, obtained from the virological surveillance system 
and the viral RNA load detected from the local wastewater samples. The 
wastewater analyses allowed us to record the total presence of IAV from 
week 36/2022 until week 51/2022. From week 52/2022 and up to week 
13/2023, there was a co-circulation of the two types of viruses, and the 
concentration of IBV had an increasing trend until its peak recorded at 
week 09/2023 with a concentration of 3.5 × 105 GC/day/inhabitants. In 
confirmation of the co-circulation of viruses from week 52/2022 and of 
the subsequent predominance of IBV over IAV from week 05/2022, the 
ratio of IBV over IAV showed values of 0.1 in week 52/2022, of 1.5 in 
week 05/2023 and 12.8 in week 07/2022 and, in any case, always greater 
than one up to week 11/2023, the last in which the wastewater samples 
gave a positive result. A similar trend was shown by the regional 
virological surveillance of influenza-positive swabs, in which from week 
46/2022 to week 50/2022, there was an exclusive circulation of the IAV, 
a co-circulation of both viruses up to week 17/2023 with a predominance 
of IBV from week 06/2023 to week 17/2023, with a ratio of type B to 
type A ranging from 1.2 to 4.8.

As shown in Table  3, the correlation analyses between the 
Influenza viral RNA load (IAV + IBV RNA concentration) detected in 
WTPs and the regional incidence of ILI per 1,000 inhabitants 
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displayed a p-value < 0.001 at week 0 and < 0.0001 for weeks 1 and 2, 
respectively. A moderate-high correlation index (R) was retrieved, 
ranging from 0.55 at week 0 to 0.78 at week 2. Accordingly, a 
moderate-correlation index was retrieved when comparing the 
IAV + IBV viral RNA load detected from WTPs with total number of 
positive IAV + IBV regionally detected swabs at all times evaluated 
(Table 4: w0 R = 0.46, p-value < 0.01; w1 R = 0.55, p-value < 0.01; w2 
R = 0.63, p-value < 0.001). In Figure  4 are showed the scatterplots 
describing the correlation between the RNA viral load detected in 
wastewater (GC/day/inhabitants) and the number of ILI detected per 
1,000 inhabitants at week 2.

4 Discussion

Regardless of the influenza season’s onset timing, we observed a rapid 
and early start of the epidemic season in our study. This resulted in the 
ample virus circulating in the population when the epidemiological 

surveillance of the Influnet network began. This trend was also observed 
in the southern hemisphere, where the Australian data collection systems 
showed an extremely accelerated and anticipated growth concerning the 
normal trend (43). In Sicily (Italy), during the first week of surveillance 
(42/2022, 17–23 October 2022), the incidence of reported ILI, which in 
principle can be considered a good proxy of the incidence of flu illness 
(44), was 3.7 cases/1,000 inhabitants, unlike previous influenza seasons 
which stood at decidedly lower values (41). The anticipated presence of 
the circulation of influenza viruses was also recorded through the analysis 
of wastewater, which began in the week of 31/2022 (1–7 August 2022). In 
week 36/2022 (5–11 September), we simultaneously detected influenza 
viruses in all municipalities through wastewater analysis. This was 17 days 
before the start of conventional national surveillance. The values recorded 
ranged from 6.00 × 102 to 1.24 × 103 GC/L. Unfortunately, we cannot 
determine the specificity of our method due to the unavailability of 
sufficient clinical swabs from sentinel doctors for each municipality. 
Nonetheless, this early detection of pathogen circulation through WBE 
has the potential to benefit public health greatly. It could aid in 

TABLE 3  Descriptive analysis containing the total weekly mean Influenza virus load assessed in wastewater from the different WTPs, the regional 
weekly ILI incidence per 1,000 inhabitants, the total number of regional swabs performed and the positivity rate.

Week Regional ILI incidence 
(x 1,000 inhabitants)

Total swabs 
performed (N)

Positivity rate (%) Viral load (GC/day/
inhabitants)

42/2022 3.7 20 10.0 4.1 × 105

43/2022 4.8 2 0.0 4.0 × 105

44/2022 4.0 1 100.0 2.9 × 105

45/2022 4.7 8 50.0 3.8 × 105

46/2022 8.7 63 38.0 3.4 × 105

47/2022 8.6 75 33.3 5.4 × 105

48/2022 12.2 92 53,3 7.8 × 105

49/2022 14.0 102 54.0 6.5 × 105

50/2022 13.6 135 58.5 9.3 × 105

51/2022 12.3 130 47.7 6.3 × 105

52/2022 12.1 99 37.3 7.0 × 105

01/2023 12.0 100 25.0 6.5 × 105

02/2023 10.9 119 5.9 4.1 × 105

03/2023 11.9 85 15.3 3.1 × 105

04/2023 9.6 51 19.6 2.8 × 105

05/2023 9.5 34 34.0 1.8 × 105

06/2023 8.1 29 29.0 2.0 × 105

07/2023 6.2 13 13.0 2.9 × 105

08/2023 8.2 30 16.6 1.8 × 105

09/2023 7.5 16 31.2 3.9 × 105

10/2023 7.2 13 13.0 3.9 × 105

11/2023 6.7 25 16.0 2.2 × 105

12/2023 6.0 21 9.5 1.5 × 105

13/2023 5.6 17 17.6 1.7 × 104

14/2023 4.3 5 60.0 0.0

15/2023 4.5 10 20.0 0.0

16/2023 4.8 1 0.0 0.0

17/2023 3.7 2 0.0 0.0
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differentiated programming of the start of epidemiological/virological 
surveillance and vaccination campaigns to increase their effectiveness.

A sustained co-circulation of type A and B influenza viruses 
characterized Italy’s 2022/2023 influenza season. Overall, IAV was 
prevalent (79.5% of the samples tested positive) compared to IBV 
(20.5%). The epidemiological data of influenza that have emerged in 
the southern hemisphere have attested that influenza has been 
spreading significantly, probably due to the reduction of distancing 
measures and the use of masks (43). In the five municipalities in the 
study, wastewater analyses showed that the majority of IAV was 
detected in week 50/2022 (12–18 September 2022) with 9.3 × 105 GC/
day/inhabitants, while the majority of IBV was found in week 09/2023 
(27 February – 05 March 2023) with 3.5 × 105 GC/day/inhabitants. 
The same trend, with a time lag of 7–14 days concerning wastewater, 
was recorded by the virological surveillance, which dated the peak 
circulation of the IAV in the week 49/2022, therefore 7 days earlier, 
and that of the IBV in week 12/2023, then 14 days later (41).

Our findings confirmed that wastewater surveillance can 
effectively detect influenza virus circulation and should be considered 
a valuable supplement to conventional influenza surveillance. More 
in-depth, it may be used to test influenza virus circulation in the 
communities for prolonged periods using a single sample approach, 
like the application of SARS-CoV-2 WBE used to monitor the 
prevalence of COVID-19. The WBE methodology could be  an 
integrative approach to epidemiological and virological surveillance 
that introduces some interesting aspects to improve the estimation of 
influenza incidence. By monitoring various treatment plants in the 

city, the percentage of subjects tested can be increased compared to 
the Virological Surveillance Network’s target of 4% of the regional 
population. Additionally, collecting and transporting wastewater is 
more straightforward, cheaper, and potentially feasible wherever there 
is a sewage network, thus increasing the possibility of obtaining 
information even in smaller municipalities that are typically excluded 
from traditional surveillance systems. While there are many 
advantages to infectious disease wastewater monitoring, the WBE 
approach has some limitations, including aggregated data and the 
inability to perform epidemiological assessments by age groups, 
symptoms, or immune status for vaccinated subjects. Wastewater is a 
complex matrix affected by environmental factors that are not always 
identified, leading to inherent variability and uncertainties (45, 46). 
Furthermore, it’s important to address the lack of standardized 
protocols in the various phases of the analytical process. This includes 
sample pre-treatment, concentration, and nucleic acid detection (47). 
We need to establish a testing framework that considers the different 
analytical sensitivities at each analysis step. For example, in the 
thermal pretreatment phase, some studies show negligible changes in 
RNA measurement (34–37), while others do not (48–50). Similarly, in 
the concentration phase, the PEG-supernatant may have limitations 
due to the nature of influenza viruses, which have an envelope. This 
means it may not be suitable as the reference sample for conducting 
an influenza-WBE study, despite successful use in other studies 
globally (26, 51). The direct consequence is the difficulty of 
determining how directly wastewater concentrations reflect the 
number of infected individuals (28).

FIGURE 2

Weekly trends in the ILI regional incidence, reported by the national surveillance system and the influenza virus load in sewage per week of the year.
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Wastewater-based methods can provide insight into the 
circulation of respiratory viruses within a specific community without 
testing numerous individuals. This is because a single wastewater 
sample represents the entire community’s contribution. The results 
from wastewater testing can be  obtained within 24 h of sample 
collection, providing real-time information that can be used to inform 
public health responses, clinical decision-making, and individual 
behavior modifications.
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FIGURE 3

Trend of Influenza virus circulating regionally system and viral load detected from the local wastewater samples.

TABLE 4  Correlation analysis between the mean weekly RNA viral load in wastewaters and, respectively, the weekly incidence of regional ILI x 1,000 
inhabitants in Sicily and the cumulative number of IAV  +  IBV positive swabs detected in the region at weeks 0, 1 and 2.

Time R r2 p-value

ILI x 1,000 inhabitants (regional)

x

IAV + IBV GC/day/inhabitant

w0 0.55 0.30 <0.01

w1 0.70 0.47 <0.0001

w2 0.78 0.61 <0.0001

n°of IAV + IBV positive swabs (regional) 

x

IAV + IBV GC/day/inhabitant

w0 0.46 0.21 <0.01

w1 0.55 0.30 <0.01

w2 0.63 0.40 <0.001
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Issaka Yameogo2, Sandrine Gampini4, Aime-Gilles A. Adjami5,

Abdoulaye Nikiema6,7, Mory Kamate3, Felix Tarbangdo3,
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Habibata Zerbo9, Lila Rahalison10, Isaïe Medah2,

Anicet G. Dahourou1, Rebecca Greco-Kone10 and Flavien H. Ake3
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Public Hygiene, Ouagadougou, Burkina Faso, 9National Laboratory for Animal Health, Ministry of

Agriculture, Animal Resources and Fisheries, Ouagadougou, Burkina Faso, 10Division of Global Health

Protection, US Centers for Disease Control and Prevention, Atlanta, GA, United States

Introduction: In 2017, theMinistry of Health and Public Hygiene (MoH) of Burkina

Faso designed and piloted a specimen transport systemusing the national courier

services (La Poste BF) in 4 districts. Based on satisfactory performance indicators,

the MoH set a vision aimed at scaling up this system to strengthen disease

detection and surveillance of epidemic prone diseases across the country. This

work describes the implementation process, performances, and lessons learned.

Methodology: This work describes the implementation process, performances,

and lessons learned. Under the leadership of the Directorate of Population

Health Protection within the MoH, a stepwise approach was used to bring

together multiple partners across sectors to develop the first needed documents

including a guide, an implementation plan, Standard Operating Procedures, and

data collection tools. Then, the execution phase included equipment purchase,

trainings, and consensus on a financing mechanism. Key indicators were defined

to allow performance monitoring

Result: The integrated biological specimen referral system (SITEB) was o�cially

launched in January 2020 to transport human biological specimens of priority

diseases including COVID-19 from district level to reference laboratories

nationwide. As of December 31, 2022, La Poste BF transported 168,856 packages

containing 206,314 specimens from all 13 regions. 99.66% of packages were

delivered in <24h as required, and 99.68% of specimens were in good condition

at reception. COVID-19 specimens represented respectively 18% and 63% of

samples transported in 2020 and 2021.

Discussion: The political will combined with the experience gained during

the pilot phase and the commitment and support from all stakeholders laid to

the foundation of the e�ective implementation of this system. Collaboration
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between two government entities (MoH and Minister of Transport, Urban

Mobility, and Road Safety) to benefit public health has led to reasonable pricing

for sustainability. Although all documents integrate the “One Health“ approach,

the system ensures the transport of only human samples for now. Despite

security constraints, Burkina Faso has successfully set up a system using the

national postal service to ensure the routine transport of specimens for all

diseases under laboratory surveillance including laboratory tests for HIV and TB

from the district level to reference laboratories nationwide. This system has also

proved to be useful and e�cient in managing public health emergency.

KEYWORDS

integrated specimen referral system, Burkina Faso, laboratory system, disease

surveillance, national courier services, Ministry of Health

1 Introduction

An efficient laboratory network supported by a robust transport

system for biological specimens is essential to detect, prevent, and

respond effectively to public health threats (1). In low-income

countries, where detection capacity is particularly low in peripheral

laboratories, an efficient specimen referral system is needed to

support disease surveillance and the management of public health

threats. To help countries achieve this, several international

organizations including the World Health Organization (WHO),

the U.S. Centers for Disease Control and Prevention (US-CDC),

the United Nations Dangerous Goods Programme (UN DGP), and

the International Organization for Standardization (ISO) provided

guidance on the implementation of specimen transport systems

(2–5). Despite the many guidelines and regulations, setting up an

efficient specimen transport system within a laboratory network

remains challenging for many countries, particularly in resource-

limited sub-Saharan Africa. The main difficulties are linked to a

lack of coordination, low national funding, poor implementation

of laboratory policies, poor transport services, and insecurity (6, 7).

Many sub-Saharan countries have been testing various means and

approaches to setting up specimen transportation systems that aim

to be effective and efficient despite limited resources.

Under the auspices of the U.S. President’s Emergency Plan for

AIDS Relief (PEPFAR) and the Global Health Security Agenda

(GHSA), along with support from other international donors and

NGOs, several countries have engaged in improving access to

diagnostic services and surveillance systems using a performance

specimens referral system. A hub network system based on different

ad-hoc methods, including national postal courier services, was

used in Uganda to increase access to Early HIV Infant Diagnosis

(EID) services from 36% to 51%. This system also reduced

transportation costs by 62% while reducing the turn-around

times by 46.9% (8). With the support and technical assistance

from a public-private partnership (PPP), the postal services were

successfully used in Uganda and Ethiopia to strengthen the

tuberculosis specimen referral system and increase referrals from

presumptive multidrug resistant tuberculosis cases (9, 10). A

similar increase in viral load tests, reagents used, and facilities

accessing testing was noticed by Faruna et al. when a PPP was used

to improve Nigeria’s national integrated specimen referral network

(11). InMalawi, earlier study conducted by theNational TBControl

Programme reported that peripheral units using a bus service to

transport sputum to central reference laboratory for culture and

sensitivity testing had a better record of specimens arriving at the

CRL than those using alternative means of transport (12). While

these examples have focused on transporting specimens of a specific

disease, other studies have taken a more inclusive approach by

integrating several diseases.

A pilot study conducted in 3 districts in Mali, included

specimens from meningitis, measles, yellow fever, and polio

suspected cases. This study showed that shipments of specimens

from districts to the central level using the postal service was

feasible and faster than public transportation. However, further

analysis regarding the most efficient costing mechanism is needed

(6). Inspired by the “hub” model adopted by Ethiopia and Haiti

(10, 13), Guinea has developed and approved a national specimen

referral policy which includes 6 diseases (Ebola, Acute flaccid

paralysis, measles, yellow fever, cholera, and meningitis) using

a stepwise process. The implementation of this policy has been

piloted in three prefectures in Lower Guinea (14).

In 2017, a baseline assessment carried out in Burkina Faso

revealed the absence of an integrated specimen transport system

and highlighted the existence of fragmented disease-specific

transport systems. These parallel systems were funded by different

partners and used laboratory agents, increasing costs and time

spent away from laboratory duties. To address this, the Ministry

of Health and Public Hygiene (MoH) of Burkina Faso designed

and piloted a specimen transport system using the national courier

services (La Poste BF ex SONAPOST) in 4 districts under the lead of

the Directorate of Population Health Protection (DPSP- Direction

de la Protection de la Sante de la Population). Monitoring and

evaluation of La Poste BF’s performance was deemed satisfactory,

with 95% of specimens sent to the reference laboratories under the

appropriate conditions in <24 h and at comparatively affordable

costs (15). Based on this success, the MoH has set a vision

aimed at expanding and implementing an integrated biological

specimen referral system, SITEB (System Intégré de Transport des

échantillons Biologiques) using La Poste BF’s services to transport

all specimen types from districts to reference laboratories across the

country. A stepwise approach was used to bring together multiple

partners to develop a standardized specimen transport system

that integrates other diseases and enhances laboratory capacity

and public health infrastructure, thereby providing global health
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security implementation. This paper describes the process used to

implement the SITEB using La Poste BF, the system’s performance

after 3 years of implementation, lessons learned, and challenges.

2 Methods

2.1 Implementation process of an
integrated system for specimen transport

Figure 1 summarizes the key stages in the process of

implementing an integrated sample transport system, the

chronology of their implementation and the main outcomes.

2.1.1 Identification of a lead department for the
project implementation and set up of a technical
working group

To concretize the Ministry of Health’s vision, the Directorate of

Population Health Protection (DPSP-Direction de la Protection de

la Sante de la Population) was designated as a lead department to

collaborate closely with the Directorate of Biomedical Laboratory

(DLBM-Direction des Laboratoire de Biologie Medicale) on SITEB

implementation. The experience gained by the DPSP during the

pilot phase with the Severe Acute Respiratory Infections (SARI)

sentinel surveillance with LaPoste BF (15) was an asset for this

directorate in charge of the epidemiological surveillance of diseases

and also the focal point for the GHSA and the International Health

Regulations (IHR) in the country.

To facilitate the project’s operationalization, a SITEB technical

working group (SITEB-TWG) was established and formalized by

the Secretary General of the MoH. This group meets quarterly or as

needed and regularly invites other stakeholders.

2.1.2 Scoping meeting with partners and
technical departments of interest

In low-income countries, the international partners primarily

fund the transportation of specimens through several parallel

systems and processes for epidemiological surveillance of most

priority diseases, including meningitis, measles, influenza,

dengue/arboviruses, and polio. Adopting an integrated system

encompassing all specimen types across the nation necessitated

the support of these partners and essential stakeholders. Some

are using laboratorian technicians and other postal services or

private courier services. Partners and all the MoH technical

directorates involved in specimen transport were presented

with the MoH’s vision during this meeting. This system covers

twenty-one diseases, including zoonotic, animal, and human

diseases. It guarantees the transportation of around ten types of

specimens from regional and health district hospitals to national

and regional reference laboratories. Partners such as the US-CDC,

WHO, and the African Society for Laboratory Medicine (ASLM)

were represented. The key entities within the MoH involved in

the specimen transport that also took part were the Directorate of

Preventable Disease (DPV-Direction de la Prevention de la Maladie

par la vaccination), DLBM, DPSP, and Public Health Emergency

Operation Center (CORUS-Centre des Opérations de Reponse aux

Urgences Sanitaires). On behalf of the Global Fund, the Health

Development Support Program (PADS-Programme d’Appui au

Développement Sanitaire) represented HIV and TB programs.

As the MoH did not have the capacity and dedicated staff for the

overall implementation of this ambitious project, an implementing

partner (Davycas International) was appointed to carry out and

monitor this project, including a phasing-out plan. This partner

was selected based on its expertise and its capacity to work on joint

projects with multiple partners and departments within the MoH

to achieve public health objectives in Burkina Faso.

2.1.3 Development of a guide and data collection
tools

A national guide for implementing the SITEB was developed

during workshops by the SITEB-TWG using a participatory,

multisectoral, and multidisciplinary approach. It was then

approved by the Ministry of Health during a validation workshop

attended by the partners. This guide highlights the project context,

the expected roles and responsibilities of the various stakeholders,

and the requirements in terms of quality insurance, and biosafety

and biosecurity associated with the specimen transport process.

It also describes SOPs on the preparation, packaging, storage,

shipping, and reception of packages, for each specimen type.

Furthermore, the national guide for implementing the SITEB

includes biosafety and biosecurity requirements on the category

of specimens transported and international guidelines. Specific

indicators were identified to ensure monitoring of the quality of the

specimens transported and the overall performance of La Poste BF.

To support the implementation of this guide, job aids, and data

collection tools were developed with SITEB-TWG contribution.

The disease notification forms included in the SITEB have been

revised to take traceability aspects into account.

2.1.4 Recruitment of a single carrier and signing
of a contract

Burkina Faso chose to contract La Poste BF as a courier

service to transport specimens throughout the country. This semi-

private courier service had collaborated successfully with the MoH

during the pilot phase and was interested in this project aiming

at improving the health of the population. Another important

criterion was its good geographical coverage with an office in

each country province. As part of implementing the SITEB using

La Poste BF, the contract of the pilot phase had been revised to

include other priority diseases. However, the pricing terms did

not change. Same as in the pilot phase, the shipping cost was

based on the weight of the coolers (2.5 kg) and the number of

packages transported with and without specimens (return of empty

coolers). Collaboration between two government bodies, the MoH

and the Ministry of Transport, facilitated negotiations to achieve

affordable pricing.

2.1.5 Procurement of materials and equipment
A needs assessment was conducted based on the frequency

of packages transported per week for each disease. Then, the

quantity of each itemwas estimated, and the implementing partners
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FIGURE 1

Process of the implementation of an integrated system of specimen transport in Burkina Faso. DPSP, Direction of the Protection of Health of

Population (Direction de la Protection de la Sante de la Population); TWG, Technical Working Group.

placed orders. Each of the 70 districts and the eight regional

health districts received three packages containing the following:

plastic stickers with thermic transfer printing (humidity resistant),

absorbent cotton to cushion shocks and absorb liquids in the event

of spills, and an infrared thermometer to record temperature at

reception. To facilitate the return of the coolers, the address of

each sending laboratory was printed and attached to the coolers

they received. In addition to this, the address of all other possible

destination laboratories was also given to each laboratory.

2.1.6 On-site training followed by delivery of
equipment

The cascade training of the field agents and the handing over

of the necessary equipment and support have been an important

step that marked the launch of the new system. The adopted

training format (region by region) gathering both field agents

and those of the La Poste BF was conducted in each of the

13 regions of the country. Before the training, the SITEB-TWG

developed modules covering the description of the SITEB, the

role, and responsibility of the field agents, the standard operating

procedures (SOPs), and related support documents. Themodule on

the presentation of the SOPs provided details on the categorization

and identification of infectious substances, the triple packaging,

and the transportation and biosecurity considerations based on

international resource documents such as the WHO Guidance

on regulations for the transport of infectious substances 2015–

2016, Laboratory Safety Manual, Third Edition, WHO 2005. In

addition, guidance documents from the US-CDC and the national

safety guide for medical laboratories were used. A frequently asked

questions (FAQ) sheet was also developed to help trainers provide

harmonized answers. Trainers were mainly SITEB-TWG members

and La Poste BF agents.

To ensure the engagement and ownership of the leaders at the

national level, a briefing session was organized for regional health

directors and the heads of districts. This was followed by two-day

training of data managers, laboratory technicians, and La Poste BF

staff in all districts. People trained were clinicians, human, animal,

and environmental laboratory staff and La Poste BF’s transporters.

2.1.7 Meeting with partners to define a financing
mechanism

The partners’ commitment was obtained from the start to

implement SITEB, but an agreement on the financing strategy still

needed to be established. Implementing a single mechanism was

challenging because partners have various financial management

requirements. The MoH and international partners provided the

financing mechanism by establishing an annual commitment

contract which includes the monthly payment schedule of the

invoices. Based on the quantity of packages transported, a monthly

bill is produced by La Poste BF and sent to the implementing

partners and the lead department under the MoH. It was decided

at the start of the year, that each partner would inform the DPSP

of the number of monthly postal invoices it can handle in a year,

regardless of specimen type or amount.

2.1.8 The signature of the contract and launch
The signing of the agreement between La Poste BF and the

MoH was followed by an official launch chaired by the MoH

and attended by the regional health directors and the district
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chief medical officers with media coverage. Finally, a note on the

implementation of SITEB signed by the MoH’s General Secretary

was disseminated.

2.2 Monitoring and evaluation mechanisms

Monitoring and evaluation (M&E) have been an essential

component of the implementation of SITEB using both papers

based (Table 1) and electronic data collection platform. M&E

aspects have been integrated throughout the system from the case

notification, specimen collection, transport, receipt, and biological

results reporting. A unique labeling system with barcode stickers is

assigned to each specimen to facilitate tracking.

An electronic System for Tracking of Epidemiological Data

and Laboratory Specimens (STELab-System de tracabilite des

donnees epidemiologiques et de laboratoire), is also used for

the visualization, validation, reporting, and management of data.

STELab is a web-interfaced electronic platform for case-based

surveillance data entry (16). It allows the real-time recording of

surveillance and laboratory data on priority diseases as well as

the tracking information of a package. Its primary role was to

trackmeningitis laboratory specimens (16). Because of the excellent

results of this system, its new version has been extended to all

specimens under the SITEB. Thus, today the STELab platform

includes 24 diseases including zoonotic and vaccine preventable

diseases. Key indicators were identified tomonitor the performance

of the SITEB using La Poste BF:

• Percentage of packages delivered within 24 h: this indicator is

calculated from the time of pickup of the package from the site.

The denominator is the total number of packages picked up.

• Percentage of packages delivered in good condition: the package

at the reception does not present any non-conformity (correct

packing and label).

• Percentage of specimens delivered in good condition: the

specimens at the reception were not in good condition (Good

temperature, packaging).

Data are regularly pulled from the STELab platform to produce

a SITEB quarterly bulletin that is disseminated to all districts

and stakeholders including partners. This bulletin summarizes the

performance of La Poste BF during the reported period and since

the implementation of the SITEB. The target was 100% for each

of indicator.

2.3 Data collection and analysis

Data were collected on the STELab platform and were

cross referenced with data collected by LaPoste BF. Data were

confirmed, and all discrepancies were corrected. Excel software

was used to develop tables and conduct all analyses presented in

this manuscript.

The comparison of pre- and post- SITEB data has not been

possible as there was no coordinated system in place before

the implementation of the SITEB allowing centralization of data

and monitoring of indicators. The performance evaluation used

indicators and target percentage.

3 Results

3.1 Key outcomes from the process of
SITEB implementation

The different activities implemented before the effective start

of the SITEB led to key outcomes that are critical for such a

system. First, there is the development of the national guide

for implementing the SITEB and an operational plan of SITEB

including all the SOPs. Agreement has been reached to include the

following diseases in the system: Severe Acute Respiratory illness

including COVID-19, dengue/arboviruses, rotavirus, norovirus,

measles, tuberculosis (TB), meningitis, and Human Immuno

deficiency Virus (HIV). The specimen types that SITEB can

transport include Nasopharyngeal (NP) and Oropharyngeal (OP),

serum, stool, sputum, pleural fluid, bronchoalveolar puncture

fluid, pus, urine, and Cerebrospinal Fluid (CSF). Based on WHO

guidance on regulations for transporting infectious substances

(4), all selected pathogens are categorized as class 6.2 (Infectious

Substances), category B. In line with this classification, the

following wording has been taped to each cooler “UN 3373,

Biological substance, Category B.”

Figure 2 describes the specimen transport circuit in the

healthcare pyramid. Specimens are transported from all

the 70 districts to the national reference laboratories which

include the reference laboratories for meningitis, Influenza,

norovirus/rotavirus, viral hemorrhagic fevers, HIV, and TB, in

addition to the immunization department that received specimens

of measles and poliomyelitis.

3.2 Monitoring of key indicators of SITEB
performance

Packages were transported from 70 districts to the national

reference laboratories from all 13 country’s regions. In addition

to the national reference laboratories, HIV, and TB specimens

were also sent to the national level laboratories since the viral

load testing and TB testing are decentralized and some regions

don’t have the testing capacity. Ouagadougou and Bobo-Dioulasso

are Burkina Faso’s two largest cities, hosting all the national

reference laboratories. National Reference Laboratories (NRL) for

antimicrobial resistance and viral hemorrhagic fevers are in Bobo-

Dioulasso and the remaining are in Ouagadougou (Influenza,

meningitis, measles, rotavirus HIV, and TB).

From January 31, 2020 to December 31, 2022 La Poste BF

transported 16,858 packages from the district level to the NRL and

national level laboratories across the country. Among them, 99.66%

(16,800/16,858) were delivered in <24 h as required in the contract

with La Poste BF. Only 0.05% (9/16,856) of packages transported

were found damaged during the transport. The breakdown per

year shows that 14.72% (2,481) of packages were transported in

2020 against 42.30% (71,310) and 42.98% (7,246) in 2021 and

Frontiers in PublicHealth 05 frontiersin.org49

https://doi.org/10.3389/fpubh.2024.1384382
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Dama et al. 10.3389/fpubh.2024.1384382

TABLE 1 The physical data collection tools and the levels of the system where they are available and completed.

Data collection tools Description

Record of specimen package shipments (collection sites) In addition to data collected outside the sampling site, it collects the:

- date/time of collection of the package by La Poste BF package number,

- specimen or sticker number

- laboratory signature

- signature of La Poste BF

Examination request form (collection sites) - Name of the prescriber

- Date and time of the specimen collection

- Requesting department

- Examination requested.

- Reason for the request and a space for the results

Individual notification form/case investigation (collection

sites)

In general, the individual notification form/case investigation includes:

- socio-demographic data

- clinical information

- sampling data

- transport data and laboratory results

Summary sheet for tracking specimens (collection sites) The summary monitoring sheets for certain specimens (sputum, specimens of animal origin) contain

the name of the sampling site, a list of all the specimens contained in the cooler, and the transport

data.

Package delivery form (La Poste BF/Sender, Recipient) Issued by La Poste BF, it collects the:

- date and time of collection of the package

- Name of the sender

- Package number and the references of the La Poste BF agent. It is signed by the senders and

recipients, including the drivers, at each change of hands in order to ensure traceability.

Delivery form (La Poste BF/Sender, Recipient) Similar to that of La Poste BF, it is used in areas where La Poste BF’s services are

temporarily unavailable. It is issued to the person delivering the package upon arrival.

Incident management register (La Poste BF/Sender,

Recipient)

It contains the date and time of the incident; describes the type of incident (case of spillage, loss or

theft of coolers, etc.), the people to contact.

Record of receipt of specimens by the laboratory/reference

site. (All receiving sites)

- date and time of arrival,

- the conformity of the package,

- the package number,

- the signature of the laboratory and La Poste BF In case of rejection of non-compliant specimens,

reasons are specified

Collection sites: Health centers, Direction of preventable diseases, Direction of Animal National Laboratory, National reference laboratories.

FIGURE 2

Human biological specimens transport circuit with La Poste BF Burkina Faso. CHR, Regional health facility (Centre Hospitalier Regional); CHU,

university teaching hospital (Centre Hospitalier Universitaire); CMA, Medical Centre with Surgical Services (Centre Medical avec Antenne chirurgical);

CM, Medical Centre (Centre Medical); CSPS, Centre for health and social advancement (Centre de Sante et de Promotion sociale); NRL, National

Reference Laboratory; NL, National Level Laboratory; DVP, Directorate of vaccine-preventable diseases (Direction de la prevention des maladies

evitable par la vaccination).
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TABLE 2 Evaluation of the performance of SITEB.

Indicators 2020 2021 2022 Total

Packages delivered 2,481 7,131 7,246 16,858

Packages delivered in <24 h 2,437 7,121 7,242 16,800

98.23% 99.86% 99.94% 99.66%

Packages delivered in good conditions 2,481 7,127 7,241 16,849

100% 99.94% 99.93% 99.95%

Specimens delivered 29,731 117,818 58,765 206,314

Specimens delivered in good condition 29,477 117,514 58,666 205,657

99.15% 99.74% 99.83% 99.68%

2022 respectively. No packages were reported missing or lost

during transportation.

During the reporting period, 206,314 specimens were

transported of which 14.41% (29,731) in 2020, 57.11% (117,818)

in 2021, and 28.48% (29,731) in 2022 (Table 2). The breakdown

of specimens transported by disease and year reveals that in 2020

and 2022, HIV specimens were predominant with 59% and 53%

respectively, while in 2021 COVID-19 specimens accounted for

63% of all specimens transported by SITEB. No specimen of

acute flaccid paralysis was transported during the first year of

the implementation of the SITEB whereas, in 2021 and 2022,

respectively 553 (0.4%) and 2,393 (4.07%) specimens were

transported (Figure 3). We didn’t find any significant differences

in the number of specimens transported in on year from another.

Packages (with and without) specimens were transported from

all the country’s 13 regions. Overall, the number of packages

transported increased between 2020 and 2022. The region with the

highest number of packages is the Center region, with more than

10,000 specimens, followed by the Southwest, Hauts-Bassins, and

Center West regions with more than 1,000 packages picked and

delivered by La Poste BF over the reporting period. The regions

where La Poste BF transported fewer packages are the Sahel (38),

Plateau Central (223), Cascades (231), Center East (304), andNorth

(348) (Figure 4).

3.3 Contract and rates

Like during the pilot phase, the SITEB contract was signed

directly between the DPSP representing the MoH and La Poste BF

representing the Ministry of Transport. The contract stipulates that

La Poste BF is responsible for collecting the packages containing

category B biological specimens from the public health district

laboratories, delivering them to the recipient laboratory, and

returning the empty triplicate packages to the sending health

establishments. Two important elements of this contract are the

description of the commitments of both parties and the pricing.

The contract is structured on an escalating scale, with the unit price

per package decreasing by 500F CFA ($ 0.84) as the number of

packages to be transported increases. The minimum amount per

package is 2,500 FCFA (∼$ 4) and the maximum is 4,000 CFA (∼$

7) (Table 3). It is important to note that this contract is still flexible

and does not provide a comprehensive list of diseases.

4 Discussion

SITEB is a disease non-specific system that harmonizes the

transport of human biological specimens as part of national

epidemiological surveillance and laboratory tests for HIV VL/EID,

TB using the national postal system known as La Poste BF. To

our knowledge, Burkina Faso is the first country in West Africa

to implement such an integrated specimen transport system using

postal services. This paper presents the stepwise process used to set

up an integrated specimen transport system and its performance

after 3 years of implementation. Monitoring key indicators over

the 3 years of the SITEB implementation has shown the satisfactory

performance of the transport of all types of human specimens from

the district level throughout the country by the postal service.

This project was born of political will, followed by a clear vision

of the MoH. Regulatory texts or policies must govern the specimen

referral system in a country to enable effective intra- and inter-

sectoral collaboration and optimization of support from partners.

While some countries have developed specific policies to comply

with this requirement (14), Burkina Faso, through its framework

document for the development of biomedical laboratories and

optimization of biological diagnosis, has clearly defined its vision

about specimen transport, and listed in the same document the

strategies to achieve this goal. The vision and the definition of

the country’s objectives in regard to specimen transport system

prompted the development and validation of a national guide for

the implementation of an integrated specimen transport system by

the SITEB TWG based on the One Health approach.

The excellent country-wide coverage of La Poste BF’s services

enabled specimens to be transported to all 13 regions of Burkina

Faso. However, the accessibility of some security-challenged

areas due to terrorist attacks forced La Poste BF to limit

its presence. This situation has led to population movements

within the country, and the closure of health facilities, thereby

limiting the population’s access to healthcare (17, 18). In

Burkina Faso, the regions most affected by the humanitarian

crisis are the Sahel, Center-North, Nord, Est, and Boucle du

Mouhoun. Although not on a continuous and systematic basis,

La Poste BF has been transporting specimens from functional
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FIGURE 3

Distribution of the number of specimens transported by SITEB per disease in (A) 2020, (B) 2021, and (C) 2022.

districts in these security-challenged regions since the launch

of SITEB. When this proved impossible for security reasons,

other strategies were developed and deployed. An additional

factor to explain the considerable diversity in the number of

packages per region is the COVID-19 crisis. More than half of

the packages transported came from the central region, which
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FIGURE 4

Distribution of packages transported (with and without specimens) by La Poste BF per region from 2020 to 2022.

TABLE 3 Price list of LaPoste Burkina Faso for the transport of specimens.

Quantity/range Unit amount;
TTC F CFA

Minimum amount;
TTC F CFA (∼$)

Maximum amount;
TTC F CFA (∼$)

Observations

[001–500] 4 000 2,000,000 (3,229) 2,000,000 (3,229) Fixed

[501–1,000] 3 500 2,003,500 (3,235) 3,750,000 (6,055) Fixed price+ Nb of packages ∗

unit cost applied from the 501 st

package

[1,001–1,500] 3 000 3,753,000 (6,060) 5,250,000 (8,477) Fixed price+ No. of packages ∗

unit cost applied from the 1,001 st

package

[1,501–3,000] 2 500 5,252,500 (8,480) 9,000,000 (14,531) Fixed price+ Nb of packages ∗

unit cost applied from the 1,501 st

package

[3,001 et+] 2 000 9,002,000 (14,545) — Fixed price+ No. of packages ∗

unit cost applied from the 3,001 st

package

was the epicenter of COVID-19, followed by Hauts-Bassins

region with 15,712 and 3,517 cases detected between 2020 and

2022 representing more than 70% and 15% of the total cases

respectively (19).

From the launch of SITEB in January 2020 to December

2022, out of 16,858 packages transported, 99.66% were delivered

within 24 h from pick-up time at the collection site (the required

turnaround time), compared to 77% during the pilot phase (15).

This result shows a significant improvement in the post office’s

performance, dispelling initial fears about its ability to meet this

challenge. To carry out its mission by the agreed upon contract,

La Poste BF has signed an agreement with several public transport

companies in the country’s main cities, hired additional staff and

procured logistical resources. A similar pilot study in Mali showed

that only 46% of specimens transported by public transport system

were delivered within the required timeframe (72 h), compared

to 71% of specimens transported by Mali’s postal service specific

means of transportation. The same study found a comparable

percentage of specimens delivered in good conditions between

the two types of transport (6). Indeed, the public transport

network in Burkina Faso is diversified and well organized, with

regular departures to major cities. While transporting biological

specimens in public transport vehicles can be perceived as a risk,

the triple packaging and extra protection provided by La Poste
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BF help to further minimize the risk of exposure to potentially

dangerous pathogens contained in the specimens. Using drones

or unmanned aircraft System technology is being explored by

some studies to transport specimens, vaccines, and other laboratory

supplies. However, a cost-effectiveness analysis of the use of these

new technologies which integrates all considerations (including

security) must be conducted (20–22).

The flexibility of the contract provisions to permit the

integration of additional specimens or adjustments during their

term is one of the system’s features and success. In 2021, this

encouraged the incorporation of COVID-19 and acute flaccid

paralysis specimens. COVID-19 had not yet been declared a

pandemic by the World Health Organization (WHO) at the time

of the SITEB’s launch, and the country intended to keep using

the traditional system for transporting acute flaccid paralysis

specimens because the disease was considered on its way out.

During the 1st months of COVID-19 in Bobo-Dioulasso, there was

only one laboratory in the country capable of performing diagnosis

and it was in Bobo Dioulasso. MoH vehicles transported specimens

from suspected COVID-19 in other regions to Bobo-Dioulasso.

However, as the number of cases increased across the country,

specimen transportation became difficult due to logistical issues.

COVID-19 specimens were integrated into the SITEB without any

changes to the initial contract or pricing after several meetings and

briefing sessions with the post office.

There was little to no significant difference in the number of

packages that La Poste BF transported in 2021 and 2022. However,

the number of specimens transported was twice higher in 2021

due to COVID-19 specimens (63%) which were transported by the

dozen in a single package. Indeed, the peak of COVID-19 cases

was notified in 2021 between January and February with more

than 69,000 COVID-19 samples tested. It is worth noting that

this number includes those of COVID-19 suspected cases but also

samples collected from international travelers who are required

to test. The drop in COVID-19 cases and the implementation

of vaccination in June 2021 explains the decrease in COVID-

19 specimens collected in 2022. The decrease in the number

of specimens transported by SITEB for other diseases such as

meningitis, yellow fever, SARI/ILI, and dengue/arbovirus between

2020 and 2021 can be attributed to the impact of COVID-19 on the

health system in general and on disease surveillance in particular,

as documented in numerous studies (22, 23). Several initiatives

and actions were implemented to re-energize disease surveillance,

which had been slowed by COVID-19, and improvements were

seen in late 2021 and 2022.

In most developing countries, disease surveillance, including

specimen transport, is funded by international partners. To

minimize the risk of this system collapsing due to a lack of

resources, particular emphasis was placed on negotiating rates.

Rates were negotiated between the Ministry of Health and La

Poste BF to ensure that the country would be able to meet

costs in the event of a reduction or cessation of partner support.

During the pilot phase, which only involved 4 districts, the cost of

transporting a package by La Poste BF was around 28 USD (17,500

CFA), when the system was extended, the cost was negotiated

to ∼6 USD (3,500 CFA) per package, almost 5 times cheaper.

The estimated cost for implementation of the SITEB in Burkina

Faso is approximately 662,000 USD (400.000.000 CFA) which

includes meetings, equipment, trainings, and document printing.

The average cost of the LaPoste BF’s monthly bill is ∼23,528 USD

(14.215.762 CFA). The cost-benefit analysis of such a system using

postal services or hub systems is still a gap in many studies (23).

5 Lessons learned

The experience of Burkina Faso provides important lessons and

recommendations that must be considered to ensure the successful

development and implementation of an efficient and integrated

specimen transport system. The following are key lessons learned

from this experience:

• A strong political will is essential to engage partners

and stakeholders.

• It is critical to select an efficient operator (public or private)

capable of providing services throughout the country.

• Contract flexibility is essential so that, in addition to

surveillance and clinical diagnosis, the system can be used in

response to epidemics or other public health events.

• Throughout the process, sustainability, and a multi-sector

approach (One Health) must be considered.

• A good monitoring and evaluation plan must be developed to

ensure that the system runs smoothly and to allow assessing

performance and impact of the system.

• To ensure specimen transport in insecure areas where

government offices and health facilities are not operational, an

innovative strategy must be developed.

• It is important to consider an implementation and

coordination partner with dedicated staff to ensure smooth

implementation while ensuring a phase-out.

6 Challenges and perspectives

The main limitation of the SITEB is the non-integration of

animal and environment specimens in this system. Although, the

guide and all data collection tools have been revised according

to the One Health approach, the implementation must still be

effective. Discussions are ongoing to make this happen. In the

clauses of the current contract La Poste BF picks up specimens

from the district level while there is no formal system in place to

transfer specimens from peripheral level to district level. A pilot

phase is underway in 2 regions where La Poste BF picks specimens

from the peripheral level to extend it to the entire country after

an evaluation and a revision of the contract. Finally, although

the partners have put in place a mechanism for paying monthly

postal bills, the SITEB’s operating costs (SITEB-TWG meetings,

supervision, equipment replacement, document printing) still need

to be included, and there needs to be a government budget line to

support the operation of this system.

7 Conclusion

The involvement of stakeholders at all levels, as well as partners,

contributed to the success of this innovative system. Furthermore,
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the success and lessons learned from the pilot phase (15) have

made a significant contribution to laying the foundations of this

integrated system, which is now widely used in the surveillance of

priority diseases in Burkina Faso, as well as in the management

of health crises. Several countries have attempted to use national

mail services to transport biological specimens to strengthen

surveillance of a country’s set of priority diseases or specific diseases

such as tuberculosis and/or HIV (10). However, Burkina Faso is

one of the countries that has successfully implemented a national

mail service for a specimen transport system, which considers all

the diseases under laboratory-based surveillance and covers the

whole country down to the district level. The performance of the

SITEB after 3 years of implementation made it a major pillar in

laboratory-based surveillance of priority diseases in Burkina Faso.

It ensures the transport of all specimens collected for surveillance

purposes including VIH and TB from district level across the

country. Thanks to its flexibility, it also plays an important role in

themanagement of public health emergencies for an early detection

and quick response. The integration of animal specimens remains

a big gap, but efforts are underway to address this.
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A follow up report validating long 
term predictions of the COVID-19 
epidemic in the UK using a 
dynamic causal model
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Background: This paper asks whether Dynamic Causal modelling (DCM) can 
predict the long-term clinical impact of the COVID-19 epidemic. DCMs are 
designed to continually assimilate data and modify model parameters, such as 
transmissibility of the virus, changes in social distancing and vaccine coverage—
to accommodate changes in population dynamics and virus behavior. But as a 
novel way to model epidemics do they produce valid predictions? We presented 
DCM predictions 12  months ago, which suggested an increase in viral 
transmission was accompanied by a reduction in pathogenicity. These changes 
provided plausible reasons why the model underestimated deaths, hospital 
admissions and acute-post COVID-19 syndrome by 20%. A further 12-month 
validation exercise could help to assess how useful such predictions are.

Methods: we compared DCM predictions—made in October 2022—with actual 
outcomes over the 12-months to October 2023. The model was then used to 
identify changes in COVID-19 transmissibility and the sociobehavioral responses 
that may explain discrepancies between predictions and outcomes over this 
period. The model was then used to predict future trends in infections, long-
COVID, hospital admissions and deaths over 12-months to October 2024, as a 
prelude to future tests of predictive validity.

Findings: Unlike the previous predictions—which were an underestimate—
the predictions made in October 2022 overestimated incidence, death and 
admission rates. This overestimation appears to have been caused by reduced 
infectivity of new variants, less movement of people and a higher persistence of 
immunity following natural infection and vaccination.

Interpretation: despite an expressive (generative) model, with time-dependent 
epidemiological and sociobehavioral parameters, the model overestimated 
morbidity and mortality. Effectively, the model failed to accommodate the “law 
of declining virulence” over a timescale of years. This speaks to a fundamental 
issue in long-term forecasting: how to model decreases in virulence over 
a timescale of years? A potential answer may be available in a year when the 
predictions for 2024—under a model with slowly accumulating T-cell like 
immunity—can be assessed against actual outcomes.
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dynamic causal model, COVID-19 mitigation measures, acute-post COVID-19, hospital 
admissions, mortality incidence
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Background

Dynamic causal modelling (DCM) stands apart from most 
modelling in epidemiology by predicting mitigated outcomes and 
quantifying the uncertainty associated with those outcomes (1–3). 
This contrasts with quantitative epidemiological forecasts that do not 
consider the effect of prevalence on sociobehavioral responses. 
Usually, epidemiological projections are over few weeks—and rest 
upon fitting curves to the recent trajectory of various data; e.g., (4). 
DCM considers what is most likely to happen based upon a generative 
model that best explains all the data available. This mandates a model 
of sociobehavioral responses that mitigate viral transmission, such as 
social distancing, lockdown, testing and tracing, etc. In turn, this 
requires a detailed consideration of how various sorts of data are 
generated. For example, it has to model fluctuations in testing capacity 
and sampling bias due to people self-selecting when symptomatic. The 
advantage of this kind of modelling is that any data generated by the 
model can be used to inform the model parameters that underwrite 
fluctuations in latent states, such as the prevalence of infection. Latent 
states refer to those states of the population that cannot be estimated 
directly and have to be inferred from observable data.

In October 2022, the predictions carried out 12 months earlier 
using a Dynamic Causal model were assessed and found to 
underestimate the waves of new COVID-19 infections in the period 
October 2021 to October 2022 by 43%, deaths by 20%, tests by 24%, 
hospital admissions by 31% and long COVID by 21% (5). This method 
of modelling besides predicting health outcomes can also estimate 
changing characteristics of the epidemic, such as the properties of 
viral transmission, immunity induced by vaccine or infection, and the 
propensity to leave home thereby increasing the risk of catching the 
infection. We concluded that the underestimation of predictions could 
be explained by the arrival of the Omicron variants and the changes 
in public health policies in the UK (6–8).

This paper is a sequel to the previous paper which, besides seeking 
to validate the previous 12-month predictions, makes predictions to 
October 2023. It sets out to assess the underlying properties of the 
epidemic during that period from October 2022 to October 2023. It 
also seeks to predict what will happen in the 12 months to October 
2024 assuming the current properties of the epidemic remain as they 
are in October 2023. We take the opportunity to provide predictions 
under priors based upon recent empirical estimates of latent, 
incubation and infectious periods. In 2024, the accuracy of predictions 
should speak to the usefulness of constraining parameter estimates 
with informative (empirical) priors of this sort.

This article can be read as a technical report, following up on 
previous reports, in which certain predictions were made. 
We anticipate a follow-up report evaluating the predictions made in 
this article over the forthcoming year, which will also provide an 
overall synthesis of long-term forecasting with dynamic causal 
modelling. This report provides the opportunity to compare long-
term forecasts with what actually happened over timescales of years. 
We therefore take the opportunity to compare the predictions and 
actual outcomes quantitatively. Crucially, this comparison is in the 
latent state space of the causes of epidemiological (and behavioral) 
measurements. In other words, because we are using a generative or 
forward model of the epidemic, we  can revisit the predicted 
fluctuations in time-dependent epidemiological and behavioral 
parameters in the light of post-hoc estimates using the same model. This 

effectively identifies where prior assumptions about key time-
dependent parameters were not endorsed by empirical outcomes. This 
may be useful for future modelling initiatives along these lines.

Methods

Dynamic causal models

The dynamic causal model (DCM) used in this research has been 
continually updated with data as the epidemic has unfolded. It is 
designed to allow modification of model parameters, such as 
transmissibility of the virus, changes in social distancing, and vaccine 
coverage—to accommodate changes in population dynamics and virus 
behavior. A recent model (26th September 2023) was used to explore 
the effect of changing transmission of the various Omicron variants and 
the likely seasonal effect of the coming winter. One modification was 
tightening the constraints on changes in antibody immunity over time. 
The potential benefit of a successful Find, Test, Trace, Isolate and 
Support scheme was also incorporated into the model.

General and specific features of DCMs
The general and specific features of Dynamic Causal Models have 

been described in our previous publication (9). Since October 2022 
our DCM COVID-19 model has been updated 20 times with the 
recent update on 26th September 2023 (10).

Data sources and assumptions

16 of the 24 data sources used in the model and in our previous 
report have been discontinued (Supplementary Table S1):

	•	 UKHSA COVID-19 data dashboard (11)
	 o	 Deaths within 28 days of COVID-19 infection – June 2023
	 o	 Critical care bed admissions – May 2023
	 o	 Hospital occupancy of COVID-19 cases – May 2023
	 o	 COVID-19 antibody tests – October 2022

	•	 Office of National Statistics (12)
	 o	 Deaths by age – July 2023
	 o	 Vaccinations by age – July 2023

	•	 UK Government dashboard - Mobility – April 2022
	•	 Google mobility Report (13)– October 2022
	•	 IHME estimate of Incidence (confirmed and non-confirmed 

cases) – April 2023 (14)

The UK Government COVID-19 dashboard still provides eight 
key input variables such as confirmed cases, hospital admissions, 
certified deaths, tests and vaccine coverage (11). The Office of National 
Statistics (ONS) discontinued the Coronavirus (COVID-19) infection 
survey in March 2023 (15) which had provided the best estimates of 
incidence using routine antibody tests and symptom questionnaires 
on a regular basis to a random population sample.

The trend in the use of non-pharmaceutical interventions by the 
UK government is measured using the Oxford Tracker stringency index 
(7). The incidence of long COVID is calculated using the findings of a 
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global meta-analysis of post-acute COVID-19 syndrome (with defined 
clusters of self-reported symptoms occurring 3 months after initial 
infection) which found the risk of long COVID following symptoms in 
the community is 7.9%, in hospital admissions is 27.9% and ARDS 
(acute respiratory distress syndrome) is 41.4% (16). The image of the 
proportion of variants in circulation used in Figures K-T is taken from 
Our World in Data (17) which uses data sourced from Gisaid (18).

For the predictions to October 2024, it is assumed that mitigation 
efforts such as improved ventilation in schools and workplaces will not 
take place, that lockdown will not be re-imposed, and that no new more 
virulent variants will arrive.

Model priors

To predict outcomes over the next year, the model was run using 
the latest available data and prior estimates used by the DCM dashboard 
(19). To address the predictive validity of empirical priors we ran the 
model to furnish predictions with changes to the prior estimates of the 
model parameters, where recent research suggests appropriate values. 
These empirical priors were as follows: prior time constant for the latent 
period is 5.5 days and for the incubation period is 6.5 days in line with 
the results of a recent meta-analysis (20). The infectious period is given 
a prior time constant of 4.3 days in line with a recent paper (21), Table 1 
[mean growth phase 1.6 days; mean decline phase 2.7 days]. 
Supplementary Table S2 provides a comparison of the priors that 
maximize model evidence and the new (empirical) priors.

For completeness, three scenarios were modelled to identify the 
likely effect of improving the Find Test Trace Isolate Support (FTTIS) 
system from a baseline of 25% effective to 40 and 60% effective.

Findings

Comparing projected with actual 
COVID-19 deaths, cases, tests, hospital 
admissions and incidence of long COVID

Last year’s projections overestimated incidence three-fold, 
confirmed cases two-fold, deaths and tests by 1.4 times, hospital 

admissions by 2.2 times and long COVID by 2.7 times (Table 1). 
The actual estimates of incidence and long COVID are only 
available for the first half of the year but the overestimates will still 
be substantial.

The reasons for the overestimations are found in the following 
two sets of graphics, which compare various outcome and 
parameters of model results made in October 2022 with and 
without knowledge of the course of the epidemic over the recent 
12-month period to October 2023 (Figures 1–5). In other words, 
we were able to compare the time course of key epidemiological 
parameters estimated with and without the data covering that 
period (from October 2022 until October 2023). The discrepancy 
between these predicted and post-dictive estimates provides one 
account of the overestimates above.

The key overestimate was the projected large spike of infections 
over the winter period of 2022/2023 which did not materialize 
(Figure  1, top graph). Instead, we  had continuous spikes of 
infection at lower numbers than in the previous year (Figure 1, 
bottom graph). The winter wave was predicted to be accompanied 
by large numbers of deaths and hospital admissions which did not 
materialize (Figures 2–3). In short, the predicted winter wave was 
much greater than what transpired, partly due to a projected high 
level of mobility (i.e., contact rates) (Figure  4) and despite a 
sustained level of immunity (Figure 5).

To understand the overestimates, one can look at the trajectory 
of the time-dependent parameters used for both predictions 
(Figures 6–10). The post-hoc or post-dictive estimates showed a 
tiny reduction but starting at a much longer starting point of 4.4 as 
compared to 2.8 days in the latent period (Figure 6). The incubation 
period, however, was longer than originally anticipated, falling not 
to 1.94 days but only to 4.6 days from a starting point of 5.1 as 
compared to 2.1 days (Figure  7). Transmission strength had 
increased from each infected person infecting 1 in 3 contacts to 
infections to infecting 80% of contacts (Figure 8). What may also 
be key is the change in expected antibody persistence, falling in the 
original from 197 to 159 days but assumed to remain constant in 
the late model with a posterior prior value of 105 days (Figure 9). 
Another key difference is the less than expected rise in the 
proportion of people leaving their homes, for example with only 
30% of the older adult leaving home as compared to 60% in the 

TABLE 1  Cumulative numbers of COVID-19 cases, deaths, tests, hospital admissions and post COVID-19 Syndrome – 1st February 2020 – 1st October 
2023 and 12  month projected numbers for 1st October 2023–2024 – UK.

Scenario assuming 
FTTIS is 25% effective

DCM 2022 projection Actual Data source DCM 2023 projection

Cumulative totals from 1st 

February 2020 to

1st October 2023 1st October 2023 1st October 2023 to 1st October 

2024

Estimated incidence 485,603,813 131,242,140 IHME - 1 Apr 2023 40,692,662

Confirmed cases by PCR and 

LFT 53,409,837 24,743,787 Our World in Data - 30 Sep 2023 524,351

Deaths within 28 days of a 

positive PCR test 330,957 229,765 Our World in Data - 30 Sep 2023 24,100

Tests (both PCR and LFD) 821,181,901 602,512,524 UK Covid-19 dashboard - 30 Sep 2023 14,080,675

Hospital admissions 1,867,580 862,553 UK Covid-19 dashboard - 30 Sep 2023 175,303

Post COVID-19 Syndrome 4,726,602 1,734,000 ONS Infection survey - 30 Mar 2023 3,139,699
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earlier model (Figure  10). Unfortunately, the empirical data 
stopped at the start of the 12-months under review so we cannot 
be sure of the actual level of movement. By March 2023 18% of 
people were still wearing face masks outside and 11% in public 
transport (22) and 14% of adults avoided contact with vulnerable 
people, so it is likely that mobility increased but did not return to 
pre-pandemic levels.

Future predictions

For the period October 2023 to October 2024 the model was used 
to predict the cumulative effect of the epidemic on case numbers, 
deaths, tests, hospital admissions and long COVID (Table  1 and 
Figures 1–3). The predictions using empirical priors suggest a wave 
this coming winter but with few deaths and tests but still plenty of 

FIGURE 1

Epidemic curves of COVID-19 incidence from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The model 
can estimate incidence including cases not tested; each figure offers three projections: blue if the contact tracing system remains at 24% effective, 
green if it improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% 
credible intervals. Interpretation: The predictions with October 2022 priors are more than double the predictions using empirical priors in October 
2023.
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hospital admissions and long COVID patients. Under the empirical 
priors COVID-19 cases will fall but still over 40 million cases and 
over 3 million long-COVID cases will occur in next the 12-month 
period. The effect of a more efficient Test and Trace system would 
have little influence in reducing cases using either set of priors 
(Figures 2, 3).

Discussion

The overestimates of the 12-month projections to October 
2023 seem to relate to better retained immunity from previous 

infections and vaccines at the same time as a reduction in the 
trend of the new variants becoming more infectious. The reason 
the predicted large winter wave did not occur probably relates to 
these factors plus a more than anticipated caution by individuals 
in leaving home (i.e., exposing themselves to higher transmission 
risk). We  have no way of assessing how many infections did 
actually occur because the ONS infection study was stopped and 
estimates from other models were discontinued. Tests became 
infrequent and not freely available, but many particularly older 
adult people still observed isolation periods when thought to 
be  infected despite pressure to ignore such practices and the 
removal of legal sanctions in February 2022. The year also saw 

FIGURE 2

Epidemic curves of COVID-19 mortality from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The model 
can estimate projections of daily mortality certified as occurring within 28 days of a positive COVID-19 test; actual data in black is shown up till 16 June 
2023—the last day of available data; each figure offers three projections: blue if the contact tracing system remains at 24% effective, green if it 
improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% credible 
intervals. Interpretation: The model is able to ape the empirical mortality series closely; the model with empirical priors offers a prediction which is half 
the 2022 estimates in the Oct 22 to Oct 23 period.
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FIGURE 3

Epidemic curves of COVID-19 hospital admissions from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The 
model estimates number of hospital admissions; actual data in black; each figure offers three projections: blue if the contact tracing system remains at 
24% effective, green if it improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom 
graph: CIs, 90% credible intervals. Interpretation: The 2022 estimates follow the available actual data closely until August 2022 and predicted a much 
larger admission rate than what occurred later. The 2023 predictions with up-to-date priors got the admission rate more or less right.
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antiviral therapies improve associated with a drop in 
case fatalities.

Finally, we have specified predictions for the upcoming year, until 
October 2024 based on empirical priors over the successive periods of 
infection. It will be interesting to see whether these empirical priors 
improve the model’s predictive validity.

In the next of these technical reports, we will use the current 
and previous reports as documentary evidence of predictions to 
assess the predictive accuracy of dynamic causal modelling over 

a forecasting timescale of weeks, months and years. We anticipate 
doing this by adopting the final structure of the generative model 
but estimating epidemiological and behavioral parameters from 
limited timeseries—up until a certain point in time—and 
assessing the posterior predictive accuracy at a series of points in 
the future, as the pandemic evolved. This may provide a useful 
reference for future pandemic modelling that leverages the 
unprecedented amount of data and insights generated by the 
COVID pandemic.

FIGURE 4

Epidemic curves of COVID-19 mobility from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The model 
estimates the number of people leaving home each day; actual data in black taken from Google Global Mobility Report; the top figure offers three 
projections: blue if the contact tracing system remains at 24% effective, green if it improves effectiveness to 40% and red to 60% from 1st October 
2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% credible intervals. Interpretation: The model is able to ape the actual data 
with exceptions in Dec 2021. The empirical 2023 priors model is able to moderate the swings in estimates seen in the model using the 2022 priors.
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FIGURE 5

Epidemic curves of population immunity to COVID-19 from January 2020 – UK estimated by a DCM on two occasions (October 2022 and October 
2023). The model estimate of population immunity to COVID-19 (% of population) including that induced by infection, natural resistance and 
immunization; each figure offers three projections: blue if the contact tracing system remains at 24% effective, green if it improves effectiveness to 
40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% credible intervals. Interpretation: 
Both models share similar estimates of population immunity. Neither have been able to take into account the probable declining virulence over years 
found in pandemics with novel viruses.
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Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and 

accession number(s) can be  found at: https://www.fil.ion.ucl.
ac.uk/spm/covid-19/. The figures in Figure 1 can be reproduced 
using annotated (MATLAB/Octave) code that is available as part 
of the free and open source academic software SPM (23). The 

FIGURE 6

Changing estimates of latent period of COVID-19 infection in relation to the emergence of new variants and changes in response to public health 
policies: UK February 2020 to October 2023. Latent period (between day infected and day infectious) is measured as time constant for all age groups 
combined; prior in top graph of 3 days with initial model estimate of 2.8 days (infected period - Supplementary Table S2) dropping to 2.64 by October 
2023; prior in the bottom graph of 5.5 days with initial model estimate of 4.36 dropping to 3.9 by November 2023; stringency index dropping from 
80% in March 2020 to 5% by December 2021; proportion of variant in circulation as backdrop showing variants from the original Wuhan variant in 
2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: The variants have evolved to increase infectivity by 
reducing the latent period between the day infected and the day infectious. This has occurred in the both models whatever the original prior 
assumption used.
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routines are called by a demonstration script that can be invoked 
by DEM_COVID, DEM_COVID_X, DEM_COVID_T, DEM_
COVID_I or DEM_COVID_LTLA at the MATLAB prompt. At 
the time of writing, these routines are available in the 
development version of the next SPM release. An archive  
of the relevant source code for each publication is  
available from figshare (https://figshare.com/articles/

Dynamic_Causal_Modelling_of_COVID-19/12174006). The 
remaining results in this paper can be  reproduced using  
modified scripts found at https://www.dropbox.com/scl/fo/
zyv10xs8sn9ueuw7mhkis/h?rlkey=ewxlffkdiki89yzgjw6tz355
g&dl=0. The routine data used in the manuscripts are available 
from the COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University, 

FIGURE 7

Changing estimates of incubation period of COVID-19 infection in relation to the emergence of new variants and changes in response to 
public health policies: UK February 2020 to October 2023. Incubation period (between day infected and start of symptoms) is measured as 
time constant for all age groups combined; prior in top graph of 4 days with initial model estimate of 2.06 days (asymptomatic period - 
Supplementary Table S2) dropping to 1.94 by October 2023; empirical prior in the bottom graph of 6.5 days with initial model estimate of 
5.06 dropping to 4.6 by November 2023; stringency index dropping from 80% in March 2020 to 5% by December 2021; proportion of variant 
in circulation as backdrop showing variants from the original Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our 
World in Data). Interpretation: As with the latent period the incubation period has shrunk in both models indicating the evolution of the 
variants which became more infectious.
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Coronavirus (COVID-19) UK Historical Data by Tom White and 
GOV.UK Coronavirus (COVID-19) in the UK.
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FIGURE 8

Changing estimates of transmission strength of COVID-19 infection in relation to the emergence of. Transmission strength is measured as the 
secondary attack rate; prior value of 0.3 (i.e, an infected person infects 1 in 3 contacts) which rises with the new variants to 0.7 (i.e. an infected person 
infects 70% of contacts); top graph combines all ages, bottom graph estimates transmission strength for each age group; stringency index dropping 
from 80% in March 2020 to 5% by December 2021; proportion of variant in circulation as backdrop showing variants from the original Wuhan variant in 
2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: Despite the different prior assumptions in the two figures 
the increase in transmission strength is evident in both models.
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FIGURE 9

Changing estimates of duration of antibody immunity induced by COVID-19 infection and vaccine in days in relation to the emergence of 
new variants and changes in response to public health policies: UK February 2020 to October 2023. Duration of antibody immunity induced 
by COVID-19 infection and vaccine measured as time constant for all age groups combined in top graph and by age group in bottom graph; 
with initial model estimate of 196 days falling to 160 days by October 2023 in top graph; model estimates for each age group in bottom 
graph maintained at those values throughout the period; proportion of variant in circulation as backdrop showing variants from the original 
Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: The model used in 2022 
assumed the possible time related change in the antibody immunity parameter whereas the 2023 model assumes no change. Further 
empirical data will be required to understand the changes in antibody immunity over time.
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FIGURE 10

Changing estimates of the proportion of people leaving home each day in relation to the emergence of new variants and changes in response to 
public health policies: UK February 2020 to October 2023. The proportion of people leaving home each day for each age group; for example for those 
aged 70 years and above the top graph shows an estimate of 66% leaving home prior to the epidemic falling to 5% at first lockdown and rising slowly 
to 60% by October 2023; in the bottom graph the initial estimate for the same age group was 23% leaving home falling to 0% at the first lockdown 
rising to 32% by October 2023; stringency index dropping from 80% in March 2020 to 5% by December 202; proportion of variant in circulation as 
backdrop showing variants from the original Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our World in Data). 
Interpretation: The 2023 predictions estimate a much less mobile population than the 2022 model. This could partly explain the overestimate of 
infections identified in the earlier model.
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Exploring the influence of 
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Background: Influenza is a respiratory infection that poses a significant 
health burden worldwide. Environmental indicators, such as air pollutants and 
meteorological factors, play a role in the onset and propagation of influenza. 
Accurate predictions of influenza incidence and understanding the factors 
influencing it are crucial for public health interventions. Our study aims to 
investigate the impact of various environmental indicators on influenza 
incidence and apply the ARIMAX model to integrate these exogenous variables 
to enhance the accuracy of influenza incidence predictions.

Method: Descriptive statistics and time series analysis were employed to 
illustrate changes in influenza incidence, air pollutants, and meteorological 
indicators. Cross correlation function (CCF) was used to evaluate the correlation 
between environmental indicators and the influenza incidence. We used ARIMA 
and ARIMAX models to perform predictive analysis of influenza incidence.

Results: From January 2014 to September 2023, a total of 21,573 cases of 
influenza were reported in Fuzhou, with a noticeable year-by-year increase 
in incidence. The peak of influenza typically occurred around January each 
year. The results of CCF analysis showed that all 10 environmental indicators 
had a significant impact on the incidence of influenza. The ARIMAX(0, 0, 1) (1, 
0, 0)12 with PM10(lag5) model exhibited the best prediction performance, as 
indicated by the lowest AIC, AICc, and BIC values, which were 529.740, 530.360, 
and 542.910, respectively. The model achieved a fitting RMSE of 2.999 and a 
predicting RMSE of 12.033.

Conclusion: This study provides insights into the impact of environmental 
indicators on influenza incidence in Fuzhou. The ARIMAX(0, 0, 1) (1, 0, 0)12 with 
PM10(lag5) model could provide a scientific basis for formulating influenza 
control policies and public health interventions. Timely prediction of influenza 
incidence is essential for effective epidemic control strategies and minimizing 
disease transmission risks.
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1 Introduction

Influenza, a widely prevalent respiratory infection, exerts a 
substantial impact on the health of millions of people worldwide each 
year, leading to severe morbidity and occasional deaths (1). While, like 
other respiratory infections, influenza is typically most prevalent 
during the winter and spring seasons, recent reports have illuminated 
a noteworthy surge in summer influenza cases (2). This emerging 
trend presents fresh challenges for health authorities and influenza 
surveillance efforts. The onset and propagation of influenza are 
influenced by a multitude of factors, including environmental 
indicators such as air pollutants (3) and meteorological factors (4). 
Therefore, it is of paramount importance to attain accurate predictions 
of influenza incidence and develop a thorough understanding of the 
factors that influence it.

Timely prediction of infectious diseases is essential to maintaining 
and improving public health (5). It helps the government to formulate 
and implement effective epidemic control strategies, ensuring the 
availability of adequate medical resources and healthcare personnel, 
thereby minimizing the risk of disease transmission. Currently, 
various methods are employed for predicting infectious diseases, 
encompassing infectious disease dynamics model (6), logistic 
regression model (7), gray prediction theory (8, 9), ARIMA model 
(10–12), Prophet model (13), Holt-Winters model (14), and LSTM 
models (15). Each of these methods possesses its own set of advantages 
and drawbacks. Notably, the ARIMA model stands out in its ability to 
accurately identify the seasonality and trends of infectious diseases. 
For instance, Wu et al. utilized the ARIMA method to forecast the 
incidence of pulmonary tuberculosis under the regular COVID-19 
epidemic prevention and control measures in China (16). Ahn et al. 
(17) effectively applied the ARIMA model to anticipate the incidence 
of rheumatic diseases during the COVID-19 pandemic in Korea. 
While previous studies have extensively delved into the prediction of 
infectious diseases, researchers often overlook the potential impacts 
of air pollution and meteorological factors on infectious diseases. 
There exists a certain degree of correlation between environmental 
indicators and the incidence of infectious diseases (18, 19). Thus, the 
inclusion of environmental indicators in the predictive model for 
infectious diseases is anticipated to enhance the accuracy of 
predictions to some extent.

In recent years, the incidence of influenza in Fuzhou has been 
increasing year by year, adding to the challenges of disease prevention 
and treatment. Notably, in 2023, during a spring peak in Fuzhou, the 
monthly reported cases of influenza reached 2,749, marking the 
highest number reported in a single month over the past decade. 
Therefore, the analysis of factors influencing influenza incidence and 
the provision of corresponding predictions and early warnings are 
crucial for the development of effective prevention and 
control strategies.

Our study initiated an analysis of the impact of environmental 
indicators, including air pollution and meteorological factors, on 
influenza incidence. It then developed an optimal ARIMA model 
based on influenza incidence data. Subsequently, to enhance 
prediction accuracy, environmental indicators were systematically 
introduced into the optimal ARIMA model, leading to the 
establishment of the ARIMAX model. Finally, we selected the optimal 
ARIMAX model for the prediction analysis of influenza incidence 
in Fuzhou.

2 Materials and methods

2.1 Study area and data sources

Fuzhou, situated in the southeast coastal area of China, serves as 
the capital city of Fujian Province and spans an area of 11,968.53 
square kilometers. As of the end of 2022, Fuzhou had a permanent 
resident population of 8.448 million. The monthly data on influenza 
cases were sourced from the Fuzhou Center for Disease Control and 
Prevention. The surveillance of influenza cases followed the criteria 
outlined by the World Health Organization and the Chinese Center 
for Disease Control and Prevention for influenza-like cases. 
Population statistics were extracted from the Fuzhou Statistical 
Yearbook. We  utilized monthly influenza incidence (per 100,000 
populations) data spanning from January 2014 to December 2022. 
This dataset was split into two subsets: a training set covering the 
period from January 2014 to December 2022, and a test set spanning 
from January 2023 to September 2023.

The monthly air pollution monitoring data used in this study 
covers the period from January 2014 to September 2023 and was 
provided by the Environmental Monitoring Center under the 
Environmental Protection Administration of Fuzhou. The air 
pollutants included particulate matter 2.5 μm (PM2.5), particulate 
matter 10 μm (PM10), sulfur dioxide (SO2), carbon monoxide (CO), 
nitrogen dioxide (NO2), and ozone (O3). Simultaneously, the monthly 
meteorological data for the same period were procured from the 
Fuzhou Meteorological Bureau, encompassing meteorological factors 
such as monthly average temperature (°C), monthly maximum 
temperature (°C), monthly minimum temperature (°C), and monthly 
average wind speed (m/s). The monitoring data for the above 
environmental indicators was obtained with authorization from the 
Fuzhou Environmental Protection Bureau and the Fuzhou 
Meteorological Bureau.

2.2 Construction of the seasonal ARIMA 
model

Autoregressive Integrated Moving Average Model (ARIMA) is a 
widely-used method for the analysis and prediction of time series data 
(20). It finds applications in forecasting infectious diseases like 
varicella (21), tuberculosis (22), and COVID-19 (23). The 
fundamental concept underlying ARIMA model is to utilize historical 
data to make future predictions. ARIMA model is primarily 
composed of three components: Autoregressive (AR), Integration (I), 
and Moving Average (MA). For time series data exhibiting periodic 
patterns, the Seasonal Autoregressive Integrated Moving Average 
Model (SARIMA) combines seasonal differencing with the standard 
ARIMA model, making it well-suited for modeling data with 
recurring characteristics.

In our study, we  developed a SARIMA model denoted as 
ARIMA(p, d, q) (P, D, Q)s, where p signifies the AR order, d stands for 
the differencing order and q represents the MA order. Meanwhile, s 
indicates the period of seasonal trend, while P, D and Q correspond to 
the seasonal terms within the SARIMA model. The determination of 
these parameters, (p, d, q) and (P, D, Q), is achieved through an 
analysis of the Partial Autocorrelation Function (PACF) and the 
Autocorrelation Function (ACF). The choice of the parameter s 
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depends on the length of the seasonal cycle. The seasonal model can 
be mathematically represented as follows:

	
( ) ( ) ( ) ( )˜˜φ φ θ θ ε∗ =s s

Qp t q tpB B y B B
	

(1)

In Equation 1, φp B( ) represents a non-seasonal autoregressive lag 

polynomial, ( )˜φ s
p B  represents seasonal moving average lag 

polynomial, θq B( ) represents seasonal moving average lag polynomial. 
To ensure the stability of our time series, we initially applied differencing, 
a crucial step in the analysis. We then conducted an augmented Dickey–
Fuller (ADF) test to verify the temporal stability of the series. 
Subsequently, we employed the corrected Akaike’s information criterion 
(AICc) to assess the goodness of fit of the SARIMA model, with the 
model associated with the lowest AICc value considered the optimal 
choice. Finally, we conducted the Ljung–Box test to ascertain whether 
the residual sequence of the model exhibited characteristics of white 
noise. If the p-value is greater than 0.05, the model satisfies the test’s 
criteria and can be employed for predictive analysis.

2.3 Construction of the ARIMAX model

ARIMAX model, which incorporates exogenous variables related 
to the target time series as input variables, builds upon the foundation 
of the ARIMA model to enhance prediction accuracy (24). The 
primary objective of the ARIMAX model is to capture trends and 
seasonal fluctuations within time series data by amalgamating 
autoregressive, differencing, moving average components, and 
exogenous variables, thereby offering precise predictions and robust 
analytical capabilities. In contrast to the ARIMA model, the ARIMAX 
model takes into account exogenous variables that are associated with 
the time series data. These exogenous variables can encompass other 
time series data or non-time series data, such as environmental 
indicators (25, 26) and government policies (27). The role of 
exogenous variables is to furnish additional information that aids in 
refining model fitting and prediction accuracy.

In this study, we  developed an ARIMAX model for each 
exogenous environmental variable using data from six air pollutants 
and four meteorological factors. Our approach consisted of three main 
steps: Initially, we conducted the cross-correlation function (CCF) to 
assess the time-delay correlation between different variables and 
influenza incidence. Subsequently, we  integrated significant 
environmental indicators as exogenous variables into the optimal 
ARIMA model, thereby creating alternative ARIMAX models. Finally, 
we selected the best-fitting ARIMAX model based on three criteria: 
(a) the Akaike Information Criterion (AIC), Corrected Akaike 
Information Criterion (AICc), Bayesian Information Criterion (BIC), 
Root mean squared error (RMSE) values are smaller than the optimal 
ARIMA model; (b) the degree that the residual sequence of the model 
is white noise by Ljung-Box test; (c) the model’s performance in 
predicting influenza incidence in 2023.

The primary innovation of our study lies in the integration of 
environmental indicators into the ARIMAX framework. By 
incorporating exogenous variables related to influenza incidence, 
we can gain a more comprehensive understanding of the multifaceted 
factors influencing disease transmission. This approach not only 

improves the accuracy of our predictions but also provides valuable 
insights for public health interventions. Furthermore, we employ 
advanced model selection criteria, such as the corrected AICc, to 
ensure optimal model fitting. Through these enhancements, our 
research contributes a novel perspective to the application of 
ARIMA models in the field of epidemiology, demonstrating their 
adaptability and relevance in addressing contemporary public 
health challenges.

2.4 Statistical methods

Descriptive statistics were employed to illustrate changes in 
influenza incidence, air pollutants and meteorological factors. Time 
series plots (line plots) were utilized to visualize their temporal 
distribution. The cross-correlation function (CCF) was used to 
evaluate the lag effect of environmental influencing factors. For the 
development of ARIMA and ARIMAX models, as well as data 
visualization, we  utilized the R packages “forecast,” “stats,” and 
“ggplot2” in R (version 4.2.1, The R Foundation). The significance 
level was set at 0.05.

2.5 Ethical approval and consent to 
participate

We obtained ethical approval from the Ethical Review Committee 
of the Fuzhou Center for Disease Control and Prevention (Approval 
No. IRB2020008) to conduct a secondary analysis of aggregated data 
collected by the Fuzhou CDC, China. The informed consent 
requirement was waived by the Ethical Review Committee of the 
Fuzhou Center for Disease Control and Prevention for this study. This 
study was carried out following the Helsinki Declaration contents.

3 Results

From January 2014 to September 2023, a total of 21,573 cases of 
influenza were reported in Fuzhou, with an incidence rate of 
2.228 ± 4.593 (as shown in Table 1). The highest number of cases was 
recorded in June 2023, with 2,749 reported cases. Analysis of the time 
series chart of influenza incidence reveals that the peak of influenza 
cases typically occurs around January each year. Overall, there is a 
noticeable year-by-year increase in influenza incidence (as depicted 
in Figure 1).

Upon reviewing the data from the past few years, it becomes 
evident that nearly every winter is marked by severe air pollution in 
Fuzhou. Simultaneously, there is a notable increase in the incidence of 
influenza. Overall, the concentrations of all other five air pollutants, 
with the exception of O3, exhibit a consistent downward trend, as 
illustrated in Figure 2. The mean concentrations of PM2.5, PM10, SO2, 
CO, NO2, and O3 were 24.160, 45.620, 5.479, 0.660, 24.060, and 
88.260 μg/m3, respectively.

During the study period, the time series of meteorological factors 
exhibited a strong cyclical and seasonal pattern overall, with peak 
values occurring during the summer and troughs observed in the 
winter (as depicted in Figure 3). The mean values of the monthly 
average temperature, maximum temperature, minimum temperature 
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FIGURE 1

Time series of influenza incidence in Fuzhou from January 2014 to September 2023.

and average wind speed were 19.893, 23.600, 16.182, and 6.762 m/s, 
respectively.

We investigated the lagged relationship between 10 environmental 
indicators and influenza incidence using cross-correlation analysis. As 
illustrated in Table 2, SO2, CO, NO2, average temperature, maximum 
temperature, and minimum temperature exhibited direct and 
statistically significant associations with influenza incidence, while the 
lag variables for the other three environmental indicators also 
displayed significant associations with influenza incidence.

To begin with, it is imperative to establish an optimal ARIMA 
model for predicting influenza incidence in Fuzhou. Prior to 
modeling, we conducted an ADF test to assess the stability of both 
influenza incidence and 10 environmental indicators, aiming to 
ascertain if differential processing was necessary. All p-values from the 
tests were found to be  less than 0.05, signifying the data were 

stationary and did not need to be differential processed. Consequently, 
we conclude that the parameters d and D in the ARIMA(p, d, q) (P, D, 
Q)s model were both 0. Given that our predictive models were 
constructed using influenza incidence data spanning January 2014 to 
December 2022, we decomposed the data into trend, season, and 
random items. The influenza time series showed an upward trend. 
Meanwhile, this analysis also revealed a pronounced seasonality in 
influenza incidence data, characterized by a seasonal period of 12 
(refer to Figure  4). Consequently, the parameter s of the ARIMA 
model was set at 12, and the model can be expressed as ARIMA(p, 0, 
q) (P, 0, Q)12.

We developed the model using data from the training set (January 
2014 to December 2022) and assessed the prediction performance of 
the model using the test set data (January 2023 to September 2023). 
To determine the values of the remaining ARIMA model parameters 

TABLE 1  The descriptive statistics of the monthly influenza incidence and environmental indicators in Fuzhou, 2014–2023.

Variable Range Mean  ±  S.D. P25 P50 P75 IQR

Incidence (/100, 000) 0.236–32.540 2.228 ± 4.593 0.645 0.974 1.845 1.200

Average temperature (°C) 9.528–30.000 19.893 ± 6.114 13.926 20.000 25.831 11.905

Maximum temperature (°C) 12.050–35.000 23.600 ± 6.346 17.540 23.140 29.230 11.690

Minimum temperature (°C) 6.291–25.000 16.182 ± 5.923 10.059 16.390 21.960 11.901

Average wind speed (m/s) 4.300–9.681 6.762 ± 0.985 6.112 6.700 7.336 1.224

PM2.5 (μg/m3) 12.000–56.000 24.160 ± 7.912 18.000 23.000 29.000 11.000

PM10 (μg/m3) 23.000–89.000 45.620 ± 12.901 36.000 44.000 53.000 17.000

SO2 (μg/m3) 3.000–16.000 5.479 ± 1.827 4.000 5.000 6.000 2.000

CO (mg/m3) 0.326–1.165 0.660 ± 0.142 0.577 0.668 0.735 0.158

NO2 (μg/m3) 8.000–52.000 24.060 ± 8.915 17.000 23.000 30.000 13.000

O3 (μg/m3) 45.000–130.000 88.260 ± 18.542 75.000 87.000 102.000 27.000
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p, q, P, and Q, we generated ACF and PACF plots based on the training 
set data. The plots for ACF and PACF reveal the temporal dependence 
of influenza incidence, with maximum autocorrelation and partial 
correlation coefficients observed at lags 0 (refer to Figure 5).

Through the analysis of the ACF and PACF plots of the original 
time series, it can be determined that the remaining parameters p, 
q, P, and Q of the ARIMA model should be 0, or 1. To automatically 
identify the model order of the ARIMA model, we used the auto.
arima function from the “forecast” package to select a total of 13 
alternative models (Table  3). Finally, the optimal model was 
identified as ARIMA(0, 0, 1) (1, 0, 0)12, boasting the lowest AIC, 
AICc, and BIC values, which stood at 552.910, 553.303, and 563.640, 
respectively. Additionally, the Ljung–Box test confirmed that the 
residual sequence resembles white noise (p > 0.05). The ARIMA(0, 
0, 1) (1, 0, 0)12 model excelled in both fitting and predicting 
influenza incidence. When applied to the training set, the model 
yielded the fitting RMSE of 3.002; the model was employed to 
predict influenza incidence in the test set, achieving the predicting 
RMSE of 12.475.

To investigate the potential influence of environmental 
indicators, such as air pollutants and meteorological factors, on 

influenza incidence, we  systematically integrated these 
environmental indicators one by one into the ARIMA(0, 0, 1) (1, 0, 
0)12 model to formulate an optimal ARIMAX model. We integrated 
the maximum lag correlation variables for each environmental 
indicator into the ARIMA(0, 0, 1) (1, 0, 0)12 model, thus creating 10 
distinct ARIMAX models. The Ljung–Box test was employed to 
assess these 10 models, and results indicated that the residual 
sequences of the models exhibited white noise characteristics (All 
p > 0.05).

Based on the outcomes summarized in Table 4, it was determined 
that the ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model had the 
lowest AIC, AICc, and BIC values, signifying superior fitting accuracy 
and suitability for predicting influenza incidence in Fuzhou. During 
the model-fitting phase using the training aset, this ARIMAX model 
achieved a RMSE of 2.999. When applied to forecast influenza 
incidence in the test set, the model had an RMSE of 12.033.

Figure 6 graphically presents the fitting and predictive results of 
influenza incidence rates based on the ARIMAX(0, 0, 1) (1, 0, 0)12 with 
PM10(lag5) model. These results demonstrate the efficacy of the 
ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model in accurately 
forecasting influenza incidence in Fuzhou. Notably, the model 

FIGURE 2

Time series of the six air pollution variables from January 2014 to September 2023.
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displayed commendable fitting accuracy in both the training and 
test sets.

4 Discussion

Influenza is a respiratory viral disease caused by the influenza 
virus (28). It typically manifests with acute respiratory symptoms, but 
for individuals with weaker immune systems, such as the young, the 
older adults, or those with compromised immunity, influenza can lead 
to more severe complications even life-threatening outcomes (2). Over 
the past decade, Fuzhou has witnessed a notable surge in the incidence 
of influenza, indicating a critical influenza epidemic. Hence, 
investigating the factors influencing influenza incidence is crucial for 
the evidence-based development of influenza control policies and the 
implementation of timely public health interventions.

In 2022, the winter flu peak did not occur in Fuzhou, primarily 
attributed to the outbreak of COVID-19 and the strict epidemic 
prevention and control measures implemented, including the 
complete suspension of in-room dining and the promotion of remote 
work. These measures effectively reduced interpersonal contact, 
thereby mitigating the spread of influenza. The proactive interventions 
in response to the COVID-19 outbreak in Fuzhou had a positive 
impact on curbing the high incidence of influenza. However, China 
removed many restrictive COVID-19 prevention and control 
measures after January 8, 2023. It resulted in a rapid increase in 
COVID-19 infections and necessitated home-based treatments for 
many citizens, contributing to a partial reduction in the spread of 
influenza. These observations underscore the need for in-depth 
analysis in future studies to understand the specific mechanisms and 
long-term trends of various public health interventions on 
influenza transmission.

FIGURE 3

Time series of the meteorological factors (monthly average temperature, monthly maximum temperature, monthly minimum temperature, monthly 
average wind speed) from January 2014 to September 2023.

TABLE 2  The correlation coefficients and maximum lag correlation coefficients between influenza incidence and environmental indicators.

PM2.5 PM10 SO2 CO NO2 O3

Corr-Coef −0.018 −0.070 −0.183* −0.220* −0.183* −0.006

Max lag Corr-Coef −0.266* −0.291* −0.184* −0.326* −0.259* 0.238*

Its lag order (Max) 5 5 1 4 4 3

Ave.temp Max.temp Min.temp Ave.ws

Corr-Coef −0.053* −0.051* −0.054* −0.240

Max lag Corr-Coef 0.211* 0.225* 0.195* −0.290*

Its lag order (Max) 3 3 3 2

*p < 0.05; Ave.temp, average temperature; Max.temp, maximum temperature; Min.temp, minimum temperature; Ave.ws, average wind speed.
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During the period from 2022 to 2023, Fuzhou experienced 
consecutive summer influenza peaks, with a higher number of 
reported cases in both years. Apart from the conducive climate 
conditions of high temperature and humidity during summer, which 
potentially facilitate the transmission of the influenza virus, the 
reasons behind the summer influenza peaks in the 2 years might 
be different, contingent upon the contextual circumstances prevailing 
at the time.

In 2022, amidst a significant influenza pandemic, Fuzhou 
encountered no COVID-19 outbreak in June 2022, and residents 
reduced their mask-wearing behavior due to hot weather 
conditions. Concurrently, with medical resources extensively 
allocated for monitoring and treating respiratory diseases during 
the influenza pandemic, this likely resulted in intensified 
surveillance and reporting of influenza cases. During June to July 
2023, the emergence of a summer influenza peak in Fuzhou may 

FIGURE 4

The data of influenza incidence in Fuzhou were decomposed into trend part, seasonal part and random part.

FIGURE 5

The ACF and PACF charts for influenza incidence data from January 2014 to December 2022.
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be  associated with China’s relaxation of numerous restrictive 
COVID-19 control measures, such as mask-wearing and avoidance 
of crowded places, effective from January 8, 2023. Subsequently, 
residents’ immune systems may have weakened. During the 
COVID-19 pandemic, heightened attention to personal protection 
and hygiene practices might have reduced exposure of the immune 
system to common viruses. Following the easing of restrictions, 
resumption of social activities may have diminished the immune 
system’s resistance to the influenza virus, thereby precipitating its 
outbreak. Moreover, there was a notable increase in social 
gatherings. Post-lockdown, individuals likely resumed more social 
and congregational activities such as dining, gatherings, and 
tourism. Such congregation could have facilitated the spread of the 
influenza virus, contributing to the peak in influenza cases. Finally, 
the relaxation of healthcare resource pressures could also have 
played a role. During the COVID-19 pandemic, medical resources 
were primarily directed toward combating the outbreak, 
potentially leading to neglect in the prevention and control of 

other diseases. Post-lockdown, while healthcare resources might 
have eased, reduced vigilance toward COVID-19 may have led to 
diminished attention and control measures for influenza, thereby 
fostering its transmission.

There have been many previous studies have demonstrated the 
association between various diseases and environmental indicators, 
including diseases like dengue fever (29, 30), COVID-19 (31–33), 
and tuberculosis (34). In the case of influenza, environmental 
indicators can influence the occurrence of influenza epidemics 
through factors such as the variation and transmission of influenza 
virus and the immune status of the population (35). The Cross-
Correlation Function (CCF) measures the correlation between two 
variables at different time lags, making it particularly well-suited for 
analyzing lagged effects and time-delayed relationships between 
variables. Additionally, as the impact of environmental indicators 
may exhibit a time lag in disease incidence (36, 37), we investigated 
the lagged correlation between influenza incidence and these 
environmental indicators.

Our analysis revealed that most of the lagged air pollution 
variables exhibited a negative association with influenza incidence. 
This implies that as air pollution levels increase, the incidence of 
influenza tends to decrease. This negative correlation can, in part, 
be attributed to the adverse impact of severe air pollution on the 
human immune system, thereby increasing the risk of infectious 
diseases (38). However, the manifestation of this weakened 
immune system in terms of influenza incidence may not 
be immediately evident and could require some time to become 
apparent. This phenomenon might also be  linked to public 
awareness of declining air quality. Following the perception of 
deteriorating air quality, individuals may have adopted proactive 
protective measures, including reducing outdoor activities and 
wearing face masks to mitigate their exposure to air pollution (39). 
These self-protective behaviors could contribute to a reduction in 
the likelihood of influenza virus transmission, consequently 
lowering the incidence of influenza. Moreover, it’s essential not to 
overlook the impact of the COVID-19 pandemic in recent years. 
From 2019 to 2022, widespread mask-wearing in public to prevent 
COVID-19 not only effectively curtailed the spread of the novel 
coronavirus but also had the side effect of reducing the 

TABLE 3  Parameters and AICc of the alternative ARIMA models.

Alternative ARIMA model AICc

ARIMA(2,0,2) (1,0,1)12 Inf

ARIMA(1,0,0) (1,0,0)12 554.387

ARIMA(0,0,1) (0,0,1)12 553.402

ARIMA(0,0,1) (1,0,1)12 555.492

ARIMA(0,0,1) (0,0,2)12 555.519

ARIMA(0,0,1) (1,0,0)12 553.303

ARIMA(0,0,1) (2,0,0)12 555.493

ARIMA(0,0,1) (2,0,1)12 Inf

ARIMA(0,0,0) (1,0,0)12 562.445

ARIMA(1,0,1) (1,0,0)12 555.499

ARIMA(0,0,2) (1,0,0)12 555.499

ARIMA(1,0,2) (1,0,0)12 Inf

ARIMA(0,0,1) (1,0,0)12 560.726

The bold values represent the best performing models and parameters. Inf, Infinity.

TABLE 4  The performance of the ARIMA(0, 0, 1) (1, 0, 0)12 and 10 ARIMAX models.

Model Variable MA(1) SAR(1) AIC AICc BIC

ARIMA(0,0,1) (1,0,0)12 0.503* 0.387* 552.910 553.300 563.640

ARIMA(0,0,1) (1,0,0)12 with PM2.5(lag5) −0.048* 0.516* 0.401* 533.560 534.170 546.730

ARIMA(0,0,1) (1,0,0)12 with PM10(lag5) −0.068* 0.520* 0.426* 529.740 530.360 542.910

ARIMA(0,0,1) (1,0,0)12 with SO2(lag4) −0.084* 0.500* 0.387* 550.580 551.180 563.950

ARIMA(0,0,1) (1,0,0)12 with NO2(lag4) −0.083 0.499* 0.388* 535.580 536.190 548.800

ARIMA(0,0,1) (1,0,0)12 with CO(lag4) −4.254 0.503* 0.399* 536.560 537.170 549.780

ARIMA(0,0,1) (1,0,0)12 with O3(lag3) 0.031 0.515* 0.396* 539.990 540.600 553.260

ARIMA(0,0,1) (1,0,0)12 with Ave.temp(lag3) 0.007* 0.519* 0.400* 542.630 543.240 555.900

ARIMA(0,0,1) (1,0,0)12 with Max.temp(lag3) 0.023* 0.516* 0.397* 542.550 543.160 555.820

ARIMA(0,0,1) (1,0,0)12 with Min.temp(lag3) −0.012* 0.524* 0.405* 542.620 543.220 555.890

ARIMA(0,0,1) (1,0,0)12 with Ave.ws(lag2) −0.067 0.521* 0.387* 546.680 547.280 560.000

*P < 0.05; Ave.temp, average temperature; Max.temp, maximum temperature; Min.temp, minimum temperature; Ave.ws, average wind speed. The bold values represent the best performing 
models and parameters.
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transmission of influenza (40). Interestingly, our analysis showed 
a positive association between the third-order lagged variable of 
O3 and influenza incidence. This positive correlation may 
be  attributed to high concentrations of O3 inducing lung 
inflammation (41), which weakens the immune system and 
heightens susceptibility to infections. Furthermore, O3 might also 
influence the pathogen’s transmission mode, potentially rendering 
it more prone to airborne transmission.

The analysis revealed that influenza incidence demonstrated a 
negative association with three distinct temperature variables, 
indicating that the higher the temperature, the lower the influenza 
incidence. The intricacies of this relationship become more 
pronounced when accounting for the temperature’s delayed effects. 
The third-order lagged temperature variable demonstrated a 
significant positive correlation with influenza incidence. This 
observed pattern could be  indicative of the seasonal pattern of 
influenza virus transmission, further complicated by temperature’s 
influence on human behavior and immune responses. The 
transmission of the influenza virus may exhibit nuanced seasonal 
variations, influenced by changing atmospheric temperatures (42). 
While increasing temperatures generally correlate with reduced 
influenza incidence, the full manifestation of this trend may 
experience delays due to the time-sensitive nature of human 
immune and behavioral adjustments. This suggests that 
people may still be  at risk of spreading the flu virus for some 
time after the temperatures rise. Notably, behavioral patterns 
also shift in response to seasonal temperature changes. During 
warmer periods, increased outdoor activities and social 
interactions could inadvertently amplify influenza transmission 
risks, potentially leading to a spike in cases as temperatures rise. 
In relation to average wind speed, while the mean value 
demonstrated no significant correlation with influenza, the 
second-order lagged wind speed showed a significant negative 
correlation with influenza incidence, indicating that wind 

speed also has a long-term lag negative correlation effect on 
influenza incidence.

We utilized time series analysis to examine the correlation 
between influenza incidence and environmental indicators in 
Fuzhou from January 2014 to September 2023. The environmental 
indicators encompassed air pollution variables (PM2.5, PM10, SO2, 
CO, NO2, and O3) and meteorological factors (mean temperature, 
minimum temperature, maximum temperature, and wind speed). 
In our study, the time series data of influenza incidence in Fuzhou 
from January 2014 to September 2023 were found to be stationary 
and exhibited seasonal distribution. However, since the model 
used in the study was able to effectively capture the seasonal 
effects, there was no need to difference the time series data of 
influenza incidence. We  also experimented with introducing 
seasonal differences in the time series data of influenza incidence; 
however, we  observed that this adjustment did not lead to an 
improvement in the model’s performance. Therefore, the data of 
influenza incidence were not processed by differencing in this 
study. First, the ARIMA(0, 0, 1) (1, 0, 0)12 model was identified as 
the most optimal ARIMA model for forecasting influenza 
incidence in Fuzhou, with AIC, AICc, and BIC values of 552.910, 
553.300, and 563.640, respectively. This model was employed to 
fit the training set, yielding a fitting RMSE of 3.002. Subsequently, 
the model was utilized for prediction analysis on the test set, 
yielding a predicting RMSE of 12.475. To enhance prediction 
accuracy, the maximum lag correlation variables of environmental 
indicators during the study period were incorporated into the 
optimal ARIMA model. The results demonstrated that the AIC, 
AICc, and BIC values of the 10 ARIMAX models, each including 
a single environmental index, were lower than those of the 
ARIMA(0, 0, 1) (1, 0, 0)12 model. This suggested that considering 
environmental indicators could enhance the predictive 
performance of the model. Comparing the AIC, AICc, and BIC 
values of all ARIMAX models, the ARIMAX(0, 0, 1) (1, 0, 0)12 with 

FIGURE 6

Chart of fitting and predicting influenza incidence based on ARIMAX (0,0,1)(1,0,0)12 with PM10.
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PM10(lag5) model had the lowest AIC, AICc, and BIC values, 
specifically 529.740, 530.360, and 542.910, respectively. Moreover, 
this model exhibited a fitting RMSE of 2.999 and a predicting 
RMSE of 12.033, both of which were superior to the optimal 
ARIMA model. The ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) 
model can be effectively employed for short-term prediction of 
influenza incidence in Fuzhou. This approach provides a 
scientifically grounded basis for formulating influenza control 
policies and public health interventions in Fuzhou.

The findings from our study suggest several implications for 
further research. Firstly, there is a need to explore the specific 
mechanisms through which environmental factors, such as air 
pollution and meteorological conditions, influence influenza 
transmission dynamics. Additionally, future studies could 
investigate the applicability of the ARIMAX model in 
different geographical contexts and for other infectious 
diseases. Expanding the dataset to include more diverse 
populations and environmental conditions could enhance the 
robustness of predictive models. Lastly, interdisciplinary research 
integrating public health, environmental science, and 
epidemiology will be  essential for developing comprehensive 
strategies to mitigate the impact of influenza and improve public 
health preparedness.

In our study, we  examined both ARIMA and ARIMAX 
modeling approaches to analyze influenza incidence in Fuzhou. 
The strengths of the ARIMA model include its simplicity and 
strong theoretical foundation, making it effective for stationary 
time series data. However, it does not account for external factors, 
which can limit its explanatory power. On the other hand, the 
ARIMAX model allows for the incorporation of exogenous 
variables, enhancing predictive accuracy and capturing lagged 
effects, which is crucial for understanding the impact of 
environmental indicators. Nevertheless, the ARIMAX model 
introduces complexity and relies heavily on the quality of data for 
the exogenous variables, which can pose challenges in 
interpretation and model validation. Ultimately, the ARIMAX 
model provided a more comprehensive analysis for our research 
questions. While the ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) 
model incorporating environmental indicators provides valuable 
insights into the relationship between these factors and influenza 
incidence, it is essential to acknowledge its limitations. Firstly, the 
model relies heavily on historical data, which may not capture 
sudden changes in environmental conditions or emerging 
infectious disease patterns. Additionally, while environmental 
indicators such as air pollution and meteorological factors are 
significant, they are not the sole determinants of influenza 
occurrence. Biological factors, human behavior, and public health 
interventions also play crucial roles. Thus, while our statistical 
analysis demonstrates a correlation, it does not imply causation, 
and the model’s predictions should be interpreted with caution. 
Therefore, while our findings suggest a potential relationship, 
further research, including controlled studies and experimental 
designs, is necessary to establish definitive causal links between 
environmental pollution factors and influenza incidence. 
Additional, future research should consider integrating biological 
and socio-economic factors to enhance the comprehensiveness of 
predictive models.

5 Conclusion

The incidence of influenza in Fuzhou has shown a significant 
increase in the past decade. Our study indicates that air pollution and 
meteorological factors exert an impact on influenza incidence, often 
exhibiting a lag effect. The ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) 
model was developed using historical data on influenza incidence and 
air pollutant levels in Fuzhou, demonstrated excellent predictive 
performance for forecasting influenza incidence. Therefore, the 
ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model could provide a 
scientific basis for the formulation of influenza control policies and 
public health interventions in Fuzhou.
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Introduction: Although wastewater-based epidemiology (WBE) successfully 
functioned as a tool for monitoring the coronavirus disease 2019 (COVID-19) 
pandemic globally, relatively little is known about its utility in low-income countries. 
This study aimed to quantify severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) RNA in wastewater, estimate the number of infected individuals in 
the catchment areas, and correlate the results with the clinically reported COVID-19 
cases in Addis Ababa, Ethiopia.

Methods: A total of 323 influent and 33 effluent wastewater samples were 
collected from three Wastewater Treatment Plants (WWTPs) using a 24-h 
composite Moore swab sampling method from February to November 2023. 
The virus was captured using Ceres Nanotrap® Enhancement Reagent 2 and 
Nanotrap® Microbiome A Particles, and then nucleic acids were extracted 
using the Qiagen QIAamp Viral RNA Mini Kit. The ThermoFisher TaqPath™ 
COVID-19 kit was applied to perform real-time reverse transcriptase polymerase 
chain reaction (qRT-PCR) to quantify the SARS-CoV-2 RNA. Wastewater viral 
concentrations were normalized using flow rate and number of people served. 
In the sampling period, spearman correlation was used to compare the SARS-
CoV-2 target gene concentration to the reported COVID-19 cases. The numbers 
of infected individuals under each treatment plant were calculated considering 
the target genes’ concentration, the flow rate of treatment plants, a gram of 
feces per person-day, and RNA copies per gram of feces.

Results: SARS-CoV-2 was detected in 94% of untreated wastewater samples. All 
effluent wastewater samples (n  =  22) from the upflow anaerobic sludge blanket 
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(UASB) reactor and membrane bioreactor (MBR) technology were SARS-COV-2 
RNA negative. In contrast, two out of 11 effluents from Waste Stabilization Pond 
were found positive. Positive correlations were observed between the weekly 
average SARS-CoV-2 concentration and the cumulative weekly reported 
COVID-19 cases in Addis Ababa. The estimated number of infected people in 
the Kality Treatment catchment area was 330 times the number of COVID-19 
cases reported during the study period in Addis Ababa.

Discussion: This study revealed that SARS-CoV-2 was circulating in the 
community and confirmed previous reports of more asymptomatic COVID-19 
cases in Ethiopia. Additionally, this study provides further evidence of the 
importance of wastewater-based surveillance in general to monitor infectious 
diseases in low-income settings.

Conclusion: Wastewater-based surveillance of SARS-CoV-2 can be a useful 
method for tracking the increment of COVID-19 cases before it spreads widely 
throughout the community.

KEYWORDS

COVID-19, SARS-CoV-2, qRT-qPCR, wastewater treatment plants, wastewater-based 
epidemiology

Background

Economic stability and human health are considerably affected 
by infectious diseases as they cause one-fourth of the mortalities 
around the world (1). The recent outbreak of COVID-19 caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

escalated into a global pandemic since it first appeared in Wuhan, 
China, in December 2019 (2). In January 2020, it led to a declaration 
of a Public Health Emergency of International Concern by the 
World Health Organization (WHO) (3). Since then, SARS-CoV-2 
has been responsible for more than 773 million confirmed cases and 
around 7 million deaths worldwide as of December 2023 (4). In this 
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regard, Africa reported only around 1.2% of confirmed cases and 
2.5% of deaths. The first COVID-19 case in the African continent 
was reported from Egypt on the 14th of February 2020 (5). On 
February 25, Nigeria became the second country to report a first 
case, and on February 27, Algeria became the third country to do 
so (6). The first cases in other African countries, including Ethiopia, 
were only detected in March 2020 (7). Most index cases originated 
in Europe, where the epidemic’s epicenter had moved by March 13. 
As a result, the pandemic spread quickly to Africa (8). Consequently, 
this led to long-lasting collateral damage on the continent from 
interruptions in the initiatives for TB, HIV/AIDS, malaria, and 
vaccine-preventable illnesses (9). Ethiopia reported around 5 and 
4.3% of the African total confirmed cases and deaths, 
respectively (4).

Surveillance focused on clinical and laboratory testing which has 
drawbacks such as excessive costs, failure to detect asymptomatic 
patients, and underestimating of infection prevalence (10). Current data 
suggest that worldwide 35–45% of all SARS-CoV-2 infections account 
for asymptomatic infected persons (11–13). However, the percentage of 
asymptomatic cases in Africa and Ethiopia is 67 and 74%, respectively 
(14–16). Recent study findings in Ethiopia indicated that high 
asymptomatic cases are associated with persistently activated immune 
system (17, 18). This will affect the clinical COVID-19 case detection 
and reporting as testing of samples was prompted mainly by symptoms 
(19). Hence, the community may not be prepared in terms of infection 
prevention and control, and management of COVID-19 infection (20).

SARS-CoV-2 RNA can be  detected in feces and urine from 
asymptomatic and symptomatic individuals. Fecal shedding can 
persist for several weeks, typically longer than positivity in 
oropharyngeal swabs (21, 22). The extended presence of viral RNA 
in feces and fecal viral RNA shedding with gastrointestinal (GI) 
symptoms implies that SARS-CoV-2 infects the GI tract (23–25). 
Anyhow, virus shedding in the feces of symptomatic and 
asymptomatic infected individuals enables the detection of viral 
RNA in influent sewage or wastewater (26, 27). Wastewater-based 
epidemiology (WBE) for COVID-19 surveillance can be used as an 
alternative for early warning of COVID-19 outbreaks or as a control 
mechanism for potential virus transmission independent of 
individual healthcare-seeking behaviors. In addition, WBE can 
be  scaled relatively easily, is less expensive than human subject 
testing, and, if collected at strategic points, can represent local 
populations (28, 29). Monitoring SARS-CoV-2 circulation in the 
community will remain important for reinforcing preparedness and 
identifying hotspots for further classical surveillance interventions, 
particularly in regions with inadequate health system infrastructure, 
human resources, and testing capacity.

Previously, numerous human infectious illnesses (such as polio 
and typhoid) have been the focus of research in this WBE (30, 31). In 
high-income countries, wastewater-based surveillance is well utilized 
for the monitoring of SARS-CoV-2 (32). However, few African 
countries have conducted wastewater-based SARS-CoV-2 surveillance 
(33–35). This may be partly attributable to low sewage coverage with 
deficient testing coverage, which limits COVID-19 surveillance 
through sewage monitoring (36). In Ethiopia, there is only one study 
in wastewater-based SARS-CoV-2 using a small sample size, and it is 
focused only on the qualitative test (37). This study aimed to quantify 
SARS-CoV-2 RNA in wastewater, estimate the number of infected 
individuals in the catchment area, and correlate results with clinically 
reported COVID-19 cases in Addis Ababa, Ethiopia.

Materials and methods

Study setting and sampling sites

Addis Ababa is Ethiopia’s capital city, with an estimated 5,460,591 
population in 2023 (38). Administratively, it is divided into 11 subcities. 
Based on the information obtained from Addis Ababa Water and 
Sewerage Authority (AAWSA), the wastewater treatment capacity in 
Addis Ababa is nearly 86%, out of which 34% are currently connected to 
sewer lines, and 52% rely on vacuum trucks, the remaining could 
be considered as illegal connection or disposal. Currently, Addis Ababa 
city has 4 centralized and 35 decentralized wastewater treatment plants 
(WWTPs). The centralized WWTPs are Kality, Kality old, Kotebe old, and 
Chefe (unpublished Strategic Environmental and Social Assessment 
[SESA] of Addis Ababa City Sanitation Master Plan, 2024).

Influent wastewater samples were collected 3 times a week from three 
sampling sites (Kality, Bulbula, and Mikililand) using the Moore swab 
method (39) (Figure  1). Kality treatment plant (KTP) is the oldest 
centralized system, mainly serving residents in the central, southern, and 
eastern parts of the city (40) with an estimated population coverage of 
nearly 2,000,000 (unpublished data from AAWSA). The upflow anaerobic 
sludge blanket reactor (UASB) technology is applied at this site. A 
membrane Bioreactor (MBR) wastewater treatment technology, which 
combines a biological-activated sludge process and membrane filtration 
domestic wastewater treatment, is used at the Bulbula wastewater 
treatment site (41). The third wastewater treatment plant included in this 
study was Mikililand Waste Stabilization Pond (WSP). Mikililand WSP 
systems comprise 7 series of different types of ponds (42). It is situated in 
the northwestern part of the capital city. Technical details of the 
wastewater treatment process at the three wastewater treatment plants are 
presented in Table 1.

Study design and sample collection

A longitudinal study design was conducted between February and 
November 2023 at three wastewater treatment plants in Addis Ababa. The 
Moore swab, or cotton gauze of size (120 × 15 cm), was folded to achieve 
an 8-ply pad and tied with a string that was long enough to immerse the 
swab into the influent discharge (39, 43). The prepared Moore swab was 
then autoclaved and sealed in Ziploc® bag. The string was attached to a 
solid structure and fully submersed into the wastewater. On all three 
wastewater collecting sites, the swab installation period was between 
9:30 a.m. and 11:30 a.m. on Sundays, Tuesdays, and Wednesdays of each 
week. Following a 24-h period for the installation of the swab, the 
wastewater from the submersion was collected and placed in a Ziploc® 
bag. Finally, the exterior of Ziploc® bag was decontaminated with 70% 
ethanol and then transported using an ice-cold box to the Ethiopian 
Public Health Institute’s laboratory. Accordingly, 323 influent and 33 
effluent wastewater samples were collected. The influent samples were 
composed of 110 from Kality, 108 from Bulbula, and 105 from Mikililand 
treatment plants Whereas, 11 effluent samples were collected from each 
of the three treatment plants with the same installation time of influent 
samples in October 2023 and November 2023.

Furthermore, to evaluate the effectiveness of the Moore swab 
sampling method in capturing virus particles from wastewater, influent 
samples were collected in parallel, covering the same 24-h period for 
3 weeks from February 2023 to March 2023 using an on-site autosampler 
placed at KTP (n = 8).
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RNA capture and extraction

Each Moore swab was squeezed of all liquid into a sterile container 
from which a 10 ml wastewater aliquot was taken using a 15 ml tube for 
RNA capture and extraction. For RNA concentration, 100 μl of 
Nanotrap® Enhancement Reagent 2 (ER2; SKU# 10112, Ceres 
Nanoscience, Inc., Manassas, VA) and 150 μl of Nanotrap® Microbiome 
A Particles (SKU#44202, Ceres Nanosciences, Inc., Manassas, VA, USA) 
were added into the 15-ml tube containing 10-ml wastewater and mixed 
well. After samples were incubated at room temperature for 10 min, 
Nanotrap® Microbiome A Particles pellet was separated using a 

DynaMag™-15 Magnet (Thermo Fisher Scientific, Waltham, MA, 
USA). After washing the pellet, 150 μl of 1× phosphate-buffered saline 
(PBS) for suspension and 5 μl of MS2 phage control were added to each 
pellet, and negative control (RNAse free water); then RNA extraction 
was executed using QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, 
Germany) following the manufacturer’s instruction (44). MS2 spike-in 
to each sample can minimize false negatives. Briefly, 560 μl QIAGEN 
Virus Lysis Buffer was added to PBS suspended pellet to lyse the cells. 
Following a 10-min incubation at room temperature of the solution, the 
Nanotrap® Microbiome A Particles and the lysate solution sample were 
separated using the DynaMag™-2 magnet (Thermo Fisher Scientific, 

FIGURE 1

Sites of wastewater treatment plants. Map of wastewater treatment plant units in Addis Ababa, where all sites with diamonds were preliminary assessed. 
Blue diamonds represent selected sites, whereas green diamonds represent unselected sites due to different criteria.

TABLE 1  Description of the selected WWTPs.

WWTP name Sub-city/location Design 
capacity m3 

per day

Average daily 
flow rate in m3 

per day

Served 
population

Type of treatment 
technology in 

place

1 Kality treatment plant (KTP) Akaki Kality Sub-City/ 

Southern Addis Ababa

100,000a 65,000 2,000,000 USAB

2 Bulbula Treatment Plant Bole Sub-City/ Central Addis 

Ababa

20,000b 325 34,000 MBR

3 Mikililand Wastewater 

Stabilization Pond (WSP)

Kolfe-Keranio Sub-City/ 

Northwest Addis Ababa

3,000c NA 24,000 WSP

Description of the selected WWTPs for this surveillance of SARS-CoV-2 in Addis Ababa, Ethiopia. aInformation was collected from the AAWSA authority. b,cInformation was from the 
literature that is cited (37) and (42). NA = Not available (we did not know the average flow rate due to lack of measuring instruments at the WSP).
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Waltham, MA, USA). The lysate supernatants were collected in a new 
1.5-ml microcentrifuge tube, and the pellet was discarded. For high 
nucleic acid concentration, 560 μl of 100% ethanol was added to the 
concentrate, and the lysate was added to the QIAamp Mini column. 
After washing using wash buffer, the QIAamp Mini column was placed 
in a clean 1.5-ml microcentrifuge tube, elution was performed using 
80-μl Buffer AVE, and the eluted viral RNA was stored at −80°C.

Real-time reverse transcriptase polymerase chain 
reaction (qRT-PCR)

The TaqPath™ COVID-19 control was used as a quantification 
standard RNA control (1 × 104 copies/μl stock). A 104 copies/μl was 
diluted to 2 × 103 copies/μl using dilution buffer and then used as 
stock. The stock solution was then serially diluted 5-fold in 
low-binding 1.5-ml tubes. The limit of detection of the TaqPath™ 
COVID-19 is 10 genomic copy equivalents (GCE)/reaction (45), but 
we did not do the limit of detection in our setting.

TaqPath™ COVID-19 qRT-PCR reaction master mix was prepared 
according to the manufacturer’s instructions (45). A total of 15-μl 
master mix was added to each well of the plate. Approximately 10 μl of 
extracted nucleic acid, quantification standard RNA, and nuclease-free 
water for no template control (NTC) were added to the assay wells 
containing the master mix. In the Plate Setup window of QuantStudio™ 
5 (Thermo Fisher Scientific, Waltham, MA), FAM, VIC, ABY, and JUN 
dyes were used as reporter dyes for the viral targets of the primers and 
probes: ORF1ab, Nucleocapsid (N) gene, Spike (S) gene, and MS2 phage 
control, respectively (45). Thermal cycling conditions included 2-min 
of uracil-N-glycosylase (UNG) incubation at 25°C, 10-minu of reverse 
transcription at 53°C, 2-min at 95°C for reverse transcription 
deactivation, and initial activation of Speed Star HS DNA polymerase, 
followed by 40 cycles of 3 s denaturation at 95°C and 30 s annealing/
extension at 60°C. All samples with cycle threshold (Ct) values of 
ORF1ab, N gene, and S gene <37; MS2 < 32 were considered positive 
according to the manufacturer (45).

Determination of viral concentration in 
wastewater

The PCR test results were interpreted as follows: when any two or 
more of the viral targets were reported, the sample was considered 
positive for SARS-CoV-2; when only one viral target was detected 
within repeated tests, the result was considered inconclusive; whereas 
when all the viral targets were not detected but the internal control 
(MS2) detected, the sample was considered as negative for SARS-
CoV-2. Preliminary reverse transcriptase qPCR data analysis and 
quality control were performed using the QuantStudio Flex 5 reverse 
transcriptase qPCR software v1.5.1 (Applied Biosystems, Inc., USA). 
Viral concentrations were expressed as genome copies of RNA extract 
per liter (gc/L). Using Excel and the following formula, viral 
concentrations (gc/L) in the concentrated samples were determined:

	

( )
( )

( ) ss

copies
Concentration of viral genome in wastewater

Copies in RT qPCR reaction copies
1, 000

Volume of nucleic acid extracted used for RT qPCR ml Concentration factor∗

=

−
×

− ×

L

	 If 10 of the nucleic acid extract is used in RT qPCR assay the value in mlis0.01.lµ −∗

	
( )
( )

Wastewater sample volume used ml
Concentration factor

Volume of nucleic acid extracted ml

ss
=

Virus concentration levels (genome copies per L) were normalized 
by multiplying with the daily WWTP flow rate of specific WWTP and 
then dividing by the number of people served to get daily load/persons 
in sewershed [million gene copies (MGC)/person/day]. However, viral 
concentration levels in all samples from Mikililand WSP were only 
expressed as genome copies/L of RNA due to a lack of daily flow rate data.

Estimating the number of infectious 
individuals

The number of daily reported COVID-19 cases in Addis Ababa 
during the study (February to November 2023) was obtained from the 
Public Health Emergency Management Center at the Ethiopian Public 
Health Institute. The number of residents served by the WWTP was 
obtained from the respective Woreda offices and the Addis Ababa 
Water and Sewerage Authority (AAWSA) (Table 1). Using two different 
approaches that have been previously published, the number of infected 
individuals within each WWTP’s service area was calculated (27, 46).

The equations used for calculation are indicated below:
Method 1 (Equation 1) (27):

	

Predicted Infected person
RNA copies Liter of wastewater

Liter wastewater day
g of feces RNA copies

person day g of feces

  ×   
   =

  
×   −    	

(1)

A positive individual is thought to excrete 128 g of feces per 
person per day and shed 107 RNA copies per g of feces (27).

Method 2 (Equation 2) (46):

	

Predicted infected person
Number of RNA copies per liter of wastewater

Contribution of RNA copies per person to total wastewater
=

	
(2)

107 RNA copies/g of feces was multiplied by 120 ml of the volume 
of feces excreted by humans (considering the density of feces as 1.07 g/
ml), and total wastewater (L) received at WWTP (46).

Statistical analysis

According to the Kolmogorov–Smirnov test, the viral 
concentration data were not normally distributed. We  tested for 
significant differences in viral concentration (gc/ml) across sites using 
a Kruskal–Wallis rank sum and pairwise Wilcoxon tests. Spearman 
correlation was used to assess the correlation between reported cases 
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and viral data. All data analysis was performed using Inter cooled 
STATA version 14.0 (College Station, TX, USA). The graphs are 
presented using Power BI.

Ethical statement

Informed consent is not applicable for environmental wastewater 
samples as no human subject is involved. However, for the use of reported 
COVID-19 cases data from Addis Ababa, permission was granted from 
the Ministry of Health, which owns the data. For COVID-19 protection, 
care was taken during sample collection and analysis using personal 
protection equipment and a standardized method. All respective bodies 
(government and non-government) participated in this study adhered to 
the  sample collection and laboratory testing protocols. In addition, this 
study obtained ethical clearance from the Ethiopian Public Health 
Institute Scientific and Ethical Review Office (Ref. EPHI 6.13/577). 
Official approval was obtained from AAWSA, the government body that 
administers Addis Ababa city’s water supply and sewerage services. Access 
to the treatment plant and site-level information was obtained from 
this authority.

Results

Method optimization for wastewater-based 
SARS-CoV-2 detection

SARS-CoV-2 detection and quantification from wastewater samples 
using the Moore swab method is a relatively new method in Ethiopia, 
apart from its use in polio surveillance. The comparison of the on-site 
autosampler method in place at KTP and the Moore swab sampling 
technique for SARS-CoV-2 detection in wastewater is presented in 
Table 2.

As shown in the table, there is no significant difference in the Ct 
values of the target genes (ORF1ab, N, and S genes) between the 
autosampler and Moore swab sampling techniques. Moreover, viral 
concentrations (gc/L) of the target genes were not significantly 
different using the autosampler and Moore swab sampling technique 
(p > 0.05; Figure 2). Although the autosampler method of wastewater 
sampling is reliable, it has limitations that impede effective 

surveillance, especially from small catchments with limited 
accessibility. Since Moore swab sampling is more cost-effective and 
requires fewer resources to process, we  decided to continue our 
monitoring of wastewater for SARS-CoV-2 using this technique.

Wastewater-based SARS-CoV-2 qualitative 
test result

Wastewater samples collected from 21 February 2023 to 9 
November 2023  in Addis Ababa at KTP, Bulbula WWTP, and 
Mikililand WSP were tested for SARS-CoV-2 by qRT-PCR. A total of 
323 wastewater Moore swab samples were tested. Each run had 
negative controls and produced all negative results. Of these, 304 
(94%) tested positive for SARS-CoV-2 by qRT-PCR, defined as a Ct 
value of <37 for two or more SARS-CoV-2 target genes. In addition, 
14/323 (4%) of the samples tested were inconclusive for SARS-CoV-2 
by qRT-PCR, defined as a Ct value of <37 for one SARS-CoV-2 target 
gene only in duplicate testing, and only 5/323 (2%) were negative, 
defined as a Ct value of ≥37 for three SARS-CoV-2 target genes and a 
Ct value of <32 for MS2 (internal control). Around 95% of samples 
from KTP were positive, whereas 2% were negative and 3% were 
inconclusive. Approximately 90% of the Bulbula samples were 
positive, with the remaining 3% negative and 7% inconclusive. Finally, 
97% of the Mikililand samples were positive, 3% were inconclusive, 
and no negative results were found.

To determine the presence of SARS-CoV-2 RNA, 33 treated 
effluent water samples were taken from these three wastewater 
treatment plants. From each wastewater treatment plant, 11 treated 
wastewater samples were collected. All treated samples were collected 
in the morning from 8:00 a.m. to 12:00 p.m. by collecting 
500–1,000 ml of water in sterile plastic containers. The collected 
samples were transported using ice and concentrated within 24 h, 
using the same process as influent wastewater. The SARS-CoV-2 
extraction and detection procedure for treated wastewater samples 
was the same as for influent wastewater. Of the total 33 samples, 22 
treated wastewater samples from Kality and Bulbula WWTP were 
negative, whereas two of the total treated samples from the Mikililand 
stabilized pond were positive. Five treated samples from the 
Mikililand stabilized pond were inconclusive, and the remaining four 
samples were negative.

TABLE 2  Comparison of Moore swab sampling technique and autosampler.

Date ORF1ab of swab ORF1ab of auto N gene of 
swab

N gene of 
auto

S gene of 
swab

S gene of 
auto

23 February 2023 32.001 32.543 32.719 33.390 31.571 30.163

27 February 2023 33.361 32.085 33.638 34.101 33.663 30.564

2 March 2023 32.753 32.111 36.441 33.578 31.223 31.115

6 March 2023 30.408 29.154 28.942 28.352 30.082 29.475

9 March 2023 30.848 31.617 29.348 29.414 31.593 31.449

13 March 2023 30.443 29.882 28.884 28.241 31.170 30.266

15 March 2023 31.665 29.841 30.119 28.559 31.348 29.577

16 March 2023 31.606 31.185 30.579 29.571 30.761 31.431

The Ct-value of the target genes detected using autosampler and Moore swab sampling technique. The Ct values of the target genes between autosampler and swab sampling technique were not 
significantly different (ORF1ab, p = 0.1386; N gene, p = 0.0858; S gene, p = 0.1386).
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Quantification RNA of SARS-CoV-2 in 
wastewater

The wastewater samples that tested positive for SARS-CoV-2 RNA 
by qualitative methods were subjected to quantitative PCR for three 
targets (ORF1ab, N gene, and S gene). The performance efficiency 
range of the ORF1ab, N, and S genes among the test runs was 91.8 to 
105.7, 93.0 to 109.8, and 88.0 to 104.6, respectively, and the detailed 
results are summarized in Supplementary Table S1.

The concentration of these three viral targets in the influent 
wastewater samples across the three wastewater treatment plants 
(WWTPs) is presented using a Box–Whisker plot (Figure 3A). The 
median viral concentration (gc/L) and (interquartile range [IQR]) 
obtained for ORF1ab, N gene, and S gene in positive samples from 
KTP was 60,388 (21544–430,339), 26,355 (7,748–125,372) and 
6,2,573 (12,221–24,9,039), respectively. Similarly, the median viral 
concentration (gc/L) and IQR for ORF1ab, N gene, and S gene from 
Bulbula-positive samples was 52,780 (19,078–375,512), 38,301 
(12,273–186,201), and 43,549 (10476–240,648), respectively. 
Whereas the median viral concentration (gc/L) and IQR for 
ORF1ab, N gene, and S gene in Mikililand-positive samples was 
64,762 (18087–309,415), 45,580 (15,681–158,475), and 51,454 
(11,318–184,333), respectively. Hence, there was no significant 
difference among the study sites in viral concentration: ORF1ab 
(p = 0.7341), N gene (p = 0.2087), and S gene (p = 0.8721). The 
detailed viral load of each positive sample is presented in 
Supplementary Table S2_sheet 1.

After normalization of virus concentration levels (gc/L) using 
daily flow rate and number of people served by each WWTP, the 

median viral concentration of daily load per person in sewershed 
(million genome copies [MGC/person-day]) and IQR was generated. 
Accordingly, the values for ORF1ab, N gene, and S gene in positive 
samples from KTP were 2055 (725–13,400), 861 (268–4,016), and 
2,221 (436–7,607), respectively. Whereas, for Bulbula-positive 
samples, the results for ORF1ab, N gene, and S gene were 477 (136–
2,387), 295 (871854), and 383 (69–1786), respectively. Therefore, there 
was a significant difference among the study sites in viral concentration 
of daily load per person in sewershed: ORF1ab (p < 0.0001), N gene 
(p = 0.0008), and S gene (p < 0.0001). The viral concentration of daily 
load per person in the sewershed of three viral targets in KTP and 
Bulbula WWTPs is presented using a Box–Whisker plot (Figure 3B).

Trend of viral concentration in wastewater and 
correlational analysis against COVID-19 daily 
cases

Figure  4 demonstrates the dynamics of SARS-CoV-2 tests 
performed and the number of reported COVID-19 clinical cases for 
the year 2023. Daily reported COVID-19 cases of Addis Ababa were 
presented in Supplementary Table S2_sheet 2. A significant decrease 
of daily cases during the months of April and May 2023 presented in 
line with the decrease in frequency of COVID-19 testing.

Positivity rates were in line with viral concentrations predicted by 
the three WWTPs (Figures 5A–D).

Virus concentration levels, as determined through WWTP 
testing, were normalized for the flow rate and number of people 
served. KTP is the oldest centralized system, mostly serving 
residents in the central, southern, and eastern parts of Addis Ababa. 
Figure 5A demonstrates the wastewater concentration of the target 

FIGURE 2

Viral concentration of autosampler and Moore swab sampling technique. Comparison of viral target genes concentration level using autosampler vs. 
Moore swab sampling technique. ORF1ab, N gene, and S gene were the target genes. Target genes with “C” represent the concentration of viral target 
genes using the autosampler, whereas target genes without “C” represent the viral target concentration using the Moore swab sampling technique. 
The level of concentration of the target genes predicted by the autosampler vs. swab sampling technique was not significant (p  >  0.05).
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genes in samples obtained from KTP increasing sharply starting 2 
March (ORF1ab = 1,123 MGC/person/day, N-gene = 1,234 MGC/
person/day, and S gene = 742 MGC/person/day) to 13 March 
(ORF1ab = 60,066 MGC/person/day, N-gene = 17,707 MGC/person/
day, and S gene = 14,773 MGC/person/day; Figure 5A). Then the 
wastewater concentration of the target genes fluctuated up to 27 
April within the range of ORF1ab = 12,453–65,424 MGC/person/
day, N-gene = 2,622–17,707 MGC/person/day, and S gene = 8,815–
38,031 MGC/person/day. Then the concentration decreased sharply 
from 1 May up to 10 May and sustained less than 1,000 MGC/

person/day of each target genes up to 5 July. Subsequently, the 
concentration in KTP increased by 3 October and decreased again 
by 24 October (Figure 5A). The trend of concentration of the target 
genes in wastewater samples of Bulbula and Mikililand WSP was 
almost similar to that of the concentration trend of KTP and with a 
bit of difference in time of increments or decrements (Figures 5B,C).

The case-based surveillance unit in EPHI does not have a daily 
active cases report for the exact residents that are served by each 
WWTP. However, considering the large population coverage of the KTP 
(i.e., serving more than one-third of the population and wide geographic 

FIGURE 3

(A) Genome copies per L of SARS-CoV-2 gene targets in three wastewater treatment plants using Box–Whiskers plot. The data represents the average 
number of SARS-CoV-2 gene copies for ORF-1ab gene, N gene, and S gene per L of wastewater sample obtained in the influent wastewater samples 
from the Three WWTPs. (B) The viral concentration of daily load per person in sewershed (MGC per Person-day) of SARS-CoV-2 gene targets in two 
wastewater treatment plants using Box–Whiskers plot.
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coverage), it was found important to make a trend analysis of Addis 
Ababa daily cases against the trend of concentration for the target genes 
in wastewater samples collected from KTP and Bulbula WWTP.

As indicated in Figure 5D, active clinical case counts doubled from 
23 February to 23 March (in 9–21 active cases). This was reflected in 
a 15-fold increase in the average concentration of target genes in the 
wastewater (ORF1ab increased by a factor of 27; the N gene increased 
by a factor of 7, and the S gene increased by a factor of 13). Moreover, 
the increase in viral target positivity in the wastewater occurred 
approximately 10 days ahead of the increase in reported clinical cases. 
Again, at a later moment in the year, a more limited increase of active 
case counts from 17 July to 26 July (from zero to three active cases) 
was preceded by a wastewater increase starting from 5 July 
(ORF1ab = 356 MGC/person/day, N gene = 165 MGC/person/day, and 
S gene = 142 MGC/person/day), 12 days earlier. This increase lasted 
until 16 August (ORF1ab = 33,318 MGC/person/day, N gene = 5,285 
MGC/person/day, and S gene = 10,790 MGC/person/day).

The finding indicates a positive correlation between the trend of 
weekly average SARS-CoV-2 MGC number in wastewater samples of 
WWTPs and the cumulative weekly reported COVID-19 cases in 
Addis Ababa. These were statistically significant for all three sites: KTP 
(0.5648, p = 0.0002), Bulbula (0.4052, p = 0.0116), and Mikililand 
(0.4247, p = 0.0098; Supplementary Table S3).

Estimated numbers of COVID-19-infected 
individuals and correlation with reported cases in 
Addis Ababa

Two methods were used to estimate the number of daily infected 
individuals among the population served by KTP and Bulbula WWTP 
based on the SARS-CoV-2 gene copy number obtained from the 
wastewater samples (27, 46). The numbers of daily predicted infected 
persons using method 1 and method 2  in KTP were similar and 
ranged from 102 to 104, as represented in Figure  6A. At Bulbula 
WWTP, these numbers were in the range of 100–104. The daily 
predicted infected individuals from KTP were 330 times the median 

value higher than the weekly cumulative reported COVID-19 cases 
(Table  3). The median predicted SARS-CoV-2 infected people of 
method 1 and method 2 from Kality was 3,303 and 3,523, respectively, 
whereas the median of weekly cumulative reported COVID-19 cases 
was 10. Correlational analyses of reported cases trend with the 
estimated number of infected individuals trend are shown in 
Figure 6A and Supplementary Table S3. Similarly, the two methods 
resulted in higher mean values of daily predicted infected individuals 
from WWTPs compared to weekly cumulative reported COVID-19 
cases (Figure 6B). The predicted number of infected individuals using 
the two methods followed a decreasing trend similar to the reported 
COVID-19 cases in Addis Ababa, and a statistically significant 
correlation was observed with data from KTP WWTP using Spearman 
correlation (r = 0.5307; p = 0.0006) and Bulbula WWPT (r = 0.4816; 
p = 0.0022). However, there is a significant difference between the 
number of predicted cases and reported cases for each surveillance 
week (p < 0.0001 for KTP and p = 0.0029) for Bulbula WWPT.

Discussion

Numerous studies conducted since the beginning of the 
COVID-19 pandemic have shown that WBE is a useful tool for 
tracking the evolution of the pandemic and providing early warning 
signs for the emergence or reemergence of public health threats (47, 
48). The SARS-CoV-2 limit of detection in wastewater is principally 
determined by three laboratory procedures: virus concentration, RNA 
extraction, and qRT-PCR. The concentration method used here is 
known to preferentially bind intact virus particles but not cell-free 
nucleic acid. Thus, using other crude concentration methods or 
laboratory procedures without concentration may overestimate the 
intact viral burden. Using a technology that binds intact virus particles 
also provides greater evidence of active infection vs. cleared viral 
nucleic acid. Grab and autosampler sampling are the two most 
common wastewater sampling methods, but grab sampling has 

FIGURE 4

The trend of daily COVID-19 cases and tested individuals in Addis Ababa. The y-axis on the left represented the number of tested cases, whereas the 
y-axis on the right represented the number of reported cases.

90

https://doi.org/10.3389/fpubh.2024.1394798
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Abera Dinssa et al.� 10.3389/fpubh.2024.1394798

Frontiers in Public Health 10 frontiersin.org

FIGURE 5 (Continued)
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drawbacks in terms of missing viral shedding discharges to sewers, 
and autosampler has limited accessibility (49). Our result showed that 
the concentration of target genes was a bit higher in the autosampler 
compared to the Moore swab sampler (Figure 2). The primary cause 
of this discrepancy may be the Moore swab or gauze sampling 
methods’ uptake rates, which could have been affected by inhibitors 
or virus losses after 8 hours of contact to the wastewater samples (50), 
which in the current study was installed for 24 h. However, no 
significant difference in the Ct value and viral concentration was 
observed between autosampler and Moore swab samples for SARS-
CoV-2 target genes (ORF1ab, N, and S genes), which is consistent with 
other studies (51). We conclude that Moore swab sampling is a more 
economical and resource-efficient sampling technique for the 
monitoring of SARS-CoV-2 in wastewater in our low-resource setting 
and may be extended to other pathogens of interest.

In our study, SARS-CoV-2 RNA was detected in a majority of 
influent wastewater samples (94%). This high rate revealed a much 
higher COVID-19 prevalence than actually clinically detected. A prior 
study using an antibody prevalence analysis showed that there was a 
significant underreporting of COVID-19 cases in Ethiopia (52). This 
can be explained by the fact that the far majority of actual COVID-19 
cases in Addis Ababa are either mild or asymptomatic, with patients 
not seeking healthcare and testing services (19).

The positive SARS-CoV-2 detection rate in Addis Ababa was 
approximately identical to that of Kenya (81%) using the same 
technique of collection and testing (53), but higher than that of 
Malawi (8%) using samples taken from rivers and defunct WWTPs 
(33). In Malawi, samples from the defunct WWTP were found to have 
higher SARS-CoV-2 positive rates (21%) than river water samples 
(7%). Thus, the discrepancy in positive rate between our findings and 
Malawi might be  attributed to the variance in viral shedding 
discharges into sewer lines of WWTP, rivers, and defunct WWTP 
(54). Furthermore, the variation in results may be  attributed to 

differences in flow rate, methodology, data collection, and actual virus 
concentration differences since Malawi used grab sampling and 
polyethylene glycol (PEG) with no internal control (MS2) and 
potentially generated false negatives (55). The intensity of community 
transmission of SARS-CoV-2, the timing of the study, and the 
population served might also be  important variables that make a 
difference observed for the positivity rates. The SARS-CoV-2 viral 
copy numbers (GC/L) of the amplification target genes were similar 
over the year 2023 (ORF1ab =103–106, N and S genes =102–106 gc/L) 
in all three WWTP influent wastewater samples. This result shows the 
genome copies per 10 ml were not different at each treatment plant.

However, we observed a significant difference in terms of daily 
load per person for all target genes between KTP and Bulbula 
WWTPs; this is attributable to the difference in the prevalence of 
infected individuals that are served by each plant and the flow rate of 
the treatment plants.

For treated wastewater samples, the SARS-CoV-2 RNA was absent 
in all (n = 11 each) of the treated wastewater samples from two wastewater 
treatment plants (KTP and Bulbula). This result suggests that the UASB 
used in KTP and MBR technology used in Bulbula can successfully 
remove SARS-CoV-2 from wastewater to levels that are under the limit 
of detection of qPCR. However, at Mikililand WWTP (using a 
stabilization pond) SARS-CoV-2 RNA was still detected in 2 treated 

FIGURE 5

Trends in the viral target genes concentration of wastewater over time for three WWTPs in Addis Ababa (February 22, 2023–November 9, 2023): 
(A) Trends in the viral target genes concentration of wastewater over time for KTP, (B) Trends in the viral target genes concentration of wastewater over 
time for Bulbula WWTP, (C) Trends in the viral concentration of wastewater over time for Mikililand WSP, and (D) A comparison between the COVID-19 
cases illustrated in purple color line that were reported in Addis Ababa and the SARS-CoV-2 target genes concentrations in KTP. The y-axis on the left 
represented the MGC/person-day of the target genes, whereas the y-axis on the right represented the number of reported cases. The correlation 
between the trend of daily reported cases and RNA concentration was significant (p  <  0.05) in Kality. The number of cases and average SARS-CoV-2 
concentration is based on the 7-day rolling average.

TABLE 3  The median Reported COVID-19 cases and predicated infectious 
cases.

Name Median 
COVID-19 
reported 

cases from 
Addis Ababa

Median predicated 
COVID-19 cases

Method 1 
(27)

Method 2 
(46)

Kality WWTP 10 3,303 3,523

Bulbula WWTP 10 17 18
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FIGURE 6

Reported and predicted COVID-19 infected cases across 2 WWTPs, (A) Trends in the COVID-19 reported cases and daily average predicted infected 
individuals using Ahmed et al. (27) and Hemalatha et al. (46) methods in Kality and Bulbula WWTP. The y-axis on the left represented the number of 
predicted cases using two methods, whereas the y-axis on the right represented the number of reported cases. The correlation between the trend of 
cumulative weekly reported and daily predicted COVID-19 cases was significant (p  <  0.05) among the two WWTPs. (B) The figure represents the mean 
of COVID-19 reported cases of each WWTP during the study period and the predicted infected individuals using the Ahmed et al. (27) and Hemalatha 
et al. (46) methods for each WWTP for the study period.
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wastewater samples (n = 11), 5 being inconclusive. This demonstrates the 
limitations of the applied treatment method for viral eradication. Similar 
results were found in research conducted in Spain (56), where 2/18 of 
treated samples still tested positive for SARS-CoV-2.

In general, it is important to emphasize that the models used in 
this study may be  crude compared to some of the more recently 
developed models generated. The Pepper Mild Mottle Virus 
(PMMoV), which is the most abundant RNA virus in human feces 
and occurs naturally in wastewater, has been used in recent studies 
(57, 58) to normalize qRT-PCR data. This approach may be more 
reliable in estimating the depth of infection in a community and could 
be used in an Ethiopian setting as well in the future.

Generally, we found fluctuating viral concentrations (MGC per 
person-day) over the study period. The overall change in the SARS-
CoV-2 viral load in wastewater is positively correlated with reported 
COVID-19 clinical cases though the clinical testing frequency was low.

Thus, our result shows a significant positive correlation between 
trend viral loads in wastewater and reported COVID-19 clinical cases. 
This finding is consistent with previous studies in New York (59), 
India (60), and Hong Kong (61). In our setting, the increase in viral 
concentration started in the wastewater approximately 7–14 days 
ahead of the increase in COVID-19 clinical cases, as reported 
elsewhere (21). Furthermore, the amount of virus in wastewater did 
not drop off when the number of COVID-19 clinical cases significantly 
declined, which is consistent with a prior study that showed viral RNA 
might remain in fecal samples for up to 10 days (62).

The higher daily predicted infected persons from KTP, which 
was 330 times greater than the weekly cumulative recorded 
COVID-19 cases, revealed the high prevalence of asymptomatic 
individuals shedding SARS-CoV-2 to the sewage system in the 
catchment area. This is in line with previous studies in Ethiopia that 
have shown a significant inverse correlation between parasite 
infection prevalence and lack of COVID-19 symptoms due to shifts 
in activation status of the immune system (63, 64). Most people 
infected with SARS-CoV-2 in Ethiopia do not get sick (15), partly 
due to widespread parasitic infections (65, 66) and they may not seek 
medical care. Alternatively, the difference may be a result of the delay 
in active case reporting because qRT-PCR testing is biased as many 
tested individuals are not randomly undergoing diagnostic 
procedures, but their participation is motivated by the onset of 
symptoms either in themselves or in the person sharing their work 
or living environment, the prevalence of asymptomatic infection 
within the community as measured by rapid antigen tests might 
be underestimated due to sensitivity issues (67). On the other hand, 
the daily predicted infected individuals from Bulbula WWTP were 
merely 1.8 times the median value of the weekly cumulative reported 
cases in Addis Ababa (Table 3). The difference in predicted infected 
people in KTP and Bulbula is primarily attributable to the difference 
in flow rate at the treatment plants (Supplementary Table S3), which 
may further depend on the number of people served. Accordingly, 
the more the population served, the more viral shading is in 
the wastewater.

Conclusion

In conclusion, this study was undertaken to assess the presence of 
SARS-CoV-2 in the wastewater samples in three WWTPs in Addis 

Ababa and evaluate its predictive value for clinical COVID-19 case 
reporting. Nanotrap® Microbiome A particles, Nanotrap® 
Enhancement Reagent 2 method, and Moore swab collection methods 
appeared to be effective in concentrating the virus from wastewater 
and can, therefore, be  used in resource-limited settings. The 
significantly higher rate of SARS-CoV-2 detection from wastewater 
samples suggests a hidden high prevalence of COVID-19 disease in 
the population that remains overtly asymptomatic and/or 
underreported. Effluent wastewater treatment was only partly 
successful in making SARS-CoV-2 RNA undetectable at the KTP and 
Bulbula WWTP but not at Mikililand, indicating cautiousness is 
recommended. The peak in SARS-CoV-2 positivity rates in wastewater 
typically indicated a rise in clinical COVID-19 cases within 1–2 weeks 
later. The wastewater surveillance experience developed through this 
project can be applied to other national priority diseases in the future.
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Introduction: This work focuses on the Dengue-viremia ABC (Atangana-

Baleanu Caputo) fractional-order di�erential equations, accounting for both

symptomatic and asymptomatic infected cases. Symptomatic cases are

characterized by higher viremia levels, whereas asymptomatic cases exhibit

lower viremia levels. The fractional-order model highlights memory e�ects

and other advantages over traditional models, o�ering a more comprehensive

representation of dengue dynamics.

Methods: The total population is divided into four compartments: susceptible,

asymptomatic infected, symptomatic infected, and recovered. The model

incorporates an immune-boosting factor for asymptomatic infected individuals

and clinical treatment for symptomatic cases. Positivity and boundedness of the

model are validated, and both local and global stability analyses are performed.

The novel Adams-Bash numerical scheme is utilized for simulations to rigorously

assess the impact of optimal control interventions.

Results: The results demonstrate the e�ectiveness of the proposed control

strategies. The reproduction numbers must be reduced based on specific

optimal control conditions to e�ectively mitigate disease outbreaks. Numerical

simulations confirm that the optimal control measures can significantly reduce

the spread of the disease.

Discussion: This research advances the understanding of Dengue-viremia

dynamics and provides valuable insights into the application of ABC fractional-

order analysis. By incorporating immune-boosting and clinical treatment into

the model, the study o�ers practical guidelines for implementing successful

disease control strategies. The findings highlight the potential of using optimal

control techniques in public health interventions to manage disease outbreaks

more e�ectively.

KEYWORDS

dengue fractional-order mathematical modeling, Atangana-Baleanu operator,

Lyapunov stability, basic reproduction value, optimal control, Adams-Bashforth

method
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1 Introduction

Worldwide, thousands of dengue cases are reported every year.

The world’s tropical and subtropical regions are affected by dengue

infection, which is amosquito-carrying disease. A high temperature

and flu-like symptoms are signs of mild illness or asymptomatic to

stern disease. DHF (Dengue Hemorrhagic Fever) or DSS (Dengue

Show Syndromes Syndromes) is a highly infectious form of dengue

fever that causes serious bleeding, shock, and death. Generally,

it was noticed that only one out of four dengue contagions is

symptomatic. Dengue virus occurs in four major types (DENV

types 1, 2, 3, and 4), all of which can cause serious illness. The usual

signs of DENV type 1 are like a common cold andmild fever, which

will not lead directly to DHF; conversely, later DENV types can lead

to DHF (1–3).

To understand the dynamical behavior of dengue transmission,

we formulated a mathematical model, particularly focusing on

vector-borne disease transmission from mosquitoes to humans.

Esteva and Vargas (4, 5) pioneered the creation of a fundamental

dengue model and explored numerous fundamental mathematical

concepts and their accompanying numerical simulations. Feng

et al. (6) presented a two-strain dengue infection model and

examined competitive exclusion. Researchers have conducted

numerous studies to better understand the transmission of dengue

fever (7–9).

The importance of fractional-order models lies in their ability

to capture the complex dynamics and long-term dependencies

within the transmission process. By incorporating fractional

derivatives, these models provide a more comprehensive

understanding of disease spread, which is crucial for designing

effective intervention strategies. The fractional-order models can

accommodate the nuanced behavior of dengue transmission,

offering insights that integer-order models may overlook,

thereby enhancing the accuracy and effectiveness of disease

control measures.

The fractional order model has been conclusively demonstrated

by a recent study to be capable of controlling the trend of complex

diffusion disorder (10–14). Many have emphasized various

mathematical models for Dengue transmission and prevention

(15–19). All cited references explain the transmission process of

Dengue infection from different perspectives, including dynamic

analysis, evaluation of vaccination, and optimal control measures

(20–24). The most updated studies on Dengue with real-life data

are presented in (25, 26). The mathematical description of Dengue

is briefly described in Deterministic and Stochastic terms. The

evolution of dengue with asymptomatic carriers using optimal

control measures was investigated in (27).

Therefore, motivated by the aforementioned literature, we

propose a computational framework for the dissemination of

dengue at a given viremia level. We investigated whether symptom-

free people were markedly more susceptible to mosquitoes

than clinically symptom-positive patients. The new idea of a

mathematical model to analyse the immune-boosting factor for

asymptomatic infected cases and the waning immunity that

cases re-infect is reported. To make practical applications and

simulations easier, we utilize the Adams-Bash forth numerical

scheme, which is renowned for its accuracy and stability. This

choice ensures that our model reflects real-world scenarios while

maintaining computational efficacy. A key highlight of this study

is the incorporation of optimal control strategies into the ABC

fractional order Dengue viremia model. These strategies are

designed to explore how interventions, such as self-prevention and

vector control, can be optimized to curtail disease spread. The

analysis extends to investigating disease-free and endemic stability,

providing crucial insights into the long-term behavior of the system

under various control scenarios.

This article is prepared as follows: In portion 2, we review

the fundamental definitions for the fractional-order operator

and provide a list of mathematical properties that were used

throughout the work. The dengue viral mathematical model with

fractional order was presented in portion 3. Portion 4 examines

the local as well as global consistency of the suggested model

through the Routh-Hurwitz criteria and the Lyapunov function.

An optimal control solution and discussion are present in portion

5. The final section focuses on numerical simulations and a

comprehensive conclusion.

2 Fundamental results

This section introduces fractional derivation and some of its

properties, which will be used in the following components.

Definition 2.1.

Consider ψ ∈ H
′

(0,T) and η ∈ [0, ť], then Atangana-Baleanu

fraction component in Caputo case is

ABC
0D

η

ťψ (ť) =
N (η)

1− η

∫ ť

0

d

dx
ψ (S)Nη

[

−
η

1− η
(ť−S)

]

dS

(1)

The method yields a variation operator Caputo-Fabrizio

that replaces

Nη

[

−
η

1− η
(ť−S)

]

dS by N 1 = exp

[

−
η

1− η
(ť−S)

]

It’s noteworthy that ABC
0D

η

ť[constant] = 0. Here N (η) is the

typical function and it is defined as N (0) = 1 and N (1) = 1.

N (η) depict the familiar Mittag–Leffler operator, it also reflects

the exponential function generality.

Definition 2.2.

The fractional integral ofABC with order η given by

ABC
0T
η

ťψ (ť) =
1− η

N (η)
ψ (ť) +

η

N (η) Ŵ (η)

∫ ť

0
ψ (S) (ť−S)η −1dS

(2)

Lemma 2.1.

Consider a fractional-order system

ABC
0D

η

ťx (ť) = f(ť,x) , t > t0 (3)

Where ηǫ (0, 1) in the initial case x(ť0).

If f(ť,x) fulfills the Lipschitz condition in relation to x, then

system (Equation 3) exhibits a unique solution in the region

[t0,+∞)× ϕ and ϕ ⊆ R
n.
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Lemma 2.2.

If x (ť) ∈ R
+ become an ongoing and attainable

consequence. Then

ABC
0D

η

ť

(

x (ť)−x∗−x∗ ln
x (ť)

x∗

)

≤

(

1−
x∗

x (ť)

)

ABC
0D

η

ťx (ť)

(4)

Here t > t0, ηǫ (0, 1) and x∗ ∈ R
+.

3 Evaluation of dengue dynamics

In this section, we expand upon the previously described

Dengue SIR-SI model (18) by incorporating additional

factors and refining the classification of both human

and mosquito populations. Our model includes viremia

levels, an immune-boosting factor for asymptomatic

infected cases, and clinical treatment for symptomatic

infected cases.

To study the mode of spread of dengue sickness, the human

species (Nh) is subdivided into four classes: susceptible ( h),

symptomatic infectious
(

T
h

)

, asymptomatic infectious
(

TAh

)

and recovered human populations
(

Kh

)

. We classified female

mosquito species (Nm) into Susceptible
(

m

)

and infective

mosquitoes (Tm). A Susceptible individual among as one who is

not infected and immune, infected humans are both asymptomatic

and symptomatic are those who have acquired Dengue viremia

from an infected mosquito populations and are all capable of

spreading dengue virus to susceptible mosquitoes. Let we examines

πh and πm the acquisition rates of humans and mosquitoes. The

proposed model, illustrated in the flowchart, demonstrates the

dengue transmission dynamics. Based on Figure 1, we developed

FIGURE 1

The process diagram in dengue dynamics.

the following differential equation.

d h

dť
= πh − αm

(

χ
h
+ χAh

)

hTm − δh h + θKh

dTsh

dť
= αmχ

h
hTm −

(

τ + γ + δh
)

T
h

dTAh

dť
= αmχAh hTm −

(

̺ + γ + δh
)

TAh

dKh

dť
= γ

(

T
h
+ TAh

)

− θKh − δhKh + τT
h
+ ̺TAh

d m

dť
= πm − αmχm

(

T
h
+ TAh

)

m − δm m

dTm

dť
= αmχm

(

T
h
+ TAh

)

m − δmTm

(5)

Where

αm- individual mosquito‘s biting rate

χ
h
- Dissemination to human by mosquitoes, which leads to a

symptomatic infectious in humans

χAh
- Dissemination to human by mosquitoes, which leads to a

asymptomatic infectious in humans

χm- Viremia dissemination to mosquito by human species

δh- Human Fatality rate

τ - Symptomatic infected human treatment rate

γ - Recovering rate.

θ - Transition rate at which a recovered person becomes

defenseless due to loss of immunity

̺ − Rates of immunosuppression for asymptomatic victims

δm- Rate of mosquito natural mortality (an average mosquito

life span)

From the basic cases ( h , T
h
, TAh

,Kh, m, Tm) ≥ 0 .

In this approach, the aggregate human and mosquito

population ratios are provided by

Nh = h + T
h
+ TAh

+ Kh and Nm = m + Tm.

In addition, the area of biologically significance for the

aforementioned dengue model is indicated and presented by the

covered set

8 =

{

h , T
h
, TAh

,Kh, m, Tm ∈ R
6
+
: h + T

h
+ TAh

+ Kh

≤ Nh, m + Tm ≤ Nm

}

A fractional representation of the ABCmodel as

ABC
0D

η

ť h = πh − αm

(

χ
h
+ χAh

)

hTm − δh h + θKh

ABC
0D

η

ťT
h
= αmχ

h
hTm −

(

τ + γ + δh
)

T
h

ABC
0D

η

ťTAh
= αmχAh hTm −

(

̺ + γ + δh
)

TAh

ABC
0D

η

ťKh = γ
(

T
h
+ TAh

)

− θKh − δhKh + τT
h
+ ̺ TAh

ABC
0D

η

ť m = πm − αm χm

(

T
h
+ TAh

)

m − δm m

ABC
0D

η

ťTm = αmχm

(

T
h
+ TAh

)

m − δmTm

(6)

A fractional derivation of Atangana-Baleanu of order

0 < η < 1 is denoted ABC
0D

η

ť in Caputo notation.
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4 Model analysis

This section examines the validity, singularity and positive

variance of the solution of the SIR-SI type model. Additionally, a

reliability estimate for Model (Equation 6) has also been developed.

4.1 Existence and uniqueness

Theorem 4.1.

For each non- negative initial stage
(

h (0) , T
h
(0) , TAh

(0) ,

Kh (0) , m (0) , Tm (0)
)

∈ R
6
+
, then there survives a oneness

solution of fractional order model (Equation 6).

Proof

Let 8 =

{

h , T
h
, TAh

,Kh, m, Tm ∈ R
6
+
:max

(∣

∣

h

∣

∣ ,
∣

∣

∣
T

h

∣

∣

∣
,
∣

∣ TAh

∣

∣ ,
∣

∣Kh

∣

∣ ,
∣

∣

m

∣

∣ , |Tm|

)

≤ ε
}

.

Define a mapping

M (x) = (M1 (x) ,M2 (x) ,M3 (x) ,M4 (x) ,M5 (x) ,M6 (x)) and

M1 (x) = πh − αm

(

χ
h
+ χAh

)

hTm − δh h + θKh

M2 (x) = αmχ
h

hTm −
(

τ + γ + δh
)

T
h

M3 (x) = αmχAh hTm −
(

̺ + γ + δh
)

TAh

M4 (x) = γ
(

T
h
+ TAh

)

− θKh − δhKh + τ T
h
+ ̺ TAh

M5 (x) = πm − αmχm

(

T
h
+ TAh

)

m − δm m

M6 (x) = αmχm

(

T
h
+ TAh

)

m − δmTm

Where x =

(

h , T
h
, TAh

,Kh, m, Tm

)

∈ 8

For any x,x ∈ 8, we have

∥

∥

∥
M (x)−M (x)

∥

∥

∥
=

∣

∣

∣
M1 (x)−M1 (x)

∣

∣

∣
+

∣

∣

∣
M2 (x)−M2 (x)

∣

∣

∣

+

∣

∣

∣
M3 (x)−M3 (x)

∣

∣

∣
+

∣

∣

∣
M4 (x)−M4 (x)

∣

∣

∣

+

∣

∣

∣
M5 (x)−M5 (x)

∣

∣

∣
+

∣

∣

∣
M6 (x)−M6 (x)

∣

∣

∣

≤

∣

∣

∣
πh − αm

(

χ
h
+ χAh

)

hTm − δh h + θKh − πh

+αm

(

χ
h
+ χAh

)

hTm + δh hθKh

∣

∣

∣

+

∣

∣

∣
αmχ

h
hTm −

(

τ + γ + δh
)

T
h
− αmχ

h
hTm

+
(

τ + γ + δh
)

T
h

∣

∣

∣

+

∣

∣

∣
αmχAh hTm −

(

̺ + γ + δh
)

TAh
− αmχAh hTm

+
(

̺ + γ + δh
)

TAh

∣

∣

∣

+

∣

∣

∣
γ
(

T
h
+ TAh

)

− θKh − δhKh + τ T
h
+ ̺ TAh

−γ
(

T
h
+ TAh

)

+ θKh + δhKh − τT
h
− ̺ TAh

∣

∣

∣

+

∣

∣

∣
πm − αmχm

(

T
h
+ TAh

)

m − δm m − πm + αmχm
(

T
h
+ TAh

)

m + δm m

∣

∣

∣
+ |αmχm

(

T
h
+ TAh

)

m − δmTm − αmχm(T
h
+ TAh

) m + δmTm

∣

∣

∣
.

≤

[

2αm

(

χ
h
+ χAh

)

P + δh

] ∣

∣

∣ h − h

∣

∣

∣
+
(

2τ + 2γ + δh
)

∣

∣

∣
T

h
− T

h

∣

∣

∣
+
(

2̺ + 2γ + δh
)

∣

∣

∣
TAh

− TAh

∣

∣

∣
+
(

2θ+δh
)

∣

∣

∣
Kh − Kh

∣

∣

∣
+
[

2αm (Q+R) χm + δh
]

∣

∣

∣ m − m

∣

∣

∣
+ δm

∣

∣

∣
Tm − Tm

∣

∣

∣
≤ K ‖x− x ‖ .

WhereK = max











2αm

(

χ
h
+ χAh

)

P + δh,

2 (τ + γ )+ δh, 2 (̺ + γ )+ δh, 2θ+δh,

2αm (Q+R) χm + δh, δm











Basically, sinceM (x) satisfies the Lipschitz requirement.Model

(Equation 6) has a singular solution based on Lemma 1.

4.2 Positivity solution

Since system (Equation 6) deals with mosquitoes and populace,

all components of system are positive. Following is our discussion:

Theorem 4.2.

Let ( h, T
h
, TAh

, Kh, m, Tm) > 0 be represent

the system (Equation 6) solution for the primary points

h (0) , T
h
(0) , TAh

(0) ,Kh (0) , m (0) , Tm (0) and represents

an immutable set

8 =

{

h , T
h
, TAh

, Kh, m, Tm ∈ R
6
+
: Nh =

πh
δh
, Nm =

πm
δm

}

,

then, all elements of the closed set

8 is traveling in R
6
+
space is positive invariant.

Proof

The given equation is used to construct the Lyapunov function:

L (ť) = (L1 (ť) , L2 (ť)) = ( h + T
h
+ TAh

+ Kh, m + Tm)

The function L (ť) satisfies

˙L (ť) = ( ˙L1 (ť) , ˙L2 (ť)) =
(

˙
h + Ṫ

h
+ ˙TAh

+ K̇h,
˙
m + Ṫm

)

= (πh − δh h − T
h
δh − TAh

δh− δhKh,πm − δm m − δmTm)

=
(

πh − δhL1,πm − δmL2

)

(7)

Therefore, it is simple to demonstrate Equation 7 as regards:

{

˙L1 (ť) = πh − δhL1 ≤ 0, for L1 ≥
πh
δh

˙L2 (ť) = πm − δmL2 ≤ 0, for L2 ≥
πm
δm

(8)

Inferring ˙L (ť) ≤ 0 from the above equations, which indicates

that f is positively stable collection. On the other hand, by solving

system (Equation 6)

0 ≤ (L1 (ť) ,L2 (ť)) <

(

πh

δh
+ L1 (0) e

− δht ,
πm

δm
+ L2 (0) e

− δmt

)

Where L1 (0) and L2 (0) are the primary states of L1 (ť) and

L2 (ť) respectively. Therefore, t → ∞ , 0 ≤ (L1 (ť) ,L2 (ť)) ≤
(

πh
δh
, πm
δm

)

and we can conclusion that8 is a desirable set.

This establishes the theorem.

4.3 Basic reproduction value R0

Let Cf = (
∗

h , T∗

h

, T∗

Ah
,K∗

h,
∗

m, T
∗
m) be the contagious free

equilibrium of Equation 6. We have Cf =
(

πh
δh
, 0, 0, πm

δm
, 0
)

. The

algorithm of the next iteration matrix is utilized to estimate R0.
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Obviously, the infected compartments are T
h
, TAh

and Tm as a

consequence of Equation 6. There are

ABC
0D

η

ťT
h
= αmχ

h
hTm −

(

τ + γ + δh
)

T
h

ABC
0D

η

ť TAh
= αmχAh hTm −

(

̺ + γ + δh
)

TAh

ABC
0D

η

ťTm = αmχm

(

T
h
+ TAh

)

m − δmTm (9)

Then we derive

F =







0 0 αmχ
h

h

0 0 αmχAh h

αmχm m αmχm m 0






,

V =







τ + γ + δh 0 0

0 ̺ + γ + δh 0

0 0 δm







The basic reproduction value is given by

R0 = ρ
(

FV−1
)

=

πhπmχmαm
2
(

χ
h
+ χAh

)

δh (δm)
2
(

τ + γ + δh
) (

̺ + γ + δh
)

Where ρ
(

FV−1
)

denote the spectral radius. Surmise that Cp =

(
∗∗

h , T∗∗

h

, T∗∗

Ah
, K∗∗

h ,
∗∗

m , T∗∗
m ) represents the endemic equilibrium

for Equation 6. So that

∗∗

h =
πh(θ + δh)u1u2

(

αm

(

χ
h
+ χAh

)

Tm + δh

)

u1u2
(

θ + δh
)

− θαmTmu4

T∗∗

h

=

αmχ
h

hTm

u1

T∗∗

Ah
=
αmχAh hTm

u2

K∗∗

h =
αm hTmu4

(θ + δh)u1u2

∗∗

m =
u1u2πm

αm2χm hTmu3 + δmu1u2

T∗∗

m =
(θ + δh)u3αmπh m − δhu1u2δm

(

χ
h
+ χAh

)

u5 − θu4

Where u1 = τ + γ + δh, u2 = ̺ + γ + δh, u3 =

u1χAh
+ u2χ

h
, u4 = u1χAh

(τ + γ ) + u2χ
h
(̺ + γ ) , and

u5 = u1u2
(

θ + δh
)

δm.

4.4 Local stability

In this part, we are covering the analysis of firmness conditions

of contagious free equilibrium Cf and contagious persistence

equilibrium Cp points. A steady state analysis of this equilibrium

results in the following Theorem 4.3 and Theorem 4.4.

The obtained Jacobian matrix is:

I =

























−αm

(

χ
h
+ χAh

)

Tm − δh 0 0 θ 0 −αm

(

χ
h
+ χAh

)

h

αmχ
h
Tm −(τ + γ + δh) 0 0 0 αmχ

h
h

αmχAh
Tm 0 −(̺ + γ + δh) 0 0 αmχAh h

0 τ + γ ̺ + γ −
(

θ + δh
)

0 0

0 −αmχm m −αmχm m 0 −(αmχm(T
h
+ TAh

)+ δm) 0

0 αmχm m αmχm m 0 αmχm(T
h
+ TAh

) −δm

























(10)

Theorem 4.3.

IfR0 < 1, the non - contagious equilibrium Cf is locally stable.

Proof

The structure (Equation 6) in the Jacobian matrix of Cf follows

I
(

Cf

)

=

























−δh 0 0 θ 0 −αm

(

χ
h

+ χAh

)

πh
δh

0 −(τ + γ + δh) 0 0 0 αmχ
h

πh
δh

0 0 −(̺ + γ + δh) 0 0 αmχAh

πh
δh

0 τ + γ ̺ + γ −
(

θ + δh
)

0 0

0 −αmχm
πm
δm

−αmχm
πm
δm

0 δm 0

0 αmχm
πm
δm

αmχm
πm
δm

0 0 −δm

























(11)

To determine the eigenvalue from the above-described matrix

det
(

I
(

Cf

)

− λT
)

= 0

We obtain the Eigen values λ1 = −δh, λ2 = −(τ + γ + δh),

λ3 = δm, λ4 = θ + δh and the characteristic relation is

λ2
+
(

̺ + γ + δh + δm
)

λ+ δm
(

τ + γ + δh
) (

̺ + γ + δh
)

[1−R0] = 0

When R0 < 1, it is obvious that λ5 < 1 and λ6 < 1,

all the Eigen values satisfy the condition |arg(λi)| >
ηπ
2 , i =

1, 2, . . . , 6. the without contagious equilibrium Cf is locally

asymptotically stable.

Theorem 4.4.

If R0 > 1, the equilibrium point Cp is locally stable, then

system (Equation 6) has ubiquitous contagion.

Proof

Jacobian matrix evaluated in static equilibrium:

det
(

I
(

Cp
)

− λT
)

= 0 (12)

We obtain the Eigen values are λ1 =
(

θ + δh
)

, λ2 =

(αmχm

(

T∗∗

h

+ T∗∗

Ah

)

+ δm),

λ3 = αm

(

χ
h
+ χAh

)

T∗∗
m + δh and the characteristic relation

λ3 + a1λ
2
+ a2λ+ a3 = 0 (13)

Where

a1 =
(

τ + ̺ + 2
(

γ + δh
))

a2 =
(

̺ + γ + δh + δm
) [(

τ + γ + δh
)

−αm
2
(

χ
h
+ χAh

)

χm
∗∗

h
∗∗

m

]

a3 =
(

τ + γ + δh
) [(

̺ + γ + δh
)

δm −αm
2
(

χ
h
+ χAh

)

χm
∗∗

h
∗∗

m

]

By using Routh-Hurwitz Criteria (22, 23), if the following

provisions are handling
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a1 > 0, a2 > 0, a3 > 0 and a1a2 − a3 > 0.

Then Cp is approximately stable locally. The evidence

is conclusive.

4.5 Global stability

Theorem 4.5.

If R0 < 1, the point of without contagious equilibrium Cf is

global stability on8.

Proof

Create a Lyapunov function V1 (ť ),

V1 (ť)=
(

h −
∗

h ln h

)

+T
h
+ TAh

+Kh +

(

m −
∗

m ln m

)

+ Tm

(14)

Calculating the fractional order derivatives of V1 (ť) in the

solution direction of Equation 6, from Lemma 2, we obtain

ABC
0D

η

ť V1 (ť) ≤

(

1−

∗

h

h

)

ABC
0D

η

ť h

+
ABC

0D
η

ťT
h
+

ABC
0D

η

ť TAh
+

ABC
0D

η

ťKh

+

(

1−

∗

m

m

)

ABC
0D

η

ť m +
ABC

0D
η

ťTm

≤

(

1−

∗

h

h

)

(

πh − αm

(

χ
h
+ χAh

)

hTm − δh h + θKh

)

+

(

αmχ
h

hTm −
(

τ + γ + δh
)

T
h

)

+
(

αmχAh hTm −
(

̺ + γ + δh
)

TAh

)

+

(

γ
(

T
h
+ TAh

)

−θKh − δhKh + τ T
h
+ ̺ TAh

)

+

(

1−

∗

m

m

)

(

πm − αmχm

(

T
h
+ TAh

)

m − δm m

)

+

(

αmχm

(

T
h
+ TAh

)

m − δmTm

)

≤ πh

(

1−

∗

h

h

)

+ αmχ
h

∗

hTm + αmχAh

∗

hTm

−δh h + δh
∗

h + θKh

(

1−

∗

h

h

)

− δhT
h

−δhTAh
− θKh − δhKh + πm

(

1−

∗

m

m

)

+ αmχm

(

T
h
+ TAh

)

∗

m − δm

(

1−

∗

m

m

)

− δmTm

Substituting the reaction of without contagious free

Cf =
(

πh
δh
, 0, 0, πm

δm
, 0
)

, we obtain:

ABC
0D

η

ť V1 (ť) ≤
(

πh + δh
)

(

2−

∗

h

h

−
h
∗

h

)

+ (πm − δm)

(

2−

∗

m

m

−
m
∗

m

)

(15)

It is clear that each term in Equation 15 must be negative. We

have ABC
0D

η

ť V1 (ť) ≤ 0 due to LaSalle’s invariance principle (24),

the function ABC
0D

η

ť V1 (ť) is required to be negative finite.

The maximally invariant sets h =
∗

h, m =
∗

m which is

singleton Cf = (
∗

h , T∗

h

, T∗

Ah
,K∗

h,
∗

m, T
∗
m) contains the limit set

for each solution. This demonstrates Cf is globally asymptotically

stable on8.

Theorem 4.6.

When R0 > 1, the positive contagious equalization level of

system (Equation 6) arises and is globally stable on8.

Proof

Let’s create a lyapunov function of the following form

V2 (ť) =
(

h −
∗∗

h ln h

)

+

(

T
h
− T∗∗

h

lnT
h

)

+

(

TAh
− T∗∗

Ah
ln TAh

)

+

(

Kh − K∗∗

h lnKh

)

+

(

m −
∗∗

m ln m

)

+
(

Tm − T∗∗

m lnTm

)

ABC
0D

η

ť V2 (ť) ≤

(

1−

∗∗

h

h

)

ABC
0D

η

ť h

+



1−

T∗∗

h

T
h





ABC
0D

η

ťT
h
+

(

1−
T∗∗

Ah

TAh

)

ABC
0D

η

ť TAh
+

(

1−
K∗∗

h

Kh

)

ABC
0D

η

ťKh

+

(

1−

∗∗

m

m

)

ABC
0D

η

ť m +

(

1−
T∗∗
m

Tm

)

ABC
0D

η

ťTm

≤

(

1−

∗∗

h

h

)

(

πh − αm

(

χ
h
+ χAh

)

hTm − δh h + θKh

)

+



1−

T∗∗

h

T
h





(

αmχ
h

hTm −
(

τ + γ + δh
)

T
h

)

+

(

1−
T∗∗

Ah

TAh

)

(

αmχAh hTm −
(

̺ + γ + δh
)

TAh

)

+

(

1−
K∗∗

h

Kh

)

(

γ
(

T
h
+ TAh

)

− θKh − δhKh + τT
h
+ ̺ TAh

)

+

(

1−

∗∗

m

m

)

(

πm − αmχm

(

T
h
+ TAh

)

m − δm m

)

+

(

1−
T∗∗
m

Tm

)

(

αmχm

(

T
h
+ TAh

)

m − δmTm

)

≤ πh

(

1−

∗∗

h

h

)

+ αm

(

χ
h
+ χAh

)

∗∗

h Tm − δh h

(

1−

∗∗

h

h

)

+θKh

∗∗

h

h

+ T∗∗

h

(τ + γ ) − δhT
h



1−

T∗∗

h

T
h



− αm h



χ
h

T∗∗

h

T
h

+ χAh

T∗∗

Ah

TAh



Tm + (̺ + γ )T∗∗

Ah

−δh TAh

(

1−
T∗∗

Ah

TAh

)

− γ
(

T
h
+ TAh

)

K∗∗

h

Kh

+ θK∗∗

h − δhKh

(

1−
K∗∗

h

Kh

)

+

(

τT
h
+ ̺ TAh

) K∗∗

h

Kh

+πm

(

1−

∗∗

m

m

)

− δm

(

1−

∗∗

m

m

)

− δm

(

1−
T∗∗
m

Tm

)

+αmχm

(

T
h
+ TAh

)

(

∗∗

m + m
T∗∗
m

Tm

)

ABC
0D

η

ť V2 (ť) ≤
(

πh − δh + θKh

)
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(

2−

∗∗

h

h

−
h
∗∗

h

)

+
(

τ + γ − δh
)



2−

T∗∗

h

T
h

−

T
h

T∗∗

h





+
(

̺ + γ − δh
)

(

2−
T∗∗

Ah

TAh

−
TAh

T∗∗

Ah

)

+
(

γ + δh − θ
)

(

2−
K∗∗

h

Kh

−
Kh

K∗∗

h

)

+ (πm − δm)

(

2−

∗∗

m

m

m
∗∗

m

)

+ δm

(

2−
T∗∗
m

Tm

−
Tm

T∗∗
m

)

(16)

Hence, the condition in Equation 16 ensures

ABC
0D

η

ť V2 (ť) ≤ 0 for all

(

∗∗

h , T∗∗

h

, T∗∗

Ah
,K∗∗

h , S∗∗m , T∗∗
m

)

∈

8 and strict the quality holds for Sh = h =
∗∗

h ,TSh = T∗∗

Sh
,

TAh
= T∗∗

Ah
,Kh = K∗∗

h , m =
∗∗

m and Tm = T∗∗
m . therefore the

equilibrium point Cp becomes globally stable on8.

5 Optimum control approach

In this portion, we will discuss how to optimize the problem

and analyze the performance of the control function. Consolidation

of optimal controlling problem a dynamics of control system can be

described as system (Equation 6).

ABC
0D

η

ť h = πh − αm

(

χ
h
+ χAh

)

ShTm − δhSh + θKh − U1 (ť) Sh

ABC
0D

η

ťT
h
= αmχ

h
ShTm −

(

τ + γ + δh
)

TSh

ABC
0D

η

ťTAh
= αmχAh hTm −

(

̺ + γ + δh
)

TAh

ABC
0D

η

ť m = πm − αmχm

(

T
h
+ TAh

)

m − δm m − U2 (ť) m

ABC
0D

η

ťTm = αmχm

(

T
h
+ TAh

)

m − δmTm − U2 (ť)Tm

(17)

Where

U1− Self-precaution (long sleeved pants and shorts, increase

immune system, consultation at

the neatest health care) minimizes the susceptible individuals.

U2− Use of chemical insecticide sprays destroying the

susceptible and infected mosquito cases
The optimal solution being minimized could be expressed as:

C (U1,U2) =

∫ ťf

0

(

a h + bT
h

+ cTAh
+ d m + eTm +fU1

2
+ gU2

2
)

dť

(18)

To reduce the cost of two controls U1 and U2 the objective is

reduced h , TSh , TAh
and Sm, Tm.

Therefore, we need to obtain optimal controls U∗

1 and U
∗

2

C
(

U
∗

1 ,U
∗

2

)

= min
U1,U2

{C (U1,U2)|U1,U2 ∈ 8} (19)

A set of constraints 8 =
{

(U1, U2) |Ui :

[

0, ťf
]

→ [0,∞) lebesque quantifiable i = 1, 2
}

.

The expense of minimizing h, T
h
, TAh

, m and Tm

is represented by the term a h, bT
h
, cTAh

, d m and eTm

respectively. Likewise, fU2
1, gU

2
2 represents the cost for controls

U1,U2. The most prevalent PMP can be used to find the

adequacy condition required for the control system to be satisfied.

Equations 17, 19 can be transformed into the following point-

wise Hamiltonian H for (U1,U2) regression problem using the

aforesaid principle.

H =
{

a h + bTSh + cTAh
+ dSm + eTm + fU1

2
+ gU2

2
}

+λ
h

{

πh − αm
(

χSh + χAh

)

hTm − δh h + θKh − U1 (ť) h

}

+ λT
h

{

αmχ
h
ShTm −

(

τ + γ + δh
)

TSh

}

+λTAh

{

αmχAh hTm −
(

̺ + γ + δh
)

TAh

}

+ λ
m

{

πm − αmχm
(

TSh + TAh

)

m − δmSm − U2 (ť) Sm
}

+λTm

{

αmχm

(

T
h
+ TAh

)

m − δmTm − U2 (ť)Tm

}

(20)

Where λ
h
, λT

h

, λTAh
, λSm and λTm

are the ad-joint variable

or co-state variable.

dλ
h

dť
=
∂H

∂ h

= a + λ
h

{

−αm
(

χSh + χAh

)

Tm − δh
}

−

(

λT
h

+ λTAh

)

αm

(

χ
h
+ χAh

)

Tm

dλT
h

dť
=

∂H

∂T
h

= b− λ
h
U1 (ť)+ λT

h

{

−
(

τ + γ + δh
)}

+λTm
αmχm m

dλTAh

dť
=

∂H

∂TAh

= c− λ
h
U1 (ť)

+λTAh

{

−
(

̺ + γ + δh
)}

+ λTm
αmχm m

dλ
m

dť
=
∂H

∂ m

= d+ λ
m

{

−αmχm

(

T
h
+ TAh

)

− δm − U2 (ť)
}

+λTm

(

αmχm

(

T
h
+ TAh

))

dλTm

dť
=

∂H

∂Tm

= eλTm

{

− δm − U2 (ť)

}

−

(

λT
h

+ λTAh

)

αm

(

χ
h
+ χAh

)

Sh + λSh

{

−αm

(

χ
h
+ χAh

)

h

}

(21)

The conditions for transversality are

λ
h

(

ťf

)

= λT
h

(ť) = λTAh

(

ťf

)

= λ
m

(

ťf

)

= λTm

(

ťf

)

= 0.

For 0 < Ui < 1, i = 1 , 2. From the interior of controls,

we have:

∂H

∂U1
= 2fU1 − λ

h

(

TSh + TAh

)

∂H

∂U2
= 2gU2 − λ

m
m − λTm

Tm (22)

From where:

U1 =

λ
h

(

T
h
+ TAh

)

2f

U2 =

λ
m

m + λTm
Tm

2g
(23)
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5.1 Utilization of optimal solutions

Theorem 5.1.
(

U
∗

1 ,U
∗

2

)

is a control factor can reduce over U

provided by

U
∗

1 = max

{

0,min

{

1,
1

2f
λ

h

(

T
h
+ TAh

)

}}

U
∗

2 = max

{

0,min

{

1,
1

2g
λ

m
m + λTm

Tm

}}

(24)

Where λ
h
, λT

h

, λTAh
, λ

m
and λTm

are co-state variable

that satisfy the condition (Equations 17–24) in addition, the

transversality characteristic that follows

λ
h

(

ťf

)

= λT
h

(

ťf

)

= λTAh

(

ťf

)

= λ
m

(

ťf

)

= λTm

(

ťf

)

= 0.

U
∗

1 =











0 if U1 ≤ 0,

U1 if 0 < U1 < 1,

1 if U1 ≥ 0.

And

U
∗

2 =











0 if U2 ≤ 0 ,

U2 if 0 < U2 < 1,

1 if U2 ≥ 0.

(25)

Proof

To demonstrate the survival of optimal control solutions, the

configuration of the Lipschitz criterion of the system and the

convexity of the integral in Equation 21 are related and state

variable that constrains U1 and U2 to the boundary of the state

solution. So we employ PMP and get the following:

ABC
0D

η

ťλ
h
(ť) =

∂H

∂ h

;

ABC
0D

η

ťλT
h

(ť) =
∂H

∂T
h

;
ABC

0D
η

ťλTAh
(ť) =

∂H

∂TAh

;

ABC
0D

η

ťλ
m
(ť) =

∂H

∂ m

;
ABC

0D
η

ťλTm
(ť) =

∂H

∂Tm

; (26)

with,

λ
h

(

ťf

)

= λT
h

(

ťf

)

= λTAh

(

ťf

)

= λ
m

(

ťf

)

= λTm

(

ťf

)

= 0.

The Hamilton can be differentiated with regard to achieve the

conditional optimum:

∂H

∂U1
= 0,

∂H

∂U2
= 0. (27)

The ad-joint system (Equations 20, 21) derived from

Equation 17, the optimum system (Equation 23) is accessible

from Equation 24. The optimal method is the constrained system

(Equation 17) and its initial state is ad-joint the system includes

(Equation 20), and condition for intersection.

6 Adams-Bash forth method

Here, we formulate the system of Equation 6 a recently invented

numerical approach, the Adams-Bash forth method (24). The

framework (Equation 6) can be used to test the essential theorem

from fractional calculus,

h (ť) = h (0)+
1− η

ABC (η)
K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

+

η

ABC (η) ⌈η

∫ ť

0
K1

(

̟ , h(̟ ),TSh (̟ ),

TAh
(̟ ),

Kh(̟ ), m(̟ ),Tm(̟ )
)

(ť −̟ )η−1d̟ (28)

T
h
(ť) = T

h
(0)+

1− η

ABC (η)
K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)
)

+

η

ABC (η) ⌈η

∫ ť

0
K2

(

̟ , h (̟) ,T
h
(̟) , TAh

(̟) ,Kh

(̟) , m (̟) ,Tm (̟)

)

(ť −̟)η−1 d̟ (29)

TAh
(ť) = TAh

(0)+
1− η

ABC (η)
K3

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

+

η

ABC (η) ⌈η

∫ ť

0
K3

(

̟ , h (̟) ,

T
h
(̟) , TAh

(̟) ,Kh (̟) ,

m (̟) ,Tm (̟)
)

(ť −̟)η−1 d̟ (30)

Kh (ť) = Kh (0)+
1− η

ABC (η)
K4

(

ť, h (ť) ,T
h
(ť) ,

TAh
(ť) ,Kh (ť) , m (ť) ,Tm (ť)

)

+

η

ABC (η) ⌈η

∫ ť

0
K4

(

̟ , h (̟) ,TSh (̟) ,

TAh
(̟) ,

Kh (̟) , m (̟) ,Tm (̟)
)

(ť −̟)η−1 d̟ (31)

m (ť) = m (0)+
1− η

ABC (η)
K5

(

ť, h (ť) ,

TSh (ť) , TAh
(ť) ,Kh (ť) , m (ť) ,Tm (ť)

)

+

η

ABC (η) ⌈η

∫ ť

0
K5

(

̟ , h (̟) ,TSh (̟) ,

TAh
(̟) ,

Kh (̟) , m (̟) ,Tm (̟)

)

(ť −̟)η−1 d̟ (32)
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Tm (ť) = Tm (0)+
1− η

ABC (η)
K6

(

ť, h (ť) ,T
h
(ť) ,

TAh
(ť) ,Kh (ť) , m (ť) ,Tm (ť)

)

+

η

ABC (η) ⌈η

∫ ť

0
K6

(

̟ , h (̟) ,T
h
(̟) ,

TAh
(̟) ,Kh (̟) , m (̟) ,Tm (̟)

)

(ť −̟)η−1 d̟ (33)

Where,















































































































K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) , m (ť) ,Tm (ť)
)

= πh − αm

(

χ
h
+ χAh

)

ShTm − δh h + θKh

K2

(

ť, Sh (ť) ,TSh (ť) , TAh
(ť) ,Kh (ť) , Sm (ť) ,Tm (ť)

)

= αmχ
h

hTm −
(

τ + γ + δh
)

TSh

K3

(

ť, Sh (ť) ,TSh (ť) , TAh
(ť) ,Kh (ť) , Sm (ť) ,Tm (ť)

)

= αmχAh hTm −
(

̺ + γ + δh
)

TAh

K4

(

ť, Sh (ť) ,TSh (ť) , TAh
(ť) ,Kh (ť) , Sm (ť) ,Tm (ť)

)

= γ
(

T
h
+ TAh

)

− θKh − δhKh + τT
h
+ ̺ TAh

K5

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) , m (ť) ,Tm (ť)
)

= πm − αmχm

(

T
h
+ TAh

)

m −Ω m − δm m

K6

(

ť, Sh (ť) ,TSh (ť) , TAh
(ť) ,Kh (ť) , Sm (ť) ,Tm (ť)

)

= αmχm

(

T
h
+ TAh

)

m
− (�+ δm)Tm

(34)

The following structure is obtained at time tn+ 1,

h (ťn+1) = h (0)+
1− η

ABC (η)
K1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

η

ABC (η) ⌈η

∫ ťn+1

0
K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (35)

T
h
(ťn+1) = T

h
(0)+

1− η

ABC (η)

K2

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

η

ABC (η) ⌈η

∫ ťn+1

0
K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (36)

TAh
(ťn+1) = TAh

(0)+
1− η

ABC (η)

K3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

η

ABC (η) ⌈η

∫ ťn+1

0
K3

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (37)

Kh (ťn+1) = Kh (0)+
1− η

ABC (η)

K4

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

η

ABC (η) ⌈η

∫ ťn+1

0
K4

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (38)

m (ťn+1) = m (0)+
1− η

ABC (η)

K5

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

η

ABC (η) ⌈η

∫ ťn+1

0
K5

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (39)

Tm (ťn+1) = Tm (0)+
1− η

ABC (η)

K6

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

η

ABC (η) ⌈η

∫ ťn+1

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (40)

While, at tn we have

h (ťn) = Sh (0)+
1− η

ABC (η)
K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,

Khn−1 , mn−1 ,Tmn−1

)

+

η

ABC (η) ⌈η

∫ ťn

0
K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (41)

T
h
(ťn) = T

h
(0)+

1− η

ABC (η)
K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,

Khn−1 , mn−1 ,Tmn−1

)

+
η

ABC (η) ⌈η

∫ ťn

0
K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (42)

TAh
(ťn) = TAh

(0)+
1− η

ABC (η)
K3

(

ťn−1, hn−1 ,T
hn−1

,

TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

+
η

ABC (η) ⌈η

∫ ťn

0
K3

(

ť, h (ť0) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (43)

Kh (ťn) = Kh (0)+
1− η

ABC (η)

K4

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

+
η

ABC (η) ⌈η

∫ ťn

0
K4

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (44)

m (ťn) = m (0)+
1− η

ABC (η)

K5

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

+
η

ABC (η) ⌈η

∫ ťn

0
K5

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,
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m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (45)

Tm (ťn) = Tm (0)+
1− η

ABC (η)

K6

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

+
η

ABC (η) ⌈η

∫ ťn

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (46)

By subtracting h (ťn) from h (ťn+1), T
h
(ťn) from T

h
(ťn+1),

TAh
(ťn) from TAh

(ťn+1), Kh (ťn) from Kh (ťn+1), m (ťn) from

Sm (ťn+1) and Tm (ťn) from Tm (ťn+1), we get the following

h (ťn+1) = Sh (ťn)+
1− η

ABC (η)






K1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)






+

η

ABC (η) ⌈η

∫ ťn+1

0
K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť −

η

ABC (η) ⌈η

∫ ťn

0
K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť

(47)

T
h
(ťn+1) = T

h
(ťn)+

1− η

ABC (η)






K2

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+
η

ABC (η) ⌈η

∫ ťn+1

0
K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť −

η

ABC (η) ⌈η

∫ ťn

0
K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť

(48)

TAh
(ťn+1) = TAh

(ťn)+
1− η

ABC (η)






K3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K3

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)






+

η

ABC (η) ⌈η

∫ ťn+1

0
K3

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť −

η

ABC (η) ⌈η

∫ ťn

0
K3

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť

(49)

Kh (ťn+1) = Kh (ťn)+
1− η

ABC (η)






K4

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−K4

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+
η

ABC (η) ⌈η

∫ ťn+1

0
K4

(

ť, h

(

ť

)

,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť −

+
η

ABC (η) ⌈η

∫ ťn

0
K4

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (50)

m (ťn+1) = Sm (ťn)+
1− η

ABC (η)






K5

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−K5

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)






+

η

ABC (η) ⌈η

∫ ťn+1

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť −

+
η

ABC (η) ⌈η

∫ ťn

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť

(51)

Tm (ťn+1) = Tm (ťn)+
1− η

ABC (η)






K6

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K6

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)






+

η

ABC (η) ⌈η

∫ ťn+1

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť −

+
η

ABC (η) ⌈η

∫ ťn

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,Kh (ť) ,

m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť

(52)

The Equations 47–52 become

h (ťn+1) = Sh (ťn)+
1− η

ABC (η)
















K1

(

ťn, hn ,T
hn

, TAhn
,Khn ,

mn ,Tmn

)

−

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)
















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+A
1
η,1 − A

1
η,2

(53)

T
h
(ťn+1) = T

h
(ťn)+

1− η

ABC (η)
























K2

(

ťn, hn ,T
hn

, TAhn
,Khn ,

mn ,Tmn

)

−

K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 ,

mn−1 ,Tmn−1

)

























+A
2
η,1 − A

2
η,2 (54)

TAh
(ťn+1)+ TAh

(ťn)+
1− η

ABC (η)






K3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K3

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+A
3
η,1 − A

3
η,2 (55)

Kh (ťn+1) = Kh (ťn)+
1− η

ABC (η)






K4

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K4

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+A
4
η,1 − A

4
η,2 (56)

m (ťn+1) = Sm (ťn)+
1− η

ABC (η)






K5

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K5

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+A
5
η,1 − A

5
η,2 (57)

Tm (ťn+1) = Tm (ťn)+
1− η

ABC (η)






K6

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K6

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+A
6
η,1 − A

6
η,2 (58)

Where

A
1
η,1 =

η
ABC(η)⌈η

∫ ťn+1

0 K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (59)

A
2
η,1 =

η
ABC(η)⌈η

∫ ťn+1

0 K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)
)

(ťn+1 − t)η−1 dť (60)

A
3
η,1 =

η
ABC(η)⌈η

∫ ťn+1

0 K3

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (61)

A
4
η,1 =

η
ABC(η)⌈η

∫ ťn+1

0 K4

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (62)

A
5
η,1 =

η
ABC(η)⌈η

∫ ťn+1

0 K5

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (63)

A
6
η,1 =

η
ABC(η)⌈η

∫ ťn+1

0 K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn+1 − t)η−1 dť (64)

and

A
1
η,2 =

η

ABC (η) ⌈η

∫ ťn

0
K1

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (65)

A
2
η,2 =

η

ABC (η) ⌈η

∫ ťn

0
K2

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (66)

A
3
η,2 =

η

ABC (η) ⌈η

∫ ťn

0
K3

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (67)

A
4
η,2 =

η

ABC (η) ⌈η

∫ ťn

0
K4

(

ť, h (ť) ,T
h
(ť) , TAh

(ťL) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn − t)η−1 d (68)

A
5
η,2 =

η

ABC (η) ⌈η

∫ ťn

0
K5

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (69)

A
6
η,2 =

η

ABC (η) ⌈η

∫ ťn

0
K6

(

ť, h (ť) ,T
h
(ť) , TAh

(ť) ,

Kh (ť) , m (ť) ,Tm (ť)

)

(ťn − t)η−1 dť (70)

Now, approximating A
1
η,1 , A

2
η,1, A

3
η,1, A

4
η,1, A

5
η,1, A

6
η,1

and A
1
η,2 , A

2
η,2, A

3
η,2, A

4
η,2, A

5
η,2, A

6
η,2 with the help of

Lagrange’s polynomials

P (ť) ≈
ť − tn−1

ťn − tn−1
f
(

ťn, yn
)

+
ť − tn

ťn−1 − tn
f
(

ťn−1, yn−1

)

,
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=
ť − tn−1

h
f
(

ťn, yn−1

)

+
ť − tn

h
f
(

ťn−1, yn−1

)

(71)

Now, only consider the Equation 59 to evaluate under the
Equation 71, that is given as

A
1
η,1 =

η

ABC (η) ⌈η

∫ ťn+1

0
(ťn+1 − t)η−1







ť−tn−1
h

K1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

+

ť−tn
h

K1

(

ťn−1, hn−1 ,TShn−1
, TAhn−1

,Khn−1 , Smn−1 ,Tmn−1

)






dť

A
1
η,1 =

ηK1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

∫ ťn+1

0
(ťn+1 − t)η−1

K1 (ť − tn−1)

]

dť −

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC (η) ⌈η h
[

∫ ťn+1

0
(ťn+1 − t)η−1

K1 (ť − tn−1)

]

dť

A
1
η,1 =

ηK1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h

[

2ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC (η) ⌈η h

[

ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

(72)

Similarly, for A2
η,1 . . .A

6
η,1

A
2
η,1 =

ηK2

(

ťn , hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC(η)⌈η h
[

2ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

−

K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC(η)⌈η h

[

ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

(73)

A
3
η,1 =

ηK3

(

ťn , hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC(η)⌈η h
[

2ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

−

K3

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC(η)⌈η h

[

ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

(74)

A
4
η,1 =

ηK4

(

ťn , hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC(η)⌈η h
[

2ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

−

K4

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC(η)⌈η h

[

ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

(75)

A
5
η,1 =

ηK5

(

ťn , hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC(η)⌈η h
[

2ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

−

K5

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC(η)⌈η h

[

ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

(76)

A
6
η,1 =

ηK6

(

ťn , hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC(η)⌈η h
[

2ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

−

K6

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC(η)⌈η h

[

ht
η
n+1
η

−
ť
η+1
n+1
η+1

]

(77)

And, from A
1
η,2 to A

6
η,2 are given as

A
1
η,2 =

ηK1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(78)

A
2
η,2 =

ηK2

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(79)

A
3
η,2 =

ηK3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K3

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)
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×
1

ABC (η) ⌈η h
(80)

A
4
η,2 =

ηK4

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K4

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(81)

A
5
η,2 =

ηK5

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K5

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(82)

A
6
η,2 =

ηK6

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K6

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(83)

Finally, using Equations 72–77, and Equations 78–82 in

Equations 53–58 therefore, we obtain the numerical solution of

model (Equation 6), as a result

h (ťn+1) = Sh (ťn)+
1− η

ABC (η)






K1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+

ηK1

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h

[

2ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC (η) ⌈η h

[

ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−
ηK1

(

ťn, h (ťn) ,TSh (ťn) , TAh
(ťn) ,Kh (ťn) , Sm (ťn) ,Tm (ťn)

)

ABC (η) ⌈η h
[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K1

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(84)

T
h
(ťn+1) = T

h
(ťn)+

1− η

ABC (η)






K2

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−

K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+

ηK2

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h

[

2ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC (η) ⌈η h

[

ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−

ηK2

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h

[

ht
η
n

η
−

ť
η+1
n

η + 1

]

−

K2

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
1

ABC (η) ⌈η h
(85)

TAh
(ťn+1) = TAh

(ťn)+
1− η

ABC (η)






K3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

−K3

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , Smn−1 ,Tmn−1

)







+

ηK3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn

)

ABC (η) ⌈η h

[

2ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−

K3

(

ťn−1, hn−1 ,T
hn−1

, TAhn−1
,Khn−1 , mn−1 ,Tmn−1

)

×
η

ABC (η) ⌈η h

[

ht
η
n+1

η
−

ť
η+1
n+1

η + 1

]

−

ηK3

(

ťn, hn ,T
hn

, TAhn
,Khn , mn ,Tmn
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(86)

Kh (ťn+1)=Kh (ťn)+
1− η
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


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(
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hn−1
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,Khn−1 , Smn−1 ,Tmn−1
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
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
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(87)

FIGURE 2

(A–D) Illustrate the time series of susceptible, infected, and recovered human populations for fractional orders and respectively. (E, F) Depict the time

series of susceptible and infected mosquito populations for the same fractional orders. (A) Simulation of h for di�erent fractional order. (B)

Simulation of TAh
for di�erent fractional order. (C) Simulation of T

h

for di�erent fractional order. (D) Simulation of Kh for di�erent fractional

order. (E) Simulation of m for di�erent fractional order. (F) Simulation of Tm for di�erent fractional order.
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m (ťn+1) = Sm (ťn)+
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(88)

Tm (ťn+1) = Tm (ťn)+
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
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×
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ABC (η) ⌈η h
(89)

6.1 Outcomes and results of simulation

In this section, we analyzed the dynamics of dengue disease

spread using both fractional and non-fractional models across

different compartments of the human and mosquito populations.

Simulations based on dengue case data collected from Karnataka

by NVBDC from August 2023 to May 2024, as detailed in reference

(28), revealed notable differences in the behavior of each population

compartment under fractional versus non-fractional conditions.

In Figure 2A, the susceptible population decreases with values

of η = 0.3, 0.5, 0.7, and 0.9, indicating a more realistic and

variable decline due to the complex interactions and memory

effects incorporated. In contrast, the non-fractional model shows

a constant value of η = 1, reflecting a simpler and less

dynamic decrease. This suggests that the fractional model captures

a more nuanced reduction in the susceptible population over

time compared to the non-fractional approach. This suggests

that the fractional model captures a more nuanced reduction

in the susceptible population over time compared to the non-

fractional approach.

For infected asymptomatic humans TAh
and infected

symptomatic humans T
h
, both populations will initially increase

as the infection spreads but will eventually decrease as individuals

recover or move between compartments in the Figures 2B, C.

Similarly, for the recovered human populationKh in Figure 2D,

the fractional model reflects a slower recovery rate, acknowledging

the variability in recovery times, while the non-fractional model

suggests a quicker recovery that might not align with real-world

scenarios. In the mosquito populations, the susceptible mosquito

population m decrease in Figure 2E, more slowly in the fractional

model, indicating that mosquitoes remain susceptible for longer

periods. The infected mosquito population Tm in Figure 2F, also

rises gradually in the fractional model, unlike the rapid increase

seen in the non-fractional model. Overall, the fractional models

provide a more realistic representation of the disease dynamics by

incorporating memory effects and delays, which better reflect the

natural progression and spread of dengue compared to the more

immediate transitions observed in non-fractional models.

The comparison clearly shows that fractional-order models

provide a more nuanced understanding of how diseases like

dengue evolve over time, influencing both human and mosquito

populations. The ability of these models to incorporate memory

effects allows them to better simulate the slow and cumulative

impacts of disease control measures and environmental changes,

offering a more realistic depiction of disease dynamics and aiding

in the development of more effective intervention strategies.

TABLE 1 Description of parameter values.

Symbols Baseline values

πm 0.0071

πh 0.057

δh 0.00042

δm 0.02

χ
Sh 0.00567

χ
Ah 0.01691

θ 0.025

αm 0.5

τ 0.03436

̺ 0.40

γ 0.0947

χm 0.0113
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FIGURE 3

The influence of optimal control on the proposed model dynamics is illustrated.

Under this section, simulation results are performed, and values

of specification are stated in Table 1.

The disease trajectory can be seen in Figure 3, when optimal

control strategies are implemented and their effectiveness in

reducing infection rates is highlighted. Comparing the two control

strategies, it is evident that self-precautionarymeasures have amore

immediate and direct effect on reducing human infection rates.

This suggests that public education campaigns and community

involvement can be impactful tools in controlling dengue viremia.

Controlling both susceptible and infected mosquito populations

is crucial for interrupting the disease transmission cycle. The

impact of this strategy on reducing mosquito populations can be

observed in the control diagram, illustrating the importance of

vector management. Timing is critical for control strategies. The

effect effectiveness of vector control may be contingent on seasonal

variation in mosquito populations, while self-precaution can be

promoted consistently. To maximize their impact, it is crucial to

assess the optimal timing and deployment of these strategies.

7 Conclusions

The aim of this study is to explore the effect of dengue

viremia on the occurrence of different illnesses. We have presented

a comprehensive exploration of ABC fractional order Dengue

viremia, a novel mathematical model that incorporates critical

factors such as relapse and temporary immunity. After the model

is created, the positivity and range of solution is evaluated, and the

system survival and originality are verified. The basic reproduction

value R0 is determined by evaluating the equilibrium points. The

Rough Hurwitz technique is commonly used to estimate local

stability, while lyapunov functions are used to estimate global

stability. Specifically, when R0 < 1 in Cf, it indicates that

the disease is unlikely to establish itself. If R0 > 1 at Cp, it

indicates that the disease is likely to continue to spread. Through

the utilization of the Adams-Bash forth numerical scheme, we

have successfully simulated disease dynamics, achieving a balance

between computational efficiency and accuracy. In addition,

we have developed the optimum measures by eradicating the

population of mosquitoes and reducing the number of victims.

The numerical simulation findings show the behavior of Dengue

sickness model affected by different fractional orders, and they

can serve as Dengue prevention and control recommendation. The

research underscores the importance of mathematical modeling

and optimal control techniques in addressing complex infectious

disease like Dengue viremia. To develop interventions that reduce

and control dengue, it is important to ensure that R0 is below

as a guideline. For future studies, our model can refine control

strategies and adapt them to specific regions and epidemics, which

is a promising way to treat infectious diseases and safeguard public

health on a global scale.
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Effect and prediction of 
long-term weather and pollutant 
exposure on hemorrhagic fever 
with renal syndrome: based on 
statistical models
Weiming Hou *

Department of Medical Engineering, Air Force Medical Center, PLA, Air Force Medical University, 
Beijing, China

Background: Previous studies have typically explored daily lagged relationships 
between hemorrhagic fever with renal syndrome (HFRS) and meteorology, 
with a limited seasonal exploration of monthly lagged relationships, 
interactions, and the role of pollutants in multiple predictions of hemorrhagic 
fever.

Methods: Our researchers collected data on HFRS cases from 2005 to 2018 
and meteorological and contaminative factors from 2015 to 2018 for the 
northeastern region. First, we applied the moving epidemic method (MEM) to 
estimate the epidemic threshold and intensity level. Then, we used a distributed 
lag non-linear model (DLNM) and a generalized additive model (GAM) with a 
maximum lag of 6 months to evaluate the lagged and interaction effects of 
meteorological and pollution factors on the HFRS cases. Multiple machine 
learning models were then applied after Spearman’s rank correlation coefficient 
analysis was performed to screen for environmental factors in the Northeastern 
region.

Results: There was a yearly downward trend in the incidence of HFRS in the 
northeastern region. High prevalence threshold years occurred from 2005 
to 2007 and from 2012 to 2014, and the epidemic months were mainly 
concentrated in November. During the low prevalence threshold period, the 
main lag factor was low wind direction. In addition, the meteorological lag 
effect was pronounced during the high prevalence threshold period, where the 
main lag factors were cold air and hot dew point. Low levels of the AQI and PM10 
and high levels of PM2.5 showed a dangerous lag effect on the onset of HFRS, 
while extremely high levels of PM2.5 appeared to have a protective effect. High 
levels of the AQI and PM10, as well as low levels of PM2.5, showed a protective 
lag effect. The model of PM2.5 and the AQI interaction pollution is better. The 
support vector machine (SVM)-radial algorithm outperformed other algorithms 
when pollutants are used as predictor variables.

Conclusion: This is the first mathematically based study of the seasonal 
threshold of HFRS in northeastern China, allowing for accurate estimation of the 
epidemic level. Our findings suggest that long-term exposure to air pollution is 
a risk factor for HFRS. Therefore, we should focus on monitoring pollutants in 
cold conditions and developing HFRS prediction models.
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1 Introduction

Hemorrhagic fever with renal syndrome (HFRS), also known as 
epidemic hemorrhagic fever, is a rodent-borne disease caused by 
various strains of the hantavirus or Seoul virus, characterized by fever, 
hemorrhage, and acute renal dysfunction (1). As one of the countries 
most affected by the HFRS epidemic, China has seen a significant 
decrease in the incidence of HFRS in most regions since 2000.
Although preventive measures such as rodent eradication and 
vaccination have been implemented (2), transient epidemics still 
occur at certain times and in specific regions.

Early assessments of epidemic thresholds and risk classification 
focused on influenza and respiratory infections (3, 4), which have 
proven novel in application and effective for infectious diseases in 
China. However, there is a lack of relevant studies on HFRS. Earlier 
studies have suggested that climatic factors may contribute to the 
incidence of HFRS. According to an epidemiological survey in 2002, 
rainfall was identified as a predictor of HFRS transmission in the 
epidemic source (r = −0.63) (5). Furthermore, several studies have 
gradually refined the understanding of the relationship between 
meteorological factors and HFRS, highlighting varying effects in 
terms of lag and dose–response relationships. For example, in Nei 
Menggu province, Wen-Yi Zhang et  al. found that rainfall, land 
temperature, and humidity were associated with HFRS onset at a lag 
of 3–5 months, after controlling for autocorrelation, seasonality, and 
long-term trends (6). Recent studies have also shown that wet and 
warm climatic conditions in the northeastern favor the occurrence 
and growth of HFRS (7). However, there is limited variability in 
climatic factors across different epidemic risk classifications. In 
addition, HFRS may be associated with air pollutants in terms of 
incidence because it is partly transmitted via the aerosol route. 
However, although several studies have confirmed the lag and 
correlation with air pollution in infectious diseases, few studies have 
been conducted on HFRS (8, 9).

The overall goal of this study was to explore the epidemiological 
characteristics of HFRS, the graded warning system, the lag and 
interaction effects of climate and pollutants, and the subsequent 
development of models for predicting HFRS outbreaks. Our specific 
objectives were to (a) calculate the epidemic thresholds and assess the 
risk levels, (b) explore the effects of lags and interactions of 
meteorological and pollution factors, and (c) construct stratified 
models for HFRS onset, selecting appropriate models for different  
populations.

2 Materials and methods

2.1 Setting

Supplementary Figure S1 shows the geographical location of the 
study area—Heilongjiang, Jilin, and Liaoning provinces. The three 
provinces are located in the northeastern of China and have medium 
levels of economic development and population size.

2.2 Data collection

We obtained HFRS case surveillance data from the National 
Public Health Data Center of China1 for the study area covering the 
period from 2005 to 2018. All patients were diagnosed according to 
the HFRS management criteria issued by the Ministry of Health of the 
People’s Republic of China. We  obtained the corresponding daily 
weather data, including air temperature and dew point temperature, 
from the China Meteorological Data Sharing Service (data.cma.cn). 
Pollutant information, including CO, NO2, and O3, was originally 
sourced from the National Oceanic and Atmospheric Administration  
(NOAA).

2.3 Estimation of the epidemic threshold 
and intensity level

We used the R language implementation of the moving epidemic 
method (MEM) (package “mem”), which is available online for free. 
The method is based on a complex mathematical algorithm that can 
be summarized in three steps. The first step is the division of the 
pre-epidemic, epidemic, and post-epidemic periods. In the second 
step, the pre- and post-epidemic values of the historical seasons are 
used to calculate the baseline and epidemic thresholds. In the third 
step, the maximum values of n surveillance indicators during the 
epidemic period are selected separately to calculate different epidemic 
intensity thresholds. The unilateral 50%CI upper limit of the geometric 
mean of the n maximum surveillance indicators during the epidemic 
period is defined as the medium intensity threshold, the unilateral 
90%CI upper limit as the high-intensity threshold, and the unilateral 
95%CI upper limit as the very high-intensity threshold.

2.4 The lagging and interaction effect of 
DLNM and GAM

Distributed lag non-linear models (DLNM) have been widely 
used to assess the exposure–lag–response relationship between 
environmental factors and human diseases such as congenital heart 
disease, hand, foot, and mouth disease, and chronic sinusitis (8, 10–
12). The model can be written as follows:

	

( ) ( ) ( ) ( )
( )

1log , ,lag,
,

t t t

t

E Y NS M df df NS X X
NS Time df Month
α

β
  = + + ∑ + ∑ + 

+

To analyze the lag and extreme effects of climate factors, air 
temperature, dew point temperature, wind direction, and wind speed 
were considered and applied to the cross-basis functions of a 

1  https://www.phsciencedata.cn/
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DLNM. Here, Yt is the number of the HFRS cases in monthly t; α1 is 
the intercept of the entire model; NS is a natural cubic spline that acts 
as a smooth function of the model; M represents the estimated climate 
or pollutants variable related to HFRS; and Xt represents other climate 
and pollutant variables involved in the pathogenesis of HFRS, for 
which non-linear confounding effects are adjusted. When constructing 
the meteorological factor model, ( )tX∑  does not exist, whereas in 
the pollution model, meteorological factors are used as confounding 
factors to construct ( )tX∑ . The NS was applied to adjust for the 
monthly confounding effects in the model. Month is a binary variable 
used to control the effect of time, and β represents regression 
coefficients. The optimal degrees of freedom (df) for the spline 
function were estimated using the Akaike information criterion for 
quasi-Poisson (Q-AIC) and minimum partial regression coefficient 
(PACFmin) criteria. The NS with 4 df was used for the climate factors, 
except for wind direction, which used 5 df during the period of low 
epidemic intensity. For both the high epidemic intensity period and 
the overall model, the NS with 4 df was applied to the climate and 
pollutant factors. The lag space was set to 3 df. The NS with 2–3 df/year 
was applied to the time variable in both pollutant and climate models. 
The climate model was constructed using the glm () function, while 
the pollution model was constructed using the gam () function.

Subsequently, a generalized additive model (GAM) was used to 
explore the interaction between the pollutants and the prevalence of 
HFRS. The model formula can be written as follows:

	 ( ) ( ) ( ) ( )2 1 2 3log ,t tE Y s X X s X Xα  = + + + ∑ 

α2 is the intercept; X1 represents the AQI, whereas X2 and X3 
denote the other two pollutants. s () indicates a penalized spline 
function. s (X1, X2) represents the spline function for the interaction 
between the parameters X1 and X2. X1, X2, and X3 represent 6-month 
lagged variables. ( )tX∑  represents the factors of climate.

2.5 Construction of a prediction model in 
GPR and SVM

A Gaussian process (GP) can be regarded as an extended function 
of a multivariate Gaussian distribution, which can be applied to a wide 
range of variables. In a Gaussian process (GP), it is assumed that any 
finite set of data follows a multivariate Gaussian distribution. Prior 
beliefs concerning the relationships between variables are incorporated 
into these (an infinite number of) multivariate Gaussian distributions 
to create a model that represents the observational variance. The 
combination of multiple Gaussian distributions in a GP can effectively 
model non-linear relationships and is more versatile than traditional 
parametric models, which depend on fitting a global model. This is 
because multivariate Gaussians can represent local covariance patterns 
between individual sites (13).

Support vector machines (SVMs) are a non-probabilistic binary 
linear regression method. Given a set of training data labeled as 
belonging to one of two classes, the algorithm maps the data into a 
space and defines a hyperplane that maximizes the margin between 
the two classes to separate them. This plane is called the “maximal 
marginal hyperplane.” An algorithm uses a kernel approach to acquire 
non-linear mapping to the feature space if linear integration is 

impossible. Thus, the hyperplane of the feature space stands for the 
non-linear boundary of the determination in the input space (14). All 
model metrics are compared using traditional machine learning 
metrics such as RMSE, R2, and MAE (15–17). A total of 75% of the 
dataset is used as the training set, while the remaining 25% is used as 
the test set. All analyses in our study were performed using R software 
(version 4.1.3).

3 Results

3.1 HFRS surveillance in northeastern China

A total of 59,431 HFRS cases were reported in the three eastern 
provinces of China from 2005 to 2018, showing a decreasing trend 
each year (Table 1). This was followed by the main epidemic area in 
Heilongjiang province, with a total of 28,074 cases until 2018. The 
incidence of influenza was primarily observed in the individuals aged 
15–39 and 40–59 years, accounting for 86.42% of all cases.

Based on Table 1, however, there was a short-term rise in the cases 
from 2012 to 2014. We also performed a calculation of the prevalence 
threshold and determined from Supplementary Table S1 that the 
optimal parameter δ was 7.0 after the calculation of the popular 
threshold model. As shown in Table 2, the years with a high prevalence 
threshold were 2005–2007 and 2012–2014, while the years with a low 
prevalence threshold were 2008–2011 and 2015–2018. Based on the 
threshold model prediction shown in Table 2 and Figure 1, it was 
concluded that the epidemic months were primarily concentrated 
in November.

3.2 Exposure–response relationships and 
lagging effect for the climate factors

The summary statistics for all HFRS cases and environmental 
variables in northeastern China are shown in Supplementary Table S2. 
The Spearman’s rank correlation coefficient analysis showed that 
HFRS was significantly correlated with air temperature (r = −0.18, 
p < 0.05), dew point temperature (r = −0.23, p < 0.01), wind direction 
(r = 0.22, p < 0.01), and wind speed (r = 0.29, p < 0.01) (Supplementary  
Table S3). As shown in Supplementary Figure S2, these climate factors 
were associated with high relative risk at the lags above moderate 
levels, except for air temperature.

From the dose–response relationship shown in Supplementary  
Figure S3, air temperature showed mostly a U-shaped relationship with 
the risk of HFRS, both in general and across the different regions and age 
groups, while the other factors mostly showed an arch bridge-shaped 
relationship. In Liaoning province, air temperature, dew point 
temperature, and wind speed all showed a parabolic decreasing trend in 
their relationship with HFRS risk. As shown in Supplementary  
Table S5, the climate lag effect was weak during the low prevalence 
threshold period, with sensitivity mainly concentrated in the high 
prevalence areas of Heilongjiang province and the 0–14 years age group, 
where the main lag factor was low wind direction. As shown in 
Supplementary Table S6, the meteorological lag effect was higher during 
the high prevalence threshold period, with sensitivity mainly 
concentrated in the 0–14 years and 60 years and above age groups, where 
the main lag factors were cold air and hot dew point. When comparing 
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TABLE 1  Distribution of the HFRS cases by age groups, region, and season in northeastern China, 2005–2018.

Characteristic 0–14 15–39 40–59 ≧60 Total Population (104) Incidence
(10−2%)

No. of the HFRS cases (%)

Year 2005 245(2.26%) 5,148(47.54%) 4,586(42.35%) 850(7.85%) 10,829 10,757 1.01

2006 138(1.8%) 3,680(47.98%) 3,310(43.16%) 542(7.07%) 7,670 10,917 0.7

2007 60(1.17%) 2,386(46.64%) 2,268(44.33%) 402(7.86%) 5,116 10,952 0.47

2008 30(0.85%) 1,519(43.29%) 1,637(46.65%) 323(9.2%) 3,509 10,874 0.32

2009 31(0.93%) 1,313(39.42%) 1,651(49.56%) 336(10.09%) 3,331 10,907 0.31

2010 36(1.2%) 1,178(39.21%) 1,432(47.67%) 358(11.92%) 3,004 10,955 0.27

2011 38(1.17%) 1,162(35.91%) 1,630(50.37%) 406(12.55%) 3,236 10,966 0.3

2012 54(1.51%) 1,283(35.76%) 1737(48.41%) 514(14.33%) 3,588 10,973 0.33

2013 52(1.33%) 1,311(33.5%) 1973(50.41%) 578(14.77%) 3,914 10,976 0.36

2014 45(1.15%) 1,228(31.36%) 1992(50.87%) 651(16.62%) 3,916 10,976 0.36

2015 28(0.93%) 895(29.7%) 1,538(51.05%) 552(18.32%) 3,013 10,947 0.28

2016 17(0.66%) 699(27.11%) 1,384(53.69%) 478(18.54%) 2,578 10,910 0.24

2017 36(1.3%) 743(26.81%) 1,432(51.68%) 560(20.21%) 2,771 10,875 0.25

2018 32(1.08%) 784(26.52%) 1,478(50%) 662(22.4%) 2,956 10,836 0.27

Region Heilongjiang 344(1.23%) 11,459(40.82%) 13,018(46.37%) 3,253(11.59%) 28,074 3,819 7.35

Jilin 176(1.33%) 5,388(40.71%) 6,252(47.24%) 1,418(10.71%) 13,234 2,736 4.84

Liaoning 322(1.78%) 6,482(35.77%) 8,778(48.44%) 2,541(14.02%) 18,123 4,362 4.15

Season Spring (March–May) 270(1.69%) 6,660(41.63%) 7,322(45.77%) 1745(10.91%) 15,997

Summer (June–

August)
126(1.01%) 4,824(38.68%) 6,004(48.14%) 1,518(12.17%) 12,472

Autumn (September–

November)
230(1.37%) 6,213(36.93%) 8,139(48.38%) 2,241(13.32%) 16,823

Winter (December–

February)
216(1.53%) 5,632(39.83%) 6,583(46.56%) 1708(12.08%) 14,139

Total 842(1.42%) 23,329(39.25%) 28,048(47.19%) 7,212(12.14%) 59,431 10,917 5.44
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the climatic lags during the low and high prevalence threshold periods 
(Supplementary Tables S5, S6), we found that low wind direction and 
windy conditions showed a dangerous lag effect on HFRS onset (OR > 0), 
while high wind direction and windless conditions showed a protective 
lag effect (OR < 0). In addition, air temperature showed protective effects 
at both low and high levels, while cold air showed a dangerous effect in 
the 0–14 years age group during the high prevalence threshold period 
(OR (95% CI): 3.2e+17(8.4e+08, 1.2e+26)). Cold dew point had a little 

lag effect, while hot dew point showed a protective effect during the low 
prevalence threshold period. However, this effect was reversed during 
the high prevalence period.

3.3 Exposure–response relationships and 
lagging effect for the pollutants

The Spearman’s rank correlation coefficient analysis showed that 
HFRS was significantly correlated with the AQI (r = 0.40, p < 0.05), 
PM2.5 (r = 0.37, p < 0.05), and PM10 (r = 0.40, p < 0.01) 
(Supplementary Table S4). As shown in Supplementary Figure S4, 
these factors were associated with high relative risk at the lags above 
high levels, except for PM10. From the dose–response relationship 
shown in Figure  2, PM2.5 mostly showed an arch bridge-shaped 
relationship, while the AQI and PM10 mostly showed a U-shaped 
relationship with the risk of HFRS, both in general and across the 
different regions and age groups. In Jilin province and the 0–14 years 
age group, the AQI exhibited a parabolic decreasing trend, while 
PM2.5 showed a parabolic increasing trend. As shown in Figure 3, in 
terms of the total pollution lags, the effects of the low-level pollutants 
were mainly concentrated in the long-term lag conditions 
(3–6 months), while the effects of the high-level pollutants were 
mainly concentrated in the short-term lag conditions (1–2 months). 
In terms of the lagging trend, PM2.5 differed from the other pollution 
factors. As shown in Table 3, except for high-level PM10, the lag effect 
of the other pollution factors was more pronounced, and the 
sensitivity was mainly concentrated in Liaoning province and the age 
group of 40–59 years. Among these, we found that low levels of the 
AQI and PM10 and high levels of PM2.5 showed a dangerous lag effect 
on the onset of HFRS (OR > 0), while extremely high levels of PM2.5 
(P95) showed a protective effect. In addition, high levels of the AQI 
and PM10 and low levels of PM2.5 showed a protective lag effect 
(OR < 0). However, at extremely high levels of the AQI (P95), a 
dangerous effect was observed.

TABLE 2  Characteristics of the peak values in each year used in the model.

Year Peak (per 
10−5)

Peak 
month

Epidemic 
threshold

Threshold intensity Level Series

Medium High Very 
high

2005 1.57 11 0.46 0.46 0.64 0.80 Very high High

2006 1.03 11 0.46 0.46 0.74 0.98 Very high High

2007 0.81 11 0.40 0.41 0.77 1.02 High High

2008 0.47 11 0.46 0.46 0.81 1.08 Medium Baseline

2009 0.44 6 0.47 0.47 0.81 1.07 Baseline Baseline

2010 0.57 11 0.47 0.47 0.80 1.07 Medium Baseline

2011 0.43 11 0.46 0.46 0.65 0.83 Baseline Baseline

2012 0.65 11 0.46 0.46 0.55 0.68 High High

2013 0.60 11 0.38 0.38 0.50 0.60 High High

2014 0.55 11 0.38 0.38 0.51 0.62 High High

2015 0.42 11 0.39 0.39 0.52 0.64 Medium Baseline

2016 0.41 11 0.40 0.40 0.52 0.62 Medium Baseline

2017 0.35 11 0.39 0.39 0.53 0.64 Baseline Baseline

2018 0.47 11 0.40 0.40 0.52 0.62 Medium Baseline

FIGURE 1

Surveillance and early warning of HFRS in northeastern China during 
1–12 months in 2018.
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3.4 Interaction and comparison of the 
multiple pollutant models

From Supplementary Figure S5, we can see that the AQI interacted 
with PM2.5 and PM10 in relation to HFRS incidence. PM10 was weakly 
positively correlated with the risk of HFRS, while PM2.5 showed the 
opposite relationship. From the interaction effect shown in Figure 4, 
we found that low AQI combined with high levels of PM2.5 and PM10 
had the greatest impact on HFRS onset. The results from the test in 
Supplementary Table S7 indicate that the model involving the 
interaction between PM2.5 and the AQI performed better (R2 = 44.1%). 

From Supplementary Table S8 and Table 4, the model fit was best in 
Liaoning province among the different regions (R2 > 70%) and in the 
15–39 age group. In addition, the GPR model showed the same fit as 
that of the SVM model. In the GPR model, the prediction results were 
good, except for the polydot kernel function. In the SVM model, good 
prediction results were observed with the radial and sigmoid kernel 
functions. Based on the SVM-radial model for exploring the 
importance of the variables related to HFRS, the priority order was the 
pollutant factors (in the order of the AQI, PM10, and PM2.5), followed 
by the climatic factors (in the order of windspeed, dew point 
temperature, and air temperature).

FIGURE 2

Effect of the different pollutants on the incidence of HFRS across the different months for total, regions, and age groups.

FIGURE 3

Summary of the estimated extreme effects at the 5th and the 95th percentile of the pollutants on the HFRS cases for the total during the different lag 
months. The median value of each pollutant (AQI: 76.79, PM2.5: 48.7 μg/m3, PM10: 84.89 μg/m3) serves as a reference level.
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TABLE 3  The cumulative effects of the extreme pollutant factors on the HFRS cases by region and age group.

Series Variables Cumulative effects (95%CI)

Low AQI effect High AQI effect Low PM2.5 effect High PM2.5 effect Low PM10 effect High PM10 effect

Total cases
7.8e+05(78.501, 7.7e+09)

7.5e+03(15.225, 3.7e+06)

0.051(0.002, 1.323)

1e+04(0.003, 3.3e+10)

1.1e−04(7.2e−08, 0.182)

0.004(0.000, 0.384)

22.119(0.692, 707.182)

0.067(0.000, 1.8e+04)

4e+04(7.046, 2.3e+08)

1.1e+03(3.266, 3.7e+05)

0.070(0.004, 1.248)

0.364(0.000, 1.3e+04)

Region

Heilongjiang
4.8e+06(0.808, 2.8e+13)

2.4e+04(0.628, 8.9e+08)

0.046(0.000, 13.048)

7.5e+05(0.000, 8.5e+16)

0.000(0.000, 29.414)

0.003(0.000, 10.229)

17.086(0.041, 7110.833)

0.002(0.000, 5.1e+06)

4743.176(0.003, 7.3e+09)

257.344(0.018, 3.8e+06)

0.147(0.001, 16.933)

2.665(0.000, 8.4e+07)

Jilin
3.2e+04(0.031, 3.3e+10)

1.1e+03(0.101, 1.3e+07)

0.029(0.000, 3.540)

0.005(0.000, 1.5e+07)

0.001(0.000, 44.948)

0.010(0.000, 10.270)

38.629(0.245, 6.1e+03)

9.2e+03(0.000, 6.5e+11)

185.119(0.002, 1.7e+07)

24.452(0.011, 5.3e+04)

0.948(0.020, 44.050)

2.9e+04(0.028, 3e+10)

Liaoning
1.6e+05(844.167, 3.1e+07)

2.4e+03(70.763, 8.3e+04)

0.128(0.021, 0.802)

1.1(221.522, 5.4e+09)

1.6e−04(2.5e−06, 0.010)

0.005(0.000, 0.064)

12.214(1.754, 85.054)

0.001(0.000, 0.988)

4.7e+05(693.362, 3.2e+08)

6478.497(80.564, 5.2e+05)

0.018(0.002, 0.160)

0.001(0.000, 1.786)

Age group

0–14 years
3.9e+17(0.000, 1.4e+57)

0.415(0.000, 7.7e+38)

0.000(0.000, 5.3e+09)

0.000(0.000, 3.8e+81)

0.000(0.000, 3.9e+24)

0.000(0.000, 2.7e+15)

6.2e+05(0.000, 2.3e+23)

1.3e+21(0.000, 1.1e+103)

4.4e+14(0.000, 1e+61)

7.2e+09(0.000, 1.2e+41)

0.000(0.000, 1.4e+11)

0.000(0.000, 5.9e+52)

15–39 years
4.9e+05(0.775, 3.1e+11)

6.1e+03(0.748, 4.9e+07)

0.034(0.000, 3.569)

51.177(0.000, 7.9e+10)

0.001(0.000, 24.237)

0.009(0.000, 7.870)

18.395(0.130, 2.6e+03)

3.181(0.000, 1.4e+08)

5.1e+04(0.009, 2.9e+11)

1192.604(0.034, 4.2e+07)

0.099(0.001, 17.719)

11.978(0.000, 1.2e+09)

40–59 years
1e+07(336.722, 3.1e+11)

4.7e+04(45.058, 4.9e+07)

0.012(0.000, 0.460)

14.229(0.000, 2e+08)

6.6e−06(1.7e−09, 0.026)

0.001(0.000, 0.104)

124.231(2.633, 5860.926)

29.291(0.000, 2.7e+07)

2.7e+05(107.071, 6.6e+08)

3812.795(19.754, 7.4e+05)

0.045(0.003, 0.614)

0.448(0.000, 5.8e+03)

60 years and above
50.471(4e−03, 5.9e+05)

7.647(0.014, 4.3e+03)

11.547(0.368, 362.732)

1.8e+15(1.6e+08, 2e+22)

0.223(0.000, 427.895)

0.576(0.005, 69.983)

0.105(0.003, 4.041)

5.8e−12(7.6e−18, 4.4e−06)

5.465(0.000, 1.1e+09)

3.431(0.000, 1.3e+06)

0.376(0.001, 223.061)

0.008(0.000, 1.8e+08)

Bold font indicates statistical significance at the 0.05 level.

121

https://doi.org/10.3389/fpubh.2025.1393763
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hou� 10.3389/fpubh.2025.1393763

Frontiers in Public Health 08 frontiersin.org

4 Discussion

In the European Centre for Disease Prevention and Control 
(ECDC), the MEM is a standardized approach for epidemiological 
classification and early warning of infectious diseases (18). However, 
the application is limited to diseases with a yearly upward trend, such 
as influenza and hand, foot, and mouth disease. The better-controlled 
infectious diseases, such as HFRS, have limited application in 
epidemic grading. Based on recent global environmental pollution 
and the short-term annual rise in hemorrhagic fever cases, this study 
applied the MEM to classify and issue warnings regarding its epidemic 
status. As the MEM was originally applied to weekly cases, monthly 
data were used in this study. The selection range for the δ parameter 
was adjusted from 2.5–5.0 to 4.0–8.0, and the adjustment was made 
based on the criteria developed after testing with reference to the data.

The prediction of HFRS is widespread both domestically and 
internationally, with models ranging from ARIMA (19) to Holt–
Winters (20) using time series analysis for the univariate prediction 
of HFRS, achieving good results. However, since HFRS is a natural 
epidemic, environmental factors greatly influence the transmission 
of the pathogen and the host. Therefore, this study examined the 
impact of meteorological factors with lag effects during different 
periods, classified into high and low epidemic phases using the 
MEM. This will help future disease control departments implement 
targeted preventive measures and strategies under different climatic 
conditions based on the epidemic intensity. We found that Liaoning 
province exhibited different susceptibility compared to the other 
regions. This finding is in agreement with the findings of several 
studies, which indicated that the HFRS epidemic in Liaoning 
province follows a bimodal pattern (21, 22). During the high epidemic 
period, HFRS was mainly affected by cold air, with the most 
susceptible population being in the 0-14-years age group. This finding 

is consistent with the findings of studies conducted in other regions 
of China (23, 24). The main reason may be that cold air increases 
indoor activity among young, immunocompromised individuals. 
Since rodents are the primary hosts of the HFRS virus, cold air also 
raises the likelihood of rodents entering indoor spaces, which 
significantly exacerbates the incidence of HFRS. Research on the 
impact of pollutants on diseases dates back to a survey conducted in 
the United States in 1964 (25). A subsequent study in the U.S. found 
that long-term exposure to fine particle pollution was linked to death 
from ischemic heart disease and stroke, highlighting the need for 
continued improvements in air quality to prevent cardiovascular 
disease (26). In the field of infectious diseases, air pollution research 
has primarily focused on respiratory diseases, with little attention 
given to natural epidemic diseases such as HFRS. A survey in Tianjin 
found that air pollution control efforts were primarily focused on 
fulfilling local responsibilities (27), highlighting the impact of air 
pollution on local health and diseases. Therefore, this study first 
explored the lagged relationship between air pollution and HFRS, 
identifying particulate matter (PM) as the main environmental factor. 
Specifically, low levels of PM10 and high levels of PM2.5 were significant 
at a maximum lag of 6 months, with sensitivity concentrated in the 
age group of 40–59 years. The reason for this may be that middle-
aged individuals are more likely to overlook pollution issues during 
periods of high air pollution, increasing their time and chances of 
being exposed to environmental hazards. This, in turn, can 
significantly enhance exposure to pathogens and host animals. 
Moreover, for a transmission pathway as unique as aerosols, 
particulate matter may contribute to the transmission rate, although 
the exact mechanism remains unknown. This study also conducted a 
multiple regression analysis of environmental factors to explore the 
predictive power of machine learning. Although time variables were 
not included in the prediction model, as in the study by Chao Zhang 

FIGURE 4

The fitting interactions of the association between the pollutants and HFRS cases in northeastern China during 2015–2018 based on the generalized 
additive model (GAM).

122

https://doi.org/10.3389/fpubh.2025.1393763
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


H
o

u
�

10
.3

3
8

9
/fp

u
b

h
.2

0
2

5.13
9

3
76

3

Fro
n

tie
rs in

 P
u

b
lic H

e
alth

fro
n

tie
rsin

.o
rg

TABLE 4  Comparison of the prediction results with the different kernels of the support vector machine (SVM) models.

Model Series Parameters cv.fold Training set Test set

RMSE R2 MAE RMSE R2 MAE

SVM (Linear)

Total cases cost = 10,gamma = 0.143 10 60.657 0.687 32.258 84.242 0.086 70.695

Region

Heilongjiang cost = 10,gamma = 0.143 10 39.826 0.684 18.846 54.348 0.007 41.752

Jilin cost = 5,gamma = 0.143 10 10.986 0.712 6.546 16.699 0.022 12.518

Liaoning cost = 10,gamma = 0.143 10 14.752 0.756 9.796 30.271 0.335 24.729

Age group

0–14 years cost = 0.1,gamma = 0.143 10 2.097 0.193 1.510 1.892 0.085 1.325

15–39 years cost = 10,gamma = 0.143 10 14.014 0.790 8.570 17.932 0.386 14.841

40–59 years cost = 10,gamma = 0.143 10 30.523 0.696 17.297 44.173 0.105 35.462

60 years and above cost = 0.1,gamma = 0.143 10 22.295 0.197 14.206 17.911 0.092 13.482

SVM (Polynomial)

Total cases degree = 3,cost = 4,gamma = 0.143 10 69.488 0.585 38.329 76.208 0.114 64.232

Region

Heilongjiang degree = 3,cost = 1,gamma = 0.143 10 58.073 0.429 32.649 43.421 0.077 30.560

Jilin degree = 3,cost = 4,gamma = 0.143 10 11.554 0.680 6.786 16.653 0.020 12.378

Liaoning degree = 3,cost = 4,gamma = 0.143 10 17.466 0.655 11.811 30.125 0.354 23.966

Age group

0–14 years degree = 3,cost = 0.1,gamma = 0.143 10 2.097 0.193 1.510 1.892 0.085 1.325

15–39 years degree = 3,cost = 3,gamma = 0.143 10 17.890 0.656 11.781 15.327 0.449 13.408

40–59 years degree = 3,cost = 2,gamma = 0.143 10 39.535 0.499 24.128 38.274 0.182 29.505

60 years and above degree = 3,cost = 0.1,gamma = 0.143 10 22.295 0.197 14.206 17.911 0.092 13.482

SVM (Radial)

Total cases cost = 1,gamma = 0.5 10 66.263 0.705 39.039 75.872 0.103 59.891

Region

Heilongjiang cost = 1,gamma = 0.5 10 49.024 0.695 25.009 48.785 0.007 34.382

Jilin cost = 1,gamma = 0.5 10 10.968 0.767 6.570 15.864 0.009 11.854

Liaoning cost = 1,gamma = 1 10 11.380 0.897 7.870 31.249 0.404 26.547

Age

0–14 years cost = 1,gamma = 4 10 1.135 0.800 0.567 2.017 0.000 1.524

15–39 years cost = 1,gamma = 1 10 13.255 0.879 7.932 15.210 0.453 13.080

40–59 years cost = 1,gamma = 1 10 26.272 0.856 15.701 44.812 0.043 32.347

60 years and above cost = 1,gamma = 2 10 12.728 0.808 5.716 19.829 0.004 15.141

SVM (Sigmoid)

Total cases coef0 = 0.1,gamma = 0.5 10 66.263 0.705 39.039 75.872 0.103 59.891

Region

Heilongjiang coef0 = 0.1,gamma = 0.5 10 49.024 0.695 25.009 48.785 0.007 34.382

Jilin coef0 = 0.1,gamma = 0.5 10 10.968 0.767 6.570 15.864 0.009 11.854

Liaoning coef0 = 0.1,gamma = 1 10 11.380 0.897 7.870 31.249 0.404 26.547

Age 0–14 years coef0 = 0.1,gamma = 4 10 1.135 0.800 0.567 2.017 0.000 1.524

15–39 years coef0 = 0.1,gamma = 1 10 13.255 0.879 7.932 15.210 0.453 13.080

40–59 years coef0 = 0.1,gamma = 1 10 26.272 0.856 15.701 44.812 0.043 32.347

60 years and above coef0 = 0.1,gamma = 2 10 12.728 0.808 5.716 19.829 0.004 15.141
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et al. (24), the application of different models with varying parameters 
for hierarchical exploration helped reduce errors from omitted 
variables and increased confidence in the predictive power. The 
results showed better prediction accuracy in Liaoning province, 
which is consistent with previous findings regarding the lagged 
sensitivity of environmental factors. The SVM model proved to 
be more stable than the GPR. This also confirmed the advantage of 
combining the traditional ARIMA time series model with the SVM 
algorithm to enhance the time series model for HFRS disease 
prediction, as demonstrated by Chao Zhang et al. (24). However, this 
study focused more specifically on the northeastern region of China 
and did not explore the southern regions, which limited the ability to 
extrapolate the effects of HFRS and natural environmental factors 
across the country.

5 Conclusion

This is the first mathematically based study on the seasonal 
threshold of HFRS in northeastern China, enabling accurate 
estimation of the epidemic levels. Our findings support that long-term 
exposure to air pollution is a risk factor for HFRS. Therefore, 
we should focus on monitoring pollutants in cold conditions and 
developing HFRS prediction models.
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